WorldWideScience

Sample records for pure-shear deformation upwelling

  1. Deformation behavior of Cu bicrystals with the Σ9(110)(221) symmetric tilt grain boundary under pure shear studied by atomistic simulation method

    International Nuclear Information System (INIS)

    Wan Liang; Wang Shaoqing

    2010-01-01

    The deformation behavior of Cu bicrystals with the symmetric tilt grain boundary (STGB) under pure shear has been studied by atomistic simulation method with the embedded atom method (EAM) interatomic potentials. By using an energy minimization method, it shows that there are two optimized structures of this grain boundary (GB) which correspond to two local energy minima on the potential energy surface of the GB. The structure with lower energy is the stable one while the other is a metastable structure. The pure shear process of the bicrystals at ambient temperature has been studied by molecular dynamics (MD) simulation method. The simulated results indicate that there are three structure transformation modes of this GB depending on the shear direction: (1) pure GB sliding; (2) GB atomic shuffling accompanied by dislocation emission from GB; (3) GB migration coupled GB sliding, namely, GB coupling motion. In addition, an analysis of the structure evolution of the GB shows that, there are two mechanisms for GB coupling motion depending on the shear direction. One is the collective motion of GB atoms and the other is structure transformation realized by uncorrelated atomic shuffling processes. The former mechanism can induce structure transition of GB between the stable one and the metastable one, while the latter introduces faceting of the GB. (authors)

  2. Deformation and Stress Response of Carbon Nanotubes/UHMWPE Composites under Extensional-Shear Coupling Flow

    Science.gov (United States)

    Wang, Junxia; Cao, Changlin; Yu, Dingshan; Chen, Xudong

    2018-02-01

    In this paper, the effect of varying extensional-shear couple loading on deformation and stress response of Carbon Nanotubes/ ultra-high molecular weight polyethylene (CNTs/UHMWPE) composites was investigated using finite element numerical simulation, with expect to improve the manufacturing process of UHMWPE-based composites with reduced stress and lower distortion. When applying pure extensional loading and pure X-Y shear loading, it was found that the risk of a structural breakage greatly rises. For identifying the coupling between extensional and shear loading, distinct generations of force loading were defined by adjusting the magnitude of extensional loading and X-Y shear loading. It was shown that with the decrement of X-Y shear loading the deformation decreases obviously where the maximal Mises stress in Z-direction at 0.45 m distance is in the range from 24 to 10 MPa and the maximal shear stress at 0.61 m distance is within the range from 0.9 to 0.3 MPa. In addition, all the stresses determined were clearly below the yield strength of CNTs/UHMWPE composites under extensional-shear couple loading.

  3. Ultrafine-Grained Pure Ti Processed by New SPD Scheme Combining Drawing with Shear

    Science.gov (United States)

    Raab, A. G.; Bobruk, E. V.; Raab, G. I.

    2018-05-01

    The paper displays the results of the studies and analysis of a promising severe plastic deformation scheme that implements the conditions of a non-monotonous impact during shear drawing of long-length bulk metal materials. The paper describes the efficiency of the proposed severe plastic deformation technique to form a gradient ultrafine-grained state in rod-shaped billets on the example of commercially pure Ti and its further development for future industrial applications.

  4. Atomic simulation of bcc niobium Σ5〈001〉{310} grain boundary under shear deformation

    International Nuclear Information System (INIS)

    Huang, Bo-Wen; Shang, Jia-Xiang; Liu, Zeng-Hui; Chen, Yue

    2014-01-01

    The shear behaviors of grain boundaries are investigated using molecular dynamics simulations. The Σ5〈001〉{310} symmetric tilt grain boundary (GB) of body-centered cubic (bcc) Nb is investigated and the simulations are conducted under a series of shear directions at a wide range of temperatures. The results show that the GB shearing along [13 ¯ 0], which is perpendicular to the tilt axis, has a coupled motion behavior. The coupling factor is predicted using Cahn’s model. The critical stress of the coupling motion is found to decrease exponentially with increasing temperature. The GB under shear deformation along the [001 ¯ ] direction, which is parallel to the tilt axis, has a pure sliding behavior at most of the temperatures investigated. The critical stress of sliding is found to be much larger than that of the coupled motion at the same temperature. At very low temperatures, pure sliding is not observed, and dislocation nucleating and extending is found on GBs. We observed mixed behaviors when the shear direction is between [13 ¯ 0] and [001 ¯ ]. The transition region between GB coupled motion and pure sliding is determined. If the shear angles between the shear direction and the tilt axis are larger than a certain value, the GB has a coupled motion behavior similar to the [13 ¯ 0] direction. A GB with a shear angle smaller than the critical angle exhibits mixed mechanisms at low temperatures, such as dislocation, atomic shuffle and GB distortion, whereas for the [001 ¯ ]-like GB pure sliding is the dominating mechanism at high temperatures. The stresses to activate the coupling and gliding motions are analyzed for shear deformations along different directions at various temperatures

  5. Inelastic deformations of fault and shear zones in granitic rock

    International Nuclear Information System (INIS)

    Wilder, D.G.

    1986-02-01

    Deformations during heating and cooling of three drifts in granitic rock were influenced by the presence of faults and shear zones. Thermal deformations were significantly larger in sheared and faulted zones than where the rock was jointed, but neither sheared nor faulted. Furthermore, thermal deformations in faulted or sheared rock were not significantly recovered during subsequent cooling, thus a permanent deformation remained. This inelastic response is in contrast with elastic behavior identified in unfaulted and unsheared rock segments. A companion paper indicates that deformations in unsheared or unfaulted rock were effectively modeled as an elastic response. We conclude that permanent deformations occurred in fractures with crushed minerals and fracture filling or gouge materials. Potential mechanisms for this permanent deformation are asperity readjustments during thermal deformations, micro-shearing, asperity crushing and crushing of the secondary fracture filling minerals. Additionally, modulus differences in sheared or faulted rock as compared to more intact rock would result in greater deformations in response to the same thermal loads

  6. Shape fabric development in rigid clast populations under pure shear: The influence of no-slip versus slip boundary conditions

    Science.gov (United States)

    Mulchrone, Kieran F.; Meere, Patrick A.

    2015-09-01

    Shape fabrics of elliptical objects in rocks are usually assumed to develop by passive behavior of inclusions with respect to the surrounding material leading to shape-based strain analysis methods belonging to the Rf/ϕ family. A probability density function is derived for the orientational characteristics of populations of rigid ellipses deforming in a pure shear 2D deformation with both no-slip and slip boundary conditions. Using maximum likelihood a numerical method is developed for estimating finite strain in natural populations deforming for both mechanisms. Application to a natural example indicates the importance of the slip mechanism in explaining clast shape fabrics in deformed sediments.

  7. Large shear deformation of particle gels studied by Brownian Dynamics simulations

    NARCIS (Netherlands)

    Rzepiela, A.A.; Opheusden, van J.H.J.; Vliet, van T.

    2002-01-01

    This paper focuses on shear deformation of particle gels. Two different methods of shear deformation are discussed, namely affine and non-affine deformation, the second being novel in simulation studies of gels. Non-affine deformation resulted in a slower increase of the stress at small deformation.

  8. Microstructure evolution of pure copper during a single pass of simple shear extrusion (SSE): role of shear reversal

    Energy Technology Data Exchange (ETDEWEB)

    Bagherpour, E., E-mail: e.bagherpour@semnan.ac.ir [Faculty of Metallurgical and Materials Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Department of Mechanical Engineering, Doshisha University, Kyotanabe, Kyoto 610–0394 (Japan); Qods, F., E-mail: qods@semnan.ac.ir [Faculty of Metallurgical and Materials Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Ebrahimi, R., E-mail: ebrahimy@shirazu.ac.ir [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Miyamoto, H., E-mail: hmiyamot@mail.doshisha.ac.jp [Department of Mechanical Engineering, Doshisha University, Kyotanabe, Kyoto 610–0394 (Japan)

    2016-06-01

    In the present paper the role of shear reversal on microstructure, texture and mechanical properties of pure copper during a single pass of the simple shear extrusion (SSE) process was investigated. For SSE processing an appropriate die with a linear die profile was designed and constructed, which imposes forward shear in the first half and reverse shear in the second half channels. Electron back-scattering diffraction (EBSD), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) were used to evaluate the microstructure of the deformed samples. The geometrical nature of this process imposes a distribution of strain results in the inhomogeneous microstructure and the hardness throughout the plane perpendicular to the extrusion direction. Strain reversal during the process results in a slight reduction in dislocation density, the hardness and mean disorientation angle of the samples, and an increase in the grain size. After a complete pass of SSE, dislocation density decreased by ~14% if compared to the middle of the process. This suggests that the dislocation annihilation occurred by the reversal of the shear strain. The simple shear textures were formed gradually and the strongest simple shear textures were observed on the middle of the SSE channel. The degree of the simple shear textures decreases with the distance from the middle plane where the shear is reversed, but the simple shear textures are still the major components after exit of the channel. Hardness variation was modeled by contributions from dislocation strengthening and grain boundary strengthening, where dislocation density is approximated by the misorientation angle of LAGBs which are regarded as dislocation cell boundaries. As a result, the hardness can be predicted successfully by the microstructural features, i.e. the low-angle boundaries, the mean misorientation angle and the fraction of high-angle grain boundaries.

  9. Shear zone nucleation and deformation transient: effect of heterogeneities and loading conditions in experimentally deformed calcite

    Science.gov (United States)

    Morales, L. F. G.; Rybacki, E.; Dresen, G. H.; Kilian, R.

    2015-12-01

    In the Earth's middle to lower crust, strain is frequently localized along ductile shear zones, which commonly nucleate at structural and material heterogeneities. To investigate shear zone nucleation and development due to heterogeneities, we performed constant strain-rate (CSR) and constant stress (CS) simple shear (torsion) deformation experiments on Carrara marble samples containing weak (limestone) inclusions. The experiments were conducted in a Paterson-type gas deformation apparatus at 900 °C temperature and 400 MPa confining pressure and maximum bulk shear strains of 3. Peak shear stress was about 20 MPa for all the samples, followed by smooth weakening and steady state behavior. The strain is predominantly localized in the host marble within the process zone in front of the inclusion, defined by a zone of intense grain size reduction due to dynamic recrystallization. In CS tests a narrow shear zone developed in front of the inclusion, whereas in CSR experiments the deformation is more heterogeneously distributed, up to g=3.. In the later, secondary foliations oblique to the process zone and alternating thin, high-strain layers are common. In samples deformed at the same shear strain (g=1), the average recrystallized grain size in the process zone is similar for CS and CSR conditions. Crystallographic preferred orientation (CPO) measurements shows that different grain sizes have slightly different CPO patterns. CPO strength varies for different grain sizes, with a CPO strength peak between 40-50 μm, decreasing progressively within smaller grain size, but with secondary peaks for different coarse-grained sizes. Our observations suggest that the initial formation and transient deformation of shear zones is strongly affected by loading conditions.

  10. Deformation localization at the tips of shear fractures: An analytical approach

    Science.gov (United States)

    Misra, Santanu

    2011-04-01

    Mechanical heterogeneities are important features in rocks which trigger deformation localization in brittle, ductile or brittle-ductile modes during deformation. In a recent study Misra et al. (2009) have investigated these different processes of deformation localization at the tips of pre-existing planar shear fractures. The authors identified four mechanisms of deformation, ranging from brittle to ductile, operating at the crack tips. Mechanism A: brittle deformation is the dominant process that forms a pair of long tensile fractures at the two crack tips. Mechanism B: nature of deformation is mixed where the tensile fractures grow to a finite length with incipient plastic deformation at the tips. Mechanism C: mixed mode deformation characterized by dominating macro-scale shear bands, and short, opened-out tensile fissures. Mechanism D: localization of plastic bands in the form of a pair of shear bands at each tip without any discernible brittle fracturing. The transition of the mechanisms is a function of orientation ( α) of the crack with respect to the bulk compression direction and the finite length ( l) of the crack. The aim of this study is to present a theoretical analysis to account for the variability of deformation localization in the vicinity of pre-existing shear cracks considering an elastic-plastic rheological model. The analysis calculates the principal tensile stress ( σ1) and the second stress invariant ( I2) of the stress field at the fracture tip to explain the transition from Mechanism A (tensile fracturing) to Mechanism D (ductile strain). The results show that σ1 at the fracture tip increases non-linearly with increasing α and Ar (aspect ratio of the shear crack), and assumes a large value when α > 50 o, promoting tensile fractures. On the other hand, I2 is a maximum at α < 45°, resulting in nucleation of ductile shear bands.

  11. Large shear deformation of particle gels studied by Brownian Dynamics simulations

    NARCIS (Netherlands)

    Rzepiela, A.A.; Opheusden, van J.H.J.; Vliet, van T.

    2004-01-01

    Brownian Dynamics (BD) simulations have been performed to study structure and rheology of particle gels under large shear deformation. The model incorporates soft spherical particles, and reversible flexible bond formation. Two different methods of shear deformation are discussed, namely affine and

  12. Thermal flexural analysis of cross-ply laminated plates using trigonometric shear deformation theory

    Directory of Open Access Journals (Sweden)

    Yuwaraj Marotrao Ghugal

    Full Text Available Thermal stresses and displacements for orthotropic, two-layer antisymmetric, and three-layer symmetric square cross-ply laminated plates subjected to nonlinear thermal load through the thickness of laminated plates are presented by using trigonometric shear deformation theory. The in-plane displacement field uses sinusoidal function in terms of thickness co-ordinate to include the shear deformation effect. The theory satisfies the shear stress free boundary conditions on the top and bottom surfaces of the plate. The present theory obviates the need of shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. The validity of present theory is verified by comparing the results with those of classical plate theory and first order shear deformation theory and higher order shear deformation theory.

  13. Buckling of pressure-loaded, long, shear deformable, cylindrical laminated shells

    Science.gov (United States)

    Anastasiadis, John S.; Simitses, George J.

    A higher-order shell theory was developed (kinematic relations, constitutive relations, equilibrium equations and boundary conditions), which includes initial geometric imperfections and transverse shear effects for a laminated cylindrical shell under the action of pressure, axial compression and in-plane shear. Through the perturbation technique, buckling equations are derived for the corresponding 'perfect geometry' symmetric laminated configuration. Critical pressures are computed for very long cylinders for several stacking sequences, several radius-to-total-thickness ratios, three lamina materials (boron/epoxy, graphite/epoxy, and Kevlar/epoxy), and three shell theories: classical, first-order shear deformable and higher- (third-)order shear deformable. The results provide valuable information concerning the applicability (accurate prediction of buckling pressures) of the various shell theories.

  14. Mechanisms of strain accommodation in plastically-deformed zircon under simple shear deformation conditions during amphibolite-facies metamorphism

    Science.gov (United States)

    Kovaleva, Elizaveta; Klötzli, Urs; Wheeler, John; Habler, Gerlinde

    2018-02-01

    This study documents the strain accommodation mechanisms in zircon under amphibolite-facies metamorphic conditions in simple shear. Microstructural data from undeformed, fractured and crystal-plastically deformed zircon crystals are described in the context of the host shear zone, and evaluated in the light of zircon elastic anisotropy. Our work challenges the existing model of zircon evolution and shows previously undescribed rheological characteristics for this important accessory mineral. Crystal-plastically deformed zircon grains have axis oriented parallel to the foliation plane, with the majority of deformed grains having axis parallel to the lineation. Zircon accommodates strain by a network of stepped low-angle boundaries, formed by switching between tilt dislocations with the slip systems {010} and {110} and rotation axis [001], twist dislocations with the rotation axis [001], and tilt dislocations with the slip system {001} and rotation axis [010]. The slip system {110} is newly described for zircon. Most misorientation axes in plastically-deformed zircon grains are parallel to the XY plane of the sample and have [001] crystallographic direction. Such behaviour of strained zircon lattice is caused by elastic anisotropy that has a direct geometric control on the rheology, deformation mechanisms and dominant slip systems in zircon. Young's modulus and P wave velocity have highest values parallel to zircon [001] axis, indicating that zircon is elastically strong along this direction. Poisson ratio and Shear modulus demonstrate that zircon is also most resistant to shearing along [001]. Thus, [001] axis is the most common rotation axis in zircon. The described zircon behaviour is important to take into account during structural and geochronological investigations of (poly)metamorphic terrains. Geometry of dislocations in zircon may help reconstructing the geometry of the host shear zone(s), large-scale stresses in the crust, and, possibly, the timing of

  15. Modeling crustal deformation and rupture processes related to upwelling of deep CO2-rich fluids during the 1965-1967 Matsushiro Earthquake Swarm in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Cappa, F.; Rutqvist, J.; Yamamoto, K.

    2009-05-15

    In Matsushiro, central Japan, a series of more than 700,000 earthquakes occurred over a 2-year period (1965-1967) associated with a strike-slip faulting sequence. This swarm of earthquakes resulted in ground surface deformations, cracking of the topsoil, and enhanced spring-outflows with changes in chemical compositions as well as carbon dioxide (CO{sub 2}) degassing. Previous investigations of the Matsushiro earthquake swarm have suggested that migration of underground water and/or magma may have had a strong influence on the swarm activity. In this study, employing coupled multiphase flow and geomechanical modelling, we show that observed crustal deformations and seismicity can have been driven by upwelling of deep CO{sub 2}-rich fluids around the intersection of two fault zones - the regional East Nagano earthquake fault and the conjugate Matsushiro fault. We show that the observed spatial evolution of seismicity along the two faults and magnitudes surface uplift, are convincingly explained by a few MPa of pressurization from the upwelling fluid within the critically stressed crust - a crust under a strike-slip stress regime near the frictional strength limit. Our analysis indicates that the most important cause for triggering of seismicity during the Matsushiro swarm was the fluid pressurization with the associated reduction in effective stress and strength in fault segments that were initially near critically stressed for shear failure. Moreover, our analysis indicates that a two order of magnitude permeability enhancement in ruptured fault segments may be necessary to match the observed time evolution of surface uplift. We conclude that our hydromechanical modelling study of the Matsushiro earthquake swarm shows a clear connection between earthquake rupture, deformation, stress, and permeability changes, as well as large-scale fluid flow related to degassing of CO{sub 2} in the shallow seismogenic crust. Thus, our study provides further evidence of the

  16. Localization in inelastic rate dependent shearing deformations

    KAUST Repository

    Katsaounis, Theodoros

    2016-09-18

    Metals deformed at high strain rates can exhibit failure through formation of shear bands, a phenomenon often attributed to Hadamard instability and localization of the strain into an emerging coherent structure. We verify formation of shear bands for a nonlinear model exhibiting strain softening and strain rate sensitivity. The effects of strain softening and strain rate sensitivity are first assessed by linearized analysis, indicating that the combined effect leads to Turing instability. For the nonlinear model a class of self-similar solutions is constructed, that depicts a coherent localizing structure and the formation of a shear band. This solution is associated to a heteroclinic orbit of a dynamical system. The orbit is constructed numerically and yields explicit shear localizing solutions. © 2016 Elsevier Ltd

  17. Localization in inelastic rate dependent shearing deformations

    KAUST Repository

    Katsaounis, Theodoros; Lee, Min-Gi; Tzavaras, Athanasios

    2016-01-01

    Metals deformed at high strain rates can exhibit failure through formation of shear bands, a phenomenon often attributed to Hadamard instability and localization of the strain into an emerging coherent structure. We verify formation of shear bands for a nonlinear model exhibiting strain softening and strain rate sensitivity. The effects of strain softening and strain rate sensitivity are first assessed by linearized analysis, indicating that the combined effect leads to Turing instability. For the nonlinear model a class of self-similar solutions is constructed, that depicts a coherent localizing structure and the formation of a shear band. This solution is associated to a heteroclinic orbit of a dynamical system. The orbit is constructed numerically and yields explicit shear localizing solutions. © 2016 Elsevier Ltd

  18. Adiabatic shear behaviors in rolled and annealed pure titanium subjected to dynamic impact loading

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Lianjun; Chen, Zhiyong, E-mail: czysh@netease.com; Jiang, Yanghui; Wang, Zhiming; Wang, Renke; Liu, Chuming

    2017-02-08

    The hat-shaped samples cut from rolled and annealed titanium plates were prepared to explore the adiabatic shear behaviors subjected to high-strain-rate deformation operated via Split Hopkinson Pressure Bar. The dynamic shear response calculation reveals that dynamic deformation processes of both state samples can be divided in similar three stages but rolled sample shows a higher susceptibility of adiabatic shear localization compared with the annealed one. Optical microscopy and electronic backscatter diffraction technique (EBSD) were used to systematically analyze the microstructure and texture characteristics. The results show that adiabatic shear bands form in both state samples and rotational dynamic recrystallization (RDRX) occurs within shear area and results in the formation of ultrafine equiaxed grains. Furthermore, ultrafine equiaxed grains within adiabatic shear bands have the same texture feature that <11–20> direction and {10-10} plane parallel to macro local shear direction and shear plane respectively. In the deformation region around the shear band, {10–12} <–1011> tensile and {11–22} <11-2-3> compressive two types twins are observed in both state samples and {10–12} <–1011> tensile twins are more frequently observed in rolled sample. In the rolled sample, {10–12} <–1011> tensile twins are more likely to happen in the hat-brim side than the hat-body side due to the difference of stress state in two sides.

  19. Atomistic simulation study of the shear-band deformation mechanism in Mg-Cu metallic glasses

    DEFF Research Database (Denmark)

    Bailey, Nicholas; Schiøtz, Jakob; Jacobsen, Karsten Wedel

    2006-01-01

    We have simulated plastic deformation of a model Mg-Cu metallic glass in order to study shear banding. In uniaxial tension, we find a necking instability occurs rather than shear banding. We can force the latter to occur by deforming in plane strain, forbidding the change of length in one...... of the transverse directions. Furthermore, in most of the simulations a notch is used to initiate shear bands, which lie at a 45 degrees angle to the tensile loading direction. The shear bands are characterized by the Falk and Langer local measure of plastic deformation D-min(2), averaged here over volumes...... observe a slight decrease in density, up to 1%, within the shear band, which is consistent with notions of increased free volume or disorder within a plastically deforming amorphous material....

  20. Ab initio study of Ni2MnGa under shear deformation

    Directory of Open Access Journals (Sweden)

    Zelený Martin

    2015-01-01

    Full Text Available The effect of shear deformation on Ni2MnGa magnetic shape memory alloy has been investigated using ab initio electronic structure calculations. We used the projector-augmented wave method for the calculations of total energies and stresses as functions of applied affine shear deformation. The studied nonmodulated martensite (NM phase exhibits a tetragonally distorted L21 structure with c/a > 1. A large strain corresponding to simple shears in {001}, {100} and {100} systems was applied to describe a full path between two equivalent NM lattices. We also studied {101} shear which is related to twining of NM phase. Twin reorientation in this system is possible, because applied positive shear results in path with significantly smaller energetic barrier than for negative shear and for shears in other studied systems. When the full relaxation of lattice parameters is allowed, the barriers further strongly decrease and the structures along the twinning path can be considered as orthorhombic.

  1. Deformation of footwall rock of Phulad Shear Zone, Rajasthan ...

    Indian Academy of Sciences (India)

    Phulad Shear Zone (PSZ) of Delhi Fold Belt in Rajasthan is a northeasterly striking ductile shear zone with a well developed mylonitic foliation (035/70E) and a downdip stretching lineation. The deformation in the PSZ has developed in a transpressional regime with thrusting sense of movement. The northeastern unit, i.e. ...

  2. Repetitive Supra-Physiological Shear Stress Impairs Red Blood Cell Deformability and Induces Hemolysis.

    Science.gov (United States)

    Horobin, Jarod T; Sabapathy, Surendran; Simmonds, Michael J

    2017-11-01

    The supra-physiological shear stress that blood is exposed to while traversing mechanical circulatory assist devices affects the physical properties of red blood cells (RBCs), impairs RBC deformability, and may induce hemolysis. Previous studies exploring RBC damage following exposure to supra-physiological shear stress have employed durations exceeding clinical instrumentation, thus we explored changes in RBC deformability following exposure to shear stress below the reported "hemolytic threshold" using shear exposure durations per minute (i.e., duty-cycles) reflective of that employed by circulatory assist devices. Blood collected from 20 male donors, aged 18-38 years, was suspended in a viscous medium and exposed to an intermittent shear stress protocol of 1 s at 100 Pa, every 60 s for 60 duty-cycles. During the remaining 59 s/min, the cells were left at stasis until the subsequent duty-cycle commenced. At discrete time points (15/30/45/60 duty-cycles), an ektacytometer measured RBC deformability immediately after shear exposure at 100 Pa. Plasma-free hemoglobin, a measurement of hemolysis, was quantified via spectrophotometry. Supra-physiological shear stress impaired RBC properties, as indicated by: (1) decreased maximal elongation of RBCs at infinite shear stress following 15 duty-cycles (P supra-physiological shear stress protocol (100 Pa) following exposure to 1 duty-cycle (F (1.891, 32.15) = 12.21, P = 0.0001); and (3) increased plasma-free hemoglobin following 60 duty-cycles (P supra-physiological shear stress, impairs RBC deformability, with the extent of impairment exacerbated with each duty-cycle, and ultimately precipitates hemolysis. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  3. Mantle upwelling beneath Madagascar: evidence from receiver function analysis and shear wave splitting

    Science.gov (United States)

    Paul, Jonathan D.; Eakin, Caroline M.

    2017-07-01

    Crustal receiver functions have been calculated from 128 events for two three-component broadband seismomenters located on the south coast (FOMA) and in the central High Plateaux (ABPO) of Madagascar. For each station, crustal thickness and V p / V s ratio were estimated from H- κ plots. Self-consistent receiver functions from a smaller back-azimuthal range were then selected, stacked and inverted to determine shear wave velocity structure as a function of depth. These results were corroborated by guided forward modeling and by Monte Carlo error analysis. The crust is found to be thinner (39 ± 0.7 km) beneath the highland center of Madagascar compared to the coast (44 ± 1.6 km), which is the opposite of what would be expected for crustal isostasy, suggesting that present-day long wavelength topography is maintained, at least in part, dynamically. This inference of dynamic support is corroborated by shear wave splitting analyses at the same stations, which produce an overwhelming majority of null results (>96 %), as expected for vertical mantle flow or asthenospheric upwelling beneath the island. These findings suggest a sub-plate origin for dynamic support.

  4. Intra-Continental Deformation by Mid-Crustal Shearing and Doming in a Cenozoic Compressive Setting Along the Ailao Shan-Red River Shear Zone

    Science.gov (United States)

    Zhang, B.

    2016-12-01

    Large-scale lateral strike-slip shear zones have been a key point in the debate about the deformation mechanisms of Asia in response to the India-Asia collision. The exhumed gneiss has been attributed to lateral strike-slip shear zone. This hypothesis has been challenged by recent discoveries indicating that a contractional doming deformation prior to the initiation of lateral strike-slip shearing. The Cenozoic Xuelong Shan antiformal dome is located at the northern segment of the Ailao Shan-Red River shear zone. Subhorizontal foliation in the gneiss core are recognized, representing a broad top-to-NE shear initiated under amphibolite facies conditions and propagated into greenschist facies in the mantling schist and strike-slip shear zone. Quartz CPOs and opening angles of crossed girdle fabrics in quartz suggest that the deformation temperatures increased with increasing structural depth from 300-500 °C in the mantling schist to ≥650 °C in the gneissic core. This trend is mirrored by variations in the metamorphic grade of the syn-kinematic mineral assemblages and microstructures, which ranges from garnet + amphibole + biotite + sillimanite + rutite + feldspar in the core to garnet + staurolite + biotite + epidote + muscovite within the limb units. Five-stage deformation is identified: (1) a broad top-to-NE shear in the subhorizontal level (D1); (2) opposing reverse-sense shear along the two schist limbs of the dome during contraction-related doming (D2-D3); (3) sinistral strike-slip shearing within the eastern limb (D4); and (4) extensional deformation (D5). The antiformal dome formation had been roughly coeval with top-to-NE ductile shearing in the mid-crust at 32 Ma or earlier. The geometries of the antiformal dome in the Xuelong Shan dome are similar to those associated with the antiform in the Dai Nui Con Voi, Diancang Shan and Ailao Shan zones. It is likely that the complex massifs, which define a regional linear gneiss dome zone in Cenozoic intra

  5. Deformation of a Capsule in a Power-Law Shear Flow

    Directory of Open Access Journals (Sweden)

    Fang-Bao Tian

    2016-01-01

    Full Text Available An immersed boundary-lattice Boltzmann method is developed for fluid-structure interactions involving non-Newtonian fluids (e.g., power-law fluid. In this method, the flexible structure (e.g., capsule dynamics and the fluid dynamics are coupled by using the immersed boundary method. The incompressible viscous power-law fluid motion is obtained by solving the lattice Boltzmann equation. The non-Newtonian rheology is achieved by using a shear rate-dependant relaxation time in the lattice Boltzmann method. The non-Newtonian flow solver is then validated by considering a power-law flow in a straight channel which is one of the benchmark problems to validate an in-house solver. The numerical results present a good agreement with the analytical solutions for various values of power-law index. Finally, we apply this method to study the deformation of a capsule in a power-law shear flow by varying the Reynolds number from 0.025 to 0.1, dimensionless shear rate from 0.004 to 0.1, and power-law index from 0.2 to 1.8. It is found that the deformation of the capsule increases with the power-law index for different Reynolds numbers and nondimensional shear rates. In addition, the Reynolds number does not have significant effect on the capsule deformation in the flow regime considered. Moreover, the power-law index effect is stronger for larger dimensionless shear rate compared to smaller values.

  6. Development of a Shear Deformable Element Using the Absolute Nodal Coordinate Formulation

    National Research Council Canada - National Science Library

    Omar, Mohamed

    2000-01-01

    .... The effect of the shear deformation is accounted for without the need for introducing Timoshenko's shear coefficient By using the absolute coordinates, the nonlinear strain-displacement relationships...

  7. Deformation and recrystallization textures in commercially pure aluminum

    DEFF Research Database (Denmark)

    Hansen, Niels; Juul Jensen, Dorte

    1986-01-01

    The deformation and recrystallization textures of commercially pure aluminum (99.6 pct) containing large intermetallic particles (FeAl3) are measured by neutron diffraction, and the orientation distribution functions (ODF’s) are calculated. Sample parameters are the initial grain size (50 and 350...

  8. Nonlinear analysis of shear deformable beam-columns partially ...

    African Journals Online (AJOL)

    In this paper, a boundary element method is developed for the nonlinear analysis of shear deformable beam-columns of arbitrary doubly symmetric simply or multiply connected constant cross section, partially supported on tensionless Winkler foundation, undergoing moderate large deflections under general boundary ...

  9. Large strain deformation behavior of polymeric gels in shear- and cavitation rheology

    Science.gov (United States)

    Hashemnejad, Seyed Meysam; Kundu, Santanu

    Polymeric gels are used in many applications including in biomedical and in food industries. Investigation of mechanical responses of swollen polymer gels and linking that to the polymer chain dynamics are of significant interest. Here, large strain deformation behavior of two different gel systems and with different network architecture will be presented. We consider biologically relevant polysaccharide hydrogels, formed through ionic and covalent crosslinking, and physically associating triblock copolymer gels in a midblock selective solvent. Gels with similar low-strain shear modulus display distinctly different non-linear rheological behavior in large strain shear deformation. Both these gels display strain-stiffening behavior in shear-deformation prior to macroscopic fracture of the network, however, only the alginate gels display negative normal stress. The cavitation rheology data show that the critical pressure for cavitation is higher for alginate gels than that observed for triblock gels. These distinctly different large-strain deformation behavior has been related to the gel network structure, as alginate chains are much stiffer than the triblock polymer chains.

  10. Using crustal thickness and subsidence history on the Iberia-Newfoundland margins to constrain lithosphere deformation modes during continental breakup

    Science.gov (United States)

    Jeanniot, Ludovic; Kusznir, Nick; Manatschal, Gianreto; Mohn, Geoffroy

    2014-05-01

    contribution of buoyancy driven upwelling and their spatial and temporal evolution including lateral migration are determined by using a series of numerical experiments, tested and calibrated against observations of crustal thicknesses and water-loaded subsidence. Pure-shear widths exert a strong control on the timing of crustal rupture and melt initiation; to satisfy OCT architecture, subsidence and mantle exhumation, we need to focus the deformation from a broad to a narrow region. The lateral migration of the deformation flow axis has an important control on the rupture of continental crust and lithosphere, melt initiation, their relative timing, the resulting OCT architecture and conjugate margin asymmetry. The numerical models are used to predict margin isostatic response and subsidence history.

  11. Stud-bolts strength for cell-liner design under shearing deformation

    International Nuclear Information System (INIS)

    Watashi, Katsumi; Nakanishi, Seiji

    1991-01-01

    This paper presents experimental and analytical stud-bolt strength subjected to large shearing deformation at high temperature. Tensile test result of the material, SM41B, was shown in the range of room temperature to 550degC at 10 -3 and 10 -4 m/m/s in strain rate. Shearing fracture test result of the stud-bolt is shown at room temperature and 530degC. Shearing fracture criterion was discussed based on both test results and FEM analysis result. (author)

  12. Measuring Local Strain Rates In Ductile Shear Zones: A New Approach From Deformed Syntectonic Dykes

    Science.gov (United States)

    Sassier, C.; Leloup, P.; Rubatto, D.; Galland, O.; Yue, Y.; Ding, L.

    2006-12-01

    At the Earth surface, deformation is mostly localized in fault zones in between tectonic plates. In the upper crust, the deformation is brittle and the faults are narrow and produce earthquakes. In contrast, deformation in the lower ductile crust results in larger shear zones. While it is relatively easy to measure in situ deformation rates at the surface using for example GPS data, it is more difficult to determinate in situ values of strain rate in the ductile crust. Such strain rates can only be estimated in paleo-shear zones. Various methods have been used to assess paleo-strain rates in paleo-shear zones. For instance, cooling and/or decompression rates associated with assumptions on geothermic gradients and shear zone geometry can lead to such estimates. Another way to estimate strain rates is the integration of paleo-stress measurements in a power flow law. But these methods are indirect and imply strong assumptions. Dating of helicitic garnets or syntectonic fibres are more direct estimates. However these last techniques have been only applied in zones of low deformation and not in major shear zones. We propose a new direct method to measure local strain rates in major ductile shear zones from syntectonic dykes by coupling quantification of deformation and geochronology. We test our method in a major shear zone in a well constrained tectonic setting: the Ailao-Shan - Red River Shear Zone (ASRRsz) located in SE Asia. For this 10 km wide shear zone, large-scale fault rates, determined in three independent ways, imply strain rates between 1.17×10^{-13 s-1 and 1.52×10^{-13 s-1 between 35 and 16 Ma. Our study focused on one outcrop where different generations of syntectonic dykes are observed. First, we quantified the minimum shear strain γ for each dyke using several methods: (1) by measuring the stretching of dykes with a surface restoration method (2) by measuring the final angle of the dykes with respect to the shear direction and (3) by combining the two

  13. Texture and Microtexture of Pure (6N and Commercially Pure Aluminum after Deformation by Extrusion with Forward-Backward Rotating Die (Kobo

    Directory of Open Access Journals (Sweden)

    Bieda M.

    2016-03-01

    Full Text Available Pure aluminium (6N and commercially pure aluminium (99.7 was deformed by KOBO method. Microstructure and texture of both materials after deformation was analyzed by means of scanning and transmission electron microscopy. Advanced methods of crystallographic orientations measurements like Electron Backscatter Diffraction - EBSD (SEM and microdiffraction (TEM was used. Grain size distribution and misorientation between grains in cross and longitudinal sections of the samples were analyzed. Differences in size and homogeneity of the grains were observed in both materials. Pure aluminium was characterized by larger grain size in both sections of extruded material. Whereas commercially pure aluminium reveals smaller grain size and more homogeneous and stable microstructure.

  14. A single variable shear deformable nonlocal theory for transversely ...

    Indian Academy of Sciences (India)

    Rameshchandra P Shimpi

    2018-05-11

    May 11, 2018 ... Abstract. In this paper, a simple single variable shear deformable nonlocal theory for bending of micro- and ... the models based upon continuum mechanics are widely .... of the body. ...... Elsevier Science Ltd, Oxford, UK. pp.

  15. Microstructure quantification of ultrafine grained pure copper fabricated by simple shear extrusion (SSE) technique

    International Nuclear Information System (INIS)

    Bagherpour, E.; Qods, F.; Ebrahimi, R.; Miyamoto, H.

    2016-01-01

    In the present paper commercially pure copper was processed by simple shear extrusion (SSE) technique up to 12 passes using the so-called route C. For SSE processing an appropriate die with a linear die profile was designed and constructed. Effect of SSE passes on isotropy and uniformity of microstructures are focused. Electron back-scattering diffraction (EBSD) was used to evaluate the microstructure of the deformed samples in three orthogonal planes. To investigate the microstructural uniformity EBSD maps were taken from center to periphery of the extrusion direction plane (ED-plane) samples. Significant evolution in grain refinement was achieved down to sub-micron grain size in all planes. Hardness measurements show a considerable increase in hardness of the material after the processing, which confirms the microstructural evolutions. EBSD scans revealed a homogeneous ultrafine grained microstructure after 12 passes. Micro-shear bands were found as potential sites for accelerating the formation of new grains by fragmentation of the initial grains. The total frequency of coincidence site lattice (CSL) boundaries including Σ3 boundaries increased by the increasing of SSE passes. The higher fraction of low to high angle grain boundaries of SSE compared to equal channel angular pressing is an evidence for the cyclic behavior of SSE technique.

  16. Microstructure quantification of ultrafine grained pure copper fabricated by simple shear extrusion (SSE) technique

    Energy Technology Data Exchange (ETDEWEB)

    Bagherpour, E., E-mail: e.bagherpour@semnan.ac.ir [Faculty of Metallurgical and Materials Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Department of Mechanical Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394 (Japan); Qods, F., E-mail: qods@semnan.ac.ir [Faculty of Metallurgical and Materials Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Ebrahimi, R., E-mail: ebrahimy@shirazu.ac.ir [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Miyamoto, H., E-mail: hmiyamot@mail.doshisha.ac.jp [Department of Mechanical Engineering, Doshisha University, Kyotanabe, Kyoto 610-0394 (Japan)

    2016-09-30

    In the present paper commercially pure copper was processed by simple shear extrusion (SSE) technique up to 12 passes using the so-called route C. For SSE processing an appropriate die with a linear die profile was designed and constructed. Effect of SSE passes on isotropy and uniformity of microstructures are focused. Electron back-scattering diffraction (EBSD) was used to evaluate the microstructure of the deformed samples in three orthogonal planes. To investigate the microstructural uniformity EBSD maps were taken from center to periphery of the extrusion direction plane (ED-plane) samples. Significant evolution in grain refinement was achieved down to sub-micron grain size in all planes. Hardness measurements show a considerable increase in hardness of the material after the processing, which confirms the microstructural evolutions. EBSD scans revealed a homogeneous ultrafine grained microstructure after 12 passes. Micro-shear bands were found as potential sites for accelerating the formation of new grains by fragmentation of the initial grains. The total frequency of coincidence site lattice (CSL) boundaries including Σ3 boundaries increased by the increasing of SSE passes. The higher fraction of low to high angle grain boundaries of SSE compared to equal channel angular pressing is an evidence for the cyclic behavior of SSE technique.

  17. Transverse vibrations of shear-deformable beams using a general higher order theory

    Science.gov (United States)

    Kosmatka, J. B.

    1993-01-01

    A general higher order theory is developed to study the static and vibrational behavior of beam structures having an arbitrary cross section that utilizes both out-of-plane shear-dependent warping and in-plane (anticlastic) deformations. The equations of motion are derived via Hamilton's principle, where the full 3D constitutive relations are used. A simplified version of the general higher-order theory is also presented for beams having an arbitrary cross section that includes out-of-plane shear deformation but assumes that stresses within the cross section and in-plane deformations are negligible. This simplified model, which is accurate for long to moderately short wavelengths, offers substantial improvements over existing higher order theories that are limited to beams with thin rectangular cross sections. The current approach will be very useful in the study of thin-wall closed-cell beams such as airfoil-type sections where the magnitude of shear-related cross-sectional warping is significant.

  18. An analytical study of the effects of transverse shear deformation and anisotropy on natural vibration frequencies of laminated cylinders

    Science.gov (United States)

    Jegley, Dawn C.

    1988-01-01

    Natural vibration frequencies of orthotropic and anisotropic simply supported right circular cylinders are predicted using a higher-order transverse-shear deformation theory. A comparison of natural vibration frequencies predicted by first-order transverse-shear deformation theory and the higher-order theory shows that an additional allowance for transverse shear deformation has a negligible effect on the lowest predicted natural vibration frequencies of laminated cylinders but significantly reduces the higher natural vibration frequencies. A parametric study of the effects of ply orientation on the natural vibration frequencies of laminated cylinders indicates that while stacking sequence affects natural vibration frequencies, cylinder geometry is more important in predicting transverse-shear deformation effects. Interaction curves for cylinders subjected to axial compressive loadings and low natural vibration frequencies indicate that transverse shearing effects are less important in predicting low natural vibration frequencies than in predicting axial compressive buckling loads. The effects of anisotropy are more important than the effects of transverse shear deformation for most strongly anisotropic laminated cylinders in predicting natural vibration frequencies. However, transverse-shear deformation effects are important in predicting high natural vibration frequencies of thick-walled laminated cylinders. Neglecting either anisotropic effects or transverse-shear deformation effects leads to non-conservative errors in predicted natural vibration frequencies.

  19. An analytical study of the effects of transverse shear deformation and anisotropy on natural vibation frequencies of laminated cylinders

    Science.gov (United States)

    Jegley, Dawn C.

    1989-01-01

    Natural vibration frequencies of orthotropic and anisotropic simply supported right circular cylinders are predicted using a higher-order transverse-shear deformation theory. A comparison of natural vibration frequencies predicted by first-order transverse-shear deformation theory and the higher-order theory shows that an additional allowance for transverse shear deformation has a negligible effect on the lowest predicted natural vibration frequencies of laminated cylinders but significantly reduces the higher natural vibration frequencies. A parametric study of the effects of ply orientation on the natural vibration frequencies of laminated cylinders indicates that while stacking sequence affects natural vibration frequencies, cylinder geometry is more important in predicting transverse-shear deformation effects. Interaction curves for cylinders subjected to axial compressive loadings and low natural vibration frequencies indicate that transverse shearing effects are less important in predicting low natural vibration frequencies than in predicting axial compressive buckling loads. The effects of anisotropy are more important than the effects of transverse shear deformation for most strongly anisotropic laminated cylinders in predicting natural vibration frequencies. However, transverse-shear deformation effects are important in predicting high natural vibration frequencies of thick-walled laminated cylinders. Neglecting either anisotropic effects or transverse-shear deformation effects leads to non-conservative errors in predicted natural vibration frequencies.

  20. Non-localized deformation in Cu−Zr multi-layer amorphous films under tension

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, C. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, H. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Cao, Q.P.; Wang, X.D. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, D.X. [State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027 (China); Hu, J.W. [Hangzhou Workers Amateur University, Hangzhou 310027 (China); Liaw, P.K. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Jiang, J.Z., E-mail: jiangjz@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-09-05

    In metallic glasses (MGs), plastic deformation at room temperature is dominated by highly localized shear bands. Here we report the non-localized deformation under tension in Cu−Zr multi-layer MGs with a pure amorphous structure using large-scale atomistic simulations. It is demonstrated that amorphous samples with high layer numbers, composed of Cu{sub 64}Zr{sub 36} and Cu{sub 40}Zr{sub 60}, or Cu{sub 64}Zr{sub 36} and Cu{sub 50}Zr{sub 50}, present obviously non-localized deformation behavior. We reveal that the deformation behavior of the multi-layer-structured MG films is related but not determined by the deformation behavior of the composed individual layers. The criterion for the deformation mode change for MGs with a pure amorphous structure, in generally, was suggested, i.e., the competition between the elastic-energy density stored and the energy density needed for forming one mature shear band in MGs. Our results provide a promising strategy for designing tensile ductile MGs with a pure amorphous structure at room temperature. - Highlights: • Tensile deformation behaviors in multi-layer MG films. • Films with high layer numbers confirmed with a non-localized deformation behavior. • The deformation mode is reasonably controlled by whether U{sub p} larger than U{sub SB.}.

  1. Behaviour of porous ductile solids at low stress triaxiality in different modes of deformation

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2015-01-01

    The effect of low stress triaxiality on ductile failure is investigated for a material subject to pure shear or to stress states in the vicinity of pure shear. Many recent studies of ductile failure under low hydrostatic tension have focused on shear with superposed tension, which can result...... that the behaviour of a porous ductile material at low stress triaxiality depends a great deal on the mode of deformation....

  2. Large strain variable stiffness composites for shear deformations with applications to morphing aircraft skins

    Science.gov (United States)

    McKnight, G. P.; Henry, C. P.

    2008-03-01

    Morphing or reconfigurable structures potentially allow for previously unattainable vehicle performance by permitting several optimized structures to be achieved using a single platform. The key to enabling this technology in applications such as aircraft wings, nozzles, and control surfaces, are new engineered materials which can achieve the necessary deformations but limit losses in parasitic actuation mass and structural efficiency (stiffness/weight). These materials should exhibit precise control of deformation properties and provide high stiffness when exercised through large deformations. In this work, we build upon previous efforts in segmented reinforcement variable stiffness composites employing shape memory polymers to create prototype hybrid composite materials that combine the benefits of cellular materials with those of discontinuous reinforcement composites. These composites help overcome two key challenges for shearing wing skins: the resistance to out of plane buckling from actuation induced shear deformation, and resistance to membrane deflections resulting from distributed aerodynamic pressure loading. We designed, fabricated, and tested composite materials intended for shear deformation and address out of plane deflections in variable area wing skins. Our designs are based on the kinematic engineering of reinforcement platelets such that desired microstructural kinematics is achieved through prescribed boundary conditions. We achieve this kinematic control by etching sheets of metallic reinforcement into regular patterns of platelets and connecting ligaments. This kinematic engineering allows optimization of materials properties for a known deformation pathway. We use mechanical analysis and full field photogrammetry to relate local scale kinematics and strains to global deformations for both axial tension loading and shear loading with a pinned-diamond type fixture. The Poisson ratio of the kinematically engineered composite is ~3x higher than

  3. A low-temperature ductile shear zone: The gypsum-dominated western extension of the brittle Fella-Sava Fault, Southern Alps.

    Science.gov (United States)

    Bartel, Esther Maria; Neubauer, Franz; Heberer, Bianca; Genser, Johann

    2014-12-01

    Based on structural and fabric analyses at variable scales we investigate the evaporitic gypsum-dominated Comeglians-Paularo shear zone in the Southern Alps (Friuli). It represents the lateral western termination of the brittle Fella-Sava Fault. Missing dehydration products of gypsum and the lack of annealing indicate temperatures below 100 °C during development of the shear zone. Despite of such low temperatures the shear zone clearly exhibits mylonitic flow, thus evidencing laterally coeval activity of brittle and viscous deformation. The dominant structures within the gypsum rocks of the Lower Bellerophon Formation are a steeply to gently S-dipping foliation, a subhorizontal stretching lineation and pure shear-dominated porphyroclast systems. A subordinate simple shear component with dextral displacement is indicated by scattered σ-clasts. Both meso- and microscale structures are characteristic of a subsimple shear type of deformation with components of both coaxial and non-coaxial strain. Shortening in a transpressive regime was accommodated by right-lateral displacement and internal pure shear deformation within the Comeglians-Paularo shear zone. The shear zone shows evidence for a combination of two stretching faults, where stretching occurred in the rheologically weaker gypsum member and brittle behavior in enveloping lithologies.

  4. Axisymmetric thermoviscoelastoplastic state of branched laminar shells, taking account of transverse-shear and torsional deformation

    International Nuclear Information System (INIS)

    Galishin, A.Z.

    1995-01-01

    The nonaxisymmetric thermoelastic stress-strain state (SSS) of branched laminar orthotropic shells was considered; the axisymmetric thermoviscoelastic SSS of branched laminar orthotropic shells was considered; and the axisymmetric thermoviscoelastoplastic SSS of branched laminar isotropic shells was considered, taking into account of the transverse-shear deformation. In the present work, in contrast, the axisymmetric thermoviscoelastoplastic SSS of branched laminar isotropic shells is considered, taking account of transverse-shear and torsional deformation. Layers that are made from orthotropic materials and deform in the elastic region may be present

  5. Mechanical properties and local mobility of atactic-polystyrene films under constant-shear deformation

    NARCIS (Netherlands)

    Hudzinskyy, D.; Michels, M.A.J.; Lyulin, A.V.

    2012-01-01

    We have performed molecular-dynamics simulations of atactic polystyrene thin films to study the effect of shear rate, pressure, and temperature on the stress-strain behaviour, the relevant energetic contributions and non-affine displacements of polymer chains during constant-shear deformation. Under

  6. Final report on in-reactor uniaxial tensile deformation of pure iron and Fe-Cr alloy

    International Nuclear Information System (INIS)

    Singh, B.N.; Xiaoxu Huang; Taehtinen, S.; Moilamen, P.; Jacquet, P.; Dekeyser, J.

    2007-11-01

    Traditionally, the effect of irradiation on mechanical properties of metals and alloys is determined using post-irradiation tests carried out on pre-irradiated specimens and in the absence of irradiation environment. The results of these tests may not be representative of deformation behaviour of materials used in the structural components of a fission or fusion reactor where the materials will be exposed concurrently to displacement damage and external and/or internal stresses. In an effort to evaluate and understand the dynamic response of materials under these conditions, we have recently performed a series of uniaxial tensile tests on Fe-Cr and pure iron specimens in the BR-2 reactor at Mol (Belgium). The present report first provides a brief description of the test facilities and the procedure used for performing the in-reactor tests. The results on the mechanical response of materials during these tests are presented in the form of stress-displacement dose and the conventional stress-strain curves. For comparison, the results of post-irradiation tests and tests carried out on unirradiated specimens are also presented. Results of microstructural investigations on the unirradiated and deformed, irradiated and undeformed, post-irradiation deformed and the in-reactor deformed specimens are also described. During the in-reactor tests the specimens of both Fe-Cr alloy and pure iron deform in a homogeneous manner and do not exhibit the phenomenon of yield drop. An increase in the pre-yield dose increases the yield stress but not the level of maximum flow stress during the in-reactor deformation of Fe-Cr alloy. Neither the in-reactor nor the post-irradiation deformed specimens of Fe-Cr alloy and pure iron showed any evidence of cleared channel formation. Both in Fe-Cr and pure iron, the in-reactor deformation leads to accumulation of dislocations in a homogeneous fashion and only to a modest density. No dislocation cells are formed during the in-reactor or post

  7. Magnetic fabric of sheared till: A strain indicator for evaluating the bed deformation model of glacier flow

    Science.gov (United States)

    Hooyer, T.S.; Iverson, N.R.; Lagroix, F.; Thomason, J.F.

    2008-01-01

    Wet-based portions of ice sheets may move primarily by shearing their till beds, resting in high sediment fluxes and the development of subglacial landforms. This model of glacier movement, which requires high bed shear strains, can be tested using till microstructural characteristics that evolve during till deformation. Here we examine the development of magnetic fabric using a ring shear device to defom two Wisconsin-age basal tills to shear strains as high as 70. Hysteresis experiments and the dependence of magnetic susceptibility of these tills on temperature demonstrate that anisotropy of magnetic susceptibility (AMS) develops during shear due to the rotation of primarily magnetite particles that are silt sized or smaller. At moderate shear strains (???6-25), principal axes of maximum magnetic susceptibility develop a strong fabric (S1 eignevalues of 0.83-0.96), without further strengthening at higher strains, During deformation, directions of maximum susceptibility cluster strongly in the direction of shear and plunge 'up-glacier,' consistent with the behavior of pebbles and sand particles studied in earlier experiments. In contrast, the magnitude of AMS does not vary systematically with strain and is small relative to its variability among samples; this is because most magnetite grains are contained as inclusions in larger particles and hence do not align during shear. Although processes other than pervasive bed deformation may result in strong flow parallel fabrics, AMS fabrics provide a rapid and objective means of identifying basal tills that have not been sheared sufficiently to be compatible with the bed deformation model. Copyright 2008 by the American Geophysical Union.

  8. The Benguela upwelling system lying off southern Africa's west ...

    African Journals Online (AJOL)

    spamer

    Africa's west coast is one of the world's four main upwelling ..... Regions of current shear, convergence and divergence, as well ..... between Cape Point and Danger Point in 1975. .... processes in relation to eastern boundary current pelagic.

  9. A New Hyperbolic Shear Deformation Theory for Bending Analysis of Functionally Graded Plates

    Directory of Open Access Journals (Sweden)

    Tahar Hassaine Daouadji

    2012-01-01

    Full Text Available Theoretical formulation, Navier’s solutions of rectangular plates based on a new higher order shear deformation model are presented for the static response of functionally graded plates. This theory enforces traction-free boundary conditions at plate surfaces. Shear correction factors are not required because a correct representation of transverse shearing strain is given. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Numerical illustrations concern flexural behavior of FG plates with metal-ceramic composition. Parametric studies are performed for varying ceramic volume fraction, volume fractions profiles, aspect ratios, and length to thickness ratios. Results are verified with available results in the literature. It can be concluded that the proposed theory is accurate and simple in solving the static bending behavior of functionally graded plates.

  10. An analytical study of the effects of transverse shear deformation and anisotropy on buckling loads of laminated cylinders. M.S. Thesis - George Washington Univ.

    Science.gov (United States)

    Jegley, Dawn C.

    1987-01-01

    Buckling loads of thick-walled orthotropic and anisotropic simply supported circular cylinders are predicted using a higher-order transverse-shear deformation theory. A comparison of buckling loads predicted by the conventional first-order transverse-shear deformation theory and the higher-order theory show that the additional allowance for transverse shear deformation has a negligible effect on the predicted buckling loads of medium-thick metallic isotropic cylinders. However, the higher-order theory predicts buckling loads which are significantly lower than those predicted by the first-order transverse-shear deformation theory for certain short, thick-walled cylinders which have low through-the-thickness shear moduli. A parametric study of the effects of ply orientation on the buckling load of axially compressed cylinders indicates that laminates containing 45 degree plies are most sensitive to transverse-shear deformation effects. Interaction curves for buckling loads of cylinders subjected to axial compressive and external pressure loadings indicate that buckling loads due to external pressure loadings are as sensitive to transverse-shear deformation effects as buckling loads due to axial compressive loadings. The effects of anisotropy are important over a much wider range of cylinder geometries than the effects of transverse shear deformation.

  11. Kinematics of syn- and post-exhumational shear zones at Lago di Cignana (Western Alps, Italy): constraints on the exhumation of Zermatt-Saas (ultra)high-pressure rocks and deformation along the Combin Fault and Dent Blanche Basal Thrust

    Science.gov (United States)

    Kirst, Frederik; Leiss, Bernd

    2017-01-01

    Kinematic analyses of shear zones at Lago di Cignana in the Italian Western Alps were used to constrain the structural evolution of units from the Piemont-Ligurian oceanic realm (Zermatt-Saas and Combin zones) and the Adriatic continental margin (Dent Blanche nappe) during Palaeogene syn- and post-exhumational deformation. Exhumation of Zermatt-Saas (U)HP rocks to approximately lower crustal levels at ca. 39 Ma occurred during normal-sense top-(S)E shearing under epidote-amphibolite-facies conditions. Juxtaposition with the overlying Combin zone along the Combin Fault at mid-crustal levels occurred during greenschist-facies normal-sense top-SE shearing at ca. 38 Ma. The scarcity of top-SE kinematic indicators in the hanging wall of the Combin Fault probably resulted from strain localization along the uppermost Zermatt-Saas zone and obliteration by subsequent deformation. A phase of dominant pure shear deformation around 35 Ma affected units in the direct footwall and hanging wall of the Combin Fault. It is interpreted to reflect NW-SE crustal elongation during updoming of the nappe stack as a result of underthrusting of European continental margin units and the onset of continental collision. This phase was partly accompanied and followed by ductile bulk top-NW shearing, especially at higher structural levels, which transitioned into semi-ductile to brittle normal-sense top-NW deformation due to Vanzone phase folding from ca. 32 Ma onwards. Our structural observations suggest that syn-exhumational deformation is partly preserved within units and shear zones exposed at Lago di Cignana but also that the Combin Fault and Dent Blanche Basal Thrust experienced significant post-exhumational deformation reworking and overprinting earlier structures.

  12. Microstructures and mechanical properties of pure Mg processed by rotary swaging

    International Nuclear Information System (INIS)

    Gan, W.M.; Huang, Y.D.; Wang, R.; Wang, G.F.; Srinivasan, A.; Brokmeier, H.-G.; Schell, N.; Kainer, K.U.; Hort, N.

    2014-01-01

    Highlights: • Grain size of pure Mg can be effectively reduced by rotary swaging processing. • The dominated texture of the swaged pure Mg was a basal fibre. • Twinning and non-basal plane sliding accommodated the swaging process. • Gradient texture distribution was observed through the rod diameter. • There existed a slight shear deformation on the surface of the swaged rod. - Abstract: Microstructures and tensile properties of commercial pure magnesium processed by rotary swaging (RS) technique were investigated. Bulk and gradient textures in the RS processed Mg were characterised by neutron and synchrotron diffractions, respectively. Grains of the pure Mg were gradually refined with increase in the RS passes, which largely contributed to an increase in the tensile yield strength. A dominated basal fibre texture was observed in the RS processed pure Mg. Accommodated twinning deformation was also observed. Both the optical observations and texture analyses through the diameter of the swaged rod showed a gradient evolution in microstructure

  13. The unexpected stability of multiwall nanotubes under high pressure and shear deformation

    International Nuclear Information System (INIS)

    Pashkin, E. Y.; Pankov, A. M.; Kulnitskiy, B. A.; Mordkovich, V. Z.; Perezhogin, I. A.; Karaeva, A. R.; Popov, M. Y.; Sorokin, P. B.; Blank, V. D.

    2016-01-01

    The behavior of multiwall carbon nanotubes under a high pressure (up to 55 GPa) combined with shear deformation was studied by experimental and theoretical methods. The unexpectedly high stability of the nanotubes' structure under high stresses was observed. After the pressure was released, we observed that the nanotubes had restored their shapes. Atomistic simulations show that the hydrostatic and shear stresses affect the nanotubes' structure in a different way. It was found that the shear stress load in the multiwall nanotubes' outer walls can induce their connection and formation of an amorphized sp"3-hybridized region but internal core keeps the tubular structure.

  14. The unexpected stability of multiwall nanotubes under high pressure and shear deformation

    Energy Technology Data Exchange (ETDEWEB)

    Pashkin, E. Y.; Pankov, A. M.; Kulnitskiy, B. A.; Mordkovich, V. Z. [Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow 142190 (Russian Federation); Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700 (Russian Federation); Perezhogin, I. A. [Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow 142190 (Russian Federation); Lomonosov Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Karaeva, A. R. [Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow 142190 (Russian Federation); Popov, M. Y.; Sorokin, P. B.; Blank, V. D. [Technological Institute for Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow 142190 (Russian Federation); Moscow Institute of Physics and Technology, 9 Institutsky Lane, Dolgoprudny 141700 (Russian Federation); National University of Science and Technology MISiS, 4 Leninskiy Prospekt, Moscow 119049 (Russian Federation)

    2016-08-22

    The behavior of multiwall carbon nanotubes under a high pressure (up to 55 GPa) combined with shear deformation was studied by experimental and theoretical methods. The unexpectedly high stability of the nanotubes' structure under high stresses was observed. After the pressure was released, we observed that the nanotubes had restored their shapes. Atomistic simulations show that the hydrostatic and shear stresses affect the nanotubes' structure in a different way. It was found that the shear stress load in the multiwall nanotubes' outer walls can induce their connection and formation of an amorphized sp{sup 3}-hybridized region but internal core keeps the tubular structure.

  15. Work-hardening stages and deformation mechanism maps during tensile deformation of commercially pure titanium

    DEFF Research Database (Denmark)

    Becker, Hanka; Pantleon, Wolfgang

    2013-01-01

    Commercially pure titanium was tensile tested at different strain rates between 2.2×10−4s−1 and 6.7×10−1s−1 to characterize the strain rate dependence of plastic deformation and the dominating deformation mechanisms. From true stress-true plastic strain curves, three distinct work-hardening stages...... are identified. The work-hardening rate decreases linearly with increasing flow stress for all three stages and the work-hardening rate is the controlling factor for the transition between the different stages and mechanisms. During the initial stage (at lowest stresses) plastic deformation is carried mainly...... by dislocation slip, in the following stage (for moderate stresses), an abundance of 64.6∘〈1¯010〉 twin boundaries form indicating the dominance of {112¯2}〈1¯1¯23〉 compression twinning. During the last stage before the onset of necking, additional 84.8∘〈112¯0〉 twin boundaries are detected caused by {101...

  16. Analysis of local microstructure after shear creep deformation of a fine-grained duplex {gamma}-TiAl alloy

    Energy Technology Data Exchange (ETDEWEB)

    Peter, D., E-mail: dennis.peter@rub.de [Institute for Materials, Ruhr University Bochum, Universitaetsstrasse 150, 44801 Bochum (Germany); Viswanathan, G.B. [Institute for Materials, Ruhr University Bochum, Universitaetsstrasse 150, 44801 Bochum (Germany)] [Air Force Research Laboratory, Wright-Patterson AFB, OH 45433 (United States); Dlouhy, A. [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, 61662 Brno, Zizkova 22 (Czech Republic); Eggeler, G. [Institute for Materials, Ruhr University Bochum, Universitaetsstrasse 150, 44801 Bochum (Germany)

    2010-11-15

    The present work characterizes the microstructure of a hot-extruded Ti-45Al-5Nb-0.2B-0.2C (at.%) alloy with a fine-grained duplex microstructure after shear creep deformation (temperature 1023 K; shear stress 175 MPa; shear deformation 20%). Diffraction contrast transmission electron microscopy (TEM) was performed to identify ordinary dislocations, superdislocations and twins. The microstructure observed in TEM is interpreted taking into account the contribution of the applied stress and coherency stresses to the overall local stress state. Two specific locations in the lamellar part of the microstructure were analyzed, where either twins or superdislocations provided c-component deformation in the L1{sub 0} lattice of the {gamma} phase. Lamellar {gamma} grains can be in soft and hard orientations with respect to the resolved shear stress provided by the external load. The presence of twins can be rationalized by the superposition of the applied stress and local coherency stresses. The presence of superdislocations in hard {gamma} grains represents indirect evidence for additional contributions to the local stress state associated with stress redistribution during creep.

  17. Controlling microstructure and texture in magnesium alloy sheet by shear-based deformation processing

    Science.gov (United States)

    Sagapuram, Dinakar

    Application of lightweight Mg sheet is limited by its low workability, both in production of sheet (typically by multistep hot and cold-rolling) and forming of sheet into components. Large strain extrusion machining (LSEM), a constrained chip formation process, is used to create Mg alloy AZ31B sheet in a single deformation step. The deformation in LSEM is shown to be intense simple shear that is confined to a narrow zone, which results in significant deformation-induced heating up to ~ 200°C and reduces the need for pre-heating to realize continuous sheet forms. This study focuses on the texture and microstructure development in the sheet processed by LSEM. Interestingly, deep, highly twinned steady-state layer develops in the workpiece subsurface due to the compressive field ahead of the shear zone. The shear deformation, in conjunction with this pre-deformed twinned layer, results in tilted-basal textures in the sheet with basal planes tilted well away from the surface. These textures are significantly different from those in rolled sheet, where basal planes are nearly parallel to the surface. By controlling the strain path, the basal plane inclination from the surface could be varied in the range of 32-53°. B-fiber (basal plane parallel to LSEM shear plane), associated with basal slip, is the major texture component in the sheet. An additional minor C2-fiber component appears above 250°C due to the thermal activation of pyramidal slip. Together with these textures, microstructure ranges from severely cold-worked to (dynamically) recrystallized type, with the corresponding grain sizes varying from ultrafine- (~ 200 nm) to fine- (2 mum) grained. Small-scale limiting dome height (LDH) confirmed enhanced formability (~ 50% increase in LDH) of LSEM sheet over the conventional rolled sheet. Premature, twinning-driven shear fractures are observed in the rolled sheet with the basal texture. In contrast, LSEM sheet with a tilted-basal texture favorably oriented for

  18. The role of chemical processes and brittle deformation during shear zone formation and its potential geophysical implications

    Science.gov (United States)

    Goncalves, Philippe; Leydier, Thomas; Mahan, Kevin; Albaric, Julie; Trap, Pierre; Marquer, Didier

    2017-04-01

    Ductile shear zones in the middle and lower continental crust are the locus of interactions between mechanical and chemical processes. Chemical processes encompass metamorphic reactions, fluid-rock interactions, fluid flow and chemical mass-transfer. Studying these processes at the grain scale, and even the atom scale, on exposed inactive shear zones can give insights into large-scale geodynamics phenomena (e.g. crustal growth and mountain building through the reconstruction of P-T-t-D-Ɛ evolutionary paths. However, other major issues in earth sciences can be tackled through these studies as well. For instance, the mechanism of fluid flow and mass transfer in the deep crust where permeability should be small and transient is still largely debated. Studying exhumed inactive shear zones can also help to interpret several new geophysical observations like (1) the origin of tremor and very low frequency earthquakes observed in the ductile middle and lower crust, (2) mechanisms for generating slow slip events and (3) the physical origin of puzzling crustal anisotropy observed in major active crustal shear zones. In this contribution, we present a collection of data (deformation, petrology, geochemistry, microtexture) obtained on various shear zones from the Alps that were active within the viscous regime (T > 450°C). Our observations show that the development of a shear zone, from its nucleation to its growth and propagation, is not only governed by ductile deformation coeval with reactions but also involves brittle deformation. Although brittle deformation is a very short-lived phenomenon, our petrological and textural observations show that brittle failure is also associated with fluid flow, mass transfer, metasomatic reactions and recrystallization. We speculate that the fluids and the associated mineralogical changes involved during this brittle failure in the ductile crust might play a role in earthquake / tremor triggering below the brittle - ductile transition

  19. Deformation and failure response of 304L stainless steel SMAW joint under dynamic shear loading

    International Nuclear Information System (INIS)

    Lee, Woei-Shyan; Cheng, J.-I.; Lin, C.-F.

    2004-01-01

    The dynamic shear deformation behavior and fracture characteristics of 304L stainless steel shielded metal arc welding (SMAW) joint are studied experimentally with regard to the relations between mechanical properties and strain rate. Thin-wall tubular specimens are deformed at room temperature under strain rates in the range of 8 x 10 2 to 2.8 x 10 3 s -1 using a torsional split-Hopkinson bar. The results indicate that the strain rate has a significant influence on the mechanical properties and fracture response of the tested SMAW joints. It is found that the flow stress, total shear strain to failure, work hardening rate and strain rate sensitivity all increase with increasing strain rate, but that the activation volume decreases. The observed dynamic shear deformation behavior is modeled using the Kobayashi-Dodd constitutive law, and it is shown that the predicted results are in good agreement with the experimental data. Fractographic analysis using scanning electron microscopy reveals that the tested specimens all fracture within their fusion zones, and that the primary failure mechanism is one of the extensive localized shearing. The fracture surfaces are characterized by the presence of many dimples. A higher strain rate tends to reduce the size of the dimples and to increase their density. The observed fracture features are closely related to the preceding flow behavior

  20. Deformational Features and Microstructure Evolution of Copper Fabricated by a Single Pass of the Elliptical Cross-Section Spiral Equal-Channel Extrusion (ECSEE) Process

    Science.gov (United States)

    Wang, Chengpeng; Li, Fuguo; Liu, Juncheng

    2018-04-01

    The objectives of this work are to study the deformational feature, textures, microstructures, and dislocation configurations of ultrafine-grained copper processed by the process of elliptical cross-section spiral equal-channel extrusion (ECSEE). The deformation patterns of simple shear and pure shear in the ECSEE process were evaluated with the analytical method of geometric strain. The influence of the main technical parameters of ECSEE die on the effective strain distribution on the surface of ECSEE-fabricated samples was examined by the finite element simulation. The high friction factor could improve the effective strain accumulation of material deformation. Moreover, the pure copper sample fabricated by ECSEE ion shows a strong rotated cube shear texture. The refining mechanism of the dislocation deformation is dominant in copper processed by a single pass of ECSEE. The inhomogeneity of the micro-hardness distribution on the longitudinal section of the ECSEE-fabricated sample is consistent with the strain and microstructure distribution features.

  1. Intensive aggregate formation with low vertical flux during an upwelling-induced diatom bloom

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Tiselius, P.; Mitchell-Innes, B.

    1998-01-01

    of turbulent shear in the ocean such stickiness coefficients predict very high specific coagulation rates (0.3 d(-1)). In situ video observation demonstrated the occurrence of abundant diatom aggregates with surface water concentrations between 1,000 and 3,000 ppm. Despite the very high concentration......The surfaces of most pelagic diatoms are sticky at times and may therefore form rapidly settling aggregates by physical coagulation. Stickiness and aggregate formation may be particularly adaptive in upwelling systems by allowing the retention of diatom populations in the vicinity of the upwelling...... center. We therefore hypothesized that upwelling diatom blooms are terminated by aggregate formation and rapid sedimentation. We monitored the development of a maturing diatom (mainly Chaetoceros spp.) bloom in the Benguela upwelling current during 7 d in February. Chlorophyll concentrations remained...

  2. Complex, multilayered azimuthal anisotropy beneath Tibet: evidence for co-existing channel flow and pure-shear crustal thickening

    Science.gov (United States)

    Agius, Matthew R.; Lebedev, Sergei

    2017-09-01

    Of the two debated, end-member models for the late-Cenozoic thickening of Tibetan crust, one invokes 'channel flow' (rapid viscous flow of the mid-lower crust, driven by topography-induced pressure gradients and transporting crustal rocks eastward) and the other 'pure shear' (faulting and folding in the upper crust, with viscous shortening in the mid-lower crust). Deep-crustal deformation implied by each model is different and would produce different anisotropic rock fabric. Observations of seismic anisotropy can thus offer a discriminant. We use broad-band phase-velocity curves-each a robust average of tens to hundreds of measurements-to determine azimuthal anisotropy in the entire lithosphere-asthenosphere depth range and constrain its amplitude. Inversions of the differential dispersion from path pairs, region-average inversions and phase-velocity tomography yield mutually consistent results, defining two highly anisotropic layers with different fast-propagation directions within each: the middle crust and the asthenosphere. In the asthenosphere beneath central and eastern Tibet, anisotropy is 2-4 per cent and has an NNE-SSW fast-propagation azimuth, indicating flow probably driven by the NNE-ward, shallow-angle subduction of India. The distribution and complexity of published shear wave splitting measurements can be accounted for by the different anisotropy in the mid-lower crust and asthenosphere. The estimated splitting times that would be accumulated in the crust alone are 0.25-0.8 s; in the upper mantle-0.5-1.2 s, depending on location. In the middle crust (20-45 km depth) beneath southern and central Tibet, azimuthal anisotropy is 3-5 and 4-6 per cent, respectively, and its E-W fast-propagation directions are parallel to the current extension at the surface. The rate of the extension is relatively low, however, whereas the large radial anisotropy observed in the middle crust requires strong alignment of mica crystals, implying large finite strain and

  3. Numerical simulation of shear and the Poynting effects by the finite element method: An application of the generalised empirical inequalities in non-linear elasticity

    KAUST Repository

    Angela Mihai, L.

    2013-03-01

    Finite element simulations of different shear deformations in non-linear elasticity are presented. We pay particular attention to the Poynting effects in hyperelastic materials, complementing recent theoretical findings by showing these effects manifested by specific models. As the finite element method computes uniform deformations exactly, for simple shear deformation and pure shear stress, the Poynting effect is represented exactly, while for the generalised shear and simple torsion, where the deformation is non-uniform, the solution is approximated efficiently and guaranteed computational bounds on the magnitude of the Poynting effect are obtained. The numerical results further indicate that, for a given elastic material, the same sign effect occurs under different shearing mechanisms, showing the genericity of the Poynting effect under a variety of shearing loads. In order to derive numerical models that exhibit either the positive or the negative Poynting effect, the so-called generalised empirical inequalities, which are less restrictive than the usual empirical inequalities involving material parameters, are assumed. © 2012 Elsevier Ltd.

  4. Influence of macroscopic shear deformation on polygonization and recrystallization of molybdenum crystals

    International Nuclear Information System (INIS)

    Larikov, L.N.; Belyakova, M.N.; Maksimenko, E.A.; Mudruk, P.V.

    1984-01-01

    The effect of shear bands on polygonization and recrystallization is studied on molybdenum monocrystals deformed by compression. A sharp bend of the lattice is shown to be a structural condition necessary for arising the shear step. Internal stress relaxation strongly changes kinetics of softening processes in compressed molybdenum crystals: it slows down polygonization under low-temperature heating (below 700 deg C) and accelerates it under high-temperature heating (higher 1000 deg C). Under the effect of relaxation of internal streses recrystallization in the investigated crystals is similar to dynamical: recrystallized grains are distorted and they have a developed substructure

  5. Gravitational convergence, shear deformation and rotation of magnetic forcelines

    Science.gov (United States)

    Giantsos, Vangelis; Tsagas, Christos G.

    2017-11-01

    We consider the 'kinematics' of space-like congruences and apply them to a family of self-gravitating magnetic forcelines. Our aim is to investigate the convergence and the possible focusing of these lines, as well as their rotation and shear deformation. In so doing, we introduce a covariant 1+2 splitting of the 3-D space, parallel and orthogonal to the direction of the field lines. The convergence, or not, of the latter is monitored by a specific version of the Raychaudhuri equation, obtained after propagating the spatial divergence of the unit magnetic vector along its own direction. The resulting expression shows that, although the convergence of the magnetic forcelines is affected by the gravitational pull of all the other sources, it is unaffected by the field's own gravity, irrespective of how strong the latter is. This rather counterintuitive result is entirely due to the magnetic tension, namely to the negative pressure the field exerts parallel to its lines of force. In particular, the magnetic tension always cancels out the field's energy-density input to the Raychaudhuri equation, leaving the latter free of any direct magnetic-energy contribution. Similarly, the rotation and the shear deformation of the aforementioned forcelines are also unaffected by the magnetic input to the total gravitational energy. In a sense, the magnetic lines do not seem to 'feel' their own gravitational field no matter how strong the latter may be.

  6. Final report on in-reactor uniaxial tensile deformation of pure iron and Fe-Cr alloy

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Huang, X.; Tähtinen, S.

    , the in-reactor deformation leads to accumulation of dislocations in a homogeneous fashion and only to a modest density. No dislocation cells are formed during the in-reactor or post-irradiation deformation of Fe-Cr and pure iron. Furthermore, in both cases, the slip systems even in the planes with Schmid...... factor value of almost zero get activated during the in-reactor as well as post-irradiation deformation. The main implications of these results are briefly discussed....

  7. Effect of surfactants on the deformation of single droplet in shear flow studied by dissipative particle dynamics

    Science.gov (United States)

    Zhang, Yuzhou; Xu, Junbo; He, Xianfeng

    2018-07-01

    The behaviour of a single droplet in shear flow is a fundamental problem in immiscible liquid-liquid multiphase fluid systems. In this article, the deformation and inclination angle of single droplet covered with surfactants in shear flow at moderate Reynolds number, when both the inertial effects and interfacial tension are the key governing factors, were simulated by dissipative particle dynamics (DPD). Weber number We was adopted to indicate the force state of the droplet and a linear relationship between the deformation parameter D and We was found when Reynolds number Re is about 1-10, which is similar to the relation of D and Capillary number Ca when Re ≪ 1. When the surfactant concentration is lower than the critical micelle concentration (CMC), the distribution of surfactants, the droplet inclination angle θ and the droplet deformation parameter D were investigated at different surfactant density at interface ds and shear rate ?. When the droplet size is close to the characteristic size of surfactant molecules, phase interfaces of water in oil (W/O) and oil in water (O/W) systems have different microstructures, which result in differences in the surfactant distribution, the droplet inclination angle and deformation of the two systems.

  8. Size-dependent bending, buckling and vibration of higher-order shear deformable magneto-electro-thermo-elastic rectangular nanoplates

    Science.gov (United States)

    Gholami, Raheb; Ansari, Reza; Gholami, Yousef

    2017-06-01

    The aim of the present study is to propose a unified size-dependent higher-order shear deformable plate model for magneto-electro-thermo-elastic (METE) rectangular nanoplates by adopting the nonlocal elasticity theory to capture the size effect, and by utilizing a generalized shape function to consider the effects of transverse shear deformation and rotary inertia. By considering various shape functions, the proposed plate model can be reduced to the nonlocal plate model based upon the Kirchhoff, Mindlin and Reddy plate theories, as well as the parabolic, trigonometric, hyperbolic and exponential shear deformation plate theories. The governing equations of motion and corresponding boundary conditions of METE nanoplates subjected to external in-plane, transverse loads as well as magnetic, electric and thermal loadings, are obtained using Hamilton’s principle. Then, as in some case studies, the static bending, buckling, and free vibration characteristics of simply-supported METE rectangular nanoplates are investigated based upon the Navier solution approach. Numerical results are provided in order to investigate the influences of various parameters including the nondimensional nonlocal parameter, type of transverse loading, temperature change, applied voltage, and external magnetic potential on the mechanical behaviors of METE nanoplates. Furthermore, comparisons are made between the results predicted by different nonlocal plate models by utilizing the developed unified nonlocal plate model and selecting the associated shape functions. It is illustrated that by using the presented unified nonlocal plate model, the development of a nonlocal plate model based upon any existing higher-order shear deformable plate theory is a simple task.

  9. Free vibration analysis of a cracked shear deformable beam on a two-parameter elastic foundation using a lattice spring model

    Science.gov (United States)

    Attar, M.; Karrech, A.; Regenauer-Lieb, K.

    2014-05-01

    The free vibration of a shear deformable beam with multiple open edge cracks is studied using a lattice spring model (LSM). The beam is supported by a so-called two-parameter elastic foundation, where normal and shear foundation stiffnesses are considered. Through application of Timoshenko beam theory, the effects of transverse shear deformation and rotary inertia are taken into account. In the LSM, the beam is discretised into a one-dimensional assembly of segments interacting via rotational and shear springs. These springs represent the flexural and shear stiffnesses of the beam. The supporting action of the elastic foundation is described also by means of normal and shear springs acting on the centres of the segments. The relationship between stiffnesses of the springs and the elastic properties of the one-dimensional structure are identified by comparing the homogenised equations of motion of the discrete system and Timoshenko beam theory.

  10. A state-of-the-art anisotropic rock deformation model incorporating the development of mobilised shear strength

    Science.gov (United States)

    Noor, M. J. Md; Jobli, A. F.

    2018-04-01

    Currently rock deformation is estimated using the relationship between the deformation modulus Em and the stress-strain curve. There have been many studies conducted to estimate the value of Em. This Em is basically derived from conducting unconfined compression test, UCS. However, the actual stress condition of the rock in the ground is anisotropic stress condition where the rock mass is subjected to different confining and vertical pressures. In addition, there is still no empirical or semi-empirical framework that has been developed for the prediction of rock stress-strain response under anisotropic stress condition. Arock triaxial machine GCTS Triaxial RTX-3000 has been deployed to obtain the anisotropic stress-strain relationship for weathered granite grade II from Rawang, Selangor sampled at depth of 20 m and subjected to confining pressure of 2 MPa, 7.5 MPa and 14 MPa. The developed mobilised shear strength envelope within the specimen of 50 mm diameter and 100 mm height during the application of the deviator stress is interpreted from the stress-strain curves. These mobilised shear strength envelopes at various axial strains are the intrinsic property and unique for the rock. Once this property has been established then it is being used to predict the stress-strain relationship at any confining pressure. The predicted stress-strain curves are compared against the curves obtained from the tests. A very close prediction is achieved to substantiate the applicability of this rock deformation model. This is a state-of-the art rock deformation theory which characterise the deformation base on the applied load and the developed mobilised shear strength within the rock body.

  11. Effects of relative density and accumulated shear strain on post-liquefaction residual deformation

    Directory of Open Access Journals (Sweden)

    J. Kim

    2013-10-01

    Full Text Available The damage caused by liquefaction, which occurs following an earthquake, is usually because of settlement and lateral spreading. Generally, the evaluation of liquefaction has been centered on settlement, that is, residual volumetric strain. However, in actual soil, residual shear and residual volumetric deformations occur simultaneously after an earthquake. Therefore, the simultaneous evaluation of the two phenomena and the clarification of their relationship are likely to evaluate post-liquefaction soil behaviors more accurately. Hence, a quantitative evaluation of post-liquefaction damage will also be possible. In this study, the effects of relative density and accumulated shear strain on post-liquefaction residual deformations were reviewed through a series of lateral constrained-control hollow cylindrical torsion tests under undrained conditions. In order to identify the relationship between residual shear and residual volumetric strains, this study proposed a new test method that integrates monotonic loading after cyclic loading, and K0-drain after cyclic loading – in other words, the combination of cyclic loading, monotonic loading, and the K0 drain. In addition, a control that maintained the lateral constrained condition across all the processes of consolidation, cyclic loading, monotonic loading, and drainage was used to reproduce the anisotropy of in situ ground. This lateral constrain control was performed by controlling the axial strain, based on the assumption that under undrained conditions, axial and lateral strains occur simultaneously, and unless axial strain occurs, lateral strain does not occur. The test results confirmed that the recovery of effective stresses, which occur during monotonic loading and drainage after cyclic loading, respectively, result from mutually different structural restoration characteristics. In addition, in the ranges of 40–60% relative density and 50–100% accumulated shear strain, relative

  12. Numerical simulation of systems of shear bands in ductile metal with inclusions

    Science.gov (United States)

    Plohr, Jeeyeon

    2017-06-01

    We develop a method for numerical simulations of high strain-rate loading of mesoscale samples of ductile metal with inclusions. Because of its small-scale inhomogeneity, the composite material is prone to localized shear deformation. This method employs the Generalized Method of Cells to ensure that the micro mechanical behavior of the metal and inclusions is reflected properly in the behavior of the composite at the mesoscale. To find the effective plastic strain rate when shear bands are present, we extend and apply the analytic and numerical analysis of shear bands of Glimm, Plohr, and Sharp. Our tests of the method focus on the stress/strain response in uniaxial-strain flow, both compressive and tensile, of depleted uranium metal containing silicon carbide inclusions. In results, we verify the elevated temperature and thermal softening at shear bands in our simulations of pure DU and DU/SiC composites. We also note that in composites, due the asymmetry caused by the inclusions, shear band form at different times in different subcells. In particular, in the subcells near inclusions, shear band form much earlier than they do in pure DU.

  13. Simulation of Texture Evolution during Uniaxial Deformation of Commercially Pure Titanium

    Science.gov (United States)

    Bishoyi, B.; Debta, M. K.; Yadav, S. K.; Sabat, R. K.; Sahoo, S. K.

    2018-03-01

    The evolution of texture in commercially pure (CP) titanium during uniaxial tension and compression through VPSC (Visco-plastic self-consistent) simulation is reported in the present study. CP-titanium was subjected to both uniaxial tension and compression upto 35% deformation. During uniaxial tension, tensile twin of \\{10\\bar{1}2\\}\\unicode{x003C;}\\bar{1}011\\unicode{x003E;} type and compressive twin of \\{11\\bar{2}2\\}\\unicode{x003C;}11\\bar{2}\\bar{3}\\unicode{x003E;} type were observed in the samples. However, only tensile twin of \\{10\\bar{1}2\\}\\unicode{x003C;}\\bar{1}011\\unicode{x003E;} type and compressive twin of type was observed in the samples during uniaxial compression. Volume fractions of the twins were increased linearly as a function of percentage deformation during uniaxial tension. Whereas, during uniaxial compression the twinning volume fraction was increased up to 20% deformation and then decreased rapidly on further increasing the percentage deformation. During uniaxial tension, the general t-type textures were observed in the samples irrespective of the percentage deformation. The initial non-basal texture was oriented to split basal texture during uniaxial compression of the sample. VPSC formulation was used for simulating the texture development in the material. Different hardening parameters were estimated through correlating the simulated stress-strain curve with the experimental stress-strain data. It was observed that, prismatic slip \\{10\\bar{1}0\\}\\unicode{x003C;}11\\bar{2}0\\unicode{x003E;} operated as the primary deformation mode during uniaxial tension whereas basal slip \\{0001\\}\\unicode{x003C;}11\\bar{2}0\\unicode{x003E;} acquired the leading role during deformation through uniaxial compression. It was also revealed that active deformation modes were fully depending on percentage deformation, loading direction, and orientation of grains.

  14. Spatial distribution of upwelling off the central east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, T.V.N.

    of the data collected along the five sections. At all the sections, a decrease in water temperature and an increase in salinity from the offshore stations to the stations closest to the shore indicated coastal upwelling. The Rossby radii of deformation...

  15. Development of upwelling on pathway and freshwater transport of Pearl River plume in northeastern South China Sea

    Science.gov (United States)

    Chen, Zhaoyun; Jiang, Yuwu; Liu, James T.; Gong, Wenping

    2017-08-01

    In situ observations, satellite images, and numerical modeling results have shown that the Pearl River plume axis extends alongshore and passes through two separate upwelling regions—one off the Guangdong and Fujian coasts (the Yuedong upwelling) and the other in the Taiwan Bank during the initial and medium stages of the Yuedong upwelling, while it is directed offshore when the Yuedong upwelling is strong. Model experiments are conducted to examine the effects of wind strength and baroclinicity on the upwelling and the corresponding pathway and freshwater transport of the Pearl River plume. The baroclinic effect is important to intensifying the horizontal velocity at the upwelling front and freshwater transport in the northeastern South China Sea. The freshwater transport flux is further decomposed into advection, vertical shear, and tidal pumping components, and advection is the dominant contributor. As the Yuedong upwelling develops, the zone with a relatively high-pressure gradient moves offshore due to offshore Ekman transport and the shift in the upwelling front, which is responsible for the offshore transport of the river plume. When the river plume is transported to the outer-shelf, sometimes it can be further entrained into eddies, allowing its export to the open sea.

  16. Size effects of nano-spaced basal stacking faults on the strength and deformation mechanisms of nanocrystalline pure hcp metals

    Science.gov (United States)

    Wang, Wen; Jiang, Ping; Yuan, Fuping; Wu, Xiaolei

    2018-05-01

    The size effects of nano-spaced basal stacking faults (SFs) on the tensile strength and deformation mechanisms of nanocrystalline pure cobalt and magnesium have been investigated by a series of large-scale 2D columnar and 3D molecular dynamics simulations. Unlike the strengthening effect of basal SFs on Mg alloys, the nano-spaced basal SFs are observed to have no strengthening effect on the nanocrystalline pure cobalt and magnesium from MD simulations. These observations could be attributed to the following two reasons: (i) Lots of new basal SFs are formed before (for cobalt) or simultaneously with (for magnesium) the other deformation mechanisms (i.e. the formation of twins and the edge dislocations) during the tensile deformation; (ii) In hcp alloys, the segregation of alloy elements and impurities at typical interfaces, such as SFs, can stablilise them for enhancing the interactions with dislocation and thus elevating the strength. Without such segregation in pure hcp metals, the edge dislocations can cut through the basal SFs although the interactions between the dislocations and the pre-existing SFs/newly formed SFs are observed. The nano-spaced basal SFs are also found to have no restriction effect on the formation of deformation twins.

  17. Natural Frequency of F.G. Rectangular Plate by Shear Deformation Theory

    International Nuclear Information System (INIS)

    Shahrjerdi, Ali; Sapuan, S M; Shahzamanian, M M; Mustapha, F; Zahari, R; Bayat, M

    2011-01-01

    Natural frequency of functionally graded (F.G.) rectangular plate is carried out by using second-order shear deformation theory (SSDT). The material properties of functionally graded rectangular plates, except the Poisson's ratio, are assumed to vary continuously through the thickness of the plate in accordance with the exponential law distribution. The equations of motion are obtained by energy method. Numerical results for functionally graded plates are given in dimensionless graphical forms and the effects of material properties on natural frequency are determined.

  18. a Numerical Study of Basic Coastal Upwelling Processes.

    Science.gov (United States)

    Li, Zhihong

    Available from UMI in association with The British Library. Two-dimensional (2-D) and three-dimensional (3 -D) numerical models with a second order turbulence closure are developed for the study of coastal upwelling processes. A logarithmic coordinate system is introduced to obtain increased resolution in the regions near the surface and bottom where high velocity shear occurs and in the upwelling zone where its width is confined to the coast. In the experiments performed in the 2-D model an ocean initially at rest is driven by a spatially uniform alongshore wind-stress. There is a development of an offshore flow in the surface layer and an onshore flow below the surface layer. In the wind-stress direction there is a development of a coastal surface jet. The neglect of the alongshore pressure gradient leads to the intensification of the jet, and the concentration of the onshore flow in an over-developed Ekman layer yielding an unrealistic deepening of a bottom mixed layer. When bathymetric variations are introduced, some modifications in the dynamics of upwelling are observed. On the shelf region there is another upwelling zone and isotherms are interested with the bottom topography. When an alongshore pressure gradient is added externally into the model, the strength of the coastal jet decreases and a coastal undercurrent exists at greater depth. In addition the return onshore flow is largely independent of depth and the deepening of the bottom mixed layer disappears. In the experiments performed in the 3-D model a wind-stress with limited domain is used. Coastally trapped waves are generated and propagate along the coastline leading to a development of an alongshore pressure gradient, which has a significant effect on upwelling. The evolution of the alongshore flow, vertical velocity and the temperature is determined by both remote and local wind due to the propagation of waves. As the integration proceeds, the flow pattern becomes remarkably 3-dimensional

  19. Hardness and microstructure homogeneity of pure copper processed by accumulative back extrusion

    International Nuclear Information System (INIS)

    Bazaz, B.; Zarei-Hanzaki, A.; Fatemi-Varzaneh, S.M.

    2013-01-01

    The present work deals with the microstructure evolution of a pure copper processed by a new severe plastic deformation method. A set of pure copper (99.99%) work-pieces with coarse-grained microstructures was processed by accumulative back extrusion (ABE) method at room temperature. The optical and scanning electron microscopy (SEM) and hardness measurements were utilized to study the microstructural evolution and hardness homogeneity. The results indicated that ABE is a capable process to provide a homogenous grain refined microstructure in pure copper. The observed grain refinement was discussed relying on the occurrence of dynamic restoration processes. The analysis of microstructure and hardness showed outstanding homogeneity improvement throughout the work-pieces as the consecutive ABE passes were applied. The homogeneity improvement was attributed to the propagation of the shear bands and also the heavily deformed regions. A reversing route was also applied in the ABE processing to investigate its effect on the development of microstructural homogeneity. Comparing to the conventional route, the application of the reversing route was found to yield better homogeneity after less passes of the process.

  20. DISCRETE DEFORMATION WAVE DYNAMICS IN SHEAR ZONES: PHYSICAL MODELLING RESULTS

    Directory of Open Access Journals (Sweden)

    S. A. Bornyakov

    2016-01-01

    Full Text Available Observations of earthquake migration along active fault zones [Richter, 1958; Mogi, 1968] and related theoretical concepts [Elsasser, 1969] have laid the foundation for studying the problem of slow deformation waves in the lithosphere. Despite the fact that this problem has been under study for several decades and discussed in numerous publications, convincing evidence for the existence of deformation waves is still lacking. One of the causes is that comprehensive field studies to register such waves by special tools and equipment, which require sufficient organizational and technical resources, have not been conducted yet.The authors attempted at finding a solution to this problem by physical simulation of a major shear zone in an elastic-viscous-plastic model of the lithosphere. The experiment setup is shown in Figure 1 (A. The model material and boundary conditions were specified in accordance with the similarity criteria (described in detail in [Sherman, 1984; Sherman et al., 1991; Bornyakov et al., 2014]. The montmorillonite clay-and-water paste was placed evenly on two stamps of the installation and subject to deformation as the active stamp (1 moved relative to the passive stamp (2 at a constant speed. The upper model surface was covered with fine sand in order to get high-contrast photos. Photos of an emerging shear zone were taken every second by a Basler acA2000-50gm digital camera. Figure 1 (B shows an optical image of a fragment of the shear zone. The photos were processed by the digital image correlation method described in [Sutton et al., 2009]. This method estimates the distribution of components of displacement vectors and strain tensors on the model surface and their evolution over time [Panteleev et al., 2014, 2015].Strain fields and displacements recorded in the optical images of the model surface were estimated in a rectangular box (220.00×72.17 mm shown by a dot-and-dash line in Fig. 1, A. To ensure a sufficient level of

  1. Emergence of coherent localized structures in shear deformations of temperature dependent fluids

    KAUST Repository

    Katsaounis, Theodoros

    2016-11-25

    Shear localization occurs in various instances of material instability in solid mechanics and is typically associated with Hadamard-instability for an underlying model. While Hadamard instability indicates the catastrophic growth of oscillations around a mean state, it does not by itself explain the formation of coherent structures typically observed in localization. The latter is a nonlinear effect and its analysis is the main objective of this article. We consider a model that captures the main mechanisms observed in high strain-rate deformation of metals, and describes shear motions of temperature dependent non-Newtonian fluids. For a special dependence of the viscosity on the temperature, we carry out a linearized stability analysis around a base state of uniform shearing solutions, and quantitatively assess the effects of the various mechanisms affecting the problem: thermal softening, momentum diffusion and thermal diffusion. Then, we turn to the nonlinear model, and construct localized states - in the form of similarity solutions - that emerge as coherent structures in the localization process. This justifies a scenario for localization that is proposed on the basis of asymptotic analysis in \\\\cite{KT}.

  2. Emergence of coherent localized structures in shear deformations of temperature dependent fluids

    KAUST Repository

    Katsaounis, Theodoros; Olivier, Julien; Tzavaras, Athanasios

    2016-01-01

    Shear localization occurs in various instances of material instability in solid mechanics and is typically associated with Hadamard-instability for an underlying model. While Hadamard instability indicates the catastrophic growth of oscillations around a mean state, it does not by itself explain the formation of coherent structures typically observed in localization. The latter is a nonlinear effect and its analysis is the main objective of this article. We consider a model that captures the main mechanisms observed in high strain-rate deformation of metals, and describes shear motions of temperature dependent non-Newtonian fluids. For a special dependence of the viscosity on the temperature, we carry out a linearized stability analysis around a base state of uniform shearing solutions, and quantitatively assess the effects of the various mechanisms affecting the problem: thermal softening, momentum diffusion and thermal diffusion. Then, we turn to the nonlinear model, and construct localized states - in the form of similarity solutions - that emerge as coherent structures in the localization process. This justifies a scenario for localization that is proposed on the basis of asymptotic analysis in \\cite{KT}.

  3. Length-scales of Slab-induced Asthenospheric Deformation from Geodynamic Modeling, Mantle Deformation Fabric, and Synthetic Shear Wave Splitting

    Science.gov (United States)

    Jadamec, M. A.; MacDougall, J.; Fischer, K. M.

    2017-12-01

    The viscosity structure of the Earth's interior is critically important, because it places a first order constraint on plate motion and mantle flow rates. Geodynamic models using a composite viscosity based on experimentally derived flow laws for olivine aggregates show that lateral viscosity variations emerge in the upper mantle due to the subduction dynamics. However, the length-scale of this transition is still not well understood. Two-dimensional numerical models of subduction are presented that investigate the effect of initial slab dip, maximum yield stress (slab strength), and viscosity formulation (Newtonian versus composite) on the emergent lateral viscosity variations in the upper-mantle and magnitude of slab-driven mantle flow velocity. Significant viscosity reductions occur in regions of large flow velocity gradients due to the weakening effect of the dislocation creep deformation mechanism. The dynamic reductions in asthenospheric viscosity (less than 1018 Pa s) occur within approximately 500 km from driving force of the slab, with peak flow velocities occurring in models with a lower yield stress (weaker slab) and higher stress exponent. This leads to a sharper definition of the rheological base of the lithosphere and implies lateral variability in tractions along the base of the lithosphere. As the dislocation creep mechanism also leads to mantle deformation fabric, we then examine the spatial variation in the LPO development in the asthenosphere and calculate synthetic shear wave splitting. The models show that olivine LPO fabric in the asthenosphere generally increases in alignment strength with increased proximity to the slab, but can be transient and spatially variable on small length scales. The vertical flow fields surrounding the slab tip can produce shear-wave splitting variations with back-azimuth that deviate from the predictions of uniform trench-normal anisotropy, a result that bears on the interpretation of complexity in shear

  4. Deformation mechanism maps for pure iron, corrosion resistant austenitic steels and a low-alloy carbon steel

    International Nuclear Information System (INIS)

    Frost, H.Y.; Ashby, M.F.

    1980-01-01

    Principles of construction of deformation mechanisms charts for iron base alloys are presented. Deformation mechanisms charts for pure iron, 316 and 314 stainless steels, a ferritic steel with 1% Cr, Mo, V are given, examples of the charts application being provided. The charts construction is based, when it is possible, on the state equations, deduced from theoretical models and satisfying experimental data. The charts presented should be considered as an attempt to unite the main regularities of the theory of dislocations and diffusion with the observed experimental picture of plastic deformation and creep of commercial steels [ru

  5. The Santa Rita Shear Zone: Major Mesozoic deformation along the western flank of the White-Inyo Range, CA

    Energy Technology Data Exchange (ETDEWEB)

    Brudos, T.C.; Paterson, S.R. (Univ. of Southern California, Los Angeles, CA (United States). Dept. of Geological Sciences)

    1993-04-01

    The Santa Rita Shear Zone (SRSZ), briefly described by Ross (1967), deforms the western part of the 164 Ma Santa Rita Flat pluton (SRFP), located SSE of Big Pine, CA. The SRSZ comprises a subvertical zone of solid-state deformation (strike N15E) over an area at least 13 km long by 2--3 km wide. Exposure of the shear zone is limited to the north and west by overlying Quaternary volcanics and basin fill within the Late Cenozoic Owens Valley graben. The SRSZ is larger than its present outcrop extent: strain magnitudes are highest within the westernmost exposures. The SRSZ along this western margin is a continuous zone of deformation comprising a mm-scale solid-state foliation containing igneous feldspars flattened into ovals with > 10:1 aspect ratios. The authors have identified three dike phases within the SRFP: (1) minor NE-striking Phase 1 dikes, comprising cm-scale aplites; (2) widespread m-scale Phase 2 dikes, which strike N10E; and (3) m-scale NW-striking Phase 3 mafic dikes. The Phase 1 and Phase 3 dikes are pre- and post-tectonic respectively; observations described below indicate the Phase 2 dikes are syn- to post-deformation. Deformation becomes localized along the Phase 2 dikes -- which are parallel to the orientation of the main body of the shear zone. Solid-state fabrics imposed on the Phase 2 dikes formed at higher temperatures than those within the SRFP, and in the east the SRFP is deformed only within a few cm of the dikes. They surmise syntectonic emplacement of the dikes into dislocational surfaces within the SRSZ, followed by solid-state deformation of the cooling dikes. Several workers have suggested the dikes within the SRFP are part of the 148 Ma independence dike swarm (referring to the Phase 2 or 3 dikes). If correct, this correlation indicates a Jurassic age for the SRSZ. Radiometric analyses of the dikes are in progress.

  6. Dynamic Shear Deformation and Failure of Ti-6Al-4V and Ti-5Al-5Mo-5V-1Cr-1Fe Alloys.

    Science.gov (United States)

    Ran, Chun; Chen, Pengwan

    2018-01-05

    To study the dynamic shear deformation and failure properties of Ti-6Al-4V (Ti-64) alloy and Ti-5Al-5Mo-5V-1Cr-1Fe (Ti-55511) alloy, a series of forced shear tests on flat hat shaped (FHS) specimens for the two investigated materials was performed using a split Hopkinson pressure bar setup. The evolution of shear deformation was monitored by an ultra-high-speed camera (Kirana-05M). Localized shear band is induced in the two investigated materials under forced shear tests. Our results indicate that severe strain localization (adiabatic shear) is accompanied by a loss in the load carrying capacity, i.e., by a sudden drop in loading. Three distinct stages can be identified using a digital image correlation technique for accurate shear strain measurement. The microstructural analysis reveals that the dynamic failure mechanisms for Ti-64 and Ti-55511 alloys within the shear band are of a cohesive and adhesive nature, respectively.

  7. Indirect dating of deformation: a geochronological study from the Pan African Ajaj shear zone, Saudi Arabia.

    Science.gov (United States)

    Hassan, Mahmoud; Abu-Alam, Tamer; Stüwe, Kurt; Klötzli, Urs

    2013-04-01

    The metamorphic complexes of the Arabian-Nubian Shield were exhumed by different exhumation mechanisms (i.e. in extension or oblique transpression regime) during the Pan African activity of Najd Fault System - the largest pre-Mesozoic shear zone on Earth. The different exhumation mechanisms could be the consequence of (i) orientation of the complexes at slightly different angles with respect to the overall orientation of the principal stresses of the Najd Fault System, (ii) exhumation from different depths, or (iii) change of the stress regime through time. In order to test the third hypothesis, geochronological work will be applied on a representative suite of complexes across the Najd Fault System. In particular we focus on three complexes in the Arabian part of the shield named Qazaz, Hamadat and Wajh. In general, the metamorphic complexes of the Arabian part of the shield exhibit left-lateral transcurrent tectonism along the NW-SE Najd faults and right-lateral movement along conjugate NE-SW striking structures. The whole unit forms an anastomosing network of planar structures that demarcate large fish-shaped bodies of high grade metamorphics. The Hamadat complex is surrounded by a left-lateral greenshist facies WNW-ESE Ajaj shear zone. The complex consists of folds that are strongly pinched to the north and more open to the south marked by a well-developed parallel stretching sub-horizontal lineation. Granite intrusions along and across the Ajaj shear zone may allow testing the timing of the deformation. Deformed and non-deformed samples of these granites will be examined by age dating to determine the absolute timing of the metamorphism and the deformation for the complex. Some 20 samples are currently being prepared for zircon dating. Whilst no results are available at the time of writing of this abstract, they will be presented at EGU 2013.

  8. State diagram for adhesion dynamics of deformable capsules under shear flow.

    Science.gov (United States)

    Luo, Zheng Yuan; Bai, Bo Feng

    2016-08-17

    Due to the significance of understanding the underlying mechanisms of cell adhesion in biological processes and cell capture in biomedical applications, we numerically investigate the adhesion dynamics of deformable capsules under shear flow by using a three-dimensional computational fluid dynamic model. This model is based on the coupling of the front tracking-finite element method for elastic mechanics of the capsule membrane and the adhesion kinetics simulation for adhesive interactions between capsules and functionalized surfaces. Using this model, three distinct adhesion dynamic states are predicted, such as detachment, rolling and firm-adhesion. Specifically, the effects of capsule deformability quantified by the capillary number on the transitions of these three dynamic states are investigated by developing an adhesion dynamic state diagram for the first time. At low capillary numbers (e.g. Ca state no longer appears, since capsules exhibit large deviation from the spherical shape.

  9. Shear Creep Simulation of Structural Plane of Rock Mass Based on Discontinuous Deformation Analysis

    Directory of Open Access Journals (Sweden)

    Guoxin Zhang

    2017-01-01

    Full Text Available Numerical simulations of the creep characteristics of the structural plane of rock mass are very useful. However, most existing simulation methods are based on continuum mechanics and hence are unsuitable in the case of large displacements and deformations. The discontinuous deformation analysis method proposed by Genhua is a discrete one and has a significant advantage when simulating the contacting problem of blocks. In this study, we combined the viscoelastic rheological model of Burgers with the discontinuous deformation analysis (DDA method. We also derived the recurrence formula for the creep deformation increment with the time step during numerical simulations. Based on the minimum potential energy principle, the general equilibrium equation was derived, and the shear creep deformation in the structural plane was considered. A numerical program was also developed and its effectiveness was confirmed based on the curves obtained by the creep test of the structural plane of a rock mass under different stress levels. Finally, the program was used to analyze the mechanism responsible for the creep features of the structural plane in the case of the toppling deformation of the rock slope. The results showed that the extended DDA method is an effective one.

  10. Shear response of Fe-bearing MgSiO3 post-perovskite at lower mantle pressures

    Science.gov (United States)

    METSUE, Arnaud; TSUCHIYA, Taku

    2013-01-01

    We investigate the shear response of possible slip systems activated in pure and Fe-bearing MgSiO3 post-perovskite (PPv) through ab initio generalized stacking fault (GSF) energy calculations. Here we show that the [100](001) slip system has the easiest response to plastic shear among ten possible slip systems investigated. Incorporation of Fe2+ decreases the strength of all slip systems but does not change the plastic anisotropy style. Therefore, pure and Fe-bearing MgSiO3 PPv should demonstrate similar LPO patterns with a strong signature of the [100](001) slip system. An aggregate with this deformation texture is expected to produce a VSH > VSV type polarization anisotropy, being consistent with seismological observations. PMID:23318681

  11. Cosmic Shear With ACS Pure Parallels

    Science.gov (United States)

    Rhodes, Jason

    2002-07-01

    Small distortions in the shapes of background galaxies by foreground mass provide a powerful method of directly measuring the amount and distribution of dark matter. Several groups have recently detected this weak lensing by large-scale structure, also called cosmic shear. The high resolution and sensitivity of HST/ACS provide a unique opportunity to measure cosmic shear accurately on small scales. Using 260 parallel orbits in Sloan textiti {F775W} we will measure for the first time: beginlistosetlength sep0cm setlengthemsep0cm setlengthopsep0cm em the cosmic shear variance on scales Omega_m^0.5, with signal-to-noise {s/n} 20, and the mass density Omega_m with s/n=4. They will be done at small angular scales where non-linear effects dominate the power spectrum, providing a test of the gravitational instability paradigm for structure formation. Measurements on these scales are not possible from the ground, because of the systematic effects induced by PSF smearing from seeing. Having many independent lines of sight reduces the uncertainty due to cosmic variance, making parallel observations ideal.

  12. The formation of PSB-like shear bands in cyclically deformed ultrafine grained copper processed by ECAP

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S.D.; Wang, Z.G.; Jiang, C.B.; Li, G.Y.; Alexandrov, I.V.; Valiev, R.Z

    2003-06-15

    Cyclic deformation was performed on ultrafine grained copper processed by ECAP. Shear bands (SBs) and adjacent microstructures were investigated using electron channeling contrast in scanning electron microscope. The possible formation mechanism of SB was discussed based on the characteristic distribution of defects introduced by ECAP.

  13. Shear deformation-induced anisotropic thermal conductivity of graphene.

    Science.gov (United States)

    Cui, Liu; Shi, Sanqiang; Wei, Gaosheng; Du, Xiaoze

    2018-01-03

    Graphene-based materials exhibit intriguing phononic and thermal properties. In this paper, we have investigated the heat conductance in graphene sheets under shear-strain-induced wrinkling deformation, using equilibrium molecular dynamics simulations. A significant orientation dependence of the thermal conductivity of graphene wrinkles (GWs) is observed. The directional dependence of the thermal conductivity of GWs stems from the anisotropy of phonon group velocities as revealed by the G-band broadening of the phonon density of states (DOS), the anisotropy of thermal resistance as evidenced by the G-band peak mismatch of the phonon DOS, and the anisotropy of phonon relaxation times as a direct result of the double-exponential-fitting of the heat current autocorrelation function. By analyzing the relative contributions of different lattice vibrations to the heat flux, we have shown that the contributions of different lattice vibrations to the heat flux of GWs are sensitive to the heat flux direction, which further indicates the orientation-dependent thermal conductivity of GWs. Moreover, we have found that, in the strain range of 0-0.1, the anisotropy ratio of GWs increases monotonously with increasing shear strain. This is induced by the change in the number of wrinkles, which is more influential in the direction perpendicular to the wrinkle texture. The findings elucidated here emphasize the utility of wrinkle engineering for manipulation of nanoscale heat transport, which offers opportunities for the development of thermal channeling devices.

  14. Observation of plastic deformation in freestanding single crystal Au nanowires

    International Nuclear Information System (INIS)

    Lee, Dongyun; Zhao Manhong; Wei Xiaoding; Chen Xi; Jun, Seong C.; Hone, James; Herbert, Erik G.; Oliver, Warren C.; Kysar, Jeffrey W.

    2006-01-01

    Freestanding single crystal nanowires of gold were fabricated from a single grain of pure gold leaf by standard lithographic techniques, with center section of 7 μm in length, 250 nm in width, and 100 nm in thickness. The ends remained anchored to a silicon substrate. The specimens were deflected via nanoindenter until plastic deformation was achieved. Nonlocalized and localized plastic deformations were observed. The resulting force-displacement curves were simulated using continuum single crystal plasticity. A set of material parameters which closely reproduce the experimental results suggests that the initial critical resolved shear stress was as high as 135 MPa

  15. Numerical simulation of systems of shear bands in ductile metal with inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Plohr, JeeYeon N., E-mail: jplohr@lanl.gov; Plohr, Bradley J. [Los Alamos National Laboratory, Theoretical Division, Los Alamos, NM 87545 (United States)

    2016-02-15

    We develop a method for numerical simulations of high strain-rate loading of mesoscale samples of ductile metal with inclusions. Because of its small-scale inhomogeneity, the composite material is prone to localized shear deformation (adiabatic shear bands). This method employs the Generalized Method of Cells of Paley and Aboudi [Mech. Materials, vol. 14, pp. 127–139, 1992] to ensure that the micro mechanical behavior of the metal and inclusions is reflected properly in the behavior of the composite at the mesoscale. To find the effective plastic strain rate when shear bands are present, we extend and apply the analytic and numerical analysis of shear bands of Glimm, Plohr, and Sharp [Mech. Materials, vol. 24, pp. 31–41, 1996]. Our tests of the method focus on the stress/strain response in uniaxial-strain flow, both compressive and tensile, of depleted uranium metal containing silicon carbide inclusions. We use the Preston-Tonks-Wallace viscoplasticity model [J. Appl. Phys., vol. 93, pp. 211–220, 2003], which applies to the high strain-rate regime of an isotropic viscoplastic solid. In results, we verify the elevated temperature and thermal softening at shear bands in our simulations of pure DU and DU/SiC composites. We also note that in composites, due the asymmetry caused by the inclusions, shear band form at different times in different subcells. In particular, in the subcells near inclusions, shear band form much earlier than they do in pure DU.

  16. Numerical simulation of systems of shear bands in ductile metal with inclusions

    Directory of Open Access Journals (Sweden)

    JeeYeon N. Plohr

    2016-02-01

    Full Text Available We develop a method for numerical simulations of high strain-rate loading of mesoscale samples of ductile metal with inclusions. Because of its small-scale inhomogeneity, the composite material is prone to localized shear deformation (adiabatic shear bands. This method employs the Generalized Method of Cells of Paley and Aboudi [Mech. Materials, vol. 14, pp. 127–139, 1992] to ensure that the micro mechanical behavior of the metal and inclusions is reflected properly in the behavior of the composite at the mesoscale. To find the effective plastic strain rate when shear bands are present, we extend and apply the analytic and numerical analysis of shear bands of Glimm, Plohr, and Sharp [Mech. Materials, vol. 24, pp. 31–41, 1996]. Our tests of the method focus on the stress/strain response in uniaxial-strain flow, both compressive and tensile, of depleted uranium metal containing silicon carbide inclusions. We use the Preston-Tonks-Wallace viscoplasticity model [J. Appl. Phys., vol. 93, pp. 211–220, 2003], which applies to the high strain-rate regime of an isotropic viscoplastic solid. In results, we verify the elevated temperature and thermal softening at shear bands in our simulations of pure DU and DU/SiC composites. We also note that in composites, due the asymmetry caused by the inclusions, shear band form at different times in different subcells. In particular, in the subcells near inclusions, shear band form much earlier than they do in pure DU.

  17. Deformation-induced crystallographic-preferred orientation of hcp-iron: An experimental study using a deformation-DIA apparatus

    Science.gov (United States)

    Nishihara, Yu; Ohuchi, Tomohiro; Kawazoe, Takaaki; Seto, Yusuke; Maruyama, Genta; Higo, Yuji; Funakoshi, Ken-ichi; Tange, Yoshinori; Irifune, Tetsuo

    2018-05-01

    Shear and uniaxial deformation experiments on hexagonal close-packed iron (hcp-Fe) was conducted using a deformation-DIA apparatus at a pressure of 13-17 GPa and a temperature of 723 K to determine its deformation-induced crystallographic-preferred orientation (CPO). Development of the CPO in the deforming sample is determined in-situ based on two-dimensional X-ray diffraction using monochromatic synchrotron X-rays. In the shear deformation geometry, the and axes gradually align to be sub-parallel to the shear plane normal and shear direction, respectively, from the initial random texture. In the uniaxial compression and tensile geometry, the and axes, respectively, gradually align along the direction of the uniaxial deformation axis. These results suggest that basal slip (0001) is the dominant slip system in hcp-Fe under the studied deformation conditions. The P-wave anisotropy for a shear deformed sample was calculated using elastic constants at the inner core condition by recent ab-initio calculations. Strength of the calculated anisotropy was comparable to or higher than axisymmetric anisotropy in Earth's inner core.

  18. The brittle-viscous-plastic evolution of shear bands in the South Armorican Shear Zone

    Science.gov (United States)

    Bukovská, Zita; Jeřábek, Petr; Morales, Luiz F. G.; Lexa, Ondrej; Milke, Ralf

    2014-05-01

    Shear bands are microscale shear zones that obliquely crosscut an existing anisotropy such as a foliation. The resulting S-C fabrics are characterized by angles lower than 45° and the C plane parallel to shear zone boundaries. The S-C fabrics typically occur in granitoids deformed at greenschist facies conditions in the vicinity of major shear zones. Despite their long recognition, mechanical reasons for localization of deformation into shear bands and their evolution is still poorly understood. In this work we focus on microscale characterization of the shear bands in the South Armorican Shear Zone, where the S-C fabrics were first recognized by Berthé et al. (1979). The initiation of shear bands in the right-lateral South Armorican Shear Zone is associated with the occurrence of microcracks crosscutting the recrystallized quartz aggregates that define the S fabric. In more advanced stages of shear band evolution, newly formed dominant K-feldspar, together with plagioclase, muscovite and chlorite occur in the microcracks, and the shear bands start to widen. K-feldspar replaces quartz by progressively bulging into the grain boundaries of recrystallized quartz grains, leading to disintegration of quartz aggregates and formation of fine-grained multiphase matrix mixture. The late stages of shear band development are marked by interconnection of fine-grained white mica into a band that crosscuts the original shear band matrix. In its extremity, the shear band widening may lead to the formation of ultramylonites. With the increasing proportion of shear band matrix from ~1% to ~12%, the angular relationship between S and C fabrics increases from ~30° to ~40°. The matrix phases within shear bands show differences in chemical composition related to distinct evolutionary stages of shear band formation. The chemical evolution is well documented in K-feldspar, where the albite component is highest in porphyroclasts within S fabric, lower in the newly formed grains within

  19. The Effect of Fracture Filler Composition on the Parameters of Shear Deformation Regime

    Science.gov (United States)

    Pavlov, D.; Ostapchuk, A.; Batuhtin, I.

    2015-12-01

    Geomechanical models of different slip mode nucleation and transformation can be developed basing on laboratory experiments, in which regularities of shear deformation of gouge-filled faults are studied. It's known that the spectrum of possible slip modes is defined by both macroscopic deformation characteristics of the fault and mesoscale structure of fault filler. Small variations of structural parameters of the filler may lead to a radical change of slip mode [1, 2]. This study presents results of laboratory experiments investigating regularities of shear deformation of discontinuities filled with multicomponent granular material. Qualitative correspondence between experimental results and natural phenomena is detected. The experiments were carried out in the classical "slider model" statement. A granite block slides under shear load on a granite substrate. The contact gap between rough surfaces was filled with a discrete material, which simulated the principal slip zone of a fault. The filler components were quartz sand, salt, glass beads, granite crumb, corundum, clay and pyrophyllite. An entire spectrum of possible slip modes was obtained - from stable slip to slow-slip events and to regular stick-slip with various coseismic displacements realized per one act of instability. Mixing several components in different proportions, it became possible to trace the gradual transition from stable slip to regular stick-slip, from slow-slip events to fast-slip events. Depending on specific filler component content, increasing the portion of one of the components may lead to both a linear and a non-linear change of slip event moment (a laboratory equivalent of the seismic moment). For different filler compositions durations of equal-moment events may differ by more than two orders of magnitude. The findings can be very useful for developing geomechnical models of nucleation and transformation of different slip modes observed at natural faults. The work was supported by

  20. Steady State Droplet Deformation and Orientation during Bulk and Confined Shear Flow in Blends with One Viscoelastic Component: Experiments, Modeling and Simulations

    Science.gov (United States)

    Verhulst, Kristof; Cardinaels, Ruth; Renardy, Yuriko; Moldenaers, Paula

    2008-07-01

    The steady deformation and orientation of droplets in shear flow, both under bulk and confined conditions, is microscopically studied for blends with one viscoelastic phase and a viscosity ratio of 1.5. The experiments are performed with a Linkam shearing cell and a counter rotating setup, based on a Paar Physica MCR300. For bulk shear flow, it is shown that matrix viscoelasticity suppresses droplet deformation and promotes droplet orientation towards the flow direction. Interestingly, these effects saturate at Deborah numbers above 2. For ellipsoidal droplets, viscoelasticity of the droplet fluid hardly affects the droplet deformation and droplet orientation, even up to Deborah numbers as high as 16. When the droplet is confined between two plates, the droplet deformation and the orientation towards the flow direction increase with confinement ratio, as in fully Newtonian systems. At a Deborah number of 1, the effect of component viscoelasticity under confined conditions remains qualitatively the same as under bulk conditions, at least up to a confinement ratio 2R/H of 0.6. The experiments under bulk conditions are compared with the predictions of phenomenological models, such as the Maffettone-Minale model, for droplet deformation. The Shapira-Haber model, which analytically describes the effects of the walls on the droplet deformation for fully Newtonian systems, is used to describe the experimental results under confinement. Here, this model is combined with the bulk phenomenological models to include bulk viscoelasticity effects. Under the present conditions, the adapted Shapira-Haber model describes the steady droplet deformation under confinement rather well. Finally, the experimentally obtained droplet shapes are compared with the results of 3D simulations, performed with a volume-of-fluid algorithm.

  1. Multiscale modeling of the effect of carbon nanotube orientation on the shear deformation properties of reinforced polymer-based composites

    Energy Technology Data Exchange (ETDEWEB)

    Montazeri, A. [Institute for Nano-Science and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of); Sadeghi, M. [Institute for Nano-Science and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Naghdabadi, R., E-mail: naghdabd@sharif.ed [Institute for Nano-Science and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Department of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Rafii-Tabar, H. [Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, and Research Centre for Medical Nanotechnology and Tissue Engineering, Shahid Beheshti University of Medical Sciences, Evin, Tehran (Iran, Islamic Republic of)

    2011-04-04

    A combination of molecular dynamics (MD), continuum elasticity and FEM is used to predict the effect of CNT orientation on the shear modulus of SWCNT-polymer nanocomposites. We first develop a transverse-isotropic elastic model of SWCNTs based on the continuum elasticity and MD to compute the transverse-isotropic elastic constants of SWCNTs. These constants are then used in an FEM-based simulation to investigate the effect of SWCNT alignment on the shear modulus of nanocomposites. Furthermore, shear stress distributions along the nanotube axis and over its cross-sectional area are investigated to study the effect of CNT orientation on the shear load transfer. - Highlights: A transverse-isotropic elastic model of SWCNTs is presented. A hierarchical MD/FEM multiscale model of SWCNT-polymer composites is developed. Behavior of these nanocomposites under shear deformation is studied. A symmetric shear stress distribution occurs only in SWCNTs with 45{sup o} orientation. The total shear load sustained is greatest in the case of 45{sup o} orientation.

  2. Multiscale modeling of the effect of carbon nanotube orientation on the shear deformation properties of reinforced polymer-based composites

    International Nuclear Information System (INIS)

    Montazeri, A.; Sadeghi, M.; Naghdabadi, R.; Rafii-Tabar, H.

    2011-01-01

    A combination of molecular dynamics (MD), continuum elasticity and FEM is used to predict the effect of CNT orientation on the shear modulus of SWCNT-polymer nanocomposites. We first develop a transverse-isotropic elastic model of SWCNTs based on the continuum elasticity and MD to compute the transverse-isotropic elastic constants of SWCNTs. These constants are then used in an FEM-based simulation to investigate the effect of SWCNT alignment on the shear modulus of nanocomposites. Furthermore, shear stress distributions along the nanotube axis and over its cross-sectional area are investigated to study the effect of CNT orientation on the shear load transfer. - Highlights: → A transverse-isotropic elastic model of SWCNTs is presented. → A hierarchical MD/FEM multiscale model of SWCNT-polymer composites is developed. → Behavior of these nanocomposites under shear deformation is studied. → A symmetric shear stress distribution occurs only in SWCNTs with 45 o orientation. → The total shear load sustained is greatest in the case of 45 o orientation.

  3. Experimental research on microhardness and wear resistances of pure Cu subjected to surface dynamic plastic deformation by ultrasonic impact

    Science.gov (United States)

    Chen, Zhaoxia; He, Yangming

    2018-04-01

    Dynamic plastic deformation (DPD) has been induced in the surface of pure Cu by ultrasonic impact treating (UIT) with the varied impact current and coverage percentage. The microstructures of the treated surface were analyzed by a scanning electron microscope (SEM). And the wear resistance of pure Cu was experimentally researched both with the treated and untreated specimens. The effect of DPD on the hardness was also investigated using microhardness tester. The results show that the grains on the top surfaces of pure Cu are highly refined. The maximum depth of the plastic deformation layer is approximately 1400 µm. The larger the current and coverage percentage, the greater of the microhardness and wear resistance the treated surface layer of pure Cu will be. When the impact current is 2 A and coverage percentage is 300%, the microhardness and wear resistance of the treated sample is about 276.1% and 68.8% higher than that of the untreated specimen, respectively. But the properties of the treated sample deteriorate when the UIT current is 3 A and the coverage percentage is 300% because of the formation of a new phase forms in the treated surface.

  4. Application of kinematic vorticity and gold mineralization for the wall rock alterations of shear zone at Dungash gold mining, Central Eastern Desert, Egypt

    Science.gov (United States)

    Kassem, Osama M. K.; Abd El Rahim, Said H.; El Nashar, EL Said R.; AL Kahtany, Kaled M.

    2016-11-01

    The use of porphyroclasts rotating in a flowing matrix to estimate mean kinematic vorticity number (Wm) is important for quantifying the relative contributions of pure and simple shear in wall rocks alterations of shear zone at Dungash gold mine. Furthermore, it shows the relationship between the gold mineralization and deformation and also detects the orientation of rigid objects during progressive deformation. The Dungash gold mine area is situated in an EW-trending quartz vein along a shear zone in metavolcanic and metasedimentary host rocks in the Eastern Desert of Egypt. These rocks are associated with the major geologic structures which are attributed to various deformational stages of the Neoproterozoic basement rocks. We conclude that finite strain in the deformed rocks is of the same order of magnitude for all units of metavolcano-sedimentary rocks. The kinematic vorticity number for the metavolcanic and metasedimentary samples in the Dungash area range from 0.80 to 0.92, and together with the strain data suggest deviations from simple shear. It is concluded that nappe stacking occurred early during the underthrusting event probably by brittle imbrication and that ductile strain was superimposed on the nappe structure during thrusting. Furthermore, we conclude that disseminated mineralization, chloritization, carbonatization and silicification of the wall rocks are associated with fluids migrating along shearing, fracturing and foliation of the metamorphosed wall rocks.

  5. Study about internal friction in deformed - and irradiated pure titanium

    International Nuclear Information System (INIS)

    Miyada, L.T.

    1979-01-01

    Internal friction and modulus are measured in pure Ti at low temperature using an inverted torsion-pendulum at about 1 Hz. The presence of four relaxation peaks P' sub(d)(-140 0 C), P sub(d)(-101 0 C), P' sub(α)(-75 0 C) and P sub(α)(-50 0 C) has been found, and effects of plastic deformation, heat treatment and neutron irradiation on these peaks are investigated in detail. Activation energies and frequency factors of P sub(d) and Pα peaks are consistent with the data in higher frequency range reproted by other workers. The P sub(d) and P' sub(d) peaks grow after deformation and tend to decay after annealing at high temperatures or after neutron irradiation. Both peaks are resonably interpreted in terms of dislocation relaxation mechanisms (Bordoni type) arising from thermally activated motion of dislocations in different slip planes of h.c.f. structure. Peierls stress of dislocations giving rise to each peak have calculated based on Seeger's theory, and found to be consistent with that of f.c.c. metals. On the other hand, P sub(α) and P' sub(α) peaks grow significantly at the expense of P sub(d) and P' sub(d) peaks after neutron irradiation in deformed samples. The behaviour of these peaks as a function of irradiation dose and annealing temperatures strongly indicated that they are due to relaxations resulting from dislocations-point defects interactions (Hasiguti type). It is tentatively suggested that P sub(α) and P' sub(α) peaks are related with interactions of dislocations with divacancies and single vacancies, respectively. Application of Schiller's model showed a consistent result with regard to the P' sub(α) peak experimentally observed. (Author) [pt

  6. On the dynamic stability of shear deformable beams under a tensile load

    Science.gov (United States)

    Caddemi, S.; Caliò, I.; Cannizzaro, F.

    2016-07-01

    Loss of stability of beams in a linear static context due to the action of tensile loads has been disclosed only recently in the scientific literature. However, tensile instability in the dynamic regime has been only marginally covered. Several aspects concerning the role of shear deformation on the tensile dynamic instability on continuous and discontinuous beams are still to be addressed. It may appear as a paradox, but also for the case of the universally studied Timoshenko beam model, despite its old origin, frequency-axial load diagrams in the range of negative values of the load (i.e. tensile load) has never been brought to light. In this paper, for the first time, the influence of a conservative tensile axial loads on the dynamic behaviour of the Timoshenko model, according to the Haringx theory, is assessed. It is shown that, under increasing tensile loads, regions of positive/negative fundamental frequency variations can be distinguished. In addition, the beam undergoes eigen-mode changes, from symmetric to anti-symmetric shapes, until tensile instability of divergence type is reached. As a further original contribution on the subject, taking advantage of a new closed form solution, it is shown that the same peculiarities are recovered for an axially loaded Euler-Bernoulli vibrating beam with multiple elastic sliders. This latter model can be considered as the discrete counterpart of the Timoshenko beam-column in which the internal sliders concentrate the shear deformation that in the Timoshenko model is continuously distributed. Original aspects regarding the evolution of the vibration frequencies and the relevant mode shapes with the tensile load value are highlighted.

  7. Micro-structural evolution in plastically deformed crystalline materials

    DEFF Research Database (Denmark)

    Nellemann, Christopher

    predictions for the two models to be obtained. Application of the two models to the pure shear boundary value problem is used to characterize plastic behavior, which also allows for the identification of inherent properties through closed form expressions. Single crystal Monazite containing a void is studied......Two rate-independent strain gradient crystal plasticity models are developed and applied in numerical studies designed to identify the properties inherent to model predictions of plastic deformation. The two models incorporate gradients of slip into the framework of conventional crystal plasticity...... in order to model size-dependent plasticity effects. This gradient dependence is achieved by relating a slip measure which combines both slip and their gradients to a shear hardening curve, as commonly done in conventional plasticity theories. Finite element codes are implemented which allow for numerical...

  8. Shear Stress in Nickel and Ni-60Co under One-Dimensional Shock Loading

    International Nuclear Information System (INIS)

    Workman, A.; Wallwork, A.; Meziere, Y. J. E.; Millett, J. C. F.; Bourne, N. K.

    2006-01-01

    The dynamic response of pure nickel (Ni), and its alloy, Ni-60Co (by weight %), has been investigated during one-dimensional shock loading. Few materials' properties are different and the only significantly altered feature is the reduced stacking fault energy (SFE) for the Ni-60Co. This paper considers the effect of this reduced SFE on the shear strength. Data (in terms of shock stress, particle velocity and shock velocity) are also presented. The influence on the shear stress, τ of cobalt additions in nickel are then investigated and presented. Results indicate that the lateral stress is increasing in both materials with the increasing impact stress. The shear stress was found to be higher in the nickel than in the Ni-60Co. The progressive decrease of the lateral stress noted during loading indicates a complex mechanism of deformation behind the shock front

  9. Nearshore currents on the southern Namaqua shelf of the Benguela upwelling system

    Science.gov (United States)

    Fawcett, A. L.; Pitcher, G. C.; Shillington, F. A.

    2008-05-01

    Nearshore currents of the southern Namaqua shelf were investigated using data from a mooring situated three and a half kilometres offshore of Lambert's Bay, downstream of the Cape Columbine upwelling cell, on the west coast of South Africa. This area is susceptible to harmful algal blooms (HABs) and wind-forced variations in currents and water column structure are critical in determining the development, transport and dissipation of blooms. Time series of local wind data, and current and temperature profile data are described for three periods, considered to be representative of the latter part of the upwelling season (27 January-22 February), winter conditions (5-29 May) and the early part of the upwelling season (10 November-12 December) in 2005. Differences observed in mean wind strength and direction between data sets are indicative of seasonal changes in synoptic meteorological conditions. These quasi-seasonal variations in wind forcing affect nearshore current flow, leading to mean northward flow in surface waters early in the upwelling season when equatorward, upwelling-favourable winds are persistent. Mean near-surface currents are southward during the latter part of the upwelling season, consistent with more prolonged periods of relaxation from equatorward winds, and under winter conditions when winds were predominantly poleward. Within these seasonal variations in mean near-surface current direction, two scales of current variability were evident within all data sets: strong inertial oscillations were driven by diurnal winds and introduced vertical shear into the water column enhancing mixing across the thermocline, while sub-inertial current variability was driven by north-south wind reversals at periods of 2-5 days. Sub-inertial currents were found to lag wind reversals by approximately 12 h, with a tendency for near-surface currents to flow poleward in the absence of wind forcing. Consistent with similar sites along the Californian and Iberian coasts

  10. A micro-kinematic framework for vorticity analysis in polyphase shear zones using integrated field, microstructural and crystallographic orientation-dispersion methods

    Science.gov (United States)

    Kruckenberg, S. C.; Michels, Z. D.; Parsons, M. M.

    2017-12-01

    We present results from integrated field, microstructural and textural analysis in the Burlington mylonite zone (BMZ) of eastern Massachusetts to establish a unified micro-kinematic framework for vorticity analysis in polyphase shear zones. Specifically, we define the vorticity-normal surface based on lattice-scale rotation axes calculated from electron backscatter diffraction data using orientation statistics. In doing so, we objectively identify a suitable reference frame for rigid grain methods of vorticity analysis that can be used in concert with textural studies to constrain field- to plate-scale deformation geometries without assumptions that may bias tectonic interpretations, such as relationships between kinematic axes and fabric forming elements or the nature of the deforming zone (e.g., monoclinic vs. triclinic shear zones). Rocks within the BMZ comprise a heterogeneous mix of quartzofeldspathic ± hornblende-bearing mylonitic gneisses and quartzites. Vorticity axes inferred from lattice rotations lie within the plane of mylonitic foliation perpendicular to lineation - a pattern consistent with monoclinic deformation geometries involving simple shear and/or wrench-dominated transpression. The kinematic vorticity number (Wk) is calculated using Rigid Grain Net analysis and ranges from 0.25-0.55, indicating dominant general shear. Using the calculated Wk values and the dominant geographic fabric orientation, we constrain the angle of paleotectonic convergence between the Nashoba and Avalon terranes to 56-75º with the convergence vector trending 142-160° and plunging 3-10°. Application of the quartz recrystallized grain size piezometer suggests differential stresses in the BMZ mylonites ranging from 44 to 92 MPa; quartz CPO patterns are consistent with deformation at greenschist- to amphibolite-facies conditions. We conclude that crustal strain localization in the BMZ involved a combination of pure and simple shear in a sinistral reverse transpressional

  11. Time-frequency analyses of fluid-solid interaction under sinusoidal translational shear deformation of the viscoelastic rat cerebrum

    Science.gov (United States)

    Leahy, Lauren N.; Haslach, Henry W.

    2018-02-01

    During normal extracellular fluid (ECF) flow in the brain glymphatic system or during pathological flow induced by trauma resulting from impacts and blast waves, ECF-solid matter interactions result from sinusoidal shear waves in the brain and cranial arterial tissue, both heterogeneous biological tissues with high fluid content. The flow in the glymphatic system is known to be forced by pulsations of the cranial arteries at about 1 Hz. The experimental shear stress response to sinusoidal translational shear deformation at 1 Hz and 25% strain amplitude and either 0% or 33% compression is compared for rat cerebrum and bovine aortic tissue. Time-frequency analyses aim to correlate the shear stress signal frequency components over time with the behavior of brain tissue constituents to identify the physical source of the shear nonlinear viscoelastic response. Discrete fast Fourier transformation analysis and the novel application to the shear stress signal of harmonic wavelet decomposition both show significant 1 Hz and 3 Hz components. The 3 Hz component in brain tissue, whose magnitude is much larger than in aortic tissue, may result from interstitial fluid induced drag forces. The harmonic wavelet decomposition locates 3 Hz harmonics whose magnitudes decrease on subsequent cycles perhaps because of bond breaking that results in easier fluid movement. Both tissues exhibit transient shear stress softening similar to the Mullins effect in rubber. The form of a new mathematical model for the drag force produced by ECF-solid matter interactions captures the third harmonic seen experimentally.

  12. Asymmetric free vibrations of laminated annular cross-ply circular plates including the effects of shear deformation and rotary inertia. Spline method

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, K.K.; Kim, Kyung Su; Lee, Jang Hyun [Inha Univ., Incheon (Korea). Dept. of Naval Architecture and Ocean Engineering

    2009-12-15

    Asymmetric free vibrations of annular cross-ply circular plates are studied using spline function approximation. The governing equations are formulated including the effects of shear deformation and rotary inertia. Assumptions are made to study the cross-ply layered plates. A system of coupled differential equations are obtained in terms of displacement functions and rotational functions. These functions are approximated using Bickley- type spline functions of suitable order. Then the system is converted into the eigenvalue problem by applying the point collocation technique and suitable boundary conditions. Parametric studies have been made to investigate the effect of transverse shear deformation and rotary inertia on frequency parameter with respect to the circumferential node number, radii ratio and thickness to radius ratio for both symmetric and anti-symmetric cross-ply plates using various types of material properties. (orig.)

  13. The modal density of composite beams incorporating the effects of shear deformation and rotary inertia

    Science.gov (United States)

    Bachoo, Richard; Bridge, Jacqueline

    2018-06-01

    Engineers and designers are often faced with the task of selecting materials that minimizes structural weight whilst meeting the required strength and stiffness. In many cases fibre reinforced composites (FRCs) are the materials of choice since they possess a combination of high strength and low density. Depending on the application, composites are frequently constructed to form long slender beam-like structures or flat thin plate-like structures. Such structures when subjected to random excitation have the potential to excite higher order vibratory modes which can contribute significantly to structure-borne sound. Statistical Energy Analysis (SEA) is a framework for modeling the high frequency vibration of structures. The modal density, which is typically defined as the number of modes per unit Hertz in a frequency band, is a fundamental parameter when applying SEA. This study derives formulas for the modal density of a fibre reinforced composite beam coupled in bending and torsion. The effects of shear deformation and rotary inertia are accounted for in the formulation. The modal density is shown to be insensitive to boundary conditions. Numerical analyses were carried out to investigate the variation of modal density with fibre orientation including and excluding the effects of shear deformation and rotary inertia. It was observed that neglecting such effects leads to underestimating the mode count in a particular frequency band. In each frequency band there exists a fibre orientation for which the modal density is minimized. This angular orientation is shown to be dependent on the shear rigidity as well as the bending, torsional and coupling rigidities. The foregoing observation becomes more pronounced with increasing frequency. The paper also addresses the modal density beyond the wave-mode transition frequency where the beam supports three propagating waves.

  14. Periodic Viscous Shear Heating Instability in Fine-Grained Shear Zones: Possible Mechanism for Intermediate Depth Earthquakes and Slow Earthquakes?

    Science.gov (United States)

    Kelemen, P. B.; Hirth, G.

    2004-12-01

    Localized ductile shear zones with widths of cm to m are observed in exposures of Earth's shallow mantle (e.g., Kelemen & Dick JGR 95; Vissers et al. Tectonophys 95) and dredged from oceanic fracture zones (e.g., Jaroslow et al. Tectonophys 96). These are mylonitic (grain size 10 to 100 microns) and record mineral cooling temperatures from 1100 to 600 C. Pseudotachylites in a mantle shear zone show that shear heating temperatures can exceed the mantle solidus (e.g., Obata & Karato Tectonophys 95). Simple shear, recrystallization, and grain boundary sliding all decrease the spacing between pyroxenes, so olivine grain growth at lower stress is inhibited; thus, once formed, these shear zones do not "heal" on geological time scales. Reasoning that grain-size sensitive creep will be localized within these shear zones, rather than host rocks (grain size 1 to 10 mm), and inspired by the work of Whitehead & Gans (GJRAS 74), we thought these might undergo repeated shear heating instabilities. In this view, as elastic stress increases, the shear zone weakens via shear heating; rapid deformation of the weak shear zone releases most stored elastic stress; lower stress and strain rate coupled with diffusion of heat into host rocks leads to cooling and strengthening, after which the cycle repeats. We constructed a simple numerical model incorporating olivine flow laws for dislocation creep, diffusion creep, grain boundary sliding, and low T plasticity. We assumed that viscous deformation remains localized in shear zones, surrounded by host rocks undergoing elastic deformation. We fixed the velocity along one side of an elastic half space, and calculated stress due to elastic strain. This stress drives viscous deformation in a shear zone of specified width. Shear heating and thermal diffusion control temperature evolution in the shear zone and host rocks. A maximum of 1400 C (where substantial melting of peridotite would occur) is imposed. Grain size evolves during dislocation

  15. Warm water upwelling in the Cenozoic Era

    Science.gov (United States)

    Zhang, Y.

    2017-12-01

    Modern observations show that the occurrence of wind-driven upwelling is often tied to cold sea surface temperatures (SSTs). However, SST reconstructions indicate that globally, the upwelling regions were much warmer in the Miocene and Pliocene. This questions the overall strength of deep-water upwelling in the geological past, with important implications for the associated atmospheric, climatic and biogeochemical processes, and the fate of upwelling regions in a high-CO2 world. We recently showed that the eastern equatorial Pacific (EEP) was characterized by strong air-sea disequilibrium of CO2 during the late Miocene - Pliocene. Combined with export productivity proxies, we interpreted these as signs of vigorous upwelling. The upwelled waters were nutrient- and CO2-rich, but warm. The cause of the "excess" warming in the upwelling regions is linked to the source waters which originated from the higher latitudes. In other words, the reduced east (upwelling) to west (non-upwelling) temperature gradients along the equator in major ocean basins are rooted in the reduced meridional temperature gradients. To further test this hypothesis, we examine the history of the EEP and temperature gradients during the even-warmer Eocene - middle Miocene.

  16. Neoproterozoic Evolution and Najd‒Related Transpressive Shear Deformations Along Nugrus Shear Zone, South Eastern Desert, Egypt (Implications from Field‒Structural Data and AMS‒Technique)

    Science.gov (United States)

    Hagag, W.; Moustafa, R.; Hamimi, Z.

    2018-01-01

    The tectonometamorphic evolution of Nugrus Shear Zone (NSZ) in the south Eastern Desert of Egypt was reevaluated through an integrated study including field-structural work and magnetofabric analysis using Anisotropy of Magnetic Susceptibility (AMS) technique, complemented by detailed microstructural investigation. Several lines of evidence indicate that the Neoproterozoic juvenile crust within this high strain zone suffered an impressive tectonic event of left-lateral transpressional regime, transposed the majority of the earlier formed structures into a NNW to NW-directed wrench corridor depicts the northwestern extension of the Najd Shear System (NSS) along the Eastern Desert of Egypt. The core of the southern Hafafit dome underwent a high metamorphic event ( M 1) developed during the end of the main collisional orogeny in the Arabian-Nubian Shield (ANS). The subsequent M 2 metamorphic event was retrogressive and depicts the tectonic evolution and exhumation of the Nugrus-Hafafit area including the Hafafit gneissic domes, during the origination of the left-lateral transpressive wrench corridor of the NSS. The early tectonic fabric within the NSZ and associated highly deformed rocks was successfully detected by the integration of AMS-technique and microstructural observations. Such fabric grain was checked through a field-structural work. The outcomes of the present contribution advocate a complex tectonic evolution with successive and overlapped deformation events for the NSZ.

  17. The Sierra de Cabral range: a restraining bend related to the Sierra Ballena shear zone in Dom Feliciano belt

    International Nuclear Information System (INIS)

    Masquelin, H.

    2010-01-01

    Restraining and releasing bends occurring in all crustal environments are common but enigmatic features of strike-slip fault systems. They can be reported in all scales of observation. Regional-scale restraining bends are sites of mountain building, transpressional deformation and basement exhumation. Releasing bends are sites of subsidence, transtensional deformation and pull-apart basins. The Dom Feliciano Belt of Southern Uruguay has two main structures observed from the outer space: (i) the Sierra Ballena Shear Zone and (ii) the Sierra de Cabral flexure located to the SW of the former. Although a transpressional regime is commonly accepted for the Dom Feliciano Belt, the available tectonic models do not provide satisfactory explanations for its building mechanism. A restraining bend is proposed at the SW termination of Sierra Ballena strike-slip ductile shear zone. In a key-area (Alvariza Range) the relationship between the Zanja del Tigre volcanic-detritic and the calcareous succession shows three en-échelon upright bends of the same quartzite hanging-wall between two sub-vertical strike-slip faults, suggesting the existence of a shortened strike-slip duplex operating in viscous-elastic rheology. The deformation partitioning includes strike-slip and dip-slip simple-shear components as well as one contractional pure-shear component. Because restraining bends were scarcely described in Neoproterozoic low-grade regional exhumation conditions, this structural framework would be a natural laboratory to study fault kinematics, fault dynamics, their associated deformation and the tectonic and erosion constraints related to the exhumation of many crystalline terrains

  18. Evaluation of filler effects on SBR in large shearing deformations 1. Utility of differential dynamic modulus as predictor for wet skid resistance

    International Nuclear Information System (INIS)

    Isono, Y.; Oyama, T.; Kawahara, S.

    2003-01-01

    Now the use of silica in tire tread applications is increasing. This is because of not so different rolling resistance for silica (Si) filled and carbon black (CB) filled rubbers, and of higher wet skid resistance for the former than the latter. Such difference should be attributed to the variation in viscoelasticity. It is, however, still unknown what viscoelastic function should be used as a predictor. At the place in contact with the road, a tire tread rubber undergoes a large deformation on which small oscillations are superposed. Hence differential dynamic modulus measured by intermittently superposing small oscillations on a large deformation may provide useful information. In this work, nonlinear viscoelastic properties of CB and Si (with coupling agent) filled SBR vulcanizates were studied in cycles of large shearing deformation (γ = 2) and recovery (γ = 0) on which small shear oscillations (γ osc = 0.005) were superposed. CB filled SBR showed different responses in deformed and recovered states: Values of tanδ are lower in deformed state than in recovered state. However, Si filled one showed no change in tanδ in the two states. In the deformed state, Si system showed higher tanδ than CB system. The results agree with our experience of higher wet skid resistance for Si than for CB, showing validity of differential loss tangent as the predictor. Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd

  19. Under pressure: Climate change, upwelling and eastern boundary upwelling ecosystems

    Directory of Open Access Journals (Sweden)

    Marisol eGarcía-Reyes

    2015-12-01

    Full Text Available The IPCC AR5 provided an overview of the likely effects of climate change on Eastern Boundary Upwelling Systems (EBUS, stimulating increased interest in research examining the issue. We use these recent studies to develop a new synthesis describing climate change impacts on EBUS. We find that model and observational data suggest coastal upwelling-favorable winds in poleward portions of EBUS have intensified and will continue to do so in the future. Although evidence is weak in data that are presently available, future projections show that this pattern might be driven by changes in the positioning of the oceanic high-pressure systems rather than by deepening of the continental low-pressure systems, as previously proposed. There is low confidence regarding the future effects of climate change on coastal temperatures and biogeochemistry due to uncertainty in the countervailing responses to increasing upwelling and coastal warming, the latter of which could increase thermal stratification and render upwelling less effective in lifting nutrient-rich deep waters into the photic zone. Although predictions of ecosystem responses are uncertain, EBUS experience considerable natural variability and may be inherently resilient. However, multi-trophic level, end-to-end (i.e., winds to whales studies are needed to resolve the resilience of EBUS to climate change, especially their response to long-term trends or extremes that exceed pre-industrial ranges.

  20. Cosmic Shear With ACS Pure Parallels. Targeted Portion.

    Science.gov (United States)

    Rhodes, Jason

    2002-07-01

    Small distortions in the shapes of background galaxies by foreground mass provide a powerful method of directly measuring the amount and distribution of dark matter. Several groups have recently detected this weak lensing by large-scale structure, also called cosmic shear. The high resolution and sensitivity of HST/ACS provide a unique opportunity to measure cosmic shear accurately on small scales. Using 260 parallel orbits in Sloan i {F775W} we will measure for the first time: the cosmic shear variance on scales Omega_m^0.5, with signal-to-noise {s/n} 20, and the mass density Omega_m with s/n=4. They will be done at small angular scales where non-linear effects dominate the power spectrum, providing a test of the gravitational instability paradigm for structure formation. Measurements on these scales are not possible from the ground, because of the systematic effects induced by PSF smearing from seeing. Having many independent lines of sight reduces the uncertainty due to cosmic variance, making parallel observations ideal.

  1. Relation between psi-splitting and microscopic residual shear stresses in x-ray stress measurement on uni-directionally deformed layers

    International Nuclear Information System (INIS)

    Hanabusa, Takao; Fujiwara, Haruo

    1982-01-01

    The psi-splitting behaviors were investigated for the ground and the milled surface layers of both iron and high speed steel in order to find out the relation among microscopic residual shear stresses. For the high speed steel, the X-ray elastic constants and the residual strains were measured on the carbide phase as well as on the matrix phase. It was clarified that the psi-splitting was caused by a combination of the selective nature of X-ray diffractions and the microscopic residual shear stresses within the interior of cells and the carbide particles. The volume fraction occupied by the cell walls and the residual shear stresses sustained by them were estimated from the equilibrium condition of the microscopic residual shear stresses. The distributions of residual stresses over the deformed layers indicate that the thermal effect is dominant in grinding and the mechanical effect is dominant in milling for forming residual stresses. (author)

  2. Shear Strains, Strain Rates and Temperature Changes in Adiabatic Shear Bands

    Science.gov (United States)

    1980-05-01

    X14A. It has been found that when bainitic and martensitic steels are sheared adiabatically, a layer of material within ths shear zone is altezed and...Sooiety for Metals, Metals Park, Ohio, 1978, pp. 148-0. 21 TABLE II SOLID-STATE TRANSFORMATIONS IN BAINITIC STEEL TRANSFORMATION TRANSFORMATION...shear, thermoplastic, plasticity, plastic deformation, armor, steel IL AnSRACT ( -=nba asoa.tm a naeoesM iN faity by bleak n bet/2972 Experiments

  3. Introduction to the viewpoint set on shear bands

    International Nuclear Information System (INIS)

    Hutchinson, J.W.

    1984-01-01

    Recent work aimed at improving our understanding of shear banding and flow localization as modes of deformation and failure is summarized in the six viewpoint articles which follow. For the most part, the emphasis here is on the observation and analysis of shear banding in metals, but active efforts are also underway to understand the role of shear bands in the deformation and failure of soils and rocks. There is a tendency to regard shear bands as a failure mode, as indeed they often are. But extensive straining under highly constrained conditions such as rolling can give rise to profuse flow localization into shear bands which can be regarded as microscopic in the sense that their extent is on the scale of the grains rather than the overall dimensions of the block of material being deformed. Hatherly and Malin describe in detail the observation of such bands and emphasize that they should be considered as a mode of deformation under these circumstances. They relate the formation of the bands to microstructural aspects and discuss their role in the development of recrystallization textures. It will be clear from reading the articles in this viewpoint set that the beginnings of a quantitative theory of shear banding is in place. Continued progress will require parallel developments in constitutive theory and experimental observation. Moreover, basic questions remain to be explored related to the spatial development of the shear bands, their mutual interaction, their development into a failure mode, and how these are influenced by factors such as overall deformational constraint, rate of straining, and temperature

  4. FEM Simulation of Incremental Shear

    International Nuclear Information System (INIS)

    Rosochowski, Andrzej; Olejnik, Lech

    2007-01-01

    A popular way of producing ultrafine grained metals on a laboratory scale is severe plastic deformation. This paper introduces a new severe plastic deformation process of incremental shear. A finite element method simulation is carried out for various tool geometries and process kinematics. It has been established that for the successful realisation of the process the inner radius of the channel as well as the feeding increment should be approximately 30% of the billet thickness. The angle at which the reciprocating die works the material can be 30 deg. . When compared to equal channel angular pressing, incremental shear shows basic similarities in the mode of material flow and a few technological advantages which make it an attractive alternative to the known severe plastic deformation processes. The most promising characteristic of incremental shear is the possibility of processing very long billets in a continuous way which makes the process more industrially relevant

  5. Study of an athermal quasi static plastic deformation in a 2D granular material

    Science.gov (United States)

    Zhang, Jie

    2017-11-01

    In crystalline materials, the plasticity has been well understood in terms of dynamics of dislocation, i.e. flow defects in the crystals where the flow defects can be directly visualized under a microscope. In a contrast, the plasticity in amorphous materials, i.e. glass, is still poorly understood due to the disordered nature of the materials. In this talk, I will discuss the recent results we have obtained in our ongoing research of the plasticity of a 2D glass in the athermal quasi static limit where the 2D glass is made of bi-disperse granular disks with very low friction. Starting from a densely packed homogeneous and isotropic initial state, we apply pure shear deformation to the system. For a sufficiently small strain, the response of the system is linear and elastic like; when the strain is large enough, the plasticity of the system gradually develops and eventually the shear bands are fully developed. In this study, we are particularly interested in how to relate the local plastic deformation to the macroscopic response of the system and also in the development of the shear bands.

  6. Constitutive Behavior and Processing Map of T2 Pure Copper Deformed from 293 to 1073 K

    Science.gov (United States)

    Liu, Ying; Xiong, Wei; Yang, Qing; Zeng, Ji-Wei; Zhu, Wen; Sunkulp, Goel

    2018-02-01

    The deformation behavior of T2 pure copper compressed from 293 to 1073 K with strain rates from 0.01 to 10 s-1 was investigated. The constitutive equations were established by the Arrhenius constitutive model, which can be expressed as a piecewise function of temperature with two sections, in the ranges 293-723 K and 723-1073 K. The processing maps were established according to the dynamic material model for strains of 0.2, 0.4, 0.6, and 0.8, and the optimal processing parameters of T2 copper were determined accordingly. In order to obtain a better understanding of the deformation behavior, the microstructures of the compressed samples were studied by electron back-scattered diffraction. The grains tend to be more refined with decreases in temperature and increases in strain rate.

  7. Microfluidic assay of the deformability of primitive erythroblasts.

    Science.gov (United States)

    Zhou, Sitong; Huang, Yu-Shan; Kingsley, Paul D; Cyr, Kathryn H; Palis, James; Wan, Jiandi

    2017-09-01

    Primitive erythroblasts (precursors of red blood cells) enter vascular circulation during the embryonic period and mature while circulating. As a result, primitive erythroblasts constantly experience significant hemodynamic shear stress. Shear-induced deformation of primitive erythroblasts however, is poorly studied. In this work, we examined the deformability of primitive erythroblasts at physiologically relevant flow conditions in microfluidic channels and identified the regulatory roles of the maturation stage of primitive erythroblasts and cytoskeletal protein 4.1 R in shear-induced cell deformation. The results showed that the maturation stage affected the deformability of primitive erythroblasts significantly and that primitive erythroblasts at later maturational stages exhibited a better deformability due to a matured cytoskeletal structure in the cell membrane.

  8. Consideration of shear deformation in the analysis of unsymmetrical bending of moderately thick shells of revolution

    International Nuclear Information System (INIS)

    Das, M.L.

    1975-01-01

    A shear deformation theory is derived using a variational technique similar to Reissner-Naghdi linear theory neglecting the transverse normal stress. This theory is used to analyze shells of revolution subjected to arbitrary load distribution. The shell material is assumed to have two-dimensional elastic isotropy in directions tangent to its surface. Young's modulus may vary through the thickness and in the meridional direction. Poisson's ratio is assumed to be constant. Arbitrary temperature can be applied to the shell. Change of Young's modulus in the circumferential direction due to high temperature variation is neglected in the theory. All pertinent variables are expanded in Fourier series in the circumferential direction to get 5 ordinary differential equations, decoupled in individual Fourier components of independent displacements. Finite difference numerical technique is used to solve these differential equations. For handling these numerical quantities in orderly fashion, matrix algebra is utilized. Budiansky and Radkowski have applied a similar technique to solve the equations based on the classical shell theory of Sanders. Two independent computer programs are developed, one based on the shear deformation theory derived here and the other on the work of Budiansky and Radkowski. Two different circular cylindrical shells are utilized to explore the subject of this paper. They have the same geometric dimensions but different boundary conditions and one is fixed at both ends while the other has one end free

  9. Shear Rheology of a Suspension of Deformable Solids in Viscoelastic Fluid via Immersed Boundary Techniques

    Science.gov (United States)

    Guido, Christopher; Shaqfeh, Eric

    2017-11-01

    The simulation of fluids with suspended deformable solids is important to the design of microfluidic devices with soft particles and the examination of blood flow in complex channels. The fluids in these applications are often viscoelastic, motivating the development of a high-fidelity simulation tool with general constitutive model implementations for both the viscoelastic fluid and deformable solid. The Immersed Finite Element Method (IFEM) presented by Zhang et al. (2007) allows for distinct fluid and solid grids to be utilized reducing the need for costly re-meshing when particles translate. We discuss a modified version of the IFEM that allows for the simulation of deformable particles in viscoelastic flows. This simulation tool is validated for simple Newtonian shear flows with elastic particles that obey a Neo-Hookean Law. The tool is used to further explore the rheology of a dilute suspension of Neo-Hookean particles in a Giesekus fluid. The results show that dilute suspensions of soft particles have viscosities that decrease as the Capillary number becomes higher in both the case of a Newtonian and viscoelastic fluid. A discussion of multiple particle results will be included. NSF CBET-1066263 and 1066334.

  10. Effect of ac electric field on the dynamics of a vesicle under shear flow in the small deformation regime

    Science.gov (United States)

    Sinha, Kumari Priti; Thaokar, Rochish M.

    2018-03-01

    Vesicles or biological cells under simultaneous shear and electric field can be encountered in dielectrophoretic devices or designs used for continuous flow electrofusion or electroporation. In this work, the dynamics of a vesicle subjected to simultaneous shear and uniform alternating current (ac) electric field is investigated in the small deformation limit. The coupled equations for vesicle orientation and shape evolution are derived theoretically, and the resulting nonlinear equations are handled numerically to generate relevant phase diagrams that demonstrate the effect of electrical parameters on the different dynamical regimes such as tank treading (TT), vacillating breathing (VB) [called trembling (TR) in this work], and tumbling (TU). It is found that while the electric Mason number (Mn), which represents the relative strength of the electrical forces to the shear forces, promotes the TT regime, the response itself is found to be sensitive to the applied frequency as well as the conductivity ratio. While higher outer conductivity promotes orientation along the flow axis, orientation along the electric field is favored when the inner conductivity is higher. Similarly a switch of orientation from the direction of the electric field to the direction of flow is possible by a mere change of frequency when the outer conductivity is higher. Interestingly, in some cases, a coupling between electric field-induced deformation and shear can result in the system admitting an intermediate TU regime while attaining the TT regime at high Mn. The results could enable designing better dielectrophoretic devices wherein the residence time as well as the dynamical states of the vesicular suspension can be controlled as per the application.

  11. Joint model to simulate inelastic shear behavior of poorly detailed exterior and interior beam-column connections reinforced with deformed bars under seismic excitations

    International Nuclear Information System (INIS)

    Sharma, Akanshu; Reddy, G.R.; Vaze, K.K.; Ghosh, A.K.; Kushwaha, H.S.; Eligehausen, Rolf

    2009-12-01

    A model for predicting the nonlinear shear behaviour of reinforced concrete beam column joints based on principal stresses reaching limits is proposed. The joint model proposes shear springs for the column region and rotational spring for the beam region of the joint. This is based on the actual displacement behaviour of the shear buildings. The spring characteristics are calculated based on well-known principal of mechanics using the principal stresses as the failure criteria. The model reasonably accurately predicts the shear behaviour of the joint and also can consider the effect of axial loads on the column. The model does not need any special element or special program for implementation and can be used for nonlinear static pushover analysis of RC framed structures giving due consideration to joint deformations. The model is therefore extremely useful for practical displacement based analysis of old RC buildings where the joints were not designed and detailed as per current codal requirements, invariably making them the weakest link in the structure. The background theory, assumptions followed and the complete formulations for generating the joint characteristics are given in this report. The model is validated with experimental results of tests on exterior and interior beam-column connections given in the published literature having substandard detailing using deformed bars. (author)

  12. Healing of shear strength and its time dependency in a single rock fracture

    International Nuclear Information System (INIS)

    Kawaguchi, Yuta; Nakashima, Shinichiro; Yasuhara, Hideaki; Kishida, Kiyoshi

    2011-01-01

    Evolution of the long-term mechanical, hydraulic, and transport characteristics of rock fractures should be, in advance, predicted in considering an issue on entombment of energy byproducts of high level radioactive wastes. Under stressed and temperature conditions, those behaviors of the rock fractures of interest may be evolved in time and space likely due to the change in topographical aperture distributions. This irreversible process may be induced by pure mechanical and/or chemo-mechanical creeps such as water-rock reactions like stress corrosion and pressure solution, and chemical effects including mineral dissolution and reprecipitation in the free-walls of fractures. Specifically, the chemo-mechanical processes active at the contacting asperities within rock fractures may exert a significant influence on the mechanical, hydraulic, and transport behaviors throughout a long period, and thus, should be vigorously examined theoretically and experimentally. This paper presents the slide-hold-slide shear test results for fully saturated, single-jointed mortar specimens so as to investigate the effects of load holding on mechanical properties of rock joints. From the test results, it was confirmed that shear strength increased for mortar specimens in both short and long time holding cases. However, the evolution of shear strength recovery in two cases is different. This is because a dominant factor of shear strength recovery during the short time holding may be attributed to a pure mechanical process like creep deformation at contacting asperities, while the one during long time holding is affected by both mechanical and chemical processes like pressure solution. Moreover, to reproduce the shear strength recovery during short time holding we develop a direct shear model by including temporal variation of dilation during holding. The model predictions are in relatively good agreement with the test measurements. (author)

  13. Microstructure and mechanical properties of commercially pure aluminum processed by accumulative back extrusion

    International Nuclear Information System (INIS)

    Haghdadi, N.; Zarei-Hanzaki, A.; Abou-Ras, D.

    2013-01-01

    Accumulative back extrusion (ABE), as a new severe plastic deformation (SPD) method, was applied on a commercially pure aluminum, resulting in an ultrafine microstructure. The grain refinement was attributed to the shearing and/or to the mechanical partitioning of the initial coarse grains as well as different dynamic recrystallization mechanisms (i.e., discontinues and continues ones). The effects of imposing several passes along with the strain reversal path method during consecutive ABE passes were discussed. Mechanical characterization revealed that the yield and ultimate strength of pure Al were significantly increased through applying ABE. This was related to grain boundary and dislocation strengthening, as well as to Orowan dislocation bowing mechanisms. The elongation, however, was deteriorated after ABE processing. This was interpreted through the lack of ability of the material to accommodate the ABE-induced strain, inhomogeneous distribution of strain across the ABE-processed workpieces, and the reduced work hardening capacity of the fine-grained aluminum. The formability index and static toughness were also considered to verify the overall mechanical performance of the ABE-processed pure Al

  14. Deformation Partitioning: The Missing Link Between Outcrop-Scale Observations And Orogen-Scale Processes

    Science.gov (United States)

    Attia, S.; Paterson, S. R.; Jiang, D.; Miller, R. B.

    2017-12-01

    Structural studies of orogenic deformation fields are mostly based on small-scale structures ubiquitous in field exposures, hand samples, and under microscopes. Relating deformation histories derived from such structures to changing lithospheric-scale deformation and boundary conditions is not trivial due to vast scale separation (10-6 107 m) between characteristic lengths of small-scale structures and lithospheric plates. Rheological heterogeneity over the range of orogenic scales will lead to deformation partitioning throughout intervening scales of structural development. Spectacular examples of structures documenting deformation partitioning are widespread within hot (i.e., magma-rich) orogens such as the well-studied central Sierra Nevada and Cascades core of western North America: (1) deformation partitioned into localized, narrow, triclinic shear zones separated by broad domains of distributed pure shear at micro- to 10 km scales; (2) deformation partitioned between plutons and surrounding metamorphic host rocks as shown by pluton-wide magmatic fabrics consistently oriented differently than coeval host rock fabrics; (3) partitioning recorded by different fabric intensities, styles, and orientations established from meter-scale grid mapping to 100 km scale domainal analyses; and (4) variations in the causes of strain and kinematics within fold-dominated domains. These complex, partitioned histories require synthesized mapping, geochronology, and structural data at all scales to evaluate partitioning and in the absence of correct scaling can lead to incorrect interpretations of histories. Forward modeling capable of addressing deformation partitioning in materials containing multiple scales of rheologically heterogeneous elements of varying characteristic lengths provides the ability to upscale the large synthesized datasets described above to plate-scale tectonic processes and boundary conditions. By comparing modeling predictions from the recently developed

  15. Shear deformation and relaxed lattice constant of (Ga,Mn)As layers on GaAs(113)A

    Energy Technology Data Exchange (ETDEWEB)

    Dreher, Lukas; Daeubler, Joachim; Glunk, Michael; Schoch, Wladimir; Limmer, Wolfgang; Sauer, Rolf [Institut fuer Halbleiterphysik, Universitaet Ulm, D-89069 Ulm (Germany)

    2008-07-01

    The shear deformation and the relaxed lattice constant of compressively strained (Ga,Mn)As layers with Mn concentrations of up to 5%, pseudomorphically grown on GaAs(113)A and GaAs(001) substrates by low-temperature molecular-beam epitaxy, have been studied by high resolution X-ray diffraction (HRXRD) measurements. Rocking curves reveal a triclinic distortion of the (113)A layers with a shear direction towards the [001] crystallographic axis, whereas the (001) layers are tetragonally distorted along [001]. The relaxed lattice constants were derived from {omega}-2{theta} scans for the symmetric (113) and (004) Bragg reflections, taking the elastic anisotropy of the cubic system into account. The increase of the lattice constant with Mn content has been found to be smaller for the (113)A layers than for the (001) layers, presumably due to the enhanced amount of excess As in the (113)A layers.

  16. Quantifying the Variation in Shear Zone Character with Depth: a Case Study from the Simplon Shear Zone, Central Alps

    Science.gov (United States)

    Cawood, T. K.; Platt, J. P.

    2017-12-01

    A widely-accepted model for the rheology of crustal-scale shear zones states that they comprise distributed strain at depth, in wide, high-temperature shear zones, which narrow to more localized, high-strain zones at lower temperature and shallower crustal levels. We test and quantify this model by investigating how the width, stress, temperature and deformation mechanisms change with depth in the Simplon Shear Zone (SSZ). The SSZ marks a major tectonic boundary in the central Alps, where normal-sense motion and rapid exhumation of the footwall have preserved evidence of older, deeper deformation in rocks progressively further into the currently-exposed footwall. As such, microstructures further from the brittle fault (which represents the most localized, most recently-active part of the SSZ) represent earlier, higher- temperature deformation from deeper crustal levels, while rocks closer to the fault have been overprinted by successively later, cooler deformation at shallower depths. This study uses field mapping and microstructural studies to identify zones representing deformation at various crustal levels, and characterize each in terms of zone width (representing width of the shear zone at that time and depth) and dominant deformation mechanism. In addition, quartz- (by Electron Backscatter Diffraction, EBSD) and feldspar grain size (measured optically) piezometry are used to calculate the flow stress for each zone, while the Ti-in-quartz thermometer (TitaniQ) is used to calculate the corresponding temperature of deformation. We document the presence of a broad zone in which quartz is recrystallized by the Grain Boundary Migration (GBM) mechanism and feldspar by Subgrain Rotation (SGR), which represents the broad, deep zone of deformation occurring at relatively high temperatures and low stresses. In map view, this transitions to successively narrower zones, respectively characterized by quartz SGR and feldspar Bulge Nucleation (BLG); quartz BLG and brittle

  17. Predicting Shear Transformation Events in Metallic Glasses

    Science.gov (United States)

    Xu, Bin; Falk, Michael L.; Li, J. F.; Kong, L. T.

    2018-03-01

    Shear transformation is the elementary process for plastic deformation of metallic glasses, the prediction of the occurrence of the shear transformation events is therefore of vital importance to understand the mechanical behavior of metallic glasses. In this Letter, from the view of the potential energy landscape, we find that the protocol-dependent behavior of shear transformation is governed by the stress gradient along its minimum energy path and we propose a framework as well as an atomistic approach to predict the triggering strains, locations, and structural transformations of the shear transformation events under different shear protocols in metallic glasses. Verification with a model Cu64 Zr36 metallic glass reveals that the prediction agrees well with athermal quasistatic shear simulations. The proposed framework is believed to provide an important tool for developing a quantitative understanding of the deformation processes that control mechanical behavior of metallic glasses.

  18. Experimental report of precast prestressed concrete shear wall. Precast prestressed concrete taishinheki no jikken hokoku

    Energy Technology Data Exchange (ETDEWEB)

    Takada, K.; Komura, M.; Sakata, H.; Senoo, M. (Fudo Building Research Co. Ltd., Tokyo (Japan))

    1993-07-30

    The present report outlines the multi-story precast prestressed concrete earthquake-proof wall (PC shear wall system). The PC shear wall is a precast wall which internally contains the columns and beams as a unit. Therefore, the present system integrates the walls, columns and beams without beam-framing installation for the intermediate stories. It can simplify the concreting in site and ease the construction of building. For the system development, experiment was made on the deformation, sliding, yield strength and destruction state of the shear wall. Used were four types of test unit which are different in both reinforcement and connection methods. The test force was given by a hydraulically drawing jack. In the experiment, the four types were compared in destruction state, relation between load and deformation, yield strength, and strain of main column reinforcing bars and wall connection reinforcing bars. PC shear wall system-based design was studied from the experimental result. The shear wall in which there occurred both bending and shearing deformations was modeled by changing to a brace unit. Divided into bending deformation and shearing deformation, the deformation was calculated, which concluded that the shearing deformation dominates in the present system. 15 figs., 4 tabs.

  19. Deformation, crystal preferred orientations, and seismic anisotropy in the Earth's D″ layer

    Science.gov (United States)

    Tommasi, Andréa; Goryaeva, Alexandra; Carrez, Philippe; Cordier, Patrick; Mainprice, David

    2018-06-01

    We use a forward multiscale model that couples atomistic modeling of intracrystalline plasticity mechanisms (dislocation glide ± twinning) in MgSiO3 post-perovskite (PPv) and periclase (MgO) at lower mantle pressures and temperatures to polycrystal plasticity simulations to predict crystal preferred orientations (CPO) development and seismic anisotropy in D″. We model the CPO evolution in aggregates of 70% PPv and 30% MgO submitted to simple shear, axial shortening, and along corner-flow streamlines, which simulate changes in flow orientation similar to those expected at the transition between a downwelling and flow parallel to the core-mantle boundary (CMB) within D″ or between CMB-parallel flow and upwelling at the borders of the large low shear wave velocity provinces (LLSVP) in the lowermost mantle. Axial shortening results in alignment of PPv [010] axes with the shortening direction. Simple shear produces PPv CPO with a monoclinic symmetry that rapidly rotates towards parallelism between the dominant [100](010) slip system and the macroscopic shear. These predictions differ from MgSiO3 post-perovskite textures formed in diamond-anvil cell experiments, but agree with those obtained in simple shear and compression experiments using CaIrO3 post-perovskite. Development of CPO in PPv and MgO results in seismic anisotropy in D″. For shear parallel to the CMB, at low strain, the inclination of ScS, Sdiff, and SKKS fast polarizations and delay times vary depending on the propagation direction. At moderate and high shear strains, all S-waves are polarized nearly horizontally. Downwelling flow produces Sdiff, ScS, and SKKS fast polarization directions and birefringence that vary gradually as a function of the back-azimuth from nearly parallel to inclined by up to 70° to CMB and from null to ∼5%. Change in the flow to shear parallel to the CMB results in dispersion of the CPO, weakening of the anisotropy, and strong azimuthal variation of the S-wave splitting

  20. Flow behavior at different shear rates for dry powders

    NARCIS (Netherlands)

    Singh, A.; Singh, A.; Luding, Stefan; Nürnberg Messe GmbH,

    2010-01-01

    Using Discrete Element Simulations (DEM), an effort is made to study the so called “Split bottom ring shear cell” where a slow, quasi-static deformation leads to wide shear bands. Density, velocity and deformation gradients as well as structure and stress tensors, can be computed by a single

  1. Shear-free flows of a perfect fluid

    International Nuclear Information System (INIS)

    Barnes, A.

    1984-01-01

    Previous results on shear-free fluid flows are reviewed. Attention is then restricted to flows which satisfy the additional condition that the Weyl tensor is purely electric: Hsub(ac)=*Csub(abcd)usup(b)usup(d)=O where usup(a) is the velocity vector of the fluid. The analysis is also applied to Einstein spaces admitting a shear-free timelike vector field usup(a). If the Weyl tensor is purely electric or purely magnetic, it is shown that usup(a) is necessarily irrotational unless the spacetime has constant curvature. (author)

  2. Microstructural characteristics of adiabatic shear localization in a metastable beta titanium alloy deformed at high strain rate and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Hongyi, E-mail: h.zhan@uq.edu.au [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Zeng, Weidong [State Key Laboratory of Solidification Processing, School of Materials, Northwestern Polytechnical University, Xi' an 710072 (China); Wang, Gui [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Defence Material Technology Centre, Level 2, 24 Wakefield St, Hawthorn, VIC 3122 (Australia); Kent, Damon [School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4575 (Australia); Dargusch, Matthew [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Defence Material Technology Centre, Level 2, 24 Wakefield St, Hawthorn, VIC 3122 (Australia)

    2015-04-15

    The microstructural evolution and grain refinement within adiabatic shear bands in the Ti6554 alloy deformed at high strain rates and elevated temperatures have been characterized using transmission electron microscopy. No stress drops were observed in the corresponding stress–strain curve, indicating that the initiation of adiabatic shear bands does not lead to the loss of load capacity for the Ti6554 alloy. The outer region of the shear bands mainly consists of cell structures bounded by dislocation clusters. Equiaxed subgrains in the core area of the shear band can be evolved from the subdivision of cell structures or reconstruction and transverse segmentation of dislocation clusters. It is proposed that dislocation activity dominates the grain refinement process. The rotational recrystallization mechanism may operate as the kinetic requirements for it are fulfilled. The coexistence of different substructures across the shear bands implies that the microstructural evolution inside the shear bands is not homogeneous and different grain refinement mechanisms may operate simultaneously to refine the structure. - Graphical abstract: Display Omitted - Highlights: • The microstructure within the adiabatic shear band was characterized by TEM. • No stress drops were observed in the corresponding stress–strain curve. • Dislocation activity dominated the grain refinement process. • The kinetic requirements for rotational recrystallization mechanism were fulfilled. • Different grain refinement mechanisms operated simultaneously to refine the structure.

  3. Geological and structural characterization and microtectonic study of shear zones Colonia

    International Nuclear Information System (INIS)

    Gianotti, V.; Oyhantcabal, P.; Spoturno, J.; Wemmer, K.

    2010-01-01

    The “Colonia Shear Zone System”, characterized by a transcurrent system of predominant sinistral shear sense, is defined by two approximately parallel shear zones, denominated Isla San Gabriel-Juan Lacaze Shear Zone (ISG-JL S.Z.) and Islas de Hornos-Arroyo Riachuelo Shear Zone (IH-AºR S. Z.). Represented by rocks with ductile and brittle deformation, are defined as a strike slip fault system, with dominant subvertical foliation orientations: 090-100º (dip-direction 190º) and 090-100º (dip-direction 005º). The K/Ar geochronology realized, considering the estimates temperatures conditions for shear zones (450-550º), indicate that 1780-1812 Ma should be considered a cooling age and therefore a minimum deformation age. The observed microstructures suggest deformation conditions with temperatures between 450-550º overprinted by cataclastic flow structures (reactivation at lower temperature)

  4. Coastal upwelling south of Madagascar: Temporal and spatial variability

    Science.gov (United States)

    Ramanantsoa, Juliano D.; Krug, M.; Penven, P.; Rouault, M.; Gula, J.

    2018-02-01

    Madagascar's southern coastal marine zone is a region of high biological productivity which supports a wide range of marine ecosystems, including fisheries. This high biological productivity is attributed to coastal upwelling. This paper provides new insights on the structure, variability and drivers of the coastal upwelling south of Madagascar. Satellite remote sensing is used to characterize the spatial extent and strength of the coastal upwelling. A front detection algorithm is applied to thirteen years of Multi-scale Ultra-high Resolution (MUR) Sea Surface Temperatures (SST) and an upwelling index is calculated. The influence of winds and ocean currents as drivers of the upwelling is investigated using satellite, in-situ observations, and a numerical model. Results reveal the presence of two well-defined upwelling cells. The first cell (Core 1) is located in the southeastern corner of Madagascar, and the second cell (Core 2) is west of the southern tip of Madagascar. These two cores are characterized by different seasonal variability, different intensities, different upwelled water mass origins, and distinct forcing mechanisms. Core 1 is associated with a dynamical upwelling forced by the detachment of the East Madagascar Current (EMC), which is reinforced by upwelling favourable winds. Core 2 appears to be primarily forced by upwelling favourable winds, but is also influenced by a poleward eastern boundary flow coming from the Mozambique Channel. The intrusion of Mozambique Channel warm waters could result in an asynchronicity in seasonality between upwelling surface signature and upwelling favourables winds.

  5. Dynamic deformation and failure characteristic of rock foundation by means of effect of cyclic shear loading

    International Nuclear Information System (INIS)

    Fujiwara, Yoshikazu; Hibino, Satoshi; Kanagawa, Tadashi; Komada, Hiroya; Nakagawa, Kameichiro

    1984-01-01

    The main structures of nuclear power plants are built on hard and soft rocks. The rock-dynamic properties used for investigating the stability of the structures have been determined so far by laboratory tests for soft rocks. In hard rocks, however, joints and cracks exist, and the test including these effects is not able to be performed in laboratories at present. Therefore, a dynamic repeating shearing test equipment to be used under the condition including the joints and cracks of actual ground has been made for a base rock of tuff breccia. In this paper, the test results are reported as follows. The geological features of the testing site and the arrangement of tested rocks, the preparation for tests, test equipment, loading method, measuring method, analysis, and the result and the examination. The results of dynamic deformation and failure characteristics were as follows: (1) the dynamic shear-elasticity-modulus Gd of the base rock showed greater values as the normal stress increased, while Gd decreased and showed the strain dependence as the dynamic shear strain amplitude γ increased; (2) the relationship between Gd and γ was well represented with the equation proposed by Hardin-Drnevich; (3) damping ratio increased as γ increased, and decreased as normal stress increased; (4) When a specimen was about to break, γ suddenly increased, and the dynamic shear strain amplitude at yield point was in the range of approximately (3.4 to 4.1) x 10 -3 . (Wakatsuki, Y.)

  6. Foam rheology at large deformation

    Science.gov (United States)

    Géminard, J.-C.; Pastenes, J. C.; Melo, F.

    2018-04-01

    Large deformations are prone to cause irreversible changes in materials structure, generally leading to either material hardening or softening. Aqueous foam is a metastable disordered structure of densely packed gas bubbles. We report on the mechanical response of a foam layer subjected to quasistatic periodic shear at large amplitude. We observe that, upon increasing shear, the shear stress follows a universal curve that is nearly exponential and tends to an asymptotic stress value interpreted as the critical yield stress at which the foam structure is completely remodeled. Relevant trends of the foam mechanical response to cycling are mathematically reproduced through a simple law accounting for the amount of plastic deformation upon increasing stress. This view provides a natural interpretation to stress hardening in foams, demonstrating that plastic effects are present in this material even for minute deformation.

  7. Study of damage of graphite/epoxy composites submitted to repeated quasi-static shear loadings

    International Nuclear Information System (INIS)

    Khadhraoui-Lattreche, Malika

    1984-01-01

    Quasi static loading tests on composite materials with organic matrix allow the behaviour of the materials under repeated loadings to be studied while avoiding viscoelastic effects. In this research thesis, the author reports the study of one-directional composite samples submitted to static pure shear loadings which represent the most severe stress state for this type of material. The material behaviour has been determined by application of loads greater than the yield strength, and of zero torque unloads. This allowed cumulative residual deformations to be monitored, and the increasing evolution of this parameter to be studied with respect to the number of applied cycles. The author deduces from these results a characteristic law for the material which introduces a decoupling between the stress and the cumulative residual deformation. Thus, a method of prediction of cumulative residual deformations is developed. Besides, a brief application to another material seems to confirm this type of law, and suggests that its generalisation should be studied [fr

  8. Spatio-Temporal Variation in Effects of Upwelling on the Fatty Acid Composition of Benthic Filter Feeders in the Southern Benguela Ecosystem: Not All Upwelling Is Equal.

    Directory of Open Access Journals (Sweden)

    Eleonora Puccinelli

    Full Text Available Variability in mesoscale nearshore oceanographic conditions plays an important role in the distribution of primary production and food availability for intertidal consumers. Advection of nutrient rich waters by upwelling usually allows the proliferation of diatoms, later replaced by dinoflagellates. We examined upwelling effects on the fatty acid (FA signature of a benthic intertidal filter feeder to identify its response to pulsed variability in food availability. The study took place in two contrasting seasons and at two upwelling and two non-upwelling sites interspersed within the southern Benguela upwelling system of South Africa. We investigated the FA composition of the adductor muscles and gonads of the mussel Mytilus galloprovincialis to assess how FA are apportioned to the different tissues and whether this changes between upwelling and non-upwelling conditions. In situ temperature loggers used to identify upwelling conditions at the four sites indicated that such events occurred only at the upwelling centres and only in summer. Tissues differed strongly, with gonads presenting a higher proportion of essential FAs. This could reflect the faster turnover rate of gonad tissue or preferential retention of specific FA for reproductive purposes. FA composition did not vary as a direct function of upwelling, but there were strong dissimilarities among sites. Upwelling influenced mussel diets at one upwelling site while at the other, the expected signature of upwelling was displaced downstream of the core of upwelling. Condition Index (CI and Gonad Index (GI differed among sites and were not influenced by upwelling, with GI being comparable among sites. In addition, FA proportions were consistent among sites, indicating similar food quality and quantity over time and under upwelling and non-upwelling conditions. This suggests that the influence of upwelling on the west coast of South Africa is pervasive and diffuse, rather than discrete; while

  9. On the formation of an ultrafine-duplex structure facilitated by severe shear deformation in a Ti–20Mo β-type titanium alloy

    International Nuclear Information System (INIS)

    Xu, W.; Wu, X.; Stoica, M.; Calin, M.; Kühn, U.; Eckert, J.; Xia, K.

    2012-01-01

    Severe plastic deformation in the form of equal channel angular pressing (ECAP) has been adopted to introduce severe shear strain into a Ti–20 wt.% Mo β-type titanium alloy to elucidate the aging response of the severely deformed β matrix. Upon isothermal aging in the (α + β) phase field, selective heterogeneous α nucleation and growth resulted in a mixed precipitation microstructure. An ultrafine-duplex (α + β) structure composed of equiaxed α precipitates formed inside the shear bands (SBs) created during ECAP, whereas acicular α precipitates were favoured outside the SBs. This distinct precipitation structure has been correlated to the structural characteristics of the SBs: high disorder with dislocation cells characteristic of low-angle boundaries and enhanced atomic diffusivity. The highly disordered structure results in a weak variant selection and thereby promotes randomly orientated α precipitation without obeying the Burgers orientation relationship. Furthermore, the enhanced atomic diffusivity facilitates rapid growth of the α nuclei to form the ultrafine-duplex (α + β) structure.

  10. Post- and interseismic deformation due to both localized and distributed creep at depth (Invited)

    Science.gov (United States)

    Hetland, E. A.; Zhang, G.; Hines, T.

    2013-12-01

    deformation, which is consistent with very large uniform viscosities in the ductile lithosphere. On the other hand, the vertical postseismic surface deformation is highly sensitive to the depth-dependent distribution of viscosities, regardless of whether the model contains purely distributed creep or also includes a component of localized creep. Hence, vertical postseismic deformation can discriminate vertical contrasts in viscosity, but is not a good discriminant of localized vs. distributed creep at depth. Models that contain components of both localized and distributed creep predict transient postseismic deformation, characterized by a fast relaxation phase followed by a slower relaxation phase, even when the model only contains steady Maxwell viscosities. This transience is equivalent to that predicted in models that approximate the ductile lithosphere with transient viscoelasticity, and we discuss the implication on the lithosphere rheology inferred from deformation following the 1997 Manyi, China, earthquake. Finally, we address the mechanism in which shear zones might develop under strike-slip faults and the implication of power-law creep rheologies.

  11. Shear localization and microstructure in coarse grained beta titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingfeng, E-mail: biw009@ucsd.edu [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Key Lab of Nonferrous Materials, Ministry of Education, Central South University, Changsha, Hunan (China); Wang, Xiaoyan [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Li, Zezhou [Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Ma, Rui [School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Zhao, Shiteng [Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Xie, Fangyu [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Zhang, Xiaoyong [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China)

    2016-01-15

    Adiabatic shear localization plays an important role in the deformation and failure of the coarse grained beta titanium alloy Ti-5 Al-5 Mo-5 V-1 Cr-1 Fe with grain size about 1 mm at high strain rate deformation. Hat shaped specimens with different nominal shear strains are used to induce the formation of shear bands under the controlled shock-loading experiments. The true stress in the specimens can reach about 1040 MPa where the strain is about 1.83. The whole shear localization process lasts about 35 μs. The microstructures within the shear band are investigated by optical microscopy, scanning electron microscopy / electron backscatter diffraction, and transmission electron microscopy. The results show that the width of the shear bands decreases with increasing nominal shear strain, and the grains in the transition region near the shear band are elongated along the shear band, and the core of the shear band consists of the ultrafine deformed grains with width of 0.1 μm and heavy dislocations. With the aims of accommodating the imposed shear strain and maintaining neighboring grain compatibility, the grain subdivision continues to take place within the band. A fiber texture is formed in the core of the shear band. The calculated temperature rise in the shear band can reach about 722 K. Dynamic recovery is responsible for the formation of the microstructure in coarse grained beta titanium alloy.

  12. Relative viscosity of emulsions in simple shear flow: Temperature, shear rate, and interfacial tension dependence

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Se Bin; Lee, Joon Sang [Dept. of Mechanical Engineering, Yonsei Unversity, Seoul (Korea, Republic of)

    2015-08-15

    We simulate an emulsion system under simple shear rates to analyze its rheological characteristics using the lattice Boltzmann method (LBM). We calculate the relative viscosity of an emulsion under a simple shear flow along with changes in temperature, shear rate, and surfactant concentration. The relative viscosity of emulsions decreased with an increase in temperature. We observed the shear-thinning phenomena, which is responsible for the inverse proportion between the shear rate and viscosity. An increase in the interfacial tension caused a decrease in the relative viscosity of the decane-in-water emulsion because the increased deformation caused by the decreased interfacial tension significantly influenced the wall shear stress.

  13. Experimental study on the adiabatic shear bands

    International Nuclear Information System (INIS)

    Affouard, J.

    1984-07-01

    Four martensitic steels (Z50CDV5 steel, 28CND8 steel, 35NCDV16 steel and 4340 steel) with different hardness between 190 and 600 Hsub(B) (Brinell hardness), have been studied by means of dynamic compressive tests on split Hopkinson pressure bar. Microscopic observations show that the fracture are associated to the development of adiabatic shear bands (except 4340 steel with 190 Hsub(B) hardness). By means of tests for which the deformation is stopped at predetermined levels, the measurement of shear and hardness inside the band and the matrix indicates the chronology of this phenomenon: first the localization of shear, followed by the formation of adiabatic shear band and ultimatly crack initiation and propagation. These results correlated with few simulations by finite elements have permitted to suggest two mecanisms of deformation leading to the formation of adiabatic shear bands in this specific test [fr

  14. A Bed-Deformation Experiment Beneath Engabreen, Norway

    Science.gov (United States)

    Iverson, N. R.; Hooyer, T. S.; Fischer, U. H.; Cohen, D.; Jackson, M.; Moore, P. L.; Lappegard, G.; Kohler, J.

    2001-12-01

    Although deformation of sediment beneath ice masses may contribute to their motion and may sometimes enable fast glacier flow, both the kinematics and mechanics of deformation are controversial. This controversy stems, in part, from subglacial measurements that are difficult to interpret. Measurements have been made either beneath ice margins or remotely through boreholes with interpretive limitations caused by uncertain instrument position and performance, uncertain sediment thickness and bed geometry, and unknown disturbance of the bed and stress state by drilling. We have used a different approach made possible by the Svartisen Subglacial Laboratory, which enables human access to the bed of Engabreen, Norway, beneath 230 m of temperate ice. A trough (2 m x 1.5 m x 0.4 m deep) was blasted in the rock bed and filled with sediment (75 percent sand and gravel, 20 percent silt, 5 percent clay). Instruments were placed in the sediment to record shear deformation (tiltmeters), dilation and contraction, total normal stress, and pore-water pressure. Pore pressure was manipulated by feeding water to the base of the sediment with a high-pressure pump, operated in a rock tunnel 4 m below the bed surface. After irregular deformation during closure of ice on the sediment, shear deformation and volume change stopped, and total normal stress became constant at 2.2 MPa. Subsequent pump tests, which lasted several hours, induced pore-water pressures greater than 70 percent of the total normal stress and resulted in shear deformation over most of the sediment thickness with attendant dilation. Ice separated from the sediment when effective normal stress was lowest, arresting shear deformation. Displacement profiles during pump tests were similar to those observed by Boulton and co-workers at Breidamerkurjökull, Iceland, with rates of shear strain increasing upward toward the glacier sole. Such deformation does not require viscous deformation resistance and is expected in a

  15. Oceanographic, Air-sea Interaction, and Environmental Aspects of Artificial Upwelling Produced by Wave-Inertia Pumps for Potential Hurricane Intensity Mitigation

    Science.gov (United States)

    Soloviev, A.; Dean, C.

    2017-12-01

    The artificial upwelling system consisting of the wave-inertia pumps driven by surface waves can produce flow of cold deep water to the surface. One of the recently proposed potential applications of the artificial upwelling system is the hurricane intensity mitigation. Even relatively small reduction of intensity may provide significant benefits. The ocean heat content (OHC) is the "fuel" for hurricanes. The OHC can be reduced by mixing of the surface layer with the cold water produced by wave-inertia pumps. Implementation of this system for hurricane mitigation has several oceanographic and air-sea interaction aspects. The cold water brought to the surface from a deeper layer has higher density than the surface water and, therefore, tends to sink back down. The mixing of the cold water produced by artificial upwelling depends on environmental conditions such as stratification, regional ocean circulation, and vertical shear. Another aspect is that as the sea surface temperature drops below the air temperature, the stable stratification develops in the atmospheric boundary layer. The stable atmospheric stratification suppresses sensible and latent heat air-sea fluxes and reduces the net longwave irradiance from the sea surface. As a result, the artificial upwelling may start increasing the OHC (though still reducing the sea surface temperature). In this work, the fate of the cold water in the stratified environment with vertical shear has been studied using computational fluid dynamics (CFD) tools. A 3D large eddy simulation model is initialized with observational temperature, salinity, and current velocity data from a sample location in the Straits of Florida. A periodic boundary condition is set along the direction of the current, which allows us to simulate infinite fetch. The model results indicate that the cold water brought to the sea surface by a wave-inertia pump forms a convective jet. This jet plunges into the upper ocean mixed layer and penetrates the

  16. Experimental Study on Shear Performance of Bolt in Roadway Supporting

    Directory of Open Access Journals (Sweden)

    D.J. Li

    2014-09-01

    Full Text Available The corner bolt is proved to be effective in the control of floor deformation of roadway, and the relevant studies on bolting mechanisms are of great significance in improving roadway stability. In this paper, two types of shear tests on six forms of bolts are performed by using self-designed shear test device, the electro-hydraulic servo triaxial testing system. The shear characteristics of different types of bolts are obtained. The results show that different bolt rods or different internal filling conditions result in large differences in shear resistance and different deformation adaptability. We find that the filling materials added can improve the shear performance of bolt significantly, and the bolt with steel not only can improve the strength of bolt body, but also has the bimodal characteristic that makes the bolt have the secondary bearing capacity and withstand larger deformation range during the process of shear, and shows a better support performance. Hoping to provide the experiment basis for support design and field application in the future.

  17. The transverse shear deformation behaviour of magneto-electro-elastic shell

    International Nuclear Information System (INIS)

    Albarody, Thar M. Badri; Al-Kayiem, Hussain H.; Faris, Waleed

    2016-01-01

    Compared to the large number of possible magneto-electro-elastic shell theories, very few exact solutions determining the in-plane stresses, electric displacements and magnetic inductions are possible. While, solving the magneto-electro-elastic shell equations in terms of thermo-magneto-electro-elastic generalized field functions on arbitrary domains and for general conditions exactly are not always possible. In the present work, a linear version of magneto-electro-elastic shell with simply supported boundary conditions, solved exactly, provided that the lamination scheme is cross-ply or anti-symmetric angle-ply laminates. The exact solution that introduced herein can measure the in-plane stresses, electric displacements and magnetic inductions. It also allow for an accurate and usually elegant and conclusive investigation of the various sensations in a shell structure. However, it is important for micro-electro-mechanical shell applications to have an approach available that gives the transverse shear deformation Behaviour for cases that cannot examine experimentally. An investigated examples were accompanied and noteworthy conclusions were drawn which highlight the issues of the implementation of the exact solution, implication of the effects of the material properties, lay-ups of the constituent layers, and shell parameters on the static Behaviour

  18. The transverse shear deformation behaviour of magneto-electro-elastic shell

    Energy Technology Data Exchange (ETDEWEB)

    Albarody, Thar M. Badri; Al-Kayiem, Hussain H. [UniversitiTeknologi PETRONAS, Perak (Malaysia); Faris, Waleed [International Islamic University Malaysia, Perak (Malaysia)

    2016-01-15

    Compared to the large number of possible magneto-electro-elastic shell theories, very few exact solutions determining the in-plane stresses, electric displacements and magnetic inductions are possible. While, solving the magneto-electro-elastic shell equations in terms of thermo-magneto-electro-elastic generalized field functions on arbitrary domains and for general conditions exactly are not always possible. In the present work, a linear version of magneto-electro-elastic shell with simply supported boundary conditions, solved exactly, provided that the lamination scheme is cross-ply or anti-symmetric angle-ply laminates. The exact solution that introduced herein can measure the in-plane stresses, electric displacements and magnetic inductions. It also allow for an accurate and usually elegant and conclusive investigation of the various sensations in a shell structure. However, it is important for micro-electro-mechanical shell applications to have an approach available that gives the transverse shear deformation Behaviour for cases that cannot examine experimentally. An investigated examples were accompanied and noteworthy conclusions were drawn which highlight the issues of the implementation of the exact solution, implication of the effects of the material properties, lay-ups of the constituent layers, and shell parameters on the static Behaviour.

  19. (abstract) Seasonal Variability in Coastal Upwelling: A Comparison of Four Coastal Upwelling Sites from Space

    Science.gov (United States)

    Carr, Mary-Elena

    1996-01-01

    Coastal upwelling of subsurface nutrient-rich water occurs along the eastern boundary of the ocean basins and leads to high primary production and fish catches. In this study satellite observations are used to compare the seasonal cycle in wind forcing and in the oceanic and biological response of the major coastal upwelling regions associated with the Canary, Benguela, California, and Humboldt Currents.

  20. Shear wave splitting and upper mantle deformation in French Polynesia: Evidence for small-scale heterogeneity related to the Society hotspot

    Science.gov (United States)

    Russo, R. M.; Okal, E. A.

    1998-07-01

    We determined shear wave splitting parameters at four island sites in French Polynesia: Tiputa (TPT) on Rangiroa in the Tuamotu archipelago; Papeete (PPT) on Tahiti in the Society Islands; Tubuai (TBI) in the Cook-Austral island chain; and Rikitea (RKT) on Mangareva in the Gambier Islands. We also examined splitting at Pitcairn (PTCN) on Pitcairn Island; because of the short time of operation of PTCN, our results there are preliminary. We find substantial differences in splitting, most likely caused by variable upper mantle deformation beneath the five stations. At TPT the fast split shear wave (ϕ) direction is N66°W±4°, parallel to the current Pacific-hotspots relative motion (APM) vector; the delay time between fast and slow waves is 1.3±0.2 s. At PPT, on Tahiti, we could detect no splitting despite many clear SKS observations. At TBI, on Tubuai we detected splitting with a delay time of 1.1±0.1 s and a ϕ direction midway between the local APM direction and the fossil spreading direction (N86°W±2°), as locally indicated by the nearby Austral Fracture Zone. At RKT in the Gambier Islands, ϕ trends N53°W±6°, 16° clockwise of the local APM azimuth, and delay time at RKT is 1.1±0.1 s. Results at PTCN include ϕ near N38°W±9° and a delay time of 1.1±0.3 s. These different results imply variable upper mantle deformation beneath the five sites. We interpret splitting at TPT and, possibly, RKT as indicative of asthenospheric flow or shear in the APM direction beneath the stations. At PPT, azimuthal isotropy indicates deformed upper mantle with a vertical symmetry axis, or absence of strong or consistently oriented mantle deformation fabric beneath Tahiti. Either effect could be related to recent hotspot magmatism on Tahiti. At TBI, splitting may be complicated by juxtaposition of different lithospheric thicknesses along the nearby Austral Fracture Zone, resulting in perturbation of asthenospheric flow. The absence of splitting related to fossil

  1. Lithospheric structure of northwest Africa: Insights into the tectonic history and influence of mantle flow on large-scale deformation

    Science.gov (United States)

    Miller, Meghan S.; Becker, Thorsten

    2014-05-01

    Northwest Africa is affected by late stage convergence of Africa with Eurasia, the Canary Island hotspot, and bounded by the Proterozoic-age West African craton. We present seismological evidence from receiver functions and shear-wave splitting along with geodynamic modeling to show how the interactions of these tectonic features resulted in dramatic deformation of the lithosphere. We interpret seismic discontinuities from the receiver functions and find evidence for localized, near vertical-offset deformation of both crust-mantle and lithosphere-asthenosphere interfaces at the flanks of the High Atlas. These offsets coincide with the locations of Jurassic-aged normal faults that have been reactivated during the Cenozoic, further suggesting that inherited, lithospheric-scale zones of weakness were involved in the formation of the Atlas. Another significant step in lithospheric thickness is inferred within the Middle Atlas. Its location corresponds to the source of regional Quaternary alkali volcanism, where the influx of melt induced by the shallow asthenosphere appears restricted to a lithospheric-scale fault on the northern side of the mountain belt. Inferred stretching axes from shear-wave splitting are aligned with the topographic grain in the High Atlas, suggesting along-strike asthenospheric shearing in a mantle channel guided by the lithospheric topography. Isostatic modeling based on our improved lithospheric constraints indicates that lithospheric thinning alone does not explain the anomalous Atlas topography. Instead, an mantle upwelling induced by a hot asthenospheric anomaly appears required, likely guided by the West African craton and perhaps sucked northward by subducted lithosphere beneath the Alboran. This dynamic support scenario for the Atlas also suggests that the timing of uplift is contemporaneous with the recent volcanismin the Middle Atlas.

  2. Iberian and California-Oregon Upwelling Systems: trends and status of two upwelling systems at the same latitude over the last four decades.

    Science.gov (United States)

    Barreiro, B.; Barton, E. D.

    2012-04-01

    The study of Eastern Boundary Upwelling Systems is of vital importance, given the interest in rational management of the fisheries resources. The high level of biogeochemical activity associated with the physical process of upwelling increases primary production and enriches the living resources of these areas. This presentation focuses on the variability of these physical processes on daily to interdecadal scales, in an investigation of the effects of climate change in the Iberian and California-Oregon Upwelling Systems. The Upwelling Index (UI) was analysed for the period 1967-2010 at 35.5-44.5°N in both areas. The two systems differ in that the magnitudes of upwelling intensity off California-Oregon are 3.3 higher than off Iberia but they show a similar latitudinal behaviour. The annual/interannual scale variability of upwelling can be represented by the recently introduced Cumulative Upwelling Index (CUI) based on summing the mean daily UI. The seasonal cycle results show the length of upwelling season increases southwards from 180 to 300 days and a net upwelling occurs only for latitudes lower than 43°N. On the interannual scales, the CUI showed a roughly linear change at high and low latitudes (R>0.9), with slopes between 250 and -130 m3 s-1 km-1 day-1 in Iberian and 620 and -290 m3 s-1 km-1 day-1 in California-Oregon. The central areas (40.5-42.5°N) are less stable and shifted between net upwelling and downwelling over extended periods. This information helps us contextualize the present state of the study area and interpreted ongoing intensive process-oriented studies within the longer term variability.

  3. Deformation bands in porous sandstones their microstructure and petrophysical properties

    Energy Technology Data Exchange (ETDEWEB)

    Torabi, Anita

    2007-12-15

    Deformation bands are commonly thin tabular zones of crushed or reorganized grains that form in highly porous rocks and sediments. Unlike a fault, typically the slip is negligible in deformation bands. In this dissertation the microstructure and petrophysical properties of deformation bands have been investigated through microscopy and numerical analysis of experimental and natural examples. The experimental work consists of a series of ring-shear experiments performed on porous sand at 5 and 20 MPa normal stresses and followed by microscopic examination of thin sections from the sheared samples. The results of the ring-shear experiments and comparison of them to natural deformation bands reveals that burial depth (level of normal stress in the experiments) and the amount of shear displacement during deformation are the two significant factors influencing the mode in which grains break and the type of shear zone that forms. Two end-member types of experimental shear zones were identified: (a) Shear zones with diffuse boundaries, which formed at low levels of normal stress and/or shear displacement; and (b) Shear zones with sharp boundaries, which formed at higher levels of normal stress and/or shear displacement. Our interpretation is that with increasing burial depth (approximately more than one kilometer, simulated in the experiments by higher levels of normal stress), the predominant mode of grain fracturing changes from flaking to splitting; which facilitates the formation of sharp-boundary shear zones. This change to grain splitting increases the power law dimension of the grain size distribution (D is about 1.5 in sharp boundary shear zones). Based on our observations, initial grain size has no influence in the deformation behavior of the sand at 5 MPa normal stresses. A new type of cataclastic deformation band is described through outcrop and microscopic studies; here termed a 'slipped deformation band'. Whereas previously reported cataclastic

  4. Three-dimensional shear transformation zone dynamics model for amorphous metals

    International Nuclear Information System (INIS)

    Homer, Eric R; Schuh, Christopher A

    2010-01-01

    A fully three-dimensional (3D) mesoscale modeling framework for the mechanical behavior of amorphous metals is proposed. The model considers the coarse-grained action of shear transformation zones (STZs) as the fundamental deformation event. The simulations are controlled through the kinetic Monte Carlo algorithm and the mechanical response of the system is captured through finite-element analysis, where STZs are mapped onto a 3D finite-element mesh and are allowed to shear in any direction in three dimensions. Implementation of the technique in uniaxial creep tests over a wide range of conditions validates the model's ability to capture the expected behaviors of an amorphous metal, including high temperature flow conforming to the expected constitutive law and low temperature localization in the form of a nascent shear band. The simulation results are combined to construct a deformation map that is comparable to experimental deformation maps. The flexibility of the modeling framework is illustrated by performing a contact test (simulated nanoindentation) in which the model deforms through STZ activity in the region experiencing the highest shear stress

  5. Microstructure evolution and deformation mechanism change in 0.98C-8.3Mn-0.04N steel during compressive deformation

    International Nuclear Information System (INIS)

    Wang, T.S.; Hou, R.J.; Lv, B.; Zhang, M.; Zhang, F.C.

    2007-01-01

    The microstructure evolution and the deformation mechanism change in 0.98C-8.3Mn-0.04N steel during compressive deformation at room temperature have been studied as a function of the reduction in the range of 20-60%. Experimental results show that with the reduction increasing the microstructure of the deformed sample changes from dislocation substructures into the dominant twins plus dislocations. This suggests that the plastic deformation mechanism changes from the dislocation slip to the dominant deformation twinning. The minimum reduction for deformation twins starting is estimated to be at between 30 and 40%. With the reduction further increases to more than 40%, the deformation twinning is operative and the thickness of deformation twins gradually decreases to nanoscale and shear bands occur. These high-density twins can be curved by the formation of shear bands. In addition, both transmission electron microscopy and X-ray diffraction examinations confirm the inexistence of deformation-induced martensites in these deformed samples

  6. A Leonard-Sanders-Budiansky-Koiter-Type Nonlinear Shell Theory with a Hierarchy of Transverse-Shearing Deformations

    Science.gov (United States)

    Nemeth, Michael P.

    2013-01-01

    A detailed exposition on a refined nonlinear shell theory suitable for nonlinear buckling analyses of laminated-composite shell structures is presented. This shell theory includes the classical nonlinear shell theory attributed to Leonard, Sanders, Koiter, and Budiansky as an explicit proper subset. This approach is used in order to leverage the exisiting experience base and to make the theory attractive to industry. In addition, the formalism of general tensors is avoided in order to expose the details needed to fully understand and use the theory. The shell theory is based on "small" strains and "moderate" rotations, and no shell-thinness approximations are used. As a result, the strain-displacement relations are exact within the presumptions of "small" strains and "moderate" rotations. The effects of transverse-shearing deformations are included in the theory by using analyst-defined functions to describe the through-the-thickness distributions of transverse-shearing strains. Constitutive equations for laminated-composite shells are derived without using any shell-thinness approximations, and simplified forms and special cases are presented.

  7. Effect of nonthermal plasma treatment on surface chemistry of commercially-pure titanium and shear bond strength to autopolymerizing acrylic resin

    Energy Technology Data Exchange (ETDEWEB)

    Vechiato-Filho, Aljomar José, E-mail: aljomarvechiatoflo@gmail.com [Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Univ. Estadual Paulista — UNESP, Aracatuba, Sao Paulo (Brazil); Silva Vieira Marques, Isabella da [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo (Brazil); Santos, Daniela Micheline dos [Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Univ. Estadual Paulista — UNESP, Aracatuba, Sao Paulo (Brazil); Oliveira Matos, Adaias [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo (Brazil); Rangel, Elidiane Cipriano; Cruz, Nilson Cristino da [Laboratory of Technological Plasmas (LaPTec), Engineering College, Univ. Estadual Paulista — UNESP, Sorocaba, Sao Paulo (Brazil); Barão, Valentim Adelino Ricardo [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo (Brazil)

    2016-03-01

    The effect of nonthermal plasma on the surface characteristics of commercially pure titanium (cp-Ti), and on the shear bond strength between an autopolymerizing acrylic resin and cp-Ti was investigated. A total of 96 discs of cp-Ti were distributed into four groups (n = 24): Po (no surface treatment), SB (sandblasting), Po + NTP and SB + NTP (methane plasma). Surface characterization was performed through surface energy, surface roughness, scanning microscopy, energy dispersive spectroscopy, and X-ray diffraction tests. Shear bond strength test was conducted immediately and after thermocycling. Surface treatment affected the surface energy and roughness of cp-Ti discs (P < .001). SEM–EDS showed the presence of the carbide thin film. XRD spectra revealed no crystalline phase changes. The SB + NTP group showed the highest bond strength values (6.76 ± 0.70 MPa). Thermocycling reduced the bond strength of the acrylic resin/cp-Ti interface (P < .05), except for Po group. NTP is an effective treatment option for improving the shear bond strength between both materials. - Highlights: • We tested the bond strength between two widely used materials in dentistry (acrylic and titanium). • We performed an innovative surface treatment with nonthermal plasma. • Increasing adhesion will avoid complications of full-arch implant-retained prostheses.

  8. Bed-Deformation Experiments Beneath a Temperate Glacier

    Science.gov (United States)

    Iverson, N. R.; Hooyer, T. S.; Fischer, U. H.; Cohen, D.; Jackson, M.; Moore, P. L.; Lappegard, G.; Kohler, J.

    2002-12-01

    Fast flow of glaciers and genesis of glacial landforms are commonly attributed to shear deformation of subglacial sediment. Although models of this process abound, data gathered subglacially on the kinematics and mechanics of such deformation are difficult to interpret. Major difficulties stem from the necessity of either measuring deformation near glacier margins, where conditions may be abnormal, or at the bottoms of boreholes, where the scope of instrumentation is limited, drilling disturbs sediment, and local boundary conditions are poorly known. A different approach is possible at the Svartisen Subglacial Laboratory, where tunnels melted in the ice provide temporary human access to the bed of Engabreen, a temperate outlet glacier of the Svartisen Ice Cap in Norway. A trough (2 m x 1.5 m x 0.5 m deep) was blasted in the rock bed, where the glacier is 220 m thick and sliding at 0.1-0.2 m/d. During two spring field seasons, this trough was filled with 2.5 tons of simulated till. Instruments in the till recorded shear (tiltmeters), volume change, total normal stress, and pore-water pressure as ice moved across the till surface. Pore pressure was brought to near the total normal stress by feeding water to the base of the till with a high-pressure pump, operated in a rock tunnel 4 m below the bed surface. Results illustrate some fundamental aspects of bed deformation. Permanent shear deformation requires low effective normal stress and hence high pore-water pressure, owing to the frictional nature of till. Shear strain generally increases upward in the bed toward the glacier sole, consistent with previous measurements beneath thinner ice at glacier margins. At low effective normal stresses, ice sometimes decouples from underlying till. Overall, bed deformation accounts for 10-35 % of basal motion, although this range excludes shear in the uppermost 0.05 m of till where shear was not measured. Pump tests with durations ranging from seconds to hours highlight the need

  9. Deformation mechanisms in the San Andreas Fault zone - a comparison between natural and experimentally deformed microstructures

    Science.gov (United States)

    van Diggelen, Esther; Holdsworth, Robert; de Bresser, Hans; Spiers, Chris

    2010-05-01

    foliation, lens-like features, micro-folding and occasional indicators of cataclasis and pressure solution in porphyroclasts. Within Core interval 3, deformation appears to be strongly localized in this foliated fault gouge, while rocks outside the gouge have experienced far less deformation. Also Core interval 2 contains a foliated fault gouge which is correlated to a zone of borehole casing deformation. The gouge looks almost identical to the foliated fault gouge in Core interval 3. However, in this core interval the rocks surrounding the actively creeping zone show ample evidence for micro-folding, foliation development, development of anastomosing shear bands, gouge formation, veining, and reworking of earlier formed microstructures. Further, evidence is widespread for cataclasis, pressure solution and reaction of feldspar to form phyllosilicates. Deformation in this core interval is not purely localized in the phyllosilicate-rich, foliated fault gouge, like in Core interval 3, but clearly affects the surrounding rocks as well. The microstructures of the actively creeping zones are very similar, but the surrounding lithologies are different. This difference in lithology probably causes the difference in deformation behaviour between core intervals 2 and 3. Comparison of the SAF microstructures with microstructures obtained from various experimentally deformed phyllosilicate-rich fault gouges shows many similarities. The similarities include microstructures indicating pressure solution, alteration, foliation development, cataclasis, plastic deformation and lens formation. We therefore infer that the deformation mechanisms identified in the experimental samples are the same as the mechanisms controlling deformation in the actively deforming strands of the SAF, pointing to slip on phyllosilicate foliation accommodated by plastic deformation of intervening clasts, cataclasis and occasionally mass transfer processes.

  10. Positive or negative Poynting effect? The role of adscititious inequalities in hyperelastic materials

    KAUST Repository

    Mihai, L. A.

    2011-08-10

    Motivated by recent experiments on biopolymer gels whereby the reverse of the usual (positive) Poynting effect was observed, we investigate the effect of the so-called \\'adscititious inequalities\\' on the behaviour of hyperelastic materials subject to shear. We first demonstrate that for homogeneous isotropic materials subject to pure shear, the resulting deformation consists of a triaxial stretch combined with a simple shear in the direction of the shear force if and only if the Baker-Ericksen inequalities hold. Then for a cube deformed under pure shear, the positive Poynting effect occurs if the \\'sheared faces spread apart\\', whereas the negative Poynting effect is obtained if the \\'sheared faces draw together\\'. Similarly, under simple shear deformation, the positive Poynting effect is obtained if the \\'sheared faces tend to spread apart\\', whereas the negative Poynting effect occurs if the \\'sheared faces tend to draw together\\'. When the Poynting effect occurs under simple shear, it is reasonable to assume that the same sign Poynting effect is btained also under pure shear. Since the observation of the negative Poynting effect in semiflexible biopolymers implies that the (stronger) empirical inequalities may not hold, we conclude that these inequalities must not be imposed when such materials are described. © 2011 The Royal Society.

  11. Shearing creep properties of cements with different irregularities on two surfaces

    International Nuclear Information System (INIS)

    Zhang, Qingzhao; Shen, Mingrong; Ding, Wenqi; Clark, Carl

    2012-01-01

    The study of creep properties of the rock mass structural plane is of great importance in solving practical problems in rock mass mechanics. The time-dependent deformation and long-term strength of the rock mass are controlled significantly by the creep mechanical behaviour of the structural plane, and the study of creep properties of the rock mass structural plane is an important area in rock mass deformation. This paper presents fundamental research on the mechanical properties of regular jugged discontinuities under various normal stresses, and focuses on the creep property of the structural plane with various slope angles under different normal stress through shear creep tests of the structural plane under shear stress. According to test results, the shear creep property of the structural plane is described and the creep velocity and long-term strength of the structural plane during shear creep is also investigated. Finally, an empirical formula is established to evaluate the shear strength of the discontinuity and a modified Burger model proposed to represent the shear deformation property during creep. (paper)

  12. Loading direction-dependent shear behavior at different temperatures of single-layer chiral graphene sheets

    Science.gov (United States)

    Zhao, Yang; Dong, Shuhong; Yu, Peishi; Zhao, Junhua

    2018-06-01

    The loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures is studied by molecular dynamics (MD) simulations. Our results show that the shear properties (such as shear stress-strain curves, buckling strains, and failure strains) of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry. The maximum values of both the critical buckling shear strain and the failure strain under positive shear deformation can be around 1.4 times higher than those under negative shear deformation. For a given chiral graphene sheet, both its failure strain and failure stress decrease with increasing temperature. In particular, the amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using present MD simulations agrees well with that from the existing theory. These findings provide physical insights into the origins of the loading direction-dependent shear behavior of chiral graphene sheets and their potential applications in nanodevices.

  13. Shear-Induced Membrane Fusion in Viscous Solutions

    KAUST Repository

    Kogan, Maxim; Feng, Bobo; Nordé n, Bengt; Rocha, Sandra; Beke-Somfai, Tamá s

    2014-01-01

    Large unilamellar lipid vesicles do not normally fuse under fluid shear stress. They might deform and open pores to relax the tension to which they are exposed, but membrane fusion occurring solely due to shear stress has not yet been reported. We

  14. Adiabatic shear localization in ultrafine grained 6061 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingfeng, E-mail: biw009@ucsd.edu [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego (United States); State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); Key Lab of Nonferrous Materials, Ministry of Education, Central South University, Changsha 410083 (China); Ma, Rui; Zhou, Jindian [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Li, Zezhou; Zhao, Shiteng [Department of Mechanical and Aerospace Engineering, University of California, San Diego (United States); Huang, Xiaoxia [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2016-10-15

    Localized shear is an important mode of deformation; it leads to catastrophic failure with low ductility, and occurs frequently during high strain-rate deformation. The hat-shaped specimen has been successfully used to generate shear bands under controlled shock-loading tests. The microstructure in the forced shear band was characterized by optical microscopy, microhardness, and transmission electron microscopy. The true flow stress in the shear region can reach 800 MPa where the strain is about 2.2. The whole shear localization process lasts for about 100 μs. The shear band is a long and straight band distinguished from the matrix by boundaries. It can be seen that the grains in the boundary of the shear band are highly elongated along the shear direction and form the elongated cell structures (0.2 µm in width), and the core of the shear band consists of a number of recrystallized equiaxed grains with 0.2−0.3 µm in diameters, and the second phase particles distribute in the boundary of the ultrafine equiaxed new grains. The calculated temperature in the shear band can reach about 667 K. Finally, the formation of the shear band in the ultrafine grained 6061 aluminum alloy and its microstructural evolution are proposed.

  15. Evaluation of critical resolved shear strength and deformation mode in proton-irradiated austenitic stainless steel using micro-compression tests

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyung-Ha; Ko, Eunsol; Kwon, Junhyun; Hwang, Seong Sik [Nuclear Materials Safety Research Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of); Shin, Chansun, E-mail: c.shin@mju.ac.kr [Department of Materials Science and Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Youngin, Gyeonggi-do, 449-728 (Korea, Republic of)

    2016-03-15

    Micro-compression tests were applied to evaluate the changes in the strength and deformation mode of proton-irradiated commercial austenitic stainless steel. Proton irradiation generated small dots at low dose levels and Frank loops at high dose levels. The increase in critical resolved shear stresses (CRSS) was measured from micro-compression of pillars and the Schmid factor calculated from the measured loading direction. The magnitudes of the CRSS increase were in good agreement with the values calculated from the barrier hardening model using the measured size and density of radiation defects. The deformation mode changed upon increasing the irradiation dose level. At a low radiation dose level, work hardening and smooth flow behavior were observed. Increasing the dose level resulted in the flow behavior changing to a distinct heterogeneous flow, yielding a few large strain bursts in the stress–strain curves. The change in the deformation mode was related to the formation and propagation of defect-free slip bands. The effect of the orientation of the pillar or loading direction on the strengths is discussed.

  16. Hydrodynamic of a deformed bubble in linear shear flow

    International Nuclear Information System (INIS)

    Adoua, S.R.

    2007-07-01

    This work is devoted to the study of an oblate spheroidal bubble of prescribed shape set fixed in a linear shear flow using direct numerical simulation. The three dimensional Navier-Stokes equations are solved in orthogonal curvilinear coordinates using a finite volume method. The bubble response is studied over a wide range of the aspect ratio (1-2.7), the bubble Reynolds number (50-2000) and the non-dimensional shear rate (0.-1.2). The numerical simulations shows that the shear flow imposes a plane symmetry of the wake whatever the parameters of the flow. The trailing vorticity is organized into two anti-symmetrical counter rotating tubes with a sign imposed by the competition of two mechanisms (the Lighthill mechanism and the instability of the wake). Whatever the Reynolds number, the lift coefficient reaches the analytical value obtained in an inviscid, weakly sheared flow corresponding to a lift force oriented in the same direction as that of a spherical bubble. For moderate Reynolds numbers, the direction of the lift force reverses when the bubble aspect ratio is large enough as observed in experiments. This reversal occurs for aspect ratios larger than 2.225 and is found to be directly linked to the sign of the trailing vorticity which is concentrated within two counter-rotating threads which propel the bubble in a direction depending of their sign of rotation. The behavior of the drag does not revel any significant effect induced by the wake structure and follows a quadratic increase with the shear rate. Finally, the torque experienced by the bubble also reverses for the same conditions inducing the reversal of the lift force. By varying the orientation of the bubble in the shear flow, a stable equilibrium position is found corresponding to a weak angle between the small axis of the bubble and the flow direction. (author)

  17. Texture and deformation mechanism of yttrium

    International Nuclear Information System (INIS)

    Adamesku, R.A.; Grebenkin, S.V.; Stepanenko, A.V.

    1992-01-01

    X-ray pole figure analysis was applied to study texture and deformation mechanism in pure and commercial polycrystalline yttrium on cold working. It was found that in cast yttrium the texture manifected itself weakly enough both for pure and commercial metal. Analysis of the data obtained made it possible to assert that cold deformation of pure yttrium in the initial stage occurred mainly by slip the role of which decreased at strains higher than 36%. The texture of heavily deformed commercial yttrium contained two components, these were an 'ideal' basic orientation and an axial one with the angle of inclination about 20 deg. Twinning mechanism was revealed to be also possible in commercial yttrium

  18. Rotation of small clusters in sheared metallic glasses

    International Nuclear Information System (INIS)

    Delogu, Francesco

    2011-01-01

    Graphical abstract: When a Cu 50 Ti 50 metallic glass is shear-deformed, the irreversible rearrangement of local structures allows the rigid body rotation of clusters. Highlights: → A shear-deformed Cu 50 Ti 50 metallic glass was studied by molecular dynamics. → Atomic displacements occur at irreversible rearrangements of local structures. → The dynamics of such events includes the rigid body rotation of clusters. → Relatively large clusters can undergo two or more complete rotations. - Abstract: Molecular dynamics methods were used to simulate the response of a Cu 50 Ti 50 metallic glass to shear deformation. Attention was focused on the atomic displacements taking place during the irreversible rearrangement of local atomic structures. It is shown that the apparently disordered dynamics of such events hides the rigid body rotation of small clusters. Cluster rotation was investigated by evaluating rotation angle, axis and lifetimes. This permitted to point out that relatively large clusters can undergo two or more complete rotations.

  19. Coastal Upwelling Drives Intertidal Assemblage Structure and Trophic Ecology.

    Science.gov (United States)

    Reddin, Carl J; Docmac, Felipe; O'Connor, Nessa E; Bothwell, John H; Harrod, Chris

    2015-01-01

    Similar environmental driving forces can produce similarity among geographically distant ecosystems. Coastal oceanic upwelling, for example, has been associated with elevated biomass and abundance patterns of certain functional groups, e.g., corticated macroalgae. In the upwelling system of Northern Chile, we examined measures of intertidal macrobenthic composition, structure and trophic ecology across eighteen shores varying in their proximity to two coastal upwelling centres, in a hierarchical sampling design (spatial scales of >1 and >10 km). The influence of coastal upwelling on intertidal communities was confirmed by the stable isotope values (δ13C and δ15N) of consumers, including a dominant suspension feeder, grazers, and their putative resources of POM, epilithic biofilm, and macroalgae. We highlight the utility of muscle δ15N from the suspension feeding mussel, Perumytilus purpuratus, as a proxy for upwelling, supported by satellite data and previous studies. Where possible, we used corrections for broader-scale trends, spatial autocorrelation, ontogenetic dietary shifts and spatial baseline isotopic variation prior to analysis. Our results showed macroalgal assemblage composition, and benthic consumer assemblage structure, varied significantly with the intertidal influence of coastal upwelling, especially contrasting bays and coastal headlands. Coastal topography also separated differences in consumer resource use. This suggested that coastal upwelling, itself driven by coastline topography, influences intertidal communities by advecting nearshore phytoplankton populations offshore and cooling coastal water temperatures. We recommend the isotopic values of benthic organisms, specifically long-lived suspension feeders, as in situ alternatives to offshore measurements of upwelling influence.

  20. Severe Plastic Deformation of Commercial Pure Titanium (CP-Ti) for Biomedical Applications: A Brief Review

    Science.gov (United States)

    Mahmoodian, Reza; Annuar, N. Syahira M.; Faraji, Ghader; Bahar, Nadia Dayana; Razak, Bushroa Abd; Sparham, Mahdi

    2017-11-01

    This paper reviews severe plastic deformation (SPD) techniques for producing ultrafine-grained (UFG) and nanostructured commercial pure titanium (CP-Ti) for biomedical applications as the best alternative to titanium alloys. SPD processes, effective parameters, and advantages of nanostructured CP-Ti over coarse-grained (CG) material and Ti alloys are briefly reviewed. It is reported that nanostructured CP-Ti processed via SPD exhibits higher mechanical strength comparable to Ti alloys but better biological response and superior biocompatibility. Also, different surface modification techniques offer different results on UFG and CG CP-Ti, leading to nanoscale surface topography in UFG samples. Overall, it is reported that nanostructured CP-Ti processed by SPD could be considered to be the best candidate for biomedical implants.

  1. Vibration Analysis of a Magnetoelectroelastic Rectangular Plate Based on a Higher-Order Shear Deformation Theory

    Directory of Open Access Journals (Sweden)

    Alireza Shooshtari

    Full Text Available Abstract Free vibration of a magnetoelectroelastic rectangular plate is investigated based on the Reddy's third-order shear deformation theory. The plate rests on an elastic foundation and it is considered to have different boundary conditions. Gauss's laws for electrostatics and magnetostatics are used to model the electric and magnetic behavior. The partial differential equations of motion are reduced to a single partial differential equation and then by using the Galerkin method, the ordinary differential equation of motion as well as an analytical relation for the natural frequency of the plate is obtained. Some numerical examples are presented to validate the proposed model and to investigate the effects of several parameters on the vibration frequency of the considered smart plate.

  2. Dynamic behavior of a rotating delaminated composite beam including rotary inertia and shear deformation effects

    Directory of Open Access Journals (Sweden)

    Ramazan-Ali Jafari-Talookolaei

    2015-09-01

    Full Text Available A finite element (FE model is developed to study the free vibration of a rotating laminated composite beam with a single delamination. The rotary inertia and shear deformation effects, as well as the bending–extension, bending–twist and extension–twist coupling terms are taken into account in the FE model. Comparison between the numerical results of the present model and the results published in the literature verifies the validity of the present model. Furthermore, the effects of various parameters, such as delamination size and location, fiber orientation, hub radius, material anisotropy and rotating speed, on the vibration of the beam are studied in detail. These results provide useful information in the study of the free vibration of rotating delaminated composite beams.

  3. An Interconnected Network of Core-Forming Melts Produced by Shear Deformation

    Science.gov (United States)

    Bruhn, D.; Groebner, N.; Kohlstedt, D. L.

    2000-01-01

    The formation mechanism of terrestrial planetary is still poorly understood, and has been the subject of numerous experimental studies. Several mechanisms have been proposed by which metal-mainly iron with some nickel-could have been extracted from a silicate mantle to form the core. Most recent models involve gravitational sinking of molten metal or metal sulphide through a partially or fully molten mantle that is often referred to as a'magma ocean. Alternative models invoke percolation of molten metal along an interconnected network (that is, porous flow) through a solid silicate matrix. But experimental studies performed at high pressures have shown that, under hydrostatic conditions, these melts do not form an interconnected network, leading to the widespread assumption that formation of metallic cores requires a magma ocean. In contrast, here we present experiments which demonstrate that shear deformation to large strains can interconnect a significant fraction of initially isolated pockets of metal and metal sulphide melts in a solid matrix of polycrystalline olivine. Therefore, in a dynamic (nonhydrostatic) environment, percolation remains a viable mechanism for the segregation and migration of core-forming melts in a solid silicate mantle.

  4. Seismic cycle feedbacks in a mid-crustal shear zone

    Science.gov (United States)

    Melosh, Benjamin L.; Rowe, Christie D.; Gerbi, Christopher; Smit, Louis; Macey, Paul

    2018-07-01

    Mid-crustal fault rheology is controlled by alternating brittle and plastic deformation mechanisms, which cause feedback cycles that influence earthquake behavior. Detailed mapping and microstructural observations in the Pofadder Shear Zone (Namibia and South Africa) reveal a lithologically heterogeneous shear zone core with quartz-rich mylonites and ultramylonites, plastically overprinted pseudotachylyte and active shear folds. We present evidence for a positive feedback cycle in which coseismic grain size reduction facilitates active shear folding by enhancing competency contrasts and promoting crystal plastic flow. Shear folding strengthens a portion of a shear zone by limb rotation, focusing deformation and promoting plastic flow or brittle slip in resulting areas of localized high stress. Using quartz paleopiezometry, we estimate strain and slip rates consistent with other studies of exhumed shear zones and modern plate boundary faults, helping establish the Pofadder Shear Zone as an ancient analogue to modern, continental-scale, strike-slip faults. This feedback cycle influences seismicity patterns at the scale of study (10s of meters) and possibly larger scales as well, and contributes to bulk strengthening of the brittle-plastic transition on modern plate boundary faults.

  5. Shear-driven phase transformation in silicon nanowires.

    Science.gov (United States)

    Vincent, L; Djomani, D; Fakfakh, M; Renard, C; Belier, B; Bouchier, D; Patriarche, G

    2018-03-23

    We report on an unprecedented formation of allotrope heterostructured Si nanowires by plastic deformation based on applied radial compressive stresses inside a surrounding matrix. Si nanowires with a standard diamond structure (3C) undergo a phase transformation toward the hexagonal 2H-allotrope. The transformation is thermally activated above 500 °C and is clearly driven by a shear-stress relief occurring in parallel shear bands lying on {115} planes. We have studied the influence of temperature and axial orientation of nanowires. The observations are consistent with a martensitic phase transformation, but the finding leads to clear evidence of a different mechanism of deformation-induced phase transformation in Si nanowires with respect to their bulk counterpart. Our process provides a route to study shear-driven phase transformation at the nanoscale in Si.

  6. Life cycle strategies of copepods in coastal upwelling zones

    Science.gov (United States)

    Peterson, W.

    1998-06-01

    Life cycles of copepods of coastal upwelling zones are of the multigenerational type—as many as 10 or more generations may be produced each year, depending upon water temperature, food concentration and length of the upwelling season. Abundant food resources and moderate temperature convey advantages to those copepods living in coastal upwelling zones, however, there is a clear disadvantage in that coastal upwelling zones are highly advective environments. Typically, water circulation patterns are such that surface waters are carried offshore, deeper waters carried onshore and most of the water column over the continental shelf is moving equatorward. The challenge to copepod species that inhabit upwelling systems is life cycle closure—how do eggs, nauplii, juveniles and adults avoid being swept out of these ecosystems in the face of persistent transport out of the system? In this review, I first list the species which dominate coastal upwelling ecosystems then discuss three variations on the multigenerational life cycle scheme that are observed in upwelling systems. The latter part of the review is devoted to discussion of how individuals are retained in the productive continental shelf waters within coastal upwelling ecosystems. The suggestion is made that the only copepod species that successfully achieve life cycle closure in such systems are those that are preadapted to upwelling circulation patterns. Our quantitative understanding of the relative importance of physical factors (such as advection) and biological factors (birth, growth, and mortality) on life cycle strategies and population dynamics is quite rudimentary. It would help our understanding if there were more field studies and more computer modeling studies that focused on seasonal cycles of abundance, development times and vertical distribution of life cycle stages, and measurements of water circulation patterns.

  7. Low-rise shear wall failure modes

    International Nuclear Information System (INIS)

    Farrar, C.R.; Hashimoto, P.S.; Reed, J.W.

    1991-01-01

    A summary of the data that are available concerning the structural response of low-rise shear walls is presented. This data will be used to address two failure modes associated with the shear wall structures. First, data concerning the seismic capacity of the shear walls with emphasis on excessive deformations that can cause equipment failure are examined. Second, data concerning the dynamic properties of shear walls (stiffness and damping) that are necessary to compute the seismic inputs to attached equipment are summarized. This case addresses the failure of equipment when the structure remains functional. 23 refs

  8. Effect of shear span-to-depth ratio on the shear behavior of BFRP-RC deep beams

    Directory of Open Access Journals (Sweden)

    Alhamad Siyam

    2017-01-01

    Full Text Available This study investigates the shear behavior of deep concrete beams reinforced with basalt fiber reinforced polymer (BFRP bars for flexure without web reinforcements. The experimental testing performed herein consisted of a total of 4 short beams, three of which were reinforced with BFRP and one beam was reinforced with steel bars. The primary test variable was the shear-span-to-effective-depth ratio (a/d and its influence on the beams’ mid-span deflections, shear capacity, load-deformation relationships and the failure modes.

  9. Dynamics of defect-loaded grain boundary under shear deformation in alpha iron

    Science.gov (United States)

    Yang, L.; Zhou, H. L.; Liu, H.; Gao, F.; Zu, X. T.; Peng, S. M.; Long, X. G.; Zhou, X. S.

    2018-02-01

    Two symmetric tilt grain boundaries (GBs) (Σ3〈110〉{112} and Σ11〈110〉{332}) in alpha iron were performed to investigate the dynamics of defect-loaded GBs under shear deformation. The results show that the loaded self-interstitial atoms (SIAs) reduce the critical stress of the coupled GB motion in the Σ3 GB, but increase the critical stress in the Σ11 GB. The loaded SIAs in the Σ3 GB easily form 〈111〉 clusters and remain in the bulk when the GB moves away. However, the SIAs move along with the Σ11 GB and combine with the vacancies in the bulk, leading to the defect self-healing. The helium (He) atoms loaded into the GBs significantly affect the coupled GB motion. Once He clusters emit interstitials, the Σ11 GB carries those interstitials away but the Σ3 does not. The loaded He atoms reduce the critical stress of the Σ3 GB, but increase the critical stress of the Σ11 GB.

  10. Analysis of Blood Flow Through a Viscoelastic Artery using the Cosserat Continuum with the Large-Amplitude Oscillatory Shear Deformation Model

    DEFF Research Database (Denmark)

    Sedaghatizadeh, N.; Atefi, G.; Fardad, A. A.

    2011-01-01

    In this investigation, semiempirical and numerical studies of blood flow in a viscoelastic artery were performed using the Cosserat continuum model. The large-amplitude oscillatory shear deformation model was used to quantify the nonlinear viscoelastic response of blood flow. The finite differenc...... method was used to solve the governing equations, and the particle swarm optimization algorithm was utilized to identify the non-Newtonian coefficients (kυ and γυ). The numerical results agreed well with previous experimental results....

  11. Trends in the number of extreme hot SST days along the Canary Upwelling System due to the influence of upwelling

    Directory of Open Access Journals (Sweden)

    Xurxo Costoya

    2014-07-01

    Full Text Available Trends in the number of extreme hot days (days with SST anomalies higher than the 95% percentile were analyzed along the Canary Upwelling Ecosystem (CUE over the period 1982- 2012 by means of SST data retrieved from NOAA OI1/4 Degree. The analysis will focus on the Atlantic Iberian sector and the Moroccan sub- region where upwelling is seasonal (spring and summer are permanent, respectively. Trends were analyzed both near coast and at the adjacent ocean where the increase in the number of extreme hot days is higher. Changes are clear at annual scale with an increment of 9.8±0.3 (9.7±0.1 days dec-1 near coast and 11.6±0.2 (13.5±0.1 days dec-1 at the ocean in the Atlantic Iberian sector (Moroccan sub-region. The differences between near shore and ocean trends are especially patent for the months under intense upwelling conditions. During that upwelling season the highest differences in the excess of extreme hot days between coastal and ocean locations (Δn(#days dec-1 occur at those regions where coastal upwelling increase is high. Actually, Δn and upwelling trends have shown to be significantly correlated in both areas, R=0.88 (p<0.01 at the Atlantic Iberian sector and R=0.67 (p<0.01 at the Moroccan sub-region.

  12. Progressive softening of brittle-ductile transition due to interplay between chemical and deformation processes

    Science.gov (United States)

    Jeřábek, Petr; Bukovská, Zita; Morales, Luiz F. G.

    2017-04-01

    The micro-scale shear zones (shear bands) in granitoids from the South Armorican Shear Zone reflect localization of deformation and progressive weakening in the conditions of brittle-ductile transition. We studied microstructures in the shear bands with the aim to establish their P-T conditions and to derive stress and strain rates for specific deformation mechanisms. The evolving microstructure within shear bands documents switches in deformation mechanisms related to positive feedbacks between deformation and chemical processes and imposes mechanical constraints on the evolution of the brittle-ductile transition in the continental transform fault domains. The metamorphic mineral assemblage present in the shear bands indicate their formation at 300-350 ˚ C and 100-400 MPa. Focusing on the early development of shear bands, we identified three stages of shear band evolution. The early stage I associated with initiation of shear bands occurs via formation of microcracks with possible yielding differential stress of up to 250 MPa (Diamond and Tarantola, 2015). Stage II is associated with subgrain rotation recrystallization and dislocation creep in quartz and coeval dissolution-precipitation creep of microcline. Recrystallized quartz grains in shear bands show continual increase in size, and decrease in stress and strain rates from 94 MPa to 17-26 MPa (Stipp and Tullis, 2003) and 3.8*10-12 s-1- 1.8*10-14 s-1 (Patterson and Luan, 1990) associated with deformation partitioning into weaker microcline layer and shear band widening. The quartz mechanical data allowed us to set some constrains for coeval dissolution-precipitation of microcline which at our estimated P-T conditions suggests creep at 17-26 MPa differential stress and 3.8*10-13 s-1 strain rate. Stage III is characterized by localized slip along interconnected white mica bands accommodated by dislocation creep at strain rate 3.8*10-12 s-1 and stress 9.36 MPa (Mares and Kronenberg, 1993). The studied example

  13. Campaigned GPS on Present-Day Crustal Deformation in Northernmost Longitudinal Valley Preliminary Results, Hualien Taiwan

    Directory of Open Access Journals (Sweden)

    Chia-Yu Chen

    2014-01-01

    Full Text Available The Longitudinal Valley in Eastern Taiwan sits at the collision suture between the Eurasian and Philippine Sea plates. Based on repeated GPS campaigned measurements from 25 stations six times in 2007 - 2009, we characterize the surface deformation in the northernmost Longitudinal Valley where the Coastal Range of the Philippine Sea plate turns northward diving under the Eurasian plate producing two major active faults: the Milun fault and the Longitudinal Valley fault. We reconstructed a GPS velocity field and conducted strain analyses and elastic block modeling. Our results suggest a rapid clockwise rotation of 33° Myr-1 and an eastward tectonic escape in the small Hualien City block (HUAL area of ~10 × 10 km, which is apparently detached from the regional rotating RYUK block defined by previous studies. We interpret it as being initiated locally by the northwest indentation of the Coastal Range, which pushed the HUAL block to move upward and eastward. According to our strain analyses, the HUAL block shows a significant internal elastic strain inside the Milun Tableland, the hanging wall of the Milun fault. No significant deformation was observed across the surface trace of the fault, indicating that the Milun fault is now probably locked in the near surface. The deformation in the footwall of the fault was accommodated by pure-shear strain with a major NNW-compression and a minor ENE-extension. The deformation in the hanging wall is characterized by simple-shear strain with ENE-extension in its northern part and little deformation in the southern part, separated by a little known NW-trending active fault zone (Dongmingyi fault, which needs further investigation.

  14. Role of nutrient recycling in upwelling ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Whitledge, T E

    1979-01-01

    The regeneration of nitrogen is an important process that increases the efficiency of the upwelling ecosystem by enlarging their spatial scales. Ammonium regeneration was considered to contribute 42 to 72 percent of phytoplankton nitrogen requirements in the northwest Africa, Peru, and Baja California upwelling systems. Zooplankton are responsible for the largest portion of regenerated nitrogen; however, fish and benthic sediments may be nearly as large. Comparisons of the importance of ammonium regeneration in upwelling areas with coastal and open ocean regions indicate that the percentage contributions are similar. Future nutrient regeneration studies are needed to assess the recycling of benthic sediments, microzooplankton, gelatinous zooplankton, demersal fish, bacterioplankton, and mollusks.

  15. Experimental and numerical analyses of pure copper during ECFE process as a novel severe plastic deformation method

    Directory of Open Access Journals (Sweden)

    M. Ebrahimi

    2014-02-01

    Full Text Available In this paper, a new severe plastic deformation method called equal channel forward extrusion (ECFE process has been proposed and investigated by experimental and numerical approaches on the commercial pure copper billets. The experimental results indicated that the magnitudes of yield strength, ultimate tensile strength and Vickers micro-hardness have been markedly improved from 114 MPa, 204 MPa and 68 HV as the annealed condition to 269 MPa, 285 MPa and 126 HV after the fourth pass of ECFE process, respectively. In addition, scanning electron microscopy observation of the samples showed that the average grain size of the as-received state which is about 22 μm has been reduced to 1.4 μm after the final pass. The numerical investigation suggested that although one pass ECFE process fabricates material with the mean effective strain magnitude of about 1, the level of imposed effective plastic strain gradually diminishes from the circumference to the center of the deformed billet.

  16. Failure modes of low-rise shear walls

    International Nuclear Information System (INIS)

    Farrar, C.R.; Reed, J.W.; Salmon, M.W.

    1993-01-01

    A summary of available data concerning the structural response of low-rise shear walls is presented. These data will be used to address two failure modes associated with shear wall structures. First, the data concerning the seismic capacity of the shear walls are examined, with emphasis on excessive deformations that can cause equipment failure. Second, the data concerning the dynamic properties of shear walls (stiffness and damping) that are necessary for computing the seismic inputs to attached equipment are summarized. This case addresses the failure of equipment when the structure remains functional

  17. A Piezoelectric Shear Stress Sensor

    Science.gov (United States)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-01-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  18. Petrologic and chemical changes in ductile shear zones as a function of depth in the continental crust

    Science.gov (United States)

    Yang, Xin-Yue

    Petrologic and geochemical changes in ductile shear zones are important for understanding deformational and geochemical processes of the continental crust. This study examines three shear zones that formed under conditions varying from lower greenschist facies to upper amphibolite facies in order to document the petrologic and geochemical changes of deformed rocks at various metamorphic grades. The studied shear zones include two greenschist facies shear zones in the southern Appalachians and an upper amphibolite facies shear zone in southern Ontario. The mylonitic gneisses and mylonites in the Roses Mill shear zone of central Virginia are derived from a ferrodiorite protolith and characterized by a lower greenschist facies mineral assemblage. Both pressure solution and recrystallization were operative deformation mechanisms during mylonitization in this shear zone. Strain-driven dissolution and solution transfer played an important role in the mobilization of felsic components (Si, Al, K, Na, and Ca). During mylonitization, 17% to 32% bulk rock volume losses of mylonites are mainly attributed to removal of these mobile felsic components by a fluid phase. Mafic components (Fe, Mg, Ti, Mn and P) and trace elements, REE, Y, V and Sc, were immobile. At Rosman, North Carolina, the Brevard shear zone (BSZ) shows a deformational transition from the coarse-grained Henderson augen gneiss (HAG) to proto-mylonite, mylonite and ultra-mylonite. The mylonites contain a retrograde mineral assemblage as a product of fluid-assisted chemical breakdown of K-feldspar and biotite at higher greenschist facies conditions. Recrystallization and intra-crystalline plastic deformation are major deformation mechanisms in the BSZ. Fluid-assisted mylonitization in the BSZ led to 6% to 23% bulk volume losses in mylonites. During mylonitization, both major felsic and mafic elements and trace elements, Rb, Sr, Zr, V, Sc, and LREE were mobile; however, the HREEs were likely immobile. A shear zone

  19. Pliocene Warm Period Upwelling in the Southern Benguela Region

    Science.gov (United States)

    Petrick, B. F.; McClymont, E.; Felder, S.; Leng, M. J.; Rosell Mele, A.; Rueda, G.

    2014-12-01

    The mid-Pliocene has been proposed as a possible analogue for understanding future climate change and testing climate models. Previous work has shown that during the Pliocene the major upwelling systems were relatively warm, and thus either inactive, contracted, or upwelling warmer waters than present. Here we examine evidence from a core site located on the margins of the modern Benguela upwelling system, to test whether the upwelling cells had migrated or contracted relative to present during the Pliocene. We applied several organic geochemistry proxies and foraminiferal analyses to reconstruct the Pliocene history of ODP site 1087 (31º28'S, 15º19'E, 1374m water depth), including the UK37' index and TEX86 index (for reconstructing sea surface temperatures), chlorins (for estimating primary productivity) and planktonic foraminifera assemblages (for inferring water mass changes). These proxies show that between 3.5 and 3.0 Ma the southern Benguela region was significantly cooler than the northern Benguela region, the latter where the main upwelling cells are found today. Coupled with higher primary production, a shift in planktonic foraminifera assemblage, and an offset between the UK37' index and TEX86 index, we infer that more extensive upwelling was present in the southern Benguela region during the Pliocene. We infer that the main Benguela upwelling cells had shifted southward relative to today, as a result of changes in the local wind field. We find evidence for pronounced cooling and a shift in the planktonic foraminifera assemblage during the M2 and KM2 glacial stages, showing a sensitivity of Benguela upwelling to these short-lived climate events.

  20. Experimental investigations into the shear behavior of self-compacting RC beams with and without shear reinforcement

    Directory of Open Access Journals (Sweden)

    Ammar N. HANOON

    2014-12-01

    Full Text Available Self-compacting concrete (SCC is a new generation of high-performance concrete, known for its excellent deformability and high resistance to segregation and bleeding. Nonetheless, SCC may be incapable of resisting shear because the shear resistance mechanisms of this concrete are uncertain, especially the aggregate interlock mechanism. This uncertainty is attributed to the fact that SCC contains a smaller amount of coarse aggregates than normal concrete (NC does. This study focuses on the shear strength of self-compacting reinforced concrete (RC beams with and without shear reinforcement. A total of 16 RC beam specimens was manufactured and tested in terms of shear span-to-depth ratio and flexural and shear reinforcement ratio. The test results were compared with those of the shear design equations developed by ACI, BS, CAN and NZ codes. Results show that an increase in web reinforcement enhanced cracking strength and ultimate load. Shear-tension failure was the control failure in all tested beams.

  1. Experimental deformation of a mafic rock - interplay between fracturing, reaction and viscous deformation

    Science.gov (United States)

    Marti, Sina; Stünitz, Holger; Heilbronner, Renée; Plümper, Oliver; Drury, Martyn

    2016-04-01

    Deformation experiments were performed on natural Maryland Diabase (˜ 55% Plg, 42% Px, 3% accessories, 0.18 wt.-% H2O added) in a Griggs-type deformation apparatus in order to explore the brittle-viscous transition and the interplay between deformation and mineral reactions. Shear experiments at strain rates of ˜ 2e-5 /s are performed, at T=600, 700 and 800°C and confining pressures Pc=1.0 and 1.5 GPa. Deformation localizes in all experiments. Below 700°C, the microstructure is dominated by brittle deformation with a foliation formed by cataclastic flow and high strain accommodated along 3-5 major ultracataclasite shear bands. At 700°C, the bulk of the material still exhibits abundant microfractures, however, deformation localizes into an anastomosing network of shear bands (SB) formed from a fine-grained (<< 1 μm) mixture of newly formed Plg and Amph. These reaction products occur almost exclusively along syn-kinematic structures such as fractures and SB. Experiments at 800°C show extensive mineral reactions, with the main reaction products Amph+Plg (+Zo). Deformation is localized in broad C' and C SB formed by a fine-grained (0.1 - 0.8 μm) mixture of Plg+Amph (+Zo). The onset of mineral reactions in the 700°C experiments shows that reaction kinetics and diffusional mass transport are fast enough to keep up with the short experimental timescales. While in the 700°C experiments brittle processes kinematically contribute to deformation, fracturing is largely absent at 800°C. Diffusive mass transfer dominates. The very small grain size within SB favours a grain size sensitive deformation mechanism. Due to the presence of water (and relatively high supported stresses), dissolution-precipitation creep is interpreted to be the dominant strain accommodating mechanism. From the change of Amph coronas around Px clasts with strain, we can determine that Amph is re-dissolved at high stress sites while growing in low stress sites, showing the ability of Amph to

  2. Correlations between plastic deformation parameters and radiation detector quality in HgI2

    International Nuclear Information System (INIS)

    Georgeson, G.; Milstein, F.; California Univ., Santa Barbara

    1989-01-01

    Mercuric iodide radiation detectors of various grades of quality were subjected to shearing forces in the (001) crystallographic planes using a specially designed micromechanical shear testing fixture. Experimental measurements were made of (001) shear stress versus shear strain. Each of the stress-strain curves was described by two empirically determined deformation parameters, s 0 and σ, where s 0 is a measure of 'bulk yielding' and σ indicates the 'sharpness of yielding' during plastic deformation. It was observed that the deformation parameters of many HgI 2 single crystal samples fit the relation s 0 =8σ 2/3 and that significant deviation from this relation, with s 0 >8σ 2/3 , indicates poor detector quality. Work hardening by prior plastic deformation was also found to cause s 0 to depart (in an increasing manner) from the 8σ 2/3 relation. For good quality material that has not previously been plastically deformed, the deformation parameter s c =s 0 -2σ<19 psi; this parameter can be interpreted as the 'onset of plastic yielding'. The results are discussed in terms of dislocation mechanisms for plastic deformation, work hardening, and recovery of work hardening. (orig.)

  3. Dynamics of shear-induced ATP release from red blood cells.

    Science.gov (United States)

    Wan, Jiandi; Ristenpart, William D; Stone, Howard A

    2008-10-28

    Adenosine triphosphate (ATP) is a regulatory molecule for many cell functions, both for intracellular and, perhaps less well known, extracellular functions. An important example of the latter involves red blood cells (RBCs), which help regulate blood pressure by releasing ATP as a vasodilatory signaling molecule in response to the increased shear stress inside arterial constrictions. Although shear-induced ATP release has been observed widely and is believed to be triggered by deformation of the cell membrane, the underlying mechanosensing mechanism inside RBCs is still controversial. Here, we use an in vitro microfluidic approach to investigate the dynamics of shear-induced ATP release from human RBCs with millisecond resolution. We demonstrate that there is a sizable delay time between the onset of increased shear stress and the release of ATP. This response time decreases with shear stress, but surprisingly does not depend significantly on membrane rigidity. Furthermore, we show that even though the RBCs deform significantly in short constrictions (duration of increased stress <3 ms), no measurable ATP is released. This critical timescale is commensurate with a characteristic membrane relaxation time determined from observations of the cell deformation by using high-speed video. Taken together our results suggest a model wherein the retraction of the spectrin-actin cytoskeleton network triggers the mechanosensitive ATP release and a shear-dependent membrane viscosity controls the rate of release.

  4. A new omnidirectional shear horizontal wave transducer using face-shear (d24) piezoelectric ring array.

    Science.gov (United States)

    Miao, Hongchen; Huan, Qiang; Wang, Qiangzhong; Li, Faxin

    2017-02-01

    The non-dispersive fundamental shear horizontal (SH 0 ) wave in plate-like structures is of practical importance in non-destructive testing (NDT) and structural health monitoring (SHM). Theoretically, an omnidirectional SH 0 transducer phased array system can be used to inspect defects in a large plate in the similar manner to the phased array transducers used in medical B-scan ultrasonics. However, very few omnidirectional SH 0 transducers have been proposed so far. In this work, an omnidirectional SH 0 wave piezoelectric transducer (OSH-PT) was proposed, which consists of a ring array of twelve face-shear (d 24 ) trapezoidal PZT elements. Each PZT element can produce face-shear deformation under applied voltage, resulting in circumferential shear deformation in the OSH-PT and omnidirectional SH 0 waves in the hosting plate. Both finite element simulations and experiments were conducted to examine the performance of the proposed OSH-PT. Experimental testing shows that the OSH-PT exhibits good omnidirectional properties, no matter it is used as a SH 0 wave transmitter or a SH 0 wave receiver. This work may greatly promote the applications of SH 0 waves in NDT and SHM. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Implications of Upwells as Hydrodynamic Jets in a Pulse Jet Mixed System

    Energy Technology Data Exchange (ETDEWEB)

    Pease, Leonard F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bamberger, Judith A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-02-28

    This report evaluates the physics of the upwell flow in pulse jet mixed systems in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Although the initial downward flow and radial flow from jets characteristic of pulse jet mixers (PJMs) has been analyzed, the upwells have received considerably less attention despite having significant implications for vessel mixing. Do the upwells behave like jets? How do the upwells scale? When will the central upwell break through? What proportion of the vessel is blended by the upwells themselves? Indeed, how the physics of the central upwell is affected by multiple PJMs (e.g., six in the proposed mixing vessels), non-Newtonian rheology, and significant multicomponent solids loadings remain unexplored.

  6. Dynamic compressive constitutive relation and shearing instability of metallic neodymium

    International Nuclear Information System (INIS)

    Wang Huanran; Cai Canyuan; Chen Danian; Ma Dongfang; Hou Yanjun; Wu Shanxing

    2011-01-01

    Highlights: → Dynamic constitutive relation of Nd was determined in first compression of SHPB. → Deformation of Nd in multi-compression of SHPB were recorded by high-speed camera. → Constitutive relation of Nd was adjusted in modeling large deformation of Nd. → Results of SDDM investigation of recovered Nd specimens showed shearing fracture. → Shearing instability of Nd was estimated with constitutive relation. - Abstract: Based on static tests on MTS and dynamic tests on split Hopkinson pressure bar (SHPB) during the first loading, this study determined the dynamic compressive constitutive relation of metallic Nd. Based on large deformations of metallic Nd specimens generated by the multi-compressive loadings during SHPB tests, and recorded by a high-speed camera, the results of numerical simulations for SHPB test processes were used to extend the determined constitutive relation from small strain to large strain. The shearing instability strain in dynamic compressive deformations of metallic Nd was estimated with the extended constitutive relation according to the criterion given by Batra and Wei, and was compared with the average strain of recovered specimens.

  7. Magnetic properties of cyclically deformed austenite

    Energy Technology Data Exchange (ETDEWEB)

    Das, Arpan, E-mail: dasarpan1@yahoo.co.in

    2014-06-01

    In meta-stable austenitic stainless steels, low cycle fatigue deformation is accompanied by a partial stress/strain-induced solid state phase transformation of paramagnetic γ(fcc) austenite phase to ferromagnetic α{sup /}(bcc) martensite. The measured characteristic of magnetic properties, which are the saturation magnetization, susceptibility, coercivity, retentivity, and the area under the magnetic hysteresis loop are sensitive to the total strain amplitude imposed and the corresponding material behaviour. The morphologies and nucleation characteristics of deformation induced martensites (i.e., ϵ(hcp), α{sup /}(bcc)) have been investigated through analytical transmission electron microscope. It has been observed that deformation induced martensites can nucleate at a number of sites (i.e., shear band intersections, isolated shear bands, shear band–grain boundary intersection, grain boundary triple points, etc.) through multiple transformation sequences: γ(fcc)→ϵ(hcp), γ(fcc)→ϵ(hcp)→α{sup /}(bcc), γ(fcc)→ deformation twin →α{sup /}(bcc) and γ(fcc)→α{sup /}(bcc). - Highlights: • LCF tests were done at various strain amplitudes of 304LNSS. • Quantification of martensite was done through ferritecope. • Magnetic properties were characterised through VSM. • Correlation of magnetic properties with the cyclic plastic response was done. • TEM was done to investigate the transformation micro-mechanisms.

  8. Nanodisturbances in deformed Gum Metal

    International Nuclear Information System (INIS)

    Gutkin, Mikhail Yu.; Ishizaki, Toshitaka; Kuramoto, Shigeru; Ovid'ko, Ilya A.

    2006-01-01

    Systematic experiments have been performed to characterize defect structures in deformed Gum Metal, a special titanium alloy with high strength, low Young's modulus, excellent cold workability and low resistance to shear in certain crystallographic planes. Results from high-resolution transmission electron microscopy characterization reveal nanodisturbances (planar nanoscopic areas of local shear) as typical elements of defect structures in deformed Gum Metal. A theoretical model is suggested describing nanodisturbances as nanoscale dipoles of non-conventional partial dislocations with arbitrary, non-quantized Burgers vectors. It is shown theoretically that the homogeneous generation of nanodisturbances is energetically favorable in Gum Metal, where they effectively carry plastic flow

  9. Bolt Shear Force Sensor

    Science.gov (United States)

    2015-03-12

    0030] FIG. 7 is an isometric view of a deformable ring of the bolt shear force sensor of the present invention with an optical Attorney Docket No...102587 9 of 19 fiber having Bragg gratings wound around the ring; [0031] FIG. 8 is an isometric view of the deformable ring with wire strain... strength . [0047] Once the joint is subjected to an external load (see force arrows “F” and “F/2”); any frictional resistance to slip is overcome and

  10. Large Deformation Constitutive Laws for Isotropic Thermoelastic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Plohr, Bradley J. [Los Alamos National Laboratory; Plohr, Jeeyeon N. [Los Alamos National Laboratory

    2012-07-25

    We examine the approximations made in using Hooke's law as a constitutive relation for an isotropic thermoelastic material subjected to large deformation by calculating the stress evolution equation from the free energy. For a general thermoelastic material, we employ the volume-preserving part of the deformation gradient to facilitate volumetric/shear strain decompositions of the free energy, its first derivatives (the Cauchy stress and entropy), and its second derivatives (the specific heat, Grueneisen tensor, and elasticity tensor). Specializing to isotropic materials, we calculate these constitutive quantities more explicitly. For deformations with limited shear strain, but possibly large changes in volume, we show that the differential equations for the stress components involve new terms in addition to the traditional Hooke's law terms. These new terms are of the same order in the shear strain as the objective derivative terms needed for frame indifference; unless the latter terms are negligible, the former cannot be neglected. We also demonstrate that accounting for the new terms requires that the deformation gradient be included as a field variable

  11. Cap plasticity models and compactive and dilatant pre-failure deformation

    International Nuclear Information System (INIS)

    Fossum, Arlo F.; Fredrich, Joanne T.

    2000-01-01

    At low mean stresses, porous geomaterials fail by shear localization, and at higher mean stresses, they undergo strain-hardening behavior. Cap plasticity models attempt to model this behavior using a pressure-dependent shear yield and/or shear limit-state envelope with a hardening or hardening/softening elliptical end cap to define pore collapse. While these traditional models describe compactive yield and ultimate shear failure, difficulties arise when the behavior involves a transition from compactive to dilatant deformation that occurs before the shear failure or limit-state shear stress is reached. In this work, a continuous surface cap plasticity model is used to predict compactive and dilatant pre-failure deformation. During loading the stress point can pass freely through the critical state point separating compactive from dilatant deformation. The predicted volumetric strain goes from compactive to dilatant without the use of a non-associated flow rule. The new model is stable in that Drucker's stability postulates are satisfied. The study has applications to several geosystems of current engineering interest (oil and gas reservoirs, nuclear waste repositories, buried targets, and depleted reservoirs for possible use for subsurface sequestration of greenhouse gases)

  12. Deformation structure analysis of material at fatigue on the basis of the vector field

    Science.gov (United States)

    Kibitkin, Vladimir V.; Solodushkin, Andrey I.; Pleshanov, Vasily S.

    2017-12-01

    In the paper, spatial distributions of deformation, circulation, and shear amplitudes and shear angles are obtained from the displacement vector field measured by the DIC technique. This vector field and its characteristics of shears and vortices are given as an example of such approach. The basic formulae are also given. The experiment shows that honeycomb deformation structures can arise in the center of a macrovortex at developed plastic flow. The spatial distribution of local circulation and shears is discovered, which coincides with the deformation structure but their amplitudes are different. The analysis proves that the spatial distribution of shear angles is a result of maximum tangential and normal stresses. The anticlockwise circulation of most local vortices obeys the normal Gaussian law in the area of interest.

  13. Magma-assisted strain localization in an orogen-parallel transcurrent shear zone of southern Brazil

    Science.gov (United States)

    Tommasi, AndréA.; Vauchez, Alain; Femandes, Luis A. D.; Porcher, Carla C.

    1994-04-01

    In a lithospheric-scale, orogen-parallel transcurrent shear zone of the Pan-African Dom Feliciano belt of southern Brazil, two successive generations of magmas, an early calc-alkaline and a late peraluminous, have been emplaced during deformation. Microstructures show that these granitoids experienced a progressive deformation from magmatic to solid state under decreasing temperature conditions. Magmatic deformation is indicated by the coexistence of aligned K-feldspar, plagioclase, micas, and/or tourmaline with undeformed quartz. Submagmatic deformation is characterized by strain features, such as fractures, lattice bending, or replacement reactions affecting only the early crystallized phases. High-temperature solid-state deformation is characterized by extensive grain boundary migration in quartz, myrmekitic K-feldspar replacement, and dynamic recrystallization of both K-feldspar and plagioclase. Decreasing temperature during solid-state deformation is inferred from changes in quartz crystallographic fabrics, decrease in grain size of recrystallized feldspars, and lower Ti amount in recrystallized biotites. Final low-temperature deformation is characterized by feldspar replacement by micas. The geochemical evolution of the synkinematic magmatism, from calc-alkaline metaluminous granodiorites with intermediate 87Sr/86Sr initial ratio to peraluminous granites with very high 87Sr/86Sr initial ratio, suggests an early lower crustal source or a mixed mantle/crustal source, followed by a middle to upper crustal source for the melts. Shearing in lithospheric faults may induce partial melting in the lower crust by shear heating in the upper mantle, but, whatever the process initiating partial melting, lithospheric transcurrent shear zones may collect melt at different depths. Because they enhance the vertical permeability of the crust, these zones may then act as heat conductors (by advection), promoting an upward propagation of partial melting in the crust

  14. Dinoflagellate blooms in upwelling systems: Seeding, variability, and contrasts with diatom bloom behaviour

    Science.gov (United States)

    Smayda, T. J.; Trainer, V. L.

    2010-04-01

    The influence of diatom bloom behaviour, dinoflagellate life cycles, propagule type and upwelling bloom cycles on the seeding of dinoflagellate blooms in eastern boundary current upwelling systems is evaluated. Winter-spring diatom bloom behaviour is contrasted with upwelling bloom behaviour because their phenology impacts dinoflagellate blooms. The winter-spring diatom bloom is usually sustained, whereas the classical upwelling diatom bloom occurs as a series of separate, recurrent mini-blooms intercalated by upwelling-relaxation periods, during which dinoflagellates often bloom. Four sequential wind-regulated phases characterize upwelling cycles, with each phase having different effects on diatom and dinoflagellate bloom behaviour: bloom “spin up”, bloom maximum, bloom “spin down”, and upwelling relaxation. The spin up - bloom maximum is the period of heightened diatom growth; the spin down - upwelling-relaxation phases are the periods when dinoflagellates often bloom. The duration, intensity and ratio of the upwelling and relaxation periods making up upwelling cycles determine the potential for dinoflagellate blooms to develop within a given upwelling cycle and prior to the subsequent “spin up” of upwelling that favours diatom blooms. Upwelling diatoms and meroplanktonic dinoflagellates have three types of propagules available to seed blooms: vegetative cells, resting cells and resting cysts. However, most upwelling dinoflagellates are holoplanktonic, which indicates that the capacity to form resting cysts is not an absolute requirement for growth and survival in upwelling systems. The long-term (decadal) gaps in bloom behaviour of Gymnodinium catenatum and Lingulodinium polyedrum, and the unpredictable bloom behaviour of dinoflagellates generally, are examined from the perspective of seeding strategies. Mismatches between observed and expected in situ bloom behaviour and resting cyst dynamics are common among upwelling dinoflagellates. This

  15. Geological ductile deformation mapping at the Olkiluoto site, Eurajoki, Finland

    Energy Technology Data Exchange (ETDEWEB)

    Engstroem, J. [Geological Survey of Finland, Espoo (Finland)

    2013-12-15

    During 2010-2012 eight larger excavated and cleaned outcrops were investigated to study the polyphase nature of the ductile deformation within the Olkiluoto Island. A detailed structural geological mapping together with a thin section study was performed to get a broader and better understanding of the nature and occurrence of these different ductile deformation phases. These outcrops were selected to represent all different ductile deformation phases recognized earlier during the site investigations. The relicts of primary sedimentary structures and products of the earliest deformations (D{sub 0}-D{sub 1}) are mostly obscured by later deformation events. The D{sub 2}-D{sub 4} is the most significant ductile deformation phases occurring on the Olkiluoto Island and almost all structural features can be labeled within these three phases. The outcrops for this investigation were selected mostly from the eastern part of the Olkiluoto Island because that part of the Island has been less investigated previously. As a reference, one outcrop was selected in the western part of the Island where it was previously known that this location had especially well preserved structures of the second deformation phase (D{sub 2}). The S{sub 2} foliation is E-W orientated with moderate dip towards south. A few folds can be associated with this deformational event, mostly having a tight to isoclinal character. During D{sub 3} the migmatites were re-deformed and migrated leucosomes, were intruded mainly parallel to S{sub 3} axial surfaces having a NE-SW orientation. Generally the dip of the S{sub 3} axial surfaces is slightly more steeper (55- 65 deg C) than that of the S{sub 2} axial surfaces, which shows a more moderate dip (40-65 deg C). F{sub 3} fold structures are quite common in the eastern part of Island showing asymmetrical, overturned, shear folds usually with a dextral sense of shear. Large scale D{sub 3} shear structures contain blastomylonites as characteristic fault rocks

  16. Finite Strain Analysis of the Wadi Fatima Shear Zone in Western Arabia, Saudi Arabia

    Science.gov (United States)

    Kassem, O. M. K.; Hamimi, Z.

    2018-03-01

    Neoproterozoic rocks, Oligocene to Neogene sediments and Tertiary Red Sea rift-related volcanics (Harrat) are three dominant major groups exposed in the Jeddah tectonic terrane in Western Arabia. The basement complex comprises amphibolites, schists, and older and younger granites unconformably overlain by a post-amalgamation volcanosedimentary sequence (Fatima Group) exhibiting post-accretionary thrusting and thrust-related structures. The older granites and/or the amphibolites and schists display mylonitization and shearing in some outcrops, and the observed kinematic indicators indicate dextral monoclinic symmetry along the impressive Wadi Fatima Shear Zone. Finite strain analysis of the mylonitized lithologies is used to interpret the deformation history of the Wadi Fatima Shear Zone. The measured finite strain data demonstrate that the amphibolites, schists, and older granites are mildly to moderately deformed, where XZ (axial ratios in XZ direction) vary from 2.76 to 4.22 and from 2.04 to 3.90 for the Rf/φ and Fry method respectively. The shortening axes ( Z) have subvertical attitude and are associated with subhorizontal foliation. The data show oblate strain ellipsoids in the different rocks in the studied area and indication bulk flattening strain. We assume that the different rock types have similar deformation behavior. In the deformed granite, the strain data are identical in magnitude with those obtained in the Fatima Group volcanosedimentary sequence. Finite strain accumulated without any significant volume change contemporaneously with syn-accretionary transpressive structures. It is concluded that a simple-shear deformation with constant-volume plane strain exists, where displacement is strictly parallel to the shear plane. Furthermore, the contacts between various lithological units in the Wadi Fatima Shear Zone were formed under brittle to semi-ductile deformation conditions.

  17. Geometrically nonlinear resonance of higher-order shear deformable functionally graded carbon-nanotube-reinforced composite annular sector plates excited by harmonic transverse loading

    Science.gov (United States)

    Gholami, Raheb; Ansari, Reza

    2018-02-01

    This article presents an attempt to study the nonlinear resonance of functionally graded carbon-nanotube-reinforced composite (FG-CNTRC) annular sector plates excited by a uniformly distributed harmonic transverse load. To this purpose, first, the extended rule of mixture including the efficiency parameters is employed to approximately obtain the effective material properties of FG-CNTRC annular sector plates. Then, the focus is on presenting the weak form of discretized mathematical formulation of governing equations based on the variational differential quadrature (VDQ) method and Hamilton's principle. The geometric nonlinearity and shear deformation effects are considered based on the von Kármán assumptions and Reddy's third-order shear deformation plate theory, respectively. The discretization process is performed via the generalized differential quadrature (GDQ) method together with numerical differential and integral operators. Then, an efficient multi-step numerical scheme is used to obtain the nonlinear dynamic behavior of the FG-CNTRC annular sector plates near their primary resonance as the frequency-response curve. The accuracy of the present results is first verified and then a parametric study is presented to show the impacts of CNT volume fraction, CNT distribution pattern, geometry of annular sector plate and sector angle on the nonlinear frequency-response curve of FG-CNTRC annular sector plates with different edge supports.

  18. An accurate higher order displacement model with shear and normal deformations effects for functionally graded plates

    Energy Technology Data Exchange (ETDEWEB)

    Jha, D.K., E-mail: dkjha@barc.gov.in [Civil Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kant, Tarun [Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India); Srinivas, K. [Civil Engineering Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Singh, R.K. [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2013-12-15

    Highlights: • We model through-thickness variation of material properties in functionally graded (FG) plates. • Effect of material grading index on deformations, stresses and natural frequency of FG plates is studied. • Effect of higher order terms in displacement models is studied for plate statics. • The benchmark solutions for the static analysis and free vibration of thick FG plates are presented. -- Abstract: Functionally graded materials (FGMs) are the potential candidates under consideration for designing the first wall of fusion reactors with a view to make best use of potential properties of available materials under severe thermo-mechanical loading conditions. A higher order shear and normal deformations plate theory is employed for stress and free vibration analyses of functionally graded (FG) elastic, rectangular, and simply (diaphragm) supported plates. Although FGMs are highly heterogeneous in nature, they are generally idealized as continua with mechanical properties changing smoothly with respect to spatial coordinates. The material properties of FG plates are assumed here to vary through thickness of plate in a continuous manner. Young's modulii and material densities are considered to be varying continuously in thickness direction according to volume fraction of constituents which are mathematically modeled here as exponential and power law functions. The effects of variation of material properties in terms of material gradation index on deformations, stresses and natural frequency of FG plates are investigated. The accuracy of present numerical solutions has been established with respect to exact three-dimensional (3D) elasticity solutions and the other models’ solutions available in literature.

  19. An accurate higher order displacement model with shear and normal deformations effects for functionally graded plates

    International Nuclear Information System (INIS)

    Jha, D.K.; Kant, Tarun; Srinivas, K.; Singh, R.K.

    2013-01-01

    Highlights: • We model through-thickness variation of material properties in functionally graded (FG) plates. • Effect of material grading index on deformations, stresses and natural frequency of FG plates is studied. • Effect of higher order terms in displacement models is studied for plate statics. • The benchmark solutions for the static analysis and free vibration of thick FG plates are presented. -- Abstract: Functionally graded materials (FGMs) are the potential candidates under consideration for designing the first wall of fusion reactors with a view to make best use of potential properties of available materials under severe thermo-mechanical loading conditions. A higher order shear and normal deformations plate theory is employed for stress and free vibration analyses of functionally graded (FG) elastic, rectangular, and simply (diaphragm) supported plates. Although FGMs are highly heterogeneous in nature, they are generally idealized as continua with mechanical properties changing smoothly with respect to spatial coordinates. The material properties of FG plates are assumed here to vary through thickness of plate in a continuous manner. Young's modulii and material densities are considered to be varying continuously in thickness direction according to volume fraction of constituents which are mathematically modeled here as exponential and power law functions. The effects of variation of material properties in terms of material gradation index on deformations, stresses and natural frequency of FG plates are investigated. The accuracy of present numerical solutions has been established with respect to exact three-dimensional (3D) elasticity solutions and the other models’ solutions available in literature

  20. The importance of strain localisation in shear zones

    Science.gov (United States)

    Bons, Paul D.; Finch, Melanie; Gomez-Rivas, Enrique; Griera, Albert; Llorens, Maria-Gema; Steinbach, Florian; Weikusat, Ilka

    2016-04-01

    The occurrence of various types of shear bands (C, C', C'') in shear zones indicate that heterogeneity of strain is common in strongly deformed rocks. However, the importance of strain localisation is difficult to ascertain if suitable strain markers are lacking, which is usually the case. Numerical modelling with the finite-element method has so far not given much insight in the development of shear bands. We suggest that this is not only because the modelled strains are often not high enough, but also because this technique (that usually assumes isotropic material properties within elements) does not properly incorporate mineral deformation behaviour. We simulated high-strain, simple-shear deformation in single- and polyphase materials with a full-field theory (FFT) model coupled to the Elle modelling platform (www.elle.ws; Lebensohn 2001; Bons et al. 2008). The FFT-approach simulates visco-plastic deformation by dislocation glide, taking into account the different available slip systems and their critical resolved shear stresses in relations to the applied stresses. Griera et al. (2011; 2013) have shown that this approach is particularly well suited for strongly anisotropic minerals, such as mica and ice Ih (Llorens 2015). We modelled single- and polyphase composites of minerals with different anisotropies and strengths, roughly equivalent to minerals such as ice Ih, mica, quartz and feldspar. Single-phase polycrystalline aggregates show distinct heterogeneity of strain rate, especially in case of ice Ih, which is mechanically close to mica (see also Griera et al. 2015). Finite strain distributions are heterogeneous as well, but the patterns may differ from that of the strain rate distribution. Dynamic recrystallisation, however, usually masks any strain and strain rate localisation (Llorens 2015). In case of polyphase aggregates, equivalent to e.g. a granite, we observe extensive localisation in both syn- and antithetic shear bands. The antithetic shear bands

  1. Fifty years of shear zones

    Science.gov (United States)

    Graham, Rodney

    2017-04-01

    We are here, of course, because 1967 saw the publication of John Ramsay's famous book. Two years later a memorable field trip from Imperial College to the Outer Hebrides saw John on a bleak headland on the coast of North Uist where a relatively undeformed metadolerite within Lewisian (Precambrian) gneisses contained ductile shear zones with metamorphic fabrics in amphibolite facies. One particular outcrop was very special - a shear zone cutting otherwise completely isotropic, undeformed metadolerite, with an incremental foliation starting to develop at 45° to the deformation zone, and increasing in intensity as it approached the shear direction. Here was proof of the process of simple shear under ductile metamorphic conditions - the principles of simple shear outlined in John Ramsay's 1967 book clearly visible in nature, and verified by Ramsay's mathematical proofs in the eventual paper (Ramsay and Graham, 1970). Later work on the Lewisian on the mainland of Scotland, in South Harris, in Africa, and elsewhere applied Ramsay's simple shear principles more liberally, more imprecisely and on larger scale than at Caisteal Odair, but in retrospect it documented what seems now to be the generality of mid and lower crustal deformation. Deep seismic reflection data show us that on passive margins hyper-stretched continental crust (whether or not cloaked by Seaward Dipping Reflectors) seems to have collapsed onto the mantle. Crustal faults mostly sole out at or above the mantle - so the Moho is a detachment- an 'outer marginal detachment', if you like, and, of course, it must be a ductile shear. On non-volcanic margins this shear zone forms the first formed ocean floor before true sea floor spreading gets going to create real oceanic crust. Gianreto Manatschal, Marcel Lemoine and others realised that the serpentinites described in parts of the Alps are exposed remnants of this ductile shear zone. Associated ophicalcite breccias tell of sea floor exposure, while high

  2. Multiscale mechanical integrity of human supraspinatus tendon in shear after elastin depletion.

    Science.gov (United States)

    Fang, Fei; Lake, Spencer P

    2016-10-01

    Human supraspinatus tendon (SST) exhibits region-specific nonlinear mechanical properties under tension, which have been attributed to its complex multiaxial physiological loading environment. However, the mechanical response and underlying multiscale mechanism regulating SST behavior under other loading scenarios are poorly understood. Furthermore, little is known about the contribution of elastin to tendon mechanics. We hypothesized that (1) SST exhibits region-specific shear mechanical properties, (2) fiber sliding is the predominant mode of local matrix deformation in SST in shear, and (3) elastin helps maintain SST mechanical integrity by facilitating force transfer among collagen fibers. Through the use of biomechanical testing and multiphoton microscopy, we measured the multiscale mechanical behavior of human SST in shear before and after elastase treatment. Three distinct SST regions showed similar stresses and microscale deformation. Collagen fiber reorganization and sliding were physical mechanisms observed as the SST response to shear loading. Measures of microscale deformation were highly variable, likely due to a high degree of extracellular matrix heterogeneity. After elastase treatment, tendon exhibited significantly decreased stresses under shear loading, particularly at low strains. These results show that elastin contributes to tendon mechanics in shear, further complementing our understanding of multiscale tendon structure-function relationships. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Plastic deformation in nano-scale multilayer materials — A biomimetic approach based on nacre

    Energy Technology Data Exchange (ETDEWEB)

    Lackner, Juergen M., E-mail: juergen.lackner@joanneum.at [JOANNEUM RESEARCH Forschungsges.m.b.H., Institute for Surface Technologies and Photonics, Functional Surfaces, Leobner Strasse 94, A-8712 Niklasdorf (Austria); Waldhauser, Wolfgang [JOANNEUM RESEARCH Forschungsges.m.b.H., Institute for Surface Technologies and Photonics, Functional Surfaces, Leobner Strasse 94, A-8712 Niklasdorf (Austria); Major, Boguslaw; Major, Lukasz [Polish Academy of Sciences, Institute of Metallurgy and Materials Sciences, IMIM-PAN, ul. Reymonta 25, PL-30059 Krakow (Poland); Kot, Marcin [University of Science and Technology, AGH, Aleja Adama Mickiewicza 30, 30-059 Krakow (Poland)

    2013-05-01

    The paper reports about a biomimetic based comparison of deformation in magnetron sputtered multilayer coatings based on titanium (Ti), titanium nitride (TiN) and diamond-like carbon (DLC) layers and the deformation mechanisms in nacre of mollusc shells. Nacre as highly mineralized tissue combines high stiffness and hardness with high toughness, enabling resistance to fracture and crack propagation during tensile loading. Such behaviour is based on a combination of load transmission by tensile stressed aragonite tablets and shearing in layers between the tablets. Shearing in these polysaccharide and protein interlayers demands hydrated conditions. Otherwise, nacre has similar brittle behaviour to aragonite. To prevent shear failure, shear hardening occurs by progressive tablet locking due to wavy dovetail-like surface geometry of the tablets. Similar effects by shearing and strain hardening mechanisms were found for Ti interlayers between TiN and DLC layers in high-resolution transmission electron microscopy studies, performed in deformed zones beneath spherical indentations. 7 nm thin Ti films are sufficient for strong toughening of the whole multi-layered coating structure, providing a barrier for propagation of cracks, starting from tensile-stressed, hard, brittle TiN or DLC layers. - Highlights: • Biomimetic approach to TiN-diamond-like carbon (DLC) multilayers by sputtering • Investigation of deformation in/around hardness indents by HR-TEM • Plastic deformation with shearing in 7-nm thick Ti interlayers in TiN–DLC multilayers • Biomimetically comparable to nacre deformation.

  4. Dilatancy induced ductile-brittle transition of shear band in metallic glasses

    Science.gov (United States)

    Zeng, F.; Jiang, M. Q.; Dai, L. H.

    2018-04-01

    Dilatancy-generated structural disordering, an inherent feature of metallic glasses (MGs), has been widely accepted as the physical mechanism for the primary origin and structural evolution of shear banding, as well as the resultant shear failure. However, it remains a great challenge to determine, to what degree of dilatation, a shear banding will evolve into a runaway shear failure. In this work, using in situ acoustic emission monitoring, we probe the dilatancy evolution at the different stages of individual shear band in MGs that underwent severely plastic deformation by the controlled cutting technology. A scaling law is revealed that the dilatancy in a shear band is linearly related to its evolution degree. A transition from ductile-to-brittle shear bands is observed, where the formers dominate stable serrated flow, and the latter lead to a runaway instability (catastrophe failure) of serrated flow. To uncover the underlying mechanics, we develop a theoretical model of shear-band evolution dynamics taking into account an atomic-scale deformation process. Our theoretical results agree with the experimental observations, and demonstrate that the atomic-scale volume expansion arises from an intrinsic shear-band evolution dynamics. Importantly, the onset of the ductile-brittle transition of shear banding is controlled by a critical dilatation.

  5. Local Upper Mantle Upwelling beneath New England: Evidence from Seismic Anisotropy.

    Science.gov (United States)

    Levin, V. L.; Long, M. D.; Lopez, I.; Li, Y.; Skryzalin, P. A.

    2017-12-01

    The upper mantle beneath eastern North America contains regions where seismic wave speed is significantly reduced. As they cut across the trend of the Appalachian terranes, these anomalies likely post-date the Paleozoic assembly of Pangea. Most prominent of them, the North Appalachian Anomaly (NAA), has been alternatively explained by the localized disruption of lithospheric fabric, the passage of the Great Meteor Hot Spot, and the current local upwelling of the asthenosphere. Comprehensive mapping of shear wave splitting identified a local perturbation of an otherwise uniform regional pattern, with no apparent splitting occurring at a site within the NAA. To evaluate the reality of this apparent localized disruption in the anisotropic fabric of the upper mantle beneath northeastern North America we used observations of shear wave splitting from a set of long-running observatories not included in previous studies. Three methods of evaluating shear wave splitting (rotation-correlation, minimization of the transverse component, and the splitting intensity) yield complementary results. We show that splitting of core-refracted shear waves within the outline of the NAA is significantly weaker than towards its edges and beyond them (Figure 1). Average fast orientations are close to the absolute plate motion in the hot-spot reference frame, thus we can attribute a large fraction of this signal to the coherently sheared sub-lithospheric upper mantle. A decrease in average delay we observe, from 1 s outside the NAA to under 0.2 s within it, translates into a reduction of the vertical extent of the sheared layer from 130 km to 16 km (assuming 4% anisotropy), or alternatively into a weakening of the azimuthal anisotropy from 5% to 0.6% (assuming a 100 km thick layer). The splitting reduction within the NAA is consistent with a localized change in anisotropic fabric that would be expected in case of geologically recent sub-vertical flow overprinting the broadly uniform upper

  6. Static Analysis of Laminated Composite Plate using New Higher Order Shear Deformation Plate Theory

    Directory of Open Access Journals (Sweden)

    Ibtehal Abbas Sadiq

    2017-02-01

    Full Text Available In the present work a theoretical analysis depending on the new higher order . element in shear deformation theory for simply supported cross-ply laminated plate is developed. The new displacement field of the middle surface expanded as a combination of exponential and trigonometric function of thickness coordinate with the transverse displacement taken to be constant through the thickness. The governing equations are derived using Hamilton’s principle and solved using Navier solution method to obtain the deflection and stresses under uniform sinusoidal load. The effect of many design parameters such as number of laminates, aspect ratio and thickness ratio on static behavior of the laminated composite plate has been studied. The modal of the present work has been verified by comparing the results of shape functions with that were obtained by other workers. Result shows the good agreement with 3D elasticity solution and that published by other researchers.

  7. The future of coastal upwelling in the Humboldt current from model projections

    Science.gov (United States)

    Oyarzún, Damián; Brierley, Chris M.

    2018-03-01

    The Humboldt coastal upwelling system in the eastern South Pacific ocean is one of the most productive marine ecosystems in the world. A weakening of the upwelling activity could lead to severe ecological impacts. As coastal upwelling in eastern boundary systems is mainly driven by wind stress, most studies so far have analysed wind patterns change through the 20th and 21st Centuries in order to understand and project the phenomenon under specific forcing scenarios. Mixed results have been reported, and analyses from General Circulation Models have suggested even contradictory trends of wind stress for the Humboldt system. In this study, we analyse the ocean upwelling directly in 13 models contributing to phase 5 of the Coupled Model Intercomparison Project (CMIP5) in both the historical simulations and an extreme climate change scenario (RCP8.5). The upwelling is represented by the upward ocean mass flux, a newly-included variable that represents the vertical water transport. Additionally, wind stress, ocean stratification, Ekman layer depth and thermocline depth were also analysed to explore their interactions with coastal upwelling throughout the period studied. The seasonal cycle of coastal upwelling differs between the Northern and Southern Humboldt areas. At lower latitudes, the upwelling season spans most of the autumn, winter and spring. However, in the Southern Humboldt area the upwelling season takes place in spring and the summertime with downwelling activity in winter. This persists throughout the Historical and RCP8.5 simulations. For both the Northern and Southern Humboldt areas an increasing wind stress is projected. However, different trends of upwelling intensity are observed away from the sea surface. Whereas wind stress will continue controlling the decadal variability of coastal upwelling on the whole ocean column analysed (surface to 300 m depth), an increasing disconnect with upwelling intensity is projected below 100 m depth throughout the 21

  8. Staircase bands in 105,107,109Ag: fingerprint of interplay between shears mechanism and collective rotation

    International Nuclear Information System (INIS)

    Das, B.; Rather, Niyaz; Datta, P.

    2015-01-01

    Shears mechanism in weakly deformed nuclei has been firmly established by numerous experimental observations since its inception by S. Fruaendorf in early nineties. On the contrary, the scope of Shears mode of excitation in moderately deformed nuclei is a less explored territory. The Shears mechanism is primarily identified in bands having strong M1 transitions with increasing energies as well as falling B(M1) rates as a function of angular momentum. On the other hand, the presence of M1 energy staggering in odd and odd-odd nuclei indicates that the signature is a good quantum number which corresponds to collective rotation. It is interesting to note that nuclei near Z=50 shell closure are moderately deformed as well as Shears structure develop at higher excitation with quasi-particles alignment. To be specific, the moderately deformed Ag nuclei are good candidates for such study as the high spin states are predominantly generated by the valance neutrons in low-Ω orbitals of h 11/2 and the valance protons in high-Ω orbitals of g 9/2 which forms a Shears structure

  9. Interfacial stresses in strengthened beam with shear cohesive zone ...

    Indian Academy of Sciences (India)

    The results of parametric study are compared with those of Smith and Teng. They confirm the accuracy of the proposed approach in predicting both interfacial shear and normal stresses. Keywords. Strengthened beam; interfacial stresses; cohesive zone; shear deformation. 1. Introduction. The FRP plates can be either ...

  10. Stability of surface plastic flow in large strain deformation of metals

    Science.gov (United States)

    Viswanathan, Koushik; Udapa, Anirduh; Sagapuram, Dinakar; Mann, James; Chandrasekar, Srinivasan

    We examine large-strain unconstrained simple shear deformation in metals using a model two-dimensional cutting system and high-speed in situ imaging. The nature of the deformation mode is shown to be a function of the initial microstructure state of the metal and the deformation geometry. For annealed metals, which exhibit large ductility and strain hardening capacity, the commonly assumed laminar flow mode is inherently unstable. Instead, the imposed shear is accommodated by a highly rotational flow-sinuous flow-with vortex-like components and large-amplitude folding on the mesoscale. Sinuous flow is triggered by a plastic instability on the material surface ahead of the primary region of shear. On the other hand, when the material is extensively strain-hardened prior to shear, laminar flow again becomes unstable giving way to shear banding. The existence of these flow modes is established by stability analysis of laminar flow. The role of the initial microstructure state in determining the change in stability from laminar to sinuous / shear-banded flows in metals is elucidated. The implications for cutting, forming and wear processes for metals, and to surface plasticity phenomena such as mechanochemical Rehbinder effects are discussed.

  11. Extracting a Purely Non-rigid Deformation Field of a Single Structure

    Science.gov (United States)

    Demirci, Stefanie; Manstad-Hulaas, Frode; Navab, Nassir

    During endovascular aortic repair (EVAR) treatment, the aortic shape is subject to severe deformation that is imposed by medical instruments such as guide wires, catheters, and the stent graft. The problem definition of deformable registration of images covering the entire abdominal region, however, is highly ill-posed. We present a new method for extracting the deformation of an aneurysmatic aorta. The outline of the procedure includes initial rigid alignment of two abdominal scans, segmentation of abdominal vessel trees, and automatic reduction of their centerline structures to one specified region of interest around the aorta. Our non-rigid registration procedure then only computes local non-rigid deformation and leaves out all remaining global rigid transformations. In order to evaluate our method, experiments for the extraction of aortic deformation fields are conducted on 15 patient datasets from endovascular aortic repair (EVAR) treatment. A visual assessment of the registration results were performed by two vascular surgeons and one interventional radiologist who are all experts in EVAR procedures.

  12. How marine upwelling influences the distribution of Artemesia longinaris (Decapoda: Penaeoidea?

    Directory of Open Access Journals (Sweden)

    Gustavo S Sancinetti

    2014-05-01

    Full Text Available Upwelling events can occur in most of the oceans altering the water physical, chemical and sediment conditions and consequently the species communities dwelling the areas. For better understanding the behavior of populations inhabiting upwelling regions, the spatial and temporal distribution of a Penaeoidea shrimp was studied correlating it with the abiotic factors that vary during upwelling and non-upwelling periods in an area under influence of Cabo Frio upwelling. Bottom salinity and temperature, organic matter and sediment type from each station were sampled from March 2008 to February 2010, in six stations located between 5 and 45 m depth. The lowest temperatures were recorded during spring and summer for both years with temperature values lower than 19ºC. A total of 26,466 Artemesia longinaris shrimps were captured mainly in 10-35 m depth. Upwelling periods showed significant differences in abundance in relation to non-upwelling periods. The spatial distribution among stations varied according to the temperature with higher abundance in stations with values between 19 and 21ºC. The highest abundance of A. longinaris was recorded in spring and summer when intrusions of the cold waters of South Atlantic Central Waters (SACW were frequent. Thus, the effect of cold water of SACW boosted by the upwelling was a determinant factor in the spatial and temporal distribution of A. longinaris in the studied region.

  13. Thermal convection of viscoelastic shear-thinning fluids

    International Nuclear Information System (INIS)

    Albaalbaki, Bashar; Khayat, Roger E; Ahmed, Zahir U

    2016-01-01

    The Rayleigh–Bénard convection for non-Newtonian fluids possessing both viscoelastic and shear-thinning behaviours is examined. The Phan-Thien–Tanner (PTT) constitutive equation is implemented to model the non-Newtonian character of the fluid. It is found that while the shear-thinning and viscoelastic effects could annihilate one another for the steady roll flow, presence of both behaviours restricts the roll stability limit significantly compared to the cases when the fluid is either inelastic shear-thinning or purely viscoelastic with constant viscosity. (paper)

  14. Interactions between trophic levels in upwelling and non-upwelling regions during summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Malik, A; Fernandes, C.E.G.; Gonsalves, M.J.B.D.; Subina, N.S.; Mamatha, S.S.; Krishna, K.S.; Varik, S.; RituKumari; Gauns, M.; Cejoice, R.P.; Pandey, S.S.; Jineesh, V.K.; Kamaleson, A; Vijayan, V.; Mukherjee, I.; Subramanyan, S.; Nair, S.; Ingole, B.S.; LokaBharathi, P.A

    Coastal upwelling is a regular phenomenon occurring along the southwest coast of India during summer monsoon (May–September). We hypothesize that there could be a shift in environmental parameters along with changes in the network of interactions...

  15. Computer simulation of plastic deformation in irradiated metals

    International Nuclear Information System (INIS)

    Colak, U.

    1989-01-01

    A computer-based model is developed for the localized plastic deformation in irradiated metals by dislocation channeling, and it is applied to irradiated single crystals of niobium. In the model, the concentrated plastic deformation in the dislocation channels is postulated to occur by virtue of the motion of dislocations in a series of pile-tips on closely spaced parallel slip planes. The dynamics of this dislocation motion is governed by an experimentally determined dependence of dislocation velocity on shear stress. This leads to a set of coupled differential equations for the positions of the individual dislocations in the pile-up as a function of time. Shear displacement in the channel region is calculated from the total distance traveled by the dislocations. The macroscopic shape change in single crystal metal sheet samples is determined by the axial displacement produced by the shear displacements in the dislocation channels. Computer simulations are performed for the plastic deformation up to 20% engineering strain at a constant strain rate. Results of the computer calculations are compared with experimental observations of the shear stress-engineering strain curve obtained in tensile tests described in the literature. Agreement between the calculated and experimental stress-strain curves is obtained for shear displacement of 1.20-1.25 μm and 1000 active slip planes per channel, which is reasonable in the view of experimental observations

  16. Research and tests of steel-concrete-steel sandwich composite shear wall in reactor containment of HTR-PM

    International Nuclear Information System (INIS)

    Sun Yunlun; Huang Wen; Zhang Ran; Zhang Pei; Tian Chunyu

    2014-01-01

    By quasi-static test of 8 specimens of steel-concrete-steel sandwich composite shear wall, the bearing capacity, hysteretic behavior, failure mode of the specimens was studied. So was the effect of the shear-span ratios, steel ratios and spacing of studs on the properties of the specimens. The failure patterns of all specimens with different shear-span ratios between 1.0 and 1.5 were compression-bending failure. The hysteretic curves of all specimens were relatively plump, which validated the well deformability and energy dissipation capacity of the specimens. When shear-span ratio less than 1.5, the shear property of the steel plate was well played, and so was the deformability of the specimens. The bigger the steel ratio was, the better the lateral resistance capacity and the deformability was. Among the spacing of studs in the test, the spacing of studs had no significant effect on the bearing capacity, deformability and ductility of the specimens. Based on the principle of superposition an advised formula for the compression-bending capacity of the shear wall was proposed, which fitted well with the test result and had a proper safety margin. (author)

  17. Shear crack formation and propagation in fiber reinforced cementitious composites (FRCC)

    DEFF Research Database (Denmark)

    Paegle, Ieva; Fischer, Gregor

    2011-01-01

    Knowledge of the mechanisms controlling crack formation, propagation and failure of FRCC under shear loading is currently limited. This paper presents a study that utilized photogrammetry to monitor the shear deformations of two FRCC materials and ordinary concrete (OC). Multiple shear cracks...... and strain hardening of both FRCC materials was observed under shear loading. The influence of fibers, fiber type, including polyvinyl alcohol (PVA) and polypropylene (PP) fibers, and shear crack angle were investigated. Based upon photogrammetric results, fundamental descriptions of shear crack opening...

  18. Shear crack formation and propagation in fiber reinforced cementitious composites (FRCC)

    DEFF Research Database (Denmark)

    Paegle, Ieva; Fischer, Gregor

    2012-01-01

    Knowledge of the mechanisms controlling crack formation, propagation and failure of FRCC under shear loading is currently limited. This paper presents a study that utilized photogrammetry to monitor the shear deformations of two FRCC materials and ordinary concrete (OC). Multiple shear cracks...... and strain hardening of both FRCC materials was observed under shear loading. The influence of fibers, fiber type, including polyvinyl alcohol (PVA) and polypropylene (PP) fibers, and shear crack angle were investigated. Based upon photogrammetric results, fundamental descriptions of shear crack opening...

  19. Adiabatic shear localization in a near beta Ti–5Al–5Mo–5 V–1Cr–1Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingfeng, E-mail: biw009@ucsd.edu [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Key Lab of Nonferrous Materials, Ministry of Education, Central South University, Changsha 410083, Hunan (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego (United States); Sun, Jieying; Wang, Xiaoyan; Fu, Ao [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China)

    2015-07-15

    Adiabatic shear localization plays an important role in the deformation and failure of near beta Ti–5Al–5Mo–5 V–1Cr–1Fe alloy used in aircraft's gear at high rate deformation. Hat shaped specimens with different nominal shear strains are used to induce the formation of an adiabatic shear band under controlled shock-loading experiments. When the nominal shear strain is about 0.68, unstable shear deformation of the alloy emerges after the true flow stress reaches 1100 MPa, the first vibration peak during the split Hopkinson pressure bar testing, and the whole process lasts about 62 μs. The microstructures within the shear band in the Ti–5Al–5Mo–5V–1Cr–1Fe alloy are investigated by means of optical microscopy, scanning electron microscopy and transmission electron microscopy. Phase transformation occurs in the shear band when the nominal shear strain increases to 0.68. A number of equiaxed grains with sizes 50–200 nm and alpha″-phase are in the center of the shear band. Kinetic calculations indicate that during the deformation process, the recrystallized nanosized grains can be formed in the shear band by way of the subgrain boundaries rotation, and the alpha″ phase transformation start after the subgrain boundaries rotated to 30°.

  20. Atomic mechanism of shear localization during indentation of a nanostructured metal

    International Nuclear Information System (INIS)

    Sansoz, F.; Dupont, V.

    2007-01-01

    Shear localization is an important mode of deformation in nanocrystalline metals. However, it is very difficult to verify the existence of local shear planes in nanocrystalline metals experimentally. Sharp indentation techniques may provide novel opportunities to investigate the effect of shear localization at different length scales, but the relationship between indentation response and atomic-level shear band formation has not been fully addressed. This paper describes an effort to provide direct insight on the mechanism of shear localization during indentation of nanocrystalline metals from atomistic simulations. Molecular statics is performed with the quasi-continuum method to simulate the indentation of single crystal and nanocrystalline Al with a sharp cylindrical probe. In the nanocrystalline regime, two grain sizes are investigated, 5 nm and 10 nm. We find that the indentation of nanocrystalline metals is characterized by serrated plastic flow. This effect seems to be independent of the grain size. Serration in nanocrystalline metals is found to be associated with the formation of shear bands by sliding of aligned interfaces and intragranular slip, which results in deformation twinning

  1. Free vibration analysis of beams by using a third-order shear ...

    Indian Academy of Sciences (India)

    Free vibrations of beams; the third-order shear deformation theory; ... Thus, a shear correction factor is required to compensate for the error because of ...... Wang C M, Kitipornchai S 2003 Vibration of Timoshenko beams with internal hinge.

  2. The Cora Lake Shear Zone: Strain Localization in an Ultramylonitic, Deep Crustal Shear Zone, Athabasca Granulite Terrain, Western Churchill Province, Canada

    Science.gov (United States)

    Regan, S.; Williams, M. L.; Mahan, K. H.; Orlandini, O. F.; Jercinovic, M. J.; Leslie, S. R.; Holland, M.

    2012-12-01

    Ultramylonitic shear zones typically involve intense strain localization, and when developed over large regions can introduce considerable heterogeneity into the crust. The Cora Lake shear zone (CLsz) displays several 10's to 100's of meters-wide zones of ultramylonite distributed throughout its full 3-5 km mylonitized width. Detailed mapping, petrography, thermobarometry, and in-situ monazite geochronology suggest that it formed during the waning phases of granulite grade metamorphism and deformation, within one of North America's largest exposures of polydeformed lower continental crust. Anastomosing zones of ultramylonite contain recrystallized grain-sizes approaching the micron scale and might appear to suggest lower temperature mylonitization. However, feldspar and even clinopyroxene are dynamically recrystallized, and quantitative thermobarometry of syn-deformational assemblages indicate high P and T conditions ranging from 0.9 -10.6 GPa and 775-850 °C. Even at these high T's, dynamic recovery and recrystallization were extremely limited. Rocks with low modal quartz have extremely small equilibrium volumes. This is likely the result of inefficient diffusion, which is further supported by the unannealed nature of the crystals. Local carbonate veins suggests that H2O poor, CO2 rich conditions may have aided in the preservation of fine grain sizes, and may have inhibited dynamic recovery and recrystallization. The Cora Lake shear zone is interpreted to have been relatively strong and to have hardened during progressive deformation. Garnet is commonly fractured perpendicular to host rock fabric, and statically replaced by both biotite and muscovite. Pseudotachylite, with the same sense of shear, occurs in several ultramylonitized mafic granulites. Thus, cataclasis and frictional melt are interpreted to have been produced in the lower continental crust, not during later reactivation. We suggest that strengthening of rheologically stiffer lithologies led to

  3. Refined shear correction factor for very thick simply supported and uniformly loaded isosceles right triangular auxetic plates

    International Nuclear Information System (INIS)

    Lim, Teik-Cheng

    2016-01-01

    For moderately thick plates, the use of First order Shear Deformation Theory (FSDT) with a constant shear correction factor of 5/6 is sufficient to take into account the plate deflection arising from transverse shear deformation. For very thick plates, the use of Third order Shear Deformation Theory (TSDT) is preferred as it allows the shear strain distribution to be varied through the plate thickness. Therefore no correction factor is required in TSDT, unlike FSDT. Due to the complexity involved in TSDT, this paper obtains a more accurate shear correction factor for use in FSDT of very thick simply supported and uniformly loaded isosceles right triangular plates based on the TSDT. By matching the maximum deflections for this plate according to FSDT and TSDT, a variable shear correction factor is obtained. Results show that the shear correction factor for the simplified TSDT, i.e. 14/17, is least accurate. The commonly adopted shear correction factor of 5/6 in FSDT is valid only for very thin or highly auxetic plates. This paper provides a variable shear correction for FSDT deflection that matches the plate deflection by TSDT. This variable shear correction factor allows designers to justify the use of a commonly adopted shear correction factor of 5/6 even for very thick plates as long as the Poisson’s ratio of the plate material is sufficiently negative. (paper)

  4. Magnetic structure of deformation-induced shear bands in amorphous Fe{sub 80}B{sub 16}Si{sub 4} observed by magnetic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.W. [Center for Materials Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Hawley, M.E. [Materials Science and Technology Division, (MST-8), Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Markiewicz, D.J. [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Spaepen, F.; Barth, E.P. [Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States)

    1999-04-01

    Processing-induced magnetic structures in amorphous metallic alloys are of interest because of their impact on the performance of materials used in electric device applications. Plastic deformation associated with cutting or bending the material to the desired shape occurs through the formation of shear bands. The stress associated with these shear bands induces magnetic domains that can lead to power losses through interaction with the fields and currents involved in normal device operation. These domains have been studied previously using a variety of techniques capable of imaging magnetic domain structures. In an effort to better characterize and understand these issues, we have applied atomic and magnetic force microscopy to these materials to provide three-dimensional nanometer-scale topographic resolution and micrometer-scale magnetic resolution. {copyright} {ital 1999 American Institute of Physics.}

  5. Ecological features of harmful algal blooms in coastal upwelling ...

    African Journals Online (AJOL)

    The mass mortalities that accompany anoxia, common to the Benguela and Peru upwelling systems, may be a trophic control mechanism to maintain biogeochemical balance and regional homeostasis, which are vital to upwelling ecosystem dynamics. Some traditional concepts of phytoplankton ecology may not completely

  6. Shear behavior of reinforced Engineered Cementitious Composites (ECC) beams

    DEFF Research Database (Denmark)

    Paegle, Ieva; Fischer, Gregor

    2010-01-01

    This paper describes an experimental investigation of the shear behavior of beams consisting of steel reinforced Engineered Cementitious Composites (ECC). Based on the strain hardening and multiple cracking behavior of ECC, this study investigates the extent to which ECC can improve the shear...... capacity of beams loaded primarily in shear and if ECC can partially or fully replace the conventional transverse steel reinforcement in beams. However, there is a lack of understanding of how the fibers affect the shear carrying capacity and deformation behavior of structural members if used either...

  7. Plastic deformation of silicon dendritic web ribbons during the growth

    Science.gov (United States)

    Cheng, L. J.; Dumas, K. A.; Su, B. M.; Leipold, M. H.

    1984-01-01

    The distribution of slip dislocations in silicon dendritic web ribbons due to plastic deformation during the cooling phase of the growth was studied. The results show the existence of two distinguishable stress regions across the ribbon formed during the plastic deformation stage, namely, shear stress at the ribbon edges and tensile stress at the middle. In addition, slip dislocations caused by shear stress near the edges appear to originate at the twin plane.

  8. Non-steady homogeneous deformations: Computational techniques using Lie theory, and application to ellipsoidal markers in naturally deformed rocks

    Science.gov (United States)

    Davis, Joshua R.; Titus, Sarah J.; Horsman, Eric

    2013-11-01

    The dynamic theory of deformable ellipsoidal inclusions in slow viscous flows was worked out by J.D. Eshelby in the 1950s, and further developed and applied by various authors. We describe three approaches to computing Eshelby's ellipsoid dynamics and other homogeneous deformations. The most sophisticated of our methods uses differential-geometric techniques on Lie groups. This Lie group method is faster and more precise than earlier methods, and perfectly preserves certain geometric properties of the ellipsoids, including volume. We apply our method to the analysis of naturally deformed clasts from the Gem Lake shear zone in the Sierra Nevada mountains of California, USA. This application demonstrates how, given three-dimensional strain data, we can solve simultaneously for best-fit bulk kinematics of the shear zone, as well as relative viscosities of clasts and matrix rocks.

  9. Magnetism and Raman Spectroscopy of Pristine and Hydrogenated TaSe2 Monolayer tuned by Tensile and Pure Shear Strain

    Science.gov (United States)

    Chowdhury, Sugata; Simpson, Jeffrey; Einstein, T. L.; Walker, Angela R. Hight

    2D-materials with controllable optical, electronic and magnetic properties are desirable for novel nanodevices. Here we studied these properties for both pristine and hydrogenated TaSe2 (TaSe2-H) monolayer (ML) in the framework of DFT using the PAW method. We considered uniaxial and biaxial tensile strain, as well as shear strain along the basal planes in the range between 1% and 16%. Previous theoretical works (e.g.) considered only symmetrical biaxial tensile. Pristine ML is ferromagnetic for uniaxial tensile strain along ◯ or ŷ. For tensile strain in ŷ, the calculated magnetic moments of the Ta atoms are twice those for the same strain in ◯. Under pure shear strain (expansion along ŷ and compression along ◯), a pristine ML is ferromagnetic, but becomes non-magnetic when the strain directions are interchanged. Due to carrier-mediated double-exchange, the pristine ML is ferromagnetic when the Se-Ta-Se bond angle is < 82° and the ML thickness is < 3.25Å. We find that all Raman-active phonon modes show obvious red-shifting due to bond elongation and the E2 modes degeneracy is lifted as strain increases. For a TaSe2-H ML, the same trends were observed. Results show the ability to tune the properties of 2D-materials.

  10. Size-dependent electro-magneto-elastic bending analyses of the shear-deformable axisymmetric functionally graded circular nanoplates

    Science.gov (United States)

    Arefi, Mohammad; Zenkour, Ashraf M.

    2017-10-01

    This paper develops nonlocal elasticity equations and magneto-electro-elastic relations to size-dependent electro-magneto-elastic bending analyses of the functionally graded axisymmetric circular nanoplates based on the first-order shear deformation theory. All material properties are graded along the thickness direction based on exponential varying. It is assumed that a circular nanoplate is made from piezo-magnetic materials. The energy method and Ritz approach is employed for the derivation of governing equations of electro-magneto-elastic bending and the solution of the problem, respectively. The nanoplate is subjected to applied electric and magnetic potentials at top and transverse loads while it is rested on Pasternak's foundation. Some important numerical results are presented in various figures to show the influence of applied electric and magnetic potentials, small scale parameter and inhomogeneous index of an exponentially graded nanoplate.

  11. Shear Adhesion of Tapered Nanopillar Arrays.

    Science.gov (United States)

    Cho, Younghyun; Minsky, Helen K; Jiang, Yijie; Yin, Kaiyang; Turner, Kevin T; Yang, Shu

    2018-04-04

    Tapered nanopillars with various cross sections, including cone-shaped, stepwise, and pencil-like structures (300 nm in diameter at the base of the pillars and 1.1 μm in height), are prepared from epoxy resin templated by nanoporous anodic aluminum oxide (AAO) membranes. The effect of pillar geometry on the shear adhesion behavior of these nanopillar arrays is investigated via sliding experiments in a nanoindentation system. In a previous study of arrays with the same geometry, it was shown that cone-shaped nanopillars exhibit the highest adhesion under normal loading while stepwise and pencil-like nanopillars exhibit lower normal adhesion strength due to significant deformation of the pillars that occurs with increasing indentation depth. Contrary to the previous studies, here, we show that pencil-like nanopillars exhibit the highest shear adhesion strength at all indentation depths among three types of nanopillar arrays and that the shear adhesion increases with greater indentation depth due to the higher bending stiffness and closer packing of the pencil-like nanopillar array. Finite element simulations are used to elucidate the deformation of the pillars during the sliding experiments and agree with the nanoindentation-based sliding measurements. The experiments and finite element simulations together demonstrate that the shape of the nanopillars plays a key role in shear adhesion and that the mechanism is quite different from that of adhesion under normal loading.

  12. Multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release.

    Science.gov (United States)

    Forsyth, Alison M; Wan, Jiandi; Owrutsky, Philip D; Abkarian, Manouk; Stone, Howard A

    2011-07-05

    RBCs are known to release ATP, which acts as a signaling molecule to cause dilation of blood vessels. A reduction in the release of ATP from RBCs has been linked to diseases such as type II diabetes and cystic fibrosis. Furthermore, reduced deformation of RBCs has been correlated with myocardial infarction and coronary heart disease. Because ATP release has been linked to cell deformation, we undertook a multiscale approach to understand the links between single RBC dynamics, ATP release, and macroscopic viscosity all at physiological shear rates. Our experimental approach included microfluidics, ATP measurements using a bioluminescent reaction, and rheology. Using microfluidics technology with high-speed imaging, we visualize the deformation and dynamics of single cells, which are known to undergo motions such as tumbling, swinging, tanktreading, and deformation. We report that shear thinning is not due to cellular deformation as previously believed, but rather it is due to the tumbling-to-tanktreading transition. In addition, our results indicate that ATP release is constant at shear stresses below a threshold (3 Pa), whereas above the threshold ATP release is increased and accompanied by large cellular deformations. Finally, performing experiments with well-known inhibitors, we show that the Pannexin 1 hemichannel is the main avenue for ATP release both above and below the threshold, whereas, the cystic fibrosis transmembrane conductance regulator only contributes to deformation-dependent ATP release above the stress threshold.

  13. Microstructure and mechanical properties of precipitation hardened aluminum under high rate deformation

    International Nuclear Information System (INIS)

    Grady, D.E.; Asav, J.R.; Rohde, R.W.; Wise, J.L.

    1983-01-01

    This chapter attempts to correlate the shock compression and quasistatic deformation of 6061-T6 aluminium. Examines recovered specimens which have been shock loaded, and compares results with both static and dynamic mechanical property measurements. Discusses experimental procedures (reshock and unloading experiments, shock recovery techniques, metallographic techniques and coldwork experiments); dynamic strength and wave-profile properties (strength and shear-stress states on the Hugoniot, steady-wave risetime and viscosity); quasistatic and shock metallography studies (metallography of quasistatically deformed material; metallography of shock deformed specimens; comparison of static and shock deformation; correlation of hardness and dynamic strength measurements); and thermal trapping calculations in shocked aluminium (heterogeneous deformation and adiabatic heating in shock-wave loading; energy and risetime relations under steadywave shock compression; heterogeneous temperature calculations in aluminium). Concludes that heterogeneous shear deformation appears to play a role in the dynamic deformation process

  14. Experimental study of shear bands formation in a granular material

    Directory of Open Access Journals (Sweden)

    Nguyen Thai Binh

    2017-01-01

    Full Text Available We present an experimental investigation of the formation of shear bands in a granular sample submitted to a biaxial test. Our principal result is the direct observation of the bifurcation at the origin of the localization process in the material. At the bifurcation, the shear band is spatially extended: we observe a breaking of symmetry without any sudden localization of the deformation in a narrow band. Our work thus allows to clearly distinguish different phenomena: bifurcation which is a ponctual event which occurs before the peak, localization which is a process that covers a range of deformation of several percents during which the peak occurs and finally stationary shear bands which are well-defined permanent structures that can be observed at the end of the localization process, after the peak.

  15. Nutrients, Recycling, and Biological Populations in Upwelling Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Whitledge, T. E.

    1980-01-01

    Nutrient recycling has been studied in the upwelling areas of Baja California, Northwest Africa, and Peru. Regeneration by biological populations in these areas contributes significant quantities of recycled nitrogen which is utilized in productivity processes. Each area has a different combination of organisms which leads to differences in the relative contributions of zooplankton, nekton, or benthos to the nutrient cycles. Comparisons of ammonium regeneration rates of zooplankton and nekton-micronekton populations in the three upwelling areas show that zooplankton recycle relatively less nitrogen in the Baja California and Peru systems than nekton. In the Northwest Africa upwelling region, however, zooplankton, fish, and benthic inputs are all substantial. In recent years the Peruvian upwelling system has been altered with the decline of the anchoveta population and an increase in the importance of zooplankton in nutrient recycling. The distribution of recycled nitrogen (ammonium and urea) in transects across the shelf at 10°S and 15°S indicates that regeneration is relatively more important at 10°S in the region of the wide shelf. In both areas the distribution of ammonium and urea are not entirely coincident thereby indicating differences in their production and/or utilization.

  16. On the presence of coastal upwelling along the northeastern Tyrrhenian coast

    Science.gov (United States)

    Martellucci, Riccardo; Melchiorri, Cristiano; Costanzo, Lorenzo; Marcelli, Marco

    2017-04-01

    The Mediterranean region shows a high climate variability due to the interactions between mid-latitude and tropical processes. This variability makes the Mediterranean a potentially vulnerable region to climatic changes. The present research aims to investigate the hydrographical response to Northerly wind in the northeastern Tyrrhenian coast, to identify the relations between upwelling events and teleconnection patterns. In the Tyrrhenian basin northerly winds flow between North-East and North-West and could be considered upwelling favorable winds. This atmospheric circulation can causes a divergent flow near the coast that generates a subsurface water flows inshore toward the coast up to the surface layer that is upwelling. This phenomenon strongly influence the marine ecosystems, contributing to the supply of nutrients and affecting the primary producers. In this context multi-platform observing system is an important tool to follow the evolution of these phenomena. Sea temperature and wind field acquired by the C-CEMS Observing system were used to identify upwelling phenomena between 2012 and 2016, in the coastal area of Civitavecchia, Northern Tyrrhenian sea, Italy. Moreover a thirty years' wind-driven upwelling conditions have been studied in the area. ERA-Interim (ECMWF) wind data for the period 1982-2012 have been used to compute the distribution of upwelling favorable wind events. These have been compared to "Copernicus Marine Environment Monitoring Service" Sea Surface Temperature (SST) to compute upwelling events. Upwelling favorable wind has been defined in the sector between Northwest and Northeast (Wd >330°N & Wd analysis. An increase of upwelling events in the Tyrrhenian coast is observed in the last thirty years; the occurrence of upwelling events has a seasonal oscillation, with a maximum frequency during winter and spring seasons. In the last decade an increase of these events in winter and a decrease in spring is observed; also a recurrence of

  17. Void coalescence mechanism for combined tension and large amplitude cyclic shearing

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Andersen, Rasmus Grau; Tvergaard, Viggo

    2017-01-01

    Void coalescence at severe shear deformation has been studied intensively under monotonic loading conditions, and the sequence of micro-mechanisms that governs failure has been demonstrated to involve collapse, rotation, and elongation of existing voids. Under intense shearing, the voids are flat...

  18. Shear of ordinary and elongated granular mixtures

    Science.gov (United States)

    Hensley, Alexander; Kern, Matthew; Marschall, Theodore; Teitel, Stephen; Franklin, Scott

    2015-03-01

    We present an experimental and computational study of a mixture of discs and moderate aspect-ratio ellipses under two-dimensional annular planar Couette shear. Experimental particles are cut from acrylic sheet, are essentially incompressible, and constrained in the thin gap between two concentric cylinders. The annular radius of curvature is much larger than the particles, and so the experiment is quasi-2d and allows for arbitrarily large pure-shear strains. Synchronized video cameras and software identify all particles and track them as they move from the field of view of one camera to another. We are particularly interested in the global and local properties as the mixture ratio of discs to ellipses varies. Global quantities include average shear rate and distribution of particle species as functions of height, while locally we investigate the orientation of the ellipses and non-affine events that can be characterized as shear transformational zones or possess a quadrupole signature observed previously in systems of purely circular particles. Discrete Element Method simulations on mixtures of circles and spherocylinders extend the study to the dynamics of the force network and energy dissipated as the system evolves. Supported by NSF CBET #1243571 and PRF #51438-UR10.

  19. Dynamics of viscoplastic deformation in amorphous solids

    International Nuclear Information System (INIS)

    Falk, M.L.; Langer, J.S.

    1998-01-01

    We propose a dynamical theory of low-temperature shear deformation in amorphous solids. Our analysis is based on molecular-dynamics simulations of a two-dimensional, two-component noncrystalline system. These numerical simulations reveal behavior typical of metallic glasses and other viscoplastic materials, specifically, reversible elastic deformation at small applied stresses, irreversible plastic deformation at larger stresses, a stress threshold above which unbounded plastic flow occurs, and a strong dependence of the state of the system on the history of past deformations. Microscopic observations suggest that a dynamically complete description of the macroscopic state of this deforming body requires specifying, in addition to stress and strain, certain average features of a population of two-state shear transformation zones. Our introduction of these state variables into the constitutive equations for this system is an extension of earlier models of creep in metallic glasses. In the treatment presented here, we specialize to temperatures far below the glass transition and postulate that irreversible motions are governed by local entropic fluctuations in the volumes of the transformation zones. In most respects, our theory is in good quantitative agreement with the rich variety of phenomena seen in the simulations. copyright 1998 The American Physical Society

  20. Some aspects of anelastic and microplastic creep of pure Al and two Al-alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sgobba, S. (Lab. de Metallurgie Mecanique, Dept. des Materiaux, Ecole Polytechnique Federale de Lausanne (Switzerland)); Kuenzi, H.U. (Lab. de Metallurgie Mecanique, Dept. des Materiaux, Ecole Polytechnique Federale de Lausanne (Switzerland)); Ilschner, B. (Lab. de Metallurgie Mecanique, Dept. des Materiaux, Ecole Polytechnique Federale de Lausanne (Switzerland))

    1993-11-01

    Anelastic creep of pure Al, commercial Al-Cu and a binary Al-Cu alloy has been measured at room temperature by means of a high resolution laser interferometer. The irreversible component of the deformation was also quantified from measurements of the anelastic creep recovery. The dependence of the deformation-time curves on thermal treatment and cold work is analyzed. The mechanisms responsible for the room temperature anelastic creep are discussed. Materials loaded below their elastic limit can present either a pure anelastic behavior (commercial Al-Cu) or additional viscoelastic creep (pure Al, high purity Al-Cu). For commercial Al-Cu, the presence of an irreversible deformation appears to be mainly related to the state of the surface. A viscoelastic after effect has been measured for this alloy after a Cu-electroplating treatment. As a typical result for room temperature creep, the irreversible deformation depends logarithmically on load time. (orig.).

  1. Some aspects of anelastic and microplastic creep of pure Al and two Al-alloys

    International Nuclear Information System (INIS)

    Sgobba, S.; Kuenzi, H.U.; Ilschner, B.

    1993-01-01

    Anelastic creep of pure Al, commercial Al-Cu and a binary Al-Cu alloy has been measured at room temperature by means of a high resolution laser interferometer. The irreversible component of the deformation was also quantified from measurements of the anelastic creep recovery. The dependence of the deformation-time curves on thermal treatment and cold work is analyzed. The mechanisms responsible for the room temperature anelastic creep are discussed. Materials loaded below their elastic limit can present either a pure anelastic behavior (commercial Al-Cu) or additional viscoelastic creep (pure Al, high purity Al-Cu). For commercial Al-Cu, the presence of an irreversible deformation appears to be mainly related to the state of the surface. A viscoelastic after effect has been measured for this alloy after a Cu-electroplating treatment. As a typical result for room temperature creep, the irreversible deformation depends logarithmically on load time. (orig.)

  2. Physical structure and algae community of summer upwelling off eastern Hainan

    Science.gov (United States)

    Xu, H.; Liu, S.; Xie, Q.; Hong, B.; Long, T.

    2017-12-01

    The upwelling system is the most productive ecosystem along the continental shelf of the northern South China Sea Shelf. It brings nutrient from bottom to surface and blooms biotic community driven by summer monsoon. In this study, we present observed results of physical and biotic community structures during August, 2015 in the upwelling system along Hainan eastern coast, which is one the strongest upwelling systems in the northern South China Sea. By using hydrological data collected by CTD, we found a significant cold water tongue with high salinity which extended from offshore to 100 m isobaths. However, dissolved oxygen (DO) showed a sandwich structure in which high core of DO concentration appeared at the layer from 5 m to 30 m. It possibly was caused by the advection transport of high DO from adjacent area. Basically, this upwelling system was constrained at northern area of 18.8ºN in horizontal due to the weakening summer monsoon in August. In addition, we collected water sample at the upwelling area and measured algae categories and concentration by high performance liquid chromatography (HPLC). Results show the biotic community was dominated by five types of algae mainly, they were diatoms, dinoflagellates, green algae, prokaryotes and prochlorococcus. And different patterns of different algae were demonstrated. In the upwelling area, diatoms and prokaryotes show opposite structures, and more complex pattern for the rest three algae indicating an active biotic community in the upwelling system.

  3. Coastal upwelling seasonality and variability of temperature and chlorophyll in a small coastal embayment

    Science.gov (United States)

    Walter, Ryan K.; Armenta, Kevin J.; Shearer, Brandon; Robbins, Ian; Steinbeck, John

    2018-02-01

    While the seasonality of wind-driven coastal upwelling in eastern boundary upwelling systems has long been established, many studies describe two distinct seasons (upwelling and non-upwelling), a generalized framework that does not capture details relevant to marine ecosystems. In this contribution, we present a more detailed description of the annual cycle and upwelling seasonality for an understudied location along the central California coast. Using both the mean monthly upwelling favorable wind stress and the monthly standard deviation, we define the following seasons (contiguous months) and a transitional period (non-contiguous months): "Winter Storms" season (Dec-Jan-Feb), "Upwelling Transition" period (Mar and Jun), "Peak Upwelling" season (Apr-May), "Upwelling Relaxation" season (Jul-Aug-Sep), and "Winter Transition" season (Oct-Nov). In order to describe the oceanic response to this upwelling wind seasonality, we take advantage of nearly a decade of full water-column measurements of temperature and chlorophyll made using an automated profiling system at the end of the California Polytechnic State University Pier in San Luis Obispo Bay, a small ( 2 km wide near study site) and shallow ( 10 m average bay depth) coastal embayment. Variability and average-year patterns are described inside the bay during the various upwelling seasons. Moreover, the role of the local coastline orientation and topography on bay dynamics is also assessed using long-term measurements collected outside of the bay. The formation of a seasonally variable upwelling shadow system and potential nearshore retention zone is discussed. The observations presented provide a framework on which to study interannual changes to the average-year seasonal cycle, assess the contribution of higher-frequency features to nearshore variability, and better predict dynamically and ecologically important events.

  4. Shear zones between rock units with no relative movement

    DEFF Research Database (Denmark)

    Koyi, Hemin; Schmeling, Harro; Burchardt, Steffi

    2013-01-01

    Shear zones are normally viewed as relatively narrow deformation zones that accommodate relative displacement between two "blocks" that have moved past each other in opposite directions. This study reports localized zones of shear between adjacent blocks that have not moved past each other. Such ...... given credit for and may be responsible for some reverse kinematics reported in shear zones....... or wakes, elongated bodies (vertical plates or horizontal rod-like bodies) produce tabular shear zones or wakes. Unlike conventional shear zones across which shear indicators usually display consistent symmetries, shear indicators on either side of the shear zone or wake reported here show reverse...... kinematics. Thus profiles exhibit shear zones with opposed senses of movement across their center-lines or -planes.We have used field observations and results from analytical and numerical models to suggest that examples of wakes are the transit paths that develop where denser blocks sink within salt...

  5. Octopus vulgaris paralarvae vertical distribution in a fluctuating upwelling-downwelling system

    Directory of Open Access Journals (Sweden)

    Lorena Olmos Pérez

    2014-06-01

    - Upwelling situation: superficial waters (0-20m enter through the northern mouth of the Ría and are washed through the southern mouth. This water movement promotes the entrance of cold, bottom upwelled water through the southern mouth of the Ría. Under this scenario, Octopus paralarvae are concentrated at the surface (10-0m, thus leaving the Ría. This difference is bigger after strong upwelling during the previous days. Abundances inside the Ría are the highest, maybe because it acts as a temporal retention area, or because cold upwelled waters might stimulate hatching inside the Ría. Day/night changes under strong upwelling conditions: paralarvae abundance in both mouths was quite similar, except that during the day they were in sub-surficial waters (10-5 m, while at night paralarvae were mainly found close to the surface (0-5 m. This vertical distribution during the day is remarkable because paralarvae may select offward surface waters.

  6. Shear Elasticity and Shear Viscosity Imaging in Soft Tissue

    Science.gov (United States)

    Yang, Yiqun

    In this thesis, a new approach is introduced that provides estimates of shear elasticity and shear viscosity using time-domain measurements of shear waves in viscoelastic media. Simulations of shear wave particle displacements induced by an acoustic radiation force are accelerated significantly by a GPU. The acoustic radiation force is first calculated using the fast near field method (FNM) and the angular spectrum approach (ASA). The shear waves induced by the acoustic radiation force are then simulated in elastic and viscoelastic media using Green's functions. A parallel algorithm is developed to perform these calculations on a GPU, where the shear wave particle displacements at different observation points are calculated in parallel. The resulting speed increase enables rapid evaluation of shear waves at discrete points, in 2D planes, and for push beams with different spatial samplings and for different values of the f-number (f/#). The results of these simulations show that push beams with smaller f/# require a higher spatial sampling rate. The significant amount of acceleration achieved by this approach suggests that shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs. Shear wave elasticity imaging determines the mechanical parameters of soft tissue by analyzing measured shear waves induced by an acoustic radiation force. To estimate the shear elasticity value, the widely used time-of-flight method calculates the correlation between shear wave particle velocities at adjacent lateral observation points. Although this method provides accurate estimates of the shear elasticity in purely elastic media, our experience suggests that the time-of-flight (TOF) method consistently overestimates the shear elasticity values in viscoelastic media because the combined effects of diffraction, attenuation, and dispersion are not considered. To address this problem, we have developed an approach that directly accounts for all

  7. Early Cretaceous dextral transpressional deformation within the Median Batholith, Stewart Island, New Zealand

    International Nuclear Information System (INIS)

    Allibone, A.H.; Tulloch, A.J.

    2008-01-01

    The character, timing, and significance of deformation within the Median Batholith has been debated since at least 1967, with allochthonous and autochthonous models proposed to account for internal variations in the character of the batholith. Stewart Island provides excellent exposures of intrabatholithic structures, allowing many aspects of the deformation history within the batholith to be analysed, far removed from the effects of later deformation related to the current plate boundary. Median Batholith rocks in northern and central Stewart Island are deformed by three major structures: the Freshwater Fault System, Escarpment Fault, and Gutter Shear Zone. Lineation orientations, Al in hornblende geobarometry, and Ar-Ar thermochronology indicate up to c. 7 km of NNE-directed uplift of the hanging wall of the Escarpment Fault between c. 110 and 105 Ma. Unlike the Escarpment Fault, a wide range of mineral elongation lineation orientations, including many oblique to the strike and dip of related foliations, characterise both the Gutter Shear Zone and Freshwater Fault System. Lineation and limited sense of shear data indicate dextral-reverse movement on both structures during development of their dominant ductile fabrics. Crosscutting and intrusive relationships indicate movement on the Freshwater Fault System after c. 130 Ma and on the Gutter Shear Zone between 120 and 112 Ma. The amount of movement on the Freshwater Fault System and Gutter Shear Zone remains largely unconstrained. However, the 342 ± 24 Ma age of a granite clast in a Paterson Group lithic tuff horizon at Abrahams Bay overlaps that of Carboniferous plutons in the block immediately south of the Freshwater Fault System, implying that the Paterson Group is little displaced from the basement rocks through which it was erupted. The three structures mapped on Stewart Island form part of a narrow transpressional mobile belt active within the Jurassic-Cretaceous arc on the outboard margin of the Western

  8. Abyssal Upwelling and Downwelling and the role of boundary layers

    Science.gov (United States)

    McDougall, T. J.; Ferrari, R. M.

    2016-02-01

    The bottom-intensified mixing activity arising from the interaction of internal tides with bottom topography implies that the dianeutral advection in the ocean interior is downwards, rather than upwards as is required by continuity. The upwelling of Bottom Water through density surfaces in the deep ocean is however possible because of the sloping nature of the sea floor. A budget study of the abyss (deeper than 2000m) will be described that shows that while the upwelling of Bottom Water might be 25 Sv, this is achieved by very strong upwelling in the bottom turbulent boundary layer (of thickness 50m) of 100 Sv and strong downwelling in the ocean interior of 75 Sv. This downwelling occurs within 10 degrees of longitude of the continental boundaries. This near-boundary confined strong upwelling and downwelling clearly has implications for the Stommel-Arons circulation.

  9. Long-time observation of annual variation of Taiwan Strait upwelling in summer season

    Science.gov (United States)

    Tang, D. L.; Kawamura, H.; Guan, L.

    The Taiwan Strait is between Taiwan Island and Mainland China, where several upwelling zones are well known for good fishing grounds. Earlier studies in the strait have been conducted on detecting upwelling by ship measurements with short-term cruises, but long-term variations of upwelling in this region are not understood. The present paper examines satellite images for a long-time observation of two major upwelling zones in the Taiwan Strait: Taiwan Bank Upwelling (TBU) and Dongshan Upwelling (DSU). Sea surface temperature (SST) and chlorophyll a (Chl-a) images have been analyzed for summer months (June, July, and August) from 1980 to 2002. Results reveal annual variation of two upwelling zones. These two upwelling zones occur every year characterized with distinct low water temperature and high Chl-a concentrations. During the period from 1989 to 1998, SST is found to be 1.15 °C lower in TBU, and 1.42 °C lower in the DSU than the Taiwan Strait. The size of DSU has been found to be larger during summer of 1989, 1990, 1993 and 1995; TBU has been found to be weak during summer of 1994 and 1997. Ocean color images obtained from CZCS, OCI, and SeaWiFS also show high Chl-a concentrations (0.8-2.5 mg m-3) in two upwelling zones, which coincide with low SST in terms of location, shape, and time. These high Chl-a concentrations in TBU and DSU may be related to upwelling waters that bring nutrients from bottom to surface. The present results also show the potential of using satellite data for monitoring of ocean environment for long time period.

  10. Vesicle dynamics in shear and capillary flows

    International Nuclear Information System (INIS)

    Noguchi, Hiroshi; Gompper, Gerhard

    2005-01-01

    The deformation of vesicles in flow is studied by a mesoscopic simulation technique, which combines multi-particle collision dynamics for the solvent with a dynamically triangulated surface model for the membrane. Shape transitions are investigated both in simple shear flows and in cylindrical capillary flows. We focus on reduced volumes, where the discocyte shape of fluid vesicles is stable, and the prolate shape is metastable. In simple shear flow at low membrane viscosity, the shear induces a transformation from discocyte to prolate with increasing shear rate, while at high membrane viscosity, the shear induces a transformation from prolate to discocyte, or tumbling motion accompanied by oscillations between these two morphologies. In capillary flow, at small flow velocities the symmetry axis of the discocyte is found not to be oriented perpendicular to the cylinder axis. With increasing flow velocity, a transition to a prolate shape occurs for fluid vesicles, while vesicles with shear-elastic membranes (like red blood cells) transform into a coaxial parachute-like shape

  11. Ekman estimates of upwelling at cape columbine based on ...

    African Journals Online (AJOL)

    Ekman estimates of upwelling at cape columbine based on measurements of longshore wind from a 35-year time-series. AS Johnson, G Nelson. Abstract. Cape Columbine is a prominent headland on the south-west coast of Africa at approximately 32°50´S, where there is a substantial upwelling tongue, enhancing the ...

  12. The rheological properties of shear thickening fluid reinforced with SiC nanowires

    Directory of Open Access Journals (Sweden)

    Jianhao Ge

    Full Text Available The rheological properties of shear thickening fluid (STF reinforced with SiC nanowires were investigated in this paper. Pure STF consists of 56 vol% silica nano-particles and polyethylene glycol 400 (PEG 400 solvent was fabricated; and a specific amount of SiC nanowires were dispersed into this pure STF, and then the volume fraction of PEG400 was adjusted to maintain the volume fraction of solid phase in the STF at a constant of 56%. The results showed there was almost 30% increase in the initial and shear thickening viscosity of the STF reinforced with SiC nanowires compared to the pure STF. Combining with the hydrodynamic cluster theory, the effect of the mechanism of SiC nanowire on the viscosity of STF was discussed, and based on the experimental results, an analytical model of viscosity was used to describe the rheological properties of STF, which agreed with the experimental results. Keywords: Shear thickening fluid (STF, Nanowire, Rheology, Viscosity, Analytical model

  13. Model shear tests of canisters with smectite clay envelopes in deposition holes

    International Nuclear Information System (INIS)

    Boergesson, L.

    1986-01-01

    The consequences of rock displacement across a deposition hole has been investigated by some model tests. The model was scaled 1:10 to a real deposition hole. It was filled with a canister made of solid copper surrounded by highly compacted water saturated MX-80 bentonite. Before shear the swelling pressure was measured by six transducers in order to follow the water uptake process. During shear, pressure, strain, force and deformation were measured in altogether 18 points. The shearing was made at different rates in the various tests. An extensive sampling after shear was made through which the density, water content, degree of saturation, homogenization and the effect of shear on the bentonite and canister could be studied. One important conlusion from these tests was that the rate dependence is about 10% increased shear resistance per decade increased rate of shear. This resulted also in a very clear increase in strain in the canister with increased rate. The results also showed that the saturated bentonite has excellent stress distributing properties and that there is no risk of destroying the canister if the rock displacement is smaller than the thickness of the bentonite cover. The high density of the clay makes the bentonite produce such a high swelling pressure that the material will be very stiff. In the case of a larger shear deformation corresponding to ≅ 50% of the bentonite thickness the result will be a rather large deformation of the canister. A lower density would be preferable if it can be accepted with respect to other required isolating properties. The results also showed that three-dimensional FEM calculation using non-linear material properties is necessary to simulate the shear process. The rate dependence may be taken into account by adapting the properties to the actual rate of shear but might in a later stage be included in the model by giving the material viscous properties. (orig./HP)

  14. Thermal conductivity of graphene nanoribbons under shear deformation: A molecular dynamics simulation

    Science.gov (United States)

    Zhang, Chao; Hao, Xiao-Li; Wang, Cui-Xia; Wei, Ning; Rabczuk, Timon

    2017-01-01

    Tensile strain and compress strain can greatly affect the thermal conductivity of graphene nanoribbons (GNRs). However, the effect of GNRs under shear strain, which is also one of the main strain effect, has not been studied systematically yet. In this work, we employ reverse nonequilibrium molecular dynamics (RNEMD) to the systematical study of the thermal conductivity of GNRs (with model size of 4 nm × 15 nm) under the shear strain. Our studies show that the thermal conductivity of GNRs is not sensitive to the shear strain, and the thermal conductivity decreases only 12–16% before the pristine structure is broken. Furthermore, the phonon frequency and the change of the micro-structure of GNRs, such as band angel and bond length, are analyzed to explore the tendency of thermal conductivity. The results show that the main influence of shear strain is on the in-plane phonon density of states (PDOS), whose G band (higher frequency peaks) moved to the low frequency, thus the thermal conductivity is decreased. The unique thermal properties of GNRs under shear strains suggest their great potentials for graphene nanodevices and great potentials in the thermal managements and thermoelectric applications. PMID:28120921

  15. A long history of equatorial deep-water upwelling in the Pacific Ocean

    Science.gov (United States)

    Zhang, Yi Ge; Pagani, Mark; Henderiks, Jorijntje; Ren, Haojia

    2017-06-01

    Cold, nutrient- and CO2-rich waters upwelling in the eastern equatorial Pacific (EEP) give rise to the Pacific cold tongue. Quasi-periodic subsidence of the thermocline and attenuation in wind strength expressed by El Niño conditions decrease upwelling rates, increase surface-water temperatures in the EEP, and lead to changes in regional climates both near and far from the equatorial Pacific. EEP surface waters have elevated CO2 concentrations during neutral (upwelling) or La Niña (strong upwelling) conditions. In contrast, approximate air-sea CO2 equilibrium characterizes El Niño events. One hypothesis proposes that changes in physical oceanography led to the establishment of a deep tropical thermocline and expanded mixed-layer prior to 3 million years ago. These effects are argued to have substantially reduced deep-water upwelling rates in the EEP and promoted a "permanent El Niño-like" climate state. For this study, we test this supposition by reconstructing EEP "excess CO2" and upwelling history for the past 6.5 million years using the alkenone-pCO2 methodology. Contrary to previous assertions, our results indicate that average temporal conditions in the EEP over the past ∼6.5 million years were characterized by substantial CO2 disequilibrium and high nutrient delivery to surface waters - characteristics that imply strong upwelling of deep waters. Upwelling appears most vigorous between ∼6.5 to 4.5 million years ago coinciding with high accumulation rates of biogenic material during the late Miocene - early Pliocene "biogenic bloom".

  16. The Benguela upwelling ecosystem lies adjacent to the south ...

    African Journals Online (AJOL)

    denise

    The Benguela upwelling ecosystem lies adjacent to the south-western coast of Africa, from southern Angola. (15°S) to Cape Agulhas (35°S; Fig. 1). Ecologically, it is split into separate northern and southern sub- systems by a zone of intense perennial upwelling near. Lüderitz (26–27.5°S; Shannon 1985). As is charac-.

  17. Upwelling features near Sri Lanka in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    ShreeRam, P.; Rao, L.V.G.

    , the southwest monsoon in summer and the northeast monsoon in winter. The wind stress associated with these winds cause mass drift of oceanic waters leading to upwelling and downwelling. The upwelling features in the Bay of Bengal with a special mention about...

  18. Meso- and microscale structures related to post-magmatic deformation of the outer Izu-Bonin-Mariana fore arc system: preliminary results from IODP Expedition 352

    Science.gov (United States)

    Micheuz, P.; Kurz, W.; Ferre, E. C.

    2015-12-01

    IODP Expedition 352 aimed to drill through the entire volcanic sequence of the Bonin fore arc. Four sites were drilled, two on the outer fore arc and two on the upper trench slope. Analysis of structures within drill cores, combined with borehole and site survey seismic data, indicates that tectonic deformation in the outer Izu-Bonin-Mariana fore arc is mainly post-magmatic, associated with the development of syn-tectonic sedimentary basins. Within the magmatic basement, deformation was accommodated by shear along cataclastic fault zones, and the formation of tension fractures, hybrid (tension and shear) fractures, and shear fractures. Veins commonly form by mineral filling of tension or hybrid fractures and, generally, show no or limited observable macroscale displacement along the fracture plane. The vein filling generally consists of (Low Mg-) calcite and/or various types of zeolite as well as clay. Vein frequency varies with depth but does not seem to correlate with the proximity of faults. This may indicate that these veins are genetically related to hydrothermal activity taking place shortly after magma cooling. Host-rock fragments are commonly embedded within precipitated vein material pointing to a high fluid pressure. Vein thickness varies from < 1 mm up to 15 mm. The wider veins appear to have formed in incremental steps of extension. Calcite veins tend to be purely dilational at shallow depths, but gradually evolve towards oblique tensional veins at depth, as shown by the growth of stretched calcite and/or zeolites (idiomorphic and/or stretched) with respect to vein margins. With increasing depth, the calcite grains exhibit deformation microstructures more frequently than at shallower core intervals. These microstructures include thin twinning (type I twins), increasing in width with depth (type I and type II twins), curved twins, and subgrain boundaries indicative of incipient plastic deformation.

  19. The shear response of copper bicrystals with Σ11 symmetric and asymmetric tilt grain boundaries by molecular dynamics simulation

    Science.gov (United States)

    Zhang, Liang; Lu, Cheng; Tieu, Kiet; Zhao, Xing; Pei, Linqing

    2015-04-01

    Grain boundaries (GBs) are important microstructure features and can significantly affect the properties of nanocrystalline materials. Molecular dynamics simulation was carried out in this study to investigate the shear response and deformation mechanisms of symmetric and asymmetric Σ11 tilt GBs in copper bicrystals. Different deformation mechanisms were reported, depending on GB inclination angles and equilibrium GB structures, including GB migration coupled to shear deformation, GB sliding caused by local atomic shuffling, and dislocation nucleation from GB. The simulation showed that migrating Σ11(1 1 3) GB under shear can be regarded as sliding of GB dislocations and their combination along the boundary plane. A non-planar structure with dissociated intrinsic stacking faults was prevalent in Σ11 asymmetric GBs of Cu. This type of structure can significantly increase the ductility of bicrystal models under shear deformation. A grain boundary can be a source of dislocation and migrate itself at different stress levels. The intrinsic free volume involved in the grain boundary area was correlated with dislocation nucleation and GB sliding, while the dislocation nucleation mechanism can be different for a grain boundary due to its different equilibrium structures.Grain boundaries (GBs) are important microstructure features and can significantly affect the properties of nanocrystalline materials. Molecular dynamics simulation was carried out in this study to investigate the shear response and deformation mechanisms of symmetric and asymmetric Σ11 tilt GBs in copper bicrystals. Different deformation mechanisms were reported, depending on GB inclination angles and equilibrium GB structures, including GB migration coupled to shear deformation, GB sliding caused by local atomic shuffling, and dislocation nucleation from GB. The simulation showed that migrating Σ11(1 1 3) GB under shear can be regarded as sliding of GB dislocations and their combination along the

  20. The theoretical shear strength of fcc crystals under superimposed triaxial stress

    Energy Technology Data Exchange (ETDEWEB)

    Cerny, M., E-mail: cerny.m@fme.vutbr.cz [Institute of Engineering Physics, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, CZ-616 69 Brno (Czech Republic); Pokluda, J. [Institute of Engineering Physics, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, CZ-616 69 Brno (Czech Republic)

    2010-05-15

    The influence of a triaxial stress applied normally to shear planes and shear direction during affine shear deformation of face-centered cubic crystals on the theoretical shear strength is studied for the <112-bar >{l_brace}111{r_brace} shear system using first-principles methods. The applied relaxation procedure guarantees that the modeled system is subjected to a superposition of shear, normal and in-plane stresses with individually adjustable in-plane and normal stress values. The theoretical shear strengths of individual elements prove to be qualitatively different functions of the superimposed stresses. In the special case of hydrostatic loading, however, these functions are qualitatively uniform. This behavior is discussed in terms of the electronic structure.

  1. Torsional shear flow of granular materials: shear localization and minimum energy principle

    Science.gov (United States)

    Artoni, Riccardo; Richard, Patrick

    2018-01-01

    The rheological properties of granular matter submitted to torsional shear are investigated numerically by means of discrete element method. The shear cell is made of a cylinder filled by grains which are sheared by a bumpy bottom and submitted to a vertical pressure which is applied at the top. Regimes differing by their strain localization features are observed. They originate from the competition between dissipation at the sidewalls and dissipation in the bulk of the system. The effects of the (i) the applied pressure, (ii) sidewall friction, and (iii) angular velocity are investigated. A model, based on the purely local μ (I)-rheology and a minimum energy principle is able to capture the effect of the two former quantities but unable to account the effect of the latter. Although, an ad hoc modification of the model allows to reproduce all the numerical results, our results point out the need for an alternative rheology.

  2. Implications of Upwells as Hydrodynamic Jets in a Pulse Jet Mixed System

    Energy Technology Data Exchange (ETDEWEB)

    Pease, Leonard F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bamberger, Judith A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-08-01

    This report evaluates the physics of the upwell flow in pulse jet mixed systems in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Although the initial downward flow and radial flow from pulse jet mixers (PJMs) has been analyzed in some detail, the upwells have received considerably less attention despite having significant implications for vessel mixing. Do the upwells behave like jets? How do the upwells scale? When will the central upwell breakthrough? What proportion of the vessel is blended by the upwells themselves? Indeed, how the physics of the central upwell is affected by multiple PJMs (e.g., six in the proposed mixing vessels), non-Newtonian rheology, and significant multicomponent solids loadings remain unexplored. The central upwell must satisfy several criteria to be considered a free jet. First, it must travel for several diameters in a nearly constant direction. Second, its velocity must decay with the inverse of elevation. Third, it should have an approximately Gaussian profile. Fourth, the influence of surface or body forces must be negligible. A combination of historical data in a 12.75 ft test vessel, newly analyzed data from the 8 ft test vessel, and conservation of momentum arguments derived specifically for PJM operating conditions demonstrate that the central upwell satisfies these criteria where vigorous breakthrough is achieved. An essential feature of scaling from one vessel to the next is the requirement that the underlying physics does not change adversely. One may have confidence in scaling if (1) correlations and formulas capture the relevant physics; (2) the underlying physics does not change from the conditions under which it was developed to the conditions of interest; (3) all factors relevant to scaling have been incorporated, including flow, material, and geometric considerations; and (4) the uncertainty in the relationships is sufficiently narrow to meet required specifications. Although the central upwell

  3. The theoretical tensile strength of fcc crystals predicted from shear strength calculations

    International Nuclear Information System (INIS)

    Cerny, M; Pokluda, J

    2009-01-01

    This work presents a simple way of estimating uniaxial tensile strength on the basis of theoretical shear strength calculations, taking into account its dependence on a superimposed normal stress. The presented procedure enables us to avoid complicated and time-consuming analyses of elastic stability of crystals under tensile loading. The atomistic simulations of coupled shear and tensile deformations in cubic crystals are performed using first principles computational code based on pseudo-potentials and the plane wave basis set. Six fcc crystals are subjected to shear deformations in convenient slip systems and a special relaxation procedure controls the stress tensor. The obtained dependence of the ideal shear strength on the normal tensile stress seems to be almost linearly decreasing for all investigated crystals. Taking these results into account, the uniaxial tensile strength values in three crystallographic directions were evaluated by assuming a collapse of the weakest shear system. Calculated strengths for and loading were found to be mostly lower than previously calculated stresses related to tensile instability but rather close to those obtained by means of the shear instability analysis. On the other hand, the strengths for loading almost match the stresses related to tensile instability.

  4. Effect of strain and deformation route on grain boundary characteristics and recrystallization behavior of aluminum

    International Nuclear Information System (INIS)

    Sakai, Tetsuo; Takahashi, Yasuo; Utsunomiya, Hiroshi

    2014-01-01

    The effect of strain and deformation route on the recrystallization behavior of aluminum sheets has been investigated using well lubricated cold rolling and continuous equal channel angular extrusion. Three different deformation routes in plane strain corresponding to (1) simple shear, (2) compression, and (3) the combination of simple shear and compression were performed on 1100 aluminum sheet. Fixed amounts of the equivalent strain of 1.28 and 1.06 were accumulated in each route. In case of the combined deformation route, the ratio of shear strain to the total equivalent strain was varied. The recrystallized grain size was finer if the combined deformation route was employed instead of the monotonic route under the same amount of equivalent strain at either strain level. The density of high angle grain boundaries that act as nucleation sites for recrystallization was higher in materials deformed by the combined route. The orientation imaging micrographs revealed that the change in deformation route is effective for introducing a larger number of new high angle grain boundaries with relatively low misorientation angle

  5. Effect of strain and deformation route on grain boundary characteristics and recrystallization behavior of aluminum

    Science.gov (United States)

    Sakai, Tetsuo; Utsunomiya, Hiroshi; Takahashi, Yasuo

    2014-08-01

    The effect of strain and deformation route on the recrystallization behavior of aluminum sheets has been investigated using well lubricated cold rolling and continuous equal channel angular extrusion. Three different deformation routes in plane strain corresponding to (1) simple shear, (2) compression, and (3) the combination of simple shear and compression were performed on 1100 aluminum sheet. Fixed amounts of the equivalent strain of 1.28 and 1.06 were accumulated in each route. In case of the combined deformation route, the ratio of shear strain to the total equivalent strain was varied. The recrystallized grain size was finer if the combined deformation route was employed instead of the monotonic route under the same amount of equivalent strain at either strain level. The density of high angle grain boundaries that act as nucleation sites for recrystallization was higher in materials deformed by the combined route. The orientation imaging micrographs revealed that the change in deformation route is effective for introducing a larger number of new high angle grain boundaries with relatively low misorientation angle.

  6. Dynamics of a "low-enrichment high-retention" upwelling center over the southern Senegal shelf

    Science.gov (United States)

    Ndoye, Siny; Capet, Xavier; Estrade, Philippe; Sow, Bamol; Machu, Eric; Brochier, Timothée.; Döring, Julian; Brehmer, Patrice

    2017-05-01

    Senegal is the southern tip of the Canary upwelling system. Its coastal ocean hosts an upwelling center which shapes sea surface temperatures between latitudes 12° and 15°N. Near this latter latitude, the Cape Verde headland and a sudden change in shelf cross-shore profile are major sources of heterogeneity in the southern Senegal upwelling sector (SSUS). SSUS dynamics is investigated by means of Regional Ocean Modeling System simulations. Configuration realism and resolution (Δx≈ 2 km) are sufficient to reproduce the SSUS frontal system. Our main focus is on the 3-D upwelling circulation which turns out to be profoundly different from 2-D theory: cold water injection onto the shelf and upwelling are strongly concentrated within a few tens of kilometers south of Cape Verde and largely arise from flow divergence in the alongshore direction; a significant fraction of the upwelled waters are retained nearshore over long distances while travelling southward under the influence of northerly winds. Another source of complexity, regional-scale alongshore pressure gradients, also contributes to the overall retention of upwelled waters over the shelf. Varying the degree of realism of atmospheric and oceanic forcings does not appreciably change these conclusions. This study sheds light on the dynamics and circulation underlying the recurrent sea surface temperature pattern observed during the upwelling season and offers new perspectives on the connections between the SSUS physical environment and its ecosystems. It also casts doubt on the validity of upwelling intensity estimations based on simple Ekman upwelling indices at such local scales.

  7. Upwelling Dynamic Based on Satellite and INDESO Data in the Flores Sea

    Science.gov (United States)

    Kurniawan, Reski; Suriamihardja, D. A.; Hamzah Assegaf, Alimuddin

    2018-03-01

    Upwelling phenomenon is crucial to be forecasted, mainly concerning the information of potential fishery areas. Utilization of calibrated model for recorded upwelling such as INDESO gives benefit for historical result up to the present time. The aim of this study is to estimate areas and seasons of upwelling occurrences in the Flores Sea using data assimilation of satellite and modeling result. This study uses sea surface temperature, chlorophyll-a data from level 3 of MODIS image and sea surface height from satellite Jason-2 monthly for three years (2014-2016) and INDESO model data for sea surface temperature, sea surface height, and chlorophyll-a daily for three years (2014-2016). The upwelling is indicated by declining of sea surface temperature, sea surface height and increasing of chlorophyll-a. Verification is conducted by comparing the model result with recorded MODIS satellite image. The result shows that the area of southern Makassar Strait having occurrences of upwelling phenomenon every year starting in June, extended to July and August. The strongest upwelling occurred in 2015 covering more or less the area of 23,000 km2. The relation of monthly data of satellite has significantly correlated with daily data of INDESO model

  8. Magma shearing and friction in the volcanic conduit: A crystal constraint

    Science.gov (United States)

    Wallace, P. A.; Kendrick, J. E.; Henton De Angelis, S.; Ashworth, J. D.; Coats, R.; Miwa, T.; Mariani, E.; Lavallée, Y.

    2017-12-01

    Magma shearing and friction processes in the shallow volcanic conduit are typical manifestations of strain localisation, which in turn can have an influential role on magma ascent dynamics. The thermal consequences of such events could drive the destabilisation of magma and thus dictate the style of activity at the surface. Shear heating and fault friction are prime candidates for the generation of significant quantities of heat. Here we use a combination of field and experimental evidence to investigate how crystals can act as sensitive recorders of both physical and chemical processes occurring in the shallow volcanic conduit. Spine extrusion during the closing of the 1991-95 eruption at Unzen volcano, Japan, provided the unique opportunity to investigate marginal shear zone formation, which preserves a relic of the deformation during magma ascent. Our results show that crystals can effectively act as a deformation marker during magma ascent through the viscous-brittle transition by accommodating strain in the form of crystal plasticity before fracturing (comminution). Electron backscatter diffraction (EBSD) reveals up to 40° lattice distortion of biotite phenocrysts in zones of high shear, with negligible plasticity further away. Plagioclase microlites display a systematic plastic response to an increase in shear intensity, as recorded by an increase in lattice distortion towards the spine margin of up to 9°. This localisation of strain within the shear zone is also accompanied by the destabilisation of hydrous mineral phases (i.e. amphibole), compaction of pores (23-13% Φ), glass devitrification and magnetic anomalies. The narrow zone of disequilibrium textures suggests the likely effect of a thermal input due to strain localisation being the contributing factor. These observations are complimented by high-temperature high-velocity rotary shear experiments which simulate the deformation evolution during shear. Hence, understanding these shallow volcanic

  9. Upwelling regions, the most fertile of the seas' habitats, are also ...

    African Journals Online (AJOL)

    spamer

    apply to dinoflagellate bloom events in coastal upwelling systems. * Graduate School of ..... exclusive of coccolithophorids (Smayda 1997b). Group. Daily growth rates ..... route taken partly dependent on the duration of the upwelling relaxation ...

  10. Deformation bands in porous carbonate grainstones: Field and laboratory observations

    NARCIS (Netherlands)

    Cilona, A.; Baud, P.; Tondi, E.; Agosta, F.; Vinciguerra, S.; Rustichelli, A.; Spiers, C.J.

    2012-01-01

    Recent field-based studies documented deformation bands in porous carbonates; these structures accommodate volumetric and/or shear strain by means of pore collapse, grain rotation and/or sliding. Microstructural observations of natural deformation bands in carbonates showed that, at advanced stages

  11. Real-time deformation measurement using a transportable shearography system

    Science.gov (United States)

    Weijers, A. L.; van Brug, Hedser H.; Frankena, Hans J.

    1997-03-01

    A new system for deformation visualization has been developed, being a real time phase stepped shearing speckle interferometer. This system provides the possibility to measure quantitatively deformations of diffusely reflecting objects in an industrial environment. The main characteristics of this interferometer are its speed of operation and its reduced sensitivity to external disturbances. Apart from its semiconductor laser source, this system has a shoe-box size and is mounted on a tripod for easy handling during inspection. This paper describes the shearing speckle interferometry set-up, as it is developed at our laboratory and its potential for detecting defects.

  12. Summertime sea surface temperature fronts associated with upwelling around the Taiwan Bank

    Science.gov (United States)

    Lan, Kuo-Wei; Kawamura, Hiroshi; Lee, Ming-An; Chang, Yi; Chan, Jui-Wen; Liao, Cheng-Hsin

    2009-04-01

    It is well known that upwelling of subsurface water is dominant around the Taiwan Bank (TB) and the Penghu (PH) Islands in the southern Taiwan Strait in summertime. Sea surface temperature (SST) frontal features and related phenomena around the TB upwelling and the PH upwelling were investigated using long-term AVHRR (1996-2005) and SeaWiFS (1998-2005) data received at the station of National Taiwan Ocean University. SST and chlorophyll-a (Chl-a) images with a spatial resolution of 0.01° were generated and used for the monthly SST and Chl-a maps. SST fronts were extracted from each SST images and gradient magnitudes (GMs); the orientations were derived for the SST fronts. Monthly maps of cold fronts where the cooler SSTs were over a shallower bottom were produced from the orientation. Areas with high GMs (0.1-0.2 °C/km) with characteristic shapes appeared at geographically fixed positions around the TB/PH upwelling region where SSTs were lower than the surrounding waters. The well-shaped high GMs corresponded to cold fronts. Two areas with high Chl-a were found around the TB and PH Islands. The southern border of the high-Chl-a area in the TB upwelling area was outlined by the high-GM area. Shipboard measurements of snapshot vertical sections of temperature (T) and salinity (S) along the PH Channel showed a dome structure east of PH Islands, over which low SST and high GM in the maps of the corresponding month were present. Clear evidence of upwelling (vertically uniform distributions of T and S) was indicated at the TB edge in the T and S sections close to TB upwelling. This case of upwelling may be caused by bottom currents ascending the TB slope as pointed out by previous studies. The position of low SSTs in the monthly maps matched the upwelling area, and the high GMs corresponded to the area of eastern surface fronts in the T/S sections.

  13. Air gun near the sea floor as shear-wave source?

    NARCIS (Netherlands)

    Drijkoningen, G.G.; Dieulangard, D.; Holicki, M.E.

    2015-01-01

    The feasibility of using an air gun near the sea floor as shear-wave source has been investigated. With an air gun near the sea floor, an evanescent P-wave in the water becomes a propagating S-wave in the sea floor, such that it seems that a pure shear-wave source has been used at the sea floor.

  14. Three-dimensional phase-field simulation on the deformation of metallic glass nanowires

    International Nuclear Information System (INIS)

    Zhang, H.Y.; Zheng, G.P.

    2014-01-01

    Highlights: • 3D phase-field modeling is developed to investigate the deformation of MG nanowires. • The surface defects significantly affect the mechanical properties of nanowires. • Multiple shear bands are initiated from the surfaces of nanowires with D < 50 nm. - Abstract: It is very challenging to investigate the deformation mechanisms in micro- and nano-scale metallic glasses with diameters below several hundred nanometers using the atomistic simulation or the experimental approaches. In this work, we develop the fully three-dimensional phase-field model to bridge this gap and investigate the sample size effects on the deformation behaviors of metallic glass nanowires. The initial deformation defects on the surface are found to significantly affect the mechanical strength and deformation mode of nanowires. The improved ductility of metallic glass nanowires could be related with the multiple shear bands initiated from the nanowire surfaces

  15. Literature survey: Relations between stress change, deformation and transmissivity for fractures and deformation zones based on in situ investigations

    Energy Technology Data Exchange (ETDEWEB)

    Fransson, Aasa (Chalmers Univ. of Technology, Goeteborg (Sweden))

    2009-02-15

    This literature survey is focused upon relations between stress change, deformation and transmissivity for fractures and deformation zones and aims at compiling and commenting on relevant information and references with focus on data from in situ investigations. Main issues to investigate are: - Impact of normal stress change and deformation on transmissivity, for fractures and deformation zones. - Impact of shear stress and displacement on transmissivity, for fractures and deformation zones for different normal load conditions. Considering the line of research within the area, the following steps in the development can be identified. During the 1970's and 1980's, the fundamentals of rock joint deformation were investigated and identification and description of mechanisms were made in the laboratory. In the 1990's, coupling of stress-flow properties of rock joints were made using hydraulic testing to identify and describe the mechanisms in the field. Both individual fractures and deformation zones were of interest. In situ investigations have also been the topic of interest the last ten years. Further identification and description of mechanisms in the field have been made including investigation and description of system of fractures, different types of fractures (interlocked/mated or mismatched/unmated) and how this is coupled to the hydromechanical behavior. In this report, data from in situ investigations are compiled and the parameters considered to be important to link fracture deformation and transmissivity are normal stiffness, k{sub n} and hydraulic aperture, b{sub h}. All data except for those from one site originate from investigations performed in granitic rock. Normal stiffness, k{sub n}, and hydraulic aperture, b{sub h}, are correlated, even though data are scattered. In general, the largest variation is seen for small hydraulic apertures and high normal stiffness. The increasing number of contact points (areas) and fracture filling are

  16. The dynamics of a shear band

    Science.gov (United States)

    Giarola, Diana; Capuani, Domenico; Bigoni, Davide

    2018-03-01

    A shear band of finite length, formed inside a ductile material at a certain stage of a continued homogeneous strain, provides a dynamic perturbation to an incident wave field, which strongly influences the dynamics of the material and affects its path to failure. The investigation of this perturbation is presented for a ductile metal, with reference to the incremental mechanics of a material obeying the J2-deformation theory of plasticity (a special form of prestressed, elastic, anisotropic, and incompressible solid). The treatment originates from the derivation of integral representations relating the incremental mechanical fields at every point of the medium to the incremental displacement jump across the shear band faces, generated by an impinging wave. The boundary integral equations (under the plane strain assumption) are numerically approached through a collocation technique, which keeps into account the singularity at the shear band tips and permits the analysis of an incident wave impinging a shear band. It is shown that the presence of the shear band induces a resonance, visible in the incremental displacement field and in the stress intensity factor at the shear band tips, which promotes shear band growth. Moreover, the waves scattered by the shear band are shown to generate a fine texture of vibrations, parallel to the shear band line and propagating at a long distance from it, but leaving a sort of conical shadow zone, which emanates from the tips of the shear band.

  17. Shear bands as growing instabilities in viscoanelastic media with memory

    Directory of Open Access Journals (Sweden)

    Marina Dolfin

    2013-09-01

    Full Text Available In this paper we investigate the critical conditions under which a small perturbation in an homogeneous continuum can possibly grows into a shear band instability. In particular, we analyze from a thermodynamical viewpoint the phenomenon of shear bands in viscoanelastic media with memory. It is emphasized, in the scientific literature, that the specific adopted rheology strongly affects the results so that a special attention has to be paid, also for engineering purposes, to the accuracy of the rheological model. Several well-known rheological model (for instance the so called Maxwell or Jeffreys media are particular cases of the general model we adopt in the paper to analyze shear bands. Instability conditions, giving rise to shear bands formation, are obtained by introducing small perturbations around an homogeneous deformation into the system of differential equations governing the problem of homogeneous deformations in the considered continuous medium; as a result a non-homogeneous linear dynamical system is obtained whose stability is analyzed. A research perspective in view of a possible comparison with experimental results is proposed; in particular the simple methodology proposed in the paper should be applied in view of using the phenomenon of the initiation of shear bands to calculate the thermomechanical coefficients of real materials.

  18. Shear behaviour of reinforced phyllite concrete beams

    International Nuclear Information System (INIS)

    Adom-Asamoah, Mark; Owusu Afrifa, Russell

    2013-01-01

    Highlights: ► Phyllite concrete beams often exhibited shear with anchorage bond failure. ► Different shear design provisions for reinforced phyllite beams are compared. ► Predicted shear capacity of phyllite beams must be modified by a reduction factor. -- Abstract: The shear behaviour of concrete beams made from phyllite aggregates subjected to monotonic and cyclic loading is reported. First diagonal shear crack load of beams with and without shear reinforcement was between 42–58% and 42–92% of the failure loads respectively. The phyllite concrete beams without shear links had lower post-diagonal cracking shear resistance compared to corresponding phyllite beams with shear links. As a result of hysteretic energy dissipation, limited cyclic loading affected the stiffness, strength and deformation of the phyllite beams with shear reinforcement. Generally, beams with and without shear reinforcement showed anchorage bond failure in addition to the shear failure due to high stress concentration near the supports. The ACI, BS and EC codes are conservative for the prediction of phyllite concrete beams without shear reinforcement but they all overestimate the shear strength of phyllite concrete beams with shear reinforcement. It is recommended that the predicted shear capacity of phyllite beams reinforced with steel stirrups be modified by a reduction factor of 0.7 in order to specify a high enough safety factor on their ultimate strength. It is also recommended that susceptibility of phyllite concrete beams to undergo anchorage bond failure is averted in design by the provision of greater anchorage lengths than usually permitted.

  19. Variability of Iberian upwelling implied by ERA-40 and ERA-Interim reanalyses

    Directory of Open Access Journals (Sweden)

    José M. R. Alves

    2013-05-01

    Full Text Available The Regional Ocean Modeling System ocean model is used to simulate the decadal evolution of the regional waters in offshore Iberia in response to atmospheric fields given by ECMWF ERA-40 (1961–2001 and ERA-Interim (1989–2008 reanalyses. The simulated sea surface temperature (SST fields are verified against satellite AVHRR SST, and they are analysed to characterise the variability and trends of coastal upwelling in the region. Opposing trends in upwelling frequency are found at the northern limit, where upwelling has been decreasing in recent decades, and at its southern edge, where there is some evidence of increased upwelling. These results confirm previous observational studies and, more importantly, indicate that observed SST trends are not only due to changes in radiative or atmospheric heat fluxes alone but also due to changes in upwelling dynamics, suggesting that such a process may be relevant in climate change scenarios.

  20. Effect of pre-existing shear bands on the tensile mechanical properties of a bulk metallic glass

    International Nuclear Information System (INIS)

    Cao, Q.P.; Liu, J.W.; Yang, K.J.; Xu, F.; Yao, Z.Q.; Minkow, A.; Fecht, H.J.; Ivanisenko, J.; Chen, L.Y.; Wang, X.D.; Qu, S.X.; Jiang, J.Z.

    2010-01-01

    Bulk Zr 64.13 Cu 15.75 Ni 10.12 Al 10 metallic glass has been rolled at room temperature in two different directions, and the dependences of microstructure and tensile mechanical property on the degree of deformation and rolling directions have been investigated. No deformation-induced crystallization occurs except for shear bands. Shear band formation in conjugated directions is achieved in the specimen rolled in two directions, while rolling in one direction induces shear band formation only in a single direction. Pre-existing properly spaced soft inhomogeneities can stabilize shear bands and lead to tensile plastic strain, and the efficient intersection of shear bands in conjugated directions results in work-hardening behavior, which is further confirmed by in situ tensile scanning electron microscopic observation. Based on the experimental results obtained in two different specimen geometries and finite element analysis, it is deduced that a normal-stress-modified maximum shear stress criterion rather than a shear plane criterion can describe the conditions for the formation of shear bands in uniaxial tension.

  1. Upwelling and Other Environmental Influences on Growth of a Nearshore Benthic Fish

    Science.gov (United States)

    von Biela, V. R.; Zimmerman, C. E.; Kruse, G. H.; Mueter, F. J.; Black, B.; Douglas, D. C.; Bodkin, J. L.

    2016-02-01

    The role of upwelling in nearshore benthic systems is more uncertain compared to the relatively strong positive associations with pelagic production. To understand how upwelling and other environmental conditions influence nearshore benthic production, we developed an annual index of production from growth increments recorded in otoliths of kelp greenling (Hexagrammos decagrammus) at nine sites in the seasonally-upwelling California Current and downwelling Alaska Coastal currents. Kelp greenling are a benthic-feeding fish common in kelp forests with food webs sustained by both kelp and phytoplankton primary production. We explored the influence of basin- and local-scale conditions, including upwelling, across all seasons at lags up to two years taken to represent changes in the quantity and quality of prey. Upwelling strength was positively related to fish growth in both current systems, although relationships in the Alaska Coastal Current were indicative of faster growth with relaxed downwelling, rather than upwelling. Looking across a suite of basin- and local-scale environmental indicators, complex relationships emerged in the California Current, with faster growth related to within-year warm conditions and lagged-year cool conditions. In contrast, fish in the downwelling system grew faster both during and subsequent to warm conditions. The complex lag-dependent dynamics in the upwelling system may reflect differences in conditions that promote quantity versus quality of benthic invertebrate prey. Thus, we hypothesize that benthic production is maximized when cool and warm years alternate during periods of high frequency climate variability in the California Current. Such a pattern is consistent with previous findings suggesting that benthic invertebrate abundance (e.g., recruitment) is food-limited during warm years with reduced upwelling, while quality (e.g., energy content) is temperature-limited during cool years.

  2. Shear-Induced Membrane Fusion in Viscous Solutions

    KAUST Repository

    Kogan, Maxim

    2014-05-06

    Large unilamellar lipid vesicles do not normally fuse under fluid shear stress. They might deform and open pores to relax the tension to which they are exposed, but membrane fusion occurring solely due to shear stress has not yet been reported. We present evidence that shear forces in a viscous solution can induce lipid bilayer fusion. The fusion of 1,2-dioleoyl-sn-glycero-3- phosphocholine (DOPC) liposomes is observed in Couette flow with shear rates above 3000 s-1 provided that the medium is viscous enough. Liposome samples, prepared at different viscosities using a 0-50 wt % range of sucrose concentration, were studied by dynamic light scattering, lipid fusion assays using Förster resonance energy transfer (FRET), and linear dichroism (LD) spectroscopy. Liposomes in solutions with 40 wt % (or more) sucrose showed lipid fusion under shear forces. These results support the hypothesis that under suitable conditions lipid membranes may fuse in response to mechanical-force- induced stress. © 2014 American Chemical Society.

  3. Synchrotron radiography of direct-shear in semi-solid alloys

    International Nuclear Information System (INIS)

    Gourlay, C M; Nagira, T; Nakatsuka, N; Yasuda, H; Dahle, A K; Uesugi, K

    2012-01-01

    Understanding phenomena occurring at the scale of the crystals during the deformation of semi-solid alloys is important for the development of physically-based rheological models. A range of deformation mechanisms have been proposed including agglomeration and disagglomeration, viscoplastic deformation of the solid skeleton, and granular phenomena such as jamming and dilatancy. This paper overviews in-situ experiments that directly image crystal-scale deformation mechanisms in equiaxed Al alloys at solid fractions shortly after the crystals have impinged to form a loose crystal network. Direct evidence is presented for granular deformation mechanisms including shear-induced dilation in both equiaxed-dendritic and globular microstructures. Modelling approaches suitable for capturing this behaviour are then discussed.

  4. Dilatant shear band formation and diagenesis in calcareous, arkosic sandstones, Vienna Basin (Austria)

    Science.gov (United States)

    Lommatzsch, Marco; Exner, Ulrike; Gier, Susanne; Grasemann, Bernhard

    2015-01-01

    The present study examines deformation bands in calcareous arkosic sands. The investigated units can be considered as an equivalent to the Matzen field in the Vienna Basin (Austria), which is one of the most productive oil reservoirs in central Europe. The outcrop exposes carbonate-free and carbonatic sediments of Badenian age separated by a normal fault. Carbonatic sediments in the hanging wall of the normal fault develop dilation bands with minor shear displacements (< 2 mm), whereas carbonate-free sediments in the footwall develop cataclastic shear bands with up to 70 cm displacement. The cataclastic shear bands show a permeability reduction up to 3 orders of magnitude and strong baffling effects in the vadose zone. Carbonatic dilation bands show a permeability reduction of 1-2 orders of magnitude and no baffling structures. We distinguished two types of deformation bands in the carbonatic units, which differ in deformation mechanisms, distribution and composition. Full-cemented bands form as dilation bands with an intense syn-kinematic calcite cementation, whereas the younger loose-cemented bands are dilatant shear bands cemented by patchy calcite and clay minerals. All analyzed bands are characterized by a porosity and permeability reduction caused by grain fracturing and cementation. The changed petrophysical properties and especially the porosity evolution are closely related to diagenetic processes driven by varying pore fluids in different diagenetic environments. The deformation band evolution and sealing capacity is controlled by the initial host rock composition. PMID:26300577

  5. Soft-Matter Resistive Sensor for Measuring Shear and Pressure Stresses

    Science.gov (United States)

    Tepayotl-Ramirez, Daniel; Roberts, Peter; Majidi, Carmel

    2013-03-01

    Building on emerging paradigms in soft-matter electronics, we introduce liquid-phase electronic sensors that simultaneously measures elastic pressure and shear deformation. The sensors are com- posed of a sheet of elastomer that is embedded with fluidic channels containing eutectic Gallium- Indium (EGaIn), a metal alloy that is liquid at room temperature. Applying pressure or shear traction to the surface of the surrounding elastomer causes the elastomer to elastically deform and changes the geometry and electrical properties of the embedded liquid-phase circuit elements. We introduce analytic models that predict the electrical response of the sensor to prescribed surface tractions. These models are validated with both Finite Element Analysis (FEA) and experimental measurements.

  6. Migration of the deforming zone during seismic shear and implications for field observations, dynamic weakening, and the onset of melting

    Science.gov (United States)

    Platt, J. D.; Rice, J. R.

    2013-12-01

    Prior work in our group has shown how micron-scale strain rate localization can be explained using models for thermal pressurization and thermal decomposition in fluid-saturated gouge materials. Using parameters modeling a typical centroidal depth for a crustal seismogenic zone we predicted localized zone thicknesses in line with laboratory (Brantut et al., 2008; Kitajima et al., 2010) and field (Chester and Chester, 1998; Heermance et al., 2003; De Paola et al., 2008) observations. Further work has shown that the localized zone need not remain in a single location and may migrate across the gouge layer, in agreement with laboratory observations that show a thickening of the highly localized material with slip, and a distinct banded structure within the highly localized material (T. Mitchell, priv. comm.; Kitajima et al., 2010). We have identified two mechanisms that could cause migration. The first is a combination of thermal diffusion, hydraulic diffusion and thermal pressurization, which leads to the location of maximum pore pressure moving away from its initial position [Rice, 2006]. Since the maximum strain rate coincides with the maximum pore pressure, this causes the deforming zone to move across the gouge layer. The second mechanism is reactant depletion in a material undergoing thermal decomposition. Fluid pressurization and strain rate are slaved to the reaction, so as the reactant depletes the deforming zone will migrate towards fresh reactant. An additional symmetry breaking instability exists but is not discussed here. We have also explored how spatial variations in fault gouge properties may control the distribution of seismic shear. Since at seismic slip rates localization in a fluid-saturated material is controlled largely by pore pressure generation and hydraulic diffusion, regions that generate or trap pore pressures more efficiently will attract straining. Numerical simulations show that the deforming zone moves towards regions of low hydraulic

  7. A Lagrangian study tracing water parcel origins in the Canary Upwelling System

    Directory of Open Access Journals (Sweden)

    Evan Mason

    2012-08-01

    Full Text Available The regional ocean circulation within the Canary Upwelling System between 31°N and 35°N is studied using numerical tools. Seasonal mean and near-instantaneous velocity fields from a previously-generated climatological Regional Ocean Modelling System (ROMS solution of the Canary Basin are used to force a series of offline Lagrangian particle-tracking experiments. The primary objective is to identify the pathways through which water parcels arrive at the upwelling region north of Cape Ghir. Examining year-long pathways, the Azores Current contributes over 80% of particles annually, of which a large proportion arrive directly from offshore (from the northwest, while others travel along the shelf and slope from the Gulf of Cadiz. The remaining ~20% originate within the Gulf of Cadiz or come from the south, although the southern contribution is only significant in autumn and winter. When season-long pathways are considered, the alongshore contributions become increasingly important: northern contributions reach 40% in spring and summer, while southern values exceed 35% in winter. This study also shows that coastal upwelling changes both spatially and temporally. Upwelling becomes intensified near Cape Beddouza, with most upwelling occurring within ~40 km from shore although significant values may reach as far as 120 km offshore north of Cape Beddouza; at these locations the offshore integrated upwelling reaches as much as 4 times the offshore Ekman transport. In the Cape Beddouza area (32°N to 33°N, upwelling is negligible in February but intensifies in autumn, reaching as much as 3 times the offshore Ekman transport.

  8. Radiative transfer modeling of upwelling light field in coastal waters

    International Nuclear Information System (INIS)

    Sundarabalan, Balasubramanian; Shanmugam, Palanisamy; Manjusha, Sadasivan

    2013-01-01

    Numerical simulations of the radiance distribution in coastal waters are a complex problem, but playing a growingly important role in optical oceanography and remote sensing applications. The present study attempts to modify the Inherent Optical Properties (IOPs) to allow the phase function to vary with depth, and the bottom boundary to take into account a sloping/irregular surface and the effective reflectance of the bottom material. It then uses the Hydrolight numerical model to compute Apparent Optical Properties (AOPs) for modified IOPs and bottom boundary conditions compared to the default values available in the standard Hydrolight model. The comparison of the profiles of upwelling radiance simulated with depth-dependent IOPs as well as modified bottom boundary conditions for realistic cases of coastal waters off Point Calimere of southern India shows a good match between the simulated and measured upwelling radiance profile data, whereas there is a significant drift between the upwelling radiances simulated from the standard Hydrolight model (with default values) and measured data. Further comparison for different solar zenith conditions at a coastal station indicates that the upwelling radiances simulated with the depth-dependent IOPs and modified bottom boundary conditions are in good agreement with the measured radiance profile data. This simulation captures significant changes in the upwelling radiance field influenced by the bottom boundary layer as well. These results clearly emphasize the importance of using realistic depth-dependent IOPs as well as bottom boundary conditions as input to Hydrolight in order to obtain more accurate AOPs in coastal waters. -- Highlights: ► RT model with depth-dependent IOPs and modified bottom boundary conditions provides accurate L u profiles in coastal waters. ► The modified phase function model will be useful for coastal waters. ► An inter-comparison with measured upwelling radiance gives merits of the

  9. An upwelling-induced retention area off Senegal: A mechanism to ...

    African Journals Online (AJOL)

    Chlorophyll distribution peaks nearshore. This unique surface structure is interpreted as the result of a “double cell” structure in the upwelling vertical circulation: a first cell located at the shelf break, the main upwelling cell that brings cold and nutrient-rich subsurface water to the surface, and a second cell located inshore of ...

  10. The strain accommodation in Ti–28Nb–12Ta–5Zr alloy during warm deformation

    International Nuclear Information System (INIS)

    Farghadany, E.; Zarei-Hanzaki, A.; Abedi, H.R.; Dietrich, D.; Lampke, T.

    2014-01-01

    The warm deformation behavior of a β-type Ti alloys, composing of Ti–27.96Nb–11.97Ta–5.02Zr %wt, (so called TNTZ alloy), has been investigated in the present work in a warm deformation temperature. A variety of deformation features are characterized in the material microstructure after applied warm deformation scheme. The XRD analysis confirms an enhancement in martensite volume fraction. The electron back scatter diffractometry (EBSD) elucidates that the martensite has been mainly formed by laterally at the vicinity of different types of deformation bands. Both the well-known twining systems in TNTZ series have been occurred during deformation. The micro-shear bands, which are defined as highly concentrated plastic strain regions, are characterized in the deformed microstructure. The micro-shear bands are severely formed in the regions, which accommodate the most amount of applied strain

  11. A novel method for visualising and quantifying through-plane skin layer deformations.

    Science.gov (United States)

    Gerhardt, L-C; Schmidt, J; Sanz-Herrera, J A; Baaijens, F P T; Ansari, T; Peters, G W M; Oomens, C W J

    2012-10-01

    Skin is a multilayer composite and exhibits highly non-linear, viscoelastic, anisotropic material properties. In many consumer product and medical applications (e.g. during shaving, needle insertion, patient re-positioning), large tissue displacements and deformations are involved; consequently large local strains in the skin tissue can occur. Here, we present a novel imaging-based method to study skin deformations and the mechanics of interacting skin layers of full-thickness skin. Shear experiments and real-time video recording were combined with digital image correlation and strain field analysis to visualise and quantify skin layer deformations during dynamic mechanical testing. A global shear strain of 10% was applied to airbrush-patterned porcine skin (thickness: 1.2-1.6mm) using a rotational rheometer. The recordings were analysed with ARAMIS image correlation software, and local skin displacement, strain and stiffness profiles through the skin layers determined. The results of this pilot study revealed inhomogeneous skin deformation, characterised by a gradual transition from a low (2.0-5.0%; epidermis) to high (10-22%; dermis) shear strain regime. Shear moduli ranged from 20 to 130kPa. The herein presented method will be used for more extended studies on viable human skin, and is considered a valuable foundation for further development of constitutive models which can be used in advanced finite element analyses of skin. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Coastal upwelling in the Gelendzhik area of the Black Sea: Effect of wind and dynamics

    Science.gov (United States)

    Silvestrova, K. P.; Zatsepin, A. G.; Myslenkov, S. A.

    2017-07-01

    Long series data of a thermistor chain in the Black Sea coastal zone near Gelendzhik were analyzed. A thermistor chain installed 1 km offshore and at a depth of 22 m. There are full and incomplete upwelling events observed. The study of upwelling genesis based on: wind speed data from the NCEP/CFSR reanalysis and Gelendzhik weather station, velocity and direction of coastal currents measured by ADCP profiler moored on the bottom near the thermistor chain. Over the whole observation period (warm seasons of 2013-2015), more than 40 events of upwelling were registered four of them were full upwellings, when presence of under-thermocline water was observed near the sea surface. For every upwelling event, conditions prior to the changes in thermic structure, were analyzed. It is found that full upwelling generally occur under synergistic wind and current forcing. Fairly strong forcing of one of these factors is sufficient for partial upwelling to occur.

  13. Microstructural and mechanical properties of AA1100 aluminum processed by multi-axial incremental forging and shearing

    Energy Technology Data Exchange (ETDEWEB)

    Montazeri-Pour, M. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Parsa, M.H., E-mail: mhparsa@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Jafarian, H.R. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran (Iran, Islamic Republic of); Taieban, S. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of)

    2015-07-15

    Multi-axial incremental forging and shearing (MAIFS), as a new severe plastic deformation technique, was successfully applied up to eight passes on the workpieces of commercially pure Al (AA1100). The microstructure evolutions and mechanisms of the grain refinement in the billets deformed through various passes of process were studied using the electron backscatter diffraction (EBSD) analysis. Microhardness measurements and tensile tests were carried out to evaluate the mechanical properties and deformation behavior of the material after successive passes of the MAIFS process. Measured microhardness evolution indicated that while the distribution of hardness was non-uniform after odd-numbered passes up to four passes, but thereafter outstanding deformation homogeneity was achieved when the consecutive MAIFS passes were applied. Tensile tests indicated that yield stress and ultimate tensile strength increased rapidly during the primary pass of process but thereafter there was only a minor increase up to four passes. After that, a little drop could be observed in strength and then it reached to a saturated magnitude. Measured microhardness distribution values exhibited the same trend, viz. it increased through successive passes to a limiting value beyond which it showed a minor decline by disappearance of points having maximum hardness. Some coarsening was taken place and the dislocation walls between the boundaries were reduced significantly in going from four to six passes. It was suggested that the absorption of the dislocations into grain boundaries as an effective recovery process under large deformations and short-range migration of grain boundaries might be significant mechanisms responsible for the softening observed after four passes of process.

  14. Microstructural and mechanical properties of AA1100 aluminum processed by multi-axial incremental forging and shearing

    International Nuclear Information System (INIS)

    Montazeri-Pour, M.; Parsa, M.H.; Jafarian, H.R.; Taieban, S.

    2015-01-01

    Multi-axial incremental forging and shearing (MAIFS), as a new severe plastic deformation technique, was successfully applied up to eight passes on the workpieces of commercially pure Al (AA1100). The microstructure evolutions and mechanisms of the grain refinement in the billets deformed through various passes of process were studied using the electron backscatter diffraction (EBSD) analysis. Microhardness measurements and tensile tests were carried out to evaluate the mechanical properties and deformation behavior of the material after successive passes of the MAIFS process. Measured microhardness evolution indicated that while the distribution of hardness was non-uniform after odd-numbered passes up to four passes, but thereafter outstanding deformation homogeneity was achieved when the consecutive MAIFS passes were applied. Tensile tests indicated that yield stress and ultimate tensile strength increased rapidly during the primary pass of process but thereafter there was only a minor increase up to four passes. After that, a little drop could be observed in strength and then it reached to a saturated magnitude. Measured microhardness distribution values exhibited the same trend, viz. it increased through successive passes to a limiting value beyond which it showed a minor decline by disappearance of points having maximum hardness. Some coarsening was taken place and the dislocation walls between the boundaries were reduced significantly in going from four to six passes. It was suggested that the absorption of the dislocations into grain boundaries as an effective recovery process under large deformations and short-range migration of grain boundaries might be significant mechanisms responsible for the softening observed after four passes of process

  15. In-situ studies of bulk deformation structures: Static properties under load and dynamics during deformation

    DEFF Research Database (Denmark)

    Jakobsen, Bo

    2006-01-01

    The main goal of the study presented in this thesis was to perform in-situ investigations on deformation structures in plastically deformed polycrystalline copper at low degrees of tensile deformation (model system for cell forming pure fcc metals. Anovel synchrotron...... grains in polycrystalline samples during tensile deformation. We have shown that the resulting 3D reciprocal space maps from tensile deformed copper comprise a pronounced structure, consisting of bright sharp peaks superimposed on a cloud of enhanced intensity. Based on the integrated intensity......, the width of the peaks, and spatial scanning experiments it is concluded that the individual peaks arise from individual dislocation-free regions (the subgrains) in the dislocation structure. The cloud is attributed to the dislocation rich walls. Samples deformed to 2% tensile strain were investigated under...

  16. Structural mechanisms of formation of adiabatic shear bands

    Directory of Open Access Journals (Sweden)

    Mikhail Sokovikov

    2016-10-01

    Full Text Available The paper focuses on the experimental and theoretical study of plastic deformation instability and localization in materials subjected to dynamic loading and high-velocity perforation. We investigate the behavior of samples dynamically loaded during Hopkinson-Kolsky pressure bar tests in a regime close to simple shear conditions. Experiments were carried out using samples of a special shape and appropriate test rigging, which allowed us to realize a plane strain state. Also, the shear-compression specimens proposed in were investigated. The lateral surface of the samples was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. Use of a transmission electron microscope for studying the surface of samples showed that in the regions of strain localization there are parts taking the shape of bands and honeycomb structure in the deformed layer. The process of target perforation involving plug formation and ejection was investigated using a high-speed infra-red camera. A specially designed ballistic set-up for studying perforation was used to test samples in different impulse loading regimes followed by plastic flow instability and plug ejection. Changes in the velocity of the rear surface at different time of plug ejection were analyzed by Doppler interferometry techniques. The microstructure of tested samples was analyzed using an optical interferometer-profilometer and a scanning electron microscope. The subsequent processing of 3D deformation relief data enabled estimation of the distribution of plastic strain gradients at different time of plug formation and ejection. It has been found that in strain localization areas the subgrains are elongated taking the shape of bands and undergo fragmentation leading to the formation of super-microcrystalline structure, in which the

  17. Pathways of upwelling deep waters to the surface of the Southern Ocean

    Science.gov (United States)

    Tamsitt, Veronica; Drake, Henri; Morrison, Adele; Talley, Lynne; Dufour, Carolina; Gray, Alison; Griffies, Stephen; Mazloff, Matthew; Sarmiento, Jorge; Wang, Jinbo; Weijer, Wilbert

    2017-04-01

    Upwelling of Atlantic, Indian and Pacific deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of anthropogenic carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. Here we go beyond the two-dimensional view of Southern Ocean upwelling, to show detailed Southern Ocean upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution ocean and climate models. The northern deep waters enter the Antarctic Circumpolar Current (ACC) via narrow southward currents along the boundaries of the three ocean basins, before spiraling southeastward and upward through the ACC. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the southern ACC boundary, with a spatially nonuniform distribution, regionalizing warm water supply to Antarctic ice shelves and the delivery of nutrient and carbon-rich water to the sea surface. The timescale for half of the deep water to upwell from 30°S to the mixed layer is on the order of 60-90 years, which has important implications for the timescale for signals to propagate through the deep ocean. In addition, we quantify the diabatic transformation along particle trajectories, to identify where diabatic processes are important along the upwelling pathways.

  18. Neoproterozoic structural evolution of the NE-trending Ad-Damm Shear Zone, Arabian Shield, Saudi Arabia

    Science.gov (United States)

    Hamimi, Zakaria; El-Sawy, El-Sawy K.; El-Fakharani, Abdelhamid; Matsah, Mohamed; Shujoon, Abdulrahman; El-Shafei, Mohamed K.

    2014-11-01

    The Ad-Damm Shear Zone (AdSZ) is a major NE- (to NNE-) trending fault zone separating Jiddah and Asir tectonic terranes in the Neoproterozoic Juvenile Arabian Shield (AS). AdSZ is characterized by the development of dextral transcurrent shear-sense indicators and moderately to steeply NW plunging stretching lineations. It is mainly developed under high amphibolite-to greenschist-facies conditions and extends ∼380 km, with an average width ∼2-4 km, from the conspicuous Ruwah Fault Zone in the eastern shield to the Red Sea Coastal plain. It was believed to be one of the conjugate shears of the NW- to NNW-trending sinistral Najd Shear System. This assumption is, based on the noteworthy dextral shear criteria recorded within the 620 Ma mylonitic granite of No'man Complex. A total shear-zone strike length exceeding 117 km is carefully investigated during this study to reconstruct its structural evolution. Shear-sense indicators and other field observations including overprinting relations clearly demonstrate a complicated Neoproterozoic history of AdSZ, involving at least three phases of deformations (D1-D3). Both D1 and D2 phases were of contractional regime. During D1 phase a NW-SE compression led to the formation of NE-oriented low-angle thrusts and tight-overturned folds. D2 is represented by a NE-SW stress oriented that led to the development of an open folding. D3 is expressed by the NE-SW intensive dextral transcurrent brittle-ductile shearing. It is overprinting the early formed fabrics and played a significant role in the creation of AdSZ and the mega-scale related folds. Such deformation history reflects the same Neoproterozoic deformation regime recognized in the NE-trending shear zones in the Arabian-Nubian Shield (ANS).

  19. Early Cretaceous Ductile Deformation of Marbles from the Western Hills of Beijing, North China Craton

    Science.gov (United States)

    Feng, H.; Liu, J.

    2017-12-01

    During the Early Cretaceous tectonic lithosphere extension, the pre-mesozoic rocks from the Western Hills in the central part of the North China Craton suffered from weak metamorphism but intense shear deformation. The prominent features of the deformation structures are the coexisting layer-parallel shear zones and intrafolia folds, and the along-strike thickness variations of the marble layers from the highly sheared Mesoproterozoic Jing'eryu Formation. Platy marbles are well-developed in the thinner layers, while intrafolia folds are often observed in the thicker layers. Most folds are tight recumbent folds and their axial planes are parallel to the foliations and layerings of the marbles. The folds are A-type folds with hinges being always paralleling to the stretching lineations consistently oriented at 130°-310° directions throughout the entire area. SPO and microstructural analyses of the sheared marbles suggest that the thicker layers suffered from deformations homogeneously, while strain localization can be distinguished in the thinner layers. Calcite twin morphology and CPO analysis indicate that the deformation of marbles from both thinner and thicker layers happened at temperatures of 300 to 500°C. The above analysis suggests that marbles in the thicker layers experienced a progressive sequence of thermodynamic events: 1) regional metamorphism, 2) early ductile deformation dominated by relatively higher temperature conditions, during which all the mineral particles elongated and oriented limitedly and the calcite grains are deformed mainly by mechanical twinning, and 3) late superimposition of relatively lower temperature deformation and recrystallization, which superposed the early deformation, and made the calcites finely granulated, elongated and oriented by dynamical recrystallization along with other grains. Marbles from the thinner layers, however, experienced a similar, but different sequence of thermo-dynamic events, i.e. regional

  20. Modeling of shear wall buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A K [North Carolina State Univ., Raleigh (USA). Dept. of Civil Engineering

    1984-05-01

    Many nuclear power plant buildings, for example, the auxiliary building, have reinforced concrete shear walls as the primary lateral load resisting system. Typically, these walls have low height to length ratio, often less than unity. Such walls exhibit marked shear lag phenomenon which would affect their bending stiffness and the overall stress distribution in the building. The deformation and the stress distribution in walls have been studied which is applicable to both the short and the tall buildings. The behavior of the wall is divided into two parts: the symmetric flange action and the antisymmetry web action. The latter has two parts: the web shear and the web bending. Appropriate stiffness equations have been derived for all the three actions. These actions can be synthesized to solve any nonlinear cross-section. Two specific problems, that of lateral and torsional loadings of a rectangular box, have been studied. It is found that in short buildings shear lag plays a very important role. Any beam type formulation which either ignores shear lag or includes it in an idealized form is likely to lead to erroneous results. On the other hand a rigidity type approach with some modifications to the standard procedures would yield nearly accurate answers.

  1. Evaluating interfacial shear stresses in composite hollo

    Directory of Open Access Journals (Sweden)

    Aiham Adawi

    2016-09-01

    Full Text Available Analytical evaluation of the interfacial shear stresses for composite hollowcore slabs with concrete topping is rare in the literature. Adawi et al. (2014 estimated the interfacial shear stiffness coefficient (ks that governs the behavior of the interface between hollowcore slabs and the concrete topping using push-off tests. This parameter is utilized in this paper to provide closed form solutions for the differential equations governing the behavior of simply supported composite hollowcore slabs. An analytical solution based on the deformation compatibility of the composite section and elastic beam theory, is developed to evaluate the shear stresses along the interface. Linear finite element modeling of the full-scale tests presented in Adawi et al. (2015 is also conducted to validate the developed analytical solution. The proposed analytical solution was found to be adequate in estimating the magnitude of horizontal shear stress in the studied composite hollowcore slabs.

  2. Pore Fluid Effects on Shear Modulus for Sandstones with Soft Anisotropy

    International Nuclear Information System (INIS)

    Berryman, J G

    2004-01-01

    A general analysis of poroelasticity for vertical transverse isotropy (VTI) shows that four eigenvectors are pure shear modes with no coupling to the pore-fluidmechanics. The remaining two eigenvectors are linear combinations of pure compression and uniaxial shear, both of which are coupled to the fluid mechanics. After reducing the problem to a 2x2 system, the analysis shows in a relatively elementary fashion how a poroelastic system with isotropic solid elastic frame, but with anisotropy introduced through the poroelastic coefficients, interacts with the mechanics of the pore fluid and produces shear dependence on fluid properties in the overall mechanical system. The analysis shows, for example, that this effect is always present (though sometimes small in magnitude) in the systems studied, and can be quite large (up to a definite maximum increase of 20 per cent) in some rocks--including Spirit River sandstone and Schuler-Cotton Valley sandstone

  3. Coastal upwelling along the southwest coast of India – ENSO modulation

    Directory of Open Access Journals (Sweden)

    K. Muni Krishna

    2008-06-01

    Full Text Available An index of El Niño Southern Oscillation (ENSO in the Pacific during pre monsoon season is shown to account for a significant part of the variability of coastal Sea Surface Temperature (SST anomalies measured a few months later within the wind driven southwest coast of India coastal upwelling region 7° N–14° N. This teleconnection is thought to result from an atmospheric bridge between the Pacific and north Indian Oceans, leading to warm (cold ENSO events being associated with relaxation (intensification of the Indian trade winds and of the wind-induced coastal upwelling. This ENSO related modulation of the wind-driven coastal upwelling appears to contribute to the connection observed at the basin-scale between ENSO and SST in the Arabian Sea. The ability to use this teleconnection to give warning of large changes in the southwest coast of India coastal upwelling few months in advance is successfully tested using data from 1998 and 1999 ENSO events.

  4. Localization in Naturally Deformed Systems - the Default State?

    Science.gov (United States)

    Clancy White, Joseph

    2017-04-01

    Based on the extensive literature on localized rock deformation, conventional wisdom would interpret it to be a special behaviour within an anticipated background of otherwise uniform deformation. The latter notwithstanding, the rock record is so rife with transient (cyclic), heterogeneous deformation, notably shear localization, as to characterize localization as the anticipated 'normal' behaviour. The corollary is that steady, homogeneous deformation is significantly less common, and if achieved must reflect some special set of conditions that are not representative of the general case. An issue central to natural deformation is then not the existance of localized strain, but rather how the extant deformation processes scale across tectonic phenomena and in turn organize to enable a coherent(?) descripion of Earth deformation. Deformation is fundamentally quantized, discrete (diffusion, glide, crack propagation) and reliant on the defect state of rock-forming minerals. The strain energy distribution that drives thermo-mechanical responses is in the first instance established at the grain-scale where the non-linear interaction of defect-mediated micromechanical processes introduces heterogeneous behaviour described by various gradient theories, and evidenced by the defect microstructures of deformed rocks. Hence, the potential for non-uniform response is embedded within even quasi-uniform, monomineralic materials, seen, for example, in the spatially discrete evolution of dynamic recrystallization. What passes as homogeneous or uniform deformation at various scales is the aggregation of responses at some characteristic dimension at which heterogeneity is not registered or measured. Nevertheless, the aggregate response and associated normalized parameters (strain, strain rate) do not correspond to any condition actually experienced by the deforming material. The more common types of macroscopic heterogeneity promoting localization comprise mechanically contrasting

  5. Relative contributions of local wind and topography to the coastal upwelling intensity in the northern South China Sea

    Science.gov (United States)

    Wang, Dongxiao; Shu, Yeqiang; Xue, Huijie; Hu, Jianyu; Chen, Ju; Zhuang, Wei; Zu, TingTing; Xu, Jindian

    2014-04-01

    Topographically induced upwelling caused by the interaction between large-scale currents and topography was observed during four cruises in the northern South China Sea (NSCS) when the upwelling favorable wind retreated. Using a high-resolution version of the Princeton Ocean Model, we investigate relative contributions of local wind and topography to the upwelling intensity in the NSCS. The results show that the topographically induced upwelling is sensitive to alongshore large-scale currents, which have an important contribution to the upwelling intensity. The topographically induced upwelling is comparable with the wind-driven upwelling at surface and has a stronger contribution to the upwelling intensity than the local wind does at bottom in the near-shore shelf region. The widened shelf to the southwest of Shanwei and west of the Taiwan Banks intensifies the bottom friction, especially off Shantou, which is a key factor for topographically induced upwelling in terms of bottom Ekman transport and Ekman pumping. The local upwelling favorable wind enhances the bottom friction as well as net onshore transport along the 50 m isobath, whereas it has less influence along the 30 m isobath. This implies the local wind is more important in upwelling intensity in the offshore region than in the nearshore region. The contribution of local upwelling favorable wind on upwelling intensity is comparable with that of topography along the 50 m isobath. The effects of local upwelling favorable wind on upwelling intensity are twofold: on one hand, the wind transports surface warm water offshore, and as a compensation of mass the bottom current transports cold water onshore; on the other hand, the wind enhances the coastal current, and the bottom friction in turn increases the topographically induced upwelling intensity.

  6. Petrology, chronology and sequence of vein systems: Systematic magmatic and hydrothermal history of a major intracontinental shear zone, Canadian Appalachians

    Science.gov (United States)

    Pe-Piper, Georgia; Piper, David J. W.; McFarlane, Chris R. M.; Sangster, Chris; Zhang, Yuanyuan; Boucher, Brandon

    2018-04-01

    Intra-continental shear zones developed during continental collision may experience prolonged magmatism and mineralization. The Cobequid Shear Zone formed part of a NE-SW-trending, orogen-parallel shear system in the late Devonian-early Carboniferous, where syn-tectonic granite-gabbro plutons and volcanic rocks 4 km thick were progressively deformed. In late Carboniferous to Permian, Alleghanian collision of Africa with Laurentia formed the E-W trending Minas Fault Zone, reactivating parts of the Cobequid Shear Zone. The 50 Ma history of hydrothermal mineralization following pluton emplacement is difficult to resolve from field relationships of veins, but SEM study of thin sections provides clear detail on the sequence of mineralization. The general paragenesis is: albite ± quartz ± chlorite ± monazite → biotite → calcite, allanite, pyrite → Fe-carbonates, Fe-oxides, minor sulfides, calcite and synchysite. Chronology was determined from literature reports and new U-Pb LA-ICPMS dating of monazite and allanite in veins. Vein mineralization was closely linked to magmatic events. Vein emplacement occurred preferentially during fault movement recognised from basin-margin inversion, as a result of fractures opening in the damage zone of master faults. The sequence of mineralization, from ca. 355 Ma riebeckite and albite veins to ca. 327 (-305?) Ma siderite-magnetite and sulfide mineralization, resembles Precambrian iron-oxide-copper-gold (IOCG) systems in the literature. The abundant magmatic Na, halogens and CO2 in veins and some magmatic bodies, characteristic of IOCG systems, were derived from the deeply subducted Rheic Ocean slab with little terrigenous sediment. Regional extension of the Magdalen Basin caused asthenospheric upwelling and melting of the previously metasomatized sub-continental lithospheric mantle. Crustal scale strike-slip faulting facilitated the rise of magmas, resulting in high heat flow driving an active hydrothermal system. Table S2

  7. Spatio-temporal variability of upwelling along the southwest coast of India based on satellite observations

    Science.gov (United States)

    Jayaram, Chiranjivi; Kumar, P. K. Dinesh

    2018-03-01

    Upwelling phenomenon along the eastern boundaries of global ocean has received greater attention in the recent times due to its environmental and economic significance in the global warming and the scenario of changing climate as opined by IPCC AR5. In this context, the availabile satellite data on sea surface winds, sea surface temperature (SST), sea level anomaly (SLA) and chlorophyll-a concentration (Chl-a), for the period 1981-2016 were analyzed to identify the coastal upwelling pattern in the Southeastern Arabian Sea (SEAS). Synergistic approach, using winds, SST, SLA and Chl-a revealed that strong upwelling was prevailing between 8°N and 12°N. During the study period, geographical differences existed in the peak values of upwelling favorable conditions considered for study. Analysis of the alongshore winds which are conducive for upwelling were observed to be curtailed towards the northern part of the study region between 2005 and 2010. Also, the strength of upwelling reduced during the strong ENSO years of 1997 and 2015. Linear regression based trend analysis of upwelling indices like Ekman transport, SST and chlorophyll along the coast, during the upwelling period, revealed slight increase in the strength towards the southern region while it decreased to the north during the study period.

  8. Deformations and Rotational Ground Motions Inferred from Downhole Vertical Array Observations

    Science.gov (United States)

    Graizer, V.

    2017-12-01

    Only few direct reliable measurements of rotational component of strong earthquake ground motions are obtained so far. In the meantime, high quality data recorded at downhole vertical arrays during a number of earthquakes provide an opportunity to calculate deformations based on the differences in ground motions recorded simultaneously at different depths. More than twenty high resolution strong motion downhole vertical arrays were installed in California with primary goal to study site response of different geologic structures to strong motion. Deformation or simple shear strain with the rate γ is the combination of pure shear strain with the rate γ/2 and rotation with the rate of α=γ/2. Deformations and rotations were inferred from downhole array records of the Mw 6.0 Parkfield 2004, the Mw 7.2 Sierra El Mayor (Mexico) 2010, the Mw 6.5 Ferndale area in N. California 2010 and the two smaller earthquakes in California. Highest amplitude of rotation of 0.60E-03 rad was observed at the Eureka array corresponding to ground velocity of 35 cm/s, and highest rotation rate of 0.55E-02 rad/s associated with the S-wave was observed at a close epicentral distance of 4.3 km from the ML 4.2 event in Southern California at the La Cienega array. Large magnitude Sierra El Mayor earthquake produced long duration rotational motions of up to 1.5E-04 rad and 2.05E-03 rad/s associated with shear and surface waves at the El Centro array at closest fault distance of 33.4km. Rotational motions of such levels, especially tilting can have significant effect on structures. High dynamic range well synchronized and properly oriented instrumentation is necessary for reliable calculation of rotations from vertical array data. Data from the dense Treasure Island array near San Francisco demonstrate consistent change of shape of rotational motion with depth and material. In the frequency range of 1-15 Hz Fourier amplitude spectrum of vertical ground velocity is similar to the scaled tilt

  9. Using crustal thickness, subsidence and P-T-t history on the Iberia-Newfoundland & Alpine Tethys margins to constrain lithosphere deformation modes during continental breakup

    Science.gov (United States)

    Jeanniot, L.; Kusznir, N. J.; Manatschal, G.; Mohn, G.; Beltrando, M.

    2013-12-01

    Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history and OCT architecture, resulting in hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust before continental breakup and seafloor spreading. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single kinematic lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events, using forward modelling of crustal thickness, subsidence and P-T-t history calibrated against observations on the present-day Iberia-Newfoundland and the fossil analogue Alpine Tethys margins. Lithosphere deformation modes, represented by flow fields, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the topmost upper lithosphere inducing passive upwelling beneath that layer; the upper lithosphere is assumed to deform by extensional faulting and magmatic intrusions, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling is also included in the kinematic model as predicted by Braun et al (2000). We predict melt generation by decompressional melting using the parameterization and methodology of Katz et al., 2003. We use a series of numerical experiments, tested and calibrated against crustal thicknesses and subsidence observations, to determine the distribution of lithosphere

  10. The Formation and Evolution of Shear Bands in Plane Strain Compressed Nickel-Base Superalloy

    Directory of Open Access Journals (Sweden)

    Bin Tang

    2018-02-01

    Full Text Available The formation and evolution of shear bands in Inconel 718 nickel-base superalloy under plane strain compression was investigated in the present work. It is found that the propagation of shear bands under plane strain compression is more intense in comparison with conventional uniaxial compression. The morphology of shear bands was identified to generally fall into two categories: in “S” shape at severe conditions (low temperatures and high strain rates and “X” shape at mild conditions (high temperatures and low strain rates. However, uniform deformation at the mesoscale without shear bands was also obtained by compressing at 1050 °C/0.001 s−1. By using the finite element method (FEM, the formation mechanism of the shear bands in the present study was explored for the special deformation mode of plane strain compression. Furthermore, the effect of processing parameters, i.e., strain rate and temperature, on the morphology and evolution of shear bands was discussed following a phenomenological approach. The plane strain compression attempt in the present work yields important information for processing parameters optimization and failure prediction under plane strain loading conditions of the Inconel 718 superalloy.

  11. Focus: Nucleation kinetics of shear bands in metallic glass.

    Science.gov (United States)

    Wang, J Q; Perepezko, J H

    2016-12-07

    The development of shear bands is recognized as the primary mechanism in controlling the plastic deformability of metallic glasses. However, the kinetics of the nucleation of shear bands has received limited attention. The nucleation of shear bands in metallic glasses (MG) can be investigated using a nanoindentation method to monitor the development of the first pop-in event that is a signature of shear band nucleation. The analysis of a statistically significant number of first pop-in events demonstrates the stochastic behavior that is characteristic of nucleation and reveals a multimodal behavior associated with local spatial heterogeneities. The shear band nucleation rate of the two nucleation modes and the associated activation energy, activation volume, and site density were determined by loading rate experiments. The nucleation activation energy is very close to the value that is characteristic of the β relaxation in metallic glass. The identification of the rate controlling kinetics for shear band nucleation offers guidance for promoting plastic flow in metallic glass.

  12. Shear-flow coupling in non-planar rock joints

    International Nuclear Information System (INIS)

    Makurat, A.; Barton, N.

    1985-01-01

    Crystalline rock masses are regarded as a possible host rock for permanent nuclear waste disposal. During the excavation of the required shafts and tunnels, the initial state of stress will be changed and cause a deformation of the rock mass and discontinuities. During the lifetime of the nuclear repository joint apertures may change due to thermally induced stress variations during the heating and cooling phase. As the conductivity of a joint is very sensitive to its aperture, fluid flow from and towards a repository, as well as the potential transport times of radionuclides are highly dependent on the deformability of the joints. Theoretical calculations of coupled flow in rock joints (Barton et al. 1984) predict an increase of conductivity of several orders of magnitude for the first few millimeters for shear displacement. The shear-dilation-conductivity coupling for two block sizes at two effective stress levels is shown

  13. C sub 6 sub 0 fullerene and its molecular complexes under axial and shear deformation

    CERN Document Server

    Spitsina, N G; Bashkin, I V; Meletov, K P

    2002-01-01

    We have studied the pristine C sub 6 sub 0 and its molecular complexes with the organic donors bis(ethylenedithio) tetrathiafulvalene (BEDT-TTF or ET) and tetramethyltetraselenafulvalene (TMTSF) by means of ESR and Raman spectroscopy at high pressure. The important changes in the ESR signal of C sub 6 sub 0 were observed under axial pressure combined with shear deformation. It is shown that the treatment at a anisotropic pressure of 4 GPa results in a reduction in the symmetry of the C sub 6 sub 0 molecule and the formation of radicals. Treatment of the molecular complex of (ET) sub 2 centre dot C sub 6 sub 0 at a pressure of approx 4.5 GPa and a temperature of 150 deg. C leads to the formation of C sub 6 sub 0 dimers. The Raman spectra of the molecular complex C sub 6 sub 0 centre dot TMTSF centre dot 2(CS sub 2) were measured in situ at ambient temperature and pressures up to 9.5 GPa. The pressure behaviour of the Raman peaks reveals singularity at 5.0 +- 0.5 GPa related to the softening and splitting of so...

  14. Transient Droplet Behavior and Droplet Breakup during Bulk and Confined Shear Flow in Blends with One Viscoelastic Component: Experiments, Modelling and Simulations

    Science.gov (United States)

    Cardinaels, Ruth; Verhulst, Kristof; Renardy, Yuriko; Moldenaers, Paula

    2008-07-01

    The transient droplet deformation and droplet orientation after inception of shear, the shape relaxation after cessation of shear and droplet breakup during shear, are microscopically studied, both under bulk and confined conditions. The studied blends contain one viscoelastic Boger fluid phase. A counter rotating setup, based on a Paar Physica MCR300, is used for the droplet visualisation. For bulk shear flow, it is shown that the droplet deformation during startup of shear flow and the shape relaxation after cessation of shear flow are hardly influenced by droplet viscoelasticity, even at moderate to high capillary and Deborah numbers. The effects of droplet viscoelasticity only become visible close to the critical conditions and a novel break-up mechanism is observed. Matrix viscoelasticity has a more pronounced effect, causing overshoots in the deformation and significantly inhibiting relaxation. However, different applied capillary numbers prior to cessation of shear flow, with the Deborah number fixed, still result in a single master curve for shape retraction, as in fully Newtonian systems. The long tail in the droplet relaxation can be qualitatively described with a phenomenological model for droplet deformation, when using a 5-mode Giesekus model for the fluid rheology. It is found that the shear flow history significantly affects the droplet shape evolution and the breakup process in blends with one viscoelastic component. Confining a droplet between two plates accelerates the droplet deformation kinetics, similar to fully Newtonian systems. However, the increased droplet deformation, due to wall effects, causes the steady state to be reached at a later instant in time. Droplet relaxation is less sensitive to confinement, leading to slower relaxation kinetics only for highly confined droplets. For the blend with a viscoelastic droplet, a non-monotonous trend is found for the critical capillary number as a function of the confinement ratio. Finally

  15. Transient Droplet Behavior and Droplet Breakup during Bulk and Confined Shear Flow in Blends with One Viscoelastic Component: Experiments, Modelling and Simulations

    International Nuclear Information System (INIS)

    Cardinaels, Ruth; Verhulst, Kristof; Moldenaers, Paula; Renardy, Yuriko

    2008-01-01

    The transient droplet deformation and droplet orientation after inception of shear, the shape relaxation after cessation of shear and droplet breakup during shear, are microscopically studied, both under bulk and confined conditions. The studied blends contain one viscoelastic Boger fluid phase. A counter rotating setup, based on a Paar Physica MCR300, is used for the droplet visualisation. For bulk shear flow, it is shown that the droplet deformation during startup of shear flow and the shape relaxation after cessation of shear flow are hardly influenced by droplet viscoelasticity, even at moderate to high capillary and Deborah numbers. The effects of droplet viscoelasticity only become visible close to the critical conditions and a novel break-up mechanism is observed. Matrix viscoelasticity has a more pronounced effect, causing overshoots in the deformation and significantly inhibiting relaxation. However, different applied capillary numbers prior to cessation of shear flow, with the Deborah number fixed, still result in a single master curve for shape retraction, as in fully Newtonian systems. The long tail in the droplet relaxation can be qualitatively described with a phenomenological model for droplet deformation, when using a 5-mode Giesekus model for the fluid rheology. It is found that the shear flow history significantly affects the droplet shape evolution and the breakup process in blends with one viscoelastic component. Confining a droplet between two plates accelerates the droplet deformation kinetics, similar to fully Newtonian systems. However, the increased droplet deformation, due to wall effects, causes the steady state to be reached at a later instant in time. Droplet relaxation is less sensitive to confinement, leading to slower relaxation kinetics only for highly confined droplets. For the blend with a viscoelastic droplet, a non-monotonous trend is found for the critical capillary number as a function of the confinement ratio. Finally

  16. An evaluation of the lap-shear test for Sn-rich solder/Cu couples: Experiments and simulation

    Science.gov (United States)

    Chawla, N.; Shen, Y.-L.; Deng, X.; Ege, E. S.

    2004-12-01

    The lap-shear technique is commonly used to evaluate the shear, creep, and thermal fatigue behavior of solder joints. We have conducted a parametric experimental and modeling study, on the effect of testing and geometrical parameters on solder/copper joint response in lap-shear. It was shown that the farfield applied strain is quite different from the actual solder strain (measured optically). Subtraction of the deformation of the Cu substrate provides a reasonable approximation of the solder strain in the elastic regime, but not in the plastic regime. Solder joint thickness has a profound effect on joint response. The solder response moves progressively closer to “true” shear response with increasing joint thickness. Numerical modeling using finite-element analyses were performed to rationalize the experimental findings. The same lap-shear configuration was used in the simulation. The input response for solder was based on the experimental tensile test result on bulk specimens. The calculated shear response, using both the commonly adopted far-field measure and the actual shear strain in solder, was found to be consistent with the trends observed in the lap-shear experiments. The geometric features were further explored to provide physical insight into the problem. Deformation of the substrate was found to greatly influence the shear behavior of the solder.

  17. Shape oscillations of elastic particles in shear flow.

    Science.gov (United States)

    Subramaniam, Dhananjay Radhakrishnan; Gee, David J

    2016-09-01

    Particle suspensions are common to biological fluid flows; for example, flow of red- and white-blood cells, and platelets. In medical technology, current and proposed methods for drug delivery use membrane-bounded liquid capsules for transport via the microcirculation. In this paper, we consider a 3D linear elastic particle inserted into a Newtonian fluid and investigate the time-dependent deformation using a numerical simulation. Specifically, a boundary element technique is used to investigate the motion and deformation of initially spherical or spheroidal particles in bounded linear shear flow. The resulting deformed shapes reveal a steady-state profile that exhibits a 'tank-treading' motion for initially spherical particles. Wall effects on particle trajectory are seen to include a modified Jeffrey׳s orbit for spheroidal inclusions with a period that varies inversely with the strength of the shear flow. Alternately, spheroidal inclusions may exhibit either a 'tumbling' or 'trembling' motion depending on the initial particle aspect ratio and the capillary number (i.e., ratio of fluid shear to elastic restoring force). We find for a capillary number of 0.1, a tumbling mode transitions to a trembling mode at an aspect ratio of 0.87 (approx.), while for a capillary number of 0.2, this transition takes place at a lower aspect ratio. These oscillatory modes are consistent with experimental observations involving similarly shaped vesicles and thus serves to validate the use of a simple elastic constitutive model to perform relevant physiological flow calculations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The plane strain shear fracture of the advanced high strength steels

    International Nuclear Information System (INIS)

    Sun, Li

    2013-01-01

    The “shear fracture” which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of “shear fracture” phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a “shear fracture” in the component

  19. Recent advances in understanding deformation and flow of granular matter

    Directory of Open Access Journals (Sweden)

    Mesarović Siniša Đ.

    2014-01-01

    Full Text Available By means of graph theory, we analyze the changes in topology of a granular assembly during deformation. The elementary mechanism of diffuse deformation consists of intermittent flips. We show that dilatancy is the direct result of: an increasing number of flips, and, elastic relaxation of particles upon flips. Both are dependent on particles' elastic potential energy prior to flip and after the flip. The latter is the result of non uniform distribution of interparticle forces in force chains. Next, we consider shear bands in granular materials. Formation of shear bands is accompanied by accompanied by massive rolling of particle. Since rolling is constrained by neighbors, a characteristic rolling correlation length appears. The transmission of rotations in a particular direction depends on the strength of the force chain branches in the direction of propagation and across. The maximum propagation distance is comparable to observed widths of shear bands. Finally, we turn to the question of vortex formation within shear bands and argue that vortex pattern minimizes the dissipation/resistance in granular fluid.

  20. Importance of Tensile Strength on the Shear Behavior of Discontinuities

    Science.gov (United States)

    Ghazvinian, A. H.; Azinfar, M. J.; Geranmayeh Vaneghi, R.

    2012-05-01

    In this study, the shear behavior of discontinuities possessing two different rock wall types with distinct separate compressive strengths was investigated. The designed profiles consisted of regular artificial joints molded by five types of plaster mortars, each representing a distinct uniaxial compressive strength. The compressive strengths of plaster specimens ranged from 5.9 to 19.5 MPa. These specimens were molded considering a regular triangular asperity profile and were designed so as to achieve joint walls with different strength material combinations. The results showed that the shear behavior of discontinuities possessing different joint wall compressive strengths (DDJCS) tested under constant normal load (CNL) conditions is the same as those possessing identical joint wall strengths, but the shear strength of DDJCS is governed by minor joint wall compressive strength. In addition, it was measured that the predicted values obtained by Barton's empirical criterion are greater than the experimental results. The finding indicates that there is a correlation between the joint roughness coefficient (JRC), normal stress, and mechanical strength. It was observed that the mode of failure of asperities is either pure tensile, pure shear, or a combination of both. Therefore, Barton's strength criterion, which considers the compressive strength of joint walls, was modified by substituting the compressive strength with the tensile strength. The validity of the modified criterion was examined by the comparison of the predicted shear values with the laboratory shear test results reported by Grasselli (Ph.D. thesis n.2404, Civil Engineering Department, EPFL, Lausanne, Switzerland, 2001). These comparisons infer that the modified criterion can predict the shear strength of joints more precisely.

  1. Nutrient supply, surface currents, and plankton dynamics predict zooplankton hotspots in coastal upwelling systems

    Science.gov (United States)

    Messié, Monique; Chavez, Francisco P.

    2017-09-01

    A simple combination of wind-driven nutrient upwelling, surface currents, and plankton growth/grazing equations generates zooplankton patchiness and hotspots in coastal upwelling regions. Starting with an initial input of nitrate from coastal upwelling, growth and grazing equations evolve phytoplankton and zooplankton over time and space following surface currents. The model simulates the transition from coastal (large phytoplankton, e.g., diatoms) to offshore (picophytoplankton and microzooplankton) communities, and in between generates a large zooplankton maximum. The method was applied to four major upwelling systems (California, Peru, Northwest Africa, and Benguela) using latitudinal estimates of wind-driven nitrate supply and satellite-based surface currents. The resulting zooplankton simulations are patchy in nature; areas of high concentrations coincide with previously documented copepod and krill hotspots. The exercise highlights the importance of the upwelling process and surface currents in shaping plankton communities.

  2. Shear structuring as a new method to make anisotropic structures from soy-gluten blends

    NARCIS (Netherlands)

    Grabowska, K.J.; Tekidou, S.; Boom, R.M.; Goot, van der A.J.

    2014-01-01

    The concept of shear-induced structuring was applied to concentrated blends of soy protein isolate (SPI) and wheat gluten (WG) to create novel semi-solid food textures. Concurrent simple shear deformation and heating (95 °C) of the protein blends generated original structures consisting of fibers or

  3. Deformation-driven diffusion and plastic flow in amorphous granular pillars.

    Science.gov (United States)

    Li, Wenbin; Rieser, Jennifer M; Liu, Andrea J; Durian, Douglas J; Li, Ju

    2015-06-01

    We report a combined experimental and simulation study of deformation-induced diffusion in compacted quasi-two-dimensional amorphous granular pillars, in which thermal fluctuations play a negligible role. The pillars, consisting of bidisperse cylindrical acetal plastic particles standing upright on a substrate, are deformed uniaxially and quasistatically by a rigid bar moving at a constant speed. The plastic flow and particle rearrangements in the pillars are characterized by computing the best-fit affine transformation strain and nonaffine displacement associated with each particle between two stages of deformation. The nonaffine displacement exhibits exponential crossover from ballistic to diffusive behavior with respect to the cumulative deviatoric strain, indicating that in athermal granular packings, the cumulative deviatoric strain plays the role of time in thermal systems and drives effective particle diffusion. We further study the size-dependent deformation of the granular pillars by simulation, and find that different-sized pillars follow self-similar shape evolution during deformation. In addition, the yield stress of the pillars increases linearly with pillar size. Formation of transient shear lines in the pillars during deformation becomes more evident as pillar size increases. The width of these elementary shear bands is about twice the diameter of a particle, and does not vary with pillar size.

  4. A microstructural study of fault rocks from the SAFOD: Implications for the deformation mechanisms and strength of the creeping segment of the San Andreas Fault

    Science.gov (United States)

    Hadizadeh, Jafar; Mittempergher, Silvia; Gratier, Jean-Pierre; Renard, Francois; Di Toro, Giulio; Richard, Julie; Babaie, Hassan A.

    2012-09-01

    The San Andreas Fault zone in central California accommodates tectonic strain by stable slip and microseismic activity. We study microstructural controls of strength and deformation in the fault using core samples provided by the San Andreas Fault Observatory at Depth (SAFOD) including gouge corresponding to presently active shearing intervals in the main borehole. The methods of study include high-resolution optical and electron microscopy, X-ray fluorescence mapping, X-ray powder diffraction, energy dispersive X-ray spectroscopy, white light interferometry, and image processing. The fault zone at the SAFOD site consists of a strongly deformed and foliated core zone that includes 2-3 m thick active shear zones, surrounded by less deformed rocks. Results suggest deformation and foliation of the core zone outside the active shear zones by alternating cataclasis and pressure solution mechanisms. The active shear zones, considered zones of large-scale shear localization, appear to be associated with an abundance of weak phases including smectite clays, serpentinite alteration products, and amorphous material. We suggest that deformation along the active shear zones is by a granular-type flow mechanism that involves frictional sliding of microlithons along phyllosilicate-rich Riedel shear surfaces as well as stress-driven diffusive mass transfer. The microstructural data may be interpreted to suggest that deformation in the active shear zones is strongly displacement-weakening. The fault creeps because the velocity strengthening weak gouge in the active shear zones is being sheared without strong restrengthening mechanisms such as cementation or fracture sealing. Possible mechanisms for the observed microseismicity in the creeping segment of the SAF include local high fluid pressure build-ups, hard asperity development by fracture-and-seal cycles, and stress build-up due to slip zone undulations.

  5. Shear viscosity of phase-separating polymer blends with viscous asymmetry

    International Nuclear Information System (INIS)

    Jeon, H. S.; Hobbie, E. K.

    2001-01-01

    Rheo-optical measurements of phase separating polymer mixtures under simple shear flow have been used to investigate the influence of domain morphology on the viscosity of emulsionlike polymer blends, in which the morphology under weak shear is droplets of one coexisting phase dispersed in a matrix of the second. The structure and viscosity of low-molecular-weight polybutadiene and polyisoprene mixtures, phase separated by quenching to a temperature inside the coexistence region of the phase diagram, were measured as a function of shear rate and composition. In the weak shear regime, the data are in qualitative agreement with an effective medium model for non-dilute suspensions of slightly deformed interacting droplets. In the strong shear regime, where a stringlike pattern appears en route to a shear-homogenized state, the data are in qualitative agreement with a simple model that accounts for viscous asymmetry in the components

  6. Origins of Shear Jamming for Frictional Grains

    Science.gov (United States)

    Wang, Dong; Zheng, Hu; Ren, Jie; Dijksman, Joshua; Bares, Jonathan; Behringer, Robert

    2016-11-01

    Granular systems have been shown to be able to behave like solids, under shear, even when their densities are below the critical packing fraction for frictionless isotropic jamming. To understand such a phenomena, called shear jamming, the question we address here is: how does shear bring a system from a unjammed state to a jammed state, where the coordination number, Z, is no less than 3, the isotropic jamming point for frictional grains? Since Z can be used to distinguish jammed states from unjammed ones, it is vital to understand how shear increases Z. We here propose a set of three particles in contact, denoted as a trimer, as the basic unit to characterize the deformation of the system. Trimers, stabilized by inter-grain friction, fail under a certain amount of shear and bend to make extra contacts to regain stability. By defining a projection operator of the opening angle of the trimer to the compression direction in the shear, O, we see a systematically linear decrease of this quantity with respect to shear strain, demonstrating the bending of trimers as expected. In addition, the average change of O from one shear step to the next shows a good collapse when plotted against Z, indicating a universal behavior in the process of shear jamming. We acknowledge support from NSF DMR1206351, NASA NNX15AD38G, the William M. Keck Foundation and a RT-MRSEC Fellowship.

  7. Neoproterozoic Structural Evolution of the NE-trending 620-540 Ma Ad-Damm Shear Zone, Arabian Shield, Saudi Arabia

    Science.gov (United States)

    Hamimi, Z.; El-Sawy, E. K.; El-Fakharan, A. S.; Shujoon, A.; Matsah, M.; El-Shafei, M.

    2012-04-01

    Ad-Damm Shear Zone (ASZ) is a NE-trending fault zone separating Jeddah and Asir tectonostratigraphic terranes in the Neoproterozoic juvenile Arabian Shield. ASZ extends ~380 km, with an average width ~2-3 km, from the eye-catching Ruwah Fault Zone in the eastern shield to the Red Sea Coastal plain. It was believed to be one of the conjugate shears of the NW- to NNW- trending sinistral Najd Shear System based on noteworthy dextral shear criteria recorded within the 620 Ma sheared granites of Numan Complex, as well as right-lateral offsets within quartz veins and dikes transected by the shear zone. The present study is an integrated field-based structural analysis and remote sensing. We utilized the ASTER data for lithologic discrimination and automatic structural lineament extraction and analysis of the Neoproterozoic basement lithologies encountered along and within the vicinity of ASZ. Various false color composite images were generated and evaluated for lithological mapping and structural lineaments. The obtained map was analyzed using GIS techniques to interpret the behavior of the existing lineaments and their spatial distribution. Based on the results of the ASTER data, two significant areas; around Bir Ad-Damm and to the south of Wadi Numan, are selected for detailed field investigation. Shear-sense indicators and overprinting relations clearly show a complicated Neoproterozoic history of ASZ, involving at least three deformations: (1) an early attenuated NE-SW sinistral shearing; followed by (2) a SE-directed thrusting phase resulted in the formation SE-verging thrusts and associated thrust-related folds; and (3) late NE-SW intensive dextral transcurrent shearing played a significant role in the creation of mesoscopic shear-zone related folds, particularly in the area near Bir Ad-Damm. Such deformation history demonstrates the same episode of Neoproterozoic deformation exhibited in the NE-trending shear zones in the Arabian-Nubian Shield (ANS).

  8. Climate change and ocean deoxygenation within intensified surface-driven upwelling circulations.

    Science.gov (United States)

    Bakun, Andrew

    2017-09-13

    Ocean deoxygenation often takes place in proximity to zones of intense upwelling. Associated concerns about amplified ocean deoxygenation arise from an arguable likelihood that coastal upwelling systems in the world's oceans may further intensify as anthropogenic climate change proceeds. Comparative examples discussed include the uniquely intense seasonal Somali Current upwelling, the massive upwelling that occurs quasi-continuously off Namibia and the recently appearing and now annually recurring 'dead zone' off the US State of Oregon. The evident 'transience' in causal dynamics off Oregon is somewhat mirrored in an interannual-scale intermittence in eruptions of anaerobically formed noxious gases off Namibia. A mechanistic scheme draws the three examples towards a common context in which, in addition to the obvious but politically problematic remedy of actually reducing 'greenhouse' gas emissions, the potentially manageable abundance of strongly swimming, finely gill raker-meshed small pelagic fish emerges as a plausible regulating factor.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).

  9. Surface circulation and upwelling patterns around Sri Lanka

    Science.gov (United States)

    de Vos, A.; Pattiaratchi, C. B.; Wijeratne, E. M. S.

    2013-09-01

    Sri Lanka occupies a unique location within the equatorial belt in the northern Indian Ocean with the Arabian Sea on its western side and the Bay of Bengal on its eastern side. The region is characterised by bi-annually reversing monsoon winds resulting from seasonal differential heating and cooling of the continental land mass and the ocean. This study explored elements of the dynamics of the surface circulation and coastal upwelling in the waters around Sri Lanka using satellite imagery and the Regional Ocean Modelling System (ROMS) configured to the study region and forced with ECMWF interim data. The model was run for 2 yr to examine the seasonal and shorter term (∼10 days) variability. The results confirmed the presence of the reversing current system in response to the changing wind field: the eastward flowing Southwest Monsoon Current (SMC) during the Southwest (SW) monsoon transporting 11.5 Sv and the westward flowing Northeast Monsoon Current (NMC) transporting 9.5 Sv during the Northeast (NE) monsoon, respectively. A recirculation feature located to the east of Sri Lanka during the SW monsoon, the Sri Lanka Dome, is shown to result from the interaction between the SMC and the Island of Sri Lanka. Along the eastern and western coasts, during both monsoon periods, flow is southward converging along the south coast. During the SW monsoon the Island deflects the eastward flowing SMC southward whilst along the east coast the southward flow results from the Sri Lanka Dome recirculation. The major upwelling region, during both monsoon periods, is located along the south coast and is shown to be due to flow convergence and divergence associated with offshore transport of water. Higher surface chlorophyll concentrations were observed during the SW monsoon. The location of the flow convergence and hence the upwelling centre was dependent on the relative strengths of wind driven flow along the east and west coasts: during the SW (NE) monsoon the flow along the

  10. Friction of polymer hydrogels studied by resonance shear measurements.

    Science.gov (United States)

    Ren, Huai-Yin; Mizukami, Masashi; Tanabe, Tadao; Furukawa, Hidemitsu; Kurihara, Kazue

    2015-08-21

    The friction between an elastomer and a hard surface typically has two contributors, i.e., the interfacial and deformation components. The friction of viscoelastic hydrogel materials has been extensively studied between planar gel and planar substrate surfaces from the viewpoint of an interfacial interaction. However, the geometry of the contact in practical applications is much more complex. The contribution of geometric and elastic deformation terms of a gel to friction could not be neglected. In this study, we used resonance shear measurements (RSMs) for characterizing the shear response of a glass sphere on a flat polymer hydrogel, a double network (DN) gel of 2-acrylamide-2-methylpropanesulfonic acid and N,N-dimethylacrylamide. The contact mechanics conformed to the Johnson-Kendall-Roberts theory. The observed resonance curves exhibited rather sharp peaks when the DN gel and the silica sphere were brought into contact, and their intensity and frequency increased with the increase in the normal load. We proposed a simple physical model of the shearing system, and the elastic (k2) and viscous (b2) parameters of the interface between a silica sphere and a flat DN gel were obtained. The friction force from elastic deformation and viscous dissipation terms was then estimated using the obtained parameters. It was revealed that the elastic parameter (k2) increased up to 1780 N m(-1) at a normal load of 524 mN, while the viscous parameter (b2) was zero or quite low (friction force between a flat DN gel and a silica sphere in air was dominated by the elastic term due to the local deformation by contact with the silica sphere. By adding water, the elastic parameter (k2) remained the same, while the viscous parameter (b2) slightly increased. However, the viscous term fviscous was still much smaller than felastic. To the best of our knowledge, this study was the first quantitative estimation of the contribution of the elastic deformation term to the friction in the case

  11. The ultimate fate of a synmagmatic shear zone. Interplay between rupturing and ductile flow in a cooling granite pluton

    Science.gov (United States)

    Zibra, I.; White, J. C.; Menegon, L.; Dering, G.; Gessner, K.

    2018-05-01

    The Neoarchean Cundimurra Pluton (Yilgarn Craton, Western Australia) was emplaced incrementally along the transpressional Cundimurra Shear Zone. During syndeformational cooling, discrete networks of cataclasites and ultramylonites developed in the narrowest segment of the shear zone, showing the same kinematics as the earlier synmagmatic structures. Lithological boundaries between aplite/pegmatite veins and host granitic gneiss show more intense pre-cataclasite fabrics than homogeneous material, and these boundaries later became the preferred sites of shear rupture and cataclasite nucleation. Transient ductile instabilities established along lithological boundaries culminated in shear rupture at relatively high temperature (∼500-600 °C). Here, tensile fractures at high angles from the fault plane formed asymmetrically on one side of the fault, indicating development during seismic rupture, establishing the oldest documented earthquake on Earth. Tourmaline veins were emplaced during brittle shearing, but fluid pressure probably played a minor role in brittle failure, as cataclasites are in places tourmaline-free. Subsequent ductile deformation localized in the rheologically weak tourmaline-rich aggregates, forming ultramylonites that deformed by grain-size sensitive creep. The shape and width of the pluton/shear zone and the regime of strain partitioning, induced by melt-present deformation and established during pluton emplacement, played a key role in controlling the local distribution of brittle and then ductile subsolidus structures.

  12. Factors Associated With Callus in Patients with Diabetes, Focused on Plantar Shear Stress During Gait.

    Science.gov (United States)

    Hamatani, Masako; Mori, Taketoshi; Oe, Makoto; Noguchi, Hiroshi; Takehara, Kimie; Amemiya, Ayumi; Ohashi, Yumiko; Ueki, Kohjiro; Kadowaki, Takashi; Sanada, Hiromi

    2016-11-01

    The aim of this study is to identify whether plantar shear stress in neuropathic patients with diabetes with callus is increased compared with those without callus. The differences in foot deformity, limited joint mobility, repetitive stress of walking, and ill-fitting shoes between patients with callus and those without callus were also determined. Subjects were recruited from the Diabetic Foot Outpatient Clinic. A newly developed in-shoe measurement system, which has flexible and thin insoles, enabled measurement of both plantar pressure and shear stress simultaneously when subjects walked as usual on a 10 m walkway. It was found that plantar shear stress adjusted for weight during the push-off phase was increased by 1.32 times in patients with callus compared with those without callus (mean ± SD: 0.0500 ± 0.0160 vs 0.0380 ± 0.0144, P = .031). Moreover, hallux valgus deformity, reduction in dorsiflexion of the ankle joint and increase in plantar flexion were showed in feet with callus. Increased plantar shear stress may be caused by gait change that patients having callus push off with the metatarsal head instead of the toe as a result of foot deformity and limited joint mobility. It was found that plantar shear stress adjusted for weight during the push-off phase was increased in patients with callus compared with those without callus by using the newly developed measurement system. These results suggest that reduction of plantar shear stress during the push-off phase can prevent callus formation in neuropathic patients with diabetes. © 2016 Diabetes Technology Society.

  13. Influence of monsoon upwelling on the planktonic foraminifera off Oman during Late Quaternary

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.

    Planktonic foraminifer abundances, fluxes, test sizes, and coiling properties are influenced in various ways by the southwest monsoon winds and associated upwelling in the western Arabian Sea. The influence of monsoon driven upwelling...

  14. A Holocene record of ocean productivity and upwelling from the northern California continental slope

    Science.gov (United States)

    Addison, Jason A.; Barron, John A.; Finney, Bruce P.; Kusler, Jennifer E.; Bukry, David; Heusser, Linda E.; Alexander, Clark R.

    2018-01-01

    The Holocene upwelling history of the northern California continental slope is examined using the high-resolution record of TN062-O550 (40.9°N, 124.6°W, 550 m water depth). This 7-m-long marine sediment core spans the last ∼7500 years, and we use it to test the hypothesis that marine productivity in the California Current System (CCS) driven by coastal upwelling has co-varied with Holocene millennial-scale warm intervals. A combination of biogenic sediment concentrations (opal, total organic C, and total N), stable isotopes (organic matter δ13C and bulk sedimentary δ15N), and key microfossil indicators of upwelling were used to test this hypothesis. The record of biogenic accumulation in TN062-O550 shows considerable Holocene variability despite being located within 50 km of the mouth of the Eel River, which is one of the largest sources of terrigenous sediment to the Northeast Pacific Ocean margin. A key time interval beginning at ∼2900 calibrated years before present (cal yr BP) indicates the onset of modern upwelling in the CCS, and this period also corresponds to the most intense period of upwelling in the last 7500 years. When these results are placed into a regional CCS context during the Holocene, it was found that the timing of upwelling intensification at TN062-O550 corresponds closely to that seen at nearby ODP Site 1019, as well as in the Santa Barbara Basin of southern California. Other CCS records with less refined age control show similar results, which suggest late Holocene upwelling intensification may be synchronous throughout the CCS. Based on the strong correspondence between the alkenone sea surface temperature record at ODP Site 1019 and the onset of late Holocene upwelling in northern California, we suggest that CCS warming may be conducive to upwelling intensification, though future changes are unclear as the mechanisms forcing SST variability may differ.

  15. Unraveling the tectonic history of northwest Africa: Insights from shear-wave splitting, receiver functions, and geodynamic modeling

    Science.gov (United States)

    Miller, M. S.; Becker, T. W.; Allam, A. A.; Alpert, L. A.; Di Leo, J. F.; Wookey, J. M.

    2013-12-01

    The complex tectonic history and orogenesis in the westernmost Mediterranean are primarily due to Cenozoic convergence of Africa with Eurasia. The Gibraltar system, which includes the Rif Mountains of Morocco and the Betics in Spain, forms a tight arc around the Alboran Basin. Further to the south the Atlas Mountains of Morocco, an example of an intracontinental fold and thrust belt, display only modest tectonic shortening, yet have unusually high topography. To the south of the Atlas, the anti-Atlas is the oldest mountain range in the region, has the lowest relief, and extends toward the northern extent of the West African Craton. To help unravel the regional tectonics, we use new broadband seismic data from 105 stations across the Gibraltar arc into southern Morocco. We use shear wave splitting analysis for a deep (617 km) local S event and over 230 SKS events to infer azimuthal seismic anisotropy and we image the lithospheric structure with receiver functions. One of the most striking discoveries from these methods is evidence for localized, near vertical-offset deformation of both crust-mantle and lithosphere-asthenosphere interfaces at the flanks of the High Atlas. These offsets coincide with the locations of Jurassic-aged normal faults that were reactivated during the Cenozoic. This suggests that these lithospheric-scale discontinuities were involved in the formation of the Atlas and are still active. Shear wave splitting results show that the inferred stretching axes are aligned with the highest topography in the Atlas, suggesting asthenospheric shearing in mantle flow guided by lithospheric topography. Geodynamic modeling shows that the inferred seismic anisotropy may be produced by the interaction of mantle flow with the subducted slab beneath the Alboran, the West African Craton, and the thinned lithosphere beneath the Atlas. Isostatic modeling based on these lithospheric structure estimates indicates that lithospheric thinning alone does not explain the

  16. Plastic deformation and failure mechanisms in nano-scale notched metallic glass specimens under tensile loading

    Science.gov (United States)

    Dutta, Tanmay; Chauniyal, Ashish; Singh, I.; Narasimhan, R.; Thamburaja, P.; Ramamurty, U.

    2018-02-01

    In this work, numerical simulations using molecular dynamics and non-local plasticity based finite element analysis are carried out on tensile loading of nano-scale double edge notched metallic glass specimens. The effect of acuteness of notches as well as the metallic glass chemical composition or internal material length scale on the plastic deformation response of the specimens are studied. Both MD and FE simulations, in spite of the fundamental differences in their nature, indicate near-identical deformation features. Results show two distinct transitions in the notch tip deformation behavior as the acuity is increased, first from single shear band dominant plastic flow localization to ligament necking, and then to double shear banding in notches that are very sharp. Specimens with moderately blunt notches and composition showing wider shear bands or higher material length scale characterizing the interaction stress associated with flow defects display profuse plastic deformation and failure by ligament necking. These results are rationalized from the role of the interaction stress and development of the notch root plastic zones.

  17. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.

    Science.gov (United States)

    Tsubota, Ken-Ichi; Wada, Shigeo; Liu, Hao

    2014-08-01

    Direct numerical simulations of the mechanics of a single red blood cell (RBC) were performed by considering the nonuniform natural state of the elastic membrane. A RBC was modeled as an incompressible viscous fluid encapsulated by an elastic membrane. The in-plane shear and area dilatation deformations of the membrane were modeled by Skalak constitutive equation, while out-of-plane bending deformation was formulated by the spring model. The natural state of the membrane with respect to in-plane shear deformation was modeled as a sphere ([Formula: see text]), biconcave disk shape ([Formula: see text]) and their intermediate shapes ([Formula: see text]) with the nonuniformity parameter [Formula: see text], while the natural state with respect to out-of-plane bending deformation was modeled as a flat plane. According to the numerical simulations, at an experimentally measured in-plane shear modulus of [Formula: see text] and an out-of-plane bending rigidity of [Formula: see text] of the cell membrane, the following results were obtained. (i) The RBC shape at equilibrium was biconcave discoid for [Formula: see text] and cupped otherwise; (ii) the experimentally measured fluid shear stress at the transition between tumbling and tank-treading motions under shear flow was reproduced for [Formula: see text]; (iii) the elongation deformation of the RBC during tank-treading motion from the simulation was consistent with that from in vitro experiments, irrespective of the [Formula: see text] value. Based on our RBC modeling, the three phenomena (i), (ii), and (iii) were mechanically consistent for [Formula: see text]. The condition [Formula: see text] precludes a biconcave discoid shape at equilibrium (i); however, it gives appropriate fluid shear stress at the motion transition under shear flow (ii), suggesting that a combined effect of [Formula: see text] and the natural state with respect to out-of-plane bending deformation is necessary for understanding details of the

  18. Does mesoscale matters in decadal changes observed in the northern Canary upwelling system?

    Science.gov (United States)

    Relvas, P.; Luís, J.; Santos, A. M. P.

    2009-04-01

    The Western Iberia constitutes the northern limb of the Canary Current Upwelling System, one of the four Eastern Boundary Upwelling Systems of the world ocean. The strong dynamic link between the atmosphere and the ocean makes these systems highly sensitive to global change, ideal to monitor and investigate its effects. In order to investigate decadal changes of the mesoscale patterns in the Northern Canary upwelling system (off Western Iberia), the field of the satellite-derived sea surface temperature (SST) trends was built at the pixel scale (4x4 km) for the period 1985-2007, based on the monthly mean data from the Advanced Very High Resolution Radiometer (AVHRR) on board NOAA series satellites, provided by the NASA Physical Oceanography Distributed Active Archive Center (PO.DAAC) at the Jet Propulsion Laboratory. The time series were limited to the nighttime passes to avoid the solar heating effect and a suite of procedures were followed to guarantee that the temperature trends were not biased towards the seasonally more abundant summer data, when the sky is considerably clear. A robust linear fit was applied to each individual pixel, crossing along the time the same pixel in all the processed monthly mean AVHRR SST images from 1985 until 2007. The field of the SST trends was created upon the slopes of the linear fits applied to each pixel. Monthly mean SST time series from the one degree enhanced International Comprehensive Ocean-Atmosphere Data Set (ICOADS) and from near-shore measurements collected on a daily basis by the Portuguese Meteorological Office (IM) are also used to compare the results and extend the analysis back until 1960. A generalized warming trend is detected in the coastal waters off Western Iberia during the last decades, no matter which data set we analyse. However, significant spatial differences in the warming rates are observed in the satellite-derived SST trends. Remarkably, off the southern part of the Western Iberia the known

  19. Electrical resistivity response due to elastic-plastic deformations

    International Nuclear Information System (INIS)

    Stout, R.B.

    1987-01-01

    The electrical resistivity of many materials is sensitive to changes in the electronic band configurations surrounding the atoms, changes in the electron-phonon interaction cross-sections, and changes in the density of intrinsic defect structures. These changes are most directly dependent on interatomic measures of relative deformation. For this reason, a model for resistivity response is developed in terms of interatomic measures of relative deformation. The relative deformation consists of two terms, a continuous function to describe the recoverable displacement between two atoms in the atomic lattice structure and a functional to describe the nonrecoverable displacement between two atoms as a result of interatomic discontinuities from dislocation kinetics. This model for resistivity extends the classical piezoresistance representation and relates electric resistance change directly to physical mechanisms. An analysis for the resistivity change of a thin foil ideally embedded in a material that undergoes elastic-plastic deformation is presented. For the case of elastic deformations, stress information in the material surrounding the thin foil is inferred for the cases of pure strain coupling boundary conditions, pure stress coupling boundary conditions, and a combination of stress-strain coupling boundary conditions. 42 refs., 4 figs

  20. A study of graphite-epoxy laminate failures due to high transverse shear strains using the multi-span-beam shear test procedure

    Science.gov (United States)

    Jegley, Dawn C.

    1989-01-01

    The multi-span-beam shear test procedure is used to study failure mechanisms in graphite-epoxy laminates due to high transverse shear strains induced by severe local bending deformations in test specimens. Results of a series of tests on specimens with a variety of stacking sequences, including some with adhesive interleaving, are presented. These results indicate that laminates with stacking sequences with several + or - 45 and 90 deg plies next to each other are more susceptible to failures due to high transverse shear strains than laminates with + or - 45 and 0 deg plies next to each other or with + or - 45 deg plies next to layers of adhesive interleaving. Results of these tests are compared with analytical results based on finite elements.

  1. Granular deformation mechanisms in semi-solid alloys

    International Nuclear Information System (INIS)

    Gourlay, C.M.; Dahle, A.K.; Nagira, T.; Nakatsuka, N.; Nogita, K.; Uesugi, K.; Yasuda, H.

    2011-01-01

    Deformation mechanisms in equiaxed, partially solid Al-15 wt.% Cu are studied in situ by coupling shear-cell experiments with synchrotron X-ray radiography. Direct evidence is presented for granular deformation mechanisms in both globular and equiaxed-dendritic samples at solid fractions shortly after crystal impingement. It is demonstrated that dilatancy, arching and jamming occur at the crystal scale, and that these can cause stick-slip flow due to periodic dilation and compaction at low displacement rate. Granular deformation is found to be similar in globular and equiaxed-dendritic samples if length is scaled by the crystal size and packing is considered to occur among crystal envelopes. Rheological differences between the morphologies are discussed in terms of the competition between crystal rearrangement and crystal deformation.

  2. Hardening and softening analysis of pure titanium based on the dislocation density during torsion deformation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Han; Li, Fuguo, E-mail: fuguolx@nwpu.edu.cn; Li, Jinghui; Ma, Xinkai; Li, Jiang; Wan, Qiong

    2016-08-01

    The hardening and softening phenomena during torsion deformation are studied based on the Taylor dislocation model for pure titanium. The hardening and softening phenomena are observed through the hardness analysis during micro-indentation test and micro-hardness test. Besides, the variations of indentation size also verify the existence of hardening and softening phenomena during torsion. The variations of geometric necessary dislocations (GNDs) and statistic store dislocations (SSDs) state that the positions of high dislocation density and low dislocation density correspond to the positions of hardening and softening. The results from the microstructure, grain boundaries evolution and twins analysis indicate the twins play an important role in appearance of hardening and softening phenomena. The appearance of hardening and softening phenomena are attributed to the combination of different slip systems and twinning systems combining with the Schmid Factor (SF) analysis and the transmission electron microscope (TEM). The appearance of hardening and softening phenomena can be explained by the Taylor dislocation theory based on TEM analysis. - Highlights: • The phenomena can be characterized by Taylor dislocation model. • The variation of GNDs leads to the phenomena. • The phenomena are proved by micro-hardness, indentation hardness. • The {10-12} twin and {11-24} twin play an important role in the phenomena.

  3. Cosmology with cosmic shear observations: a review.

    Science.gov (United States)

    Kilbinger, Martin

    2015-07-01

    Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as the implications for cosmology. We then conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations.

  4. Investigation of creep deformation mechanisms at intermediate temperatures in Rene 88 DT

    International Nuclear Information System (INIS)

    Viswanathan, G.B.; Sarosi, P.M.; Henry, M.F.; Whitis, D.D.; Milligan, W.W.; Mills, M.J.

    2005-01-01

    Creep deformation substructures in the superalloy Rene 88 DT have been investigated after small-strain (0.2-0.5%) creep at 650 deg C using conventional and high resolution transmission electron microscopy. Clear differences in creep strength and deformation mechanisms have been observed as a function of applied stress and precipitate microstructure. Both coarse and fine bimodal precipitate microstructures have been tested, produced by relatively slow and fast cooling from the supersolvus solutionizing temperature. The finer γ' microstructure exhibited significantly lower creep rates. It has been established that microtwinning caused by the passage of Shockley partial dislocations on successive {1 1 1} planes is the dominant deformation process at low applied stress, and changes to shearing by 1/2[1 1 0] dislocations and Orowan looping around the larger secondary precipitates at higher applied stress. In the coarser microstructure, the dominant deformation mode is isolated faulting where 1/2[1 1 0] dislocations shear the matrix while superlattice extrinsic stacking faults are created in the secondary γ' particles. The detailed mechanisms by which these deformation modes proceed are discussed, leading to the proposition that the thermally activated process for both microtwinning and isolated faulting is similar, involving diffusion-mediated re-ordering within the γ' particles in the wake of shearing 1/6 Shockley partials. Based on the present evidence, it is proposed that the tertiary γ' volume fraction is crucial in dictating the transition in mechanism and the creep strength of these alloys

  5. Strong crystal size effect on deformation twinning

    DEFF Research Database (Denmark)

    Yu, Qian; Shan, Zhi-Wei; Li, Ju

    2010-01-01

    plasticity. Accompanying the transition in deformation mechanism, the maximum flow stress of the submicrometre-sized pillars was observed to saturate at a value close to titanium’s ideal strength9, 10. We develop a ‘stimulated slip’ model to explain the strong size dependence of deformation twinning......Deformation twinning1, 2, 3, 4, 5, 6 in crystals is a highly coherent inelastic shearing process that controls the mechanical behaviour of many materials, but its origin and spatio-temporal features are shrouded in mystery. Using micro-compression and in situ nano-compression experiments, here we...... find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal7, 8, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation...

  6. Computer Simulation Study of Collective Phenomena in Dense Suspensions of Red Blood Cells under Shear

    CERN Document Server

    Krüger, Timm

    2012-01-01

    The rheology of dense red blood cell suspensions is investigated via computer simulations based on the lattice Boltzmann, the immersed boundary, and the finite element methods. The red blood cells are treated as extended and deformable particles immersed in the ambient fluid. In the first part of the work, the numerical model and strategies for stress evaluation are discussed. In the second part, the behavior of the suspensions in simple shear flow is studied for different volume fractions, particle deformabilities, and shear rates. Shear thinning behavior is recovered. The existence of a shear-induced transition from a tumbling to a tank-treading motion is demonstrated. The transition can be parameterized by a single quantity, namely the effective capillary number. It is the ratio of the suspension stress and the characteristic particle membrane stress. At the transition point, a strong increase in the orientational order of the red blood cells and a significant decrease of the particle diffusivity are obser...

  7. Structural, micro-structural and kinematic analyses of channel flow in the Karmostaj salt diapir in the Zagros foreland folded belt, Fars province, Iran

    Science.gov (United States)

    Sarkarinejad, Khalil; Sarshar, Maryam Asadi; Adineh, Sadegh

    2018-02-01

    One of the main characteristic of the Zagros foreland fold-and-thrust belt and the Zagros foreland folded belt are wide distributions of surface extrusion from the Hormuz salt diapirs. This study examines the structure and kinematic of channel flow in the Karmostaj salt diapir in the southwestern part of the Zagros foreland folded belt. This diapir has reached the surface as a result of the channel flow mechanism and has extruded in the southern limb of the Kuh-Gach anticline which is an asymmetric décollement fold with convergence to the south. Structural and microstructural studies and quantitative finite strain (Rs) and kinematic vorticity number (Wk) analyses were carried out within this salt diapir and its namakier. This was in order to investigate the structural evolution in the salt diapiric system, the characteristics and mechanism of the salt flow and the distribution of flow regimes within the salt diapir and interaction of regional tectonics and salt diaprism. The extruded salt has developed a flow foliation sub-parallel to the remnant bedding recorded by different colors, a variety of internal folds including symmetrical and asymmetrical folds and interference fold patterns, shear zones, and boudins. These structures were used to analyze mechanisms and history of diapiric flow and extrusion. The microstructures, reveal various deformation mechanisms in various parts of salt diapir. The measurements of finite strain show that Rs values in the margin of salt diapir are higher than within its namakier which is consistent with the results of structural studies. Mean kinematic vorticity number (Wm) measured in steady state deformation of diapir and namakier is Wm = 0.45-0.48 ± 0.13. The estimated mean finite deformation (Wm) values indicate that 67.8% pure shear and 32.2% simple shear deformation were involved; the implications of which are discussed. The vorticity of flow indicates that in the early stage of growth, Poiseuille flow was the dominate

  8. Deformations of fractured rock

    International Nuclear Information System (INIS)

    Stephansson, O.

    1977-09-01

    Results of the DBM and FEM analysis in this study indicate that a suitable rock mass for repository of radioactive waste should be moderately jointed (about 1 joint/m 2 ) and surrounded by shear zones of the first order. This allowes for a gentle and flexible deformation under tectonic stresses and prevent the development of large cross-cutting failures in the repository area. (author)

  9. The NAO Influence on the Early to Mid-Holocene North Atlantic Coastal Upwelling

    Science.gov (United States)

    Hernandez, A.; Cachão, M.; Sousa, P.; Trigo, R. M.; Freitas, M. C.

    2017-12-01

    Coastal upwelling regions yield some of the oceanic most productive ecosystems, being crucial for the worldwide social and economic development. Most upwelling systems, emerging cold nutrient-rich deep waters, are located in the eastern boundaries of the Atlantic and Pacific basins, and are driven by meridional wind fields parallel to the coastal shore. These winds are associated with the subsiding branch of the large-scale Anticyclonic high pressure systems that dominate the subtropical ocean basins, and therefore can be displaced or intensified within the context of past and future climate changes. However, the role of the current global warming influencing the coastal upwelling is, as yet, unclear. Therefore it is essential to derive a long-term perspective, beyond the era of instrumental measurements, to detect similar warm periods in the past that have triggered changes in the upwelling patterns. In this work, the upwelling dynamics in the Iberian North Atlantic margin during the early and mid-Holocene is reconstructed, using calcareous nannofossils from a decadally resolved estuarine sediment core located in southwestern Portugal. Results suggest that the coastal dynamics reflects changes in winds direction likely related to shifts in the NAO-like conditions. Furthermore, the reconstructed centennial-scale variations in the upwelling are synchronous with changes in solar irradiance, a major external forcing factor of the climate system that is known to exert influence in atmospheric circulation patterns. In addition, these proxy-based data interpretations are in agreement with wind field and solar irradiance simulation modelling for the mid-Holocene. Therefore, the conclusion that the solar activity via the NAO modulation controlled the North Atlantic upwelling of western Iberia during the early and mid-Holocene at decadal to centennial timescales can be derived. The financial support for attending this meeting was possible through FCT project UID/GEO/50019

  10. Oceanic upwelling and productivity in the eastern tropical Pacific

    International Nuclear Information System (INIS)

    Fiedler, P.C.; Philbrick, V.; Chavez, F.P.

    1991-01-01

    An oceanographic survey of the eastern tropical Pacific Ocean in August-November 1990 found a productive, nutrient-rich, moderately high-chlorophyll surface layer in two oceanic upwelling regions: the equatorial divergence, especially east of the Galapagos, and the countercurrent divergence out to 105 degree W, > 1,000 km west of the Costa Rica Dome. Although NO 3 is not depleted in upwelling regions, relationships among nutrient concentrations and temperature in 1986-1988 data from the same area show that NO 3 is the first macronutrient to be depleted in adjacent, less-productive regions. A three-dimensional, two-layer box model of NO 3 flux within and into the euphotic zone gives estimated rates of new production that are ∼29% of measured rates of 14 C phytoplankton production. Persistence of excess NO 3 in the euphotic zone exceeds 1 yr under high-nutrient, low-chlorophyll conditions off the equator where weak upwelling, or downwelling, occurs. These results indicate substantial control or limitation of NO 3 utilization and productivity in nutrient-rich oceanic regions of the eastern tropical Pacific

  11. Effect of Vertically Propagating Shear Waves on Seismic Behavior of Circular Tunnels

    Directory of Open Access Journals (Sweden)

    Tohid Akhlaghi

    2014-01-01

    Full Text Available Seismic design loads for tunnels are characterized in terms of the deformations imposed on the structure by surrounding ground. The free-field ground deformations due to a seismic event are estimated, and the tunnel is designed to accommodate these deformations. Vertically propagating shear waves are the predominant form of earthquake loading that causes the ovaling deformations of circular tunnels to develop, resulting in a distortion of the cross sectional shape of the tunnel lining. In this paper, seismic behavior of circular tunnels has been investigated due to propagation of shear waves in the vertical direction using quasi-static analytical approaches as well as numerical methods. Analytical approaches are based on the closed-form solutions which compute the forces in the lining due to equivalent static ovaling deformations, while the numerical method carries out dynamic, nonlinear soil-structure interaction analysis. Based on comparisons made, the accuracy and reliability of the analytical solutions are evaluated and discussed. The results show that the axial forces determined using the analytical approaches are in acceptable agreement with numerical analysis results, while the computed bending moments are less comparable and show significant discrepancies. The differences between the analytical approaches are also investigated and addressed.

  12. Non-Newtonian Flow-Induced Deformation From Pressurized Cavities in Absorbing Porous Tissues

    Science.gov (United States)

    Ahmed, Aftab; Siddique, Javed

    2017-11-01

    We investigate the behavior of a spherical cavity in a soft biological tissue modeled as a deformable porous material during an injection of non-Newtonian fluid that follows a power law model. Fluid flows into the neighboring tissue due to high cavity pressure where it is absorbed by capillaries and lymphatics at a rate proportional to the local pressure. Power law fluid pressure and displacement of solid in the tissue are computed as function of radial distance and time. Numerical solutions indicate that shear thickening fluids exhibit less fluid pressure and induce small solid deformation as compared to shear thinning fluids. The absorption in the biological tissue increases as a consequence of flow induced deformation for power law fluids. In most cases non-Newtonian results are compared with viscous fluid case to magnify the differences.

  13. Hydration of an active shear zone: Interactions between deformation, metasomatism and magmatism - the spinel-lherzolites from the Montferrier (southern France) Oligocene basalts

    International Nuclear Information System (INIS)

    Cabanes, N.; Briqueu, L.

    1987-01-01

    Geochemical and textural investigations have been simultaneously performed on spinel-lherzolite xenoliths from the Oligo-Miocene alkali basalts of Montferrier (southern France). All the investigated samples have undergone a deformation very particular by intense shearing under high stresses (up to 1.75 kbar), low temperatures (≤900 0 C) and strain rates of about 10 -18 to 10 -15 s -1 . Mineral chemistry reveals that the Montferrier lherzolites are fragments of an undepleted relatively shallow upper mantle level located at a depth of 50 km (15 kbar). Moreover, Na and Ti enrichment in diopside would reflect a metasomatic event, also emphasized by the common occurrence of pargasite in 50-70% of the investigated samples. Crystallization of this amphibole is attributed to a hydrous infiltration which is related in time and space to the deformation. Indeed, amphibole is preferentially concentrated in strongly deformed zones and in kink-band boundaries of orthopyroxene porphyroclasts. Moreover, the grain boundaries were used by the pervasive agent to percolate into the lherzolite: significant chemical variations (increase in MgO: 15% and decrease in Al 2 O 3 : 55%) are observed within the range of 7-5 μm adjacent to the grain boundary. Finally, Sr isotopic data ( 87 Sr/ 86 Sr) demonstrate that the amphibole, i.e. the metasomatic agent, is genetically related to the host lava of the xenoliths. Thus, the hydrous silicate liquid from which the amphibole has crystallized may be an early percolation of the ascending alkali magma. (orig.)

  14. The microstructure and rheology of a model, thixotropic nanoparticle gel under steady shear and large amplitude oscillatory shear (LAOS)

    International Nuclear Information System (INIS)

    Min Kim, Jung; Kate Gurnon, A.; Wagner, Norman J.; Eberle, Aaron P. R.; Porcar, Lionel

    2014-01-01

    The microstructure-rheology relationship for a model, thermoreversible nanoparticle gel is investigated using a new technique of time-resolved neutron scattering under steady and time-resolved large amplitude oscillatory shear (LAOS) flows. A 21 vol. % gel is tested with varying strength of interparticle attraction. Shear-induced structural anisotropy is observed as butterfly scattering patterns and quantified through an alignment factor. Measurements in the plane of flow show significant, local anisotropy develops with alignment along the compressional axis of flow, providing new insights into how gels flow. The microstructure-rheology relationship is analyzed through a new type of structure-Lissajous plot that shows how the anisotropic microstructure is responsible for the observed LAOS response, which is beyond a response expected for a purely viscous gel with constant structure. The LAOS shear viscosities are observed to follow the “Delaware-Rutgers” rule. Rheological and microstructural data are successfully compared across a broad range of conditions by scaling the shear rate by the strength of attraction, providing a method to compare behavior between steady shear and LAOS experiments. However, important differences remain between the microstructures measured at comparatively high frequency in LAOS experiments and comparable steady shear experiments that illustrate the importance of measuring the microstructure to properly interpret the nonlinear, dynamic rheological response

  15. The microstructure and rheology of a model, thixotropic nanoparticle gel under steady shear and large amplitude oscillatory shear (LAOS)

    Energy Technology Data Exchange (ETDEWEB)

    Min Kim, Jung; Kate Gurnon, A.; Wagner, Norman J., E-mail: wagnernj@udel.edu [Department of Chemical and Biomolecular Engineering and Center for Neutron Science, University of Delaware, Newark, Delaware 19716 (United States); Eberle, Aaron P. R. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Porcar, Lionel [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 and Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France)

    2014-09-01

    The microstructure-rheology relationship for a model, thermoreversible nanoparticle gel is investigated using a new technique of time-resolved neutron scattering under steady and time-resolved large amplitude oscillatory shear (LAOS) flows. A 21 vol. % gel is tested with varying strength of interparticle attraction. Shear-induced structural anisotropy is observed as butterfly scattering patterns and quantified through an alignment factor. Measurements in the plane of flow show significant, local anisotropy develops with alignment along the compressional axis of flow, providing new insights into how gels flow. The microstructure-rheology relationship is analyzed through a new type of structure-Lissajous plot that shows how the anisotropic microstructure is responsible for the observed LAOS response, which is beyond a response expected for a purely viscous gel with constant structure. The LAOS shear viscosities are observed to follow the “Delaware-Rutgers” rule. Rheological and microstructural data are successfully compared across a broad range of conditions by scaling the shear rate by the strength of attraction, providing a method to compare behavior between steady shear and LAOS experiments. However, important differences remain between the microstructures measured at comparatively high frequency in LAOS experiments and comparable steady shear experiments that illustrate the importance of measuring the microstructure to properly interpret the nonlinear, dynamic rheological response.

  16. Haptic Edge Detection Through Shear

    Science.gov (United States)

    Platkiewicz, Jonathan; Lipson, Hod; Hayward, Vincent

    2016-03-01

    Most tactile sensors are based on the assumption that touch depends on measuring pressure. However, the pressure distribution at the surface of a tactile sensor cannot be acquired directly and must be inferred from the deformation field induced by the touched object in the sensor medium. Currently, there is no consensus as to which components of strain are most informative for tactile sensing. Here, we propose that shape-related tactile information is more suitably recovered from shear strain than normal strain. Based on a contact mechanics analysis, we demonstrate that the elastic behavior of a haptic probe provides a robust edge detection mechanism when shear strain is sensed. We used a jamming-based robot gripper as a tactile sensor to empirically validate that shear strain processing gives accurate edge information that is invariant to changes in pressure, as predicted by the contact mechanics study. This result has implications for the design of effective tactile sensors as well as for the understanding of the early somatosensory processing in mammals.

  17. Micro tectonic milonitas analysis in the extreme south of the Sarandi del Yi shear zone: Kinematics and deformation conditions

    International Nuclear Information System (INIS)

    Oyhantçabal, P; Suarez, I; Seluchi, N; Martinez, X.

    2010-01-01

    The Shear Zone divides Sarandi del Yi Craton River Plate in Piedra Alta and Nico Perez land . The southern end of this zone extends to north - south from the vicinity of the town of Minas to Punta Solis. The predominant lithology of the study area consists of a granitic mylonite with abundant muscovite and biotite. Structural data of foliation , stretching lineation and kinematic indicators were surveyed .Petrographic analysis shows that quartz is presented as ribbons polycrystalline product subgrain rotation recrystallization and grain boundary migration . Feldspar porphyroclasts are partially recrystallized in developing type structures c ore and mantle . Kinematic indicators such as sigma porphyroclasts , mica fish and oblique foliation defined consistently sinistral sense . The presence of stable and mirmequitas in the plane of biotite foliation along the microstructures described in quartz and feldspar , can be inferred temperature conditions between 450 ° C and 550° C during deformation

  18. A 2D Daubechies finite wavelet domain method for transient wave response analysis in shear deformable laminated composite plates

    Science.gov (United States)

    Nastos, C. V.; Theodosiou, T. C.; Rekatsinas, C. S.; Saravanos, D. A.

    2018-03-01

    An efficient numerical method is developed for the simulation of dynamic response and the prediction of the wave propagation in composite plate structures. The method is termed finite wavelet domain method and takes advantage of the outstanding properties of compactly supported 2D Daubechies wavelet scaling functions for the spatial interpolation of displacements in a finite domain of a plate structure. The development of the 2D wavelet element, based on the first order shear deformation laminated plate theory is described and equivalent stiffness, mass matrices and force vectors are calculated and synthesized in the wavelet domain. The transient response is predicted using the explicit central difference time integration scheme. Numerical results for the simulation of wave propagation in isotropic, quasi-isotropic and cross-ply laminated plates are presented and demonstrate the high spatial convergence and problem size reduction obtained by the present method.

  19. The Effects of Isothermal Deformation and Annealing on the Microstructure of Nickel-Aluminum-Bronze Propeller Material

    National Research Council Canada - National Science Library

    Nabach, William A

    2003-01-01

    ... in a combination of frictional and adiabatic heating due to plastic deformation. A stirring effect results in the formation of a zone of severe shear deformation and local temperatures approaching...

  20. Continentward-Dipping Normal Faults, Boudinage and Ductile Shear at Rifted Passive Margins

    Science.gov (United States)

    Clerc, C. N.; Ringenbach, J. C.; Jolivet, L.; Ballard, J. F.

    2017-12-01

    Deep structures resulting from the rifting of the continental crust are now well imaged by seismic profiles. We present a series of recent industrial profiles that allow the identification of various rift-related geological processes such as crustal boudinage, ductile shear of the base of the crust and low-angle detachment faulting. Along both magma-rich and magma-poor rifted margins, we observe clear indications of ductile deformation of the deep continental crust. Large-scale shallow dipping shear zones are identified with a top-to-the-continent sense of shear. This sense of shear is consistent with the activity of the Continentward-Dipping Normal Faults (CDNF) that accommodate the extension in the upper crust. This pattern is responsible for an oceanward migration of the deformation and of the associated syn-tectonic deposits (sediments and/or volcanics). We discuss the origin of the Continentward-Dipping Normal Faults (CDNF) and investigate their implications and the effect of sediment thermal blanketing on crustal rheology. In some cases, low-angle shear zones define an anastomosed pattern that delineates boudin-like structures that seem to control the position and dip of upper crustal normal faults. We present some of the most striking examples from several locations (Uruguay, West Africa, South China Sea…), and discuss their rifting histories that differ from the classical models of oceanward-dipping normal faults.

  1. Upwelling along the east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, C.S.; Varadachari, V.V.R.

    the premonsoon and monsoon periods. Waters from deeper layers of the shelf appear to reach the surface causing considerable fall of surface temperature near the coast. The probable causes for these differences in upwelling along the coast are discussed...

  2. On an upwelling front, propagation of upwelling and vertical velocity in the eastern Arabian sea during monsoon, 1987

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, M.K.; Unnikrishnan, A.S.

    A coastal upwelling front parallel to the coast and identifiable upto a depth of 75 m was observed between 12.5 and 16 degrees N along the eastern Arabian Sea in September, 1987 from closely spaced digital BT data. With a north-south slope...

  3. Nonlinear dynamics and anisotropic structure of rotating sheared turbulence.

    Science.gov (United States)

    Salhi, A; Jacobitz, F G; Schneider, K; Cambon, C

    2014-01-01

    Homogeneous turbulence in rotating shear flows is studied by means of pseudospectral direct numerical simulation and analytical spectral linear theory (SLT). The ratio of the Coriolis parameter to shear rate is varied over a wide range by changing the rotation strength, while a constant moderate shear rate is used to enable significant contributions to the nonlinear interscale energy transfer and to the nonlinear intercomponental redistribution terms. In the destabilized and neutral cases, in the sense of kinetic energy evolution, nonlinearity cannot saturate the growth of the largest scales. It permits the smallest scale to stabilize by a scale-by-scale quasibalance between the nonlinear energy transfer and the dissipation spectrum. In the stabilized cases, the role of rotation is mainly nonlinear, and interacting inertial waves can affect almost all scales as in purely rotating flows. In order to isolate the nonlinear effect of rotation, the two-dimensional manifold with vanishing spanwise wave number is revisited and both two-component spectra and single-point two-dimensional energy components exhibit an important effect of rotation, whereas the SLT as well as the purely two-dimensional nonlinear analysis are unaffected by rotation as stated by the Proudman theorem. The other two-dimensional manifold with vanishing streamwise wave number is analyzed with similar tools because it is essential for any shear flow. Finally, the spectral approach is used to disentangle, in an analytical way, the linear and nonlinear terms in the dynamical equations.

  4. Natural ocean acidification at Papagayo upwelling system (north Pacific Costa Rica): implications for reef development

    Science.gov (United States)

    Sánchez-Noguera, Celeste; Stuhldreier, Ines; Cortés, Jorge; Jiménez, Carlos; Morales, Álvaro; Wild, Christian; Rixen, Tim

    2018-04-01

    Numerous experiments have shown that ocean acidification impedes coral calcification, but knowledge about in situ reef ecosystem response to ocean acidification is still scarce. Bahía Culebra, situated at the northern Pacific coast of Costa Rica, is a location naturally exposed to acidic conditions due to the Papagayo seasonal upwelling. We measured pH and pCO2 in situ during two non-upwelling seasons (June 2012, May-June 2013), with a high temporal resolution of every 15 and 30 min, respectively, using two Submersible Autonomous Moored Instruments (SAMI-pH, SAMI-CO2). These results were compared with published data from the 2009 upwelling season. Findings revealed that the carbonate system in Bahía Culebra shows a high temporal variability. Incoming offshore waters drive intra- and interseasonal changes. Lowest pH (7.8) and highest pCO2 (658.3 µatm) values measured during a cold-water intrusion event in the non-upwelling season were similar to those minimum values reported from upwelling season (pH = 7.8, pCO2 = 643.5 µatm), unveiling that natural acidification also occurs sporadically in the non-upwelling season. This affects the interaction of photosynthesis, respiration, calcification and carbonate dissolution and the resulting diel cycle of pH and pCO2 in the reefs of Bahía Culebra. During the non-upwelling season, the aragonite saturation state (Ωa) rises to values of > 3.3 and during the upwelling season falls below 2.5. The Ωa threshold values for coral growth were derived from the correlation between measured Ωa and coral linear extension rates which were obtained from the literature and suggest that future ocean acidification will threaten the continued growth of reefs in Bahía Culebra. These data contribute to building a better understanding of the carbonate system dynamics and coral reefs' key response (e.g., coral growth) to natural low-pH conditions, in upwelling areas in the eastern tropical Pacific and beyond.

  5. Different Rols of Modified Organoclay in Deformation Mechanism Control of Polymeric Matrices

    Directory of Open Access Journals (Sweden)

    Babak Akbari

    2014-04-01

    Full Text Available The effect of organically modified clay on the structure and deformation mechanism of polymeric matrices was investigated. For this purpose, the role of organoclay in deformation control of polymeric matrices, with different deformation mechanisms, has been studied methodically in order to determine a relationship between the structure and deformation mechanisms. In this respect polypropylene and polystyrene composites systems were designed using montmorillonite through melt intercalation technique using a twin, co-rotating extruder with starve feeding system. Also an epoxy was employed to design a nanocomposite system prepared by in-situ polymerization technique. The structure and deformation mechanism of nanocomposites were investigated using appropriate techniques. X-Ray diffraction and transmission electron microscopy were used to explore the structure of various systems while, the reflection and transmission optical microscopy were used in order to study their corresponding deformation mechanisms. The bulk polymer was also studied for its deformation mechanism by reflection optical microscopy and the notch tip of the samples were examined by transmission optical microscopy. The results of experiments showed that organoclays acted as initiator sites for shear yielding mechanism as the dominant deformation mechanism in epoxies. It may be noted that, these particles may act as initiator sites for crazing, the dominant deformation mechanism of polystyrene, and alter the mechanism from local to massive. In polypropylene systems, which may exhibit both shear yielding and crazing organoclays can facilitate or postpone both mechanisms in different conditions, related to PP morphology and other conditions.

  6. How deformation enhances mobility in a polymer glass

    Science.gov (United States)

    Lacks, Daniel

    2013-03-01

    Recent experiments show that deformation of a polymer glass can lead to orders-of-magnitude enhancement in the atomic level dynamics. To determine why this change in dynamics occurs, we carry out molecular dynamics simulations and energy landscape analyses. The simulations address the coarse-grained polystyrene model of Kremer and co-workers, and the dynamics, as quantified by the van Hove function, are examined as the glass undergoes shear deformation. In agreement with experiment, the simulations find that deformation enhances the atomic mobility. The enhanced mobility is shown to arise from two mechanisms: First, active deformation continually reduces barriers for hopping events, and the importance of this mechanism is modulated by the rate of thermally activated transitions between adjacent energy minima. Second, deformation moves the system to higher-energy regions of the energy landscape, characterized by lower barriers. Both mechanisms enhance the dynamics during deformation, and the second mechanism is also relevant after deformation has ceased.

  7. The discovery of a conjugate system of faults in the Wharton Basin intraplate deformation zone.

    Science.gov (United States)

    Singh, Satish C; Hananto, Nugroho; Qin, Yanfang; Leclerc, Frederique; Avianto, Praditya; Tapponnier, Paul E; Carton, Helene; Wei, Shengji; Nugroho, Adam B; Gemilang, Wishnu A; Sieh, Kerry; Barbot, Sylvain

    2017-01-01

    The deformation at well-defined, narrow plate boundaries depends on the relative plate motion, but how the deformation takes place within a distributed plate boundary zone remains a conundrum. This was confirmed by the seismological analyses of the 2012 great Wharton Basin earthquakes [moment magnitude ( M w ) 8.6], which suggested the rupture of several faults at high angles to one another. Using high-resolution bathymetry and seismic reflection data, we report the discovery of new N294°E-striking shear zones, oblique to the plate fabric. These shear zones are expressed by sets of normal faults striking at N335°E, defining the direction of the principal compressional stress in the region. Also, we have imaged left-lateral strike-slip faults along reactivated N7°E-oriented oceanic fracture zones. The shear zones and the reactivated fracture zones form a conjugate system of faults, which accommodate present-day intraplate deformation in the Wharton Basin.

  8. Comparative Laboratory and Numerical Simulations of Shearing Granular Fault Gouge: Micromechanical Processes

    Science.gov (United States)

    Morgan, J. K.; Marone, C. J.; Guo, Y.; Anthony, J. L.; Knuth, M. W.

    2004-12-01

    Laboratory studies of granular shear zones have provided significant insight into fault zone processes and the mechanics of earthquakes. The micromechanisms of granular deformation are more difficult to ascertain, but have been hypothesized based on known variations in boundary conditions, particle properties and geometries, and mechanical behavior. Numerical simulations using particle dynamics methods (PDM) can offer unique views into deforming granular shear zones, revealing the precise details of granular microstructures, particle interactions, and packings, which can be correlated with macroscopic mechanical behavior. Here, we describe a collaborative program of comparative laboratory and numerical experiments of granular shear using idealized materials, i.e., glass beads, glass rods or pasta, and angular sand. Both sets of experiments are carried out under similar initial and boundary conditions in a non-fracturing stress regime. Phenomenologically, the results of the two sets of experiments are very similar. Peak friction values vary as a function of particle dimensionality (1-D vs. 2-D vs. 3-D), particle angularity, particle size and size distributions, boundary roughness, and shear zone thickness. Fluctuations in shear strength during an experiment, i.e., stick-slip events, can be correlated with distinct changes in the nature, geometries, and durability of grain bridges that support the shear zone walls. Inclined grain bridges are observed to form, and to support increasing loads, during gradual increases in assemblage strength. Collapse of an individual grain bridge leads to distinct localization of strain, generating a rapidly propagating shear surface that cuts across multiple grain bridges, accounting for the sudden drop in strength. The distribution of particle sizes within an assemblage, along with boundary roughness and its periodicity, influence the rate of formation and dissipation of grain bridges, thereby controlling friction variations during

  9. Lattice shear distortions in fluorite structure oxides

    International Nuclear Information System (INIS)

    Faber, J. Jr.; Mueller, M.H.; Hitterman, R.L.

    1979-01-01

    Crystallographic shear distortions have been observed in fluorite structure, single crystals of UO 2 and Zr(Ca)O 2 /sub-x/ by neutron-diffraction techniques. These distortions localize on the oxygen sublattice and do not require the presence of an external strain. The internal rearrangement mode in UO 2 is a transverse, zone boundary q vector = 2π/a (0.5, 0.0) deformation with amplitude 0.014 A. In Zr(Ca)O/sub 2-x/, the mode is a longitudinal, q vector = 2-/a (0,0,0.5) deformation with amplitude 0.23 A. Cation-anion elastic interactions dominate in selecting the nature of the internal distortion

  10. Tuning the magnetic properties of pure hafnium by high pressure torsion

    International Nuclear Information System (INIS)

    Cepeda-Jiménez, C.M.; Beltrán, J.I.; Hernando, A.; García, M.A.; Ynduráin, F.; Zhilyaev, A.; Pérez-Prado, M.T.

    2017-01-01

    This work demonstrates that room temperature (RT) ferromagnetism might be triggered in pure hafnium (Hf), a classic paramagnet, by severe plastic deformation (SPD) via high pressure torsion (HPT). The origin of this phenomenon is elucidated by a combined approach including density functional theory (DFT) calculations and transmission electron microscopy (TEM). In particular, it is shown that the elastic lattice distorsions induced in pure Hf as a consequence of grain refinement down to the nanocrystalline regime by HPT lead to the development of a new monoclinic crystalline structure that exhibits a spontaneous magnetization at RT. DFT calculations are utilized to prove that local stretching of the original pure Hf hexagonal close packed (hcp) lattice along specific pyramidal directions, due to the presence of internal stresses in the deformed nanostructure, may give rise to the emergence of the monoclinic phase, which is endowed with a net magnetic moment. An excellent agreement is found between DFT calculations and experimental TEM observations, which provide a first evidence of the presence of the pure Hf monoclinic crystal lattice. This work shows that SPD may constitute a viable, yet widely unexplored, strategy to tune the magnetic properties and, in particular, to induce RT ferromagnetism in bulk non-magnetic metals.

  11. Regeneration of nitrogen by zooplankton and fish in the Northwest Africa and Peru upwelling ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Whitledge, T E

    1976-01-01

    The availability of nutrients and light are the dominant controlling factors of the levels of primary production in the ocean. In the lower latitudes where most coastal upwelling areas are located, the amount of light is seldom below the critical level to inhibit productivity so nutrients are often the limiting factor in phytoplankton growth. Nutrients utilized in primary productivity are derived from two sources in upwelling areas. Nutrients are introduced to the euphotic zone from depth by the physical processes that create upwelling and nutrients are recycled by biological organisms that inhabit the area. Nitrate introduced into the euphotic zone by upwelling supports new productivity while ammonium and other excretory products regenerated by zooplankton and nekton supports regenerated productivity. Results are reported from studies off the coast of Northwest Africa and Peru using /sup 15/N as a tracer that showed that recycled ammonium may fulfill nearly half of the daily nitrogen requirement of phytoplankton and upwelled nitrate may provide the other half.

  12. Meteorological constraints on oceanic halocarbons above the Peruvian upwelling

    Directory of Open Access Journals (Sweden)

    S. Fuhlbrügge

    2016-09-01

    Full Text Available During a cruise of R/V METEOR in December 2012 the oceanic sources and emissions of various halogenated trace gases and their mixing ratios in the marine atmospheric boundary layer (MABL were investigated above the Peruvian upwelling. This study presents novel observations of the three very short lived substances (VSLSs – bromoform, dibromomethane and methyl iodide – together with high-resolution meteorological measurements, Lagrangian transport and source–loss calculations. Oceanic emissions of bromoform and dibromomethane were relatively low compared to other upwelling regions, while those for methyl iodide were very high. Radiosonde launches during the cruise revealed a low, stable MABL and a distinct trade inversion above acting as strong barriers for convection and vertical transport of trace gases in this region. Observed atmospheric VSLS abundances, sea surface temperature, relative humidity and MABL height correlated well during the cruise. We used a simple source–loss estimate to quantify the contribution of oceanic emissions along the cruise track to the observed atmospheric concentrations. This analysis showed that averaged, instantaneous emissions could not support the observed atmospheric mixing ratios of VSLSs and that the marine background abundances below the trade inversion were significantly influenced by advection of regional sources. Adding to this background, the observed maximum emissions of halocarbons in the coastal upwelling could explain the high atmospheric VSLS concentrations in combination with their accumulation under the distinct MABL and trade inversions. Stronger emissions along the nearshore coastline likely added to the elevated abundances under the steady atmospheric conditions. This study underscores the importance of oceanic upwelling and trade wind systems on the atmospheric distribution of marine VSLS emissions.

  13. Meteorological constraints on oceanic halocarbons above the Peruvian upwelling

    Science.gov (United States)

    Fuhlbrügge, Steffen; Quack, Birgit; Atlas, Elliot; Fiehn, Alina; Hepach, Helmke; Krüger, Kirstin

    2016-09-01

    During a cruise of R/V METEOR in December 2012 the oceanic sources and emissions of various halogenated trace gases and their mixing ratios in the marine atmospheric boundary layer (MABL) were investigated above the Peruvian upwelling. This study presents novel observations of the three very short lived substances (VSLSs) - bromoform, dibromomethane and methyl iodide - together with high-resolution meteorological measurements, Lagrangian transport and source-loss calculations. Oceanic emissions of bromoform and dibromomethane were relatively low compared to other upwelling regions, while those for methyl iodide were very high. Radiosonde launches during the cruise revealed a low, stable MABL and a distinct trade inversion above acting as strong barriers for convection and vertical transport of trace gases in this region. Observed atmospheric VSLS abundances, sea surface temperature, relative humidity and MABL height correlated well during the cruise. We used a simple source-loss estimate to quantify the contribution of oceanic emissions along the cruise track to the observed atmospheric concentrations. This analysis showed that averaged, instantaneous emissions could not support the observed atmospheric mixing ratios of VSLSs and that the marine background abundances below the trade inversion were significantly influenced by advection of regional sources. Adding to this background, the observed maximum emissions of halocarbons in the coastal upwelling could explain the high atmospheric VSLS concentrations in combination with their accumulation under the distinct MABL and trade inversions. Stronger emissions along the nearshore coastline likely added to the elevated abundances under the steady atmospheric conditions. This study underscores the importance of oceanic upwelling and trade wind systems on the atmospheric distribution of marine VSLS emissions.

  14. Elastin governs the mechanical response of medial collateral ligament under shear and transverse tensile loading.

    Science.gov (United States)

    Henninger, Heath B; Valdez, William R; Scott, Sara A; Weiss, Jeffrey A

    2015-10-01

    Elastin is a highly extensible structural protein network that provides near-elastic resistance to deformation in biological tissues. In ligament, elastin is localized between and along the collagen fibers and fascicles. When ligament is stretched along the primary collagen axis, elastin supports a relatively high percentage of load. We hypothesized that elastin may also provide significant load support under elongation transverse to the primary collagen axis and shear along the collagen axis. Quasi-static transverse tensile and shear material tests were performed to quantify the mechanical contributions of elastin during deformation of porcine medial collateral ligament. Dose response studies were conducted to determine the level of elastase enzymatic degradation required to produce a maximal change in the mechanical response. Maximal changes in peak stress occurred after 3h of treatment with 2U/ml porcine pancreatic elastase. Elastin degradation resulted in a 60-70% reduction in peak stress and a 2-3× reduction in modulus for both test protocols. These results demonstrate that elastin provides significant resistance to elongation transverse to the collagen axis and shear along the collagen axis while only constituting 4% of the tissue dry weight. The magnitudes of the elastin contribution to peak transverse and shear stress were approximately 0.03 MPa, as compared to 2 MPa for axial tensile tests, suggesting that elastin provides a highly anisotropic contribution to the mechanical response of ligament and is the dominant structural protein resisting transverse and shear deformation of the tissue. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Partitioning of elastic energy in open-cell foams under finite deformations

    International Nuclear Information System (INIS)

    Harb, Rani; Taciroglu, Ertugrul; Ghoniem, Nasr

    2013-01-01

    The challenges associated with the computational modeling and simulation of solid foams are threefold—namely, the proper representation of an intricate geometry, the capability to accurately describe large deformations, and the extremely arduous numerical detection and enforcement of self-contact during crushing. The focus of this study is to assess and accurately quantify the effects of geometric nonlinearities (i.e. finite deformations, work produced under buckling-type motions) on the predicted mechanical response of open-cell foams of aluminum and polyurethane prior to the onset of plasticity and contact. Beam elements endowed with three-dimensional finite deformation kinematics are used to represent the foam ligaments. Ligament cross-sections are discretized through a fiber-based formulation that provides accurate information regarding the onset of plasticity, given the uniaxial yield stress–strain data for the bulk material. It is shown that the (hyper-) elastic energy partition within ligaments is significantly influenced by kinematic nonlinearities, which frequently cause strong coupling between the axial, bending, shear and torsional deformation modes. This deformation mode-coupling is uniquely obtained as a result of evaluating equilibrium in the deformed configuration, and is undetectable when small deformations are assumed. The relationship between the foam topology and energy partitioning at various stages of moderate deformation is also investigated. Coupled deformation modes are shown to play an important role, especially in perturbed Kelvin structures where over 70% of the energy is stored in coupled axial-shear and axial-bending modes. The results from this study indicate that it may not always be possible to accurately simulate the onset of plasticity (and the response beyond this regime) if finite deformation kinematics are neglected

  16. Collapse and coalescence of spherical voids subject to intense shearing: studied in full 3D

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Dahl, Jonas; Tvergaard, Viggo

    2012-01-01

    the numerical analysis, which is also reflected in published literature. Rather than moving towards very low triaxiality shearing, work has focused on extracting wide-ranging results for moderate stress triaxiality (T ~ 1), in order to achieve sufficient understanding of the influence of initial porosity, void...... significant straining of the matrix material located on the axis of rotation. In particular, the void surface material is severely deformed during shearing and void surface contact is established early in the deformation process. This 3D effect intensifies with decreasing stress triaxiality and complicates...... shape, void orientation etc. The objective of this work is to expand the range of stress triaxiality usually faced in 3D cell model studies, such that intense shearing is covered, and to bring forward details on the porosity and void shape evolution. The overall material response is presented...

  17. Physics-based deformable organisms for medical image analysis

    Science.gov (United States)

    Hamarneh, Ghassan; McIntosh, Chris

    2005-04-01

    Previously, "Deformable organisms" were introduced as a novel paradigm for medical image analysis that uses artificial life modelling concepts. Deformable organisms were designed to complement the classical bottom-up deformable models methodologies (geometrical and physical layers), with top-down intelligent deformation control mechanisms (behavioral and cognitive layers). However, a true physical layer was absent and in order to complete medical image segmentation tasks, deformable organisms relied on pure geometry-based shape deformations guided by sensory data, prior structural knowledge, and expert-generated schedules of behaviors. In this paper we introduce the use of physics-based shape deformations within the deformable organisms framework yielding additional robustness by allowing intuitive real-time user guidance and interaction when necessary. We present the results of applying our physics-based deformable organisms, with an underlying dynamic spring-mass mesh model, to segmenting and labelling the corpus callosum in 2D midsagittal magnetic resonance images.

  18. Mesoscale modeling of amorphous metals by shear transformation zone dynamics

    International Nuclear Information System (INIS)

    Homer, Eric R.; Schuh, Christopher A.

    2009-01-01

    A new mesoscale modeling technique for the thermo-mechanical behavior of metallic glasses is proposed. The modeling framework considers the shear transformation zone (STZ) as the fundamental unit of deformation, and coarse-grains an amorphous collection of atoms into an ensemble of STZs on a mesh. By employing finite element analysis and a kinetic Monte Carlo algorithm, the modeling technique is capable of simulating glass processing and deformation on time and length scales greater than those usually attainable by atomistic modeling. A thorough explanation of the framework is presented, along with a specific two-dimensional implementation for a model metallic glass. The model is shown to capture the basic behaviors of metallic glasses, including high-temperature homogeneous flow following the expected constitutive law, and low-temperature strain localization into shear bands. Details of the effects of processing and thermal history on the glass structure and properties are also discussed.

  19. Deformation bands, early markers of tectonic activity in front of a fold-and-thrust belt: Example from the Tremp-Graus basin, southern Pyrenees, Spain

    Science.gov (United States)

    Robert, Romain; Robion, Philippe; Souloumiac, Pauline; David, Christian; Saillet, Elodie

    2018-05-01

    Strain localization in a porous calcarenite facies of the Aren formation in the Tremp basin was studied. This Maastrichtian syn-tectonic formation exposed in front of the Boixols thrust, in the Central South Pyrenean Zone, hosts bedding perpendicular deformation bands. These bands are organized in two major band sets, striking East-West and N-020 respectively. Both populations formed during early deformation stages linked to the growth of the fold and thrust. A magnetic fabric study (Anisotropy of Magnetic Susceptibility, AMS) was carried out to constrain the shortening direction responsible for the deformation bands development during the upper Cretaceous-Paleocene N-S contraction in the region, which allowed us to define populations of Pure Compaction Bands (PCB) and Shear Enhanced Compaction Bands (SECB) regarding their orientations compared to the shortening direction. Both sets are formed by cataclastic deformation, but more intense in the case of SECBs, which are also thinner than PCBs. The initial pore space is both mechanically reduced and chemically filled by several cementation phases. We propose a geomechanical model based on the regional context of layer parallel shortening, thrusting and strike-slip tectonics considering the burial history of the formation, in order to explain the development of both types of bands at remarkably shallow depths.

  20. Upwelling events, coastal offshore exchange, links to biogeochemical processes - Highlights from the Baltic Sea Science Congress

    Directory of Open Access Journals (Sweden)

    Bogdan Ołdakowski

    2008-03-01

    Full Text Available The Baltic Sea Science Congress was held at Rostock University, Germany, from 19 to 22 March 2007. In the session entitled"Upwelling events, coastal offshore exchange, links to biogeochemical processes" 20 presentations were given,including 7 talks and 13 posters related to the theme of the session.This paper summarises new findings of the upwelling-related studies reported in the session. It deals with investigationsbased on the use of in situ and remote sensing measurements as well as numerical modelling tools. The biogeochemicalimplications of upwelling are also discussed.Our knowledge of the fine structure and dynamic considerations of upwelling has increased in recent decades with the advent ofhigh-resolution modern measurement techniques and modelling studies. The forcing and the overall structure, duration and intensity ofupwelling events are understood quite well. However, the quantification of related transports and the contribution to the overall mixingof upwelling requires further research. Furthermore, our knowledge of the links between upwelling and biogeochemical processes is stillincomplete. Numerical modelling has advanced to the extent that horizontal resolutions of c. 0.5 nautical miles can now be applied,which allows the complete spectrum of meso-scale features to be described. Even the development of filaments can be describedrealistically in comparison with high-resolution satellite data.But the effect of upwelling at a basin scale and possible changes under changing climatic conditions remain open questions.

  1. Shear-coupled grain-boundary migration dependence on normal strain/stress

    Science.gov (United States)

    Combe, N.; Mompiou, F.; Legros, M.

    2017-08-01

    In specific conditions, grain-boundary (GB) migration occurs in polycrystalline materials as an alternative vector of plasticity compared to the usual dislocation activity. The shear-coupled GB migration, the expected most efficient GB based mechanism, couples the GB motion to an applied shear stress. Stresses on GB in polycrystalline materials seldom have, however, a unique pure shear component. This work investigates the influence of a normal strain on the shear coupled migration of a Σ 13 (320 )[001 ] GB in a copper bicrystal using atomistic simulations. We show that the yield shear stress inducing the GB migration strongly depends on the applied normal stress. Beyond, the application of a normal stress on this GB qualitatively modifies the GB migration: while the Σ 13 (320 )[001 ] GB shear couples following the 〈110 〉 migration mode without normal stress, we report the observation of the 〈010 〉 mode under a sufficiently high tensile normal stress. Using the nudge elastic band method, we uncover the atomistic mechanism of this 〈010 〉 migration mode and energetically characterize it.

  2. Thermomechanical characterization of pure polycrystalline tantalum

    International Nuclear Information System (INIS)

    Rittel, D.; Bhattacharyya, A.; Poon, B.; Zhao, J.; Ravichandran, G.

    2007-01-01

    The thermomechanical behavior of pure polycrystalline tantalum has been characterized over a wide range of strain rates, using the recently developed shear compression specimen [D. Rittel, S. Lee, G. Ravichandran, Experimental Mechanics 42 (2002) 58-64]. Dynamic experiments were carried out using a split Hopkinson pressure bar, and the specimen's temperature was monitored throughout the tests using an infrared radiometer. The results of the mechanical tests confirm previous results on pure Ta. Specifically, in addition to its significant strain rate sensitivity, it was observed that pure Ta exhibits very little strain hardening at high strain rates. The measured temperature rise in the specimen's gauge was compared to theoretical predictions which assume a total conversion of the mechanical energy into heat (β = 1) [G.I. Taylor, H. Quinney, Proceedings of the Royal Society of London, vol. A, 1934, pp. 307-326], and an excellent agreement was obtained. This result confirms the previous result of Kapoor and Nemat-Nasser [R. Kapoor, S. Nemat-Nasser, Mech. Mater. 27 (1998) 1-12], while a different experimental approach was adopted here. The assumption that β = 1 is found to be justified in this specific case by the lack of dynamic strain hardening of pure Ta. However, this assumption should be limited to non-hardening materials, to reflect the fact that strain hardening implies that part of the mechanical energy is stored into the material's microstructure

  3. The Role of Shearing Energy and Interfacial Gibbs Free Energy in the Emulsification Mechanism of Waxy Crude Oil

    Directory of Open Access Journals (Sweden)

    Zhihua Wang

    2017-05-01

    Full Text Available Crude oil is generally produced with water, and the water cut produced by oil wells is increasingly common over their lifetime, so it is inevitable to create emulsions during oil production. However, the formation of emulsions presents a costly problem in surface process particularly, both in terms of transportation energy consumption and separation efficiency. To deal with the production and operational problems which are related to crude oil emulsions, especially to ensure the separation and transportation of crude oil-water systems, it is necessary to better understand the emulsification mechanism of crude oil under different conditions from the aspects of bulk and interfacial properties. The concept of shearing energy was introduced in this study to reveal the driving force for emulsification. The relationship between shearing stress in the flow field and interfacial tension (IFT was established, and the correlation between shearing energy and interfacial Gibbs free energy was developed. The potential of the developed correlation model was validated using the experimental and field data on emulsification behavior. It was also shown how droplet deformation could be predicted from a random deformation degree and orientation angle. The results indicated that shearing energy as the energy produced by shearing stress working in the flow field is the driving force activating the emulsification behavior. The deformation degree and orientation angle of dispersed phase droplet are associated with the interfacial properties, rheological properties and the experienced turbulence degree. The correlation between shearing stress and IFT can be quantified if droplet deformation degree vs. droplet orientation angle data is available. When the water cut is close to the inversion point of waxy crude oil emulsion, the interfacial Gibbs free energy change decreased and the shearing energy increased. This feature is also presented in the special regions where

  4. Brittle-ductile gliding shear zone and its dynamic metallization in uranium deposit No. 3110

    International Nuclear Information System (INIS)

    Fang Shiyi.

    1990-01-01

    A preliminary study on the macroscopic geological structure, microstructures of plastic deformation rotary strain, structural geochemistry and zoning regularity of a brittle-ductile gliding shear zone in uranium deposit No. 3110 is made. Structural dynamic metallization of uranium caused by the strong shearing stress is discussed. It is pointed out that great attention must be paid to in further exploration

  5. Steady flow on to a conveyor belt - Causal viscosity and shear shocks

    Science.gov (United States)

    Syer, D.; Narayan, Ramesh

    1993-01-01

    Some hydrodynamical consequences of the adoption of a causal theory of viscosity are explored. Causality is introduced into the theory by letting the coefficient of viscosity go to zero as the flow velocity approaches a designated propagation speed for viscous signals. Consideration is given to a model of viscosity which has a finite propagation speed of shear information, and it is shown that it produces two kinds of shear shock. A 'pure shear shock' corresponds to a transition from a superviscous to a subviscous state with no discontinuity in the velocity. A 'mixed shear shock' has a shear transition occurring at the same location as a normal adiabatic or radiative shock. A generalized version of the Rankine-Hugoniot conditions for mixed shear shocks is derived, and self-consistent numerical solutions to a model 2D problem in which an axisymmetric radially infalling stream encounters a spinning star are presented.

  6. Biogenic halocarbons from coastal oceanic upwelling regions as tropospheric halogen source

    Science.gov (United States)

    Krüger, Kirstin; Fuhlbrügge, Steffen; Hepach, Helmke; Fiehn, Alina; Atlas, Elliot; Quack, Birgit

    2016-04-01

    Halogenated very short lived substances (VSLS) are naturally produced in the ocean and emitted to the atmosphere. Recently, oceanic upwelling regions in the tropical East Atlantic were identified as strong sources of brominated halocarbons to the troposphere. During a cruise of R/V METEOR in December 2012 the oceanic sources and emissions of various halogenated trace gases and their mixing ratios in the marine atmospheric boundary layer (MABL) were investigated above the Peruvian Upwelling for the first time. This study presents novel observations of the three VSLS bromoform, dibromomethane and methyl iodide together with high resolution meteorological measurements and Lagrangian transport modelling. Although relatively low oceanic emissions were observed, except for methyl iodide, surface atmospheric abundances were elevated. Radiosonde launches during the cruise revealed a low, stable MABL and a distinct trade inversion above acting both as strong barriers for convection and trace gas transport in this region. Significant correlations between observed atmospheric VSLS abundances, sea surface temperature, relative humidity and MABL height were found. We used a simple source-loss estimate to identify the contribution of oceanic emissions to observed atmospheric concentrations which revealed that the observed marine VSLS abundances were dominated by horizontal advection below the trade inversion. The observed VSLS variations can be explained by the low emissions and their accumulation under different MABL and trade inversion conditions. Finally, observations from a second Peruvian Upwelling cruise with R/V SONNE during El Nino in October 2015 will be compared to highlight the role of different El Nino Southern Oscillation conditions. This study confirms the importance of coastal oceanic upwelling and trade wind systems on creating effective transport barriers in the lowermost atmosphere controlling the distribution of VSLS abundances above coastal ocean upwelling

  7. Natural ocean acidification at Papagayo upwelling system (north Pacific Costa Rica: implications for reef development

    Directory of Open Access Journals (Sweden)

    C. Sánchez-Noguera

    2018-04-01

    Full Text Available Numerous experiments have shown that ocean acidification impedes coral calcification, but knowledge about in situ reef ecosystem response to ocean acidification is still scarce. Bahía Culebra, situated at the northern Pacific coast of Costa Rica, is a location naturally exposed to acidic conditions due to the Papagayo seasonal upwelling. We measured pH and pCO2 in situ during two non-upwelling seasons (June 2012, May–June 2013, with a high temporal resolution of every 15 and 30 min, respectively, using two Submersible Autonomous Moored Instruments (SAMI-pH, SAMI-CO2. These results were compared with published data from the 2009 upwelling season. Findings revealed that the carbonate system in Bahía Culebra shows a high temporal variability. Incoming offshore waters drive intra- and interseasonal changes. Lowest pH (7.8 and highest pCO2 (658.3 µatm values measured during a cold-water intrusion event in the non-upwelling season were similar to those minimum values reported from upwelling season (pH  =  7.8, pCO2  =  643.5 µatm, unveiling that natural acidification also occurs sporadically in the non-upwelling season. This affects the interaction of photosynthesis, respiration, calcification and carbonate dissolution and the resulting diel cycle of pH and pCO2 in the reefs of Bahía Culebra. During the non-upwelling season, the aragonite saturation state (Ωa rises to values of  >  3.3 and during the upwelling season falls below 2.5. The Ωa threshold values for coral growth were derived from the correlation between measured Ωa and coral linear extension rates which were obtained from the literature and suggest that future ocean acidification will threaten the continued growth of reefs in Bahía Culebra. These data contribute to building a better understanding of the carbonate system dynamics and coral reefs' key response (e.g., coral growth to natural low-pH conditions, in upwelling areas in the eastern tropical

  8. Low temperature uniform plastic deformation of metallic glasses during elastic iteration

    International Nuclear Information System (INIS)

    Fujita, Takeshi; Wang Zheng; Liu Yanhui; Sheng, Howard; Wang Weihua; Chen Mingwei

    2012-01-01

    Molecular dynamics simulations and dynamic mechanical analysis experiments were employed to investigate the mechanical behavior of metallic glasses subjected to iteration deformation in a nominally elastic region. It was found that cyclic deformation leads to the formation of irreversible shear transformation zones (STZs) and a permanent uniform strain. The initiation of STZs is directly correlated with the atomic heterogeneity of the metallic glass and the accumulated permanent strain has a linear relation with the number of STZs. This study reveals a new deformation mode and offers insights into the atomic mechanisms of STZ formation and low temperature uniform plastic deformation of metallic glasses.

  9. Shear localization in a mature mylonitic rock analog during fast slip

    Science.gov (United States)

    Takahashi, M.; van den Ende, M. P. A.; Niemeijer, A. R.; Spiers, C. J.

    2017-02-01

    Highly localized slip zones developed within ductile shear zones, such as pseudotachylyte bands occurring within mylonitic fabric rocks, are frequently interpreted as evidence for earthquake nucleation and/or propagation within the ductile regime. To understand brittle/frictional shear localization processes in ductile shear zones and to relate these to earthquake nucleation and propagation, we performed tests with large changes in velocity on a brine-saturated, 80:20 (wt %) mixture of halite and muscovite gouge after forming a mature mylonitic structure through frictional-viscous flow. The direct effect a on shear strength that occurs in response to an instantaneous upward velocity-step is an important parameter in determining the nature of seismic rupture nucleation and propagation. We obtained reproducible results regarding low-velocity mechanical behavior compared with previous work, but also obtained new insights into effects of sudden increases in slip velocity on localization and strength evolution, at velocities above a critical velocity Vc (˜20 μm/s). We found that once a ductile, mylonitic structure has developed in a shear zone, subsequent cataclastic deformation is consistently localized in a narrow zone. This switch to localized deformation is controlled by the imposed velocity and becomes most apparent at velocities above Vc. In addition, the direct effect drops rapidly when the velocity exceeds Vc. This implies that slip can accelerate toward seismic velocities almost instantly and without much loss of fracture energy, once Vc is exceeded. Obtaining a measure for Vc in natural faults is therefore of key importance for understanding earthquake nucleation and propagation in the brittle-ductile transitional regime.

  10. The influences of deformation velocity and temperature on localized deformation of zircaloy-4 in tensile tests

    International Nuclear Information System (INIS)

    Boratto, F.J.M.

    1973-01-01

    A new parameter to describe the necking stability in zircaloy-4 during tensile tests is introduced. The parameter is defined as: s = ∂Ln (dσ/dε)/∂Ln ((1/L)dL/dt) for constant temperature, deformation and history. Measures of stress strain rate sensitivity n, reduction of the area at fracture, and deformation profiles of tensile fracture, are done. A complete description of the curve of non-uniform deformation variation with the temperature, is presented. The results are compared with existing data for pure commercially titanium. The influence of strain rate and history on s and n parameters, in the temperature range from 100-700 0 C). (author) [pt

  11. Deformed Fredkin spin chain with extensive entanglement

    Science.gov (United States)

    Salberger, Olof; Udagawa, Takuma; Zhang, Zhao; Katsura, Hosho; Klich, Israel; Korepin, Vladimir

    2017-06-01

    We introduce a new spin chain which is a deformation of the Fredkin spin chain and has a phase transition between bounded and extensive entanglement entropy scaling. In this chain, spins have a local interaction of three nearest neighbors. The Hamiltonian is frustration-free and its ground state can be described analytically as a weighted superposition of Dyck paths that depends on a deformation parameter t. In the purely spin 1/2 case, whenever t\

  12. The response of dense dry granular material to the shear reversal

    Science.gov (United States)

    Zhang, Jie; Ren, Jie; Farhadi, Somayeh; Behringer, Robert

    2008-11-01

    We have performed two dimensional granular experiments under pure shear using bidisperse photo-elastic disks. Starting from a stress free state, a square box filled with granular particles is subject to shear. The forward shears involved various number of steps, leading to maximum strains between 0.1 and 0.3. The area is kept constant during the shear. The network of force chains gradually built up as the strain increased, leading to increased pressure and shear stress. Reverse shear was then applied to the system. Depending on the initial packing fraction and the strain at which the shear is reversed, the force chain network built prior to the shear reversal may be destroyed completely or partially destroyed. Following the force chain weakening, when the reserve shear is continuously applied to the system, there is a force chain strengthening. Following each change of the system, contact forces of individual disks were measured by applying an inverse algorithm. We also kept track of the displacement and angle of rotation of every particle from frame to frame. We present the results for the structure failure and reconstruction during shear reversals. We also present data for stresses, contact force distributions and other statistical measures.

  13. Upwelling systems in eastern boundary currents have been ...

    African Journals Online (AJOL)

    spamer

    Differences are found in the location of return, onshore flow. .... eastern boundary currents, downstream of the west wind drift ... show maximum upwelling conditions (equatorward winds) in ..... The work of PTS and CJ was supported by Grant.

  14. 3-D Upper-Mantle Shear Velocity Model Beneath the Contiguous United States Based on Broadband Surface Wave from Ambient Seismic Noise

    Science.gov (United States)

    Xie, Jun; Chu, Risheng; Yang, Yingjie

    2018-05-01

    Ambient noise seismic tomography has been widely used to study crustal and upper-mantle shear velocity structures. Most studies, however, concentrate on short period (structure on a continental scale. We use broadband Rayleigh wave phase velocities to obtain a 3-D V S structures beneath the contiguous United States at period band of 10-150 s. During the inversion, 1-D shear wave velocity profile is parameterized using B-spline at each grid point and is inverted with nonlinear Markov Chain Monte Carlo method. Then, a 3-D shear velocity model is constructed by assembling all the 1-D shear velocity profiles. Our model is overall consistent with existing models which are based on multiple datasets or data from earthquakes. Our model along with the other post-USArray models reveal lithosphere structures in the upper mantle, which are consistent with the geological tectonic background (e.g., the craton root and regional upwelling provinces). The model has comparable resolution on lithosphere structures compared with many published results and can be used for future detailed regional or continental studies and analysis.

  15. The development and decline of phytoplankton blooms in the southern Benguela upwelling region

    International Nuclear Information System (INIS)

    Brown, P.C.

    1986-10-01

    Productivity/chlorophyll a relationship are investigated with a view to estimating phytoplankton productivity from extensive chlorophyll a measurements in the southern Benguela region. Phytoplankton bloom dynamics in newly upwelled water off the Cape Peninsula are investigated on five different occasions during the upwelling season. A drogue was used to tag a 'parcel' of upwelled water which was monitored for between 4 and 8 days. In upwelling source water, mean chlorophyll a concentrations were typically low (0.7 mg.m -3 ) and nutrient concentrations were high (nitrates, silicates and phosphates were 20.8, 16.6 and 1.88 mmol.m -3 respectively). Along the drogue tracks nutrients decreased rapidly in the euphotic zone as chlorophyll increased to peak at concentrations of up to 26 mg.m -3 . Elemental changes in nitrates, silicates, phosphates and oxygen were used to estimate primary productivity. These 'Redfield productivity estimates' were similar to 14 C-uptake productivity but lower than estimates obtained from changes in particle volume. Daily rates of 14 C-uptake water column productivity ranged between 0.94 and 14.01 g C.m -2 .d -1 (mean 3.80 g C.m -2 .d -1 ) and were similar to or higher than productivity estimates reported for other upwelling areas. Phytoplankton biomass in the upper 50 metres ranged between 8 and 506 mg chll a. m -2 (mean 208 mg chll a.m -2 ). The temporal scale of phytoplankton bloom development was investigated in terms of changes in chlorophyll a concentrations in the euphotic zone. The build up and decline of the primary phytoplankton (diatom) bloom in newly upwelled water occurred within 6-8 days. The initiation of blooming was controlled by the stability of the water body. The decline of the bloom was associated with reduced nutrient levels and is considered to result mainly from phytoplankton cells sinking out of the surface layers

  16. Heterotrophic bacterial production, respiration, and growth efficiency associated with upwelling intensity in the Ulleung Basin, East Sea

    Science.gov (United States)

    Kim, Bomina; Kim, Sung-Han; Kwak, Jung Hyun; Kang, Chang-Keun; Lee, Sang Heon; Hyun, Jung-Ho

    2017-09-01

    We investigated bacterial production (BP) and respiration (BR), as well as the physico-chemical properties of the water column, to elucidate the effect of upwelling on heterotrophic bacterial metabolic activities and growth efficiency (BGE) in July 2012 and May 2013 in the Ulleung Basin (UB), East/Japan Sea. The upwelled conditions were characterized by higher chlorophyll-a (Chl-a) concentrations resulting from the upward shift of the nitracline compared to that of the non-upwelled condition. Analyses of the size fractions of Chl-a and pigment composition revealed that large size phytoplankton (> 20 μm), mainly consisting of diatoms, appeared to be the major phytoplankton component. BP and BR were significantly correlated with Chl-a (P 0.05). These results suggest that bacterial metabolic activities are stimulated by the availability of organic resources enhanced by upwelling in the UB. Further statistical analysis showed that the difference in BP and BGE with variations in upwelling intensity were significant (P = 0.018 for BP, P = 0.035 for BGE), but the difference in BR was not significant (P = 0.321). These results suggest that metabolic energy is partitioned more for BP under a strong upwelling condition, i.e. high nutrient and Chl-a conditions. In contrast, the energy generated via respiration was partitioned more for maintaining metabolism rather than for biomass production under weakly or non-upwelled conditions, i.e. stratified and low Chl-a conditions. Overall, our results suggest that any changes in upwelling intensity would significantly affect the carbon cycle associated with the fate of primary production, and the role of the microbial loop in the UB where changes in the intensity and frequency of upwelling associated with climatic changes are in progress.

  17. Importance of physical vs. chemical interactions in surface shear rheology

    NARCIS (Netherlands)

    Wierenga, P.A.; Kosters, H.A.; Egmond, M.R.; Voragen, A.G.J.; Jongh, de H.H.J.

    2006-01-01

    The stability of adsorbed protein layers against deformation has in literature been attributed to the formation of a continuous gel-like network. This hypothesis is mostly based on measurements of the increase of the surface shear elasticity with time. For several proteins this increase has been

  18. Shear modulus and damping ratio of natural rubber containing carbon nanotubes

    Science.gov (United States)

    Ismail, R.; Ibrahim, A.; Rusop, M.; Adnan, A.

    2018-05-01

    This paper presents the results of an investigation into the potential application of Natural rubber (NR) containing Carbon Nanotubes (CNTs) by measuring its shear modulus and damping ratio. Four different types of rubber specimens which fabricated with different MWCNT loadings: 0 wt% (pure natural rubber), 1 wt%, 3 wt%, and 5 wt%. It is observed that the shear modulus and damping ratio of CNTs filled rubber composites are remarkably higher than that of raw rubber indicating the inherent reinforcing potential of CNTs.

  19. Low temperature deformation mechanisms in LiF single crystals

    International Nuclear Information System (INIS)

    Fotedar, H.L.; Stroebe, T.G.

    1976-01-01

    An analysis of the deformation behavior of high purity LiF single crystals is given using yielding and work hardening data and thermally activated deformation parameters obtained in the temperature range 77-423 0 K. It is found that while the Fleischer mechanism is apparently valid experimentally over the thermally activated temperature range, vacancies produced in large numbers at 77 0 K could also play a role in determining the critical resolved shear stress at that temperature

  20. Initial observation of upwelling along east coast of Peninsular Malaysia musica-gratis.softonic.it/ >musica gratis

    Science.gov (United States)

    Akhir, M.; Tanggang, F.

    2013-12-01

    There is no published evidence of upwelling in coastal area along the east coast of Peninsular Malaysia. However numbers of recent cruise data collected during the southwest monsoon found features of thermocline lifting and isolated cooler temperature water along the coast, These sign was observed along the 104°E from numbers of parallel transects. To confirm the presence of upwelling, satellite remote sensing data was used, and numerical model experiments were conducted. Cooler sea-surface temperature along the coast was observed from both in-situ and satellite data, while upward movement in the vertical profiles agreed with the location of upwelling from both in-situ and satellite data. Moreover, these data also show that the upwelled water band along the 104°E longitude stretch approximately 650 km long. Initially, southwesterly wind during this season is believed to be the important mechanism that contributed to this wind-induced Ekman upwelling. musica-gratis.softonic.it/ >musica gratis

  1. Far-reaching transport of Pearl River plume water by upwelling jet in the northeastern South China Sea

    Science.gov (United States)

    Chen, Zhaoyun; Pan, Jiayi; Jiang, Yuwu; Lin, Hui

    2017-09-01

    Satellite images from the Moderate Resolution Imaging Spectroradiometer (MODIS) show that there was a belt of turbid water appearing along an upwelling front near the Chinese coast of Guangdong, and indicate that the turbid water of the Pearl River plume water could be transported to a far-reaching area east of the Taiwan Bank. Numerical modeling results are consistent with the satellite observations, and reveal that a strong jet exists at the upwelling front with a speed as high as 0.8 m s- 1, which acts as a pathway for transporting the high-turbidity plume water. The dynamical analysis suggests that geostrophic equilibrium dominates in the upwelling front and plume areas, and the baroclinicity of the upwelling front resulting from the horizontal density gradient is responsible for the generation of the strong jet, which enhances the far-reaching transport of the terrigenous nutrient-rich water of the Pearl River plume. Model sensitivity analyses also confirm that this jet persists as long as the upwelling front exists, even when the wind subsides and becomes insignificant. Further idealized numerical model experiments indicate that the formation and persistence of the upwelling front jet depend on the forcing strength of the upwelling-favorable wind. The formation time of the jet varies from 15 to 158 h as the stress of the upwelling-favorable wind changes from 0.2 to 0.01 N m- 2. With the persistent transport of the nutrient-rich plume water, biophysical activities can be promoted significantly in the far-reaching destination area of the oligotrophic water.

  2. In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron

    International Nuclear Information System (INIS)

    Nie, F L; Zheng, Y F; Wei, S C; Hu, C; Yang, G

    2010-01-01

    Bulk nanocrystalline pure iron rods were fabricated by the equal channel angular pressure (ECAP) technique up to eight passes. The microstructure and grain size distribution, natural immersion and electrochemical corrosion in simulated body fluid, cellular responses and hemocompatibility were investigated in this study. The results indicate that nanocrystalline pure iron after severe plastic deformation (SPD) would sustain durable span duration and exhibit much stronger corrosion resistance than that of the microcrystalline pure iron. The interaction of different cell lines reveals that the nanocrystalline pure iron stimulates better proliferation of fibroblast cells and preferable promotion of endothelialization, while inhibits effectively the viability of vascular smooth muscle cells (VSMCs). The burst of red cells and adhesion of the platelets were also substantially suppressed on contact with the nanocrystalline pure iron in blood circulation. A clear size-dependent behavior from the grain nature deduced by the gradual refinement microstructures was given and well-behaved in vitro biocompatibility of nanocrystalline pure iron was concluded.

  3. Examining shear processes during magma ascent

    Science.gov (United States)

    Kendrick, J. E.; Wallace, P. A.; Coats, R.; Lamur, A.; Lavallée, Y.

    2017-12-01

    Lava dome eruptions are prone to rapid shifts from effusive to explosive behaviour which reflects the rheology of magma. Magma rheology is governed by composition, porosity and crystal content, which during ascent evolves to yield a rock-like, viscous suspension in the upper conduit. Geophysical monitoring, laboratory experiments and detailed field studies offer the opportunity to explore the complexities associated with the ascent and eruption of such magmas, which rest at a pivotal position with regard to the glass transition, allowing them to either flow or fracture. Crystal interaction during flow results in strain-partitioning and shear-thinning behaviour of the suspension. In a conduit, such characteristics favour the formation of localised shear zones as strain is concentrated along conduit margins, where magma can rupture and heal in repetitive cycles. Sheared magmas often record a history of deformation in the form of: grain size reduction; anisotropic permeable fluid pathways; mineral reactions; injection features; recrystallisation; and magnetic anomalies, providing a signature of the repetitive earthquakes often observed during lava dome eruptions. The repetitive fracture of magma at ( fixed) depth in the conduit and the fault-like products exhumed at spine surfaces indicate that the last hundreds of meters of ascent may be controlled by frictional slip. Experiments on a low-to-high velocity rotary shear apparatus indicate that shear stress on a slip plane is highly velocity dependent, and here we examine how this influences magma ascent and its characteristic geophysical signals.

  4. Quasi-static and dynamic forced shear deformation behaviors of Ti-5Mo-5V-8Cr-3Al alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhiming; Chen, Zhiyong, E-mail: czysh@netease.com; Zhan, Congkun; Kuang, Lianjun; Shao, Jianbo; Wang, Renke; Liu, Chuming

    2017-04-13

    The mechanical behavior and microstructure characteristics of Ti-5Mo-5V-8Cr-3Al alloy were investigated with hat-shaped samples compressed under quasi-static and dynamic loading. Compared with the quasi-static loading, a higher shear stress peak and a shear instability stage were observed during the dynamic shear response. The results showed that an adiabatic shear band consisting of ultrafine equiaxed grains was only developed in the dynamic specimen, while a wider shear region was formed in the quasi-static specimen. The microhardness measurements revealed that shear region in the quasi-static specimen and adiabatic shear band in the dynamic specimen exhibited higher hardness than that of adjacent regions due to the strain hardening and grain refining, respectively. A stable orientation, in which the crystallographic {110} planes and <111> directions were respectively parallel to the shear plane and shear direction, developed in both specimens. And the microtexture of the adiabatic shear band was more well-defined than that of the shear region in the quasi-static specimen. Rotational dynamic recrystallization mechanism was suggested to explain the formation of ultrafine equiaxed grains within the adiabatic shear band by thermodynamic and kinetic calculations.

  5. Deformation in Metallic Glass: Connecting Atoms to Continua

    Science.gov (United States)

    Hinkle, Adam R.; Falk, Michael L.; Rycroft, Chris H.; Shields, Michael D.

    Metallic glasses like other amorphous solids experience strain localization as the primary mode of failure. However, the development of continuum constitutive laws which provide a quantitative description of disorder and mechanical deformation remains an open challenge. Recent progress has shown the necessity of accurately capturing fluctuations in material structure, in particular the statistical changes in potential energy of the atomic constituents during the non-equilibrium process of applied shear. Here we directly cross-compare molecular dynamics shear simulations of a ZrCu glass with continuum shear transformation zone (STZ) theory representations. We present preliminary results for a methodology to coarse-grain detailed molecular dynamics data with the goal of initializing a continuum representation in the STZ theory. NSF Grants Awards 1107838, 1408685, and 0801471.

  6. Static response of deformable microchannels

    Science.gov (United States)

    Christov, Ivan C.; Sidhore, Tanmay C.

    2017-11-01

    Microfluidic channels manufactured from PDMS are a key component of lab-on-a-chip devices. Experimentally, rectangular microchannels are found to deform into a non-rectangular cross-section due to fluid-structure interactions. Deformation affects the flow profile, which results in a nonlinear relationship between the volumetric flow rate and the pressure drop. We develop a framework, within the lubrication approximation (l >> w >> h), to self-consistently derive flow rate-pressure drop relations. Emphasis is placed on handling different types of elastic response: from pure plate-bending, to half-space deformation, to membrane stretching. The ``simplest'' model (Stokes flow in a 3D rectangular channel capped with a linearly elastic Kirchhoff-Love plate) agrees well with recent experiments. We also simulate the static response of such microfluidic channels under laminar flow conditions using ANSYSWorkbench. Simulations are calibrated using experimental flow rate-pressure drop data from the literature. The simulations provide highly resolved deformation profiles, which are difficult to measure experimentally. By comparing simulations, experiments and our theoretical models, we show good agreement in many flow/deformation regimes, without any fitting parameters.

  7. Magneto-induced large deformation and high-damping performance of a magnetorheological plastomer

    International Nuclear Information System (INIS)

    Liu, Taixiang; Gong, Xinglong; Xu, Yangguang; Pang, Haoming; Xuan, Shouhu

    2014-01-01

    A magnetorheological plastomer (MRP) is a new kind of soft magneto-sensitive polymeric composite. This work reports on the large magneto-deforming effect and high magneto-damping performance of MRPs under a quasi-statical shearing condition. We demonstrate that an MRP possesses a magnetically sensitive malleability, and its magneto-mechanical behavior can be analytically described by the magneto-enhanced Bingham fluid-like model. The magneto-induced axial stress, which drives the deformation of the MRP with 70 wt % carbonyl iron powder, can be tuned in a large range from nearly 0.0 kPa to 55.4 kPa by an external 662.6 kA m −1 magnetic field. The damping performance of an MRP has a significant correlation with the magnetic strength, shear rate, carbonyl iron content and shear strain amplitude. For an MRP with 60 wt % carbonyl iron powder, the relative magneto-enhanced damping effect can reach as high as 716.2% under a quasi-statically shearing condition. Furthermore, the related physical mechanism is proposed, and we reveal that the magneto-induced, particle-assembled microstructure directs the magneto-mechanical behavior of the MRP. (paper)

  8. Hot-spots of primary productivity: An Alternative interpretation to Conventional upwelling models

    Science.gov (United States)

    van Ruth, Paul D.; Ganf, George G.; Ward, Tim M.

    2010-12-01

    The eastern Great Australian Bight (EGAB) forms part of the Southern and Indian Oceans and is an area of high ecological and economic importance. Although it supports a commercial fishery, quantitative estimates of the primary productivity underlying this industry are open to debate. Estimates range from 500 mg C m -2 day -1. Part of this variation may be due to the unique upwelling circulation of shelf waters in summer/autumn (November-April), which shares some similarities with highly productive eastern boundary current upwelling systems, but differs due to the influence of a northern boundary current, the Flinders current, and a wide continental shelf. This study examines spatial variations in primary productivity in the EGAB during the upwelling seasons of 2005 and 2006. Daily integral productivity calculated using the vertically generalised production model (VGPM) showed a high degree of spatial variation. Productivity was low (modelled with the VGPM, which uses surface measures of phytoplankton biomass to calculate productivity. Macro-nutrient concentrations could not be used to explain the difference in the low and high productivities (silica > 1 μmol L -1, nitrate/nitrite > 0.4 μmol L -1, phosphate > 0.1 μmol L -1). Mixing patterns or micro-nutrient concentrations are possible explanations for spatial variations in primary productivity in the EGAB. On a global scale, daily rates of primary productivity of the EGAB lie between the highly productive eastern boundary current upwelling systems, and less productive coastal regions of western and south eastern Australia, and the oligotrophic ocean. However, daily productivity rates in the upwelling hotspots of the EGAB rival productivities in Benguela and Humboldt currents.

  9. Motional Effect on Wall Shear Stresses

    DEFF Research Database (Denmark)

    Kock, Samuel Alberg; Torben Fründ, Ernst; Yong Kim, Won

    Atherosclerosis is the leading cause of death and severe disability. Wall Shear Stress (WSS), the stress exerted on vessel walls by the flowing blood is a key factor in the development of atherosclerosis. Computational Fluid Dynamics (CFD) is widely used for WSS estimations. Most CFD simulations...... are based on static models to ease computational burden leading to inaccurate estimations. The aim of this work was to estimate the effect of vessel wall deformations (expansion and bending) on WSS levels....

  10. Structural evolution of the Irtysh Shear Zone: implication for the Late Paleozoic amalgamation of multiple arc systems in Central Asia

    Science.gov (United States)

    Li, Pengfei; Sun, Min; Rosenbaum, Gideon

    2015-04-01

    The NW-SE Irtysh Shear Zone represents a major tectonic boundary in the Central Asian Orogenic Belt, recording the amalgamation history between the peri-Siberian orogenic system and the Kazakhstan orogenic system. The structural evolution and geodynamics of this shear zone is still poorly documented. Here we present new structural data complemented by chronological data in an attempt to unravel the geodynamic significance of the Irtysh Shear Zone in the context of accretion history of the Central Asian Orogenic Belt. Our results show three episodes of deformation for the shear zone. D1 foliation is locally recognized in low strain area and recorded by garnet inclusions, whereas D2 is represented by a sub-horizontal fabric and related NW-SE lineation. D3 is characterized by a transpersonal deformation event, to form a series of NW-SE mylonitic belts with sinistral kinematics, and to overprint D2 fabric forming regional-scale NW-SE upright folds. A paragneiss sample from the shear zone yielded the youngest detrital zircon peaks in the late Carboniferous, placing a maximum age constraint on the deformation, which overlaps in time with the late Paleozoic collision between the Chinese Altai and the intraoceanic arc system of the East Junggar and West Junggar. We interpret three episodes of deformation to represent orogenic thickening (D1), collapse (D2) and thickening (D3) in response to this collisional event. Sinistral shearing (D3) together with the coeval dextral shearing in the Tianshan accommodate eastward extrusion of the Kazakhstan orogenic system during the late Paleozoic amalgamation of the Central Asian Orogenic Belt. Acknowledgements: This study was financially supported by the Major Basic Research Project of the Ministry of Science and Technology of China (Grant: 2014CB440801), Hong Kong Research Grant Council (HKU705311P and HKU704712P), National Science Foundation of China (41273048, 41273012) and a HKU CRCG grant. The work is a contribution of the Joint

  11. Shear Viscosity of Hot QED at Finite Chemical Potential from Kubo Formula

    International Nuclear Information System (INIS)

    Liu Hui; Hou Defu; Li Jiarong

    2008-01-01

    Within the framework of finite temperature feld theory this paper discusses the shear viscosity of hot QED plasma through Kubo formula at one-loop skeleton diagram level with a finite chemical potential. The effective widths (damping rates) are introduced to regulate the pinch singularities and then gives a reliable estimation of the shear viscous coefficient. The finite chemical potential contributes positively compared to the pure temperature case. The result agrees with that from the kinetics theory qualitatively

  12. Effect of Sn addition on the microstructure and deformation behavior of Mg-3Al alloy

    International Nuclear Information System (INIS)

    Suh, Byeong-Chan; Kim, Jae H.; Bae, Jun Ho; Hwang, Ji Hyun; Shim, Myeong-Shik; Kim, Nack J.

    2017-01-01

    Mg alloys generally suffer from their poor formability at low temperatures due to their strong basal texture and a lack of adequate deformation systems. In the present study, a small amount of Sn was added instead of Zn to Mg-3Al alloy to modify its deformation behavior and improve the stretch formability. Microstructural examinations of the deformed Mg-3Al-1Sn (AT31) alloy by electron backscatter diffraction and transmission electron microscopy show that prismatic slip is quite active during deformation, resulting in much lower r-values and planar anisotropy than the counterpart Mg-3Al-1Zn (AZ31) alloy. Polycrystal plasticity simulation based on visco-plasticity self-consistent (VPSC) model also shows that prismatic slip is the dominant deformation mode in AT31 alloy besides basal slip. As a consequence, AT31 alloy shows a much higher stretch formability than AZ31 alloy. On the other hand, AZ31 alloy shows the development of intense shear bands during stretch forming, and these shear bands act as crack propagating paths, limiting the stretch formability of AZ31 alloy.

  13. Upwelling Index, 51N 131W, 6-hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling index computed from 1-degree FNMOC sea level pressure for 15 locations off the North American West Coast at each 3 degrees of latitude from 21N to 60N. The...

  14. Nitrate reducing activity pervades surface waters during upwelling.

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, S.O.; Halarnekar, R.; Malik, A.; Vijayan, V.; Varik, S.; RituKumari; Jineesh V.K.; Gauns, M.U.; Nair, S.; LokaBharathi, P.A.

    .A., Roson, G., Perez, F.F., Figueiras, F.G., Pazos, Y., 1996. Nitrogen cycling in an estuarine upwelling system, the Ria de Arousa (NW Spain). Short-time-scale patterns of hydrodynamic and biogeochemical circulation. Mar. Ecol. Prog. Ser. 135, 259...

  15. Upwelling Index, 33N 119W, 6-hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling index computed from 1-degree FNMOC sea level pressure for 15 locations off the North American West Coast at each 3 degrees of latitude from 21N to 60N. The...

  16. Upwelling Index, 30N 119W, 6-hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling index computed from 1-degree FNMOC sea level pressure for 15 locations off the North American West Coast at each 3 degrees of latitude from 21N to 60N. The...

  17. Upwelling Index, 42N 125W, 6-hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling index computed from 1-degree FNMOC sea level pressure for 15 locations off the North American West Coast at each 3 degrees of latitude from 21N to 60N. The...

  18. Upwelling Index, 54N 134W, 6-hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling index computed from 1-degree FNMOC sea level pressure for 15 locations off the North American West Coast at each 3 degrees of latitude from 21N to 60N. The...

  19. Upwelling Index, 60N 149W, 6-hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling index computed from 1-degree FNMOC sea level pressure for 15 locations off the North American West Coast at each 3 degrees of latitude from 21N to 60N. The...

  20. Upwelling Index, 39N 125W, 6-hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling index computed from 1-degree FNMOC sea level pressure for 15 locations off the North American West Coast at each 3 degrees of latitude from 21N to 60N. The...

  1. Upwelling Index, 36N 122W, 6-hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling index computed from 1-degree FNMOC sea level pressure for 15 locations off the North American West Coast at each 3 degrees of latitude from 21N to 60N. The...

  2. Upwelling Index, 24N 113W, 6-hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling index computed from 1-degree FNMOC sea level pressure for 15 locations off the North American West Coast at each 3 degrees of latitude from 21N to 60N. The...

  3. Upwelling Index, 21N 107W, 6-hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling index computed from 1-degree FNMOC sea level pressure for 15 locations off the North American West Coast at each 3 degrees of latitude from 21N to 60N. The...

  4. Upwelling Index, 48N 125W, 6-hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling index computed from 1-degree FNMOC sea level pressure for 15 locations off the North American West Coast at each 3 degrees of latitude from 21N to 60N. The...

  5. Upwelling Index, 45N 125W, 6-hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling index computed from 1-degree FNMOC sea level pressure for 15 locations off the North American West Coast at each 3 degrees of latitude from 21N to 60N. The...

  6. Upwelling Index, 27N 116W, 6-hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling index computed from 1-degree FNMOC sea level pressure for 15 locations off the North American West Coast at each 3 degrees of latitude from 21N to 60N. The...

  7. Upwelling Index, 57N 137W, 6-hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling index computed from 1-degree FNMOC sea level pressure for 15 locations off the North American West Coast at each 3 degrees of latitude from 21N to 60N. The...

  8. Upwelling Index, 60N 146W, 6-hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Upwelling index computed from 1-degree FNMOC sea level pressure for 15 locations off the North American West Coast at each 3 degrees of latitude from 21N to 60N. The...

  9. Displacement-length scaling of brittle faults in ductile shear.

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-11-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement-distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow.

  10. Displacement–length scaling of brittle faults in ductile shear

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-01-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement–distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow. PMID:26806996

  11. Piezoelectric energy harvesting through shear mode operation

    International Nuclear Information System (INIS)

    Malakooti, Mohammad H; Sodano, Henry A

    2015-01-01

    Piezoelectric materials are excellent candidates for use in energy harvesting applications due to their high electromechanical coupling properties that enable them to convert input mechanical energy into useful electric power. The electromechanical coupling coefficient of the piezoelectric material is one of the most significant parameters affecting energy conversion and is dependent on the piezoelectric mode of operation. In most piezoceramics, the d 15 piezoelectric shear coefficient is the highest coefficient compared to the commonly used axial and transverse modes that utilize the d 33 and the d 31 piezoelectric strain coefficients. However, complicated electroding methods and challenges in evaluating the performance of energy harvesting devices operating in the shear mode have slowed research in this area. The shear deformation of a piezoelectric layer can be induced in a vibrating sandwich beam with a piezoelectric core. Here, a model based on Timoshenko beam theory is developed to predict the electric power output from a cantilever piezoelectric sandwich beam under base excitations. It is shown that the energy harvester operating in the shear mode is able to generate ∼50% more power compared to the transverse mode for a numerical case study. Reduced models of both shear and transverse energy harvesters are obtained to determine the optimal load resistance in the system and perform an efficiency comparison between two models with fixed and adaptive resistances. (paper)

  12. Structural predictor for nonlinear sheared dynamics in simple glass-forming liquids.

    Science.gov (United States)

    Ingebrigtsen, Trond S; Tanaka, Hajime

    2018-01-02

    Glass-forming liquids subjected to sufficiently strong shear universally exhibit striking nonlinear behavior; for example, a power-law decrease of the viscosity with increasing shear rate. This phenomenon has attracted considerable attention over the years from both fundamental and applicational viewpoints. However, the out-of-equilibrium and nonlinear nature of sheared fluids have made theoretical understanding of this phenomenon very challenging and thus slower to progress. We find here that the structural relaxation time as a function of the two-body excess entropy, calculated for the extensional axis of the shear flow, collapses onto the corresponding equilibrium curve for a wide range of pair potentials ranging from harsh repulsive to soft and finite. This two-body excess entropy collapse provides a powerful approach to predicting the dynamics of nonequilibrium liquids from their equilibrium counterparts. Furthermore, the two-body excess entropy scaling suggests that sheared dynamics is controlled purely by the liquid structure captured in the form of the two-body excess entropy along the extensional direction, shedding light on the perplexing mechanism behind shear thinning.

  13. Structural predictor for nonlinear sheared dynamics in simple glass-forming liquids

    Science.gov (United States)

    Ingebrigtsen, Trond S.; Tanaka, Hajime

    2018-01-01

    Glass-forming liquids subjected to sufficiently strong shear universally exhibit striking nonlinear behavior; for example, a power-law decrease of the viscosity with increasing shear rate. This phenomenon has attracted considerable attention over the years from both fundamental and applicational viewpoints. However, the out-of-equilibrium and nonlinear nature of sheared fluids have made theoretical understanding of this phenomenon very challenging and thus slower to progress. We find here that the structural relaxation time as a function of the two-body excess entropy, calculated for the extensional axis of the shear flow, collapses onto the corresponding equilibrium curve for a wide range of pair potentials ranging from harsh repulsive to soft and finite. This two-body excess entropy collapse provides a powerful approach to predicting the dynamics of nonequilibrium liquids from their equilibrium counterparts. Furthermore, the two-body excess entropy scaling suggests that sheared dynamics is controlled purely by the liquid structure captured in the form of the two-body excess entropy along the extensional direction, shedding light on the perplexing mechanism behind shear thinning.

  14. Binary gas mixture adsorption-induced deformation of microporous carbons by Monte Carlo simulation.

    Science.gov (United States)

    Cornette, Valeria; de Oliveira, J C Alexandre; Yelpo, Víctor; Azevedo, Diana; López, Raúl H

    2018-07-15

    Considering the thermodynamic grand potential for more than one adsorbate in an isothermal system, we generalize the model of adsorption-induced deformation of microporous carbons developed by Kowalczyk et al. [1]. We report a comprehensive study of the effects of adsorption-induced deformation of carbonaceous amorphous porous materials due to adsorption of carbon dioxide, methane and their mixtures. The adsorption process is simulated by using the Grand Canonical Monte Carlo (GCMC) method and the calculations are then used to analyze experimental isotherms for the pure gases and mixtures with different molar fraction in the gas phase. The pore size distribution determined from an experimental isotherm is used for predicting the adsorption-induced deformation of both pure gases and their mixtures. The volumetric strain (ε) predictions from the GCMC method are compared against relevant experiments with good agreement found in the cases of pure gases. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. The role of strain hardening in the transition from dislocation-mediated to frictional deformation of marbles within the Karakoram Fault Zone, NW India

    Science.gov (United States)

    Wallis, David; Lloyd, Geoffrey E.; Hansen, Lars N.

    2018-02-01

    The onset of frictional failure and potentially seismogenic deformation in carbonate rocks undergoing exhumation within fault zones depends on hardening processes that reduce the efficiency of aseismic dislocation-mediated deformation as temperature decreases. However, few techniques are available for quantitative analysis of dislocation slip system activity and hardening in natural tectonites. Electron backscatter diffraction maps of crystal orientations offer one such approach via determination of Schmid factors, if the palaeostress conditions can be inferred and the critical resolved shear stresses of slip systems are constrained. We analyse calcite marbles deformed in simple shear within the Karakoram Fault Zone, NW India, to quantify changes in slip system activity as the rocks cooled during exhumation. Microstructural evidence demonstrates that between ∼300 °C and 200-250 °C the dominant deformation mechanisms transitioned from dislocation-mediated flow to twinning and frictional failure. However, Schmid factor analysis, considering critical resolved shear stresses for yield of undeformed single crystals, indicates that the fraction of grains with sufficient resolved shear stress for glide apparently increased with decreasing temperature. Misorientation analysis and previous experimental data indicate that strain-dependent work hardening is responsible for this apparent inconsistency and promoted the transition from dislocation-mediated flow to frictional, and potentially seismogenic, deformation.

  16. Mechanical characteristics under monotonic and cyclic simple shear of spark plasma sintered ultrafine-grained nickel

    International Nuclear Information System (INIS)

    Dirras, G.; Bouvier, S.; Gubicza, J.; Hasni, B.; Szilagyi, T.

    2009-01-01

    The present work focuses on understanding the mechanical behavior of bulk ultrafine-grained nickel specimens processed by spark plasma sintering of high purity nickel nanopowder and subsequently deformed under large amplitude monotonic simple shear tests and strain-controlled cyclic simple shear tests at room temperature. During cyclic tests, the samples were deformed up to an accumulated von Mises strain of about ε VM = 0.75 (the flow stress was in the 650-700 MPa range), which is extremely high in comparison with the low tensile/compression ductility of this class of materials at quasi-static conditions. The underlying physical mechanisms were investigated by electron microscopy and X-ray diffraction profile analysis. Lattice dislocation-based plasticity leading to cell formation and dislocation interactions with twin boundaries contributed to the work-hardening of these materials. The large amount of plastic strain that has been reached during the shear tests highlights intrinsic mechanical characteristics of the ultrafine-grained nickel studied here.

  17. Mechanical characteristics under monotonic and cyclic simple shear of spark plasma sintered ultrafine-grained nickel

    Energy Technology Data Exchange (ETDEWEB)

    Dirras, G., E-mail: dirras@univ-paris13.fr [LPMTM - CNRS, Institut Galilee, Universite Paris 13, 99 Avenue J.B. Clement, 93430 Villetaneuse (France); Bouvier, S. [LPMTM - CNRS, Institut Galilee, Universite Paris 13, 99 Avenue J.B. Clement, 93430 Villetaneuse (France); Gubicza, J. [Department of Materials Physics, Eoetvoes Lorand University, P.O.B. 32, Budapest H-1518 (Hungary); Hasni, B. [LPMTM - CNRS, Institut Galilee, Universite Paris 13, 99 Avenue J.B. Clement, 93430 Villetaneuse (France); Szilagyi, T. [Department of Materials Physics, Eoetvoes Lorand University, P.O.B. 32, Budapest H-1518 (Hungary)

    2009-11-25

    The present work focuses on understanding the mechanical behavior of bulk ultrafine-grained nickel specimens processed by spark plasma sintering of high purity nickel nanopowder and subsequently deformed under large amplitude monotonic simple shear tests and strain-controlled cyclic simple shear tests at room temperature. During cyclic tests, the samples were deformed up to an accumulated von Mises strain of about {epsilon}{sub VM} = 0.75 (the flow stress was in the 650-700 MPa range), which is extremely high in comparison with the low tensile/compression ductility of this class of materials at quasi-static conditions. The underlying physical mechanisms were investigated by electron microscopy and X-ray diffraction profile analysis. Lattice dislocation-based plasticity leading to cell formation and dislocation interactions with twin boundaries contributed to the work-hardening of these materials. The large amount of plastic strain that has been reached during the shear tests highlights intrinsic mechanical characteristics of the ultrafine-grained nickel studied here.

  18. Pan-African deformations in the basement of the Negele area, southern Ethiopia

    Science.gov (United States)

    Yihunie, Tadesse

    2002-03-01

    Polydeformed and metamorphosed Neoproterozoic rocks of the East African Orogen in the Negele area constituted three lithostructurally distinct and thrust-bounded terranes. These are, from west to east, the Kenticha, Alghe and Bulbul terranes. The Kenticha and Bulbul terranes are metavolcano-sedimentary and ultramafic sequences, representing parts of the Arabian-Nubian Shield (ANS), which are welded to the central Alghe gneissic terrane of the Mozambique Belt affinity along N-S-trending sheared thrust contacts. Structural data suggest that the Negele basement had evolved through three phases of deformation. During D1 (folding) deformation, north-south upright and inclined folds with north-trending axes were developed. East and west-verging thrusts, right-lateral shearing along the north-oriented Kenticha and Bulbul thrust contacts and related structural elements were developed during D2 (thrusting) deformation. The pervasive D1 event is interpreted to have occurred at 620-610 Ma and the D2 event ended prior to 554 Ma. Right-lateral strike-slips along thrust contacts are interpreted to have been initiated during late D2. During D3, left-lateral strike-slip along the Wadera Shear Zone and respective strike-slip movements along conjugate set of shear zones were developed in the Alghe terrane, and are interpreted to have occurred later than 557 Ma. The structural data suggest that eastward thrusting of the Kenticha and westward tectonic transport of the Bulbul sequences over the Alghe gneissic terrane of the Mozambique Belt, during D2, were accompanied by right-lateral strike-slip displacements along thrust contacts. Right-lateral strike-slip movements along the Kenticha thrust contact, further suggest northward movement of the Kenticha sequence during the Pan-African orogeny in the Neoproterozoic. Left-lateral strike-slip along the orogen-parallel NNE-SSW Wadera Shear Zone and strike-slip movements along a conjugate set of shear zones completed final terrane

  19. Direct Shear Behavior of Fiber Reinforced Concrete Elements

    Directory of Open Access Journals (Sweden)

    Hussein Al-Quraishi

    2018-01-01

    Full Text Available Improving the accuracy of load-deformation behavior, failure mode, and ultimate load capacity for reinforced concrete members subjected to in-plane loadings such as corbels, wall to foundation connections and panels need shear strength behavior to be included. Shear design in reinforced concrete structures depends on crack width, crack slippage and roughness of the surface of cracks. This paper illustrates results of an experimental investigation conducted to investigate the direct shear strength of fiber normal strength concrete (NSC and reactive powder concrete (RPC. The tests were performed along a pre-selected shear plane in concrete members named push-off specimens. The effectiveness of concrete compressive strength, volume fraction of steel fiber, and shear reinforcement ratio on shear transfer capacity were considered in this study. Furthermore, failure modes, shear stress-slip behavior, and shear stress-crack width behavior were also presented in this study. Tests’ results showed that volume fraction of steel fiber and compressive strength of concrete in NSC and RPC play a major role in improving the shear strength of concrete. As expectedly, due to dowel action, the shear reinforcement is the predominant factor in resisting the shear stress. The shear failure of NSC and RPC has the sudden mode of failure (brittle failure with the approximately linear behavior of shear stress-slip relationship till failure. Using RPC instead of NSC with the same amount of steel fibers in constructing the push-off specimen result in high shear strength. In NSC, shear strength influenced by the three major factors; crack surface friction, aggregate interlock and steel fiber content if present. Whereas, RPC has only steel fiber and cracks surface friction influencing the shear strength. Due to cementitious nature of RPC in comparisons with NSC, the RPC specimen shows greater cracks width. It is observed that the Mattock model gives very satisfactory

  20. Texture, microstructure and geochemistry of magnetite from the Banduhurang uranium mine, Singhbhum shear zone, India - implications for physico-chemical evolution of magnetite mineralization

    International Nuclear Information System (INIS)

    Ghosh, Dibakar; Dutta, Tusar; Samanta, Susanta K.; Pal, Dipak C.

    2013-01-01

    The Singhbhum Shear zone in eastern India is one of the largest repositories of uranium and copper in India. Besides uranium and copper, apatite-magnetite mineralization is widespread in this shear zone. This study aims at deciphering the physico-chemical evolution of magnetite mineralization in relation to progressive shearing integrating field relations, micro-textures, structures and compositions of magnetite in the Banduhurang uranium mine. Apatite-magnetite ores occur as discrete patches, tongues, and veins in the strongly deformed, fine grained quartz-chlorite schist. Textures and microstructures of magnetite indicate at least three stages of magnetite formation. Coarse-grained magnetite (magnetite-1) with long, rotational, and complex strain fringes, defined by fibrous and elongate quartz, is assigned to a stage of pre-/early-shearing magnetite formation. Medium grained magnetite (magnetite-2), characterized by single non-rotational strain fringe equivalent to the youngest fringe of magnetite-1, grew likely at the mid-/late-stage of shearing. Fine grained magnetite (magnetite-3) is generally devoid of any pressure shadow. This indicates even a much later stage of formation of this magnetite, presumably towards the closing stage of shearing. Some of the magnetite-1 grains are optically heterogeneous with a dark, pitted Cr-Ti-bearing core overgrown by lighter, fresh rim locally containing pyrite, chalcopyrite, and chlorite inclusions. The cores are also locally characterized by high AI and Si content. Homogeneous magnetite-1 is optically and compositionally similar to the overgrowth of heterogeneous magnetite-1. This homogeneous magnetite-1 that grew as separate phase is contemporaneous with the overgrowth on pitted core of heterogeneous magnetite-1. Magnetite-2 is compositionally very similar to homogeneous magnetite-1, but is devoid of sulfide inclusion. Magnetite-3 is generally devoid of any silicate or sulfide inclusion and is most pure with least

  1. Shear melting and high temperature embrittlement: theory and application to machining titanium.

    Science.gov (United States)

    Healy, Con; Koch, Sascha; Siemers, Carsten; Mukherji, Debashis; Ackland, Graeme J

    2015-04-24

    We describe a dynamical phase transition occurring within a shear band at high temperature and under extremely high shear rates. With increasing temperature, dislocation deformation and grain boundary sliding are supplanted by amorphization in a highly localized nanoscale band, which allows for massive strain and fracture. The mechanism is similar to shear melting and leads to liquid metal embrittlement at high temperature. From simulation, we find that the necessary conditions are lack of dislocation slip systems, low thermal conduction, and temperature near the melting point. The first two are exhibited by bcc titanium alloys, and we show that the final one can be achieved experimentally by adding low-melting-point elements: specifically, we use insoluble rare earth metals (REMs). Under high shear, the REM becomes mixed with the titanium, lowering the melting point within the shear band and triggering the shear-melting transition. This in turn generates heat which remains localized in the shear band due to poor heat conduction. The material fractures along the shear band. We show how to utilize this transition in the creation of new titanium-based alloys with improved machinability.

  2. Insights into the Microbial and Viral Dynamics of a Coastal Downwelling-Upwelling Transition.

    Directory of Open Access Journals (Sweden)

    Gustavo Bueno Gregoracci

    Full Text Available Although previous studies have described opposing states in upwelling regions, i.e., the rise of cold nutrient-rich waters and prevalence of surface warm nutrient-poor waters, few have addressed the transition from one state to the other. This study aimed to describe the microbial and viral structure during this transition and was able to obtain the taxonomic and metabolic compositions as well as physical-chemical data. This integrated approach allowed for a better understanding of the dynamics of the downwelling upwelling transition, suggesting that a wealth of metabolic processes and ecological interactions are occurring in the minute fractions of the plankton (femto, pico, nano. These processes and interactions included evidence of microbial predominance during downwelling (with nitrogen recycling and aerobic anoxygenic photosynthesis, different viral predation pressures over primary production in different states (cyanobacteria vs eukaryotes, and a predominance of diatoms and selected bacterial and archaeal groups during upwelling (with the occurrence of a wealth of nitrogen metabolism involving ammonia. Thus, the results provided insights into which microbes, viruses and microbial-mediated processes are probably important in the functioning of upwelling systems.

  3. Effect of surface shear on cube texture formation in heavy cold-rolled Cu-45 at%Ni alloy substrates

    DEFF Research Database (Denmark)

    Tian, Hui; Suo, Hongli; Liang, Yaru

    2015-01-01

    Two types of Cu-45 at%Ni alloy thin tapes with and without surface shear were obtained by different heavy cold rolling processes. The deformation and recrystallization textures of the two tapes were thoroughly investigated by electron back scattering diffraction technique. The results showed...... that a shear texture mainly covered the surface of the heavy deformed tapes because of the fraction between the surface of rolling mills and the thin tapes when the rolling force strongly reduced at high strain, which significantly reduced the fraction of rolling texture on the surface of the Cu-45at %Ni alloy...

  4. Shear Piezoelectricity in Poly(vinylidenefluoride-co-trifluoroethylene): Full Piezotensor Coefficients by Molecular Modeling, Biaxial Transverse Response, and Use in Suspended Energy-Harvesting Nanostructures.

    Science.gov (United States)

    Persano, Luana; Catellani, Alessandra; Dagdeviren, Canan; Ma, Yinji; Guo, Xiaogang; Huang, Yonggang; Calzolari, Arrigo; Pisignano, Dario

    2016-09-01

    The intrinsic flexible character of polymeric materials causes remarkable strain deformations along directions perpendicular to the applied stress. The biaxial response in the shear piezoelectricity of polyvinylidenefluoride copolymers is analyzed and their full piezoelectric tensors are provided. The microscopic shear is exploited in single suspended nanowires bent by localized loading to couple flexural deformation and transverse piezoelectric response. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Phytoplankton community and environmental correlates in a coastal upwelling zone along western Taiwan Strait

    Science.gov (United States)

    Wang, Yu; Kang, Jian-hua; Ye, You-yin; Lin, Geng-ming; Yang, Qing-liang; Lin, Mao

    2016-02-01

    Upwelling system in western Taiwan Strait is important for facilitating the fishery production. This study investigated hydro-chemical properties, phytoplankton biomass, phytoplankton species composition, three-dimensional (horizontal, vertical and transect) distribution of phytoplankton abundance, as well as phytoplankton annual variation and the correlation of phytoplankton community with the upwelling of underlying current and nutrients according to samples of Fujian-Guangdong coastal upwelling zone in western Taiwan Strait from August 27 to September 8, 2009. The results manifest that the nutrient-rich cold and high salinity current on the continental shelf of South China Sea upwells to the Fujian-Guangdong coastal waters through Taiwan Bank and the surging strength to surface is weak while strong at 30-m layer. The thermohaline center of coastal upwelling shifts to the east of Dongshan Island and expanded to offshore waters in comparison with previous records. A total of 137 phytoplankton species belonging to 59 genera in 4 phyla are identified excluding the unidentified species. Diatom is the first major group and followed by dinoflagellate. Cyanobacteria mainly composed by three Trichodesmium species account for a certain proportions, while Chrysophyta are only found in offshore waters. The dominant species include Thalassionema nitzschioides, Pseudo-nitzschia pungens, Thalassionema frauenfeldii, Pseudo-nitzschia delicatissima, Rhizosolenia styliformis, Chaetoceros curvisetus, Diplopsalis lenticula and Trichodesmium thiebautii. Phytoplankton community mainly consists of eurythermal and eurytopic species, followed by warm-water species, tropic high-salinity species and oceanic eurythermic species in order. Phytoplankton abundance ranges from 1.00 × 102 ind./L ~ 437.22 × 102 ind./L with an average of 47.36 × 102 ind./L. For vertical distribution, maximum abundance is found at 30 m-depth and the surface comes second. Besides, the abundance below 30 m

  6. Upwelling characteristics in the Gulf of Finland (Baltic Sea) as revealed by Ferrybox measurements in 2007-2013

    Science.gov (United States)

    Kikas, Villu; Lips, Urmas

    2016-07-01

    Ferrybox measurements have been carried out between Tallinn and Helsinki in the Gulf of Finland (Baltic Sea) on a regular basis since 1997. The system measures autonomously water temperature, salinity, chlorophyll a fluorescence and turbidity and takes water samples for further analyses at a predefined time interval. We aimed to show how the Ferrybox technology could be used to study the coastal upwelling events in the Gulf of Finland. Based on the introduced upwelling index and related criteria, 33 coastal upwelling events were identified in May-September 2007-2013. The number of events, as well as the frequency of their occurrence and intensity expressed as a sum of daily average temperature deviations in the 20 km wide coastal area, were almost equal near the northern and southern coasts. Nevertheless, the wind impulse, which was needed to generate upwelling events of similar intensity, differed between the northern and southern coastal areas. It is suggested that the general thermohaline structure adapted to the prevailing forcing and the estuarine character of the basin weaken the upwelling created by the westerly to southwesterly (up-estuary) winds and strengthen the upwelling created by the easterly to northeasterly (down-estuary) winds. Two types of upwelling events were identified - one characterized by a strong temperature front and the other revealing gradual decrease in temperature from the open sea to the coastal area, with maximum temperature deviation close to the shore.

  7. Representing Matrix Cracks Through Decomposition of the Deformation Gradient Tensor in Continuum Damage Mechanics Methods

    Science.gov (United States)

    Leone, Frank A., Jr.

    2015-01-01

    A method is presented to represent the large-deformation kinematics of intraply matrix cracks and delaminations in continuum damage mechanics (CDM) constitutive material models. The method involves the additive decomposition of the deformation gradient tensor into 'crack' and 'bulk material' components. The response of the intact bulk material is represented by a reduced deformation gradient tensor, and the opening of an embedded cohesive interface is represented by a normalized cohesive displacement-jump vector. The rotation of the embedded interface is tracked as the material deforms and as the crack opens. The distribution of the total local deformation between the bulk material and the cohesive interface components is determined by minimizing the difference between the cohesive stress and the bulk material stress projected onto the cohesive interface. The improvements to the accuracy of CDM models that incorporate the presented method over existing approaches are demonstrated for a single element subjected to simple shear deformation and for a finite element model of a unidirectional open-hole tension specimen. The material model is implemented as a VUMAT user subroutine for the Abaqus/Explicit finite element software. The presented deformation gradient decomposition method reduces the artificial load transfer across matrix cracks subjected to large shearing deformations, and avoids the spurious secondary failure modes that often occur in analyses based on conventional progressive damage models.

  8. Lagrangian Timescales of Southern Ocean Upwelling in a Hierarchy of Model Resolutions

    Science.gov (United States)

    Drake, Henri F.; Morrison, Adele K.; Griffies, Stephen M.; Sarmiento, Jorge L.; Weijer, Wilbert; Gray, Alison R.

    2018-01-01

    In this paper we study upwelling pathways and timescales of Circumpolar Deep Water (CDW) in a hierarchy of models using a Lagrangian particle tracking method. Lagrangian timescales of CDW upwelling decrease from 87 years to 31 years to 17 years as the ocean resolution is refined from 1° to 0.25° to 0.1°. We attribute some of the differences in timescale to the strength of the eddy fields, as demonstrated by temporally degrading high-resolution model velocity fields. Consistent with the timescale dependence, we find that an average Lagrangian particle completes 3.2 circumpolar loops in the 1° model in comparison to 0.9 loops in the 0.1° model. These differences suggest that advective timescales and thus interbasin merging of upwelling CDW may be overestimated by coarse-resolution models, potentially affecting the skill of centennial scale climate change projections.

  9. Response of Mytilus edulis to enhanced phytoplankton availibility by controlled upwelling in an oligographic fjord

    NARCIS (Netherlands)

    Strohmeier, T.; Strand, Ø.; Alunno-Bruscia, M.; Duinker, A.; Rosland, R.; Jansen, H.M.

    2015-01-01

    The controlled upwelling of nutrient-rich deep water in oligotrophic coastal regions has been proposed as a means of increasing phytoplankton and, subsequently, bivalve aquaculture production. This was tested as part of a large-scale upwelling experiment in an oligotrophic environment (Lysefjord,

  10. Rheometry-PIV of shear-thickening wormlike micelles.

    Science.gov (United States)

    Marín-Santibañez, Benjamín M; Pérez-Gonzale