WorldWideScience

Sample records for pure colors wavelength

  1. Color Spectrum Properties of Pure and Non-Pure LATEX in Discriminating Rubber Clone Series

    International Nuclear Information System (INIS)

    Noor Aishah Khairuzzaman; Hadzli Hashim; Nina Korlina Madzhi; Noor Ezan Abdullah; Faridatul Aima Ismail; Ahmad Faiz Sampian; Azhana Fatnin Che Will

    2015-01-01

    A study of color spectrum properties for pure and non-pure latex in discriminating rubber clone series has been presented in this paper. There were five types of clones from the same series being used as samples in this study named RRIM2002, RRIM2007, RRIM2008, RRIM2014, and RRIM3001. The main objective is to identify the significant color spectrum (RGB) from pure and non-pure latex that can discriminate rubber clone series. The significant information of color spectrum properties for pure and non-pure latex is determined by using spectrometer and Statistical Package for the Social Science (SPSS). Visible light spectrum (VIS) is used as a radiation light of the spectrometer to emit light to the surface of the latex sample. By using SPSS software, the further numerical analysis of color spectrum properties is being conducted. As the conclusion, blue color spectrum for non-pure is able to discriminate for all rubber clone series whereas only certain color spectrum can differentiate several clone series for pure latex. (author)

  2. Prepare core–multishell CdSe/ZnS nanocrystals with pure color and controlled emission by tri-n-octylphosphine-assisted method

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Cuiling, E-mail: rencl@lzu.edu.cn [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 730000 (China); Hao, Junjie, E-mail: haojj@sustc.edu.cn [Department of Electrical & Electronic Engineering, South University of Science and Technology of China, Shenzhen 518055 (China); Chen, Hongli [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 730000 (China); Wang, Kai, E-mail: wangk@sustc.edu.cn [Department of Electrical & Electronic Engineering, South University of Science and Technology of China, Shenzhen 518055 (China); Wu, Dan [School of Electrical and Electronic Engineering, Nanyang Technological University (Singapore)

    2015-10-30

    Graphical abstract: The core–multishell CdSe/ZnS QDs synthesized by the TOP-assisted SILAR method represent pure color, high luminescence and controlled emission wavelength, which can be continuously tuned by simply varying the emission of the core nanocrystals. - Highlights: • The prepared core–multishell QDs have pure color emission (FWHM, <25 nm) even after coating with 3-monolayer ZnS. • The emission wavelength can be continuously adjusted by simply varying the ODA:Cd ratio for preparing the core nanocrystals. • The CdSe/ZnS QDs still have good optical properties synthesized at 30 multi scales. • The knowledge gained in this study enabled us to better understand the mechanism of TOP-assisted method. - Abstract: Core–multishell semiconductor nanocrystals have great potential in light emitting devices (LEDs) display, fluorescent biomarkers and luminescent solar concentrators. However, their applications are strongly limited due to the wide full-width at half-maximum (FWHM), inaccurate controllable emission wavelength, and decreased quantum yield as the shell coverage growth. So there still remains a great challenge for improving the photoluminescence properties of core–multishell quantum dots. In this work, tri-n-octylphosphine (TOP) assisted method was used to prepare CdSe/ZnS QDs with narrow FWHM and controlled emission wavelength, the influence of experimental conditions on the photoluminescent properties of the core–multishell QDs were investigated. The experimental results indicated this is an effective method to prepare core–multishell QDs with pure color emission (FWHM value is smaller than 25 nm after coating with 3 monolayers of ZnS), accurately controlled emission and high QY (>95%). This is the smallest FWHM for core–multishell QDs. The emission wavelength of the as-prepared core–multishell QDs can be continuously tuned by simply varying the emission of the core nanocrystals. Furthermore, the knowledge gained in this study

  3. Color Reproduction with a Smartphone

    Science.gov (United States)

    Thoms, Lars-Jochen; Colicchia, Giuseppe; Girwidz, Raimund

    2013-01-01

    The world is full of colors. Most of the colors we see around us can be created on common digital displays simply by superposing light with three different wavelengths. However, no mixture of colors can produce a fully pure color identical to a spectral color. Using a smartphone, students can investigate the main features of primary color addition…

  4. Rational choices for the wavelengths of a two color interferometer

    International Nuclear Information System (INIS)

    Jobes, F.C.

    1995-07-01

    If in a two color interferometer for plasma density measurements, the two wavelengths are chosen to have a ratio that is a rational number, and if the signals from each of the wavelengths are multiplied in frequency by the appropriate integer of the rational number and then heterodyned together, the resultant signal will have all effects of component motion nulled out. A phase measurement of this signal will have only plasma density information in it. With CO 2 lasers, it is possible to find suitable wavelength pairs which are close enough to rational numbers to produce an improvement of about 100 in density resolution, compared to standard two color interferometers

  5. Pure Gravities via Color-Kinematics Duality for Fundamental Matter

    CERN Document Server

    Johansson, Henrik

    2015-01-01

    We give a prescription for the computation of loop-level scattering amplitudes in pure Einstein gravity, and four-dimensional pure supergravities, using the color-kinematics duality. Amplitudes are constructed using double copies of pure (super-)Yang-Mills parts and additional contributions from double copies of fundamental matter, which are treated as ghosts. The opposite-statistics states cancel the unwanted dilaton and axion in the bosonic theory, as well as the extra matter supermultiplets in supergravities. As a spinoff, we obtain a prescription for obtaining amplitudes in supergravities with arbitrary non-self-interacting matter. As a prerequisite, we extend the color-kinematics duality from the adjoint to the fundamental representation of the gauge group. We explain the numerator relations that the fundamental kinematic Lie algebra should satisfy. We give nontrivial evidence supporting our construction using explicit tree and loop amplitudes, as well as more general arguments.

  6. Quantum manipulation of two-color stationary light: Quantum wavelength conversion

    International Nuclear Information System (INIS)

    Moiseev, S. A.; Ham, B. S.

    2006-01-01

    We present a quantum manipulation of a traveling light pulse using electromagnetically induced transparency-based slow light phenomenon for the generation of two-color stationary light. We theoretically discuss the two-color stationary light for the quantum wavelength conversion process in terms of pulse area, energy transfer, and propagation directions. The condition of the two-color stationary light pulse generation has been found and the quantum light dynamics has been studied analytically in the adiabatic limit. The quantum frequency conversion rate of the traveling light is dependent on the spatial spreading of the two-color stationary light pulse and can be near unity in an optically dense medium for the optimal frequencies of the control laser fields

  7. Simple approach to three-color two-photon microscopy by a fiber-optic wavelength convertor.

    Science.gov (United States)

    Li, Kuen-Che; Huang, Lynn L H; Liang, Jhih-Hao; Chan, Ming-Che

    2016-11-01

    A simple approach to multi-color two-photon microscopy of the red, green, and blue fluorescent indicators was reported based on an ultra-compact 1.03-μm femtosecond laser and a nonlinear fiber. Inside the nonlinear fiber, the 1.03-μm laser pulses were simultaneously blue-shifted to 0.6~0.8 μm and red-shifted to 1.2~1.4 μm region by the Cherenkov radiation and fiber Raman gain effects. The wavelength-shifted 0.6~0.8 μm and 1.2~1.4 μm radiations were co-propagated with the residual non-converted 1.03-μm pulses inside the same nonlinear fiber to form a fiber-output three-color femtosecond source. The application of the multi-wavelength sources on multi-color two-photon fluorescence microscopy were also demonstrated. Overall, due to simple system configuration, convenient wavelength conversion, easy wavelength tunability within the entire 0.7~1.35 μm bio-penetration window and less requirement for high power and bulky light sources, the simple approach to multi-color two-photon microscopy could be widely applicable as an easily implemented and excellent research tool for future biomedical and possibly even clinical applications.

  8. Color correction for chromatic distortion in a multi-wavelength digital holographic system

    International Nuclear Information System (INIS)

    Lin, Li-Chien; Huang, Yi-Lun; Tu, Han-Yen; Lai, Xin-Ji; Cheng, Chau-Jern

    2011-01-01

    A multi-wavelength digital holographic (MWDH) system has been developed to record and reconstruct color images. In comparison to working with digital cameras, however, high-quality color reproduction is difficult to achieve, because of the imperfections from the light sources, optical components, optical recording devices and recording processes. Thus, we face the problem of correcting the colors altered during the digital holographic process. We therefore propose a color correction scheme to correct the chromatic distortion caused by the MWDH system. The scheme consists of two steps: (1) creating a color correction profile and (2) applying it to the correction of the distorted colors. To create the color correction profile, we generate two algorithms: the sequential algorithm and the integrated algorithm. The ColorChecker is used to generate the distorted colors and their desired corrected colors. The relationship between these two color patches is fixed into a specific mathematical model, the parameters of which are estimated, creating the profile. Next, the profile is used to correct the color distortion of images, capturing and preserving the original vibrancy of the reproduced colors for different reconstructed images

  9. Correlated evolution of short wavelength sensitive photoreceptor sensitivity and color pattern in Lake Malawi cichlids

    Directory of Open Access Journals (Sweden)

    Michael J. Pauers

    2016-02-01

    Full Text Available For evolutionary ecologists, the holy grail of visual ecology is to establish an unambiguous link between photoreceptor sensitivity, the spectral environment, and the perception of specific visual stimuli (e.g., mates, food, predators, etc.. Due to the bright nuptial colors of the males, and the role female mate choice plays in their evolution, the haplochromine cichlid fishes of the African great lakes are favorite research subjects for such investigations. Despite this attention, current evidence is equivocal; while distinct correlations among photoreceptor sensitivity, photic environment, and male coloration exist in Lake Victorian haplochromines, attempts to find such correlations in Lake Malawian cichlids have failed. Lake Malawi haplochromines have a wide variability in their short-wavelength-sensitive photoreceptors, especially compared to their mid- and long-wavelength-sensitive photoreceptors; these cichlids also vary in the degree to which they express one of three basic color patterns (vertical bars, horizontal stripes, and solid patches of colors, each of which is likely used in a different form of communication. Thus, we hypothesize that, in these fishes, spectral sensitivity and color pattern have evolved in a correlated fashion to maximize visual communication; specifically, ultraviolet sensitivity should be found in vertically-barred species to promote ‘private’ communication, while striped species should be less likely to have ultraviolet sensitivity, since their color pattern carries ‘public’ information. Using phylogenetic independent contrasts, we found that barred species had strong sensitivity to ultraviolet wavelengths, but that striped species typically lacked sensitivity to ultraviolet light. Further, the only variable, even when environmental variables were simultaneously considered, that could predict ultraviolet sensitivity was color pattern. We also found that, using models of correlated evolution, color

  10. Efficient color-tunable multiexcitonic dual wavelength emission from Type II semiconductor tetrapods.

    Science.gov (United States)

    Wu, Wen-Ya; Li, Mingjie; Lian, Jie; Wu, Xiangyang; Yeow, Edwin K L; Jhon, Mark H; Chan, Yinthai

    2014-09-23

    We synthesized colloidal InP/ZnS seeded CdS tetrapods by harnessing the structural stability of the InP/ZnS seed nanocrystals at the high reaction temperatures needed to grow the CdS arms. Because of an unexpected Type II band alignment at the interface of the InP/ZnS core and CdS arms that enhanced the occurrence of radiative excitonic recombination in CdS, these tetrapods were found to be capable of exhibiting highly efficient multiexcitonic dual wavelength emission of equal intensity at spectrally distinct wavelengths of ∼485 and ∼675 nm. Additionally, the Type II InP/ZnS seeded CdS tetrapods displayed a wider range of pump-dependent emission color-tunability (from red to white to blue) within the context of a CIE 1931 chromaticity diagram and possessed higher photostability due to suppressed multiexcitonic Auger recombination when compared to conventional Type I CdSe seeded CdS tetrapods. By employing time-resolved spectroscopy measurements, we were able to attribute the wide emission color-tunability to the large valence band offset between InP and CdS. This work highlights the importance of band alignment in the synthetic design of semiconductor nanoheterostructures, which can exhibit color-tunable multiwavelength emission with high efficiency and photostability.

  11. Control of the Rendition Wavelength Shifts of Color Lippmann Holograms Recorded in Single-layer panchromatic Silver-halide Emulsion

    Institute of Scientific and Technical Information of China (English)

    ZHU Jianhua; GUO Lurong; LI Zuoyou; LIU Zhenqing

    2000-01-01

    Russian PFG-03C panchromatic ultra-high resolution silver-halide emulsion is regarded as the most successful material for the fabrication of color reflection holograms. But the lack of established and reliable processing sequences prevents its practical applications in business and everyday life. Though much attention is drawn upon the processing of PFG-03C color reflection holograms, the color desaturation is still a problem. The article describes the new processing of color holograms recorded in PFG- 03C plates which is demonstrated experimentally to have the capacity of controlling the rendition wavelength shifts and improving the color desaturation effectively. The rendition spectra of Red-Green-Blue (R. G. B. ) single-line reflection holographic gratings, and the color reflection hologram as well, are given in this paper.

  12. Colors in mind: a novel paradigm to investigate pure color imagery.

    Science.gov (United States)

    Wantz, Andrea L; Borst, Grégoire; Mast, Fred W; Lobmaier, Janek S

    2015-07-01

    Mental color imagery abilities are commonly measured using paradigms that involve naming, judging, or comparing the colors of visual mental images of well-known objects (e.g., "Is a sunflower darker yellow than a lemon"?). Although this approach is widely used in patient studies, differences in the ability to perform such color comparisons might simply reflect participants' general knowledge of object colors rather than their ability to generate accurate visual mental images of the colors of the objects. The aim of the present study was to design a new color imagery paradigm. Participants were asked to visualize a color for 3 s and then to determine a visually presented color by pressing 1 of 6 keys. We reasoned that participants would react faster when the imagined and perceived colors were congruent than when they were incongruent. In Experiment 1, participants were slower in incongruent than congruent trials but only when they were instructed to visualize the colors. The results in Experiment 2 demonstrate that the congruency effect reported in Experiment 1 cannot be attributed to verbalization of the color that had to be visualized. Finally, in Experiment 3, the congruency effect evoked by mental imagery correlated with performance in a perceptual version of the task. We discuss these findings with respect to the mechanisms that underlie mental imagery and patients suffering from color imagery deficits. (c) 2015 APA, all rights reserved.

  13. Rediscovering Red: Full-Spectrum Structural Color in Colloidal Glasses

    Science.gov (United States)

    Magkiriadou, Sofia; Park, Jin-Gyu; Kim, Young-Seok; Yi, Gi-Ra; Manoharan, Vinothan N.

    2014-03-01

    We use colloidal glasses to develop pigments with structural color: color that arises from interference rather than absorption. This pigmentation mechanism is common in blue birds, whose feather barbs often contain glassy microstructures. When a glass is illuminated, the spatial correlations between neighboring particles can give rise to constructive interference for a small range of wavelengths. Unlike the colors arising from Bragg diffraction in crystals, the colors of these ``photonic glasses'' are independent of angle due to the disordered, isotropic structure. However, there are no known examples of photonic glasses with pure structural red color, either in nature or in the lab. We present both experimental evidence and a model showing that the absence of red is due to the wavelength-dependence of the single-particle scattering cross-section. We show that this problem can be solved in ``inverse glasses,'' namely glasses composed of particles with refractive index lower than that of their medium. Although these systems are similar to those in birds, no known species uses this mechanism to create red. We use inverse glasses to make full-spectrum, angle-independent structural colors. This will enable the use of colloidal glasses as a new type of long-lasting, non-bleaching pigment.

  14. Wavelength Discrimination in Drosophila Suggests a Role of Rhodopsin 1 in Color Vision

    OpenAIRE

    Garbers, Christian; Wachtler, Thomas

    2016-01-01

    Among the five photoreceptor opsins in the eye of Drosophila, Rhodopsin 1 (Rh1) is expressed in the six outer photoreceptors. In a previous study that combined behavioral genetics with computational modeling, we demonstrated that flies can use the signals from Rh1 for color vision. Here, we provide an in-depth computational analysis of wildtype Drosophila wavelength discrimination specifically considering the consequences of different choices of computations in the preprocessing of the behavi...

  15. Colors in Mind: A Novel Paradigm to Investigate Pure Color Imagery

    OpenAIRE

    Wantz, Andrea Laura; Borst, Grégoire; Mast, Fred; Lobmaier, Janek

    2015-01-01

    Mental color imagery abilities are commonly measured using paradigms that involve naming, judging, or comparing the colors of visual mental images of well-known objects (e.g., “Is a sunflower darker yellow than a lemon”?). Although this approach is widely used in patient studies, differences in the ability to perform such color comparisons might simply reflect participants’ general knowledge of object colors rather than their ability to generate accurate visual mental images of the colors of ...

  16. Facts About Color Blindness

    Science.gov (United States)

    ... color? Normal Human Retina What color is a strawberry? Most of us would say red, but do ... light and shorter wavelength corresponds to blue light. Strawberries and other objects reflect some wavelengths of light ...

  17. THE DEEP BLUE COLOR OF HD 189733b: ALBEDO MEASUREMENTS WITH HUBBLE SPACE TELESCOPE/SPACE TELESCOPE IMAGING SPECTROGRAPH AT VISIBLE WAVELENGTHS

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Thomas M.; Aigrain, Suzanne; Barstow, Joanna K. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Pont, Frederic; Sing, David K. [School of Physics, University of Exeter, EX4 4QL Exeter (United Kingdom); Desert, Jean-Michel; Knutson, Heather A. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Gibson, Neale [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Heng, Kevin [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Lecavelier des Etangs, Alain, E-mail: tom.evans@astro.ox.ac.uk [Institut d' Astrophysique de Paris, UMR7095 CNRS, Universite Pierre et Marie Curie, 98 bis Boulevard Arago, F-75014 Paris (France)

    2013-08-01

    We present a secondary eclipse observation for the hot Jupiter HD 189733b across the wavelength range 290-570 nm made using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. We measure geometric albedos of A{sub g} = 0.40 {+-} 0.12 across 290-450 nm and A{sub g} < 0.12 across 450-570 nm at 1{sigma} confidence. The albedo decrease toward longer wavelengths is also apparent when using six wavelength bins over the same wavelength range. This can be interpreted as evidence for optically thick reflective clouds on the dayside hemisphere with sodium absorption suppressing the scattered light signal beyond {approx}450 nm. Our best-fit albedo values imply that HD 189733b would appear a deep blue color at visible wavelengths.

  18. Colors in Mind: A Novel Paradigm to Investigate Pure Color Imagery

    Science.gov (United States)

    Wantz, Andrea L.; Borst, Grégoire; Mast, Fred W.; Lobmaier, Janek S.

    2015-01-01

    Mental color imagery abilities are commonly measured using paradigms that involve naming, judging, or comparing the colors of visual mental images of well-known objects (e.g., "Is a sunflower darker yellow than a lemon"?). Although this approach is widely used in patient studies, differences in the ability to perform such color…

  19. Hewlett-Packard's Approaches to Full Color Reflective Displays

    Science.gov (United States)

    Gibson, Gary

    2012-02-01

    Reflective displays are desirable in applications requiring low power or daylight readability. However, commercial reflective displays are currently either monochrome or capable of only dim color gamuts. Low cost, high-quality color technology would be rapidly adopted in existing reflective display markets and would enable new solutions in areas such as retail pricing and outdoor digital signage. Technical breakthroughs are required to enable bright color gamuts at reasonable cost. Pixel architectures that rely on pure reflection from a single layer of side-by-side primary-color sub-pixels use only a fraction of the display area to reflect incident light of a given color and are, therefore, unacceptably dark. Reflective devices employing stacked color primaries offer the possibility of a somewhat brighter color gamut but can be more complex to manufacture. In this talk, we describe HP's successes in addressing these fundamental challenges and creating both high performance stacked-primary reflective color displays as well as inexpensive single layer prototypes that provide good color. Our stacked displays utilize a combination of careful light management techniques, proprietary high-contrast electro-optic shutters, and highly transparent active-matrix TFT arrays based on transparent metal oxides. They also offer the possibility of relatively low cost manufacturing through roll-to-roll processing on plastic webs. To create even lower cost color displays with acceptable brightness, we have developed means for utilizing photoluminescence to make more efficient use of ambient light in a single layer device. Existing reflective displays create a desired color by reflecting a portion of the incident spectrum while absorbing undesired wavelengths. We have developed methods for converting the otherwise-wasted absorbed light to desired wavelengths via tailored photoluminescent composites. Here we describe a single active layer prototype display that utilizes these materials

  20. Experimental determination of the slow-neutron wavelength distribution

    DEFF Research Database (Denmark)

    Lebech, Bente; Mikke, K.; Sledziewska-Blocka, D.

    1970-01-01

    Different experiments for determining the slow-neutron wavelength distribution in the region 227-3 meV have been carried out, and the results compared. It is concluded that the slow-neutron wave-length distribution can be determined accurately by elastic scattering on a pure incoherent or a pure...

  1. Antireflective sub-wavelength structures for improvement of the extraction efficiency and color rendering index of monolithic white light-emitting diode

    DEFF Research Database (Denmark)

    Ou, Yiyu; Corell, Dennis Dan; Dam-Hansen, Carsten

    2011-01-01

    We have theoretically investigated the influence of antireflective sub-wavelength structures on a monolithic white light-emitting diode (LED). The simulation is based on the rigorous coupled wave analysis (RCWA) algorithm, and both cylinder and moth-eye structures have been studied in the work. Our...... simulation results show that a moth-eye structure enhances the light extraction efficiency over the entire visible light range with an extraction efficiency enhancement of up to 26 %. Also for the first time to our best knowledge, the influence of sub-wavelength structures on both the color rendering index...

  2. The effect of ultrasound on particle size, color, viscosity and polyphenol oxidase activity of diluted avocado puree.

    Science.gov (United States)

    Bi, Xiufang; Hemar, Yacine; Balaban, Murat O; Liao, Xiaojun

    2015-11-01

    The effect of ultrasound treatment on particle size, color, viscosity, polyphenol oxidase (PPO) activity and microstructure in diluted avocado puree was investigated. The treatments were carried out at 20 kHz (375 W/cm(2)) for 0-10 min. The surface mean diameter (D[3,2]) was reduced to 13.44 μm from an original value of 52.31 μm by ultrasound after 1 min. A higher L(∗) value, ΔE value and lower a(∗) value was observed in ultrasound treated samples. The avocado puree dilution followed pseudoplastic flow behavior, and the viscosity of diluted avocado puree (at 100 s(-1)) after ultrasound treatment for 1 min was 6.0 and 74.4 times higher than the control samples for dilution levels of 1:2 and 1:9, respectively. PPO activity greatly increased under all treatment conditions. A maximum increase of 25.1%, 36.9% and 187.8% in PPO activity was found in samples with dilution ratios of 1:2, 1:5 and 1:9, respectively. The increase in viscosity and measured PPO activity might be related to the decrease in particle size. The microscopy images further confirmed that ultrasound treatment induced disruption of avocado puree structure. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Number of discernible colors for color-deficient observers estimated from the MacAdam limits.

    Science.gov (United States)

    Perales, Esther; Martínez-Verdú, Francisco Miguel; Linhares, João Manuel Maciel; Nascimento, Sérgio Miguel Cardoso

    2010-10-01

    We estimated the number of colors perceived by color normal and color-deficient observers when looking at the theoretic limits of object-color stimuli. These limits, the optimal color stimuli, were computed for a color normal observer and CIE standard illuminant D65, and the resultant colors were expressed in the CIELAB and DIN99d color spaces. The corresponding color volumes for abnormal color vision were computed using models simulating for normal trichromatic observers the appearance for dichromats and anomalous trichomats. The number of colors perceived in each case was then computed from the color volumes enclosed by the optimal colors also known as MacAdam limits. It was estimated that dichromats perceive less than 1% of the colors perceived by normal trichromats and that anomalous trichromats perceive 50%-60% for anomalies in the medium-wavelength-sensitive and 60%-70% for anomalies in the long-wavelength-sensitive cones. Complementary estimates obtained similarly for the spectral locus of monochromatic stimuli suggest less impairment for color-deficient observers, a fact that is explained by the two-dimensional nature of the locus.

  4. Spectral colors capture and reproduction based on digital camera

    Science.gov (United States)

    Chen, Defen; Huang, Qingmei; Li, Wei; Lu, Yang

    2018-01-01

    The purpose of this work is to develop a method for the accurate reproduction of the spectral colors captured by digital camera. The spectral colors being the purest color in any hue, are difficult to reproduce without distortion on digital devices. In this paper, we attempt to achieve accurate hue reproduction of the spectral colors by focusing on two steps of color correction: the capture of the spectral colors and the color characterization of digital camera. Hence it determines the relationship among the spectral color wavelength, the RGB color space of the digital camera device and the CIEXYZ color space. This study also provides a basis for further studies related to the color spectral reproduction on digital devices. In this paper, methods such as wavelength calibration of the spectral colors and digital camera characterization were utilized. The spectrum was obtained through the grating spectroscopy system. A photo of a clear and reliable primary spectrum was taken by adjusting the relative parameters of the digital camera, from which the RGB values of color spectrum was extracted in 1040 equally-divided locations. Calculated using grating equation and measured by the spectrophotometer, two wavelength values were obtained from each location. The polynomial fitting method for the camera characterization was used to achieve color correction. After wavelength calibration, the maximum error between the two sets of wavelengths is 4.38nm. According to the polynomial fitting method, the average color difference of test samples is 3.76. This has satisfied the application needs of the spectral colors in digital devices such as display and transmission.

  5. INFRARED COLOR-COLOR DIAGRAMS FOR AGB STARS

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    2007-09-01

    Full Text Available We present infrared color-color diagrams of AGB stars from the observations at near and mid infrared bands. We compile the observations for hundreds of OH/IR stars and carbon stars using the data from the Midcourse Space Experiment (MSX, the two micron sky survey (2MASS, and the IRAS point source catalog (PSC. We compare the observations with the theoretical evolutionary tracks of AGB stars. From the new observational data base and the theoretical evolution tracks, we discuss the meaning of the infrared color-color diagrams at different wavelengths.

  6. Pseudo color ghost coding imaging with pseudo thermal light

    Science.gov (United States)

    Duan, De-yang; Xia, Yun-jie

    2018-04-01

    We present a new pseudo color imaging scheme named pseudo color ghost coding imaging based on ghost imaging but with multiwavelength source modulated by a spatial light modulator. Compared with conventional pseudo color imaging where there is no nondegenerate wavelength spatial correlations resulting in extra monochromatic images, the degenerate wavelength and nondegenerate wavelength spatial correlations between the idle beam and signal beam can be obtained simultaneously. This scheme can obtain more colorful image with higher quality than that in conventional pseudo color coding techniques. More importantly, a significant advantage of the scheme compared to the conventional pseudo color coding imaging techniques is the image with different colors can be obtained without changing the light source and spatial filter.

  7. Contact Lenses for Color Blindness.

    Science.gov (United States)

    Badawy, Abdel-Rahman; Hassan, Muhammad Umair; Elsherif, Mohamed; Ahmed, Zubair; Yetisen, Ali K; Butt, Haider

    2018-06-01

    Color vision deficiency (color blindness) is an inherited genetic ocular disorder. While no cure for this disorder currently exists, several methods can be used to increase the color perception of those affected. One such method is the use of color filtering glasses which are based on Bragg filters. While these glasses are effective, they are high cost, bulky, and incompatible with other vision correction eyeglasses. In this work, a rhodamine derivative is incorporated in commercial contact lenses to filter out the specific wavelength bands (≈545-575 nm) to correct color vision blindness. The biocompatibility assessment of the dyed contact lenses in human corneal fibroblasts and human corneal epithelial cells shows no toxicity and cell viability remains at 99% after 72 h. This study demonstrates the potential of the dyed contact lenses in wavelength filtering and color vision deficiency management. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Biological origins of color categorization

    OpenAIRE

    Skelton, Alice E.; Catchpole, Gemma; Abbott, Joshua T.; Bosten, Jenny M.; Franklin, Anna

    2017-01-01

    The biological basis of the commonality in color lexicons across languages has been hotly debated for decades. Prior evidence that infants categorize color could provide support for the hypothesis that color categorization systems are not purely constructed by communication and culture. Here, we investigate the relationship between infants’ categorization of color and the commonality across color lexicons, and the potential biological origin of infant color categories. We systematically mappe...

  9. Spectral Neugebauer-based color halftone prediction model accounting for paper fluorescence.

    Science.gov (United States)

    Hersch, Roger David

    2014-08-20

    We present a spectral model for predicting the fluorescent emission and the total reflectance of color halftones printed on optically brightened paper. By relying on extended Neugebauer models, the proposed model accounts for the attenuation by the ink halftones of both the incident exciting light in the UV wavelength range and the emerging fluorescent emission in the visible wavelength range. The total reflectance is predicted by adding the predicted fluorescent emission relative to the incident light and the pure reflectance predicted with an ink-spreading enhanced Yule-Nielsen modified Neugebauer reflectance prediction model. The predicted fluorescent emission spectrum as a function of the amounts of cyan, magenta, and yellow inks is very accurate. It can be useful to paper and ink manufacturers who would like to study in detail the contribution of the fluorescent brighteners and the attenuation of the fluorescent emission by ink halftones.

  10. Statistical and molecular analyses of evolutionary significance of red-green color vision and color blindness in vertebrates.

    Science.gov (United States)

    Yokoyama, Shozo; Takenaka, Naomi

    2005-04-01

    Red-green color vision is strongly suspected to enhance the survival of its possessors. Despite being red-green color blind, however, many species have successfully competed in nature, which brings into question the evolutionary advantage of achieving red-green color vision. Here, we propose a new method of identifying positive selection at individual amino acid sites with the premise that if positive Darwinian selection has driven the evolution of the protein under consideration, then it should be found mostly at the branches in the phylogenetic tree where its function had changed. The statistical and molecular methods have been applied to 29 visual pigments with the wavelengths of maximal absorption at approximately 510-540 nm (green- or middle wavelength-sensitive [MWS] pigments) and at approximately 560 nm (red- or long wavelength-sensitive [LWS] pigments), which are sampled from a diverse range of vertebrate species. The results show that the MWS pigments are positively selected through amino acid replacements S180A, Y277F, and T285A and that the LWS pigments have been subjected to strong evolutionary conservation. The fact that these positively selected M/LWS pigments are found not only in animals with red-green color vision but also in those with red-green color blindness strongly suggests that both red-green color vision and color blindness have undergone adaptive evolution independently in different species.

  11. Role of color memory in successive color constancy.

    Science.gov (United States)

    Ling, Yazhu; Hurlbert, Anya

    2008-06-01

    We investigate color constancy for real 2D paper samples using a successive matching paradigm in which the observer memorizes a reference surface color under neutral illumination and after a temporal interval selects a matching test surface under the same or different illumination. We find significant effects of the illumination, reference surface, and their interaction on the matching error. We characterize the matching error in the absence of illumination change as the "pure color memory shift" and introduce a new index for successive color constancy that compares this shift against the matching error under changing illumination. The index also incorporates the vector direction of the matching errors in chromaticity space, unlike the traditional constancy index. With this index, we find that color constancy is nearly perfect.

  12. Investigation of the wavelength dependence of laser stratigraphy on Cu and Ni coatings using LIBS compared to a pure thermal ablation model

    Science.gov (United States)

    Paulis, Evgeniya; Pacher, Ulrich; Weimerskirch, Morris J. J.; Nagy, Tristan O.; Kautek, Wolfgang

    2017-12-01

    In this study, galvanic coatings of Cu and Ni, typically applied in industrial standard routines, were investigated. Ablation experiments were carried out using the first two harmonic wavelengths of a pulsed Nd:YAG laser and the resulting plasma spectra were analysed using a linear Pearson correlation method. For both wavelengths the absorption/ablation behaviour as well as laser-induced breakdown spectroscopy (LIBS) depth profiles were studied varying laser fluences between 4.3-17.2 J/cm^2 at 532 nm and 2.9-11.7 J/cm^2 at 1064 nm. The LIBS-stratigrams were compared with energy-dispersive X-ray spectroscopy of cross-sections. The ablation rates were calculated and compared to theoretical values originating from a thermal ablation model. Generally, higher ablation rates were obtained with 532 nm light for both materials. The light-plasma interaction is suggested as possible cause of the lower ablation rates in the infrared regime. Neither clear evidence of the pure thermal ablation, nor correlation with optical properties of investigated materials was obtained.

  13. Color sensitive silicon photomultiplers with micro-cell level encoding for DOI PET detectors

    Science.gov (United States)

    Shimazoe, Kenji; Koyama, Akihiro; Takahashi, Hiroyuki; Ganka, Thomas; Iskra, Peter; Marquez Seco, Alicia; Schneider, Florian; Wiest, Florian

    2017-11-01

    There have been many studies on Depth Of Interaction (DOI) identification for high resolution Positron Emission Tomography (PET) systems, including those on phoswich detectors, double-sided readout, light sharing methods, and wavelength discrimination. The wavelength discrimination method utilizes the difference in wavelength of stacked scintillators and requires a color sensitive photodetector. Here, a new silicon photomultiplier (SiPM) coupled to a color filter (colorSiPM) was designed and fabricated for DOI detection. The fabricated colorSiPM has two anode readouts that are sensitive to blue and green color. The colorSiPM's response and DOI identification capability for stacked GAGG and LYSO crystals are characterized. The fabricated colorSiPM is sensitive enough to detect a peak of 662 keV from a 137 Cs source.

  14. The structure and properties of color spaces and the representation of color images

    CERN Document Server

    Dubois, Eric

    2009-01-01

    This lecture describes the author's approach to the representation of color spaces and their use for color image processing. The lecture starts with a precise formulation of the space of physical stimuli (light). The model includes both continuous spectra and monochromatic spectra in the form of Dirac deltas. The spectral densities are considered to be functions of a continuous wavelength variable. This leads into the formulation of color space as a three-dimensional vector space, with all the associated structure. The approach is to start with the axioms of color matching for normal human vie

  15. Range and stability of structural colors generated by Morpho-inspired color reflectors.

    Science.gov (United States)

    Chung, Kyungjae; Shin, Jung H

    2013-05-01

    The range and stability of structural colors generated by Morpho-inspired color reflectors are investigated. We find that despite the internal randomness of such structures that gives rise to their Morpho-like angle-independent iridescence, their colors under ambient lighting condition can be predicted by simple transfer-matrix calculations of corresponding planar multilayer structures. By calculating the possible range of colors generated by multilayers of different structures and material combinations using such transfer-matrix methods, we find that low-refractive index multilayers with intrastructure absorption, such as the melanin-containing chitin/air multilayer structure from the Morpho butterflies, can provide not only the most pure structural colors with the largest color gamut, but also the highest stability of color against variations in multilayer structure.

  16. Time-Sequential Working Wavelength-Selective Filter for Flat Autostereoscopic Displays

    Directory of Open Access Journals (Sweden)

    René de la Barré

    2017-02-01

    Full Text Available A time-sequential working, spatially-multiplexed autostereoscopic 3D display design consisting of a fast switchable RGB-color filter array and a fast color display is presented. The newly-introduced 3D display design is usable as a multi-user display, as well as a single-user system. The wavelength-selective filter barrier emits the light from a larger aperture than common autostereoscopic barrier displays with similar barrier pitch and ascent. Measurements on a demonstrator with commercial display components, simulations and computational evaluations have been carried out to describe the proposed wavelength-selective display design in static states and to show the weak spots of display filters in commercial displays. An optical modelling of wavelength-selective barriers has been used for instance to calculate the light ray distribution properties of that arrangement. In the time-sequential implementation, it is important to avoid that quick eye or eyelid movement leads to visible color artifacts. Therefore, color filter cells, switching faster than conventional LC display cells, must distribute directed light from different primaries at the same time, to create a 3D presentation. For that, electric tunable liquid crystal Fabry–Pérot color filters are presented. They switch on-off the colors red, green and blue in the millisecond regime. Their active areas consist of a sub-micrometer-thick nematic layer sandwiched between dielectric mirrors and indium tin oxide (ITO-electrodes. These cells shall switch narrowband light of red, green or blue. A barrier filter array for a high resolution, glasses-free 3D display has to be equipped with several thousand switchable filter elements having different color apertures.

  17. High color rendering index of remote-type white LEDs with multi-layered quantum dot-phosphor films and short-wavelength pass dichroic filters

    Science.gov (United States)

    Yoon, Hee Chang; Oh, Ji Hye; Do, Young Rag

    2014-09-01

    This paper introduces high color rendering index (CRI) white light-emitting diodes (W-LEDs) coated with red emitting (Sr,Ca)AlSiN3:Eu phosphors and yellowish-green emitting AgIn5S8/ZnS (AIS/ZS) quantum dots (QDs) on glass or a short-wavelength pass dichroic filter (SPDF), which transmit blue wavelength regions and reflect yellow wavelength regions. The red emitting (Sr,Ca)AlSiN3:Eu phosphor film is coated on glass and a SPDF using a screen printing method, and then the yellowish-green emitting AIS/ZS QDs are coated on the red phosphor (Sr,Ca)AlSiN3:Eu film-coated glass and SPDF using the electrospray (e-spray) method.To fabricate the red phosphor film, the optimum amount of phosphor is dispersed in a silicon binder to form a red phosphor paste. The AIS/ZS QDs are mixed with dimethylformamide (DMF), toluene, and poly(methyl methacrylate) (PMMA) for the e-spray coating. The substrates are spin-coated with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to fabricate a conductive surface. The CRI of the white LEDs is improved through inserting the red phosphor film between the QD layer and the glass substrate. Furthermore, the light intensities of the multi-layered phosphor films are enhanced through changing the glass substrate to the SPDF. The correlated color temperatures (CCTs) vary as a function of the phosphor concentration in the phosphor paste. The optical properties of the yellowish-green AIS/ZS QDs and red (Sr,Ca)AlSiN3:Eu phosphors are characterized using photoluminescence (PL), and the multi-layered QD-phosphor films are measured using electroluminescence (EL) with an InGaN blue LED (λmax = 450 nm) at 60 mA.

  18. Experimental color encryption in a joint transform correlator architecture

    International Nuclear Information System (INIS)

    Tebaldi, Myrian; Amaya, Dafne; Torroba, Roberto; Horrillo, Sergi; Perez-Cabre, Elisabet; Millan, Maria S; Bolognini, Nestor

    2011-01-01

    We present an experimental color image encryption by using a photorefractive crystal and a joint transform correlator (JTC) architecture. We achieve the color storing by changing the illumination wavelength. One JTC aperture has the input image information corresponding to a determined color channel bonded to a random phase mask (object aperture), and the other JTC aperture contains the key code mask. The joint power spectrum is stored in a photorefractive crystal. Each color data is stored as a modulation of birefringence in this photosensitive medium. The adequate wavelength change produces a corresponding power spectrum modification that avoids image encryption cross talk in the read out step. An analysis in terms of the sensitivity of the photorefractive silenite crystal for different recording wavelengths is carried out. It should be highlighted that the multiplexed power spectrum shows neither the multiplexing operation nor the amount of stored information increasing the system security. We present experimental results that support our approach

  19. Color: Physics and Perception

    Science.gov (United States)

    Gilbert, Pupa

    Unless we are colorblind, as soon as we look at something, we know what color it is. Simple, isn't it? No, not really. The color we see is rarely just determined by the physical color, that is, the wavelength of visible light associated with that color. Other factors, such as the illuminating light, or the brightness surrounding a certain color, affect our perception of that color. Most striking, and useful, is understanding how the retina and the brain work together to interpret the color we see, and how they can be fooled by additive color mixing, which makes it possible to have color screens and displays. I will show the physical origin of all these phenomena and give live demos as I explain how they work. Bring your own eyes! For more information: (1) watch TED talk: ``Color: Physics and Perception'' and (2) read book: PUPA Gilbert and W Haeberli ``Physics in the Arts'', ISBN 9780123918789.

  20. Color preference in red–green dichromats

    Science.gov (United States)

    Álvaro, Leticia; Moreira, Humberto; Lillo, Julio; Franklin, Anna

    2015-01-01

    Around 2% of males have red–green dichromacy, which is a genetic disorder of color vision where one type of cone photoreceptor is missing. Here we investigate the color preferences of dichromats. We aim (i) to establish whether the systematic and reliable color preferences of normal trichromatic observers (e.g., preference maximum at blue, minimum at yellow-green) are affected by dichromacy and (ii) to test theories of color preference with a dichromatic sample. Dichromat and normal trichromat observers named and rated how much they liked saturated, light, dark, and focal colors twice. Trichromats had the expected pattern of preference. Dichromats had a reliable pattern of preference that was different to trichromats, with a preference maximum rather than minimum at yellow and a much weaker preference for blue than trichromats. Color preference was more affected in observers who lacked the cone type sensitive to long wavelengths (protanopes) than in those who lacked the cone type sensitive to medium wavelengths (deuteranopes). Trichromats’ preferences were summarized effectively in terms of cone-contrast between color and background, and yellow-blue cone-contrast could account for dichromats’ pattern of preference, with some evidence for residual red–green activity in deuteranopes’ preference. Dichromats’ color naming also could account for their color preferences, with colors named more accurately and quickly being more preferred. This relationship between color naming and preference also was present for trichromat males but not females. Overall, the findings provide novel evidence on how dichromats experience color, advance the understanding of why humans like some colors more than others, and have implications for general theories of aesthetics. PMID:26170287

  1. Single-exposure color digital holography

    Science.gov (United States)

    Feng, Shaotong; Wang, Yanhui; Zhu, Zhuqing; Nie, Shouping

    2010-11-01

    In this paper, we report a method for color image reconstruction by recording only one single multi-wavelength hologram. In the recording process, three lasers of different wavelengths emitting in the red, green and blue regions are used for illuminating on the object and the object diffraction fields will arrive at the hologram plane simultaneously. Three reference beams with different spatial angles will interfere with the corresponding object diffraction fields on the hologram plane, respectively. Finally, a series of sub-holograms incoherently overlapped on the CCD to be recorded as a multi-wavelength hologram. Angular division multiplexing is employed to reference beams so that the spatial spectra of the multiple recordings will be separated in the Fourier plane. In the reconstruction process, the multi-wavelength hologram will be Fourier transformed into its Fourier plane, where the spatial spectra of different wavelengths are separated and can be easily extracted by employing frequency filtering. The extracted spectra are used to reconstruct the corresponding monochromatic complex amplitudes, which will be synthesized to reconstruct the color image. For singleexposure recording technique, it is convenient for applications on the real-time image processing fields. However, the quality of the reconstructed images is affected by speckle noise. How to improve the quality of the images needs for further research.

  2. 52-COLOR ASTEROID SURVEY

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains 52-color IR data of asteroids, taken using a double circularly variable filter. The short wavelength portion of the CVF covered the octave...

  3. Laser color recording unit

    Science.gov (United States)

    Jung, E.

    1984-05-01

    A color recording unit was designed for output and control of digitized picture data within computer controlled reproduction and picture processing systems. In order to get a color proof picture of high quality similar to a color print, together with reduced time and material consumption, a photographic color film material was exposed pixelwise by modulated laser beams of three wavelengths for red, green and blue light. Components of different manufacturers for lasers, acousto-optic modulators and polygon mirrors were tested, also different recording methods as (continuous tone mode or screened mode and with a drum or flatbed recording principle). Besides the application for the graphic arts - the proof recorder CPR 403 with continuous tone color recording with a drum scanner - such a color hardcopy peripheral unit with large picture formats and high resolution can be used in medicine, communication, and satellite picture processing.

  4. Acceptability of Musa Balbisiana (Saba Banana Puree in Two Treatments in Making Ice Cream

    Directory of Open Access Journals (Sweden)

    Mario A. De Castro Jr.

    2016-11-01

    Full Text Available Musa Balbisiana or Saba is a variety of banana fruit that is nutritious and readily available in the market the whole year round. This experimental study aimed to determine the acceptability of the ice cream made from Saba banana puree in two treatments (treatment 1- cooked puree and treatment 2- uncooked puree. Data gathered were described and analyzed using a special Analysis of Variance. The sensory characteristics of the ice cream in two treatments were compared with one another based on the 9-point hedonic scale utilized by trained panelist in the education sector in secondary, tertiary and graduate school level that specialized in food related discipline such as Food Technology, Food Service Management, Technology and Livelihood Education- Food Trades and Hotel and Restaurant Management. Results indicated that in treatment 1( cooked puree the taste and texture of the ice cream were liked extremely however its color was rated liked very much, while in treatment 2 (uncooked puree the texture and color were rated liked moderately while its taste was rated liked very much. A comparison of the sensory characteristics between the two treatments revealed that there is a significant difference in terms of taste, texture and color and overall acceptability of the Saba banana ice cream. It is then recommended that in preparing Saba banana puree using treatment 1 (cooking method, the fruit should be subjected in numerous sieving process using a fine mesh siever or sifter to produce good quality puree texture.

  5. Emerging from Water: Underwater Image Color Correction Based on Weakly Supervised Color Transfer

    OpenAIRE

    Li, Chongyi; Guo, Jichang; Guo, Chunle

    2017-01-01

    Underwater vision suffers from severe effects due to selective attenuation and scattering when light propagates through water. Such degradation not only affects the quality of underwater images but limits the ability of vision tasks. Different from existing methods which either ignore the wavelength dependency of the attenuation or assume a specific spectral profile, we tackle color distortion problem of underwater image from a new view. In this letter, we propose a weakly supervised color tr...

  6. Probabilistic classification method on multi wavelength chromatographic data for photosynthetic pigments identification

    Science.gov (United States)

    Prilianti, K. R.; Setiawan, Y.; Indriatmoko, Adhiwibawa, M. A. S.; Limantara, L.; Brotosudarmo, T. H. P.

    2014-02-01

    Environmental and health problem caused by artificial colorant encourages the increasing usage of natural colorant nowadays. Natural colorant refers to the colorant that is derivate from living organism or minerals. Extensive research topic has been done to exploit these colorant, but recent data shows that only 0.5% of the wide range of plant pigments in the earth has been exhaustively used. Hence development of the pigment characterization technique is an important consideration. High-performance liquid chromatography (HPLC) is a widely used technique to separate pigments in a mixture and identify it. In former HPLC fingerprinting, pigment characterization was based on a single chromatogram from a fixed wavelength (one dimensional) and discard the information contained at other wavelength. Therefore, two dimensional fingerprints have been proposed to use more chromatographic information. Unfortunately this method leads to the data processing problem due to the size of its data matrix. The other common problem in the chromatogram analysis is the subjectivity of the researcher in recognizing the chromatogram pattern. In this research an automated analysis method of the multi wavelength chromatographic data was proposed. Principal component analysis (PCA) was used to compress the data matrix and Maximum Likelihood (ML) classification was applied to identify the chromatogram pattern of the existing pigments in a mixture. Three photosynthetic pigments were selected to show the proposed method. Those pigments are β-carotene, fucoxanthin and zeaxanthin. The result suggests that the method could well inform the existence of the pigments in a particular mixture. A simple computer application was also developed to facilitate real time analysis. Input of the application is multi wavelength chromatographic data matrix and the output is information about the existence of the three pigments.

  7. Color-tunable lighting devices and methods of use

    Science.gov (United States)

    Davis, James Lynn

    2017-02-07

    A lighting device (100) includes a housing (104) enclosing a housing interior (108), a light source (132), a light converter (136), and a color tuning device. The light source is configured for emitting a primary light beam of a primary wavelength (140) through the housing interior. The light converter includes a luminescent material (144) facing the housing interior and configured for emitting secondary light (156, 158) of one or more wavelengths different from the primary wavelength, in response to excitation by the primary light beam. The housing includes a light exit (124) for outputting a combination of primary light and secondary light. The color tuning device is configured for adjusting a position of the primary light beam relative to the luminescent material.

  8. Polymer nanoimprinting using an anodized aluminum mold for structural coloration

    Science.gov (United States)

    Kikuchi, Tatsuya; Nishinaga, Osamu; Natsui, Shungo; Suzuki, Ryosuke O.

    2015-06-01

    Polymer nanoimprinting of submicrometer-scale dimple arrays with structural coloration was demonstrated. Highly ordered aluminum dimple arrays measuring 530-670 nm in diameter were formed on an aluminum substrate via etidronic acid anodizing at 210-270 V and subsequent anodic oxide dissolution. The nanostructured aluminum surface led to bright structural coloration with a rainbow spectrum, and the reflected wavelength strongly depends on the angle of the specimen and the period of the dimple array. The reflection peak shifts gradually with the dimple diameter toward longer wavelength, reaching 800 nm in wavelength at 670 nm in diameter. The shape of the aluminum dimple arrays were successfully transferred to a mercapto-ester ultra-violet curable polymer via self-assembled monolayer coating and polymer replications using a nanoimprinting technique. The nanostructured polymer surfaces with positively and negatively shaped dimple arrays also exhibited structural coloration based on the periodic nanostructure, and reflected light mostly in the visible region, 400-800 nm. This nanostructuring with structural coloration can be easily realized by simple techniques such as anodizing, SAM coating, and nanoimprinting.

  9. Investigation of holmium-doped zirconium oxide ceramic phosphor as an ultraviolet wavelength-discriminating laser beam viewer

    Science.gov (United States)

    Yamanoi, Kohei; Hori, Tatsuhiro; Minami, Yuki; Empizo, Melvin John F.; Luong, Mui Viet; Shiro, Atsushi; Watanabe, Jun; Iwano, Keisuke; Iwasa, Yuki; Cadatal-Raduban, Marilou; Gabayno, Jacque Lynn; Shimizu, Toshihiko; Sarukura, Nobuhiko; Norimatsu, Takayoshi

    2018-01-01

    We report the fluorescence spectra of ZrO2 and trivalent Ho-doped ZrO2 ceramics under ultraviolet (UV) excitation at 213, 266, and 355 nm wavelengths. The Ho3+-doped ZrO2 ceramics exhibited varying fluorescence color tones depending on the excitation wavelength used. The different color tones match the fluorescence spectrum characteristics at each excitation wavelength. Our results demonstrate that Ho3+-doped ZrO2 ceramics can discriminate between UV light, specifically the third, fourth, and fifth harmonics of a Nd:YAG laser. It can potentially be used for developing UV laser beam viewers to aid laser alignment.

  10. Multi-color pyrometry imaging system and method of operating the same

    Science.gov (United States)

    Estevadeordal, Jordi; Nirmalan, Nirm Velumylum; Tralshawala, Nilesh; Bailey, Jeremy Clyde

    2017-03-21

    A multi-color pyrometry imaging system for a high-temperature asset includes at least one viewing port in optical communication with at least one high-temperature component of the high-temperature asset. The system also includes at least one camera device in optical communication with the at least one viewing port. The at least one camera device includes a camera enclosure and at least one camera aperture defined in the camera enclosure, The at least one camera aperture is in optical communication with the at least one viewing port. The at least one camera device also includes a multi-color filtering mechanism coupled to the enclosure. The multi-color filtering mechanism is configured to sequentially transmit photons within a first predetermined wavelength band and transmit photons within a second predetermined wavelength band that is different than the first predetermined wavelength band.

  11. Wavelength-Adaptive Dehazing Using Histogram Merging-Based Classification for UAV Images

    Directory of Open Access Journals (Sweden)

    Inhye Yoon

    2015-03-01

    Full Text Available Since incoming light to an unmanned aerial vehicle (UAV platform can be scattered by haze and dust in the atmosphere, the acquired image loses the original color and brightness of the subject. Enhancement of hazy images is an important task in improving the visibility of various UAV images. This paper presents a spatially-adaptive dehazing algorithm that merges color histograms with consideration of the wavelength-dependent atmospheric turbidity. Based on the wavelength-adaptive hazy image acquisition model, the proposed dehazing algorithm consists of three steps: (i image segmentation based on geometric classes; (ii generation of the context-adaptive transmission map; and (iii intensity transformation for enhancing a hazy UAV image. The major contribution of the research is a novel hazy UAV image degradation model by considering the wavelength of light sources. In addition, the proposed transmission map provides a theoretical basis to differentiate visually important regions from others based on the turbidity and merged classification results.

  12. Wavelength-adaptive dehazing using histogram merging-based classification for UAV images.

    Science.gov (United States)

    Yoon, Inhye; Jeong, Seokhwa; Jeong, Jaeheon; Seo, Doochun; Paik, Joonki

    2015-03-19

    Since incoming light to an unmanned aerial vehicle (UAV) platform can be scattered by haze and dust in the atmosphere, the acquired image loses the original color and brightness of the subject. Enhancement of hazy images is an important task in improving the visibility of various UAV images. This paper presents a spatially-adaptive dehazing algorithm that merges color histograms with consideration of the wavelength-dependent atmospheric turbidity. Based on the wavelength-adaptive hazy image acquisition model, the proposed dehazing algorithm consists of three steps: (i) image segmentation based on geometric classes; (ii) generation of the context-adaptive transmission map; and (iii) intensity transformation for enhancing a hazy UAV image. The major contribution of the research is a novel hazy UAV image degradation model by considering the wavelength of light sources. In addition, the proposed transmission map provides a theoretical basis to differentiate visually important regions from others based on the turbidity and merged classification results.

  13. Color selective photodetector and methods of making

    Science.gov (United States)

    Walker, Brian J.; Dorn, August; Bulovic, Vladimir; Bawendi, Moungi G.

    2013-03-19

    A photoelectric device, such as a photodetector, can include a semiconductor nanowire electrostatically associated with a J-aggregate. The J-aggregate can facilitate absorption of a desired wavelength of light, and the semiconductor nanowire can facilitate charge transport. The color of light detected by the device can be chosen by selecting a J-aggregate with a corresponding peak absorption wavelength.

  14. Einstein-Yang-Mills from pure Yang-Mills amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Nandan, Dhritiman; Plefka, Jan [Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, D-12489 Berlin (Germany); Schlotterer, Oliver [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, D-14476 Potsdam (Germany); Wen, Congkao [I.N.F.N. Sezione di Roma Tor Vergata,Via della Ricerca Scientifica, 00133 Roma (Italy)

    2016-10-14

    We present new relations for scattering amplitudes of color ordered gluons and gravitons in Einstein-Yang-Mills theory. Tree-level amplitudes of arbitrary multiplicities and polarizations involving up to three gravitons and up to two color traces are reduced to partial amplitudes of pure Yang-Mills theory. In fact, the double-trace identities apply to Einstein-Yang-Mills extended by a dilaton and a B-field. Our results generalize recent work of Stieberger and Taylor for the single graviton case with a single color trace. As the derivation is made in the dimension-agnostic Cachazo-He-Yuan formalism, our results are valid for external bosons in any number of spacetime dimensions. Moreover, they generalize to the superamplitudes in theories with 16 supercharges.

  15. Simple LED spectrophotometer for analysis of color information.

    Science.gov (United States)

    Kim, Ji-Sun; Kim, A-Hee; Oh, Han-Byeol; Goh, Bong-Jun; Lee, Eun-Suk; Kim, Jun-Sik; Jung, Gu-In; Baek, Jin-Young; Jun, Jae-Hoon

    2015-01-01

    A spectrophotometer is the basic measuring equipment essential to most research activity fields requiring samples to be measured, such as physics, biotechnology and food engineering. This paper proposes a system that is able to detect sample concentration and color information by using LED and color sensor. Purity and wavelength information can be detected by CIE diagram, and the concentration can be estimated with purity information. This method is more economical and efficient than existing spectrophotometry, and can also be used by ordinary persons. This contribution is applicable to a number of fields because it can be used as a colorimeter to detect the wavelength and purity of samples.

  16. Advanced Color Image Processing and Analysis

    CERN Document Server

    2013-01-01

    This volume does much more than survey modern advanced color processing. Starting with a historical perspective on ways we have classified color, it sets out the latest numerical techniques for analyzing and processing colors, the leading edge in our search to accurately record and print what we see. The human eye perceives only a fraction of available light wavelengths, yet we live in a multicolor world of myriad shining hues. Colors rich in metaphorical associations make us “purple with rage” or “green with envy” and cause us to “see red.” Defining colors has been the work of centuries, culminating in today’s complex mathematical coding that nonetheless remains a work in progress: only recently have we possessed the computing capacity to process the algebraic matrices that reproduce color more accurately. With chapters on dihedral color and image spectrometers, this book provides technicians and researchers with the knowledge they need to grasp the intricacies of today’s color imaging.

  17. Fluorescence of ceramic color standards

    International Nuclear Information System (INIS)

    Koo, Annette; Clare, John F.; Nield, Kathryn M.; Deadman, Andrew; Usadi, Eric

    2010-01-01

    Fluorescence has been found in color standards available for use in calibration and verification of color measuring instruments. The fluorescence is excited at wavelengths below about 600 nm and emitted above 700 nm, within the response range of silicon photodiodes, but at the edge of the response of most photomultipliers and outside the range commonly scanned in commercial colorimeters. The degree of fluorescence on two of a set of 12 glossy ceramic tiles is enough to introduce significant error when those tiles have been calibrated in one mode of measurement and are used in another. We report the nature of the fluorescence and the implications for color measurement.

  18. Design of smartphone-based spectrometer to assess fresh meat color

    Science.gov (United States)

    Jung, Youngkee; Kim, Hyun-Wook; Kim, Yuan H. Brad; Bae, Euiwon

    2017-02-01

    Based on its integrated camera, new optical attachment, and inherent computing power, we propose an instrument design and validation that can potentially provide an objective and accurate method to determine surface meat color change and myoglobin redox forms using a smartphone-based spectrometer. System is designed to be used as a reflection spectrometer which mimics the conventional spectrometry commonly used for meat color assessment. We utilize a 3D printing technique to make an optical cradle which holds all of the optical components for light collection, collimation, dispersion, and a suitable chamber. A light, which reflects a sample, enters a pinhole and is subsequently collimated by a convex lens. A diffraction grating spreads the wavelength over the camera's pixels to display a high resolution of spectrum. Pixel values in the smartphone image are translated to calibrate the wavelength values through three laser pointers which have different wavelength; 405, 532, 650 nm. Using an in-house app, the camera images are converted into a spectrum in the visible wavelength range based on the exterior light source. A controlled experiment simulating the refrigeration and shelving of the meat has been conducted and the results showed the capability to accurately measure the color change in quantitative and spectroscopic manner. We expect that this technology can be adapted to any smartphone and used to conduct a field-deployable color spectrum assay as a more practical application tool for various food sectors.

  19. Visual color matching system based on RGB LED light source

    Science.gov (United States)

    Sun, Lei; Huang, Qingmei; Feng, Chen; Li, Wei; Wang, Chaofeng

    2018-01-01

    In order to study the property and performance of LED as RGB primary color light sources on color mixture in visual psychophysical experiments, and to find out the difference between LED light source and traditional light source, a visual color matching experiment system based on LED light sources as RGB primary colors has been built. By simulating traditional experiment of metameric color matching in CIE 1931 RGB color system, it can be used for visual color matching experiments to obtain a set of the spectral tristimulus values which we often call color-matching functions (CMFs). This system consists of three parts: a monochromatic light part using blazed grating, a light mixing part where the summation of 3 LED illuminations are to be visually matched with a monochromatic illumination, and a visual observation part. The three narrow band LEDs used have dominant wavelengths of 640 nm (red), 522 nm (green) and 458 nm (blue) respectively and their intensities can be controlled independently. After the calibration of wavelength and luminance of LED sources with a spectrophotometer, a series of visual color matching experiments have been carried out by 5 observers. The results are compared with those from CIE 1931 RGB color system, and have been used to compute an average locus for the spectral colors in the color triangle, with white at the center. It has been shown that the use of LED is feasible and has the advantages of easy control, good stability and low cost.

  20. Anomalous refraction of light colors by a metamaterial prism.

    Science.gov (United States)

    Silveirinha, Mário G

    2009-05-15

    A prism of glass separates white light into its spectral components in such a manner that colors associated with shorter wavelengths are more refracted than the colors associated with longer wavelengths. Here, we demonstrate that this property is not universal, and that a lossless metamaterial prism with a suitable microstructure may enable a broadband regime of anomalous dispersion, where the spectral components of light are separated in an unconventional way, so that "violet light" is less refracted than "red light." This phenomenon is fundamentally different from conventional anomalous dispersion effects, which are invariably accompanied by significant loss and are typically very narrow band.

  1. Development of the RGB LEDs color mixing mechanism for stability the color temperature at different projection distances.

    Science.gov (United States)

    Hung, Chih-Ching

    2015-01-01

    In lighting application, the color mixing of the RGB LEDs can provide more color selection in correlated color temperature and color rendering. Therefore, the purpose of this study is to propose a RGB color mixing mechanism by applying the mechanism design. Three sets of lamp-type RGB LEDs are individually installed on three four-bar linkages. A crank is used to drive three groups of RGB LEDs lamp-type to project lights onto a single plane in order to mix the lights. And, simulations of the illuminance and associated color temperatures are conducted by changing the distance to the projection plane, under the assumption that the stability of the color temperature of the projected light does not change according to the projecting height. Thus, the effect of change in the color temperature on color determination by the humans' eyes was avoided. The success of the proposed method will allow medical personnel to choose suitable wavelengths and color temperatures according to the particular requirements of their medical-examination environments.

  2. The role of the second zero-dispersion wavelength in generation of supercontinua and brigth-bright soliton-pairs across the zero-dispersion wavelength

    DEFF Research Database (Denmark)

    Frosz, Michael Henoch; Falk, Peter Andreas; Bang, Ole

    2005-01-01

    Supercontinuum generation with femtosecond pulses in photonic crystal fibers with two zero-dispersion wavelengths (ZDWs) is investigated numerically. The role of the higher ZDW is examined for 5 fiber designs with a nearly constant lower ZDW. It is found that the resulting spectrum is mainly....... Further, the generation of a bright-bright soliton-pair from an initial single red-shifted soliton is found. The soliton-pair has one color in the anomalous dispersion region and the other color in the normal dispersion region, which has not previously been described for bright-bright soliton-pairs....

  3. Beyond [lambda][subscript max] Part 2: Predicting Molecular Color

    Science.gov (United States)

    Williams, Darren L.; Flaherty, Thomas J.; Alnasleh, Bassam K.

    2009-01-01

    A concise roadmap for using computational chemistry programs (i.e., Gaussian 03W) to predict the color of a molecular species is presented. A color-predicting spreadsheet is available with the online material that uses transition wavelengths and peak-shape parameters to predict the visible absorbance spectrum, transmittance spectrum, chromaticity…

  4. Protanopia (red color-blindness) in medaka: a simple system for producing color-blind fish and testing their spectral sensitivity.

    Science.gov (United States)

    Homma, Noriko; Harada, Yumi; Uchikawa, Tamaki; Kamei, Yasuhiro; Fukamachi, Shoji

    2017-02-06

    Color perception is important for fish to survive and reproduce in nature. Visual pigments in the retinal photoreceptor cells are responsible for receiving light stimuli, but the function of the pigments in vivo has not been directly investigated in many animals due to the lack of color-blind lines and appropriate color-perception tests. In this study, we established a system for producing color-blind fish and testing their spectral sensitivity. First, we disrupted long-wavelength-sensitive (LWS) opsins of medaka (Oryzias latipes) using the CRISPR/Cas9 system to make red-color-blind lines. Single guide RNAs were designed using the consensus sequences between the paralogous LWSa and LWSb genes to simultaneously introduce double-frameshift mutations. Next, we developed a non-invasive and no-prior-learning test for spectral sensitivity by applying an optomotor response (OMR) test under an Okazaki Large Spectrograph (OLS), termed the O-O test. We constructed an electrical-rotary cylinder with black/white stripes, into which a glass aquarium containing one or more fish was placed under various monochromatic light conditions. The medaka were irradiated by the OLS every 10 nm, from wavelengths of 700 nm to 900 nm, and OMR was evaluated under each condition. We confirmed that the lws - medaka were indeed insensitive to red light (protanopia). While the control fish responded to wavelengths of up to 830 nm (λ = 830 nm), the lws - mutants responded up to λ = 740 nm; however, this difference was not observed after adaptation to dark: both the control and lws - fish could respond up to λ = 820 ~ 830 nm. These results suggest that the lws - mutants lost photopic red-cone vision, but retained scotopic rod vision. Considering that the peak absorption spectra (λ max ) of medaka LWSs are about 560 nm, but the light-adapted control medaka could respond behaviorally to light at λ = 830 nm, red-cone vision could cover an unexpectedly wide range of

  5. Modeling apparent color for visual evaluation of camouflage fabrics

    Science.gov (United States)

    Ramsey, S.; Mayo, T.; Shabaev, A.; Lambrakos, S. G.

    2017-08-01

    As the U.S. Navy, Army, and Special Operations Forces progress towards fielding more advanced uniforms with multi-colored and highly detailed camouflage patterning, additional test methodologies are necessary in evaluating color in these types of camouflage textiles. The apparent color is the combination of all visible wavelengths (380-760 nm) of light reflected from large (>=1m2 ) fabric sample sizes for a given standoff distance (10-25ft). Camouflage patterns lose resolution with increasing standoff distance, and eventually all colors within the pattern appear monotone (the "apparent color" of the pattern). This paper presents an apparent color prediction model that can be used for evaluation of camouflage fabrics.

  6. Losses of functional opsin genes, short-wavelength cone photopigments, and color vision--a significant trend in the evolution of mammalian vision.

    Science.gov (United States)

    Jacobs, Gerald H

    2013-03-01

    All mammalian cone photopigments are derived from the operation of representatives from two opsin gene families (SWS1 and LWS in marsupial and eutherian mammals; SWS2 and LWS in monotremes), a process that produces cone pigments with respective peak sensitivities in the short and middle-to-long wavelengths. With the exception of a number of primate taxa, the modal pattern for mammals is to have two types of cone photopigment, one drawn from each of the gene families. In recent years, it has been discovered that the SWS1 opsin genes of a widely divergent collection of eutherian mammals have accumulated mutational changes that render them nonfunctional. This alteration reduces the retinal complements of these species to a single cone type, thus rendering ordinary color vision impossible. At present, several dozen species from five mammalian orders have been identified as falling into this category, but the total number of mammalian species that have lost short-wavelength cones in this way is certain to be much larger, perhaps reaching as high as 10% of all species. A number of circumstances that might be used to explain this widespread cone loss can be identified. Among these, the single consistent fact is that the species so affected are nocturnal or, if they are not technically nocturnal, they at least feature retinal organizations that are typically associated with that lifestyle. At the same time, however, there are many nocturnal mammals that retain functional short-wavelength cones. Nocturnality thus appears to set the stage for loss of functional SWS1 opsin genes in mammals, but it cannot be the sole circumstance.

  7. Full-Color Plasmonic Metasurface Holograms.

    Science.gov (United States)

    Wan, Weiwei; Gao, Jie; Yang, Xiaodong

    2016-12-27

    Holography is one of the most attractive approaches for reconstructing optical images, due to its capability of recording both the amplitude and phase information on light scattered from objects. Recently, optical metasurfaces for manipulating the wavefront of light with well-controlled amplitude, phase, and polarization have been utilized to reproduce computer-generated holograms. However, the currently available metasurface holograms have only been designed to achieve limited colors and record either amplitude or phase information. This fact significantly limits the performance of metasurface holograms to reconstruct full-color images with low noise and high quality. Here, we report the design and realization of ultrathin plasmonic metasurface holograms made of subwavelength nanoslits for reconstructing both two- and three-dimensional full-color holographic images. The wavelength-multiplexed metasurface holograms with both amplitude and phase modulations at subwavelength scale can faithfully produce not only three primary colors but also their secondary colors. Our results will advance various holographic applications.

  8. Radiation resistivity of pure-silica core image guide

    International Nuclear Information System (INIS)

    Hayami, H.; Ishitani, T.; Kishihara, O.; Suzuki, K.

    1988-01-01

    Radiation resistivity of pure-silica core image guides were investigated in terms of incremental spectral loss and quality of pictures transmitted through the image guides. Radiation-induced spectral losses were measured so as to clarify the dependences of radiation resistivity on such parameters as core materials (OH and Cl contents), picture element dimensions, (core packing density and cladding thickness), number of picture elements and drawing conditions. As the results, an image guide with OH-and Cl-free pure-silica core, 30-45% in core packing density, and 1.8 ∼ 2.2 μm in cladding thickness showed the lowest loss. The parameters to design this image guide were almost the same as those to obtain a image guide with good picture quality. Radiation resistivity of the image guide was not dependent on drawing conditions and number of picture elements, indicating that the image guide has large allowable in production conditions and that reliable quality is constantly obtained in production. Radiation resistivity under high total doses was evaluated using the image guide with the lowest radiation-induced loss. Maximum usable lengths of the image guide for practical use under specific high total doses and maximum allowable total doses for the image guide in specific lengths were extrapolated. Picture quality in terms of radiation-induced degradation in color fidelity in the pictures transmitted through image guides was quantitatively evaluated in the chromaticity diagram based on the CIE standard colorimetric system and in the color specification charts according to three attributes of colors. The image guide with the least spectral incremental loss gives the least radiation-induced degradation in color fidelity in the pictures as well. (author)

  9. Biological origins of color categorization.

    Science.gov (United States)

    Skelton, Alice E; Catchpole, Gemma; Abbott, Joshua T; Bosten, Jenny M; Franklin, Anna

    2017-05-23

    The biological basis of the commonality in color lexicons across languages has been hotly debated for decades. Prior evidence that infants categorize color could provide support for the hypothesis that color categorization systems are not purely constructed by communication and culture. Here, we investigate the relationship between infants' categorization of color and the commonality across color lexicons, and the potential biological origin of infant color categories. We systematically mapped infants' categorical recognition memory for hue onto a stimulus array used previously to document the color lexicons of 110 nonindustrialized languages. Following familiarization to a given hue, infants' response to a novel hue indicated that their recognition memory parses the hue continuum into red, yellow, green, blue, and purple categories. Infants' categorical distinctions aligned with common distinctions in color lexicons and are organized around hues that are commonly central to lexical categories across languages. The boundaries between infants' categorical distinctions also aligned, relative to the adaptation point, with the cardinal axes that describe the early stages of color representation in retinogeniculate pathways, indicating that infant color categorization may be partly organized by biological mechanisms of color vision. The findings suggest that color categorization in language and thought is partially biologically constrained and have implications for broader debate on how biology, culture, and communication interact in human cognition.

  10. Recent progress in color image intensifier

    International Nuclear Information System (INIS)

    Nittoh, K.

    2010-01-01

    A multi-color scintillator based high-sensitive, wide dynamic range and long-life X-ray image intensifier (Ultimage TM ) has been developed. Europium activated Y 2 O 2 S scintillator, emitting red, green and blue wavelength photons of different intensities, is utilized as the output fluorescent screen of the intensifier. By combining this image intensifier with a suitably tuned high sensitive color CCD camera, the sensitivity of the red color component achieved six times higher than that of the conventional image intensifier. Simultaneous emission of a moderate green color and a weak blue color covers different sensitivity regions. This widens the dynamic range by nearly two orders of magnitude. With this image intensifier, it is possible to image complex objects containing various different X-ray transmissions from paper, water or plastic to heavy metals at a time. This color scintillator based image intensifier is widely used in X-ray inspections of various fields. (author)

  11. Biomolecule-to-fluorescent-color encoder: modulation of fluorescence emission via DNA structural changes

    Science.gov (United States)

    Nishimura, Takahiro; Ogura, Yusuke; Yamada, Kenji; Ohno, Yuko; Tanida, Jun

    2014-01-01

    A biomolecule-to-fluorescent-color (B/F) encoder for optical readout of biomolecular information is proposed. In the B/F encoder, a set of fluorescence wavelengths and their intensity levels are used for coding of a biomolecular signal. A hybridization chain reaction of hairpin DNAs labeled with fluorescent reporters was performed to generate the fluorescence color codes. The fluorescence is modulated via fluorescence resonance energy transfer, which is controlled by DNA structural changes. The results demonstrate that fluorescent color codes can be configured based on two wavelengths and five intensities using the B/F encoder, and the assigned codes can be retrieved via fluorescence measurements. PMID:25071950

  12. [Influence of deposition time on chromatics during nitrogen-doped diamond like carbon coating on pure titanium].

    Science.gov (United States)

    Yin, Lu; Yao, Jiang-wu; Xu, De-wen

    2010-10-01

    The aim of this study was to observed the influence of deposition time on chromatics during nitrogen-doped diamond like carbon coating (N-DLC) on pure titanium by multi impulse are plasma plating machine. Applying multi impulse are plasma plating machine to produce TiN coatings on pure titanium in nitrogen atmosphere, then filming with nitrogen-doped DLC on TiN in methane (10-80 min in every 5 min). The colors of N-DLC were evaluated in the CIE1976 L*a*b* uniform color scale and Mussell notation. The surface morphology of every specimen was analyzed using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). When changing the time of N-DLC coating deposition, N-DLC surface showed different color. Golden yellow was presented when deposition time was 30 min. SEM showed that crystallization was found in N-DLC coatings, the structure changed from stable to clutter by varying the deposition time. The chromatics of N-DLC coatings on pure titanium could get golden yellow when deposition time was 30 min, then the crystallized structure was stable.

  13. A dual-colored bio-marker made of doped ZnO nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y L; Zeng, X T [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, 638075 (Singapore); Fu, S; Kwek, L C [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, 637616 (Singapore); Tok, A I Y; Boey, F C Y [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Lim, C S [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2008-08-27

    Bio-compatible ZnO nanocrystals doped with Co, Cu and Ni cations, surface capped with two types of aminosilanes and titania are synthesized by a soft chemical process. Due to the small particle size (2-5 nm), surface functional groups and the high photoluminescence emissions at the UV and blue-violet wavelength ranges, bio-imaging on human osteosarcoma (Mg-63) cells and histiocytic lymphoma U-937 monocyte cells showed blue emission at the nucleus and bright turquoise emission at the cytoplasm simultaneously. This is the first report on dual-color bio-images labeled by one semiconductor nanocrystal colloidal solution. Bright green emission was detected on mung bean seedlings labeled by all the synthesized ZnO nanocrystals. Cytotoxicity tests showed that the aminosilanes capped nanoparticles are non-toxic. Quantum yields of the nanocrystals varied from 79% to 95%. The results showed the potential of the pure ZnO and Co-doped ZnO nanocrystals for live imaging of both human cells and plant systems.

  14. Study of a pure CsI crystal readout by APD for Belle II end cap ECL upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Y., E-mail: jin@hep.phys.s.u-tokyo.ac.jp [Department of Physics, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 (Japan); Aihara, H. [Department of Physics, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 (Japan); Borshchev, O.V. [Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya st. 70, Moscow 117393 (Russian Federation); Epifanov, D.A. [Department of Physics, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 (Japan); Ponomarenko, S.A.; Surin, N.M. [Enikolopov Institute of Synthetic Polymeric Materials of the Russian Academy of Sciences, Profsoyuznaya st. 70, Moscow 117393 (Russian Federation)

    2016-07-11

    A scintillation counter consisting of a pure CsI crystal and avalanche photodiodes (Hamamatsu APD S8664-55 and S8664-1010) has been studied for the upgrade of the end cap electromagnetic calorimeter of Belle II detector. An essential increase of the light output was achieved with wavelength shifters based on nanostructured organosilicon luminophores. - Highlights: • A scintillation counter consisting of a pure CsI crystal and avalanche photodiodes has been studied. • The equivalent noise charge and equivalent noise energy of the counter have been measured. • An essential increase of the light output was achieved with wavelength shifters.

  15. Which colors would extraterrestrial civilizations use to transmit signals?: The ;magic wavelengths; for optical SETI

    Science.gov (United States)

    Narusawa, Shin-ya; Aota, Tatusya; Kishimoto, Ryo

    2018-04-01

    In the case of radio SETI, there are predicted frequencies which extraterrestrial beings select to send messages to other civilizations. Those are called ;magic frequencies. Considering the optical region, terrestrial technologies can not transmit arbitrary wavelengths of high-power optical lasers, easily. In this article, we discuss communications among civilizations with the same level of technology as us to enhance the persuasive power. It might be possible to make a reasonable assumption about the laser wavelengths transmitted by extraterrestrial intelligences to benefit optical SETI (OSETI) methods. Therefore, we propose some ;magic wavelengths; for spectroscopic OSETI observations in this article. From the senders point of view, we argue that the most favorable wavelength used for interstellar communication would be the one of YAG lasers, at 1.064 μm or its Second Harmonic Generation (532.1 nm). On the contrary, there are basic absorption lines in the optical spectra, which are frequently observed by astrophysicists on Earth. It is possible that the extraterrestrials used lasers, which wavelengths are tuned to such absorption lines for sending messages. In that case, there is a possibility that SHG and/or Sum Frequency Generation of YAG and YLF lasers are used. We propose three lines at, 393.8 nm (near the Ca K line), 656.5 nm (near the Hα line) and 589.1 nm (Na D2 line) as the magic wavelengths.

  16. What color should glacier algae be? An ecological role for red carbon in the cryosphere.

    Science.gov (United States)

    Dial, Roman J; Ganey, Gerard Q; Skiles, S McKenzie

    2018-03-01

    Red-colored secondary pigments in glacier algae play an adaptive role in melting snow and ice. We advance this hypothesis using a model of color-based absorption of irradiance, an experiment with colored particles in snow, and the natural history of glacier algae. Carotenoids and phenols-astaxanthin in snow-algae and purpurogallin in ice-algae-shield photosynthetic apparatus by absorbing overabundant visible wavelengths, then dissipating the excess radiant energy as heat. This heat melts proximal ice crystals, providing liquid-water in a 0°C environment and freeing up nutrients bound in frozen water. We show that purple-colored particles transfer 87%-89% of solar energy absorbed by black particles. However, red-colored particles transfer nearly as much (85%-87%) by absorbing peak solar wavelengths and reflecting the visible wavelengths most absorbed by nearby ice and snow crystals; this latter process may reduce potential cellular overheating when snow insulates cells. Blue and green particles transfer only 80%-82% of black particle absorption. In the experiment, red-colored particles melted 87% as much snow as black particles, while blue particles melted 77%. Green-colored snow-algae naturally occupy saturated snow where water is non-limiting; red-colored snow-algae occupy drier, water-limited snow. In addition to increasing melt, we suggest that esterified astaxanthin in snow-alga cells increases hydrophobicity to remain surficial. © FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Color quality improvement of reconstructed images in color digital holography using speckle method and spectral estimation

    Science.gov (United States)

    Funamizu, Hideki; Onodera, Yusei; Aizu, Yoshihisa

    2018-05-01

    In this study, we report color quality improvement of reconstructed images in color digital holography using the speckle method and the spectral estimation. In this technique, an object is illuminated by a speckle field and then an object wave is produced, while a plane wave is used as a reference wave. For three wavelengths, the interference patterns of two coherent waves are recorded as digital holograms on an image sensor. Speckle fields are changed by moving a ground glass plate in an in-plane direction, and a number of holograms are acquired to average the reconstructed images. After the averaging process of images reconstructed from multiple holograms, we use the Wiener estimation method for obtaining spectral transmittance curves in reconstructed images. The color reproducibility in this method is demonstrated and evaluated using a Macbeth color chart film and staining cells of onion.

  18. Use of Multiangle Satellite Observations to Retrieve Aerosol Properties and Ocean Color

    Science.gov (United States)

    Martonchik, John V.; Diner, David; Khan, Ralph

    2005-01-01

    A new technique is described for retrieving aerosol over ocean water and the associated ocean color using multiangle satellite observations. Unlike current satellite aerosol retrieval algorithms which only utilize observations at red wavelengths and longer, with the assumption that these wavelengths have a negligible ocean (water-leaving radiance), this new algorithm uses all available spectral bands and simultaneously retrieves both aerosol properties and the spectral ocean color. We show some results of case studies using MISR data, performed over different water conditions (coastal water, blooms, and open water).

  19. The Use of Color Sensors for Spectrographic Calibration

    Science.gov (United States)

    Thomas, Neil B.

    2018-04-01

    The wavelength calibration of spectrographs is an essential but challenging task in many disciplines. Calibration is traditionally accomplished by imaging the spectrum of a light source containing features that are known to appear at certain wavelengths and mapping them to their location on the sensor. This is typically required in conjunction with each scientific observation to account for mechanical and optical variations of the instrument over time, which may span years for certain projects. The method presented here investigates the usage of color itself instead of spectral features to calibrate a spectrograph. The primary advantage of such a calibration is that any broad-spectrum light source such as the sky or an incandescent bulb is suitable. This method allows for calibration using the full optical pathway of the instrument instead of incorporating separate calibration equipment that may introduce errors. This paper focuses on the potential for color calibration in the field of radial velocity astronomy, in which instruments must be finely calibrated for long periods of time to detect tiny Doppler wavelength shifts. This method is not restricted to radial velocity, however, and may find application in any field requiring calibrated spectrometers such as sea water analysis, cellular biology, chemistry, atmospheric studies, and so on. This paper demonstrates that color sensors have the potential to provide calibration with greatly reduced complexity.

  20. Perception of color emotions for single colors in red-green defective observers.

    Science.gov (United States)

    Sato, Keiko; Inoue, Takaaki

    2016-01-01

    the red-green defective group revealed that luminance cone-contrast was a significant predictor in most red-green-defective individuals. Together, these results suggest that red-green defective observers tend to rely on the blue-yellow channel and luminance to compensate for the weak sensitivity of long- and medium-wavelength (L-M) cone-contrasts, when rating color warmth.

  1. Perception of color emotions for single colors in red-green defective observers

    Directory of Open Access Journals (Sweden)

    Keiko Sato

    2016-12-01

    ratings in the red-green defective group revealed that luminance cone-contrast was a significant predictor in most red-green-defective individuals. Together, these results suggest that red-green defective observers tend to rely on the blue-yellow channel and luminance to compensate for the weak sensitivity of long- and medium-wavelength (L-M cone-contrasts, when rating color warmth.

  2. Use of Hyperspectral Imagery to Assess Cryptic Color Matching in Sargassum Associated Crabs.

    Directory of Open Access Journals (Sweden)

    Brandon J Russell

    Full Text Available Mats of the pelagic macroalgae Sargassum represent a complex environment for the study of marine camouflage at the air-sea interface. Endemic organisms have convergently evolved similar colors and patterns, but quantitative assessments of camouflage strategies are lacking. Here, spectral camouflage of two crab species (Portunus sayi and Planes minutus was assessed using hyperspectral imagery (HSI. Crabs matched Sargassum reflectance across blue and green wavelengths (400-550 nm and diverged at longer wavelengths. Maximum discrepancy was observed in the far-red (i.e., 675 nm where Chlorophyll a absorption occurred in Sargassum and not the crabs. In a quantum catch color model, both crabs showed effective color matching against blue/green sensitive dichromat fish, but were still discernible to tetrachromat bird predators that have visual sensitivity to far red wavelengths. The two species showed opposing trends in background matching with relation to body size. Variation in model parameters revealed that discrimination of crab and background was impacted by distance from the predator, and the ratio of cone cell types for bird predators. This is one of the first studies to detail background color matching in this unique, challenging ecosystem at the air-sea interface.

  3. Response saturation of monochromatic increments on intense achromatic backgrounds: implications for color-opponent organization in human vision

    Science.gov (United States)

    Drum, Bruce; Sternheim, Charles E.

    2005-10-01

    We present evidence that steady achromatic adapting fields can produce response saturation in color-opponent pathways. We measured tvi (log increment threshold illuminance versus log background illuminance) functions at four test wavelengths (430, 490, 575, and 660 nm) and nine background illuminances from 4.0 to 5.6 log Td. Foveal, 2° diameter, 1 s duration test stimuli were presented on a concentric, perceptually white (5128°K color temperature), 7° diameter, steady background. Thresholds were obtained by the method of adjustment, after which the test stimulus illuminances were increased 0.6 log unit and the subject estimated percentages of red, yellow, green, blue, and white. Average tvi slopes for two subjects were 2.06 for 430 nm, 1.6 for 490 nm, 1.11 for 575 nm and 1.34 for 660 nm, consistent with the estimated ratios of chromatic to achromatic sensitivity at the same wavelengths. Also, the percentage of white seen in the suprathreshold increments increased with increasing background illuminance despite increases in excitation purity. These findings imply that steady, intense, achromatic backgrounds can produce response saturation in color-opponent mechanisms at wavelengths across the visible spectrum. The saturation was more extreme at short wavelengths than at middle or long wavelengths, producing a tritanopic condition at the highest background illuminances. The tritanopia reduced color space to a predominately red-blue dichromacy, in agreement with previous findings. The results support a multistage opponent-color model in which precortical koniocellular and parvocellular opponent pathways interact to produce the observed red-green and yellow-blue color-opponent channels at a cortical level.

  4. Prior knowledge about objects determines neural color representation in human visual cortex

    NARCIS (Netherlands)

    Vandenbroucke, A.R.E.; Fahrenfort, J.J.; Meuwese, J.D.I.; Scholte, H.S.; Lamme, V.A.F.

    2016-01-01

    To create subjective experience, our brain must translate physical stimulus input by incorporating prior knowledge and expectations. For example, we perceive color and not wavelength information, and this in part depends on our past experience with colored objects ( Hansen et al. 2006; Mitterer and

  5. False color viewing device

    International Nuclear Information System (INIS)

    Kronberg, J.W.

    1992-01-01

    A viewing device for observing objects in near-infrared false-color comprising a pair of goggles with one or more filters in the apertures, and pads that engage the face for blocking stray light from the sides so that all light reaching the user's eyes come through the filters. The filters attenuate most visible light and pass near-infrared (having wavelengths longer than approximately 700 nm) and a small amount of blue-green and blue-violet (having wavelengths in the 500 to 520 nm and shorter than 435 nm, respectively). The goggles are useful for looking at vegetation to identify different species and for determining the health of the vegetation, and to detect some forms of camouflage. 7 figs

  6. Young's double-slit interference with two-color biphotons.

    Science.gov (United States)

    Zhang, De-Jian; Wu, Shuang; Li, Hong-Guo; Wang, Hai-Bo; Xiong, Jun; Wang, Kaige

    2017-12-12

    In classical optics, Young's double-slit experiment with colored coherent light gives rise to individual interference fringes for each light frequency, referring to single-photon interference. However, two-photon double-slit interference has been widely studied only for wavelength-degenerate biphoton, known as subwavelength quantum lithography. In this work, we report double-slit interference experiments with two-color biphoton. Different from the degenerate case, the experimental results depend on the measurement methods. From a two-axis coincidence measurement pattern we can extract complete interference information about two colors. The conceptual model provides an intuitional picture of the in-phase and out-of-phase photon correlations and a complete quantum understanding about the which-path information of two colored photons.

  7. One-Step Preparation of Blue-Emitting (La,Ca)Si3(O,N)5:Ce3+ Phosphors for High-Color Rendering White Light-Emitting Diodes

    Science.gov (United States)

    Yaguchi, Atsuro; Suehiro, Takayuki; Sato, Tsugio; Hirosaki, Naoto

    2011-02-01

    Highly phase-pure (La,Ca)Si3(O,N)5:Ce3+ blue-emitting phosphors were successfully synthesized via the one-step solid-state reaction from the system La2O3-CaO-CeO2-Si3N4. The synthesized (La,Ca)Si3(O,N)5:Ce3+ exhibits tunable blue broadband emission with the dominant wavelength of 466-479 nm and the external quantum efficiency up to ˜45% under 380 nm near-UV (NUV) excitation. Spectral simulations of the trichromatic white light-emitting diodes (LEDs) using (La,Ca)Si3(O,N)5:Ce3+ demonstrated markedly higher color rendering index Ra values of 93-95, compared to 76-90 attained by the systems using a conventional BAM:Eu2+ phosphor or InGaN blue LED. The present achievement indicates the promising applicability of (La,Ca)Si3(O,N)5:Ce3+ as a blue luminescent source for NUV-converting high-color rendering white LEDs.

  8. Prior Knowledge about Objects Determines Neural Color Representation in Human Visual Cortex.

    Science.gov (United States)

    Vandenbroucke, A R E; Fahrenfort, J J; Meuwese, J D I; Scholte, H S; Lamme, V A F

    2016-04-01

    To create subjective experience, our brain must translate physical stimulus input by incorporating prior knowledge and expectations. For example, we perceive color and not wavelength information, and this in part depends on our past experience with colored objects ( Hansen et al. 2006; Mitterer and de Ruiter 2008). Here, we investigated the influence of object knowledge on the neural substrates underlying subjective color vision. In a functional magnetic resonance imaging experiment, human subjects viewed a color that lay midway between red and green (ambiguous with respect to its distance from red and green) presented on either typical red (e.g., tomato), typical green (e.g., clover), or semantically meaningless (nonsense) objects. Using decoding techniques, we could predict whether subjects viewed the ambiguous color on typical red or typical green objects based on the neural response of veridical red and green. This shift of neural response for the ambiguous color did not occur for nonsense objects. The modulation of neural responses was observed in visual areas (V3, V4, VO1, lateral occipital complex) involved in color and object processing, as well as frontal areas. This demonstrates that object memory influences wavelength information relatively early in the human visual system to produce subjective color vision. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Multi-wavelengths digital holography: reconstruction, synthesis and display of holograms using adaptive transformation.

    Science.gov (United States)

    Memmolo, P; Finizio, A; Paturzo, M; Ferraro, P; Javidi, B

    2012-05-01

    A method based on spatial transformations of multiwavelength digital holograms and the correlation matching of their numerical reconstructions is proposed, with the aim to improve superimposition of different color reconstructed images. This method is based on an adaptive affine transform of the hologram that permits management of the physical parameters of numerical reconstruction. In addition, we present a procedure to synthesize a single digital hologram in which three different colors are multiplexed. The optical reconstruction of the synthetic hologram by a spatial light modulator at one wavelength allows us to display all color features of the object, avoiding loss of details.

  10. High-power pure blue laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, M.; Ohizumi, Y.; Hoshina, Y.; Tanaka, T.; Yabuki, Y.; Goto, S.; Ikeda, M. [Development Center, Sony Shiroishi Semiconductor Inc., Miyagi (Japan); Funato, K. [Materials Laboratories, Sony Corporation, Kanagawa (Japan); Tomiya, S. [Materials Analysis Laboratory, Sony Corporation, Kanagawa (Japan)

    2007-06-15

    We successfully developed high-power and long-lived pure blue laser diodes (LDs) having an emission wavelength of 440-450 nm. The pure-blue LDs were grown by metalorganic chemical vapor deposition (MOCVD) on GaN substrates. The dislocation density was successfully reduced to {proportional_to}10{sup 6} cm{sup -2} by optimizing the MOCVD growth conditions and the active layer structure. The vertical layer structure was designed to have an absorption loss of 4.9 cm{sup -1} and an internal quantum efficiency of 91%. We also reduced the operating current density to 6 kA/cm{sup 2} under 750 mW continuous-wave operation at 35 C by optimizing the stripe width to 12 {mu}m and the cavity length to 2000 {mu}m. The half lifetimes in constant current mode are estimated to be longer than 10000 h. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. A new method of liquid crystal thermometry excluding human color sensation

    International Nuclear Information System (INIS)

    Kunugi, Tomoaki; Akino, Norio; Ueda, Masaharu.

    1987-01-01

    Some choresteric liquid crystals can be used as a thermometer because of their color changes with varying temperatures. However, it is impossible to employ human color sensation for precise quantitative evaluation of temperature from their color. Therefore, a new method of liquid crystal thermometry is developed using narrow band optical filters and an image processor to exclude the employment of human color sensation. Relations between filter wavelength and temperature were determined by calibration tests. Two dimensional temperature distributions on a heated plate were successfully measured by the present method. (author)

  12. Radiation resisting features of pure quartz fiber

    International Nuclear Information System (INIS)

    Fujii, Takashi; Nagasawa, Yoshiya; Hoshi, Hiroshi; Tomon, Ryoichi; Ooki, Yoshimichi; Yahagi, Kichinosuke

    1985-01-01

    The control of the generation of color centers is essential for optical fibers used in radiation environment. Even pure quartz which is the best radiation resisting material is not exceptional also elucidarion of the mechanism of the generation of color center is necessary for the development of optical fiber with higher radiation resisting feature. Previously, it was assumed that color centers are distributed uniformly throughout cores. Determination of the distribution of color centers was attempted. Cores were etched with HF after γ-ray irradiation, and the changes of intensity of ESR signals of NBOHC and E'-center were determined. NBOHC were not found in circumferential part, and concentrated in the central part. In other words the tendency of distribution is diametral. Thus, the distribution of precursor is supposed to be affected by certain external cause and the generation of NBOHC was depressed in circumferential area. The distribution of E'-center of high OH sample showed similar tendency and high in the center. Where as the distribution in low OH sample was uniform. The external cause is supposed to be hydrogen derived from silicone clad and silicone buffer. Two kind of precursor is suspected for the explanation of the difference of the E'-center in high OH sample and low OH sample. (Ishimitsu, A.)

  13. Structural Color of Rock Dove’s Neck Feather

    Science.gov (United States)

    Nakamura, Eri; Yoshioka, Shinya; Kinoshita, Shuichi

    2008-12-01

    It is well known that some kinds of animal have surprisingly brilliant colors showing beautiful iridescence. These colors are called structural colors, and are thought to originate from optical interference caused by periodic microstructures that have sizes comparable with the wavelength of light. However, much larger structural modifications can also play an important role in the coloration mechanism. In this paper, we show through careful optical and structural investigations that the structural color of the neck feather of rock dove, Columba livia, has a very comprehensive mechanism: the thin-layer optical interference phenomenon fundamentally produces the iridescence, while the layer structure is accompanied by various kinds of larger-size structural modifications that control the angular range of the reflection. Further, it is found that the granules containing melanin pigment exist in a localized manner to effectively enhance the contrast of the color caused by optical interference.

  14. Visible Wavelength Color Filters Using Dielectric Subwavelength Gratings for Backside-Illuminated CMOS Image Sensor Technologies.

    Science.gov (United States)

    Horie, Yu; Han, Seunghoon; Lee, Jeong-Yub; Kim, Jaekwan; Kim, Yongsung; Arbabi, Amir; Shin, Changgyun; Shi, Lilong; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; Lee, Hong-Seok; Hwang, Sungwoo; Faraon, Andrei

    2017-05-10

    We report transmissive color filters based on subwavelength dielectric gratings that can replace conventional dye-based color filters used in backside-illuminated CMOS image sensor (BSI CIS) technologies. The filters are patterned in an 80 nm-thick poly silicon film on a 115 nm-thick SiO 2 spacer layer. They are optimized for operating at the primary RGB colors, exhibit peak transmittance of 60-80%, and have an almost insensitive response over a ± 20° angular range. This technology enables shrinking of the pixel sizes down to near a micrometer.

  15. Color display and encryption with a plasmonic polarizing metamirror

    Directory of Open Access Journals (Sweden)

    Song Maowen

    2018-01-01

    Full Text Available Structural colors emerge when a particular wavelength range is filtered out from a broadband light source. It is regarded as a valuable platform for color display and digital imaging due to the benefits of environmental friendliness, higher visibility, and durability. However, current devices capable of generating colors are all based on direct transmission or reflection. Material loss, thick configuration, and the lack of tunability hinder their transition to practical applications. In this paper, a novel mechanism that generates high-purity colors by photon spin restoration on ultrashallow plasmonic grating is proposed. We fabricated the sample by interference lithography and experimentally observed full color display, tunable color logo imaging, and chromatic sensing. The unique combination of high efficiency, high-purity colors, tunable chromatic display, ultrathin structure, and friendliness for fabrication makes this design an easy way to bridge the gap between theoretical investigations and daily-life applications.

  16. Kinetics of color development in glucose/Amino Acid model systems at different temperatures

    Directory of Open Access Journals (Sweden)

    Ana Paola Echavarría

    2016-01-01

    Full Text Available This study investigated the influence of temperature on the color development of melanoidins formed from a single combination of glucose with amino acid. The selected amino acid, commonly found in apple juice and highly reactive in the Maillard reaction, were asparagine (Asn, aspartic acid (Asp and glutamic acid (Glu. For this, the color development was evaluated by measuring browning at 420 nm and color measurements by spectrophotometry and colorimetry methods. The effect of temperature on the color intensity, the absorption of melanoidins were also measured at different wavelengths (280, 325, 405. The value of melanoidins formed from all model systems was located on a dominant wavelength of 325 nm, the ultra violet zone of the diagram. A first-order kinetic model was applied to L* and the evolution of color difference ΔE*. In addition, a*, b* values, significantly differences were found in the glucose/aspartic acid model system in the brown-red zone. Therefore, the color development of the melanoidins was influenced by the type of amino acid and temperature, and it is thought that the a* and b* values can be used to explain the differences among the amino acid in the color development of melanoidins.

  17. [Colorimetric investigation of normal tongue and lip colors from 516 healthy adults by visible reflection spectrum].

    Science.gov (United States)

    Zeng, Chang-chun; Yang, Li; Xu, Ying; Liu, Pei-pei; Guo, Shi-jun; Liu, Song-hao

    2011-09-01

    Using the data from normal tongue and lip colors of normal people which were collected by the visible reflection spectrum, we analyzed the colorimetric parameters of tongue and lip colors. In this study, 516 healthy students aging from 19 to 26 from the colleges and universities of Guangdong Province of China were taken as research subjects. After collecting the data of tongue and lip colors of the 516 subjects using visible reflectance spectroscopy, CIE XYZ tristimulus values as defined by the International Commission on Illumination in 1964 were calculated, and the colorimetric parameters of the normal tongue and lip colors were obtained, such as the CIE 1964 chromaticity coordinate, brightness, dominant wavelength and excitation purity. The results of CIE 1964 chromaticity diagram calculated on the visible reflection spectrum showed that the normal tongue color chromaticity coordinate x(10) was 0.341 3±0.008 5 and y(10) was 0.332 6±0.005 1, and the normal lip color chromaticity coordinate x(10) was 0.357 7±0.009 2 and y(10) was 0.338 3±0.005 7; the brightness Y values of the normal tongue color and lip colors were 17.96±3.78 and 19.78±3.72, the dominant wavelength values of the normal tongue color and lip color were (626.3±51.6) nm and (600.4±18.2) nm, and the excitation purity values of the normal tongue color and lip color were 0.083±0.031 and 0.144±0.036, respectively. Application of the visible reflection spectrum is a standard way to collect colorimetric data for inspection of the complexion. The investigation of chromaticity coordinates, brightness, dominant wavelength and excitation purity of the normal tongue and lip colors may offer the basic reference for diagnosing morbid complexion on the tongue and lip colors in traditional Chinese medicine.

  18. Color signaling in conspicuous red sticklebacks: do ultraviolet signals surpass others?

    Directory of Open Access Journals (Sweden)

    Bakker Theo CM

    2008-07-01

    Full Text Available Abstract Background The use of ultraviolet (UV signals for communication tasks is widespread in vertebrates. For instance, there is a UV component to mate choice in several species. Nevertheless, it remains unclear how the signal value of the UV wave band compares to that of other regions of the animal's visible spectrum. We investigated the relative importance of UV signals compared with signals of longer wavelengths in the threespine stickleback (Gasterosteus aculeatus, a species using UV wavelengths in female and male mate choice as well as in shoaling behavior. In a choice experiment, female sticklebacks were simultaneously presented with four male visual appearances manipulated by optical filters. Each male lacked one wavelength range of the stickleback's visible spectrum corresponding to the spectral sensitivities of the four cone types. The resulting male appearances thus had no UV (UV-, no short-wave (SW-, no medium-wave (MW- or no long-wave (LW- body reflectance. Results Males without UV wavelengths and long wavelengths ("red" were least preferred. In contrast, the removal of medium and most notably short wavelengths left male attractiveness to females rather unaffected. Using color metrics, the effects of the four optical filters on stickleback perception of three male body regions were illustrated as quantal catches calculated for the four single cones. Conclusion The removal of UV light (UV- considerably reduced visual attractiveness of courting males to female three-spined sticklebacks particularly in comparison to the removal of short-wave light (SW-. We thus report first experimental evidence that the UV wave band clearly outranks at least one other part of an animal's visible spectrum (SW- in the context of communication. In addition, females were also less attracted to males presented without long wavelengths (LW- which supports the traditionally considered strong influence of the red color component on stickleback mate choice

  19. Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide.

    Science.gov (United States)

    Tong, Liping; Qi, Wei; Wang, Mengfan; Huang, Renliang; Su, Rongxin; He, Zhimin

    2016-07-01

    It is broadly observed that graphene oxide (GO) films appear transparent with a thickness of about several nanometers, whereas they appear dark brown or almost black with thickness of more than 1 μm. The basic color mechanism of GO film on a sub-micrometer scale, however, is not well understood. This study reports on GO pseudo-1D photonic crystals (p1D-PhCs) exhibiting tunable structural colors in the visible wavelength range owing to its 1D Bragg nanostructures. Striking structural colors of GO p1D-PhCs could be tuned by simply changing either the volume or concentration of the aqueous GO dispersion during vacuum filtration. Moreover, the quantitative relationship between thickness and reflection wavelength of GO p1D-PhCs has been revealed, thereby providing a theoretical basis to rationally design structural colors of GO p1D-PhCs. The spectral response of GO p1D-PhCs to humidity is also obtained clearly showing the wavelength shift of GO p1D-PhCs at differently relative humidity values and thus encouraging the integration of structural color printing and the humidity-responsive property of GO p1D-PhCs to develop a visible and fast-responsive anti-counterfeiting label. The results pave the way for a variety of potential applications of GO in optics, structural color printing, sensing, and anti-counterfeiting. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Color deviations in phosphor converted high power light emitting diodes under different dimming schemes

    International Nuclear Information System (INIS)

    Ludwiczak, Bogna; Jantsch, Wolfgang

    2015-01-01

    We investigate experimentally the color stability of high power phosphor converted InGaN LEDs under pulse width modulation (PWM) and continuous current reduction (CCR) dimming modes and for varied operation temperatures. Our measurements reveal that the chromaticity coordinate pathways of the warm white and the cold white LED's differ for the same operation conditions. The color deviation- minimizing phenomenon of opposite peak wavelength shifts appears only for a cold white LED under CCR driving mode. This favorable effect does not occur for warm white LEDs. This type of LED exhibits the best color stability under PWM driving mode. The experimental results are consistently explained in terms of the quantum confined Stark effect and temperature induced changes of the LED emission. - Highlights: • Cold and warm white LEDs reacts colorimetrically unlike in different driving modes. • For cold white emission driving conditions are crucial. • Opposite peak wavelength shifts reduces color deviations for cold white emission. • For warm white emission rather phosphor properties determines color deviations

  1. Multi-wavelength and multi-colour temporal and spatial optical solitons

    DEFF Research Database (Denmark)

    Kivshar, Y. S.; Sukhorukov, A. A.; Ostrovskaya, E. A.

    2000-01-01

    We present an overview of several novel types of multi- component envelope solitary waves that appear in fiber and waveguide nonlinear optics. In particular, we describe multi-channel solitary waves in bit-parallel-wavelength fiber transmission systems for high performance computer networks, multi......-color parametric spatial solitary waves due to cascaded nonlinearities of quadratic materials, and quasiperiodic envelope solitons in Fibonacci optical superlattices....

  2. Multi-Wavelength Interferometric Observations of YSO Disks

    Science.gov (United States)

    Ragland, Sam; Akeson, R.; Armandroff, T.; Colavita, M.; Cotton, W.; Danchi, W.; Hillenbrand, L.; Millan-Gabet, R.; Ridgway, S. T.; Traub, W.; Wizinowich, P.

    2010-01-01

    We initiated a multi-color interferometric study of YSO disks in the K, L and N bands using the Keck Interferometer. The initial results on two Herbig Ae/Be stars will be presented. Our observations are sensitive to the radial distribution of temperature in the inner region of the YSO disks. The geometric models show that the apparent size increases linearly with wavelength, suggesting that the disk is extended with a temperature gradient. We will discuss our results in conjunction with the previous measurements of these targets.

  3. Physics of structural colors

    International Nuclear Information System (INIS)

    Kinoshita, S; Yoshioka, S; Miyazaki, J

    2008-01-01

    In recent years, structural colors have attracted great attention in a wide variety of research fields. This is because they are originated from complex interaction between light and sophisticated nanostructures generated in the natural world. In addition, their inherent regular structures are one of the most conspicuous examples of non-equilibrium order formation. Structural colors are deeply connected with recent rapidly growing fields of photonics and have been extensively studied to clarify their peculiar optical phenomena. Their mechanisms are, in principle, of a purely physical origin, which differs considerably from the ordinary coloration mechanisms such as in pigments, dyes and metals, where the colors are produced by virtue of the energy consumption of light. It is generally recognized that structural colors are mainly based on several elementary optical processes including thin-layer interference, diffraction grating, light scattering, photonic crystals and so on. However, in nature, these processes are somehow mixed together to produce complex optical phenomena. In many cases, they are combined with the irregularity of the structure to produce the diffusive nature of the reflected light, while in some cases they are accompanied by large-scale structures to generate the macroscopic effect on the coloration. Further, it is well known that structural colors cooperate with pigmentary colors to enhance or to reduce the brilliancy and to produce special effects. Thus, structure-based optical phenomena in nature appear to be quite multi-functional, the variety of which is far beyond our understanding. In this article, we overview these phenomena appearing particularly in the diversity of the animal world, to shed light on this rapidly developing research field

  4. THE EFFICIENCY AND WAVELENGTH DEPENDENCE OF NEAR-INFRARED INTERSTELLAR POLARIZATION TOWARD THE GALACTIC CENTER

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, Hirofumi; Kurita, Mikio; Kanai, Saori; Sato, Shuji [Department of Astrophysics, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Nishiyama, Shogo; Nakajima, Yasushi; Tamura, Motohide; Kandori, Ryo [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8858 (Japan); Nagata, Tetsuya; Yoshikawa, Tatsuhito [Department of Astronomy, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Kato, Daisuke [Department of Astronomy, School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sato, Yaeko; Suenaga, Takuya, E-mail: hattan@z.phys.nagoya-u.ac.jp, E-mail: shogo.nishiyama@nao.ac.jp [Department of Astronomical Sciences, Graduate University for Advanced Studies (Sokendai), Mitaka, Tokyo 181-8858 (Japan)

    2013-04-15

    Near-infrared polarimetric imaging observations toward the Galactic center (GC) have been carried out to examine the efficiency and wavelength dependence of interstellar polarization. A total area of about 5.7 deg{sup 2} is covered in the J, H, and K{sub S} bands. We examined the polarization efficiency, defined as the ratio of the degree of polarization to color excess. The interstellar medium between the GC and us shows a polarization efficiency lower than that in the Galactic disk by a factor of three. Moreover we investigated the spatial variation of the polarization efficiency by comparing it with that of the color excess, degree of polarization, and position angle. The spatial variations of color excess and degree of polarization depend on the Galactic latitude, while the polarization efficiency varies independently of the Galactic structure. Position angles are nearly parallel to the Galactic plane, indicating a longitudinal magnetic field configuration between the GC and us. The polarization efficiency anticorrelates with dispersions of position angles. The low polarization efficiency and its spatial variation can be explained by the differences in the magnetic field directions along the line of sight. From the lower polarization efficiency, we suggest a higher strength of a random component relative to a uniform component of the magnetic field between the GC and us. We also derived the ratios of degree of polarization p{sub H} /p{sub J} = 0.581 {+-} 0.004 and p{sub K{sub S}}/p{sub H} = 0.620 {+-} 0.002. The power-law indices of the wavelength dependence of polarization are {beta}{sub JH} = 2.08 {+-} 0.02 and {beta}{sub HK{sub S}} = 1.76 {+-} 0.01. Therefore, the wavelength dependence of interstellar polarization exhibits flattening toward longer wavelengths in the range of 1.25-2.14 {mu}m. The flattening would be caused by aligned large-size dust grains.

  5. Spectral slopes of the absorption coefficient of colored dissolved and detrital material inverted from UV-visible remote sensing reflectance.

    Science.gov (United States)

    Wei, Jianwei; Lee, Zhongping; Ondrusek, Michael; Mannino, Antonio; Tzortziou, Maria; Armstrong, Roy

    2016-03-01

    The spectral slope of the absorption coefficient of colored dissolved and detrital material (CDM), S cdm (units: nm -1 ), is an important optical parameter for characterizing the absorption spectral shape of CDM. Although highly variable in natural waters, in most remote sensing algorithms, this slope is either kept as a constant or empirically modeled with multiband ocean color in the visible domain. In this study, we explore the potential of semianalytically retrieving S cdm with added ocean color information in the ultraviolet (UV) range between 360 and 400 nm. Unique features of hyperspectral remote sensing reflectance in the UV-visible wavelengths (360-500 nm) have been observed in various waters across a range of coastal and open ocean environments. Our data and analyses indicate that ocean color in the UV domain is particularly sensitive to the variation of the CDM spectral slope. Here, we used a synthesized data set to show that adding UV wavelengths to the ocean color measurements will improve the retrieval of S cdm from remote sensing reflectance considerably, while the spectral band settings of past and current satellite ocean color sensors cannot fully account for the spectral variation of remote sensing reflectance. Results of this effort support the concept to include UV wavelengths in the next generation of satellite ocean color sensors.

  6. Longwing (Heliconius) butterflies combine a restricted set of pigmentary and structural coloration mechanisms.

    Science.gov (United States)

    Wilts, Bodo D; Vey, Aidan J M; Briscoe, Adriana D; Stavenga, Doekele G

    2017-11-21

    Longwing butterflies, Heliconius sp., also called heliconians, are striking examples of diversity and mimicry in butterflies. Heliconians feature strongly colored patterns on their wings, arising from wing scales colored by pigments and/or nanostructures, which serve as an aposematic signal. Here, we investigate the coloration mechanisms among several species of Heliconius by applying scanning electron microscopy, (micro)spectrophotometry, and imaging scatterometry. We identify seven kinds of colored scales within Heliconius whose coloration is derived from pigments, nanostructures or both. In yellow-, orange- and red-colored wing patches, both cover and ground scales contain wavelength-selective absorbing pigments, 3-OH-kynurenine, xanthommatin and/or dihydroxanthommatin. In blue wing patches, the cover scales are blue either due to interference of light in the thin-film lower lamina (e.g., H. doris) or in the multilayered lamellae in the scale ridges (so-called ridge reflectors, e.g., H. sara and H. erato); the underlying ground scales are black. In the white wing patches, both cover and ground scales are blue due to their thin-film lower lamina, but because they are stacked upon each other and at the wing substrate, a faint bluish to white color results. Lastly, green wing patches (H. doris) have cover scales with blue-reflecting thin films and short-wavelength absorbing 3-OH-kynurenine, together causing a green color. The pigmentary and structural traits are discussed in relation to their phylogenetic distribution and the evolution of vision in this highly interesting clade of butterflies.

  7. Coloring of synthetic fluorite

    International Nuclear Information System (INIS)

    Birsoy, R.

    1980-01-01

    A synthetic fluorite of the Harshaw Chemical Company is analyzed for rare earth elements, yttrium, and sodium. Samples of this fluorite are irradiated with X-rays, γ-rays, neutrons, electrons, protons, and α-particles at different energies, and their absorption spectra are analyzed. Analyzing the thermal bleaching of these radiation-coloured fluorites shows that both, impurities and radiation play a part in the coloration of synthetic fluorite. However, the main contribution comes from the radiation induced lattice defects. In the visible region spectra, the colour centre of the 5800 to 5900 A absorption band is probably mainly related with large aggregates of F-centres. The 5450 and the 5300 A absorption bands are mainly related to monovalent and divalent ion impurities and their association with lattice defects. The 3800 A absorption band seems to be related with F-centre aggregates. However, the contribution from the rare earth elements related complex color centres also plays some part for the production of this absorption band. These results indicate that the color centres of different origin can absorb light at the same wavelength. (author)

  8. Plasmonic nanospherical dimers for color pixels

    KAUST Repository

    Alrasheed, Salma

    2018-04-20

    Display technologies are evolving more toward higher resolution and miniaturization. Plasmonic color pixels can offer solutions to realize such technologies due to their sharp resonances and selective scattering and absorption at particular wavelengths. Metal nanosphere dimers are capable of supporting plasmon resonances that can be tuned to span the entire visible spectrum. In this article, we demonstrate numerically bright color pixels that are highly polarized and broadly tuned using periodic arrays of metal nanosphere dimers on a glass substrate. We show that it is possible to obtain RGB pixels in the reflection mode. The longitudinal plasmon resonance of nanosphere dimers along the axis of the dimer is the main contributor to the color of the pixel, while far-field diffractive coupling further enhances and tunes the plasmon resonance. The computational method used is the finite-difference time-domain method. The advantages of this approach include simplicity of the design, bright coloration, and highly polarized function. In addition, we show that it is possible to obtain different colors by varying the angle of incidence, the periodicity, the size of the dimer, the gap, and the substrate thickness.

  9. Investigation of dynamic of unconsolidated materials using two-color digital holography

    Directory of Open Access Journals (Sweden)

    Boileau J.-P.

    2010-06-01

    Full Text Available The paper presents a two-color digital holographic interferometer. The set-up is devoted to the study of the fundamental dynamic of unconsolidated materials. Optical configuration and algorithms to recover the optical phase of two-color digitally encoded holograms are described. The method is based on a spatial-color-multiplexing scheme in which holographic reconstruction is performed using adapted wavelength zero-padding and reconstructing distance. Experimental results are presented in the case of granular media excited in the frequency range 400Hz-3000Hz and exhibits the 3D movement.

  10. CO ICE PHOTODESORPTION: A WAVELENGTH-DEPENDENT STUDY

    International Nuclear Information System (INIS)

    Fayolle, Edith C.; Linnartz, Harold; Bertin, Mathieu; Romanzin, Claire; Michaut, Xavier; Fillion, Jean-Hugues; Oeberg, Karin I.

    2011-01-01

    UV-induced photodesorption of ice is a non-thermal evaporation process that can explain the presence of cold molecular gas in a range of interstellar regions. Information on the average UV photodesorption yield of astrophysically important ices exists for broadband UV lamp experiments. UV fields around low-mass pre-main-sequence stars, around shocks and in many other astrophysical environments are however often dominated by discrete atomic and molecular emission lines. It is therefore crucial to consider the wavelength dependence of photodesorption yields and mechanisms. In this work, for the first time, the wavelength-dependent photodesorption of pure CO ice is explored between 90 and 170 nm. The experiments are performed under ultra high vacuum conditions using tunable synchrotron radiation. Ice photodesorption is simultaneously probed by infrared absorption spectroscopy in reflection mode of the ice and by quadrupole mass spectrometry of the gas phase. The experimental results for CO reveal a strong wavelength dependence directly linked to the vibronic transition strengths of CO ice, implying that photodesorption is induced by electronic transition (DIET). The observed dependence on the ice absorption spectra implies relatively low photodesorption yields at 121.6 nm (Lyα), where CO barely absorbs, compared to the high yields found at wavelengths coinciding with transitions into the first electronic state of CO (A 1 Π at 150 nm); the CO photodesorption rates depend strongly on the UV profiles encountered in different star formation environments.

  11. Color change mechanism of niobium oxide thin film with incidental light angle and applied voltage

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Isao [Course of Information Science and Technology, Graduate School of Science and Technology, Tokai University (Japan); Aoki, Hayata [Course of Electro Photo Optics, Graduate School of Engineering, Tokai University (Japan); Ebisawa, Mizue [Tokyo Metropolitan Industrial Technology Research Institute (Japan); Kuroda, Akihiro [Department of Optical and Imaging Science & Technology, Faculty of Engineering, Tokai University (Japan); Kuroda Consulting Incorporated (Japan); Kuroda, Koichi [Kuroda Consulting Incorporated (Japan); Maeda, Shuichi [Course of Information Science and Technology, Graduate School of Science and Technology, Tokai University (Japan); Course of Electro Photo Optics, Graduate School of Engineering, Tokai University (Japan); Department of Optical and Imaging Science & Technology, Faculty of Engineering, Tokai University (Japan)

    2016-03-31

    Niobium oxide thin layers made by the anodization process showed coloration owing to thin film interference. The reflection spectra depended on both the applied voltage and incident light angle. Large color differences were observed at incident light angles between 5° and 70°, when the applied voltage was over 60 V. In this study, we explored the cause of these results using ellipsometry and goniophotometry to understand the transition of optical constants and the reflection spectra with applied voltage. Finally, we concluded that the coloration of the reflection spectra, which included only a first-order interference peak, exhibits a smaller change because the first order interference peak has a wider half value width than higher order interference peaks. - Highlights: • We investigated color change of Nb{sub 2}O{sub 5} oxide thin layers with incidental light angle. • The reflection spectra shift to lower wavelength region with increasing incident light angle. • The reflection spectra shift to higher wavelength region with increasing applied voltage. • First-order interference has wider half value width, and exhibits small color change.

  12. Exact effective actions for quarks in pure and self-dual mean fields

    International Nuclear Information System (INIS)

    Elizalde, E.; Soto, J.

    1985-01-01

    The QCD effective action for ordinary quarks in the presence of a constant self-dual, pure colormagnetic or pure color-electric background created by themselves is calculated at all loop orders. This is done in a very simple way, by using zeta-function regularization and the fact that the dependence of the effective action on the background can be factorized in these three cases, leaving a well-defined constant factor. The zero mode problem and the imaginary contributions are seen to be mere one-loop artifacts which automatically vanish when the exact calculation is carried out. (orig.)

  13. The effect of solvents on the stabilities (color and Fe) of anthocyanin isolated from the red-color-melinjo peels

    Energy Technology Data Exchange (ETDEWEB)

    Tarmizi, Ermiziar, E-mail: uph-ermi@yahoo.com, E-mail: ermitarmizi@gmail.com; Saragih, Raskita, E-mail: raskitasaragih@yahoo.com [Indonesia Institute of Technology (ITI), Raya PuspiptekSerpong, Tangerang Banten 15320 (Indonesia); Lalasari, Latifa Hanum, E-mail: ifa-sari@yahoo.com, E-mail: lati003@lipi.go.id [Research Centre for Metallurgy and Material, Indonesian Institute of Sciences (LIPI), KawasanPuspiptekSerpong, Tangerang Selatan 15314 (Indonesia)

    2015-12-29

    Anthocyanin from the red-color-melinjo peels could be isolated using a polar solvent (ethanol) [ermiziar, 2010]. The amount of hydrocarbons in the structure of anthocyanin might cause that anthocyanin could be isolated using a non polar solvent. The purpose of research is to isolate anthocyanin using non polar solvents (hexane and petroleum ether) with maceration steps for 24 hours and separate solvents using rotary evaporator equipment. The stability of anthocyanin could be observed every week (1,2,3 and 4 weeks) in various environmental conditions (with or without light in refrigerator and open or closed storage). The characterization of anthocyanin was analyzed with visual (physic photo) and or using equipments such as Fourier Transform Infrared Spectroscopy (FTIR) for determining functional groups, Ultraviolet–Visible Spectroscopy (UV/Vis) with 500-550 nm wavelengths for deciding absorption of anthocyanin and atomic absorption spectroscopy (AAS) for analyzing Fe element. The result showed that anthocyanin isolation with hexane solvent has yield higher than petroleum eter solvent. From the results of physic observation for 4 weeks looked that there are changing colors of samples significant after 3 and 4 weeks in cooler with or without light. The stability of anthocyanin color was the best on the storage time until 2 weeks using hexane solvent in refrigerator and closed condition that it has absorption of 0.6740 with 500 nm wavelengths and Fe concentration 6.29 ppm.

  14. The effect of solvents on the stabilities (color and Fe) of anthocyanin isolated from the red-color-melinjo peels

    International Nuclear Information System (INIS)

    Tarmizi, Ermiziar; Saragih, Raskita; Lalasari, Latifa Hanum

    2015-01-01

    Anthocyanin from the red-color-melinjo peels could be isolated using a polar solvent (ethanol) [ermiziar, 2010]. The amount of hydrocarbons in the structure of anthocyanin might cause that anthocyanin could be isolated using a non polar solvent. The purpose of research is to isolate anthocyanin using non polar solvents (hexane and petroleum ether) with maceration steps for 24 hours and separate solvents using rotary evaporator equipment. The stability of anthocyanin could be observed every week (1,2,3 and 4 weeks) in various environmental conditions (with or without light in refrigerator and open or closed storage). The characterization of anthocyanin was analyzed with visual (physic photo) and or using equipments such as Fourier Transform Infrared Spectroscopy (FTIR) for determining functional groups, Ultraviolet–Visible Spectroscopy (UV/Vis) with 500-550 nm wavelengths for deciding absorption of anthocyanin and atomic absorption spectroscopy (AAS) for analyzing Fe element. The result showed that anthocyanin isolation with hexane solvent has yield higher than petroleum eter solvent. From the results of physic observation for 4 weeks looked that there are changing colors of samples significant after 3 and 4 weeks in cooler with or without light. The stability of anthocyanin color was the best on the storage time until 2 weeks using hexane solvent in refrigerator and closed condition that it has absorption of 0.6740 with 500 nm wavelengths and Fe concentration 6.29 ppm

  15. Growth of monolithic full-color GaN-based LED with intermediate carrier blocking layers

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghoroury, Hussein S.; Yeh, Milton; Chen, J. C., E-mail: jc.chen@ostendo.com; Li, X.; Chuang, Chih-Li [EPI Lab, Ostendo Technologies, Inc., 679 Brea Canyon Rd, Walnut, CA 91789 (United States)

    2016-07-15

    Specially designed intermediate carrier blocking layers (ICBLs) in multi-active regions of III-nitride LEDs were shown to be effective in controlling the carrier injection distribution across the active regions. In principle, the majority of carriers, both holes and electrons, can be guided into targeted quantum wells and recombine to generate light of specific wavelengths at controlled current-densities. Accordingly we proposed and demonstrated a novel monolithic InGaN-based LED to achieve three primary colors of light from one device at selected current densities. This LED structure, which has three different sets of quantum wells separated with ICBLs for three primary red-green-blue (RGB) colors, was grown by metal-organic chemical vapor deposition (MOCVD). Results show that this LED can emit light ranging from 460 to 650 nm to cover the entire visible spectrum. The emission wavelength starts at 650 nm and then decreases to 460 nm or lower as the injection current increases. In addition to three primary colors, many other colors can be obtained by color mixing techniques. To the best of our knowledge, this is the first demonstration of monolithic full-color LED grown by a simple growth technique without using re-growth process.

  16. Growth of monolithic full-color GaN-based LED with intermediate carrier blocking layers

    International Nuclear Information System (INIS)

    El-Ghoroury, Hussein S.; Yeh, Milton; Chen, J. C.; Li, X.; Chuang, Chih-Li

    2016-01-01

    Specially designed intermediate carrier blocking layers (ICBLs) in multi-active regions of III-nitride LEDs were shown to be effective in controlling the carrier injection distribution across the active regions. In principle, the majority of carriers, both holes and electrons, can be guided into targeted quantum wells and recombine to generate light of specific wavelengths at controlled current-densities. Accordingly we proposed and demonstrated a novel monolithic InGaN-based LED to achieve three primary colors of light from one device at selected current densities. This LED structure, which has three different sets of quantum wells separated with ICBLs for three primary red-green-blue (RGB) colors, was grown by metal-organic chemical vapor deposition (MOCVD). Results show that this LED can emit light ranging from 460 to 650 nm to cover the entire visible spectrum. The emission wavelength starts at 650 nm and then decreases to 460 nm or lower as the injection current increases. In addition to three primary colors, many other colors can be obtained by color mixing techniques. To the best of our knowledge, this is the first demonstration of monolithic full-color LED grown by a simple growth technique without using re-growth process.

  17. Color blindness and contrast perception in cuttlefish (Sepia officinalis) determined by a visual sensorimotor assay.

    Science.gov (United States)

    Mäthger, Lydia M; Barbosa, Alexandra; Miner, Simon; Hanlon, Roger T

    2006-05-01

    We tested color perception based upon a robust behavioral response in which cuttlefish (Sepia officinalis) respond to visual stimuli (a black and white checkerboard) with a quantifiable, neurally controlled motor response (a body pattern). In the first experiment, we created 16 checkerboard substrates in which 16 grey shades (from white to black) were paired with one green shade (matched to the maximum absorption wavelength of S. officinalis' sole visual pigment, 492 nm), assuming that one of the grey shades would give a similar achromatic signal to the tested green. In the second experiment, we created a checkerboard using one blue and one yellow shade whose intensities were matched to the cuttlefish's visual system. In both assays it was tested whether cuttlefish would show disruptive coloration on these checkerboards, indicating their ability to distinguish checkers based solely on wavelength (i.e., color). Here, we show clearly that cuttlefish must be color blind, as they showed non-disruptive coloration on the checkerboards whose color intensities were matched to the Sepia visual system, suggesting that the substrates appeared to their eyes as uniform backgrounds. Furthermore, we show that cuttlefish are able to perceive objects in their background that differ in contrast by approximately 15%. This study adds support to previous reports that S. officinalis is color blind, yet the question of how cuttlefish achieve "color-blind camouflage" in chromatically rich environments still remains.

  18. Color of Cultures of Staphylococcus epidermidis Determined by Spectral Reflectance Colorimetry

    Science.gov (United States)

    Brown, Richard W.

    1966-01-01

    Brown, Richard W. (National Animal Disease Laboratory, Ames, Iowa). Color of cultures of Staphylococcus epidermidis determined by spectral reflectance colorimetry. J. Bacteriol. 91:911–918. 1966.—A colorimeter with a reflectance attachment was used to study pigment production by Staphylococcus epidermidis strains grown on a medium containing Trypticase Soy Agar (BBL) and cream. The color of each culture was first characterized by reflectance colorimetry for dominant wavelength, purity, and luminous reflectance (Y) and was then classified visually into 1 of 10 color grades. There was not complete agreement in grading colors by the two methods, inasmuch as cultures that were considered more pigmented in relation to other cultures by the reflectance method were sometimes graded visually as less pigmented, and vice versa. Nevertheless, when the cultures were visually graded as being more pigmented, there was a concomitant increase in the average values of dominant wavelength and purity with a decrease in Y for the cultures in each higher grade. Thus, the nonpigmented cultures had the lowest dominant wavelength and purity values but the highest Y (brightness) values, whereas the most pigmented cultures had the highest dominant wavelength and purity values, but the lowest Y values. These results indicated that the cultures did not produce pigments of different hues (greenish-yellow, yellow, yellowish-orange) each with high, medium, and low degrees of purity and brightness. The value (1 − z), where the chromaticity coordinate z = Z/(X + Y + Z), was found to be proportional to the purity value. An inverse relationship between the tristimulus Z and purity values was also demonstrated. All cultures tested by the reflectance method were also classified according to the type of spectral absorption curve obtained with pigments extracted from the cultures with methanol. A comparison of these methods indicated that determining the type of spectral absorption curve would be

  19. Tropospheric haze and colors of the clear twilight sky.

    Science.gov (United States)

    Lee, Raymond L; Mollner, Duncan C

    2017-07-01

    At the earth's surface, clear-sky colors during civil twilights depend on the combined spectral effects of molecular scattering, extinction by tropospheric aerosols, and absorption by ozone. Molecular scattering alone cannot produce the most vivid twilight colors near the solar horizon, for which aerosol scattering and absorption are also required. However, less well known are haze aerosols' effects on twilight sky colors at larger scattering angles, including near the antisolar horizon. To analyze this range of colors, we compare 3D Monte Carlo simulations of skylight spectra with hyperspectral measurements of clear twilight skies over a wide range of aerosol optical depths. Our combined measurements and simulations indicate that (a) the purest antisolar twilight colors would occur in a purely molecular, multiple-scattering atmosphere, whereas (b) the most vivid solar-sky colors require at least some turbidity. Taken together, these results suggest that multiple scattering plays an important role in determining the redness of the antitwilight arch.

  20. Accelerated one-step generation of full-color holographic videos using a color-tunable novel-look-up-table method for holographic three-dimensional television broadcasting

    Science.gov (United States)

    Kim, Seung-Cheol; Dong, Xiao-Bin; Kim, Eun-Soo

    2015-09-01

    A color-tunable novel-look-up-table (CT-NLUT) for fast one-step calculation of full-color computer-generated holograms is proposed. The proposed method is composed of four principal fringe patterns (PFPs) such as a baseline, a depth-compensating and two color-compensating PFPs. CGH patterns for one color are calculated by combined use of baseline-PFP and depth-compensating-PFP and from them, those for two other colors are generated by being multiplied by the corresponding color-compensating-PFPs. color-compensating-PFPs compensate for differences in the wavelength between two colors based on their unique achromatic thin-lens properties, enabling transformation of one-color CGH pattern into those for other colors. This color-conversion property of the proposed method enables simultaneous generation of full color-CGH patterns, resulting in a significant reduction of the full color-CGH calculation time. Experimental results with test scenario show that the full color-CGH calculation time of the proposed CT-NLUT has been reduced by 45.10%, compared to the conventional NLUT. It has been further reduced by 96.01% when a data compression algorithm, called temporal redundancy-based NLUT, was used together, which means 25-fold reduction of its full color-CGH calculation time. Successful computational and optical reconstructions of full color-CGH patterns confirm the feasibility of the proposed method.

  1. Considering the Influence of Nonadaptive Evolution on Primate Color Vision.

    Directory of Open Access Journals (Sweden)

    Rachel L Jacobs

    Full Text Available Color vision in primates is variable across species, and it represents a rare trait in which the genetic mechanisms underlying phenotypic variation are fairly well-understood. Research on primate color vision has largely focused on adaptive explanations for observed variation, but it remains unclear why some species have trichromatic or polymorphic color vision while others are red-green color blind. Lemurs, in particular, are highly variable. While some species are polymorphic, many closely-related species are strictly dichromatic. We provide the first characterization of color vision in a wild population of red-bellied lemurs (Eulemur rubriventer, Ranomafana National Park, Madagascar with a sample size (87 individuals; NX chromosomes = 134 large enough to detect even rare variants (0.95 probability of detection at ≥ 3% frequency. By sequencing exon 5 of the X-linked opsin gene we identified opsin spectral sensitivity based on known diagnostic sites and found this population to be dichromatic and monomorphic for a long wavelength allele. Apparent fixation of this long allele is in contrast to previously published accounts of Eulemur species, which exhibit either polymorphic color vision or only the medium wavelength opsin. This unexpected result may represent loss of color vision variation, which could occur through selective processes and/or genetic drift (e.g., genetic bottleneck. To indirectly assess the latter scenario, we genotyped 55 adult red-bellied lemurs at seven variable microsatellite loci and used heterozygosity excess and M-ratio tests to assess if this population may have experienced a recent genetic bottleneck. Results of heterozygosity excess but not M-ratio tests suggest a bottleneck might have occurred in this red-bellied lemur population. Therefore, while selection may also play a role, the unique color vision observed in this population might have been influenced by a recent genetic bottleneck. These results emphasize the

  2. Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms.

    Science.gov (United States)

    Tahara, Tatsuki; Mori, Ryota; Kikunaga, Shuhei; Arai, Yasuhiko; Takaki, Yasuhiro

    2015-06-15

    Dual-wavelength phase-shifting digital holography that selectively extracts wavelength information from five wavelength-multiplexed holograms is presented. Specific phase shifts for respective wavelengths are introduced to remove the crosstalk components and extract only the object wave at the desired wavelength from the holograms. Object waves in multiple wavelengths are selectively extracted by utilizing 2π ambiguity and the subtraction procedures based on phase-shifting interferometry. Numerical results show the validity of the proposed technique. The proposed technique is also experimentally demonstrated.

  3. The elementary representation of spatial and color vision in the human retina.

    Science.gov (United States)

    Sabesan, Ramkumar; Schmidt, Brian P; Tuten, William S; Roorda, Austin

    2016-09-01

    The retina is the most accessible element of the central nervous system for linking behavior to the activity of isolated neurons. We unraveled behavior at the elementary level of single input units-the visual sensation generated by stimulating individual long (L), middle (M), and short (S) wavelength-sensitive cones with light. Spectrally identified cones near the fovea of human observers were targeted with small spots of light, and the type, proportion, and repeatability of the elicited sensations were recorded. Two distinct populations of cones were observed: a smaller group predominantly associated with signaling chromatic sensations and a second, more numerous population linked to achromatic percepts. Red and green sensations were mainly driven by L- and M-cones, respectively, although both cone types elicited achromatic percepts. Sensations generated by cones were rarely stochastic; rather, they were consistent over many months and were dominated by one specific perceptual category. Cones lying in the midst of a pure spectrally opponent neighborhood, an arrangement purported to be most efficient in producing chromatic signals in downstream neurons, were no more likely to signal chromatic percepts. Overall, the results are consistent with the idea that the nervous system encodes high-resolution achromatic information and lower-resolution color signals in separate pathways that emerge as early as the first synapse. The lower proportion of cones eliciting color sensations may reflect a lack of evolutionary pressure for the chromatic system to be as fine-grained as the high-acuity achromatic system.

  4. Optical characterization of pure vegetable oils and their biodiesels using Raman spectroscopy

    Science.gov (United States)

    Firdous, S.; Anwar, S.; Waheed, A.; Maraj, M.

    2016-04-01

    Great concern regarding energy resources and environmental polution has increased interest in the study of alternative sources of energy. Biodiesels as an alternative fuel provide a suitable diesel oil substitute for internal combustion engines. The Raman spectra of pure biodiesels of soybean oil, olive oil, coconut oil, animal fats, and petroleum diesel are optically characterized for quality and biofuel as an alternative fuel. The most significant spectral differences are observed in the frequency range around 1457 cm-1 for pure petroleum diesel, 1427 for fats biodiesel, 1670 cm-1 for pure soybean oil, 1461 cm-1 for soybean oil based biodiesel, 1670 cm-1 for pure olive oil, 1666 cm-1 for olive oil based biodiesel, 1461 cm-1 for pure coconut oil, and 1460 cm-1 for coconut oil based biodiesel, which is used for the analysis of the phase composition of oils. A diode pump solid-state laser with a 532 nm wavelength is used as an illuminating light. It is demonstrated that the peak positions and relative intensities of the vibrations of the oils can be used to identify the biodiesel quality for being used as biofuel.

  5. Influence of opalescence and fluorescence properties on the light transmittance of resin composite as a function of wavelength.

    Science.gov (United States)

    Lee, Yong-Keun; Powers, John M

    2006-10-01

    To determine the influence of opalescence and fluorescence properties on the light transmittance of resin composites as a function of wavelength (410-750 nm). Spectral distribution of seven resin composites of A2 shade was measured according to the CIELAB color scale relative to the standard illuminant D65 in the reflectance and transmittance modes. Opalescence spectrum (OPS) was calculated as the subtraction spectrum (i.e., the spectrum measured in the transmittance mode subtracted at each wavelength from the spectrum measured in the reflectance mode). UV component of the illuminant was included and excluded to calculate the fluorescence spectrum (FLR and FLT in the reflectance and transmittance mode, respectively). Contrast ratio (CR) was calculated as the ratio of reflectance over a black background and over a white background. The total transmittance spectral distribution (TSD) value was used as the parameter to indicate masking ability of the resin composites over background color. Multiple regression analyses were performed among TSD and other optical parameters at the significance level of 0.05. In all the resin composites and wavelength range, correlation between CR and TSD was very high (r = -0.99). Correlations between each parameters varied by the wavelength range of fluorescence (410-500 nm) and no-fluorescence (510-750 nm). Correlation between OPS and TSD varied by the wavelength range (r = -0.86 to -0.94, Popalescence and fluorescence of resin composite varied by the wavelength.

  6. Effect of algae and water on water color shift

    Science.gov (United States)

    Yang, Shengguang; Xia, Daying; Yang, Xiaolong; Zhao, Jun

    1991-03-01

    This study showed that the combined effect of absorption of planktonic algae and water on water color shift can be simulated approximately by the exponential function: Log( E {100cm/ W }+ E {100cm/ Xch1})=0.002λ-2.5 where E {100/cm W }, E {100cm/ Xchl} are, respectively, extinction coefficients of seawater and chlorophyll—a (concentration is equal to X mg/m3), and λ (nm) is wavelength. This empirical regression equation is very useful for forecasting the relation between water color and biomass in water not affected by terrigenous material. The main factor affecting water color shift in the ocean should be the absorption of blue light by planktonic algae.

  7. The Verriest Lecture: Color lessons from space, time, and motion

    Science.gov (United States)

    Shevell, Steven K.

    2012-01-01

    The appearance of a chromatic stimulus depends on more than the wavelengths composing it. The scientific literature has countless examples showing that spatial and temporal features of light influence the colors we see. Studying chromatic stimuli that vary over space, time or direction of motion has a further benefit beyond predicting color appearance: the unveiling of otherwise concealed neural processes of color vision. Spatial or temporal stimulus variation uncovers multiple mechanisms of brightness and color perception at distinct levels of the visual pathway. Spatial variation in chromaticity and luminance can change perceived three-dimensional shape, an example of chromatic signals that affect a percept other than color. Chromatic objects in motion expose the surprisingly weak link between the chromaticity of objects and their physical direction of motion, and the role of color in inducing an illusory motion direction. Space, time and motion – color’s colleagues – reveal the richness of chromatic neural processing. PMID:22330398

  8. Spectral discrimination in color blind animals via chromatic aberration and pupil shape.

    Science.gov (United States)

    Stubbs, Alexander L; Stubbs, Christopher W

    2016-07-19

    We present a mechanism by which organisms with only a single photoreceptor, which have a monochromatic view of the world, can achieve color discrimination. An off-axis pupil and the principle of chromatic aberration (where different wavelengths come to focus at different distances behind a lens) can combine to provide "color-blind" animals with a way to distinguish colors. As a specific example, we constructed a computer model of the visual system of cephalopods (octopus, squid, and cuttlefish) that have a single unfiltered photoreceptor type. We compute a quantitative image quality budget for this visual system and show how chromatic blurring dominates the visual acuity in these animals in shallow water. We quantitatively show, through numerical simulations, how chromatic aberration can be exploited to obtain spectral information, especially through nonaxial pupils that are characteristic of coleoid cephalopods. We have also assessed the inherent ambiguity between range and color that is a consequence of the chromatic variation of best focus with wavelength. This proposed mechanism is consistent with the extensive suite of visual/behavioral and physiological data that has been obtained from cephalopod studies and offers a possible solution to the apparent paradox of vivid chromatic behaviors in color blind animals. Moreover, this proposed mechanism has potential applicability in organisms with limited photoreceptor complements, such as spiders and dolphins.

  9. Assessment of semen quality in pure and crossbred Jersey bulls

    Science.gov (United States)

    Kumar, Umesh; Gawande, Ajay P.; Sahatpure, Sunil K.; Patil, Manoj S.; Lakde, Chetan K.; Bonde, Sachin W.; Borkar, Pradnyankur L.; Poharkar, Ajay J.; Ramteke, Baldeo R.

    2015-01-01

    Aim: To compare the seminal attributes of neat, pre-freeze (at equilibration), and post-freeze (24 h after freezing) semen in pure and crossbred Jersey bulls. Materials and Methods: Total 36 ejaculates (3 ejaculates from each bull) were collected from 6 pure Jersey and 6 crossbred Jersey bulls and evaluated for various seminal attributes during neat, pre-freeze, and post-freeze semen. Results: The mean (±standard error [SE]) values of neat semen characteristics in pure and crossbred Jersey bulls were recorded such as volume (ml), color, consistency, mass activity (scale: 0-5), and sperm concentration (millions/ml). The extended semen was further investigated at pre-freeze and post-freeze stages and the mean (±SE) values recorded at neat, pre-freeze, and post-freeze semen were compared between pure and crossbred Jersey bulls; sperm motility (80.55±1.70%, 62.77±1.35%, 46.11±1.43% vs. 80.00±1.80%, 65.00±1.66%, 47.22±1.08%), live sperm count (83.63±1.08%, 71.72±1.09%, 58.67±1.02% vs. 80.00±1.08%, 67.91±1.20%, 51.63±0.97%), total abnormal sperm count (8.38±0.32%, 12.30±0.39%, 16.75±0.42% vs. 9.00±0.45%, 12.19±0.48%, 18.11±0.64%), hypo-osmotic swelling (HOS) reacted spermatozoa (71.88±0.77%, 62.05±0.80%, 47.27±1.05% vs. 72.77±1.02%, 62.11±0.89%, 45.94±1.33%), acrosome integrity (89.05±0.83%, 81.33±0.71%, 71.94±0.86% vs. 86.55±0.57%, 78.66±0.42%, 69.38±0.53%), and DNA integrity (99.88±0.07%, 100, 99.66±0.11% vs. 99.94±0.05%, 100, 99.44±0.18%,). The volume, color, consistency, sperm concentration, and initial motility in pure and crossbred Jersey bulls did not differ significantly (p>0.05). The mass activity was significantly (p0.05) was observed in abnormal sperm; HOS reacted spermatozoa and DNA integrity percentage among breeds. Conclusion: It may be concluded that the quality of pure Jersey bull semen was comparatively better than the crossbred Jersey bulls. PMID:27047028

  10. Butterfly wing coloration studied with a novel imaging scatterometer

    Science.gov (United States)

    Stavenga, Doekele

    2010-03-01

    Animal coloration functions for display or camouflage. Notably insects provide numerous examples of a rich variety of the applied optical mechanisms. For instance, many butterflies feature a distinct dichromatism, that is, the wing coloration of the male and the female differ substantially. The male Brimstone, Gonepteryx rhamni, has yellow wings that are strongly UV iridescent, but the female has white wings with low reflectance in the UV and a high reflectance in the visible wavelength range. In the Small White cabbage butterfly, Pieris rapae crucivora, the wing reflectance of the male is low in the UV and high at visible wavelengths, whereas the wing reflectance of the female is higher in the UV and lower in the visible. Pierid butterflies apply nanosized, strongly scattering beads to achieve their bright coloration. The male Pipevine Swallowtail butterfly, Battus philenor, has dorsal wings with scales functioning as thin film gratings that exhibit polarized iridescence; the dorsal wings of the female are matte black. The polarized iridescence probably functions in intraspecific, sexual signaling, as has been demonstrated in Heliconius butterflies. An example of camouflage is the Green Hairstreak butterfly, Callophrys rubi, where photonic crystal domains exist in the ventral wing scales, resulting in a matte green color that well matches the color of plant leaves. The spectral reflection and polarization characteristics of biological tissues can be rapidly and with unprecedented detail assessed with a novel imaging scatterometer-spectrophotometer, built around an elliptical mirror [1]. Examples of butterfly and damselfly wings, bird feathers, and beetle cuticle will be presented. [4pt] [1] D.G. Stavenga, H.L. Leertouwer, P. Pirih, M.F. Wehling, Optics Express 17, 193-202 (2009)

  11. Spectral sensitivities and color signals in a polymorphic damselfly.

    Directory of Open Access Journals (Sweden)

    Shao-chang Huang

    Full Text Available Animal communication relies on conspicuous signals and compatible signal perception abilities. Good signal perception abilities are particularly important for polymorphic animals where mate choice can be a challenge. Behavioral studies suggest that polymorphic damselflies use their varying body colorations and/or color patterns as communication signal for mate choice and to control mating frequencies. However, solid evidence for this hypothesis combining physiological with spectral and behavioral data is scarce. We investigated this question in the Australian common blue tail damselfly, Ischnura heterosticta, which has pronounced female-limited polymorphism: andromorphs have a male-like blue coloration and gynomorphs display green/grey colors. We measured body color reflectance and investigated the visual capacities of each morph, showing that I. heterosticta have at least three types of photoreceptors sensitive to UV, blue, and green wavelength, and that this visual perception ability enables them to detect the spectral properties of the color signals emitted from the various color morphs in both males and females. We further demonstrate that different color morphs can be discriminated against each other and the vegetation based on color contrast. Finally, these findings were supported by field observations of natural mating pairs showing that mating partners are indeed chosen based on their body coloration. Our study provides the first comprehensive evidence for the function of body coloration on mate choice in polymorphic damselflies.

  12. Synthesis of multi-wavelength temporal phase-shifting algorithms optimized for high signal-to-noise ratio and high detuning robustness using the frequency transfer function

    OpenAIRE

    Servin, Manuel; Padilla, Moises; Garnica, Guillermo

    2016-01-01

    Synthesis of single-wavelength temporal phase-shifting algorithms (PSA) for interferometry is well-known and firmly based on the frequency transfer function (FTF) paradigm. Here we extend the single-wavelength FTF-theory to dual and multi-wavelength PSA-synthesis when several simultaneous laser-colors are present. The FTF-based synthesis for dual-wavelength PSA (DW-PSA) is optimized for high signal-to-noise ratio and minimum number of temporal phase-shifted interferograms. The DW-PSA synthesi...

  13. Evaluation of a color fused dual-band NVG

    NARCIS (Netherlands)

    Hogervorst, M.A.; Toet, A.

    2009-01-01

    We have tested a prototype dual-band NVG system consisting of two NVGs fitted with filters that split the NVG sensitive range into a short (visual) and a long wavelength (NIR) band. The Color-the-night technique (see Hogervorst & Toet, SPIE D&S ‘08) was used to fuse the images of the two sensors. We

  14. Quantification and analysis of color stability based on thermal transient behavior in white LED lamps.

    Science.gov (United States)

    Nisa Khan, M

    2017-09-20

    We present measurement and analysis of color stability over time for two categories of white LED lamps based on their thermal management scheme, which also affects their transient lumen depreciation. We previously reported that lumen depreciation in LED lamps can be minimized by properly designing the heat sink configuration that allows lamps to reach a thermal equilibrium condition quickly. Although it is well known that lumen depreciation degrades color stability of white light since color coordinates vary with total lumen power by definition, quantification and characterization of color shifts based on thermal transient behavior have not been previously reported in literature for LED lamps. Here we provide experimental data and analysis of transient color shifts for two categories of household LED lamps (from a total of six lamps in two categories) and demonstrate that reaching thermal equilibrium more quickly provides better stability for color rendering, color temperature, and less deviation of color coordinates from the Planckian blackbody locus line, which are all very important characterization parameters of color for white light. We report for the first time that a lamp's color degradation from the turn-on time primarily depends on thermal transient behavior of the semiconductor LED chip, which experiences a wavelength shift as well as a decrease in its dominant wavelength peak value with time, which in turn degrades the phosphor conversion. For the first time, we also provide a comprehensive quantitative analysis that differentiates color degradation due to the heat rise in GaN/GaInN LED chips and subsequently the boards these chips are mounted on-from that caused by phosphor heating in a white LED module. Finally, we briefly discuss why there are some inevitable trade-offs between omnidirectionality and color and luminous output stability in current household LED lamps and what will help eliminate these trade-offs in future lamp designs.

  15. [Effect of different excitation monitoring wavelengths on emission spectrum of red long afterglow phosphor Sr3Al2O6 : Eu2+, Dy3+].

    Science.gov (United States)

    Cui, Cai-e; Li, Jian; Huang, Ping; Liang, Li-ping; Wu, Yin-lan

    2012-01-01

    The Eu2+ and Dy3+ ion co-doped Sr3Al2O6 phosphor powders with long afterglow were prepared with high temperature solid-state reaction. The phase and the spectra properties of the material were characterized by X-ray diffraction (XRD) and fluorescence spectrophotometer. It was found that the sample is composed of pure Sr3Al2O6 phase. Furthermore, the emission peak of 537 nm under 360 nm excitation and that of 590 nm excited by 468 nm-light were obtained, respectively, and it is more interesting that the emission peaks were at 537 and 590 nm under 394 nm excitation. The effects of different excitation wavelengths on the emission spectrum were explained reasonably by the effect of nephelauxetic effect and crystal field. It revealed that the two types of luminescence with different color were caused by the differences of the center of gravity of the 5d excited state energy level and the split range of 5d energy level.

  16. Two-Color Single-Photon Photoinitiation and Photoinhibition for Subdiffraction Photolithography

    Science.gov (United States)

    Scott, Timothy F.; Kowalski, Benjamin A.; Sullivan, Amy C.; Bowman, Christopher N.; McLeod, Robert R.

    2009-05-01

    Controlling and reducing the developed region initiated by photoexposure is one of the fundamental goals of optical lithography. Here, we demonstrate a two-color irradiation scheme whereby initiating species are generated by single-photon absorption at one wavelength while inhibiting species are generated by single-photon absorption at a second, independent wavelength. Co-irradiation at the second wavelength thus reduces the polymerization rate, delaying gelation of the material and facilitating enhanced spatial control over the polymerization. Appropriate overlapping of the two beams produces structures with both feature sizes and monomer conversions otherwise unobtainable with use of single- or two-photon absorption photopolymerization. Additionally, the generated inhibiting species rapidly recombine when irradiation with the second wavelength ceases, allowing for fast sequential exposures not limited by memory effects in the material and thus enabling fabrication of complex two- or three-dimensional structures.

  17. Multi-Wavelength Studies on H2O Maser Host Galaxies J. S. Zhang ...

    Indian Academy of Sciences (India)

    on two projects: X-ray data analysis of individual maser source using. X-ray penetrability to explore maser host obscured AGN; multi- wavelength ... Figure 1. Adaptively smoothed three-color image in 0.3–8.0keV and spectra with fitting ... It provides a perspective to improve the accuracy of the Hubble constant H0 and to.

  18. Coloring of Topaz After Irradiation

    International Nuclear Information System (INIS)

    Salama, S.; Helal, A.I.; Gomaa, M.A.M.; Abou-Salem, L.I.; Nafie, H.; Badawi, E.A.

    2011-01-01

    Raw topaz stone samples are subjected to irradiation by neutrons from the Egyptian research reactor and by γ rays from a gamma source. Changes in the color of the stones are observed which can be attributed to the formation of defects in the structure of the stones. The defects can absorb certain wave length which is observed as a change in the stone color .The absorption of light is investigated by an optical spectrophotometer technique at different irradiation and heating conditions. Raman studies of topaz stones showed a relation between the color changes with changes in the intensities of the band of scattered peaks corresponding to OH group stretching modes of vibration.Positron Annihilation Spectroscopy (PAS) technique is used to study the behavior of defect concentration in topaz in two states; pure and irradiated stones by neutrons and γ. It has been shown that positrons are trapped in imperfect locations in topaz samples and their mean lifetime can be influenced by changes in the concentration of such defects.

  19. Optical characterization of pure vegetable oils and their biodiesels using Raman spectroscopy

    International Nuclear Information System (INIS)

    Firdous, S; Anwar, S; Waheed, A; Maraj, M

    2016-01-01

    Great concern regarding energy resources and environmental polution has increased interest in the study of alternative sources of energy. Biodiesels as an alternative fuel provide a suitable diesel oil substitute for internal combustion engines. The Raman spectra of pure biodiesels of soybean oil, olive oil, coconut oil, animal fats, and petroleum diesel are optically characterized for quality and biofuel as an alternative fuel. The most significant spectral differences are observed in the frequency range around 1457 cm −1 for pure petroleum diesel, 1427 for fats biodiesel, 1670 cm −1 for pure soybean oil, 1461 cm −1 for soybean oil based biodiesel, 1670 cm −1 for pure olive oil, 1666 cm −1 for olive oil based biodiesel, 1461 cm −1 for pure coconut oil, and 1460 cm −1 for coconut oil based biodiesel, which is used for the analysis of the phase composition of oils. A diode pump solid-state laser with a 532 nm wavelength is used as an illuminating light. It is demonstrated that the peak positions and relative intensities of the vibrations of the oils can be used to identify the biodiesel quality for being used as biofuel. (paper)

  20. On-chip skin color detection using a triple-well CMOS process

    Science.gov (United States)

    Boussaid, Farid; Chai, Douglas; Bouzerdoum, Abdesselam

    2004-03-01

    In this paper, a current-mode VLSI architecture enabling on read-out skin detection without the need for any on-chip memory elements is proposed. An important feature of the proposed architecture is that it removes the need for demosaicing. Color separation is achieved using the strong wavelength dependence of the absorption coefficient in silicon. This wavelength dependence causes a very shallow absorption of blue light and enables red light to penetrate deeply in silicon. A triple-well process, allowing a P-well to be placed inside an N-well, is chosen to fabricate three vertically integrated photodiodes acting as the RGB color detector for each pixel. Pixels of an input RGB image are classified as skin or non-skin pixels using a statistical skin color model, chosen to offer an acceptable trade-off between skin detection performance and implementation complexity. A single processing unit is used to classify all pixels of the input RGB image. This results in reduced mismatch and also in an increased pixel fill-factor. Furthermore, the proposed current-mode architecture is programmable, allowing external control of all classifier parameters to compensate for mismatch and changing lighting conditions.

  1. On the Color of the Orinoco River Plume

    Science.gov (United States)

    Odriozola, A.; Muller-Karger, F.; Carder, K.; Hu, C.; Varela, R.

    2005-05-01

    In situ measurements were used to study the bio-optical properties of marine waters within the Gulf of Paria (GOP, Venezuela) and in the Southeastern Caribbean Sea (SEC) as they are affected by the seasonal discharge of the Orinoco River plume. The main purpose of this study was to determine the impact of colored dissolved organic matter (CDOM) (also known as Gelbstoff), phytoplankton, and total suspended matter (TSM) in the color of the Orinoco River plume. This information is essential for regional ocean color algorithms development. Salinity and silica values indicate that the GOP and SEC waters were under the influence of the Orinoco River plume during both seasons. This riverine influence resulted in high values of Gelbstoff absorption, ag(λ), which contributed to up to 90% of the total absorption at 440 nm in both the GOP and SEC regardless of the season. Phytoplankton absorption contributions were normally around 5%, but during the dry season these values reached 20% in the SEC. Ratios of ag(440) to ph(440) were extremely large, with most of the values ranging from 10 to 50. Due to the strong absorption by Gelbstoff, light at the blue wavelengths (412 nm, 440 nm and 490 nm) was attenuated to 1% of the subsurface irradiance in the first 5 m of the water column within the GOP, and in the first 10 m of the water column in the SEC. Furthermore, the absorption by Gelbstoff significantly decreased the water leaving radiance (Lw(λ)) in the blue wavelengths along the Orinoco River plume. As ag(λ) relatively decreased from the GOP to the SEC (mean ~1.6 m-1 and mean ~0.9 m-1, respectively), a shift in the maximum peak of Rrs(λ) spectra (Rrsmax(λ)), towards shorter wavelengths (from ~ 580 nm to ~500 nm) was observed. Similar to Gelbstoff, concentrations of TSM normally decreased from the stations near the Delta to the stations in the SEC. The impact of TSM on the color of the Orinoco plume was represented by a reduction in the magnitude of Rrsmax(λ) of ~50% going

  2. Surface photo-discoloration and degradation of dyed wood veneer exposed to different wavelengths of artificial light

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083 (China); Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083 (China); MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083 (China); Forest Products Development Center, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36830 (United States); Shao, Lingmin [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083 (China); Gao, Jianmin, E-mail: jmgao@bjfu.edu.cn [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083 (China); Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083 (China); MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083 (China); Guo, Hongwu, E-mail: hwg5052@163.com [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083 (China); Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083 (China); MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083 (China); Chen, Yao [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083 (China); Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083 (China); MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083 (China); Cheng, Qingzheng; Via, Brian K. [Forest Products Development Center, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36830 (United States)

    2015-03-15

    Highlights: • Investigate the selective absorption of different wavelengths of UV–vis light by dyed wood chromophores. • Identify connection between light wavelengths and surface color changes and chemical structure degradation. • Study hypochromic effect based on surface reflectance and K/S absorption changes during UV–vis irradiation. - Abstract: The surface of dyed wood is prone to discoloration when exposed to light irradiation which significantly decreases its decorative effect and shortens its service life. The influence of light wavelength exposure to the surface of dyed wood was investigated to study the effect on discoloration and degradation. Acid Blue V and Acid Red GR dyed wood veneers were subjected to light exposure with different wavelengths from the UV to visible region (254–420 nm). Results showed that the surface discoloration of dyed wood was linearly related to lignin concentration and dyes degradation and the consequent transformation of chromophoric groups such as aromatic (C=C) and carbonyl (C=O) through methoxy reaction. The dyes, lignin and some active constituents were degraded severely, even at short exposures. Acid Blue V dyed wood exhibited greater discoloration than the Acid Red GR treatment. The reflectance and K/S absorption curve showed a hypochromic effect on the dyed wood surface. The dyes and wood chemical structure played a complex and combined role on the selective absorption of different wavelengths of light. The color change rate was apparent with 254 nm exposure in the initial stages, but a greater discoloration rate occurred on the samples irradiated at 313 and 340 nm than at 254 and 420 nm with the time prolonged. The degradation rate and degree of discoloration correlated well with the light energy and wavelength.

  3. Selective colors reflection from stratified aragonite calcium carbonate plates of mollusk shells.

    Science.gov (United States)

    Lertvachirapaiboon, Chutiparn; Parnklang, Tewarak; Pienpinijtham, Prompong; Wongravee, Kanet; Thammacharoen, Chuchaat; Ekgasit, Sanong

    2015-08-01

    An interaction between the incident light and the structural architecture within the shell of Asian green mussel (Perna viridis) induces observable pearlescent colors. In this paper, we investigate the influence of the structural architecture on the expressed colors. After a removal of the organic binder, small flakes from crushed shells show vivid rainbow reflection under an optical microscope. An individual flake expresses vivid color under a bright-field illumination while become transparent under a dark-field illumination. The expressed colors of the aragonite flakes are directly associated with its structural architecture. The flakes with aragonite thickness of 256, 310, and 353 nm, respectively, appear blue, green, and red under an optical microscope. The spectral simulation corroborates the experimentally observed optical effects as the flakes with thicker aragonite layers selectively reflected color with longer wavelengths. Flakes with multiple aragonite thicknesses expressed multi-color as the upper aragonite layers allow reflected colors from the lower layers to be observed. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The Aesthetics of Astrophysics: How to Make Appealing Color-composite Images that Convey the Science

    Science.gov (United States)

    Rector, Travis A.; Levay, Zoltan G.; Frattare, Lisa M.; Arcand, Kimberly K.; Watzke, Megan

    2017-05-01

    Astronomy has a rich tradition of using color photography and imaging, for visualization in research as well as for sharing scientific discoveries in formal and informal education settings (i.e., for “public outreach”). In the modern era, astronomical research has benefitted tremendously from electronic cameras that allow data and images to be generated and analyzed in a purely digital form with a level of precision that previously was not possible. Advances in image-processing software have also enabled color-composite images to be made in ways that are much more complex than with darkroom techniques, not only at optical wavelengths but across the electromagnetic spectrum. The Internet has made it possible to rapidly disseminate these images to eager audiences. Alongside these technological advances, there have been gains in understanding how to make images that are scientifically illustrative as well as aesthetically pleasing. Studies have also given insights on how the public interprets astronomical images and how that can be different than professional astronomers. An understanding of these differences will help in the creation of images that are meaningful to both groups. In this invited review, we discuss the techniques behind making color-composite images as well as examine the factors one should consider when doing so, whether for data visualization or public consumption. We also provide a brief history of astronomical imaging with a focus on the origins of the "modern era" during which distribution of high-quality astronomical images to the public is a part of nearly every professional observatory's public outreach. We review relevant research into the expectations and misconceptions that often affect the public's interpretation of these images.

  5. Noctilucent cloud particle size determination based on multi-wavelength all-sky analysis

    Science.gov (United States)

    Ugolnikov, Oleg S.; Galkin, Alexey A.; Pilgaev, Sergey V.; Roldugin, Alexey V.

    2017-10-01

    The article deals with the analysis of color distribution in noctilucent clouds (NLC) in the sky based on multi-wavelength (RGB) CCD-photometry provided with the all-sky camera in Lovozero in the north of Russia (68.0°N, 35.1°E) during the bright expanded NLC performance in the night of August 12, 2016. Small changes in the NLC color across the sky are interpreted as the atmospheric absorption and extinction effects combined with the difference in the Mie scattering functions of NLC particles for the three color channels of the camera. The method described in this paper is used to find the effective monodisperse radius of particles about 55 nm. The result of these simple and cost-effective measurements is in good agreement with previous estimations of comparable accuracy. Non-spherical particles, Gaussian and lognormal distribution of the particle size are also considered.

  6. Color tunability of Sm{sup 3+} doped antimony–phosphate glass phosphors showing broadband fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, P. [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Zhang, J.J., E-mail: zhangjj@dlpu.edu.cn [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Shen, L.F. [Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Wang, Z.Q. [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Pun, E.Y.B. [Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Lin, H., E-mail: lhai8686@yahoo.com [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2016-10-15

    Sm{sup 3+} doped multicomponent antimony phosphate (MSP) luminescent glasses were prepared and tunable white fluorescence has been investigated. Broad visible emission depending on excitation wavelength is validated to be dominated by discrepant Sb{sup 3+} emitting centers. Group of narrow emissions from Sm{sup 3+} is beneficial to adding yellow and red components in Sm{sup 3+} doped MSP glasses, which is strengthened by effective energy transfer from Sb{sup 3+} to Sm{sup 3+}. Excitation wavelength selection and Sm{sup 3+} concentration adjustment are two feasible routes to optimize luminescence color in Sm{sup 3+} doped MSP glasses and the color tunability of fluorescence indicates that amorphous Sm{sup 3+} doped MSP glass phosphors possess potential for ideal white light devices.

  7. A Linear Criterion to sort Color Components in Images

    Directory of Open Access Journals (Sweden)

    Leonardo Barriga Rodriguez

    2017-01-01

    Full Text Available The color and its representation play a basic role in Image Analysis process. Several methods can be beneficial whenever they have a correct representation of wave-length variations used to represent scenes with a camera. A wide variety of spaces and color representations is founded in specialized literature. Each one is useful in concrete circumstances and others may offer redundant color information (for instance, all RGB components are high correlated. This work deals with the task of identifying and sorting which component from several color representations offers the majority of information about the scene. This approach is based on analyzing linear dependences among each color component, by the implementation of a new sorting algorithm based on entropy. The proposal is tested in several outdoor/indoor scenes with different light conditions. Repeatability and stability are tested in order to guarantee its use in several image analysis applications. Finally, the results of this work have been used to enhance an external algorithm to compensate the camera random vibrations.

  8. COLOR OF THE STARS: Oh Be A Fine Girl, Kiss Me!

    Science.gov (United States)

    Zambrano, L. F.; Boyle, R. P.; Janusz, R.; University-School "Ignatianum" Kracow, Poland Collaboration; A. G. Davis-InstituteSpace Observations Collaboration

    2005-12-01

    Classification of stars by color is important in stellar studies because from it we are able to attain essential information about stars like: temperature, composition, age and mass; from these we can also derive its history, and future evolution!. This classification can be done by photometry or spectroscopy. Photometry provides information from more stars in a given field of view, magnitude and approximate size. The Strömvil photometric system, developed by V. Straizys (Vilnius Observatory, Lithuania), allows more precise photometry using 7 filters, ranging from 330-700 nm. Since the color of a star is associated with the wavelength of the electromagnetic radiation of light emitted by it, each filter allows only certain wavelengths to go through into the CCD camera; then, each neighboring wavelength band can be compared against the others and the color relationship can be converted to magnitude. Our Milky Way galaxy has billions of stars, of which we only have information from a small set. We obtained images of the NGC6811 and NGC6819 Open clusters, and the M56 Globular cluster at the Vatican Advanced Technology Telescope in Mt Graham AZ. During an 8 night observing run, images were taken in each filter with 3 different pointings overlapping by 2 arc-min. Calibration by known standards from A. Kazlauskas (e.i. Baltic Astronomy Vol II) that fall in the observed regions will be done. From this photometry other star information; such as luminosity, distance, metallicity, surface gravity, and spectral class will be determined.

  9. Effects of saturation and contrast polarity on the figure-ground organization of color on gray

    OpenAIRE

    Dresp-Langley, Birgitta; Reeves, Adam

    2014-01-01

    International audience; Poorly saturated colors are closer to a pure grey than strongly saturated ones and, therefore, appear less " colorful ". Color saturation is effectively manipulated in the visual arts for balancing conflicting sensations and moods and for inducing the perception of relative distance in the pictorial plane. While perceptual science has proven quite clearly that the luminance contrast of any hue acts as a self-sufficient cue to relative depth in visual images, the role o...

  10. Reproducing the hierarchy of disorder for Morpho-inspired, broad-angle color reflection

    DEFF Research Database (Denmark)

    Song, Bokwang; Johansen, Villads Egede; Sigmund, Ole

    2017-01-01

    on the positional disorder among the identical, multilayered ridges as the critical factor for producing angular independent color. Realizing such positional disorder of identical nanostructures is difficult, which in turn has limited experimental verification of different physical mechanisms that have been...... proposed. In this paper, we suggest an alternative model of inter-structural disorder that can achieve the same broad-angle color reflection, and is applicable to wafer-scale fabrication using conventional thin film technologies. Fabrication of a thin film that produces pure, stable blue across a viewing...... angle of more than 120 ° is demonstrated, together with a robust, conformal color coating....

  11. Color management: printing processes - opportunities and limitations

    Science.gov (United States)

    Ingram, Samuel T.

    2002-06-01

    Digital tools have impacted traditional methods employed to reproduce color images during the past decade. The shift from a purely photomechanical process in color reproduction to colorimetric reproduction offers tremendous opportunity in the graphic arts industry. But good things do not necessarily come to all in the same package. Printing processes possess different reproduction attributes: tone reproduction, gray balance and color correction requirements are as different as the ingredient sets selected for color reproduction. This paper will provide insight toward understanding advantages and limitations offered by the new digital technologies in printing, publishing and packaging. For the past five years the Clemson University Graphic Communications Department has conducted numerous color projects using the new digital colorimetric tools during the previous decade. Several approaches have been used including experimental research and typical production workflows. The use of colorimetric data in color reproduction has given an opportunity to realize real gains in color use, predictability and consistency. Meeting an image's separation and reproduction requirements for a specified printing process can involve disruption of the anticipated workflow. Understanding the printing process requirements and the fit within the specifications of a colorimetric workflow are critical to the successful adoption of a color managed workflow. The paper will also provide an insight into the issues and challenges experienced with a color managed workflow. The printing processes used include offset litho, narrow and wide-web flexography (paper, liner board, corrugated and film), screen printing (paper board and polycarbonates), and digital imaging with toner, ink and inkjet systems. A proposal for technology integration will be the focus of the presentation drawn from documented experiences in over 300 applications of color management tools. Discussion will include the structure of

  12. [Chromaticity and optical spectrum colorimetry of the tongue color in different syndromes of primary hepatic carcinoma].

    Science.gov (United States)

    Xu, Ying; Zeng, Chang-chun; Cai, Xiu-yu; Guo, Rong-ping; Nie, Guang; Jin, Ying

    2012-11-01

    In this study, the optical data of tongue color of different syndromes in primary hepatic carcinoma (PHC) were detected by optical spectrum colorimetry, and the chromaticity of tongue color was compared and analyzed. The tongue color characteristics of different syndromes in PHC and the relationship between different syndromes and tongue color were also investigated. Tongue color data from 133 eligible PHC patients were collected by optical spectrum colorimetry and the patients were divided into 4 syndrome groups according to their clinical features. The syndrome groups were liver depression and spleen deficiency (LDSD), accumulation of damp-heat (ADH), deficiency of liver and kidney yin (DLKY), and qi stagnation and blood stasis (QSBS). The variation characteristics of chromaticity coordinates, dominant wavelength, excitation purity and the distribution in the International Commission on Illumination (CIE) LAB uniform color space were measured. At the same time, the differences of overall chromatism, clarity, chroma, saturation and hue were also calculated and analyzed. PHC patients in different syndrome groups exhibited differences in chromaticity coordinates. The dominant wavelength of QSBS was distinctly different from that of the other 3 syndromes. Excitation purity in the syndromes of LDSD, ADH and DLKY showed gradual increases (Pcolorimetry technology. Different syndromes in PHC exhibit distinct chromatisms of tongue color through the calculation and analysis of chromaticity parameters of CIE, combined with colorimetric system and CIE LAB color space, and these are consistent with the characteristics of clinical tongue color. Applying optical spectrum colorimetry technology to tongue color differentiation has the potential to serve as a reference point in standardizing traditional Chinese medicine syndrome classification in PHC.

  13. Volume phase holographic grating used for beams combination of RGB primary colors

    Science.gov (United States)

    Liu, Hui; Zhang, Xizhao; Tang, Minxue

    2013-12-01

    Volume phase holographic grating (VPHG) has the characteristics of high diffraction efficiency, high signal to noise ratio, high wavelength and angular selectivity, low scattering , low absorption and low cost. It has been widely used in high resolution spectrometer, wavelength division multiplexing and pulse compression technique. In this paper, a novel kind of RGB primary colors beams combiner which is consisted of a transmission VPHG and a reflection VPHG as core components is proposed. The design idea of the element is described in detail. Based on the principle of VPHG, the rigorous coupled wave analysis (RCWA) and Kogelnik's coupled wave theory, diffraction properties of the transmission and reflection VPHG are studied theoretically. As an example, three primary colors at wavelengths of 632.8nm, 532nm and 476.5nm are taken into account. Dichromated gelatin (DCG) is used as the holographic recording material. The grating parameters are determined by the Bragg conditions. The TE and TM wave diffraction efficiency, the wavelength selectivity and the angular selectivity of the transmission and reflection VPHG are calculated and optimized by setting the amplitude of the index modulation (Δn) and the thickness of the gelatin layer (d) by applying Kogelnik's coupled wave theory and G-solver software, respectively. The theoretical calculating results give guidance for further manufacture of the element.

  14. Plasmonic color metasurfaces fabricated by a high speed roll-to-roll method

    DEFF Research Database (Denmark)

    Murthy, Swathi; Pranov, Henrik; Feidenhans'l, Nikolaj Agentoft

    2017-01-01

    Lab-scale plasmonic color printing using nano-structured and subsequently metallized surfaces have been demonstrated to provide vivid colors. However, upscaling these structures for large area manufacturing is extremely challenging due to the requirement of nanometer precision of metal thickness....... In this study, we have investigated a plasmonic color meta-surface design that can be easily upscaled. We have demonstrated the feasibility of fabrication of these plasmonic color surfaces by a high-speed roll-to-roll method, comprising roll-to-roll extrusion coating at 10 m min-1 creating a polymer foil having...... 100 nm deep pits of varying sub-wavelength diameter and pitch length. Subsequently this polymer foil was metallized and coated also by high-speed roll-to-roll methods. The perceived colors have high tolerance towards the thickness of the metal layer, when this thickness exceeds the depths of the pits...

  15. Visual wetness perception based on image color statistics.

    Science.gov (United States)

    Sawayama, Masataka; Adelson, Edward H; Nishida, Shin'ya

    2017-05-01

    Color vision provides humans and animals with the abilities to discriminate colors based on the wavelength composition of light and to determine the location and identity of objects of interest in cluttered scenes (e.g., ripe fruit among foliage). However, we argue that color vision can inform us about much more than color alone. Since a trichromatic image carries more information about the optical properties of a scene than a monochromatic image does, color can help us recognize complex material qualities. Here we show that human vision uses color statistics of an image for the perception of an ecologically important surface condition (i.e., wetness). Psychophysical experiments showed that overall enhancement of chromatic saturation, combined with a luminance tone change that increases the darkness and glossiness of the image, tended to make dry scenes look wetter. Theoretical analysis along with image analysis of real objects indicated that our image transformation, which we call the wetness enhancing transformation, is consistent with actual optical changes produced by surface wetting. Furthermore, we found that the wetness enhancing transformation operator was more effective for the images with many colors (large hue entropy) than for those with few colors (small hue entropy). The hue entropy may be used to separate surface wetness from other surface states having similar optical properties. While surface wetness and surface color might seem to be independent, there are higher order color statistics that can influence wetness judgments, in accord with the ecological statistics. The present findings indicate that the visual system uses color image statistics in an elegant way to help estimate the complex physical status of a scene.

  16. Comparative Thermal Degradation Patterns of Natural Yellow Colorants Used in Foods.

    Science.gov (United States)

    Giménez, Pedro J; Fernández-López, José A; Angosto, José M; Obón, José M

    2015-12-01

    There is a great interest in natural yellow colorants due to warnings issued about certain yellow food colorings of synthetic origin. However, no comparative studies have been reported of their thermal stability. For this reason, the thermal stabilities of six natural yellow colorants used in foods--lutein, riboflavin, curcumin, ß-carotene, gardenia yellow and Opuntia betaxanthins--were studied in simple solutions over a temperature range 30-90 °C. Spectral properties and visual color were investigated during 6 h of heat treatment. Visual color was monitored from the CIEL*a*b* parameters. The remaining absorbance at maximum wavelength and the total color difference were used to quantify color degradation. The rate of color degradation increased as the temperature rose. The results showed that the thermal degradation of the colorants followed a first-order reaction kinetics. The reaction rate constants and half-life periods were determined as being central to understanding the color degradation kinetics. The temperature-dependent degradation was adequately modeled on the Arrhenius equation. Activation energies ranged from 3.2 kJmol(-1) (lutein) to 43.7 kJmol(-1) (Opuntia betaxanthins). ß-carotene and lutein exhibited high thermal stability, while betaxanthins and riboflavin degraded rapidly as temperature increased. Gardenia yellow and curcumin were in an intermediate position.

  17. Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness.

    Science.gov (United States)

    Carroll, Joseph; Neitz, Maureen; Hofer, Heidi; Neitz, Jay; Williams, David R

    2004-06-01

    There is enormous variation in the X-linked L/M (long/middle wavelength sensitive) gene array underlying "normal" color vision in humans. This variability has been shown to underlie individual variation in color matching behavior. Recently, red-green color blindness has also been shown to be associated with distinctly different genotypes. This has opened the possibility that there may be important phenotypic differences within classically defined groups of color blind individuals. Here, adaptive optics retinal imaging has revealed a mechanism for producing dichromatic color vision in which the expression of a mutant cone photopigment gene leads to the loss of the entire corresponding class of cone photoreceptor cells. Previously, the theory that common forms of inherited color blindness could be caused by the loss of photoreceptor cells had been discounted. We confirm that remarkably, this loss of one-third of the cones does not impair any aspect of vision other than color.

  18. Versatile single-molecule multi-color excitation and detection fluorescence setup for studying biomolecular dynamics

    KAUST Repository

    Sobhy, M. A.

    2011-11-07

    Single-molecule fluorescence imaging is at the forefront of tools applied to study biomolecular dynamics both in vitro and in vivo. The ability of the single-molecule fluorescence microscope to conduct simultaneous multi-color excitation and detection is a key experimental feature that is under continuous development. In this paper, we describe in detail the design and the construction of a sophisticated and versatile multi-color excitation and emission fluorescence instrument for studying biomolecular dynamics at the single-molecule level. The setup is novel, economical and compact, where two inverted microscopes share a laser combiner module with six individual laser sources that extend from 400 to 640 nm. Nonetheless, each microscope can independently and in a flexible manner select the combinations, sequences, and intensities of the excitation wavelengths. This high flexibility is achieved by the replacement of conventional mechanical shutters with acousto-optic tunable filter (AOTF). The use of AOTF provides major advancement by controlling the intensities, duration, and selection of up to eight different wavelengths with microsecond alternation time in a transparent and easy manner for the end user. To our knowledge this is the first time AOTF is applied to wide-field total internal reflection fluorescence (TIRF) microscopy even though it has been commonly used in multi-wavelength confocal microscopy. The laser outputs from the combiner module are coupled to the microscopes by two sets of four single-mode optic fibers in order to allow for the optimization of the TIRF angle for each wavelength independently. The emission is split into two or four spectral channels to allow for the simultaneous detection of up to four different fluorophores of wide selection and using many possible excitation and photoactivation schemes. We demonstrate the performance of this new setup by conducting two-color alternating excitation single-molecule fluorescence resonance energy

  19. Structural coloration of metallic surfaces with micro/nano-structures induced by elliptical vibration texturing

    Science.gov (United States)

    Yang, Yang; Pan, Yayue; Guo, Ping

    2017-04-01

    Creating orderly periodic micro/nano-structures on metallic surfaces, or structural coloration, for control of surface apparent color and optical reflectivity has been an exciting research topic over the years. The direct applications of structural coloration include color marking, display devices, and invisibility cloak. This paper presents an efficient method to colorize metallic surfaces with periodic micro/nano-gratings using elliptical vibration texturing. When the tool vibration is coupled with a constant cutting velocity, controlled periodic ripples can be generated due to the overlapping tool trajectory. These periodic ripples with a wavelength near visible spectrum can act as micro-gratings to introduce iridescent colors. The proposed technique also provides a flexible method for color marking of metallic surfaces with arbitrary patterns and images by precise control of the spacing distance and orientation of induced micro/nano-ripples. Theoretical analysis and experimental results are given to demonstrate structural coloration of metals by a direct mechanical machining technique.

  20. OLED-based physiologically-friendly very low-color temperature illumination for night

    Science.gov (United States)

    Jou, Jwo-Huei; Shen, Shih-Ming; Tang, Ming-Chun; Chen, Pin-Chu; Chen, Szu-Hao; Wang, Yi-Shan; Chen, Chien-Chih; Wang, Ching-Chun; Hsieh, Chun-Yu; Lin, Chin-Chiao; Chen, Chien-Tien

    2012-09-01

    Numerous medical research studies reveal intense white or blue light to drastically suppress at night the secretion of melatonin (MLT), a protective oncostatic hormone. Lighting devices with lower color-temperature (CT) possess lesser MLT suppression effect based on the same luminance, explaining why physicians have long been calling for the development of lighting sources with low CT or free from blue emission for use at night to safeguard human health. We will demonstrate in the presentation the fabrication of OLED devices with very-low CT, especially those with CT much lower than that of incandescent bulbs (2500K) or even candles (2000K). Without any light extraction method, OLEDs with an around 1800K CT are easily obtainable with an efficacy of 30 lm/W at 1,000 nits. To also ensure high color-rendering to provide visual comfort, low CT OLEDs composing long wavelength dominant 5-spectrum emission have been fabricated. While keeping the color-rendering index as high as 85 and CT as low as 2100K, the resulting efficacy can also be much greater than that of incandescent bulbs (15 lm/W), proving these low CT OLED devices to be also capable of being energy-saving and high quality. The color-temperature can be further decreased to 1700K or lower upon removing the undesired short wavelength emission but on the cost of losing some color rendering index. It is hoped that the devised energy-saving, high quality low CT OLED could properly echo the call for a physiologically-friendly illumination for night, and more attention could be drawn to the development of MLT suppression-less non-white light.

  1. All-Dielectric Full-Color Printing with TiO2 Metasurfaces.

    Science.gov (United States)

    Sun, Shang; Zhou, Zhenxing; Zhang, Chen; Gao, Yisheng; Duan, Zonghui; Xiao, Shumin; Song, Qinghai

    2017-05-23

    Recently, color generation in resonant nanostructures have been intensively studied. Despite of their exciting progresses, the structural colors are usually generated by the plasmonic resonances of metallic nanoparticles. Due to the inherent plasmon damping, such plasmonic nanostructures are usually hard to create very distinct color impressions. Here we utilize the concept of metasurfaces to produce all-dielectric, low-loss, and high-resolution structural colors. We have fabricated TiO 2 metasurfaces with electron-beam lithography and a very simple lift-off process. The optical characterizations showed that the TiO 2 metasurfaces with different unit sizes could generate high reflection peaks at designed wavelengths. The maximal reflectance was as high as 64% with full width at half-maximum (fwhm) around 30 nm. Consequently, distinct colors have been observed in bright field and the generated colors covered the entire visible spectral range. The detailed numerical analysis shows that the distinct colors were generated by the electric resonance and magnetic resonances in TiO 2 metasurfaces. Based on the unique properties of magnetic resonances, distinct colors have been observed in bright field when the metasurfaces were reduced to a 4 × 4 array, giving a spatial resolution around 16000 dpi. Considering the cost, stability, and CMOS-compatibility, this research will be important for the structural colors to reach real-world industrial applications.

  2. MIT wavelength tables. Volume 2. Wavelengths by element

    International Nuclear Information System (INIS)

    Phelps, F.M. III.

    1982-01-01

    This volume is the first stage of a project to expand and update the MIT wavelength tables first compiled in the 1930's. For 109,325 atomic emission lines, arranged by element, it presents wavelength in air, wavelength in vacuum, wave number and intensity. All data are stored on computer-readable magnetic tape

  3. Influence of chromium ions on the color center formation in crystals with garnet structure

    International Nuclear Information System (INIS)

    Ashurov, M.Kh.; Zharikov, E.V.; Laptev, V.V.

    1985-01-01

    The in fluence of chromium ions on the color center formation in crystals of yttrium-aluminium garnet, gadolinium-gallium garnet, gadolinium-scandium-gallium garnet, and yttrium-scandium-gallium garnet is studied. In addition to basic activator ions these crystals were coactivated also by chromium ions with two wide bands of fundamental absorption within the range of pump tube radiation with maximas close to 450 and 650 nm. The color centers for γ-irradiated samples were observed at 300 K by measuring the adsorption spectra within the 300-800 nm range. Temperature of destruction of the charge trapping sites was determined by the method of thermoluminescence measuring in the 100-500 K temperature range. Detection of recombination center luminescence was accomplished within the 200-1600 nm wavelength range. Chromium ions are found to hinder the formation of color centers as a result of γ-irradiation at room and higher temperatures within the wavelength range over 300 nm; i.e. Cr 3+ ions increase radiation resistance of all the investigated crystals

  4. Wavelength converter technology

    DEFF Research Database (Denmark)

    Kloch, Allan; Hansen, Peter Bukhave; Poulsen, Henrik Nørskov

    1999-01-01

    Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers.......Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers....

  5. Neuromorphic optical sensor chip with color change-intensity change disambiguation

    Science.gov (United States)

    Fu, ZhenHong; Mao, Rui; Cartwright, Alexander N.; Titus, Albert H.

    2010-02-01

    In this paper, we describe the development of a novel, retina-like neuromorphic chip that has an array of two types of retina 'cells' arranged to mimic the fovea structure in certain animals. One of the two retina cell types performs irradiance detection and the other can perform color detection. Together, via the two parallel pathways the retina chip can perform color change intensity change disambiguation (CCICD). The irradiance detection cell has a wide-dynamic detection range that spans almost 3 orders of magnitude. The color detection cell has a buried double junction (BDJ) photodiode as the photoreceptor followed by two parallel logarithmic I-V convertors. The output from this is a color response which has at least a 50nm resolution for wavelengths from 400nm to 900nm. With these two cells, the array can perform color change -intensity change disambiguation (CCICD) to determine if a change in the output of the irradiance pathway is because of irradiance change, color change, or both. This biological retina-like neuromorphic sensor array is implemented in ON-SEMI 0.5μm technology, a standard CMOS fabrication process available at MOSIS.

  6. Influence of ablation wavelength and time on optical properties of laser ablated carbon dots

    Science.gov (United States)

    Isnaeni, Hanna, M. Yusrul; Pambudi, A. A.; Murdaka, F. H.

    2017-01-01

    Carbon dots, which are unique and applicable materials, have been produced using many techniques. In this work, we have fabricated carbon dots made of coconut fiber using laser ablation technique. The purpose of this work is to evaluate two ablation parameters, which are ablation wavelength and ablation time. We used pulsed laser from Nd:YAG laser with emit wavelength at 355 nm, 532 nm and 1064 nm. We varied ablation time one hour and two hours. Photoluminescence and time-resolved photoluminescence setup were used to study the optical properties of fabricated carbon dots. In general, fabricated carbon dots emit bluish green color emission upon excitation by blue laser. We found that carbon dots fabricated using 1064 nm laser produced the highest carbon dots emission among other samples. The peak wavelength of carbon dots emission is between 495 nm until 505 nm, which gives bluish green color emission. Two hours fabricated carbon dots gave four times higher emission than one hour fabricated carbon dot. More emission intensity of carbon dots means more carbon dots nanoparticles were fabricated during laser ablation process. In addition, we also measured electron dynamics of carbon dots using time-resolved photoluminescence. We found that sample with higher emission has longer electron decay time. Our finding gives optimum condition of carbon dots fabrication from coconut fiber using laser ablation technique. Moreover, fabricated carbon dots are non-toxic nanoparticles that can be applied for health, bio-tagging and medical applications.

  7. Combined Effects of Irrigation Regime, Genotype, and Harvest Stage Determine Tomato Fruit Quality and Aptitude for Processing into Puree.

    Science.gov (United States)

    Arbex de Castro Vilas Boas, Alexandre; Page, David; Giovinazzo, Robert; Bertin, Nadia; Fanciullino, Anne-Laure

    2017-01-01

    Industry tomatoes are produced under a range of climatic conditions and practices which significantly impact on main quality traits of harvested fruits. However, the quality of tomato intended for processing is currently addressed on delivery through color and Brix only, whereas other traits are overlooked. Very few works provided an integrated view of the management of tomato puree quality throughout the chain. To gain insights into pre- and post-harvest interactions, four genotypes, two water regimes, three maturity stages, and two processes were investigated. Field and glasshouse experiments were conducted near Avignon, France, from May to August 2016. Two irrigation regimes were applied: control plants were irrigated in order to match 100% of evapotranspiration (ETP); water deficit (WD) plants were irrigated as control plants until anthesis of the first flowers, then irrigation was reduced to 60 and 50% ETP in field, and glasshouse respectively. Fruits were collected at three stages during ripening. Their color, fresh weight, dry matter content, and metabolite contents were determined before processing. Pericarp cell size was evaluated in glasshouse only. Two laboratory-scaled processing methods were applied before structural and biochemical analyses of the purees. Results outlined interactive effects between crop and process management. WD hardly reduced yield, but increased dry matter content in the field, in contrast to the glasshouse. The puree viscosity strongly depended on the genotype and the maturity stage, but it was disconnected from fruit dry matter content or Brix. The process impact on puree viscosity strongly depended on water supply during fruit production. Moreover, the lycopene content of fresh fruit may influence puree viscosity. This work opens new perspectives for managing puree quality in the field showing that it was possible to reduce water supply without affecting yield and to improve puree quality.

  8. Combined Effects of Irrigation Regime, Genotype, and Harvest Stage Determine Tomato Fruit Quality and Aptitude for Processing into Puree

    Directory of Open Access Journals (Sweden)

    Alexandre Arbex de Castro Vilas Boas

    2017-10-01

    Full Text Available Industry tomatoes are produced under a range of climatic conditions and practices which significantly impact on main quality traits of harvested fruits. However, the quality of tomato intended for processing is currently addressed on delivery through color and Brix only, whereas other traits are overlooked. Very few works provided an integrated view of the management of tomato puree quality throughout the chain. To gain insights into pre- and post-harvest interactions, four genotypes, two water regimes, three maturity stages, and two processes were investigated. Field and glasshouse experiments were conducted near Avignon, France, from May to August 2016. Two irrigation regimes were applied: control plants were irrigated in order to match 100% of evapotranspiration (ETP; water deficit (WD plants were irrigated as control plants until anthesis of the first flowers, then irrigation was reduced to 60 and 50% ETP in field, and glasshouse respectively. Fruits were collected at three stages during ripening. Their color, fresh weight, dry matter content, and metabolite contents were determined before processing. Pericarp cell size was evaluated in glasshouse only. Two laboratory-scaled processing methods were applied before structural and biochemical analyses of the purees. Results outlined interactive effects between crop and process management. WD hardly reduced yield, but increased dry matter content in the field, in contrast to the glasshouse. The puree viscosity strongly depended on the genotype and the maturity stage, but it was disconnected from fruit dry matter content or Brix. The process impact on puree viscosity strongly depended on water supply during fruit production. Moreover, the lycopene content of fresh fruit may influence puree viscosity. This work opens new perspectives for managing puree quality in the field showing that it was possible to reduce water supply without affecting yield and to improve puree quality.

  9. Combined Effects of Irrigation Regime, Genotype, and Harvest Stage Determine Tomato Fruit Quality and Aptitude for Processing into Puree

    Science.gov (United States)

    Arbex de Castro Vilas Boas, Alexandre; Page, David; Giovinazzo, Robert; Bertin, Nadia; Fanciullino, Anne-Laure

    2017-01-01

    Industry tomatoes are produced under a range of climatic conditions and practices which significantly impact on main quality traits of harvested fruits. However, the quality of tomato intended for processing is currently addressed on delivery through color and Brix only, whereas other traits are overlooked. Very few works provided an integrated view of the management of tomato puree quality throughout the chain. To gain insights into pre- and post-harvest interactions, four genotypes, two water regimes, three maturity stages, and two processes were investigated. Field and glasshouse experiments were conducted near Avignon, France, from May to August 2016. Two irrigation regimes were applied: control plants were irrigated in order to match 100% of evapotranspiration (ETP); water deficit (WD) plants were irrigated as control plants until anthesis of the first flowers, then irrigation was reduced to 60 and 50% ETP in field, and glasshouse respectively. Fruits were collected at three stages during ripening. Their color, fresh weight, dry matter content, and metabolite contents were determined before processing. Pericarp cell size was evaluated in glasshouse only. Two laboratory-scaled processing methods were applied before structural and biochemical analyses of the purees. Results outlined interactive effects between crop and process management. WD hardly reduced yield, but increased dry matter content in the field, in contrast to the glasshouse. The puree viscosity strongly depended on the genotype and the maturity stage, but it was disconnected from fruit dry matter content or Brix. The process impact on puree viscosity strongly depended on water supply during fruit production. Moreover, the lycopene content of fresh fruit may influence puree viscosity. This work opens new perspectives for managing puree quality in the field showing that it was possible to reduce water supply without affecting yield and to improve puree quality. PMID:29051767

  10. Spectrophotometry of Wolf-Rayet stars - Intrinsic colors and absolute magnitudes

    Science.gov (United States)

    Torres-Dodgen, Ana V.; Massey, Philip

    1988-01-01

    Absolute spectrophotometry of about 10-A resolution in the range 3400-7300 A have been obtained for southern Wolf-Rayet stars, and line-free magnitudes and colors have been constructed. The emission-line contamination in the narrow-band ubvr systems of Westerlund (1966) and Smith (1968) is shown to be small for most WN stars, but to be quite significant for WC stars. It is suggested that the more severe differences in intrinsic color from star to star of the same spectral subtype noted at shorter wavelengths are due to differences in atmospheric extent. True continuum absolute visual magnitudes and intrinsic colors are obtained for the LMC WR stars. The most visually luminous WN6-WN7 stars are found to be located in the core of the 30 Doradus region.

  11. Wavelength dependence of interstellar polarization and ratio of total to selective extinction

    International Nuclear Information System (INIS)

    Serkowski, K.; Mathewson, D.S.; Ford, V.L.

    1975-01-01

    Wavelength dependence of interstellar linear polarization has been observed for about 180 stars, mostly southern, in the UBVR spectral regions. A multichannel polarimeter-photometer, in which spectral regions are separated by dichroic filters, was used. Normalized wavelength dependence of interstellar linear polarization p follows closely a single empirical curve p (lambda)/p /sub max/=exp-1.15 ln 2 (lambda/sub max//lambda), where the wavelength lambda/sub max/ at which the maximum interstellar linear polarization p/sub max/ occurs takes values from 0.45 μ to 0.8 μ. Wavelength lambda/sub max/ is well correlated with the ratios of color excesses E/sub V-K//E/sub B-V/, E/sub V-K//E/sub V-R/, and E/sub V-I//E/sub V-R/. These correlations indicate that the ratio R of total to selective interstellar extinction can be found for any individual star from the relationship R = 5.5 lambda/sub max/. Polarimetry seems to be the most practical method of estimating R. A map of distribution of lambda/sub max/ on the sky, based on values for about 350 stars, indicates several well defined regions with lambda/sub max/, and hence R, clearly larger (or smaller) than the median value lambda/sub max/ = π.545 μ, corresponding to R = 3.0. The predominance of larger than average values of lambda/sub max/ among stars nearer than 0.4 kpc and the negative correlation between lambda/sub max/ and E/sub B-V/ are explained by selection effects. There is evidence of negative correlation between lambda/sub max/ and p/sub max//E/sub B-V/ suggested by Kruszewski. The lower limits for color excess of Praesepe, M67, and several globular clusters are set by their linear polarization. The largest known values of interstellar circular polarization, parallel q parallel approximately equal to 0.06 percent, were found in near-infrared for two stars with exceptionally small lambda/sub max/: star No. 12 in association VI Cygni and HD 204827. (U.S.)

  12. Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange.

    Science.gov (United States)

    Lim, Ho Sun; Lee, Jae-Hwang; Walish, Joseph J; Thomas, Edwin L

    2012-10-23

    One-dimensionally periodic block copolymer photonic lamellar gels with full-color tunability as a result of a direct exchange of counteranions were fabricated via a two-step procedure comprising the self-assembly of a hydrophobic block-hydrophilic polyelectrolyte block copolymer, polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP), followed by sequential quaternization of the P2VP layers in 1-bromoethane solution. Depending on the hydration characteristics of each counteranion, the selective swelling of the block copolymer lamellar structures leads to large tunability of the photonic stop band from blue to red wavelengths. More extensive quaternization of the P2VP block allows the photonic lamellar gels to swell more and red shift to longer wavelength. Here, we investigate the dynamic swelling behavior in the photonic gel films through time-resolved in situ measurement of UV-vis transmission. We model the swelling behavior using the transfer matrix method based on the experimentally observed reflectivity data with substitution of appropriate counterions. These tunable structural color materials may be attractive for numerous applications such as high-contrast displays without using a backlight, color filters, and optical mirrors for flexible lasing.

  13. Production of enhanced beam halos via collective modes and colored noise

    Directory of Open Access Journals (Sweden)

    Ioannis V. Sideris

    2004-10-01

    Full Text Available We investigate how collective modes and colored noise conspire to produce a beam halo with much larger amplitude than could be generated by either phenomenon separately. The collective modes are lowest-order radial eigenmodes calculated self-consistently for a configuration corresponding to a direct-current, cylindrically symmetric, warm-fluid Kapchinskij-Vladimirskij equilibrium. The colored noise arises from unavoidable machine errors and influences the internal space-charge force. Its presence quickly launches statistically rare particles to ever-growing amplitudes by continually kicking them back into phase with the collective-mode oscillations. The halo amplitude is essentially the same for purely radial orbits as for orbits that are initially purely azimuthal; orbital angular momentum has no statistically significant impact. Factors that do have an impact include the amplitudes of the collective modes and the strength and autocorrelation time of the colored noise. The underlying dynamics ensues because the noise breaks the Kolmogorov-Arnol’d-Moser tori that otherwise would confine the beam. These tori are fragile; even very weak noise will eventually break them, though the time scale for their disintegration depends on the noise strength. Both collective modes and noise are therefore centrally important to the dynamics of halo formation in real beams.

  14. Photonic Crystal Structure and Coloration of Wing Scales of Butterflies Exhibiting Selective Wavelength Iridescence

    Czech Academy of Sciences Publication Activity Database

    Mika, Filip; Matějková-Plšková, J.; Jiwajinda, S.; Dechkrong, P.; Shiojiri, M.

    2012-01-01

    Roč. 5, č. 5 (2012), s. 754-771 ISSN 1996-1944 R&D Projects: GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : butterfly scale * structure color * natural photonic crystal * E. mulciber * S. charonda * C. ataxus * T. aeacus Subject RIV: JJ - Other Materials Impact factor: 2.247, year: 2012

  15. Polarization-sensitive color in butterfly scales: polarization conversion from ridges with reflecting elements.

    Science.gov (United States)

    Zhang, Ke; Tang, Yiwen; Meng, Jinsong; Wang, Ge; Zhou, Han; Fan, Tongxiang; Zhang, Di

    2014-11-03

    Polarization-sensitive color originates from polarization-dependent reflection or transmission, exhibiting abundant light information, including intensity, spectral distribution, and polarization. A wide range of butterflies are physiologically sensitive to polarized light, but the origins of polarized signal have not been fully understood. Here we systematically investigate the colorful scales of six species of butterfly to reveal the physical origins of polarization-sensitive color. Microscopic optical images under crossed polarizers exhibit their polarization-sensitive characteristic, and micro-structural characterizations clarify their structural commonality. In the case of the structural scales that have deep ridges, the polarization-sensitive color related with scale azimuth is remarkable. Periodic ridges lead to the anisotropic effective refractive indices in the parallel and perpendicular grating orientations, which achieves form-birefringence, resulting in the phase difference of two different component polarized lights. Simulated results show that ridge structures with reflecting elements reflect and rotate the incident p-polarized light into s-polarized light. The dimensional parameters and shapes of grating greatly affect the polarization conversion process, and the triangular deep grating extends the outstanding polarization conversion effect from the sub-wavelength period to the period comparable to visible light wavelength. The parameters of ridge structures in butterfly scales have been optimized to fulfill the polarization-dependent reflection for secret communication. The structural and physical origin of polarization conversion provides a more comprehensive perspective on the creation of polarization-sensitive color in butterfly wing scales. These findings show great potential in anti-counterfeiting technology and advanced optical material design.

  16. Modeling human color categorization: Color discrimination and color memory

    OpenAIRE

    Heskes, T.; van den Broek, Egon; Lucas, P.; Hendriks, Maria A.; Vuurpijl, L.G.; Puts, M.J.H.; Wiegerinck, W.

    2003-01-01

    Color matching in Content-Based Image Retrieval is done using a color space and measuring distances between colors. Such an approach yields non-intuitive results for the user. We introduce color categories (or focal colors), determine that they are valid, and use them in two experiments. The experiments conducted prove the difference between color categorization by the cognitive processes color discrimination and color memory. In addition, they yield a Color Look-Up Table, which can improve c...

  17. Gender-related asymmetric brain vasomotor response to color stimulation: a functional transcranial Doppler spectroscopy study.

    Science.gov (United States)

    Njemanze, Philip C

    2010-11-30

    The present study was designed to examine the effects of color stimulation on cerebral blood mean flow velocity (MFV) in men and women. The study included 16 (8 men and 8 women) right-handed healthy subjects. The MFV was recorded simultaneously in both right and left middle cerebral arteries in Dark and white Light conditions, and during color (Blue, Yellow and Red) stimulations, and was analyzed using functional transcranial Doppler spectroscopy (fTCDS) technique. Color processing occurred within cortico-subcortical circuits. In men, wavelength-differencing of Yellow/Blue pairs occurred within the right hemisphere by processes of cortical long-term depression (CLTD) and subcortical long-term potentiation (SLTP). Conversely, in women, frequency-differencing of Blue/Yellow pairs occurred within the left hemisphere by processes of cortical long-term potentiation (CLTP) and subcortical long-term depression (SLTD). In both genders, there was luminance effect in the left hemisphere, while in men it was along an axis opposite (orthogonal) to that of chromatic effect, in women, it was parallel. Gender-related differences in color processing demonstrated a right hemisphere cognitive style for wavelength-differencing in men, and a left hemisphere cognitive style for frequency-differencing in women. There are potential applications of fTCDS technique, for stroke rehabilitation and monitoring of drug effects.

  18. Full-Field Calibration of Color Camera Chromatic Aberration using Absolute Phase Maps.

    Science.gov (United States)

    Liu, Xiaohong; Huang, Shujun; Zhang, Zonghua; Gao, Feng; Jiang, Xiangqian

    2017-05-06

    The refractive index of a lens varies for different wavelengths of light, and thus the same incident light with different wavelengths has different outgoing light. This characteristic of lenses causes images captured by a color camera to display chromatic aberration (CA), which seriously reduces image quality. Based on an analysis of the distribution of CA, a full-field calibration method based on absolute phase maps is proposed in this paper. Red, green, and blue closed sinusoidal fringe patterns are generated, consecutively displayed on an LCD (liquid crystal display), and captured by a color camera from the front viewpoint. The phase information of each color fringe is obtained using a four-step phase-shifting algorithm and optimum fringe number selection method. CA causes the unwrapped phase of the three channels to differ. These pixel deviations can be computed by comparing the unwrapped phase data of the red, blue, and green channels in polar coordinates. CA calibration is accomplished in Cartesian coordinates. The systematic errors introduced by the LCD are analyzed and corrected. Simulated results show the validity of the proposed method and experimental results demonstrate that the proposed full-field calibration method based on absolute phase maps will be useful for practical software-based CA calibration.

  19. Light-induced dynamic structural color by intracellular 3D photonic crystals in brown algae.

    Science.gov (United States)

    Lopez-Garcia, Martin; Masters, Nathan; O'Brien, Heath E; Lennon, Joseph; Atkinson, George; Cryan, Martin J; Oulton, Ruth; Whitney, Heather M

    2018-04-01

    Natural photonic crystals are responsible for strong reflectance at selective wavelengths in different natural systems. We demonstrate that intracellular opal-like photonic crystals formed from lipids within photosynthetic cells produce vivid structural color in the alga Cystoseira tamariscifolia . The reflectance of the opaline vesicles is dynamically responsive to environmental illumination. The structural color is present in low light-adapted samples, whereas higher light levels produce a slow disappearance of the structural color such that it eventually vanishes completely. Once returned to low-light conditions, the color re-emerges. Our results suggest that these complex intracellular natural photonic crystals are responsive to environmental conditions, changing their packing structure reversibly, and have the potential to manipulate light for roles beyond visual signaling.

  20. The color of melt ponds on Arctic sea ice

    Science.gov (United States)

    Lu, Peng; Leppäranta, Matti; Cheng, Bin; Li, Zhijun; Istomina, Larysa; Heygster, Georg

    2018-04-01

    Pond color, which creates the visual appearance of melt ponds on Arctic sea ice in summer, is quantitatively investigated using a two-stream radiative transfer model for ponded sea ice. The upwelling irradiance from the pond surface is determined and then its spectrum is transformed into RGB (red, green, blue) color space using a colorimetric method. The dependence of pond color on various factors such as water and ice properties and incident solar radiation is investigated. The results reveal that increasing underlying ice thickness Hi enhances both the green and blue intensities of pond color, whereas the red intensity is mostly sensitive to Hi for thin ice (Hi 1.5 m), similar to the behavior of melt-pond albedo. The distribution of the incident solar spectrum F0 with wavelength affects the pond color rather than its intensity. The pond color changes from dark blue to brighter blue with increasing scattering in ice, and the influence of absorption in ice on pond color is limited. The pond color reproduced by the model agrees with field observations for Arctic sea ice in summer, which supports the validity of this study. More importantly, the pond color has been confirmed to contain information about meltwater and underlying ice, and therefore it can be used as an index to retrieve Hi and Hp. Retrievals of Hi for thin ice (Hi measurements than retrievals for thick ice, but those of Hp are not good. The analysis of pond color is a new potential method to obtain thin ice thickness in summer, although more validation data and improvements to the radiative transfer model will be needed in future.

  1. Effect of reciprocating agitation thermal processing (RA-TP) on quality of canned tomato (Solanum lycopersicum) puree.

    Science.gov (United States)

    Pratap Singh, Anubhav; Singh, Anika; Ramaswamy, Hosahalli S

    2017-06-01

    Reciprocating agitation thermal processing (RA-TP) is a recent innovation in the field of canning for obtaining high-quality canned food. The objective of this study was to compare RA-TP processing with conventional non-agitated (still) processing with respect to the impact on quality (color, antioxidant capacity, total phenols, carotenoid and lycopene contents) of canned tomato (Solanum lycopersicum) puree. Owing to a 63-81% reduction in process times as compared with still processing, tomato puree with a brighter red color (closer to fresh) was obtained during RA-TP. At 3 Hz reciprocation frequency, the loss of antioxidant, lycopene and carotenoid contents could be reduced to 34, 8 and 8% respectively as compared with 96, 41 and 52% respectively during still processing. In fact, the phenolic content for RA-TP at 3 Hz was 5% higher than in fresh puree. Quality retention generally increased with an increase in frequency, although the differences were less significant at higher reciprocation frequencies (between 2 and 3 Hz). Research findings indicate that RA-TP can be effective to obtain thermally processed foods with high-quality attribute retention. It can also be concluded that a very high reciprocation frequency (>3 Hz) is not necessarily needed and significant quality improvement can be obtained at lower frequencies (∼2 Hz). © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Research on the raw material source and coloring mechanism of Jiaotan Guan porcelain in south song dynasty

    International Nuclear Information System (INIS)

    Zhao Weijuan; Li Guoxia; Xie Jianzhong; Guo Min; Gao Zhengyao

    2004-01-01

    The 28 samples from Jiaotan Guan kiln, one sample of mud material in jar from ruins of Jiaotan Guan kiln, one sample of mud material in pool of practice mud, one sample of violet-golden clay near Guan kiln and four samples of glazes and bodies of the modern imitative ancient Chinese guan porcelain were analyzed by neutron activation analysis (NAA). The contents of 36 elements in each sample were measured. The NAA data were statistically treated by fuzzy cluster method and the trend cluster diagram was obtained. The results show that the raw material origin of the bodies of Jiaotan Guan porcelain is evidently different from those of glazes, the source of raw material of bodies and glazes of Jiaotan Guan kiln are stable, and the iron is assured as main coloring element. The reflecting spectrum and main wavelength of Guan porcelain glazes are determined by color analysis instrument. The relative content of structural iron (Fe 2+ , Fe 3+ ) in the glaze and the quantitative relationship between the main wavelength of glaze in various colors are determined by Moessbauer spectrum. Thus the coloring mechanism of Guan porcelain is investigated

  3. Imaging of particles with 3D full parallax mode with two-color digital off-axis holography

    Science.gov (United States)

    Kara-Mohammed, Soumaya; Bouamama, Larbi; Picart, Pascal

    2018-05-01

    This paper proposes an approach based on two orthogonal views and two wavelengths for recording off-axis two-color holograms. The approach permits to discriminate particles aligned along the sight-view axis. The experimental set-up is based on a double Mach-Zehnder architecture in which two different wavelengths provides the reference and the object beams. The digital processing to get images from the particles is based on convolution so as to obtain images with no wavelength dependence. The spatial bandwidth of the angular spectrum transfer function is adapted in order to increase the maximum reconstruction distance which is generally limited to a few tens of millimeters. In order to get the images of particles in the 3D volume, a calibration process is proposed and is based on the modulation theorem to perfectly superimpose the two views in a common XYZ axis. The experimental set-up is applied to two-color hologram recording of moving non-calibrated opaque particles with average diameter at about 150 μm. After processing the two-color holograms with image reconstruction and view calibration, the location of particles in the 3D volume can be obtained. Particularly, ambiguity about close particles, generating hidden particles in a single-view scheme, can be removed to determine the exact number of particles in the region of interest.

  4. Color naming deficits and attention-deficit/hyperactivity disorder: A retinal dopaminergic hypothesis

    Directory of Open Access Journals (Sweden)

    Tannock Rosemary

    2006-01-01

    Full Text Available Abstract Background Individuals with Attention-Deficit/Hyperactive Disorder (ADHD have unexplained difficulties on tasks requiring speeded processing of colored stimuli. Color vision mechanisms, particularly short-wavelength (blue-yellow pathways, are highly sensitive to various diseases, toxins and drugs that alter dopaminergic neurotransmission. Thus, slow color processing might reflect subtle impairments in the perceptual encoding stage of stimulus color, which arise from hypodopaminergic functioning. Presentation of hypotheses 1 Color perception of blue-yellow (but not red-green stimuli is impaired in ADHD as a result of deficient retinal dopamine; 2 Impairments in the blue-yellow color mechanism in ADHD contribute to poor performance on speeded color naming tasks that include a substantial proportion of blue-yellow stimuli; and 3 Methylphenidate increases central dopamine and is also believed to increase retinal dopamine, thereby normalizing blue-yellow color perception, which in turn improves performance on the speeded color naming tasks. Testing the hypothesis Requires three approaches, including:1 direct assessment of color perception in individuals with ADHD to determine whether blue-yellow color perception is selectively impaired; 2 determination of relationship between performance on neuropsychological tasks requiring speeded color processing and color perception; and 3 randomized, controlled pharmacological intervention with stimulant medication to examine the effects of enhancing central dopamine on color perception and task performance Implications of hypothesis If substantiated, the findings of color perception problems would necessitate a re-consideration of current neuropsychological models of attention-deficit/hyperactivity disorder, guide psycho-education, academic instruction, and require consideration of stimulus color in many of the widely used neuropsychological tests.

  5. Self-assembled structural color in nature

    Science.gov (United States)

    Parnell, Andrew

    The vibrancy and variety of structural color found in nature has long been well-known; what has only recently been discovered is the sophistication of the physics that underlies these effects. In the talk I will discuss some of our recent studies of the structures responsible for color in bird feathers and beetle elytra, based on structural characterization using small angle x-ray scattering, x-ray tomography and optical modeling. These have enabled us to study a large number of structural color exhibiting materials and look for trends in the structures nature uses to provide these optical effects. In terms of creating the optical structure responsible for the color of the Eurasian Jay feathers (Garrulus glandarius) the nanostructure is produced by a phase-separation process that is arrested at a late stage; mastery of the color is achieved by control over the duration of this phase-separation process. Our analysis shows that nanostructure in single bird feather barbs can be varied continuously by controlling the time the keratin network is allowed to phase separate before mobility in the system is arrested. Dynamic scaling analysis of the single barb scattering data implies that the phase separation arrest mechanism is rapid and also distinct from the spinodal phase separation mechanism i.e. it is not gelation or intermolecular re-association. Any growing lengthscale using this spinodal phase separation approach must first traverse the UV and blue wavelength regions, growing the structure by coarsening, resulting in a broad distribution of domain sizes. AJP acknowledges financial support via the APS/DPOLY exchange lectureship 2017.

  6. Color-tunable mixed photoluminescence emission from Alq3 organic layer in metal-Alq3-metal surface plasmon structure

    OpenAIRE

    Chen, Nai-Chuan; Liao, Chung-Chi; Chen, Cheng-Chang; Fan, Wan-Ting; Wu, Jin-Han; Li, Jung-Yu; Chen, Shih-Pu; Huang, Bohr-Ran; Lee, Li-Ling

    2014-01-01

    This work reports the color-tunable mixed photoluminescence (PL) emission from an Alq3 organic layer in an Au-Alq3-Au plasmonic structure through the combination of organic fluorescence emission and another form of emission that is enabled by the surface plasmons in the plasmonic structure. The emission wavelength of the latter depends on the Alq3 thickness and can be tuned within the Alq3 fluorescent spectra. Therefore, a two-color broadband, color-tunable mixed PL structure was obtained. Ob...

  7. Structural Color for Additive Manufacturing: 3D-Printed Photonic Crystals from Block Copolymers.

    Science.gov (United States)

    Boyle, Bret M; French, Tracy A; Pearson, Ryan M; McCarthy, Blaine G; Miyake, Garret M

    2017-03-28

    The incorporation of structural color into 3D printed parts is reported, presenting an alternative to the need for pigments or dyes for colored parts produced through additive manufacturing. Thermoplastic build materials composed of dendritic block copolymers were designed, synthesized, and used to additively manufacture plastic parts exhibiting structural color. The reflection properties of the photonic crystals arise from the periodic nanostructure formed through block copolymer self-assembly during polymer processing. The wavelength of reflected light could be tuned across the visible spectrum by synthetically controlling the block copolymer molecular weight and manufacture parts that reflected violet, green, or orange light with the capacity to serve as selective optical filters and light guides.

  8. [Colors and their meaning in culture and psychology--a historical outline and contemporary status of color vision theories].

    Science.gov (United States)

    Grzybowski, Andrzej; Lewicka, Romana; Torlińska, Teresa; Stelcer, Bogusław

    2008-01-01

    The mechanism of color perception has intrigued scholars from antiquity. However, the understanding of this phenomena only came with the recognition of the nature of light and visual perception. Ancient concepts, present in science until the Renaissance, were based more on philosophical considerations and theoretical speculations than on anatomical studies and a matter-of-fact assessment of physiological functions of the visual system. From antiquity to 17th century scientific approach to the concept of vision was dominated by two theories: intromission and extramission (emanation). Intromission theory, propagated by Alhazen (lbn al.-Haythama), Vitello, John Peckham, Roger Bacon and Leonardo da Vinci, assumed that the light was transmitted from the observed object perpendicularly to the transparent eye structures. Johannes Kepler was the first scholar to propose that the retina was the receptive part of the eye. In the first half of the 17th century, Kepler's groundbreaking optical achievements and anatomical discoveries of many other scientists cast new light on the understanding of the role of different eye structures, finally wiping out the intromission theory. A further major achievement contributing to the recognition of the true nature of colors was a theory presented by Newton in 1688. He argued that they were colored rays, and not white light, that were composed of homogenous and pure light. It was, however, not until the 19th century when two modern theories of color appeared, i.e. a trichromatic theory mostly associated with the names of Young and Hemlholtz, and an opponent colors theory of Hering. In the 20th century, the two theories--previously assumed as contradictory--were joined into the zone theories of color vision. Colors have their cultural and social meanings, as far as a very individual and personal interpretation. In the former function they are used to illustrate some cultural and sociological phenomena; in the latter, they are helpful in

  9. Green colorants based on energetic azole borates.

    Science.gov (United States)

    Glück, Johann; Klapötke, Thomas M; Rusan, Magdalena; Stierstorfer, Jörg

    2014-11-24

    The investigation of green-burning boron-based compounds as colorants in pyrotechnic formulations as alternative for barium nitrate, which is a hazard to health and to the environment, is reported. Metal-free and nitrogen-rich dihydrobis(5-aminotetrazolyl)borate salts and dihydrobis(1,3,4-triazolyl)borate salts have been synthesized and characterized by NMR spectroscopy, elemental analysis, mass spectrometry, and vibrational spectroscopy. Their thermal and energetic properties have been determined as well. Several pyrotechnic compositions using selected azolyl borate salts as green colorants were investigated. Formulations with ammonium dinitramide and ammonium nitrate as oxidizers and boron and magnesium as fuels were tested. The burn time, dominant wavelength, spectral purity, luminous intensity, and luminous efficiency as well as the thermal and energetic properties of these compositions were measured. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Photoluminescence of magnesium-associated color centers in LiF crystals implanted with magnesium ions

    Science.gov (United States)

    Nebogin, S. A.; Ivanov, N. A.; Bryukvina, L. I.; V. Shipitsin, N.; E. Rzhechitskii, A.; Papernyi, V. L.

    2018-05-01

    In the present paper, the effect of magnesium nanoparticles implanted in a LiF crystal on the optical properties of color centers is studied. The transmittance spectra and AFM images demonstrate effective formation of the color centers and magnesium nanoparticles in an implanted layer of ∼ 60-100 nm in thickness. Under thermal annealing, a periodical structure is formed on the surface of the crystal and in the implanted layer due to self-organization of the magnesium nanoparticles. Upon excitation by argon laser with a wavelength of 488 nm at 5 K, in a LiF crystal, implanted with magnesium ions as well as in heavily γ-irradiated LiF: Mg crystals, luminescence of the color centers at λmax = 640 nm with a zero-phonon line at 601.5 nm is observed. The interaction of magnesium nanoparticles and luminescing color centers in a layer implanted with magnesium ions has been revealed. It is shown that the luminescence intensity of the implanted layer at a wavelength of 640 nm is by more than two thousand times higher than that of a heavily γ-irradiated LiF: Mg crystal. The broadening of the zero-phonon line at 601.5 nm in the spectrum of the implanted layer indicates the interaction of the emitting quantum system with local field of the surface plasmons of magnesium nanoparticles. The focus of this work is to further optimize the processing parameters in a way to result in luminescence great enhancement of color centers by magnesium nanoparticles in LiF.

  11. Enhanced numerical analysis of three-color HgCdTe detectors

    Science.gov (United States)

    Jóźwikowski, K.; Rogalski, A.

    2007-04-01

    The performance of three-color HgCdTe photovoltaic heterostructure detector is examined theoretically. In comparison with two-color detectors with two back-to-back junctions, three-color structure contain an absorber of intermediate wavelength placed between two junctions, and electronic barriers are used to isolate this intermediate region. This structure was first proposed by British workers. Enhanced original computer programs are applied to solve the system of non-linear continuity equations for carriers and Poisson equations. In addition, the numerical analysis includes the dependence of absorption coefficient on Burstein effect as well as interference effects in heterostructure with metallic electrical contacts. Three detector structures with different localizations of separating barriers are analyzed. The calculations results are presented in the form of spatial distributions of bandgap energy and quantum efficiency. It is shown that the performance of the detector is critically dependent on the barrier's doping level and position in relation to the junction. This behavior is serious disadvantage of the considered three color detector. A small shift of the barrier location and doping level causes serious changes in spectral responsivity.

  12. Correlation between grain orientation and the shade of color etching

    International Nuclear Information System (INIS)

    Szabo, Peter J.; Kardos, I.

    2010-01-01

    Color etching is an extremely effective metallographic technique not only for making grains well visible, but also for making them distinguishable for automated image analyzers. During color etching, a thin film is formed on the surface of the specimen. The thickness of this layer is in the order of magnitude of the visible light and since both the metal-film boundary and the film surface reflect light, an interference occurs. A wavelength-component of the white line is eliminated and its complementary color will be seen on the surface. As the thickness changes, the colors also change grain by grain. The thickness of the film is dependent on several factors, mostly on the type of the phase. However, different color shades can be observed on the surfaces of single phase materials, which phenomenon is caused by the different crystallographic orientations of the grains. This paper shows a combined color etching electron backscatter diffraction (EBSD) investigation of cast iron. An area of the surface of a gray cast iron specimen was etched. Colors were characterized by their luminescence and their red, green and blue intensity. An EBSD orientation map was taken from the same area and the orientations of the individual grains were determined. Results showed that a strong correlation was found between the luminescence and the R, G, B intensity of the color and the angle between the specimen normal and the direction, while such correlation was not observed between the color parameters and the and directions, respectively. This indicates that film thickness is sensitive to the direction of the crystal.

  13. Fusion of lens-free microscopy and mobile-phone microscopy images for high-color-accuracy and high-resolution pathology imaging

    Science.gov (United States)

    Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan

    2017-03-01

    Digital pathology and telepathology require imaging tools with high-throughput, high-resolution and accurate color reproduction. Lens-free on-chip microscopy based on digital in-line holography is a promising technique towards these needs, as it offers a wide field of view (FOV >20 mm2) and high resolution with a compact, low-cost and portable setup. Color imaging has been previously demonstrated by combining reconstructed images at three discrete wavelengths in the red, green and blue parts of the visible spectrum, i.e., the RGB combination method. However, this RGB combination method is subject to color distortions. To improve the color performance of lens-free microscopy for pathology imaging, here we present a wavelet-based color fusion imaging framework, termed "digital color fusion microscopy" (DCFM), which digitally fuses together a grayscale lens-free microscope image taken at a single wavelength and a low-resolution and low-magnification color-calibrated image taken by a lens-based microscope, which can simply be a mobile phone based cost-effective microscope. We show that the imaging results of an H&E stained breast cancer tissue slide with the DCFM technique come very close to a color-calibrated microscope using a 40x objective lens with 0.75 NA. Quantitative comparison showed 2-fold reduction in the mean color distance using the DCFM method compared to the RGB combination method, while also preserving the high-resolution features of the lens-free microscope. Due to the cost-effective and field-portable nature of both lens-free and mobile-phone microscopy techniques, their combination through the DCFM framework could be useful for digital pathology and telepathology applications, in low-resource and point-of-care settings.

  14. Color matters--material ejection and ion yields in UV-MALDI mass spectrometry as a function of laser wavelength and laser fluence.

    Science.gov (United States)

    Soltwisch, Jens; Jaskolla, Thorsten W; Dreisewerd, Klaus

    2013-10-01

    The success of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) as a widely employed analytical tool in the biomolecular sciences builds strongly on an effective laser-material interaction that is resulting in a soft co-desorption and ionization of matrix and imbedded biomolecules. To obtain a maximized ion yield for the analyte(s) of interest, in general both wavelength and fluence need to be tuned to match the specific optical absorption profile of the used matrix. However, commonly only lasers with fixed emission wavelengths of either 337 or 355 nm are used for MALDI-MS. Here, we employed a wavelength-tunable dye laser and recorded both the neutral material ejection and the MS ion data in a wide wavelength and fluence range between 280 and 377.5 nm. α-Cyano-4-hydroxycinnamic acid (HCCA), 4-chloro-α-cyanocinnamic acid (ClCCA), α-cyano-2,4-difluorocinnamic acid (DiFCCA), and 2,5-dihydroxybenzoic acid (DHB) were investigated as matrices, and several peptides as analytes. Recording of the material ejection was achieved by adopting a photoacoustic approach. Relative ion yields were derived by division of photoacoustic and ion signals. In this way, distinct wavelength/fluence regions can be identified for which maximum ion yields were obtained. For the tested matrices, optimal results were achieved for wavelengths corresponding to areas of high optical absorption of the respective matrix and at fluences about a factor of 2-3 above the matrix- and wavelength-dependent ion detection threshold fluences. The material ejection as probed by the photoacoustic method is excellently fitted by the quasithermal model, while a sigmoidal function allows for an empirical description of the ion signal-fluence relationship.

  15. Modeling human color categorization: Color discrimination and color memory

    NARCIS (Netherlands)

    Heskes, T.; van den Broek, Egon; Lucas, P.; Hendriks, Maria A.; Vuurpijl, L.G.; Puts, M.J.H.; Wiegerinck, W.

    2003-01-01

    Color matching in Content-Based Image Retrieval is done using a color space and measuring distances between colors. Such an approach yields non-intuitive results for the user. We introduce color categories (or focal colors), determine that they are valid, and use them in two experiments. The

  16. Natural-color and color-infrared image mosaics of the Colorado River corridor in Arizona derived from the May 2009 airborne image collection

    Science.gov (United States)

    Davis, Philip A.

    2013-01-01

    The Grand Canyon Monitoring and Research Center (GCMRC) of the U.S. Geological Survey (USGS) periodically collects airborne image data for the Colorado River corridor within Arizona (fig. 1) to allow scientists to study the impacts of Glen Canyon Dam water release on the corridor’s natural and cultural resources. These data are collected from just above Glen Canyon Dam (in Lake Powell) down to the entrance of Lake Mead, for a total distance of 450 kilometers (km) and within a 500-meter (m) swath centered on the river’s mainstem and its seven main tributaries (fig. 1). The most recent airborne data collection in 2009 acquired image data in four wavelength bands (blue, green, red, and near infrared) at a spatial resolution of 20 centimeters (cm). The image collection used the latest model of the Leica ADS40 airborne digital sensor (the SH52), which uses a single optic for all four bands and collects and stores band radiance in 12-bits. Davis (2012) reported on the performance of the SH52 sensor and on the processing steps required to produce the nearly flawless four-band image mosaic (sectioned into map tiles) for the river corridor. The final image mosaic has a total of only 3 km of surface defects in addition to some areas of cloud shadow because of persistent inclement weather during data collection. The 2009 four-band image mosaic is perhaps the best image dataset that exists for the entire Arizona part of the Colorado River. Some analyses of these image mosaics do not require the full 12-bit dynamic range or all four bands of the calibrated image database, in which atmospheric scattering (or haze) had not been removed from the four bands. To provide scientists and the general public with image products that are more useful for visual interpretation, the 12-bit image data were converted to 8-bit natural-color and color-infrared images, which also removed atmospheric scattering within each wavelength-band image. The conversion required an evaluation of the

  17. Pigeons (Columba livia) show change blindness in a color-change detection task.

    Science.gov (United States)

    Herbranson, Walter T; Jeffers, Jacob S

    2017-07-01

    Change blindness is a phenomenon whereby changes to a stimulus are more likely go unnoticed under certain circumstances. Pigeons learned a change detection task, in which they observed sequential stimulus displays consisting of individual colors back-projected onto three response keys. The color of one response key changed during each sequence and pecks to the key that displayed the change were reinforced. Pigeons showed a change blindness effect, in that change detection accuracy was worse when there was an inter-stimulus interval interrupting the transition between consecutive stimulus displays. Birds successfully transferred to stimulus displays involving novel colors, indicating that pigeons learned a general change detection rule. Furthermore, analysis of responses to specific color combinations showed that pigeons could detect changes involving both spectral and non-spectral colors and that accuracy was better for changes involving greater differences in wavelength. These results build upon previous investigations of change blindness in both humans and pigeons and suggest that change blindness may be a general consequence of selective visual attention relevant to multiple species and stimulus dimensions.

  18. How Noniridescent Colors Are Generated by Quasi-ordered Structures of Bird Feathers

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar; Mochrie, Simon G.J.; Prum, Richard O.; Dufresne, Eric R.; Cao, Hui (Yale)

    2012-03-26

    We investigate the mechanism of structural coloration by quasi-ordered nanostructures in bird feather barbs. Small-angle X-ray scattering (SAXS) data reveal the structures are isotropic and have short-range order on length scales comparable to optical wavelengths. We perform angle-resolved reflection and scattering spectrometry to fully characterize the colors under directional and omni-directional illumination of white light. Under directional lighting, the colors change with the angle between the directions of illumination and observation. The angular dispersion of the primary peaks in the scattering/reflection spectra can be well explained by constructive interference of light that is scattered only once in the quasi-ordered structures. Using the Fourier power spectra of structure from the SAXS data we calculate optical scattering spectra and explain why the light scattering peak is the highest in the backscattering direction. Under omni-directional lighting, colors from the quasi-ordered structures are invariant with the viewing angle. The non-iridescent coloration results from the isotropic nature of structures instead of strong backscattering.

  19. Hearing Color

    Science.gov (United States)

    Bieryla, Allyson; Diaz Merced, Wanda; Davis, Daniel

    2018-06-01

    In astronomy, the relationship between color and temperature is an important concept. This concept can be demonstrated in a laboratory or seen at telescope when observing stars. A blind/visually-impaired (B/VI) person would not be able to engage in the same observational demonstrations that are typically done to explain this concept. We’ve developed a tool for B/VI students to participate in these types of observational activities. Using an arduino compatible micro controller with and RGB light sensor, we are able to convert filtered light into sound. The device will produce different timbres for different wavelengths of light, which can then be used to distinguish the temperature of an object. The device is handheld, easy to program and inexpensive to reproduce (< $50). It is also fitted to mount on a telescope for observing. The design schematic and code will be open source and available for download.

  20. Image color reduction method for color-defective observers using a color palette composed of 20 particular colors

    Science.gov (United States)

    Sakamoto, Takashi

    2015-01-01

    This study describes a color enhancement method that uses a color palette especially designed for protan and deutan defects, commonly known as red-green color blindness. The proposed color reduction method is based on a simple color mapping. Complicated computation and image processing are not required by using the proposed method, and the method can replace protan and deutan confusion (p/d-confusion) colors with protan and deutan safe (p/d-safe) colors. Color palettes for protan and deutan defects proposed by previous studies are composed of few p/d-safe colors. Thus, the colors contained in these palettes are insufficient for replacing colors in photographs. Recently, Ito et al. proposed a p/dsafe color palette composed of 20 particular colors. The author demonstrated that their p/d-safe color palette could be applied to image color reduction in photographs as a means to replace p/d-confusion colors. This study describes the results of the proposed color reduction in photographs that include typical p/d-confusion colors, which can be replaced. After the reduction process is completed, color-defective observers can distinguish these confusion colors.

  1. Compact 6 dB Two-Color Continuous Variable Entangled Source Based on a Single Ring Optical Resonator

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2018-02-01

    Full Text Available Continuous-variable entangled optical beams at the degenerate wavelength of 0.8 μm or 1.5 μm have been investigated extensively, but separately. The two-color entangled states of these two useful wavelengths, with sufficiently high degrees of entanglement, still lag behind. In this work, we analyze the various limiting factors that affect the entanglement degree. On the basis of this, we successfully achieve 6 dB of two-color quadrature entangled light beams by improving the escape efficiency of the nondegenerate optical amplifier, the stability of the phase-locking servo system, and the detection efficiency. Our entangled source is constructed only from a single ring optical resonator, and thus is highly compact, which is suitable for applications in long-distance quantum communication networks.

  2. More Efficient e-Learning through Design: Color of Text and Background

    Science.gov (United States)

    Zufic, Janko; Kalpic, Damir

    2009-01-01

    Background: The area of research aimed for a more efficient e-learning is slowly widening from purely technical to the areas of psychology, didactics and methodology. The question is whether the text or background color influence the efficiency of memory, i.e. learning. If the answer to that question is positive, then another question arises which…

  3. Color optimization of conjugated-polymer/InGaN hybrid white light emitting diodes by incomplete energy transfer

    International Nuclear Information System (INIS)

    Chang, Chi-Jung; Lai, Chun-Feng; Madhusudhana Reddy, P.; Chen, Yung-Lin; Chiou, Wei-Yung; Chang, Shinn-Jen

    2015-01-01

    By using the wavelength conversion method, white light emitting diodes (WLEDs) were produced by applying mixtures of polysiloxane and fluorescent polymers on InGaN based light emitting diodes. UV curable organic–inorganic hybrid materials with high refractive index (1.561), compromised optical, thermal and mechanical properties was used as encapsulants. Red light emitting fluorescent FABD polymer (with 9,9-dioctylfluorene (F), anthracene (A) and 2,1,3-benzothiadiazole (B), and 4,7-bis(2-thienyl)-2,1,3-benzothiadiazole (D) repeating units) and green light emitting fluorescent FAB polymer were used as wavelength converters. The encapsulant/fluorescent polymer mixture and InGaN produce the white light by incomplete energy transfer mechanism. WLEDs with high color rendering index (CRI, about 93), and tunable correlated color temperature (CCT) properties can be produced by controlling the composition and chemical structures of encapsulating polymer and fluorescent polymer in hybrid materials, offering cool-white and neutral-white LEDs. - Highlights: • Highly efficient white light-emitting diodes (WLEDs) were produced. • Conjugated-polymer/InGaN hybrid WLEDs by incomplete energy transfer mechanism. • WLEDs with high color-rendering index and tunable correlated color temperature. • Polysiloxane encapsulant with superior optical, mechanical and thermal properties

  4. Effect of high hydrostatic pressure processing on the background microbial loads and quality of cantaloupe puree.

    Science.gov (United States)

    Mukhopadhyay, Sudarsan; Sokorai, Kimberly; Ukuku, Dike; Fan, Xuetong; Juneja, Vijay

    2017-01-01

    The objective of this study was to investigate and evaluate the effects of high hydrostatic pressure (HHP) applied to cantaloupe puree (CP) on microbial loads and product quality during storage for 10days at 4°C. Freshly prepared, double sealed and double bagged CP (ca. 5g) was pressure treated at 300, 400 and 500MPa at 8°C and 15°C for 5min. Microflora populations, soluble solid content, pH, color, antioxidant activity, appearance and aroma were measured at 1, 6, and 10d of storage. Results showed that high pressure treatment of 300MPa (8°C and 15°C) resulted in reduction of total aerobic plate count from 3.3 to 1.8logCFU/g. The treatment reduced the populations of native aerobic plate count to non-detectable levels (detection limit 1logCFU/g) at 400MPa and 500MPa pressures at 15°C. Pressure treatment completely inactivated mold and yeast in puree below the limits of detection at day 1 and no regrowth was observed during 10days of storage at 4°C while mold and yeast in untreated puree survived during the storage. High pressure treatment did not show any adverse impact on physical properties as soluble solid content (SSC, 11.2°Brix) and acidity (pH, 6.9). The instrumental color parameters (L*, a*, b*) were affected due to HHP treatment creating a slightly lighter product, compared to control, as indicated by higher L.* and lower a* values. However the change was not detected by the sensory panel while evaluating appearance scores. Pressure treatment did not affect the antioxidant capacity of puree product compared to control. Visual appearance and sniffing aroma test by panel revealed no adverse changes in the sensory parameters as a result of HHP treatment. HHP method described in this study appears to be a promising way to inactivate spoilage microorganisms in the cantaloupe puree and maintain quality. This study provides a viable option for preservation and marketing this product. Published by Elsevier Ltd.

  5. Spectral classifying base on color of live corals and dead corals covered with algae

    Science.gov (United States)

    Nurdin, Nurjannah; Komatsu, Teruhisa; Barille, Laurent; Akbar, A. S. M.; Sawayama, Shuhei; Fitrah, Muh. Nur; Prasyad, Hermansyah

    2016-05-01

    Pigments in the host tissues of corals can make a significant contribution to their spectral signature and can affect their apparent color as perceived by a human observer. The aim of this study is classifying the spectral reflectance of corals base on different color. It is expected that they can be used as references in discriminating between live corals, dead coral covered with algae Spectral reflectance data was collected in three small islands, Spermonde Archipelago, Indonesia by using a hyperspectral radiometer underwater. First and second derivative analysis resolved the wavelength locations of dominant features contributing to reflectance in corals and support the distinct differences in spectra among colour existed. Spectral derivative analysis was used to determine the specific wavelength regions ideal for remote identification of substrate type. The analysis results shown that yellow, green, brown and violet live corals are spectrally separable from each other, but they are similar with dead coral covered with algae spectral.

  6. Theoretical evaluation of measurement uncertainties of two-color pyrometry applied to optical diagnostics

    International Nuclear Information System (INIS)

    Fu Tairan; Cheng Xiaofang; Yang Zangjian

    2008-01-01

    We present a theoretical analysis of two-color pyrometry applied to optical diagnostics. A two-color pyrometer built with a single CCD is advantageous due to the simple system design. We evaluate the possibility and degree of ill-conditionness on the basis of measurement uncertainties for different measurement approaches of this two-color system. We classify measurement approaches. The corresponding ill-conditionness criterion is established. The greater the criterion value is, the worse the ill-conditioned degree of solution is. So, the optimum choice of measurement approach for the two-color system is achieved through intercomparison of the criterion values. Numerical examples are also given to illustrate this point. The theoretical analysis not only provides an effective way of evaluating different measurement approaches, but also may help us to better understand the influences that determine the choices between wavelength/waveband measurements and calibration/noncalibration modes for temperature and soot distribution

  7. Color-converted remote phosphor prototype of a multiwavelength excitable borosilicate glass for white light-emitting diodes

    International Nuclear Information System (INIS)

    Tian Hua; Qiu Kun; Song Jun; Wang Da-Jian; Liu Ji-Wen

    2012-01-01

    We report a unique red light-emitting Eu-doped borosilicate glass to convert color for warm white light-emitting diodes. This glass can be excited from 394 nm-peaked near ultraviolet light, 466 nm-peaked blue light, to 534 nm-peaked green light to emit the desired red light with an excellent transmission in the wavelength range of 400–700 nm which makes this glass suitable for color conversion without a great cost of luminous power loss. In particular, when assembling this glass for commercial white light-emitting diodes, the tested results show that the color rendering index is improved to 84 with a loss of luminous power by 12 percent at average, making this variety of glass promising for inorganic “remote-phosphor” color conversion

  8. Influence of Surrounding Colors in the Illuminant-Color Mode on Color Constancy

    Directory of Open Access Journals (Sweden)

    Kazuho Fukuda

    2011-05-01

    Full Text Available On color constancy, we showed that brighter surrounding colors had greater influence than dim colors (Uchikawa, Kitazawa, MacLeod, Fukuda, 2010 APCV. Increasing luminance of a stimulus causes the change in appearance from the surface-color to the illuminant-color mode. However it is unknown whether the visual system considers such color appearance mode of surrounding colors to achieve color constancy. We investigated the influence of surrounding colors that appeared illuminant on color constancy. The stimulus was composed of a central test stimulus and surrounding six colors: bright and dim red, green and blue. The observers adjusted the chromaticity of the test stimulus to be appeared as an achromatic surface. The luminance balance of three bright surrounding colors was equalized with that of the optimal colors in three illuminant conditions, then, the luminance of one of the three bright colors was varied in the range beyond the critical luminance of color appearance mode transition. The results showed that increasing luminance of a bright surrounding color shifted the observers' achromatic setting toward its chromaticity, but this effect diminished for the surrounding color in the illuminant-color mode. These results suggest that the visual system considers color appearance mode of surrounding colors to accomplish color constancy.

  9. Nonlinear dynamics of cortical responses to color in the human cVEP.

    Science.gov (United States)

    Nunez, Valerie; Shapley, Robert M; Gordon, James

    2017-09-01

    The main finding of this paper is that the human visual cortex responds in a very nonlinear manner to the color contrast of pure color patterns. We examined human cortical responses to color checkerboard patterns at many color contrasts, measuring the chromatic visual evoked potential (cVEP) with a dense electrode array. Cortical topography of the cVEPs showed that they were localized near the posterior electrode at position Oz, indicating that the primary cortex (V1) was the major source of responses. The choice of fine spatial patterns as stimuli caused the cVEP response to be driven by double-opponent neurons in V1. The cVEP waveform revealed nonlinear color signal processing in the V1 cortex. The cVEP time-to-peak decreased and the waveform's shape was markedly narrower with increasing cone contrast. Comparison of the linear dynamics of retinal and lateral geniculate nucleus responses with the nonlinear dynamics of the cortical cVEP indicated that the nonlinear dynamics originated in the V1 cortex. The nature of the nonlinearity is a kind of automatic gain control that adjusts cortical dynamics to be faster when color contrast is greater.

  10. Proton irradiation effects on optical attenuation in doped- and pure-silica fibers

    International Nuclear Information System (INIS)

    Sakasai, Kaoru; Bueker, H.; Haesing, F.W.; Pfeiffer, F.

    1999-05-01

    Optical attenuation in doped- and pure-silica fibers was measured at wavelengths of 470 nm, 660 nm, and 850 nm during and after 20 MeV proton irradiation. In the experiment the fibers were arranged on a holder to make one layer' so that uniform proton irradiation can be achieved to them. The induced loss of the doped-silica fiber increased strongly at the beginning of the first irradiation, and decreased slowly after stopping of the beam. In the second irradiation, however, the developed loss was not so large. On the other hand, the loss of the pure-silica fiber increased gradually in the first irradiation, and decreased very quickly after the beam stopped. The loss increased stepwise at the very beginning of the second irradiation. Small luminescence from the fibers during irradiation was observed also. The luminescence of the pure-silica fiber was slightly larger than that of the doped-silica fiber. The induced loss of HCP fibers was also measured when a SiO 2 plate was set in front of the fibers. It may be possible to estimate the proton dose in materials using fiber-optic technique. Proton sensitivities of doped- and pure-silica fibers were, respectively, 1.0 x 10 -10 at 660 nm and 5.5 x 10 -12 at 470 nm in units of (dB/m)/(protons/cm 2 ), where the values were estimated from the slope of the loss growth curves at the beginning of the first irradiation. (author)

  11. Color removal from dye-containing wastewater by magnesium chloride.

    Science.gov (United States)

    Gao, Bao-Yu; Yue, Qin-Yan; Wang, Yan; Zhou, Wei-Zhi

    2007-01-01

    Color removal by MgCl(2) when treating synthetic waste containing pure dyes was studied. The color removal efficiency of MgCl(2)/Ca(OH)(2) was compared with that of Al(2)(SO(4))(3), polyaluminum chloride (PAC) and FeSO(4)/Ca(OH)(2). The mechanism of color removal by MgCl(2) was also investigated. The experimental results show that the color removal efficiency of MgCl(2) is related to the type of dye and depends on the pH of the waste and the dosage of the coagulants used. Treatment of waste containing reactive dye or dispersed dye with MgCl(2) yielded an optimum color removal ratio when the pH of the solution was equal to or above 12.0. For both the reactive and dispersed dye waste, MgCl(2)/Ca(OH)(2) was shown to be superior to MgCl(2)/NaOH, Al(2)(SO(4))(3), PAC and FeSO(4)/Ca(OH)(2) for color removal. A magnesium hydroxide precipitate formed at pH values greater than 12.0, which provided a large adsorptive surface area and a positive electrostatic surface charge, enabling it to remove the dyes through charge neutralization and an adsorptive coagulating mechanism. So, the MgCl(2)/Ca(OH)(2) system is a viable alternative to some of the more conventional forms of chemical treatment, especially for treating actual textile waste with high natural pH.

  12. Surface plasmon resonance enhanced light absorption and wavelength tuneable in gold-coated iron oxide spherical nanoparticle

    Science.gov (United States)

    Dasri, Thananchai; Chingsungnoen, Artit

    2018-06-01

    Surface plasmon in nano-sized particles, such as gold, silver, copper and their composites, has recently attracted a great deal of attention due to its possible uses in many applications, especially in life sciences. It is desirable for application devices with a tenability of surface plasmon wavelength and optical properties enhancement. This article presents enhanced optical light absorption and tunable wavelength in gold-coated magnetite (Fe3O4@Au core-shell) nanoparticles embedded in water using the theoretical method of discrete dipole approximation (DDA). The absorption spectra in the wavelengths from 350 to 900 nm were found to be the spectra obtained from Fe3O4@Au core-shell nanoparticles, and when compared with pure Fe3O4 nanoparticles, the surface plasmon resonance can be enhanced and tuned over the entire visible spectrum (viz. 350-800 nm) of the electromagnetic spectrum by varying the Au shell thickness (2-5 nm). Similarly, the Faraday rotation spectra can also be obtained.

  13. "APOPTOSIS COLOR." SCREENING STRATEGY FOR DIAGNOSIS EARLY STAGES OF PRIMARY OPEN-ANGLE GLAUCOMA

    Directory of Open Access Journals (Sweden)

    M. A. Kovalevskaya

    2017-01-01

    Full Text Available Purpose: to develop a screening strategy for the early diagnosis of primary open-angle glaucoma.Patients and Methods: 1 group — 250 patients with suspected glaucoma (42–75 years, 2 — 250 with the 1st stage primary open-angle glaucoma (42–61, 3 — 3,000 healthy persons (35 to 50. Surveys: visometry, tonometry iCare, biomicroscopy, gonioscopy, pachymeria, ophthalmoscopy with a high dioptric lens of 60 D, standard automated perimetry of the SITA-Standard and SITA-SWAP program, assessing the color sensitivity according to the Famsworth-Munsell 100 HueTes method.Results: 1 group — SITA-SWAP: MD -2,55±0,7 dB, PSD 2,46±1,15 dB. Mansell test: TES = 58.6±18.7 (p<0.05, average level of color recognition; mild deficiency of color vision — 41–100 TES; by the RGB system: colors of the first order; tone in RGB (0–239: blue — 160; HCV: blue — 240; range of wavelengths: blue — 440–485 nm; frequency: blue — 620–680 THz. 2 group — on SITA-SWAP: MD — 5,13±1,3 dB, PSD 2,58±0,9 dB. Mansell test: TES = 86,9±21,8; average level of color recognition; mild deficiency of color vision; single deviations in the system of blue (azure, blue, blue; color I order (blue, III order (blue, azure; tone in RGB — (0–239: blue (azure, blue — 140, blue — 160; HCV — blue (azure, blue — 210, blue — 240; range of wavelengths: 450–500 nm (blue — 485–500, blue — 440–485; frequencies: 600–680 THz (blue — 600–620, blue — 620–680. Control group — SITA-SWAP within the norm, Mansell test: TES = 40,1±17,3 (p<0.05, medium level of color recognition, lack of color vision absent / mild, single deviations.Conclusion: in patients with glaucoma suspicion, the score of errors was higher than in the control group with Munsell test. In patients with glaucoma, the number of errors is greater than in patients with suspected glaucoma, and 2.2 times higher than in the control group.

  14. Wavelength-Dependent PSFs and their Impact on Weak Lensing Measurements

    Science.gov (United States)

    Carlsten, S. G.; Strauss, Michael A.; Lupton, Robert H.; Meyers, Joshua E.; Miyazaki, Satoshi

    2018-06-01

    We measure and model the wavelength dependence of the point spread function (PSF) in the Hyper Suprime-Cam Subaru Strategic Program survey. We find that PSF chromaticity is present in that redder stars appear smaller than bluer stars in the g, r, and i-bands at the 1-2 per cent level and in the z and y-bands at the 0.1-0.2 per cent level. From the color dependence of the PSF, we fit a model between the monochromatic PSF size based on weighted second moments, R, and wavelength of the form R(λ)∝λ-b. We find values of b between 0.2 and 0.5, depending on the epoch and filter. This is consistent with the expectations of a turbulent atmosphere with an outer scale length of ˜10 - 100 m, indicating that the atmosphere is dominating the chromaticity. In the best seeing data, we find that the optical system and detector also contribute some wavelength dependence. Meyers & Burchat (2015b) showed that b must be measured to an accuracy of ˜0.02 not to dominate the systematic error budget of the Large Synoptic Survey Telescope (LSST) weak lensing (WL) survey. Using simple image simulations, we find that b can be inferred with this accuracy in the r and i-bands for all positions in the LSST focal plane, assuming a stellar density of 1 star arcmin-2 and that the optical component of the PSF can be accurately modeled. Therefore, it is possible to correct for most, if not all, of the bias that the wavelength-dependent PSF will introduce into an LSST-like WL survey.

  15. A preconscious neural mechanism of hypnotically altered colors: a double case study.

    Directory of Open Access Journals (Sweden)

    Mika Koivisto

    Full Text Available Hypnotic suggestions may change the perceived color of objects. Given that chromatic stimulus information is processed rapidly and automatically by the visual system, how can hypnotic suggestions affect perceived colors in a seemingly immediate fashion? We studied the mechanisms of such color alterations by measuring electroencephalography in two highly suggestible participants as they perceived briefly presented visual shapes under posthypnotic color alternation suggestions such as "all the squares are blue". One participant consistently reported seeing the suggested colors. Her reports correlated with enhanced evoked upper beta-band activity (22 Hz 70-120 ms after stimulus in response to the shapes mentioned in the suggestion. This effect was not observed in a control condition where the participants merely tried to simulate the effects of the suggestion on behavior. The second participant neither reported color alterations nor showed the evoked beta activity, although her subjective experience and event-related potentials were changed by the suggestions. The results indicate a preconscious mechanism that first compares early visual input with a memory representation of the suggestion and consequently triggers the color alteration process in response to the objects specified by the suggestion. Conscious color experience is not purely the result of bottom-up processing but it can be modulated, at least in some individuals, by top-down factors such as hypnotic suggestions.

  16. Extending Whole Slide Imaging: Color Darkfield Internal Reflection Illumination (DIRI for Biological Applications.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Kawano

    Full Text Available Whole slide imaging (WSI is a useful tool for multi-modal imaging, and in our work, we have often combined WSI with darkfield microscopy. However, traditional darkfield microscopy cannot use a single condenser to support high- and low-numerical-aperture objectives, which limits the modality of WSI. To overcome this limitation, we previously developed a darkfield internal reflection illumination (DIRI microscope using white light-emitting diodes (LEDs. Although the developed DIRI is useful for biological applications, substantial problems remain to be resolved. In this study, we propose a novel illumination technique called color DIRI. The use of three-color LEDs dramatically improves the capability of the system, such that color DIRI (1 enables optimization of the illumination color; (2 can be combined with an oil objective lens; (3 can produce fluorescence excitation illumination; (4 can adjust the wavelength of light to avoid cell damage or reactions; and (5 can be used as a photostimulator. These results clearly illustrate that the proposed color DIRI can significantly extend WSI modalities for biological applications.

  17. Color-tunable mixed photoluminescence emission from Alq3 organic layer in metal-Alq3-metal surface plasmon structure.

    Science.gov (United States)

    Chen, Nai-Chuan; Liao, Chung-Chi; Chen, Cheng-Chang; Fan, Wan-Ting; Wu, Jin-Han; Li, Jung-Yu; Chen, Shih-Pu; Huang, Bohr-Ran; Lee, Li-Ling

    2014-01-01

    This work reports the color-tunable mixed photoluminescence (PL) emission from an Alq3 organic layer in an Au-Alq3-Au plasmonic structure through the combination of organic fluorescence emission and another form of emission that is enabled by the surface plasmons in the plasmonic structure. The emission wavelength of the latter depends on the Alq3 thickness and can be tuned within the Alq3 fluorescent spectra. Therefore, a two-color broadband, color-tunable mixed PL structure was obtained. Obvious changes in the Commission Internationale d'Eclairage (CIE) coordinates and the corresponding emission colors of Au-Alq3-Au samples clearly varied with the Alq3 thickness (90, 130, and 156 nm).

  18. A new approach to dual-color two-photon microscopy with fluorescent proteins

    Directory of Open Access Journals (Sweden)

    Rebane Aleks

    2010-02-01

    Full Text Available Abstract Background Two-photon dual-color imaging of tissues and cells labeled with fluorescent proteins (FPs is challenging because most two-photon microscopes only provide one laser excitation wavelength at a time. At present, methods for two-photon dual-color imaging are limited due to the requirement of large differences in Stokes shifts between the FPs used and their low two-photon absorption (2PA efficiency. Results Here we present a new method of dual-color two-photon microscopy that uses the simultaneous excitation of the lowest-energy electronic transition of a blue fluorescent protein and a higher-energy electronic transition of a red fluorescent protein. Conclusion Our method does not require large differences in Stokes shifts and can be extended to a variety of FP pairs with larger 2PA efficiency and more optimal imaging properties.

  19. Structural Color Model Based on Surface Morphology of MORPHO Butterfly Wing Scale

    Science.gov (United States)

    Huang, Zhongjia; Cai, Congcong; Wang, Gang; Zhang, Hui; Huttula, Marko; Cao, Wei

    2016-05-01

    Color production through structural coloration is created by micrometer and sub-micrometer surface textures which interfere with visible light. The shiny blue of morpho menelaus is a typical example of structural coloring. Modified from morphology of the morpho scale, a structure of regular windows with two side offsets was constructed on glass substrates. Optical properties of the bioinspired structure were studied through numerical simulations of light scattering. Results show that the structure can generate monochromatic light scattering. Wavelength of scattered light is tunable via changing the spacing between window shelves. Compared to original butterfly model, the modified one possesses larger illumination scopes in azimuthal distributions despite being less in polar directions. Present bionic structure is periodically repeated and is easy to fabricate. It is hoped that the computational materials design work can inspire future experimental realizations of such a structure in photonics applications.

  20. Dust color temperature distribution of two FIR cavities at IRIS and AKARI maps

    Science.gov (United States)

    Jha, A. K.; Aryal, B.

    2018-04-01

    By systematically searching the region of far infrared loops, we found a number of huge cavity-like dust structures at 60 μ m and 100 μ m IRIS maps. By checking these with AKARI maps (90 μ m and 140 μ m), two new cavity-like structures (sizes ˜ 2.7 pc × 0.8 pc and ˜ 1.8 pc × 1 pc) located at R.A. (J2000)=14h41m23s and Dec. (J2000)=-64°04^' }17^' }' }} and R.A. (J2000)=05h05m35s and Dec. (J2000)=- 69°35^' } 25^' }' }} were selected for the study. The difference in the average dust color temperatures calculated using IRIS and AKARI maps of the cavity candidates were found to be 3.2± 0.9 K and 4.1± 1.2 K, respectively. Interestingly, the longer wavelength AKARI map gives larger values of dust color temperature than that of the shorter wavelength IRIS maps. Possible explanation of the results will be presented.

  1. Effect of light with different wavelengths on Nostoc flagelliforme cells in liquid culture.

    Science.gov (United States)

    Dai, Yu-Jie; Li, Jing; Wei, Shu-Mei; Chen, Nan; Xiao, Yu-Peng; Tan, Zhi-Lei; Jia, Shi-Ru; Yuan, Nan-Nan; Tan, Ning; Song, Yi-Jie

    2013-04-01

    The effects of lights with different wavelengths on the growth and the yield of extracellular polysaccharides of Nostoc flagelliforme cells were investigated in a liquid cultivation. N. flagelliforme cells were cultured for 16 days in 500 ml conical flasks containing BG11 culture medium under 27 micromol·m-2·s-1 of light intensity and 25 degrees C on a rotary shaker (140 rpm). The chlorophyll a, phycocyanin, allophycocyanin, and phycoerythrin contents in N. flagelliforme cells under the lights of different wavelengths were also measured. It was found that the cell biomass and the yield of polysaccharide changed with different wavelengths of light. The biomass and the yield of extracellular polysaccharides under the red or violet light were higher than those under other light colors. Chlorophyll a, phycocyanin, and allophycocyanin are the main pigments in N. flagelliforme cells. The results showed that N. flagelliforme, like other cyanobacteria, has the ability of adjusting the contents and relative ratio of its pigments with the light quality. As a conclusion, N. flagelliforme cells favor red and violet lights and perform the complementary chromatic adaptation ability to acclimate to the changes of the light quality in the environment.

  2. Processing of Color Words Activates Color Representations

    Science.gov (United States)

    Richter, Tobias; Zwaan, Rolf A.

    2009-01-01

    Two experiments were conducted to investigate whether color representations are routinely activated when color words are processed. Congruency effects of colors and color words were observed in both directions. Lexical decisions on color words were faster when preceding colors matched the color named by the word. Color-discrimination responses…

  3. Minimizing quality changes of cloudy apple juice: The use of kiwifruit puree and high pressure homogenization.

    Science.gov (United States)

    Yi, Junjie; Kebede, Biniam; Kristiani, Kristiani; Grauwet, Tara; Van Loey, Ann; Hendrickx, Marc

    2018-05-30

    Cloud loss, enzymatic browning, and flavor changes are important quality defects of cloudy fruit juices determining consumer acceptability. The development of clean label options to overcome such quality problems is currently of high interest. Therefore, this study investigated the effect of kiwifruit puree (clean label ingredient) and high pressure homogenization on quality changes of cloudy apple juice using a multivariate approach. The use of kiwifruit puree addition and high pressure homogenization resulted in a juice with improved uniformity and cloud stability by reducing particle size and increasing viscosity and yield stress (p < 0.01). Furthermore, kiwifruit puree addition reduced enzymatic browning (ΔE ∗  < 3), due to the increased ascorbic acid and contributed to a more saturated and bright yellow color, a better taste balance, and a more fruity aroma of juice. This work demonstrates that clean label options to control quality degradation of cloudy fruit juice might offer new opportunities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Study on the light-color mixing of rare earth luminescent materials for anti-counterfeiting application

    Science.gov (United States)

    Zhang, Jishu; Zhang, Yingzi; Tao, Jin; Zhu, Yanan

    2018-04-01

    In order to find out the light color mixing mechanism of rare earth luminescent materials used in anti-counterfeiting fibers, we prepared three kinds of rare earth luminescent materials according to RGB tri-primary color, and mixed it together to form different mixtures in certain proportion. The phase structures of the luminescent material monomers were measured by x-ray diffractometer. The photochromic properties of the luminescent materials were tested and analyzed by fluorescence spectrophotometer. The results show that the light color mixing was consistent with the blending principle of additive color, but not the same because of the photochromic properties of rare earth luminescent materials, and we explored the reasons in the light wavelength and intensity. It was found that the enhancement of the luminescence intensity of the mixture on account of the superimposing of luminescence.

  5. Color categories and color appearance

    Science.gov (United States)

    Webster, Michael A.; Kay, Paul

    2011-01-01

    We examined categorical effects in color appearance in two tasks, which in part differed in the extent to which color naming was explicitly required for the response. In one, we measured the effects of color differences on perceptual grouping for hues that spanned the blue–green boundary, to test whether chromatic differences across the boundary were perceptually exaggerated. This task did not require overt judgments of the perceived colors, and the tendency to group showed only a weak and inconsistent categorical bias. In a second case, we analyzed results from two prior studies of hue scaling of chromatic stimuli (De Valois, De Valois, Switkes, & Mahon, 1997; Malkoc, Kay, & Webster, 2005), to test whether color appearance changed more rapidly around the blue–green boundary. In this task observers directly judge the perceived color of the stimuli and these judgments tended to show much stronger categorical effects. The differences between these tasks could arise either because different signals mediate color grouping and color appearance, or because linguistic categories might differentially intrude on the response to color and/or on the perception of color. Our results suggest that the interaction between language and color processing may be highly dependent on the specific task and cognitive demands and strategies of the observer, and also highlight pronounced individual differences in the tendency to exhibit categorical responses. PMID:22176751

  6. Rover's Wheel Churns Up Bright Martian Soil (False Color)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel. The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life. The image is presented here in false color that is used to bring out subtle differences in color.

  7. Plasmonic Metaparticles on a Blackbody Create Vivid Reflective Colors for Naked-Eye Environmental and Clinical Biodetection

    DEFF Research Database (Denmark)

    Elbahri, Mady; Abdelaziz, Moh eb; Homaeigohar, Shahin

    2018-01-01

    . A configuration of “Plasmonic metaparticles on a blackbody” is demonstrated and utilized for the design of a tailored perfect-colored absorber and for visual detection of environmental dielectrics that is not readily done by extinction plasmonics. Moreover, the Plasmonic Brewster Wavelength (PBW) effect...

  8. Frequency division multiplexed multi-color fluorescence microscope system

    Science.gov (United States)

    Le, Vu Nam; Yang, Huai Dong; Zhang, Si Chun; Zhang, Xin Rong; Jin, Guo Fan

    2017-10-01

    Grayscale camera can only obtain gray scale image of object, while the multicolor imaging technology can obtain the color information to distinguish the sample structures which have the same shapes but in different colors. In fluorescence microscopy, the current method of multicolor imaging are flawed. Problem of these method is affecting the efficiency of fluorescence imaging, reducing the sampling rate of CCD etc. In this paper, we propose a novel multiple color fluorescence microscopy imaging method which based on the Frequency division multiplexing (FDM) technology, by modulating the excitation lights and demodulating the fluorescence signal in frequency domain. This method uses periodic functions with different frequency to modulate amplitude of each excitation lights, and then combine these beams for illumination in a fluorescence microscopy imaging system. The imaging system will detect a multicolor fluorescence image by a grayscale camera. During the data processing, the signal obtained by each pixel of the camera will be processed with discrete Fourier transform, decomposed by color in the frequency domain and then used inverse discrete Fourier transform. After using this process for signals from all of the pixels, monochrome images of each color on the image plane can be obtained and multicolor image is also acquired. Based on this method, this paper has constructed and set up a two-color fluorescence microscope system with two excitation wavelengths of 488 nm and 639 nm. By using this system to observe the linearly movement of two kinds of fluorescent microspheres, after the data processing, we obtain a two-color fluorescence dynamic video which is consistent with the original image. This experiment shows that the dynamic phenomenon of multicolor fluorescent biological samples can be generally observed by this method. Compared with the current methods, this method can obtain the image signals of each color at the same time, and the color video's frame

  9. Evolution in the Colors of Lyman Break Galaxies from z~4 to z~3

    Science.gov (United States)

    Papovich, Casey; Dickinson, Mark; Ferguson, Henry C.; Giavalisco, Mauro; Lotz, Jennifer; Madau, Piero; Idzi, Rafal; Kretchmer, Claudia; Moustakas, Leonidas A.; de Mello, Duilia F.; Gardner, Jonathan P.; Rieke, Marcia J.; Somerville, Rachel S.; Stern, Daniel

    2004-01-01

    The integrated colors of distant galaxies provide a means for interpreting the properties of their stellar content. Here we use rest-frame UV-to-optical colors to constrain the spectral energy distributions and stellar populations of color-selected, B-dropout galaxies at z~4 in the Great Observatories Origins Deep Survey (GOODS). We combine the Advanced Camera for Surveys data with ground-based near-infrared images, which extend the coverage of galaxies at z~4 to the rest-frame B band. We observe a color-magnitude trend in the rest-frame m(UV)-B versus B diagram for the z~4 galaxies that has a fairly well-defined ``blue envelope,'' and is strikingly similar to that of color-selected, U-dropout galaxies at z~3. We also find that although the co-moving luminosity density at rest-frame UV wavelengths (1600 Å) is roughly comparable at z~3 and ~4, the luminosity density at rest-frame optical wavelengths increases by about one-third from z~4 to ~3. Although the star formation histories of individual galaxies may involve complex and stochastic events, the evolution in the global luminosity density of the UV-bright galaxy population corresponds to an average star formation history with a star formation rate that is constant or increasing over these redshifts. This suggests that the evolution in the luminosity density corresponds to an increase in the stellar mass density of >~33%. Based on observations taken with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS5-26555, and based on observations collected at the European Southern Observatory, Chile (ESO programs 168.A-0485, 64.O-0643, 66.A-0572, and 68.A-0544).

  10. Rehabilitation of pure alexia

    DEFF Research Database (Denmark)

    Starrfelt, Randi; Ólafsdóttir, Rannveig Rós; Arendt, Ida-Marie

    2013-01-01

    that pure alexia was an easy target for rehabilitation efforts. We review the literature on rehabilitation of pure alexia from 1990 to the present, and find that patients differ widely on several dimensions like alexia severity, and associated deficits. Many patients reported to have pure alexia......-designed and controlled studies of rehabilitation of pure alexia....

  11. Preferred skin color enhancement for photographic color reproduction

    Science.gov (United States)

    Zeng, Huanzhao; Luo, Ronnier

    2011-01-01

    Skin tones are the most important colors among the memory color category. Reproducing skin colors pleasingly is an important factor in photographic color reproduction. Moving skin colors toward their preferred skin color center improves the color preference of skin color reproduction. Several methods to morph skin colors to a smaller preferred skin color region has been reported in the past. In this paper, a new approach is proposed to further improve the result of skin color enhancement. An ellipsoid skin color model is applied to compute skin color probabilities for skin color detection and to determine a weight for skin color adjustment. Preferred skin color centers determined through psychophysical experiments were applied for color adjustment. Preferred skin color centers for dark, medium, and light skin colors are applied to adjust skin colors differently. Skin colors are morphed toward their preferred color centers. A special processing is applied to avoid contrast loss in highlight. A 3-D interpolation method is applied to fix a potential contouring problem and to improve color processing efficiency. An psychophysical experiment validates that the method of preferred skin color enhancement effectively identifies skin colors, improves the skin color preference, and does not objectionably affect preferred skin colors in original images.

  12. Cholesteric Liquid Crystal Based Reflex Color Reflective Displays

    Science.gov (United States)

    Khan, Asad

    2012-02-01

    Bistable color cholesteric liquid crystal displays are unique LCDs that exhibit high reflectivity, good contrast, extremely low power operation, and are amenable to versatile roll-to-roll manufacturing. The display technology, now branded as Reflex has been in commercialized products since 1996. It has been the subject of extensive research and development globally by a variety of parties in both academic and industrial settings. Today, the display technology is in volume production for applications such as dedicated eWriters (Boogie Board), full color electronic skins (eSkin), and displays for smart cards. The flexibility comes from polymerization induced phase separation using unique materials unparalleled in any other display technology. The blend of monomers, polymers, cross linkers, and other components along with nematic liquid crystals and chiral dopants is created and processed in such ways so as to enable highly efficient manufactrable displays using ultra thin plastic substrates -- often as thin as 50μm. Other significant aspects include full color by stacking or spatial separation, night vision capability, ultra high resolution, as well as active matrix capabilities. Of particular note is the stacking approach of Reflex based displays to show full color. This approach for reflective color displays is unique to this technology. Owing to high transparency in wavelength bands outside the selective reflection band, three primarily color layers can be stacked on top of each other and reflect without interfering with other layers. This highly surprising architecture enables the highest reflectivity of any other reflective electronic color display technology. The optics, architecture, electro-topics, and process techniques will be discussed. This presentation will focus on the physics of the core technology and color, it's evolution from rigid glass based displays to flexible displays, development of products from the paradigm shifting concepts to consumer

  13. Wavelength converter placement for different RWA algorithms in wavelength-routed all-optical networks

    Science.gov (United States)

    Chu, Xiaowen; Li, Bo; Chlamtac, Imrich

    2002-07-01

    Sparse wavelength conversion and appropriate routing and wavelength assignment (RWA) algorithms are the two key factors in improving the blocking performance in wavelength-routed all-optical networks. It has been shown that the optimal placement of a limited number of wavelength converters in an arbitrary mesh network is an NP complete problem. There have been various heuristic algorithms proposed in the literature, in which most of them assume that a static routing and random wavelength assignment RWA algorithm is employed. However, the existing work shows that fixed-alternate routing and dynamic routing RWA algorithms can achieve much better blocking performance. Our study in this paper further demonstrates that the wavelength converter placement and RWA algorithms are closely related in the sense that a well designed wavelength converter placement mechanism for a particular RWA algorithm might not work well with a different RWA algorithm. Therefore, the wavelength converter placement and the RWA have to be considered jointly. The objective of this paper is to investigate the wavelength converter placement problem under fixed-alternate routing algorithm and least-loaded routing algorithm. Under the fixed-alternate routing algorithm, we propose a heuristic algorithm called Minimum Blocking Probability First (MBPF) algorithm for wavelength converter placement. Under the least-loaded routing algorithm, we propose a heuristic converter placement algorithm called Weighted Maximum Segment Length (WMSL) algorithm. The objective of the converter placement algorithm is to minimize the overall blocking probability. Extensive simulation studies have been carried out over three typical mesh networks, including the 14-node NSFNET, 19-node EON and 38-node CTNET. We observe that the proposed algorithms not only outperform existing wavelength converter placement algorithms by a large margin, but they also can achieve almost the same performance comparing with full wavelength

  14. Color centers in KCN: ferro-elastic alignment and free optical absorption of phonons

    International Nuclear Information System (INIS)

    Grillo, M.L.N.

    1983-01-01

    Some color centers in KCN pure and KCL or KOH doped are studied. The used tecniques for detection of these color centers were optical absorption and electron paramagnetic resonance (EPR). To obtain this color centers crystals were always exposed to X-rays. With an optical absorption technique, one color center was analysed after X-ray irradiation followed by a suitable photochemical process. Throught the EPR technique the F center and three other centers produced by radiation damage were observed through several KCN solid phases. As in the orthorhombic and ferroelastic phase (temperatures between 168K and 83K), the crystals of KCN present one multidomain structure responsable for strong light scattering on the optical absorption spectra and EPR spectra that does not present the resolved lines formed above 168K, one system of aligned domains was obtained through mechanical stress built specifically to be capable of reducing the number of distinct domain, and this allowed us to observe of partially resolved EPR lines. (Auhtor) [pt

  15. Fast photo-induced color changes of Ag particles deposited on single-crystalline TiO2 surface

    Science.gov (United States)

    Bai, Y. J.; Liu, W. Z.; Chen, A.; Shi, L.; Liu, X. H.; Zi, J.

    2018-05-01

    It is well known that surface-plasmon enhanced photo-electrochemical effect or photo-thermal effect of metallic particles on a semiconductor substrate or in a suspension may result in color changes. Such character could be potentially applicable to colorimetric sensors, optical filters, and data storage devices. However, usually the response time for color changes is too long to be practically applied. In this letter, we found that the response rate of color changes could be controlled by the annealing condition of the semiconductor substrate, and changes larger than 10% in spectra were observed after only 1-min exposure to light. Furthermore, such fast response was applied to realize wavelength-dependent "write" and "read" applications with high spatial resolution.

  16. Local Strategy Combined with a Wavelength Selection Method for Multivariate Calibration

    Directory of Open Access Journals (Sweden)

    Haitao Chang

    2016-06-01

    Full Text Available One of the essential factors influencing the prediction accuracy of multivariate calibration models is the quality of the calibration data. A local regression strategy, together with a wavelength selection approach, is proposed to build the multivariate calibration models based on partial least squares regression. The local algorithm is applied to create a calibration set of spectra similar to the spectrum of an unknown sample; the synthetic degree of grey relation coefficient is used to evaluate the similarity. A wavelength selection method based on simple-to-use interactive self-modeling mixture analysis minimizes the influence of noisy variables, and the most informative variables of the most similar samples are selected to build the multivariate calibration model based on partial least squares regression. To validate the performance of the proposed method, ultraviolet-visible absorbance spectra of mixed solutions of food coloring analytes in a concentration range of 20–200 µg/mL is measured. Experimental results show that the proposed method can not only enhance the prediction accuracy of the calibration model, but also greatly reduce its complexity.

  17. Stable structural color patterns displayed on transparent insect wings.

    Science.gov (United States)

    Shevtsova, Ekaterina; Hansson, Christer; Janzen, Daniel H; Kjærandsen, Jostein

    2011-01-11

    Color patterns play central roles in the behavior of insects, and are important traits for taxonomic studies. Here we report striking and stable structural color patterns--wing interference patterns (WIPs)--in the transparent wings of small Hymenoptera and Diptera, patterns that have been largely overlooked by biologists. These extremely thin wings reflect vivid color patterns caused by thin film interference. The visibility of these patterns is affected by the way the insects display their wings against various backgrounds with different light properties. The specific color sequence displayed lacks pure red and matches the color vision of most insects, strongly suggesting that the biological significance of WIPs lies in visual signaling. Taxon-specific color patterns are formed by uneven membrane thickness, pigmentation, venation, and hair placement. The optically refracted pattern is also stabilized by microstructures of the wing such as membrane corrugations and spherical cell structures that reinforce the pattern and make it essentially noniridescent over a large range of light incidences. WIPs can be applied to map the micromorphology of wings through direct observation and are useful in several fields of biology. We demonstrate their usefulness as identification patterns to solve cases of cryptic species complexes in tiny parasitic wasps, and indicate their potentials for research on the genetic control of wing development through direct links between the transregulatory wing landscape and interference patterns we observe in Drosophila model species. Some species display sexually dimorphic WIPs, suggesting sexual selection as one of the driving forces for their evolution.

  18. Design and fabrication of structural color by local surface plasmonic meta-molecules

    International Nuclear Information System (INIS)

    Ma Ya-Qi; Shao Jin-Hai; Lu Bing-Rui; Zhang Si-Chao; Chen Yi-Fang; Zhang Ya-Feng; Sun Yan; Qu Xin-Ping

    2015-01-01

    In this paper, we propose a new form of nanostructures with Al film deposited on a patterned dielectric material for generating structural color, which is induced by local surface plasmonic resonant (LSPR) absorption in sub-wavelength-indented hole/ring arrays. Unlike other reported results obtained by using focus ion beam (FIB) to create metallic nanostructures, the nano-sized hole/ring arrays in Al film in this work are replicated by high resolution electron beam lithography (EBL) combined with self-aligned metallization. Clear structural color is observed and systematically studied by numerical simulations as well as optical characterizations. The central color is strongly related to the geometric size, which provides us with good opportunities to dye the colorless Al surface by controlling the hole/ring dimensions (both diameter and radius), and to open up broad applications in display, jewelry decoration, green production of packing papers, security code, and counterfeits prevention. (paper)

  19. Skin color and tissue thickness effects on transmittance, reflectance, and skin temperature when using 635 and 808 nm lasers in low intensity therapeutics.

    Science.gov (United States)

    Souza-Barros, Leanna; Dhaidan, Ghaith; Maunula, Mikko; Solomon, Vaeda; Gabison, Sharon; Lilge, Lothar; Nussbaum, Ethne L

    2018-04-01

    To examine the role of skin color and tissue thickness on transmittance, reflectance, and skin heating using red and infrared laser light. Forty volunteers were measured for skin color and skin-fold thickness at a standardized site near the elbow. Transmittance, reflectance and skin temperature were recorded for energy doses of 2, 6, 9, and 12 Joules using 635 nm (36 mW) and 808 nm (40 mW) wavelength laser diodes with irradiances within American National Standards Institute safety guidelines (4.88 mm diameter, 0.192 W/cm 2 and 4.88 mm diameter, 0.214 W/cm 2 , respectively). The key factors affecting reflectance to an important degree were skin color and wavelength. However, the skin color effects were different for the two wavelengths: reflectance decreased for darker skin with a greater decrease for red light than near infrared light. Transmittance was greater using 808 nm compared with 635 nm. However, the effect was partly lost when the skin was dark rather than light, and was increasingly lost as tissue thickness increased. Dose had an increasing effect on temperature (0.7-1.6°C across the 6, 9, and 12 J doses); any effects of wavelength, skin color, and tissue thickness were insignificant compared to dose effects. Subjects themselves were not aware of the increased skin temperature. Transmittance and reflectance changes as a function of energy were very small and likely of no clinical significance. Absorption did not change with higher energy doses and increasing temperature. Skin color and skin thickness affect transmittance and reflectance of laser light and must be accounted for when selecting energy dose to ensure therapeutic effectiveness at the target tissue. Skin heating appears not to be a concern when using 635 and 808 nm lasers at energy doses of up to 12 J and irradiance within American National Standards Institute standards. Photobiomodulation therapy should never exceed the American National Standards Institute

  20. Do focal colors look particularly "colorful"?

    Science.gov (United States)

    Witzel, Christoph; Franklin, Anna

    2014-04-01

    If the most typical red, yellow, green, and blue were particularly colorful (i.e., saturated), they would "jump out to the eye." This would explain why even fundamentally different languages have distinct color terms for these focal colors, and why unique hues play a prominent role in subjective color appearance. In this study, the subjective saturation of 10 colors around each of these focal colors was measured through a pairwise matching task. Results show that subjective saturation changes systematically across hues in a way that is strongly correlated to the visual gamut, and exponentially related to sensitivity but not to focal colors.

  1. Contourlet domain multiband deblurring based on color correlation for fluid lens cameras.

    Science.gov (United States)

    Tzeng, Jack; Liu, Chun-Chen; Nguyen, Truong Q

    2010-10-01

    Due to the novel fluid optics, unique image processing challenges are presented by the fluidic lens camera system. Developed for surgical applications, unique properties, such as no moving parts while zooming and better miniaturization than traditional glass optics, are advantages of the fluid lens. Despite these abilities, sharp color planes and blurred color planes are created by the nonuniform reaction of the liquid lens to different color wavelengths. Severe axial color aberrations are caused by this reaction. In order to deblur color images without estimating a point spread function, a contourlet filter bank system is proposed. Information from sharp color planes is used by this multiband deblurring method to improve blurred color planes. Compared to traditional Lucy-Richardson and Wiener deconvolution algorithms, significantly improved sharpness and reduced ghosting artifacts are produced by a previous wavelet-based method. Directional filtering is used by the proposed contourlet-based system to adjust to the contours of the image. An image is produced by the proposed method which has a similar level of sharpness to the previous wavelet-based method and has fewer ghosting artifacts. Conditions for when this algorithm will reduce the mean squared error are analyzed. While improving the blue color plane by using information from the green color plane is the primary focus of this paper, these methods could be adjusted to improve the red color plane. Many multiband systems such as global mapping, infrared imaging, and computer assisted surgery are natural extensions of this work. This information sharing algorithm is beneficial to any image set with high edge correlation. Improved results in the areas of deblurring, noise reduction, and resolution enhancement can be produced by the proposed algorithm.

  2. Advanced microlens and color filter process technology for the high-efficiency CMOS and CCD image sensors

    Science.gov (United States)

    Fan, Yang-Tung; Peng, Chiou-Shian; Chu, Cheng-Yu

    2000-12-01

    New markets are emerging for digital electronic image device, especially in visual communications, PC camera, mobile/cell phone, security system, toys, vehicle image system and computer peripherals for document capture. To enable one-chip image system that image sensor is with a full digital interface, can make image capture devices in our daily lives. Adding a color filter to such image sensor in a pattern of mosaics pixel or wide stripes can make image more real and colorful. We can say 'color filter makes the life more colorful color filter is? Color filter means can filter image light source except the color with specific wavelength and transmittance that is same as color filter itself. Color filter process is coating and patterning green, red and blue (or cyan, magenta and yellow) mosaic resists onto matched pixel in image sensing array pixels. According to the signal caught from each pixel, we can figure out the environment image picture. Widely use of digital electronic camera and multimedia applications today makes the feature of color filter becoming bright. Although it has challenge but it is very worthy to develop the process of color filter. We provide the best service on shorter cycle time, excellent color quality, high and stable yield. The key issues of advanced color process have to be solved and implemented are planarization and micro-lens technology. Lost of key points of color filter process technology have to consider will also be described in this paper.

  3. Using color management in color document processing

    Science.gov (United States)

    Nehab, Smadar

    1995-04-01

    Color Management Systems have been used for several years in Desktop Publishing (DTP) environments. While this development hasn't matured yet, we are already experiencing the next generation of the color imaging revolution-Device Independent Color for the small office/home office (SOHO) environment. Though there are still open technical issues with device independent color matching, they are not the focal point of this paper. This paper discusses two new and crucial aspects in using color management in color document processing: the management of color objects and their associated color rendering methods; a proposal for a precedence order and handshaking protocol among the various software components involved in color document processing. As color peripherals become affordable to the SOHO market, color management also becomes a prerequisite for common document authoring applications such as word processors. The first color management solutions were oriented towards DTP environments whose requirements were largely different. For example, DTP documents are image-centric, as opposed to SOHO documents that are text and charts centric. To achieve optimal reproduction on low-cost SOHO peripherals, it is critical that different color rendering methods are used for the different document object types. The first challenge in using color management of color document processing is the association of rendering methods with object types. As a result of an evolutionary process, color matching solutions are now available as application software, as driver embedded software and as operating system extensions. Consequently, document processing faces a new challenge, the correct selection of the color matching solution while avoiding duplicate color corrections.

  4. Automatic color preference correction for color reproduction

    Science.gov (United States)

    Tsukada, Masato; Funayama, Chisato; Tajima, Johji

    2000-12-01

    The reproduction of natural objects in color images has attracted a great deal of attention. Reproduction more pleasing colors of natural objects is one of the methods available to improve image quality. We developed an automatic color correction method to maintain preferred color reproduction for three significant categories: facial skin color, green grass and blue sky. In this method, a representative color in an object area to be corrected is automatically extracted from an input image, and a set of color correction parameters is selected depending on the representative color. The improvement in image quality for reproductions of natural image was more than 93 percent in subjective experiments. These results show the usefulness of our automatic color correction method for the reproduction of preferred colors.

  5. On the combination of molecular replacement and single-wavelength anomalous diffraction phasing for automated structure determination

    International Nuclear Information System (INIS)

    Panjikar, Santosh; Parthasarathy, Venkataraman; Lamzin, Victor S.; Weiss, Manfred S.; Tucker, Paul A.

    2009-01-01

    The combination of molecular replacement and single-wavelength anomalous diffraction improves the performance of automated structure determination with Auto-Rickshaw. A combination of molecular replacement and single-wavelength anomalous diffraction phasing has been incorporated into the automated structure-determination platform Auto-Rickshaw. The complete MRSAD procedure includes molecular replacement, model refinement, experimental phasing, phase improvement and automated model building. The improvement over the standard SAD or MR approaches is illustrated by ten test cases taken from the JCSG diffraction data-set database. Poor MR or SAD phases with phase errors larger than 70° can be improved using the described procedure and a large fraction of the model can be determined in a purely automatic manner from X-ray data extending to better than 2.6 Å resolution

  6. Reconfigurable high-speed optical fibre networks: Optical wavelength conversion and switching using VCSELs to eliminate channel collisions

    Science.gov (United States)

    Boiyo, Duncan Kiboi; Chabata, T. V.; Kipnoo, E. K. Rotich; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.

    2017-01-01

    We experimentally provide an alternative solution to channel collisions through up-wavelength conversion and switching by using vertical cavity surface-emitting lasers (VCSELs). This has been achieved by utilizing purely optical wavelength conversion on VCSELs at the low attenuation, 1550 nm transmission window. The corresponding transmission and bit error-rate (BER) performance evaluation is also presented. In this paper, two 1550 nm VCSELs with 50-150 GHz channel spacing are modulated with a 10 Gb/s NRZ PRBS 27-1 data and their interferences investigated. A channel interference penalty range of 0.15-1.63 dB is incurred for 150-50 GHz channel spacing without transmission. To avoid channel collisions and to minimize high interference penalties, the transmitting VCSEL with data is injected into the side-mode of a slave VCSEL to obtain a new up converted wavelength. A 16 dB extinction ratio of the incoming wavelength is achieved when a 15 dBm transmitting beam is injected into the side-mode of a -4.5 dBm slave VCSEL. At 8.5 Gb/s, a 1.1 dB conversion and a 0.5 dB transmission penalties are realized when the converted wavelength is transmitted over a 24.7 km G.655 fibre. This work offers a low-cost, effective wavelength conversion and channel switching to reduce channel collision probability by reconfiguring channels at the node of networks.

  7. The Impact of Color-Coding Freshmen Integrated-Science Assignments on Student Achievement

    Science.gov (United States)

    Sturdivant Allen, Anita Kay

    Students in Grade 9 exhibit high rates of grade retention and absenteeism. Educators have used different strategies that will increase the achievement of those students. The purpose of this study was to determine whether a relationship existed between student achievement and the strategy to use colored paper for Grade 9 science assignments and tests. Itten's color theory provided the theoretical framework. Itten was one of the first researchers to explore the notion that the human eye can detect wavelengths as colors and that those colors can engage and create order in the human brain. A sample of students assigned to 4 classroom teachers at one high school who volunteered to take part in the study for 18 weeks were used in this quantitative study. Teachers administered student assessments on blue, green, yellow, and white paper. Each class was assigned 1 of the 4 colors for 4.5 weeks. The classes were then assigned a different color for the same length of time until each class had exposure to all 4 colors. Physical science exams given to students in the same grade or subject were used as the dependent variable. An ANOVA indicated that the groups using blue paper scored the highest on the physical science exams; students who used white paper earned the lowest scores. When comparing all 3 groups using colored paper (all three colored paper groups combined into one group) to the white paper groups, t-test results indicated that students using any colored paper scored higher than students using white paper. Further research on the impact of colored paper on student academic performance is necessary. Implications for positive social change indicate that new knowledge about instructional tools that impact student achievement deserves more attention.

  8. Evaluation of laser cleaning for the restoration of tarnished silver artifacts

    Energy Technology Data Exchange (ETDEWEB)

    Palomar, T., E-mail: t.palomar@csic.es [Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avda. Gregorio del Amo 8, 28040 Madrid (Spain); Depto. de Conservação e Restauro and Research Unit VICARTE-Vidro e Cerâmica para as Artes, Campus de Caparica, FCT-UNL, Quinta da Torre, 2829-516 Caparica (Portugal); Oujja, M. [Instituto de Química Física Rocasolano (IQFR-CSIC), Serrano 119, 28006 Madrid (Spain); Llorente, I.; Ramírez Barat, B. [Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avda. Gregorio del Amo 8, 28040 Madrid (Spain); Cañamares, M.V. [Instituto de Estructura de la Materia (IEM-CSIC), Serrano 121, 28006 Madrid (Spain); Cano, E. [Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avda. Gregorio del Amo 8, 28040 Madrid (Spain); Castillejo, M. [Instituto de Química Física Rocasolano (IQFR-CSIC), Serrano 119, 28006 Madrid (Spain)

    2016-11-30

    Highlights: • Cyclic application of Q-switched Nd:YAG laser cleaning induces irreversible changes on pure silver. • Laser cleaning using Q-switched Nd:YAG laser at 1064 nm induces loss of material and color changes. • Laser cleaning using Q-switched Nd:YAG laser at 532 nm seems the most appropriate for cleaning sterling silver objects. - Abstract: In this study we evaluate the laser cleaning of tarnished pure and sterling silver substrates using a nanosecond Q-switched Nd:YAG laser at 1064, 532 and 266 nm. To assess the effects associated with cyclic laser cleaning treatments, several cycles of tarnishing followed by laser cleaning were applied on silver coupons that were characterized by gravimetry, colorimetry, scanning electron microscopy, X-ray photoelectron spectroscopy and micro-Raman spectroscopy. According to the obtained results, none of the three wavelengths is recommended for laser cleaning of pure silver objects, while for sterling silver artifacts, the visible laser wavelength of 532 nm seems the most appropriate.

  9. Embedding Color Watermarks in Color Images

    Directory of Open Access Journals (Sweden)

    Wu Tung-Lin

    2003-01-01

    Full Text Available Robust watermarking with oblivious detection is essential to practical copyright protection of digital images. Effective exploitation of the characteristics of human visual perception to color stimuli helps to develop the watermarking scheme that fills the requirement. In this paper, an oblivious watermarking scheme that embeds color watermarks in color images is proposed. Through color gamut analysis and quantizer design, color watermarks are embedded by modifying quantization indices of color pixels without resulting in perceivable distortion. Only a small amount of information including the specification of color gamut, quantizer stepsize, and color tables is required to extract the watermark. Experimental results show that the proposed watermarking scheme is computationally simple and quite robust in face of various attacks such as cropping, low-pass filtering, white-noise addition, scaling, and JPEG compression with high compression ratios.

  10. Wavelength-stepped, actively mode-locked fiber laser based on wavelength-division-multiplexed optical delay lines

    Science.gov (United States)

    Lee, Eunjoo; Kim, Byoung Yoon

    2017-12-01

    We propose a new scheme for an actively mode-locked wavelength-swept fiber laser that produces a train of discretely wavelength-stepped pulses from a short fiber cavity. Pulses with different wavelengths are split and combined by standard wavelength division multiplexers with fiber delay lines. As a proof of concept, we demonstrate a laser using an erbium doped fiber amplifier and commercially available wavelength-division multiplexers with wavelength spacing of 0.8 nm. The results show simultaneous mode-locking at three different wavelengths. Laser output parameters in time domain, optical and radio frequency spectral domain, and the noise characteristics are presented. Suggestions for the improved design are discussed.

  11. Effect of gamma irradiation and storage time on microbial growth and physicochemical characteristics of pumpkin (Cucurbita Moschata Duchesne ex Poiret) puree.

    Science.gov (United States)

    Gliemmo, María F; Latorre, María E; Narvaiz, Patricia; Campos, Carmen A; Gerschenson, Lía N

    2014-01-01

    The effect of gamma irradiation (0-2 kGy) and storage time (0-28 days) on microbial growth and physicochemical characteristics of a packed pumpkin puree was studied. For that purpose, a factorial design was applied. The puree contained potassium sorbate, glucose and vanillin was stored at 25°C . Gamma irradiation diminished and storage time increased microbial growth. A synergistic effect between both variables on microbial growth was observed. Storage time decreased pH and color of purees. Sorbate content decreased with storage time and gamma irradiation. Mathematical models of microbial growth generated by the factorial design allowed estimating that a puree absorbing 1.63 kGy would have a shelf-life of 4 days. In order to improve this time, some changes in the applied hurdles were assayed. These included a thermal treatment before irradiation, a reduction of irradiation dose to 0.75 kGy and a decrease in storage temperature at 20°C . As a result, the shelf-life of purees increased to 28 days.

  12. Management of chimera and in vitro mutagenesis for development of new flower color/shape and chlorophyll variegated mutants in chrysanthemum

    Energy Technology Data Exchange (ETDEWEB)

    Datta, S.K. [CSIR, Madhyamgram Experimental Farm, Bose Institute, Kolkata (India)], E-mail: subodhskdatta@rediffmail.com; Chakrabarty, D [Floriculture Laboratory, National Botanical Research Institute, Lucknow (India)

    2008-07-01

    Induced mutagenesis has played a major role in the development of many new flower color/shape mutant varieties in ornamentals. The main bottleneck with vegetatively propagated plants is that the mutation appears as a chimera whether developed through bud sport or through induced mutation. The size of the mutant sector varies from a narrow streak on a petal to the entire flower and from a portion of a branch to the entire branch. When a portion of a branch or entire branch is mutated, the mutant tissue can be isolated; on the other hand, a small sector of a mutated branch or flower cannot be isolated using the available conventional propagation techniques. A novel technique has been standardized in our laboratory for the management of chimeric tissues through direct shoot regeneration from chrysanthemum florets. 'Kasturba Gandhi', a large white flowered chrysanthemum, developed few chimeric yellow florets due to spontaneous mutation. Using in vitro protocol new yellow florets were established in pure form. In vitro mutagenesis experiments were conducted treating ray florets of chrysanthemum cultivars using gamma rays. Induced chimeric yellow, white, light yellow, light mauve and dark mauve floret color sectors and chlorophyll variegation in leaves of cv. 'Maghi' (with mauve floret and green leaves) have been established in pure form. Gamma ray induced sectorial yellow florets of cv. 'Lilith' (white floret) and yellow ray florets in both the cvs. 'Purnima' (with white florets) and 'Colchi Bahar' (with red florets) have been isolated in pure form through in vitro management. Induced sectorial flower color/shape mutations in cvs. 'Puja', 'Lalima', 'Flirt', 'Maghi' and 'Sunil' have been isolated in pure form through in vitro culture. Gamma radiation procedure and tissue culture techniques have been optimized to regenerate plants from stem internodes, stem node, shoot tip and ray florets. Present technique has opened a new way for isolating new flower color

  13. Color evaluation of computer-generated color rainbow holography

    International Nuclear Information System (INIS)

    Shi, Yile; Wang, Hui; Wu, Qiong

    2013-01-01

    A color evaluation approach for computer-generated color rainbow holography (CGCRH) is presented. Firstly, the relationship between color quantities of a computer display and a color computer-generated holography (CCGH) colorimetric system is discussed based on color matching theory. An isochromatic transfer relationship of color quantity and amplitude of object light field is proposed. Secondly, the color reproduction mechanism and factors leading to the color difference between the color object and the holographic image that is reconstructed by CGCRH are analyzed in detail. A quantitative color calculation method for the holographic image reconstructed by CGCRH is given. Finally, general color samples are selected as numerical calculation test targets and the color differences between holographic images and test targets are calculated based on our proposed method. (paper)

  14. Sensory Drive, Color, and Color Vision.

    Science.gov (United States)

    Price, Trevor D

    2017-08-01

    Colors often appear to differ in arbitrary ways among related species. However, a fraction of color diversity may be explained because some signals are more easily perceived in one environment rather than another. Models show that not only signals but also the perception of signals should regularly evolve in response to different environments, whether these primarily involve detection of conspecifics or detection of predators and prey. Thus, a deeper understanding of how perception of color correlates with environmental attributes should help generate more predictive models of color divergence. Here, I briefly review our understanding of color vision in vertebrates. Then I focus on opsin spectral tuning and opsin expression, two traits involved in color perception that have become amenable to study. I ask how opsin tuning is correlated with ecological differences, notably the light environment, and how this potentially affects perception of conspecific colors. Although opsin tuning appears to evolve slowly, opsin expression levels are more evolutionarily labile but have been difficult to connect to color perception. The challenge going forward will be to identify how physiological differences involved in color vision, such as opsin expression levels, translate into perceptual differences, the selection pressures that have driven those differences, and ultimately how this may drive evolution of conspecific colors.

  15. Short wavelength FELS

    International Nuclear Information System (INIS)

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs

  16. Short wavelength FELS

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, R.L.

    1991-01-01

    The generation of coherent ultraviolet and shorter wavelength light is presently limited to synchrotron sources. The recent progress in the development of brighter electron beams enables the use of much lower energy electron rf linacs to reach short-wavelengths than previously considered possible. This paper will summarize the present results obtained with synchrotron sources, review proposed short- wavelength FEL designs and then present a new design which is capable of over an order of magnitude higher power to the extreme ultraviolet. 17 refs., 10 figs.

  17. Design and fabrication of structural color by local surface plasmonic meta-molecules

    Science.gov (United States)

    Ma, Ya-Qi; Shao, Jin-Hai; Zhang, Ya-Feng; Lu, Bing-Rui; Zhang, Si-Chao; Sun, Yan; Qu, Xin-Ping; Chen, Yi-Fang

    2015-08-01

    In this paper, we propose a new form of nanostructures with Al film deposited on a patterned dielectric material for generating structural color, which is induced by local surface plasmonic resonant (LSPR) absorption in sub-wavelength-indented hole/ring arrays. Unlike other reported results obtained by using focus ion beam (FIB) to create metallic nanostructures, the nano-sized hole/ring arrays in Al film in this work are replicated by high resolution electron beam lithography (EBL) combined with self-aligned metallization. Clear structural color is observed and systematically studied by numerical simulations as well as optical characterizations. The central color is strongly related to the geometric size, which provides us with good opportunities to dye the colorless Al surface by controlling the hole/ring dimensions (both diameter and radius), and to open up broad applications in display, jewelry decoration, green production of packing papers, security code, and counterfeits prevention. Project partially supported by the National Natural Science Foundation of China (Grant No. 61205148).

  18. Color planner for designers based on color emotions

    Science.gov (United States)

    Cheng, Ka-Man; Xin, John H.; Taylor, Gail

    2002-06-01

    During the color perception process, an associated feeling or emotion is induced in our brains, and this kind of emotion is termed as 'color emotion.' The researchers in the field of color emotions have put many efforts in quantifying color emotions with the standard color specifications and evaluating the influence of hue, lightness and chroma to the color emotions of human beings. In this study, a color planner was derived according to these findings so that the correlation of color emotions and standard color specifications was clearly indicated. Since people of different nationalities usually have different color emotions as different cultural and traditional backgrounds, the subjects in this study were all native Hong Kong Chinese and the color emotion words were all written in Chinese language in the visual assessments. Through the color planner, the designers from different areas, no matter fashion, graphic, interior or web site etc., can select suitable colors for inducing target color emotions to the customers or product-users since different colors convey different meanings to them. In addition, the designers can enhance the functionality and increase the attractiveness of their designed products by selecting suitable colors.

  19. SNAPSHOT SPECTRAL AND COLOR IMAGING USING A REGULAR DIGITAL CAMERA WITH A MONOCHROMATIC IMAGE SENSOR

    Directory of Open Access Journals (Sweden)

    J. Hauser

    2017-10-01

    Full Text Available Spectral imaging (SI refers to the acquisition of the three-dimensional (3D spectral cube of spatial and spectral data of a source object at a limited number of wavelengths in a given wavelength range. Snapshot spectral imaging (SSI refers to the instantaneous acquisition (in a single shot of the spectral cube, a process suitable for fast changing objects. Known SSI devices exhibit large total track length (TTL, weight and production costs and relatively low optical throughput. We present a simple SSI camera based on a regular digital camera with (i an added diffusing and dispersing phase-only static optical element at the entrance pupil (diffuser and (ii tailored compressed sensing (CS methods for digital processing of the diffused and dispersed (DD image recorded on the image sensor. The diffuser is designed to mix the spectral cube data spectrally and spatially and thus to enable convergence in its reconstruction by CS-based algorithms. In addition to performing SSI, this SSI camera is capable to perform color imaging using a monochromatic or gray-scale image sensor without color filter arrays.

  20. Carbon dioxide on the satellites of Saturn: Results from the Cassini VIMS investigation and revisions to the VIMS wavelength scale

    Science.gov (United States)

    Cruikshank, D.P.; Meyer, A.W.; Brown, R.H.; Clark, R.N.; Jaumann, R.; Stephan, K.; Hibbitts, C.A.; Sandford, S.A.; Mastrapa, R.M.E.; Filacchione, G.; Ore, C.M.D.; Nicholson, P.D.; Buratti, B.J.; McCord, T.B.; Nelson, R.M.; Dalton, J.B.; Baines, K.H.; Matson, D.L.

    2010-01-01

    Several of the icy satellites of Saturn show the spectroscopic signature of the asymmetric stretching mode of C-O in carbon dioxide (CO2) at or near the nominal solid-phase laboratory wavelength of 4.2675 ??m (2343.3 cm-1), discovered with the Visible-Infrared Mapping Spectrometer (VIMS) on the Cassini spacecraft. We report here on an analysis of the variation in wavelength and width of the CO2 absorption band in the spectra of Phoebe, Iapetus, Hyperion, and Dione. Comparisons are made to laboratory spectra of pure CO2, CO2 clathrates, ternary mixtures of CO2 with other volatiles, implanted and adsorbed CO2 in non-volatile materials, and ab initio theoretical calculations of CO2 * nH2O. At the wavelength resolution of VIMS, the CO2 on Phoebe is indistinguishable from pure CO2 ice (each molecule's nearby neighbors are also CO2) or type II clathrate of CO2 in H2O. In contrast, the CO2 band on Iapetus, Hyperion, and Dione is shifted to shorter wavelengths (typically ???4.255 ??m (???2350.2 cm-1)) and broadened. These wavelengths are characteristic of complexes of CO2 with different near-neighbor molecules that are encountered in other volatile mixtures such as with H2O and CH3OH, and non-volatile host materials like silicates, some clays, and zeolites. We suggest that Phoebe's CO2 is native to the body as part of the initial inventory of condensates and now exposed on the surface, while CO2 on the other three satellites results at least in part from particle or UV irradiation of native H2O plus a source of C, implantation or accretion from external sources, or redistribution of native CO2 from the interior. The analysis presented here depends on an accurate VIMS wavelength scale. In preparation for this work, the baseline wavelength calibration for the Cassini VIMS was found to be distorted around 4.3 ??m, apparently as a consequence of telluric CO2 gas absorption in the pre-launch calibration. The effect can be reproduced by convolving a sequence of model detector

  1. Effects of the gamma-ray irradiation on the optical absorption of pure silica core single-mode fibres in the visible and NIR range

    International Nuclear Information System (INIS)

    Calderon, A.; Calvo, E.; Figueroa, C.F.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Sobron, M.; Vila, I.; Virto, A.L.; Arce, P.; Barcala, J.M.; Ferrando, A.; Josa, M.I.; Luque, J.M.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C.

    2005-01-01

    Optical absorption induced by photon radiation was evaluated for several commercial pure silica core, single mode, optical fibres. The study was performed for three different wavelengths: 630, 670 and 785 nm. We have identified a fibre whose induced transmission loss stays below 1 dB/m after 300 kGy gamma-ray irradiation

  2. A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems

    Science.gov (United States)

    Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.

    2017-08-01

    This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.

  3. The Carnegie Supernova Project: Intrinsic colors of type Ia supernovae

    International Nuclear Information System (INIS)

    Burns, Christopher R.; Persson, S. E.; Freedman, Wendy L.; Madore, Barry F.; Stritzinger, Maximilian; Contreras, Carlos; Phillips, M. M.; Hsiao, E. Y.; Boldt, Luis; Campillay, Abdo; Castellón, Sergio; Morrell, Nidia; Salgado, Francisco; Folatelli, Gaston; Suntzeff, Nicholas B.

    2014-01-01

    We present an updated analysis of the intrinsic colors of Type Ia supernova (SNe Ia) using the latest data release of the Carnegie Supernova Project. We introduce a new light-curve parameter very similar to stretch that is better suited for fast-declining events, and find that these peculiar types can be seen as extensions to the population of 'normal' SNe Ia. With a larger number of objects, an updated fit to the Lira relation is presented along with evidence for a dependence on the late-time slope of the B – V light-curves with stretch and color. Using the full wavelength range from u to H band, we place constraints on the reddening law for the sample as a whole and also for individual events/hosts based solely on the observed colors. The photometric data continue to favor low values of R V , though with large variations from event to event, indicating an intrinsic distribution. We confirm the findings of other groups that there appears to be a correlation between the derived reddening law, R V , and the color excess, E(B – V), such that larger E(B – V) tends to favor lower R V . The intrinsic u-band colors show a relatively large scatter that cannot be explained by variations in R V or by the Goobar power-law for circumstellar dust, but rather is correlated with spectroscopic features of the supernova and is therefore likely due to metallicity effects.

  4. Color multiplexing using directional holographic gratings and linear polarization

    International Nuclear Information System (INIS)

    Lugo, L I; Rodriguez, A; Ramirez, G; Guel, S; Nunez, O F

    2011-01-01

    We propose a system of multiplexing and de-multiplexing, which uses a holographic diffraction grating to compel modulated light of different colors to be sent through an optical fiber. Diffraction gratings were fabricated specifically to pick the desired direction in which we wanted the light of different wavelengths to impinge the optic fiber, and also to be separated at the output. It was been found that the system preserves the polarization of light, which give us a one more freedom degree, allowing us to process twice the original information amount.

  5. Mitigation Technique for Receiver Performance Variation of Multi-Color Channels in Visible Light Communication

    Directory of Open Access Journals (Sweden)

    Yeong Min Jang

    2011-06-01

    Full Text Available “Green” and energy-efficient wireless communication schemes have recently experienced rapid development and garnered much interest. One such scheme is visible light communication (VLC which is being touted as one of the next generation wireless communication systems. VLC allows communication using multi-color channels that provide high data rates and illumination simultaneously. Even though VLC has many advantageous features compared with RF technologies, including visibility, ubiquitousness, high speed, high security, harmlessness for the human body and freedom of RF interference, it suffers from some problems on the receiver side, one of them being photo sensitivity dissimilarity of the receiver. The photo sensitivity characteristics of a VLC receiver such as Si photo-detector depend on the wavelength variation. The performance of the VLC receiver is not uniform towards all channel colors, but it is desirable for receivers to have the same performance on each color channel. In this paper, we propose a mitigation technique for reducing the performance variation of the receiver on multi-color channels. We show received power, SNR, BER, output current, and outage probability in our simulation for different color channels. Simulation results show that, the proposed scheme can reduce the performance variation of the VLC receiver on multi-color channels.

  6. WDM cross-connect cascade based on all-optical wavelength converters for routing and wavelength slot interchanging using a reduced number of internal wavelengths

    DEFF Research Database (Denmark)

    Pedersen, Rune Johan Skullerud; Mikkelsen, Benny; Jørgensen, Bo Foged

    1998-01-01

    interchanging can be used to create a robust and nonblocking OXC. However, for an OXC with n fiber inlets each carrying m wavelengths the OXC requires n×m internal wavelengths, which constrains the size of the cross-connect. In this paper we therefore propose and demonstrate an architecture that uses a reduced......Optical transport layers need rearrangeable wavelength-division multiplexing optical cross-connects (OXCs) to increase the capacity and flexibility of the network. It has previously been shown that a cross-connect based on all-optical wavelength converters for routing as well as wavelength slot...... set of internal wavelengths without sacrificing cross-connecting capabilities. By inserting a partly equipped OXC with the new architecture in a 10-Gbit/s re-circulating loop setup we demonstrate the possibility of cascading up to ten OXCs. Furthermore, we investigate the regenerating effect...

  7. Objectification of facial color inspection to differentiate obstructive/nonobstructive jaundice in neonates by spectrophotometer.

    Science.gov (United States)

    Shen, Zhen; Zheng, Shan; Dong, Rui; Chen, Gong

    2017-12-01

    The purpose of this study was to study whether color difference in facial color truly exists between neonates with obstructive and nonobstructive jaundice, and whether the color difference could be objectified by spectrophotometer. Twelve biliary atresia patients were enrolled in an obstructive jaundice group and 15 neonates admitted for non-conjugated hyperbilirubinemia in a nonobstructive group. Nine patients with syphilis (n=6) and sacrococcygeal teratoma (n=3) were studied as control. Transcutaneous total bilirubin (TB) and hemoglobin were recorded. Face color was measured by spectrophotometer. Spectral reflection curve and L*a*b* model parameters were studied. Facial color of jaundiced neonates were characteristic in waveform that reflectivity at wavelength of 550nm was significantly decreased compared with control by 16.4±3.4%, while not significantly different between obstructive and nonobstructive jaundice (p=0.124). At 650nm, reflection in nonobstructive jaundice was decreased by 8.4±2.3% (pobstructive jaundice (58.09±1.25%)>nonobstructive jaundice (54.25±7.27%). Value b* was higher in jaundiced patients compared to normal control (11.88±2.16, pspectrophotometer. Study of Diagnostic Test. Level II. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Investigations of Bread Production with Postponed Staling Applying Instrumental Measurements of Bread Crumb Color

    Directory of Open Access Journals (Sweden)

    Vladimir S. Popov

    2009-10-01

    Full Text Available Crumb color quality characteristics of bread of different compositions (whole grain, rye, barley and diet bread at 24 hours intervals during three days after bread preparation were investigated by means of a MOM-color 100 tristimulus photo colorimeter, in CIE, CIELab, ANLAB and Hunter systems. The highest value of average reflectance y (% was found for barley bread (immediately after preparation, so that can be said that this sample was “conditionally” the lightest. The lowest values of y (% were found for diet bread, so that it can be considered as the “conditionally” the darkest product. Colors of all investigated bread samples were lighter after three days of keeping compared to day 0. Changes of average reflectance of bread samples packed in polyethylene packaging with keeping time can be described by linear equation (correlation coefficient 0.99. The dominant wavelength of barley and diet bread confirm the presence of yellow pigment. Color qualities of the mentioned kinds of bread depend on processes during bread staling and raw material composition of bread (flour. Color quality measurements can be used as easy auxiliary method for screening in the development of slower staling bread.

  9. Photodynamic therapy: a synergy between light and colors

    Science.gov (United States)

    Merigo, Elisabetta; Sozzi, Michele; Ciociola, Tecla; Conti, Stefania; Fornaini, Carlo; Vescovi, Paolo; Selleri, Stefano; Cucinotta, Annamaria

    2015-02-01

    In this work the application of different laser wavelengths, in combination with different photosensitizing dyes, to bacterial cultures, in liquid or solid mean, has been investigated. Two types of Streptococcus mutans cultures have been used for the experiments, inside agar and saline solution. Three different laser wavelengths have been applied to the bacterial cultures together with a photosensitizing dye: red diode (650 nm) on cultures stained with Toluidine Blue, blueviolet diode (450 nm) on cultures stained with Curcumin and KTP laser (532 nm) on cultures stained with Erythrosine. The choice of the dye has been made considering the color affinity with the used wavelength. Tests without dyes have also been performed. Experimental results show that the maximum inhibition of bacterial growth with the blue laser has been obtained in a saline solution with a growth of 40.77%. While the combination with Curcumin lead to an inhibition growth of about 99.1%, for a laser fluence of 30J/cm2. No inhibition has been observed using the red laser in saline solution without dye, while the combination with Toluidine Blue resulted in a 100% inhibition growth for 20 and 30 J/cm2 fluences. An inhibition growth of just 16.26% has been obtained with the use of KTP laser in saline solution without dye. The use of Erythrosine had the effect of a complete inhibition growth. From the obtained results it is possible to observe that the combination of laser wavelength with a particular photosensitizing dye can dramatically increase the bacterial growth.

  10. Colorization-Based RGB-White Color Interpolation using Color Filter Array with Randomly Sampled Pattern.

    Science.gov (United States)

    Oh, Paul; Lee, Sukho; Kang, Moon Gi

    2017-06-28

    Recently, several RGB-White (RGBW) color filter arrays (CFAs) have been proposed, which have extra white (W) pixels in the filter array that are highly sensitive. Due to the high sensitivity, the W pixels have better SNR (Signal to Noise Ratio) characteristics than other color pixels in the filter array, especially, in low light conditions. However, most of the RGBW CFAs are designed so that the acquired RGBW pattern image can be converted into the conventional Bayer pattern image, which is then again converted into the final color image by using conventional demosaicing methods, i.e., color interpolation techniques. In this paper, we propose a new RGBW color filter array based on a totally different color interpolation technique, the colorization algorithm. The colorization algorithm was initially proposed for colorizing a gray image into a color image using a small number of color seeds. Here, we adopt this algorithm as a color interpolation technique, so that the RGBW color filter array can be designed with a very large number of W pixels to make the most of the highly sensitive characteristics of the W channel. The resulting RGBW color filter array has a pattern with a large proportion of W pixels, while the small-numbered RGB pixels are randomly distributed over the array. The colorization algorithm makes it possible to reconstruct the colors from such a small number of RGB values. Due to the large proportion of W pixels, the reconstructed color image has a high SNR value, especially higher than those of conventional CFAs in low light condition. Experimental results show that many important information which are not perceived in color images reconstructed with conventional CFAs are perceived in the images reconstructed with the proposed method.

  11. Parameterizations for narrowband and broadband albedo of pure snow and snow containing mineral dust and black carbon

    Science.gov (United States)

    Dang, Cheng; Brandt, Richard E.; Warren, Stephen G.

    2015-06-01

    The reduction of snow spectral albedo by black carbon (BC) and mineral dust, both alone and in combination, is computed using radiative transfer modeling. Broadband albedo is shown for mass fractions covering the full range from pure snow to pure BC and pure dust, and for snow grain radii from 5 µm to 2500 µm, to cover the range of possible grain sizes on planetary surfaces. Parameterizations are developed for opaque homogeneous snowpacks for three broad bands used in general circulation models and several narrower bands. They are functions of snow grain radius and the mass fraction of BC and/or dust and are valid up to BC content of 10 ppm, needed for highly polluted snow. A change of solar zenith angle can be mimicked by changing grain radius. A given mass fraction of BC causes greater albedo reduction in coarse-grained snow; BC and grain radius can be combined into a single variable to compute the reduction of albedo relative to pure snow. The albedo reduction by BC is less if the snow contains dust, a common situation on mountain glaciers and in agricultural and grazing lands. Measured absorption spectra of mineral dust are critically reviewed as a basis for specifying dust properties for modeling. The effect of dust on snow albedo at visible wavelengths can be represented by an "equivalent BC" amount, scaled down by a factor of about 200. Dust has little effect on the near-IR albedo because the near-IR albedo of pure dust is similar to that of pure snow.

  12. Extractive spectrophotometric determination of five selected drugs by ion-pair complex formation with bromothymol blue in pure form and pharmaceutical preparations

    Directory of Open Access Journals (Sweden)

    Sneha G. Nair

    2015-12-01

    Full Text Available Simple, precise, selective, and expeditious spectrophotometric methods have been developed for the determination of itopride (ITO, midodrine (MID, diclofenac (DIC, mesalamine (MES, and sumatriptan (SUM in their pure form as well as in pharmaceutical preparations. The method was based on ion-pair complex formation between the drugs and anionic dye, bromothymol blue in an acidic medium (pH 2.0–4.0. The yellow colored complexes formed were quantitatively extracted into chloroform and measured at 411, 410, 413, 412, and 414 nm wavelength for ITO, MID, DIC, MES, and SUM, respectively. Beer’s law was obeyed in the concentration range of 3.0–30 µg/mL for ITO, 1.0–20 µg/mL for MID, 1.5–40 µg/mL for DIC, 1.2–12 µg/mL for MES, and 0.5–15 µg/mL for SUM. The stoichiometry of the complexes formed between the drugs and the dye was 1:1 as determined by Job’s method of continuous variation. The association constant (KIP of the ion-pair complexes formed was evaluated using Benesi–Hildebrand equation. Limit of detection, limit of quantification, and Sandell’s sensitivity of the methods were also estimated. The proposed methods were successfully employed for the determination of these drugs in their pharmaceutical dosage forms.

  13. Of colored numbers and numbered colors: interactive processes in grapheme-color synesthesia.

    Science.gov (United States)

    Gebuis, Titia; Nijboer, Tanja C W; van der Smagt, Maarten J

    2009-01-01

    Grapheme-color synesthetes experience a specific color when they see a grapheme but they do not report to perceive a grapheme when a color is presented. In this study, we investigate whether color can still evoke number-processes even when a vivid number experience is absent. We used color-number and number-color priming, both revealing faster responses in congruent compared to incongruent conditions. Interestingly, the congruency effect was of similar magnitude for both conditions, and a numerical distance effect was present only in the color-number priming task. In addition, a priming task in which synesthetes had to judge the parity of a colored number revealed faster responses in parity congruent than in parity incongruent trials. These combined results demonstrate that synesthesia is indeed bi-directional and of similar strength in both directions. Furthermore, they illustrate the precise nature of these interactions and show that the direction of these interactions is determined by task demands, not by the more vividly experienced aspect of the stimulus.

  14. Sixth form pure mathematics

    CERN Document Server

    Plumpton, C

    1968-01-01

    Sixth Form Pure Mathematics, Volume 1, Second Edition, is the first of a series of volumes on Pure Mathematics and Theoretical Mechanics for Sixth Form students whose aim is entrance into British and Commonwealth Universities or Technical Colleges. A knowledge of Pure Mathematics up to G.C.E. O-level is assumed and the subject is developed by a concentric treatment in which each new topic is used to illustrate ideas already treated. The major topics of Algebra, Calculus, Coordinate Geometry, and Trigonometry are developed together. This volume covers most of the Pure Mathematics required for t

  15. Rationalization of the Color Properties of Fluorescein in the Solid State: A Combined Computational and Experimental Study.

    Science.gov (United States)

    Arhangelskis, Mihails; Eddleston, Mark D; Reid, David G; Day, Graeme M; Bučar, Dejan-Krešimir; Morris, Andrew J; Jones, William

    2016-07-11

    Fluorescein is known to exist in three tautomeric forms defined as quinoid, zwitterionic, and lactoid. In the solid state, the quinoid and zwitterionic forms give rise to red and yellow materials, respectively. The lactoid form has not been crystallized pure, although its cocrystal and solvate forms exhibit colors ranging from yellow to green. An explanation for the observed colors of the crystals is found using a combination of UV/Vis spectroscopy and plane-wave DFT calculations. The role of cocrystal coformers in modifying crystal color is also established. Several new crystal structures are determined using a combination of X-ray and electron diffraction, solid-state NMR spectroscopy, and crystal structure prediction (CSP). The protocol presented herein may be used to predict color properties of materials prior to their synthesis. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  16. Precision of synesthetic color matching resembles that for recollected colors rather than physical colors.

    Science.gov (United States)

    Arnold, Derek H; Wegener, Signy V; Brown, Francesca; Mattingley, Jason B

    2012-10-01

    Grapheme-color synesthesia is an atypical condition in which individuals experience sensations of color when reading printed graphemes such as letters and digits. For some grapheme-color synesthetes, seeing a printed grapheme triggers a sensation of color, but hearing the name of a grapheme does not. This dissociation allowed us to compare the precision with which synesthetes are able to match their color experiences triggered by visible graphemes, with the precision of their matches for recalled colors based on the same graphemes spoken aloud. In six synesthetes, color matching for printed graphemes was equally variable relative to recalled experiences. In a control experiment, synesthetes and age-matched controls either matched the color of a circular patch while it was visible on a screen, or they judged its color from memory after it had disappeared. Both synesthetes and controls were more variable when matching from memory, and the variance of synesthetes' recalled color judgments matched that associated with their synesthetic judgments for visible graphemes in the first experiment. Results suggest that synesthetic experiences of color triggered by achromatic graphemes are analogous to recollections of color.

  17. Color Terms and Color Concepts

    Science.gov (United States)

    Davidoff, Jules

    2006-01-01

    In their lead articles, both Kowalski and Zimiles (2006) and O'Hanlon and Roberson (2006) declare a general relation between color term knowledge and the ability to conceptually represent color. Kowalski and Zimiles, in particular, argue for a priority for the conceptual representation in color term acquisition. The complexities of the interaction…

  18. Thin film polarizer and color filter based on photo-polymerizable nematic liquid crystal

    Science.gov (United States)

    Mohammadimasoudi, Mohammad; Neyts, Kristiaan; Beeckman, Jeroen

    2015-03-01

    We present a method to fabricate a thin film color filter based on a mixture of photo-polymerizable liquid crystal and chiral dopant. A chiral nematic liquid crystal layer reflects light for a certain wavelength interval Δλ (= Δn.P) with the period and Δn the birefringence of the liquid crystal. The reflection band is determined by the chiral dopant concentration. The bandwidth is limited to 80nm and the reflectance is at most 50% for unpolarized incident light. The thin color filter is interesting for innovative applications like polarizer-free reflective displays, polarization-independent devices, stealth technologies, or smart switchable reflective windows to control solar light and heat. The reflected light has strong color saturation without absorption because of the sharp band edges. A thin film polarizer is developed by using a mixture of photo-polymerizable liquid crystal and color-neutral dye. The fabricated thin film absorbs light that is polarized parallel to the c axis of the LC. The obtained polarization ratio is 80% for a film of only 12 μm. The thin film polarizer and the color filter feature excellent film characteristics without domains and can be detached from the substrate which is useful for e.g. flexible substrates.

  19. Polarization-based enhancement of ocean color signal for estimating suspended particulate matter: radiative transfer simulations and laboratory measurements.

    Science.gov (United States)

    Liu, Jia; He, Xianqiang; Liu, Jiahang; Bai, Yan; Wang, Difeng; Chen, Tieqiao; Wang, Yihao; Zhu, Feng

    2017-04-17

    Absorption and scattering by molecules, aerosols and hydrosols, and the reflection and transmission over the sea surface can modify the original polarization state of sunlight. However, water-leaving radiance polarization, containing embedded water constituent information, has largely been neglected. Here, the efficiency of the parallel polarization radiance (PPR) for enhancing ocean color signal of suspended particulate matter is examined via vector radiative transfer simulations and laboratory experiments. The simulation results demonstrate that the PPR has a slightly higher ocean color signal at the top-of-atmosphere as compared with that of the total radiance. Moreover, both the simulations and laboratory measurements reveal that, compared with total radiance, PPR can effectively enhance the normalized ocean color signal for a large range of observation geometries, wavelengths, and suspended particle concentrations. Thus, PPR has great potential for improving the ocean color signal detection from satellite.

  20. Self-referenced axial chromatic dispersion measurement in multiphoton microscopy through 2-color THG imaging.

    Science.gov (United States)

    Du, Yu; Zhuang, Ziwei; He, Jiexing; Liu, Hongji; Qiu, Ping; Wang, Ke

    2018-05-16

    With tunable excitation light, multiphoton microscopy (MPM) is widely used for imaging biological structures at subcellular resolution. Axial chromatic dispersion, present in virtually every transmissive optical system including the multiphoton microscope, leads to focal (and the resultant image) plane separation. Here we demonstrate experimentally a technique to measure the axial chromatic dispersion in a multiphoton microscope, using simultaneous 2-color third-harmonic generation (THG) imaging excited by a 2-color soliton source with tunable wavelength separation. Our technique is self-referenced, eliminating potential measurement error when 1-color tunable excitation light is used which necessitates reciprocating motion of the mechanical translation stage. Using this technique, we demonstrate measured axial chromatic dispersion with 2 different objective lenses in a multiphoton microscope. Further measurement in a biological sample also indicates that this axial chromatic dispersion, in combination with 2-color imaging, may open up opportunity for simultaneous imaging of two different axial planes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Non-critical pure spinor superstrings

    International Nuclear Information System (INIS)

    Adam, Ido; Grassi, Pietro Antonio; Mazzucato, Luca; Oz, Yaron; Yankielowicz, Shimon

    2007-01-01

    We construct non-critical pure spinor superstrings in two, four and six dimensions. We find explicitly the map between the RNS variables and the pure spinor ones in the linear dilaton background. The RNS variables map onto a patch of the pure spinor space and the holomorphic top form on the pure spinor space is an essential ingredient of the mapping. A basic feature of the map is the requirement of doubling the superspace, which we analyze in detail. We study the structure of the non-critical pure spinor space, which is different from the ten-dimensional one, and its quantum anomalies. We compute the pure spinor lowest lying BRST cohomology and find an agreement with the RNS spectra. The analysis is generalized to curved backgrounds and we construct as an example the non-critical pure spinor type IIA superstring on AdS 4 with RR 4-form flux

  2. Wavelength conversion devices

    DEFF Research Database (Denmark)

    Mikkelsen, Benny; Durhuus, Terji; Jørgensen, Carsten

    1996-01-01

    system requirements. The ideal wavelength converter should be transparent to the bit rate and signal format and provide an unchirped output signal with both a high extinction ratio and a large signal-to-noise ratio. It should allow conversion to both shorter and longer wavelengths with equal performance...

  3. Color Categories and Color Appearance

    Science.gov (United States)

    Webster, Michael A.; Kay, Paul

    2012-01-01

    We examined categorical effects in color appearance in two tasks, which in part differed in the extent to which color naming was explicitly required for the response. In one, we measured the effects of color differences on perceptual grouping for hues that spanned the blue-green boundary, to test whether chromatic differences across the boundary…

  4. Flare-related color effects in UV Ceti stars

    International Nuclear Information System (INIS)

    Flesch, T.R.

    1975-01-01

    The UV Ceti flare stars YZ CMi, BD+16 0 2708, EV Lac, and AD Leo were monitored photoelectrically for flare activity with the 76 centimeter reflecting telescope of the University of Florida's Rosemary Hill Observatory. Observations were carried out from January, 1973 to April, 1975. The instrumentation allowed simultaneous readings to be taken at 3500, 4632, and 6496A with a time resolution of 2 seconds. A total of 15 major events were observed, with 14 of these being observed in all three colors. All events showed the classical fast rise and slower decline that is typical of this type of activity. One event showed peculiar behavior in the red bandpass that may indicate strong dependence of the flare light in some cases on line emission. The data were applied to the fast electron model of flare activity proposed by Gurzadyan. Several serious inconsistencies in the theory were found that would not have been evident in single-channel monitoring. No event could be fitted in all three colors using consistent values of the unknown parameters in the theory. The most serious deficiencies in the theory were the wavelength dependence of the optical depth of the electron cloud and the lack of treatment of line emission behavior. Differential color indices for flare light are calculated and are shown to be essentially constant throughout the entire event for the stronger flares. A color-color plot of the flare light at maximum reveals that 11 of the flares show a linear relation. This relation indicates that the smaller the u-b index, the larger is the b-r index. This is probably directly involved with line emission during flare events. Future research possibilities are discussed, with spectroscopic studies and simultaneous multicolor observations being stressed

  5. Color Memory of University Students: Influence of Color Experience and Color Characteristic

    Science.gov (United States)

    Bynum, Carlisle; Epps, Helen H.; Kaya, Naz

    2006-01-01

    The ability to select a previously viewed color specimen from an array of specimens that differ in hue, value, or chroma varies among individuals, and may be related to one's basic color discrimination ability or to prior experience with color. This study investigated short-term color memory of 40 college students, 20 of whom were interior design…

  6. Alerting or Somnogenic Light: Pick Your Color

    Science.gov (United States)

    Bourgin, Patrice; Hubbard, Jeffrey

    2016-01-01

    In mammals, light exerts pervasive effects on physiology and behavior in two ways: indirectly through clock synchronization and the phase adjustment of circadian rhythms, and directly through the promotion of alertness and sleep, respectively, in diurnal and nocturnal species. A recent report by Pilorz and colleagues describes an even more complex role for the acute effects of light. In mice, blue light acutely causes behavioral arousal, whereas green wavelengths promote sleep. These opposing effects are mediated by melanopsin-based phototransduction through different neural pathways. These findings reconcile nocturnal and diurnal species through a common alerting response to blue light. One can hypothesize that the opposite responses to natural polychromatic light in night- or day-active animals may reflect higher sensitivity of nocturnal species to green, and diurnals to blue wavelengths, resulting in hypnogenic and alerting effects, respectively. Additional questions remain to be clarified. How do different light wavelengths affect other behaviors such as mood and cognition? How do those results apply to humans? How does light pose either a risk or benefit, depending on whether one needs to be asleep or alert? Indeed, in addition to timing, luminance levels, and light exposure duration, these findings stress the need to understand how best to adapt the color spectrum of light to our needs and to take this into account for the design of daily lighting concepts—a key challenge for today’s society, especially with the emergence of LED light technology. PMID:27525420

  7. Alerting or Somnogenic Light: Pick Your Color.

    Directory of Open Access Journals (Sweden)

    Patrice Bourgin

    2016-08-01

    Full Text Available In mammals, light exerts pervasive effects on physiology and behavior in two ways: indirectly through clock synchronization and the phase adjustment of circadian rhythms, and directly through the promotion of alertness and sleep, respectively, in diurnal and nocturnal species. A recent report by Pilorz and colleagues describes an even more complex role for the acute effects of light. In mice, blue light acutely causes behavioral arousal, whereas green wavelengths promote sleep. These opposing effects are mediated by melanopsin-based phototransduction through different neural pathways. These findings reconcile nocturnal and diurnal species through a common alerting response to blue light. One can hypothesize that the opposite responses to natural polychromatic light in night- or day-active animals may reflect higher sensitivity of nocturnal species to green, and diurnals to blue wavelengths, resulting in hypnogenic and alerting effects, respectively. Additional questions remain to be clarified. How do different light wavelengths affect other behaviors such as mood and cognition? How do those results apply to humans? How does light pose either a risk or benefit, depending on whether one needs to be asleep or alert? Indeed, in addition to timing, luminance levels, and light exposure duration, these findings stress the need to understand how best to adapt the color spectrum of light to our needs and to take this into account for the design of daily lighting concepts-a key challenge for today's society, especially with the emergence of LED light technology.

  8. Memory for color reactivates color processing region.

    Science.gov (United States)

    Slotnick, Scott D

    2009-11-25

    Memory is thought to be constructive in nature, where features processed in different cortical regions are synthesized during retrieval. In an effort to support this constructive memory framework, the present functional magnetic resonance imaging study assessed whether memory for color reactivated color processing regions. During encoding, participants were presented with colored and gray abstract shapes. During retrieval, old and new shapes were presented in gray and participants responded 'old-colored', 'old-gray', or 'new'. Within color perception regions, color memory related activity was observed in the left fusiform gyrus, adjacent to the collateral sulcus. A retinotopic mapping analysis indicated this activity occurred within color processing region V8. The present feature specific evidence provides compelling support for a constructive view of memory.

  9. Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology

    Directory of Open Access Journals (Sweden)

    Drago Strle

    2015-07-01

    Full Text Available This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode’s current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm2 of silicon area (including three photodiodes and the analog part of the ADC. The DSP is currently implemented on FPGA.

  10. Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology.

    Science.gov (United States)

    Strle, Drago; Nahtigal, Uroš; Batistell, Graciele; Zhang, Vincent Chi; Ofner, Erwin; Fant, Andrea; Sturm, Johannes

    2015-07-22

    This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode's current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm(2) of silicon area (including three photodiodes and the analog part of the ADC). The DSP is currently implemented on FPGA.

  11. Investigation of crack initiation with a three color digital holographic interferometer

    Science.gov (United States)

    Karray, Mayssa; Poilane, Christophe; Mounier, Denis; Gargoury, Mohamed; Picart, Pascal

    2012-10-01

    This paper proposes a three-color holographic interferometer devoted to the deformation analysis of a composite material submitted to a short beam shear test. The simultaneous recording of three laser wavelengths using a triple CCD sensor results in the evaluation of shear strains at the lateral surface of the sample. Such an evaluation provides a pertinent parameter to detect premature crack in the structure, long before it becomes visible on the real time stress/strain curve, or with a classical microscope.

  12. Effect of freezing temperature on the color of frozen salmon.

    Science.gov (United States)

    Ottestad, Silje; Enersen, Grethe; Wold, Jens Petter

    2011-09-01

    New freezing methods developed with the purpose of improved product quality after thawing can sometimes be difficult to get accepted in the market. The reason for this is the formation of ice crystals that can give the product a temporary color loss and make it less appealing. We have here used microscopy to study ice crystal size as a function of freezing temperature by investigating the voids in the cell tissue left by the ice crystals. We have also investigated how freezing temperature affects the color and the visible absorption spectra of frozen salmon. Freezing temperatures previously determined to be the best for quality after thawing (-40 to -60 °C) were found to cause a substantial loss in perceived color intensity during frozen state. This illustrated the conflict between optimal freezing temperatures with respect to quality after thawing against visual appearance during frozen state. Low freezing temperatures gave many small ice crystals, increased light scattering and an increased absorption level for all wavelengths in the visible region. Increased astaxanthin concentration on the other hand would give higher absorption at 490 nm. The results showed a clear potential of using visible interactance spectroscopy to differentiate between poor product coloration due to lack of pigmentation and temporary color loss due to light scattering by ice crystal. This type of measurements could be a useful tool in the development of new freezing methods and to monitor ice crystal growth during frozen storage. It could also potentially be used by the industry to prove good product quality. In this article we have shown that freezing food products at intermediate to low temperatures (-40 to -80 °C) can result in paler color during frozen state, which could affect consumer acceptance. We have also presented a spectroscopic method that can separate between poor product color and temporary color loss due to freezing. © 2011 Institute of Food Technologists®

  13. The HydroColor App: Above Water Measurements of Remote Sensing Reflectance and Turbidity Using a Smartphone Camera.

    Science.gov (United States)

    Leeuw, Thomas; Boss, Emmanuel

    2018-01-16

    HydroColor is a mobile application that utilizes a smartphone's camera and auxiliary sensors to measure the remote sensing reflectance of natural water bodies. HydroColor uses the smartphone's digital camera as a three-band radiometer. Users are directed by the application to collect a series of three images. These images are used to calculate the remote sensing reflectance in the red, green, and blue broad wavelength bands. As with satellite measurements, the reflectance can be inverted to estimate the concentration of absorbing and scattering substances in the water, which are predominately composed of suspended sediment, chlorophyll, and dissolved organic matter. This publication describes the measurement method and investigates the precision of HydroColor's reflectance and turbidity estimates compared to commercial instruments. It is shown that HydroColor can measure the remote sensing reflectance to within 26% of a precision radiometer and turbidity within 24% of a portable turbidimeter. HydroColor distinguishes itself from other water quality camera methods in that its operation is based on radiometric measurements instead of image color. HydroColor is one of the few mobile applications to use a smartphone as a completely objective sensor, as opposed to subjective user observations or color matching using the human eye. This makes HydroColor a powerful tool for crowdsourcing of aquatic optical data.

  14. Using Single Colors and Color Pairs to Communicate Basic Tastes II: Foreground-Background Color Combinations.

    Science.gov (United States)

    Woods, Andy T; Marmolejo-Ramos, Fernando; Velasco, Carlos; Spence, Charles

    2016-01-01

    People associate basic tastes (e.g., sweet, sour, bitter, and salty) with specific colors (e.g., pink or red, green or yellow, black or purple, and white or blue). In the present study, we investigated whether a color bordered by another color (either the same or different) would give rise to stronger taste associations relative to a single patch of color. We replicate previous findings, highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. On occasion, color pairs were found to communicate taste expectations more consistently than were single color patches. Furthermore, and in contrast to a recent study in which the color pairs were shown side-by-side, participants took no longer to match the color pairs with tastes than the single colors (they had taken twice as long to respond to the color pairs in the previous study). Possible reasons for these results are discussed, and potential applications for the results, and for the testing methodology developed, are outlined.

  15. The Carnegie Supernova Project: Intrinsic colors of type Ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Christopher R.; Persson, S. E.; Freedman, Wendy L.; Madore, Barry F. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Stritzinger, Maximilian; Contreras, Carlos [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Phillips, M. M.; Hsiao, E. Y.; Boldt, Luis; Campillay, Abdo; Castellón, Sergio; Morrell, Nidia; Salgado, Francisco [Carnegie Institution of Washington, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Folatelli, Gaston [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, the University of Tokyo, 277-8583 Kashiwa (Japan); Suntzeff, Nicholas B. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, Department of Physics and Astronomy, College Station, TX 77843 (United States)

    2014-07-01

    We present an updated analysis of the intrinsic colors of Type Ia supernova (SNe Ia) using the latest data release of the Carnegie Supernova Project. We introduce a new light-curve parameter very similar to stretch that is better suited for fast-declining events, and find that these peculiar types can be seen as extensions to the population of 'normal' SNe Ia. With a larger number of objects, an updated fit to the Lira relation is presented along with evidence for a dependence on the late-time slope of the B – V light-curves with stretch and color. Using the full wavelength range from u to H band, we place constraints on the reddening law for the sample as a whole and also for individual events/hosts based solely on the observed colors. The photometric data continue to favor low values of R{sub V} , though with large variations from event to event, indicating an intrinsic distribution. We confirm the findings of other groups that there appears to be a correlation between the derived reddening law, R{sub V} , and the color excess, E(B – V), such that larger E(B – V) tends to favor lower R{sub V} . The intrinsic u-band colors show a relatively large scatter that cannot be explained by variations in R{sub V} or by the Goobar power-law for circumstellar dust, but rather is correlated with spectroscopic features of the supernova and is therefore likely due to metallicity effects.

  16. A New Infrared Color Criterion for the Selection of 0 < z < 7 AGNs: Application to Deep Fields and Implications for JWST Surveys

    Science.gov (United States)

    Messias, H.; Afonso, J.; Salvato, M.; Mobasher, B.; Hopkins, A. M.

    2012-08-01

    It is widely accepted that observations at mid-infrared (mid-IR) wavelengths enable the selection of galaxies with nuclear activity, which may not be revealed even in the deepest X-ray surveys. Many mid-IR color-color criteria have been explored to accomplish this goal and tested thoroughly in the literature. Besides missing many low-luminosity active galactic nuclei (AGNs), one of the main conclusions is that, with increasing redshift, the contamination by non-active galaxies becomes significant (especially at z >~ 2.5). This is problematic for the study of the AGN phenomenon in the early universe, the main goal of many of the current and future deep extragalactic surveys. In this work new near- and mid-IR color diagnostics are explored, aiming for improved efficiency—better completeness and less contamination—in selecting AGNs out to very high redshifts. We restrict our study to the James Webb Space Telescope wavelength range (0.6-27 μm). The criteria are created based on the predictions by state-of-the-art galaxy and AGN templates covering a wide variety of galaxy properties, and tested against control samples with deep multi-wavelength coverage (ranging from the X-rays to radio frequencies). We show that the colors Ks - [4.5], [4.5] - [8.0], and [8.0] - [24] are ideal as AGN/non-AGN diagnostics at, respectively, z ~ 2.5-3. However, when the source redshift is unknown, these colors should be combined. We thus develop an improved IR criterion (using Ks and IRAC bands, KI) as a new alternative at z 50%-90% level of successful AGN selection). We also propose KIM (using Ks , IRAC, and MIPS 24 μm bands, KIM), which aims to select AGN hosts from local distances to as far back as the end of reionization (0 ~ 2.5. Overall, KIM shows a ~30%-40% completeness and a >70%-90% level of successful AGN selection. KI and KIM are built to be reliable against a ~10%-20% error in flux, are based on existing filters, and are suitable for immediate use.

  17. Colorism/Neo-Colorism

    Science.gov (United States)

    Snell, Joel

    2017-01-01

    There are numerous aspects to being non-Caucasian that may not be known by Whites. Persons of color suggest folks who are African, South Americans, Native Americans, Biracial, Asians and others. The question is what do these individuals feel relative to their color and facial characteristics. Eugene Robinson suggest that the future favorable color…

  18. Manipulation of light wavelength at appropriate growth stage to enhance biomass productivity and fatty acid methyl ester yield using Chlorella vulgaris.

    Science.gov (United States)

    Kim, Dae Geun; Lee, Changsu; Park, Seung-Moon; Choi, Yoon-E

    2014-05-01

    LEDs light offer several advantages over the conventional lamps, thereby being considered as the optimal light sources for microalgal cultivation. In this study, various light-emitting diodes (LEDs) especially red and blue color with different light wavelengths were employed to explore the effects of light source on phototrophic cultivation of Chlorella vulgaris. Blue light illumination led to significantly increased cell size, whereas red light resulted in small-sized cell with active divisions. Based on the discovery of the effect of light wavelengths on microalgal biology, we then applied appropriate wavelength at different growth stages; blue light was illuminated first and then shifted to red light. By doing so, biomass and lipid productivity of C. vulgaris could be significantly increased, compared to that in the control. These results will shed light on a novel approach using LED light for microalgal biotechnology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Luminance contours can gate afterimage colors and "real" colors.

    Science.gov (United States)

    Anstis, Stuart; Vergeer, Mark; Van Lier, Rob

    2012-09-06

    It has long been known that colored images may elicit afterimages in complementary colors. We have already shown (Van Lier, Vergeer, & Anstis, 2009) that one and the same adapting image may result in different afterimage colors, depending on the test contours presented after the colored image. The color of the afterimage depends on two adapting colors, those both inside and outside the test. Here, we further explore this phenomenon and show that the color-contour interactions shown for afterimage colors also occur for "real" colors. We argue that similar mechanisms apply for both types of stimulation.

  20. Optical Coronagraphic Spectroscopy of AU Mic: Evidence of Time Variable Colors?

    Science.gov (United States)

    Lomax, Jamie R.; Wisniewski, John P.; Roberge, Aki; Donaldson, Jessica K.; Debes, John H.; Malumuth, Eliot M.; Weinberger, Alycia J.

    2018-02-01

    We present coronagraphic long slit spectra of AU Mic’s debris disk taken with the STIS instrument aboard the Hubble Space Telescope. Our spectra are the first spatially-resolved, scattered light spectra of the system’s disk, which we detect at projected distances between approximately 10 and 45 au. Our spectra cover a wavelength range between 5200 and 10200 Å. We find that the color of AU Mic’s debris disk is bluest at small (12–17 au) projected separations. These results both confirm and quantify the findings qualitatively noted by Krist et al. and are different than IR observations that suggested a uniform blue or gray color as a function of projected separation in this region of the disk. Unlike previous literature, which reported that the color of AU Mic’s disk became increasingly more blue as a function of projected separation beyond ∼30 au, we find the disk’s optical color between 35 and 45 au to be uniformly blue on the southeast side of the disk and decreasingly blue on the northwest side. We note that this apparent change in disk color at larger projected separations coincides with several fast, outward moving “features” that are passing through this region of the southeast side of the disk. We speculate that these phenomenon might be related and that the fast moving features could be changing the localized distribution of sub-micron-sized grains as they pass by, thereby reducing the blue color of the disk in the process. We encourage follow-up optical spectroscopic observations of AU Mic to both confirm this result and search for further modifications of the disk color caused by additional fast moving features propagating through the disk.

  1. Using Single Colors and Color Pairs to Communicate Basic Tastes II: Foreground–Background Color Combinations

    Science.gov (United States)

    Marmolejo-Ramos, Fernando; Velasco, Carlos; Spence, Charles

    2016-01-01

    People associate basic tastes (e.g., sweet, sour, bitter, and salty) with specific colors (e.g., pink or red, green or yellow, black or purple, and white or blue). In the present study, we investigated whether a color bordered by another color (either the same or different) would give rise to stronger taste associations relative to a single patch of color. We replicate previous findings, highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. On occasion, color pairs were found to communicate taste expectations more consistently than were single color patches. Furthermore, and in contrast to a recent study in which the color pairs were shown side-by-side, participants took no longer to match the color pairs with tastes than the single colors (they had taken twice as long to respond to the color pairs in the previous study). Possible reasons for these results are discussed, and potential applications for the results, and for the testing methodology developed, are outlined. PMID:27708752

  2. A Rare Case of Pure Erythroid Sarcoma in a Pediatric Patient: Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Pablo Manresa

    2017-12-01

    Full Text Available We describe an exceptional case of erythroid sarcoma in a pediatric patient as a growing orbital mass with no evidence of morphologic bone marrow involvement, who was finally diagnosed of pure erythroid sarcoma based on histopathology and flow cytometry criteria. We discuss the contribution of standardized eight-color flow cytometry as a rapid and reliable diagnostic method. The use of normal bone marrow databases allowed us to identify small aberrant populations in bone marrow and later confirm the diagnosis in the neoplastic tissue.

  3. Differential Binding of Colors to Objects in Memory: Red and Yellow Stick Better Than Blue and Green

    Directory of Open Access Journals (Sweden)

    Christof eKuhbandner

    2015-03-01

    Full Text Available Both evolutionary considerations and recent research suggest that the color red serves as a signal indicating an object’s importance. However, until now, there is no evidence that this signaling function of red is also reflected in human memory. To examine the effect of red on memory, we conducted four experiments in which we presented objects colored in four different colors (red, green, blue, and yellow and measured later memory for the presence of an object and for the color of an object. Across experiments, we varied the type of objects (words versus pictures, task complexity (single objects versus multiple objects in visual scenes, and intentionality of encoding (intentional versus incidental learning. Memory for the presence of an object was not influenced by color. However, in all four experiments, memory for the color of an object depended on type of color and was particularly high for red and yellow-colored objects and particularly low for green-colored objects, indicating that the binding of colors into object memory representations varies as a function of color type. Analyzing the observers’ confidence in their color memories revealed that color not only influenced objective memory performance but also subjective confidence. Subjective confidence judgments differentiated well between correct and incorrect color memories for red-colored objects, but poorly for green-colored objects. Our findings reveal a previously unknown color effect which may be of considerable interest for both basic color research and applied settings like eyewitness testimony in which memory for color features is relevant. Furthermore, our results indicate that feature binding in memory is not a purely automatic process by which any attended feature is automatically bound into a unitary memory representation. Rather, binding in memory seems to vary across different subtypes of features, a finding that supports recent research showing that features of objects

  4. Color adaptation induced from linguistic description of color.

    Directory of Open Access Journals (Sweden)

    Liling Zheng

    Full Text Available Recent theories propose that language comprehension can influence perception at the low level of perceptual system. Here, we used an adaptation paradigm to test whether processing language caused color adaptation in the visual system. After prolonged exposure to a color linguistic context, which depicted red, green, or non-specific color scenes, participants immediately performed a color detection task, indicating whether they saw a green color square in the middle of a white screen or not. We found that participants were more likely to perceive the green color square after listening to discourses denoting red compared to discourses denoting green or conveying non-specific color information, revealing that language comprehension caused an adaptation aftereffect at the perceptual level. Therefore, semantic representation of color may have a common neural substrate with color perception. These results are in line with the simulation view of embodied language comprehension theory, which predicts that processing language reactivates the sensorimotor systems that are engaged during real experience.

  5. Reddened, Redshifted, or Intrinsically Red? Understanding Near-ultraviolet Colors of Type Ia Supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Peter J.; Landez, Nancy J. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A. and M. University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States); Milne, Peter A. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Stritzinger, Maximilian D., E-mail: pbrown@physics.tamu.edu [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark)

    2017-02-20

    The intrinsic colors of Type Ia supernovae (SNe Ia) are important to understanding their use as cosmological standard candles. Understanding the effects of reddening and redshift on the observed colors are complicated and dependent on the intrinsic spectrum, the filter curves, and the wavelength dependence of reddening. We present ultraviolet and optical data of a growing sample of SNe Ia observed with the Ultraviolet/Optical Telescope on the Swift spacecraft and use this sample to re-examine the near-UV (NUV) colors of SNe Ia. We find that a small amount of reddening ( E ( B − V ) = 0.2 mag) could account for the difference between groups designated as NUV-blue and NUV-red, and a moderate amount of reddening ( E ( B − V ) = 0.5 mag) could account for the whole NUV-optical differences. The reddening scenario, however, is inconsistent with the mid-UV colors and color evolution. The effect of redshift alone only accounts for part of the variation. Using a spectral template of SN2011fe, we can forward model the effects of redshift and reddening and directly compare those with the observed colors. We find that some SNe are consistent with reddened versions of SN2011fe, but most SNe Ia are much redder in the uvw 1 − v color than SN2011fe reddened to the same b − v color. The absolute magnitudes show that two out of five NUV-blue SNe Ia are blue because their near-UV luminosity is high, and the other three are optically fainter. We also show that SN 2011fe is not a “normal” SN Ia in the UV, but has colors placing it at the blue extreme of our sample.

  6. Multiphoton-Excited Fluorescence of Silicon-Vacancy Color Centers in Diamond

    Science.gov (United States)

    Higbie, J. M.; Perreault, J. D.; Acosta, V. M.; Belthangady, C.; Lebel, P.; Kim, M. H.; Nguyen, K.; Demas, V.; Bajaj, V.; Santori, C.

    2017-05-01

    Silicon-vacancy color centers in nanodiamonds are promising as fluorescent labels for biological applications, with a narrow, nonbleaching emission line at 738 nm. Two-photon excitation of this fluorescence offers the possibility of low-background detection at significant tissue depth with high three-dimensional spatial resolution. We measure the two-photon fluorescence cross section of a negatively charged silicon vacancy (Si -V- ) in ion-implanted bulk diamond to be 0.74 (19 )×10-50 cm4 s /photon at an excitation wavelength of 1040 nm. Compared to the diamond nitrogen-vacancy center, the expected detection threshold of a two-photon excited Si -V center is more than an order of magnitude lower, largely due to its much narrower linewidth. We also present measurements of two- and three-photon excitation spectra, finding an increase in the two-photon cross section with decreasing wavelength, and we discuss the physical interpretation of the spectra in the context of existing models of the Si -V energy-level structure.

  7. Shift Colors

    Science.gov (United States)

    Publications & News Shift Colors Pages default Sign In NPC Logo Banner : Shift Colors Search Navy Personnel Command > Reference Library > Publications & News > Shift Colors Top Link Bar Navy Personnel Library Expand Reference Library Quick Launch Shift Colors Shift Colors Archives Mailing Address How to

  8. Influence of Tannin Extract and Yeast Extract on Color Preservation and Anthocyanin Content of Mulberry Wine.

    Science.gov (United States)

    You, Yilin; Li, Na; Han, Xue; Guo, Jielong; Liu, Guojie; Huang, Weidong; Zhan, Jicheng

    2018-04-01

    The color of mulberry wine is extremely unstable in processing and aging. This paper investigates the effects of tannin extract and yeast extract on the color and color-preserving characteristics of mulberry wine made from the Dashi cultivar. The results showed that the maximum absorption wavelength in both tannin extract and yeast extract groups changed generating the red shift effect. The color of the tannin extract maintained a good gloss in the first 4 months, while the yeast extract group showed remarkable color preservation for the first 3 months. The total anthocyanin and cyanidin-3-rutinoside contents in both experiment groups were significantly higher than that of the control group, thus proving that tannin extract and yeast extract both exert a remarkably positive effect on preserving the color of mulberry wine during its aging. Moreover, sensory analysis indicated that the quality of mulberry wine treated with tannin extract was significantly higher than that of the control. The distinct color of mulberry wine is one of the foremost qualities that imprints on consumers' senses, but it is extremely unstable in processing and aging. However, the color protection of mulberry wine was not studied previously. In this study, we found that tannin extract and yeast extract both exert a remarkably positive effect on preserving the color of mulberry wine during aging. The study is of great significance as a guide to improving the color stability of mulberry wine, thereby also improving and promoting the development of the mulberry deep processing industry. © 2018 Institute of Food Technologists®.

  9. Natural Colorants: Food Colorants from Natural Sources.

    Science.gov (United States)

    Sigurdson, Gregory T; Tang, Peipei; Giusti, M Mónica

    2017-02-28

    The color of food is often associated with the flavor, safety, and nutritional value of the product. Synthetic food colorants have been used because of their high stability and low cost. However, consumer perception and demand have driven the replacement of synthetic colorants with naturally derived alternatives. Natural pigment applications can be limited by lower stability, weaker tinctorial strength, interactions with food ingredients, and inability to match desired hues. Therefore, no single naturally derived colorant can serve as a universal alternative for a specified synthetic colorant in all applications. This review summarizes major environmental and biological sources for natural colorants as well as nature-identical counterparts. Chemical characteristics of prevalent pigments, including anthocyanins, carotenoids, betalains, and chlorophylls, are described. The possible applications and hues (warm, cool, and achromatic) of currently used natural pigments, such as anthocyanins as red and blue colorants, and possible future alternatives, such as purple violacein and red pyranoanthocyanins, are also discussed.

  10. Pure Cs4PbBr6: Highly Luminescent Zero-Dimensional Perovskite Solids

    KAUST Repository

    Saidaminov, Makhsud I.

    2016-09-26

    So-called zero-dimensional perovskites, such as Cs4PbBr6, promise outstanding emissive properties. However, Cs4PbBr6 is mostly prepared by melting of precursors that usually leads to a coformation of undesired phases. Here, we report a simple low-temperature solution-processed synthesis of pure Cs4PbBr6 with remarkable emission properties. We found that pure Cs4PbBr6 in solid form exhibits a 45% photoluminescence quantum yield (PLQY), in contrast to its three-dimensional counterpart, CsPbBr3, which exhibits more than 2 orders of magnitude lower PLQY. Such a PLQY of Cs4PbBr6 is significantly higher than that of other solid forms of lower-dimensional metal halide perovskite derivatives and perovskite nanocrystals. We attribute this dramatic increase in PL to the high exciton binding energy, which we estimate to be ∼353 meV, likely induced by the unique Bergerhoff–Schmitz–Dumont-type crystal structure of Cs4PbBr6, in which metal-halide-comprised octahedra are spatially confined. Our findings bring this class of perovskite derivatives to the forefront of color-converting and light-emitting applications.

  11. The HydroColor App: Above Water Measurements of Remote Sensing Reflectance and Turbidity Using a Smartphone Camera

    Science.gov (United States)

    Leeuw, Thomas; Boss, Emmanuel

    2018-01-01

    HydroColor is a mobile application that utilizes a smartphone’s camera and auxiliary sensors to measure the remote sensing reflectance of natural water bodies. HydroColor uses the smartphone’s digital camera as a three-band radiometer. Users are directed by the application to collect a series of three images. These images are used to calculate the remote sensing reflectance in the red, green, and blue broad wavelength bands. As with satellite measurements, the reflectance can be inverted to estimate the concentration of absorbing and scattering substances in the water, which are predominately composed of suspended sediment, chlorophyll, and dissolved organic matter. This publication describes the measurement method and investigates the precision of HydroColor’s reflectance and turbidity estimates compared to commercial instruments. It is shown that HydroColor can measure the remote sensing reflectance to within 26% of a precision radiometer and turbidity within 24% of a portable turbidimeter. HydroColor distinguishes itself from other water quality camera methods in that its operation is based on radiometric measurements instead of image color. HydroColor is one of the few mobile applications to use a smartphone as a completely objective sensor, as opposed to subjective user observations or color matching using the human eye. This makes HydroColor a powerful tool for crowdsourcing of aquatic optical data. PMID:29337917

  12. Light reflection from crystal platelets in iridophores determines green or brown skin coloration in Takydromus lizards.

    Science.gov (United States)

    Kuriyama, Takeo; Esashi, Jyunko; Hasegawa, Masami

    2017-04-01

    Brown and green are the most commonly imitated colors in prey animals because both colors occur in a range of habitats. Many researchers have evaluated survival with respect to background color matching, but the pigment cell mechanisms underlying such coloration are not known. Dorsal coloration of East Asian Takydromus lizards has shifted from green to brown or from brown to green on multiple occasions during the diversification of the genus, thus giving us an opportunity to examine the cellular mechanisms of background color matching. Brown and green skin were found to differ with respect to the morphological characteristics of iridophores, with different thicknesses of the reflecting platelets and the cytoplasmic spacing between platelets, despite a shared vertical arrangement of pigment cells, i.e., xanthophores in the upper layer, iridophores in the middle layer, and melanophores at the bottom of the dermal layer, among the different Takydromus lizards. Iridophores of brown skin reflected longer wavelengths of light than those of green skin, which may be attributed to the thicker platelets and longer distances between platelets in brown skin. We discuss the potential role of genetic and intracellular mechanisms explaining the thickness and orientation of the light-reflecting platelets of iridophores in Takydromus lizards. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Colors, colored overlays, and reading skills

    Directory of Open Access Journals (Sweden)

    Arcangelo eUccula

    2014-07-01

    Full Text Available In this article, we are concerned with the role of colors in reading written texts. It has been argued that colored overlays applied above written texts positively influence both reading fluency and reading speed. These effects would be particularly evident for those individuals affected by the so called Meares-Irlen syndrome, i.e. who experience eyestrain and/or visual distortions – e.g. color, shape or movement illusions – while reading. This condition would interest the 12-14% of the general population and up to the 46% of the dyslexic population. Thus, colored overlays have been largely employed as a remedy for some aspects of the difficulties in reading experienced by dyslexic individuals, as fluency and speed. Despite the wide use of colored overlays, how they exert their effects has not been made clear yet. Also, according to some researchers, the results supporting the efficacy of colored overlays as a tool for helping readers are at least controversial. Furthermore, the very nature of the Meares-Irlen syndrome has been questioned. Here we provide a concise, critical review of the literature.

  14. Precision of Synesthetic Color Matching Resembles That for Recollected Colors Rather than Physical Colors

    Science.gov (United States)

    Arnold, Derek H.; Wegener, Signy V.; Brown, Francesca; Mattingley, Jason B.

    2012-01-01

    Grapheme-color synesthesia is an atypical condition in which individuals experience sensations of color when reading printed graphemes such as letters and digits. For some grapheme-color synesthetes, seeing a printed grapheme triggers a sensation of color, but "hearing" the name of a grapheme does not. This dissociation allowed us to…

  15. Broadband multi-wavelength Brillouin lasers with an operating wavelength range of 1500–1600 nm generated by four-wave mixing in a dual wavelength Brillouin fiber laser cavity

    Science.gov (United States)

    Li, Q.; Jia, Z. X.; Weng, H. Z.; Li, Z. R.; Yang, Y. D.; Xiao, J. L.; Chen, S. W.; Huang, Y. Z.; Qin, W. P.; Qin, G. S.

    2018-05-01

    We demonstrate broadband multi-wavelength Brillouin lasers with an operating wavelength range of 1500–1600 nm and a frequency separation of ~9.28 GHz generated by four-wave mixing in a dual wavelength Brillouin fiber laser cavity. By using one continuous-wave laser as the pump source, multi-wavelength Brillouin lasers with an operating wavelength range of 1554–1574 nm were generated via cascaded Brillouin scattering and four-wave mixing. Interestingly, when pumped by two continuous-wave lasers with an appropriate frequency separation, the operating wavelength range of the multi-wavelength Brillouin lasers was increased to 1500–1600 nm due to cavity-enhanced cascaded four-wave mixing among the frequency components generated by two pump lasers in the dual wavelength Brillouin laser cavity.

  16. What Type of Food Can Older Adults Masticate?: Evaluation of Mastication Performance Using Color-Changeable Chewing Gum.

    Science.gov (United States)

    Wada, Shinichi; Kawate, Nobuyuki; Mizuma, Masazumi

    2017-10-01

    This study determines if older adults can masticate regular foods via a simple test conducted using a color-changeable chewing gum. Seventy-nine consecutive inpatients of our clinic receiving rehabilitation and general medicine were assessed for eligibility. The inclusion criterion was >65 years. Thirty patients consented to participate. The main outcome variable was the food bolus texture at the swallowing threshold for five regular foods. The main explanatory variable was the a* value of the color-changeable chewing gum after 120 s of chewing (a* represents the degree of color between red and green, and a positive a* value indicates red). The mean age ± standard deviation of the participants was 81.6 ± 8.6 years, and 40% were men. Participants being able to prepare the food with suitable texture for swallowing was positively associated with the a* values in boiled rice, ginger-fried pork loin, boiled fish-paste, and rice cracker (Crude OR 1.18, 1.15, 1.17, and 1.50; P chewing gum is not only useful but also extremely practical, even for older adults in a wide range of settings, including an individual's home. This approach would lead to a reduction in unnecessary mechanically altered or pureed food for older adults who can eat pureed food and safely provide palatable food.

  17. Dye and pigment-free structural colors and angle-insensitive spectrum filters

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lingjie Jay; Hollowell, Andrew E.; Wu, Yi-Kuei

    2017-01-17

    Optical spectrum filtering devices displaying minimal angle dependence or angle insensitivity are provided. The filter comprises a localized plasmonic nanoresonator assembly having a metal material layer defining at least one nanogroove and a dielectric material disposed adjacent to the metal material layer. The dielectric material is disposed within the nanogroove(s). The localized plasmonic nanoresonator assembly is configured to funnel and absorb a portion of an electromagnetic spectrum in the at least one nanogroove via localized plasmonic resonance to generate a filtered output having a predetermined range of wavelengths that displays angle insensitivity. Thus, flexible, high efficiency angle independent color filters having very small diffraction limits are provided that are particularly suitable for use as pixels for various display devices or for use in anti-counterfeiting and cryptography applications. The structures can also be used for colored print applications and the elements can be rendered as pigment-like particles.

  18. Mixtures of maximally entangled pure states

    Energy Technology Data Exchange (ETDEWEB)

    Flores, M.M., E-mail: mflores@nip.up.edu.ph; Galapon, E.A., E-mail: eric.galapon@gmail.com

    2016-09-15

    We study the conditions when mixtures of maximally entangled pure states remain entangled. We found that the resulting mixed state remains entangled when the number of entangled pure states to be mixed is less than or equal to the dimension of the pure states. For the latter case of mixing a number of pure states equal to their dimension, we found that the mixed state is entangled provided that the entangled pure states to be mixed are not equally weighted. We also found that one can restrict the set of pure states that one can mix from in order to ensure that the resulting mixed state is genuinely entangled. Also, we demonstrate how these results could be applied as a way to detect entanglement in mixtures of the entangled pure states with noise.

  19. SWS2 visual pigment evolution as a test of historically contingent patterns of plumage color evolution in warblers.

    Science.gov (United States)

    Bloch, Natasha I; Morrow, James M; Chang, Belinda S W; Price, Trevor D

    2015-02-01

    Distantly related clades that occupy similar environments may differ due to the lasting imprint of their ancestors-historical contingency. The New World warblers (Parulidae) and Old World warblers (Phylloscopidae) are ecologically similar clades that differ strikingly in plumage coloration. We studied genetic and functional evolution of the short-wavelength-sensitive visual pigments (SWS2 and SWS1) to ask if altered color perception could contribute to the plumage color differences between clades. We show SWS2 is short-wavelength shifted in birds that occupy open environments, such as finches, compared to those in closed environments, including warblers. Phylogenetic reconstructions indicate New World warblers were derived from a finch-like form that colonized from the Old World 15-20 Ma. During this process, the SWS2 gene accumulated six substitutions in branches leading to New World warblers, inviting the hypothesis that passage through a finch-like ancestor resulted in SWS2 evolution. In fact, we show spectral tuning remained similar across warblers as well as the finch ancestor. Results reject the hypothesis of historical contingency based on opsin spectral tuning, but point to evolution of other aspects of visual pigment function. Using the approach outlined here, historical contingency becomes a generally testable theory in systems where genotype and phenotype can be connected. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  20. The design of two color interferometer system for the 3-dimensional analysis of plasma density evolution on KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.C., E-mail: kclee@nfri.re.kr [National Fusion Research Institute, Daejeon 34133 (Korea, Republic of); Juhn, J.-W.; Nam, Y.U.; Kim, Y.S.; Wi, H.M. [National Fusion Research Institute, Daejeon 34133 (Korea, Republic of); Kim, S.W.; Ghim, Y.-C. [Korea Advanced Institute of Science and Technology, Daejeon 34141 (Korea, Republic of)

    2016-12-15

    Highlights: • A Two Color Interferometer (TCI) system is designed for 3-D measurement of KSTAR. • TCI is consists of 10.6 μm CO2 laser and 0.63 μm HeNe laser with tangential 5 channels. • 2 channels are installed in 2016 and 5 channel operation is planned in 2017. - Abstract: A 5-channel two color interferometer (TCI) system has been designed on KSTAR. TCI system is designed for tangential beam paths, which will combine with two existing interferometer systems of vertical and radial beam paths, so that it will provide 3-dimensional measurement of electron density evolution. TCI system uses wavelengths of 10.6 μm by a CO{sub 2} laser and 0.633 μm by a HeNe laser. The system compensates the vibrational noise by using two colors and avoids refraction by short wavelengths. The main purpose of the TCI is to generate routine measurement of the line integrated plasma density for the real time density control on KSTAR. The 5-channels will provide profile data for the density. Time resolution of the system is expected to be 500 kHz or higher in order to measure 3-dimensional density fluctuations for ELMs and other MHD activities including TAE modes. The system is planned to be working on KSTAR 2016 campaign with 1–2 channels.

  1. The design of two color interferometer system for the 3-dimensional analysis of plasma density evolution on KSTAR

    International Nuclear Information System (INIS)

    Lee, K.C.; Juhn, J.-W.; Nam, Y.U.; Kim, Y.S.; Wi, H.M.; Kim, S.W.; Ghim, Y.-C.

    2016-01-01

    Highlights: • A Two Color Interferometer (TCI) system is designed for 3-D measurement of KSTAR. • TCI is consists of 10.6 μm CO2 laser and 0.63 μm HeNe laser with tangential 5 channels. • 2 channels are installed in 2016 and 5 channel operation is planned in 2017. - Abstract: A 5-channel two color interferometer (TCI) system has been designed on KSTAR. TCI system is designed for tangential beam paths, which will combine with two existing interferometer systems of vertical and radial beam paths, so that it will provide 3-dimensional measurement of electron density evolution. TCI system uses wavelengths of 10.6 μm by a CO 2 laser and 0.633 μm by a HeNe laser. The system compensates the vibrational noise by using two colors and avoids refraction by short wavelengths. The main purpose of the TCI is to generate routine measurement of the line integrated plasma density for the real time density control on KSTAR. The 5-channels will provide profile data for the density. Time resolution of the system is expected to be 500 kHz or higher in order to measure 3-dimensional density fluctuations for ELMs and other MHD activities including TAE modes. The system is planned to be working on KSTAR 2016 campaign with 1–2 channels.

  2. Color Analysis

    Science.gov (United States)

    Wrolstad, Ronald E.; Smith, Daniel E.

    Color, flavor, and texture are the three principal quality attributes that determine food acceptance, and color has a far greater influence on our judgment than most of us appreciate. We use color to determine if a banana is at our preferred ripeness level, and a discolored meat product can warn us that the product may be spoiled. The marketing departments of our food corporations know that, for their customers, the color must be "right." The University of California Davis scorecard for wine quality designates four points out of 20, or 20% of the total score, for color and appearance (1). Food scientists who establish quality control specifications for their product are very aware of the importance of color and appearance. While subjective visual assessment and use of visual color standards are still used in the food industry, instrumental color measurements are extensively employed. Objective measurement of color is desirable for both research and industrial applications, and the ruggedness, stability, and ease of use of today's color measurement instruments have resulted in their widespread adoption.

  3. Raman spectroscopy for the identification of pigments and color measurement in Dugès watercolors

    Science.gov (United States)

    Frausto-Reyes, C.; Ortiz-Morales, M.; Bujdud-Pérez, J. M.; Magaña-Cota, G. E.; Mejía-Falcón, R.

    2009-12-01

    Spectroscopic and colorimetric analysis of a representative set of Dugès watercolor paintings was performed. These paintings were the result of scientific studies carried out by the zoologist Alfredo Dugès, who recorded the fauna of the Mexican Republic between 1853 and 1910. Micro-Raman spectroscopy, with an excitation wavelength of 830 nm, and colorimetric techniques were employed in order to understand if different colors with the same hue were reproduced using the same pigments. The color coordinates of the measured areas were obtained in the CIE L* a* b* color space. Raman analysis showed that, in some cases, to reproduce colors with the same hue the pigment employed was not the same. Pigments identified in the watercolors were vermilion, carbon-based black, lead white, gamboge and chrome yellow, Prussian and ultramarine blue. Some of these pigments have been used since ancient times, others as Prussian blue, chrome yellow and synthetic ultramarine blue arrived to the market at the beginning of the 18th and 19th centuries, respectively. Furthermore, regarding the white color, instead of left the paper unpainted, lead white was detected in the eye of a bird. The green color was obtained by mixing Prussian blue with chrome yellow. The results of this work show the suitability of using Raman spectroscopy for watercolor pigment analysis and colorimetric techniques to measure the color of small areas (246 μm × 246 μm) that was the case for the lead white pigment.

  4. Color Memory

    OpenAIRE

    Pate, Monica; Raclariu, Ana-Maria; Strominger, Andrew

    2017-01-01

    A transient color flux across null infinity in classical Yang-Mills theory is considered. It is shown that a pair of test `quarks' initially in a color singlet generically acquire net color as a result of the flux. A nonlinear formula is derived for the relative color rotation of the quarks. For weak color flux the formula linearizes to the Fourier transform of the soft gluon theorem. This color memory effect is the Yang-Mills analog of the gravitational memory effect.

  5. Color Algebras

    Science.gov (United States)

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.

  6. Radiation-Induced Color Centers in LiF for Dosimetry at High Absorbed Dose Rates

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Ellis, S. C.

    1980-01-01

    Color centers formed by irradiation of optically clear crystals of pure LiF may be analyzed spectrophotometrically for dosimetry in the absorbed dose range from 102 to 107 Gy. Routine monitoring of intense electron beams is an important application. Both 6LiF and 7LiF forms are commercially...... available, and when used with filters as albedo dosimeters in pairs, they provide discrimination of neutron and gamma-ray doses....

  7. Synthesis of multi-wavelength temporal phase-shifting algorithms optimized for high signal-to-noise ratio and high detuning robustness using the frequency transfer function.

    Science.gov (United States)

    Servin, Manuel; Padilla, Moises; Garnica, Guillermo

    2016-05-02

    Synthesis of single-wavelength temporal phase-shifting algorithms (PSA) for interferometry is well-known and firmly based on the frequency transfer function (FTF) paradigm. Here we extend the single-wavelength FTF-theory to dual and multi-wavelength PSA-synthesis when several simultaneous laser-colors are present. The FTF-based synthesis for dual-wavelength (DW) PSA is optimized for high signal-to-noise ratio and minimum number of temporal phase-shifted interferograms. The DW-PSA synthesis herein presented may be used for interferometric contouring of discontinuous industrial objects. Also DW-PSA may be useful for DW shop-testing of deep free-form aspheres. As shown here, using the FTF-based synthesis one may easily find explicit DW-PSA formulae optimized for high signal-to-noise and high detuning robustness. To this date, no general synthesis and analysis for temporal DW-PSAs has been given; only ad hoc DW-PSAs formulas have been reported. Consequently, no explicit formulae for their spectra, their signal-to-noise, their detuning and harmonic robustness has been given. Here for the first time a fully general procedure for designing DW-PSAs (or triple-wavelengths PSAs) with desire spectrum, signal-to-noise ratio and detuning robustness is given. We finally generalize DW-PSA to higher number of wavelength temporal PSAs.

  8. Color-Blind Racism, Color-Blind Theology, and Church Practices

    Science.gov (United States)

    Hearn, Mark

    2009-01-01

    Color-blind racism develops when persons ignore color in people and see them simply as individuals. As persons of color in racialized societies such as the United States are unequally treated on account of their color, the issue becomes a matter of faith and religious experience as religious leaders and educators, who disregard color, overlook…

  9. Hyperspectral imaging using a color camera and its application for pathogen detection

    Science.gov (United States)

    Yoon, Seung-Chul; Shin, Tae-Sung; Heitschmidt, Gerald W.; Lawrence, Kurt C.; Park, Bosoon; Gamble, Gary

    2015-02-01

    This paper reports the results of a feasibility study for the development of a hyperspectral image recovery (reconstruction) technique using a RGB color camera and regression analysis in order to detect and classify colonies of foodborne pathogens. The target bacterial pathogens were the six representative non-O157 Shiga-toxin producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145) grown in Petri dishes of Rainbow agar. The purpose of the feasibility study was to evaluate whether a DSLR camera (Nikon D700) could be used to predict hyperspectral images in the wavelength range from 400 to 1,000 nm and even to predict the types of pathogens using a hyperspectral STEC classification algorithm that was previously developed. Unlike many other studies using color charts with known and noise-free spectra for training reconstruction models, this work used hyperspectral and color images, separately measured by a hyperspectral imaging spectrometer and the DSLR color camera. The color images were calibrated (i.e. normalized) to relative reflectance, subsampled and spatially registered to match with counterpart pixels in hyperspectral images that were also calibrated to relative reflectance. Polynomial multivariate least-squares regression (PMLR) was previously developed with simulated color images. In this study, partial least squares regression (PLSR) was also evaluated as a spectral recovery technique to minimize multicollinearity and overfitting. The two spectral recovery models (PMLR and PLSR) and their parameters were evaluated by cross-validation. The QR decomposition was used to find a numerically more stable solution of the regression equation. The preliminary results showed that PLSR was more effective especially with higher order polynomial regressions than PMLR. The best classification accuracy measured with an independent test set was about 90%. The results suggest the potential of cost-effective color imaging using hyperspectral image

  10. Color centers in KCN: a structural analysis of crystalline domains

    International Nuclear Information System (INIS)

    Carmo, L.C.S. do.

    1976-03-01

    Pure singlecrystals of KCN exposed to X-rays showed several color centers detected by EPR. The F center was identified through the correlation of its optical absorption band which satisfies the Ivey law for the KCN lattice parameter and the EPR spectrum typical of a center in an anionic site. Two other color centers were identified: N - 2 and HCN - . Two centers assigned to hydrogen atoms have their models proposed: U 2 and U 3 centers. Two other centers remain unidentified: an anionic and an extrinsic centers. The orthorhombic character of the N - 2 center EPR parameters allowed an structural analysis of the crystal line domains in the orthorhombic phase. The optical absorption spectrum of the HCN - center in KCl matrix was investigated and showed a set of resolved bands with a constant energy splitting; this splitting was associated to a vibrational mode of the excited state of this molecular ion. (author) [pt

  11. Integrated parabolic nanolenses on MicroLED color pixels

    Science.gov (United States)

    Demory, Brandon; Chung, Kunook; Katcher, Adam; Sui, Jingyang; Deng, Hui; Ku, Pei-Cheng

    2018-04-01

    A parabolic nanolens array coupled to the emission of a nanopillar micro-light emitting diode (LED) color pixel is shown to reduce the far field divergence. For a blue wavelength LED, the total emission is 95% collimated within a 0.5 numerical aperture zone, a 3.5x improvement over the same LED without a lens structure. This corresponds to a half-width at half-maximum (HWHM) line width reduction of 2.85 times. Using a resist reflow and etchback procedure, the nanolens array dimensions and parabolic shape are formed. Experimental measurement of the far field emission shows a HWHM linewidth reduction by a factor of 2x, reducing the divergence over the original LED.

  12. PHYTOCHEMICAL STUDY OF COSMETICS FOR HAIR COLORING

    Directory of Open Access Journals (Sweden)

    Pietrzyk D.

    2015-05-01

    Full Text Available Introduction Henna-based cosmetic products are becoming increasingly popular. They can be used during pregnancy, lactation as well as for temporary children’s tattoo. The aim of this work is to develop quality control methods, allowing determining the naturalness of the composition of hair coloring cosmetic products, as well as the presence of lawsone and its quantitative content. Material & methods The researched objects were eight hair coloring cosmetic products. The spectrophotometer UV-vis Evolution 60S was used in our phytochemical studies. The quantitative content of chlorophyll a and b was determined in methanolic extracts by spectrophotometric method, using the methodology proposed by K. Miazek. By using well-known methods, methanolic and aqueous extracts were obtained from the studied objects. The extracts, then, were purified to obtain dry residues containing lawsone. Hair color pastes were obtained according to the instructions on the packages of researched products, and finally chloroform extracts were obtained from these pastes.Quantitative content of lawsone in methanolic and aqueous extracts and dry residues after cleaning of the extracts were determined by the spectrophotometric method. The wavelengths at which the solution of lawsone gives absorption maxima were determined experimentally on the basis of the spectra of the standard sample of lawsone dissolved in methanol (methanolic extracts and in water with the addition of aqueous NaHCO3 (aqueous extracts.The quantitative content of polyphenolic compounds in methanolic and aqueous extracts of the researched objects in terms of gallic acid was performed by the spectrophotometric method at the wavelength of 765 nm using the technique of Folin - Ciocalteau. The gallic acid (by virtue of absorbance dependence on concentration was used as a standard sample to construct the calibration graph. Results & discussion The total content of chlorophyll in the samples was determined by

  13. Experimental Study on Color Durability of Color Asphalt Pavement

    Science.gov (United States)

    Ning, Shi; Huan, Su

    2017-06-01

    Aiming at the poor Color durability and the lack of research on Color asphalt pavement, spraying an anti-tire trace seal resin emulsion on the surface, a Color durable asphalt pavement was proposed. After long-term rolling and long-term aging test, the Color durability was evaluated by RGB function in Photoshop and trace residue rate formula. Test results proved that the Evaluation method was simple and effective. After long-term rolling, the Color of the road surface tends to a constant value. Spraying the emulsion on the road surface can resist tire traces. After long-term aging test, the resistance to tire traces was increased by 26.6% compared with the conventional type, while the former was 44.1% higher than the latter without long-term aging. The Color durable asphalt pavement can effectively improve the ability of Color asphalt pavement to resist tire traces, and significantly improve the Color durability of Color asphalt pavement.

  14. Color measurement of methylene blue dye/clay mixtures and its application using economical methods

    Science.gov (United States)

    Milosevic, Maja; Kaludjerovic, Lazar; Logar, Mihovil

    2016-04-01

    Identifying the clay mineral components of clay materials by staining tests is rapid and simple, but their applicability is restricted because of the mutual interference of the common components of clay materials and difficulties in color determination. The change of color with concentration of the dye is related to the use of colorants as a field test for identifying clay minerals and has been improved over the years to assure the accuracy of the tests (Faust G. T., 1940). The problem of measurement and standardization of color may be solved by combination of colors observed in staining tests with prepared charts of color chips available in the Munsell Book of Color, published by Munsell Color Co. Under a particular set of illumination conditions, a human eye can achieve an approximate match between the color of the dyed clay sample and that of a standard color chip, even though they do have different spectral reflectance characteristics. Experiments were carried out with diffuse reflectance spectroscopy on selected clay samples (three montmorillonite, three kaolinite and one mix-layer clay samples) saturated with different concentration of methylene blue dye solution. Dominant wavelength and purity of the color was obtained on oriented dry samples and calculated by use of the I. C. I. (x, y) - diagram in the region of 400-700 nm (reflectance spectra) without MB and after saturation with different concentrations of MB solutions. Samples were carefully photographed in the natural light environment and processed with user friendly and easily accessible applications (Adobe color CC and ColorHexa encyclopedia) available for android phones or tablets. Obtained colors were compared with Munsell standard color chips, RGB and Hexa color standards. Changes in the color of clay samples in their interaction with different concentration of the applied dye together with application of economical methods can still be used as a rapid fieldwork test. Different types of clay

  15. Determining optimum wavelength of ultraviolet rays to pre-exposure of non-uniformity error correction in Gafchromic EBT2 films

    Science.gov (United States)

    Katsuda, Toshizo; Gotanda, Rumi; Gotanda, Tatsuhiro; Akagawa, Takuya; Tanki, Nobuyoshi; Kuwano, Tadao; Noguchi, Atsushi; Yabunaka, Kouichi

    2018-03-01

    Gafchromic films have been used to measure X-ray doses in diagnostic radiology such as computed tomography. The double-exposure technique is used to correct non-uniformity error of Gafchromic EBT2 films. Because of the heel effect of diagnostic x-rays, ultraviolet A (UV-A) is intended to be used as a substitute for x-rays. When using a UV-A light-emitting diode (LED), it is necessary to determine the effective optimal UV wavelength for the active layer of Gafchromic EBT2 films. This study evaluated the relation between the increase in color density of Gafchromic EBT2 films and the UV wavelengths. First, to correct non-uniformity, a Gafchromic EBT2 film was pre-irradiated using uniform UV-A radiation for 60 min from a 72-cm distance. Second, the film was irradiated using a UV-LED with a wavelength of 353-410 nm for 60 min from a 5.3-cm distance. The maximum, minimum, and mean ± standard deviation (SD) of pixel values of the subtraction images were evaluated using 0.5 inches of a circular region of interest (ROI). The highest mean ± SD (8915.25 ± 608.86) of the pixel value was obtained at a wavelength of 375 nm. The results indicated that 375 nm is the most effective and sensitive wavelength of UV-A for Gafchromic EBT2 films and that UV-A can be used as a substitute for x-rays in the double-exposure technique.

  16. Luminescence properties of pure and doped CaSO4 nanorods irradiated by 15 MeV e-beam

    International Nuclear Information System (INIS)

    Salah, Numan; Alharbi, Najlaa D.; Enani, Mohammad A.

    2014-01-01

    Calcium sulfate (CaSO 4 ) doped with proper activators is a highly sensitive phosphor used in different fields mainly for radiation dosimetry, lighting and display applications. In this work pure and doped nanorods of CaSO 4 were produced by the co-precipitation technique. Samples from this material doped with Ag, Cu, Dy, Eu and Tb were exposed to different doses of 15 MeV e-beam and studied for their thermoluminesence (TL) and photoluminescence (PL) properties. Color center formation leading to PL emissions were investigated before and after e-beam irradiation. The samples doped with rare earths elements (i.e. Dy, Eu and Tb) were observed to have thinner nanorods than the other samples and have higher absorption in the UV region. The Ag and Tb doped samples have poor TL response to e-beam, while those activated by Cu, Dy and Eu have strong glow peaks at around 123 °C. Quite linear response curves in the whole studied exposures i.e. 0.1–100 Gy were also observed in Cu and Dy doped samples. The PL results show that pure CaSO 4 nanorods have active color centers without irradiation, which could be enriched/modified by these impurities mainly rare earths and further enhanced by e-beam irradiation. Eu 3+ → Eu 2+ conversion is clearly observed in Eu doped sample after e-beam irradiation. These results show that these nanorods might be useful in lighting and display devices development

  17. Tree Colors: Color Schemes for Tree-Structured Data.

    Science.gov (United States)

    Tennekes, Martijn; de Jonge, Edwin

    2014-12-01

    We present a method to map tree structures to colors from the Hue-Chroma-Luminance color model, which is known for its well balanced perceptual properties. The Tree Colors method can be tuned with several parameters, whose effect on the resulting color schemes is discussed in detail. We provide a free and open source implementation with sensible parameter defaults. Categorical data are very common in statistical graphics, and often these categories form a classification tree. We evaluate applying Tree Colors to tree structured data with a survey on a large group of users from a national statistical institute. Our user study suggests that Tree Colors are useful, not only for improving node-link diagrams, but also for unveiling tree structure in non-hierarchical visualizations.

  18. Illuminant color estimation based on pigmentation separation from human skin color

    Science.gov (United States)

    Tanaka, Satomi; Kakinuma, Akihiro; Kamijo, Naohiro; Takahashi, Hiroshi; Tsumura, Norimichi

    2015-03-01

    Human has the visual system called "color constancy" that maintains the perceptive colors of same object across various light sources. The effective method of color constancy algorithm was proposed to use the human facial color in a digital color image, however, this method has wrong estimation results by the difference of individual facial colors. In this paper, we present the novel color constancy algorithm based on skin color analysis. The skin color analysis is the method to separate the skin color into the components of melanin, hemoglobin and shading. We use the stationary property of Japanese facial color, and this property is calculated from the components of melanin and hemoglobin. As a result, we achieve to propose the method to use subject's facial color in image and not depend on the individual difference among Japanese facial color.

  19. Holographic Spectroscopy: Wavelength-Dependent Analysis of Photosensitive Materials by Means of Holographic Techniques

    Directory of Open Access Journals (Sweden)

    Kay-Michael Voit

    2013-01-01

    Full Text Available Holographic spectroscopy is highlighted as a powerful tool for the analysis of photosensitive materials with pronounced alterations of the complex permittivity over a broad range in the visible spectrum, due to the advances made both in the fields of advanced holographic media and highly tunable lasers systems. To analytically discuss consequences for in- and off-Bragg reconstruction, we revised Kogelnik’s coupled wave theory strictly on the basis of complex permittivities. We extended it to comply with modern experimental parameters such as out-of-phase mixed holograms and highly modulated gratings. A spatially modulated, wavelength-dependent permittivity that superimposes a spatially homogeneous wavelength-dependent ground state spectrum is taken into account for signal wave reconstruction with bulky elementary mixed gratings as an example. The dispersion characteristics of the respective diffraction efficiency is modelled for color-center-absorption and absorption of strongly localized carriers. As an example for the theoretical possibilities of our newly derived set of equations, we present a quantitative analysis of the Borrmann effect connected to out-of-phase gratings, providing easier and more intuitive methods for the derivation of their grating parameters.

  20. Virtually pure near-infrared electroluminescence from exciplexes at polyfluorene/hexaazatrinaphthylene interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tregnago, G.; Fléchon, C.; Cacialli, F., E-mail: amateo@polymat.eu, E-mail: f.cacialli@ucl.ac.uk [Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, London WC1E 6BT (United Kingdom); Choudhary, S. [School of Soft Matter Research, Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, Albertstraße 19, 79104 Freiburg (Germany); Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg (Germany); Gozalvez, C. [POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018 Donostia-San Sebastian (Spain); Mateo-Alonso, A., E-mail: amateo@polymat.eu, E-mail: f.cacialli@ucl.ac.uk [POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, E-20018 Donostia-San Sebastian (Spain); Ikerbasque, Basque Foundation for Science, Bilbao (Spain)

    2014-10-06

    Electronic processes at the heterojunction between chemically different organic semiconductors are of special significance for devices such as light-emitting diodes (LEDs) and photovoltaic diodes. Here, we report the formation of an exciplex state at the heterojunction of an electron-transporting material, a functionalized hexaazatrinaphthylene, and a hole-transporting material, poly(9,9-dioctylfluorene-alt-N-(4-butylphenyl)diphenylamine) (TFB). The energetics of the exciplex state leads to a spectral shift of ∼1 eV between the exciton and the exciplex peak energies (at 2.58 eV and 1.58 eV, respectively). LEDs incorporating such bulk heterojunctions display complete quenching of the exciton luminescence, and a nearly pure near-infrared electroluminescence arising from the exciplex (at ∼1.52 eV) with >98% of the emission at wavelengths above 700 nm at any operational voltage.

  1. Virtually pure near-infrared electroluminescence from exciplexes at polyfluorene/hexaazatrinaphthylene interfaces

    International Nuclear Information System (INIS)

    Tregnago, G.; Fléchon, C.; Cacialli, F.; Choudhary, S.; Gozalvez, C.; Mateo-Alonso, A.

    2014-01-01

    Electronic processes at the heterojunction between chemically different organic semiconductors are of special significance for devices such as light-emitting diodes (LEDs) and photovoltaic diodes. Here, we report the formation of an exciplex state at the heterojunction of an electron-transporting material, a functionalized hexaazatrinaphthylene, and a hole-transporting material, poly(9,9-dioctylfluorene-alt-N-(4-butylphenyl)diphenylamine) (TFB). The energetics of the exciplex state leads to a spectral shift of ∼1 eV between the exciton and the exciplex peak energies (at 2.58 eV and 1.58 eV, respectively). LEDs incorporating such bulk heterojunctions display complete quenching of the exciton luminescence, and a nearly pure near-infrared electroluminescence arising from the exciplex (at ∼1.52 eV) with >98% of the emission at wavelengths above 700 nm at any operational voltage.

  2. Virtually pure near-infrared electroluminescence from exciplexes at polyfluorene/hexaazatrinaphthylene interfaces

    Science.gov (United States)

    Tregnago, G.; Fléchon, C.; Choudhary, S.; Gozalvez, C.; Mateo-Alonso, A.; Cacialli, F.

    2014-10-01

    Electronic processes at the heterojunction between chemically different organic semiconductors are of special significance for devices such as light-emitting diodes (LEDs) and photovoltaic diodes. Here, we report the formation of an exciplex state at the heterojunction of an electron-transporting material, a functionalized hexaazatrinaphthylene, and a hole-transporting material, poly(9,9-dioctylfluorene-alt-N-(4-butylphenyl)diphenylamine) (TFB). The energetics of the exciplex state leads to a spectral shift of ˜1 eV between the exciton and the exciplex peak energies (at 2.58 eV and 1.58 eV, respectively). LEDs incorporating such bulk heterojunctions display complete quenching of the exciton luminescence, and a nearly pure near-infrared electroluminescence arising from the exciplex (at ˜1.52 eV) with >98% of the emission at wavelengths above 700 nm at any operational voltage.

  3. Interaction between staining and degradation of a composite resin in contact with colored foods

    Directory of Open Access Journals (Sweden)

    Debora Soares-Geraldo

    2011-08-01

    Full Text Available Composite resins might be susceptible to degradation and staining when in contact with some foods and drinks. This study evaluated color alteration and changes in microhardness of a microhybrid composite after immersion in different colored foods and determined whether there was a correlation between these two variables. Eighty composite disks were randomly divided into 8 experimental groups (n = 10: kept dry; deionized water; orange juice; passion fruit juice; grape juice; ketchup; mustard and soy sauce. The disks were individually immersed in their respective test substance at 37 ºC, for a period of 28 days. Superficial analysis of the disk specimens was performed by taking microhardness measurements (Vickers, 50 g load for 45 seconds and color alterations were determined with a spectrophotometer (CINTRA 10- using a CIEL*a*b* system, 400-700 nm wavelength, illuminant d65 and standard observer of 2º at the following times: baseline (before immersion, 1, 7, 14, 21 and 28 days. Results were analyzed by ANOVA and Tukey's test (p < 0.05. Both variables were also submitted to Pearson's correlation test (p < 0.05. The passion fruit group underwent the greatest microhardness change, while the mustard group suffered the greatest color alteration. Significant positive correlation was found between the two variables for the groups deionized water, grape juice, soy sauce and ketchup. Not all color alteration could be associated with surface degradation.

  4. A large-area, wide-incident-angle, and polarization-independent plasmonic color filter for glucose sensing

    Science.gov (United States)

    Lin, Yu-Sheng; Chen, Wenjun

    2018-01-01

    We develop an effective method for glucose sensing by using a plasmonic color filter (PCF) integrated with a microfluidic chip. The morphology of PCF is composed of hybrid nanopillars fabricated with SiO2 and Au thin-films on silicon substrate. It exhibits angle-independence, polarization-independence and wafer-level fabrication, which are the most important factors for color filters for industrial applications. The shift of resonant wavelength is 56 nm with a stable bandwidth (∼30 nm) by varying concentration of glucose solution. The sensitivity is 157.61 nm/RIU and the corresponding figure-of-merit is 5.25. Such strategy can be exploited to further increase the detection and potentially enter the ultra-strong coupling regime in chemical solution sensors.

  5. Vapor-phase deposition of regioregular and oriented poly(3-hexylthiophene) structures and novel nanostructured composites of interpenetrating poly(3-hexylthiophene) and polyaniline exhibiting full-color wavelength (400-1000 nm) photoluminescence

    Science.gov (United States)

    Biswas, A.; Bayer, I. S.; Karulkar, P. C.; Tripathi, A.; Avasthi, D. K.

    2007-10-01

    A promising solvent-free technique of electron-beam-assisted vapor-phase codeposition method is presented which allows uniform blending of different conjugated and nonconjugated polymers at the nanoscale. The technique allows direct incorporation of regioregular poly(3-hexylthiophene) (P3HT) polymer with different structural orientations into conventional and semiconducting polymers without fractionation or degradation of P3HT while maintaining the nanoscale morphology of deposited organic films. The results of fabricated novel nanostructured organic composites (˜100-200nm) comprising regioregular and oriented P3HT and different conjugated and nonconjugated polymers including selective assembly of P3HT nanonodules into a copolymer template are presented. We show a typical example of blending of P3HT and polyaniline (PANI) that formed a unique nanoscale morphology comprising interpenetrating networks of different shapes and sizes of nanospherulites (˜100nm) of P3HT in PANI. The so fabricated nanocomposites (˜200nm) exhibited remarkable broadband photoluminescence features covering the entire blue, green, and red wavelength regions between 400 and 1000nm. Such organic nanocomposites might be useful for flexible full-color screen flat panel displays and organic white-light solid-state lighting applications.

  6. Color digital halftoning taking colorimetric color reproduction into account

    Science.gov (United States)

    Haneishi, Hideaki; Suzuki, Toshiaki; Shimoyama, Nobukatsu; Miyake, Yoichi

    1996-01-01

    Taking colorimetric color reproduction into account, the conventional error diffusion method is modified for color digital half-toning. Assuming that the input to a bilevel color printer is given in CIE-XYZ tristimulus values or CIE-LAB values instead of the more conventional RGB or YMC values, two modified versions based on vector operation in (1) the XYZ color space and (2) the LAB color space were tested. Experimental results show that the modified methods, especially the method using the LAB color space, resulted in better color reproduction performance than the conventional methods. Spatial artifacts that appear in the modified methods are presented and analyzed. It is also shown that the modified method (2) with a thresholding technique achieves a good spatial image quality.

  7. Color preferences change after experience with liked/disliked colored objects.

    Science.gov (United States)

    Strauss, Eli D; Schloss, Karen B; Palmer, Stephen E

    2013-10-01

    How are color preferences formed, and can they be changed by affective experiences with correspondingly colored objects? We examined these questions by testing whether affectively polarized experiences with images of colored objects would cause changes in color preferences. Such changes are implied by the ecological valence theory (EVT), which posits that color preferences are determined by people's average affective responses to correspondingly colored objects (Palmer & Schloss, Proceedings of the National Academy of Sciences, 107, 8877-8882, 2010). Seeing images of strongly liked (and disliked) red and green objects, therefore, should lead to increased (and decreased) preferences for correspondingly colored red and green color patches. Experiment 1 showed that this crossover interaction did occur, but only if participants were required to evaluate their preferences for the colored objects when they saw them. Experiment 2 showed that these overall changes decreased substantially over a 24-h delay, but the degree to which the effect lasted for individuals covaried with the magnitude of the effects immediately after object exposure. Experiment 3 demonstrated a similar, but weaker, effect of affectively biased changes in color preferences when participants did not see, but only imagined, the colored objects. The overall pattern of results indicated that color preferences are not fixed, but rather are shaped by affective experiences with colored objects. Possible explanations for the observed changes in color preferences were considered in terms of associative learning through evaluative conditioning and/or priming of prior knowledge in memory.

  8. Influence of color word availability on the Stroop color-naming effect.

    Science.gov (United States)

    Kim, Hyosun; Cho, Yang Seok; Yamaguchi, Motonori; Proctor, Robert W

    2008-11-01

    Three experiments tested whether the Stroop color-naming effect is a consequence of word recognition's being automatic or of the color word's capturing visual attention. In Experiment 1, a color bar was presented at fixation as the color carrier, with color and neutral words presented in locations above or below the color bar; Experiment 2 was similar, except that the color carrier could occur in one of the peripheral locations and the color word at fixation. The Stroop effect increased as display duration increased, and the Stroop dilution effect (a reduced Stroop effect when a neutral word is also present) was an approximately constant proportion of the Stroop effect at all display durations, regardless of whether the color bar or color word was at fixation. In Experiment 3, the interval between the onsets of the to-be-named color and the color word was manipulated. The Stroop effect decreased with increasing delay of the color word onset, but the absolute amount of Stroop dilution produced by the neutral word increased. This study's results imply that an attention shift from the color carrier to the color word is an important factor modulating the size of the Stroop effect.

  9. Highly accurate Michelson type wavelength meter that uses a rubidium stabilized 1560 nm diode laser as a wavelength reference

    International Nuclear Information System (INIS)

    Masuda, Shin; Kanoh, Eiji; Irisawa, Akiyoshi; Niki, Shoji

    2009-01-01

    We investigated the accuracy limitation of a wavelength meter installed in a vacuum chamber to enable us to develop a highly accurate meter based on a Michelson interferometer in 1550 nm optical communication bands. We found that an error of parts per million order could not be avoided using famous wavelength compensation equations. Chromatic dispersion of the refractive index in air can almost be disregarded when a 1560 nm wavelength produced by a rubidium (Rb) stabilized distributed feedback (DFB) diode laser is used as a reference wavelength. We describe a novel dual-wavelength self-calibration scheme that maintains high accuracy of the wavelength meter. The method uses the fundamental and second-harmonic wavelengths of an Rb-stabilized DFB diode laser. Consequently, a highly accurate Michelson type wavelength meter with an absolute accuracy of 5x10 -8 (10 MHz, 0.08 pm) over a wide wavelength range including optical communication bands was achieved without the need for a vacuum chamber.

  10. Towards short wavelengths FELs workshop

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Winick, H.

    1993-01-01

    This workshop was caged because of the growing perception in the FEL source community that recent advances have made it possible to extend FEL operation to wavelengths about two orders of magnitude shorter than the 240 nm that has been achieved to date. In addition short wavelength FELs offer the possibilities of extremely high peak power (several gigawatts) and very short pulses (of the order of 100 fs). Several groups in the USA are developing plans for such short wavelength FEL facilities. However, reviewers of these plans have pointed out that it would be highly desirable to first carry out proof-of-principle experiments at longer wavelengths to increase confidence that the shorter wavelength devices will indeed perform as calculated. The need for such experiments has now been broadly accepted by the FEL community. Such experiments were the main focus of this workshop as described in the following objectives distributed to attendees: (1) Define measurements needed to gain confidence that short wavelength FELs will perform as calculated. (2) List possible hardware that could be used to carry out these measurements in the near term. (3) Define a prioritized FEL physics experimental program and suggested timetable. (4) Form collaborative teams to carry out this program

  11. Towards short wavelengths FELs workshop

    Science.gov (United States)

    Ben-Zvi, I.; Winick, H.

    1993-11-01

    This workshop was caged because of the growing perception in the FEL source community that recent advances have made it possible to extend FEL operation to wavelengths about two orders of magnitude shorter than the 240 nm that has been achieved to date. In addition short wavelength FEL's offer the possibilities of extremely high peak power (several gigawatts) and very short pulses (of the order of 100 fs). Several groups in the USA are developing plans for such short wavelength FEL facilities. However, reviewers of these plans have pointed out that it would be highly desirable to first carry out proof-of-principle experiments at longer wavelengths to increase confidence that the shorter wavelength devices will indeed perform as calculated. The need for such experiments has now been broadly accepted by the FEL community. Such experiments were the main focus of this workshop as described in the following objectives distributed to attendees: (1) Define measurements needed to gain confidence that short wavelength FEL's will perform as calculated. (2) List possible hardware that could be used to carry out these measurements in the near term. (3) Define a prioritized FEL physics experimental program and suggested timetable. (4) Form collaborative teams to carry out this program.

  12. Representing Color Ensembles.

    Science.gov (United States)

    Chetverikov, Andrey; Campana, Gianluca; Kristjánsson, Árni

    2017-10-01

    Colors are rarely uniform, yet little is known about how people represent color distributions. We introduce a new method for studying color ensembles based on intertrial learning in visual search. Participants looked for an oddly colored diamond among diamonds with colors taken from either uniform or Gaussian color distributions. On test trials, the targets had various distances in feature space from the mean of the preceding distractor color distribution. Targets on test trials therefore served as probes into probabilistic representations of distractor colors. Test-trial response times revealed a striking similarity between the physical distribution of colors and their internal representations. The results demonstrate that the visual system represents color ensembles in a more detailed way than previously thought, coding not only mean and variance but, most surprisingly, the actual shape (uniform or Gaussian) of the distribution of colors in the environment.

  13. Luminance contours can gate afterimage colors and 'real' colors

    NARCIS (Netherlands)

    Anstis, S.; Vergeer, M.L.T.; Lier, R.J. van

    2012-01-01

    It has long been known that colored images may elicit afterimages in complementary colors. We have already shown (Van Lier, Vergeer, & Anstis, 2009) that one and the same adapting image may result in different afterimage colors, depending on the test contours presented after the colored image. The

  14. Digital color imaging

    CERN Document Server

    Fernandez-Maloigne, Christine; Macaire, Ludovic

    2013-01-01

    This collective work identifies the latest developments in the field of the automatic processing and analysis of digital color images.For researchers and students, it represents a critical state of the art on the scientific issues raised by the various steps constituting the chain of color image processing.It covers a wide range of topics related to computational color imaging, including color filtering and segmentation, color texture characterization, color invariant for object recognition, color and motion analysis, as well as color image and video indexing and retrieval. <

  15. Spectrophotometric Determination of Labetalol and Lercanidipine in Pure Form and in Pharmaceutical Preparations Using Ferric-1,10-Phenanthroline

    OpenAIRE

    Abu El-Enin, M. A.; El-Wasseef, D. R.; El-Sherbiny, D. T.; El-Ashry, S. M.

    2009-01-01

    A simple and sensitive spectrophotometric method was developed for the determination of labetalol HCl (LBT) and lercanidipine HCl (LER) in pure form and in dosage forms. The method was based upon oxidation of the LBT and LER with Fe+3 and the estimation of the produced Fe+2 with 1,10-phenanthroline. The absorbance of the tris(1,10-phenanthroline) Fe+2 complex was measured at 510 nm. Reaction conditions were optimized to obtain colored complex of higher sensitivity and longer stability. The ab...

  16. Color-quality control using color-difference formulas: progress and problems

    Science.gov (United States)

    Melgosa, M.; Gómez-Robledo, L.; García, P. A.; Morillas, S.; Fernández-Maloigne, C.; Richard, N.; Huang, M.; Li, C.; Cui, G.

    2017-08-01

    We report on some recent advances in industrial color-difference evaluation focused in three main fields: Development of reliable experimental visual datasets; proposal of new color spaces and color-difference formulas; tools to evaluate the merits of color-difference formulas. The use of fuzzy techniques to assign consistency degrees to color pairs in combined visual datasets is described. The CIE/ISO joint proposal of the CIEDE2000 color-difference formula as a standard will facilitate the communication among companies and users. The CIE recommendation of the STRESS index to assess observers' variability and relative merits of different color-difference formulas is reported. Power functions are an efficient method to improve the performance of modern color-difference formulas. We need of advanced color-difference formulas accounting for new materials with different kind of textures and gonioapparent effects.

  17. Determination of the refractive index of insoluble organic extracts from atmospheric aerosol over the visible wavelength range using optical tweezers

    Directory of Open Access Journals (Sweden)

    R. H. Shepherd

    2018-04-01

    Full Text Available Optical trapping combined with Mie spectroscopy is a new technique used to record the refractive index of insoluble organic material extracted from atmospheric aerosol samples over a wide wavelength range. The refractive index of the insoluble organic extracts was shown to follow a Cauchy equation between 460 and 700 nm for organic aerosol extracts collected from urban (London and remote (Antarctica locations. Cauchy coefficients for the remote sample were for the Austral summer and gave the Cauchy coefficients of A  =  1.467 and B  =  1000 nm2 with a real refractive index of 1.489 at a wavelength of 589 nm. Cauchy coefficients for the urban samples varied with season, with extracts collected during summer having Cauchy coefficients of A  =  1.465  ±  0.005 and B  =  4625  ±  1200 nm2 with a representative real refractive index of 1.478 at a wavelength of 589 nm, whilst samples extracted during autumn had larger Cauchy coefficients of A  =  1.505 and B  =  600 nm2 with a representative real refractive index of 1.522 at a wavelength of 589 nm. The refractive index of absorbing aerosol was also recorded. The absorption Ångström exponent was determined for woodsmoke and humic acid aerosol extract. Typical values of the Cauchy coefficient for the woodsmoke aerosol extract were A  =  1.541  ±  0.03 and B  =  14 800  ±  2900 nm2, resulting in a real refractive index of 1.584  ±  0.007 at a wavelength of 589 nm and an absorption Ångström exponent of 8.0. The measured values of refractive index compare well with previous monochromatic or very small wavelength range measurements of refractive index. In general, the real component of the refractive index increases from remote to urban to woodsmoke. A one-dimensional radiative-transfer calculation of the top-of-the-atmosphere albedo was applied to model an atmosphere

  18. Characterization of Angle Dependent Color Travel of Printed Multi-Color Effect Pigment on Different Color Substrates

    Directory of Open Access Journals (Sweden)

    Mirica Karlovits

    2015-03-01

    Full Text Available Color-travel pigments, which exhibit much more extensive color change as well provide angle-dependent optical effect can be used in many industrial products. In present paper the multi-color effect pigment printed on three different foils with different background color (black, silver and transparent was investigated. The pigment was based on synthetically produced transparent silicon dioxide platelets coated with titanium dioxide. CIEL*a*b* values and reflection of prints were measured by multi-angle spectrophotometer at constant illumination at an angle of 45º and different viewing angles (-15º, 15°, 25º, 45º, 75º and 110º were used. The measurements of printed multi-color pigment showed that CIEL*a*b* color coordinates varied to great extents, depending on detection angles as well on color of the printing substrate. The study revealed that pigmnet printed on black background obtained significant change in color. The study has also shown that when viewing angle increases, the reflection curves decreases.

  19. Color and chemical properties of oil used for deep frying on a large scale.

    Science.gov (United States)

    Totani, Nagao; Tateishi, Sayuri; Chiue, Hiroko; Mori, Terutosi

    2012-01-01

    Acid value (AV), polar compound content (PC), carbonyl value (CV) and Gardner color of oil used for deep-frying in kitchens at a supermarket, lunch chain store, restaurant, eating house, and hospital were analyzed. All AVs obtained but one (3.38) were within the limit set by the Food Sanitation Act of Japan (AV ≤ 3, peroxide value ≤ 30). However, some oil samples had a PC over 25%, which is beyond the limit legislated by some European countries. When the relation between the Gardner color and the AV, PC, or CV of the oil was investigated, well correlated logarithmic regression curves were obtained from the oil of all kitchens except the hospital kitchen. However, the use of lard-containing canola oil without oil replenishment in the eating house increased color values rapidly. All of the values obtained from pure vegetable oil used almost daily were plotted on a graph. It was found that kitchen-by-kitchen differences in fryer, vegetable oil, frying temperature, heating time, and amounts and kinds of foods fried did not influence the relation between Gardner color value versus AV, PC or CV. In conclusion, frying vegetable oil used in large-scale kitchens without official inspection can be better controlled with Gardner color determination by the operators and administrators. This would improve the quality of the oil ingested by facility patrons.

  20. COLOR IMAGES

    Directory of Open Access Journals (Sweden)

    Dominique Lafon

    2011-05-01

    Full Text Available The goal of this article is to present specific capabilities and limitations of the use of color digital images in a characterization process. The whole process is investigated, from the acquisition of digital color images to the analysis of the information relevant to various applications in the field of material characterization. A digital color image can be considered as a matrix of pixels with values expressed in a vector-space (commonly 3 dimensional space whose specificity, compared to grey-scale images, is to ensure a coding and a representation of the output image (visualisation printing that fits the human visual reality. In a characterization process, it is interesting to regard color image attnbutes as a set of visual aspect measurements on a material surface. Color measurement systems (spectrocolorimeters, colorimeters and radiometers and cameras use the same type of light detectors: most of them use Charge Coupled Devices sensors. The difference between the two types of color data acquisition systems is that color measurement systems provide a global information of the observed surface (average aspect of the surface: the color texture is not taken into account. Thus, it seems interesting to use imaging systems as measuring instruments for the quantitative characterization of the color texture.

  1. Examination of Color-Lighting Control System Using Colored Paper User Interface

    Directory of Open Access Journals (Sweden)

    Aida Hiroto

    2016-01-01

    Full Text Available In recent year, Full-Color LED Lighting that can be changed to various color such as red, green, blue has been appeared with development of LED Lighting. By Color-Lighting control, users affected such as concentrating and relaxing. Therefore, Color-lighting control will spread to various place such as home, offices, stations. However color-lighting control affected some disturbance such as daylight, display when Full-Color LED controlled indoors. Also, information devices control get difficult with information technology develop. I propose Color-Lighting Control System using Colored Paper User Interface(CLC/CPUI. The purpose of CLC/CPUI is that anyone can intuitively control Full-Color LED Lighting. CLC/CPUI uses colored paper as user interface by sensing the paper. CLC/CPUI realizes lighting color that user demanded to do feedback control. I conduct accuracy verification experiment of CLC/CPUI.

  2. Perspectives on the Pure-Tone Audiogram.

    Science.gov (United States)

    Musiek, Frank E; Shinn, Jennifer; Chermak, Gail D; Bamiou, Doris-Eva

    The pure-tone audiogram, though fundamental to audiology, presents limitations, especially in the case of central auditory involvement. Advances in auditory neuroscience underscore the considerably larger role of the central auditory nervous system (CANS) in hearing and related disorders. Given the availability of behavioral audiological tests and electrophysiological procedures that can provide better insights as to the function of the various components of the auditory system, this perspective piece reviews the limitations of the pure-tone audiogram and notes some of the advantages of other tests and procedures used in tandem with the pure-tone threshold measurement. To review and synthesize the literature regarding the utility and limitations of the pure-tone audiogram in determining dysfunction of peripheral sensory and neural systems, as well as the CANS, and to identify other tests and procedures that can supplement pure-tone thresholds and provide enhanced diagnostic insight, especially regarding problems of the central auditory system. A systematic review and synthesis of the literature. The authors independently searched and reviewed literature (journal articles, book chapters) pertaining to the limitations of the pure-tone audiogram. The pure-tone audiogram provides information as to hearing sensitivity across a selected frequency range. Normal or near-normal pure-tone thresholds sometimes are observed despite cochlear damage. There are a surprising number of patients with acoustic neuromas who have essentially normal pure-tone thresholds. In cases of central deafness, depressed pure-tone thresholds may not accurately reflect the status of the peripheral auditory system. Listening difficulties are seen in the presence of normal pure-tone thresholds. Suprathreshold procedures and a variety of other tests can provide information regarding other and often more central functions of the auditory system. The audiogram is a primary tool for determining type

  3. Colored Chaos

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 7 May 2004 This daytime visible color image was collected on May 30, 2002 during the Southern Fall season in Atlantis Chaos. The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation. Image information: VIS instrument. Latitude -34.5, Longitude 183.6 East (176.4 West). 38 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D

  4. Color vision test

    Science.gov (United States)

    ... present from birth) color vision problems: Achromatopsia -- complete color blindness , seeing only shades of gray Deuteranopia -- difficulty telling ... Vision test - color; Ishihara color vision test Images Color blindness tests References Bowling B. Hereditary fundus dystrophies. In: ...

  5. Generalized pure Lovelock gravity

    Science.gov (United States)

    Concha, Patrick; Rodríguez, Evelyn

    2017-11-01

    We present a generalization of the n-dimensional (pure) Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.

  6. Making Displaced Holograms At Two Wavelengths

    Science.gov (United States)

    Witherow, William K.; Ecker, Andreas

    1989-01-01

    Two-wavelength holographic system augmented with pair of prisms to introduce small separation between holograms formed simultaneously at two wavelengths on holographic plate. Principal use in study of flows. Gradients in index of refraction of fluid caused by variations in temperature, concentration, or both. Holography at one wavelength cannot be used to distinguish between two types of variations. Difference between spacings of fringes in photographs reconstructed from holograms taken simultaneously at two different wavelengths manipulated mathematically to determine type of variation.

  7. Colors, colored overlays, and reading skills

    OpenAIRE

    Uccula, Arcangelo; Enna, Mauro; Mulatti, Claudio

    2014-01-01

    In this article, we are concerned with the role of colors in reading written texts. It has been argued that colored overlays applied above written texts positively influence both reading fluency and reading speed. These effects would be particularly evident for those individuals affected by the so called Meares-Irlen syndrome, i.e., who experience eyestrain and/or visual distortions – e.g., color, shape, or movement illusions – while reading. This condition would interest the 12–14% of the ge...

  8. Precision Determination of Atmospheric Extinction at Optical and Near IR Wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Burke, David L.; /SLAC; Axelrod, T.; /Arizona U., Astron. Dept. - Steward Observ.; Blondin, Stephane; /European Southern Observ. /Marseille, CPPM; Claver, Chuck; /NOAO, Tucson; Ivezic, Zeljko; Jones, Lynne; /Washington U., Seattle, Astron. Dept.; Saha, Abhijit; /NOAO, Tucson; Smith, Allyn; /Austin Peay State U.; Smith, R.Chris; /Cerro-Tololo InterAmerican Obs.; Stubbs, Christopher W.; /Harvard-Smithsonian Ctr. Astrophys.

    2011-08-24

    The science goals for future ground-based all-sky surveys, such as the Dark Energy Survey, PanSTARRS, and the Large Synoptic Survey Telescope, require calibration of broadband photometry that is stable in time and uniform over the sky to precisions of a per cent or better, and absolute calibration of color measurements that are similarly accurate. This performance will need to be achieved with measurements made from multiple images taken over the course of many years, and these surveys will observe in less than ideal conditions. This paper describes a technique to implement a new strategy to directly measure variations of atmospheric transmittance at optical wavelengths and application of these measurements to calibration of ground-based observations. This strategy makes use of measurements of the spectra of a small catalog of bright 'probe' stars as they progress across the sky and back-light the atmosphere. The signatures of optical absorption by different atmospheric constituents are recognized in these spectra by their characteristic dependences on wavelength and airmass. State-of-the-art models of atmospheric radiation transport and modern codes are used to accurately compute atmospheric extinction over a wide range of observing conditions. We present results of an observing campaign that demonstrate that correction for extinction due to molecular constituents and aerosols can be done with precisions of a few millimagnitudes with this technique.

  9. Wavelength dependence of interstellar polarization

    International Nuclear Information System (INIS)

    Mavko, G.E.

    1974-01-01

    The wavelength dependence of interstellar polarization was measured for twelve stars in three regions of the Milky Way. A 120A bandpass was used to measure the polarization at a maximum of sixteen wavelengths evenly spaced between 2.78μ -1 (3600A) and 1.28μ -1 (7800A). For such a wide wavelength range, the wavelength resolution is superior to that of any previously reported polarization measurements. The new scanning polarimeter built by W. A. Hiltner of the University of Michigan was used for the observations. Very broad structure was found in the wavelength dependence of the polarization. Extensive investigations were carried out to show that the structure was not caused by instrumental effects. The broad structure observed is shown to be in agreement with concurrent extinction measurements for the same stars. Also, the observed structure is of the type predicted when a homogeneous silicate grain model is fitted to the observed extinction. The results are in agreement with the hypothesis that the very broad band structure seen in the extinction is produced by the grains. (Diss. Abstr. Int., B)

  10. Luminescence properties of pure and Eu-doped SrI{sub 2} crystals purified by a “Liquinert” process and grown by vertical Bridgman method

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Taketoshi, E-mail: buri@p.s.osakafu-u.ac.jp [Osaka Prefecture University, Gakuen-cho 1-1, Naka-ku, Sakai, Osaka 599-8531 (Japan); Sakuragi, Shiro; Hashimoto, Satoshi [Union Materials Inc. 1640 Oshido, Tone-machi, Ibaraki 300-1602 (Japan)

    2016-08-15

    We have prepared high quality crystals of pure SrI{sub 2} and Eu-doped SrI{sub 2} by our original “Liquinert” process and investigated their luminescence properties. Under the excitation with the 193 nm light of an ArF excimer laser, which corresponds to the wavelength above the bandgap of SrI{sub 2} bulk crystals, the pure and Eu doped SrI{sub 2} crystals exhibit no luminescence band related to defects or impurities around 560 nm. This fact indicates that the crystals prepared by the “Liquinert” process contain lower defects and/or impurities. When the Eu-doped SrI{sub 2} crystals are excited with the 325 nm light of a He–Cd laser, only the luminescence band due to the 5d→4f transition in the Eu{sup 2+} ions is observed around 425 nm. The 425 nm band observed at a forward configuration exhibits the shift to the longer wavelength side and the decrease of the luminescence intensity with increasing Eu concentration. The Eu concentration dependences of the peak wavelength and luminescence intensity are simulated on the basis of a simple self-absorption model. - Highlights: • Our original “Liquinert” process allows us to prepare high quality crystals of SrI{sub 2}. • No luminescence band related with impurities and/or defects is observed. • The 425 nm luminescence bands due to Eu{sup 2+} ions are affected by a self-absorption. • A simple self-absorption model reproduces the changes of the 425 nm bands.

  11. Color Appearance of the Neon Color Spreading Effect

    Directory of Open Access Journals (Sweden)

    Damir Vusić

    2017-04-01

    Full Text Available As a part of this paper, the influence of various parameters within the target process of graphic reproduction on the color appearance of the neon color spreading effect was investigated. The shift in a color appearance qualitatively is determined through the calculation of changes in perceptual attributes of color, i.e. differences in lightness, chroma and hue. The influence of different media (printed images, and LCD display in the “cross-media” system was examined, as well as the role of the inserted segment color choice and background of the primary stimulus as an element of design solutions. These parameters were evaluated in a variety of ambient conditions and under the observation of three CIE standard light sources and illuminants. It was found that it was mostly the changes of the chroma and lightness. The change in the color hue is the lowest.

  12. Nucleation of Quark Matter in Neutron Stars:. Role of Color Superconductivity

    Science.gov (United States)

    Bombaci, Ignazio; Lugones, Germán; Vidaña, Isaac

    2008-02-01

    Pure hadronic compact stars ("neutron stars") above a critical mass Mcr are metastable1,2 for the conversion to quark stars (hybrid or strange stars). This conversion process liberates an enormous amount of energy (Econv ~ 1053 ergs), which could power some of the observed gamma ray bursts.1-3 In cold deleptonized hadronic stars, the conversion process is triggered by the quantum nucleation of a quark matter drop in the stellar center. These drops can be made up of normal (i.e. unpaired) quark matter, or color superconducting quark matter, depending on the details of the equation of state of quark and hadronic matter.4 In this talk, we present the results of recent calculations5 of the effects of color superconductivity on the conversion of hadronic stars to quark stars. In particular, we study the dependence of the critical mass Mcr and conversion energy Econv on the quark-quark pairing gap Δ, the bag constant B, and the surface tension σ of the quark-hadron interface.

  13. Generalized pure Lovelock gravity

    Directory of Open Access Journals (Sweden)

    Patrick Concha

    2017-11-01

    Full Text Available We present a generalization of the n-dimensional (pure Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.

  14. Using Single Colors and Color Pairs to Communicate Basic Tastes

    Directory of Open Access Journals (Sweden)

    Andy T. Woods

    2016-07-01

    Full Text Available Recently, it has been demonstrated that people associate each of the basic tastes (e.g., sweet, sour, bitter, and salty with specific colors (e.g., red, green, black, and white. In the present study, we investigated whether pairs of colors (both associated with a particular taste or taste word would give rise to stronger associations relative to pairs of colors that were associated with different tastes. We replicate the findings of previous studies highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. However, while there was evidence that pairs of colors could indeed communicate taste information more consistently than single colors, our participants took more than twice as long to match the color pairs with tastes than the single colors. Possible reasons for these results are discussed.

  15. Using Single Colors and Color Pairs to Communicate Basic Tastes.

    Science.gov (United States)

    Woods, Andy T; Spence, Charles

    2016-01-01

    Recently, it has been demonstrated that people associate each of the basic tastes (e.g., sweet, sour, bitter, and salty) with specific colors (e.g., red, green, black, and white). In the present study, we investigated whether pairs of colors (both associated with a particular taste or taste word) would give rise to stronger associations relative to pairs of colors that were associated with different tastes. We replicate the findings of previous studies highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. However, while there was evidence that pairs of colors could indeed communicate taste information more consistently than single colors, our participants took more than twice as long to match the color pairs with tastes than the single colors. Possible reasons for these results are discussed.

  16. Controlling reabsorption effect of bi-color CdSe quantum dots-based white light-emitting diodes

    Science.gov (United States)

    Siao, Cyuan-Bin; Chung, Shu-Ru; Wang, Kuan-Wen

    2017-08-01

    The colloidal semiconductor quantum dots (QDs) have the potentials to be used in white light-emitting diode (WLED) as a down-converting component to replace incandescent lamps, because the traditional WLED composed of Y3Al5O12:Ce3+ (YAG:Ce) phosphor lack of red color emissions and shows low color quality. Among various QDs, CdSe has been extensively studied because it possesses attractive characteristics such as high quantum yields (QYs), narrow emission spectral bandwidth, as well as size-tunable optical characteristics. However, in order to enhance the color rendering index (CRI) of WLED, blending materials with different emission wavelengths has been used frequently. Unfortunately, these procedures are complex and time-consuming, and the emission energy of smaller QDs can be reabsorbed by larger QDs, resulting in decreasing the excitation intensity in yellowish-green region. Therefore, in this study, in order to decrease the reabsorption effect and to simplify the procedures, we have demonstrated a facile thermal pyrolyzed route to prepare bicolor CdSe QDs with dual-wavelengths. The emission wavelengths, particle sizes, and QYs of QDs can be tuned from 537/595 to 537/602 nm, 2.59/3.92 to 2.59/4.01 nm, and 27 to 40 %, for GR1 to 3 samples, respectively when the amount of Se precursor is decreased from 1.5 to 0.75 mmol. Meanwhile, the area ratio of green to red (Ag/Ar) in fluorescence spectra is gradually increased, due to the increase in growth rate, and decrease in nuclei formation in red emission. The GR1, GR2, and GR3 QDs are then encapsulated by convert types to form the LED, in which the QDs are deposited on the blue-emitting InGaN LED chip (λem = 450 nm). After encapsulation, the devices properties of Commission International d'Eclairage (CIE) chromaticity and Ag/Ar area ratio are (0.40, 0.24), 0.28/1, (0.40, 0.31), 0.52/1, and (0.40, 0.38), 1.02/1, respectively for GR1, GR2, and GR3. The results show that the green emission intensity are strongly

  17. The interaction between surface color and color knowledge: behavioral and electrophysiological evidence.

    Science.gov (United States)

    Bramão, Inês; Faísca, Luís; Forkstam, Christian; Inácio, Filomena; Araújo, Susana; Petersson, Karl Magnus; Reis, Alexandra

    2012-02-01

    In this study, we used event-related potentials (ERPs) to evaluate the contribution of surface color and color knowledge information in object identification. We constructed two color-object verification tasks - a surface and a knowledge verification task - using high color diagnostic objects; both typical and atypical color versions of the same object were presented. Continuous electroencephalogram was recorded from 26 subjects. A cluster randomization procedure was used to explore the differences between typical and atypical color objects in each task. In the color knowledge task, we found two significant clusters that were consistent with the N350 and late positive complex (LPC) effects. Atypical color objects elicited more negative ERPs compared to typical color objects. The color effect found in the N350 time window suggests that surface color is an important cue that facilitates the selection of a stored object representation from long-term memory. Moreover, the observed LPC effect suggests that surface color activates associated semantic knowledge about the object, including color knowledge representations. We did not find any significant differences between typical and atypical color objects in the surface color verification task, which indicates that there is little contribution of color knowledge to resolve the surface color verification. Our main results suggest that surface color is an important visual cue that triggers color knowledge, thereby facilitating object identification. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Honest sexual signaling in turtles: experimental evidence of a trade-off between immune response and coloration in red-eared sliders Trachemys scripta elegans.

    Science.gov (United States)

    Ibáñez, Alejandro; Polo-Cavia, Nuria; López, Pilar; Martín, José

    2014-10-01

    Sexual signals can be evolutionarily stable if they are honest and condition dependent or costly to the signaler. One possible cost is the existence of a trade-off between maintaining the immune system and the elaboration of ornaments. This hypothesis has been experimentally tested in some groups of animals but not in others such as turtles. We experimentally challenged the immune system of female red-eared sliders Trachemys scripta elegans, with a bacterial antigen (lipopolysaccharide (LPS)) without pathogenic effects to explore whether the immune activation affected visual colorful ornaments of the head. The LPS injection altered the reflectance patterns of color ornaments. In comparison to the control animals, the yellow chin stripes of injected animals exhibited (1) reduced brightness, (2) lower long wavelength (>470 nm) reflectance, and (3) lower values for carotenoid chroma. The postorbital patches of injected individuals also showed reduced very long wavelength (>570 nm) reflectance but did not change in carotenoid chroma. Thus, experimental turtles showed darker and less "yellowish" chin stripes and less "reddish" postorbital patches at the end of the experiment, whereas control turtles did not change their coloration. This is the first experimental evidence supporting the existence of a trade-off between the immune system and the expression of visual ornaments in turtles. We suggest that this trade-off may allow turtles to honestly signal individual quality via characteristics of coloration, which may have an important role in intersexual selection processes.

  19. Honest sexual signaling in turtles: experimental evidence of a trade-off between immune response and coloration in red-eared sliders Trachemys scripta elegans

    Science.gov (United States)

    Ibáñez, Alejandro; Polo-Cavia, Nuria; López, Pilar; Martín, José

    2014-10-01

    Sexual signals can be evolutionarily stable if they are honest and condition dependent or costly to the signaler. One possible cost is the existence of a trade-off between maintaining the immune system and the elaboration of ornaments. This hypothesis has been experimentally tested in some groups of animals but not in others such as turtles. We experimentally challenged the immune system of female red-eared sliders Trachemys scripta elegans, with a bacterial antigen (lipopolysaccharide (LPS)) without pathogenic effects to explore whether the immune activation affected visual colorful ornaments of the head. The LPS injection altered the reflectance patterns of color ornaments. In comparison to the control animals, the yellow chin stripes of injected animals exhibited (1) reduced brightness, (2) lower long wavelength (>470 nm) reflectance, and (3) lower values for carotenoid chroma. The postorbital patches of injected individuals also showed reduced very long wavelength (>570 nm) reflectance but did not change in carotenoid chroma. Thus, experimental turtles showed darker and less "yellowish" chin stripes and less "reddish" postorbital patches at the end of the experiment, whereas control turtles did not change their coloration. This is the first experimental evidence supporting the existence of a trade-off between the immune system and the expression of visual ornaments in turtles. We suggest that this trade-off may allow turtles to honestly signal individual quality via characteristics of coloration, which may have an important role in intersexual selection processes.

  20. Color-Blindness Study: Color Discrimination on the TICCIT System.

    Science.gov (United States)

    Asay, Calvin S.; Schneider, Edward W.

    The question studied whether the specific seven TICCIT system colors used within color coding schemes can be a source of confusion, or not seen at all, by the color-blind segment of target populations. Subjects were 11 color-blind and three normally sighted students at Brigham Young University. After a preliminary training exercise to acquaint the…

  1. Human preferences for colorful birds: Vivid colors or pattern?

    Science.gov (United States)

    Lišková, Silvie; Landová, Eva; Frynta, Daniel

    2015-04-29

    In a previous study, we found that the shape of a bird, rather than its color, plays a major role in the determination of human preferences. Thus, in the present study, we asked whether the preferences of human respondents towards uniformly shaped, colorful birds are determined by pattern rather than color. The experimental stimuli were pictures of small passerine birds of the family Pittidae possessing uniform shape but vivid coloration. We asked 200 participants to rank 43 colored and 43 identical, but grayscaled, pictures of birds. To find the traits determining human preferences, we performed GLM analysis in which we tried to explain the mean preference ranks and PC axes by the following explanatory variables: the overall lightness and saturation, edges (pattern), and the portion of each of the basic color hues. The results showed that the mean preference ranks of the grayscale set is explained mostly by the birds' pattern, whereas the colored set ranking is mostly determined by the overall lightness. The effect of colors was weaker, but still significant, and revealed that people liked blue and green birds. We found no significant role of the color red, the perception of which was acquired relatively recently in evolution.

  2. Human Preferences for Colorful Birds: Vivid Colors or Pattern?

    Directory of Open Access Journals (Sweden)

    Silvie Lišková

    2015-04-01

    Full Text Available In a previous study, we found that the shape of a bird, rather than its color, plays a major role in the determination of human preferences. Thus, in the present study, we asked whether the preferences of human respondents towards uniformly shaped, colorful birds are determined by pattern rather than color. The experimental stimuli were pictures of small passerine birds of the family Pittidae possessing uniform shape but vivid coloration. We asked 200 participants to rank 43 colored and 43 identical, but grayscaled, pictures of birds. To find the traits determining human preferences, we performed GLM analysis in which we tried to explain the mean preference ranks and PC axes by the following explanatory variables: the overall lightness and saturation, edges (pattern, and the portion of each of the basic color hues. The results showed that the mean preference ranks of the grayscale set is explained mostly by the birds' pattern, whereas the colored set ranking is mostly determined by the overall lightness. The effect of colors was weaker, but still significant, and revealed that people liked blue and green birds. We found no significant role of the color red, the perception of which was acquired relatively recently in evolution.

  3. Industrial Color Physics

    CERN Document Server

    Klein, Georg A

    2010-01-01

    This unique book starts with a short historical overview of the development of the theories of color vision and applications of industrial color physics. The three dominant factors producing color - light source, color sample, and observer - are described in detail. The standardized color spaces are shown and related color values are applied to characteristic color qualities of absorption as well as of effect colorants. The fundamentals of spectrometric and colorimetric measuring techniques together with specific applications are described. Theoretical models for radiative transfer in transparent, translucent, and opaque layers are detailed; the two, three, and multi-flux approximations are presented for the first time in a coherent formalism. These methods constitute the fundamentals not only for the important classical methods, but also modern methods of recipe prediction applicable to all known colorants. The text is supplied with 52 tables, more than 200 partially colored illustrations, an appendix, and a...

  4. Mapping of colored-snow area on glaciers by using spectral reflectance of algae

    Science.gov (United States)

    Yamaga, D.; Yasumoto, A.; Hatakeyama, S.; Hasegawa, K.; Imai, M.; Bilesan, A.; Takeuchi, N.; Sugiyama, S.; Terashima, M.; Kawamata, H.; Naruse, N.; Takahashi, Y.

    2017-12-01

    One of the reasons for accelerating recent glacier retreat is reported that algae generated on glaciers gives color to snow; Red snow algae on the Harding icefield in Alaska, and cryoconite, a black colored substance formed by algae tangling with mineral particles. The distribution of algae on the glacier can vary widely from year to year, depending on the season. Remote sensing will play an important role to know the area of colored snow. In previous studies, however, since the satellite images of low gradation were used, the brightness in the specific area was saturated due to the high reflectance of snow. In addition, it is difficult to distinguish the colored snow area from that of water and shadows. We aim to map using Landsat8 data and quantitatively evaluate the distribution of colored snow area on glaciers by newly creating a colored-snow-sensitive index from spectral reflectance of algae. Cryoconite has low (high) reflectance in the range of 450-500nm (850-900nm) corresponding to Band2 (Band5) in Landsat8.On the other hand, the reflectance of glacier ice exhibits the opposite tendency. Focusing on the difference in reflectance between the two wavelength ranges, we can create indices sensitive to cryoconite area. The image, mapped as the cryoconite region with large difference in brightness between band 2 and 5, was different from the water and shadow areas. The cryoconite area is also consistent with the results obtained in the filed survey of qaanaaq Glacier in Greenland. Using the similar analytical method, we will also present the map of red snow observed on the glacier.

  5. Green Pea and Garlic Puree Model Food Development for Thermal Pasteurization Process Quality Evaluation.

    Science.gov (United States)

    Bornhorst, Ellen R; Tang, Juming; Sablani, Shyam S; Barbosa-Cánovas, Gustavo V; Liu, Fang

    2017-07-01

    Development and selection of model foods is a critical part of microwave thermal process development, simulation validation, and optimization. Previously developed model foods for pasteurization process evaluation utilized Maillard reaction products as the time-temperature integrators, which resulted in similar temperature sensitivity among the models. The aim of this research was to develop additional model foods based on different time-temperature integrators, determine their dielectric properties and color change kinetics, and validate the optimal model food in hot water and microwave-assisted pasteurization processes. Color, quantified using a * value, was selected as the time-temperature indicator for green pea and garlic puree model foods. Results showed 915 MHz microwaves had a greater penetration depth into the green pea model food than the garlic. a * value reaction rates for the green pea model were approximately 4 times slower than in the garlic model food; slower reaction rates were preferred for the application of model food in this study, that is quality evaluation for a target process of 90 °C for 10 min at the cold spot. Pasteurization validation used the green pea model food and results showed that there were quantifiable differences between the color of the unheated control, hot water pasteurization, and microwave-assisted thermal pasteurization system. Both model foods developed in this research could be utilized for quality assessment and optimization of various thermal pasteurization processes. © 2017 Institute of Food Technologists®.

  6. Color naming

    OpenAIRE

    Şahin, Ebru

    1998-01-01

    Ankara : Bilkent University, Department of Interior Architecture and Environmental Design and Institute of Fine Arts, 1998. Thesis (Ph.D) -- Bilkent University, 1998 Includes bibliographical refences. In this study, visual aspects of color and neurophysiological processes involved in the phenomenon, language of color and color models were explained in addition to the discussion of different ideas, orientations and previous works behind the subject of matter. Available color ...

  7. Color response and color transport in a quark-gluon plasma

    International Nuclear Information System (INIS)

    Heinz, U.

    1986-01-01

    Using color kinetic theory, we discuss color conduction and color response in a quark-gluon plasma. Collective color oscillations and their damping rates are investigated. An instability of the thermal equilibrium state in high T QCD is discovered

  8. Cognitive aspects of color

    Science.gov (United States)

    Derefeldt, Gunilla A. M.; Menu, Jean-Pierre; Swartling, Tiina

    1995-04-01

    This report surveys cognitive aspects of color in terms of behavioral, neuropsychological, and neurophysiological data. Color is usually defined as psychophysical color or as perceived color. Behavioral data on categorical color perception, absolute judgement of colors, color coding, visual search, and visual awareness refer to the more cognitive aspects of color. These are of major importance in visual synthesis and spatial organization, as already shown by the Gestalt psychologists. Neuropsychological and neurophysiological findings provide evidence for an interrelation between cognitive color and spatial organization. Color also enhances planning strategies, as has been shown by studies on color and eye movements. Memory colors and the color- language connections in the brain also belong among the cognitive aspects of color.

  9. Laser-Assisted Removal of Graffiti from Granite: Advantages of the Simultaneous Use of Two Wavelengths

    Directory of Open Access Journals (Sweden)

    José Santiago Pozo-Antonio

    2018-03-01

    Full Text Available Currently, removal of graffiti from stone monuments is a particularly challenging task. Lasers, being highly controllable and precise tools with minimal chemical waste, offer a key solution in this respect and a significant amount of research has been dedicated to this subject. Studies related to the laser cleaning of carbonate stones (such as limestone and marble reported the extraction of the graffiti layer, although minimal damage to the substrate can be also detected. Recently, research efforts have been focused on the cleaning of granite, which is a complex stone due to its grained and polymineralic texture. Tests involving different wavelengths indicated that the effectiveness of the cleaning procedure is highly dependent on two components: The composition of the binding medium of the graffiti and the fissure system of the granite. In that direction, the aim of this paper is to investigate and to compare the cleaning effectiveness of two wavelengths emitted from a nanosecond (ns Q-Switched Nd:YAG laser system (IR at 1064 nm and UV at 355 nm, as well as their simultaneous application at different energy density ratios FIR/FUV. The effectiveness of this combined methodology has been shown in several other cases; i.e., for the removal of pollution crusts from carbonate stones (marble. For this study, three different in composition graffiti paints (blue, black, and silver were applied on a fine-grained granite originating from the NW Iberian Peninsula. Prior to the irradiation tests, the damage thresholds of the granite, as well as the extraction thresholds of the graffiti, were determined. Then, several tests involving a variety of parameters (fluence value, number of pulses, etc. were performed and the most satisfactory irradiation conditions from each individual wavelength as well as their combination were compared, based on graffiti extraction level and any damage induced on the granite forming minerals. The analytical techniques used for

  10. Musical notation reading in pure alexia

    DEFF Research Database (Denmark)

    Starrfelt, Randi; Wong, Yetta K.

    2017-01-01

    Pure alexia (PA) is an acquired reading disorder following lesions to left ventral temporo-occipital cortex. Patients with PA read slowly but correctly, and show an abnormal effect of word length on RTs. However, it is unclear how pure alexia may affect musical notation reading. We report a pure...

  11. Color response and color transport in a quark-gluon plasma

    International Nuclear Information System (INIS)

    Heinz, U.

    1986-01-01

    Using color kinetic theory, the authors discuss color conduction and color response in a quark-gluon plasma. Collective color oscillations and their damping rates are investigated. An instability of the thermal equilibrium state in high T QCD is discovered

  12. A Study of Color Transformation on Website Images for the Color Blind

    OpenAIRE

    Siew-Li Ching; Maziani Sabudin

    2010-01-01

    In this paper, we study on color transformation method on website images for the color blind. The most common category of color blindness is red-green color blindness which is viewed as beige color. By transforming the colors of the images, the color blind can improve their color visibility. They can have a better view when browsing through the websites. To transform colors on the website images, we study on two algorithms which are the conversion techniques from RGB colo...

  13. Color reproduction system based on color appearance model and gamut mapping

    Science.gov (United States)

    Cheng, Fang-Hsuan; Yang, Chih-Yuan

    2000-06-01

    By the progress of computer, computer peripherals such as color monitor and printer are often used to generate color image. However, cross media color reproduction by human perception is usually different. Basically, the influence factors are device calibration and characterization, viewing condition, device gamut and human psychology. In this thesis, a color reproduction system based on color appearance model and gamut mapping is proposed. It consists of four parts; device characterization, color management technique, color appearance model and gamut mapping.

  14. Single-shot dual-wavelength in-line and off-axis hybrid digital holography

    Science.gov (United States)

    Wang, Fengpeng; Wang, Dayong; Rong, Lu; Wang, Yunxin; Zhao, Jie

    2018-02-01

    We propose an in-line and off-axis hybrid holographic real-time imaging technique. The in-line and off-axis digital holograms are generated simultaneously by two lasers with different wavelengths, and they are recorded using a color camera with a single shot. The reconstruction is carried using an iterative algorithm in which the initial input is designed to include the intensity of the in-line hologram and the approximate phase distributions obtained from the off-axis hologram. In this way, the complex field in the object plane and the output by the iterative procedure can produce higher quality amplitude and phase images compared to traditional iterative phase retrieval. The performance of the technique has been demonstrated by acquiring the amplitude and phase images of a green lacewing's wing and a living moon jellyfish.

  15. Color inference in visual communication: the meaning of colors in recycling.

    Science.gov (United States)

    Schloss, Karen B; Lessard, Laurent; Walmsley, Charlotte S; Foley, Kathleen

    2018-01-01

    People interpret abstract meanings from colors, which makes color a useful perceptual feature for visual communication. This process is complicated, however, because there is seldom a one-to-one correspondence between colors and meanings. One color can be associated with many different concepts (one-to-many mapping) and many colors can be associated with the same concept (many-to-one mapping). We propose that to interpret color-coding systems, people perform assignment inference to determine how colors map onto concepts. We studied assignment inference in the domain of recycling. Participants saw images of colored but unlabeled bins and were asked to indicate which bins they would use to discard different kinds of recyclables and trash. In Experiment 1, we tested two hypotheses for how people perform assignment inference. The local assignment hypothesis predicts that people simply match objects with their most strongly associated color. The global assignment hypothesis predicts that people also account for the association strengths between all other objects and colors within the scope of the color-coding system. Participants discarded objects in bins that optimized the color-object associations of the entire set, which is consistent with the global assignment hypothesis. This sometimes resulted in discarding objects in bins whose colors were weakly associated with the object, even when there was a stronger associated option available. In Experiment 2, we tested different methods for encoding color-coding systems and found that people were better at assignment inference when color sets simultaneously maximized the association strength between assigned color-object parings while minimizing associations between unassigned pairings. Our study provides an approach for designing intuitive color-coding systems that facilitate communication through visual media such as graphs, maps, signs, and artifacts.

  16. A subjective evaluation of high-chroma color with wide color-gamut display

    Science.gov (United States)

    Kishimoto, Junko; Yamaguchi, Masahiro; Ohyama, Nagaaki

    2009-01-01

    Displays tends to expand its color gamut, such as multi-primary color display, Adobe RGB and so on. Therefore displays got possible to display high chroma colors. However sometimes, we feel unnatural some for the image which only expanded chroma. Appropriate gamut mapping method to expand color gamut is not proposed very much. We are attempting preferred expanded color reproduction on wide color gamut display utilizing high chroma colors effectively. As a first step, we have conducted an experiment to investigate the psychological effect of color schemes including highly saturated colors. We used the six-primary-color projector that we have developed for the presentation of test colors. The six-primary-color projector's gamut volume in CIELAB space is about 1.8 times larger than the normal RGB projector. We conducted a subjective evaluation experiment using the SD (Semantic Differential) technique to find the quantitative psychological effect of high chroma colors.

  17. Topology optimised wavelength dependent splitters

    DEFF Research Database (Denmark)

    Hede, K. K.; Burgos Leon, J.; Frandsen, Lars Hagedorn

    A photonic crystal wavelength dependent splitter has been constructed by utilising topology optimisation1. The splitter has been fabricated in a silicon-on-insulator material (Fig. 1). The topology optimised wavelength dependent splitter demonstrates promising 3D FDTD simulation results....... This complex photonic crystal structure is very sensitive against small fabrication variations from the expected topology optimised design. A wavelength dependent splitter is an important basic building block for high-performance nanophotonic circuits. 1J. S. Jensen and O. Sigmund, App. Phys. Lett. 84, 2022...

  18. Effective wavelength calibration for moire fringe projection

    International Nuclear Information System (INIS)

    Purcell, Daryl; Davies, Angela; Farahi, Faramarz

    2006-01-01

    The fringe patterns seen when using moire instruments are similar to the patterns seen in traditional interferometry but differ in the spacing between consecutive fringes. In traditional interferometry, the spacing is constant and related to the wavelength of the source. In moire fringe projection, the spacing (the effective wavelength) may not be constant over the field of view and the spacing depends on the system geometry. In these cases, using a constant effective wavelength over the field of view causes inaccurate surface height measurements. We examine the calibration process of the moirefringe projection measurement, which takes this varying wavelength into account to produce a pixel-by-pixel wavelength map. The wavelength calibration procedure is to move the object in the out-of-plane direction a known distance until every pixel intensity value goes through at least one cycle. A sinusoidal function is then fit to the data to extract the effective wavelength pixel by pixel, yielding an effective wavelength map. A calibrated step height was used to validate the effective wavelength map with results within 1% of the nominal value of the step height. The error sources that contributed to the uncertainty in determining the height of the artifact are also investigated

  19. Exhibition

    CERN Multimedia

    Staff Association

    2016-01-01

    The Elementary Particles of Painting Alfonso Fratteggiani Bianchi and Ermanno Imbergamo From September 26 to October 7, 2016 CERN Meyrin, Main Building With intentions similar to those of CERN physicists, the artist Alfonso Fratteggiani Bianchi investigates the color pigment, studying its interaction with light and with the support on which it is deposited. He creates monochrome paintings by spreading the color pigment in the pure state on stones, without using glue or any other type of adhesive. With intentions similar to artists, the physicist Ermanno Imbergamo investigates the use of luminescent wavelength shifters, materials commonly used in Particle Physics, for art. He creates other monochrome artworks, which disclose further aspects of interaction among light, color pigments and support. For more information: staff.association@cern.ch | Tel: 022 767 28 19

  20. ColorPhylo: A Color Code to Accurately Display Taxonomic Classifications.

    Science.gov (United States)

    Lespinats, Sylvain; Fertil, Bernard

    2011-01-01

    Color may be very useful to visualise complex data. As far as taxonomy is concerned, color may help observing various species' characteristics in correlation with classification. However, choosing the number of subclasses to display is often a complex task: on the one hand, assigning a limited number of colors to taxa of interest hides the structure imbedded in the subtrees of the taxonomy; on the other hand, differentiating a high number of taxa by giving them specific colors, without considering the underlying taxonomy, may lead to unreadable results since relationships between displayed taxa would not be supported by the color code. In the present paper, an automatic color coding scheme is proposed to visualise the levels of taxonomic relationships displayed as overlay on any kind of data plot. To achieve this goal, a dimensionality reduction method allows displaying taxonomic "distances" onto a Euclidean two-dimensional space. The resulting map is projected onto a 2D color space (the Hue, Saturation, Brightness colorimetric space with brightness set to 1). Proximity in the taxonomic classification corresponds to proximity on the map and is therefore materialised by color proximity. As a result, each species is related to a color code showing its position in the taxonomic tree. The so called ColorPhylo displays taxonomic relationships intuitively and can be combined with any biological result. A Matlab version of ColorPhylo is available at http://sy.lespi.free.fr/ColorPhylo-homepage.html. Meanwhile, an ad-hoc distance in case of taxonomy with unknown edge lengths is proposed.

  1. V color centers in electrolytically colored hydroxyl-doped sodium chloride crystals

    International Nuclear Information System (INIS)

    Gu Hongen; Song Cuiying; Han Li

    2006-01-01

    Hydroxyl-doped sodium chloride crystals were successfully colored electrolytically by using pointed anode and flat cathode at various temperatures and under various electric field strengths. V 2 and V 3 color centers were produced in the colored crystals. Current-time curves for the electrolytic colorations were given, and activation energy for the V 2 and V 3 color center migration was determined. Production of the V 2 and V 3 color centers and formation of current zones for the electrolytic colorations of the hydroxyl-doped sodium chloride crystals are explained

  2. Color Space and Its Divisions: Color Order from Antiquity to the Present

    Science.gov (United States)

    Kuehni, Rolf G.

    2003-03-01

    It has been postulated that humans can differentiate between millions of gradations in color. Not surprisingly, no completely adequate, detailed catalog of colors has yet been devised, however the quest to understand, record, and depict color is as old as the quest to understand the fundamentals of the physical world and the nature of human consciousness. Rolf Kuehni's Color Space and Its Divisions: Color Order from Antiquity to the Present represents an ambitious and unprecedented history of man's inquiry into color order, focusing on the practical applications of the most contemporary developments in the field. Kuehni devotes much of his study to geometric, three-dimensional arrangements of color experiences, a type of system developed only in the mid-nineteenth century. Color spaces are of particular interest for color quality-control purposes in the manufacturing and graphics industries. The author analyzes three major color order systems in detail: Munsell, OSA-UCS, and NCS. He presents historical and current information on color space developments in color vision, psychology, psychophysics, and color technology. Chapter topics include: A historical account of color order systems Fundamentals of psychophysics and the relationship between stimuli and experience Results of perceptual scaling of colors according to attributes History of the development of mathematical color space and difference formulas Analysis of the agreements and discrepancies in psychophysical data describing color differences An experimental plan for the reliable, replicated perceptual data necessary to make progress in the field Experts in academia and industry, neuroscientists, designers, art historians, and anyone interested in the nature of color will find Color Space and Its Divisions to be the authoritative reference in its field.

  3. Cone photoreceptor sensitivities and unique hue chromatic responses: correlation and causation imply the physiological basis of unique hues.

    Science.gov (United States)

    Pridmore, Ralph W

    2013-01-01

    This paper relates major functions at the start and end of the color vision process. The process starts with three cone photoreceptors transducing light into electrical responses. Cone sensitivities were once expected to be Red Green Blue color matching functions (to mix colors) but microspectrometry proved otherwise: they instead peak in yellowish, greenish, and blueish hues. These physiological functions are an enigma, unmatched with any set of psychophysical (behavioral) functions. The end-result of the visual process is color sensation, whose essential percepts are unique (or pure) hues red, yellow, green, blue. Unique hues cannot be described by other hues, but can describe all other hues, e.g., that hue is reddish-blue. They are carried by four opponent chromatic response curves but the literature does not specify whether each curve represents a range of hues or only one hue (a unique) over its wavelength range. Here the latter is demonstrated, confirming that opponent chromatic responses define, and may be termed, unique hue chromatic responses. These psychophysical functions also are an enigma, unmatched with any physiological functions or basis. Here both enigmas are solved by demonstrating the three cone sensitivity curves and the three spectral chromatic response curves are almost identical sets (Pearson correlation coefficients r from 0.95-1.0) in peak wavelengths, curve shapes, math functions, and curve crossover wavelengths, though previously unrecognized due to presentation of curves in different formats, e.g., log, linear. (Red chromatic response curve is largely nonspectral and thus derives from two cones.) Close correlation combined with deterministic causation implies cones are the physiological basis of unique hues. This match of three physiological and three psychophysical functions is unique in color vision.

  4. COLORS AND COLOR GRADIENTS IN BULGES OF GALAXIES

    NARCIS (Netherlands)

    BALCELLS, M; PELETIER, RF

    We have obtained surface photometry in U, B, R, and I for a complete optically selected sample of 45 early-type spiral galaxies, to investigate the colors and color gradients of spiral bulges. Color profiles in U-R, B-R, U-B, and R-I have been determined in wedges opening on the semiminor axes.

  5. Formulating CdSe quantum dots for white light-emitting diodes with high color rendering index

    International Nuclear Information System (INIS)

    Li, Fei; Li, Wan-Nan; Fu, Shao-Yun; Xiao, Hong-Mei

    2015-01-01

    Generation of white light using CdSe quantum dots (QDs) alone presents exciting possibilities for solid state lighting technology. In this work, Cd(Ac) 2 ·2H 2 O and Na 2 SeSO 3 are used as precursors to synthesize CdSe-QDs with an average diameter ranging from 2.77 to 4.65 nm at the low temperature from 60 to 180 °C. Smaller CdSe-QDs with an average diameter of 2.29 nm are got by an oxidation etching process using H 2 O 2 as oxidant. The structural and optical properties of these QDs are investigated and proper formulation of CdSe QDs with various sizes is carefully designed to achieve white light with a high color rendering index (CRI). It is observed for the first time that the as-prepared white light-emitting diodes from single CdSe-QDs show the Commission Inernationale del’Eclairage coordinate (CIE) of (0.30,0.34) very close to that (0.33,0.33) of pure white light and a high CRI of 84. Owing to these advantages, the as-prepared white light-emitting diodes from a single compound are promising for lighting applications. - Highlights: • CdSe-quantum dots (QDs) with a continuously changing size from 2.31 to 4.74 nm are prepared. • The obtained CdSe-QDs emit lights with tunable colors in the whole visible range. • The obtained mixture sample generates white light with a high color rendering index of 84. • The sample yields white light with the CIE coordinate (0.30, 0.34) very close to that of pure white light

  6. Examination of Color-Lighting Control System Using Colored Paper User Interface

    OpenAIRE

    Aida Hiroto; Matsui Kento; Keisuke Soma; Murakami Hiroki; Miki Mistunori

    2016-01-01

    In recent year, Full-Color LED Lighting that can be changed to various color such as red, green, blue has been appeared with development of LED Lighting. By Color-Lighting control, users affected such as concentrating and relaxing. Therefore, Color-lighting control will spread to various place such as home, offices, stations. However color-lighting control affected some disturbance such as daylight, display when Full-Color LED controlled indoors. Also, information devices control get difficul...

  7. UV photoreceptors and UV-yellow wing pigments in Heliconius butterflies allow a color signal to serve both mimicry and intraspecific communication.

    Science.gov (United States)

    Bybee, Seth M; Yuan, Furong; Ramstetter, Monica D; Llorente-Bousquets, Jorge; Reed, Robert D; Osorio, Daniel; Briscoe, Adriana D

    2012-01-01

    Mimetic wing coloration evolves in butterflies in the context of predator confusion. Unless butterfly eyes have adaptations for discriminating mimetic color variation, mimicry also carries a risk of confusion for the butterflies themselves. Heliconius butterfly eyes, which express recently duplicated ultraviolet (UV) opsins, have such an adaptation. To examine bird and butterfly color vision as sources of selection on butterfly coloration, we studied yellow wing pigmentation in the tribe Heliconiini. We confirmed, using reflectance and mass spectrometry, that only Heliconius use 3-hydroxy-DL-kynurenine (3-OHK), which looks yellow to humans but reflects both UV- and long-wavelength light, whereas butterflies in related genera have chemically unknown yellow pigments mostly lacking UV reflectance. Modeling of these color signals reveals that the two UV photoreceptors of Heliconius are better suited to separating 3-OHK from non-3-OHK spectra compared with the photoreceptors of related genera or birds. The co-occurrence of potentially enhanced UV vision and a UV-reflecting yellow wing pigment could allow unpalatable Heliconius private intraspecific communication in the presence of mimics. Our results are the best available evidence for the correlated evolution of a color signal and color vision. They also suggest that predator visual systems are error prone in the context of mimicry. © 2011 by The University of Chicago.

  8. Combining fine texture and coarse color features for color texture classification

    Science.gov (United States)

    Wang, Junmin; Fan, Yangyu; Li, Ning

    2017-11-01

    Color texture classification plays an important role in computer vision applications because texture and color are two fundamental visual features. To classify the color texture via extracting discriminative color texture features in real time, we present an approach of combining the fine texture and coarse color features for color texture classification. First, the input image is transformed from RGB to HSV color space to separate texture and color information. Second, the scale-selective completed local binary count (CLBC) algorithm is introduced to extract the fine texture feature from the V component in HSV color space. Third, both H and S components are quantized at an optimal coarse level. Furthermore, the joint histogram of H and S components is calculated, which is considered as the coarse color feature. Finally, the fine texture and coarse color features are combined as the final descriptor and the nearest subspace classifier is used for classification. Experimental results on CUReT, KTH-TIPS, and New-BarkTex databases demonstrate that the proposed method achieves state-of-the-art classification performance. Moreover, the proposed method is fast enough for real-time applications.

  9. A relativistic colored spinning particle in an external color field

    International Nuclear Information System (INIS)

    Heinz, U.

    1984-01-01

    I derive fully covariant equations of motion for a classical colored spinning particle in an external SU(3) color field. Although the total color charge and total spin of the particle are found to be separately constants of motion (here I disagree with a recent paper by Arodz), the dynamics of the orientation of the color and spin vectors are coupled to each other through interaction with the color field, even if the latter is homogeneous. (orig.)

  10. A Color-Opponency Based Biological Model for Color Constancy

    Directory of Open Access Journals (Sweden)

    Yongjie Li

    2011-05-01

    Full Text Available Color constancy is the ability of the human visual system to adaptively correct color-biased scenes under different illuminants. Most of the existing color constancy models are nonphysiologically plausible. Among the limited biological models, the great majority is Retinex and its variations, and only two or three models directly simulate the feature of color-opponency, but only of the very earliest stages of visual pathway, i.e., the single-opponent mechanisms involved at the levels of retinal ganglion cells and lateral geniculate nucleus (LGN neurons. Considering the extensive physiological evidences supporting that both the single-opponent cells in retina and LGN and the double-opponent neurons in primary visual cortex (V1 are the building blocks for color constancy, in this study we construct a color-opponency based color constancy model by simulating the opponent fashions of both the single-opponent and double-opponent cells in a forward manner. As for the spatial structure of the receptive fields (RF, both the classical RF (CRF center and the nonclassical RF (nCRF surround are taken into account for all the cells. The proposed model was tested on several typical image databases commonly used for performance evaluation of color constancy methods, and exciting results were achieved.

  11. Colored operads

    CERN Document Server

    Yau, Donald

    2016-01-01

    The subject of this book is the theory of operads and colored operads, sometimes called symmetric multicategories. A (colored) operad is an abstract object which encodes operations with multiple inputs and one output and relations between such operations. The theory originated in the early 1970s in homotopy theory and quickly became very important in algebraic topology, algebra, algebraic geometry, and even theoretical physics (string theory). Topics covered include basic graph theory, basic category theory, colored operads, and algebras over colored operads. Free colored operads are discussed in complete detail and in full generality. The intended audience of this book includes students and researchers in mathematics and other sciences where operads and colored operads are used. The prerequisite for this book is minimal. Every major concept is thoroughly motivated. There are many graphical illustrations and about 150 exercises. This book can be used in a graduate course and for independent study.

  12. Pure homology of algebraic varieties

    OpenAIRE

    Weber, Andrzej

    2003-01-01

    We show that for a complete complex algebraic variety the pure component of homology coincides with the image of intersection homology. Therefore pure homology is topologically invariant. To obtain slightly more general results we introduce "image homology" for noncomplete varieties.

  13. Variability of the Structural Coloration in Two Butterfly Species with Different Prezygotic Mating Strategies.

    Directory of Open Access Journals (Sweden)

    Gábor Piszter

    Full Text Available Structural coloration variability was investigated in two Blue butterfly species that are common in Hungary. The males of Polyommatus icarus (Common Blue and Plebejus argus (Silver-studded Blue use their blue wing coloration for conspecific recognition. Despite living in the same type of habitat, these two species display differences in prezygotic mating strategy: the males of P. icarus are patrolling, while P. argus males have sedentary behavior. Therefore, the species-specific photonic nanoarchitecture, which is the source of the structural coloration, may have been subjected to different evolutionary effects. Despite the increasing interest in photonic nanoarchitectures of biological origin, there is a lack of studies focused on the biological variability of structural coloration that examine a statistically relevant number of individuals from the same species. To investigate possible structural color variation within the same species in populations separated by large geographical distances, climatic differences, or applied experimental conditions, one has to be able to compare these variations to the normal biological variability within a single population. The structural coloration of the four wings of 25 male individuals (100 samples for each species was measured and compared using different light-collecting setups: perpendicular and with an integrating sphere. Significant differences were found in the near UV wavelength region that are perceptible by these polyommatine butterflies but are invisible to human observers. The differences are attributed to the differences in the photonic nanoarchitecture in the scales of these butterflies. Differences in the intensity of structural coloration were also observed and were tentatively attributed to the different prezygotic mating strategies of these insects. Despite the optical complexity of the scale covered butterfly wings, for sufficiently large sample batches, the averaged normal incidence

  14. Variability of the Structural Coloration in Two Butterfly Species with Different Prezygotic Mating Strategies.

    Science.gov (United States)

    Piszter, Gábor; Kertész, Krisztián; Bálint, Zsolt; Biró, László Péter

    2016-01-01

    Structural coloration variability was investigated in two Blue butterfly species that are common in Hungary. The males of Polyommatus icarus (Common Blue) and Plebejus argus (Silver-studded Blue) use their blue wing coloration for conspecific recognition. Despite living in the same type of habitat, these two species display differences in prezygotic mating strategy: the males of P. icarus are patrolling, while P. argus males have sedentary behavior. Therefore, the species-specific photonic nanoarchitecture, which is the source of the structural coloration, may have been subjected to different evolutionary effects. Despite the increasing interest in photonic nanoarchitectures of biological origin, there is a lack of studies focused on the biological variability of structural coloration that examine a statistically relevant number of individuals from the same species. To investigate possible structural color variation within the same species in populations separated by large geographical distances, climatic differences, or applied experimental conditions, one has to be able to compare these variations to the normal biological variability within a single population. The structural coloration of the four wings of 25 male individuals (100 samples for each species) was measured and compared using different light-collecting setups: perpendicular and with an integrating sphere. Significant differences were found in the near UV wavelength region that are perceptible by these polyommatine butterflies but are invisible to human observers. The differences are attributed to the differences in the photonic nanoarchitecture in the scales of these butterflies. Differences in the intensity of structural coloration were also observed and were tentatively attributed to the different prezygotic mating strategies of these insects. Despite the optical complexity of the scale covered butterfly wings, for sufficiently large sample batches, the averaged normal incidence measurements and

  15. Color management of porcelain veneers: influence of dentin and resin cement colors.

    Science.gov (United States)

    Dozic, Alma; Tsagkari, Maria; Khashayar, Ghazal; Aboushelib, Moustafa

    2010-01-01

    Porcelain veneers have become an interesting treatment option to correct the shape and color of anterior teeth. Because of their limited thickness and high translucency, achieving a good color match is influenced by several variables. The aim of this work was to investigate the influence of natural dentin and resin cement colors on final color match of porcelain veneers. A preselected shade tab (A1) was chosen as the target color for a maxillary central incisor, and its color parameters (L*a*b*) were measured using a digital spectrophotometer (SpectroShade, MHT). Nine natural dentin colors (Natural Die Material, Ivoclar Vivadent) representing a wide range of tooth colors were used to prepare resin replicas of the maxillary central incisor with a standard preparation for porcelain veneers. The prepared porcelain veneers (IPS Empress Esthetic, A1, 0.6 mm thick, Ivoclar Vivadent) were cemented on the resin dies (nine groups of natural dentin colors) using seven shades of resin cement (Variolink Veneers, Ivoclar Vivadent). The L*a*b* values of the cemented veneers were measured, and DE values were calculated against the preselected target color (A1). DE greater than 3.3 was considered as a significant color mismatch detectable by the human eye. The seven shades of resin cement had no significant influence on the final color of the veneers, as the measured DE values were almost identical for every test group. On the other hand, the color of natural dentin was a significant factor that influenced final color match. None of the 63 tested combinations (nine natural dentin colors and seven resin cement colors) produced an acceptable color match. Thin porcelain veneers cannot mask underlying tooth color even when different shades of resin cement are used. Incorporation of opaque porcelain (high chroma) may improve final color match.

  16. P1-15: Categorical Color Perception of LED Illuminant Color for Deuteranomals

    Directory of Open Access Journals (Sweden)

    Saeko Oishi

    2012-10-01

    Full Text Available Color information has great value in our everyday lives, but it is not mindful of people with color vision deficiency (CVD. We can choose several color names to categorize a lot of colors around us. Eleven color names (white, black, red, green, yellow, blue, brown, orange, pink, and gray are known as basic color categories, but people with CVD cannot necessarily describe colors as people who are color vision normal (CVN do. Previous studies showed that it was hard for people with CVD to discriminate illuminant color from object color, and their color perception changed largely depending on experimental conditions. In this study we investigated categorical color perception of illuminant color for deuteranomals, using a mixture of light which consists of a red, a green, and a blue LED as a test stimulus. We tested those stimuli with three luminance levels (180 cd/m2, 18 cd/m2, 1.8 cd/m2 and two visual angles (10 deg, 0.5 deg. Subjects were three deuteranomals and three people who are CVN. Our result showed that the categorical color of mild deuteranomals was similar to that of those who were CVN, but that of severe deuteranomals was not. Severe deuteranomals judged more low chromatic colors as achromatic colors than those who were CVN. The smaller visual angle or lower luminance level the test stimulus had, the more deuteranomals confused color. The results suggest that the effect of the Bezold-Brucke phenomenon is greater to deuteranomals than to those who are CVN. Furthermore, deuteranomals use not only chromatic information but also luminance information when they describe color.

  17. Colored tracks of heavy ion particles recorded on photographic color film

    International Nuclear Information System (INIS)

    Kuge, K.; Yasuda, N.; Kumagai, H.; Aoki, N.; Hasegawa, A.

    2002-01-01

    A new method to obtain the three-dimensional information on nuclear tracks was developed using color photography. Commercial color films were irradiated with ion beam and color-developed. The ion tracks were represented with color images in which different depths were indicated by different colors, and the three-dimensional information was obtained from color changes. Details of this method are reported, and advantages and limitations are discussed in comparison with a conventional method using a nuclear emulsion

  18. ColorTracker

    NARCIS (Netherlands)

    Holzheu, Stefanie; Lee, S.; Herneoja, Aulikki; Österlund, Toni; Markkanen, Piia

    2016-01-01

    With the work-in-progress research project ColorTracker we explore color as a formal design tool. This project-based paper describes a novel software application that processes color composition of a place and transcribes the data into three-dimensional geometries for architectural design. The

  19. Age- and Wavelength-Dependency of Drosophila Larval Phototaxis and Behavioral Responses to Natural Lighting Conditions

    Directory of Open Access Journals (Sweden)

    Simon G. Sprecher

    2017-04-01

    Full Text Available Animals use various environmental cues as key determinant for their behavioral decisions. Visual systems are hereby responsible to translate light-dependent stimuli into neuronal encoded information. Even though the larval eyes of the fruit fly Drosophila melanogaster are comparably simple, they comprise two types of photoreceptor neurons (PRs, defined by different Rhodopsin genes expressed. Recent findings support that for light avoidance Rhodopsin5 (Rh5 expressing photoreceptors are crucial, while Rhodopsin6 (Rh6 expressing photoreceptors are dispensable under laboratory conditions. However, it remains debated how animals change light preference during larval live. We show that larval negative phototaxis is age-independent as it persists in larvae from foraging to wandering developmental stages. Moreover, if spectrally different Rhodopsins are employed for the detection of different wavelength of light remains unexplored. We found that negative phototaxis can be elicit by light with wavelengths ranging from ultraviolet (UV to green. This behavior is uniquely mediated by Rh5 expressing photoreceptors, and therefore suggest that this photoreceptor-type is able to perceive UV up to green light. In contrast to laboratory our field experiments revealed that Drosophila larvae uses both types of photoreceptors under natural lighting conditions. All our results, demonstrate that Drosophila larval eyes mediate avoidance of light stimuli with a wide, ecological relevant range of quantity (intensities and quality (wavelengths. Thus, the two photoreceptor-types appear more likely to play a role in different aspects of phototaxis under natural lighting conditions, rather than color discrimination.

  20. Compactly packaged monolithic four-wavelength VCSEL array with 100-GHz wavelength spacing for future-proof mobile fronthaul transport.

    Science.gov (United States)

    Lee, Eun-Gu; Mun, Sil-Gu; Lee, Sang Soo; Lee, Jyung Chan; Lee, Jong Hyun

    2015-01-12

    We report a cost-effective transmitter optical sub-assembly using a monolithic four-wavelength vertical-cavity surface-emitting laser (VCSEL) array with 100-GHz wavelength spacing for future-proof mobile fronthaul transport using the data rate of common public radio interface option 6. The wavelength spacing is achieved using selectively etched cavity control layers and fine current adjustment. The differences in operating current and output power for maintaining the wavelength spacing of four VCSELs are fiber without any dispersion-compensation techniques.

  1. Space grating optical structure of the retina and RGB-color vision.

    Science.gov (United States)

    Lauinger, Norbert

    2017-02-01

    Diffraction of light at the spatial cellular phase grating outer nuclear layer of the retina could produce Fresnel near-field interferences in three RGB diffraction orders accessible to photoreceptors (cones/rods). At perpendicular light incidence the wavelengths of the RGB diffraction orders in photopic vision-a fundamental R-wave with two G+B-harmonics-correspond to the peak wavelengths of the spectral brightness sensitivity curves of the cones at 559 nmR, 537 nmG, and 447 nmB. In scotopic vision the R+G diffraction orders optically fuse at 512 nm, the peak value of the rod's spectral brightness sensitivity curve. The diffractive-optical transmission system with sender (resonator), space waves, and receiver antennae converts the spectral light components involved in imaging into RGB space. The colors seen at objects are diffractive-optical products in the eye, as the German philosopher A. Schopenhauer predicted. They are second related to the overall illumination in object space. The RGB transmission system is the missing link optically managing the spectral tuning of the RGB photopigments.

  2. Analysis of pure maple syrup consumers

    Science.gov (United States)

    Paul E. Sendak

    1974-01-01

    Virtually all of the pure maple syrup productim in the United States is in the northern states of Maine, Massachusetts, Michigan, New Hampshire, New York, Ohio, Pennsylvania, Vermont, and Wisconsin. Pure maple syrup users living in the maple production area and users living in other areas of the United States were asked a series of questions about their use of pure...

  3. The colors of icebergs

    Science.gov (United States)

    Warren, S. G.

    2017-12-01

    Ordinary icebergs of meteoric glacier ice appear bluish-white, i.e. intermediate in color between the white of snow and the blue of pure ice, depending on the bubble content. However, clear dark bubble-free icebergs are occasionally seen in the Antarctic Ocean; they originate from freezing of seawater to the base of ice shelves. On parts of the Amery Ice Shelf, frozen seawater contributes up to one-third of the ice-shelf thickness. Many of the icebergs produced by the Amery are therefore composite icebergs; the upper part consists of meteoric glacier ice from snowfall, but the lower part is frozen seawater ("marine ice"). When these icebergs capsize, the marine ice is exposed to view; it can be accessed for study in springtime when the icebergs are embedded in shorefast sea ice. The marine ice varies in color from blue to green depending on the content of dissolved organic matter. The color is therefore an indicator of biological productivity in the seawater from which the ice froze. To infer processes at the ice-shelf base, these icebergs may be examined and cored for spectral reflectance, hydrogen and oxygen isotopes, organic matter, particles, and distribution of cracks and stripes. Seasonal and interannual variations may be quantified from samples collected along the marine ice-growth trajectory at the meteoric/marine-ice interface. The scale of small turbulent eddies at the ice-shelf base, which govern the transfer of heat between ocean and ice, can be inferred from the size of scallops in the iceberg surface (typically a few centimeters). Dark stripes within meteoric ice result from tension-cracks at the grounding line, forming basal crevasses that fill suddenly with seawater; their width, spacing, and salinity can give clues to processes at the grounding line. Results will be shown from icebergs sampled on Australian expeditions near Davis and Mawson stations. Marine ice is more readily accessed by sampling an iceberg than by drilling through an ice shelf

  4. Coloring mixed hypergraphs

    CERN Document Server

    Voloshin, Vitaly I

    2002-01-01

    The theory of graph coloring has existed for more than 150 years. Historically, graph coloring involved finding the minimum number of colors to be assigned to the vertices so that adjacent vertices would have different colors. From this modest beginning, the theory has become central in discrete mathematics with many contemporary generalizations and applications. Generalization of graph coloring-type problems to mixed hypergraphs brings many new dimensions to the theory of colorings. A main feature of this book is that in the case of hypergraphs, there exist problems on both the minimum and th

  5. Color change of tourmaline by heat treatment and electron beam irradiation: UV-Visible, EPR, and Mid-IR spectroscopic analyses

    Science.gov (United States)

    Maneewong, Apichate; Seong, Baek Seok; Shin, Eun Joo; Kim, Jeong Seog; Kajornrith, Varavuth

    2016-01-01

    The color of pink tourmaline gemstone changed to colorless when heating at temperature of 600 °C in air. This colorless tourmaline recovered its pink color when irradiated with an electron beam (e-beam) of 800 kGy. The origin of the color change was investigated in three types of tourmaline gemstones, two pink are from Afghanistan and one green are from Nigeria, by using Ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), Electron paramagnetic resonance (EPR), and Energy Dispersive X-ray Fluorescence (EDXRF). The UV-Vis absorption spectrum of the pink tourmaline with higher Mn concentration (T2, 0.24 wt%) showed characteristic absorption peaks originating from the Mn3+ color center: two absorption bands centered at wavelength of 396 and 520 nm, respectively. Both absorption bands disappeared when heated in air at 600 °C and then reappeared when irradiated with an e-beam at 800 kGy. EPR T2 spectra showed that the color change was related to the valence change of Mn3+ to Mn2+ and vice versa. The pink tourmaline of lower MnO content (T1, 0.08 wt%) also became colorless when heated, but the color was not recovered when the gemstone underwent e-beam irradiation. Instead, a yellow color was obtained. UV-Vis and FTIR spectra indicated that this yellow color originated from a decomposition of the hydroxyl group (-OH) into O- and Ho by the e-beam irradiation. Green tourmaline did not show any color change with either heat treatment or e-beam irradiation.

  6. Effect of gyroviscosity on the small axial wavelength internal kink instability in the Z-pinch

    International Nuclear Information System (INIS)

    Scheffel, J.; Faghihi, M.

    1987-03-01

    The effect of ion gyroviscosity on the stability of m=1 small axial wavelength kinks in a z-pinch with purely poloidal magnetic field is investigated by normal mode methods. We use the Incompressible FLR MHD model; a collisionless fluid model introduced to include Finite Larmor Radius effects. For vanishing Larmor radius, a stability criterion which coincides with that of ideal MHD is found; the Kadomtsev criterion 2rdp/dr+m/sp2/B/sp2///my//sb0/> or = 0. This criterion predicts instability unless the current density becomes singular at the centre of the pinch. When the Larmor radius terms of the ion pressure tensor are included, we find that marginally unstable (ideal) modes are stabilized. (authors)

  7. AWG Filter for Wavelength Interrogator

    Science.gov (United States)

    Black, Richard J. (Inventor); Costa, Joannes M. (Inventor); Faridian, Fereydoun (Inventor); Moslehi, Behzad (Inventor); Sotoudeh, Vahid (Inventor)

    2015-01-01

    A wavelength interrogator is coupled to a circulator which couples optical energy from a broadband source to an optical fiber having a plurality of sensors, each sensor reflecting optical energy at a unique wavelength and directing the reflected optical energy to an AWG. The AWG has a detector coupled to each output, and the reflected optical energy from each grating is coupled to the skirt edge response of the AWG such that the adjacent channel responses form a complementary pair response. The complementary pair response is used to convert an AWG skirt response to a wavelength.

  8. Effects of saturation and contrast polarity on the figure-ground organization of color on gray.

    Science.gov (United States)

    Dresp-Langley, Birgitta; Reeves, Adam

    2014-01-01

    Poorly saturated colors are closer to a pure gray than strongly saturated ones and, therefore, appear less "colorful."Color saturation is effectively manipulated in the visual arts for balancing conflicting sensations and moods and for inducing the perception of relative distance in the pictorial plane. While perceptual science has proven quite clearly that the luminance contrast of any hue acts as a self-sufficient cue to relative depth in visual images, the role of color saturation in such figure-ground organization has remained unclear. We presented configurations of colored inducers on gray "test" backgrounds to human observers. Luminance and saturation of the inducers was uniform on each trial, but varied across trials. We ran two separate experimental tasks. In the relative background brightness task, perceptual judgments indicated whether the apparent brightness of the gray test background contrasted with, assimilated to, or appeared equal (no effect) to that of a comparison background with the same luminance contrast. Contrast polarity and its interaction with color saturation affected response proportions for contrast, assimilation and no effect. In the figure-ground task, perceptual judgments indicated whether the inducers appeared to lie in front of, behind, or in the same depth with the background. Strongly saturated inducers produced significantly larger proportions of foreground effects indicating that these inducers stand out as figure against the background. Weakly saturated inducers produced significantly larger proportions of background effects, indicating that these inducers are perceived as lying behind the backgrounds. We infer that color saturation modulates figure-ground organization, both directly by determining relative inducer depth, and indirectly, and in interaction with contrast polarity, by affecting apparent background brightness. The results point toward a hitherto undocumented functional role of color saturation in the genesis of

  9. Color Degree Sum Conditions for Rainbow Triangles in Edge-Colored Graphs

    NARCIS (Netherlands)

    Li, Ruonan; Ning, Bo; Zhang, Shenggui

    Let G be an edge-colored graph and v a vertex of G. The color degree of v is the number of colors appearing on the edges incident to v. A rainbow triangle in G is one in which all edges have distinct colors. In this paper, we first prove that an edge-colored graph on n vertices contains a rainbow

  10. What is Color Blindness?

    Science.gov (United States)

    ... Color Blindness? Who Is at Risk for Color Blindness? Color Blindness Causes Color Blindness Diagnosis and Treatment How Color Blindness Is Tested What Is Color Blindness? Leer en Español: ¿Qué es el daltonismo? Written ...

  11. Color Calibration for Colorized Vision System with Digital Sensor and LED Array Illuminator

    Directory of Open Access Journals (Sweden)

    Zhenmin Zhu

    2016-01-01

    Full Text Available Color measurement by the colorized vision system is a superior method to achieve the evaluation of color objectively and continuously. However, the accuracy of color measurement is influenced by the spectral responses of digital sensor and the spectral mismatch of illumination. In this paper, two-color vision system illuminated by digital sensor and LED array, respectively, is presented. The Polynomial-Based Regression method is applied to solve the problem of color calibration in the sRGB and CIE  L⁎a⁎b⁎ color spaces. By mapping the tristimulus values from RGB to sRGB color space, color difference between the estimated values and the reference values is less than 3ΔE. Additionally, the mapping matrix ΦRGB→sRGB has proved a better performance in reducing the color difference, and it is introduced subsequently into the colorized vision system proposed for a better color measurement. Necessarily, the printed matter of clothes and the colored ceramic tile are chosen as the application experiment samples of our colorized vision system. As shown in the experimental data, the average color difference of images is less than 6ΔE. It indicates that a better performance of color measurement is obtained via the colorized vision system proposed.

  12. Effects of saturation and contrast polarity on the figure-ground organization of color on grey

    Directory of Open Access Journals (Sweden)

    Birgitta eDresp

    2014-10-01

    Full Text Available Poorly saturated colors are closer to a pure grey than strongly saturated hues and, therefore, appear less colorful. Color saturation is effectively manipulated in the visual arts for balancing conflicting sensations and moods and for inducing the perception of relative distance in the pictorial plane. While perceptual science has proven quite clearly that the luminance contrast of any hue acts as a self-sufficient cue to relative depth in visual images, the role of color saturation in such figure-ground organization has remained unclear. We presented configurations of colored inducers on grey ‘test’ backgrounds to human observers. Luminance and saturation of the inducers was uniform on each trial, but varied across trials. We ran two separate experimental tasks. In the relative background brightness task, perceptual judgments indicated whether the apparent brightness of the grey test background contrasted with, assimilated to, or appeared equal (no effect to that of a comparison background with the same luminance contrast. Contrast polarity and its interaction with color saturation affected response proportions for contrast, assimilation and no effect. In the figure-ground task, perceptual judgments indicated whether the inducers appeared to lie in front of, behind, or in the same depth with the background. Strongly saturated inducers produced larger proportions of foreground effects indicating that these inducers stand out as figure against the background. Weakly saturated inducers produced significantly larger proportions of background effects, indicating that these inducers are perceived as lying behind the backgrounds. We infer that color saturation modulates figure-ground organization, both directly by determining relative inducer depth, and indirectly, and in interaction with contrast polarity, by affecting apparent background brightness.

  13. Spectrophotometric Determination of Lamivudine in Pure and Tablet Forms

    Directory of Open Access Journals (Sweden)

    A. Biksham Babu

    2012-01-01

    Full Text Available Two visible spectrophotometric methods have been developed for the determination of Lamivudine(LMV in pure and tablet forms. Method-A is based on oxidation of 3-methyl-2-benzathiazolinone hydrazone (MBTH in the presence of iodoso benzene diacetate (IBDA to form electrophilic intermediate which is an active coupling species that reacts with the coupler (LMV by electrophillic attack on the most nucleophilic site on cyclic ring of the coupler. Method-B depends on diazonium salt formation and consequent reaction with resorcinol producing colored product. The absorbances are measured at 590 nm and 540 nm for Method-A and Method-B respectively. Beer's law is obeyed in the concentration range of 10.0-60.0 μg/mL for both the methods. The correlation coefficient which is very close to unity indicates that there is good correlation between concentration and absorbance. LOD, LOQ, confidence levels and relative standard deviation are calculated for the developed methods. The developed methods were successfully applied to tablet forms.

  14. Interferometry on small quantum systems at short wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Usenko, Sergey

    2017-01-15

    The present work concentrates on prototypical studies of light-induced correlated many-body dynamics in complex systems. In its course a reflective split-and-delay unit (SDU) for phase-resolved one-color pump-probe experiments with gas phase samples using VUV-XUV laser pulses was built. The collinear propagation of pump and probe pulses is ensured by the special geometry of the SDU and allows to perform phase-resolved (coherent) autocorrelation measurements. The control of the pump-probe delay with attosecond precision is established by a specially developed diagnostic tool based on an in-vacuum white light interferometer that allows to monitor the relative displacement of the SDU reflectors with nanometer resolution. Phase-resolved (interferometric) pump-probe experiments with developed SDU require spatially-resolved imaging of the ionization volume. For this an electron-ion coincidence spectrometer was built. The spectrometer enables coincident detection of photoionization products using velocity map imaging (VMI) technique for electrons and VMI or spatial imaging for ions. In first experiments using the developed SDU and the spectrometer in the ion spatial-imaging mode linear field autocorrelation of free-electron laser pulses at the central wavelength of 38 nm was recorded. A further focus of the work were energy- and time-resolved resonant two-photon ionization experiments using short tunable UV laser pulses on C{sub 60} fullerene. The experiments demonstrated that dipole-selective excitation on a timescale faster than the characteristic intramolecular energy dissipation limits the number of accessible excitation pathways and thus results in a narrow resonance. Time-dependent one-color pump-probe study showed that nonadiabatic (vibron) coupling is the dominant energy dissipation mechanism for high-lying electronic excited states in C{sub 60}.

  15. Interferometry on small quantum systems at short wavelength

    International Nuclear Information System (INIS)

    Usenko, Sergey

    2017-01-01

    The present work concentrates on prototypical studies of light-induced correlated many-body dynamics in complex systems. In its course a reflective split-and-delay unit (SDU) for phase-resolved one-color pump-probe experiments with gas phase samples using VUV-XUV laser pulses was built. The collinear propagation of pump and probe pulses is ensured by the special geometry of the SDU and allows to perform phase-resolved (coherent) autocorrelation measurements. The control of the pump-probe delay with attosecond precision is established by a specially developed diagnostic tool based on an in-vacuum white light interferometer that allows to monitor the relative displacement of the SDU reflectors with nanometer resolution. Phase-resolved (interferometric) pump-probe experiments with developed SDU require spatially-resolved imaging of the ionization volume. For this an electron-ion coincidence spectrometer was built. The spectrometer enables coincident detection of photoionization products using velocity map imaging (VMI) technique for electrons and VMI or spatial imaging for ions. In first experiments using the developed SDU and the spectrometer in the ion spatial-imaging mode linear field autocorrelation of free-electron laser pulses at the central wavelength of 38 nm was recorded. A further focus of the work were energy- and time-resolved resonant two-photon ionization experiments using short tunable UV laser pulses on C_6_0 fullerene. The experiments demonstrated that dipole-selective excitation on a timescale faster than the characteristic intramolecular energy dissipation limits the number of accessible excitation pathways and thus results in a narrow resonance. Time-dependent one-color pump-probe study showed that nonadiabatic (vibron) coupling is the dominant energy dissipation mechanism for high-lying electronic excited states in C_6_0.

  16. Passively synchronized dual-wavelength Q-switched lasers

    DEFF Research Database (Denmark)

    Janousek, Jiri; Tidemand-Lichtenberg, Peter; Mortensen, Jesper Liltorp

    We present a simple and efficient way of generating synchronized Q-switched pulses at wavelengths hundreds of nanometers apart. This principle can result in new pulsed all-solid-state light sources at new wavelengths based on SFG.......We present a simple and efficient way of generating synchronized Q-switched pulses at wavelengths hundreds of nanometers apart. This principle can result in new pulsed all-solid-state light sources at new wavelengths based on SFG....

  17. Multi-color phase imaging and sickle cell anemia (Conference Presentation)

    Science.gov (United States)

    Hosseini, Poorya; Zhou, Renjie; Yaqoob, Zahid; So, Peter T. C.

    2016-03-01

    Quantitative phase measurements at multiple wavelengths has created an opportunity for exploring new avenues in phase microscopy such as enhancing imaging-depth (1), measuring hemoglobin concentrations in erythrocytes (2), and more recently in tomographic mapping of the refractive index of live cells (3). To this end, quantitative phase imaging has been demonstrated both at few selected spectral points as well as with high spectral resolution (4,5). However, most of these developed techniques compromise imaging speed, field of view, or the spectral resolution to perform interferometric measurements at multiple colors. In the specific application of quantitative phase in studying blood diseases and red blood cells, current techniques lack the required sensitivity to quantify biological properties of interest at individual cell level. Recently, we have set out to develop a stable quantitative interferometric microscope allowing for measurements of such properties for red cells without compromising field of view or speed of the measurements. The feasibility of the approach will be initially demonstrated in measuring dispersion curves of known solutions, followed by measuring biological properties of red cells in sickle cell anemia. References: 1. Mann CJ, Bingham PR, Paquit VC, Tobin KW. Quantitative phase imaging by three-wavelength digital holography. Opt Express. 2008;16(13):9753-64. 2. Park Y, Yamauchi T, Choi W, Dasari R, Feld MS. Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells. Opt Lett. 2009;34(23):3668-70. 3. Hosseini P, Sung Y, Choi Y, Lue N, Yaqoob Z, So P. Scanning color optical tomography (SCOT). Opt Express. 2015;23(15):19752-62. 4. Jung J-H, Jang J, Park Y. Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging. Anal Chem. 2013;85(21):10519-25. 5. Rinehart M, Zhu Y, Wax A. Quantitative phase spectroscopy. Biomed Opt Express. 2012;3(5):958-65.

  18. Development and validation of a sensitive spectrofluorimetric method for the determination of cilazapril of human plasma, urine, in pure and pharmaceutical preparations

    Science.gov (United States)

    Karasakal, A.

    2015-08-01

    A selective and sensitive spectrofluorimetric method was developed and validated for the determination of cilazapril in human plasma urine, in pure and pharmaceutical preparations. The proposed method is based on derivatization using 1-dimethylaminonaphthalene-5-sulphonyl chloride (dansyl chloride) as fluorogenic agent and measuring the fluorescence of the products at emission wavelengths of 503 nm after excitation at 374 nm. The method was validated for linearity, limit of detection, limit of quantification, precision, accuracy, recovery. The calibration curves were linear over a concentration range of 100-500 and 50-250 ng/mL for plasma and urine, respectively. The limits of detection were calculated to be 0.26 and 31.59 ng/mL for plasma and urine, respectively. The proposed method was applied to study of cilazapril in pure, human plasma, urine, and pharmaceutical preparations.

  19. Use of near-infrared spectroscopy and feature selection techniques for predicting the caffeine content and roasting color in roasted coffees.

    Science.gov (United States)

    Pizarro, Consuelo; Esteban-Díez, Isabel; González-Sáiz, José-María; Forina, Michele

    2007-09-05

    Near-infrared spectroscopy (NIRS), combined with diverse feature selection techniques and multivariate calibration methods, has been used to develop robust and reliable reduced-spectrum regression models based on a few NIR filter sensors for determining two key parameters for the characterization of roasted coffees, which are extremely relevant from a quality assurance standpoint: roasting color and caffeine content. The application of the stepwise orthogonalization of predictors (an "old" technique recently revisited, known by the acronym SELECT) provided notably improved regression models for the two response variables modeled, with root-mean-square errors of the residuals in external prediction (RMSEP) equal to 3.68 and 1.46% for roasting color and caffeine content of roasted coffee samples, respectively. The improvement achieved by the application of the SELECT-OLS method was particularly remarkable when the very low complexities associated with the final models obtained for predicting both roasting color (only 9 selected wavelengths) and caffeine content (17 significant wavelengths) were taken into account. The simple and reliable calibration models proposed in the present study encourage the possibility of implementing them in online and routine applications to predict quality parameters of unknown coffee samples via their NIR spectra, thanks to the use of a NIR instrument equipped with a proper filter system, which would imply a considerable simplification with regard to the recording and interpretation of the spectra, as well as an important economic saving.

  20. Do spotless starlings place feathers at their nests by ultraviolet color?

    Science.gov (United States)

    Avilés, Jesús M.; Parejo, Deseada; Pérez-Contreras, Tomás; Navarro, Carlos; Soler, Juan J.

    2010-02-01

    A considerable number of bird species carry feathers to their nests. Feathers’ presence in the nests has traditionally been explained by their insulating properties. Recently, however, it has been suggested that feathers carried to the nests by females of the spotted starling ( Sturnus unicolor L.) could have an ornamental function based on their ultraviolet (300-400 nm) and human-visible longer wavelength (400-700 nm) coloration. In our population, 95.7% of feathers found inside next-boxes occupied by nesting starlings were rock dove fly feathers. Of these feathers, 82.7% were naturally positioned with their reverse side oriented toward the entrance hole and 42.4% of all found feathers were situated within the nest-cup. Here we experimentally assess the signaling function of ultraviolet coloration of feathers in nests of spotless starlings by providing nests with a number of pigeon flight feathers that were respectively treated on their obverse, reverse, both, or neither side with a UV blocker. Starlings placed 42.5% of the experimental feathers in the nest-cup irrespective of the UV block treatment. Orientation of feathers toward the entrance hole was not related with their ultraviolet radiation. However, feathers placed within the nest-cup were more likely found with their reverse side oriented toward the entrance hole confirming our correlative findings. These results suggest a minor role of ultraviolet coloration on feather location by spotless starlings.

  1. Focal colors across languages are representative members of color categories.

    Science.gov (United States)

    Abbott, Joshua T; Griffiths, Thomas L; Regier, Terry

    2016-10-04

    Focal colors, or best examples of color terms, have traditionally been viewed as either the underlying source of cross-language color-naming universals or derived from category boundaries that vary widely across languages. Existing data partially support and partially challenge each of these views. Here, we advance a position that synthesizes aspects of these two traditionally opposed positions and accounts for existing data. We do so by linking this debate to more general principles. We show that best examples of named color categories across 112 languages are well-predicted from category extensions by a statistical model of how representative a sample is of a distribution, independently shown to account for patterns of human inference. This model accounts for both universal tendencies and variation in focal colors across languages. We conclude that categorization in the contested semantic domain of color may be governed by principles that apply more broadly in cognition and that these principles clarify the interplay of universal and language-specific forces in color naming.

  2. At-line cotton color measurements by portable color spectrophotometers

    Science.gov (United States)

    As a result of reports of cotton bales that had significant color changes from their initial Uster® High Volume Instrument (HVI™) color measurements, a program was implemented to measure cotton fiber color (Rd, +b) at-line in remote locations (warehouse, mill, etc.). The measurement of cotton fiber...

  3. Luminescence properties of pure and doped CaSO{sub 4} nanorods irradiated by 15 MeV e-beam

    Energy Technology Data Exchange (ETDEWEB)

    Salah, Numan, E-mail: nsalah@kau.edu.sa [Center of Nanotechnology, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Alharbi, Najlaa D. [Sciences Faculty for Girls, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Enani, Mohammad A. [Dept. of Nuclear Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2014-01-15

    Calcium sulfate (CaSO{sub 4}) doped with proper activators is a highly sensitive phosphor used in different fields mainly for radiation dosimetry, lighting and display applications. In this work pure and doped nanorods of CaSO{sub 4} were produced by the co-precipitation technique. Samples from this material doped with Ag, Cu, Dy, Eu and Tb were exposed to different doses of 15 MeV e-beam and studied for their thermoluminesence (TL) and photoluminescence (PL) properties. Color center formation leading to PL emissions were investigated before and after e-beam irradiation. The samples doped with rare earths elements (i.e. Dy, Eu and Tb) were observed to have thinner nanorods than the other samples and have higher absorption in the UV region. The Ag and Tb doped samples have poor TL response to e-beam, while those activated by Cu, Dy and Eu have strong glow peaks at around 123 °C. Quite linear response curves in the whole studied exposures i.e. 0.1–100 Gy were also observed in Cu and Dy doped samples. The PL results show that pure CaSO{sub 4} nanorods have active color centers without irradiation, which could be enriched/modified by these impurities mainly rare earths and further enhanced by e-beam irradiation. Eu{sup 3+} → Eu{sup 2+} conversion is clearly observed in Eu doped sample after e-beam irradiation. These results show that these nanorods might be useful in lighting and display devices development.

  4. Similarly shaped letters evoke similar colors in grapheme-color synesthesia.

    Science.gov (United States)

    Brang, David; Rouw, Romke; Ramachandran, V S; Coulson, Seana

    2011-04-01

    Grapheme-color synesthesia is a neurological condition in which viewing numbers or letters (graphemes) results in the concurrent sensation of color. While the anatomical substrates underlying this experience are well understood, little research to date has investigated factors influencing the particular colors associated with particular graphemes or how synesthesia occurs developmentally. A recent suggestion of such an interaction has been proposed in the cascaded cross-tuning (CCT) model of synesthesia, which posits that in synesthetes connections between grapheme regions and color area V4 participate in a competitive activation process, with synesthetic colors arising during the component-stage of grapheme processing. This model more directly suggests that graphemes sharing similar component features (lines, curves, etc.) should accordingly activate more similar synesthetic colors. To test this proposal, we created and regressed synesthetic color-similarity matrices for each of 52 synesthetes against a letter-confusability matrix, an unbiased measure of visual similarity among graphemes. Results of synesthetes' grapheme-color correspondences indeed revealed that more similarly shaped graphemes corresponded with more similar synesthetic colors, with stronger effects observed in individuals with more intense synesthetic experiences (projector synesthetes). These results support the CCT model of synesthesia, implicate early perceptual mechanisms as driving factors in the elicitation of synesthetic hues, and further highlight the relationship between conceptual and perceptual factors in this phenomenon. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Fundamentals of the Pure Spinor Formalism

    CERN Document Server

    Hoogeveen, Joost

    2010-01-01

    This thesis presents recent developments within the pure spinor formalism, which has simplified amplitude computations in perturbative string theory, especially when spacetime fermions are involved. Firstly the worldsheet action of both the minimal and the non-minimal pure spinor formalism is derived from first principles, i.e. from an action with two dimensional diffeomorphism and Weyl invariance. Secondly the decoupling of unphysical states in the minimal pure spinor formalism is proved

  6. Color Fringe Correction by the Color Difference Prediction Using the Logistic Function.

    Science.gov (United States)

    Jang, Dong-Won; Park, Rae-Hong

    2017-05-01

    This paper proposes a new color fringe correction method that preserves the object color well by the color difference prediction using the logistic function. We observe two characteristics between normal edge (NE) and degraded edge (DE) due to color fringe: 1) the DE has relatively smaller R-G and B-G correlations than the NE and 2) the color difference in the NE can be fitted by the logistic function. The proposed method adjusts the color difference of the DE to the logistic function by maximizing the R-G and B-G correlations in the corrected color fringe image. The generalized logistic function with four parameters requires a high computational load to select the optimal parameters. In experiments, a one-parameter optimization can correct color fringe gracefully with a reduced computational load. Experimental results show that the proposed method restores well the original object color in the DE, whereas existing methods give monochromatic or distorted color.

  7. Nitrogen-Vacancy color center in diamond-emerging nanoscale applications in bioimaging and biosensing.

    Science.gov (United States)

    Balasubramanian, Gopalakrishnan; Lazariev, Andrii; Arumugam, Sri Ranjini; Duan, De-Wen

    2014-06-01

    Nitrogen-Vacancy (NV) color center in diamond is a flourishing research area that, in recent years, has displayed remarkable progress. The system offers great potential for realizing futuristic applications in nanoscience, benefiting a range of fields from bioimaging to quantum-sensing. The ability to image single NV color centers in a nanodiamond and manipulate NV electron spin optically under ambient condition is the main driving force behind developments in nanoscale sensing and novel imaging techniques. In this article we discuss current status on the applications of fluorescent nanodiamonds (FND) for optical super resolution nanoscopy, magneto-optical (spin-assisted) sub-wavelength localization and imaging. We present emerging applications such as single molecule spin imaging, nanoscale imaging of biomagnetic fields, sensing molecular fluctuations and temperatures in live cellular environments. We summarize other current advances and future prospects of NV diamond for imaging and sensing pertaining to bio-medical applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Color calibration and color-managed medical displays: does the calibration method matter?

    Science.gov (United States)

    Roehrig, Hans; Rehm, Kelly; Silverstein, Louis D.; Dallas, William J.; Fan, Jiahua; Krupinski, Elizabeth A.

    2010-02-01

    Our laboratory has investigated the efficacy of a suite of color calibration and monitor profiling packages which employ a variety of color measurement sensors. Each of the methods computes gamma correction tables for the red, green and blue color channels of a monitor that attempt to: a) match a desired luminance range and tone reproduction curve; and b) maintain a target neutral point across the range of grey values. All of the methods examined here produce International Color Consortium (ICC) profiles that describe the color rendering capabilities of the monitor after calibration. Color profiles incorporate a transfer matrix that establishes the relationship between RGB driving levels and the International Commission on Illumination (CIE) XYZ (tristimulus) values of the resulting on-screen color; the matrix is developed by displaying color patches of known RGB values on the monitor and measuring the tristimulus values with a sensor. The number and chromatic distribution of color patches varies across methods and is usually not under user control. In this work we examine the effect of employing differing calibration and profiling methods on rendition of color images. A series of color patches encoded in sRGB color space were presented on the monitor using color-management software that utilized the ICC profile produced by each method. The patches were displayed on the calibrated monitor and measured with a Minolta CS200 colorimeter. Differences in intended and achieved luminance and chromaticity were computed using the CIE DE2000 color-difference metric, in which a value of ▵E = 1 is generally considered to be approximately one just noticeable difference (JND) in color. We observed between one and 17 JND's for individual colors, depending on calibration method and target.

  9. Study of the spectral and energy characteristics of lasing in the green spectral region by lithium fluoride with radiation color centers

    Energy Technology Data Exchange (ETDEWEB)

    Voitovich, A.P.; Kalinov, V.S.; Mikhnov, S.A.; Ovseichuk, S.I.

    1987-06-01

    The spectral and energy characteristics of lasers utilizing lithium fluoride with F2 and F3(+) color centers in transverse and longitudinal pumping schemes are studied. The feasibility of obtaining stable narrow-band radiation in the 510-570 nm range using a selective resonator is demonstrated. Consideration is given to the effect of lithium-fluoride crystal processing by excimer laser radiation at a wavelength of 308 nm on the spectroscopic and lasing characteristics of the F3(+) color center. After this processing, the laser efficiency in the green spectral region increases by more than a factor of two (reaching an efficiency of 14 percent). 7 references.

  10. Nonlinear effects in the propagation of shortwave transverse sound in pure superconductors

    International Nuclear Information System (INIS)

    Gal'perin, Y.

    1982-01-01

    Various mechanisms are analyzed which lead to nonlinear phenomena (e.g., the dependence of the absorption coefficient and of the velocity of sound on its intensity) in the propagation of transverse shortwave sound in pure superconductors (the wavelength of the sound being much less than the mean free path of the quasiparticles). It is shown that the basic mechanism, over a wide range of superconductor parameters and of the sound intensity, is the so-called momentum nonlinearity. The latter is due to the distortion (induced by the sound wave) of the quasimomentum distribution of resonant electrons interacting with the wave. The dependences of the absorption coefficient and of the sound velocity on its intensity and on the temperature are analyzed in the vicinity of the superconducting transition point. The feasibility of an experimental study of nonlinear acoustic phenomena in the case of transverse sound is considered

  11. Color Shift Failure Prediction for Phosphor-Converted White LEDs by Modeling Features of Spectral Power Distribution with a Nonlinear Filter Approach

    Directory of Open Access Journals (Sweden)

    Jiajie Fan

    2017-07-01

    Full Text Available With the expanding application of light-emitting diodes (LEDs, the color quality of white LEDs has attracted much attention in several color-sensitive application fields, such as museum lighting, healthcare lighting and displays. Reliability concerns for white LEDs are changing from the luminous efficiency to color quality. However, most of the current available research on the reliability of LEDs is still focused on luminous flux depreciation rather than color shift failure. The spectral power distribution (SPD, defined as the radiant power distribution emitted by a light source at a range of visible wavelength, contains the most fundamental luminescence mechanisms of a light source. SPD is used as the quantitative inference of an LED’s optical characteristics, including color coordinates that are widely used to represent the color shift process. Thus, to model the color shift failure of white LEDs during aging, this paper first extracts the features of an SPD, representing the characteristics of blue LED chips and phosphors, by multi-peak curve-fitting and modeling them with statistical functions. Then, because the shift processes of extracted features in aged LEDs are always nonlinear, a nonlinear state-space model is then developed to predict the color shift failure time within a self-adaptive particle filter framework. The results show that: (1 the failure mechanisms of LEDs can be identified by analyzing the extracted features of SPD with statistical curve-fitting and (2 the developed method can dynamically and accurately predict the color coordinates, correlated color temperatures (CCTs, and color rendering indexes (CRIs of phosphor-converted (pc-white LEDs, and also can estimate the residual color life.

  12. Color Shift Failure Prediction for Phosphor-Converted White LEDs by Modeling Features of Spectral Power Distribution with a Nonlinear Filter Approach.

    Science.gov (United States)

    Fan, Jiajie; Mohamed, Moumouni Guero; Qian, Cheng; Fan, Xuejun; Zhang, Guoqi; Pecht, Michael

    2017-07-18

    With the expanding application of light-emitting diodes (LEDs), the color quality of white LEDs has attracted much attention in several color-sensitive application fields, such as museum lighting, healthcare lighting and displays. Reliability concerns for white LEDs are changing from the luminous efficiency to color quality. However, most of the current available research on the reliability of LEDs is still focused on luminous flux depreciation rather than color shift failure. The spectral power distribution (SPD), defined as the radiant power distribution emitted by a light source at a range of visible wavelength, contains the most fundamental luminescence mechanisms of a light source. SPD is used as the quantitative inference of an LED's optical characteristics, including color coordinates that are widely used to represent the color shift process. Thus, to model the color shift failure of white LEDs during aging, this paper first extracts the features of an SPD, representing the characteristics of blue LED chips and phosphors, by multi-peak curve-fitting and modeling them with statistical functions. Then, because the shift processes of extracted features in aged LEDs are always nonlinear, a nonlinear state-space model is then developed to predict the color shift failure time within a self-adaptive particle filter framework. The results show that: (1) the failure mechanisms of LEDs can be identified by analyzing the extracted features of SPD with statistical curve-fitting and (2) the developed method can dynamically and accurately predict the color coordinates, correlated color temperatures (CCTs), and color rendering indexes (CRIs) of phosphor-converted (pc)-white LEDs, and also can estimate the residual color life.

  13. Single component Mn-doped perovskite-related CsPb2ClxBr5-x nanoplatelets with a record white light quantum yield of 49%: a new single layer color conversion material for light-emitting diodes.

    Science.gov (United States)

    Wu, Hao; Xu, Shuhong; Shao, Haibao; Li, Lang; Cui, Yiping; Wang, Chunlei

    2017-11-09

    Single component nanocrystals (NCs) with white fluorescence are promising single layer color conversion media for white light-emitting diodes (LED) because the undesirable changes of chromaticity coordinates for the mixture of blue, green and red emitting NCs can be avoided. However, their practical applications have been hindered by the relative low photoluminescence (PL) quantum yield (QY) for traditional semiconductor NCs. Though Mn-doped perovskite nanocube is a potential candidate, it has been unable to realize a white-light emission to date. In this work, the synthesis of Mn-doped 2D perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets with a pure white emission from a single component is reported. Unlike Mn-doped perovskite nanocubes with insufficient energy transfer efficiency, the current reported Mn-doped 2D perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets show a 10 times higher energy transfer efficiency from perovskite to Mn impurities at the required emission wavelengths (about 450 nm for perovskite emission and 580 nm for Mn emission). As a result, the Mn/perovskite dual emission intensity ratio surprisingly elevates from less than 0.25 in case of Mn-doped nanocubes to 0.99 in the current Mn-doped CsPb 2 Cl x Br 5-x nanoplatelets, giving rise to a pure white light emission with Commission Internationale de l'Eclairage (CIE) color coordinates of (0.35, 0.32). More importantly, the highest PL QY for Mn-doped perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets is up to 49%, which is a new record for white-emitting nanocrystals with single component. These highly luminescent nanoplatelets can be blended with polystyrene (PS) without changing the white light emission but dramatically improving perovskite stability. The perovskite-PS composites are available not only as a good solution processable coating material for assembling LED, but also as a superior conversion material for achieving white light LED with a single conversion layer.

  14. Primary experimental studies on mid-infrared FEL irradiation on dental substances at BFEL

    CERN Document Server

    Biao, Z J; Gao Xue Ju; He Wei; Huang Yu Ying; Li Yong Gui; LiuNianQing; Wang Min Kai; Wu Gan; Yan Xue Pin; Zhang Guo Qing

    2001-01-01

    A free electron laser (FEL) with its characteristics of wide wavelength tunability, ultrashort pulse time structure, and high peak power density is predominantly superior to all other conventional lasers in applications. Several experimental studies on mid-infrared FEL irradiation on dental enamel and dentine were performed at the Beijing FEL. Experimental aims were to investigate changes in the hardness, ratios of P to Ca and Cs before and after irradiation on samples with a characteristic absorption wavelength of 9.66 mu m, in the colors of these sample surfaces after irradiation with different wavelengths around the peak wavelength. The time dependence of temperature of the dentine sample was measured with its ps pulse effects compared to that with a continuous CO sub 2 laser. FTIR absorption spectra in the range of 2.5-15.4 mu m for samples of these hard dental substances and pure hydroxyapatite were first examined to decide their chemical components and absorption maximums. Primary experimental results w...

  15. Comparative in vitro biocompatibility of nickel-titanium, pure nickel, pure titanium, and stainless steel: genotoxicity and atomic absorption evaluation.

    Science.gov (United States)

    Assad, M; Lemieux, N; Rivard, C H; Yahia, L H

    1999-01-01

    The genotoxicity level of nickel-titanium (NiTi) was compared to that of its pure constituents, pure nickel (Ni) and pure titanium (Ti) powders, and also to 316L stainless steel (316L SS) as clinical reference material. In order to do so, a dynamic in vitro semiphysiological extraction was performed with all metals using agitation and ISO requirements. Peripheral blood lymphocytes were then cultured in the presence of all material extracts, and their comparative genotoxicity levels were assessed using electron microscopy-in situ end-labeling (EM-ISEL) coupled to immunogold staining. Cellular chromatin exposition to pure Ni and 316L SS demonstrated a significantly stronger gold binding than exposition to NiTi, pure Ti, or the untreated control. In parallel, graphite furnace atomic absorption spectrophotometry (AAS) was also performed on all extraction media. The release of Ni atoms took the following decreasing distribution for the different resulting semiphysiological solutions: pure Ni, 316L SS, NiTi, Ti, and controls. Ti elements were detected after elution of pure titanium only. Both pure titanium and nickel-titanium specimens obtained a relative in vitro biocompatibility. Therefore, this quantitative in vitro study provides optimistic results for the eventual use of nickel-titanium alloys as surgical implant materials.

  16. Unveiling the First Black Holes With JWST:Multi-wavelength Spectral Predictions

    Science.gov (United States)

    Natarajan, Priyamvada; Pacucci, Fabio; Ferrara, Andrea; Agarwal, Bhaskar; Ricarte, Angelo; Zackrisson, Erik; Cappelluti, Nico

    2017-04-01

    Growing supermassive black holes (˜ {10}9 {M}⊙ ) that power luminous z> 6 quasars from light seeds—the remnants of the first stars—within a Gyr of the Big Bang poses a timing challenge. The formation of massive black hole seeds via direct collapse with initial masses ˜ {10}4{--}{10}5 {M}⊙ alleviates this problem. Viable direct-collapse black hole formation sites, the satellite halos of star-forming galaxies, merge and acquire stars to produce a new, transient class of high-redshift objects, obese black hole galaxies (OBGs). The accretion luminosity outshines that of the stars in OBGs. We predict the multi-wavelength energy output of OBGs and growing Pop III remnants at z = 9 for standard and slim disk accretion, as well as high and low metallicities of the associated stellar population. We derive robust selection criteria for OBGs—a pre-selection to eliminate blue sources, followed by color-color cuts ([{F}090W-{F}220W]> 0;-0.3sift out OBGs from other bright, high- and low-redshift contaminants in the infrared. OBGs with predicted {M}{AB}< 25 are unambiguously detectable by the Mid-Infrared Instrument (MIRI), on the upcoming James Webb Space Telescope (JWST). For parameters explored here, growing Pop III remnants with predicted {M}{AB}< 30 will likely be undetectable by JWST. We demonstrate that JWST has the power to discriminate between initial seeding mechanisms.

  17. COLOR CHARACTERISTICS OF DRIED THREE-COMPONENT FRUIT AND BERRY PASTES

    Directory of Open Access Journals (Sweden)

    O. Cherevko

    2018-04-01

    Full Text Available Color characteristics of compositions of three-component fruit and berry pastes before and after infrared drying are determined. The compositions were prepared on the basis of apples, cranberries, and hawthorn with increased nutrition value and therapeutic and prophylactic properties, according to the suggested recipe. The ratio of the components in the first composition is 60 : 30 : 10, in the second, 65 : 25 : 10, and in the third, 55 : 40 : 5. The resulting compositions were controlled by the control (apple paste. To dry the compositions obtained, it is proposed to use a roller IR dryer based on a flexible resistive film electric heater of emitting type. The prepared paste compositions are reddish-orange according to the color characteristics determined. Color characteristics of dried three-component fruit and berry pastes are also determined. The wavelength of composition 1 is 498 nm, and those of compositions 2 and 3 are 620.5 and 589.4 nm, respectively. The first composition is bluish-purple, with tone purity 34.7 %. Composition 2 is red (34.8 %, composition 3 is bluish-red (34.6 %. The comparison of the color characteristics of compositions of three-component fruit and berry pastes before and after infrared drying as for the brightness and tone purity of the samples indicates a slight change in brightness within 2—6 %. Reduction of the color purity to almost a half is due to the drying shrinkage of the mass of raw materials and obtaining a visual color of the compositions that is attractive for a consumer. According to the results of expert evaluation of the quality indices of dried three-component fruit and berry paste compositions, a certain advantage is determined of the dried composition with the following ratio of components in the recipe: apple, cranberry, hawthorn — 60 : 30 : 10 (composition 1. The suggested compositions of dried three-component fruit and berry paste are recommended for use in food rations

  18. Quantitative measurement of binocular color fusion limit for non-spectral colors.

    Science.gov (United States)

    Jung, Yong Ju; Sohn, Hosik; Lee, Seong-il; Ro, Yong Man; Park, Hyun Wook

    2011-04-11

    Human perception becomes difficult in the event of binocular color fusion when the color difference presented for the left and right eyes exceeds a certain threshold value, known as the binocular color fusion limit. This paper discusses the binocular color fusion limit for non-spectral colors within the color gamut of a conventional LCD 3DTV. We performed experiments to measure the color fusion limit for eight chromaticity points sampled from the CIE 1976 chromaticity diagram. A total of 2480 trials were recorded for a single observer. By analyzing the results, the color fusion limit was quantified by ellipses in the chromaticity diagram. The semi-minor axis of the ellipses ranges from 0.0415 to 0.0923 in terms of the Euclidean distance in the u'v´ chromaticity diagram and the semi-major axis ranges from 0.0640 to 0.1560. These eight ellipses are drawn on the chromaticity diagram. © 2011 Optical Society of America

  19. Color measurement of tea leaves at different drying periods using hyperspectral imaging technique.

    Science.gov (United States)

    Xie, Chuanqi; Li, Xiaoli; Shao, Yongni; He, Yong

    2014-01-01

    This study investigated the feasibility of using hyperspectral imaging technique for nondestructive measurement of color components (ΔL*, Δa* and Δb*) and classify tea leaves during different drying periods. Hyperspectral images of tea leaves at five drying periods were acquired in the spectral region of 380-1030 nm. The three color features were measured by the colorimeter. Different preprocessing algorithms were applied to select the best one in accordance with the prediction results of partial least squares regression (PLSR) models. Competitive adaptive reweighted sampling (CARS) and successive projections algorithm (SPA) were used to identify the effective wavelengths, respectively. Different models (least squares-support vector machine [LS-SVM], PLSR, principal components regression [PCR] and multiple linear regression [MLR]) were established to predict the three color components, respectively. SPA-LS-SVM model performed excellently with the correlation coefficient (rp) of 0.929 for ΔL*, 0.849 for Δa*and 0.917 for Δb*, respectively. LS-SVM model was built for the classification of different tea leaves. The correct classification rates (CCRs) ranged from 89.29% to 100% in the calibration set and from 71.43% to 100% in the prediction set, respectively. The total classification results were 96.43% in the calibration set and 85.71% in the prediction set. The result showed that hyperspectral imaging technique could be used as an objective and nondestructive method to determine color features and classify tea leaves at different drying periods.

  20. Color measurement of tea leaves at different drying periods using hyperspectral imaging technique.

    Directory of Open Access Journals (Sweden)

    Chuanqi Xie

    Full Text Available This study investigated the feasibility of using hyperspectral imaging technique for nondestructive measurement of color components (ΔL*, Δa* and Δb* and classify tea leaves during different drying periods. Hyperspectral images of tea leaves at five drying periods were acquired in the spectral region of 380-1030 nm. The three color features were measured by the colorimeter. Different preprocessing algorithms were applied to select the best one in accordance with the prediction results of partial least squares regression (PLSR models. Competitive adaptive reweighted sampling (CARS and successive projections algorithm (SPA were used to identify the effective wavelengths, respectively. Different models (least squares-support vector machine [LS-SVM], PLSR, principal components regression [PCR] and multiple linear regression [MLR] were established to predict the three color components, respectively. SPA-LS-SVM model performed excellently with the correlation coefficient (rp of 0.929 for ΔL*, 0.849 for Δa*and 0.917 for Δb*, respectively. LS-SVM model was built for the classification of different tea leaves. The correct classification rates (CCRs ranged from 89.29% to 100% in the calibration set and from 71.43% to 100% in the prediction set, respectively. The total classification results were 96.43% in the calibration set and 85.71% in the prediction set. The result showed that hyperspectral imaging technique could be used as an objective and nondestructive method to determine color features and classify tea leaves at different drying periods.

  1. Color segmentation in the HSI color space using the K-means algorithm

    Science.gov (United States)

    Weeks, Arthur R.; Hague, G. Eric

    1997-04-01

    Segmentation of images is an important aspect of image recognition. While grayscale image segmentation has become quite a mature field, much less work has been done with regard to color image segmentation. Until recently, this was predominantly due to the lack of available computing power and color display hardware that is required to manipulate true color images (24-bit). TOday, it is not uncommon to find a standard desktop computer system with a true-color 24-bit display, at least 8 million bytes of memory, and 2 gigabytes of hard disk storage. Segmentation of color images is not as simple as segmenting each of the three RGB color components separately. The difficulty of using the RGB color space is that it doesn't closely model the psychological understanding of color. A better color model, which closely follows that of human visual perception is the hue, saturation, intensity model. This color model separates the color components in terms of chromatic and achromatic information. Strickland et al. was able to show the importance of color in the extraction of edge features form an image. His method enhances the edges that are detectable in the luminance image with information from the saturation image. Segmentation of both the saturation and intensity components is easily accomplished with any gray scale segmentation algorithm, since these spaces are linear. The modulus 2(pi) nature of the hue color component makes its segmentation difficult. For example, a hue of 0 and 2(pi) yields the same color tint. Instead of applying separate image segmentation to each of the hue, saturation, and intensity components, a better method is to segment the chromatic component separately from the intensity component because of the importance that the chromatic information plays in the segmentation of color images. This paper presents a method of using the gray scale K-means algorithm to segment 24-bit color images. Additionally, this paper will show the importance the hue

  2. Concurrence classes for general pure multipartite states

    International Nuclear Information System (INIS)

    Heydari, Hoshang

    2005-01-01

    We propose concurrence classes for general pure multipartite states based on an orthogonal complement of a positive operator-valued measure on quantum phase. In particular, we construct W m class, GHZ m , and GHZ m-1 class concurrences for general pure m-partite states. We give explicit expressions for W 3 and GHZ 3 class concurrences for general pure three-partite states and for W 4 , GHZ 4 and GHZ 3 class concurrences for general pure four-partite states

  3. M DWARF FLARE CONTINUUM VARIATIONS ON ONE-SECOND TIMESCALES: CALIBRATING AND MODELING OF ULTRACAM FLARE COLOR INDICES

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, Adam F. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Mathioudakis, Mihalis [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN (United Kingdom); Hawley, Suzanne L.; Hilton, Eric J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Wisniewski, John P. [HL Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W Brooks Street, Norman, OK 73019 (United States); Dhillon, Vik S. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Marsh, Tom R. [Department of Physics, Gibbet Hill Road, University of Warwick, Coventry CV4 7AL (United Kingdom); Brown, Benjamin P., E-mail: adam.f.kowalski@nasa.gov [Laboratory for Atmospheric and Space Physics and Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80309 (United States)

    2016-04-01

    We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color–color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 10{sup 4} K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100.

  4. M DWARF FLARE CONTINUUM VARIATIONS ON ONE-SECOND TIMESCALES: CALIBRATING AND MODELING OF ULTRACAM FLARE COLOR INDICES

    International Nuclear Information System (INIS)

    Kowalski, Adam F.; Mathioudakis, Mihalis; Hawley, Suzanne L.; Hilton, Eric J.; Wisniewski, John P.; Dhillon, Vik S.; Marsh, Tom R.; Brown, Benjamin P.

    2016-01-01

    We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color–color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 10 4 K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100

  5. Colored leptons

    International Nuclear Information System (INIS)

    Harari, H.

    1985-01-01

    If leptons are composite and if they contain colored preons, one expects the existence of heavy color-octet fermions with quantum numbers similar to those of ordinary leptons. Such a ''colored lepton'' should decay into a gluon and a lepton, yielding a unique experimental signature. Charged ''colored leptons'' probably have masses of the order of the compositeness scale Λ > or approx. 1 TeV. They may be copiously produced at future multi-TeV e + e - , ep and hadron colliders. ''Colored neutrinos'' may have both Dirac and Majorana masses. They could be much lighter than Λ, possibly as light as 100 GeV or less. In such a case they should be readily produced at the CERN anti pp collider, yielding spectacular monojet and dijet events. They may also be produced at LEP and HERA. (orig.)

  6. Mengkaji Penggunaan Software Apple Color untuk Color Grading saat Pasca Produksi

    Directory of Open Access Journals (Sweden)

    Ahmad Faisal Choiril Anam Fathoni

    2011-04-01

    Full Text Available In post-production process, there is one process that is not as well known as the video editing process, the addition of animation, special effects enrichment, motion graphics or audio editing and audio mixing, an important process which is rarely realized called Color Correction or Color Grading. Various software have been made to handle this process, ranging from additional filters are already available for free in any editing software, to high-end devices worth billions of dollars dedicated for specifically conducting Color Correction. Apple Color is one of the software included in the purchase of Final Cut Studio package which also include Final Cut Pro for Video Editing, Soundtrack Pro for Sound Editing and Mixing, and Motion for compositing. Apple's Color is specially designed for color correction tasks after previously edited in Final Cut Pro. This paper is designed to introduce Apple's software as well as analyze the feasibility of Apple Color as a professional device in the world of production, especially post-production. Some professional color correction software will be compared briefly with Apple Color to get an objective conclusion. 

  7. The Disunity of Color

    OpenAIRE

    Matthen, Mohan

    1999-01-01

    What is color? What is color vision? Most philosophers answer by reference to humans: to human color qualia, or to the environmental properties or "quality spaces" perceived by humans. It is argued, with reference to empirical findings concerning comparative color vision and the evolution of color vision, that all such attempts are mistaken. An adequate definition of color vision must eschew reference to its outputs in the human cognition and refer only to inputs: color vision consists in...

  8. Ultrapure Green Light-Emitting Diodes Using Two-Dimensional Formamidinium Perovskites: Achieving Recommendation 2020 Color Coordinates.

    Science.gov (United States)

    Kumar, Sudhir; Jagielski, Jakub; Kallikounis, Nikolaos; Kim, Young-Hoon; Wolf, Christoph; Jenny, Florian; Tian, Tian; Hofer, Corinne J; Chiu, Yu-Cheng; Stark, Wendelin J; Lee, Tae-Woo; Shih, Chih-Jen

    2017-09-13

    Pure green light-emitting diodes (LEDs) are essential for realizing an ultrawide color gamut in next-generation displays, as is defined by the recommendation (Rec.) 2020 standard. However, because the human eye is more sensitive to the green spectral region, it is not yet possible to achieve an ultrapure green electroluminescence (EL) with a sufficiently narrow bandwidth that covers >95% of the Rec. 2020 standard in the CIE 1931 color space. Here, we demonstrate efficient, ultrapure green EL based on the colloidal two-dimensional (2D) formamidinium lead bromide (FAPbBr 3 ) hybrid perovskites. Through the dielectric quantum well (DQW) engineering, the quantum-confined 2D FAPbBr 3 perovskites exhibit a high exciton binding energy of 162 meV, resulting in a high photoluminescence quantum yield (PLQY) of ∼92% in the spin-coated films. Our optimized LED devices show a maximum current efficiency (η CE ) of 13.02 cd A -1 and the CIE 1931 color coordinates of (0.168, 0.773). The color gamut covers 97% and 99% of the Rec. 2020 standard in the CIE 1931 and the CIE 1976 color space, respectively, representing the "greenest" LEDs ever reported. Moreover, the device shows only a ∼10% roll-off in η CE (11.3 cd A -1 ) at 1000 cd m -2 . We further demonstrate large-area (3 cm 2 ) and ultraflexible (bending radius of 2 mm) LEDs based on 2D perovskites.

  9. Fear no colors? Observer clothing color influences lizard escape behavior.

    Science.gov (United States)

    Putman, Breanna J; Drury, Jonathan P; Blumstein, Daniel T; Pauly, Gregory B

    2017-01-01

    Animals often view humans as predators, leading to alterations in their behavior. Even nuanced aspects of human activity like clothing color affect animal behavior, but we lack an understanding of when and where such effects will occur. The species confidence hypothesis posits that birds are attracted to colors found on their bodies and repelled by non-body colors. Here, we extend this hypothesis taxonomically and conceptually to test whether this pattern is applicable in a non-avian reptile and to suggest that species should respond less fearfully to their sexually-selected signaling color. Responses to clothing color could also be impacted by habituation to humans, so we examine whether behavior varied between areas with low and high human activity. We quantified the effects of four T-shirt colors on flight initiation distances (FID) and on the ease of capture in western fence lizards (Sceloporus occidentalis), and we accounted for detectability against the background environment. We found no differences in lizard behavior between sites. However, lizards tolerated the closest approaches and were most likely to be captured when approached with the T-shirt that resembled their sexually-selected signaling color. Because changes in individual behavior affect fitness, choice of clothing color by people, including tourists, hikers, and researchers, could impact wildlife populations and research outcomes.

  10. How redundant are redundant color adjectives? An efficiency-based analysis of color overspecification

    Directory of Open Access Journals (Sweden)

    Paula eRubio-Fernández

    2016-02-01

    Full Text Available Color adjectives tend to be used redundantly in referential communication. I propose that redundant color adjectives are often intended to exploit a color contrast in the visual context and hence facilitate object identification, despite not being necessary to establish unique reference. Two language-production experiments investigated two types of factors that may affect the use of redundant color adjectives: factors related to the efficiency of color in the visual context and factors related to the semantic category of the noun. The results of Experiment 1 confirmed that people produce redundant color adjectives when color may facilitate object recognition; e.g., they do so more often in polychrome displays than in monochrome displays, and more often in English (pre-nominal position than in Spanish (post-nominal position. Redundant color adjectives are also used when color is a central property of the object category; e.g., people referred to the color of clothes more often than to the color of geometrical figures (Experiment 1, and they overspecified atypical colors more often than variable and stereotypical colors (Experiment 2. These results are relevant for pragmatic models of referential communication based on Gricean pragmatics and informativeness. An alternative analysis is proposed, which focuses on the efficiency and pertinence of color in a given referential situation.

  11. Fractal kinetics of radiation-induced point-defect formation and decay in amorphous insulators: Application to color centers in silica-based optical fibers

    Science.gov (United States)

    Griscom, David L.

    2001-11-01

    Formalisms have been developed to express the time evolution of bimolecular processes taking place in fractal spaces. These ``stretched-second-order'' solutions are specifically applicable to radiation-induced electron-hole pairs and/or vacancy-interstitial pairs in insulating glasses. Like the analogous Kohlrausch-type (stretched-first-order) expressions, the present solutions are functions of (kt)β, where 0the new second-order formalism and the familiar Kohlrausch approach have been used to fit experimental data (induced optical absorptions in silica-based glasses monitored at selected wavelengths) that serve as proxies for the numbers of color centers created by γ irradiation and/or destroyed by processes involving thermal, optical, or γ-ray activation. Two material systems were investigated: (1) optical fibers with Ge-doped-silica cores and (2) fibers with low-OH/low-chloride pure-silica cores. Successful fits of the growth curves for the Ge-doped-silica-core fibers at four widely separated dose rates were accomplished using solutions for color-center concentrations, N[(kt)β], which approach steady-state values, Nsat, as t-->∞. The parametrization of these fits reveals some unexpected, and potentially useful, empirical rules regarding the dose-rate dependences of β, k, and Nsat in the fractal regime (0the pure-silica-core fibers as well. In both material systems, there appear to be fractal classical phase transitions at certain threshold values of dose rate, below which the dose-rate dependencies of k and Nsat revert to those specified by classical (β=1) first- or second-order kinetics. For ktthe first- and second-order fractal kinetic growth curves become identical, i.e., N((kt)β)~Atβ, where the coefficient A depends on dose rate but not kinetic order. It is found empirically that A depends on the 3β/2 power of dose rate in both first- and second-order kinetics, thus ``accidentally'' becoming linearly proportional to dose rate in cases where β~2

  12. Color-emotion associations and color preferences: A case study for residences

    OpenAIRE

    Manav, Banu

    2007-01-01

    This study examines existing beliefs about "color" focusing on color-emotion associations by discussing how color can be used as a way of communicator to fulfill human needs in residences. Fifty people from various age groups participated in the study. They were asked to match a list of adjectives with the proper color samples from the catalogue of a quite popular color producer firm in Turkey. Results indicate that there is a strong dependency between the choice and use of green at residence...

  13. Polarized ensembles of random pure states

    Science.gov (United States)

    Deelan Cunden, Fabio; Facchi, Paolo; Florio, Giuseppe

    2013-08-01

    A new family of polarized ensembles of random pure states is presented. These ensembles are obtained by linear superposition of two random pure states with suitable distributions, and are quite manageable. We will use the obtained results for two purposes: on the one hand we will be able to derive an efficient strategy for sampling states from isopurity manifolds. On the other, we will characterize the deviation of a pure quantum state from separability under the influence of noise.

  14. A color management system for multi-colored LED lighting

    DEFF Research Database (Denmark)

    Chakrabarti, Maumita; Thorseth, Anders; Jepsen, Jørgen

    2015-01-01

    A new color control system is described and implemented for a five–color LED light engine, covering a wide white gamut. The system combines a new way of using pre-calibrated look-up tables and a rule-based optimization of chromaticity distance from the Planckian locus with a calibrated color sensor....... The color sensor monitors the chromaticity of the mixed light providing the correction factor for the current driver by using the generated look-up table. The long term stability and accuracy of the system will be experimentally investigated with target tolerance within a circle radius 0.0011 in the uniform...

  15. Preferred memory color difference between the deuteranomalous and normal color vision

    Science.gov (United States)

    Baek, YeSeul; Kwak, Youngshin; Woo, Sungjoo; Park, Chongwook

    2015-01-01

    The goal of this study is to evaluate the difference of the preferred hues of familiar objects between the color deficient observer and the normal observer. Thirteen test color images were chosen covering fruit colors, natural scene and human faces. It contained red, yellow, green, blue, purple and skin color. Two color deficient observer (deuteranomal) and two normal observers were participated in this experiment. They controlled the YCC hue of the objects in the images to obtain the most preferred and the most natural image. The selected images were analyzed using CIELAB values of each pixel. Data analysis results showed that in the case of naturalness, both groups selected the similar hues for the most of image, while, in the case of preference, the color deficient observer preferred more reddish or more greenish images. Since the deuteranomalous observer has relatively week perception for red and green region, they may prefer more reddish or greenish color. The color difference between natural hue and preferred hue of deuteranomal observer is bigger than those of normal observer.

  16. Short wavelength FELs using the SLAC linac

    International Nuclear Information System (INIS)

    Winick, H.; Bane, K.; Boyce, R.

    1993-08-01

    Recent technological developments have opened the possibility to construct a device which we call a Linac Coherent Light Source (LCLS); a fourth generation light source, with brightness, coherence, and peak power far exceeding other sources. Operating on the principle of the free electron laser (FEL), the LCLS would extend the range of FEL operation to much aborter wavelength than the 240 mn that has so far been reached. We report the results of studies of the use of the SLAC linac to drive an LCLS at wavelengths from about 3-100 nm initially and possibly even shorter wavelengths in the future. Lasing would be achieved in a single pass of a low emittance, high peak current, high energy electron beam through a long undulator. Most present FELs use an optical cavity to build up the intensity of the light to achieve lasing action in a low gain oscillator configuration. By eliminating the optical cavity, which is difficult to make at short wavelengths, laser action can be extended to shorter wavelengths by Self-Amplified-Spontaneous-Emission (SASE), or by harmonic generation from a longer wavelength seed laser. Short wavelength, single pass lasers have been extensively studied at several laboratories and at recent workshops

  17. Individualization of 2D color maps for people with color vision deficiencies

    KAUST Repository

    Waldin, Nicholas; Bernhard, Matthias; Rautek, Peter; Viola, Ivan

    2016-01-01

    2D color maps are often used to visually encode complex data characteristics such as heat or height. The comprehension of color maps in visualization is affected by the display (e.g., a monitor) and the perceptual abilities of the viewer. People with color vision deficiencies, such as red-green blindness, face difficulties when using conventional color maps. We propose a novel method for adapting a color map to an individual person, by having the user sort lines extracted from a given color map.

  18. Individualization of 2D color maps for people with color vision deficiencies

    KAUST Repository

    Waldin, Nicholas

    2016-12-13

    2D color maps are often used to visually encode complex data characteristics such as heat or height. The comprehension of color maps in visualization is affected by the display (e.g., a monitor) and the perceptual abilities of the viewer. People with color vision deficiencies, such as red-green blindness, face difficulties when using conventional color maps. We propose a novel method for adapting a color map to an individual person, by having the user sort lines extracted from a given color map.

  19. Sub-wavelength plasmon laser

    Science.gov (United States)

    Bora, Mihail; Bond, Tiziana C.

    2016-04-19

    A plasmonic laser device has resonant nanocavities filled with a gain medium containing an organic dye. The resonant plasmon frequencies of the nanocavities are tuned to align with both the absorption and emission spectra of the dye. Variables in the system include the nature of the dye and the wavelength of its absorption and emission, the wavelength of the pumping radiation, and the resonance frequencies of the nanocavities. In addition the pumping frequency of the dye is selected to be close to the absorption maximum.

  20. One-step synthesis and properties of monolithic photoluminescent ruby colored cuprous oxide antimony oxide glass nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Som, Tirtha [Glass Science and Technology Section, Glass Division, Central Glass and Ceramic Research Institute, Council of Scientific and Industrial Research (CSIR, India), 196, Raja S.C. Mullick Road, Kolkata 700032 (India); Karmakar, Basudeb, E-mail: basudebk@cgcri.res.in [Glass Science and Technology Section, Glass Division, Central Glass and Ceramic Research Institute, Council of Scientific and Industrial Research (CSIR, India), 196, Raja S.C. Mullick Road, Kolkata 700032 (India)

    2011-04-14

    Research highlights: > Single-step synthesis of Cu{sub 2}O, Cu{sub y}Sb{sub 2-x}(O,OH){sub 6-7} (y {<=} 2, x {<=} 1) and Cu nanocrystals co-doped novel antimony oxide glass hybrid nanocomposites. > Yellow and orange colored nanocomposites shows size-controlled band gap shift of Cu{sub 2}O. > Red nanocomposite exhibits surface plasmon resonance band due to metallic Cu. > They exhibit broad deep-red photoluminescence emission under various UV excitation wavelengths. - Abstract: Cuprous oxide (Cu{sub 2}O) antimony glass (K{sub 2}O-B{sub 2}O{sub 3}-Sb{sub 2}O{sub 3}) monolithic nanocomposites having brilliant yellow to ruby red color have been synthesized by a single-step melt-quench technique involving in situ thermochemical reduction of Cu{sup 2+} (CuO) by the reducing glass matrix without using any external reducing agent. The X-ray diffraction (XRD), infrared transmission and reflection spectra, and selected area electron diffraction analysis support the reduction of Cu{sup 2+} to Cu{sup +} with the formation of Cu{sub 2}O nanoclusters along with Cu{sub y}Sb{sub 2-x}(O,OH){sub 6-7} (y {<=} 2, x {<=} 1) nanocrystalline phases while Cu{sup 0} nanoclusters are formed at very high Cu concentration. The UV-vis spectra of the yellow and orange colored nanocomposites show size-controlled band gap shift of the semiconductor (Cu{sub 2}O) nanocrystallites embedded in the glasses while the red nanocomposite exhibits surface plasmon resonance band at 529 nm due to metallic Cu. Transmission electron microscopic image advocates the formation of nanocystallites (5-42 nm). Photoluminescence emission studies show broad red emission band around 626 nm under various excitation wavelengths from 210 to 270 nm.

  1. An imaging system for quantitive surface temperature mapping using two-color thermographic phosphors

    Science.gov (United States)

    Buck, Gregory M.

    1988-01-01

    A technique for obtaining detailed quantitative temperature distributions on test models in hypersonic wind tunnels is presented. This technique is based on the ratio of blue to green (450, 520 nm) emission from an UV (365 nm) excited phosphor coating. Separately filtered images are recorded from a three-tube color camera, utilizing off-the-shelf front-end video optics to discriminate wavelengths. Two demonstration studies in a 31-inch Mach 10 tunnel are discussed. One study presents the windward surface temperature-time history for a transatmospheric vehicle, and the other illustrates nosetip heating on a spherically blunted slender cone.

  2. Modeling human color categorization

    NARCIS (Netherlands)

    van den Broek, Egon; Schouten, Th.E.; Kisters, P.M.F.

    A unique color space segmentation method is introduced. It is founded on features of human cognition, where 11 color categories are used in processing color. In two experiments, human subjects were asked to categorize color stimuli into these 11 color categories, which resulted in markers for a

  3. Polarized ensembles of random pure states

    International Nuclear Information System (INIS)

    Cunden, Fabio Deelan; Facchi, Paolo; Florio, Giuseppe

    2013-01-01

    A new family of polarized ensembles of random pure states is presented. These ensembles are obtained by linear superposition of two random pure states with suitable distributions, and are quite manageable. We will use the obtained results for two purposes: on the one hand we will be able to derive an efficient strategy for sampling states from isopurity manifolds. On the other, we will characterize the deviation of a pure quantum state from separability under the influence of noise. (paper)

  4. Multiwavelength Absolute Phase Retrieval from Noisy Diffractive Patterns: Wavelength Multiplexing Algorithm

    Directory of Open Access Journals (Sweden)

    Vladimir Katkovnik

    2018-05-01

    Full Text Available We study the problem of multiwavelength absolute phase retrieval from noisy diffraction patterns. The system is lensless with multiwavelength coherent input light beams and random phase masks applied for wavefront modulation. The light beams are formed by light sources radiating all wavelengths simultaneously. A sensor equipped by a Color Filter Array (CFA is used for spectral measurement registration. The developed algorithm targeted on optimal phase retrieval from noisy observations is based on maximum likelihood technique. The algorithm is specified for Poissonian and Gaussian noise distributions. One of the key elements of the algorithm is an original sparse modeling of the multiwavelength complex-valued wavefronts based on the complex-domain block-matching 3D filtering. Presented numerical experiments are restricted to noisy Poissonian observations. They demonstrate that the developed algorithm leads to effective solutions explicitly using the sparsity for noise suppression and enabling accurate reconstruction of absolute phase of high-dynamic range.

  5. Urine - abnormal color

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003139.htm Urine - abnormal color To use the sharing features on this page, please enable JavaScript. The usual color of urine is straw-yellow. Abnormally colored urine ...

  6. Tooth - abnormal colors

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003065.htm Tooth - abnormal colors To use the sharing features on this page, please enable JavaScript. Abnormal tooth color is any color other than white to yellowish- ...

  7. Analysis of subsystems in wavelength-division-multiplexing networks

    DEFF Research Database (Denmark)

    Liu, Fenghai

    2001-01-01

    Wavelength division multiplexing (WDM) technology together with optical amplification has created a new era for optical communication. Transmission capacity is greatly increased by adding more and more wavelength channels into a single fiber, as well as by increasing the line rate of each channel...... in semiconductor optical amplifiers (SOAs), and dispersion managed fiber sections. New subsystems are also proposed in the thesis: a modular 2×2 multiwavelength cross-connect using wavelength switching blocks, a wavelength converter based on cross phase modulation in a semiconductor modulator, a wavelength...

  8. Fear no colors? Observer clothing color influences lizard escape behavior

    Science.gov (United States)

    Drury, Jonathan P.; Blumstein, Daniel T.; Pauly, Gregory B.

    2017-01-01

    Animals often view humans as predators, leading to alterations in their behavior. Even nuanced aspects of human activity like clothing color affect animal behavior, but we lack an understanding of when and where such effects will occur. The species confidence hypothesis posits that birds are attracted to colors found on their bodies and repelled by non-body colors. Here, we extend this hypothesis taxonomically and conceptually to test whether this pattern is applicable in a non-avian reptile and to suggest that species should respond less fearfully to their sexually-selected signaling color. Responses to clothing color could also be impacted by habituation to humans, so we examine whether behavior varied between areas with low and high human activity. We quantified the effects of four T-shirt colors on flight initiation distances (FID) and on the ease of capture in western fence lizards (Sceloporus occidentalis), and we accounted for detectability against the background environment. We found no differences in lizard behavior between sites. However, lizards tolerated the closest approaches and were most likely to be captured when approached with the T-shirt that resembled their sexually-selected signaling color. Because changes in individual behavior affect fitness, choice of clothing color by people, including tourists, hikers, and researchers, could impact wildlife populations and research outcomes. PMID:28792983

  9. Fear no colors? Observer clothing color influences lizard escape behavior.

    Directory of Open Access Journals (Sweden)

    Breanna J Putman

    Full Text Available Animals often view humans as predators, leading to alterations in their behavior. Even nuanced aspects of human activity like clothing color affect animal behavior, but we lack an understanding of when and where such effects will occur. The species confidence hypothesis posits that birds are attracted to colors found on their bodies and repelled by non-body colors. Here, we extend this hypothesis taxonomically and conceptually to test whether this pattern is applicable in a non-avian reptile and to suggest that species should respond less fearfully to their sexually-selected signaling color. Responses to clothing color could also be impacted by habituation to humans, so we examine whether behavior varied between areas with low and high human activity. We quantified the effects of four T-shirt colors on flight initiation distances (FID and on the ease of capture in western fence lizards (Sceloporus occidentalis, and we accounted for detectability against the background environment. We found no differences in lizard behavior between sites. However, lizards tolerated the closest approaches and were most likely to be captured when approached with the T-shirt that resembled their sexually-selected signaling color. Because changes in individual behavior affect fitness, choice of clothing color by people, including tourists, hikers, and researchers, could impact wildlife populations and research outcomes.

  10. Ionic liquids as solvents for Čerenkov counting and the effect of a wavelength shifter.

    Science.gov (United States)

    Mirenda, M; Rodrigues, D; Ferreyra, C; Arenillas, P; Sarmiento, G P; Krimer, N; Japas, M L

    2018-04-01

    We study the wavelength shift of the Čerenkov light - generated in the ionic liquid (BMIMCl) - caused by the addition of the highly fluorescent ionic liquid (BMIMHPTS). 18 F and 32 P efficiencies increases up to 124% and 14%, respectively, compared with the values obtained with pure BMIMCl. With this improvement, ionic liquid mixtures become a good alternative - when using the TDCR-Cherenkov technique - to standardize radionuclides having electron emissions energies close to the threshold energy in water (∼ 260keV). As an advantage compared with other solvents, the Ionic liquid mixture can be reused, in the case of short-lived radionuclides, by simply removing all water content in a vacuum oven. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Observations and theoretical evaluations of color changes of traveling light beams caused by optical rotation phenomena in sugared water and their applications for educational purposes

    Science.gov (United States)

    Tokumitsu, Seika; Hasegawa, Makoto

    2017-08-01

    Investigations were conducted for the purposes of understanding coloring phenomena to be caused by optical rotation of polarized light beams in sugared water and realizing their applications as educational tools. By allowing polarized laser beams in red, blue or green to travel in sugared water of certain concentrations, changes in their intensities were measured while changing a distance between a pair of polarizing plates in the sugared water. An equation was established for a theoretical value for the angle of rotation for light of any colors (wavelengths) travelling in sugared water of any concentrations. The predicted results exhibited satisfactory matching with the measured values. In addition, the intensities of transmitted laser beams, as well as colors to be observable when a white-color LED torch was employed as a light source, were also become predictable, and the predicted results were well-matched with the observation results.

  12. Acquisition and visualization techniques for narrow spectral color imaging.

    Science.gov (United States)

    Neumann, László; García, Rafael; Basa, János; Hegedüs, Ramón

    2013-06-01

    This paper introduces a new approach in narrow-band imaging (NBI). Existing NBI techniques generate images by selecting discrete bands over the full visible spectrum or an even wider spectral range. In contrast, here we perform the sampling with filters covering a tight spectral window. This image acquisition method, named narrow spectral imaging, can be particularly useful when optical information is only available within a narrow spectral window, such as in the case of deep-water transmittance, which constitutes the principal motivation of this work. In this study we demonstrate the potential of the proposed photographic technique on nonunderwater scenes recorded under controlled conditions. To this end three multilayer narrow bandpass filters were employed, which transmit at 440, 456, and 470 nm bluish wavelengths, respectively. Since the differences among the images captured in such a narrow spectral window can be extremely small, both image acquisition and visualization require a novel approach. First, high-bit-depth images were acquired with multilayer narrow-band filters either placed in front of the illumination or mounted on the camera lens. Second, a color-mapping method is proposed, using which the input data can be transformed onto the entire display color gamut with a continuous and perceptually nearly uniform mapping, while ensuring optimally high information content for human perception.

  13. Skin color - patchy

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003224.htm Skin color - patchy To use the sharing features on this page, please enable JavaScript. Patchy skin color is areas where the skin color is irregular. ...

  14. Cone photoreceptor sensitivities and unique hue chromatic responses: correlation and causation imply the physiological basis of unique hues.

    Directory of Open Access Journals (Sweden)

    Ralph W Pridmore

    Full Text Available This paper relates major functions at the start and end of the color vision process. The process starts with three cone photoreceptors transducing light into electrical responses. Cone sensitivities were once expected to be Red Green Blue color matching functions (to mix colors but microspectrometry proved otherwise: they instead peak in yellowish, greenish, and blueish hues. These physiological functions are an enigma, unmatched with any set of psychophysical (behavioral functions. The end-result of the visual process is color sensation, whose essential percepts are unique (or pure hues red, yellow, green, blue. Unique hues cannot be described by other hues, but can describe all other hues, e.g., that hue is reddish-blue. They are carried by four opponent chromatic response curves but the literature does not specify whether each curve represents a range of hues or only one hue (a unique over its wavelength range. Here the latter is demonstrated, confirming that opponent chromatic responses define, and may be termed, unique hue chromatic responses. These psychophysical functions also are an enigma, unmatched with any physiological functions or basis. Here both enigmas are solved by demonstrating the three cone sensitivity curves and the three spectral chromatic response curves are almost identical sets (Pearson correlation coefficients r from 0.95-1.0 in peak wavelengths, curve shapes, math functions, and curve crossover wavelengths, though previously unrecognized due to presentation of curves in different formats, e.g., log, linear. (Red chromatic response curve is largely nonspectral and thus derives from two cones. Close correlation combined with deterministic causation implies cones are the physiological basis of unique hues. This match of three physiological and three psychophysical functions is unique in color vision.

  15. Color design model of high color rendering index white-light LED module.

    Science.gov (United States)

    Ying, Shang-Ping; Fu, Han-Kuei; Hsieh, Hsin-Hsin; Hsieh, Kun-Yang

    2017-05-10

    The traditional white-light light-emitting diode (LED) is packaged with a single chip and a single phosphor but has a poor color rendering index (CRI). The next-generation package comprises two chips and a single phosphor, has a high CRI, and retains high luminous efficacy. This study employs two chips and two phosphors to improve the diode's color tunability with various proportions of two phosphors and various densities of phosphor in the silicone used. A color design model is established for color fine-tuning of the white-light LED module. The maximum difference between the measured and color-design-model simulated CIE 1931 color coordinates is approximately 0.0063 around a correlated color temperature (CCT) of 2500 K. This study provides a rapid method to obtain the color fine-tuning of a white-light LED module with a high CRI and luminous efficacy.

  16. Tensor modes in pure natural inflation

    Science.gov (United States)

    Nomura, Yasunori; Yamazaki, Masahito

    2018-05-01

    We study tensor modes in pure natural inflation [1], a recently-proposed inflationary model in which an axionic inflaton couples to pure Yang-Mills gauge fields. We find that the tensor-to-scalar ratio r is naturally bounded from below. This bound originates from the finiteness of the number of metastable branches of vacua in pure Yang-Mills theories. Details of the model can be probed by future cosmic microwave background experiments and improved lattice gauge theory calculations of the θ-angle dependence of the vacuum energy.

  17. Method of producing vegetable puree

    DEFF Research Database (Denmark)

    2004-01-01

    A process for producing a vegetable puree, comprising the sequential steps of: a)crushing, chopping or slicing the vegetable into pieces of 1 to 30 mm; b) blanching the vegetable pieces at a temperature of 60 to 90°C; c) contacted the blanched vegetable pieces with a macerating enzyme activity; d......) blending the macerated vegetable pieces and obtaining a puree....

  18. Microwave and hot air drying of garlic puree: drying kinetics and quality characteristics

    Science.gov (United States)

    İlter, Işıl; Akyıl, Saniye; Devseren, Esra; Okut, Dilara; Koç, Mehmet; Kaymak Ertekin, Figen

    2018-02-01

    In this study, the effect of hot air and microwave drying on drying kinetics and some quality characteristics such as water activity, color, optic index and volatile oil of garlic puree was investigated. Optic index representing browning of the garlic puree increased excessively with an increase in microwave power and hot air drying temperature. However, volatile oil content of the dried samples was decreased by increasing of temperature and microwave power. By increasing drying temperature (50, 60 and 70 °C) and microwave power (180, 360 and 540 W), the drying time decreased from 8.5 h to 4 min. In order to determine the kinetic parameters, the experimental drying data were fitted to various semi-empirical models beside 2nd Fick's diffusion equation. Among them, the Page model gave a better fit for microwave-drying, while Logarithmic model gave a better fit for hot air drying. By increasing the microwave power and hot air drying temperature, the effective moisture diffusivity, De values ranged from 0.76×10-8 to 2.85×10-8 m2/s and from 2.21×10-10 to 3.07×10-10 m2/s, respectively. The activation energy was calculated as 20.90 kJ/mol for hot air drying and 21.96 W/g for microwave drying using an Arrhenius type equation.

  19. Using color and grayscale images to teach histology to color-deficient medical students.

    Science.gov (United States)

    Rubin, Lindsay R; Lackey, Wendy L; Kennedy, Frances A; Stephenson, Robert B

    2009-01-01

    Examination of histologic and histopathologic microscopic sections relies upon differential colors provided by staining techniques, such as hematoxylin and eosin, to delineate normal tissue components and to identify pathologic alterations in these components. Given the prevalence of color deficiency (commonly called "color blindness") in the general population, it is likely that this reliance upon color differentiation poses a significant obstacle for several medical students beginning a course of study that includes examination of histologic slides. In the past, first-year medical students at Michigan State University who identified themselves as color deficient were encouraged to use color transparency overlays or tinted contact lenses to filter out problematic colors. Recently, however, we have offered such students a computer monitor adjusted to grayscale for in-lab work, as well as grayscale copies of color photomicrographs for examination purposes. Grayscale images emphasize the texture of tissues and the contrasts between tissues as the students learn histologic architecture. Using this approach, color-deficient students have quickly learned to compensate for their deficiency by focusing on cell and tissue structure rather than on color variation. Based upon our experience with color-