WorldWideScience

Sample records for pure bsa particles

  1. Fe3O4/BSA particles induce osteogenic differentiation of mesenchymal stem cells under static magnetic field.

    Science.gov (United States)

    Jiang, Pengfei; Zhang, Yixian; Zhu, Chaonan; Zhang, Wenjing; Mao, Zhengwei; Gao, Changyou

    2016-12-01

    Differentiation of stem cells is influenced by many factors, yet uptake of the magnetic particles with or without magnetic field is rarely tackled. In this study, iron oxide nanoparticles-loaded bovine serum albumin (BSA) (Fe 3 O 4 /BSA) particles were prepared, which showed a spherical morphology with a diameter below 200 nm, negatively charged surface, and tunable magnetic property. The particles could be internalized into bone marrow mesenchymal stem cells (MSCs), and their release from the cells was significantly retarded under external magnetic field, resulting in almost twice intracellular amount of the particles within 21 d compared to that of the magnetic field free control. Uptake of the Fe 3 O 4 /BSA particles enhanced significantly the osteogenic differentiation of MSCs under a static magnetic field, as evidenced by elevated alkaline phosphatase (ALP) activity, calcium deposition, and expressions of collagen type I and osteocalcin at both mRNA and protein levels. Therefore, uptake of the Fe 3 O 4 /BSA particles brings significant influence on the differentiation of MSCs under magnetic field, and thereby should be paid great attention for practical applications. Differentiation of stem cells is influenced by many factors, yet uptake of the magnetic particles with or without magnetic field is rarely tackled. In this study, iron oxide nanoparticles-loaded bovine serum albumin (BSA) (Fe 3 O 4 /BSA) particles with a diameter below 200nm, negatively charged surface, tunable Fe 3 O 4 content and subsequently adjustable magnetic property were prepared. The particles could be internalized into bone marrow mesenchymal stem cells (MSCs), and their release from the cells was significantly retarded under external magnetic field. Uptake of the Fe 3 O 4 /BSA particles enhanced significantly the osteogenic differentiation of MSCs under a constant static magnetic field, while the magnetic particles and external magnetic field alone do not influence significantly the

  2. Electrophoretic properties of BSA-coated quantum dots.

    Science.gov (United States)

    Bücking, Wendelin; Massadeh, Salam; Merkulov, Alexei; Xu, Shu; Nann, Thomas

    2010-02-01

    Low toxic InP/ZnS quantum dots (QDs), ZnS:Mn(2+)/ZnS nanocrystals and CdSe/ZnS nanoparticles were rendered water-dispersible by different ligand-exchange methods. Eventually, they were coated with bovine serum albumin (BSA) as a model protein. All particles were characterised by isotachophoresis (ITP), laser Doppler velocimetry (LDV) and agarose gel electrophoresis. It was found that the electrophoretic mobility and colloidal stability of ZnS:Mn(2+)/ZnS and CdSe/ZnS nanoparticles, which bore short-chain surface ligands, was primarily governed by charges on the nanoparticles, whereas InP/ZnS nanocrystals were not charged per se. BSA-coated nanoparticles showed lower electrophoretic mobility, which was attributed to their larger size and smaller overall charge. However, these particles were colloidally stable. This stability was probably caused by steric stabilisation of the BSA coating.

  3. Interaction of aerosol particles composed of protein and saltswith water vapor: hygroscopic growth and microstructural rearrangement

    Directory of Open Access Journals (Sweden)

    E. Mikhailov

    2004-01-01

    Full Text Available The interaction of aerosol particles composed of the protein bovine serum albumin (BSA and the inorganic salts sodium chloride and ammonium nitrate with water vapor has been investigated by hygroscopicity tandem differential mobility analyzer (H-TDMA experiments complemented by transmission electron microscopy (TEM and Köhler theory calculations (100-300nm particle size range, 298K, 960hPa. BSA was chosen as a well-defined model substance for proteins and other macromolecular compounds, which constitute a large fraction of the water-soluble organic component of air particulate matter. Pure BSA particles exhibited deliquescence and efflorescence transitions at 35% relative humidity ( and a hygroscopic diameter increase by up to 10% at 95% in good agreement with model calculations based on a simple parameterisation of the osmotic coefficient. Pure NaCl particles were converted from near-cubic to near-spherical shape upon interaction with water vapor at relative humidities below the deliquescence threshold (partial surface dissolution and recrystallisation, and the diameters of pure NH4NO3 particles decreased by up to 10% due to chemical decomposition and evaporation. Mixed NaCl-BSA and NH4NO3-BSA particles interacting with water vapor exhibited mobility equivalent diameter reductions of up to 20%, depending on particle generation, conditioning, size, and chemical composition (BSA dry mass fraction 10-90%. These observations can be explained by formation of porous agglomerates (envelope void fractions up to 50% due to ion-protein interactions and electric charge effects on the one hand, and by compaction of the agglomerate structure due to capillary condensation effects on the other. The size of NH4NO3-BSA particles was apparently also influenced by volatilisation of NH4NO3, but not as much as for pure salt particles, i.e. the protein inhibited the decomposition of NH4NO3 or the evaporation of the decomposition products NH3 and HNO3. The

  4. Synthesis and Characterization of BSA Conjugated Silver Nanoparticles (Ag/BSA Nanoparticles) and Evaluation of Biological Properties of Ag/BSA Nanoparticles and Ag/BSA Nanoparticles Loaded Poly(hydroxy butyrate valerate) PHBV Films

    Science.gov (United States)

    Ambaye, Almaz

    Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa are the etiological agents of several infectious diseases. Antibiotic resistance by these three microbes has emerged as a prevalent problem due in part to the misuse of existing antibiotics and the lack of novel antibiotics. Nanoparticles have emerged as an alternative antibacterial agents to conventional antibiotics owing to their high surface area to volume ratio and their unique chemical and physical properties. Among the nanoparticles, silver nanoparticles have gained increasing attention because silver nanoparticles exhibit antibacterial activity against a range of gram positive and gram negative bacteria. Nanoparticles of well-defined chemistry and morphology can be used in broad biomedical applications, especially in bone tissue engineering applications, where bone infection by bacteria can be acute and lethal. It is commonly noted in the literature that the activity of nanoparticles against microorganisms is dependent upon the size and concentration of the nanoparticles as well as the chemistry of stabilizing agent. To the best of our knowledge, a comprehensive study that evaluates the antibacterial activity of well characterized silver nanoparticles in particular Bovine Serum Albumin (BSA) stabilized against S. aureus and E. coli and cytotoxicity level of BSA stabilized silver nanoparticles towards osteoblast cells (MC3T3-E1) is currently lacking. Therefore, the primary objective of this study was to characterize protein conjugated silver nanoparticles prepared by chemical reduction of AgNO3 and BSA mixture. The formation of Ag/BSA nanoparticles was studied by UV-Vis spectroscopy. The molar ratio of silver to BSA in the Ag/BSA nanoparticles was established to be 27+/- 3: 1, based on Thermogravimetric Analysis and Atomic Absorption Spectroscopy. Based on atomic force microscopy, dynamic light scattering,and transmission electron microscopy(TEM) measurements, the particle size (diameter) of

  5. Fabrication of curcumin-loaded bovine serum albumin (BSA)-dextran nanoparticles and the cellular antioxidant activity.

    Science.gov (United States)

    Fan, Yuting; Yi, Jiang; Zhang, Yuzhu; Yokoyama, Wallace

    2018-01-15

    Bovine serum albumin (BSA)-dextran conjugate was prepared with glycation. Self-assembly nanoparticles were synthesized with a green, and facile approach. The effects of dry-heating time on the fabrication and characteristics of BSA-dextran conjugate nanoparticles were examined. Stable nanoparticles (dextran was grafted onto the BSA to provide significant steric hindrance. Particle size decreased with the increase of dry-heating time and the lowest particle size (51.2nm) was obtained after 24h dry-heating. The nanoparticles were stable in a wide pH range (pH 2.0-7.0). The particle size of nanoparticles increased to 115nm after curcumin incorporation and was stable even after one-month storage. TEM results demonstrated that curcumin-loaded nanoparticles displayed a spherical structure and were homogeneously dispersed. Curcumin in BSA-dextran nanoparticle showed better stability, compared to free curcumin. In addition, BSA-dextran nanoparticles can improve the cellular antioxidant activity of curcumin in Caco-2 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Shrinkage of spray-freeze-dried microparticles of pure protein for ballistic injection by manipulation of freeze-drying cycle.

    Science.gov (United States)

    Straller, Georg; Lee, Geoffrey

    2017-10-30

    Spray-freeze-drying was used to produce shrivelled, partially-collapsed microparticles of pure proteins that may be suitable for use in a ballistic injector. Various modifications of the freeze drying cycle were examined for their effects on collapse of the pure protein microparticles. The use of annealing at a shelf temperature of up to +10°C resulted in no visible particle shrinkage. This was because of the high T g ' of the pure protein. Inclusion of trehalose or sucrose led to particle shrinkage because of the plasticizing effects of the disaccharides on the protein. Only by extending the duration of primary drying from 240 to 2745min at shelf temperatures in the range -12 to -8°C were shrivelled, wrinkled particles of bSA and bCA of reduced porosity obtained. Manipulation of the freeze-drying cycle used for SFD can therefore be used to modify particle morphology and increase particle density. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Conjugation of nano and quantum materials with bovine serum albumin (BSA) to study their biological potential

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Suman, E-mail: sumansingh01@gmail.com [Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh (India); Kaur, Rajnish; Chahal, Jitender; Devi, P. [Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh (India); Jain, D.V.S. [Panjab University, Chandigarh (India); Singla, M.L., E-mail: singla_min@yahoo.co.in [Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh (India)

    2013-09-15

    Conjugates of gold nanoparticles (AuNPs) and semiconductor quantum dots (CdS/T) have been synthesized with bovine serum albumin (BSA) using wet chemistry. The optical properties of nano and quantum materials and their BSA conjugate have been studied using UV–Visible and Fluorescence spectroscopy. UV–Visible spectrum of pure BSA showed an absorption maximum at 278 nm, which showed blue shift after its conjugation with nano and quantum materials. Increased concentration of AuNPs during conjugation resulted in broadening of BSA peak (278 nm), which can be related to the formation of ground state complex formation, caused by the partial adsorption of BSA on the surface of NPs. However, increased concentrations of BSA resulted in decrease in SPR intensity of gold nanoparticles (528 nm) and absorbance peak of BSA started diminishing. AuNPs acted as quencher for BSA fluorescence intensity, when excited at 280 nm. The binding constant (K) and the number of binding sites (n) between AuNPs and BSA have been found to be 1.97×10{sup 2} LM{sup −1} and 0.6 respectively. With quantum dots, conjugation resulted in enhancement of fluorescence emission of quantum dots when excited at 300 nm, which might be due to the stabilizing effect of BSA on QDs or due to energy transfer from tryptophan moieties of albumin to quantum dots. -- Highlights: • Synthesis of nanoparticles (AuNPs) and quantum dots (CdS). • Conjugation of these materials with bovine serum albumin. • Optical behavioral studies.

  8. Synthesis and Adsorption Study of BSA Surface Imprinted Polymer on CdS Quantum Dots

    Science.gov (United States)

    Tang, Ping-ping; Cai, Ji-bao; Su, Qing-de

    2010-04-01

    A new bovine serum albumin (BSA) surface imprinting method was developed by the incorporation of quantum dots (QDs) into molecularly imprinted polymers (MIP), which can offer shape selectivity. Preparation and adsorption conditions were optimized. Physical appearance of the QDs and QDs-MIP particles was illustrated by scanning electron microscope images. Photoluminescence emission of CdS was quenched when rebinding of the template. The quenching of photoluminescence emissions is presumably due to the fluorescence resonance energy transfer between quantum dots and BSA template molecules. The adsorption is compiled with Langmuir isotherm, and chemical adsorption is the rate-controlling step. The maximum adsorption capacity could reach 226.0 mg/g, which is 142.4 mg/g larger than that of undoped BSA MIP. This study demonstrates the validity of QDs coupled with MIP technology for analyzing BSA.

  9. Electrochemical deposition of mineralized BSA/collagen coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Junjun [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Lin, Jun; Li, Juan; Wang, Huiming [The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou 310003 (China); Cheng, Kui [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Weng, Wenjian, E-mail: wengwj@zju.edu.cn [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); The Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2016-09-01

    In this work, mineralized collagen coatings with different loading quantity of bovine serum albumin (BSA) were prepared via in situ electrochemical deposition on titanium substrate. The microstructure and BSA loading quantity of the coatings could be controlled by the electrochemical deposition parameters, such as deposition potential, BSA concentration and its adding sequence in the electrolyte. The BSA loading quantity in the coatings was obtained in the range of 0.0170–0.173 mg/cm{sup 2}, enhancing the cell adhesion and proliferation of the coatings with the simultaneous release. The distinct release behaviors of BSA were attributed to their gradient distribution with different mineralization degrees, which could be adjusted by the deposition process. These results suggest that in situ electrochemical deposition is a promising way to incorporate functional molecules into the mineralized collagen coatings and the mineralized BSA/collagen coatings are highly promising for improving the rhBMP-2 loading capability (1.8-fold). - Highlights: • BSA is incorporated into mineralized collagen coating by electrochemical deposition. • The loading amount of BSA in coatings can be adjusted in the range of 0-173 ng. • The BSA/collagen coating shows good cytocompatibility with free-albumin culture. • The incorporation process is put forward for some other molecules deposition.

  10. A Novel Conductive Poly(3,4-ethylenedioxythiophene-BSA Film for the Construction of a Durable HRP Biosensor Modified with NanoAu Particles

    Directory of Open Access Journals (Sweden)

    Fangcheng Xu

    2016-03-01

    Full Text Available In this study, we have investigated the contribution of bovine serum albumin (BSA to the durability of the electrochemically synthesized poly(3,4-ethylenedioxythiophene (PEDOT film on a platinum (Pt electrode. The electrode was capable to effectively adsorb the nano Au particles (AuNPs to form a uniform layout, which was then able to immobilize the horseradish peroxidase (HRP to construct a functional HRP/AuNPs/PEDOT(BSA/Pt biosensor. Cyclic voltammetry was employed to evaluate the performance of the biosensor through the measurement of hydrogen peroxide. Our results revealed a satisfied linear correlation between the cathodic current and the concentration of H2O2. Furthermore, the addition of oxidized form of nicotinamide adenine dinucleotide, or NAD+, as the electron transfer mediator in the detection solution could dramatically enhance the sensitivity of detection by about 35.5%. The main advantages of the current biosensor are its durability, sensitivity, reliability, and biocompatibility.

  11. Synthesis of BSA/Fe{sub 3}O{sub 4} magnetic composite microspheres for adsorption of antibiotics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Baoliang; Zhang, Hepeng; Li, Xiangjie; Lei, Xingfeng; Li, Chunmei; Yin, Dezhong; Fan, Xinlong; Zhang, Qiuyu, E-mail: qyzhang@nwpu.edu.cn

    2013-10-01

    BSA/Fe{sub 3}O{sub 4} magnetic composite microspheres with high saturation magnetization and paramagnetic property were prepared via inverse emulsion technology at room temperature, bovine serum albumin (BSA, 60 KD), magnetic nanoparticles (Fe{sub 3}O{sub 4}) and glutaraldehyde as macromonomer, inorganic particles and cross-linking agent, respectively. Fourier transform infrared (FTIR), scanning electron microscope (SEM), metalloscope, and particle size analyzer were used to characterize morphology and structure of composite microspheres. Vibrating sample magnetometer (VSM) and thermogravimetric analysis (TGA) were used to test magnetic properties of the synthesized samples, adsorption capacity of microspheres was determined by ultraviolet spectrophotometer (UV). The results showed that BSA/Fe{sub 3}O{sub 4} microspheres were 43 μm with relatively narrow particle size distribution, perfect sphere-shaped morphologies, superparamagnetism with a saturation magnetization of 11 emu/g, and high magnetic content with a value of 57.29%. The main factors influencing properties of microspheres including raw material ratio, the amount of emulsifier and cross-linking agent, agitation speed were investigated and optimized. Furthermore, these microspheres accompanying with high separable and reusable efficient may have great potential application in the field of separation, in particular, removal of antibiotics. Adsorption capacities of the microspheres of four different kinds of antibiotics (erythromycin, streptomycin, tetracycline and chloramphenicol) ranging from 69.35 mg/g to 147.83 mg/g were obtained, and Langmuir isotherm model coincided with equilibrium data than that of the Freundlich model. - Highlights: • BSA/Fe{sub 3}O{sub 4} microspheres with high saturation magnetization were prepared. • BSA/Fe{sub 3}O{sub 4} microspheres for the removal of antibiotics are proposed. • The obtained results have significant importance in environmental processes.

  12. Study of BSA protein adsorption/release on hydroxyapatite nanoparticles

    Science.gov (United States)

    Swain, Sanjaya Kumar; Sarkar, Debasish

    2013-12-01

    Three different spherical, rod and fibrous morphologies of hydroxyapatite (HA) nanoparticles have been prepared through control over the processing parameters like temperature, pH and Ca:P ratio. Protein adsorption/release with respect to HA nanoparticle morphologies are investigated using model protein bovine serum albumin (BSA). BSA adsorption on HA nanoparticles follows Langmuir adsorption isotherm. Thermal analysis and FT-IR spectrum confirms the BSA adhesion and retention of their secondary structure. High surface area with high Ca:P ratio nanorod adsorbs relatively more amount (28 mg BSA/gm of nanorod HA) of BSA within 48 h in comparison with counterpart fibroid and spherical morphologies. Slow and steady BSA release (75 wt% of adsorbed BSA in 96 h) from nanorod HA is found as futuristic drug delivery media.

  13. Effect of bovine serum albumin (BSA) on enzymatic cellulose hydrolysis.

    Science.gov (United States)

    Wang, Hui; Mochidzuki, Kazuhiro; Kobayashi, Shinichi; Hiraide, Hatsue; Wang, Xiaofen; Cui, Zongjun

    2013-06-01

    Bovine serum albumin (BSA) was added to filter paper during the hydrolysis of cellulase. Adding BSA before the addition of the cellulase enhances enzyme activity in the solution, thereby increasing the conversion rate of cellulose. After 48 h of BSA treatment, the BSA adsorption quantities are 3.3, 4.6, 7.8, 17.2, and 28.3 mg/g substrate, each with different initial BSA concentration treatments at 50 °C; in addition, more cellulase was adsorbed onto the filter paper at 50 °C compared with 35 °C. After 48 h of hydrolysis, the free-enzyme activity could not be measured without the BSA treatment, whereas the remaining activity of the filter paper activity was approximately 41 % when treated with 1.0 mg/mL BSA. Even after 96 h of hydrolysis, 25 % still remained. Meanwhile, after 48 h of incubation without substrate, the remaining enzyme activities were increased 20.7 % (from 43.7 to 52.7 %) and 94.8 % (from 23.3 to 45.5 %) at 35 and 50 °C, respectively. Moreover, the effect of the BSA was more obvious at 35 °C compared with 50 °C. When using 15 filter paper cellulase units per gram substrate cellulase loading at 50 °C, the cellulose conversion was increased from 75 % (without BSA treatment) to ≥90 % when using BSA dosages between 0.1 and 1.5 mg/mL. Overall, these results suggest that there are promising strategies for BSA treatment in the reduction of enzyme requirements during the hydrolysis of cellulose.

  14. [Effect of BSA on random amplified polymorphic DNA (RAPD) in plants].

    Science.gov (United States)

    Bian, Cai-Miao; Li, Jun-Min; Jin, Ze-Xin; Ge, Ming-Ju

    2002-05-01

    Using Metasequoia glyptostroboides and Heptacodium miconioides DNA as templates,the effect of bovine serum albumin (BSA) on RAPD in plants was studied. The results showed that suitable concentrations of BSA used in Metasequoia glyptostroboides and Heptacodium miconioides RAPD were different, which were 0.6 microg/microl and 1 microg/microl, respectively. The inhibition of acetylated BSA on the amplification of plant RAPD could be relieved by BSA. BSA could reduce the dosage of Taq DNA polymerase.

  15. Statistical relation between particle contaminations in ultra pure water and defects generated by process tools

    NARCIS (Netherlands)

    Wali, F.; Knotter, D. Martin; Wortelboer, Ronald; Mud, Auke

    2007-01-01

    Ultra pure water supplied inside the Fab is used in different tools at different stages of processing. Data of the particles measured in ultra pure water was compared with the defect density on wafers processed on these tools and a statistical relation is found Keywords— Yield, defect density,

  16. Multiparty Quantum Secret Sharing via Introducing Auxiliary Particles Using a Pure Entangled State

    International Nuclear Information System (INIS)

    Xia Yan; Song Jie; Song Heshan; Huang Xiaoli

    2008-01-01

    We propose a new multiparty quantum secret sharing protocol via introducing auxiliary particles using a non-maximally entangled (pure) two-particle state without a Bell measurement. The communication parties utilize decoy particles to check eavesdropping. After ensuring the security of the quantum channel, the sender encodes the secret message and transmits it to the receiver by using controlled-NOT operation and von Neumann measurement. If and only if all the agents agree to collaborate, they can read out the secret message

  17. Effects of PEG size on structure, function and stability of PEGylated BSA

    DEFF Research Database (Denmark)

    Plesner, Bitten; Fee, Conan J.; Westh, Peter

    2011-01-01

    The effects of PEGylation on the structural, thermal and functional stability of bovine serum albumin (BSA) were investigated using BSA and 6 linear mono-PEGylated BSA compounds. The secondary and tertiary structure of BSA measured by circular dichroism (CD) was independent of PEGylation. In cont...

  18. Canonical form of three-fermion pure-states with six single particle states

    International Nuclear Information System (INIS)

    Chen, Lin; Ž Ðoković, Dragomir; Grassl, Markus; Zeng, Bei

    2014-01-01

    We construct a canonical form for pure states in ∧ 3 (C 6 ), the three-fermion system with six single particle states, under local unitary (LU) transformations, i.e., the unitary group U(6). We also construct a minimal set of generators of the algebra of polynomial U(6)-invariants on ∧ 3 (C 6 ). It turns out that this algebra is isomorphic to the algebra of polynomial LU-invariants of three-qubits which are additionally invariant under qubit permutations. As a consequence of this surprising fact, we deduce that there is a one-to-one correspondence between the U(6)-orbits of pure three-fermion states in ∧ 3 (C 6 ) and the LU orbits of pure three-qubit states when qubit permutations are allowed. As an important byproduct, we obtain a new canonical form for pure three-qubit states under LU transformations U(2) × U(2) × U(2) (no qubit permutations allowed)

  19. Water sorption and glass transition of amorphous sugars containing BSA

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, K.; Suzuki, T.; Tatsumichi, T.; Kirii, S.; Okazaki, M. [Kyoto Univ., Kyoto (Japan). Dept. of Chemical Engineering

    2000-08-01

    Water sorption and glass transition of four amorphous sugars (lactose, maltose, sucrose, and trehalose) containing bovine serum albumin (BSA) are investigated. Freeze-dried sugar-BSA samples equilibrated at several water activities ranging from 0 to 0.43 were prepared. Moisture content and glass transition temperature (T{sub g}) were measured. For the all sugars, it is found that BSA lowers T{sub g} at low water activity, and raises it at high water activity. It is also found that the difference between T{sub g} of the sugar-BSA samples and that of the corresponding amorphous sugar samples (T{sub g0}) depends mainly on T{sub g0}. (author)

  20. [Spectroscopic studies on the interaction of nicotine and BSA].

    Science.gov (United States)

    Chen, Yun; Kong, Xiang-rong; Shen, Xinag-can; Liang, Hong

    2005-10-01

    The interaction of nicotine and bovine serum albumin(BSA) was investigated by fluorescence spectra and UV-vis spectra. The fluorescence spectrum showed that BSA fluorescence quench regularly with the addition of nicotine.The fluorescence quenching mechanisms were also studied in pH 5.0, pH 7.4 and pH 11.0 by Stern-Volmer equation, indicating dynamic quenching(pH 5.0) and static quenching(pH 7.4 and pH 11.0) respectively. Association constants (k) of nicotine and BSA at pH 7.4 and pH 11.0 at the temperatures of 20 and 37 degrees C were given by the Lineweaver-Buck equation, which are: k(20 degrees C) = 140.15 L x mol(-1) and k(37 degrees C) = 131.83 mol x L(-1) (pH 7.4), and k(20 degrees C) = 141.76 mol x L(-1), k(37 degrees C) = 27.79 mol x L(-1) (pH 11.0), suggesting that the association constant is effected by the temperature much more remarkably at pH 7.4 than that at pH 11.0 because of the different states of nicotine at different pHs. The UV-Vis spectra exhibit that the absorbance of BSA(210 nm) shifts to red and decreases gradually with the addition of nicotine, reflecting the transition of secondary structure of BSA, namely, the helix of BSA becomes looser. The UV-Vis second derivative spectra and synchronous spectra (delta wavelength = wavelength(em) - wavelength(ex) = 15 nm and delta wavelength = wavelength(em) - wavelength(ex) = 60 nm) imply the change of the microcircumstance of aromatic amino residues of BSA(Trp, Tyr and Phe) from hydrophobicity to hydrophilicity at high concentration of nicotine.

  1. Residual bovine serum albumin (BSA) quantitation in vaccines using automated Capillary Western technology.

    Science.gov (United States)

    Loughney, John W; Lancaster, Catherine; Ha, Sha; Rustandi, Richard R

    2014-09-15

    Bovine serum albumin (BSA) is a major component of fetal bovine serum (FBS), which is commonly used as a culture medium during vaccine production. Because BSA can cause allergic reactions in humans the World Health Organization (WHO) has set a guidance of 50 ng or less residual BSA per vaccine dose. Vaccine manufacturers are expected to develop sensitive assays to detect residual BSA. Generally, sandwich enzyme-linked immunosorbent assays (ELISA) are used in the industry to detect these low levels of BSA. We report the development of a new improved method for residual BSA detection using the SimpleWestern technology to analyze residual BSA in an attenuated virus vaccine. The method is based on automated Capillary Western and has linearity of two logs, >80% spike recovery (accuracy), intermediate precision of CV <15%, and LOQ of 5.2 ng/ml. The final method was applied to analyze BSA in four lots of bulk vaccine products and was used to monitor BSA clearance during vaccine process purification. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Microwave-assisted synthesis of L-glutathione capped ZnSe QDs and its interaction with BSA by spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ling, E-mail: linda0911@163.com [College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan 430081 (China); College of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079 (China); Zhou, Pei-Jiang, E-mail: zhoupj@whu.edu.cn [College of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079 (China); Zhan, Hong-Ju [College of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079 (China); Jingchu University of Technology, Jingmen 448000 (China); Chen, Chi [College of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079 (China); Hu, Wei [Wuhan Humanwell Pharmaceutical Co. Ltd, Wuhan 430064 (China); Zhou, Teng-Fei; Lin, Chao-Wang [College of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079 (China)

    2013-10-15

    Stable, water-soluble and biologically compatible ZnSe quantum dots (QDs) with L-glutathione (GSH) as a capping agent were synthesized in aqueous medium by microwave irradiation. The GSH/Zn/Se molar ratios, reaction temperature, time and pH are the crucial factors for properties of QDs. Fluorescence (FL) spectra, absorption spectra, transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) spectra studies showed that the optical properties of QDs were strong, shape of QDs was similar to spherical and the particle size was about 2–3 nm. The 42% quantum yield (QY) of QDs can be achieved without any post-preparative treatment. The interaction of QDs bioconjugated to bovine serum albumin (BSA) was also studied by absorption and FL spectra experiments. With addition of QDs, the FL intensity of BSA was largely quenched, which can be explained by static mechanism. The results suggested the QDs-BSA binding reaction was a static quenching. -- Highlights: • L-glutathione-capped ZnSe quantum dots were synthesized by microwave assisted in aqueous. • The facile synthesis of ZnSe QDs presented is simple and cost-effective. • Findings suggest the QDs possess highly quantum yield and narrow FWHM without any post-treatment. • The interaction mechanism between QDs and BSA is a static quenching.

  3. Solution combustion synthesis of calcium phosphate particles for controlled release of bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junfeng, E-mail: daidai02304@163.com [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Zhao, Junjie; Qian, Yu; Zhang, Xiali; Zhou, Feifei; Zhang, Hong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Lu, Hongbin [National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing (China); Chen, JianHua; Wang, XuHong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Yu, Wencong [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China)

    2015-05-01

    Four different phase compositions of calcium phosphate (CaP) particles were prepared via a solution combustion method. X-ray diffraction (XRD) and Rietveld analysis results revealed that the variations in the nominal Ca/P (molar) ratios were found to provide a favorable control in the different proportions of CaP materials. Bovine serum albumin (BSA) was used as a model protein to study the loading and release behavior. The release profile indicated that the BSA release rates depended on the phase compositions of the CaP particles, and showed an order of TCP-BSA > BCP-1-BSA > BCP-2-BSA > HA-BSA. The results suggested that the BSA protein release rate can be controlled by varying the phase compositions of CaP carriers. Moreover, the release process involved two stages: firstly surface diffusion via ion exchange and secondly intraparticle diffusion. - Highlights: • Solution combustion method was an efficient way to produced CaP powders. • Ca/P (molar) ratios provided a favorable control in the different proportions of phase composition. • BSA release rate varied depending on the phase composition of the CaP particles. • Two kinetic models were chosen to simulate the release kinetics of the drugs from CaP carriers.

  4. Preparation, characterization and in vitro cytotoxicity of BSA-based nanospheres containing nanosized magnetic particles and/or photosensitizer

    International Nuclear Information System (INIS)

    Rodrigues, Marcilene M.A.; Simioni, Andreza R.; Primo, Fernando L.; Siqueira-Moura, Marigilson P.; Morais, Paulo C.; Tedesco, Antonio C.

    2009-01-01

    This study reports on the preparation, characterization and in vitro toxicity test of a new nano-drug delivery system (NDDS) based on bovine serum albumin (BSA) nanospheres which incorporates surface-functionalized magnetic nanoparticles (MNP) and/or the silicon(IV) phthalocyanine (NzPc). The new NDDS was engineered for use in photodynamic therapy (PDT) combined with hyperthermia (HPT) to address cancer treatment. The BSA-based nanospheres, hosting NzPc, MNP or both (NzPc and MNP), present spherical shape with hydrodynamic average diameter values ranging from 170 to 450 nm and zeta potential of around -23 mV. No difference on the fluorescence spectrum of the encapsulated NzPc was found regardless of the presence of MNP. Time-dependent fluorescence measurements of the encapsulated NzPc revealed a bi-exponential decay for samples incorporating only NzPc and NzPc plus MNP, in the time window ranging from 1.70 to 5.20 ns. The in vitro assay, using human fibroblasts, revealed no cytotoxic effect in all samples investigated, demonstrating the potential of the tested system as a synergistic NDDS.

  5. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates.

    Science.gov (United States)

    Yang, Bin; Wyman, Charles E

    2006-07-05

    Cellulase and bovine serum albumin (BSA) were added to Avicel cellulose and solids containing 56% cellulose and 28% lignin from dilute sulfuric acid pretreatment of corn stover. Little BSA was adsorbed on Avicel cellulose, while pretreated corn stover solids adsorbed considerable amounts of this protein. On the other hand, cellulase was highly adsorbed on both substrates. Adding a 1% concentration of BSA to dilute acid pretreated corn stover prior to enzyme addition at 15 FPU/g cellulose enhanced filter paper activity in solution by about a factor of 2 and beta-glucosidase activity in solution by about a factor of 14. Overall, these results suggested that BSA treatment reduced adsorption of cellulase and particularly beta-glucosidase on lignin. Of particular note, BSA treatment of pretreated corn stover solids prior to enzymatic hydrolysis increased 72 h glucose yields from about 82% to about 92% at a cellulase loading of 15 FPU/g cellulose or achieved about the same yield at a loading of 7.5 FPU/g cellulose. Similar improvements were also observed for enzymatic hydrolysis of ammonia fiber explosion (AFEX) pretreated corn stover and Douglas fir treated by SO(2) steam explosion and for simultaneous saccharification and fermentation (SSF) of BSA pretreated corn stover. In addition, BSA treatment prior to hydrolysis reduced the need for beta-glucosidase supplementation of SSF. The results are consistent with non-specific competitive, irreversible adsorption of BSA on lignin and identify promising strategies to reduce enzyme requirements for cellulose hydrolysis. (c) 2006 Wiley Periodicals, Inc.

  6. Effect of quencher, denaturants, temperature and pH on the fluorescent properties of BSA protected gold nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Chib, Rahul, E-mail: Rahul.chib@live.unthsc.edu [Department of Cell Biology and Immunology, Center for Fluorescence Technologies and Nanomedicine, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States); Butler, Susan [Department of Cell Biology and Immunology, Center for Fluorescence Technologies and Nanomedicine, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States); Raut, Sangram [Department of Cell Biology and Immunology, Center for Fluorescence Technologies and Nanomedicine, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States); Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129 (United States); Shah, Sunil; Borejdo, Julian [Department of Cell Biology and Immunology, Center for Fluorescence Technologies and Nanomedicine, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States); Gryczynski, Zygmunt [Department of Cell Biology and Immunology, Center for Fluorescence Technologies and Nanomedicine, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States); Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129 (United States); Gryczynski, Ignacy, E-mail: ignacy.gryczynski@unthsc.edu [Department of Cell Biology and Immunology, Center for Fluorescence Technologies and Nanomedicine, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2015-12-15

    In this paper, we have synthesized BSA protected gold nanoclusters (BSA Au nanocluster) and studied the effect of quencher, protein denaturant, pH and temperature on the fluorescence properties of the tryptophan molecule of the BSA Au nanocluster and native BSA. We have also studied their effect on the peak emission of BSA Au nanoclusters (650 nm). The photophysical characterization of a newly developed fluorophore in different environments is absolutely necessary to futher develop their biomedical and analytical applications. It was observed from our experiments that the tryptophan in BSA Au nanoclusters is better shielded from the polar environment. Tryptophan in native BSA showed a red shift in its peak emission wavelength position. Tryptophan is a highly polarity sensitive dye and a minimal change in its microenvironment can be easily observed in its photophysical properties. - Highlights: • Tryptophan is easily accessible in native BSA compared to BSA Au nanoclusters. • Guanidine HCL denatures native BSA more compared to BSA Au nanoclusters. • High temperature decreases the quantum yield of tryptophan and BSA Au nanocluster. • Emission wavelength of BSA Au nanoclusters remains constant with increasing pH. • BSA Au nanoclusters are robust to the changes in their environments.

  7. Effect of quencher, denaturants, temperature and pH on the fluorescent properties of BSA protected gold nanoclusters

    International Nuclear Information System (INIS)

    Chib, Rahul; Butler, Susan; Raut, Sangram; Shah, Sunil; Borejdo, Julian; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2015-01-01

    In this paper, we have synthesized BSA protected gold nanoclusters (BSA Au nanocluster) and studied the effect of quencher, protein denaturant, pH and temperature on the fluorescence properties of the tryptophan molecule of the BSA Au nanocluster and native BSA. We have also studied their effect on the peak emission of BSA Au nanoclusters (650 nm). The photophysical characterization of a newly developed fluorophore in different environments is absolutely necessary to futher develop their biomedical and analytical applications. It was observed from our experiments that the tryptophan in BSA Au nanoclusters is better shielded from the polar environment. Tryptophan in native BSA showed a red shift in its peak emission wavelength position. Tryptophan is a highly polarity sensitive dye and a minimal change in its microenvironment can be easily observed in its photophysical properties. - Highlights: • Tryptophan is easily accessible in native BSA compared to BSA Au nanoclusters. • Guanidine HCL denatures native BSA more compared to BSA Au nanoclusters. • High temperature decreases the quantum yield of tryptophan and BSA Au nanocluster. • Emission wavelength of BSA Au nanoclusters remains constant with increasing pH. • BSA Au nanoclusters are robust to the changes in their environments.

  8. Competitive interactions between glucose and lactose with BSA: which sugar is better for children?

    Science.gov (United States)

    Zhang, Qiulan; Ni, Yongnian; Kokot, Serge

    2016-04-07

    The interactions of the sugars glucose and lactose with the transport protein bovine serum albumin (BSA) were investigated using fluorescence, FT-IR and circular dichroism (CD) techniques. The results indicated that glucose could be bonded and transported by BSA, mainly involving hydrogen bonds and van der Waals interactions (ΔH = -86.13 kJ mol(-1)). The obtained fluorescence data from the binding of sugar and BSA were processed by the multivariate curve resolution-alternating least squares (MCR-ALS) method, and the extracted concentration profiles showed that the equilibrium constant, rglucose:BSA, was about 7. However, the binding of lactose to BSA did not quench the fluorescence significantly, and this indicated that lactose could not be directly transported by BSA. The binding experiments were further performed using the fluorescence titration method in the presence of calcium and BSA. Calcium was added so that the calcium/BSA reactions could be studied in the presence or absence of glucose, lactose or hydrolysis products. The results showed that hydrolyzed lactose seemed to enhance calcium absorption in bovine animals. It would also appear that for children, lactose provides better nutrition; however, glucose is better for adults.

  9. Pure spin-3/2 propagator for use in particle and nuclear physics

    Science.gov (United States)

    Kristiano, J.; Clymton, S.; Mart, T.

    2017-11-01

    We propose the use of a pure spin-3/2 propagator in the (3 /2 ,0 )⊕(0 ,3 /2 ) representation in particle and nuclear physics. To formulate the propagator in a covariant form we use the antisymmetric tensor spinor representation and we consider the Δ resonance contribution to the elastic π N scattering as an example. We find that the use of a conventional gauge-invariant interaction Lagrangian leads to a problem: the obtained scattering amplitude does not exhibit the resonance behavior. To overcome this problem we modify the interaction by adding a momentum dependence. As in the case of the Rarita-Schwinger formalism, we find that a perfect resonance description could be obtained in the pure spin-3/2 formulation only if hadronic form factors were considered in the interactions.

  10. SANS study of interaction of silica nanoparticles with BSA protein and their resultant structure

    International Nuclear Information System (INIS)

    Yadav, Indresh; Aswal, V. K.; Kohlbrecher, J.

    2014-01-01

    Small angle neutron scattering (SANS) has been carried out to study the interaction of anionic silica nanoparticles (88 Å) with globular protein Bovine Serum Albumin (BSA) (M.W. 66.4 kD) in aqueous solution. The measurements have been carried out on fixed concentration (1 wt %) of Ludox silica nanoparticles with varying concentration of BSA (0–5 wt %) at pH7. Results show that silica nanoparticles and BSA coexist as individual entities at low concentration of BSA where electrostatic repulsive interactions between them prevent their aggregation. However, as the concentration of BSA increases (≥ 0.5 wt %), it induces the attractive depletion interaction among nanoparticles leading to finally their aggregation at higher BSA concentration (2 wt %). The aggregates are found to be governed by the diffusion limited aggregation (DLA) morphology of fractal nature having fractal dimension about 2.4

  11. Doxorubicin hinders DNA condensation promoted by the protein bovine serum albumin (BSA).

    Science.gov (United States)

    Lima, C H M; de Paula, H M C; da Silva, L H M; Rocha, M S

    2017-12-01

    In this work, we have studied the interaction between the anticancer drug doxorubicin (doxo) and condensed DNA, using optical tweezers. To perform this task, we use the protein bovine serum albumin (BSA) in the working buffer to mimic two key conditions present in the real intracellular environment: the condensed state of the DNA and the abundant presence of charged macromolecules in the surrounding medium. In particular, we have found that, when doxo is previously intercalated in disperse DNA, the drug hinders the DNA condensation process upon the addition of BSA in the buffer. On the other hand, when bare DNA is firstly condensed by BSA, doxo is capable to intercalate and to unfold the DNA condensates at relatively high concentrations. In addition, a specific interaction between BSA and doxo was verified, which significantly changes the chemical equilibrium of the DNA-doxo interaction. Finally, the presence of BSA in the buffer stabilizes the double-helix structure of the DNA-doxo complexes, preventing partial DNA denaturation induced by the stretching forces. © 2017 Wiley Periodicals, Inc.

  12. Study on protein conformation and adsorption behaviors in nanodiamond particle-protein complexes

    International Nuclear Information System (INIS)

    Wang Haidong; Niu, Catherine Hui; Yang Qiaoqin; Badea, Ildiko

    2011-01-01

    In the present research, the conformation of bovine serum albumin (BSA) in the nanodiamond particle (ND)-BSA complex was studied by Fourier transform infrared spectroscopy, fluorescence spectroscopy, UV-vis spectroscopy, and circular dichroism spectroscopy. The spectroscopic study revealed that most BSA structural features could be preserved in the complex though the BSA underwent conformational changes in the complex due to ND-BSA interaction. In addition, BSA adsorption isotherms and zeta-potential measurements were employed to investigate the pH dependence of the ND-BSA interaction. The changes in surface charge of the ND-BSA complex with pH variations indicated that the binding of BSA to ND might lead to not only the adsorption of BSA onto the ND surface but also the partial breakup of ND aggregates into relatively small ND-BSA aggregates because of the strong binding force between ND and BSA. The results show that ND is an excellent platform for protein immobilization with high affinity and holds great potential to be used for biosensor applications.

  13. Study on protein conformation and adsorption behaviors in nanodiamond particle-protein complexes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Haidong [Department of Biomedical Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 (Canada); Niu, Catherine Hui [Department of Chemical Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 (Canada); Yang Qiaoqin [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 (Canada); Badea, Ildiko, E-mail: catherine.niu@usask.ca [Drug Design and Discovery Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, S7N 5C9 (Canada)

    2011-04-08

    In the present research, the conformation of bovine serum albumin (BSA) in the nanodiamond particle (ND)-BSA complex was studied by Fourier transform infrared spectroscopy, fluorescence spectroscopy, UV-vis spectroscopy, and circular dichroism spectroscopy. The spectroscopic study revealed that most BSA structural features could be preserved in the complex though the BSA underwent conformational changes in the complex due to ND-BSA interaction. In addition, BSA adsorption isotherms and zeta-potential measurements were employed to investigate the pH dependence of the ND-BSA interaction. The changes in surface charge of the ND-BSA complex with pH variations indicated that the binding of BSA to ND might lead to not only the adsorption of BSA onto the ND surface but also the partial breakup of ND aggregates into relatively small ND-BSA aggregates because of the strong binding force between ND and BSA. The results show that ND is an excellent platform for protein immobilization with high affinity and holds great potential to be used for biosensor applications.

  14. Synthesis and characterization of pure strontium apatite particles and nanoporous scaffold prepared by dextrose-templated method

    Science.gov (United States)

    Ma, Xiaoyu; Liu, Yongjia; Zhu, Bangshang

    2018-02-01

    Strontium shows an increasing interest on bone formation and bone resorption prevention. Here, pure apatite strontium (Ap-SrOH) [Sr5(PO4)3(OH), strontium hydroxyapatite] particles were prepared by the precipitation method using Sr(NO3)2 · 6H2O and (NH4)2HPO4 as reagents. Scanning electron microscope, transmission electron microscope combined with electron diffraction, X-ray diffraction, Fourier transform infrared spectra (FTIR), variable temperature FTIR and thermo gravimetric analysis were employed to evaluate the crystalline structure, chemical composition, and thermal stability of the Ap-SrOH particles. The results show that phase pure Ap-SrOH particles were prepared by wet precipitation. The obtained Ap-SrOH particles are single crystal in phase structure, they have hexagonal fusiform shape, and their size is about 30-180 nm in diameter, and 0.4-2.5 μm in length. The cell MTT assay evaluations indicate that Ap-SrOH particles have very low cytotoxicity. Furthermore, nanoporous Ap-SrOH scaffolds were synthesized by anhydrous dextrose template method. After mixed 5-10 wt% of anhydrous dextrose with Ap-SrOH particles, pressed into discs, and sintered in microwave muffle furnace at 600 °C, the scaffolds with both nanoporous and nanotopography were formed. Cell culture of MC3T3-E1 osteoblasts in vitro show cells grow well on nanoporous Ap-SrOH scaffold. Therefore, Ap-SrOH particles and their nanoporous scaffolds are promising biomaterials for bone repairing and bone disease (e.g. osteoporosis) healing.

  15. Spectroscopic characterization and docking studies of ZnO nanoparticle modified with BSA

    International Nuclear Information System (INIS)

    Ledesma, Ana E.; Chemes, Doly María; Frías, María de los Angeles; Guauque Torres, Maria del Pilar

    2017-01-01

    Highlights: • The ZnO NPs have synthesized at moderate temperature and conjugated with BSA to elucidate the characteristics of best binding site in the protein cavity. • The Docking studies have successfully applied to identify the amino acids residues involved in the interaction. • The cytotoxicity of ZnO NPs and ZnO-BSA NPs and esterase-like activity of the protein have evaluated, with very promising results for medical applications. - Abstract: Nanoparticles (NP) into a biological environment are an interesting topic for diagnosis and therapy in applications for medicine or environment and the knowledge about this interaction is important from the perspective of safe use of nanomaterials. In the current study, we characterized the type of interaction and the orientation of bovine serum albumin (BSA) adsorbed on ZnO nanoparticle surfaces as a function of size, using molecular docking. To probe experimentally different theoretical hypothesis about the interaction, ZnO-NPs were prepared in aqueous solution, and then were bioconjugated with BSA. Transmission electron microscopy (TEM) and Raman spectroscopy confirm the spherical shape of NP and the irreversible adsorption of BSA on NP surface. Raman and Infrared spectroscopy (FTIR) reveal that BSA interaction with ZnO nanoparticle produced a conformational rearrangement into protein, observing changes in Tyr and Trp environment, a minor percentage of α-helix structure and a more extended chain. The fluorescence analysis demonstrated that when BSA concentration higher than 30 μM is used the signal due to the self-oligomerization of protein overlaps with the ZnO nanoparticle emission. The results predicted that the most probable interaction site is near to domain IB and IIA and ionic interactions are the major responsible for the binding. Thermal stability studies reveals that the denaturalization temperature of BSA increase from 57 °C to 65 °C in presence of ZnO NP and their esterase-like activity was

  16. Spectroscopic characterization and docking studies of ZnO nanoparticle modified with BSA

    Energy Technology Data Exchange (ETDEWEB)

    Ledesma, Ana E., E-mail: anael@unse.edu.ar [CITSE-UNSE, CONICET, FCEyT, RN 9, km 1125, 4206 Santiago del Estero (Argentina); Chemes, Doly María [INQUINOA, UNT, CONICET, FBQyF, San Lorenzo 456, San Miguel de Tucumán CPA T4000ILI, Tucumán (Argentina); Frías, María de los Angeles [Laboratory of Biointerphases and Biomimetic Systems, (CITSE) National University of Santiago del Estero and CONICET, 4206, RN 9- Km 1125, Santiago del Estero (Argentina); Guauque Torres, Maria del Pilar [CITSE-UNSE, CONICET, FCEyT, RN 9, km 1125, 4206 Santiago del Estero (Argentina)

    2017-08-01

    Highlights: • The ZnO NPs have synthesized at moderate temperature and conjugated with BSA to elucidate the characteristics of best binding site in the protein cavity. • The Docking studies have successfully applied to identify the amino acids residues involved in the interaction. • The cytotoxicity of ZnO NPs and ZnO-BSA NPs and esterase-like activity of the protein have evaluated, with very promising results for medical applications. - Abstract: Nanoparticles (NP) into a biological environment are an interesting topic for diagnosis and therapy in applications for medicine or environment and the knowledge about this interaction is important from the perspective of safe use of nanomaterials. In the current study, we characterized the type of interaction and the orientation of bovine serum albumin (BSA) adsorbed on ZnO nanoparticle surfaces as a function of size, using molecular docking. To probe experimentally different theoretical hypothesis about the interaction, ZnO-NPs were prepared in aqueous solution, and then were bioconjugated with BSA. Transmission electron microscopy (TEM) and Raman spectroscopy confirm the spherical shape of NP and the irreversible adsorption of BSA on NP surface. Raman and Infrared spectroscopy (FTIR) reveal that BSA interaction with ZnO nanoparticle produced a conformational rearrangement into protein, observing changes in Tyr and Trp environment, a minor percentage of α-helix structure and a more extended chain. The fluorescence analysis demonstrated that when BSA concentration higher than 30 μM is used the signal due to the self-oligomerization of protein overlaps with the ZnO nanoparticle emission. The results predicted that the most probable interaction site is near to domain IB and IIA and ionic interactions are the major responsible for the binding. Thermal stability studies reveals that the denaturalization temperature of BSA increase from 57 °C to 65 °C in presence of ZnO NP and their esterase-like activity was

  17. Fluorescence spectral studies on interaction of fluorescent probes with Bovine Serum Albumin (BSA)

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Kaushik, E-mail: ghoshfcy@iitr.ac.in; Rathi, Sweety; Arora, Deepshikha

    2016-07-15

    Interaction of 2-(1-(naphthale-1-ylimino)ethyl)phenol (1), 2-methoxy-4-(((4-methoxyphenyl)imino)methyl)phenol (2) and 2-methoxy-4-((naphthalene-1-ylimino)methyl)phenol (3) with Bovine Serum Albumin (BSA) was examined. Fluorescence spectral data were obtained from the probes by varying the concentration of BSA as well as from BSA by varying the concentration of probes. Synchronous fluorescence measurements were performed and binding constants of the probes were calculated. To understand mode of quenching, Stern–Volmer plot, absorption spectral studies and life time measurements were performed. Förster resonance energy transfer (FRET) was also scrutinized. - Highlights: • Schiff bases with pendant phenolato function and interaction with BSA. • Synchronous fluorescence studies and a preferred interaction with tryptophan. • Probable interaction of probes with Trp-213 residue in the hydrophobic cavity. • 1:1 binding stoichiometry of probes and BSA in Benesi–Hildebrand graph.

  18. The effect of ultrasound on particle size, color, viscosity and polyphenol oxidase activity of diluted avocado puree.

    Science.gov (United States)

    Bi, Xiufang; Hemar, Yacine; Balaban, Murat O; Liao, Xiaojun

    2015-11-01

    The effect of ultrasound treatment on particle size, color, viscosity, polyphenol oxidase (PPO) activity and microstructure in diluted avocado puree was investigated. The treatments were carried out at 20 kHz (375 W/cm(2)) for 0-10 min. The surface mean diameter (D[3,2]) was reduced to 13.44 μm from an original value of 52.31 μm by ultrasound after 1 min. A higher L(∗) value, ΔE value and lower a(∗) value was observed in ultrasound treated samples. The avocado puree dilution followed pseudoplastic flow behavior, and the viscosity of diluted avocado puree (at 100 s(-1)) after ultrasound treatment for 1 min was 6.0 and 74.4 times higher than the control samples for dilution levels of 1:2 and 1:9, respectively. PPO activity greatly increased under all treatment conditions. A maximum increase of 25.1%, 36.9% and 187.8% in PPO activity was found in samples with dilution ratios of 1:2, 1:5 and 1:9, respectively. The increase in viscosity and measured PPO activity might be related to the decrease in particle size. The microscopy images further confirmed that ultrasound treatment induced disruption of avocado puree structure. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Ascorbic Acid and BSA Protein in Solution and Films: Interaction and Surface Morphological Structure

    Directory of Open Access Journals (Sweden)

    Rafael R. G. Maciel

    2013-01-01

    Full Text Available This paper reports on the study of the interactions between ascorbic acid (AA and bovine serum albumin (BSA in aqueous solution as well as in films (BSA/AA films prepared by the layer-by-layer technique. Regarding to solution studies, a hyperchromism (in the range of ultraviolet was found as a function of AA concentration, which suggested the formation of aggregates from AA and BSA. Binding constant, , determined for aggregates from BSA and AA was found to be about 102 M−1, which indicated low affinity of AA with BSA. For the BSA/AA films, it was also noted that the AA adsorption process and surface morphological structures depended on AA concentration. By changing the contact time between the AA and BSA, a hypochromism was revealed, which was associated to decrease of accessibility of solvent to tryptophan due to formation of aggregates. Furthermore, different morphological structures of aggregates were observed, which were attributed to the diffusion-limited aggregation. Since most of studies of interactions of drugs and proteins are performed in solution, the analysis of these processes by using films can be very valuable because this kind of system is able to employ several techniques of investigation in solid state.

  20. The BsaHI restriction-modification system: Cloning, sequencing and analysis of conserved motifs

    Directory of Open Access Journals (Sweden)

    Roberts Richard J

    2008-05-01

    Full Text Available Abstract Background Restriction and modification enzymes typically recognise short DNA sequences of between two and eight bases in length. Understanding the mechanism of this recognition represents a significant challenge that we begin to address for the BsaHI restriction-modification system, which recognises the six base sequence GRCGYC. Results The DNA sequences of the genes for the BsaHI methyltransferase, bsaHIM, and restriction endonuclease, bsaHIR, have been determined (GenBank accession #EU386360, cloned and expressed in E. coli. Both the restriction endonuclease and methyltransferase enzymes share significant similarity with a group of 6 other enzymes comprising the restriction-modification systems HgiDI and HgiGI and the putative HindVP, NlaCORFDP, NpuORFC228P and SplZORFNP restriction-modification systems. A sequence alignment of these homologues shows that their amino acid sequences are largely conserved and highlights several motifs of interest. We target one such conserved motif, reading SPERRFD, at the C-terminal end of the bsaHIR gene. A mutational analysis of these amino acids indicates that the motif is crucial for enzymatic activity. Sequence alignment of the methyltransferase gene reveals a short motif within the target recognition domain that is conserved among enzymes recognising the same sequences. Thus, this motif may be used as a diagnostic tool to define the recognition sequences of the cytosine C5 methyltransferases. Conclusion We have cloned and sequenced the BsaHI restriction and modification enzymes. We have identified a region of the R. BsaHI enzyme that is crucial for its activity. Analysis of the amino acid sequence of the BsaHI methyltransferase enzyme led us to propose two new motifs that can be used in the diagnosis of the recognition sequence of the cytosine C5-methyltransferases.

  1. Spectroscopic characterization and docking studies of ZnO nanoparticle modified with BSA

    Science.gov (United States)

    Ledesma, Ana E.; Chemes, Doly María; Frías, María de los Angeles; Guauque Torres, Maria del Pilar

    2017-08-01

    Nanoparticles (NP) into a biological environment are an interesting topic for diagnosis and therapy in applications for medicine or environment and the knowledge about this interaction is important from the perspective of safe use of nanomaterials. In the current study, we characterized the type of interaction and the orientation of bovine serum albumin (BSA) adsorbed on ZnO nanoparticle surfaces as a function of size, using molecular docking. To probe experimentally different theoretical hypothesis about the interaction, ZnO-NPs were prepared in aqueous solution, and then were bioconjugated with BSA. Transmission electron microscopy (TEM) and Raman spectroscopy confirm the spherical shape of NP and the irreversible adsorption of BSA on NP surface. Raman and Infrared spectroscopy (FTIR) reveal that BSA interaction with ZnO nanoparticle produced a conformational rearrangement into protein, observing changes in Tyr and Trp environment, a minor percentage of α-helix structure and a more extended chain. The fluorescence analysis demonstrated that when BSA concentration higher than 30 μM is used the signal due to the self-oligomerization of protein overlaps with the ZnO nanoparticle emission. The results predicted that the most probable interaction site is near to domain IB and IIA and ionic interactions are the major responsible for the binding. Thermal stability studies reveals that the denaturalization temperature of BSA increase from 57 °C to 65 °C in presence of ZnO NP and their esterase-like activity was improved.

  2. Physicochemical characterization of 3,6-diHydroxyflavone binding BSA immobilized on PEG-coated silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Voicescu, Mariana, E-mail: voicescu@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy (Romania); Ionescu, Sorana [University of Bucharest, Department of Physical Chemistry (Romania); Calderon-Moreno, Jose M. [Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy (Romania); Nistor, Cristina L. [National R& D Institute for Chemistry and Petrochemistry ICECHIM, Polymer Department (Romania)

    2017-02-15

    Studies based on silver nanoparticles (SNPs) and polyethylene glycols (PEGs) are mainly in the pharmaceutical field, with PEG as good “vehicle” to transport protein-based drugs. In this work, physicochemical characteristics of 3,6-diHydroxyflavone (3,6-diHF) binding bovine serum albumin (BSA) on PEG (Tween20, L64, and Myrj52)-coated SNPs have been investigated by steady-state and time-resolved fluorescence spectroscopy. These interactions give rise to the formation of intermolecular and intramolecular H bonds. As a subject of interest, the effect of temperature (30–60 °C) on the H bonds was studied by steady-state fluorescence. The size distribution and zeta potential of SNPs were determined by dynamic light scattering (DLS). Scanning electron microscopy (SEM) analysis revealed the spherical nature of particles with average diameter ~40–80 nm. The structure, stability, dynamics, and conformational changes in adsorbed BSA protein on the PEG-coated SNPs surface have been also investigated by steady-state/lifetime fluorescence and circular dichroism spectroscopy. The results have relevance in the oxidative stress and drug delivery processes.

  3. Physicochemical characterization of 3,6-diHydroxyflavone binding BSA immobilized on PEG-coated silver nanoparticles

    Science.gov (United States)

    Voicescu, Mariana; Ionescu, Sorana; Calderon-Moreno, Jose M.; Nistor, Cristina L.

    2017-02-01

    Studies based on silver nanoparticles (SNPs) and polyethylene glycols (PEGs) are mainly in the pharmaceutical field, with PEG as good "vehicle" to transport protein-based drugs. In this work, physicochemical characteristics of 3,6-diHydroxyflavone (3,6-diHF) binding bovine serum albumin (BSA) on PEG (Tween20, L64, and Myrj52)-coated SNPs have been investigated by steady-state and time-resolved fluorescence spectroscopy. These interactions give rise to the formation of intermolecular and intramolecular H bonds. As a subject of interest, the effect of temperature (30-60 °C) on the H bonds was studied by steady-state fluorescence. The size distribution and zeta potential of SNPs were determined by dynamic light scattering (DLS). Scanning electron microscopy (SEM) analysis revealed the spherical nature of particles with average diameter 40-80 nm. The structure, stability, dynamics, and conformational changes in adsorbed BSA protein on the PEG-coated SNPs surface have been also investigated by steady-state/lifetime fluorescence and circular dichroism spectroscopy. The results have relevance in the oxidative stress and drug delivery processes.

  4. A Novel Method for Incorporation of Micron-Sized SiC Particles into Molten Pure Aluminum Utilizing a Co Coating

    Science.gov (United States)

    Mohammadpour, M.; Khosroshahi, R. Azari; Mousavian, R. Taherzadeh; Brabazon, D.

    2015-02-01

    Ceramic particles typically do not have sufficiently high wettability by molten metal for effective bonding during metal matrix composite fabrication. In this study, a novel method has been used to overcome this drawback. Micron-sized SiC particles were coated by a cobalt metallic layer using an electroless deposition method. A layer of cobalt on the SiC particles was produced prior to incorporation in molten pure aluminum in order to improve the injected particle bonding with the matrix. For comparison, magnesium was added to the melt in separate experiments as a wetting agent to assess which method was more effective for particle incorporation. It was found that both of these methods were more effective as regard ceramic particulate incorporation compared with samples produced with as-received SiC particles injected into the pure aluminum matrix. SEM images indicated that cobalt coating of the particles was more effective than magnesium for incorporation of fine SiC particles (below 30 µm), while totally the incorporation percentage of the particles was higher for a sample in which Mg was added as a wetting agent. In addition, microhardness tests revealed that the cobalt coating leads to the fabrication of a harder composite due to increased amount of ceramic incorporation, ceramic-matrix bonding, and possibly also to formation of Al-Co intermetallic phases.

  5. Multifunctional BSA-Au nanostars for photoacoustic imaging and X-ray computed tomography.

    Science.gov (United States)

    Zu, Lihui; Liu, Lin; Qin, Yeshan; Liu, Hongguang; Yang, Haishan

    2016-10-01

    We report the synthesis and characterization of bovine serum albumin-capped Au nanostars (BSA-AuNSs) for dual-modal computed tomography (CT)/photoacoustic (PA) imaging application. The BSA-AuNSs have an average size of 85nm, and a surface plasmon resonance (SPR) peak at approximately 770nm. They have excellent biocompatibility, good X-ray attenuation, and great PA contrast enhancement properties. When injected intravenously, liver signal markedly increases in both CT and PA modalities. The in vivo biodistribution studies and pathology results showed that the BSA-AuNSs were mainly excreted through the liver and intestines with no obvious biotoxicity. These results indicate that BSA-AuNSs have high potential to be used as dual-modal CT/PA imaging contrast agents or further used to develop targeted probes. This preliminary study suggests that PA tomography may be used to non-invasively trace the kinetics and biodistribution of the nanoparticles. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Binding interaction of ramipril with bovine serum albumin (BSA): Insights from multi-spectroscopy and molecular docking methods.

    Science.gov (United States)

    Shi, Jie-Hua; Pan, Dong-Qi; Jiang, Min; Liu, Ting-Ting; Wang, Qi

    2016-11-01

    The binding interaction between a typical angiotensin-converting enzyme inhibitor (ACEI), ramipril, and a transport protein, bovine serum albumin (BSA), was studied in vitro using UV-vis absorption spectroscopy, steady-state fluorescence spectroscopic titration, synchronous fluorescence spectroscopy, three dimensional fluorescence spectroscopy, circular dichroism and molecular docking under the imitated physiological conditions (pH=7.4). The experimental results suggested that the intrinsic fluorescence of BSA was quenched by ramipril thought a static quenching mechanism, indicating that the stable ramipril-BSA complex was formed by the intermolecular interaction. The number of binding sites (n) and binding constant of ramipril-BSA complex were about 1 and 3.50×10 4 M -1 at 298K, respectively, suggesting that there was stronger binding interaction of ramipril with BSA. The thermodynamic parameters together with molecular docking study revealed that both van der Waal's forces and hydrogen bonding interaction dominated the formation of the ramipril-BSA complex and the binding interaction of BSA with ramipril is enthalpy-driven processes due to |ΔH°|>|TΔS°| and ΔG°<0. The spatial distance between ramipril and BSA was calculated to be 3.56nm based on Förster's non-radiative energy transfer theory. The results of the competitive displacement experiments and molecular docking confirmed that ramipril inserted into the subdomain IIA (site I) of BSA, resulting in a slight change in the conformation of BSA but BSA still retained its secondary structure α-helicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Probing into the binding interaction between medroxyprogesterone acetate and bovine serum albumin (BSA): spectroscopic and molecular docking methods.

    Science.gov (United States)

    Fang, Fang; Pan, Dong-Qi; Qiu, Min-Jie; Liu, Ting-Ting; Jiang, Min; Wang, Qi; Shi, Jie-Hua

    2016-09-01

    To further understand the mechanism of action and pharmacokinetics of medroxyprogesterone acetate (MPA), the binding interaction of MPA with bovine serum albumin (BSA) under simulated physiological conditions (pH 7.4) was studied using fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, circular dichroism and molecular docking methods. The experimental results reveal that the fluorescence of BSA quenches due to the formation of MPA-BSA complex. The number of binding sites (n) and the binding constant for MPA-BSA complex are ~1 and 4.6 × 10(3)  M(-1) at 310 K, respectively. However, it can be concluded that the binding process of MPA with BSA is spontaneous and the main interaction forces between MPA and BSA are van der Waals force and hydrogen bonding interaction due to the negative values of ΔG(0) , ΔH(0) and ΔS(0) in the binding process of MPA with BSA. MPA prefers binding on the hydrophobic cavity in subdomain IIIA (site II'') of BSA resulting in a slight change in the conformation of BSA, but BSA retaining the α-helix structure. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Gold nanoparticles: BSA (Bovine Serum Albumin) coating and X-ray irradiation produce variable-spectrum photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kuo-Hao [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Lai, Sheng-Feng [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan (China); Lin, Yan-Cheng; Chou, Wu-Ching [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan (China); Ong, Edwin B.L. [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Tan, Hui-Ru [Institute of Materials Research and Engineering, 3 Research Link, 117602 (Singapore); Tok, Eng Soon [Physics Department, National University of Singapore, 117542 (Singapore); Yang, C.S. [Center for Nanomedicine, National Health Research Institutes, Miaoli 350, Taiwan (China); Margaritondo, G. [Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Hwu, Y., E-mail: phhwu@sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan (China); Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 202, Taiwan (China)

    2015-01-15

    We show that by using different x-ray irradiation times of BSA-coated Au nanoparticles (NPs) we can change their ultraviolet-stimulated photoluminescence and shift the spectral weight over the visible spectral range. This is due to the interplay of two emission bands, one due to BSA and the other related to gold. The emission properties did not change with time over a period of several months. - Highlights: • Gold nanoparticles (Au NPs) coated with Bovine Serum Albumin (BSA) are synthesized by x-ray irradiation. • BSA coated AuNPs with ∼1 nm size show strong photoluminescence in red by UV excitation. • The blue photoluminescence of BSA increase with x-ray irradiation. • Increase x-ray irradiation time during the synthesis shift the color of the colloid from red to blue.

  9. Gold nanoparticles: BSA (Bovine Serum Albumin) coating and X-ray irradiation produce variable-spectrum photoluminescence

    International Nuclear Information System (INIS)

    Lee, Kuo-Hao; Lai, Sheng-Feng; Lin, Yan-Cheng; Chou, Wu-Ching; Ong, Edwin B.L.; Tan, Hui-Ru; Tok, Eng Soon; Yang, C.S.; Margaritondo, G.; Hwu, Y.

    2015-01-01

    We show that by using different x-ray irradiation times of BSA-coated Au nanoparticles (NPs) we can change their ultraviolet-stimulated photoluminescence and shift the spectral weight over the visible spectral range. This is due to the interplay of two emission bands, one due to BSA and the other related to gold. The emission properties did not change with time over a period of several months. - Highlights: • Gold nanoparticles (Au NPs) coated with Bovine Serum Albumin (BSA) are synthesized by x-ray irradiation. • BSA coated AuNPs with ∼1 nm size show strong photoluminescence in red by UV excitation. • The blue photoluminescence of BSA increase with x-ray irradiation. • Increase x-ray irradiation time during the synthesis shift the color of the colloid from red to blue

  10. Immobilization of cellulase mixtures on magnetic particles for hydrolysis of lignocellulose and ease of recycling

    DEFF Research Database (Denmark)

    Alftrén, Johan; Hobley, Timothy John

    2014-01-01

    In the present study whole cellulase mixtures were covalently immobilized on non-porous magnetic particles to enable enzyme reuse. It was shown that CellicCTec2 immobilized on magnetic particles activated with cyanuric chloride gave the highest bead activity measured by mass of reducing sugar...... serum albumin (BSA)) on hydrolysis yield was studied for free and immobilized CellicCTec2. It was observed that for both free and immobilized CellicCTec2 the hydrolysis yield was increased when Tween 80, PEG 6000 or BSA was included. Interaction between magnetic particles (containing immobilized Cellic......CTec2) and lignin was examined and it was demonstrated that addition of BSA completely inhibited interaction while Tween 80 and PEG 6000 had no effect on decreasing magnetic particle-lignin interaction. Hydrolysis of pretreated wheat straw biomass was performed in two consecutive cycles using...

  11. Biomedical sensing analyzer (BSA) for mobile-health (mHealth)-LTE.

    Science.gov (United States)

    Adibi, Sasan

    2014-01-01

    The rapid expansion of mobile-based systems, the capabilities of smartphone devices, as well as the radio access and cellular network technologies are the wind beneath the wing of mobile health (mHealth). In this paper, the concept of biomedical sensing analyzer (BSA) is presented, which is a novel framework, devised for sensor-based mHealth applications. The BSA is capable of formulating the Quality of Service (QoS) measurements in an end-to-end sense, covering the entire communication path (wearable sensors, link-technology, smartphone, cell-towers, mobile-cloud, and the end-users). The characterization and formulation of BSA depend on a number of factors, including the deployment of application-specific biomedical sensors, generic link-technologies, collection, aggregation, and prioritization of mHealth data, cellular network based on the Long-Term Evolution (LTE) access technology, and extensive multidimensional delay analyses. The results are studied and analyzed in a LabView 8.5 programming environment.

  12. BSA nanoparticle loaded atorvastatin calcium--a new facet for an old drug.

    Science.gov (United States)

    Sripriyalakshmi, S; Anjali, C H; George, Priya Doss C; Rajith, B; Ravindran, Aswathy

    2014-01-01

    Currently, the discovery of effective chemotherapeutic agents poses a major challenge to the field of cancer biology. The present study focuses on enhancing the therapeutic and anti cancer properties of atorvastatin calcium loaded BSA (ATV-BSA) nanoparticles in vitro. BSA-ATV nanoparticles were prepared using desolvation technique. The process parameters were optimized based on the amount of desolvating agent, stabilization conditions as well as the concentration of the cross linker. The anti cancer properties of the protein coated ATV nanoparticles were tested on MiaPaCa-2 cell lines. In vitro release behavior of the drug from the carrier suggests that about 85% of the drug gets released after 72 hrs. Our studies show that ATV-BSA nanoparticles showed specific targeting and enhanced cytotoxicity to MiaPaCa-2 cells when compared to the bare ATV. We hereby propose that the possible mechanism of cellular uptake of albumin bound ATV could be through caveolin mediated endocytosis. Hence our studies open up new facet for an existing cholesterol drug as a potent anti-cancer agent.

  13. Rapid determination of tannins in tanning baths by adaptation of BSA method.

    Science.gov (United States)

    Molinari, R; Buonomenna, M G; Cassano, A; Drioli, E

    2001-01-01

    A rapid and reproducible method for the determination of tannins in vegetable tanning baths is proposed as a modification of the BSA method for grain tannins existing in literature. The protein BSA was used instead of leather powder employed in the Filter Method, which is adopted in Italy and various others countries of Central Europe. In this rapid method the tannin contents is determined by means a spectrophotometric reading and not by means a gravimetric analysis of the Filter Method. The BSA method, which belongs to mixed methods (which use both precipitation and complexation of tannins), consists of selective precipitation of tannin from a solution containing also non tannins by BSA, the dissolution of precipitate and the quantification of free tannin amount by its complexation with Fe(III) in hydrochloric solutions. The absorbance values, read at 522 nm, have been expressed in terms of tannic acid concentration by using a calibration curve made with standard solutions of tannic acid; these have been correlated with the results obtained by using the Filter Method.

  14. Which model based on fluorescence quenching is suitable to study the interaction between trans-resveratrol and BSA?

    Science.gov (United States)

    Wei, Xin Lin; Xiao, Jian Bo; Wang, Yuanfeng; Bai, Yalong

    2010-01-01

    There are several models by means of quenching fluorescence of BSA to determine the binding parameters. The binding parameters obtained from different models are quite different from each other. Which model is suitable to study the interaction between trans-resveratrol and BSA? Herein, twelve models based fluorescence quenching of BSA were compared. The number of binding sites increasing with increased binding constant for similar compounds binding to BSA maybe one approach to resolve this question. For example, here eleven flavonoids were tested to illustrate that the double logarithm regression curve is suitable to study binding polyphenols to BSA.

  15. Interaction and sonodynamic damage activity of acridine red (AD-R) to bovine serum albumin (BSA)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dandan; Xie, Jinhui; Wu, Qiong; Fan, Ping; Wang, Jun, E-mail: wangjun888tg@126.com

    2015-04-15

    The sonodynamic therapy (SDT) has become an attractive antitumor treatment method in recent years, but the selection of sonosensitizer, mechanism of damage biomolecule and kind of reactive oxygen species (ROS) generated during sonodynamic process have not been investigated in detail. In this paper, the acridine red (AD-R), as a sonosensitizer, combining with ultrasonic irradiation to damage bovine serum albumin (BSA) was investigated. At first, the interaction of AD-R to BSA molecules in aqueous solution was studied by fluorescence spectroscopy. As judged from the experimental results, the quenching mechanism of BSA fluorescence belongs to a static process. Synchronous fluorescence spectra demonstrate that the binding and damage sites to BSA molecules are mainly on the tryptophan residues. The generation and kind of generated ROS were also estimated by the method of oxidation and extraction photometry. This paper may offer some valuable references for the study of the sonodynamic activity and application of AD-R in SDT for tumor treatment. - Highlights: ●Acridine red (AD-R) is used to study interaction with BSA. ●Spectroscopy is used to study sonodynamic damage activity of AD-R to BSA. ●Generation of ROS caused by AD-R under ultrasonic irradiation was determined.

  16. Interaction and sonodynamic damage activity of acridine red (AD-R) to bovine serum albumin (BSA)

    International Nuclear Information System (INIS)

    Chen, Dandan; Xie, Jinhui; Wu, Qiong; Fan, Ping; Wang, Jun

    2015-01-01

    The sonodynamic therapy (SDT) has become an attractive antitumor treatment method in recent years, but the selection of sonosensitizer, mechanism of damage biomolecule and kind of reactive oxygen species (ROS) generated during sonodynamic process have not been investigated in detail. In this paper, the acridine red (AD-R), as a sonosensitizer, combining with ultrasonic irradiation to damage bovine serum albumin (BSA) was investigated. At first, the interaction of AD-R to BSA molecules in aqueous solution was studied by fluorescence spectroscopy. As judged from the experimental results, the quenching mechanism of BSA fluorescence belongs to a static process. Synchronous fluorescence spectra demonstrate that the binding and damage sites to BSA molecules are mainly on the tryptophan residues. The generation and kind of generated ROS were also estimated by the method of oxidation and extraction photometry. This paper may offer some valuable references for the study of the sonodynamic activity and application of AD-R in SDT for tumor treatment. - Highlights: ●Acridine red (AD-R) is used to study interaction with BSA. ●Spectroscopy is used to study sonodynamic damage activity of AD-R to BSA. ●Generation of ROS caused by AD-R under ultrasonic irradiation was determined

  17. Characterizing the binding interaction between antimalarial artemether (AMT) and bovine serum albumin (BSA): Spectroscopic and molecular docking methods.

    Science.gov (United States)

    Shi, Jie-Hua; Pan, Dong-Qi; Wang, Xiou-Xiou; Liu, Ting-Ting; Jiang, Min; Wang, Qi

    2016-09-01

    Artemether (AMT), a peroxide sesquiterpenoides, has been widely used as an antimalarial for the treatment of multiple drug-resistant strains of plasmodium falciparum malaria. In this work, the binding interaction of AMT with bovine serum albumin (BSA) under the imitated physiological conditions (pH7.4) was investigated by UV spectroscopy, fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, Fourier transform infrared spectroscopy (FT-IR), circular dichroism (CD), three-dimensional fluorescence spectroscopy and molecular docking methods. The experimental results indicated that there was a change in UV absorption of BSA along with a slight red shift of absorption wavelength, indicating that the interaction of AMT with BSA occurred. The intrinsic fluorescence of BSA was quenched by AMT due to the formation of AMT-BSA complex. The number of binding sites (n) and binding constant of AMT-BSA complex were about 1 and 2.63×10(3)M(-1) at 298K, respectively, suggesting that there was stronger binding interaction of AMT with BSA. Based on the analysis of the signs and magnitudes of the free energy change (ΔG(0)), enthalpic change (ΔH(0)) and entropic change (ΔS(0)) in the binding process, it can be concluded that the binding of AMT with BSA was enthalpy-driven process due to |ΔH°|>|TΔS°|. The results of experiment and molecular docking confirmed the main interaction forces between AMT and BSA were van der Waals force. And, there was a slight change in the BSA conformation after binding AMT but BSA still retains its secondary structure α-helicity. However, it had been confirmed that AMT binds on the interface between sub-domain IIA and IIB of BSA. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Electrospray ionization deposition of BSA under vacuum conditions

    Science.gov (United States)

    Hecker, Dominic; Gloess, Daniel; Frach, Peter; Gerlach, Gerald

    2015-05-01

    Vacuum deposition techniques like thermal evaporation and CVD with their precise layer control and high layer purity often cannot be applied for the deposition of chemical or biological molecules. The molecules are usually decomposed by heat. To overcome this problem, the Electrospray ionization (ESI) process known from mass spectroscopy is employed to transfer molecules into vacuum and to deposit them on a substrate. In this work, a homemade ESI tool was used to deposit BSA (Bovine serum albumin) layers with high deposition rates. Solutions with different concentrations of BSA were prepared using a methanol:water (MeOH:H2O) mixture (1:1) as solvent. The influence of the substrate distance on the deposition rate and on the transmission current was analyzed. Furthermore, the layer thickness distribution and layer adhesion were investigated.

  19. In vitro study on binding interaction of quinapril with bovine serum albumin (BSA) using multi-spectroscopic and molecular docking methods.

    Science.gov (United States)

    Shi, Jie-Hua; Pan, Dong-Qi; Jiang, Min; Liu, Ting-Ting; Wang, Qi

    2017-08-01

    The binding interaction between quinapril (QNPL) and bovine serum albumin (BSA) in vitro has been investigated using UV absorption spectroscopy, steady-state fluorescence spectroscopic, synchronous fluorescence spectroscopy, 3D fluorescence spectroscopy, Fourier transform infrared spectroscopy, circular dichroism, and molecular docking methods for obtaining the binding information of QNPL with BSA. The experimental results confirm that the quenching mechanism of the intrinsic fluorescence of BSA induced by QNPL is static quenching based on the decrease in the quenching constants of BSA in the presence of QNPL with the increase in temperature and the quenching rates of BSA larger than 10 10  L mol -1  s -1 , indicating forming QNPL-BSA complex through the intermolecular binding interaction. The binding constant for the QNPL-BSA complex is in the order of 10 5  M -1 , indicating there is stronger binding interaction of QNPL with BSA. The analysis of thermodynamic parameters together with molecular docking study reveal that the main binding forces in the binding process of QNPL with BSA are van der Waal's forces and hydrogen bonding interaction. And, the binding interaction of BSA with QNPL is an enthalpy-driven process. Based on Förster resonance energy transfer, the binding distance between QNPL and BSA is calculated to be 2.76 nm. The results of the competitive binding experiments and molecular docking confirm that QNPL binds to sub-domain IIA (site I) of BSA. It is confirmed there is a slight change in the conformation of BSA after binding QNPL, but BSA still retains its secondary structure α-helicity.

  20. Larger red-shift in optical emissions obtained from the thin films of globular proteins (BSA, lysozyme) – polyelectrolyte (PAA) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, Hrishikesh [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam (India); Kundu, Sarathi, E-mail: sarathi.kundu@gmail.com [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam (India); Basu, Saibal [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2016-09-30

    Graphical abstract: Thin films of protein-polyelectrolyte complexes show larger red-shift in optical emission. - Highlights: • Globular proteins (lysozyme and BSA) and polyelectrolyte (sodium polyacrylic acid) are used to form protein-polyelectrolyte complexes (PPC). • Larger red-shift in optical emission is obtained from the thin films of PPC. • Red-shift is not obtained from the solution of PPC and pure protein thin films. • Larger red-shift from PPC films is due to the energy dissipation as non-radiative form through interactions with nearby atoms. • Red-shift in optical emission is independent on the thickness of the PPC film. - Abstract: Globular proteins (lysozyme and BSA) and polyelectrolyte (sodium polyacrylic acid) are used to form protein-polyelectrolyte complexes (PPC). Out-of-plane structures of ≈30–60 nm thick PPC films and their surface morphologies have been studied by using X-ray reflectivity and atomic force microscopy, whereas optical behaviors of PPC and protein conformations have been studied by using UV–vis, photoluminescence and FTIR spectroscopy respectively. Our study reveals that thin films of PPC show a larger red-shift of 23 and 16 nm in the optical emissions in comparison to that of pure protein whereas bulk PPC show a small blue-shift of ≈3 nm. A small amount of peak-shift is found to occur due to the heat treatment or concentration variation of the polyelectrolyte/protein in bulk solution but cannot produce such film thickness independent larger red-shift. Position of the emission peak remains nearly unchanged with the film thickness. Mechanism for such larger red-shift has been proposed.

  1. Probing the interaction of flower-like CdSe nanostructure particles targeted to bovine serum albumin using spectroscopic techniques

    International Nuclear Information System (INIS)

    Ju Peng; Fan Hai; Liu Tao; Cui Lin; Ai Shiyun

    2011-01-01

    The interaction between flower-like CdSe nanostructure particles (CdSe NP) and bovine serum albumin (BSA) was investigated from a spectroscopic angle under simulative physiological conditions. Under pH 7.4, CdSe NP could effectively quench the intrinsic fluorescence of BSA via static quenching. The binding constant (K A ) was 6.38, 3.27, and 1.90x10 4 M -1 at 298, 304, and 310 K, respectively and the number of binding sites was 1.20. According to the Van't Hoff equation, the thermodynamic parameters (ΔH o =-77.48 kJ mol -1 , ΔS o =-168.17 J mol -1 K -1 ) indicated that hydrogen bonds and van der Waals forces played a major role in stabilizing the BSA-CdSe complex. Besides, UV-vis and circular dichroism (CD) results showed that the addition of CdSe NP changed the secondary structure of BSA and led to a decrease in α-helix. These results suggested that BSA underwent substantial conformational changes induced by flower-like CdSe nanostructure particles. - Highlights: → Estimate the binding of flower-like CdSe NP to BSA by spectroscopic methods. → Hydrogen bonds and van der Waals forces were the major forces. →Addition of CdSe changed the micro-environmentl of BSA. → Decrease in α-helix of BSA secondary structure induced by CdSe.

  2. Ultrastable BSA-capped gold nanoclusters with a polymer-like shielding layer against reactive oxygen species in living cells

    Science.gov (United States)

    Zhou, Wenjuan; Cao, Yuqing; Sui, Dandan; Guan, Weijiang; Lu, Chao; Xie, Jianping

    2016-05-01

    The prevalence of reactive oxygen species (ROS) production and the enzyme-containing intracellular environment could lead to the fluorescence quenching of bovine serum albumin (BSA)-capped gold nanoclusters (AuNCs). Here we report an efficient strategy to address this issue, where a polymer-like shielding layer is designed to wrap around the Au core to significantly improve the stability of AuNCs against ROS and protease degradation. The key of our design is to covalently incorporate a thiolated AuNC into the BSA-AuNC via carbodiimide-activated coupling, leading to the formation of a AuNC pair inside the cross-linked BSA molecule. The as-designed paired AuNCs in BSA (or BSA-p-AuNCs for short) show improved performances in living cells.The prevalence of reactive oxygen species (ROS) production and the enzyme-containing intracellular environment could lead to the fluorescence quenching of bovine serum albumin (BSA)-capped gold nanoclusters (AuNCs). Here we report an efficient strategy to address this issue, where a polymer-like shielding layer is designed to wrap around the Au core to significantly improve the stability of AuNCs against ROS and protease degradation. The key of our design is to covalently incorporate a thiolated AuNC into the BSA-AuNC via carbodiimide-activated coupling, leading to the formation of a AuNC pair inside the cross-linked BSA molecule. The as-designed paired AuNCs in BSA (or BSA-p-AuNCs for short) show improved performances in living cells. Electronic supplementary information (ESI) available: Detailed experimental materials, apparatus, experimental procedures and characterization data. See DOI: 10.1039/c6nr02178f

  3. Intermolecular interaction of fosinopril with bovine serum albumin (BSA): The multi-spectroscopic and computational investigation.

    Science.gov (United States)

    Zhou, Kai-Li; Pan, Dong-Qi; Lou, Yan-Yue; Shi, Jie-Hua

    2018-04-16

    The intermolecular interaction of fosinopril, an angiotensin converting enzyme inhibitor with bovine serum albumin (BSA), has been investigated in physiological buffer (pH 7.4) by multi-spectroscopic methods and molecular docking technique. The results obtained from fluorescence and UV absorption spectroscopy revealed that the fluorescence quenching mechanism of BSA induced by fosinopril was mediated by the combined dynamic and static quenching, and the static quenching was dominant in this system. The binding constant, K b , value was found to lie between 2.69 × 10 3 and 9.55 × 10 3  M -1 at experimental temperatures (293, 298, 303, and 308 K), implying the low or intermediate binding affinity between fosinopril and BSA. Competitive binding experiments with site markers (phenylbutazone and diazepam) suggested that fosinopril preferentially bound to the site I in sub-domain IIA on BSA, as evidenced by molecular docking analysis. The negative sign for enthalpy change (ΔH 0 ) and entropy change (ΔS 0 ) indicated that van der Waals force and hydrogen bonds played important roles in the fosinopril-BSA interaction, and 8-anilino-1-naphthalenesulfonate binding assay experiments offered evidence of the involvements of hydrophobic interactions. Moreover, spectroscopic results (synchronous fluorescence, 3-dimensional fluorescence, and Fourier transform infrared spectroscopy) indicated a slight conformational change in BSA upon fosinopril interaction. Copyright © 2018 John Wiley & Sons, Ltd.

  4. Spectroscopic analyses on interaction of bovine serum albumin (BSA) with toluidine blue (TB) and its sonodynamic damage under ultrasonic irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jun, E-mail: wangjun890@126.co [Department of Chemistry, Liaoning University, Shenyang 110036 (China); Guo Yuwei [Department of Chemistry, Liaoning University, Shenyang 110036 (China); Department of Chemistry, Baotou Normal College, Baotou 014030 (China); Liu Bin [Department of Pharmacy, Liaoning University, Shenyang 110036 (China); Cheng Chunping [Department of Chemistry, Baotou Normal College, Baotou 014030 (China); Wang Zhiqiu; Han Guangxi; Gao Jingqun; Zhang Xiangdong [Department of Chemistry, Liaoning University, Shenyang 110036 (China)

    2011-02-15

    In this paper, the toluidine blue (TB) with tricyclic quinone imide plane structure is used as sonosensitizer to study the interaction and sonodynamic damage to bovine serum albumin (BSA) by UV-vis and fluorescence spectroscopy. The results show that the TB can bind to BSA molecules, obviously, and the synergetic effects of TB and ultrasonic irradiation can efficiently damage the BSA molecules. Otherwise, some influencing factors such as ultrasonic irradiation time, TB concentration, pH value and ionic strength on the damage of BSA molecules were also considered by the numbers. Synchronous fluorescence spectroscopy indicates that the tyrosine (Tyr) residues of BSA molecules are damaged more seriously than the tryptophan (Trp) residues under ultrasonic irradiation. - Research Highlights: TB is used as quencher to study interaction to BSA. TB is used as sonosensitizer to study the sonodynamic damage to BSA. Synchronous fluorescence spectroscopy is used to study TB binding site to BSA.

  5. Spectroscopic analyses on interaction of bovine serum albumin (BSA) with toluidine blue (TB) and its sonodynamic damage under ultrasonic irradiation

    International Nuclear Information System (INIS)

    Wang Jun; Guo Yuwei; Liu Bin; Cheng Chunping; Wang Zhiqiu; Han Guangxi; Gao Jingqun; Zhang Xiangdong

    2011-01-01

    In this paper, the toluidine blue (TB) with tricyclic quinone imide plane structure is used as sonosensitizer to study the interaction and sonodynamic damage to bovine serum albumin (BSA) by UV-vis and fluorescence spectroscopy. The results show that the TB can bind to BSA molecules, obviously, and the synergetic effects of TB and ultrasonic irradiation can efficiently damage the BSA molecules. Otherwise, some influencing factors such as ultrasonic irradiation time, TB concentration, pH value and ionic strength on the damage of BSA molecules were also considered by the numbers. Synchronous fluorescence spectroscopy indicates that the tyrosine (Tyr) residues of BSA molecules are damaged more seriously than the tryptophan (Trp) residues under ultrasonic irradiation. - Research Highlights: → TB is used as quencher to study interaction to BSA. → TB is used as sonosensitizer to study the sonodynamic damage to BSA. → Synchronous fluorescence spectroscopy is used to study TB binding site to BSA.

  6. Spectroscopic and molecular docking approaches for investigating conformation and binding characteristics of clonazepam with bovine serum albumin (BSA).

    Science.gov (United States)

    Lou, Yan-Yue; Zhou, Kai-Li; Pan, Dong-Qi; Shen, Jia-Le; Shi, Jie-Hua

    2017-02-01

    Clonazepam, a type of benzodiazepine, is a classical drug used to prevent and treat seizures, panic disorder, movement disorder, among others. For further clarifying the distribution of clonazepam in vivo and the pharmacodynamic and pharmacokinetic mechanisms, the binding interaction between clonazepam and bovine serum albumin (BSA) was investigated using ultraviolet spectroscopy (UV), steady-state fluorescence spectroscopy, synchronous fluorescence spectroscopy, three-dimensional (3D) fluorescence spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and molecular docking methods. The results well confirmed that clonazepam bound on the subdomain III A (Site II) of BSA through van der Waals force and hydrogen bonding interaction, and quenched the intrinsic fluorescence of BSA through a static quenching process. The number of binding sites (n) and binding constant (K b ) of clonazepam-BSA complex were about 1 and 7.94×10 4 M -1 at 308K, respectively. The binding process of clonazepam with BSA was spontaneous and enthalpy-driven process due to ΔG 0 T|ΔS 0 | over the studied temperature range. Meanwhile, the binding interaction of clonazepam with BSA resulted in the slight change in the conformation of BSA and the obvious change in the conformation of clonazepam, implying that the flexibility of clonazepam also played an important role in increasing the stability of the clonazepam-BSA complex. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Construction and evaluation of BSA-CaP nanomaterials with enhanced transgene performance via biocorona-inspired caveolae-mediated endocytosis

    Science.gov (United States)

    Ma, Xi-Xi; Gao, Han; Zhang, Ya-Xuan; Jia, Yi-Yang; Li, Chen; Zhou, Si-Yuan; Zhang, Bang-Le

    2018-02-01

    Non-viral nanovectors have attracted much attention owing to their ability to condense genetic materials and their ease of modification. However, their poor stability, low biocompatibility and gene degradation in endosomes or lysosomes has significantly hampered their application in vivo and in the clinic. In an attempt to overcome these difficulties a series of bovine serum albumin (BSA)-calcium phosphate (CaP) nanoparticles were constructed. The CaP condenses with DNA to form nanocomplexes coated with a biomimetic corona of BSA. Such complexes may retain the inherent endocytosis profile of BSA, with improved biocompatibility. In particular the transgene performance may be enhanced by stimulating the cellular uptake pathway via caveolae-mediated endocytosis. Two methods were employed to construct and optimize the formulation of BSA-CaP nanomaterials. The optimized BSA-CaP-50-M2 nanoparticles prepared by our second method exhibited good stability, negligible cytotoxicity and enhanced transgene performance with long-term expression for 72 h in vivo even with a single dose. Determination of the cellular uptake pathway and Western blot revealed that cellular uptake of the designed BSA-CaP-50-M2 nanoparticles was mainly via caveolae-mediated endocytosis in a non-degradative pathway in which the biomimetic uptake profile of BSA was retained.

  8. Spectroscopic studies on the interaction and sonodynamic damage of neutral red (NR) to bovine serum albumin (BSA)

    Energy Technology Data Exchange (ETDEWEB)

    Liu Bin; Guo Ying [Department of Pharmacy, Liaoning University, Shenyang 110036 (China); Wang, Jun, E-mail: wangjun890@126.co [Department of Chemistry, Liaoning University, Shenyang 110036 (China); Xu Rui [Department of Chemistry, Liaoning University, Shenyang 110036 (China); Wang Xin; Wang Dan; Zhang Liqun [Department of Pharmacy, Liaoning University, Shenyang 110036 (China); Xu Yongnan [Department of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016 (China)

    2010-06-15

    In this paper, the interaction of neutral red (NR) with bovine serum albumin (BSA) and the sonodynamic damage to BSA under ultrasonic irradiation was studied by means of ultraviolet-visible (UV-vis) and fluorescence spectra. The quenching constant (K{sub SV}=5.749x10{sup 4} L/mol), binding constant (K{sub A}=3.19x10{sup 4} L/mol) and binding site number (n=0.9462) were measured. The binding distance (r=2.47 nm) between NR and BSA was obtained according to Foester's non-radiative energy transfer theory. The damage process of BSA molecules was detected by the hyperchromic effect of UV-vis spectra and quenching of intrinsic fluorescence spectra. In addition, the influencing factors such as ultrasonic irradiation time and NR concentration on the damage to BSA molecules were also considered. The results showed that the damage degree is enhanced with the increase of ultrasonic irradiation time and NR concentration. The possible mechanism of sonodynamic damage to BSA molecules was mainly mediated by singlet oxygen ({sup 1}O{sub 2}). Otherwise, the binding and damaging sites to BSA molecules were also estimated by synchronous fluorescence. The results indicated that the NR is more vicinal to tryptophan (Trp) residue than to tyrosine (Tyr) residue and the damage site is also mainly at Trp residues. The research result will bring a certain significance to use sonosensitive drugs in the fields of tumor treatment.

  9. Trace element determination in tomato puree using particle induced X-ray emission and Rutherford backscattering

    International Nuclear Information System (INIS)

    Romero-Davila, E.; Miranda, J.

    2004-01-01

    Particle induced X-ray emission (PIXE) and Rutherford backscattering spectrometry (RBS) were used to determine the concentrations of trace elements in samples of 12 tomato puree brands sold in the Mexican market. While RBS offered information about the main elements present in the matrix, PIXE gave results on trace elements. As a whole, data for 17 elements (C, N, O, Na, Mg, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, and Zn) were obtained. To evaluate the results, a comparison with brands from USA, Japan, Colombia, and Chile was carried out, using tomato purees produced following the domestic technology recipe. Additionally, the results were considered in the light of the Codex Alimentarius and the Mexican standard. It was found that all of the brands fall within the limits established by these standards, being of the same order of magnitude as the foreign brands. (author)

  10. Synthesis and characterization of cloisite-30B clay dispersed poly (acryl amide/sodium alginate)/AgNp hydrogel composites for the study of BSA protein drug delivery and antibacterial activity

    Science.gov (United States)

    Nanjunda Reddy, B. H.; Ranjan Rauta, Pradipta; Venkatalakshimi, V.; Sreenivasa, Swamy

    2018-02-01

    The aim of this research is to inspect the effect of Cloisite-30B (C30B) modified clay dispersed poly (acrylamide-co-Sodiumalginate)/AgNp hydrogel nanocomposites (PASA/C30B/Ag) for drug delivery and antibacterial activity. A novel hydrogel composite based sodium alginate (SA) and the inorganic modified clay with silver nano particle (C30B/AgNps)polymer hydrogel composites are synthesized via the graft copolymerization of acrylamide (AAm) in an aqueous medium with methylene bisacrylamide (MBA) as a crosslinking agent and ammonium per sulfate(APS) as an initiator. The UV/Visible spectroscopy of obtained composites is successfully studied, which confirms the occurrence of AgNps in the hydrogel composites. And the swelling capacity and bovine serum albumin (BSA) protein as model drug delivery study for these hydrogel nanocomposites have been carried out. The C30B/Ag filled hydrogel composites exhibit superior water absorbency or swelling capacity compared to pure samples and it is establish that the formulations with clay (C30B) dispersed silver nanocomposite hydrogels show improved and somewhat faster rate of drug delivery than other formulations(pure systems) and SEM and TEM reports suggests that the size of AgNps in the composite hydrogels is in the range of 5-10 nm with shrunken surface and the antibacterial characterizations for gram positive and gram negative bacteria are carried out by using Streptococcus faecalis (S. Faecalis) and Escherichia coli (E.coli) as model bacteria and the hydrogel composites of PASA/C30B/Ag shows exceptional antibacterial activity against both the bacteria as compared to pure hydrogel composites samples.

  11. Influence of charge on FITC-BSA-loaded chondroitin sulfate-chitosan nanoparticles upon cell uptake in human Caco-2 cell monolayers

    Directory of Open Access Journals (Sweden)

    Hu CS

    2012-09-01

    Full Text Available Chieh-shen Hu,1 Chiao-hsi Chiang,2 Po-da Hong,1,4,* Ming-kung Yeh1–3,*1Biomedical Engineering Program, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology; 2School of Pharmacy, National Defence Medical Center; 3Bureau of Pharmaceutical Affairs, Ministry of National Defence Medical Affairs Bureau; 4Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taiwan, Republic of China*These authors contributed equally to this workBackground and methods: Chondroitin sulfate-chitosan (ChS-CS nanoparticles and positively and negatively charged fluorescein isothiocyanate-conjugated bovine serum albumin (FITC-BSA-loaded ChS-CS nanoparticles were prepared and characterized. The properties of ChS-CS nanoparticles, including cellular uptake, cytotoxicity, and transepithelial transport, as well as findings on field emission-scanning electron microscopy, transmission electron microscopy, and confocal laser scanning microscopy were evaluated in human epithelial colorectal adenocarcinoma (Caco-2 fibroblasts. ChS-CS nanoparticles with a mean particle size of 250 nm and zeta potentials ranging from –30 to +18 mV were prepared using an ionic gelation method.Results: Standard cell viability assays demonstrated that cells incubated with ChS-CS and FITC-BSA-loaded ChS-CS nanoparticles remained more than 95% viable at particle concentrations up to 0.1 mg/mL. Endocytosis of nanoparticles was confirmed by confocal laser scanning microscopy and measured by flow cytometry. Ex vivo transepithelial transport studies using Caco-2 cells indicated that the nanoparticles were effectively transported into Caco-2 cells via endocytosis. The uptake of positively charged FITC-BSA-loaded ChS-CS nanoparticles across the epithelial membrane was more efficient than that of the negatively charged nanoparticles.Conclusion: The ChS-CS nanoparticles fabricated in this study were

  12. Synthesis, thermodynamic properties and BSA interaction of a new Valen Shiff base derived from o-vanillin and trimethoprim

    International Nuclear Information System (INIS)

    Li, Xu; Jiang, Jian-Hong; Xiao, Sheng-Xiong; Gu, Hui-Wen; Li, Chuan-Hua; Ye, Li-Juan; Li, Xia; He, Du-Gui; Yao, Fei-Hong; Li, Qiang-Guo

    2014-01-01

    Graphical abstract: A new single Valen Shiff base was synthesized and characterized. The thermodynamics properties of the Shiff base were investigated by microcalorimetry. In particular, the interaction between the synthetic Shiff base and BSA at four different temperatures has been investigated using fluorescence quenching method. - Highlights: • A new single Valen Shiff base was synthesized and characterized. • The thermodynamics properties of the Shiff base were investigated by microcalorimetry. • The interaction between the Shiff base and BSA has been investigated using fluorescence quenching method. - Abstract: A new Valen Shiff base (C 22 H 24 N 4 O 5 ) was synthesized using equivalent moles of o-vanillin and trimethoprim. At 298.15 K, the standard molar enthalpy of formation of the new compound was estimated to be Δ f H m Θ [C 22 H 24 N 4 O 5 (s), 298.15 K] = −(696.92 ± 1.67) kJ mol −1 by microcalorimetry. In particular, the interaction between the Shiff base and bovine serum albumin (BSA) has been investigated. It was proved that the fluorescence quenching of BSA by Shiff base is a result of the formation of a Shiff base-BSA complex. Quenching constants were determined using the Sterns–Volmer equation to provide a measurement of the binding site between Shiff base and BSA. The thermodynamic parameters ΔG, ΔH, and ΔS of the system at different temperatures were calculated. What is more, the distance r between donor (Trp. 213) and acceptor (Shiff base) was obtained. Finally, synchronous fluorescence spectroscopy data has suggested the association between Shiff base and BSA changed the molecular conformation of BSA

  13. A purely Lagrangian method for simulating the shallow water equations on a sphere using smooth particle hydrodynamics

    Science.gov (United States)

    Capecelatro, Jesse

    2018-03-01

    It has long been suggested that a purely Lagrangian solution to global-scale atmospheric/oceanic flows can potentially outperform tradition Eulerian schemes. Meanwhile, a demonstration of a scalable and practical framework remains elusive. Motivated by recent progress in particle-based methods when applied to convection dominated flows, this work presents a fully Lagrangian method for solving the inviscid shallow water equations on a rotating sphere in a smooth particle hydrodynamics framework. To avoid singularities at the poles, the governing equations are solved in Cartesian coordinates, augmented with a Lagrange multiplier to ensure that fluid particles are constrained to the surface of the sphere. An underlying grid in spherical coordinates is used to facilitate efficient neighbor detection and parallelization. The method is applied to a suite of canonical test cases, and conservation, accuracy, and parallel performance are assessed.

  14. Synthesis, thermodynamic properties and BSA interaction of a new Valen Shiff base derived from o-vanillin and trimethoprim

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xu; Jiang, Jian-Hong; Xiao, Sheng-Xiong [Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, Department of Chemistry and Life Science, Xiangnan University, Chenzhou 423000, Hunan Province (China); Gu, Hui-Wen, E-mail: gruyclewee@hnu.edu.cn [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan Province (China); Li, Chuan-Hua; Ye, Li-Juan; Li, Xia; He, Du-Gui; Yao, Fei-Hong [Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, Department of Chemistry and Life Science, Xiangnan University, Chenzhou 423000, Hunan Province (China); Li, Qiang-Guo, E-mail: liqiangguo@163.com [Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, Department of Chemistry and Life Science, Xiangnan University, Chenzhou 423000, Hunan Province (China)

    2014-01-10

    Graphical abstract: A new single Valen Shiff base was synthesized and characterized. The thermodynamics properties of the Shiff base were investigated by microcalorimetry. In particular, the interaction between the synthetic Shiff base and BSA at four different temperatures has been investigated using fluorescence quenching method. - Highlights: • A new single Valen Shiff base was synthesized and characterized. • The thermodynamics properties of the Shiff base were investigated by microcalorimetry. • The interaction between the Shiff base and BSA has been investigated using fluorescence quenching method. - Abstract: A new Valen Shiff base (C{sub 22}H{sub 24}N{sub 4}O{sub 5}) was synthesized using equivalent moles of o-vanillin and trimethoprim. At 298.15 K, the standard molar enthalpy of formation of the new compound was estimated to be Δ{sub f}H{sub m}{sup Θ} [C{sub 22}H{sub 24}N{sub 4}O{sub 5}(s), 298.15 K] = −(696.92 ± 1.67) kJ mol{sup −1} by microcalorimetry. In particular, the interaction between the Shiff base and bovine serum albumin (BSA) has been investigated. It was proved that the fluorescence quenching of BSA by Shiff base is a result of the formation of a Shiff base-BSA complex. Quenching constants were determined using the Sterns–Volmer equation to provide a measurement of the binding site between Shiff base and BSA. The thermodynamic parameters ΔG, ΔH, and ΔS of the system at different temperatures were calculated. What is more, the distance r between donor (Trp. 213) and acceptor (Shiff base) was obtained. Finally, synchronous fluorescence spectroscopy data has suggested the association between Shiff base and BSA changed the molecular conformation of BSA.

  15. Study on radiation grafting of NASI on sephadex and conjugation of the copolymer with BSA

    International Nuclear Information System (INIS)

    Yi Min; Li Jun; Wei Jinshan; Ha Hongfei

    1997-01-01

    N-acryloxysuccinimide (NASI) with a function ester group is grafted on Sephadex G75 and Sephadex G50 separately by radiation technology. The radiation grafting conditions including absorbed dose, dose rate, monomer concentration in solvent are investigated. The conjugation reactions between the grafted copolymers Sephadex G75-NASI, and bovine serum albumin (BSA) or Sephadex G50-NASI and bovine serum albumin (BSA) are followed. The experiment results show that the conjugate of Sephadex G75-NASI with larger holes and BSA (M r = 6.6 x 10 4 ) is obtained successfully, however, the Sephadex G50 with small holes can be only conjugated with neutral red (M r = 2.58 x 10 2 )

  16. Spectroscopic studies on the interaction of mimosine with BSA and DNA

    Science.gov (United States)

    Baltazar, C. J.; Mun, R.; Tajmir-Riahi, H. A.; Bariyanga, J.

    2018-06-01

    Mimosine has shown antitumor activity towards cancer cells. It has also been found to inhibit deoxyribonucleic acid (DNA) but the interaction is not fully understood. Here we report the results of investigation of its interactions with bovine serum albumin (BSA) and DNA in aqueous solution (pH 7.4) using FTIR and UV spectroscopic methods. Mimosine was found to disrupt the conformation of BSA by reducing its α-helix component and promoting a partial unfolding of the protein. In addition, the results indicated that mimosine may bind to DNA by electrostatic attractions via phosphate groups and grooves. The overall binding constant of DNA -mimosine complex was 5 × 10 3 M-1.

  17. Highly selective BSA imprinted polyacrylamide hydrogels facilitated by a metal-coding MIP approach.

    Science.gov (United States)

    El-Sharif, H F; Yapati, H; Kalluru, S; Reddy, S M

    2015-12-01

    We report the fabrication of metal-coded molecularly imprinted polymers (MIPs) using hydrogel-based protein imprinting techniques. A Co(II) complex was prepared using (E)-2-((2 hydrazide-(4-vinylbenzyl)hydrazono)methyl)phenol; along with iron(III) chloroprotoporphyrin (Hemin), vinylferrocene (VFc), zinc(II) protoporphyrin (ZnPP) and protoporphyrin (PP), these complexes were introduced into the MIPs as co-monomers for metal-coding of non-metalloprotein imprints. Results indicate a 66% enhancement for bovine serum albumin (BSA) protein binding capacities (Q, mg/g) via metal-ion/ligand exchange properties within the metal-coded MIPs. Specifically, Co(II)-complex-based MIPs exhibited 92 ± 1% specific binding with Q values of 5.7 ± 0.45 mg BSA/g polymer and imprinting factors (IF) of 14.8 ± 1.9 (MIP/non-imprinted (NIP) control). The selectivity of our Co(II)-coded BSA MIPs were also tested using bovine haemoglobin (BHb), lysozyme (Lyz), and trypsin (Tryp). By evaluating imprinting factors (K), each of the latter proteins was found to have lower affinities in comparison to cognate BSA template. The hydrogels were further characterised by thermal analysis and differential scanning calorimetry (DSC) to assess optimum polymer composition. The development of hydrogel-based molecularly imprinted polymer (HydroMIPs) technology for the memory imprinting of proteins and for protein biosensor development presents many possibilities, including uses in bio-sample clean-up or selective extraction, replacement of biological antibodies in immunoassays and biosensors for medicine and the environment. Biosensors for proteins and viruses are currently expensive to develop because they require the use of expensive antibodies. Because of their biomimicry capabilities (and their potential to act as synthetic antibodies), HydroMIPs potentially offer a route to the development of new low-cost biosensors. Herein, a metal ion-mediated imprinting approach was employed to metal-code our

  18. NanoXCT: a novel technique to probe the internal architecture of pharmaceutical particles.

    Science.gov (United States)

    Wong, Jennifer; D'Sa, Dexter; Foley, Matthew; Chan, John Gar Yan; Chan, Hak-Kim

    2014-11-01

    To demonstrate the novel application of nano X-ray computed tomography (NanoXCT) for visualizing and quantifying the internal structures of pharmaceutical particles. An Xradia NanoXCT-100, which produces ultra high-resolution and non-destructive imaging that can be reconstructed in three-dimensions (3D), was used to characterize several pharmaceutical particles. Depending on the particle size of the sample, NanoXCT was operated in Zernike Phase Contrast (ZPC) mode using either: 1) large field of view (LFOV), which has a two-dimensional (2D) spatial resolution of 172 nm; or 2) high resolution (HRES) that has a resolution of 43.7 nm. Various pharmaceutical particles with different physicochemical properties were investigated, including raw (2-hydroxypropyl)-beta-cyclodextrin (HβCD), poly (lactic-co-glycolic) acid (PLGA) microparticles, and spray-dried particles that included smooth and nanomatrix bovine serum albumin (BSA), lipid-based carriers, and mannitol. Both raw HβCD and PLGA microparticles had a network of voids, whereas spray-dried smooth BSA and mannitol generally had a single void. Lipid-based carriers and nanomatrix BSA particles resulted in low quality images due to high noise-to-signal ratio. The quantitative capabilities of NanoXCT were also demonstrated where spray-dried mannitol was found to have an average void volume of 0.117 ± 0.247 μm(3) and average void-to-material percentage of 3.5%. The single PLGA particle had values of 1993 μm(3) and 59.3%, respectively. This study reports the first series of non-destructive 3D visualizations of inhalable pharmaceutical particles. Overall, NanoXCT presents a powerful tool to dissect and observe the interior of pharmaceutical particles, including those of a respirable size.

  19. Production of Purely Gravitational Dark Matter

    OpenAIRE

    Ema, Yohei; Nakayama, Kazunori; Tang, Yong

    2018-01-01

    In the purely gravitational dark matter scenario, the dark matter particle does not have any interaction except for gravitational one. We study the gravitational particle production of dark matter particle in such a minimal setup and show that correct amount of dark matter can be produced depending on the inflation model and the dark matter mass. In particular, we carefully evaluate the particle production rate from the transition epoch to the inflaton oscillation epoch in a realistic inflati...

  20. Interactions and effects of BSA-functionalized single-walled carbon nanotubes on different cell lines

    Science.gov (United States)

    Muzi, Laura; Tardani, Franco; La Mesa, Camillo; Bonincontro, Adalberto; Bianco, Alberto; Risuleo, Gianfranco

    2016-04-01

    Functionalized carbon nanotubes (CNTs) have shown great promise in several biomedical contexts, spanning from drug delivery to tissue regeneration. Thanks to their unique size-related properties, single-walled CNTs (SWCNTs) are particularly interesting in these fields. However, their use in nanomedicine requires a clear demonstration of their safety in terms of tissue damage, toxicity and pro-inflammatory response. Thus, a better understanding of the cytotoxicity mechanisms, the cellular interactions and the effects that these materials have on cell survival and on biological membranes is an important first step for an appropriate assessment of their biocompatibility. In this study we show how bovine serum albumin (BSA) is able to generate homogeneous and stable dispersions of SWCNTs (BSA-CNTs), suggesting their possible use in the biomedical field. On the other hand, this study wishes to shed more light on the impact and the interactions of protein-stabilized SWCNTs with two different cell types exploiting multidisciplinary techniques. We show that BSA-CNTs are efficiently taken up by cells. We also attempt to describe the effect that the interaction with cells has on the dielectric characteristics of the plasma membrane and ion flux using electrorotation. We then focus on the BSA-CNTs’ acute toxicity using different cellular models. The novel aspect of this work is the evaluation of the membrane alterations that have been poorly investigated to date.

  1. Interaction of Flavonoids from Woodwardia unigemmata with Bovine Serum Albumin (BSA): Application of Spectroscopic Techniques and Molecular Modeling Methods.

    Science.gov (United States)

    Ma, Rui; Pan, Hong; Shen, Tao; Li, Peng; Chen, Yanan; Li, Zhenyu; Di, Xiaxia; Wang, Shuqi

    2017-08-09

    Phytochemical investigation on the methanol extract of Woodwardia unigemmata resulted in the isolation of seven flavonoids, including one new flavonol acylglycoside ( 1 ). The structures of these compounds were elucidated on the basis of extensive spectroscopic analysis and comparison of literature data. The multidrug resistance (MDR) reversing activity was evaluated for the isolated compounds using doxorubicin-resistant K562/A02 cells model. Compound 6 showed comparable MDR reversing effect to verapamil. Furthermore, the interaction between compounds and bovine serum albumin (BSA) was investigated by spectroscopic methods, including steady-state fluorescence, synchronous fluorescence, circular dichroism (CD) spectroscopies, and molecular docking approach. The experimental results indicated that the seven flavonoids bind to BSA by static quenching mechanisms. The negative ΔH and ΔS values indicated that van der Waals interactions and hydrogen bonds contributed in the binding of compounds 2 - 6 to BSA. In the case of compounds 1 and 7 systems, the hydrophobic interactions play a major role. The binding of compounds to BSA causes slight changes in the secondary structure of BSA. There are two binding sites of compound 6 on BSA and site I is the main site according to the molecular docking studies and the site marker competitive binding assay.

  2. Characterizing the binding interaction of fungicide boscalid with bovine serum albumin (BSA): A spectroscopic study in combination with molecular docking approach.

    Science.gov (United States)

    Lou, Yan-Yue; Zhou, Kai-Li; Shi, Jie-Hua; Pan, Dong-Qi

    2017-08-01

    Boscalid, a carboxamide fungicide, is used in the treatment of grey mould and powdery mildew, widely applied to a variety of crops and fruits such as rice, wheat, grapes and pears. It will become a potential risk for health due to its widely application and residue in crops and fruits. In this study, the binding interaction between boscalid and bovine serum albumin (BSA) was characterized using steady-state fluorescence spectroscopy, ultraviolet spectroscopy (UV), synchronous fluorescence spectroscopy, 3D fluorescence spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and molecular docking to ascertain the store, transport and distribution of boscalid in vivo. The experimental results indicated that the fluorescence of BSA was quenched due to the forming the static boscalid-BSA complex with the binding constant of 4.57×10 3 M -1 at 298 K and boscalid bound on the subdomain III A (site II) of BSA through van der Waals force and hydrogen bonding interaction. The binding process of boscalid with BSA was spontaneous and enthalpy-driven process based on ΔG 0 T|ΔS 0 | over the studied temperature range. Meanwhile, the obvious change in the conformation of boscalid was observed while the slight change in the conformation of BSA when binding boscalid to the BSA, implying that the flexibility of boscalid contributes to increasing the stability of the boscalid-BSA complex. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Economic environmental dispatch using BSA algorithm

    Science.gov (United States)

    Jihane, Kartite; Mohamed, Cherkaoui

    2018-05-01

    Economic environmental dispatch problem (EED) is an important issue especially in the field of fossil fuel power plant system. It allows the network manager to choose among different units the most optimized in terms of fuel costs and emission level. The objective of this paper is to minimize the fuel cost with emissions constrained; the test is conducted for two cases: six generator unit and ten generator unit for the same power demand 1200Mw. The simulation has been computed in MATLAB and the result shows the robustness of the Backtracking Search optimization Algorithm (BSA) and the impact of the load demand on the emission.

  4. Do all pure entangled states violate Bell's inequalities for correlation functions?

    Science.gov (United States)

    Zukowski, Marek; Brukner, Caslav; Laskowski, Wiesław; Wieśniak, Marcin

    2002-05-27

    Any pure entangled state of two particles violates a Bell inequality for two-particle correlation functions (Gisin's theorem). We show that there exist pure entangled N>2 qubit states that do not violate any Bell inequality for N particle correlation functions for experiments involving two dichotomic observables per local measuring station. We also find that Mermin-Ardehali-Belinskii-Klyshko inequalities may not always be optimal for refutation of local realistic description.

  5. Probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel and its application in quantum state sharing

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper presents a scheme for probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel. The sender Alice first teleports the coefficients of the unknown state to the receiver Bob, and then Bob reconstructs the state with an auxiliary particle and some unitary operations if the teleportation succeeds. This scheme has the advantage of transmitting much less particles for teleporting an arbitrary GHZ-class state than others. Moreover, it discusses the application of this scheme in quantum state sharing.

  6. AdS pure spinor superstring in constant backgrounds

    International Nuclear Information System (INIS)

    Chandia, Osvaldo; Bevilaqua, L. Ibiapina; Vallilo, Brenno Carlini

    2014-01-01

    In this paper we study the pure spinor formulation of the superstring in AdS_5×S"5 around point particle solutions of the classical equations of motion. As a particular example we quantize the pure spinor string in the BMN background

  7. AdS pure spinor superstring in constant backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Chandia, Osvaldo [Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez,Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez,Diagonal Las Torres 2640, Peñalolén, Santiago (Chile); Bevilaqua, L. Ibiapina [Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte,Caixa Postal 1524, 59072-970, Natal, RN (Brazil); Vallilo, Brenno Carlini [Facultad de Ciencias Exactas, Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile)

    2014-06-05

    In this paper we study the pure spinor formulation of the superstring in AdS{sub 5}×S{sup 5} around point particle solutions of the classical equations of motion. As a particular example we quantize the pure spinor string in the BMN background.

  8. Microwave-assisted synthesis of BSA-modified silver nanoparticles as a selective fluorescent probe for detection and cellular imaging of cadmium(II)

    International Nuclear Information System (INIS)

    Gu, Yu; Li, Nan; Gao, Mengmeng; Wang, Zilu; Xiao, Deli; Li, Yun; Jia, Huning; He, Hua

    2015-01-01

    We have developed a microwave-assisted method for the synthesis of silver nanoparticles (AgNPs) whose surface is modified with bovine serum albumin (BSA). The reaction involves reduction of the BSA-Ag(I) complex by tyrosine in strongly alkaline solution to form BSA-AgNPs. The reaction takes a few minutes only owing to rapid and uniform microwave heating. The modified AgNPs were characterized by UV–vis and fluorescence spectroscopy, transmission electron microscopy and X- ray photoelectron spectroscopy. The BSA-AgNPs are yellow and display luminescence with a maximum at 521 nm if excited at 465 nm. They have a hydrodynamic diameter of 3–5 nm and possess good colloidal stability in the pH 4.6 to 12.0 range. The fluorescence of the BSA-AgNPs is enhanced by Cd(II) ion due to the formation of a stable hybrid conjugate referred to as Cd-BSA-AgNPs. The effect was exploited to quantify Cd(II) in spiked real water samples with a 4.7 nM detection limit, and also to fluorescently image Cd(II) in Hepatoma cells. (author)

  9. Effect of apatite formation of biphasic calcium phosphate ceramic (BCP) on osteoblastogenesis using simulated body fluid (SBF) with or without bovine serum albumin (BSA)

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li [Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning (China); Department of Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning (China); Zhou, Bo; Wu, Huayu [Department of Cell Biology & Genetics, School of Premedical Sciences, Guangxi Medical University, Nanning (China); Zheng, Li, E-mail: zhengli224@163.com [Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning (China); The Medical and Scientific Research Center, Guangxi Medical University, Nanning (China); Zhao, Jinmin, E-mail: zhaojinmin@126.com [Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning (China); Department of Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning (China); Guangxi Colleges and Universities Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning (China)

    2017-01-01

    Although biphasic calcium phosphate ceramic (BCP) holds promise in therapy of bone defect, surface mineralization prior to implantation may improve the bioactivity to better integrate with the host. Immersion in simulated body fluid (SBF) and bovine serum albumin-simulated body fluid (BSA-SBF) are common methods to form apatite interface layer. This study was intended to investigate the effect of SBF and BSA-SBF treatment on the bioactivity of BCP in vitro. In this study, osteoblasts were grown on BCP with or without treatment of SBF or BSA-SBF, and detected with general observation, scanning electron microscope (SEM), cell proliferation assay, morphology observation, viability assay, alkaline phosphatase (ALP) activity assay, and osteogenic specific gene expression of alkaline phosphatase (ALPL), bone gamma-carboxyglutamate (gla) protein (BGLAP), bone morphogenetic protein 2 (BMP2), bone sialoprotein (BSP), type I collagen (COLI) and runt-related transcription factor 2 (RUNX2) after culture of 2, 5 and 8 days. As the results shown, BCP pre-incubated in SBF and BSA-SBF up-regulated ALP activity and osteogenic related genes and proteins, which testified the positive effect of SBF and BSA-SBF. Especially, BSA-SBF enhanced the cell growth significantly. This study indicated that treatment by BSA-SBF is of importance for BCP before clinical application. - Highlights: • BCP pre-incubated in SBF and BSA-SBF significantly promoted osteogenic differetiation of osteoblasts. • BSA-SBF enhanced the cell growth more significantly than SBF. • SBF may be a little toxic to osteoblasts.

  10. Spectroscopic investigation on assisted sonocatalytic damage of bovine serum albumin (BSA) by metronidazole (MTZ) under ultrasonic irradiation combined with nano-sized ZnO

    Science.gov (United States)

    Gao, Jingqun; Liu, Bin; Wang, Jun; Jin, Xudong; Jiang, Renzheng; Liu, Lijun; Wang, Baoxin; Xu, Yongnan

    2010-11-01

    The previous work proved that the bovine serum albumin (BSA) could be damaged under the combined action of ultrasonic irradiation and ZnO. In this work, the assisted sonocatalytic damage of BSA using metronidazole (MTZ) as a sensitizer was further investigated by means of UV-vis and fluorescence spectra. The results indicated that the adding of MTZ could obviously promote the sonocatalytic damage of BSA under ultrasonic irradiation in the presence of nano-sized ZnO powder. Furthermore, it was found that the damage degree of BSA was aggravated by some influencing factors except ionic kind and strength. In addition, the damage site of BSA was also studied with synchronous fluorescence technology. It was found that the damage site was mainly at tryptophan (Trp) residue.

  11. Up-converter nanophosphor Y2O2S:Er,Yb aminofunctionalized containing or not spherical silica conjugated with BSA

    International Nuclear Information System (INIS)

    Gelamos, Joao Paulo; Laranja, Marlon Larry; Alvino, Karla Cristina Lombardi; Camacho, Sabrina Alessio; Pires, Ana Maria

    2009-01-01

    This work reports on the study of the nanophosphor Y 2 O 2 S:Er(2%),Yb(1%) obtained from polymeric resin to be evaluated as fluorescent label with suitable features to conjugate with bio-molecules for bioassay up-converting phosphor technology (UPT) application. A conjugation protocol between bovine serum albumin (BSA) and the aminofunctionalized nanophosphor containing or not spherical silica was established. UV-vis results indicated an effective conjugation between nanophosphor particles and the protein. Up-conversion measurements under 980 nm excitation performed for samples before and after aminofunctionalization showed that nanophosphor particles luminescence features keep unchanged in all cases. All results suggest that the adapted protocol is feasible to provide a nanoparticle-protein effective conjugation preserving nanophosphor optical features. The presence of spherical silica can be considered advantageous to increase conjugation efficiency. Therefore, the developed procedure is applicable for future conjugations between the chosen nanophosphor and the streptavidin protein that takes part in the well known self-recognition system avidin-biotin.

  12. Particle magnetic moment conservation and resonance in a pure magnetohydrodynamic shock and field inclination influence on diffusive shock acceleration

    International Nuclear Information System (INIS)

    Lieu, R.; Quenby, J.J.

    1990-01-01

    Computational and analytical methods have been used in a study of particle acceleration by MHD shocks. Numerical simulations of single-particle trajectories indicate that magnetic moment is conserved quite accurately for an encounter with a near-perpendicular shock, and for all pitch angles except the very small ones. Acceleration is most effective for particles which are reflected by the shock at small pitch angles. If future encounters with the shock are possible, large acceleration will be repeated only for relativistic plasma flow velocities. Results for the pure MHD shock are then considered within the context of a diffusion model (hence a diffusive MHD shock). The microscopic approach is employed whereby one follows the history of a test particle and explicitly takes into account the possibility of reflection by the shock. Exact analytical solutions are currently available to order V/c, where V is the plasma flow speed, and are found to be in complete agreement with diffusion theory. More specifically, the presence of electromagnetic effects leads to a shortening of acceleration time scale but does not change the steady state spectrum of energetic particles. 7 refs

  13. Determination of the activity of telomerase in cancer cells by using BSA-protected gold nanoclusters as a fluorescent probe.

    Science.gov (United States)

    Xu, Yujuan; Zhang, Peng; Wang, Zhen; Lv, Shaoping; Ding, Caifeng

    2018-02-27

    Gold nanoclusters (AuNCs) protected with a bovine serum albumin (BSA) coating are known to emit red fluorescence (peaking at 650 nm) on photoexcitation with ultraviolet light (365 nm). On addition of Cu(II) ions, fluorescence is quenched because Cu(II) complexes certain amino acid units in the BSA chain. Fluorescence is, however, restored if pyrophosphate (PPi) is added because it will chelate Cu(II) and remove it from the BSA coating on the AuNCs. Because PPi is involved in the function of telomerase, the BSA@AuNCs loaded with Cu(II) can act as a fluorescent probe for determination of the activity of telomerase. A fluorescent assay was worked out for telomerase that is highly sensitive and has a wide linear range (10 nU to 10 fM per mL). The fluorescent probe was applied to the determination of telomerase activity in cervix carcinoma cells via imaging. It is shown that tumor cells can be well distinguished from normal cells by monitoring the differences in intracellular telomerase activity. Graphical abstract Gold nanoclusters (AuNCs) protected by bovine serum albumin (BSA) and displaying red photoluminescence were prepared as fluorescent probe for the determination of telomerase activity and used for imaging of cervix carcinoma (HeLa) cells.

  14. Separation of BSA through FAU-type zeolite ceramic composite membrane formed on tubular ceramic support: Optimization of process parameters by hybrid response surface methodology and biobjective genetic algorithm.

    Science.gov (United States)

    Vinoth Kumar, R; Ganesh Moorthy, I; Pugazhenthi, G

    2017-08-09

    In this study, Faujasite (FAU) zeolite was coated on low-cost tubular ceramic support as a separating layer through hydrothermal route. The mixture of silicate and aluminate solutions was used to create a zeolitic separation layer on the support. The prepared zeolite ceramic composite membrane was characterized using X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), particle size distribution (PSD), field emission scanning electron microscopy (FESEM), and zeta potential measurements. The porosity of ceramic support (53%) was reduced by the deposition of FAU (43%) zeolite layer. The pore size and water permeability of the membrane were evaluated as 0.179 µm and 1.62 × 10 -7  m 3 /m 2  s kPa, respectively, which are lower than that of the support (pore size of 0.309 µm and water permeability of 5.93 × 10 -7  m 3 /m 2  s kPa). The permeate flux and rejection potential of the prepared membrane were evaluated by microfiltration of bovine serum albumin (BSA). To study the influences of three independent variables such as operating pressure (68.94-275.79 kPa), concentration of BSA (100-500 ppm), and solution pH (2-4) on permeate flux and percentage of rejection, the response surface methodology (RSM) was used. The predicted models for permeate flux and rejection were further subjected to biobjective genetic algorithm (GA). The hybrid RSM-GA approach resulted in a maximum permeate flux of 2.66 × 10 -5  m 3 /m 2  s and BSA rejection of 88.02%, at which the optimum conditions were attained as 100 ppm BSA concentration, 2 pH solution, and 275.79 kPa applied pressure. In addition, the separation efficiency was compared with other membranes applied for BSA separation to know the potential of the fabricated FAU zeolite ceramic composite membrane.

  15. A DSC study of zinc binding to bovine serum albumin (BSA

    Directory of Open Access Journals (Sweden)

    SANJA OSTOJIC

    2007-04-01

    Full Text Available The thermal denaturation of bovine serum albumin (BSA is a kinetically and thermodynamically controlled process. The effects of zinc binding to bovine serum albumin (BSA, followed by differential scanning calorimetry (DSC, were investigated in this work, with the purpose of obtaining a better understanding of the albumin/zinc interaction. From the DSC curves, the thermodynamic parameters of protein denaturation were obtained, i.e., the temperature of thermal transition maximum (Tm, calorimetric enthalpy (DHcal, van't Hoff enthalpy (DHvH, the number of binding sites (I, II, the binding constants for each binding site (KbI, KbII and the average number of ligands bound per mole of native protein XN. The thermodynamic data of protein unfolding showed that zinc binding to bovine serum albumin increases the stability of the protein (higher values of DHcal and the different ratio DHcal/DHvH indicates the perturbation of the protein during thermal denaturation.

  16. Bisphosphonate-coated BSA nanoparticles lack bone targeting after systemic administration.

    Science.gov (United States)

    Wang, Guilin; Kucharski, Cezary; Lin, Xiaoyue; Uludağ, Hasan

    2010-09-01

    A polymeric conjugate of polyethyleneimine-graft-poly(ethylene glycol) and 2-(3-mercaptopropylsulfanyl)-ethyl-1,1-bisphosphonic acid (PEI-PEG-thiolBP) was prepared and used for surface coating of bovine serum albumin (BSA) nanoparticles (NPs) designed for bone-specific delivery of bone morphogenetic protein-2 (BMP-2). The NP coating was achieved with a dialysis and an evaporation method, and the obtained NPs were characterized by particle size, zeta-potential, morphology, and cytotoxicity in vitro. The particle size and surface charge of the NPs could be effectively tuned by the PEG and thiolBP substitution ratios of the conjugate, the coating method, and the polymer concentration used for coating. The PEG modification on PEI reduced the toxicity of PEI and the coated NPs, based on in vitro assessment with human C2C12 cells and rat bone marrow stromal cells. On the basis of an alkaline phosphatase (ALP) induction assay, the NP-encapsulated BMP-2 displayed full retention of its bioactivity, except for BMP-2 in PEI-coated NPs. By encapsulating (125)I-labeled BMP-2, the polymer-coated NPs were assessed for hydroxyapatite (HA) affinity; all NP-encapsulated BMP-2 showed significant affinity to HA as compared with free BMP-2 in vitro, and the PEI-PEG-thiolBP coated NPs improved the in vivo retention of BMP-2 compared with uncoated NPs. However, the biodistribution of NPs after intravenous injection in a rat model indicated no beneficial effects of thiolBP-coated NPs for bone targeting. Our results suggested that the BP-conjugated NPs are useful for localized delivery of BMP-2 in bone repair and regeneration, but they are not effective for bone targeting after intravenous administration.

  17. Role of hydrogen-bonding and photoinduced electron transfer (PET) on the interaction of resorcinol based acridinedione dyes with Bovine Serum Albumin (BSA) in water

    International Nuclear Information System (INIS)

    Kumaran, Rajendran; Vanjinathan, Mahalingam; Ramamurthy, Perumal

    2015-01-01

    Resorcinol based acridinedione (ADDR) dyes are a class of laser dyes and have structural similarity with purine derivatives, nicotinamide adenine dinucleotide (NADH) analogs. These dyes are classified into photoinduced electron transfer (PET) and non-photoinduced electron transfer dyes, and the photophysical properties of family of these dyes exhibiting PET behavior are entirely different from that of non-PET dyes. The PET process in ADDR dyes is governed by the solvent polarity such that an ADDR dye exhibits PET process through space in an aprotic solvent like acetonitrile and does not exhibit the same in protic solvents like water and methanol. A comparison on the fluorescence emission, lifetime and nature of interaction of various ADDR dyes with a large globular protein like Bovine Serum Albumin (BSA) was carried out in aqueous solution. The interaction of PET based ADDR dyes with BSA in water is found to be largely hydrophobic, but hydrogen-bonding interaction of BSA with dye molecule influences the fluorescence emission of the dye and shifts the emission towards red region. Fluorescence spectral studies reveal that the excited state properties of PET based ADDR dyes are largely influenced by the addition of BSA. The microenvironment around the dye results in significant change in the fluorescence lifetime and emission. Fluorescence enhancement with a red shift in the emission results after the addition of BSA to ADDR dyes containing free amino hydrogen in the 10th position of basic acridinedione dye. The amino hydrogen (N–H) in the 10th position of ADDR dye is replaced by methyl group (N–CH 3 ), a significant decrease in the fluorescence intensity with no apparent shift in the emission maximum was observed after the addition of BSA. The nature of interaction between ADDR dyes with BSA is hydrogen-bonding and the dye remains unbound even at the highest concentration of BSA. Circular Dichroism (CD) studies show that the addition of dye to BSA results in a

  18. Ion-induced nucleation of pure biogenic particles

    CERN Document Server

    Kirkby, Jasper; Sengupta, Kamalika; Frege, Carla; Gordon, Hamish; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K; Wagner, Robert; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill; Dias, antonio; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Krapf, Manuel; Kürten, andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Onnela, antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P; Pringle, Kirsty; Rap, Alexandru; Richards, Nigel A D; Riipinen, Ilona; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E; Seinfeld, John H; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander L; Wagner, Andrea C; Wagner, Paul E; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M; Worsnop, Douglas R; Baltensperger, Urs; Kulmala, Markku; Carslaw, Kenneth S; Curtius, Joachim

    2016-01-01

    Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere and that ions have a relatively minor role. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of $\\alpha$-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported...

  19. Improving quality of an innovative pea puree by high hydrostatic pressure.

    Science.gov (United States)

    Klug, Tâmmila Venzke; Martínez-Sánchez, Ascensión; Gómez, Perla A; Collado, Elena; Aguayo, Encarna; Artés, Francisco; Artés-Hernández, Francisco

    2017-10-01

    The food industry is continuously innovating to fulfill consumer demand for new, healthy, ready-to-eat products. Pea purees could satisfy this trend by increasing the intake of legumes, which are an important source of nutrients. Moreover, sensorial properties like viscosity could be improved by high hydrostatic pressure (HHP). In this study the effect of a boiling treatment (10 min) followed by HHP at 550 kPa (0, 5 or 10 min) on the rheological properties, associated with enzymatic activity and particle size, as well as on the microbial and sensory quality of a pea-based puree stored for 36 days at 5 °C, has been assessed. The particle size of pea puree decreased after all processing treatments, but increased during storage in HHP-treated samples. Conversely, boiling treatment showed an increase in polygalacturonase activity at the end of the storage period, with a decrease in particle size, viscosity and stability. However, 5 min of 550 kPa HHP showed the highest mean particle size, mean surface diameter and viscosity regarding the remaining treatments. The microbial load remained low during storage. HHP treatment can be used by the food industry to improve the rheological properties, viscosity and stability of pea purees. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Application of vacuum metallurgy to separate pure metal from mixed metallic particles of crushed waste printed circuit board scraps.

    Science.gov (United States)

    Zhan, Lu; Xu, Zhenming

    2008-10-15

    The principle of separating pure metal from mixed metallic particles (MMPs) byvacuum metallurgy is that the vapor pressures of various metals at the same temperature are different As a result, the metal with high vapor pressure and low boiling point can be separated from the mixed metals through distillation or sublimation, and then it can be recycled through condensation under a certain condition. The vacuum metallurgy separation (VMS) of MMPs of crushed waste printed circuit boards (WPCBs) has been studied in this paper. Theoretical analyses show that the MMPs (copper, zinc, bismuth, lead, and indium, for example) can be separated by vacuum metallurgy. The copper particles (0.15-0.20 mm) and zinc particles (<0.30 mm) were chosen to simulate the MMPs of crushed WPCBs. Experimental results show that the separated efficiency of zinc in the copper-rich particles achieves 96.19 wt % when the vacuum pressure is 0.01-0.10 Pa, the heating temperature is 1123 K, and the heating time is 105 min. Under this operation condition, the separated efficiency of zinc in the copper-rich particles from crushed WPCBs achieves 97.00 wt % and the copper purity increases from 90.68 to 99.84 wt %.

  1. Electron Acoustic Waves in Pure Ion Plasmas

    Science.gov (United States)

    Anderegg, F.; Driscoll, C. F.; Dubin, D. H. E.; O'Neil, T. M.

    2009-11-01

    Electron Acoustic Waves (EAW) are the low frequency branch of electrostatic plasma waves. These waves exist in neutralized plasmas, pure electron plasmas and in pure ion plasmasfootnotetextF. Anderegg et al., PRL 102, 095001 (2009) and PoP 16, 055705 (2009). (where the name is deceptive). Here, we observe standing mθ= 0 mz= 1 EAWs in a pure ion plasma column. At small amplitude, the EAWs have a phase velocity vph ˜1.4 v, and the frequencies are in close agreement with theory. At moderate amplitudes, waves can be excited over a broad range of frequencies, with observed phase velocities in the range of 1.4 v vph diagnostic shows that particles slower than vph oscillate in phase with the wave, while particles moving faster than vph oscillate 180^o out of phase with the wave. From a fluid perspective, this gives an unusual negative dynamical compressibility. That is, the wave pressure oscillations are 180^o out of phase from the density oscillations, almost fully canceling the electrostatic restoring force, giving the low and malleable frequency.

  2. Sensitive and selective turn off-on fluorescence detection of heparin based on the energy transfer platform using the BSA-stabilized Au nanoclusters/amino-functionalized graphene oxide hybrids.

    Science.gov (United States)

    Lan, Jing; Zou, Hong Yan; Wang, Qiang; Zeng, Ping; Li, Yuan Fang; Huang, Cheng Zhi

    2016-12-01

    An ultra-sensitive and selective turn off-on fluorescence detection of heparin based on the energy transfer in the BSA-stabilized gold nanoclusters/amino-functionalized graphene oxide (BSA-AuNCs/NH 2 -GO) hybrids was successfully realized. The BSA-AuNCs containing amounts of carboxyl groups could be absorbed on the surface of NH 2 -GO through the electrostatic interaction, which resulted in the fluorescence quenching of BSA-AuNCs with high efficiency. However, heparin, possessing high density of negative charge, could compete with BSA-AuNCs to bind NH 2 -GO and block the energy transfer from BSA-AuNCs to NH 2 -GO. The fluorescence recovery of BSA-AuNCs was closely related to the amount of heparin and there was a good linear relationship between fluorescence recovery of BSA-AuNCs and heparin over the range of 100ng/mL to 30μg/mL with a detection limit of 40ng/mL. What's more, the fluorescence assay was successfully applied for heparin sensing in human serums and intracellular imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Photophysical studies on the interaction of amides with Bovine Serum Albumin (BSA) in aqueous solution: Fluorescence quenching and protein unfolding

    International Nuclear Information System (INIS)

    Kumaran, R.; Ramamurthy, P.

    2014-01-01

    Addition. of amides containing a H-CO(NH 2 ) or CH 3 -CO(NH 2 ) framework to BSA results in a fluorescence quenching. On the contrary, fluorescence enhancement with a shift in the emission maximum towards the blue region is observed on the addition of dimethylformamide (DMF) (H-CON(CH 3 ) 2 ). Fluorescence quenching accompanied initially with a shift towards the blue region and a subsequent red shift in the emission maximum of BSA is observed on the addition of formamide (H-CO(NH 2 )), whereas a shift in the emission maximum only towards the red region results on the addition of acetamide (CH 3 -CONH 2 ). Steady state emission spectral studies reveal that amides that possess a free NH 2 and N(CH 3 ) 2 moiety result in fluorescence quenching and enhancement of BSA respectively. The 3D contour spectral studies of BSA with formamide exhibit a shift in the emission towards the red region accompanied with fluorescence quenching, which indicates that the tryptophan residues of the BSA are exposed to a more polar environment. Circular Dichroism (CD) studies of BSA with amides resulted in a gradual decrease in the α-helical content of BSA at 208 nm, which confirms that there is a conformational change in the native structure of BSA. Time-resolved fluorescence studies illustrate that the extent of buried trytophan moieties exposed to the aqueous phase on the addition of amides follows the order DMF 2 hydrogen and the carbonyl oxygen of amide form a concerted hydrogen-bonding network with the carbonyl oxygen and the amino moieties of amino acids respectively is established from fluorescence methods. -- Highlights: • The manuscript deals with the absorption, emission and fluorescence lifetime studies of Bovine Serum Albumin with amides in aqueous medium. • Fluorescence is correlated to the presence of fluorescing amino acid, tryptophan located in a heterogeneous environment. • This article provides an insight about the fluorescence spectral characteristics of a protein

  4. Exploiting BSA to Inhibit the Fibrous Aggregation of Magnetic Nanoparticles under an Alternating Magnetic Field

    Directory of Open Access Journals (Sweden)

    Ning Gu

    2013-03-01

    Full Text Available The alternating magnetic field was discovered to be capable of inducing the fibrous aggregation of magnetic nanoparticles. However, this anisotropic aggregation may be unfavorable for practical applications. Here, we reported that the adsorption of BSA (bovine serum albumin on the surfaces of magnetic nanoparticles can effectively make the fibrous aggregation of γ-Fe2O3 nanoparticles turn into a more isotropic aggregation in the presence of the alternating magnetic field. Also, the heating curves with and without BSA adsorption under different pH conditions were measured to show the influence of the colloidal aggregation states on the collective calorific behavior of magnetic nanoparticles.

  5. Evaluation of DNA, BSA binding, and antimicrobial activity of new synthesized neodymium complex containing 29-dimethyl 110-phenanthroline.

    Science.gov (United States)

    Moradi, Zohreh; Khorasani-Motlagh, Mozhgan; Rezvani, Ali Reza; Noroozifar, Meissam

    2018-02-01

    In order to evaluate biological potential of a novel synthesized complex [Nd(dmp) 2 Cl 3 .OH 2 ] where dmp is 29-dimethyl 110-phenanthroline, the DNA-binding, cleavage, BSA binding, and antimicrobial activity properties of the complex are investigated by multispectroscopic techniques study in physiological buffer (pH 7.2).The intrinsic binding constant (K b ) for interaction of Nd(III) complex and FS-DNA is calculated by UV-Vis (K b  = 2.7 ± 0.07 × 10 5 ) and fluorescence spectroscopy (K b  = 1.13 ± 0.03 × 10 5 ). The Stern-Volmer constant (K SV ), thermodynamic parameters including free energy change (ΔG°), enthalpy change (∆H°), and entropy change (∆S°), are calculated by fluorescent data and Vant' Hoff equation. The experimental results show that the complex can bind to FS-DNA and the major binding mode is groove binding. Meanwhile, the interaction of Nd(III) complex with protein, bovine serum albumin (BSA), has also been studied by using absorption and emission spectroscopic tools. The experimental results show that the complex exhibits good binding propensity to BSA. The positive ΔH° and ∆S° values indicate that the hydrophobic interaction is main force in the binding of the Nd(III) complex to BSA, and the complex can quench the intrinsic fluorescence of BSA remarkably through a static quenching process. Also, DNA cleavage was investigated by agarose gel electrophoresis that according to the results cleavage of DNA increased with increasing of concentration of the complex. Antimicrobial screening test gives good results in the presence of Nd(III) complex system.

  6. Spectroscopic analyses on interaction of o-Vanillin- D-Phenylalanine, o-Vanillin- L-Tyrosine and o-Vanillin- L-Levodopa Schiff Bases with bovine serum albumin (BSA)

    Science.gov (United States)

    Gao, Jingqun; Guo, Yuwei; Wang, Jun; Wang, Zhiqiu; Jin, Xudong; Cheng, Chunping; Li, Ying; Li, Kai

    2011-04-01

    In this work, three o-Vanillin Schiff Bases (o-VSB: o-Vanillin- D-Phenylalanine (o-VDP), o-Vanillin- L-Tyrosine (o-VLT) and o-Vanillin- L-Levodopa (o-VLL)) with alanine constituent were synthesized by direct reflux method in ethanol solution, and then were used to study the interaction to bovine serum albumin (BSA) molecules by fluorescence spectroscopy. Based on the fluorescence quenching calculation, the bimolecular quenching constant ( Kq), apparent quenching constant ( Ksv), effective binding constant ( KA) and corresponding dissociation constant ( KD) as well as binding site number ( n) were obtained. In addition, the binding distance ( r) was also calculated according to Foster's non-radioactive energy transfer theory. The results show that these three o-VSB can efficiently bind to BSA molecules, but the binding array order is o-VDP-BSA > o-VLT-BSA > o-VLL-BSA. Synchronous fluorescence spectroscopy indicates that the o-VDP is more accessibility to tryptophan (Trp) residues of BSA molecules than to tyrosine (Tyr) residues. Nevertheless, the o-VLT and o-VLL are more accessibility to Tyr residues than to Trp residues.

  7. Apparent partition coefficient in octanol-water and binding percentage to BSA of 153Sm(113,117Snm) complexes

    International Nuclear Information System (INIS)

    Yang Yuqing; Luo Shunzhong; Wang Guanquan; He Jiaheng; Bing Wenzeng; Pu Manfei; Wei Hongyuan; Wang Wenjin

    2004-01-01

    Apparent partition coefficient in octanol-water and binding percentage to BSA of 153 Sm-NTMP, 153 Sm-HEDTMP, 153 Sm-DCTMP, 153 Sm-EDTMP, 153 Sm-DTPMP, 113,117 Sn m -EDTMP, 113,117 Sn m -HEDTMP, 113,117 Sn m -DTPMP are measured. The results show that there is a linear relationship between the relative magnitude of the apparent partition coefficient in octanol-water and the relative magnitude of the binding percentage to BSA of these 153 Sm( 113,117 Sn m ) complexes. This linear relationship provides a new method for determination of the apparent partition coefficient in octanol-water of 153 Sm( 113,117 Sn m ) complexes of this kind. This linear relationship also implicates that hydrophobic force plays an important role in the binding of 153 Sm( 113,117 Sn m ) complexes to BSA

  8. Polyether sulfone/hydroxyapatite mixed matrix membranes for protein purification

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junfen, E-mail: junfensun@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, North People Road 2999, Shanghai 201620 (China); Wu, Lishun [Department of Chemistry and Chemical Engineering, Heze University, Daxue Road 2269, Heze, Shandong Province 274015 (China)

    2014-07-01

    This work proposes a novel approach for protein purification from solution using mixed matrix membranes (MMMs) comprising of hydroxyapatite (HAP) inside polyether sulfone (PES) matrix. The influence of HAP particle loading on membrane morphology is studied. The MMMs are further characterized concerning permeability and adsorption capacity. The MMMs show purification of protein via both diffusion as well as adsorption, and show the potential of using MMMs for improvements in protein purification techniques. The bovine serum albumin (BSA) was used as a model protein. The properties and structures of MMMs prepared by immersion phase separation process were characterized by pure water flux, BSA adsorption and scanning electron microscopy (SEM).

  9. A many-particle adiabatic invariant of strongly magnetized pure electron plasmas

    International Nuclear Information System (INIS)

    Hjorth, P.G.

    1988-01-01

    A pure electron plasma is said to be strongly magnetized if the cyclotron radius of the electrons is much smaller than the classical distance of closest approach. In this parameter regime a many-particle adiabatic invariant constrains the collisional dynamics. For the case of a uniform magnetic field, the adiabatic invariant is the total kinetic energy associated with the electron velocity components that are perpendicular to the magnetic field (i.e., Σ j mv 2 j perpendicular/2). Were the adiabatic invariant an exact constant of the motion, no exchange of energy would be possible between the parallel and the perpendicular degrees of freedom, and the plasma could develop and maintain two different temperatures T parallel and T perpendicular. An adiabatic invariant, however, is not strictly conserved. In the present case, each collision produces an exponentially small exchange of energy between the parallel and the perpendicular degrees of freedom, and these act cumulatively in such a way that T parallel and T perpendicular eventually relax to a common value. The rate of equilibrium is calculated, both in the case where the collisions are described by classical mechanics and in the case where the collisions are described by quantum mechanics, the two calculations giving essentially the same result. A molecular dynamics simulation has been carried out, verifying the existence of this unusual invariant, and verifying the theoretically predicted rate equation

  10. Production of BSA-poly(ethyl cyanoacrylate) nanoparticles as a coating material that improves wetting property.

    Science.gov (United States)

    Kim, S; Evans, K; Biswas, A

    2013-07-01

    Alkyl cyanoacrylates have long been used for the synthesis of colloidal nanoparticles. In the involved polymerization reaction, hydroxyl ions derived from dissociation of water have been used as an initiator. In the current research, an animal protein, bovine serum albumin (BSA) molecules were utilized as initiator for the polymerization. Following this reaction scheme, hydrophobic poly(ethyl cyanoacrylate)s were covalently bound to BSA, which is hydrophilic. Therefore, the resultant copolymer was amphiphilic in nature, and formed nanoparticles in the reaction medium. The suspension containing these nanoparticles showed an excellent coating capability on the surface of hydrophobic materials. A simple spray coating changed the wetting property of the material instantly and dramatically. Published by Elsevier B.V.

  11. Ag(I)-bovine serum albumin hydrosol-mediated formation of Ag3PO4/reduced graphene oxide composites for visible-light degradation of Rhodamine B solution.

    Science.gov (United States)

    Ma, Peiyan; Chen, Anliang; Wu, Yan; Fu, Zhengyi; Kong, Wei; Che, Liyuan; Ma, Ruifang

    2014-03-01

    A cost-effective Ag(I)-bovine serum albumin (BSA) supramolecular hydrosol strategy was utilized to assemble Ag3PO4 nanospheres onto reduced graphene oxide (rGO) sheets. The obtained composites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, UV-vis absorption spectroscopy and Fourier transform infrared spectroscopy. Compared with the pure Ag3PO4 crystals and Ag3PO4 particles prepared with Ag(I)-BSA hydrosol as precursor, the Ag3PO4/rGO composites obtained with different content of graphene oxide indicated improved visible-light-driven photocatalysis activity for the decomposition of Rhodamine B aqueous solution. The results pointed to the possibility of synthesizing graphene-based photocatalysts by metal ion-BSA hydrosol. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. BSA-coated nanoparticles for improved SERS-based intracellular pH sensing.

    Science.gov (United States)

    Zheng, Xiao-Shan; Hu, Pei; Cui, Yan; Zong, Cheng; Feng, Jia-Min; Wang, Xin; Ren, Bin

    2014-12-16

    Local microenvironment pH sensing is one of the key parameters for the understanding of many biological processes. As a noninvasive and high sensitive technique, surface-enhanced Raman spectroscopy (SERS) has attracted considerable interest in the detection of the local pH of live cells. We herein develop a facile way to prepare Au-(4-MPy)-BSA (AMB) pH nanosensor. The 4-MPy (4-mercaptopyridine) was used as the pH sensing molecule. The modification of the nanoparticles with BSA not only provides a high sensitive response to pH changes ranging from pH 4.0 to 9.0 but also exhibits a high sensitivity and good biocompatibility, stability, and reliability in various solutions (including the solutions of high ionic strength or with complex composition such as the cell culture medium), both in the aggregation state or after long-term storage. The AMB pH nanosensor shows great advantages for reliable intracellular pH analysis and has been successfully used to monitor the pH distribution of live cells and can address the grand challenges in SERS-based pH sensing for practical biological applications.

  13. Synthesis, Characterization, and Magnetic Properties of Pure and EDTA-Capped NiO Nanosized Particles

    Directory of Open Access Journals (Sweden)

    H. T. Rahal

    2017-01-01

    Full Text Available The effect of ethylenediaminetetraacetic acid (EDTA as a capping agent on the structure, morphology, optical, and magnetic properties of nickel oxide (NiO nanosized particles, synthesized by coprecipitation method, was investigated. Nickel chloride hexahydrate and sodium hydroxide (NaOH were used as precursors. The resultant nanoparticles were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, and scanning electron microscopy (SEM. XRD patterns showed that NiO have a face-centered cubic (FCC structure. The crystallite size, estimated by Scherrer formula, has been found in the range of 28–33 nm. It is noticed that EDTA-capped NiO nanoparticles have a smaller size than pure nanoparticles. Thus, the addition of 0.1 M capping agent EDTA can form a nucleation point for nanoparticles growth. The optical and magnetic properties were investigated by Fourier transform infrared spectroscopy (FTIR and UV-vis absorption spectroscopy (UV as well as electron paramagnetic resonance (EPR and magnetization measurements. FTIR spectra indicated the presence of absorption bands in the range of 402–425 cm−1, which is a common feature of NiO. EPR for NiO nanosized particles was measured at room temperature. An EPR line with g factor ≈1.9–2 is detected for NiO nanoparticles, corresponding to Ni2+ ions. The magnetic hysteresis of NiO nanoparticles showed that EDTA capping recovers the surface magnetization of the nanoparticles.

  14. The Interactions between ZnO Nanoparticles (NPs and α-Linolenic Acid (LNA Complexed to BSA Did Not Influence the Toxicity of ZnO NPs on HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Yiwei Zhou

    2017-04-01

    Full Text Available Background: Nanoparticles (NPs entering the biological environment could interact with biomolecules, but little is known about the interaction between unsaturated fatty acids (UFA and NPs. Methods: This study used α-linolenic acid (LNA complexed to bovine serum albumin (BSA for UFA and HepG2 cells for hepatocytes. The interactions between BSA or LNA and ZnO NPs were studied. Results: The presence of BSA or LNA affected the hydrodynamic size, zeta potential, UV-Vis, fluorescence, and synchronous fluorescence spectra of ZnO NPs, which indicated an interaction between BSA or LNA and NPs. Exposure to ZnO NPs with the presence of BSA significantly induced the damage to mitochondria and lysosomes in HepG2 cells, associated with an increase of intracellular Zn ions, but not intracellular superoxide. Paradoxically, the release of inflammatory cytokine interleukin-6 (IL-6 was decreased, which indicated the anti-inflammatory effects of ZnO NPs when BSA was present. The presence of LNA did not significantly affect all of these endpoints in HepG2 cells exposed to ZnO NPs and BSA. Conclusions: the results from the present study indicated that BSA-complexed LNA might modestly interact with ZnO NPs, but did not significantly affect ZnO NPs and BSA-induced biological effects in HepG2 cells.

  15. Novel preparation of controlled porosity particle/fibre loaded scaffolds using a hybrid micro-fluidic and electrohydrodynamic technique.

    Science.gov (United States)

    Parhizkar, Maryam; Sofokleous, Panagiotis; Stride, Eleanor; Edirisinghe, Mohan

    2014-11-27

    The purpose of this research was to produce multi-dimensional scaffolds containing biocompatible particles and fibres. To achieve this, two techniques were combined and used: T-Junction microfluidics and electrohydrodynamic (EHD) processing. The former was used to form layers of monodispersed bovine serum albumin (BSA) bubbles, which upon drying formed porous scaffolds. By altering the T-Junction processing parameters, bubbles with different diameters were produced and hence the scaffold porosity could be controlled. EHD processing was used to spray or spin poly(lactic-co-glycolic) (PLGA), polymethysilsesquioxane (PMSQ) and collagen particles/fibres onto the scaffolds during their production and after drying. As a result, multifunctional BSA scaffolds with controlled porosity containing PLGA, PMSQ and collagen particles/fibres were obtained. Product morphology was studied by optical and scanning electron microscopy. These products have potential applications in many advanced biomedical, pharmaceutical and cosmetic fields e.g. bone regeneration, drug delivery, cosmetic cream lathers, facial scrubbing creams etc.

  16. Spectroscopic analyses on sonocatalytic damage to bovine serum albumin (BSA) induced by ZnO/hydroxylapatite (ZnO/HA) composite under ultrasonic irradiation

    Science.gov (United States)

    Wang, Zhiqiu; Li, Ying; Wang, Jun; Zou, Mingming; Gao, Jingqun; Kong, Yumei; Li, Kai; Han, Guangxi

    ZnO/hydroxylapatite (ZnO/HA) composite with HA molar content of 6.0% was prepared by the method of precipitation and heat-treated at 500 °C for 40 min and was characterized by powder X-ray diffraction (XRD). The sonocatalytic activities of ZnO/HA composite was carried out through the damage of bovine serum albumin (BSA) in aqueous solution. Furthermore, the effects of several factors on the damage of BSA molecules were evaluated by means of UV-vis and fluorescence spectra. Experimental results indicated that the damage degree of BSA aggravated with the increase of ultrasonic irradiation time, irradiation power and ZnO/HA addition amount, but weakened with the increase of solution acidity and ionic strength. In addition, the damage site to BSA was also studied by synchronous fluorescence technology and the damage site was mainly at tryptophan (Trp) residue. This paper provides a valuable reference for driving sonocatalytic method to treat tumor in clinic application.

  17. Tangential Flow Ultrafiltration Allows Purification and Concentration of Lauric Acid-/Albumin-Coated Particles for Improved Magnetic Treatment.

    Science.gov (United States)

    Zaloga, Jan; Stapf, Marcus; Nowak, Johannes; Pöttler, Marina; Friedrich, Ralf P; Tietze, Rainer; Lyer, Stefan; Lee, Geoffrey; Odenbach, Stefan; Hilger, Ingrid; Alexiou, Christoph

    2015-08-14

    Superparamagnetic iron oxide nanoparticles (SPIONs) are frequently used for drug targeting, hyperthermia and other biomedical purposes. Recently, we have reported the synthesis of lauric acid-/albumin-coated iron oxide nanoparticles SEON(LA-BSA), which were synthesized using excess albumin. For optimization of magnetic treatment applications, SPION suspensions need to be purified of excess surfactant and concentrated. Conventional methods for the purification and concentration of such ferrofluids often involve high shear stress and low purification rates for macromolecules, like albumin. In this work, removal of albumin by low shear stress tangential ultrafiltration and its influence on SEON(LA-BSA) particles was studied. Hydrodynamic size, surface properties and, consequently, colloidal stability of the nanoparticles remained unchanged by filtration or concentration up to four-fold (v/v). Thereby, the saturation magnetization of the suspension can be increased from 446.5 A/m up to 1667.9 A/m. In vitro analysis revealed that cellular uptake of SEON(LA-BSA) changed only marginally. The specific absorption rate (SAR) was not greatly affected by concentration. In contrast, the maximum temperature Tmax in magnetic hyperthermia is greatly enhanced from 44.4 °C up to 64.9 °C by the concentration of the particles up to 16.9 mg/mL total iron. Taken together, tangential ultrafiltration is feasible for purifying and concentrating complex hybrid coated SPION suspensions without negatively influencing specific particle characteristics. This enhances their potential for magnetic treatment.

  18. Antimicrobial and cell viability measurement of bovine serum albumin capped silver nanoparticles (Ag/BSA) loaded collagen immobilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) film.

    Science.gov (United States)

    Bakare, Rotimi; Hawthrone, Samantha; Vails, Carmen; Gugssa, Ayele; Karim, Alamgir; Stubbs, John; Raghavan, Dharmaraj

    2016-03-01

    Bacterial infection of orthopedic devices has been a major concern in joint replacement procedures. Therefore, this study is aimed at formulating collagen immobilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) film loaded with bovine serum albumin capped silver nanoparticles (Ag/BSA NPs) to inhibit bacterial growth while retaining/promoting osteoblast cells viability. The nanoparticles loaded collagen immobilized PHBV film was characterized for its composition by X-ray Photoelectron Spectroscopy and Anodic Stripping Voltammetry. The extent of loading of Ag/BSA NPs on collagen immobilized PHBV film was found to depend on the chemistry of the functionalized PHBV film and the concentration of Ag/BSA NPs solution used for loading nanoparticles. Our results showed that more Ag/BSA NPs were loaded on higher molecular weight collagen immobilized PHEMA-g-PHBV film. Maximum loading of Ag/BSA NPs on collagen immobilized PHBV film was observed when 16ppm solution was used for adsorption studies. Colony forming unit and optical density measurements showed broad antimicrobial activity towards Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa at significantly lower concentration i.e., 0.19 and 0.31μg/disc, compared to gentamicin and sulfamethoxazole trimethoprim while MTT assay showed that released nanoparticles from Ag/BSA NPs loaded collagen immobilized PHBV film has no impact on MCTC3-E1 cells viability. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Modeling water partition in composite gels of BSA with gelatin following high pressure treatment.

    Science.gov (United States)

    Semasaka, Carine; Mhaske, Pranita; Buckow, Roman; Kasapis, Stefan

    2018-11-01

    Changes in the structural properties of hydrogels made with gelatin and bovine serum albumin mixtures were recorded following exposure to high pressure at 300 MPa for 15 min at 10 and 80 °C. Dynamic oscillation, SEM, FTIR and blending law modelling were utilised to rationalise results. Pressurization at the low temperature end yielded continuous gelatin networks supporting discontinuous BSA inclusions, whereas an inverted dispersion was formed at the high temperature end with the continuous BSA network suspending the discontinuous gelatin inclusions. Lewis and Nielsen equations followed the mechanical properties of the composites thus arguing that solvent partition between the two phases was always in favour of the polymer forming the continuous network. As far as we are aware, this is the first attempt to elucidate the solvent partition in pressurised hydrogel composites using blending law theory. Outcomes were contrasted with earlier work where binary mixtures were subjected only to thermal treatment. Copyright © 2018. Published by Elsevier Ltd.

  20. Deformation and recrystallization textures in commercially pure aluminum

    DEFF Research Database (Denmark)

    Hansen, Niels; Juul Jensen, Dorte

    1986-01-01

    The deformation and recrystallization textures of commercially pure aluminum (99.6 pct) containing large intermetallic particles (FeAl3) are measured by neutron diffraction, and the orientation distribution functions (ODF’s) are calculated. Sample parameters are the initial grain size (50 and 350...

  1. Effect of BSA Antigen Sensitization during the Acute Phase of Influenza A Viral Infection on CD11c+ Pulmonary Antigen Presenting Cells

    Directory of Open Access Journals (Sweden)

    Fumitaka Sato

    2009-01-01

    Conclusions: BSA antigen sensitization during the acute phase of influenza A viral infection enhanced IL-10 production from naive CD4+ T cell interaction with CD11c+ pulmonary APCs. The IL-10 secretion evoked Th2 responses in the lungs with downregulation of Th1 responses and was important for the eosinophil recruitment into the lungs after BSA antigen challenge.

  2. Pure phase decoherence in a ring geometry

    International Nuclear Information System (INIS)

    Zhu, Z.; Aharony, A.; Entin-Wohlman, O.; Stamp, P. C. E.

    2010-01-01

    We study the dynamics of pure phase decoherence for a particle hopping around an N-site ring, coupled both to a spin bath and to an Aharonov-Bohm flux which threads the ring. Analytic results are found for the dynamics of the influence functional and of the reduced density matrix of the particle, both for initial single wave-packet states, and for states split initially into two separate wave packets moving at different velocities. We also give results for the dynamics of the current as a function of time.

  3. Puerarin suppresses proliferation of endometriotic stromal cells partly via the MAPK signaling pathway induced by 17ß-estradiol-BSA.

    Directory of Open Access Journals (Sweden)

    Wen Cheng

    Full Text Available BACKGROUND: Puerarin is a major isoflavonoid compound extracted from Radix puerariae. It has a weak estrogenic action by binding to estrogen receptors (ERs. In our early clinical practice to treat endometriosis, a better therapeutic effect was achieved if the formula of traditional Chinese medicine included Radix puerariae. The genomic and non-genomic effects of puerarin were studied in our Lab. This study aims to investigate the ability of puerarin to bind competitively to ERs in human endometriotic stromal cells (ESCs, determine whether and how puerarin may influence phosphorylation of the non-genomic signaling pathway induced by 17ß-estradiol conjugated to BSA (E(2-BSA. METHODOLOGY: ESCs were successfully established. Binding of puerarin to ERs was assessed by a radioactive competitive binding assay in ESCs. Activation of the signaling pathway was screened by human phospho-kinase array, and was further confirmed by western blot. Cell proliferation was analyzed according to the protocol of CCK-8. The mRNA and protein levels of cyclin D1, Cox-2 and Cyp19 were determined by real-time PCR and western blotting. Inhibitor of MEK1/2 or ER antagonist was used to confirm the involved signal pathway. PRINCIPAL FINDINGS: Our data demonstrated that the total binding ability of puerarin to ERs on viable cells is around 1/3 that of 17ß-estradiol (E(2. E(2-BSA was able to trigger a rapid, non-genomic, membrane-mediated activation of ERK1/2 in ESCs and this phenomenon was associated with an increased proliferation of ESCs. Treating ESCs with puerarin abrogated the phosphorylation of ERK and significantly decreased cell proliferation, as well as related gene expression levels enhanced by E(2-BSA. CONCLUSIONS/SIGNIFICANCE: Puerarin suppresses proliferation of ESCs induced by E(2-BSA partly via impeding a rapid, non-genomic, membrane-initiated ERK pathway, and down-regulation of Cyclin D1, Cox-2 and Cyp19 are involved in the process. Our data further show

  4. Synthesis of an oxytetracyline-tolidin-BSA immunogen and antibodies production of anti-oxytetracyline developed for oxytetracyline residue detection with enzyme-linked immunosorbent assays technique

    Directory of Open Access Journals (Sweden)

    Widiastuti R

    2013-06-01

    Full Text Available An oxytetracycline-tolidin-bovine serum albumin (OTC-tolidin-BSA-conjugate was synthezed as immunogen for producing specific antibodies in immunized rabbits that would be used as reagent for development of OTC residue detection with enzym-linked immunoassays technique. The immunogen was prepared through diazotization tolidin and subsequently reacted with OTC. The red purple immunogen of OTC-tolidin-BSA absorbed at wave lengths of 277 nm and 488 nm under UV screening absorbances and confirmation with the high performance liquid chromatography (HPLC showed the absence of peak at retention time of 3.46 minutes. Characaterized result with SDS-PAGE showed the molecular weight of the OTC-tolidin-BSA at 69.79 kDA. Subsequently, the immunogen was immunized into New Zealand rabbits in order to produce the polyclonal antibodies. The antibodies were purified using a protein A sepharose column. The OD optimum responses of 0.92 to 1.20 were obtained from the second fractionation at dilution of 1/1000 by titrating the antibodies and OTC-tolidin-BSA coating antigen at concentration of 10 µg/mL on several bleeding times.

  5. Global transcriptional profiling of Burkholderia pseudomallei under salt stress reveals differential effects on the Bsa type III secretion system

    Directory of Open Access Journals (Sweden)

    Singsuksawat Ekapot

    2010-06-01

    Full Text Available Abstract Background Burkholderia pseudomallei is the causative agent of melioidosis where the highest reported incidence world wide is in the Northeast of Thailand, where saline soil and water are prevalent. Moreover, recent reports indicate a potential pathogenic role for B. pseudomallei in cystic fibrosis lung disease, where an increased sodium chloride (NaCl concentration in airway surface liquid has been proposed. These observations raise the possibility that high salinity may represent a favorable niche for B. pseudomallei. We therefore investigated the global transcriptional response of B. pseudomallei to increased salinity using microarray analysis. Results Transcriptome analysis of B. pseudomallei under salt stress revealed several genes significantly up-regulated in the presence of 320 mM NaCl including genes associated with the bsa-derived Type III secretion system (T3SS. Microarray data were verified by reverse transcriptase-polymerase chain reactions (RT-PCR. Western blot analysis confirmed the increased expression and secretion of the invasion-associated type III secreted proteins BipD and BopE in B. pseudomallei cultures at 170 and 320 mM NaCl relative to salt-free medium. Furthermore, salt-treated B. pseudomallei exhibited greater invasion efficiency into the lung epithelial cell line A549 in a manner partly dependent on a functional Bsa system. Conclusions B. pseudomallei responds to salt stress by modulating the transcription of a relatively small set of genes, among which is the bsa locus associated with invasion and virulence. Expression and secretion of Bsa-secreted proteins was elevated in the presence of exogenous salt and the invasion efficiency was enhanced. Our data indicate that salinity has the potential to influence the virulence of B. pseudomallei.

  6. Nanoporous Au: an unsupported pure gold catalyst?

    Energy Technology Data Exchange (ETDEWEB)

    Wittstock, A; Neumann, B; Schaefer, A; Dumbuya, K; Kuebel, C; Biener, M; Zielasek, V; Steinrueck, H; Gottfried, M; Biener, J; Hamza, A; B?umer, M

    2008-09-04

    The unique properties of gold especially in low temperature CO oxidation have been ascribed to a combination of various effects. In particular, particle sizes below a few nm and specific particle-support interactions have been shown to play important roles. On the contrary, recent reports revealed that monolithic nanoporous gold (npAu) prepared by leaching a less noble metal, such as Ag, out of the corresponding alloy can also exhibit remarkably high catalytic activity for CO oxidation, even though no support is present. Therefore, it was claimed to be a pure and unsupported gold catalyst. We investigated npAu with respect to its morphology, surface composition and catalytic properties. In particular, we studied the reaction kinetics for low temperature CO oxidation in detail taking mass transport limitation due to the porous structure of the material into account. Our results reveal that Ag, even if removed almost completely from the bulk, segregates to the surface resulting in surface concentrations of up to 10 at%. Our data suggest that this Ag plays a significant role in activation of molecular oxygen. Therefore, npAu should be considered as a bimetallic catalyst rather than a pure Au catalyst.

  7. 1997 Baseline Sampling and Analysis Sample Locations, Geographic NAD83, LOSCO (2004) [BSA_1997_sample_locations_LOSCO_2004

    Data.gov (United States)

    Louisiana Geographic Information Center — The monitor point data set was produced as a part of the Baseline Sampling and Analysis (BSA) program coordinated by the Louisiana Oil Spill Coordinator's Office....

  8. Front-face fluorescence spectroscopy study of globular proteins in emulsions: displacement of BSA by a nonionic surfactant.

    Science.gov (United States)

    Rampon, V; Genot, C; Riaublanc, A; Anton, M; Axelos, M A V; McClements, D J

    2003-04-23

    The displacement of a globular protein (bovine serum albumin, BSA) from the surface of oil droplets in concentrated oil-in-water emulsions by a nonionic surfactant (polyoxyethylene sorbitan monolauarate, Tween 20) was studied using front-face fluorescence spectroscopy (FFFS). This method relies on measurement of the change in intensity (I(MAX)) and wavelength (lambda(MAX)) of the maximum in the tryptophan emission spectrum. A series of oil-in-water emulsions (21 wt % n-hexadecane, 0.22 wt % BSA, pH 7.0) containing different molar ratios of Tween 20 to BSA (R = 0-131) were prepared. As the surfactant concentration was increased, the protein was progressively displaced from the droplet surfaces. At R > or = 66, the protein was completely displaced from the droplet surfaces. There was an increase in both I(MAX) and lambda(MAX) with increasing Tween 20 concentration up to R = 66, which correlated with the increase in the ratio of nonadsorbed to adsorbed protein. In contrast, there was a decrease in I(MAX) and lambda(MAX) with Tween 20 concentration in protein solutions and for R > or = 66 in the emulsions, which was attributed to binding of the surfactant to the protein. This study shows that FFFS is a powerful technique for nondestructively providing information about the interfacial composition of droplets in concentrated protein-stabilized emulsions in situ. Nevertheless, in general the suitability of the technique may also depend on protein type and the nature of the physicochemical matrix surrounding the proteins.

  9. Preparation and characterization of genipin-cross-linked silk fibroin/chitosan sustained-release microspheres

    Directory of Open Access Journals (Sweden)

    Zeng SG

    2015-05-01

    Full Text Available Shuguang Zeng,1,* Manwen Ye,1,2,* Junqi Qiu,1 Wei Fang,1 Mingdeng Rong,1 Zehong Guo,1 Wenfen Gao11Department of Oral and Maxillofacial Surgery, Guangdong Provincial Stomatological Hospital, Southern Medical University, 2Department of Stomatology, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China*These authors contributed equally to this workAbstract: We report the effects of distinct concentrations of genipin and silk fibroin (SF:chitosan (CS ratios on the formation of SF–CS composite microspheres. We selected microspheres featuring an SF:CS ratio of 1:1, encapsulated various concentrations of bovine serum albumin (BSA, and then compared their encapsulation efficiency and sustained-release rate with those of pure CS microspheres. We determined that the following five groups of microspheres were highly spherical and featured particle sizes ranging from 70 µm to 147 µm: mass ratio of CS:SF =1:0.5, 0.1 g or 0.5 g genipin; CS:SF =1:1, 0.05 g or 1 g genipin; and CS:SF =1:2, 0.5 g genipin. The microspheres prepared using 1:1 CS:SF ratio and 0.05 g genipin in the presence of 10 mg, 20 mg, and 50 mg of BSA exhibited encapsulation efficiencies of 50.16%±4.32%, 56.58%±3.58%, and 42.19%±7.47%, respectively. Fourier-transform infrared spectroscopy (FTIR results showed that SF and CS were cross-linked and that the α-helices and random coils of SF were converted into β-sheets. BSA did not chemically react with CS or SF. Moreover, thermal gravimetric analysis (TGA results showed that the melting point of BSA did not change, which confirmed the FTIR results, and X-ray diffraction results showed that BSA was entrapped in microspheres in a noncrystalline form, which further verified the TGA and FTIR data. The sustained-release microspheres prepared in the presence of 10 mg, 20 mg, and 50 mg of BSA burst release 30.79%±3.43%, 34.41%±4.46%, and 41.75%±0.96% of the

  10. Good use of fruit wastes: eco-friendly synthesis of silver nanoparticles, characterization, BSA protein binding studies.

    Science.gov (United States)

    Sreekanth, T V M; Ravikumar, Sambandam; Lee, Yong Rok

    2016-06-01

    A simple and eco-friendly methodology for the green synthesis of silver nanoparticles (AgNPs) using a mango seed extract was evaluated. The AgNPs were characterized by ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. The interaction between the green synthesized AgNPs and bovine serum albumin (BSA) in an aqueous solution at physiological pH was examined by fluorescence spectroscopy. The results confirmed that the AgNPs quenched the fluorophore of BSA by forming a ground state complex in aqueous solution. This fluorescence quenching data were also used to determine the binding sites and binding constants at different temperatures. The calculated thermodynamic parameters (ΔG°, ΔH° and ΔS°) suggest that the binding process occurs spontaneously through the involvement of electrostatic interactions. The synchronous fluorescence spectra showed a blue shift, indicating increasing hydrophobicity. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Gradient-dependent release of the model drug TRITC-dextran from FITC-labeled BSA hydrogel nanocarriers in the hair follicles of porcine ear skin.

    Science.gov (United States)

    Tran, Ngo Bich Nga Nathalie; Knorr, Fanny; Mak, Wing Cheung; Cheung, Kwan Yee; Richter, Heike; Meinke, Martina; Lademann, Jürgen; Patzelt, Alexa

    2017-07-01

    Hair follicle research is currently focused on the development of drug-loaded nanocarriers for the targeting of follicular structures in the treatment of skin and hair follicle-related disorders. In the present study, a dual-label nanocarrier system was implemented in which FITC-labeled BSA hydrogel nanocarriers loaded with the model drug and dye TRITC-dextran were applied topically to porcine ear skin. Follicular penetration and the distribution of both dyes corresponding to the nanocarriers and the model drug in the follicular ducts subsequent to administration to the skin were investigated using confocal laser scanning microscopy. The release of TRITC-dextran from the particles was induced by washing of the nanocarriers, which were kept in a buffer containing TRITC-labeled dextran to balance out the diffusion of the dextran during storage, thereby changing the concentration gradient. The results showed a slightly but statistically significantly deeper follicular penetration of fluorescent signals corresponding to TRITC-dextran as opposed to fluorescence corresponding to the FITC-labeled particles. The different localizations of the dyes in the cross-sections of the skin samples evidenced the release of the model drug from the labeled nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. On the Computation and Applications of Bessel Functions with Pure Imaginary Indices

    OpenAIRE

    Matyshev, A. A.; Fohtung, E.

    2009-01-01

    Bessel functions with pure imaginary index (order) play an important role in corpuscular optics where they govern the dynamics of charged particles in isotrajectory quadrupoles. Recently they were found to be of great importance in semiconductor material characterization as they are manifested in the strain state of crystalline material. A new algorithm which can be used for the computation of the normal and modifed Bessel functions with pure imaginary index is proposed. The developed algorit...

  13. Negative numbers and antimatter particles

    International Nuclear Information System (INIS)

    Tsan, Ung Chan

    2012-01-01

    Dirac's equation states that an electron implies the existence of an antielectron with the same mass (more generally same arithmetic properties) and opposite charge (more generally opposite algebraic properties). Subsequent observation of antielectron validated this concept. This statement can be extended to all matter particles; observation of antiproton, antineutron, antideuton … is in complete agreement with this view. Recently antihypertriton was observed and 38 atoms of antihydrogen were trapped. This opens the path for use in precise testing of nature's fundamental symmetries. The symmetric properties of a matter particle and its mirror antimatter particle seem to be well established. Interactions operate on matter particles and antimatter particles as well. Conservation of matter parallels addition operating on positive and negative numbers. Without antimatter particles, interactions of the Standard Model (electromagnetism, strong interaction and weak interaction) cannot have the structure of group. Antimatter particles are characterized by negative baryonic number A or/and negative leptonic number L. Materialization and annihilation obey conservation of A and L (associated to all known interactions), explaining why from pure energy (A = 0, L = 0) one can only obtain a pair of matter particle antimatter particle — electron antielectron, proton and antiproton — via materialization where the mass of a pair of particle antiparticle gives back to pure energy with annihilation. These two mechanisms cannot change the difference in the number of matter particles and antimatter particles. Thus from pure energy only a perfectly symmetric (in number) universe could be generated as proposed by Dirac but observation showed that our universe is not symmetric, it is a matter universe which is nevertheless neutral. Fall of reflection symmetries shattered the prejudice that there is no way to define in an absolute way right and left or matter and antimatter

  14. Binding affinities of Schiff base Fe(II) complex with BSA and calf-thymus DNA: Spectroscopic investigations and molecular docking analysis

    Science.gov (United States)

    Rudra, Suparna; Dasmandal, Somnath; Patra, Chiranjit; Kundu, Arjama; Mahapatra, Ambikesh

    2016-09-01

    The binding interaction of a synthesized Schiff base Fe(II) complex with biological macromolecules viz., bovine serum albumin (BSA) and calf thymus(ct)-DNA have been investigated using different spectroscopic techniques coupled with viscosity measurements at physiological pH and 298 K. Regular amendments in emission intensities of BSA upon the action of the complex indicate significant interaction between them, and the binding interaction have been characterized by Stern Volmer plots and thermodynamic binding parameters. On the basis of this quenching technique one binding site with binding constant (Kb = (7.6 ± 0.21) × 105) between complex and protein have been obtained at 298 K. Time-resolved fluorescence studies have also been encountered to understand the mechanism of quenching induced by the complex. Binding affinities of the complex to the fluorophores of BSA namely tryptophan (Trp) and tyrosine (Tyr) have been judged by synchronous fluorescence studies. Secondary structural changes of BSA rooted by the complex has been revealed by CD spectra. On the other hand, hypochromicity of absorption spectra of the complex with the addition of ct-DNA and the gradual reduction in emission intensities of ethidium bromide bound ct-DNA in presence of the complex indicate noticeable interaction between ct-DNA and the complex with the binding constant (4.2 ± 0.11) × 106 M- 1. Life-time measurements have been studied to determine the relative amplitude of binding of the complex to ct-DNA base pairs. Mode of binding interaction of the complex with ct-DNA has been deciphered by viscosity measurements. CD spectra have also been used to understand the changes in ct-DNA structure upon binding with the metal complex. Density functional theory (DFT) and molecular docking analysis have been employed in highlighting the interactive phenomenon and binding location of the complex with the macromolecules.

  15. A mononuclear zinc(II) complex with piroxicam: Crystal structure, DNA- and BSA-binding studies; in vitro cell cytotoxicity and molecular modeling of oxicam complexes

    Science.gov (United States)

    Jannesari, Zahra; Hadadzadeh, Hassan; Amirghofran, Zahra; Simpson, Jim; Khayamian, Taghi; Maleki, Batool

    2015-02-01

    A new mononuclear Zn(II) complex, trans-[Zn(Pir)2(DMSO)2], where Pir- is 4-hydroxy-2-methyl-N-2-pyridyl-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide (piroxicam), has been synthesized and characterized. The crystal structure of the complex was obtained by the single crystal X-ray diffraction technique. The interaction of the complex with DNA and BSA was investigated. The complex interacts with FS-DNA by two binding modes, viz., electrostatic and groove binding (major and minor). The microenvironment and the secondary structure of BSA are changed in the presence of the complex. The anticancer effects of the seven complexes of oxicam family were also determined on the human K562 cell lines and the results showed reasonable cytotoxicities. The interactions of the oxicam complexes with BSA and DNA were modeled by molecular docking and molecular dynamic simulation methods.

  16. Boronic acid-modified magnetic materials for antibody purification

    Science.gov (United States)

    Dhadge, Vijaykumar L.; Hussain, Abid; Azevedo, Ana M.; Aires-Barros, Raquel; Roque, Ana C. A.

    2014-01-01

    Aminophenyl boronic acids can form reversible covalent ester interactions with cis-diol-containing molecules, serving as a selective tool for binding glycoproteins as antibody molecules that possess oligosaccharides in both the Fv and Fc regions. In this study, amino phenyl boronic acid (APBA) magnetic particles (MPs) were applied for the magnetic separation of antibody molecules. Iron oxide MPs were firstly coated with dextran to avoid non-specific binding and then with 3-glycidyloxypropyl trimethoxysilane to allow further covalent coupling of APBA (APBA_MP). When contacted with pure protein solutions of human IgG (hIgG) and bovine serum albumin (BSA), APBA_MP bound 170 ± 10 mg hIgG g−1 MP and eluted 160 ± 5 mg hIgG g−1 MP, while binding only 15 ± 5 mg BSA g−1 MP. The affinity constant for the interaction between hIgG and APBA_MP was estimated as 4.9 × 105 M−1 (Ka) with a theoretical maximum capacity of 492 mg hIgG adsorbed g−1 MP (Qmax), whereas control particles bound a negligible amount of hIgG and presented an estimated theoretical maximum capacity of 3.1 mg hIgG adsorbed g−1 MP (Qmax). APBA_MPs were also tested for antibody purification directly from CHO cell supernatants. The particles were able to bind 98% of IgG loaded and to recover 95% of pure IgG (purity greater than 98%) at extremely mild conditions. PMID:24258155

  17. P-matrix description of charged particles interaction

    International Nuclear Information System (INIS)

    Babenko, V.A.; Petrov, N.M.

    1992-01-01

    The paper deals with formalism of the P-matrix description of two charged particles interaction. Separation in the explicit form of the background part corresponding to the purely Coulomb interaction in the P-matrix is proposed. Expressions for the purely Coulomb P-matrix, its poles, residues and purely Coulomb P-matrix approach eigenfunctions are obtained. (author). 12 refs

  18. Ultrafine particles cause cytoskeletal dysfunctions in macrophages: role of intracellular calcium

    Directory of Open Access Journals (Sweden)

    Brown David M

    2005-10-01

    Full Text Available Abstract Background Particulate air pollution is reported to cause adverse health effects in susceptible individuals. Since most of these particles are derived form combustion processes, the primary composition product is carbon with a very small diameter (ultrafine, less than 100 nm in diameter. Besides the induction of reactive oxygen species and inflammation, ultrafine particles (UFP can cause intracellular calcium transients and suppression of defense mechanisms of alveolar macrophages, such as impaired migration or phagocytosis. Methods In this study the role of intracellular calcium transients caused by UFP was studied on cytoskeleton related functions in J774A.1 macrophages. Different types of fine and ultrafine carbon black particles (CB and ufCB, respectively, such as elemental carbon (EC90, commercial carbon (Printex 90, diesel particulate matter (DEP and urban dust (UD, were investigated. Phagosome transport mechanisms and mechanical cytoskeletal integrity were studied by cytomagnetometry and cell viability was studied by fluorescence microscopy. Macrophages were exposed in vitro with 100 and 320 μg UFP/ml/million cells for 4 hours in serum free medium. Calcium antagonists Verapamil, BAPTA-AM and W-7 were used to block calcium channels in the membrane, to chelate intracellular calcium or to inhibit the calmodulin signaling pathways, respectively. Results Impaired phagosome transport and increased cytoskeletal stiffness occurred at EC90 and P90 concentrations of 100 μg/ml/million cells and above, but not with DEP or UD. Verapamil and W-7, but not BAPTA-AM inhibited the cytoskeletal dysfunctions caused by EC90 or P90. Additionally the presence of 5% serum or 1% bovine serum albumin (BSA suppressed the cytoskeletal dysfunctions. Cell viability showed similar results, where co-culture of ufCB together with Verapamil, W-7, FCS or BSA produced less cell dead compared to the particles only.

  19. Elasto-capillary interactions of drops and particles

    Science.gov (United States)

    Snoeijer, Jacco; Pandey, Anupam; Karpitschka, Stefan; Nawijn, Charlotte; Botto, Lorenzo; Andreotti, Bruno

    2017-11-01

    The interaction of solid particles floating on a liquid interface is popularly known as the Cheerios effect. Here we present similar interactions for particles and droplets on elastic surfaces, mediated by elastic deformation. We start with the Inverted Cheerios effect, by considering liquid drops on a solid gel. Remarkably, the interaction can be tuned from attractive to repulsive, as shown experimentally and theoretically. We then turn to more general cases of particles on elastic layers, for which new interaction laws are derived. An overview is given on the various regimes, including the crossover from purely elastic to purely capillary interfaces. ERC Consolidator Grant 616918.

  20. Energetics and optical properties of 6-dimensional rotating black hole in pure Gauss-Bonnet gravity

    International Nuclear Information System (INIS)

    Abdujabbarov, Ahmadjon; Ahmedov, Bobomurat; Atamurotov, Farruh; Dadhich, Naresh; Stuchlik, Zdenek

    2015-01-01

    We study physical processes around a rotating black hole in pure Gauss-Bonnet (GB) gravity. In pure GB gravity, the gravitational potential has a slower fall-off as compared to the corresponding Einstein potential in the same dimension. It is therefore expected that the energetics of a pure GB black hole would be weaker, and our analysis bears out that the efficiency of energy extraction by the Penroseprocess is increased to 25.8 % and the particle acceleration is increased to 55.28 %; the optical shadow of the black hole is decreased. These are in principle distinguishing observable features of a pure GB black hole. (orig.)

  1. Eulerian-Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry.

    Science.gov (United States)

    Umeyama, Motohiko

    2012-04-13

    This paper investigates the velocity and the trajectory of water particles under surface waves, which propagate at a constant water depth, using particle image velocimetry (PIV). The vector fields and vertical distributions of velocities are presented at several phases in one wave cycle. The third-order Stokes wave theory was employed to express the physical quantities. The PIV technique's ability to measure both temporal and spatial variations of the velocity was proved after a series of attempts. This technique was applied to the prediction of particle trajectory in an Eulerian scheme. Furthermore, the measured particle path was compared with the positions found theoretically by integrating the Eulerian velocity to the higher order of a Taylor series expansion. The profile of average travelling distance is also presented with a solution of zero net mass flux in a closed wave flume.

  2. Spectroscopic analyses on interaction of Amantadine-Salicylaldehyde, Amantadine-5-Chloro-Salicylaldehyde and Amantadine-o-Vanillin Schiff-Bases with bovine serum albumin (BSA)

    Science.gov (United States)

    Wang, Zhiqiu; Gao, Jingqun; Wang, Jun; Jin, Xudong; Zou, Mingming; Li, Kai; Kang, Pingli

    2011-12-01

    In this work, three Tricyclo [3.3.1.1(3,7)] decane-1-amine (Amantadine) Schiff-Bases, Amantadine-Salicylaldehyde (AS), Amantadine-5-Chloro-Salicylaldehyde (AS-5-C) and Amantadine-o-Vanillin (AS-o-V), were synthesized by direct heating reflux method in ethanol solution and characterized by infrared spectrum and elementary analysis. Fluorescence quenching was used to study the interaction of these Amantadine Schiff-Bases (AS, AS-5-C and AS-o-V) with bovine serum albumin (BSA). According to fluorescence quenching calculations the bimolecular quenching constant ( Kq), apparent quenching constant ( KSV), effective binding constant ( KA) and corresponding dissociation constant ( KD), binding site number ( n) and binding distance ( r) were obtained. The results show that these Amantadine Schiff-Bases can obviously bind to BSA molecules and the binding strength order is AS < AS-5-C = AS-o-V. Synchronous fluorescence spectroscopy reveals that these Amantadine Schiff-Bases adopt different way to bind with BSA molecules. That is, the AS and AS-5-C are accessibility to tryptophan (Trp) residues more than the tyrosine (Tyr) residues, while the AS-o-V is equally close to the Tyr and Trp residues.

  3. Quantum effects from a purely geometrical relativity theory

    International Nuclear Information System (INIS)

    Ellis, Homer G

    2005-01-01

    A purely geometrical relativity theory results from a construction that produces from three-dimensional space a happy unification of Kaluza's five-dimensional theory and Weyl's conformal theory. The theory can provide geometrical explanations for the following observed phenomena, among others: (a) visibility lifetimes of elementary particles of lengths inversely proportional to their rest masses; (b) the equality of charge magnitude among all charged particles interacting at an event; (c) the propensity of electrons in atoms to be seen in discretely spaced orbits; and (d) 'quantum jumps' between those orbits. This suggests the possibility that the theory can provide a deterministic underpinning of quantum mechanics like that provided to thermodynamics by the molecular theory of gases

  4. Vacancy-Mediated Magnetism in Pure Copper Oxide Nanoparticles

    Science.gov (United States)

    2010-01-01

    Room temperature ferromagnetism (RTF) is observed in pure copper oxide (CuO) nanoparticles which were prepared by precipitation method with the post-annealing in air without any ferromagnetic dopant. X-ray photoelectron spectroscopy (XPS) result indicates that the mixture valence states of Cu1+ and Cu2+ ions exist at the surface of the particles. Vacuum annealing enhances the ferromagnetism (FM) of CuO nanoparticles, while oxygen atmosphere annealing reduces it. The origin of FM is suggested to the oxygen vacancies at the surface/or interface of the particles. Such a ferromagnet without the presence of any transition metal could be a very good option for a class of spintronics. PMID:20671775

  5. Tribological Properties of Surface-Textured and Plasma-Nitrided Pure Titanium Under Oil Lubrication Condition

    Science.gov (United States)

    Zhang, Baosen; Dong, Qiangsheng; Ba, Zhixin; Wang, Zhangzhong; Shi, Hancheng; Xue, Yanting

    2018-01-01

    Plasma nitriding was conducted as post-treatment for surface texture on pure titanium to obtain a continuous nitriding layer. Supersonic fine particles bombarding (SFPB) was carried out to prepare surface texture. The surface morphologies and chemical composition were analyzed using scanning electron microscope and energy disperse spectroscopy. The microstructures of modified layers were characterized by transmission electron microscope. The tribological properties of surface-textured and duplex-treated pure titanium under oil lubrication condition were systematically investigated in the ball-on-plate reciprocating mode. The effects of applied load and sliding velocity on the tribological behavior were analyzed. The results show that after duplex treatments, the grains size in modified layer becomes slightly larger, and hardness is obviously improved. Wear resistance of duplex-treated pure titanium is significantly improved referenced to untreated and surface-textured pure titanium, which is 3.22 times as much as untreated pure titanium and 2.15 times of that for surface-textured pure titanium, respectively.

  6. Directional Solidification of Pure Succinonitrile and a Succinonitrile-Acetone Alloy

    Science.gov (United States)

    Simpson, James E.; deGroh, Henry C., III; Garimella, Suresh V.

    2000-01-01

    An experimental study of the horizontal Bridgman growth of pure succinonitrile (SCN) and of a succinonitrile-1.0 mol% acetone alloy (SCN-1.0 mol.% ACE) has been performed. Experiments involving both a stationary thermal field (no-growth case) and a translating thermal field (growth case) were conducted. Growth rates of 2 and 40 micrometers/sec were investigated. For the pure SCN experiments, the velocity field in the melt was estimated using video images of seed particles in the melt. Observations of the seed particles indicate that a primary longitudinal convective cell is formed. The maximum velocity of two different particles which traveled along similar paths was the same and equal to 1.49 +/- 0.01 mm/s. The general accuracy of velocity measurements is estimated to be +/-0.08 mm/s, though the data shows consistency to within +/- 0.02 mm/s. The shape of the solid/liquid interface was also quantitatively determined. The solid/liquid interface was stable (non-dendritic and non-cellular) but not flat: rather it was significantly distorted by the influence of connection in the melt and, for the growth case, by the moving temperature boundary conditions along the ampoule. It was found that the interface shape and position were highly dependent on the alignment of the ampoule in the apparatus. Consequently, the ampoule was carefully aligned for all experiments. The values for front location agree with those determined in previous experiments. For the alloy experiments, the solid/liquid interface was determined to be unstable at growth rates greater than 2.8 micrometers/sec, but stable for the cases of no-growth and growth at 2 micrometers/sec. When compared to the shape of the pure SCN interface, the alloy interface forms closer to the cold zone, indicating that the melting temperature decreased due to the alloying element. Extensive temperature measurements were performed on the outside of the ampoule containing pure SCN. The resulting thermal profiles are presented

  7. Evaluation by fluorescence, STD-NMR, docking and semi-empirical calculations of the o-NBA photo-acid interaction with BSA

    Science.gov (United States)

    Chaves, Otávio A.; Jesus, Catarina S. H.; Cruz, Pedro F.; Sant'Anna, Carlos M. R.; Brito, Rui M. M.; Serpa, Carlos

    2016-12-01

    Serum albumins present reversible pH dependent conformational transitions. A sudden laser induced pH-jump is a methodology that can provide new insights on localized protein (un)folding processes that occur within the nanosecond to microsecond time scale. To generate the fast pH jump needed to fast-trigger a protein conformational event, a photo-triggered acid generator as o-nitrobenzaldehyde (o-NBA) can be conveniently used. In order to detect potential specific or nonspecific interactions between o-NBA and BSA, we have performed ligand-binding studies using fluorescence spectroscopy, saturation transfer difference (STD) NMR, molecular docking and semi-empirical calculations. Fluorescence quenching indicates the formation of a non-fluorescent complex in the ground-state between the fluorophore and the quencher, but o-NBA does not bind much effectively to the protein (Ka 4.34 × 103 M- 1) and thus can be considered a relatively weak binder. The corresponding thermodynamic parameters: ΔG°, ΔS° and ΔH° showed that the binding process is spontaneous and entropy driven. Results of 1H STD-NMR confirm that the photo-acid and BSA interact, and the relative intensities of the signals in the STD spectra show that all o-NBA protons are equally involved in the binding process, which should correspond to a nonspecific interaction. Molecular docking and semi-empirical calculations suggest that the o-NBA binds preferentially to the Trp-212-containing site of BSA (FA7), interacting via hydrogen bonds with Arg-217 and Tyr-149 residues.

  8. Pure Insulin Nanoparticle Agglomerates for Pulmonary Delivery

    Science.gov (United States)

    Bailey, Mark M.; Gorman, Eric M.; Munson, Eric J.; Berkland, Cory J.

    2009-01-01

    Diabetes is a set of diseases characterized by defects in insulin utilization, either through autoimmune destruction of insulin-producing cells (Type I) or insulin resistance (Type II). Treatment options can include regular injections of insulin, which can be painful and inconvenient, often leading to low patient compliance. To overcome this problem, novel formulations of insulin are being investigated, such as inhaled aerosols. Sufficient deposition of powder in the peripheral lung to maximize systemic absorption requires precise control over particle size and density, with particles between 1 and 5 μm in aerodynamic diameter being within the respirable range. Insulin nanoparticles were produced by titrating insulin dissolved at low pH up to the pI of the native protein, and were then further processed into microparticles using solvent displacement. Particle size, crystallinity, dissolution properties, structural stability, and bulk powder density were characterized. We have demonstrated that pure drug insulin microparticles can be produced from nanosuspensions with minimal processing steps without excipients, and with suitable properties for deposition in the peripheral lung. PMID:18959432

  9. Synthesis, structure, DNA/BSA binding and antibacterial studies of NNO tridentate Schiff base metal complexes

    Science.gov (United States)

    Sakthi, Marimuthu; Ramu, Andy

    2017-12-01

    A new salicylaldehyde derived 2,4-diiodo-6-((2-phenylaminoethylimino)methyl)phenol Schiff base(L) and its transition metal complexes of the type MLCl where, M = Cu(II), Ni(II), Co(II), Mn(II) and Zn(II) have been synthesized. The coordination mode of Schiff base holding NNO donor atoms with metal ions was well investigated by elemental analysis, ESI-mass as well as IR, UV-vis, CV and NMR spectral studies. The binding efficiency and mode of these complexes with biological macromolecules viz., herring sperm DNA (HS- DNA) and bovine serum albumin (BSA) have been explored through various spectroscopic techniques. The characteristic changes in absorption, emission and, circular dichroism spectra of the complexes with DNA indicate the noticeable interaction between them. From the all spectral information complexes could interact with DNA via non-intercalation mode of binding. The hyperchromisim in absorption band and hypochromisim in emission intensity of BSA with different complex concentrations shown significant information, and the binding affinity value has been predicted from Stern-Volmer plots. Further, all the complexes could cleave the circular plasmid pUC19 DNA efficiently by using an activator H2O2. The ligand and all metal(II) complexes showed good antibacterial activities. The molecular docking studies of the complexes with DNA were performed in order to make a comparison and conclusion with spectral technic results.

  10. Copper(II Complexes Based on Aminohydroxamic Acids: Synthesis, Structures, In Vitro Cytotoxicities and DNA/BSA Interactions

    Directory of Open Access Journals (Sweden)

    Jia Zhang

    2018-05-01

    Full Text Available Four complexes, [Cu2(glyha(bpy2(H2O]·2ClO4·H2O (1, [Cu2(glyha(phen2]·2ClO4 (2, [Cu2(alaha(bpy2Cl]·Cl·4H2O (3, and [{Cu2(alaha(phen2}{Cu2(alaha(phen2(NO3}]·3NO3 (4 (glyha2− = dianion glycinehydroxamic acid, alaha2− = dianion alaninehydroxamic acid, bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline have been successfully synthesized and characterized by X-ray single crystal diffraction. The interactions of these complexes with calf thymus DNA (CT-DNA were studied through UV spectroscopy, fluorescence spectroscopy, and circular dichroism. The results revealed that complexes 1–4 could interact with CT-DNA through intercalation. Interactions of all complexes with bovine serum albumin (BSA were confirmed by the docking study to quench the intrinsic fluorescence of BSA in a static quenching process. Furthermore, the in vitro cytotoxic effect of the complexes was also examined on four tumor cell lines, including human lung carcinoma cell line (A549, human colon carcinoma cell line (HCT-116, human promyelocytic leukemia cell (HL-60 and cervical cancer cell line (HeLa. All complexes exhibited different antitumor activities.

  11. BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury(II) ions.

    Science.gov (United States)

    Li, Wei; Chen, Bin; Zhang, Haixiang; Sun, Yanhua; Wang, Jun; Zhang, Jinli; Fu, Yan

    2015-04-15

    Bovine serum albumin (BSA) is chosen as the nucleation templates to synthesize Pt-based peroxidase nanomimetics with the average diameter of 2.0nm. The efficient Pt nanozymes consist of 57% Pt(0) and 43% Pt(2+), which possess highly peroxidase-like activity with the Km values of 0.119mM and 41.8mM toward 3,3',5,5'-tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2), respectively. Interestingly, Hg(2+) is able to down-regulate the enzymatic activity of Pt nanoparticles, mainly through the interactions between Hg(2+) and Pt(0). It is the first report to explore a colorimetric Hg(2+) sensing system on the basis of peroxidase mimicking activities of Pt nanoparticles. One of our most intriguing results is that BSA-stabilized Pt nanozymes demonstrate the ability to sense Hg(2+) ions in aqueous solution without significant interference from other metal ions. The Hg(2+) detection limit of 7.2nM is achieved with a linear response range of 0-120nM, and the developed sensing system is potentially applicable for quantitative determination of Hg(2+) in drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Fluorescent copper(II complexes: The electron transfer mechanism, interaction with bovine serum albumin (BSA and antibacterial activity

    Directory of Open Access Journals (Sweden)

    Madhumita Hazra

    2017-01-01

    Full Text Available Dinuclear copper(II complexes with formula [Cu2(L2(N32] (1 and [Cu2(L2(NCS2] (2 HL = (1-[(3-methyl-pyridine-2-ylimino-methyl]-naphthalen-2-ol were synthesized by controlling the molar ratio of Cu(OAC2·6H2O, HL, sodium azide (1 and ammonium thiocyanate (2. The end on bridges appear exclusively in azide and thiocyanate to copper complexes. The electron transfer mechanism of copper(II complexes is examined by cyclic voltammetry indicating copper(II complexes are Cu(II/Cu(I couple. The interactions of copper(II complexes towards bovine serum albumin (BSA were examined with the help of absorption and fluorescence spectroscopic tools. We report a superficial solution-based route for the synthesis of micro crystals of copper complexes with BSA. The antibacterial activity of the Schiff base and its copper complexes were investigated by the agar disc diffusion method against some species of pathogenic bacteria (Escherichia coli, Vibrio cholerae, Streptococcus pneumonia and Bacillus cereus. It has been observed that the antibacterial activity of all complexes is higher than the ligand.

  13. Uranium-Molybdenum particles produced by electro-erosion

    International Nuclear Information System (INIS)

    Cabanillas, Edgardo D.; Lopez, Marisol; Pasqualini, Enrique E.; Lombardo, D. J. C.

    2003-01-01

    We have produced spheroidal U-Mo particles by the electro-erosion method using pure water as dielectric. The particles were characterised by optical metallography, scanning electron microscopy, energy dispersive spectrometry (EDS-EDAX) and X-ray diffraction. Spheroidal UO 2 particles with a peculiar distribution size were obtained with two distribution centred at 10 and 70 μm. The obtained particles have central inclusions of U and Mo compounds. (author)

  14. Multispectroscopic investigation of the interaction of BSA and DNA with the anticancer drug, N-(6-ferrocenyl-2-naphthoyl)-gamma-amino butyric acid methyl ester

    Science.gov (United States)

    Rajina, S. R.; Sudhi, Geethu; Austin, P.; Praveen, S. G.; Xavier, T. S.; Kenny, Peter T. M.; Binoy, J.

    2018-05-01

    The interaction of a drug with DNA and BSA play a great role in studying anti cancer activity and drug transport properties, which can be effectively, investigated using vibrational spectroscopy, UV visible spectroscopy and Fluorescence spectroscopy. The present work reports the structural features of N-(6-ferrocenyl-2-naphthoyl)-gamma-amino butyric acid Methyl ester (FNGABME) based on FTIR and FTRaman spectroscopy. The absorption and fluorescence spectroscopic methods were used to study the efficiency of the interaction of the compound FNGABME with BSA and DNA and also molecular docking were performed computationally to validate the results which shows that the title compound may exhibit inhibitory activity against the cancer cells.

  15. Charging of mesospheric aerosol particles: the role of photodetachment and photoionization from meteoric smoke and ice particles

    Directory of Open Access Journals (Sweden)

    M. Rapp

    2009-06-01

    Full Text Available Time constants for photodetachment, photoemission, and electron capture are considered for two classes of mesospheric aerosol particles, i.e., meteor smoke particles (MSPs and pure water ice particles. Assuming that MSPs consist of metal oxides like Fe2O3 or SiO, we find that during daytime conditions photodetachment by solar photons is up to 4 orders of magnitude faster than electron attachment such that MSPs cannot be negatively charged in the presence of sunlight. Rather, even photoemission can compete with electron capture unless the electron density becomes very large (>>1000 cm−3 such that MSPs should either be positively charged or neutral in the case of large electron densities. For pure water ice particles, however, both photodetachment and photoemission are negligible due to the wavelength characteristics of its absorption cross section and because the flux of solar photons has already dropped significantly at such short wavelengths. This means that water ice particles should normally be negatively charged. Hence, our results can readily explain the repeated observation of the coexistence of positive and negative aerosol particles in the polar summer mesopause, i.e., small MSPs should be positively charged and ice particles should be negatively charged. These results have further important implications for our understanding of the nucleation of mesospheric ice particles as well as for the interpretation of incoherent scatter radar observations of MSPs.

  16. Review of element-specific data for biosphere assessment BSA-2009

    International Nuclear Information System (INIS)

    Helin, J.; Ikonen, A. T. K.; Hjerpe, T.

    2010-06-01

    A literature review on distribution coefficients (Kd) to soil, sediment and suspended matter and on concentration ratios to forest, aquatic and crop plants and to edibles was performed and is documented in this report. The literature data were combined, in some cases involving also site-specific data, using the methods of Bayesian updating. Their application is also explained in the report. Based on the derived data, aggregated concentration ratios (production-weighted average concentration ratio to edibles specific to an ecosystem type) were calculated. Finally, the quality of the established data basis is evaluated. The work provides the 2009 biosphere assessment of spent nuclear fuel disposal the in Olkiluoto site, BSA-2009, with the abovementioned parameter values and distributions, but most importantly demonstrates the methodology adopted to combine various data sources and derive such assessment data. It is acknowledged that for many parameters and/or elements the data basis needs improvement by the forthcoming 2012 assessment. (orig.)

  17. Adsorption properties of BSA and DsRed proteins deposited on thin SiO2 layers: optically non-absorbing versus absorbing proteins

    Science.gov (United States)

    Scarangella, A.; Soumbo, M.; Villeneuve-Faure, C.; Mlayah, A.; Bonafos, C.; Monje, M.-C.; Roques, C.; Makasheva, K.

    2018-03-01

    Protein adsorption on solid surfaces is of interest for many industrial and biomedical applications, where it represents the conditioning step for micro-organism adhesion and biofilm formation. To understand the driving forces of such an interaction we focus in this paper on the investigation of the adsorption of bovine serum albumin (BSA) (optically non-absorbing, model protein) and DsRed (optically absorbing, naturally fluorescent protein) on silica surfaces. Specifically, we propose synthesis of thin protein layers by means of dip coating of the dielectric surface in protein solutions with different concentrations (0.01-5.0 g l-1). We employed spectroscopic ellipsometry as the most suitable and non-destructive technique for evaluation of the protein layers’ thickness and optical properties (refractive index and extinction coefficient) after dehydration, using two different optical models, Cauchy for BSA and Lorentz for DsRed. We demonstrate that the thickness, the optical properties and the wettability of the thin protein layers can be finely controlled by proper tuning of the protein concentration in the solution. These results are correlated with the thin layer morphology, investigated by AFM, FTIR and PL analyses. It is shown that the proteins do not undergo denaturation after dehydration on the silica surface. The proteins arrange themselves in a lace-like network for BSA and in a rod-like structure for DsRed to form mono- and multi-layers, due to different mechanisms driving the organization stage.

  18. Multiple spectroscopic studies on the interaction of BSA with pristine CNTs and their toxicity against Donax faba

    Energy Technology Data Exchange (ETDEWEB)

    Sekar, Gajalakshmi; Vijayakumar, S.; Thanigaivel, S.; Thomas, John; Mukherjee, Amitava; Chandrasekaran, Natarajan, E-mail: nchandra40@hotmail.com

    2016-02-15

    Enhanced biomedical applications of carbon nanotubes (CNTs) have necessitated the need for the fundamental understanding behind their interaction with biomolecules. Carbon nanotube bundles were dispersed with tween 20 to attain individual nanotubes that are active in UV–vis region. Plasmon resonance of dispersions was obtained at 252 nm of 4.88 eV. FT-Raman bands of dispersions of SWCNTs and MWCNTs at 1346 and 1573 cm{sup −1} corresponds to the existence of Disordered and Graphitic band of CNTs after dispersion. XRD revealed crystalline feature of graphitic structures of CNTs. SEM-EDAX showed tubular structures of CNTs along with the existence of lower percentage contents of metal impurities. Hyperchromic effect of BSA–CNT complex suggested the existence of ground state complex between them. Quenching nature of CNTs against the intrinsic fluorescence potential of BSA followed static mechanism. 3D fluorescence spectra of BSA confirmed the possibilities of their binding with CNTs via tryptophan and tyrosine residues, followed by the disturbances to their aromatic environment. Alterations were observed in the amide band position of FTIR spectra of BSA–CNT conjugates. Loss of alpha-helical structures and alteration in the tryptophan position were evidenced with respect to CD spectra. The toxicity profile of pristine and BSA–CNT conjugates were evaluated against Donax faba. On comparison with pristine CNTs, BSA–CNTs conjugates showed higher LC{sub 50} dose values. In addition, the histopathology of the tissues, treated with CNT–BSA conjugates has shown decreased effect on the cellular integrity rather than the pristine ones. Hence, the adsorption of biomolecules such as the proteins over CNTs surface could have possible effect on reducing their toxicity profile in nature. - Highlights: • UV–visible spectra showed hyper-chromic effect. • Binding existed with static quenching mechanism. • Aromatic environment around Trp and Tyr residues were affected

  19. An experimental and theoretical study on the interaction of DNA and BSA with novel Ni2 +, Cu2 + and VO2 + complexes derived from vanillin bidentate Schiff base ligand

    Science.gov (United States)

    Dostani, Morteza; Kianfar, Ali Hossein; Mahmood, Wan Ahmad Kamil; Dinari, Mohammad; Farrokhpour, Hossein; Sabzalian, Mohammad R.; Abyar, Fatemeh; Azarian, Mohammad Hossein

    2017-06-01

    In this investigation, the structure of bidentate N,N-Schiff base ligand of vanillin, (E)-4-(((2-amino-5-nitrophenyl)imino)methyl)-2-methoxyphenol (HL) was determined by single crystal X-ray diffraction. The interaction of new [CuL2], [NiL2] and [VOL2] complexes with DNA and BSA was explored through UV-Vis and fluorescence spectroscopy. The electronic spectra changes displayed an isosbestic point for the complexes upon titration with DNA. The Kb values for the complexes [CuL2], [NiL2] and [VOL2] were 2.4 × 105, 1.9 × 105 and 4.2 × 104, respectively. [CuL2] complex was bound more toughly than [NiL2] and [VOL2] complexes. These complexes had a significant interaction with Bovine Serum Albumin (BSA) and the results demonstrated that the quenching mechanism was a static procedure. Also, the complexes interacted with BSA by more than one binding site (n > 1). Finally, the theoretical studies were performed using the docking method to calculate the binding constants and recognize the binding site of the DNA and BSA with the complexes. The ligand and complexes including Ni2 +, Cu2 + and VO2 + ions were colonized by fungal growth.

  20. Impact of nano particles on semiconductor manufacturing

    NARCIS (Netherlands)

    Wali, F.; Knotter, D.M.; Kuper, F.G.

    2008-01-01

    Semiconductor industry faces a continuous challenge to decrease the transistor size as well as to increase the yield by eliminating defect sources. One of the sources of particle defects is ultra pure water used in different production tools at different stages of processing. In this paper, particle

  1. Rehabilitation of pure alexia

    DEFF Research Database (Denmark)

    Starrfelt, Randi; Ólafsdóttir, Rannveig Rós; Arendt, Ida-Marie

    2013-01-01

    that pure alexia was an easy target for rehabilitation efforts. We review the literature on rehabilitation of pure alexia from 1990 to the present, and find that patients differ widely on several dimensions like alexia severity, and associated deficits. Many patients reported to have pure alexia......-designed and controlled studies of rehabilitation of pure alexia....

  2. Casimir effect at finite temperature for pure-photon sector of the minimal Standard Model Extension

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A.F., E-mail: alesandroferreira@fisica.ufmt.br [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900, Cuiabá, Mato Grosso (Brazil); Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road Victoria, BC (Canada); Khanna, Faqir C., E-mail: khannaf@uvic.ca [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road Victoria, BC (Canada)

    2016-12-15

    Dynamics between particles is governed by Lorentz and CPT symmetry. There is a violation of Parity (P) and CP symmetry at low levels. The unified theory, that includes particle physics and quantum gravity, may be expected to be covariant with Lorentz and CPT symmetry. At high enough energies, will the unified theory display violation of any symmetry? The Standard Model Extension (SME), with Lorentz and CPT violating terms, has been suggested to include particle dynamics. The minimal SME in the pure photon sector is considered in order to calculate the Casimir effect at finite temperature.

  3. Production of uranium-molybdenum particles by spark-erosion

    International Nuclear Information System (INIS)

    Cabanillas, E.D.; Lopez, M.; Pasqualini, E.E.; Cirilo Lombardo, D.J.

    2004-01-01

    With the spark-erosion method we have produced spheroidal particles of an uranium-molybdenum alloy using pure water as dielectric. The particles were characterized by optical metallography, scanning electron microscopy, energy dispersive spectrometry and X-ray diffraction. Mostly spherical particles of UO 2 with a distinctive size distribution with peaks centered at 70 and 10 μm were obtained. The particles have central inclusions of U and Mo compounds

  4. Production of uranium-molybdenum particles by spark-erosion

    Energy Technology Data Exchange (ETDEWEB)

    Cabanillas, E.D. E-mail: cabanill@cnea.gov.ar; Lopez, M.; Pasqualini, E.E.; Cirilo Lombardo, D.J

    2004-01-01

    With the spark-erosion method we have produced spheroidal particles of an uranium-molybdenum alloy using pure water as dielectric. The particles were characterized by optical metallography, scanning electron microscopy, energy dispersive spectrometry and X-ray diffraction. Mostly spherical particles of UO{sub 2} with a distinctive size distribution with peaks centered at 70 and 10 {mu}m were obtained. The particles have central inclusions of U and Mo compounds.

  5. Physical mechanical and tablet formation properties of hydroxypropylcellulose: In pure form and in mixtures

    OpenAIRE

    Picker-Freyer, Katharina M.; Dürig, Thomas

    2007-01-01

    The aim of the study was to analyze hydroxypropylcellulose (HPC) in pure form and in excipient mixtures and to relate its physical and chemical properties to tablet binder functionality. The materials used were Klucel hydroxypropylcellulose grades ranging from low to high molecular weight (80–1000 kDa) of regular particle size (250 µm mean size) and fine particle size (80 µm mean size). These were compared with microcrystalline cellulose, spray-dried lactose, and dicalcium phosphate dihydrate...

  6. Charging of mesospheric aerosol particles: the role of photodetachment and photoionization from meteoric smoke and ice particles

    Directory of Open Access Journals (Sweden)

    M. Rapp

    2009-06-01

    Full Text Available Time constants for photodetachment, photoemission, and electron capture are considered for two classes of mesospheric aerosol particles, i.e., meteor smoke particles (MSPs and pure water ice particles. Assuming that MSPs consist of metal oxides like Fe2O3 or SiO, we find that during daytime conditions photodetachment by solar photons is up to 4 orders of magnitude faster than electron attachment such that MSPs cannot be negatively charged in the presence of sunlight. Rather, even photoemission can compete with electron capture unless the electron density becomes very large (>>1000 cm−3 such that MSPs should either be positively charged or neutral in the case of large electron densities. For pure water ice particles, however, both photodetachment and photoemission are negligible due to the wavelength characteristics of its absorption cross section and because the flux of solar photons has already dropped significantly at such short wavelengths. This means that water ice particles should normally be negatively charged. Hence, our results can readily explain the repeated observation of the coexistence of positive and negative aerosol particles in the polar summer mesopause, i.e., small MSPs should be positively charged and ice particles should be negatively charged. These results have further important implications for our understanding of the nucleation of mesospheric ice particles as well as for the interpretation of incoherent scatter radar observations of MSPs.

  7. Desain Beam Shaping Assembly (BSA berbasis D-D Neutron Generator 2,45 MeV untuk Uji Fasilitas BNCT

    Directory of Open Access Journals (Sweden)

    Desman P. Gulo

    2015-12-01

    Full Text Available Boron Neutron Capture Therapy (BNCT is one of the cancer treatments that are being developed in nowadays. In order to support BNCT treatment for cancer that exists in underneath skin like breast cancer, the facility needs a generator that is able to produce epithermal neutron. One of the generator that is able to produce neutron is D-D neutron generator with 2.45 MeV energy. Based on the calculation of this paper, we found that the total production of neutron per second (neutron yield from Neutron Generator (NG by PSTA-BATAN Yogyakarta is 2.55×1011 n/s. The energy and flux that we found is in the range of quick neutron. Thus, it needs to be moderated to the level of epithermal neutron which is located in the interval energy of 1 eV to 10 KeV with 109 n/cm2s flux. This number is the recommendation standard from IAEA. Beam Shaping Assembly (BSA is needed in order to moderate the quick neutron to the level of epithermal neutron. One part of BSA that has the responsibility in moderating the quick neutron to epithermal neutron is the moderator. The substance of moderator used in this paper is MgF2 and A1F3. The thickness of moderator has been set in in such a way by using MCNPX software in order to fulfill the standard of IAEA. As the result of optimizing BSA moderator, the data obtain epithermal flux with the total number of 4.64×108 n/cm2/s for both of moderators with the thickness of moderator up to 15 cm. At the end of this research, the number of epithermal flux does not follow the standard of IAEA. This is because the flux neutron that is being produced by NG is relatively small. In conclusion, the NG from PSTA-BATAN Yogyakarta is not ready to be used for the BNCT treatment facility for the underneath skin cancer like breast cancer.

  8. Laboratory-generated mixtures of mineral dust particles with biological substances: characterization of the particle mixing state and immersion freezing behavior

    Science.gov (United States)

    Augustin-Bauditz, Stefanie; Wex, Heike; Denjean, Cyrielle; Hartmann, Susan; Schneider, Johannes; Schmidt, Susann; Ebert, Martin; Stratmann, Frank

    2016-05-01

    Biological particles such as bacteria, fungal spores or pollen are known to be efficient ice nucleating particles. Their ability to nucleate ice is due to ice nucleation active macromolecules (INMs). It has been suggested that these INMs maintain their nucleating ability even when they are separated from their original carriers. This opens the possibility of an accumulation of such INMs in soils, resulting in an internal mixture of mineral dust and INMs. If particles from such soils which contain biological INMs are then dispersed into the atmosphere due to wind erosion or agricultural processes, they could induce ice nucleation at temperatures typical for biological substances, i.e., above -20 up to almost 0 °C, while they might be characterized as mineral dust particles due to a possibly low content of biological material. We conducted a study within the research unit INUIT (Ice Nucleation research UnIT), where we investigated the ice nucleation behavior of mineral dust particles internally mixed with INM. Specifically, we mixed a pure mineral dust sample (illite-NX) with ice active biological material (birch pollen washing water) and quantified the immersion freezing behavior of the resulting particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS). A very important topic concerning the investigations presented here as well as for atmospheric application is the characterization of the mixing state of aerosol particles. In the present study we used different methods like single-particle aerosol mass spectrometry, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX), and a Volatility-Hygroscopicity Tandem Differential Mobility Analyser (VH-TDMA) to investigate the mixing state of our generated aerosol. Not all applied methods performed similarly well in detecting small amounts of biological material on the mineral dust particles. Measuring the hygroscopicity/volatility of the mixed particles with the VH-TDMA was the most

  9. Laboratory-generated mixtures of mineral dust particles with biological substances: characterization of the particle mixing state and immersion freezing behavior

    Directory of Open Access Journals (Sweden)

    S. Augustin-Bauditz

    2016-05-01

    Full Text Available Biological particles such as bacteria, fungal spores or pollen are known to be efficient ice nucleating particles. Their ability to nucleate ice is due to ice nucleation active macromolecules (INMs. It has been suggested that these INMs maintain their nucleating ability even when they are separated from their original carriers. This opens the possibility of an accumulation of such INMs in soils, resulting in an internal mixture of mineral dust and INMs. If particles from such soils which contain biological INMs are then dispersed into the atmosphere due to wind erosion or agricultural processes, they could induce ice nucleation at temperatures typical for biological substances, i.e., above −20 up to almost 0 °C, while they might be characterized as mineral dust particles due to a possibly low content of biological material. We conducted a study within the research unit INUIT (Ice Nucleation research UnIT, where we investigated the ice nucleation behavior of mineral dust particles internally mixed with INM. Specifically, we mixed a pure mineral dust sample (illite-NX with ice active biological material (birch pollen washing water and quantified the immersion freezing behavior of the resulting particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS. A very important topic concerning the investigations presented here as well as for atmospheric application is the characterization of the mixing state of aerosol particles. In the present study we used different methods like single-particle aerosol mass spectrometry, Scanning Electron Microscopy (SEM, Energy Dispersive X-ray analysis (EDX, and a Volatility–Hygroscopicity Tandem Differential Mobility Analyser (VH-TDMA to investigate the mixing state of our generated aerosol. Not all applied methods performed similarly well in detecting small amounts of biological material on the mineral dust particles. Measuring the hygroscopicity/volatility of the mixed particles with the VH

  10. Efflorescence of ammonium sulfate and coated ammonium sulfate particles: evidence for surface nucleation.

    Science.gov (United States)

    Ciobanu, V Gabriela; Marcolli, Claudia; Krieger, Ulrich K; Zuend, Andreas; Peter, Thomas

    2010-09-09

    Using optical microscopy, we investigated the efflorescence of ammonium sulfate (AS) in aqueous AS and in aqueous 1:1 and 8:1 (by dry weight) poly(ethylene glycol)-400 (PEG-400)/AS particles deposited on a hydrophobically coated slide. Aqueous PEG-400/AS particles exposed to decreasing relative humidity (RH) exhibit a liquid-liquid phase separation below approximately 90% RH with the PEG-400-rich phase surrounding the aqueous AS inner phase. Pure aqueous AS particles effloresced in the RH range from 36.3% to 43.7%, in agreement with literature data (31-48% RH). In contrast, aqueous 1:1 (by dry weight) PEG-400/AS particles with diameters of the AS phase from 7.2 to 19.2 mum effloresced between 26.8% and 33.9% RH and aqueous 8:1 (by dry weight) PEG-400/AS particles with diameters of the AS phase from 1.8 to 7.3 mum between 24.3% and 29.3% RH. Such low efflorescence relative humidity (ERH) values have never been reached before for AS particles of this size range. We show that these unprecedented low ERHs of AS in PEG-400/AS particles could not possibly be explained by the presence of low amounts of PEG-400 in the aqueous AS phase, by a potential inhibition of water evaporation via anomalously slow diffusion through the PEG coating, or by different time scales between various experimental techniques. High-speed photography of the efflorescence process allowed the development of the AS crystallization fronts within the particles to be monitored with millisecond time resolution. The nucleation sites were inferred from the initial crystal growth sites. Analysis of the probability distribution of initial sites of 31 and 19 efflorescence events for pure AS and 1:1 (by dry weight) PEG-400/AS particles, respectively, showed that the particle volume can be excluded as the preferred nucleation site in the case of pure AS particles. For aqueous 1:1 (by dry weight) PEG-400/AS particles preferential AS nucleation in the PEG phase and at the PEG/AS/substrate contact line can be

  11. A hybrid charged-particle guide for studying (n, charged particle) reactions

    International Nuclear Information System (INIS)

    Haight, R.C.; White, R.M.; Zinkle, S.J.

    1983-01-01

    Charged-particle transport systems consisting of magnetic quadrupole lenses have been employed in recent years in the study of (n, charged particle) reactions. A new transport system was completed at the laboratory that is based both on magnetic lenses as well as electrostatic fields. The magnetic focusing of the charged-particle guide is provided by six magnetic quadrupole lenses arranged in a CDCCDC sequence (in the vertical plane). The electrostatic field is produced by a wire at high voltage which stretches the length of the guide and is physically at the centre of the magnetic axis. The magnetic lenses are used for charged particles above 5 MeV; the electrostatic guide is used for lower energies. This hybrid system possesses the excellent focusing and background rejection properties of other magnetic systems. For low energy charged-particles, the electrostatic transport avoids the narrow band-passes in charged-particle energy which are a problem with purely magnetic transport systems. This system is installed at the LLNL Cyclograaff facility for the study of (n, charged particle) reactions at neutron energies up to 35 MeV. (Auth.)

  12. Twistor Transform for Spinning Particle

    International Nuclear Information System (INIS)

    Fedoruk, S.

    2005-01-01

    Twistorial formulation of a particle of arbitrary spin has been constructed. The twistor formulation is deduced from a space-time formulation of the spinning particle by introducing pure gauge Lorentz harmonics in this system. Canonical transformations and gauge fixing conditions, excluding space-time variables, produce the fundamental conditions of twistor transform relating the space-time formulation and twistor one. Integral transformations, relating massive twistor fields with usual space-time fields, have been constructed

  13. Color Spectrum Properties of Pure and Non-Pure LATEX in Discriminating Rubber Clone Series

    International Nuclear Information System (INIS)

    Noor Aishah Khairuzzaman; Hadzli Hashim; Nina Korlina Madzhi; Noor Ezan Abdullah; Faridatul Aima Ismail; Ahmad Faiz Sampian; Azhana Fatnin Che Will

    2015-01-01

    A study of color spectrum properties for pure and non-pure latex in discriminating rubber clone series has been presented in this paper. There were five types of clones from the same series being used as samples in this study named RRIM2002, RRIM2007, RRIM2008, RRIM2014, and RRIM3001. The main objective is to identify the significant color spectrum (RGB) from pure and non-pure latex that can discriminate rubber clone series. The significant information of color spectrum properties for pure and non-pure latex is determined by using spectrometer and Statistical Package for the Social Science (SPSS). Visible light spectrum (VIS) is used as a radiation light of the spectrometer to emit light to the surface of the latex sample. By using SPSS software, the further numerical analysis of color spectrum properties is being conducted. As the conclusion, blue color spectrum for non-pure is able to discriminate for all rubber clone series whereas only certain color spectrum can differentiate several clone series for pure latex. (author)

  14. Particle creation by peak electric field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Gavrilov, S.P. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Herzen State Pedagogical University of Russia, Department of General and Experimental Physics, St. Petersburg (Russian Federation); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); P. N. Lebedev Physical Institute, Moscow (Russian Federation); University of Sao Paulo, Institute of Physics, CP 66318, Sao Paulo, SP (Brazil)

    2016-08-15

    The particle creation by the so-called peak electric field is considered. The latter field is a combination of two exponential parts, one exponentially increasing and another exponentially decreasing. We find exact solutions of the Dirac equation with the field under consideration with appropriate asymptotic conditions and calculate all the characteristics of particle creation effect, in particular, differential mean numbers of created particle, total number of created particles, and the probability for a vacuum to remain a vacuum. Characteristic asymptotic regimes are discussed in detail and a comparison with the pure asymptotically decaying field is considered. (orig.)

  15. Pure drug nanoparticles in tablets: what are the dissolution limitations?

    International Nuclear Information System (INIS)

    Heng, Desmond; Ogawa, Keiko; Cutler, David J.; Chan, Hak-Kim; Raper, Judy A.; Ye Lin; Yun, Jimmy

    2010-01-01

    There has been increasing interests for drug companies to incorporate drug nanoparticles into their existing formulations. However, technical knowledge in this area is still in its infancy and more study needs to be done to stimulate growth in this fledging field. There is a need to scrutinize the performance of pure drug nanoparticles in tablets, particularly relating formulation variables to their dissolution performance. Application of the pure form, synthesized without the use of surfactants or stabilizers, is often preferred to maximize drug loading and also to minimize toxicity. Cefuroxime axetil, a poorly water-soluble cephalosporin antibiotic, was used as the model drug in the formulation development. Drug release rate, tablet disintegration time, tensile strength and energy of failure were predominantly influenced by the amount of super-disintegrant, amount of surfactant, compression force and diluent species, respectively. The compression rate had minimal impact on the responses. The main hurdle confronting the effective use of pure drug nanoparticles in tablets is the difficulty in controlling aggregation in solution, which could potentially be aggravated by the tabletting process. Through the use of elevated levels of surfactants (8 w/w% sodium dodecyl sulphate), drug release from the nanoparticle preparation was enhanced from 58.0 ± 2.7% to 72.3 ± 0.7% in 10 min. Hence, it is recommended that physical formulations for pure drug nanoparticles be focused on the particle de-aggregation step in solution, if much higher rates are to be desired. In conclusion, even though pure drug nanoparticles could be easily synthesized, limitations from aggregation may need to be overcome, before successful application in tablets can be fully realized.

  16. Pure drug nanoparticles in tablets: what are the dissolution limitations?

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Desmond [Institute of Chemical and Engineering Sciences (Singapore); Ogawa, Keiko [Nitto Denko Co. Ltd., Medical Division (Japan); Cutler, David J.; Chan, Hak-Kim, E-mail: kimc@pharm.usyd.edu.a [University of Sydney, Advanced Drug Delivery Group, Faculty of Pharmacy, A15 (Australia); Raper, Judy A. [University of Wollongong, Vice Chancellor' s Unit (Australia); Ye Lin [University of Sydney, School of Aerospace, Mechanical and Mechatronic Engineering (Australia); Yun, Jimmy [Nanomaterials Technology Pty. Ltd. (Singapore)

    2010-06-15

    There has been increasing interests for drug companies to incorporate drug nanoparticles into their existing formulations. However, technical knowledge in this area is still in its infancy and more study needs to be done to stimulate growth in this fledging field. There is a need to scrutinize the performance of pure drug nanoparticles in tablets, particularly relating formulation variables to their dissolution performance. Application of the pure form, synthesized without the use of surfactants or stabilizers, is often preferred to maximize drug loading and also to minimize toxicity. Cefuroxime axetil, a poorly water-soluble cephalosporin antibiotic, was used as the model drug in the formulation development. Drug release rate, tablet disintegration time, tensile strength and energy of failure were predominantly influenced by the amount of super-disintegrant, amount of surfactant, compression force and diluent species, respectively. The compression rate had minimal impact on the responses. The main hurdle confronting the effective use of pure drug nanoparticles in tablets is the difficulty in controlling aggregation in solution, which could potentially be aggravated by the tabletting process. Through the use of elevated levels of surfactants (8 w/w% sodium dodecyl sulphate), drug release from the nanoparticle preparation was enhanced from 58.0 {+-} 2.7% to 72.3 {+-} 0.7% in 10 min. Hence, it is recommended that physical formulations for pure drug nanoparticles be focused on the particle de-aggregation step in solution, if much higher rates are to be desired. In conclusion, even though pure drug nanoparticles could be easily synthesized, limitations from aggregation may need to be overcome, before successful application in tablets can be fully realized.

  17. Pure drug nanoparticles in tablets: what are the dissolution limitations?

    Science.gov (United States)

    Heng, Desmond; Ogawa, Keiko; Cutler, David J.; Chan, Hak-Kim; Raper, Judy A.; Ye, Lin; Yun, Jimmy

    2010-06-01

    There has been increasing interests for drug companies to incorporate drug nanoparticles into their existing formulations. However, technical knowledge in this area is still in its infancy and more study needs to be done to stimulate growth in this fledging field. There is a need to scrutinize the performance of pure drug nanoparticles in tablets, particularly relating formulation variables to their dissolution performance. Application of the pure form, synthesized without the use of surfactants or stabilizers, is often preferred to maximize drug loading and also to minimize toxicity. Cefuroxime axetil, a poorly water-soluble cephalosporin antibiotic, was used as the model drug in the formulation development. Drug release rate, tablet disintegration time, tensile strength and energy of failure were predominantly influenced by the amount of super-disintegrant, amount of surfactant, compression force and diluent species, respectively. The compression rate had minimal impact on the responses. The main hurdle confronting the effective use of pure drug nanoparticles in tablets is the difficulty in controlling aggregation in solution, which could potentially be aggravated by the tabletting process. Through the use of elevated levels of surfactants (8 w/w% sodium dodecyl sulphate), drug release from the nanoparticle preparation was enhanced from 58.0 ± 2.7% to 72.3 ± 0.7% in 10 min. Hence, it is recommended that physical formulations for pure drug nanoparticles be focused on the particle de-aggregation step in solution, if much higher rates are to be desired. In conclusion, even though pure drug nanoparticles could be easily synthesized, limitations from aggregation may need to be overcome, before successful application in tablets can be fully realized.

  18. Solid Particle Erosion Behaviors of Carbon-Fiber Epoxy Composite and Pure Titanium

    Science.gov (United States)

    Cai, Feng; Gao, Feng; Pant, Shashank; Huang, Xiao; Yang, Qi

    2016-01-01

    Rotor blades of Bell CH-146 Griffon helicopter experience excessive solid particle erosion at low altitudes in desert environment. The rotor blade is made of an advanced light-weight composite which, however, has a low resistance to solid particle erosion. Coatings have been developed and applied to protect the composite blade. However, due to the influence of coating process on composite material, the compatibility between coating and composite base, and the challenges of repairing damaged coatings as well as the inconsistency between the old and new coatings, replaceable thin metal shielding is an alternative approach; and titanium, due to its high-specific strength and better formability, is an ideal candidate. This work investigates solid particle erosion behaviors of carbon-fiber epoxy composite and titanium in order to assess the feasibility of titanium as a viable candidate for erosion shielding. Experiment results showed that carbon-fiber epoxy composite showed a brittle erosion behavior, whereas titanium showed a ductile erosion mode. The erosion rate on composite was 1.5 times of that on titanium at impingement angle 15° and increased to 5 times at impact angle 90°.

  19. Cu(II) Complexes of Isoniazid Schiff Bases: DNA/BSA Binding and Cytotoxicity Studies on A549 Cell Line

    OpenAIRE

    Ramadevi, Pulipaka; Singh, Rinky; Prajapati, Akhilesh; Gupta, Sarita; Chakraborty, Debjani

    2014-01-01

    A series of isonicotinoyl hydrazones have been synthesized via template method and were complexed to Cu(II). The ligands are coordinated to Cu(II) ion through the enolic oxygen and azomethine nitrogen resulting in a square planar geometry. The CT-DNA and bovine serum albumin binding propensities of the compounds were determined spectrophotometrically, the results of which indicate good binding propensity of complexes to DNA and BSA with high binding constant values. Furthermore, the compounds...

  20. Morphologically and size uniform monodisperse particles and their shape-directed self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Joshua E.; Bell, Howard Y.; Ye, Xingchen; Murray, Christopher Bruce

    2017-09-12

    Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Also disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.

  1. Radiating Kerr particle in Einstein universe

    International Nuclear Information System (INIS)

    Vaidya, P.C.; Patel, L.K.

    1989-01-01

    A generalized Kerr-NUT type metric is considered in connection with Einstein field equations corresponding to perfect fluid plus a pure radiation field. A general scheme for obtaining the exact solutions of these field equations is developed. Two physically meaningful particular cases are investigated in detail. One gives the field of a radiating Kerr particle embedded in the Einstein universe. The other solution may probably represent a deSitter-like universe pervaded by a pure radiation field. (author). 7 refs

  2. Sixth form pure mathematics

    CERN Document Server

    Plumpton, C

    1968-01-01

    Sixth Form Pure Mathematics, Volume 1, Second Edition, is the first of a series of volumes on Pure Mathematics and Theoretical Mechanics for Sixth Form students whose aim is entrance into British and Commonwealth Universities or Technical Colleges. A knowledge of Pure Mathematics up to G.C.E. O-level is assumed and the subject is developed by a concentric treatment in which each new topic is used to illustrate ideas already treated. The major topics of Algebra, Calculus, Coordinate Geometry, and Trigonometry are developed together. This volume covers most of the Pure Mathematics required for t

  3. Violation of local realism by a system with N spin-(1/2) particles

    International Nuclear Information System (INIS)

    Wu, Xiao-Hua; Zong, Hong-Shi

    2003-01-01

    Recently, it was found that Mermin's inequalities may not always be optimal for the refutation of a local realistic description [Phys. Rev. Lett. 88, 210402 (2002)]. To complete this work, we derive an inequality for the Greenberger-Horne-Zeilinger-type pure state for a system with N spin-(1/2) particles and the violation of the inequality can be shown for all the non product pure states. Mermin's inequality for a system of N spin-(1/2) particles and Gisin's theorem for a system of two spin-(1/2) particles are both included in our inequality

  4. Non-critical pure spinor superstrings

    International Nuclear Information System (INIS)

    Adam, Ido; Grassi, Pietro Antonio; Mazzucato, Luca; Oz, Yaron; Yankielowicz, Shimon

    2007-01-01

    We construct non-critical pure spinor superstrings in two, four and six dimensions. We find explicitly the map between the RNS variables and the pure spinor ones in the linear dilaton background. The RNS variables map onto a patch of the pure spinor space and the holomorphic top form on the pure spinor space is an essential ingredient of the mapping. A basic feature of the map is the requirement of doubling the superspace, which we analyze in detail. We study the structure of the non-critical pure spinor space, which is different from the ten-dimensional one, and its quantum anomalies. We compute the pure spinor lowest lying BRST cohomology and find an agreement with the RNS spectra. The analysis is generalized to curved backgrounds and we construct as an example the non-critical pure spinor type IIA superstring on AdS 4 with RR 4-form flux

  5. Site and Regional Data for Biosphere Assessment BSA-2009 Supplement to Olkiluoto Biosphere Description 2009

    International Nuclear Information System (INIS)

    Aro, L.; Haapanen, R.; Puhakka, L.; Hjerpe, T.; Kirkkala, T.; Koivunen, S.; Lahdenperae, A.-M.; Salo, T.; Ikonen, A.T.K.; Helin, J.

    2010-06-01

    The safety case for a spent nuclear fuel repository at Olkiluoto includes a computational safety assessment. A site-specific biosphere assessment is an integral part of them both. In 2009 an assessment was conducted to demonstrate preparedness to apply for construction license to the repository in 2012. As a part of the biosphere assessment, the present conditions at the site are described in Olkiluoto biosphere description report for an analogue of the future conditions being simulated in the safety assessment. This report is a supplement to the biosphere description report of 2009 and documents the site and regional data used in the biosphere assessment 'BSA-2009' with respective rationales. (orig.)

  6. Can Nano-Particle Melt below the Melting Temperature of Its Free Surface Partner?

    International Nuclear Information System (INIS)

    Sui Xiao-Hong; Qin Shao-Jing; Wang Zong-Guo; Kang Kai; Wang Chui-Lin

    2015-01-01

    The phonon thermal contribution to the melting temperature of nano-particles is inspected. The discrete summation of phonon states and its corresponding integration form as an approximation for a nano-particle or for a bulk system have been analyzed. The discrete phonon energy levels of pure size effect and the wave-vector shifts of boundary conditions are investigated in detail. Unlike in macroscopic thermodynamics, the integration volume of zero-mode of phonon for a nano-particle is not zero, and it plays an important role in pure size effect and boundary condition effect. We find that a nano-particle will have a rising melting temperature due to purely finite size effect; a lower melting temperature bound exists for a nano-particle in various environments, and the melting temperature of a nano-particle with free boundary condition reaches this lower bound. We suggest an easy procedure to estimation the melting temperature, in which the zero-mode contribution will be excluded, and only several bulk quantities will be used as input. We would like to emphasize that the quantum effect of discrete energy levels in nano-particles, which is not present in early thermodynamic studies on finite size corrections to melting temperature in small systems, should be included in future researches. (condensed matter: structural, mechanical, and thermal properties)

  7. Multi-particle entanglement via two-party entanglement

    Science.gov (United States)

    Brassard, Gilles; Mor, Tal

    2001-09-01

    Entanglement between n particles is a generalization of the entanglement between two particles, and a state is considered entangled if it cannot be written as a mixture of tensor products of the n particles' states. We present the key notion of semi-separability, used to investigate n-particle entanglement by looking at two-party entanglement between its various subsystems. We provide necessary conditions for n-particle separability (that is, sufficient conditions for n-particle entanglement). We also provide necessary and sufficient conditions in the case of pure states. By surprising examples, we show that such conditions are not sufficient for separability in the case of mixed states, suggesting entanglement of a strange type.

  8. PENGARUH PENGGANTIAN BOVINE SERUM ALBUMIN (BSA DENGAN PUTIH TELUR DALAM PENGENCER DASAR Cep-2 TERHADAP KUALITAS SEMEN KAMBING BOER PADA SIMPAN DINGIN

    Directory of Open Access Journals (Sweden)

    Ayu Sulvi Istanty

    2017-06-01

    Full Text Available The purpose of this research wasinvestigated the substitution effect of Bovine Serum Albumin (BSA with albumen on CEP-2 diluent to semen quality of Boer goat that was stored at 3-50C. Research was conducted at Reproduction Laboratory and Field Laboratory SumberSekarDau Animal Husbandry Faculty of Brawijaya University from December 2016until January 2017. The materials used for this research were fresh semen from 3,5-4,5 years old Boer goat which was collected with artificial vagina. Semen diluent was divided into two groups, those were P0 (90% CEP-2 + 10% Egg Yolk and P1 (90% CEP-2 (without BSA + 0,4% albumen + 10% Egg Yolk. Data of the research were analyzed using paired design t test. The result showed that after eight days of chilled preservation, the sperm motility of P0 was not significantly different with P1 (P>0,05. The average percentage of motility during eight days preservation P0 was higher than P1. The viability between P0 and P1 showed highly significantly difference (P<0,01. The average percentage of viability during eight days preservation P0 was higher than P1. The abnormality between P0 and P1 showed highly significant difference (P<0,01. The average percentage of abnormality between eight dayspreservation P1 was higher than P0. Total motile sperms count after seven days chilled preservation was not significantly different with hope value 40 million motile sperm/ml. The conclusion of this research was the substitution of BSA with albumen could maintain Boer goat semen quality.   Keywords : CEP-2, Bovine SerumAlbumin, Semen, Cryoprotectant

  9. Ice nucleation of ammonia gas exposed montmorillonite mineral dust particles

    Directory of Open Access Journals (Sweden)

    A. Salam

    2007-07-01

    Full Text Available The ice nucleation characteristics of montmorillonite mineral dust aerosols with and without exposure to ammonia gas were measured at different atmospheric temperatures and relative humidities with a continuous flow diffusion chamber. The montmorillonite particles were exposed to pure (100% and diluted ammonia gas (25 ppm at room temperature in a stainless steel chamber. There was no significant change in the mineral dust particle size distribution due to the ammonia gas exposure. 100% pure ammonia gas exposure enhanced the ice nucleating fraction of montmorillonite mineral dust particles 3 to 8 times at 90% relative humidity with respect to water (RHw and 5 to 8 times at 100% RHw for 120 min exposure time compared to unexposed montmorillonite within our experimental conditions. The percentages of active ice nuclei were 2 to 8 times higher at 90% RHw and 2 to 7 times higher at 100% RHw in 25 ppm ammonia exposed montmorillonite compared to unexposed montmorillonite. All montmorillonite particles are more efficient as ice nuclei with increasing relative humidities and decreasing temperatures. The activation temperature of montmorillonite exposed to 100% pure ammonia was 15°C higher than for unexposed montmorillonite particles at 90% RHw. In the 25 ppm ammonia exposed montmorillonite experiments, the activation temperature was 10°C warmer than unexposed montmorillonite at 90% RHw. Degassing does not reverse the ice nucleating ability of ammonia exposed montmorillonite mineral dust particles suggesting that the ammonia is chemically bound to the montmorillonite particle. This is the first experimental evidence that ammonia gas exposed montmorillonite mineral dust particles can enhance its activation as ice nuclei and that the activation can occur at temperatures warmer than –10°C where natural atmospheric ice nuclei are very scarce.

  10. Infrared divergence cancellation in pure Yang-Mills theory

    International Nuclear Information System (INIS)

    Alvarez, A.G.

    1977-01-01

    Virtual and real corrections to massless external lines in pure Yang-Mills theory are considered in order to look for general features of the infrared divergence cancellation. Use of the Ward identities and sums over transverse polarization states give rise to terms formally corresponding to real ghost emission, cancelling ghost loop singularities, and to a factorisation of the hard narrow single gauge boson emission. Other virtual corrections are examined in the soft region and a graph by graph cancellation is also found. An illustrative explicit calculation of scattering of a gauge particle in an external scalar potential, including hard narrow angle emission is presented. (Auth.)

  11. Comparative study of the performance of columns packed with several new fine silica particles. Would the external roughness of the particles affect column properties?

    Science.gov (United States)

    Gritti, Fabrice; Guiochon, Georges

    2007-09-28

    We measured and compared the characteristics and performance of columns packed with particles of five different C(18)-bonded silica, 3 and 5 microm Luna, 3 microm Atlantis, 3.5 microm Zorbax, and 2.7 microm Halo. The average particle size of each material was derived from the SEM pictures of 200 individual particles. These pictures contrast the irregular morphology of the external surface of the Zorbax and Halo particles and the smooth surface of the Luna and Atlantis particles. In a wide range of mobile phase velocities (from 0.010 to 3 mL/min) and at ambient temperature, we measured the first and second central moments of the peaks of naphthalene, insulin, and bovine serum albumin (BSA). These moments were corrected for the contributions of the extra-column volumes to calculate the reduced HETPs. The C-terms of naphthalene and insulin are largest for the Halo and Zorbax materials and the A-term smallest for the Halo-packed column. The Halo column performs the best for the low molecular weight compound naphthalene (minimum reduced HETP, 1.4) but is not as good as the Atlantis or Luna columns for the large molecular weight compound insulin. The Zorbax column is the least efficient column because of its large C-term. The lowest sample diffusivity through these particles, alone, does not account for the results. It is most likely that the roughness of the external surface of the Halo and Zorbax particles limit the performance of these columns at high flow rates generating an unusually high film mass transfer resistance.

  12. Development of SSR Markers Linked to Low Hydrocyanic Acid Content in Sorghum-Sudan Grass Hybrid Based on BSA Method.

    Science.gov (United States)

    Xiao-Xia, Yu; Zhi-Hua, Liu; Zhuo, Yu; Yue, Shi; Xiao-Yu, Li

    2016-01-01

    Sorghum-Sudan grass hybrid containing high hydrocyanic acid content can cause hydrocyanic acid poisoning to the livestock and limit the popularization of this forage crop. Molecular markers associated with low hydrocyanic acid content can speed up the process of identification of genotypes with low hydrocyanic acid content. In the present study, 11 polymorphic SSR primers were screened and used for bulked segregant analysis and single marker analysis. Three SSR markers Xtxp7230, Xtxp7375 and Bnlg667960 associated with low hydrocyanic acid content were rapidly identified by BSA. In single marker analysis, six markers Xtxp7230, Xtxp7375, Bnlg667960, Xtxp67-11, Xtxp295-7 and Xtxp12-9 were linked to low hydrocyanic acid content, which explained the proportion of phenotypic variation from 7.6 % to 41.2 %. The markers identified by BSA were also verified by single marker analysis. The three SSR marker bands were then cloned and sequenced for sequence homology analysis in NCBI. It is the first report on the development of molecular markers associated with low hydrocyanic acid content in sorghum- Sudan grass hybrid. These markers will be useful for genetic improvement of low hydrocyanic acid sorghum-Sudan grass hybrid by marker-assisted breeding.

  13. Spherical agglomerates of pure drug nanoparticles for improved pulmonary delivery in dry powder inhalers

    International Nuclear Information System (INIS)

    Hu Jun; Dong Yuancai; Pastorin, Giorgia; Ng, Wai Kiong; Tan, Reginald B. H.

    2013-01-01

    The aim of this study was to produce micron-sized spherical agglomerates of pure drug nanoparticles to achieve improved aerosol performance in dry powder inhalers (DPIs). Sodium cromoglicate was chosen as the model drug. Pure drug nanoparticles were prepared through a bottom-up particle formation process, liquid antisolvent precipitation, and then rapidly agglomerated into porous spherical microparticles by immediate (on-line) spray drying. Nonporous spherical drug microparticles with similar geometric size distribution were prepared by conventional spray drying of the aqueous drug solution, which together with the mechanically micronized drug particles were used as the control samples. The three samples were characterized by field emission scanning electron microscopy, laser diffraction, Brunauer–Emmett–Teller analysis, density measurement, powder X-ray diffraction, and in vitro aerosol deposition measurement with a multistage liquid impinger. It was found that drug nanoparticles with a diameter of ∼100 nm were precipitated and agglomerated into highly porous spherical microparticles with a volume median diameter (D 50% ) of 2.25 ± 0.08 μm and a specific surface area of 158.63 ± 3.27 m 2 /g. In vitro aerosol deposition studies showed the fine particle fraction of such spherical agglomerates of drug nanoparticles was increased by more than 50 % in comparison with the control samples, demonstrating significant improvements in aerosol performance. The results of this study indicated the potential of the combined particle engineering process of liquid antisolvent precipitation followed by immediate (on-line) spray drying in the development of novel DPI drug products with improved aerosol performance.

  14. Spherical agglomerates of pure drug nanoparticles for improved pulmonary delivery in dry powder inhalers

    Energy Technology Data Exchange (ETDEWEB)

    Hu Jun; Dong Yuancai [Institute of Chemical and Engineering Sciences (Singapore); Pastorin, Giorgia, E-mail: phapg@nus.edu.sg [National University of Singapore, Department of Pharmacy (Singapore); Ng, Wai Kiong, E-mail: ng_wai_kiong@ices.a-star.edu.sg; Tan, Reginald B. H. [Institute of Chemical and Engineering Sciences (Singapore)

    2013-04-15

    The aim of this study was to produce micron-sized spherical agglomerates of pure drug nanoparticles to achieve improved aerosol performance in dry powder inhalers (DPIs). Sodium cromoglicate was chosen as the model drug. Pure drug nanoparticles were prepared through a bottom-up particle formation process, liquid antisolvent precipitation, and then rapidly agglomerated into porous spherical microparticles by immediate (on-line) spray drying. Nonporous spherical drug microparticles with similar geometric size distribution were prepared by conventional spray drying of the aqueous drug solution, which together with the mechanically micronized drug particles were used as the control samples. The three samples were characterized by field emission scanning electron microscopy, laser diffraction, Brunauer-Emmett-Teller analysis, density measurement, powder X-ray diffraction, and in vitro aerosol deposition measurement with a multistage liquid impinger. It was found that drug nanoparticles with a diameter of {approx}100 nm were precipitated and agglomerated into highly porous spherical microparticles with a volume median diameter (D{sub 50%}) of 2.25 {+-} 0.08 {mu}m and a specific surface area of 158.63 {+-} 3.27 m{sup 2}/g. In vitro aerosol deposition studies showed the fine particle fraction of such spherical agglomerates of drug nanoparticles was increased by more than 50 % in comparison with the control samples, demonstrating significant improvements in aerosol performance. The results of this study indicated the potential of the combined particle engineering process of liquid antisolvent precipitation followed by immediate (on-line) spray drying in the development of novel DPI drug products with improved aerosol performance.

  15. Particle ID in LHCb

    International Nuclear Information System (INIS)

    Powell, Andrew

    2010-01-01

    Particle identification (PID) is a fundamental requirement for LHCb and is provided by CALO, MUON and RICH sub-detectors. The Calorimeters provide identification of electrons, photons and hadrons in addition to the measurement of their energies and positions. As well as being part of the LHCb trigger, the MUON system provides identification of muons to a very high level of purity, essential for many CP-sensitive measurements that have J/ψ's in their final states. Hadron identification, in particular the ability to distinguish kaons and pions, is crucial to many LHCB analyses, particularly where the final states of interest are purely hadronic. The LHCb RICH system provides this, covering a momentum range between 1 and 100 GeV/c. To maintain the integrity of the LHCb physics performance, it is essential to measure and monitor the particle identification efficiency and mis-identification fraction over time. This can be done by using specific decays, such as K-shorts, φ's, Λ's, J/ψ's and D*'s, for which pure samples can be isolated using only kinematic quantities, due to their unique decay topologies. This allows for clean samples of known particle types to be selected, which can then be used to calibrate and monitor the PID performance from data. The procedures for performing this will be presented, together with preliminary results from the 2009 and 2010 LHC runs. (author)

  16. Semi-empirical model to determine pure β--emitters in closed waste packages using Bremsstrahlung radiation

    International Nuclear Information System (INIS)

    Takacs, S.; Hermanne, A.

    2001-01-01

    unsealed pure β - -emitting isotopes are applied. The 3 H, 35 S, 32 P and 33 P are widely used for DNA sequencing studies. Also large amount of 3 H and 14 C are used in organic compound synthesis resulting in long-lived low-level radioactive waste. The β - -particles can be detected by beta counter but it is not applicable in the case of closed waste packages, since the β - - particles loss their energy quickly and they are not capable to escape from the sealed waste package. The emitted β - -particles have continuous energy spectrum and no direct gamma radiation follow the decay. The only means of detection of these β - -particles is through the Bremsstrahlung radiation produced while the particle slows down. The cross section of the Bremsstrahlung generation process depends on the initial energy of the slowing down β - - particles and is proportional to the atomic density n and the average Z 2 of the waste matrix. The probability of this process is much lower than that of the ionisation process for beta particles but it is still high enough to produce measurable amounts of photons. We studied the 35 S and 32 P pure β - -emitter sources in sealed waste packages. The continuous nature of the Bremsstrahlung radiation prevents us using the 'full-energy photo peak area' method. Instead a Region of Interest (ROI) was defined. Unlike for the full-energy photo peak method where the detector efficiency is calculated in the function of energy, for pure β - - emitters an optimised ROI was defined in the spectrum and a special efficiency, eps*beta(E) was determined. The used geometry and the nature of the waste matrix requires time consuming efficiency calibrations of the detector system to be able to establish an efficiency - (matrix density, geometry, matrix composition, activity distribution) function. We studied experimentally the possible deviations of the eps*beta(E) function in case of non uniform activity distribution in order to be able to model the associated error

  17. Electrochemical characterization of BSA/11-mercaptoundecanoic acid on Au electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ignat, Teodora, E-mail: teodora.ignat@gmail.com [Laboratory of Nanotechnology, IMT-Bucharest, Erou Iancu Nicolae 126A, 077190 Bucharest (Romania); Miu, Mihaela; Kleps, Irina; Bragaru, Adina; Simion, Monica; Danila, Mihai [Laboratory of Nanotechnology, IMT-Bucharest, Erou Iancu Nicolae 126A, 077190 Bucharest (Romania)

    2010-05-25

    Recently, it has becoming increasingly important to control the organization of self-assembled monolayers (SAMs) of functionalized thiols and to bind various proteins on gold/silicon substrates for their potential integration in nanoscale sensors/biosensors and optical devices. The biomolecule immobilization on the surfaces by covalent chemistry allows fabrication of reproducible, protein-modified surfaces and became also a model to investigate the electrochemical response induced by protein binding. In this study, we report different nanostructured gold substrates and the adsorption of a protein, bovine serum albumin (BSA) on the 11-mercaptoundecanoic acid (MUA) layer for further biomedical applications. Nanostructured gold layers of 200 nm thickness have been prepared on both, flat and macroporous silicon (macroPS) substrates. The X-ray diffraction analyses emphasized a dominant (1 1 1) crystallographic orientation of nanostructured Au substrates, which is preferred orientation for binding and detection of organic molecules on the gold surface. Impedance spectroscopy measurements performed in specific frequency ranges show that the binding of protein to a single monolayer of MUA can be easily detected. The impedance changes were also corroborated with cyclic voltammetry and Raman spectroscopy analysis for further development of the biosensor transducer for converting of the specific molecular recognition events into either an optical or electrical signal.

  18. Influence of particles on sonochemical reactions in aqueous solutions.

    Science.gov (United States)

    Keck, A; Gilbert, E; Köster, R

    2002-05-01

    Numerous publications deal with the possible application of ultrasound for elimination of organic pollutants as a tool for water pollution abatement. Most of the experiments were performed in pure water under laboratory conditions. For developing technologies that hold promise it is necessary to investigate the effect of ultrasound in natural systems or waste water where particulate matter could play an important role. In this paper the influence of quartz particles (2-25 microm) on the chemical effects of ultrasound in aqueous system using a high power ultrasound generator (68-1028 kHz, 100 W, reactor volume 500 ml) is reported. In pure water in dependence on particle size, concentration and frequency the formation rate of hydrogen peroxide under Ar/O2 (4:1) shows a maximum using 206 kHz in presence of 3-5 microm quartz particles (4-8 g/l). Under these conditions the yield of peroxide is higher than without quartz. Additionally under N2/O2 (4:1) besides hydrogen peroxide the formation of nitrite/nitrate was measured. Compared to pure water quartz particle depressed the formation of nitrite/nitrate up to 10-fold but not the formation of H2O2. According to the results of H2O2 formation the elimination of organic compounds by sonolysis (206 kHz) and the influence of quartz particles were investigated. As organic compounds salicylic acid, 2-chlorobenzoic acid and p-toluenesulfonic acid were used. The influence of quartz on the oxidation of organic compounds (206 kHz) is similar to that on the formation of H2O2.

  19. Mixtures of maximally entangled pure states

    Energy Technology Data Exchange (ETDEWEB)

    Flores, M.M., E-mail: mflores@nip.up.edu.ph; Galapon, E.A., E-mail: eric.galapon@gmail.com

    2016-09-15

    We study the conditions when mixtures of maximally entangled pure states remain entangled. We found that the resulting mixed state remains entangled when the number of entangled pure states to be mixed is less than or equal to the dimension of the pure states. For the latter case of mixing a number of pure states equal to their dimension, we found that the mixed state is entangled provided that the entangled pure states to be mixed are not equally weighted. We also found that one can restrict the set of pure states that one can mix from in order to ensure that the resulting mixed state is genuinely entangled. Also, we demonstrate how these results could be applied as a way to detect entanglement in mixtures of the entangled pure states with noise.

  20. Towards the final BSA modeling for the accelerator-driven BNCT facility at INFN LNL

    Energy Technology Data Exchange (ETDEWEB)

    Ceballos, C. [Centro de Aplicaciones Tecnlogicas y Desarrollo Nuclear, 5ta y30, Miramar, Playa, Ciudad Habana (Cuba); Esposito, J., E-mail: juan.esposito@lnl.infn.it [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Agosteo, S. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Colautti, P.; Conte, V.; Moro, D. [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy)

    2011-12-15

    Some remarkable advances have been made in the last years on the SPES-BNCT project of the Istituto Nazionale di Fisica Nucleare (INFN) towards the development of the accelerator-driven thermal neutron beam facility at the Legnaro National Laboratories (LNL), aimed at the BNCT experimental treatment of extended skin melanoma. The compact neutron source will be produced via the {sup 9}Be(p,xn) reactions using the 5 MeV, 30 mA beam driven by the RFQ accelerator, whose modules construction has been recently completed, into a thick beryllium target prototype already available. The Beam Shaping Assembly (BSA) final modeling, using both neutron converter and the new, detailed, Be(p,xn) neutron yield spectra at 5 MeV energy recently measured at the CN Van de Graaff accelerator at LNL, is summarized here.

  1. Análisis de segregantes agrupados (BSA para la detección de AFLPs ligados al gen de resistencia a PVX en Solanum commersonii

    Directory of Open Access Journals (Sweden)

    Mónica Blanco

    2005-01-01

    Full Text Available Para identificar polimorfismos asociados al gen de resistencia al PVX en la papa silvestre Solanum commersonii, se realizó un análisis de segregantes agrupados (BSA asistido con AFLPs. Estos polimorfismos están basados en la localización de un locus relacionado con la resistencia al virus X de la papa (PVX. Inicialmente, mediante un análisis de ELISA, los individuos de una progenie F2 previamente inoculados con el PVX, fueron ubicados en 2 grupos, uno con los individuos resistentes y otro con los susceptibles. Posteriormente, para el BSA el ADN de todos los individuos resistentes fue mezclado, lo mismo el ADN de todos los individuos susceptibles. Ambos grupos de ADN fueron analizados independientemente, utilizando 64 diferentes combinaciones de AFLPs. El análisis de los geles resultó en la identificación de 22 combinaciones diferentes de AFLPs que generaron bandas relacionadas exclusivamente con el carácter de resistencia al PVX.

  2. Tensile flow stress of ceramic particle-reinforced metal in the presence of particle cracking

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, R. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland); Rossoll, A. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland)], E-mail: andreas.rossoll@epfl.ch; Weber, L. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland); Bourke, M.A.M. [Los Alamos National Laboratory (LANL), LANSCE-12, P.O. Box 1663, MS H805, Los Alamos, NM 87545 (United States); Dunand, D.C. [Northwestern University, Department of Materials Science and Engineering, Evanston, IL 60208 (United States); Mortensen, A. [Ecole Polytechnique Federale de Lausanne (EPFL), Laboratory for Mechanical Metallurgy, CH-1015 Lausanne (Switzerland)

    2008-10-15

    A simplified model is proposed to quantify the effect of damage in the form of particle cracking on the elastic and plastic behaviour of particle-reinforced metal matrix composites under uniaxial tensile loading: cracked particles are simply replaced, in a mean-field model, with as much matrix. Pure aluminium reinforced with 44 vol.% alumina particles, tested in tension and unloaded at periodic plastic deformations, is analysed by neutron diffraction during each reloading elastic step, at 30%, 50%, 70% and 90% of the tensile flow stress. The data give the evolution of the elastic matrix strains in the composite and also measure the progress of internal damage by particle cracking. The test gives (i) the evolution of the in situ matrix flow stress, and (ii) the evolution of load partitioning during elastic deformation with increasing composite damage. Predictions of the present model compare favourably with relevant results in the literature, and with results from the present neutron diffraction experiments.

  3. Tensile flow stress of ceramic particle-reinforced metal in the presence of particle cracking

    International Nuclear Information System (INIS)

    Mueller, R.; Rossoll, A.; Weber, L.; Bourke, M.A.M.; Dunand, D.C.; Mortensen, A.

    2008-01-01

    A simplified model is proposed to quantify the effect of damage in the form of particle cracking on the elastic and plastic behaviour of particle-reinforced metal matrix composites under uniaxial tensile loading: cracked particles are simply replaced, in a mean-field model, with as much matrix. Pure aluminium reinforced with 44 vol.% alumina particles, tested in tension and unloaded at periodic plastic deformations, is analysed by neutron diffraction during each reloading elastic step, at 30%, 50%, 70% and 90% of the tensile flow stress. The data give the evolution of the elastic matrix strains in the composite and also measure the progress of internal damage by particle cracking. The test gives (i) the evolution of the in situ matrix flow stress, and (ii) the evolution of load partitioning during elastic deformation with increasing composite damage. Predictions of the present model compare favourably with relevant results in the literature, and with results from the present neutron diffraction experiments

  4. Momentum of the Pure Radiation Field

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2007-01-01

    Full Text Available The local momentum equation of the pure radiation field is considered in terms of an earlier elaborated and revised electromagnetic theory. In this equation the contribution from the volume force is found to vanish in rectangular geometry, and to become nonzero but negligible in cylindrical geometry. Consequently the radiated momentum is due to the Poynting vector only, as in conventional electrodynamics. It results in physically relevant properties of a photon model having an angular momentum (spin. The Poynting vector concept is further compared to the quantized momentum concept for a free particle, as represented by a spatial gradient operator acting on the wave function. However, this latter otherwise successful concept leads to difficulties in the physical interpretation of known and expected photon properties such as the spin, the negligible loss of transverse momentum across a bounding surface, and the Lorentz invariance.

  5. A conformal invariant model of localized spinning test particles

    International Nuclear Information System (INIS)

    Duval, C.; Centre National de la Recherche Scientifique, 13 - Marseille; Fliche, H.H.; Centre National de la Recherche Scientifique, 13 - Marseille

    1977-02-01

    A purely classical model of massless test particle with spin s is introduced as the dynamical system defined by the 10 dimensional 0(4,2) co-adjoint orbit with Casimir numbers (s 2 ,0,0). The Mathisson Papapetrou et al. equations of motion in a gravitational field are recovered, and moreover the particle appears to travel on null geodesics. Several implications are discussed

  6. The structure of the world from pure numbers

    International Nuclear Information System (INIS)

    Tipler, F J

    2005-01-01

    I investigate the relationship between physics and mathematics. I argue that physics can shed light on the proper foundations of mathematics, and that the nature of number can constrain the nature of physical reality. I show that requiring the joint mathematical consistency of the Standard Model of particle physics and the DeWitt-Feynman-Weinberg theory of quantum gravity can resolve the horizon, flatness and isotropy problems of cosmology. Joint mathematical consistency naturally yields a scale-free, Gaussian, adiabatic perturbation spectrum, and more matter than antimatter. I show that consistency requires the universe to begin at an initial singularity with a pure SU(2) L gauge field. I show that quantum mechanics requires this field to have a Planckian spectrum whatever its temperature. If this field has managed to survive thermalization to the present day, then it would be the cosmic microwave background radiation (CMBR). If so, then we would have a natural explanation for the dark matter and the dark energy. I show that isotropic ultrahigh energy cosmic rays are explained if the CMBR is a pure SU(2) L gauge field. The SU(2) L nature of the CMBR may have been seen in the Sunyaev-Zel'dovich effect. I propose several simple experiments to test the hypothesis

  7. Multiple-diffusion flame synthesis of pure anatase and carbon-coated titanium dioxide nanoparticles

    KAUST Repository

    Memon, Nasir

    2013-09-01

    A multi-element diffusion flame burner (MEDB) is useful in the study of flame synthesis of nanomaterials. Here, the growth of pure anatase and carbon-coated titanium dioxide (TiO2) using an MEDB is demonstrated. Hydrogen (H2), oxygen (O2), and argon (Ar) are utilized to establish the flame, whereas titanium tetraisopropoxide is used as the precursor for TiO2. The nanoparticles are characterized using high-resolution transmission electron microscopy, with elemental mapping (of C, O, and Ti), X-ray diffraction, Raman spectroscopy, and thermogravimetric analysis. The growth of pure anatase TiO2 nanoparticles occurs when Ar and H2 are used as the precursor carrier gas, while the growth of carbon-coated nanoparticles ensues when Ar and ethylene (C2H4) are used as the precursor carrier gas. A uniform coating of 3-5nm of carbon is observed around TiO2 particles. The growth of highly crystalline TiO2 nanoparticles is dependent on the gas flow rate of the precursor carrier and amorphous particles are observed at high flow rates. Carbon coating occurs only on crystalline nanoparticles, suggesting a possible growth mechanism of carbon-coated TiO2 nanoparticles. © 2013 The Combustion Institute.

  8. Software compensation in Particle Flow reconstruction

    CERN Document Server

    Lan Tran, Huong; Sefkow, Felix; Green, Steven; Marshall, John; Thomson, Mark; Simon, Frank

    2017-01-01

    The Particle Flow approach to calorimetry requires highly granular calorimeters and sophisticated software algorithms in order to reconstruct and identify individual particles in complex event topologies. The high spatial granularity, together with analog energy information, can be further exploited in software compensation. In this approach, the local energy density is used to discriminate electromagnetic and purely hadronic sub-showers within hadron showers in the detector to improve the energy resolution for single particles by correcting for the intrinsic non-compensation of the calorimeter system. This improvement in the single particle energy resolution also results in a better overall jet energy resolution by improving the energy measurement of identified neutral hadrons and improvements in the pattern recognition stage by a more accurate matching of calorimeter energies to tracker measurements. This paper describes the software compensation technique and its implementation in Particle Flow reconstruct...

  9. Hygroscopic analysis of individual Beijing haze aerosol particles by environmental scanning electron microscopy

    Science.gov (United States)

    Bai, Zhangpeng; Ji, Yuan; Pi, Yiqun; Yang, Kaixiang; Wang, Li; Zhang, Yinqi; Zhai, Yadi; Yan, Zhengguang; Han, Xiaodong

    2018-01-01

    Investigating the hygroscopic behavior of haze aerosol particles is essential for understanding their physicochemical properties and their impacts on regional weather and visibility. An environmental scanning electron microscope equipped with a home-made transmission-scattering electron imaging setup and an energy dispersive spectrometer was used for in-situ observations of pure water-soluble (WS) salts and Beijing haze particles. This imaging setup showed obvious advantages for improving the resolution and acquiring internal information of mixed particles in hydrated environments. We measured the deliquescence relative humidity of pure NaCl, NH4NO3, and (NH4)2SO4 by deliquescence-crystallization processes with an accuracy of up to 0.3% RH. The mixed haze particles showed hygroscopic activation like water uptake and morphological changes when they included WS components such as nitrates, sulfates, halides, ammoniums, and alkali metal salts. In addition, the hygroscopic behavior provides complementary information for analyzing possible phases in mixed haze particles.

  10. Interfacial behavior of N-nitrosodiethylamine/bovine serum albumin complexes at the air-water and the chloroform-water interfaces by axisymmetric drop tensiometry.

    Science.gov (United States)

    Juárez, J; Galaz, J G; Machi, L; Burboa, M; Gutiérrez-Millán, L E; Goycoolea, F M; Valdez, M A

    2007-03-15

    Interfacial properties of N-nitrosodiethylamine/bovine serum albumin (NDA/BSA) complexes were investigated at the air-water interface. The interfacial behavior at the chloroform-water interface of the interaction product of phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), dissolved in the chloroform phase, and NDA/BSA complex, in the aqueous phase, were also analyzed by using a drop tensiometer. The secondary structure changes of BSA with different NDA concentrations were monitored by circular dichroism spectroscopy at different pH and the NDA/BSA interaction was probed by fluorescence spectroscopy. Different NDA/BSA mixtures were prepared from 0, 7.5 x 10(-5), 2.2 x 10(-4), 3.7 x 10(-4), 5 x 10(-4), 1.6 x 10(-3), and 3.1 x 10(-3) M NDA solutions in order to afford 0, 300/1, 900/1, 1 500/1, 2 000/1, 6 000/1, and 12 500/1 NDA/BSA molar ratios, respectively, in the aqueous solutions. Increments of BSA alpha-helix contents were obtained up to the 2 000/1 NDA/BSA molar ratio, but at ratios beyond this value, the alpha-helix content practically disappeared. These BSA structure changes produced an increment of the surface pressure at the air-water interface, as the alpha-helix content increased with the concentration of NDA. On the contrary, when alpha-helix content decreased, the surface pressure also appeared lower than the one obtained with pure BSA solutions. The interaction of DPPC with NDA/BSA molecules at the chloroform-water interface produced also a small, but measurable, pressure increment with the addition of NDA molecules. Dynamic light scattering measurements of the molecular sizes of NDA/BSA complex at pH 4.6, 7.1, and 8.4 indicated that the size of extended BSA molecules at pH 4.6 increased in a greater proportion with the increment in NDA concentration than at the other studied pH values. Diffusion coefficients calculated from dynamic surface tension values, using a short-term solution of the general adsorption model of Ward and Tordai

  11. Pure titanium particle loaded nanocomposites: study on the polymer/filler interface and hMSC biocompatibility.

    Science.gov (United States)

    Avolio, Roberto; D'Albore, Marietta; Guarino, Vincenzo; Gentile, Gennaro; Cocca, Maria Cristina; Zeppetelli, Stefania; Errico, Maria Emanuela; Avella, Maurizio; Ambrosio, Luigi

    2016-10-01

    The integration of inorganic nanoparticles into polymer matrices allows for the modification of physical properties as well as the implementation of new features for unexplored application fields. Here, we propose the study of a new metal/polymer nanocomposite fabricated by dispersing pure Ti nanoparticles into a poly(methylmetacrilate) matrix via solvent casting process, to investigate its potential use as new biomaterial for biomedical applications. We demonstrated that Ti nanoparticles embedded in the poly(methylmetacrilate) matrix can act as reinforcing agent, not negatively influencing the biological response of human mesenchymal stem cell in terms of cytotoxicity and cell viability. As a function of relative amount and surface treatment, Ti nanoparticles may enhance mechanical strength of the composite-ranging from 31.1 ± 2.5 to 43.7 ± 0.7 MPa-also contributing to biological response in terms of adhesion and proliferation mechanisms. In particular, for 1 wt% Ti, treated Ti nanoparticles improve cell materials recognition, as confirmed by higher cell spreading-quantified in terms of cell area via image analysis-locally promoting stronger interactions at cell matrix interface. At this stage, these preliminary results suggest a promising use of pure Ti nanoparticles as filler in polymer composites for biomedical applications.

  12. Synthesis and characterization of polymer eight-coordinate (enH 2)[Y III(pdta)(H 2O)] 2·10H 2O as well as the interaction of [Y III(pdta)(H 2O)] 22- with BSA

    Science.gov (United States)

    Liu, Bin; Wang, Jun; Wang, Xin; Liu, Bing-Mi; He, Ling-Ling; Xu, Shu-Kun

    2010-12-01

    The eight-coordinate (enH 2)[Y III(pdta)(H 2O)] 2·10H 2O (en = ethylenediamine and H 4pdta = 1,3-propylenediamine- N, N, N', N'-tetraacetic acid) was synthesized, meanwhile its molecular and crystal structures were determined by single-crystal X-ray diffraction technology. The interaction between [Y III(pdta)(H 2O)] 22- and bovine serum albumin (BSA) was investigated by UV-vis and fluorescence spectra. The results indicate that [Y III(pdta)(H 2O)] 22- quenched effectively the intrinsic fluorescence of BSA via a static quenching process with the binding constant ( Ka) of the order of 10 4. Meanwhile, the binding and damaging sites to BSA molecules were also estimated by synchronous fluorescence. Results indicate that the hydrophobic environments around Trp and Tyr residues were all slightly changed. The thermodynamic parameters (Δ G = -25.20 kJ mol -1, Δ H = -26.57 kJ mol -1 and Δ S = -4.58 J mol -1 K -1) showed that the reaction was spontaneous and exothermic. What is more, both Δ H and Δ S were negative values indicated that hydrogen bond and Van der Waals forces were the predominant intermolecular forces between [Y III(pdta)(H 2O)] 22- and BSA.

  13. Impact of metal-ion contaminated silica particles on gate oxide integrity

    NARCIS (Netherlands)

    Rink, Ingrid; Wali, F.; Knotter, D.M.

    2009-01-01

    The impact of metal-ion contamination (present on wafer surface before oxidation) on gate oxide integrity (GOI) is well known in literature, which is not the case for clean silica particles [1, 2]. However, it is known that particles present in ultra-pure water (UPW) decrease the random yield in

  14. Particle-in-cell simulation of Trichel pulses in pure oxygen

    International Nuclear Information System (INIS)

    Soria-Hoyo, C; Pontiga, F; Castellanos, A

    2007-01-01

    The development and propagation of Trichel pulses in oxygen have been numerically simulated using an improved fluid particle-in-cell (PIC) method. The numerical method has been optimized to accurately reproduce sequences of about 100 Trichel pulses (∼1 ms). A classical one-dimensional model of negative corona in sphere-to-plane geometry has been used to formulate the continuity equations for electrons and ions. The effects of ionization, attachment and secondary-electron emission from the cathode have all been considered. The electric field has been obtained from the solution of Poisson's equation in two dimensions. Using this model, the temporal and electrical characteristics of Trichel pulses have been investigated, in particular, the relation between applied voltage, pulse frequency and time-averaged current intensity and charge

  15. A vibrating membrane bioreactor (VMBR): Macromolecular transmission-influence of extracellular polymeric substances

    DEFF Research Database (Denmark)

    Beier, Søren; Jonsson, Gunnar Eigil

    2009-01-01

    The vibrating membrane bioreactor (VMBR) system facilitates the possibility of conducting a separation of macromolecules (BSA) from larger biological components (yeast cells) with a relatively high and stable macromolecular transmission at sub-critical flux. This is not possible to achieve...... for a static non-vibrating membrane module. A BSA transmission of 74% has been measured in the separation of 4g/L BSA from 8 g/L dry weight yeast cells in suspension at sub-critical flux (20L/(m(2) h)). However, this transmission is lower than the 85% BSA transmission measured for at pure 4g/L BSA solution....... This can be ascribed to the presence of extracellular polymeric substances (EPS) from the yeast cells. The initial fouling rate for constant sub-critical flux filtration of unwashed yeast cells is 3-4 times larger than for washed yeast cells (18(mbar/h)/5(mbar/h)). At sub-critical flux, an EPS transmission...

  16. Perspectives on the Pure-Tone Audiogram.

    Science.gov (United States)

    Musiek, Frank E; Shinn, Jennifer; Chermak, Gail D; Bamiou, Doris-Eva

    The pure-tone audiogram, though fundamental to audiology, presents limitations, especially in the case of central auditory involvement. Advances in auditory neuroscience underscore the considerably larger role of the central auditory nervous system (CANS) in hearing and related disorders. Given the availability of behavioral audiological tests and electrophysiological procedures that can provide better insights as to the function of the various components of the auditory system, this perspective piece reviews the limitations of the pure-tone audiogram and notes some of the advantages of other tests and procedures used in tandem with the pure-tone threshold measurement. To review and synthesize the literature regarding the utility and limitations of the pure-tone audiogram in determining dysfunction of peripheral sensory and neural systems, as well as the CANS, and to identify other tests and procedures that can supplement pure-tone thresholds and provide enhanced diagnostic insight, especially regarding problems of the central auditory system. A systematic review and synthesis of the literature. The authors independently searched and reviewed literature (journal articles, book chapters) pertaining to the limitations of the pure-tone audiogram. The pure-tone audiogram provides information as to hearing sensitivity across a selected frequency range. Normal or near-normal pure-tone thresholds sometimes are observed despite cochlear damage. There are a surprising number of patients with acoustic neuromas who have essentially normal pure-tone thresholds. In cases of central deafness, depressed pure-tone thresholds may not accurately reflect the status of the peripheral auditory system. Listening difficulties are seen in the presence of normal pure-tone thresholds. Suprathreshold procedures and a variety of other tests can provide information regarding other and often more central functions of the auditory system. The audiogram is a primary tool for determining type

  17. Plastic fluctuations in empty crystals formed by cubic wireframe particles

    Science.gov (United States)

    McBride, John M.; Avendaño, Carlos

    2018-05-01

    We present a computer simulation study of the phase behavior of colloidal hard cubic frames, i.e., particles with nonconvex cubic wireframe geometry interacting purely by excluded volume. Despite the propensity of cubic wireframe particles to form cubic phases akin to their convex counterparts, these particles exhibit unusual plastic fluctuations in which a random and dynamic fraction of particles rotate around their lattice positions in the crystal lattice while the remainder of the particles remains fully ordered. We argue that this unexpected effect stems from the nonconvex geometry of the particles in which the faces of a particle can be penetrated by the vertices of the nearest neighbors even at high number densities.

  18. Generalized pure Lovelock gravity

    Science.gov (United States)

    Concha, Patrick; Rodríguez, Evelyn

    2017-11-01

    We present a generalization of the n-dimensional (pure) Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.

  19. Particle-in-cell simulation of Trichel pulses in pure oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Soria-Hoyo, C [Dpto. Electronica y Electromagnetismo, Universidad de Sevilla, Avda. Reina Mercedes s/n, Sevilla 41012 (Spain); Pontiga, F [Dpto. Fisica Aplicada II, Universidad de Sevilla, Avda. Reina Mercedes s/n, Sevilla 41012 (Spain); Castellanos, A [Dpto. Electronica y Electromagnetismo, Universidad de Sevilla, Avda. Reina Mercedes s/n, Sevilla 41012 (Spain)

    2007-08-07

    The development and propagation of Trichel pulses in oxygen have been numerically simulated using an improved fluid particle-in-cell (PIC) method. The numerical method has been optimized to accurately reproduce sequences of about 100 Trichel pulses ({approx}1 ms). A classical one-dimensional model of negative corona in sphere-to-plane geometry has been used to formulate the continuity equations for electrons and ions. The effects of ionization, attachment and secondary-electron emission from the cathode have all been considered. The electric field has been obtained from the solution of Poisson's equation in two dimensions. Using this model, the temporal and electrical characteristics of Trichel pulses have been investigated, in particular, the relation between applied voltage, pulse frequency and time-averaged current intensity and charge.

  20. BSA Nanoparticles for siRNA Delivery: Coating Effects on Nanoparticle Properties, Plasma Protein Adsorption, and In Vitro siRNA Delivery

    Directory of Open Access Journals (Sweden)

    Haran Yogasundaram

    2012-01-01

    Full Text Available Developing vehicles for the delivery of therapeutic molecules, like siRNA, is an area of active research. Nanoparticles composed of bovine serum albumin, stabilized via the adsorption of poly-L-lysine (PLL, have been shown to be potentially inert drug-delivery vehicles. With the primary goal of reducing nonspecific protein adsorption, the effect of using comb-type structures of poly(ethylene glycol (1 kDa, PEG units conjugated to PLL (4.2 and 24 kDa on BSA-NP properties, apparent siRNA release rate, cell viability, and cell uptake were evaluated. PEGylated PLL coatings resulted in NPs with ζ-potentials close to neutral. Incubation with platelet-poor plasma showed the composition of the adsorbed proteome was similar for all systems. siRNA was effectively encapsulated and released in a sustained manner from all NPs. With 4.2 kDa PLL, cellular uptake was not affected by the presence of PEG, but PEG coating inhibited uptake with 24 kDa PLL NPs. Moreover, 24 kDa PLL systems were cytotoxic and this cytotoxicity was diminished upon PEG incorporation. The overall results identified a BSA-NP coating structure that provided effective siRNA encapsulation while reducing ζ-potential, protein adsorption, and cytotoxicity, necessary attributes for in vivo application of drug-delivery vehicles.

  1. The mechanism of lauric acid-modified protein nanocapsules escape from intercellular trafficking vesicles and its implication for drug delivery.

    Science.gov (United States)

    Jiang, Lijuan; Liang, Xin; Liu, Gan; Zhou, Yun; Ye, Xinyu; Chen, Xiuli; Miao, Qianwei; Gao, Li; Zhang, Xudong; Mei, Lin

    2018-11-01

    Protein nanocapsules have exhibited promising potential applications in the field of protein drug delivery. A major issue with various promising nano-sized biotherapeutics including protein nanocapsules is that owing to their particle size they are subject to cellular uptake via endocytosis, and become entrapped and then degraded within endolysosomes, which can significantly impair their therapeutic efficacy. In addition, many nano-sized biotherapeutics could be also sequestered by autophagosomes and degraded through the autolysosomal pathway. Thus, a limiting step in achieving an effective protein therapy is to facilitate the endosomal escape and auto-lysosomal escape to ensure cytosolic delivery of the protein drugs. Here, we prepared a protein nanocapsule based on BSA (nBSA) and the BSA nanocapsules modified with a bilayer of lauric acid (LA-nBSA) to investigate the escape effects from the endosome and autophagosome. The size distribution of nBSA and LA-nBSA analyzed using DLS presents a uniform diameter centered at 10 nm and 16 nm. The data also showed that FITC-labeled nBSA and LA-nBSA were taken up by the cells mainly through Arf-6-dependent endocytosis and Rab34-mediated macropinocytosis. In addition, LA-nBSA could efficiently escape from endosomal before the degradation in endo-lysosomes. Autophagy could also sequester the LA-nBSA through p62 autophagosome vesicles. These two types of nanocapsules underwent different intracellular destinies and lauric acid (LA) coating played a vital role in intracellular particle retention. In conclusion, the protein nanocapsules modified with LA could enhance the protein nanocapsules escape from intercellular trafficking vesicles, and protect the protein from degradation by the lysosomes.

  2. Generalized pure Lovelock gravity

    Directory of Open Access Journals (Sweden)

    Patrick Concha

    2017-11-01

    Full Text Available We present a generalization of the n-dimensional (pure Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.

  3. Characterisation of silica nanoparticles prior to in vitro studies: from primary particles to agglomerates

    International Nuclear Information System (INIS)

    Orts-Gil, Guillermo; Natte, Kishore; Drescher, Daniela; Bresch, Harald; Mantion, Alexandre; Kneipp, Janina; Österle, Werner

    2011-01-01

    The size, surface charge and agglomeration state of nanoparticles under physiological conditions are fundamental parameters to be determined prior to their application in toxicological studies. Although silica-based materials are among the most promising candidates for biomedical applications, more systematic studies concerning the characterisation before performing toxicological studies are necessary. This interest is based on the necessity to elucidate the mechanisms affecting its toxicity. We present here TEM, SAXS and SMPS as a combination of methods allowing an accurate determination of single nanoparticle sizes. For the commercial material, Ludox TM50 single particle sizes around 30 nm were found in solution. DLS measurements of single particles are rather affected by polydispersity and particles concentration but this technique is useful to monitor their agglomeration state. Here, the influence of nanoparticle concentration, ionic strength (IS), pH and bath sonication on the agglomeration behaviour of silica particles in solution has been systematically investigated. Moreover, the colloidal stability of silica particles in the presence of BSA has been investigated showing a correlation between silica and protein concentrations and the formation of agglomerates. Finally, the colloidal stability of silica particles in standard cell culture medium has been tested, concluding the necessity of surface modification in order to preserve silica as primary particles in the presence of serum. The results presented here have major implications on toxicity investigations because silica agglomeration will change the probability and uptake mechanisms and thereby may affect toxicity.

  4. Experimental Confirmation of Stable, Small-Debye-Length, Pure-Electron-Plasma Equilibria in a Stellarator

    International Nuclear Information System (INIS)

    Kremer, J. P.; Pedersen, T. Sunn; Lefrancois, R. G.; Marksteiner, Q.

    2006-01-01

    The creation of the first small-Debye length, low temperature pure electron plasmas in a stellarator is reported. A confinement time of 20 ms has been measured. The long confinement time implies the existence of macroscopically stable equilibria and that the single particle orbits are well confined despite the lack of quasisymmetry in the device, the Columbia non-neutral torus. This confirms the beneficial confinement effects of strong electric fields and the resulting rapid ExB rotation of the electrons. The particle confinement time is presently limited by the presence of bulk insulating materials in the plasma, rather than any intrinsic plasma transport processes. A nearly flat temperature profile is seen in the inner part of the plasma

  5. Experimental confirmation of stable, small-debye-length, pure-electron-plasma equilibria in a stellarator.

    Science.gov (United States)

    Kremer, J P; Pedersen, T Sunn; Lefrancois, R G; Marksteiner, Q

    2006-09-01

    The creation of the first small-Debye length, low temperature pure electron plasmas in a stellarator is reported. A confinement time of 20 ms has been measured. The long confinement time implies the existence of macroscopically stable equilibria and that the single particle orbits are well confined despite the lack of quasisymmetry in the device, the Columbia non-neutral torus. This confirms the beneficial confinement effects of strong electric fields and the resulting rapid E x B rotation of the electrons. The particle confinement time is presently limited by the presence of bulk insulating materials in the plasma, rather than any intrinsic plasma transport processes. A nearly flat temperature profile is seen in the inner part of the plasma.

  6. Rapid detection of Cu(2+) by a paper-based microfluidic device coated with bovine serum albumin (BSA)-Au nanoclusters.

    Science.gov (United States)

    Fang, Xueen; Zhao, Qianqian; Cao, Hongmei; Liu, Juan; Guan, Ming; Kong, Jilie

    2015-11-21

    In this work, bovine serum albumin (BSA)-Au nanoclusters were used to coat a paper-based microfluidic device. This device acted as a Cu(2+) biosensor that showed fluorescence quenching on detection of copper ions. The detection limit of this sensor could be adjusted by altering the water absorbing capacity of the device. Qualitative and semi-quantitative results could be obtained visually without the aid of any advanced instruments. This sensor could test Cu(2+) rapidly with high specificity and sensitivity, which would be useful for point-of-care testing (POCT).

  7. Minimizing quality changes of cloudy apple juice: The use of kiwifruit puree and high pressure homogenization.

    Science.gov (United States)

    Yi, Junjie; Kebede, Biniam; Kristiani, Kristiani; Grauwet, Tara; Van Loey, Ann; Hendrickx, Marc

    2018-05-30

    Cloud loss, enzymatic browning, and flavor changes are important quality defects of cloudy fruit juices determining consumer acceptability. The development of clean label options to overcome such quality problems is currently of high interest. Therefore, this study investigated the effect of kiwifruit puree (clean label ingredient) and high pressure homogenization on quality changes of cloudy apple juice using a multivariate approach. The use of kiwifruit puree addition and high pressure homogenization resulted in a juice with improved uniformity and cloud stability by reducing particle size and increasing viscosity and yield stress (p < 0.01). Furthermore, kiwifruit puree addition reduced enzymatic browning (ΔE ∗  < 3), due to the increased ascorbic acid and contributed to a more saturated and bright yellow color, a better taste balance, and a more fruity aroma of juice. This work demonstrates that clean label options to control quality degradation of cloudy fruit juice might offer new opportunities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. A new fluorescent pyrene–pyridine dithiocarbamate probe: A chemodosimeter to detect Hg2+ in pure aqueous medium and in live cells

    International Nuclear Information System (INIS)

    Singh, Vikram; Srivastava, Priyanka; PrakashVerma, Shiv; Misra, Arvind; Das, Parimal; Singh, Nanhai

    2014-01-01

    A new pyrene–pyridine dithiocarbamate based fluorescent chemodosimeter, potassium (pyren-1-ylmethyl)(pyridin-2-ylmethyl)dithiocarbamate (L1) has been designed and synthesized. The chemodosimeter shows high selectivity and sensitivity (5.2 ppb) for Hg 2+ in pure aqueous medium in which emission intensity was quenched by ≈80% due to the formation of new cyclized species, 1. The probe behaves as a chemodosimeter for Hg 2+ ions and forms Hg 2+ triggered cyclised imidazoline species with approximate detection time of 50 s and exhibits both colorimetric and fluorometric changes on detection of Hg 2+ ion. Color of the probe (L1) changed from green to colorless visible to the naked eye and from green to dark blue upon the addition of Hg 2+ ions under UV light. The Hg 2+ triggered cyclization reaction was confirmed by spectral data analysis and a single crystal structure determination of the cyclised entity 2 obtained from the model compound potassium benzyl(pyridin-2-ylmethyl) dithiocarbamate (L2). L1 finds its application for detection of Hg 2+ ions on paper strips, and in BSA (bovine serum albumin) medium. L1 is also applicable for the monitoring of Hg 2+ ion in NIH3T3 live cells. - Highlights: • Efficient chemodosimeter to detect Hg 2+ ions in pure aqueous medium. • Hg 2+ triggered cyclisation and formation of imidazoline species. • Probe exhibit both colorimetric and fluorometric changes • Probe is applicable to detect Hg 2+ in live cells and on cellulose paper strips

  9. Micro-universes and strong black-roles: a purely geometric approach to elementary particles

    International Nuclear Information System (INIS)

    Recami, E.; Raciti, F.; Rodrigues Junior, W.A.; Zanchin, V.T.

    1993-09-01

    A panoramic view is presented of a proposed unified, bi-scale theory of gravitational and strong interactions [which is mathematically analogous to the last version of N. Rosen's bi-metric theory; and yields physical results similar to strong gravity's]. This theory, is purely geometrical in nature, adopting the methods of General Relativity for the description of hadron structure and strong interactions. In particular, hadrons are associated with strong black-holes, from the external point of view, and with micro-universes, from the internal point of view. Among the results herein presented, it should be mentioned the derivation: of confinement and asymptotic freedom from the hadron constituents; of the Yukawa behaviour for the potential at the static limit; of the strong coupling constant, and of mesonic mass spectra. (author)

  10. Musical notation reading in pure alexia

    DEFF Research Database (Denmark)

    Starrfelt, Randi; Wong, Yetta K.

    2017-01-01

    Pure alexia (PA) is an acquired reading disorder following lesions to left ventral temporo-occipital cortex. Patients with PA read slowly but correctly, and show an abnormal effect of word length on RTs. However, it is unclear how pure alexia may affect musical notation reading. We report a pure...

  11. Characterization of fuel miniplates fabricated with U(Mo) particles dispersed in Al-Si matrices

    International Nuclear Information System (INIS)

    Arico, S F; Mirandou, M I; Balart, S N; Fabro, J O

    2012-01-01

    In 2011 ECRI facility (Depto. ECRI, GCCN, CNEA) restarted the development for the fabrication of dispersion miniplates fuel elements in Al-Si matrix. This miniplates are fabricated with atomized U-7wt%Mo particles dispersed in a matrix formed by a mixture of pure Al and pure Si powders. The first results for an Al-4wt%Si matrix were presented at the AATN 2011 Annual Meeting. In this work, new results from the microstructural characterization of the meat in Al- 2wt%Si and pure Al miniplates are presented and compared with the previous ones. It is the intention to study the influence of the fabrication parameters as well as different Si concentration in the matrix, on the formation and characteristics of the interaction layer formed between the particles and the matrix at the end of the fabrication process. According to the results presented in this work an improvement can be observed on miniplates with Al-Si matrix respect to the one with pure Al. On the miniplates with Al- Si matrix, almost 100 % of the U(Mo) particles presented, at least in some fraction of its surface, an interaction layer composed by phases that contain Si. Moreover its morphological characteristics are independent of the crystallographic state of the U(Mo) particles. However, the oxide layer formed on the U(Mo) during the hot rolling acts as a barrier to the formation of the interaction layer. As a consequence, it is then mandatory to introduce some changes on the fabrication parameters to avoid, or at least minimize, this oxide layer (author)

  12. Hanford Tank Waste Particle Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Herting, D. L. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Cooke, G. A. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Page, J S [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Valerio, J. L. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States)

    2015-08-01

    Several methods have been utilized to perform solid phase characterization. Polarized light microscopy (PLM) is used to identify individual particles based on size, shape, color, and optical properties (e.g., refractive index1, birefringence, extinction positions, and interference figures). Scanning electron microscopy with energy-dispersive spectroscopy (SEM/EDS) is used to detect which elements are present in individual particles and to infer chemical phase identification based on the metals present in combination with the size and shape of the particles. Powder X-ray diffraction (XRD) is used to identify crystalline phases present in bulk samples by matching the X-ray patterns with a library of known patterns for pure phases. Transmission electron microscopy (TEM) is used to identify individual particles by their X-ray diffraction patterns. RAMAN analysis is used to identify bulk sample compositions by matching RAMAN spectra with a library of known patterns. Other specialized techniques have not been employed routinely for Hanford tank waste samples.

  13. Aggregation Kinetics of Hematite Particles in the Presence of Outer Membrane Cytochrome OmcA of Shewanella oneidenesis MR-1

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Anxu [Peking Univ., Beijing (China). College of Environmental Sciences and Engineering; Liu, Feng [Peking Univ., Beijing (China). College of Environmental Sciences and Engineering; Shi, Liang [China Univ. of Geoscience in Wuhan, Hubei (China). Dept. of Biological Sciences and Technology; Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Juan [Peking Univ., Beijing (China). College of Environmental Sciences and Engineering

    2016-09-20

    The aggregation behavior of 9, 36, and 112 nm hematite particles was studied in the presence of OmcA, a bacterial extracellular protein, in aqueous dispersions at pH 5.7 through time-resolved dynamic light scattering, electrophoretic mobility, and circular dichroism spectra, respectively. At low salt concentration, the attachment efficiencies of hematite particles in all sizes first increased, then decreased, and finally remained stable with the increase of OmcA concentration, indicating the dominant interparticle interaction changed along with the increase in the protein-to-particle ratio. Nevertheless, at high salt concentration, the attachment efficiencies of all hematite samples gradually decreased with increasing OmcA concentration, which can be attributed to increasing steric force. Additionally, the aggregation behavior of OmcA-hematite conjugates was more correlated to total particle-surface area than primary particle size. It was further established that OmcA could stabilize hematite nanoparticles more efficiently than bovine serum albumin (BSA), a model plasma protein, due to the higher affinity of OmcA to hematite surface. This study highlighted the effects of particle properties, solution conditions, and protein properties on the complicated aggregation behavior of protein-nanoparticle conjugates in aqueous environments.

  14. Savinase action on bovine serum albumin (BSA) monolayers demonstrated with measurements at the air-water interface and liquid Atomic Force Microscopy (AFM) imaging

    DEFF Research Database (Denmark)

    Balashev, Konstantin; Callisen, Thomas H; Svendsen, Allan

    2011-01-01

    We studied the enzymatic action of Savinase on bovine serum albumin (BSA) organized in a monolayer spread at the air/water interface or adsorbed at the mica surface. We carried out two types of experiments. In the first one we followed the degradation of the protein monolayer by measuring....... In both cases we obtained an estimate for the turnover number (TON) of the enzyme reaction....

  15. Pure homology of algebraic varieties

    OpenAIRE

    Weber, Andrzej

    2003-01-01

    We show that for a complete complex algebraic variety the pure component of homology coincides with the image of intersection homology. Therefore pure homology is topologically invariant. To obtain slightly more general results we introduce "image homology" for noncomplete varieties.

  16. A new fluorescent pyrene–pyridine dithiocarbamate probe: A chemodosimeter to detect Hg{sup 2+} in pure aqueous medium and in live cells

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Vikram; Srivastava, Priyanka [Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi-221005 (India); PrakashVerma, Shiv [Centre for Genetic Disorders, Faculty of Science, Banaras Hindu University, Varanasi-221005 (India); Misra, Arvind [Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi-221005 (India); Das, Parimal [Centre for Genetic Disorders, Faculty of Science, Banaras Hindu University, Varanasi-221005 (India); Singh, Nanhai, E-mail: nsinghbhu@gmail.com [Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi-221005 (India)

    2014-10-15

    A new pyrene–pyridine dithiocarbamate based fluorescent chemodosimeter, potassium (pyren-1-ylmethyl)(pyridin-2-ylmethyl)dithiocarbamate (L1) has been designed and synthesized. The chemodosimeter shows high selectivity and sensitivity (5.2 ppb) for Hg{sup 2+} in pure aqueous medium in which emission intensity was quenched by ≈80% due to the formation of new cyclized species, 1. The probe behaves as a chemodosimeter for Hg{sup 2+} ions and forms Hg{sup 2+} triggered cyclised imidazoline species with approximate detection time of 50 s and exhibits both colorimetric and fluorometric changes on detection of Hg{sup 2+} ion. Color of the probe (L1) changed from green to colorless visible to the naked eye and from green to dark blue upon the addition of Hg{sup 2+} ions under UV light. The Hg{sup 2+} triggered cyclization reaction was confirmed by spectral data analysis and a single crystal structure determination of the cyclised entity 2 obtained from the model compound potassium benzyl(pyridin-2-ylmethyl) dithiocarbamate (L2). L1 finds its application for detection of Hg{sup 2+} ions on paper strips, and in BSA (bovine serum albumin) medium. L1 is also applicable for the monitoring of Hg{sup 2+} ion in NIH3T3 live cells. - Highlights: • Efficient chemodosimeter to detect Hg{sup 2+} ions in pure aqueous medium. • Hg{sup 2+} triggered cyclisation and formation of imidazoline species. • Probe exhibit both colorimetric and fluorometric changes • Probe is applicable to detect Hg{sup 2+} in live cells and on cellulose paper strips.

  17. Software compensation in particle flow reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Huong Lan; Krueger, Katja; Sefkow, Felix [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Green, Steven; Marshall, John; Thomson, Mark [Cavendish Laboratory, Cambridge (United Kingdom); Simon, Frank [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2017-10-15

    The particle flow approach to calorimetry benefits from highly granular calorimeters and sophisticated software algorithms in order to reconstruct and identify individual particles in complex event topologies. The high spatial granularity, together with analogue energy information, can be further exploited in software compensation. In this approach, the local energy density is used to discriminate electromagnetic and purely hadronic sub-showers within hadron showers in the detector to improve the energy resolution for single particles by correcting for the intrinsic non-compensation of the calorimeter system. This improvement in the single particle energy resolution also results in a better overall jet energy resolution by improving the energy measurement of identified neutral hadrons and improvements in the pattern recognition stage by a more accurate matching of calorimeter energies to tracker measurements. This paper describes the software compensation technique and its implementation in particle flow reconstruction with the Pandora Particle Flow Algorithm (PandoraPFA). The impact of software compensation on the choice of optimal transverse granularity for the analogue hadronic calorimeter option of the International Large Detector (ILD) concept is also discussed.

  18. Software compensation in particle flow reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Huong Lan; Krueger, Katja; Sefkow, Felix [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Green, Steven; Marshall, John; Thomson, Mark [Cavendish Laboratory, Cambridge (United Kingdom); Simon, Frank [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2017-10-15

    The particle flow approach to calorimetry benefits from highly granular calorimeters and sophisticated software algorithms in order to reconstruct and identify individual particles in complex event topologies. The high spatial granularity, together with analogue energy information, can be further exploited in software compensation. In this approach, the local energy density is used to discriminate electromagnetic and purely hadronic sub-showers within hadron showers in the detector to improve the energy resolution for single particles by correcting for the intrinsic non-compensation of the calorimeter system. This improvement in the single particle energy resolution also results in a better overall jet energy resolution by improving the energy measurement of identified neutral hadrons and improvements in the pattern recognition stage by a more accurate matching of calorimeter energies to tracker measurements. This paper describes the software compensation technique and its implementation in particle flow reconstruction with the Pandora Particle Flow Algorithm (PandoraPFA). The impact of software compensation on the choice of optimal transverse granularity for the analogue hadronic calorimeter option of the International Large Detector (ILD) concept is also discussed. (orig.)

  19. Software compensation in particle flow reconstruction

    International Nuclear Information System (INIS)

    Tran, Huong Lan; Krueger, Katja; Sefkow, Felix; Green, Steven; Marshall, John; Thomson, Mark; Simon, Frank

    2017-10-01

    The particle flow approach to calorimetry benefits from highly granular calorimeters and sophisticated software algorithms in order to reconstruct and identify individual particles in complex event topologies. The high spatial granularity, together with analogue energy information, can be further exploited in software compensation. In this approach, the local energy density is used to discriminate electromagnetic and purely hadronic sub-showers within hadron showers in the detector to improve the energy resolution for single particles by correcting for the intrinsic non-compensation of the calorimeter system. This improvement in the single particle energy resolution also results in a better overall jet energy resolution by improving the energy measurement of identified neutral hadrons and improvements in the pattern recognition stage by a more accurate matching of calorimeter energies to tracker measurements. This paper describes the software compensation technique and its implementation in particle flow reconstruction with the Pandora Particle Flow Algorithm (PandoraPFA). The impact of software compensation on the choice of optimal transverse granularity for the analogue hadronic calorimeter option of the International Large Detector (ILD) concept is also discussed.

  20. Controlling the rejection of protein during membrane filtration by adding selected polyelectrolytes

    DEFF Research Database (Denmark)

    Pinelo, Manuel; Ferrer Roca, Carme; Meyer, Anne S.

    2012-01-01

    Electrostatic interactions among the charged groups on proteins and/or between proteins and other solutes significantly affect the aggregation/deposition phenomena that induce fouling and decrease permeate flux during membrane purification of proteins. Such interactions can be turned...... help enhance the performance of membrane filtration for fractionation/purification of a target protein by significantly reducing fouling and modifying rejection/selectivity.......) changing the pH, on the permeate flux and membrane transmission of bovin serum albumina (BSA) through a PVDF membrane. The addition of PS-co-AA to the feed solution resulted in significant increases of the BSA transmission at pH 7.4 as compared to the transmission of a pure BSA solution (1g...

  1. C112 C123 generated by two particle correlations through v2 and v3

    Energy Technology Data Exchange (ETDEWEB)

    Longacre, Ronald S.

    2018-01-31

    Abstract: In this note we consider the three particle correlators C112 and C123 and how they can be generated from a pure two particle correlation by interacting with a v2 and a v3 of the overall system.

  2. Analysis of pure maple syrup consumers

    Science.gov (United States)

    Paul E. Sendak

    1974-01-01

    Virtually all of the pure maple syrup productim in the United States is in the northern states of Maine, Massachusetts, Michigan, New Hampshire, New York, Ohio, Pennsylvania, Vermont, and Wisconsin. Pure maple syrup users living in the maple production area and users living in other areas of the United States were asked a series of questions about their use of pure...

  3. Numerical simulation of particle settling and cohesion in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Johno, Y; Nakashima, K; Shigematsu, T; Ono, B [SASEBO National College of Technology, 1-1 Okishin, Sasebo, Nagasaki, 857-1193 (Japan); Satomi, M, E-mail: yjohno@post.cc.sasebo.ac.j [Sony Semiconductor Kyushu Corporation, Kikuchigun, Kumamoto (Japan)

    2009-02-01

    In this study, the motions of particles and particle clusters in liquid were numerically simulated. The particles of two sizes (Dp=40mum and 20mum) settle while repeating cohesion and dispersion, and finally the sediment of particles are formed at the bottom of a hexahedron container which is filled up with pure water. The flow field was solved with the Navier-Stokes equations and the particle motions were solved with the Lagrangian-type motion equations, where the interaction between fluid and particles due to drag forces were taken into account. The collision among particles was calculated using Distinct Element Method (DEM), and the effects of cohesive forces by van der Waals force acting on particle contact points were taken into account. Numerical simulations were performed under conditions in still flow and in shear flow. It was found that the simulation results enable us to know the state of the particle settling and the particle condensation.

  4. Sandia's recent results in particle beam research

    International Nuclear Information System (INIS)

    Yonas, G.

    1977-01-01

    Recent results in the Sandia particle beam fusion research program are briefly discussed. Ignition of pellet fusion targets by both electron and ion beams are under study. Power concentration, dielectric breakdown, diode optimization, and beam-target interaction experiments are briefly described. Magnetic insulation considerations are discussed. Efforts to utilize higher impedance diode sources and reduce minimum power pulse widths are described. Analyses indicate that particle beam ignition systems might yield pellet gains greater than 10 in hybrid and approximately 100 in pure fusion reactors. A bibliography of 23 references is included

  5. Biomimetic synthesis of calcium carbonate with different morphologies and polymorphs in the presence of bovine serum albumin and soluble starch.

    Science.gov (United States)

    Liu, Yuxi; Chen, Yuping; Huang, Xuechen; Wu, Gang

    2017-10-01

    Calcium carbonate has been synthesized by the reaction of Na 2 CO 3 and CaCl 2 in the presence of bovine serum albumin (BSA) and soluble starch. Effects of various bovine serum albumin (BSA) and soluble starch on the polymorph and morphology of CaCO 3 crystals were investigated. Crystallization of vaterite is favored in the presence of BSA and soluble starch, respectively, while calcite is favored in the presence of a mixture of BSA and soluble starch. The morphologies of CaCO 3 particles in the presence of mixture of BSA and soluble starch are mainly rod-like, suggesting that the BSA, soluble and their assemblies play key roles in stabilizing and directing the CaCO 3 crystal growth. Copyright © 2017. Published by Elsevier B.V.

  6. Cu(II Complexes of Isoniazid Schiff Bases: DNA/BSA Binding and Cytotoxicity Studies on A549 Cell Line

    Directory of Open Access Journals (Sweden)

    Pulipaka Ramadevi

    2014-01-01

    Full Text Available A series of isonicotinoyl hydrazones have been synthesized via template method and were complexed to Cu(II. The ligands are coordinated to Cu(II ion through the enolic oxygen and azomethine nitrogen resulting in a square planar geometry. The CT-DNA and bovine serum albumin binding propensities of the compounds were determined spectrophotometrically, the results of which indicate good binding propensity of complexes to DNA and BSA with high binding constant values. Furthermore, the compounds have been investigated for their cytotoxicities on A549 human lung cancer cell. Also the mode of cell death was examined employing various staining techniques and was found to be apoptotic.

  7. Variations on the planar Landau problem: canonical transformations, a purely linear potential and the half-plane

    International Nuclear Information System (INIS)

    Govaerts, Jan; Hounkonnou, M Norbert; Mweene, Habatwa V

    2009-01-01

    The ordinary Landau problem of a charged particle in a plane subjected to a perpendicular homogeneous and static magnetic field is reconsidered from different points of view. The role of phase space canonical transformations and their relation to a choice of gauge in the solution of the problem is addressed. The Landau problem is then extended to different contexts, in particular the singular situation of a purely linear potential term being added as an interaction, for which a complete purely algebraic solution is presented. This solution is then exploited to solve this same singular Landau problem in the half-plane, with as motivation the potential relevance of such a geometry for quantum Hall measurements in the presence of an electric field or a gravitational quantum well.

  8. Variations on the planar Landau problem: canonical transformations, a purely linear potential and the half-plane

    Energy Technology Data Exchange (ETDEWEB)

    Govaerts, Jan [Center for Particle Physics and Phenomenology (CP3), Institut de Physique Nucleaire, Universite catholique de Louvain (UCL), 2, Chemin du Cyclotron, B-1348 Louvain-la Neuve (Belgium); Hounkonnou, M Norbert [International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair), University of Abomey-Calavi, 072 BP 50, Cotonou (Benin); Mweene, Habatwa V [Physics Department, University of Zambia, PO Box 32379, Lusaka (Zambia)], E-mail: Jan.Govaerts@uclouvain.be, E-mail: hounkonnou@yahoo.fr, E-mail: norbert.hounkonnou@cipma.uac.bj, E-mail: habatwamweene@yahoo.com, E-mail: hmweene@unza.zm

    2009-12-04

    The ordinary Landau problem of a charged particle in a plane subjected to a perpendicular homogeneous and static magnetic field is reconsidered from different points of view. The role of phase space canonical transformations and their relation to a choice of gauge in the solution of the problem is addressed. The Landau problem is then extended to different contexts, in particular the singular situation of a purely linear potential term being added as an interaction, for which a complete purely algebraic solution is presented. This solution is then exploited to solve this same singular Landau problem in the half-plane, with as motivation the potential relevance of such a geometry for quantum Hall measurements in the presence of an electric field or a gravitational quantum well.

  9. Sizing of colloidal particle and protein molecules in a hanging fluid drop

    Science.gov (United States)

    Ansari, Rafat R.; Suh, Kwang I.

    1995-01-01

    We report non-invasive particle size measurements of polystyrene latex colloidal particles and bovine serum albumin (BSA) protein molecules suspended in tiny hanging fluid drops of 30 micro-Liter volume using a newly designed fiber optic probe. The probe is based upon the principles of the technique of dynamic light scattering (DLS). The motivation for this work comes from growing protein crystals in outer space. Protein crystals have been grown previously in hanging drops in microgravity experiments on-board the space shuttle orbiter. However, obtaining quantitative information on nucleation and growth of the protein crystals in real time has always been a desired goal, but hitherto not achieved. Several protein researchers have shown interest in using DLS to monitor crystal growth process in a droplet, but elaborate instrumentation and optical alignment problems have made in-situ applications difficult. We demonstrate that such an experiment is now possible. Our system offers fast (5 seconds) determination of particle size, utilize safe levels of very low laser power (less than or equal to 0.2 mW), a small scattering volume (approximately 2 x 10(exp -5) cu mm) and high spatial coherence (Beta) values. This is a major step forward when compared to currently available DLS systems.

  10. Revealing the glycation sites in synthetic neoglycoconjugates formed by conjugation of the antigenic monosaccharide hapten of Vibrio cholerae O1, serotype Ogawa with the BSA protein carrier using LC-ESI-QqTOF-MS/MS

    Science.gov (United States)

    Jahouh, Farid; Saksena, Rina; Kováč, Pavol; Banoub, Joseph

    2012-01-01

    In this manuscript, we present the determination of glycation sites in synthetic neoglycoconjugates formed by conjugation of the antigenic monosaccharide hapten of Vibrio cholerae O1 serotype Ogawa to BSA using nano- liquid chromatography electrospray ionization quadrupole time-of-flight tandem mass spectroscopy (LC-ESI-QqTOF-MS/MS). The matrix-assisted laser desorption/ionization-TOF/TOF-MS/MS analyses of the tryptic digests of the glycoconjugates having a hapten:BSA ratio of 4.3:1, 6.6:1 and 13.2:1 revealed only three glycation sites, on the following lysine residues: Lys 235, Lys 437 and Lys 455. Digestion of the neoglycoconjugates with the proteases trypsin and GluC V8 gave complementary structural information and was shown to maximize the number of recognized glycation sites. Here, we report identification of 20, 27 and 33 glycation sites using LC-ESI-QqTOF-MS/MS analysis of a series of synthetic neoglycoconjugates with a hapten:BSA ratio of, respectively, 4.3:1, 6.6:1 and 13.2:1. We also tentatively propose that all the glycated lysine residues are located mainly near the outer surface of the protein. PMID:22791257

  11. Nonrelativistic equations of motion for particles with arbitrary spin

    International Nuclear Information System (INIS)

    Fushchich, V.I.; Nikitin, A.G.

    1981-01-01

    First- and second-order Galileo-invariant systems of differential equations which describe the motion of nonrelativistic particles of arbitrary spin are derived. The equations can be derived from a Lagrangian and describe the dipole, quadrupole, and spin-orbit interaction of the particles with an external field; these interactions have traditionally been regarded as purely relativistic effects. The problem of the motion of a nonrelativistic particle of arbitrary spin in a homogeneous magnetic field is solved exactly on the basis of the obtained equations. The generators of all classes of irreducible representations of the Galileo group are found

  12. Fundamentals of the Pure Spinor Formalism

    CERN Document Server

    Hoogeveen, Joost

    2010-01-01

    This thesis presents recent developments within the pure spinor formalism, which has simplified amplitude computations in perturbative string theory, especially when spacetime fermions are involved. Firstly the worldsheet action of both the minimal and the non-minimal pure spinor formalism is derived from first principles, i.e. from an action with two dimensional diffeomorphism and Weyl invariance. Secondly the decoupling of unphysical states in the minimal pure spinor formalism is proved

  13. Reactivity of cosmetic UV filters towards skin proteins: model studies with Boc-lysine, Boc-Gly-Phe-Gly-Lys-OH, BSA and gelatin.

    Science.gov (United States)

    Stiefel, C; Schwack, W

    2014-12-01

    Organic UV filters are used as active ingredients in most sunscreens and also in a variety of daily care products. Their good (photo) stability is of special interest to guarantee protective function and to prevent interactions with the human skin. Due to the mostly electrophilic character of the UV filters, reactions with nucleophilic protein moieties like lysine side chains are conceivable. Prior studies showed that the UV filters octocrylene (OCR), butyl methoxydibenzoylmethane (BM-DBM), ethylhexyl salicylate (EHS), ethylhexyl methoxycinnamate (EHMC), benzophenone-3 (BP-3), ethylhexyl triazone (EHT) and dibenzoylmethane (DBM) were able to covalently bind to an HPTLC amino phase and the amino acid models ethanolamine and butylamine after slightly heating and/or radiation. Boc-protected lysine, the tetrapeptide Boc-Gly-Phe-Gly-Lys-OH, bovine serum albumin (BSA) and porcine gelatin were used as more complex models to determine the reactivity of the mentioned UV filters towards skin proteins under thermal or UV irradiation conditions. After gentle heating at 37°C, benzophenone imines were identified as reaction products of BP-3 and OCR with Boc-lysine and the tetrapeptide, whereas DBM and BM-DBM yielded enamines. For EHMC, a Michael-type reaction occurred, which resulted in addition of Boc-lysine or the tetrapeptide to the conjugated double bond. Ester aminolysis of EHS and EHT mainly afforded the corresponding amides. Reactions of the UV filters with BSA changed the UV spectrum of BSA, generally associated with an increase of the absorption strength in the UVA or UVB range. For all protein models, the UV filters showed an increasing reactivity in the order EHT < EHMC < EHS < BP-3 < OCR < DBM < BM-DBM. Especially the UV absorbers BM-DBM, OCR and BP-3, which are seen as common allergens or photoallergens, showed a high reactivity towards the different skin protein models. As the formation of protein adducts is recognized as important key element in the induction of

  14. Single-particle characterization of ice-nucleating particles and ice particles residuals sampled by three different techniques

    Science.gov (United States)

    Kandler, Konrad; Worringen, Annette; Benker, Nathalie; Dirsch, Thomas; Mertes, Stephan; Schenk, Ludwig; Kästner, Udo; Frank, Fabian; Nillius, Björn; Bundke, Ulrich; Rose, Diana; Curtius, Joachim; Kupiszewski, Piotr; Weingartner, Ernest; Vochezer, Paul; Schneider, Johannes; Schmidt, Susan; Weinbruch, Stephan; Ebert, Martin

    2015-04-01

    During January/February 2013, at the High Alpine Research Station Jungfraujoch a measurement campaign was carried out, which was centered on atmospheric ice-nucleating particles (INP) and ice particle residuals (IPR). Three different techniques for separation of INP and IPR from the non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed phase clouds and allow for the analysis of the residuals. The combination of the Fast Ice Nucleus Chamber (FINCH) and the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated INP for analysis. Collected particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine size, chemical composition and mixing state. All INP/IPR-separating techniques had considerable abundances (median 20 - 70 %) of instrumental contamination artifacts (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH+IN-PCVI: steel particles). Also, potential sampling artifacts (e.g., pure soluble material) occurred with a median abundance of separated by all three techniques. Soot was a minor contributor. Lead was detected in less than 10 % of the particles, of which the majority were internal mixtures with other particle types. Sea-salt and sulfates were identified by all three methods as INP/IPR. Most samples showed a maximum of the INP/IPR size distribution at 400 nm geometric diameter. In a few cases, a second super-micron maximum was identified. Soot/carbonaceous material and metal oxides were present mainly in the submicron range. ISI and FINCH yielded silicates and Ca-rich particles mainly with diameters above 1 µm, while the Ice-CVI also separated many submicron IPR. As strictly parallel sampling could not be performed, a part of the discrepancies between the different techniques may result from

  15. Comparative in vitro biocompatibility of nickel-titanium, pure nickel, pure titanium, and stainless steel: genotoxicity and atomic absorption evaluation.

    Science.gov (United States)

    Assad, M; Lemieux, N; Rivard, C H; Yahia, L H

    1999-01-01

    The genotoxicity level of nickel-titanium (NiTi) was compared to that of its pure constituents, pure nickel (Ni) and pure titanium (Ti) powders, and also to 316L stainless steel (316L SS) as clinical reference material. In order to do so, a dynamic in vitro semiphysiological extraction was performed with all metals using agitation and ISO requirements. Peripheral blood lymphocytes were then cultured in the presence of all material extracts, and their comparative genotoxicity levels were assessed using electron microscopy-in situ end-labeling (EM-ISEL) coupled to immunogold staining. Cellular chromatin exposition to pure Ni and 316L SS demonstrated a significantly stronger gold binding than exposition to NiTi, pure Ti, or the untreated control. In parallel, graphite furnace atomic absorption spectrophotometry (AAS) was also performed on all extraction media. The release of Ni atoms took the following decreasing distribution for the different resulting semiphysiological solutions: pure Ni, 316L SS, NiTi, Ti, and controls. Ti elements were detected after elution of pure titanium only. Both pure titanium and nickel-titanium specimens obtained a relative in vitro biocompatibility. Therefore, this quantitative in vitro study provides optimistic results for the eventual use of nickel-titanium alloys as surgical implant materials.

  16. Concurrence classes for general pure multipartite states

    International Nuclear Information System (INIS)

    Heydari, Hoshang

    2005-01-01

    We propose concurrence classes for general pure multipartite states based on an orthogonal complement of a positive operator-valued measure on quantum phase. In particular, we construct W m class, GHZ m , and GHZ m-1 class concurrences for general pure m-partite states. We give explicit expressions for W 3 and GHZ 3 class concurrences for general pure three-partite states and for W 4 , GHZ 4 and GHZ 3 class concurrences for general pure four-partite states

  17. Large-strain Soft Sensors Using Elastomers Blended with Exfoliated/Fragmented Graphite Particles

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sungmin; Nam, Gyungmok; Kim, Jonghun; Yoon, Sang-Hee [Inha Univ., Incheon (Korea, Republic of)

    2016-09-15

    An elastic polymer (e.g., PDMS) blended with EFG particles is a promising conductive composite for fabricating soft sensors that can detect an object's deformation up to or more than 50 %. Here, we develop large-strain, sprayable soft sensors using a mixture of PDMS and EFG particles, which are used as a host elastomer and electrically conductive particles, respectively. A solution for a conductive composite mixture is prepared by the microwave-assisted graphite exfoliation, followed by ultrasonication-induced fragmentation of the exfoliated graphite and ultrasonic blending of PDMS and EFG. Using the prepared solutions for composite and pure PDMS, 1-, 2-, and 3-axis soft sensors are fabricated by airbrush stencil technique where composite mixture and pure PDMS are materials for sensing and insulating layers, respectively. We characterize the soft strain sensors after investigating the effect of PDMS/EFG wt % on mechanical compliance and electrical conductance of the conductive composite.

  18. Electromagnetic properties of off-shell particles and gauge invariance

    NARCIS (Netherlands)

    Nagorny, S. I.; Dieperink, A. E. L.

    1998-01-01

    Abstract: Electromagnetic properties of off-shell particles are discussed on the basis of a purely electromagnetic reaction: virtual Compton scattering off a proton. It is shown that the definition of off-shell electromagnetic form factors is not gauge invariant and that these cannot be investigated

  19. Longitudinal uniformity, time performances and irradiation test of pure CsI crystals

    Energy Technology Data Exchange (ETDEWEB)

    Angelucci, M. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Atanova, O. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Baccaro, S.; Cemmi, A. [ENEA UTTMAT-IRR, Casaccia R.C., Roma (Italy); Cordelli, M. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Donghia, R., E-mail: raffaella.donghia@lnf.infn.it [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Dipartimento di Fisica, Universitá Roma Tre, Roma (Italy); Giovannella, S.; Happacher, F.; Miscetti, S.; Sarra, I.; Soleti, S.R. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy)

    2016-07-11

    To study an alternative to BaF{sub 2}, as the crystal choice for the Mu2e calorimeter, 13 pure CsI crystals from Opto Materials and ISMA producers have been characterized by determining their light yield (LY) and longitudinal response uniformity (LRU), when read with a UV extended PMT. The crystals show a LY of ~100 p.e./MeV (~150 p.e./MeV) when wrapped with Tyvek and coupled to the PMT without (with) optical grease. The LRU is well represented by a linear slope that is on average δ~ −0.6%/cm. The timing performances of the Opto Materials crystal, read with a UV extended MPPC, have been evaluated with minimum ionizing particles. A timing resolution of ~330 ps (~ 440 ps) is achieved when connecting the photosensor to the MPPC with (without) optical grease. The crystal radiation hardness to a ionization dose has also been studied for one pure CsI crystal from SICCAS. After exposing it to a dose of 900 Gy, a decrease of 33% in the LY is observed while the LRU remains unchanged.

  20. Particle, superparticle, superstring and new approach to twistor theory

    International Nuclear Information System (INIS)

    Eisenberg, Y.

    1990-10-01

    A new approach to twistor theory is proposed. The approach is based on certain reformulations of the classical massless particle and superparticle in terms of twistors. The first quantization of these systems leads to a full classification of all the free 4D field theories. The extension of one of this systems to the interacting case leads to a reformulation of the standard Dirac-Yang-Mills field equations in terms of gauge potential which fulfills certain curvatureless conditions in a generalized space (Minkowski+twistor). These conditions are a consequence of integrability conditions of an overdetermined system of linear equations whose vector field is composed from the components of the Dirac field and the Yang-Mills field strength. The twistorial reformulation allows us to gauge away all the ordinary space-time variables. By this procedure we obtain a description of the usual free massless field theories in terms of pure twistor space. These systems are invariant under an infinite dimensional algebra, which contains the two dimensional conformal algebera as a subalgebra. We propose this systems as candidates to a generalization of the notion of two-dimensional conformal field theories to four dimensions. Alternatively, we introduce an extension of the pure twistorial point particle to a two dimensional object, i.e. a pure twistorial string. (author)

  1. Capillary Thinning of Particle-laden Drops

    Science.gov (United States)

    Wagoner, Brayden; Thete, Sumeet; Jahns, Matt; Doshi, Pankaj; Basaran, Osman

    2015-11-01

    Drop formation is central in many applications such as ink-jet printing, microfluidic devices, and atomization. During drop formation, a thinning filament is created between the about-to-form drop and the fluid hanging from the nozzle. Therefore, the physics of capillary thinning of filaments is key to understanding drop formation and has been thoroughly studied for pure Newtonian fluids. The thinning dynamics is, however, altered completely when the fluid contains particles, the physics of which is not well understood. In this work, we explore the impact of solid particles on filament thinning and drop formation by using a combination of experiments and numerical simulations.

  2. Polarized ensembles of random pure states

    Science.gov (United States)

    Deelan Cunden, Fabio; Facchi, Paolo; Florio, Giuseppe

    2013-08-01

    A new family of polarized ensembles of random pure states is presented. These ensembles are obtained by linear superposition of two random pure states with suitable distributions, and are quite manageable. We will use the obtained results for two purposes: on the one hand we will be able to derive an efficient strategy for sampling states from isopurity manifolds. On the other, we will characterize the deviation of a pure quantum state from separability under the influence of noise.

  3. Structural, magnetic, and electrical properties of Gd-doped BiFeO3 nanoparticles with reduced particle size

    International Nuclear Information System (INIS)

    Lotey, Gurmeet Singh; Verma, N. K.

    2012-01-01

    Pure and Gd-doped BiFeO 3 nanoparticles have been synthesized by sol–gel method. The significant effects of size and Gd-doping on structural, electrical, and magnetic properties have been investigated. X-ray diffraction study reveals that the pure BiFeO 3 nanoparticles possess rhombohedral structure, but with 10% Gd-doping complete structural transformation from rhombohedral to orthorhombic has been observed. The particle size of pure and Gd-doped BiFeO 3 nanoparticles, calculated using Transmission electron microscopy, has been found to be in the range 25–15 nm. Pure and Gd-doped BiFeO 3 nanoparticles show ferromagnetic character, and the magnetization increases with decrease in particle size and increase in doping concentration. Scanning electron microscopy study reveals that grain size decreases with increase in Gd concentration. Well-saturated polarization versus electric field loop is observed for the doped samples. Leakage current density decreases by four orders by doping Gd in BiFeO 3 . The incorporation of Gd in BiFeO 3 enhances spin as well as electric polarization at room temperature. The possible origin of enhancement in these properties has been explained on the basis of dopant and its concentration, phase purity, small particle, and grain size.

  4. Penetrating particles in horizontal air showers

    International Nuclear Information System (INIS)

    Wohlenberg, J.; Boehm, E.

    1975-01-01

    Particle density and arrival time of muons has been measured in Horizontal Air Showers. 5,600 showers have been recorded in 7,800 hours. Using stringent selection criteria 155 showers have been found horizontal (zenith angle larger 70 0 ) in the size range 4.1 > lg N > 5.5. The muons observed in these showers can be explained by purely electromagnetic origin of horizontal showers. (orig.) [de

  5. Quantitative farm-to-fork human norovirus exposure assessment of individually quick frozen raspberries and raspberry puree.

    Science.gov (United States)

    Jacxsens, L; Stals, A; De Keuckelaere, A; Deliens, B; Rajkovic, A; Uyttendaele, M

    2017-02-02

    A quantitative human norovirus (NoV) exposure model describing transmission of NoV during pre-harvest, harvest and further processing of soft red fruits exemplified by raspberries is presented. The outcomes of the model demonstrate the presence of NoV in raspberry puree or individual quick frozen (IQF) raspberry fruits and were generated by Monte Carlo simulations by combining GoldSim® and @Risk® software. Input data were collected from scientific literature, observational studies and assumptions. NoV contamination of soft red fruits is assumed to take place at farms by application of contaminated water for pesticides dilution or by berries' pickers shedding NoV. The model was built simulating that a collection center received berries from ten farms with a total of 245 food handlers picking soft red fruits during a 10-hour day shift. Given 0, 5 and 20 out of 245 berries' pickers were shedding NoV, these conditions were calculated to result in a mean NoV contamination of respectively 0.47, 14.1 and 36.2 NoV particles per kg raspberries in case all raspberries are mixed to one day-batch of 11tons. The NoV contamination of the fruits was mainly driven by the route of NoV shedding food pickers (95.8%) rather than by spraying contaminated pesticide water (4.2%) (baseline scenario with 5 shedding pickers and contaminated pesticide water). Inclusion of appropriate hand washing procedures or hand washing followed by hand disinfection resulted in estimated reductions of the mean NoV levels from 14.1 to 0.16 and 0.17 NoV particles per kg raspberries, respectively, for the baseline scenario with 5 out of 245 food pickers shedding NoV. The use of a mild heat treatment (30s at 75°C) during further processing of berries to purees was noted to reduce mean NoV levels substantially from 14.1 to 0.2 NoV particles per kg raspberry puree. For IQF raspberries, the NoV contamination is heterogeneously distributed and resulted in a mean contamination of 3.1 NoV particles per 250g

  6. Dynamical phases of attractive particles sliding on a structured surface

    International Nuclear Information System (INIS)

    Hasnain, J; Jungblut, S; Dellago, C

    2015-01-01

    Inspired by experiments on quartz crystal microbalance setups, we study the mobility of a monolayer of Lennard-Jones particles driven over a hexagonal external potential. We pay special attention to the changes in the dynamical phases that arise when the lattice constant of the external substrate potential and the Lennard-Jones interaction are mismatched. We find that if the average particle separation is such that the particles repel each other, or interact harmonically, the qualitative behavior of the system is akin to that of a monolayer of purely repulsive Yukawa particles. On the other hand, if the particles typically attract each other, the ensuing dynamical states are determined entirely by the relative strength of the Lennard-Jones interaction with respect to that of the external potential. (paper)

  7. Polarized ensembles of random pure states

    International Nuclear Information System (INIS)

    Cunden, Fabio Deelan; Facchi, Paolo; Florio, Giuseppe

    2013-01-01

    A new family of polarized ensembles of random pure states is presented. These ensembles are obtained by linear superposition of two random pure states with suitable distributions, and are quite manageable. We will use the obtained results for two purposes: on the one hand we will be able to derive an efficient strategy for sampling states from isopurity manifolds. On the other, we will characterize the deviation of a pure quantum state from separability under the influence of noise. (paper)

  8. Preparation and Characteristic of Dextran-BSA Antibody and Establishment of its ELISA Immunoassay.

    Science.gov (United States)

    Xie, Zhen-ming; Yu, Lin; Fang, Li-sha

    2015-01-01

    The enzyme-linked immunosorbent assay (ELISA) is a potential tool for the determination of dextran. In this study, dextran neoglycoprotein antigens were prepared by Reductive Amination method, and were confirmed by SDS-PAGE and free amino detection. The impact factors such as different oxidation degree of dextran, the conjugate reaction time to BSA were investigated. The best preparation conditions were obtained (n(dextran)/n(oxidant) of NaIO4 = 1/120, the reaction time of 24 h), and the antigen with best combination with standard was obtained. The antigens interacted with standard antibody and were evaluated through ELISA. The immunogen was immunized with white rabbits to obtained antibody, respectively. A general and broad class-specific ELISA immunoassay was developed for dextran detection according to ELISA theory. The optimized conditions of assay used coating antigen at 10 μg/mL, reaction time of antibody and rabbit-anti-bovine IgG in 45 min, blocking reagents with 5% calf serum. The developed ELISA detection method with good linear and accuracy was put to use for quantitative analysis of dextran T40 in commercial sugarpractical for detection of dextran.

  9. Tensor modes in pure natural inflation

    Science.gov (United States)

    Nomura, Yasunori; Yamazaki, Masahito

    2018-05-01

    We study tensor modes in pure natural inflation [1], a recently-proposed inflationary model in which an axionic inflaton couples to pure Yang-Mills gauge fields. We find that the tensor-to-scalar ratio r is naturally bounded from below. This bound originates from the finiteness of the number of metastable branches of vacua in pure Yang-Mills theories. Details of the model can be probed by future cosmic microwave background experiments and improved lattice gauge theory calculations of the θ-angle dependence of the vacuum energy.

  10. Method of producing vegetable puree

    DEFF Research Database (Denmark)

    2004-01-01

    A process for producing a vegetable puree, comprising the sequential steps of: a)crushing, chopping or slicing the vegetable into pieces of 1 to 30 mm; b) blanching the vegetable pieces at a temperature of 60 to 90°C; c) contacted the blanched vegetable pieces with a macerating enzyme activity; d......) blending the macerated vegetable pieces and obtaining a puree....

  11. New therapeutic agent for radiation synovectomy - preparation of 166Ho-EDTMP-HA particle

    International Nuclear Information System (INIS)

    Bai, H.; Jin, X.; Du, J.; Wang, F.; Chen, D.; Fan, H.; Cheng, Z.; Zhang, J.

    1997-01-01

    In order to prepare new therapeutical agent for radiation synovectomy, Hydroxyapatite (HA) was labelled with 166 Ho by EDTMP that had high affinity to HA particles. Radiolabelling of HA particles was divided into two steps, 166 Ho-EDTMP was prepared first; then mixed with HA particles completely and vibrated for 15 minutes on the micromixer at room temperature, washed 3 times with deionized water. Radiolabelling particle was separated from free 166 Ho via centrifugation to determine its radiolabelling efficiency. 166 Ho-EDTMP-HA and 166 Ho-EDTMP were injected into knee joint of normal rabbits respectively, every group was killed at different time postinjection, took out major organ and collected urine and blood, then weighted and determined their radio counts. HA particles, as a natural component of bone was known to have good compatibility with soft tissue and biodegrade into calcium and phosphate in vivo. It was readily prepared from common chemical and formed into particles of desired size range in a controlled process, it had high stability in vitro and vivo. Radiolabelling of HA particle with 166 Ho by EDTMP was simple to perform and provides an excellent labelling yield that was more than 95% under the optimal labelling condition. The optimal labelling condition at room temperature was pH 6.0-8.0 and vibration time 15 minutes. The absorbed capacity of HA particle was 5 mg Ho/g HA particle and size of radiolabelling particle was at range of 2-5,μm that is suitable for therapy of radiation synovectomy. 166 Ho-EDTMP-HA particle demonstrated high in vitro stability in either normal saline or 1% BSA solution, but instability under extremely acidic condition (pH 1-2). The control studies performed with 166 Ho-EDTMP not bound to HA particle provided information on the distribution of radioactivity that would occur upon leakage of the radiochemical compound from joint. Its short half-life, its extremely low leakage from the joint and its even distribution throughout

  12. Modelling of a general purpose irradiation chamber using a Monte Carlo particle transport code

    International Nuclear Information System (INIS)

    Dhiyauddin Ahmad Fauzi; Sheik, F.O.A.; Nurul Fadzlin Hasbullah

    2013-01-01

    Full-text: The aim of this research is to stimulate the effectiveness use of a general purpose irradiation chamber to contain pure neutron particles obtained from a research reactor. The secondary neutron and gamma particles dose discharge from the chamber layers will be used as a platform to estimate the safe dimension of the chamber. The chamber, made up of layers of lead (Pb), shielding, polyethylene (PE), moderator and commercial grade aluminium (Al) cladding is proposed for the use of interacting samples with pure neutron particles in a nuclear reactor environment. The estimation was accomplished through simulation based on general Monte Carlo N-Particle transport code using Los Alamos MCNPX software. Simulations were performed on the model of the chamber subjected to high neutron flux radiation and its gamma radiation product. The model of neutron particle used is based on the neutron source found in PUSPATI TRIGA MARK II research reactor which holds a maximum flux value of 1 x 10 12 neutron/ cm 2 s. The expected outcomes of this research are zero gamma dose in the core of the chamber and neutron dose rate of less than 10 μSv/ day discharge from the chamber system. (author)

  13. ActionScript Developer's Guide to PureMVC

    CERN Document Server

    Hall, Cliff

    2011-01-01

    Gain hands-on experience with PureMVC, the popular open source framework for developing maintainable applications with a Model-View-Controller architecture. In this concise guide, PureMVC creator Cliff Hall teaches the fundamentals of PureMVC development by walking you through the construction of a complete non-trivial Adobe AIR application. Through clear explanations and numerous ActionScript code examples, you'll learn best practices for using the framework's classes in your day-to-day work. Discover how PureMVC enables you to focus on the purpose and scope of your application, while the f

  14. Exact evaluation of entropic quantities in a solvable two-particle model

    International Nuclear Information System (INIS)

    Glasser, M.L.; Nagy, I.

    2013-01-01

    It has long been known that the von Neumann entropy S N and the Jozsa–Robb–Wootters subentropy Q JRW [R. Jozsa, et al., Phys. Rev. A 49 (1994) 668] are, respectively, upper and lower bounds on the accessible information one can obtain about the identity of a pure state by performing a quantum measurement on a system whose pure state is initially unknown. We determine these bounds exactly in terms of the occupation numbers of normalized natural orbitals of an externally confined interacting two-particle model system. The occupation numbers are obtained via a sign-correct direct decomposition of the underlying exact Schrödinger wave function in terms of an infinite sum of products of Löwdin's natural orbitals, avoiding thus the solution of the eigenvalue problem with the corresponding reduced one-particle matrix.

  15. Exact evaluation of entropic quantities in a solvable two-particle model

    Energy Technology Data Exchange (ETDEWEB)

    Glasser, M.L., E-mail: laryg@clarkson.edu [Department of Physics, Clarkson University, Potsdam, NY 13699-5820 (United States); Donostia International Physics Center, P. Manuel de Lardizabal 4, E-20018 San Sebastián (Spain); Nagy, I. [Donostia International Physics Center, P. Manuel de Lardizabal 4, E-20018 San Sebastián (Spain); Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, H-1521 Budapest (Hungary)

    2013-11-08

    It has long been known that the von Neumann entropy S{sub N} and the Jozsa–Robb–Wootters subentropy Q{sub JRW} [R. Jozsa, et al., Phys. Rev. A 49 (1994) 668] are, respectively, upper and lower bounds on the accessible information one can obtain about the identity of a pure state by performing a quantum measurement on a system whose pure state is initially unknown. We determine these bounds exactly in terms of the occupation numbers of normalized natural orbitals of an externally confined interacting two-particle model system. The occupation numbers are obtained via a sign-correct direct decomposition of the underlying exact Schrödinger wave function in terms of an infinite sum of products of Löwdin's natural orbitals, avoiding thus the solution of the eigenvalue problem with the corresponding reduced one-particle matrix.

  16. Reducing agent-free synthesis of curcumin-loaded albumin nanoparticles by self-assembly at room temperature.

    Science.gov (United States)

    Safavi, Maryam Sadat; Shojaosadati, Seyed Abbas; Yang, Hye Gyeong; Kim, Yejin; Park, Eun Ji; Lee, Kang Choon; Na, Dong Hee

    2017-08-30

    The purpose of this study was to prepare curcumin-loaded bovine serum albumin nanoparticles (CCM-BSA-NPs) by reducing agent-free self-assembly at room temperature. A 2 4 factorial design approach was used to investigate the CCM-BSA-NP preparation process at different pH values, temperatures, dithiothreitol amounts, and CCM/BSA mass ratios. Increasing the ionic strength enabled preparation of CCM-BSA-NPs at 25°C without reducing agent. CCM-BSA-NPs prepared under the optimized conditions at 25°C showed a particle size of 110±6nm, yield of 88.5%, and drug loading of 7.1%. The CCM-BSA-NPs showed strong antioxidant activity and neuroprotective effects in glutamate-induced mouse hippocampal neuronal HT22 cells. This study suggests that ionic strength can be a key parameter affecting the preparation of albumin-based NPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. [Particle emission characteristics of diesel bus fueled with bio-diesel].

    Science.gov (United States)

    Lou, Di-Ming; Chen, Feng; Hu, Zhi-Yuan; Tan, Pi-Qiang; Hu, Wei

    2013-10-01

    With the use of the Engine Exhaust Particle Sizer (EEPS), a study on the characteristics of particle emissions was carried out on a China-IV diesel bus fueled with blends of 5% , 10% , 20% , 50% bio-diesel transformed from restaurant waste oil and China-IV diesel (marked separately by BD5, BD10, BD20, BD50), pure bio-diesel (BD100) and pure diesel (BD0). The results indicated that particulate number (PN) and mass (PM) emissions of bio-diesel blends increased with the increase in bus speed and acceleration; with increasing bio-diesel content, particulate emissions displayed a relevant declining trend. In different speed ranges, the size distribution of particulate number emissions (PNSD) was bimodal; in different acceleration ranges, PNSD showed a gradual transition from bimodal shape to unimodal when bus operation was switched from decelerating to accelerating status. Bio-diesel blends with higher mixture ratios showed significant reduction in PN emissions for accumulated modes, and the particulate number emission peaks moved towards smaller sizes; but little change was obtained in PN emissions for nuclei modes; reduction also occurred in particle geometric diameter (Dg).

  18. Liquid-borne nano particles impact on the random yield during critical processes in IC’s production

    NARCIS (Netherlands)

    Wali, F.; Knotter, D. Martin; Kuper, F.G.

    2008-01-01

    Semiconductor industry faces a continuous challenge to decrease the transistor size as well as to increase the yield by eliminating defect sources. One of the sources of particle defects is ultra pure water used in different production tools at different stages of processing. In this paper, particle

  19. The Effect Of Organic Surfactants On The Properties Of Common Hygroscopic Particles: Effective Densities, Reactivity And Water Evaporation Of Surfactant Coated Particles

    Science.gov (United States)

    Cuadrarodriguez, L.; Zelenyuk, A.; Imre, D.; Ellison, B.

    2006-12-01

    Measurements of atmospheric aerosol compositions routinely show that organic compounds account for a very large fraction of the particle mass. The organic compounds that make up this aerosol mass represent a wide range of molecules with a variety of properties. Many of the particles are composed of hygroscopic salts like sulfates, nitrates and sea-salt internally mixed with organics. While the properties of the hygroscopic salts are known, the effect of the organic compounds on the microphysical and chemical properties which include CCN activity is not clear. .One particularly interesting class of internally mixed particles is composed of aqueous salts solutions that are coated with organic surfactants which are molecules with long aliphatic chain and a water soluble end. Because these molecules tend to coat the particles' surfaces, a monolayer might be sufficient to drastically alter their hygroscopic properties, their CCN activity, and reactivity. The aliphatic chains, being exposed to the oxidizing atmosphere are expected to be transformed through heterogeneous chemistry, yielding complex products with mixed properties. We will report the results from a series of observations on ammonium sulfate, sodium chloride and sea salt particles coated with three types of surfactant molecules: sodium lauryl sulfate, sodium oleate and laurtrimonium chloride. We have been able to measure the effective densities of internally mixed particles with a range of surfactant concentration that start below a monolayer and extend all the way to particles composed of pure surfactant. For many of the measurements the data reveal a rather complex picture that cannot be simply interpreted in terms of the known pure-compound densities. For unsaturated hydrocarbons we observed and quantified the effect of oxidation by ozone on particle size, effective density and individual particle mass spectral signatures. One of the more important properties of these surfactants is that they can form a

  20. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles.

    Science.gov (United States)

    Heravi, Farzin; Ramezani, Mohammad; Poosti, Maryam; Hosseini, Mohsen; Shajiei, Arezoo; Ahrari, Farzaneh

    2013-01-01

    Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco's Modified Eagle's Medium (DMEM). The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF) and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P0.05). There was a significant reduction in cell toxicity with increasing pre-incubation time (Porthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive.

  1. Depletion-induced biaxial nematic states of boardlike particles

    International Nuclear Information System (INIS)

    Belli, S; Van Roij, R; Dijkstra, M

    2012-01-01

    With the aim of investigating the stability conditions of biaxial nematic liquid crystals, we study the effect of adding a non-adsorbing ideal depletant on the phase behavior of colloidal hard boardlike particles. We take into account the presence of the depletant by introducing an effective depletion attraction between a pair of boardlike particles. At fixed depletant fugacity, the stable liquid-crystal phase is determined through a mean-field theory with restricted orientations. Interestingly, we predict that for slightly elongated boardlike particles a critical depletant density exists, where the system undergoes a direct transition from an isotropic liquid to a biaxial nematic phase. As a consequence, by tuning the depletant density, an easy experimental control parameter, one can stabilize states of high biaxial nematic order even when these states are unstable for pure systems of boardlike particles. (paper)

  2. Microglassification™: a Novel Technique for Protein Dehydration

    DEFF Research Database (Denmark)

    Aniket; Gaul, David; Rickard, Deborah

    2014-01-01

    he dehydration of biologics is commonly employed to achieve solid-dose formulation and enhanced stability during long-term preservation. We have developed a novel process, MicroglassificationTM, which can rapidly and controllably dehydrate protein solutions into solid amorphous microspheres at room...... time and decreasing water activity. Image analysis at single particle and bulk scale showed the formation of solid BSA microspheres with a maximum protein concentration of 1147 ± 32 mg/mL. The native BSA samples were dehydrated to approximately 450 waters per BSA, which is well below monolayer coverage...... of 1282 waters per BSA. The secondary structure of MicroglassifiedTM BSA reverted to native-like conformation upon rehydration with only minor irreversible aggregation (2.7%). Results of the study establish the efficacy of the MicroglassificationTM for the successful dehydration of biologics....

  3. Topics in gauge theories and the unification of elementary particle interactions

    International Nuclear Information System (INIS)

    Srivastava, Y.N.; Vaughn, M.T.

    1992-02-01

    We report on work done by the principal investigators and their collaborators on: purely fermionic composite models, gravitational diamagnetism, dynamical Casimir effect, N-particle amplitudes for large N beyond the three approximation, and analysis of classical scalar φ 4 field theory

  4. The preparation of zinc silicate/ZnO particles and their use as an efficient UV absorber

    Energy Technology Data Exchange (ETDEWEB)

    Podbrscek, Peter [National Institute of Chemistry, Hajdrihova 19, SI 1000 Ljubljana (Slovenia); Drazic, Goran [Department for Nanostructured Materials, Jozef Stefan Institute, Jamova 39, SI 1000 Ljubljana (Slovenia); Anzlovar, Alojz [National Institute of Chemistry, Hajdrihova 19, SI 1000 Ljubljana (Slovenia); Center of Excellence for Polymer Materials and Technologies, Tehnoloski Park 24, 1000 Ljubljana (Slovenia); Orel, Zorica Crnjak, E-mail: zorica.crnjak.orel@ki.si [National Institute of Chemistry, Hajdrihova 19, SI 1000 Ljubljana (Slovenia); Center of Excellence for Polymer Materials and Technologies, Tehnoloski Park 24, 1000 Ljubljana (Slovenia)

    2011-11-15

    Highlights: {yields} We used innovative gel-route in order to prepare zinc silicate/ZnO nano-particles. {yields} Continuous reactor was efficient for synthesizing ZnO and zinc silicate/ZnO precursors. {yields} Introduction of Si into reaction mixture influenced on particle size and their photoactivity. {yields} Prepared particles are appropriate for UV absorbers in polymers. -- Abstract: The formation of zinc silicate/ZnO particles synthesized by a two-step method and their incorporation into PMMA is presented. In the first step a segmented-flow tubular reactor was used for the continuous room-temperature preparation of a zinc silicate/Zn(OH){sub 2} gel that was thermally treated after rinsing and drying in the second step. The same preparation procedure was also employed for the synthesis of pure ZnO and pure zinc silicate particles. It was found that the presence of the zinc silicate phase significantly influenced the final particle size, decreased the degree of crystallization and reduced the particles' UV absorption capabilities. The reduced photocatalytic activity of the zinc silicate/ZnO particles indicated that the majority of ZnO crystallites were formed inside the zinc silicate matrix. The nanocomposite prepared from zinc silicate/ZnO particles (0.04 wt.%) and PMMA showed high UV shielding and at the same time sufficient transmittance in the visible-light region.

  5. The preparation of zinc silicate/ZnO particles and their use as an efficient UV absorber

    International Nuclear Information System (INIS)

    Podbrscek, Peter; Drazic, Goran; Anzlovar, Alojz; Orel, Zorica Crnjak

    2011-01-01

    Highlights: → We used innovative gel-route in order to prepare zinc silicate/ZnO nano-particles. → Continuous reactor was efficient for synthesizing ZnO and zinc silicate/ZnO precursors. → Introduction of Si into reaction mixture influenced on particle size and their photoactivity. → Prepared particles are appropriate for UV absorbers in polymers. -- Abstract: The formation of zinc silicate/ZnO particles synthesized by a two-step method and their incorporation into PMMA is presented. In the first step a segmented-flow tubular reactor was used for the continuous room-temperature preparation of a zinc silicate/Zn(OH) 2 gel that was thermally treated after rinsing and drying in the second step. The same preparation procedure was also employed for the synthesis of pure ZnO and pure zinc silicate particles. It was found that the presence of the zinc silicate phase significantly influenced the final particle size, decreased the degree of crystallization and reduced the particles' UV absorption capabilities. The reduced photocatalytic activity of the zinc silicate/ZnO particles indicated that the majority of ZnO crystallites were formed inside the zinc silicate matrix. The nanocomposite prepared from zinc silicate/ZnO particles (0.04 wt.%) and PMMA showed high UV shielding and at the same time sufficient transmittance in the visible-light region.

  6. Developments in kinetic modelling of chalcocite particle oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jaervi, J; Ahokainen, T; Jokilaakso, A [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1998-12-31

    A mathematical model for simulating chalcocite particle oxidation is presented. Combustion of pure chalcocite with oxygen is coded as a kinetic module which can be connected as a separate part of commercial CFD-package, PHOENICS. Heat transfer, fluid flow and combustion phenomena can be simulated using CFD-calculation together with the kinetic model. Interaction between gas phase and particles are taken into account by source terms. The aim of the kinetic model is to calculate the particle temperature, contents of species inside the particle, oxygen consumption and formation of sulphur dioxide. Four oxidation reactions are considered and the shrinking core model is used to describe the rate of the oxidation reactions. The model is verified by simulating the particle oxidation reactions in a laboratory scale laminar-flow furnace under different conditions and the model predicts the effects of charges correctly. In the future, the model validation will be done after experimental studies in the laminar flow-furnace. (author) 18 refs.

  7. Developments in kinetic modelling of chalcocite particle oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jaervi, J.; Ahokainen, T.; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1997-12-31

    A mathematical model for simulating chalcocite particle oxidation is presented. Combustion of pure chalcocite with oxygen is coded as a kinetic module which can be connected as a separate part of commercial CFD-package, PHOENICS. Heat transfer, fluid flow and combustion phenomena can be simulated using CFD-calculation together with the kinetic model. Interaction between gas phase and particles are taken into account by source terms. The aim of the kinetic model is to calculate the particle temperature, contents of species inside the particle, oxygen consumption and formation of sulphur dioxide. Four oxidation reactions are considered and the shrinking core model is used to describe the rate of the oxidation reactions. The model is verified by simulating the particle oxidation reactions in a laboratory scale laminar-flow furnace under different conditions and the model predicts the effects of charges correctly. In the future, the model validation will be done after experimental studies in the laminar flow-furnace. (author) 18 refs.

  8. Development of Interleukin-2 Loaded Chitosan-Based Nanogels Using Artificial Neural Networks and Investigating the Effects on Wound Healing in Rats.

    Science.gov (United States)

    Aslan, Canan; Çelebi, Nevin; Değim, I Tuncer; Atak, Ayşegül; Özer, Çiğdem

    2017-05-01

    The aim of this study was to develop and characterize rh- IL-2 loaded chitosan-based nanogels for the healing of wound incision in rats. Nanogels were prepared using chitosan and bovine serum albumin (BSA) by ionic gelation method and high temperature application, respectively. Particle size, zeta potential, and polydispersity index were measured for characterization of nanogels. The morphology of nanogels was examined by using SEM and AFM. The IL-2 loading capacity of nanogels was determined using ELISA method. In vitro release of IL-2 from nanogels was performed using Franz diffusion cells. Artificial neural network (ANN) models were developed using selected input parameters (stirring rate, chitosan%, BSA%, TPP%) where particle size was an output parameter for IL-2 free nanogels. Wound healing effect of IL-2 loaded chitosan-TPP nanogel was evaluated by determining the malondialdehyde (MDA) and glutathione (GSH) levels of wound tissues in rats. The particle size of IL-2 loaded chitosan-TPP nanogels was found to be larger than that of IL-2 loaded BSA-based chitosan nanogels. Drug loading capacity of nanogels was found 100% ± 0.010 for both nanogels. IL-2 was released slowly after the initial burst effect. According to SEM and AFM imaging, BSA-chitosan nanogel particles were of nanometer size and presented a swelling tendency, and chitosan-TPP nanogel particles were found to be spherical and homogenously dispersed. IL-2 loaded chitosan-TPP nanogel was found suitable for improving wound healing because it decreased the MDA levels and increased the GSH levels wound tissues comparing to control group.

  9. Protein-silver nanoparticle interactions to colloidal stability in acidic environments.

    Science.gov (United States)

    Tai, Jui-Ting; Lai, Chao-Shun; Ho, Hsin-Chia; Yeh, Yu-Shan; Wang, Hsiao-Fang; Ho, Rong-Ming; Tsai, De-Hao

    2014-11-04

    We report a kinetic study of Ag nanoparticles (AgNPs) under acidic environments (i.e., pH 2.3 to pH ≈7) and systematically investigate the impact of protein interactions [i.e., bovine serum albumin (BSA) as representative] to the colloidal stability of AgNPs. Electrospray-differential mobility analysis (ES-DMA) was used to characterize the particle size distributions and the number concentrations of AgNPs. Transmission electron microscopy was employed orthogonally to provide visualization of AgNPs. For unconjugated AgNPs, the extent of aggregation, or the average particle size, was shown to be increased significantly with an increase of acidity, where a partial coalescence was found between the primary particles of unconjugated AgNP clusters. Aggregation rate constant, kD, was also shown to be proportional to acidity, following a correlation of log(kD) = -1.627(pH)-9.3715. Using ES-DMA, we observe BSA had a strong binding affinity (equilibrium binding constant, ≈ 1.1 × 10(6) L/mol) to the surface of AgNPs, with an estimated maximum molecular surface density of ≈0.012 nm(-2). BSA-functionalized AgNPs exhibited highly-improved colloidal stability compared to the unconjugated AgNPs under acidic environments, where both the acid-induced interfacial dissolution and the particle aggregation became negligible. Results confirm a complex mechanism of colloidal stability of AgNPs: the aggregation process was shown to be dominant, and the formation of BSA corona on AgNPs suppressed both particle aggregation and interfacial dissolution of AgNP samples under acidic environments.

  10. Decoherence and thermalization of a pure quantum state in quantum field theory.

    Science.gov (United States)

    Giraud, Alexandre; Serreau, Julien

    2010-06-11

    We study the real-time evolution of a self-interacting O(N) scalar field initially prepared in a pure, coherent quantum state. We present a complete solution of the nonequilibrium quantum dynamics from a 1/N expansion of the two-particle-irreducible effective action at next-to-leading order, which includes scattering and memory effects. We demonstrate that, restricting one's attention (or ability to measure) to a subset of the infinite hierarchy of correlation functions, one observes an effective loss of purity or coherence and, on longer time scales, thermalization. We point out that the physics of decoherence is well described by classical statistical field theory.

  11. The study of behavior titanium pure commercially coated with hydroxyapatite and zirconia

    Science.gov (United States)

    Aneed, Shaymaa Hashim; Salih, Ayad Ahmed; Khazaal, Ahlam Rashid; Hasan, Aqeel F.; Hamodi, Jamal Fadhil; Jasim, Kareem Ali; Mahdi, Shatha H.; AL-Maiyaly, Bushra K. H.; Hassun, Hanan K.

    2018-05-01

    In this research was studied the effect of adding zirconia to hydroxyapatite in the coting of commercially pure titanium (cpTi), by using electrophoretic deposition (EPD) when using micron particle (waves) size limit (0.25-0.5) micron, and deposition was effected with different coating periods(2,4,6) mints, and annealing at 500 °C, it founded there was an improvement in the corrosion properties, as the value of the open circuit potential (OCP) for coated titanium was reach to (-0.262) volt compared with to uncoated titanium was reach to (-0.528)volt. Note that the coating process is perfectly homogeneous to the entire area of the metal used.

  12. Flexible scheme to truncate the hierarchy of pure states.

    Science.gov (United States)

    Zhang, P-P; Bentley, C D B; Eisfeld, A

    2018-04-07

    The hierarchy of pure states (HOPS) is a wavefunction-based method that can be used for numerically modeling open quantum systems. Formally, HOPS recovers the exact system dynamics for an infinite depth of the hierarchy. However, truncation of the hierarchy is required to numerically implement HOPS. We want to choose a "good" truncation method, where by "good" we mean that it is numerically feasible to check convergence of the results. For the truncation approximation used in previous applications of HOPS, convergence checks are numerically challenging. In this work, we demonstrate the application of the "n-particle approximation" to HOPS. We also introduce a new approximation, which we call the "n-mode approximation." We then explore the convergence of these truncation approximations with respect to the number of equations required in the hierarchy in two exemplary problems: absorption and energy transfer of molecular aggregates.

  13. Flexible scheme to truncate the hierarchy of pure states

    Science.gov (United States)

    Zhang, P.-P.; Bentley, C. D. B.; Eisfeld, A.

    2018-04-01

    The hierarchy of pure states (HOPS) is a wavefunction-based method that can be used for numerically modeling open quantum systems. Formally, HOPS recovers the exact system dynamics for an infinite depth of the hierarchy. However, truncation of the hierarchy is required to numerically implement HOPS. We want to choose a "good" truncation method, where by "good" we mean that it is numerically feasible to check convergence of the results. For the truncation approximation used in previous applications of HOPS, convergence checks are numerically challenging. In this work, we demonstrate the application of the "n-particle approximation" to HOPS. We also introduce a new approximation, which we call the "n-mode approximation." We then explore the convergence of these truncation approximations with respect to the number of equations required in the hierarchy in two exemplary problems: absorption and energy transfer of molecular aggregates.

  14. Large-eddy simulation of heavy particle dispersion in wall-bounded turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Salvetti, M.V. [DICI, University of Pisa, I-56122 Pisa (Italy)

    2015-03-10

    Capabilities and accuracy issues in Lagrangian tracking of heavy particles in velocity fields obtained from large-eddy simulations (LES) of wall-bounded turbulent flows are reviewed. In particular, it is shown that, if no subgrid scale (SGS) model is added to the particle motion equations, particle preferential concentration and near-wall accumulation are significantly underestimated. Results obtained with SGS modeling for the particle motion equations based on approximate deconvolution are briefly recalled. Then, the error purely due to filtering in particle tracking in LES flow fields is singled out and analyzed. The statistical properties of filtering errors are characterized in turbulent channel flow both from an Eulerian and a Lagrangian viewpoint. Implications for stochastic SGS modeling in particle motion equations are briefly outlined.

  15. Pure robotic retrocaval ureter repair

    Directory of Open Access Journals (Sweden)

    Ashok k. Hemal

    2008-12-01

    Full Text Available PURPOSE: To demonstrate the feasibility of pure robotic retrocaval ureter repair. MATERIALS AND METHODS: A 33 year old female presented with right loin pain and obstruction on intravenous urography with the classical "fish-hook" appearance. She was counseled on the various methods of repair and elected to have a robot assisted repair. The following steps are performed during a pure robotic retrocaval ureter repair. The patient is placed in a modified flank position, pneumoperitoneum created and ports inserted. The colon is mobilized to expose the retroperitoneal structures: inferior vena cava, right gonadal vein, right ureter, and duodenum. The renal pelvis and ureter are mobilized and the renal pelvis transected. The ureter is transposed anterior to the inferior vena cava and a pyelopyelostomy is performed over a JJ stent. RESULTS: This patient was discharged on postoperative day 3. The catheter and drain tube were removed on day 1. Her JJ stent was removed at 6 weeks postoperatively. The postoperative intravenous urography at 3 months confirmed normal drainage of contrast medium. CONCLUSION: Pure robotic retrocaval ureter is a feasible procedure; however, there does not appear to be any great advantage over pure laparoscopy, apart from the ergonomic ease for the surgeon as well the simpler intracorporeal suturing.

  16. Synthesis, spectroscopic studies, DFT calculations, electrochemical evaluation, BSA binding and molecular docking of an aroylhydrazone -based cis-dioxido Mo(VI) complex

    Science.gov (United States)

    Mohamadi, Maryam; Faghih-Mirzaei, Ehsan; Ebrahimipour, S. Yousef; Sheikhshoaie, Iran; Haase, Wolfgang; Foro, Sabine

    2017-07-01

    A cis-dioxido Mo(VI) complex, [MoO2(L)(MeOH)], [L2-: (3-methoxy-2-oxidobenzylidene) benzohydrazonate], has been synthesized and characterized using physicochemical and spectroscopic techniques including elemental analysis, FT-IR, 1HNMR, UV-Vis spectroscopy, molar conductivity and single crystal X-ray diffraction. DFT calculations in the ground state of the complex were carried out using hybrid functional B3LYP with DGDZVP as basis set. Non-linear optical properties including electric dipole moment (μ), polarizability (α) and molecular first hyperpolarizability (β) of the compound were also computed. The values of linear polarizability and first hyperpolarizability obtained for the studied molecule indicated that the compound could be a good candidate of nonlinear optical materials. TD-DFT calculation and molecular electrostatic potential (MEP) were also performed. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the complex at different temperatures have been calculated. The interaction of a synthesized complex, with bovine serum albumin was also thoroughly investigated using experimental and theoretical studies. UV-Vis absorption and fluorescence quenching techniques were used to determine the binding parameters as well as the mechanism of the interaction. The values of binding constants were in the range of 104-105 M-1 demonstrating a moderate interaction between the synthesized complex and BSA making the protein suitable for transportation and delivery of the compound. Thermodynamic parameters were also indicating a binding through van der Waals force or hydrogen bond of [MoO2(L)(MeOH)] to BSA. The results obtained from docking studies were consistent to those obtained from experimental studies.

  17. Mechanical and Tribological Characteristics of TIG Hardfaced Dispersive Layer by Reinforced with Particles Extruded Aluminium

    Directory of Open Access Journals (Sweden)

    R. Dimitrova

    2017-05-01

    Full Text Available The article presents the results of the implemented technology for generation of hardfaced dispersive layers obtained by additive material containing reinforcing phase of non-metal particles. The wear resistant coatings are deposited on pure aluminium metal matrix by shielded gas metal-arc welding applying tungsten inert gas (TIG with extruded aluminium wire reinforced by particles as additive material. Wire filler is produced by extrusion of a pack containing metalized and plated by flux micro/nano SiC particles. The metalized particles implanting in the metal matrix and its dispersive hardfacing are realized by solid-state welding under conditions of hot plastic deformation. Tribological characteristics are studied of the hardfaced layers of dispersive reinforced material on pure aluminium metal matrix with and without flux. Hardness profiles of the hardfaced layers are determined by nanoindentation. The surface layers are studied by means of Scanning Electron Microscopy (SEM and Energy Dispersive X-ray (EDX analysis. Increase by 15-31 % of the wear resistance of the hardfaced layers and 30-40 % of their hardness was found, which is due to the implanted in the layer reinforcing phase of metalized micro/nano SiC particles.

  18. Supersymmetric particles and the ΔI=1/2 rule

    International Nuclear Information System (INIS)

    Langacker, P.; Pennsylvania Univ., Philadelphia; Sathiapalan, B.

    1984-01-01

    We consider the contributions of new particles in supersymmetric theories to the nonleptonic decays of strange particles. We find that for a wide class of models the dominant new contribution is from purely ΔI=1/2 penguin-like diagrams involving gluinos and scalar quarks. Detailed calculations suggest that these super-penguins are smaller in magnitude than the ordinary penguins unless the gluinos and scalar quarks are light (e.g. 1 GeV and 30 GeV, respectively), but there are significant uncertainties associated with higher order QCD effects. (orig.)

  19. Light scattering by particles in water theoretical and experimental foundations

    CERN Document Server

    Jonasz, Miroslaw

    2007-01-01

    Light scattering-based methods are used to characterize small particles suspended in water in a wide range of disciplines ranging from oceanography, through medicine, to industry. The scope and accuracy of these methods steadily increases with the progress in light scattering research. This book focuses on the theoretical and experimental foundations of the study and modeling of light scattering by particles in water and critically evaluates the key constraints of light scattering models. It begins with a brief review of the relevant theoretical fundamentals of the interaction of light with condensed matter, followed by an extended discussion of the basic optical properties of pure water and seawater and the physical principles that explain them. The book continues with a discussion of key optical features of the pure water/seawater and the most common components of natural waters. In order to clarify and put in focus some of the basic physical principles and most important features of the experimental data o...

  20. Characterizing commercial pureed foods: sensory, nutritional, and textural analysis.

    Science.gov (United States)

    Ettinger, Laurel; Keller, Heather H; Duizer, Lisa M

    2014-01-01

    Dysphagia (swallowing impairment) is a common consequence of stroke and degenerative diseases such as Parkinson's and Alzheimer's. Limited research is available on pureed foods, specifically the qualities of commercial products. Because research has linked pureed foods, specifically in-house pureed products, to malnutrition due to inferior sensory and nutritional qualities, commercial purees also need to be investigated. Proprietary research on sensory attributes of commercial foods is available; however direct comparisons of commercial pureed foods have never been reported. Descriptive sensory analysis as well as nutritional and texture analysis of commercially pureed prepared products was performed using a trained descriptive analysis panel. The pureed foods tested included four brands of carrots, of turkey, and two of bread. Each commercial puree was analyzed for fat (Soxhlet), protein (Dumas), carbohydrate (proximate analysis), fiber (total fiber), and sodium content (Quantab titrator strips). The purees were also texturally compared with a line spread test and a back extrusion test. Differences were found in the purees for sensory attributes as well as nutritional and textural properties. Findings suggest that implementation of standards is required to reduce variability between products, specifically regarding the textural components of the products. This would ensure all commercial products available in Canada meet standards established as being considered safe for swallowing.

  1. Vacuum evaporation of pure metals

    OpenAIRE

    Safarian, Jafar; Engh, Thorvald Abel

    2013-01-01

    Theories on the evaporation of pure substances are reviewed and applied to study vacuum evaporation of pure metals. It is shown that there is good agreement between different theories for weak evaporation, whereas there are differences under intensive evaporation conditions. For weak evaporation, the evaporation coefficient in Hertz-Knudsen equation is 1.66. Vapor velocity as a function of the pressure is calculated applying several theories. If a condensing surface is less than one collision...

  2. Investigating the influence of effective parameters on molecular characteristics of bovine serum albumin nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rohiwal, S.S.; Satvekar, R.K.; Tiwari, A.P.; Raut, A.V.; Kumbhar, S.G.; Pawar, S.H., E-mail: pawar_s_h@yahoo.com

    2015-04-15

    Graphical abstract: The physiochemical properties of nanoparticles provide the basic aspects about the conformational transitions which could have a strong bearing on the bioavailability for bioactive molecules such as peptides and hormones. - Highlights: • Synthesis and surface and structural properties of Bovine Serum Albumin nanoparticles (BSANPs). • Study of conformational transitions of BSANPs by spectroscopic techniques. • Studies on the effect of pH and protein concentration on formulation of BSANPs. - Abstract: The protein nanoparticles formulation is a challenging task as they are prone to undergo conformational transitions while processing which may affect bioavailability for bioactive compounds. Herein, a modified desolvation method is employed to prepare Bovine Serum Albumin nanoparticles, with controllable particle size ranging from 100 to 300 nm and low polydispersity index. The factors influencing the size and structure of BSA NPs viz. protein concentration, pH and the conditions for purification are well investigated. The structure of BSA NPs is altered due to processing, and may affect the effective binding ability with drugs and bioactive compounds. With that aims, investigations of molecular characteristics of BSA NPs are carried out in detail by using spectroscopic techniques. UV–visible absorption and Fourier Transform Infrared demonstrate the alteration in protein structure of BSA NPs whereas the FT-Raman spectroscopy investigates changes in the secondary and tertiary structures of the protein. The conformational changes of BSA NPs are observed by change in fluorescence intensity and emission maximum wavelength of tryptophan residue by fluorescence spectroscopy. The field emission scanning electron and atomic force microscopy micrographs confirm the size and semi-spherical morphology of the BSA NPs. The effect of concentration and pH on particle size distribution is studied by particle size analyzer.

  3. Pure natural inflation

    Science.gov (United States)

    Nomura, Yasunori; Watari, Taizan; Yamazaki, Masahito

    2018-01-01

    We point out that a simple inflationary model in which the axionic inflaton couples to a pure Yang-Mills theory may give the scalar spectral index (ns) and tensor-to-scalar ratio (r) in complete agreement with the current observational data.

  4. Scaling during capillary thinning of particle-laden drops

    Science.gov (United States)

    Thete, Sumeet; Wagoner, Brayden; Basaran, Osman

    2017-11-01

    A fundamental understanding of drop formation is crucial in many applications such as ink-jet printing, microfluidic devices, and atomization. During drop formation, the about-to-form drop is connected to the fluid hanging from the nozzle via a thinning filament. Therefore, the physics of capillary thinning of filaments is key to understanding drop formation and has been thoroughly studied for pure Newtonian fluids using theory, simulations, and experiments. In some of the applications however, the forming drop and hence the thinning filament may contain solid particles. The thinning dynamics of such particle-laden filaments differs radically from that of particle-free filaments. Moreover, our understanding of filament thinning in the former case is poor compared to that in the latter case despite the growing interest in pinch-off of particle-laden filaments. In this work, we go beyond similar studies and experimentally explore the impact of solid particles on filament thinning by measuring both the radial and axial scalings in the neck region. The results are summarized in terms of a phase diagram of capillary thinning of particle-laden filaments.

  5. Dry powder pulmonary delivery of cationic PGA-co-PDL nanoparticles with surface adsorbed model protein.

    Science.gov (United States)

    Kunda, Nitesh K; Alfagih, Iman M; Dennison, Sarah R; Somavarapu, Satyanarayana; Merchant, Zahra; Hutcheon, Gillian A; Saleem, Imran Y

    2015-08-15

    Pulmonary delivery of macromolecules has been the focus of attention as an alternate route of delivery with benefits such as; large surface area, thin alveolar epithelium, rapid absorption and extensive vasculature. In this study, a model protein, bovine serum albumin (BSA) was adsorbed onto cationic PGA-co-PDL polymeric nanoparticles (NPs) prepared by a single emulsion solvent evaporation method using a cationic surfactant didodecyldimethylammonium bromide (DMAB) at 2% w/w (particle size: 128.64±06.01 nm and zeta-potential: +42.32±02.70 mV). The optimum cationic NPs were then surface adsorbed with BSA, NP:BSA (100:4) ratio yielded 10.01±1.19 μg of BSA per mg of NPs. The BSA adsorbed NPs (5 mg/ml) were then spray-dried in an aqueous suspension of L-leucine (7.5 mg/ml, corresponding to a ratio of 1:1.5/NP:L-leu) using a Büchi-290 mini-spray dryer to produce nanocomposite microparticles (NCMPs) containing cationic NPs. The aerosol properties showed a fine particle fraction (FPF, dae<4.46 μm) of 70.67±4.07% and mass median aerodynamic diameter (MMAD) of 2.80±0.21 μm suggesting a deposition in the respiratory bronchiolar region of the lungs.The cell viability was 75.76±03.55% (A549 cell line) at 156.25 μg/ml concentration after 24 h exposure. SDS-PAGE and circular dichroism (CD) confirmed that the primary and secondary structure of the released BSA was maintained. Moreover, the released BSA showed 78.76±1.54% relative esterolytic activity compared to standard BSA. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Conformal pure radiation with parallel rays

    International Nuclear Information System (INIS)

    Leistner, Thomas; Paweł Nurowski

    2012-01-01

    We define pure radiation metrics with parallel rays to be n-dimensional pseudo-Riemannian metrics that admit a parallel null line bundle K and whose Ricci tensor vanishes on vectors that are orthogonal to K. We give necessary conditions in terms of the Weyl, Cotton and Bach tensors for a pseudo-Riemannian metric to be conformal to a pure radiation metric with parallel rays. Then, we derive conditions in terms of the tractor calculus that are equivalent to the existence of a pure radiation metric with parallel rays in a conformal class. We also give analogous results for n-dimensional pseudo-Riemannian pp-waves. (paper)

  7. Pure spinor partition function and the massive superstring spectrum

    International Nuclear Information System (INIS)

    Aisaka, Yuri; Arroyo, E. Aldo; Berkovits, Nathan; Nekrasov, Nikita

    2008-01-01

    We explicitly compute up to the fifth mass-level the partition function of ten-dimensional pure spinor worldsheet variables including the spin dependence. After adding the contribution from the (x μ , θ α , p α ) matter variables, we reproduce the massive superstring spectrum. Even though pure spinor variables are bosonic, the pure spinor partition function contains fermionic states which first appear at the second mass-level. These fermionic states come from functions which are not globally defined in pure spinor space, and are related to the b ghost in the pure spinor formalism. This result clarifies the proper definition of the Hilbert space for pure spinor variables.

  8. Testing effects in mixed- versus pure-list designs.

    Science.gov (United States)

    Rowland, Christopher A; Littrell-Baez, Megan K; Sensenig, Amanda E; DeLosh, Edward L

    2014-08-01

    In the present study, we investigated the role of list composition in the testing effect. Across three experiments, participants learned items through study and initial testing or study and restudy. List composition was manipulated, such that tested and restudied items appeared either intermixed in the same lists (mixed lists) or in separate lists (pure lists). In Experiment 1, half of the participants received mixed lists and half received pure lists. In Experiment 2, all participants were given both mixed and pure lists. Experiment 3 followed Erlebacher's (Psychological Bulletin, 84, 212-219, 1977) method, such that mixed lists, pure tested lists, and pure restudied lists were given to independent groups. Across all three experiments, the final recall results revealed significant testing effects for both mixed and pure lists, with no reliable difference in the magnitude of the testing advantage across list designs. This finding suggests that the testing effect is not subject to a key boundary condition-list design-that impacts other memory phenomena, including the generation effect.

  9. Inhibition of surface crystallisation of amorphous indomethacin particles in physical drug-polymer mixtures

    DEFF Research Database (Denmark)

    Priemel, Petra A; Laitinen, Riikka; Barthold, Sarah

    2013-01-01

    stability than pure IMC whereas IMC Soluplus(®) mixtures did not. Water uptake was higher for mixtures containing Soluplus(®) than for amorphous IMC or IMC Eudragit(®) mixtures. However, the Tg of amorphous IMC was unaffected by the presence (and nature) of polymer. SEM revealed that Eudragit(®) particles...... through reduced IMC surface molecular mobility. Polymer particles may also mechanically hinder crystal growth outwards from the surface. This work highlights the importance of microparticulate surface coverage of amorphous drug particles on their stability....

  10. Apparatus and method for detection and characterization of particles using light scattered therefrom

    Science.gov (United States)

    Johnston, R.G.

    1987-03-23

    Apparatus and method for detection and characterization of particles using light scattered therefrom. Differential phase measurements on scattered light from particles are possible using the two-frequency Zeeman effect laser which emits two frequencies of radiation 250 kHz apart. Excellent discrimination and reproducibility for various pure pollen and bacterial samples in suspension have been observed with a single polarization element. Additionally, a 250 kHz beat frequency was recorded from an individual particle traversing the focused output from the laser in a flow cytometer. 13 figs.

  11. CCN activation of fumed silica aerosols mixed with soluble pollutants

    Science.gov (United States)

    Dalirian, M.; Keskinen, H.; Ahlm, L.; Ylisirniö, A.; Romakkaniemi, S.; Laaksonen, A.; Virtanen, A.; Riipinen, I.

    2014-09-01

    Particle-water interactions of completely soluble or insoluble particles are fairly well understood but less is known of aerosols consisting of mixtures of soluble and insoluble components. In this study, laboratory measurements were performed to investigate cloud condensation nuclei (CCN) activity of silica particles coated with ammonium sulphate (a salt), sucrose (a sugar) and bovine serum albumin known as BSA (a protein). In addition, the agglomerated structure of the silica particles was investigated by estimating the surface equivalent diameter based on measurements with a Differential Mobility Analyzer (DMA) and an Aerosol Particle Mass Analyzer (APM). By using the surface equivalent diameter the non-sphericity of the particles containing silica was accounted for when estimating CCN activation. Furthermore, characterizing critical supersaturations of particles consisting of pure soluble on insoluble compounds using existing frameworks showed that the CCN activation of single component particles was in good agreement with Köhler and adsorption theory based models when the agglomerated structure was accounted for. For mixed particles the CCN activation was governed by the soluble components, and the soluble fraction varied considerably with particle size for our wet-generated aerosols. Our results confirm the hypothesis that knowing the soluble fraction is the key parameter needed for describing the CCN activation of mixed aerosols, and highlight the importance of controlled coating techniques for acquiring a detailed understanding of the CCN activation of atmospheric insoluble particles mixed with soluble pollutants.

  12. Tractable Quantification of Entanglement for Multipartite Pure States

    International Nuclear Information System (INIS)

    Nian-Quan, Jiang; Yu-Jian, Wang; Yi-Zhuang, Zheng; Gen-Chang, Cai

    2008-01-01

    We present kth-order entanglement measure and global kth-order entanglement measure for multipartite pure states, and extend Bennett's measure of partial entropy for bipartite pure states to a multipartite case. These measures are computable and can effectively classify and quantify the entanglement of multipartite pure states. (general)

  13. Gate-Driven Pure Spin Current in Graphene

    Science.gov (United States)

    Lin, Xiaoyang; Su, Li; Si, Zhizhong; Zhang, Youguang; Bournel, Arnaud; Zhang, Yue; Klein, Jacques-Olivier; Fert, Albert; Zhao, Weisheng

    2017-09-01

    The manipulation of spin current is a promising solution for low-power devices beyond CMOS. However, conventional methods, such as spin-transfer torque or spin-orbit torque for magnetic tunnel junctions, suffer from large power consumption due to frequent spin-charge conversions. An important challenge is, thus, to realize long-distance transport of pure spin current, together with efficient manipulation. Here, the mechanism of gate-driven pure spin current in graphene is presented. Such a mechanism relies on the electrical gating of carrier-density-dependent conductivity and spin-diffusion length in graphene. The gate-driven feature is adopted to realize the pure spin-current demultiplexing operation, which enables gate-controllable distribution of the pure spin current into graphene branches. Compared with the Elliott-Yafet spin-relaxation mechanism, the D'yakonov-Perel spin-relaxation mechanism results in more appreciable demultiplexing performance. The feature of the pure spin-current demultiplexing operation will allow a number of logic functions to be cascaded without spin-charge conversions and open a route for future ultra-low-power devices.

  14. Pure natural inflation

    Directory of Open Access Journals (Sweden)

    Yasunori Nomura

    2018-01-01

    Full Text Available We point out that a simple inflationary model in which the axionic inflaton couples to a pure Yang–Mills theory may give the scalar spectral index (ns and tensor-to-scalar ratio (r in complete agreement with the current observational data.

  15. An experimental study of particle-bubble interaction and attachment in flotation

    KAUST Repository

    Sanchez Yanez, Aaron

    2017-05-01

    The particle-bubble interaction is found in industrial applications with the purpose of selective separation of materials especially in the mining industry. The separation is achieved with the use of bubbles that collect particles depending on their hydrophobicity. There are few experimental studies involving a single interaction between a bubble and a particle. The purpose of this work is to understand this interaction by the study of a single bubble interacting with a single particle. Experiments were conducted using ultra-pure water, glass particles and air bubbles. Single interactions of particles with bubbles were observed using two high speed cameras. The cameras were placed perpendicular to each other allowing to reconstruct the three-dimensional position of the particle, the bubble and the particle-bubble aggregate. A single size of particle was used varying the size for the bubbles. It was found that the attachment of a particle to a bubble depends on its degree of hydrophobicity and on the relative position of the particle and the bubble before they encounter.

  16. Magnetic and Mössbauer studies of pure and Ti-doped YFeO _3 nanocrystalline particles prepared by mechanical milling and subsequent sintering

    International Nuclear Information System (INIS)

    Khalifa, N. O.; Widatallah, H. M.; Gismelseed, A. M.; Al-Mabsali, F. N.; Sofin, R. G. S.; Pekala, M.

    2016-01-01

    Single-phased nanocrystalline particles of pure and 10 % Ti "4"+-doped perovskite-related YFeO _3were prepared via mechanosynthesis at 450"∘C. This temperature is ∼150–350 "∘C lower than those at which the materials, in bulk form, are normally prepared. Rietveld refinements of the X-ray diffraction patterns reveal that the dopant Ti "4"+ ions prefer interstitial octahedral sites in the orthorhombic crystal lattice rather than those originally occupied by the expelled Fe "3"+ ions. Magnetic measurements show canted antiferromagnetism in both types of nanoparticles. Doping with Ti "4"+ lowers the Néel temperature of the YFeO _3 nanoparticles from ∼ 586 K to ∼ 521 K. The Ti "4"+-doped YFeO _3 nanoparticles exhibit enhanced magnetization and coercivity but less magnetic hyperfine fields relative to the un-doped nanoparticles. The "5"7Fe Mössbauer spectra show ∼ 15 % of the YFeO _3 nanoparticles and ∼22 of Ti "4"+-doped YFeO _3 ones to be superparamagnetic with blocking temperatures < 78 K. The broadened magnetic components in the "5"7Fe Mössbauer spectra suggest size-dependent hyperfine magnetic fields at the "5"7Fe nuclear sites and were associated with collective magnetic excitations. The "5"7Fe Mössbauer spectra show the local environments of the Fe "3"+ ions in the superparamagnetic nanoparticles to be more sensitive to the presence of the Ti "4"+ ions relative to those in the larger magnetic nanoparticles.

  17. Pure chiral optical fibres.

    Science.gov (United States)

    Poladian, L; Straton, M; Docherty, A; Argyros, A

    2011-01-17

    We investigate the properties of optical fibres made from chiral materials, in which a contrast in optical activity forms the waveguide, rather than a contrast in the refractive index; we refer to such structures as pure chiral fibres. We present a mathematical formulation for solving the modes of circularly symmetric examples of such fibres and examine the guidance and polarisation properties of pure chiral step-index, Bragg and photonic crystal fibre designs. Their behaviour is shown to differ for left- and right-hand circular polarisation, allowing circular polarisations to be isolated and/or guided by different mechanisms, as well as differing from equivalent non-chiral fibres. The strength of optical activity required in each case is quantified.

  18. Synthesis of pure iron magnetic nanoparticles in large quantity

    International Nuclear Information System (INIS)

    Tiwary, C S; Kashyap, S; Chattopadhyay, K; Biswas, K

    2013-01-01

    Free nanoparticles of iron (Fe) and their colloids with high saturation magnetization are in demand for medical and microfluidic applications. However, the oxide layer that forms during processing has made such synthesis a formidable challenge. Lowering the synthesis temperature decreases rate of oxidation and hence provides a new way of producing pure metallic nanoparticles prone to oxidation in bulk amount (large quantity). In this paper we have proposed a methodology that is designed with the knowledge of thermodynamic imperatives of oxidation to obtain almost oxygen-free iron nanoparticles, with or without any organic capping by controlled milling at low temperatures in a specially designed high-energy ball mill with the possibility of bulk production. The particles can be ultrasonicated to produce colloids and can be bio-capped to produce transparent solution. The magnetic properties of these nanoparticles confirm their superiority for possible biomedical and other applications. (paper)

  19. CERN and the Hunt for Elementary Particles and Forces

    CERN Document Server

    AUTHOR|(CDS)2051276

    2008-01-01

    CERN is the European Laboratory for Particle Physics, the world's largest particle physics research centre. Founded in 1954, the Laboratory was one of Europe's first joint ventures and has become a premier example of international collaboration. CERN's subject of study is pure science and is concentrated on exploring the Universe's most fundamental questions, such as What is it made of? and How did it come to be the way it is? The Laboratory's tools, the particle accelerators and particle detectors, are amongst the world's largest and most complex scientific instruments. The Laboratory's primary aims will be presented and a look at past achievements and present endeavours, particularly the Large Hadron Collider (LHC), will be reviewed. A brief look into the future will also be given.

  20. Bioaccessibility, bioavailability and toxicity of commercially relevant iron- and chromium-based particles: in vitro studies with an inhalation perspective

    Directory of Open Access Journals (Sweden)

    Hedberg Yolanda

    2010-09-01

    Full Text Available Abstract Background Production of ferrochromium alloys (FeCr, master alloys for stainless steel manufacture, involves casting and crushing processes where particles inevitably become airborne and potentially inhaled. The aim of this study was to assess potential health hazards induced by inhalation of different well-characterized iron- and chromium-based particles, i.e. ferrochromium (FeCr, ferrosiliconchromium (FeSiCr, stainless steel (316L, iron (Fe, chromium (Cr, and chromium(IIIoxide (Cr2O3, in different size fractions using in vitro methods. This was done by assessing the extent and speciation of released metals in synthetic biological medium and by analyzing particle reactivity and toxicity towards cultured human lung cells (A549. Results The amount of released metals normalized to the particle surface area increased with decreasing particle size for all alloy particles, whereas the opposite situation was valid for particles of the pure metals. These effects were evident in artificial lysosomal fluid (ALF of pH 4.5 containing complexing agents, but not in neutral or weakly alkaline biological media. Chromium, iron and nickel were released to very low extent from all alloy particles, and from particles of Cr due to the presence of a Cr(III-rich protective surface oxide. Released elements were neither proportional to the bulk nor to the surface composition after the investigated 168 hours of exposure. Due to a surface oxide with less protective properties, significantly more iron was released from pure iron particles compared with the alloys. Cr was predominantly released as Cr(III from all particles investigated and was strongly complexed by organic species of ALF. Cr2O3 particles showed hemolytic activity, but none of the alloy particles did. Fine-sized particles of stainless steel caused however DNA damage, measured with the comet assay after 4 h exposure. None of the particles revealed any significant cytotoxicity in terms of cell death

  1. Treatment of airborne asbestos and asbestos-like microfiber particles using atmospheric microwave air plasma

    Energy Technology Data Exchange (ETDEWEB)

    Averroes, A., E-mail: aulia.a.aa@m.titech.ac.jp [Department of Chemical Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Sekiguchi, H. [Department of Chemical Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Sakamoto, K. [Street Design Corporation, 6-9-30 Shimo odanaka, Kawasaki-shi, Kanagawa 211-0041 (Japan)

    2011-11-15

    Highlights: {yields} We use atmospheric microwave air plasma to treat ceramic fiber and stainless fiber as asbestos alike micro fiber particle. {yields} Spheroidization of certain type of ceramic fiber and stainless fiber particle. {yields} The evaluation of the treated particles by the fiber vanishing rate. {yields} Good fiber vanishing rate is observed for fiber particle with diameter below 10 {mu}m. {yields} The treatment of pure asbestos and a suggestion of the use of this method for the treatment airborne asbestos. - Abstract: Atmospheric microwave air plasma was used to treat asbestos-like microfiber particles that had two types of ceramic fiber and one type of stainless fiber. The treated particles were characterized via scanning electron microscopy (SEM) and X-ray diffraction (XRD). The experiment results showed that one type of ceramic fiber (Alumina:Silica = 1:1) and the stainless fiber were spheroidized, but the other type of ceramic fiber (Alumina:Silica = 7:3) was not. The conversion of the fibers was investigated by calculating the equivalent diameter, the aspect ratio, and the fiber content ratio. The fiber content ratio in various conditions showed values near zero. The relationship between the normalized fiber vanishing rate and the energy needed to melt the particles completely per unit surface area of projected particles, which is defined as {eta}, was examined and seen to indicate that the normalized fiber vanishing rate decreased rapidly with the increase in {eta}. Finally, some preliminary experiments for pure asbestos were conducted, and the analysis via XRD and phase-contrast microscopy (PCM) showed the availability of the plasma treatment.

  2. Treatment of airborne asbestos and asbestos-like microfiber particles using atmospheric microwave air plasma

    International Nuclear Information System (INIS)

    Averroes, A.; Sekiguchi, H.; Sakamoto, K.

    2011-01-01

    Highlights: → We use atmospheric microwave air plasma to treat ceramic fiber and stainless fiber as asbestos alike micro fiber particle. → Spheroidization of certain type of ceramic fiber and stainless fiber particle. → The evaluation of the treated particles by the fiber vanishing rate. → Good fiber vanishing rate is observed for fiber particle with diameter below 10 μm. → The treatment of pure asbestos and a suggestion of the use of this method for the treatment airborne asbestos. - Abstract: Atmospheric microwave air plasma was used to treat asbestos-like microfiber particles that had two types of ceramic fiber and one type of stainless fiber. The treated particles were characterized via scanning electron microscopy (SEM) and X-ray diffraction (XRD). The experiment results showed that one type of ceramic fiber (Alumina:Silica = 1:1) and the stainless fiber were spheroidized, but the other type of ceramic fiber (Alumina:Silica = 7:3) was not. The conversion of the fibers was investigated by calculating the equivalent diameter, the aspect ratio, and the fiber content ratio. The fiber content ratio in various conditions showed values near zero. The relationship between the normalized fiber vanishing rate and the energy needed to melt the particles completely per unit surface area of projected particles, which is defined as η, was examined and seen to indicate that the normalized fiber vanishing rate decreased rapidly with the increase in η. Finally, some preliminary experiments for pure asbestos were conducted, and the analysis via XRD and phase-contrast microscopy (PCM) showed the availability of the plasma treatment.

  3. Impact of palmitic acid coating on the water uptake and loss of ammonium sulfate particles

    Directory of Open Access Journals (Sweden)

    R. M. Garland

    2005-01-01

    Full Text Available While water insoluble organics are prevalent in the atmosphere, it is not clear how the presence of such species alters the chemical and physical properties of atmospheric aerosols. Here we use a combination of FTIR spectroscopy, Transmission Electron Microscopy (TEM and Aerosol Mass Spectrometry (AMS to characterize ammonium sulfate particles coated with palmitic acid. Coated aerosols were generated by atomizing pure ammonium sulfate, mixing the particles with a heated flow of nitrogen with palmitic acid vapor, and then flowing the mixture through an in-line oven to create internally mixed particles. The mixing state of the particles was probed using the AMS data and images from the TEM. Both of these probes suggest that the particles were internally mixed. Water uptake by the mixed particles was then probed at 273 K. It was found that for ammonium sulfate containing ~20 wt% palmitic acid the deliquescence relative humidity (DRH was the same as for pure ammonium sulfate (80±3% RH. For particles with ~50 wt% palmitic acid however, the mixed particles began to take up water at relative humidities as low at 69% and continued to slowly take up water to 85% RH without fully deliquescing. In addition to studies of water uptake, water loss was also investigated. Here coatings of up to 50 wt% had no impact on the efflorescence relative humidity. These studies suggest that even if insoluble substances coat salt particles in the atmosphere, there may be relatively little effect on the resulting water uptake and loss.

  4. Mesophase behaviour of polyhedral particles

    KAUST Repository

    Agarwal, Umang; Escobedo, Fernando A.

    2011-01-01

    Translational and orientational excluded-volume fields encoded in particles with anisotropic shapes can lead to purely entropy-driven assembly of morphologies with specific order and symmetry. To elucidate this complex correlation, we carried out detailed Monte Carlo simulations of six convex space-filling polyhedrons, namely, truncated octahedrons, rhombic dodecahedrons, hexagonal prisms, cubes, gyrobifastigiums and triangular prisms. Simulations predict the formation of various new liquid-crystalline and plastic-crystalline phases at intermediate volume fractions. By correlating these findings with particle anisotropy and rotational symmetry, simple guidelines for predicting phase behaviour of polyhedral particles are proposed: high rotational symmetry is in general conducive to mesophase formation, with low anisotropy favouring plastic-solid behaviour and intermediate anisotropy (or high uniaxial anisotropy) favouring liquid-crystalline behaviour. It is also found that dynamical disorder is crucial in defining mesophase behaviour, and that the apparent kinetic barrier for the liquid-mesophase transition is much lower for liquid crystals (orientational order) than for plastic solids (translational order). © 2011 Macmillan Publishers Limited. All rights reserved.

  5. Mesophase behaviour of polyhedral particles

    KAUST Repository

    Agarwal, Umang

    2011-02-13

    Translational and orientational excluded-volume fields encoded in particles with anisotropic shapes can lead to purely entropy-driven assembly of morphologies with specific order and symmetry. To elucidate this complex correlation, we carried out detailed Monte Carlo simulations of six convex space-filling polyhedrons, namely, truncated octahedrons, rhombic dodecahedrons, hexagonal prisms, cubes, gyrobifastigiums and triangular prisms. Simulations predict the formation of various new liquid-crystalline and plastic-crystalline phases at intermediate volume fractions. By correlating these findings with particle anisotropy and rotational symmetry, simple guidelines for predicting phase behaviour of polyhedral particles are proposed: high rotational symmetry is in general conducive to mesophase formation, with low anisotropy favouring plastic-solid behaviour and intermediate anisotropy (or high uniaxial anisotropy) favouring liquid-crystalline behaviour. It is also found that dynamical disorder is crucial in defining mesophase behaviour, and that the apparent kinetic barrier for the liquid-mesophase transition is much lower for liquid crystals (orientational order) than for plastic solids (translational order). © 2011 Macmillan Publishers Limited. All rights reserved.

  6. Preparation of mesoporous silica microparticles by sol-gel/emulsion route for protein release.

    Science.gov (United States)

    Vlasenkova, Mariya I; Dolinina, Ekaterina S; Parfenyuk, Elena V

    2018-04-06

    Encapsulation of therapeutic proteins into particles from appropriate material can improve both stability and delivery of the drugs, and the obtained particles can serve as a platform for development of their new oral formulations. The main goal of this work was development of sol-gel/emulsion method for preparation of silica microcapsules capable of controlled release of encapsulated protein without loss of its native structure. For this purpose, the reported in literature direct sol-gel/W/O/W emulsion method of protein encapsulation was used with some modifications, because the original method did not allow to prepare silica microcapsules capable for protein release. The particles were synthesized using sodium silicate and tetraethoxysilane as silica precursors and different compositions of oil phase. In vitro kinetics of bovine serum albumin (BSA) release in buffer (pH 7.4) was studied by Fourier transform infrared (FTIR) and fluorescence spectrometry, respectively. Structural state of encapsulated BSA and after release was evaluated. It was found that the synthesis conditions influenced substantially the porous structure of the unloaded silica particles, release properties of the BSA-loaded silica particles and structural state of the encapsulated and released protein. The modified synthesis conditions made it possible to obtain the silica particles capable of controlled release of the protein during a week without loss of the protein native structure.

  7. Freeze dried blood and development of an artificial diet for blood feeding arthropods

    International Nuclear Information System (INIS)

    DeLoach, J.R.; Spates, G.E.; Kapatsa, G.M.; Sheffield, C.L.; Kabayo, J.P.

    1990-01-01

    The goals of the research were to determine the biochemical differences between freeze dried bovine and porcine blood relative to their nutritional value to Glossina palpalis palpalis and Stomoxys calcitrans and to develop an artificial diet for mass rearing these flies. Freeze dried bovine and porcine blood were found to differ in their amino acid content; total dietary lipids did not significantly differ, but some notable exceptions were found in fatty acid content. Both sonication and addition of foetal bovine serum to freeze dried bovine blood improved its nutritional value for G. p. palpalis. A two component, semi-defined artificial diet was developed for G. p. palpalis and S. calcitrans. The College Station diet consisted of lipid contaminated bovine haemoglobin (BHb) and bovine serum albumin (BSA). To conduct dietary deletion tests, a process was developed for preparing large quantities of ultrapure lipid free bovine haemoglobin. S. calcitrans fed on lipid free BHb plus BSA had zero fecundity. Lipids were re-added to the protein diet in three forms: (1) lipid contaminated BHb, (2) pure erythrocyte ghosts, and (3) pure lipids. It was found that membrane lipid from the erythrocyte is required by S. calcitrans. A defined artificial diet consisting of lipid free BHb, BSA, sphingomyelin, phosphatidyl ethanolamine, phosphatidyl serine and cholesterol gave normal adult survival, as well as near normal fecundity and percentage egg hatch for S. calcitrans. Knowing the identity of the lipids, it is now possible to prepare dietary formulations to alleviate dependency on the blood proteins BHb and BSA. (author). 34 refs, 1 fig., 15 tabs

  8. Discrete element modeling of deformable particles in YADE

    Directory of Open Access Journals (Sweden)

    Martin Haustein

    2017-01-01

    Full Text Available In this paper we describe the open-source discrete element framework YADE and the implementation of a new deformation engine. YADE is a highly expandable software package that allows the simulation of current industrial problems in the field of granular materials using particle-based numerical methods. The description of the compaction of powders and granular material like metal pellets is now possible with a pure and simple discrete element approach in a modern DEM-framework. The deformation is realized by expanding the radius of the spherical particles, depending on their overlap, so that the volume of the material is kept constant.

  9. On the reduced dynamics of a subset of interacting bosonic particles

    Science.gov (United States)

    Gessner, Manuel; Buchleitner, Andreas

    2018-03-01

    The quantum dynamics of a subset of interacting bosons in a subspace of fixed particle number is described in terms of symmetrized many-particle states. A suitable partial trace operation over the von Neumann equation of an N-particle system produces a hierarchical expansion for the subdynamics of M ≤ N particles. Truncating this hierarchy with a pure product state ansatz yields the general, nonlinear coherent mean-field equation of motion. In the special case of a contact interaction potential, this reproduces the Gross-Pitaevskii equation. To account for incoherent effects on top of the mean-field evolution, we discuss possible extensions towards a second-order perturbation theory that accounts for interaction-induced decoherence in form of a nonlinear Lindblad-type master equation.

  10. Net motion of acoustically levitating nano-particles: A theoretical analysis

    Science.gov (United States)

    Lippera, Kevin; Dauchot, Olivier; Benzaquen, Michael; Gulliver-LadHyX Collaboration

    2017-11-01

    A particle 2D-trapped in the nodal planed of a standing acoustic wave is prone to acoustic-phoretic motion as soon as its shape breaks polar or chiral symmetry. such a setup constitues an ideal system to study boundaryless 2D collective behavior with purely hydrodynamic long range interactions. Recent studies have indeed shown that quasi-spherical particles may undergo net propulsion, a feature partially understood theoretically in the particular case of infinite viscous boundary layers. We here extend the theoretical results of to any boundary layer thickness, by that meeting typical experimental conditions. In addition, we propose an explanation for the net spinning of the trapped particles, as observed in experiments.

  11. Anomalous separation of homogeneous particle-fluid mixtures: Further observations

    Science.gov (United States)

    Husain, H. S.; Hussain, F.; Goldshtik, M.

    1995-11-01

    Previously, we reported the puzzling phenomenon of separation of components from an initially uniform mixture (air and smoke) in a rotating flow device (a cylindrical can with a rotating end disk). Here we summarize further studies of this phenomenon through experiments, analysis of particle forces, and direct numerical simulation (DNS). Separation of spherical polystyrene particles when immersed in water or pure alcohol lends further credence to the phenomenon. We have studied the dependence of the particle-free column size and its establishment time on particle size, particle concentration, disk and cylinder Reynolds numbers, and fluid composition. The evolution of passive markers in DNS shows segregation similar to that observed in experiments, supporting our kinematic separation hypothesis. However, kinematic action, though important, is inadequate to explain the ``antidiffusion'' phenomenon. Although estimates show that known particle forces cannot account for the particle separation, experimental results suggest the action of a yet unknown lift force whose effect is magnified kinematically in our apparatus. At high particle concentrations or when a small amount of solute (e.g. sugar, salt, or alcohol) is added to water polystyrene particle mixtures, the flow within the column becomes unstable and the particle-free column loses its axial symmetry; this unusual behavior is not yet clearly understood.

  12. Self-organisation of semi-flexible rod-like particles

    Science.gov (United States)

    de Braaf, Bart; Oshima Menegon, Mariana; Paquay, Stefan; van der Schoot, Paul

    2017-12-01

    We report on a comprehensive computer simulation study of the liquid-crystal phase behaviour of purely repulsive, semi-flexible rod-like particles. For the four aspect ratios we consider, the particles form five distinct phases depending on their packing fraction and bending flexibility: the isotropic, nematic, smectic A, smectic B, and crystal phase. Upon increasing the particle bending flexibility, the various phase transitions shift to larger packing fractions. Increasing the aspect ratio achieves the opposite effect. We find two different ways in which the layer thickness of the particles in the smectic A phase may respond to an increase in concentration. The layer thickness may either decrease or increase depending on the aspect ratio and flexibility. For the smectic B and the crystalline phases, increasing the concentration always decreases the layer thickness. Finally, we find that the layer spacing jumps to a larger value on transitioning from the smectic A phase to the smectic B phase.

  13. Spatial confinement governs orientational order in patchy particles

    Science.gov (United States)

    Iwashita, Yasutaka; Kimura, Yasuyuki

    2016-06-01

    Orientational order in condensed matter plays a key role in determining material properties such as ferromagnetism, viscoelasticity or birefringence. We studied purely orientational ordering in closely-packed one-patch colloidal particles confined between flat substrates, where the particles can only rotate and are ordered via the sticky interaction between the patches. For the first time, we experimentally realized a rich variety of mesoscopic patterns through orientational ordering of colloids by controlling patch size and confinement thickness. The combination of experiment and numerical simulation reveals the decisive role of confinement: An ordered state(s) is selected from the (meta)stable options in bulk when it is commensurate with the system geometry and boundary conditions; otherwise, frustration induces a unique order. Our study offers a new means of systematic control over mesoscopic structures via orientational ordering in patchy particles. The system would also possess unique functionalities through the rotational response of the particles to external stimuli.

  14. On the importance of PURE - Public Understanding of Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Broman, Lars; Kandpal, Tara C.

    2013-09-15

    Public understanding of science (PUS) is a central concept among science communicators. Public understanding of renewable energy (PURE) is proposed as an important sub-concept of PUS. The aim of this paper is to interest and invite renewable energy scientists to join a PURE research project. Four separate important questions for a PURE research project can be identified: (A) Is PURE important? (B) Which issues of PURE are the most important ones, according to renewable energy scientists? (C) What understanding of renewable energy has the general public today, worldwide? (D) How to achieve PURE?.

  15. Bi-orderings on pure braided Thompson's groups

    OpenAIRE

    Burillo, Jose; Gonzalez-Meneses, Juan

    2006-01-01

    In this paper it is proved that the pure braided Thompson’s group BF admits a bi-order, analog to the bi-order of the pure braid groups. Ministerio de Educación y Ciencia Fondo Europeo de Desarrollo Regional

  16. Novel flower-shaped albumin particles as controlled-release carriers for drugs to penetrate the round-window membrane

    Directory of Open Access Journals (Sweden)

    Yu Z

    2014-07-01

    Full Text Available Zhan Yu,1,* Min Yu,2,* Zhimin Zhou,3 Zhibao Zhang,3 Bo Du,3 Qingqing Xiong3 1Second Artillery General Hospital, Beijing, 2Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, College of Basic Medicine, China Medical University, Shenyang, 3Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Key Laboratory of Biomedical Material of Tianjin, Tianjin, People’s Republic of China *These authors contributed equallyto this work Abstract: Controlled-release carriers for local drug delivery have attracted increasing attention for inner-ear treatment recently. In this paper, flower-shaped bovine serum albumin (FBSA particles were prepared by a modified desolvation method followed by glutaraldehyde or heat denaturation. The size of the FBSA particles varied from 10 µm to 100 µm, and most were 50–80 µm. Heat-denatured FBSA particles have good cytocompatibility with a prolonged survival time for L929 cells. The FBSA particles were utilized as carriers to investigate the release behaviors of the model drug – rhodamine B. Rhodamine B showed a sustained-release effect and penetrated the round-window membrane of guinea pigs. We also confirmed the attachment of FBSA particles onto the round-window membrane by microscopy. The FBSA particles, with good biocompatibility, drug-loading capacity, adhesive capability, and biodegradability, may have potential applications in the field of local drug delivery for inner-ear disease treatment. Keywords: bovine serum albumin (BSA, controlled release, local delivery, round-window membrane

  17. Nanopolyaniline as immobilization template for signal enhancement of surface plasmon resonance biosensor - A preliminary study

    Science.gov (United States)

    Kamarun, Dzaraini; Abdul Azem, Nor Hazirah Kamel; Sarijo, Siti Halimah; Mohd, Ahmad Faiza; Abdullah @ Mohd Noor, Mashita

    2012-07-01

    A technique for the enhancement of Surface Plasmon Resonance (SPR) signal for sensing biomolecular interactions is described. Polyaniline (PANI) of particle size in the range of 1 to 15 nm was synthesized and used as the template for the immobilization of protein molecules. Biomolecular interactions of unbound and PANI-bound proteins with antibody molecules were SPR-monitored using a model system comprising of Bovine Serum Albumin (BSA) and anti BSA. A 7-fold increased in the signal was recorded from interactions of the PANI-bound BSA with anti BSA compared to the interactions of its unbound counterpart. This preliminary observation provides new avenue in immunosensor technology for improving the detection sensitivity of SPR biosensor; and thereby increasing the lower detection limit of biomolecules.

  18. ASYMPTOTICS OF a PARTICLES TRANSPORT PROBLEM

    Directory of Open Access Journals (Sweden)

    Kuzmina Ludmila Ivanovna

    2017-11-01

    Full Text Available Subject: a groundwater filtration affects the strength and stability of underground and hydro-technical constructions. Research objectives: the study of one-dimensional problem of displacement of suspension by the flow of pure water in a porous medium. Materials and methods: when filtering a suspension some particles pass through the porous medium, and some of them are stuck in the pores. It is assumed that size distributions of the solid particles and the pores overlap. In this case, the main mechanism of particle retention is a size-exclusion: the particles pass freely through the large pores and get stuck at the inlet of the tiny pores that are smaller than the particle diameter. The concentrations of suspended and retained particles satisfy two quasi-linear differential equations of the first order. To solve the filtration problem, methods of nonlinear asymptotic analysis are used. Results: in a mathematical model of filtration of suspensions, which takes into account the dependence of the porosity and permeability of the porous medium on concentration of retained particles, the boundary between two phases is moving with variable velocity. The asymptotic solution to the problem is constructed for a small filtration coefficient. The theorem of existence of the asymptotics is proved. Analytical expressions for the principal asymptotic terms are presented for the case of linear coefficients and initial conditions. The asymptotics of the boundary of two phases is given in explicit form. Conclusions: the filtration problem under study can be solved analytically.

  19. Metal Particles – Hazard or Risk? Elaboration and Implementation of a Research Strategy from a Surface and Corrosion Perspective

    OpenAIRE

    Midander, Klara

    2009-01-01

    Do metal particles (including particles of pure metals, alloys, metal oxides and compounds) pose a hazard or risk to human health? In the light of this question, this thesis summarizes results from research conducted on metal particles, and describes the elaboration and implementation of an in vitro test methodology to study metal release from particles through corrosion and dissolution processes in synthetic biological media relevant for human exposure through inhalation/ingestion and dermal...

  20. Isotopically pure single crystal epitaxial diamond films and their preparation

    International Nuclear Information System (INIS)

    Banholzer, W.F.; Anthony, T.R.; Williams, D.M.

    1992-01-01

    The present invention is directed to the production of single crystal diamond consisting of isotopically pure carbon-12 or carbon-13. In the present invention, isotopically pure single crystal diamond is grown on a single crystal substrate directly from isotopically pure carbon-12 or carbon-13. One method for forming isotopically pure single crystal diamond comprises the steps of placing in a reaction chamber a single substrate heated to an elevated diamond forming temperature. Another method for forming isotopically pure single crystal diamond comprises diffusing isotopically pure carbon-12 or carbon-13 through a metallic catalyst under high pressure to a region containing a single crystal substrate to form an isotopically pure single crystal diamond layer on said single crystal substrate

  1. PSYCHE Pure Shift NMR Spectroscopy.

    Science.gov (United States)

    Foroozandeh, Mohammadali; Morris, Gareth; Nilsson, Mathias

    2018-03-13

    Broadband homodecoupling techniques in NMR, also known as "pure shift" methods, aim to enhance spectral resolution by suppressing the effects of homonuclear coupling interactions to turn multiplet signals into singlets. Such techniques typically work by selecting a subset of "active" nuclear spins to observe, and selectively inverting the remaining, "passive", spins to reverse the effects of coupling. Pure Shift Yielded by Chirp Excitation (PSYCHE) is one such method; it is relatively recent, but has already been successfully implemented in a range of different NMR experiments. Paradoxically, PSYCHE is one of the trickiest of pure shift NMR techniques to understand but one of the easiest to use. Here we offer some insights into theoretical and practical aspects of the method, and into the effects and importance of the experimental parameters. Some recent improvements that enhance the spectral purity of PSYCHE spectra will be presented, and some experimental frameworks including examples in 1D and 2D NMR spectroscopy, for the implementation of PSYCHE will be introduced. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effect of Particle Size on Microstructure and Mechanical Properties of Al-Based Composite Reinforced with 10 Vol.% Mechanically Alloyed Mg-7.4%Al Particles

    Directory of Open Access Journals (Sweden)

    Anil K. Chaubey

    2016-11-01

    Full Text Available The effect of Mg-7.4%Al reinforcement particle size on the microstructure and mechanical properties in pure Al matrix composites was investigated. The samples were prepared by hot consolidation using 10 vol.% reinforcement in different size ranges, D, 0 < D < 20 µm (0–20 µm, 20 ≤ D < 40 µm (20–40 µm, 40 ≤ D < 80 µm (40–80 µm and 80 ≤ D < 100 µm (80–100 µm. The result reveals that particle size has a strong influence on the yield strength, ultimate tensile strength and percentage elongation. As the particle size decreases from 80 ≤ D < 100 µm to 0 < D < 20 µm, both tensile strength and ductility increases from 195 MPa to 295 MPa and 3% to 4% respectively, due to the reduced ligament size and particle fracturing. Wear test results also corroborate the size effect, where accelerated wear is observed in the composite samples reinforced with coarse particles.

  3. On the Effects of Atmospheric Particles Contamination and Humidity on Tin Corrosion

    DEFF Research Database (Denmark)

    D’Angelo, L.; Verdingovas, V.; Ferrero, L.

    2017-01-01

    The effects of hygroscopic atmospheric particles are investigated in relation to the corrosion of tin. Surface insulation resistance test boards were directly contaminated both with ambient particles sampled in the field at Milan, Italy, and with pure saline particles generated in the laboratory....... An innovative particle deposition device was used to uniformly coat circular spots on to the test board surfaces. Deliquescence and crystallization of the water-soluble compounds were detected by observing the impedance response to varying relative humidity (RH) conditions with a gradual and continuous ramps....... The effects of the adsorption/desorption kinetics and of the temperature on the deliquescence and crystallization RH values were also investigated. Leakage current measurements at 5-V dc highlighted the ability of atmospheric particles to promote corrosion and electrochemical migration at RH levels far below...

  4. Texture and Microtexture of Pure (6N and Commercially Pure Aluminum after Deformation by Extrusion with Forward-Backward Rotating Die (Kobo

    Directory of Open Access Journals (Sweden)

    Bieda M.

    2016-03-01

    Full Text Available Pure aluminium (6N and commercially pure aluminium (99.7 was deformed by KOBO method. Microstructure and texture of both materials after deformation was analyzed by means of scanning and transmission electron microscopy. Advanced methods of crystallographic orientations measurements like Electron Backscatter Diffraction - EBSD (SEM and microdiffraction (TEM was used. Grain size distribution and misorientation between grains in cross and longitudinal sections of the samples were analyzed. Differences in size and homogeneity of the grains were observed in both materials. Pure aluminium was characterized by larger grain size in both sections of extruded material. Whereas commercially pure aluminium reveals smaller grain size and more homogeneous and stable microstructure.

  5. Competing effects of particle and medium inertia on particle diffusion in viscoelastic materials, and their ramifications for passive microrheology.

    Science.gov (United States)

    Indei, Tsutomu; Schieber, Jay D; Córdoba, Andrés

    2012-04-01

    We analyze the appropriate form for the generalized Stokes-Einstein relation (GSER) for viscoelastic solids and fluids when bead inertia and medium inertia are taken into account, which we call the inertial GSER. It was previously shown for Maxwell fluids that the Basset (or Boussinesq) force arising from medium inertia can act purely dissipatively at high frequencies, where elasticity of the medium is dominant. In order to elucidate the cause of this counterintuitive result, we consider Brownian motion in a purely elastic solid where ordinary Stokes-type dissipation is not possible. The fluctuation-dissipation theorem requires the presence of a dissipative mechanism for the particle to experience fluctuating Brownian forces in a purely elastic solid. We show that the mechanism for such dissipation arises from the radiation of elastic waves toward the system boundaries. The frictional force associated with this mechanism is the Basset force, and it exists only when medium inertia is taken into consideration in the analysis of such a system. We consider first a one-dimensional harmonic lattice where all terms in the generalized Langevin equation--i.e., the elastic term, the memory kernel, and Brownian forces-can be found analytically from projection-operator methods. We show that the dissipation is purely from radiation of elastic waves. A similar analysis is made on a particle in a continuum, three-dimensional purely elastic solid, where the memory kernel is determined from continuum mechanics. Again, dissipation arises only from radiation of elastic shear waves toward infinite boundaries when medium inertia is taken into account. If the medium is a viscoelastic solid, Stokes-type dissipation is possible in addition to radiational dissipation so that the wave decays at the penetration depth. Inertial motion of the bead couples with the elasticity of the viscoelastic material, resulting in a possible resonant oscillation of the mean-square displacement (MSD) of the

  6. Lectures on the theory of pure motives

    CERN Document Server

    Murre, Jacob P; A, Chris

    2013-01-01

    The theory of motives was created by Grothendieck in the 1960s as he searched for a universal cohomology theory for algebraic varieties. The theory of pure motives is well established as far as the construction is concerned. Pure motives are expected to have a number of additional properties predicted by Grothendieck's standard conjectures, but these conjectures remain wide open. The theory for mixed motives is still incomplete. This book deals primarily with the theory of pure motives. The exposition begins with the fundamentals: Grothendieck's construction of the category of pure motives and examples. Next, the standard conjectures and the famous theorem of Jannsen on the category of the numerical motives are discussed. Following this, the important theory of finite dimensionality is covered. The concept of Chow-K�nneth decomposition is introduced, with discussion of the known results and the related conjectures, in particular the conjectures of Bloch-Beilinson type. We finish with a chapter on relative m...

  7. Optimal conclusive teleportation of a d-dimensional two-particle unknown quantum state

    Institute of Scientific and Technical Information of China (English)

    Yang Yu-Guang; Wen Qiao-Yan; Zhu Fu-Chen

    2006-01-01

    A conclusive teleportation protocol of a d-dimensional two-particle unknown quantum state using three ddimensional particles in an arbitrary pure state is proposed. A sender teleports the unknown state conclusively to a receiver by using the positive operator valued measure(POVM) and introducing an ancillary qudit to perform the generalized Bell basis measurement. We calculate the optimal teleportation fidelity. We also discuss and analyse the reason why the information on the teleported state is lost in the course of the protocol.

  8. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation

    Science.gov (United States)

    Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K.; Wagner, Robert; Dunne, Eimear M.; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S.; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A.; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P.; Pringle, Kirsty J.; Richards, Nigel A. D.; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E.; Seinfeld, John H.; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C.; Wagner, Paul E.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M.; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim; Carslaw, Kenneth S.

    2016-10-01

    The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by 0.22 W m-2 (27%) to -0.60 W m-2. Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.

  9. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation.

    Science.gov (United States)

    Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K; Wagner, Robert; Dunne, Eimear M; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P; Pringle, Kirsty J; Richards, Nigel A D; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E; Seinfeld, John H; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C; Wagner, Paul E; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M; Worsnop, Douglas R; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim; Carslaw, Kenneth S

    2016-10-25

    The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by [Formula: see text] (27%) to [Formula: see text] Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.

  10. An experimental study of the latent functionally thermal fluid with micro-encapsulated phase change material particles flowing in microchannels

    International Nuclear Information System (INIS)

    Wang, Yan; Chen, Zhenqian; Ling, Xiang

    2016-01-01

    Graphical abstract: Fig. 1. Relationship between Nu and Re for MEPCM slurry with various particle volume fractions. The interrupt of the well dispersed particles would destroy the thermal boundary layer and reduces its thickness, resulting in large Nusselt number for the suspension with 2% volume fraction of MEPCM. Large amount of heat could be absorbed and transferred rapidly during MEPCM melting process, which would result in remarkable increase of Nusselt number. The heat transfer performance of latent thermal fluid would be enhanced as 1.34 times of that of pure water. With smaller particle volume fraction (1% in this context), phase change occurs at lower temperature and more intensive heat flux is required for higher concentration suspension to induce the phase change occurrence, which is useful for application of the thermal management design. - Highlights: • The experiments of latent fluid flowing in parallel microchannels were conducted. • The performance of water with well dispersed micro-encapsulated phase change material particles was examined. • The Nusselt number of MEPCM slurry could achieve 1.36 times as that of pure water. - Abstract: Phase change material holds a good promise as a media of thermal energy storage and intensive heat flux removal. In this context, experiments were conducted to investigate the hydrodynamic and thermodynamic properties of a latent thermal fluid, which consisted of water and well dispersed micro-encapsulated phase change material (MEPCM) particles, flowing in parallel microchannels. It is suggested that MEPCM particles loading induces much higher pressure drop, which is very sensitive to temperature. Compared against water, the heat transfer performance of MEPCM slurry performs much better owing to particles aggregation, collision and micro-convective around the particles. Besides these, latent heat absorbed during phase change process makes the key contribution. It is found that with melting occurrence, Nusselt

  11. Pure energy solutions - pure tomorrows

    International Nuclear Information System (INIS)

    Allison, J.

    2006-01-01

    HTC is an energy technology company whose mandate is to deliver 'Carbon Clear Solutions' to address the pending challenges the energy sector is facing in meeting the environmental impact of Greenhouse Gas emissions, and energy security. HTC will speak on its comprehensive suite of technologies including hydrogen production, CO 2 capture and CO 2 sequestration. HTC has patented technologies that produce H 2 from a broad variety of feedstocks such as Natural gas, Diesel, Gasoline, Bio-fuels i.e. ethanol, methanol and Coal Gasification. HTC Hydrogen reformation systems are unique in their method of delivering pure Hydrogen. Dry Reformation Reactor - New catalyst system designed to eliminate contamination problems (i.e. coking) while at the same time operate at a low temperature. Water Gas Shift Reactor - Plus - improved and redesigned catalyst that improves operating temperature and hydrogen production efficiency. Two stage catalyst reactor that provides near balance of the endothermic and exothermic reaction temperatures for efficient energy balance

  12. Pure γ-families

    International Nuclear Information System (INIS)

    Dunaevskii, A.M.

    1977-01-01

    The subject of this work are pure gamma families consisting of the gamma quanta produced in the early stages of cosmic cascades. The criteria of selecting these families from the all measured families are presented. The characteristics of these families are given and some conclusions about the mechanism of the nuclear-electromagnetic cascades are extracted. (S.B.)

  13. Scattering of charged particles by a multicenter potential

    International Nuclear Information System (INIS)

    Gerasimov, O.I.; Stienko, A.G.

    1994-01-01

    Exact expressions are obtained for the amplitude and elastic cross section in the case of scattering of charged particles by a multicenter pseudopotential that includes the Coulomb potential and an arbitrary number of short-range potentials (modeled by zero-range potentials). Asymptotic limits are calculated and explicit expressions are found for the amplitudes of scattering by few-nucleon complexes modeled by superpositions of the Coulomb potential and purely point potentials

  14. In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles

    Directory of Open Access Journals (Sweden)

    Farzin Heravi

    2013-12-01

    Full Text Available Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2 nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco’s Modified Eagle’s Medium (DMEM. The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P0.05. There was a significant reduction in cell toxicity with increasing pre-incubation time (P<0.001. L929 cells showed similar toxicity trends, but lower sensitivity to detect cytotoxicity of dental composites. Conclusion. The orthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive.

  15. Study of the role of the ligands coordinated at the surface of pure Wuestite nanoparticles prepared following a room temperature organometallic method: Evidence of ferromagnetic - in shell- and antiferromagnetic - in core magnetic behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Glaria, Arnaud [CNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, F-31077 Toulouse (France); Universite de Toulouse, UPS, INPT, LCC, F-31077 Toulouse (France); Kahn, Myrtil L., E-mail: myrtil.kahn@lcc-toulouse.fr [CNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, F-31077 Toulouse (France); Universite de Toulouse, UPS, INPT, LCC, F-31077 Toulouse (France); Chaudret, Bruno [CNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, F-31077 Toulouse (France); Universite de Toulouse, UPS, INPT, LCC, F-31077 Toulouse (France); Lecante, Pierre; Casanove, Marie-Jose [CNRS, CEMES (Centre d' Elaboration des Materiaux et d' Etudes Structurales), 29 rue Jeanne Marvig, BP 4347, 31055 Toulouse Cedex (France); Barbara, Bernard, E-mail: bernard.barbara@grenoble.cnrs.fr [Institut Louis Neel, CNRS, 25 Av. des martyrs, BP 166, 38042 Grenoble Cedex 09 (France)

    2011-09-15

    Highlights: {yields} Pure Wuestite (Fe{sub 1-y}O) nanoparticles synthesized by organometallic chemistry. {yields} The influence of the surface ligands on the magnetic properties. {yields} Ferromagnetic core-antiferromagnetic shell magnetic nanoparticles. - Abstract: Wuestite particles (Fe{sub 1-y}O) are synthesized using controlled hydrolysis at room temperature of [Fe(N(SiMe{sub 3}){sub 2}){sub 2}] and stabilized by amine ligands. This method leads to 5 nm pure wuestite particles. This phase is clearly identified by transmission electron microscopy and wide angle X-ray scattering. Distortion in the crystallographic structure has been demonstrated. Particular attention is paid on the Fe(III) formation. Moreover, a combination of Moessbauer spectroscopy and SQuID measurements, revealed that the particles are composed of an antiferromagnetic core surrounded by a ferromagnetic shell. According to the Neel theory, the Fe(III) and Fe(II) ions present in the particles are ferromagnetically coupled and the proportion of Fe(III) ions varies from 3.9 to 7.1% as a function of the amine ligand.

  16. New therapeutic agent for radiation synovectomy - preparation of {sup 166}Ho-EDTMP-HA particle

    Energy Technology Data Exchange (ETDEWEB)

    Bai, H.; Jin, X.; Du, J.; Wang, F.; Chen, D.; Fan, H.; Cheng, Z.; Zhang, J. [China Institute of Atomic Energy, Beijing (Switzerland). Isotope Department

    1997-10-01

    In order to prepare new therapeutical agent for radiation synovectomy, Hydroxyapatite (HA) was labelled with {sup 166}Ho by EDTMP that had high affinity to HA particles. Radiolabelling of HA particles was divided into two steps, {sup 166}Ho-EDTMP was prepared first; then mixed with HA particles completely and vibrated for 15 minutes on the micromixer at room temperature, washed 3 times with deionized water. Radiolabelling particle was separated from free {sup 166}Ho via centrifugation to determine its radiolabelling efficiency. {sup 166}Ho-EDTMP-HA and {sup 166}Ho-EDTMP were injected into knee joint of normal rabbits respectively, every group was killed at different time postinjection, took out major organ and collected urine and blood, then weighted and determined their radio counts. HA particles, as a natural component of bone was known to have good compatibility with soft tissue and biodegrade into calcium and phosphate in vivo. It was readily prepared from common chemical and formed into particles of desired size range in a controlled process, it had high stability in vitro and vivo. Radiolabelling of HA particle with {sup 166}Ho by EDTMP was simple to perform and provides an excellent labelling yield that was more than 95% under the optimal labelling condition. The optimal labelling condition at room temperature was pH 6.0-8.0 and vibration time 15 minutes. The absorbed capacity of HA particle was 5 mg Ho/g HA particle and size of radiolabelling particle was at range of 2-5,{mu}m that is suitable for therapy of radiation synovectomy. {sup 166}Ho-EDTMP-HA particle demonstrated high in vitro stability in either normal saline or 1% BSA solution, but instability under extremely acidic condition (pH 1-2). The control studies performed with {sup 166}Ho-EDTMP not bound to HA particle provided information on the distribution of radioactivity that would occur upon leakage of the radiochemical compound from joint. Its short half-life, its extremely low leakage from the

  17. Coulomb interactions in particle beams

    International Nuclear Information System (INIS)

    Jansen, G.H.

    1988-01-01

    This thesis presents a theoretical description of the Coulomb interaction between identical charged particles (electrons or ions) in focussed beam. The charge-density effects as well as the various statistical interaction effects, known as the Boersch effect and the 'trajectory displacement effect', are treated. An introductory literature survey is presented from which the large differences in theoretical approach appear. Subsequently the methods are investigated which are used in studies of comparable problems in plasma physics and stellar dynamics. These turn out to be applicable to particle beams only for certain extreme conditions. The approach finally chosen in this study is twofold. On the one hand use is made of a semi-analytical model in which the statistical and dynamical aspects of the N-particle problem are reduced to two-particle problem. This model results in a number of explicit equations in the experimental parameters, with ties of the beam can be determined directly. On the other hand use has been made of a purely numerical Monte Carlo model in which the kinematical equations of an ensemble interacting particles with 'at random' chosen starting conditions are solved exactly. This model does not lead to general expressions, but yields a specific numerical prediction for each simulated experimental situation. The results of both models appear to agree well mutually. This yields a consistent theory which complements the existing knowledge of particle optics and which allow the description of systems in which the interaction between particles can not be neglected. The predictions of this theory are qualitatively and quantitatively compared with those from some other models, recently reported in literature. (author). 256 refs.; 114 figs.; 1180 schemes; 5 tabs

  18. Methanol oxidation at platinized copper particles prepared by galvanic replacement

    Directory of Open Access Journals (Sweden)

    Ioanna Mintsouli

    2016-04-01

    Full Text Available Bimetallic Pt-Cu particles have been prepared by galvanic replacement of Cu precursor nanoparticles, upon the treatment of the latter with a chloro-platinate acidic solution. The resulting particles, typically a few tens of nm large, were supported on high surface area carbon (Vulcan® XC–72R, Cabot and tested as electrodes. Surface electrochemistry in deaerated acid solutions was similar to that of pure Pt, indicating the existence of a Pt shell (hence the particles are denoted as Pt(Cu. Pt(Cu/C supported catalysts exhibit superior carbon monoxide and methanol oxidation activity with respect to their Pt/C analogues when compared on a per electroactive surface area basis, due to the modification of Pt activity by Cu residing in the particle core. However, as a result of large particle size and agglomeration phenomena, Pt(Cu/C are still inferior to Pt/C when compared on a mass specific activity basis.

  19. Exploration of zwitterionic cellulose acetate antifouling ultrafiltration membrane for bovine serum albumin (BSA) separation.

    Science.gov (United States)

    Liu, Yang; Huang, Haitao; Huo, Pengfei; Gu, Jiyou

    2017-06-01

    This study focused on the preparation of a new kind of membrane material, zwitterionic cellulose acetate (ZCA), via a three-step procedure consist of oxidization, Schiff base and quaternary amination reaction, and the fabrication of antifouling ZCA ultrafiltration membrane by the non-solvent-induced phase separation method (NIPS). The morphologies, surface chemical structures and compositions of the obtained CA and ZCA membranes were thoroughly characterized by field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray (EDX) spectroscopy, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), respectively. Meanwhile, the thermal stability, porosity and average pore size of two investigated membranes were also studied. As a result, the ZCA membrane displayed significantly improved hydrophilicity and water permeability compared with those of the reference CA membrane, despite a slight decrease in the protein rejection ratio. According to the cycle ultrafiltration performance of bovine serum albumin (BSA) solution and protein adsorption experiment, ZCA membrane exhibited better flux recovery property and fouling resistant ability, especially irreversible fouling resistant ability, suggesting superior antifouling performance. This new approach gives polymer-based membrane a long time life and excellent ultrafiltration performance, and seems promising for potential applications in the protein separation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Pure spinor integration from the collating formula

    International Nuclear Information System (INIS)

    Grassi, P.A.; Sommovigo, L.

    2011-01-01

    We use the technique developed by Becchi and Imbimbo to construct a well-defined BRST-invariant path integral formulation of pure spinor amplitudes. The space of pure spinors can be viewed from the algebraic geometry point of view as a collection of open sets where the constraints can be solved and a set of free and independent variables can be defined. On the intersections of those open sets, the functional measure jumps and one has to add boundary terms to construct a well-defined path integral. The result is the definition of the pure spinor integration measure constructed in terms of differential forms on each single patch.

  1. Civilian applications of particle-beam-initiated inertial confinement fusion technology

    International Nuclear Information System (INIS)

    Varnado, S.G.; Mitchiner, J.L.

    1977-05-01

    Electrical power generation by controlled fusion may provide a partial solution to the world's long-term energy supply problem. Achievement of a fusion reaction requires the confinement of an extremely hot plasma for a time long enough to allow fuel burnup. Inertial confinement of the plasma may be possible through the use of tightly focused, relativistic electron or ion beams to compress a fuel pellet. The Sandia Particle Beam Fusion program is developing the particle-beam accelerators necessary to achieve fuel ignition. In this report we review the status of the particle-beam fusion technology development program and identify several potential civilian applications for this technology. We describe program objectives, discuss the specific accelerators presently under development, and briefly review the results of beam-focusing and target-irradiation experiments. Then we identify and discuss applications for the beam technology and for the fusion neutrons. The applications are grouped into near-term, intermediate-term, and long-term categories. Near-term applications for the beam technology include electron-beam (e-beam) pumping of gas lasers and several commercial applications. Intermediate-term applications (pellet gain less than 50) include hybrid reactors for electrical power production and fissile fuel breeding, pure fusion reactors for electrical power production, and medical therapy using ion accelerators. In the long term, complex, high-gain pellets may be used in pure fusion reactors

  2. Preparation and characterization of poly (methyl methacrylate) and sulfonated poly (ether ether ketone) blend ultrafiltration membranes for protein separation applications

    International Nuclear Information System (INIS)

    Arthanareeswaran, G.; Thanikaivelan, P.; Raajenthiren, M.

    2009-01-01

    Poly (methyl methacrylate) (PMMA) and poly (methyl methacrylate)/sulfonated poly (ether ether ketone) (SPEEK) blend membranes were prepared by phase inversion technique in various composition using N,N'-dimethylformamide as solvent. The prepared membranes were characterized in terms of pure water flux, water content, porosity and thermal stability. The addition of SPEEK to the casting solution resulted in membranes with high pure water flux, water content, porosity and slightly low thermal stability. The cross sectional views of the blend membranes under electron microscope confirm the porosity and water flux results. The effect of the addition of SPEEK into the PMMA matrix on the extent of bovine serum albumin (BSA) separation was studied. It was found that the permeate flux increased significantly while the rejection of BSA from aqueous solution reduced moderately during ultrafiltration (UF) process. The effect was attributed to the increase in porosity and charge of the membrane due to the addition of SPEEK into the PMMA blend solution

  3. Deactivation of Cellulase at the Air-Liquid Interface Is the Main Cause of Incomplete Cellulose Conversion at Low Enzyme Loadings.

    Science.gov (United States)

    Bhagia, Samarthya; Dhir, Rachna; Kumar, Rajeev; Wyman, Charles E

    2018-01-22

    Amphiphilic additives such as bovine serum albumin (BSA) and Tween have been used to improve cellulose hydrolysis by cellulases. However, there has been a lack of clarity to explain their mechanism of action in enzymatic hydrolysis of pure or low-lignin cellulosic substrates. In this work, a commercial Trichoderma reesei enzyme preparation and the amphiphilic additives BSA and Tween 20 were applied for hydrolysis of pure Avicel cellulose. The results showed that these additives only had large effects on cellulose conversion at low enzyme to substrate ratios when the reaction flasks were shaken. Furthermore, changes in the air-liquid interfacial area profoundly affected cellulose conversion, but surfactants reduced or prevented cellulase deactivation at the air-liquid interface. Not shaking the flasks or adding low amounts of surfactant resulted in near theoretical cellulose conversion at low enzyme loadings given enough reaction time. At low enzyme loadings, hydrolysis of cellulose in lignocellulosic biomass with low lignin content suffered from enhanced enzyme deactivation at the air-liquid interface.

  4. Synthesis of pure and Sr-doped LaGaO3, LaFeO3 and LaCoO3 and Sr,Mg-doped LaGaO3 for ITSOFC application using different wet chemical routes

    International Nuclear Information System (INIS)

    Kumar, M.; Srikanth, S.; Ravikumar, B.; Alex, T.C.; Das, S.K.

    2009-01-01

    Pure and Sr-doped LaGaO 3 , LaFeO 3 and LaCoO 3 and Sr,Mg-doped LaGaO 3 were synthesized by various wet chemical routes, namely combustion, co-precipitation and citrate-gel methods. The effect of the various process parameters on the phase purity, particle size and surface area and morphology of the synthesized powders were determined by XRD, simultaneous TG-DTA, laser light scattering, BET and scanning electron microscopy. The stability of the synthesized pure phases in oxidizing and reducing atmosphere was also studied by thermogravimetry. It was observed that pure and Sr-doped single perovskite phases of lanthanum ferrite, cobaltite and gallate and Sr,Mg-doped lanthanum gallate could be synthesized by combustion and citrate-gel methods under suitable process conditions. Synthesis using the co-precipitation method yielded incomplete reaction irrespective of the calcination temperature adopted. The citrate-gel method yielded better powder properties in terms of particle size and morphology and surface area compared to combustion synthesis. It was found that pure and Sr-doped lanthanum ferrite, lanthanum cobaltite, lanthanum gallate and Sr,Mg-doped lanthanum gallate were stable in the oxidizing atmosphere. In the reducing atmosphere, pure and Sr-doped lanthanum ferrite and Sr,Mg-doped lanthanum gallate was found to be stable at least during the timeframe of the thermogravimetric experiment whereas pure and Sr-doped lanthanum cobaltite was partially reduced in hydrogen atmosphere

  5. A graphite foam reinforced by graphite particles

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.J.; Wang, X.Y.; Guo, L.F.; Wang, Y.M.; Wang, Y.P.; Yu, M.F.; Lau, K.T.T. [DongHua University, Shanghai (China). College of Material Science and Engineering

    2007-11-15

    Graphite foam was obtained after carbonization and graphitization of a pitch foam formed by the pyrolysis of coal tar based mesophase pitch mixed with graphite particles in a high pressure and temperature chamber. The graphite foam possessed high mechanical strength and exceptional thermal conductivity after adding the graphite particles. Experimental results showed that the thermal conductivity of modified graphite foam reached 110W/m K, and its compressive strength increased from 3.7 MPa to 12.5 MPa with the addition of 5 wt% graphite particles. Through the microscopic observation, it was also found that fewer micro-cracks were formed in the cell wall of the modified foam as compared with pure graphite foam. The graphitization degree of modified foam reached 84.9% and the ligament of graphite foam exhibited high alignment after carbonization at 1200{sup o}C for 3 h and graphitization at 3000{sup o}C for 10 min.

  6. Isolation of technogenic magnetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Catinon, Mickaël, E-mail: mickael.catinon@gmail.com [Laboratoire LECA, UMR 5553, Equipe Pollution, Environnement, Ecotoxicologie et Ecoremédiation, Univ. J. Fourier, 38041 Grenoble (France); Ayrault, Sophie, E-mail: sophie.ayrault@lsce.ispl.fr [Laboratoire des Sciences du Climat et de l' Environnement, UMR 8212, CEA-CNRS-UVSQ/IPSL, 91198 Gif-sur-Yvette (France); Boudouma, Omar, E-mail: boudouma@ccr.jussieu.fr [Service du MEB, UFR928, Université Pierre et Marie Curie, 75252 Paris VI (France); Bordier, Louise, E-mail: Louise.Bordier@lsce.ipsl.fr [Laboratoire des Sciences du Climat et de l' Environnement, UMR 8212, CEA-CNRS-UVSQ/IPSL, 91198 Gif-sur-Yvette (France); Agnello, Gregory, E-mail: contact@evinrude.fr [Evinrude, Espace St Germain, 38200 Vienne (France); Reynaud, Stéphane, E-mail: stephane.reynaud@ujf-grenoble.fr [Laboratoire LECA, UMR 5553, Equipe Pollution, Environnement, Ecotoxicologie et Ecoremédiation, Univ. J. Fourier, 38041 Grenoble (France); Tissut, Michel, E-mail: michel.tissut@ujf-grenoble.fr [Laboratoire LECA, UMR 5553, Equipe Pollution, Environnement, Ecotoxicologie et Ecoremédiation, Univ. J. Fourier, 38041 Grenoble (France)

    2014-03-01

    Technogenic magnetic particles (TMPs) emitted by various industrial sources, such as smelting plants, end up after atmospheric transfer on the soil surface. In the present study, we characterised the origin and composition of such particles emitted by a large iron smelting plant and deposited on particular substrates, namely tombstones, which act as a very interesting and appropriate matrix when compared to soil, tree bark, lichens or attic dust. The isolation and subsequent description of TMPs require a critical step of separation between different components of the sample and the magnetic particles; here, we described an efficient protocol that fulfils such a requirement: it resorts to water suspension, sonication, repeated magnetic extraction, sedimentation, sieving and organic matter destruction at 550 °C in some instances. The isolated TMPs displayed a noticeable crystalline shape with variable compositions: a) pure iron oxides, b) iron + Cr, Ni or Zn, and c) a complex structure containing Ca, Si, Mg, and Mn. Using Scanning Electron Microscope Energy Dispersive X-ray (SEM–EDX), we obtained profiles of various and distinct magnetic particles, which allowed us to identify the source of the TMPs. - Highlights: • The developed method offers a low-cost approach of large-scale dry deposition. • Tombstones are excellent supports for sampling these atmospheric deposits. • Smelted elements crystallise after cooling, giving typical technogenic magnetic particles (TMPs). • Coupling microscopic and bulk analyses allows identifying TMP origin. • Magnetic TMPs issued from steel industry were separated by a new technique.

  7. Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp

    DEFF Research Database (Denmark)

    Bell, Ian H.; Wronski, Jorrit; Quoilin, Sylvain

    2014-01-01

    property correlations described here have been implemented into CoolProp, an open-source thermophysical property library. This library is written in C++, with wrappers available for the majority of programming languages and platforms of technical interest. As of publication, 110 pure and pseudo-pure fluids...... are included in the library, as well as properties of 40 incompressible fluids and humid air. The source code for the CoolProp library is included as an electronic annex....

  8. Nigeria Journal of Pure and Applied Physics

    African Journals Online (AJOL)

    Nigeria Journal of Pure and Applied Physics publishes papers of the highest quality and significance in specific areas of physics, pure and applied, as listed below. The journal content reflects core physics disciplines, but is also open to a broad range of topics whose central theme falls within the bounds of physics.

  9. Endocytosis via galactose receptors in vivo. Ligand size directs uptake by hepatocytes and/or liver macrophages

    International Nuclear Information System (INIS)

    Schlepper-Schaefer, J.; Huelsmann, D.; Djovkar, A.; Meyer, H.E.; Herbertz, L.; Kolb, H.; Kolb-Bachofen, V.

    1986-01-01

    The intrahepatic binding and uptake of variously sized ligands with terminal galactosyl residues is rat liver was followed. The ligands were administered to prefixed livers in binding studies and in vivo and in situ (serum-free perfused livers) in uptake studies. Gold sols with different particle diameters were prepared: 5 nm (Au 5 ), 17 nm (Au 17 ), 50 nm (Au 50 ) and coated with galactose exposing glycoproteins (asialofetuin (ASF) or lactosylated BSA (LacBSA)). Electron microscopy of mildly prefixed livers perfused with LacBSA-Au 5 in serum-free medium showed ligand binding to liver macrophages, hepatocytes and endothelial cells. Ligands bound to prefixed cell surfaces reflect the initial distribution of receptor activity: pre-aggregated clusters of ligands are found on liver macrophages, single particles statistically distributed on hepatocytes and pre-aggregated clusters of particles restricted to coated pits on endothelial cells. Ligand binding is prevented in the presence of 80 mM N-acetylgalactosamine (GalNAc), while N-acetylglucosamine (GlcNAc) is without effect. Electron microscopy of livers after ligand injection into the tail vein shows that in vivo uptake of electron-dense galactose particles by liver cells is size-dependent. In vivo uptake by liver macrophages is mediated by galactose-specific recognition as shown by inhibition with GalNAc

  10. Refurbishment of JMTR pure water facility

    International Nuclear Information System (INIS)

    Asano, Norikazu; Hanakawa, Hiroki; Kusunoki, Hidehiko; Satou, Shinichi

    2012-05-01

    In the refurbishment of JMTR, facilities were classified into which (1) were all updated, (2) were partly updated, and (3) were continuance used by the considerations of the maintenance history, the change parts availability and the latest technology. The JMTR pure water facility was classified into all updated facility based on the consideration. The Update construction was conducted in between FY2007 and FY2008. The refurbishment of JMTR pure water facility is summarized in this report. (author)

  11. Investigation of two blood proteins binding to Cantharidin and Norcantharidin by multispectroscopic and chemometrics methods

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rong; Cheng, Zhengjun, E-mail: ncczj1112@126.com; Li, Tian; Jiang, Xiaohui

    2015-01-15

    The interactions of Cantharidin/Norcantharidin (CTD/NCTD) with two blood proteins, i.e., bovine serum albumin (BSA) and bovine hemoglobin (BHb), have been investigated by the fluorescence, UV–vis absorption, and FT-IR spectra under imitated physiological condition. The binding characteristics between CTD/NCTD and BSA/BHb were determined by fluorescence emission and resonance light scattering (RLS) spectra. The quenching mechanism of two blood proteins with CTD/NCTD is a static quenching. Moreover, the experimental data were further analyzed based on multivariate curve resolution-alternating least squares (MCR-ALS) technique to obtain the concentration profiles and pure spectra for three species (BSA/BHb, CTD/NCTD and CTD/NCTD–BSA/BHb complexes) which existed in the interaction procedure. The number of binding sites n and binding constants K{sub b} were calculated at various temperatures. The thermodynamic parameters (such as, ΔG, ΔH, and ΔS) for BSA–CTD/NCTD and BHb–CTD/NCTD systems were calculated by the Van’t Hoff equation and also discussed. The distance r between CTD/NCTD and BSA/BHb were evaluated according to Förster no-radiation energy transfer theory. The results of Fourier transform infrared (FT-IR), synchronous fluorescence and three-dimensional fluorescence spectra showed that the conformations of BSA/BHb altered with the addition of CTD/NCTD. In addition, the effects of common ions on the binding constants of BSA–CTD/NCTD and BHb–CTD/NCTD systems were also discussed.

  12. Microstructural studies and wear assessments of Ti/TiC surface composite coatings on commercial pure Ti produced by titanium cored wires and TIG process

    Energy Technology Data Exchange (ETDEWEB)

    Monfared, A., E-mail: amirmonfared25@yahoo.com [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Kokabi, A.H.; Asgari, S. [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2013-01-15

    Tungsten Inert Gas (TIG) process and titanium cored wires filled with micro size TiC particles were employed to produce surface composite coatings on commercial pure Ti substrate for wear resistance improvement. Wire drawing process was utilized to produce several cored wires from titanium strips and titanium carbide powders. Subsequently, these cored wires were melted and coated on commercial pure Ti using TIG process. This procedure was repeated at different current intensities and welding travel speeds. Composite coating tracks were found to be affected by TIG heat input. The microstructural studies using optical and scanning electron microscopy supported by X-ray diffraction showed that the surface composite coatings consisted of {alpha} Prime -Ti, spherical and dendritic TiC particles. Also, greater volume fractions of TiC particles in the coatings were found at lower heat input. A maximum microhardness value of about 1100 HV was measured which is more than 7 times higher than the substrate material. Pin-on-disk wear tests exhibited a better performance of the surface composite coatings than the untreated material which was attributed to the presence of TiC particles in the microstructure. -- Highlights: Black-Right-Pointing-Pointer Ti/TiC composite coatings were produced on the CP-Ti. Black-Right-Pointing-Pointer Titanium cored wire and TIG process were employed for production of the coatings. Black-Right-Pointing-Pointer Decreasing heat input, increased the volume fraction of TiC in the coatings. Black-Right-Pointing-Pointer The maximum microhardness obtained in the lowest heat input. Black-Right-Pointing-Pointer The wear resistance of the coatings improved due to the formation of TiC particles.

  13. Using biharmonic laser pumping for preparation of pure and entangled multiexciton states in clusters of resonantly interacting fluorescent centres

    International Nuclear Information System (INIS)

    Basieva, I.T.; Basiev, T.T.; Dietler, G.; Pukhov, K.K.; Sekatskii, S.K.

    2007-01-01

    Use of a biharmonic laser pumping for preparation of pure and entangled multiexciton states in dimers and tetramers of resonantly interacting fluorescent particles is analysed. Special emphasis is given to the preparation of all possible pure exciton states and their maximally entangled Bell states. The general results are illustrated using as an example the pair and quartet centres of neodymium ions in calcium fluoride (M- and N-centres), where all necessary experimental information concerning the interactions and decoherence is available, and experimental preparation of Bell vacuum-single exciton and vacuum-biexciton states has been recently demonstrated. These results can be easily rescaled for the cases of quantum dots and dye molecules. Numerical results are compared with the analytical results obtained for a particular case of the biharmonic excitation of dimers. Excellent agreement between these approaches is demonstrated

  14. Archives: Bayero Journal of Pure and Applied Sciences

    African Journals Online (AJOL)

    Items 1 - 20 of 20 ... Archives: Bayero Journal of Pure and Applied Sciences. Journal Home > Archives: Bayero Journal of Pure and Applied Sciences. Log in or Register to get access to full text downloads.

  15. Archives: Nigeria Journal of Pure and Applied Physics

    African Journals Online (AJOL)

    Items 1 - 6 of 6 ... Archives: Nigeria Journal of Pure and Applied Physics. Journal Home > Archives: Nigeria Journal of Pure and Applied Physics. Log in or Register to get access to full text downloads.

  16. Thermomechanical characterization of pure polycrystalline tantalum

    International Nuclear Information System (INIS)

    Rittel, D.; Bhattacharyya, A.; Poon, B.; Zhao, J.; Ravichandran, G.

    2007-01-01

    The thermomechanical behavior of pure polycrystalline tantalum has been characterized over a wide range of strain rates, using the recently developed shear compression specimen [D. Rittel, S. Lee, G. Ravichandran, Experimental Mechanics 42 (2002) 58-64]. Dynamic experiments were carried out using a split Hopkinson pressure bar, and the specimen's temperature was monitored throughout the tests using an infrared radiometer. The results of the mechanical tests confirm previous results on pure Ta. Specifically, in addition to its significant strain rate sensitivity, it was observed that pure Ta exhibits very little strain hardening at high strain rates. The measured temperature rise in the specimen's gauge was compared to theoretical predictions which assume a total conversion of the mechanical energy into heat (β = 1) [G.I. Taylor, H. Quinney, Proceedings of the Royal Society of London, vol. A, 1934, pp. 307-326], and an excellent agreement was obtained. This result confirms the previous result of Kapoor and Nemat-Nasser [R. Kapoor, S. Nemat-Nasser, Mech. Mater. 27 (1998) 1-12], while a different experimental approach was adopted here. The assumption that β = 1 is found to be justified in this specific case by the lack of dynamic strain hardening of pure Ta. However, this assumption should be limited to non-hardening materials, to reflect the fact that strain hardening implies that part of the mechanical energy is stored into the material's microstructure

  17. Pure transvaginal excision of mesh erosion involving the bladder.

    Science.gov (United States)

    Firoozi, Farzeen; Goldman, Howard B

    2013-06-01

    We present a pure transvaginal approach to the removal of eroded mesh involving the bladder secondary to placement of transvaginal mesh for management of pelvic organ prolapse (POP) using a mesh kit. Although technically challenging, we demonstrate the feasibility of a purely transvaginal approach, avoiding a potentially more morbid transabdominal approach. The video presents the surgical technique of pure transvaginal excision of mesh erosion involving the bladder after mesh placement using a prolapse kit was performed. This video shows that purely transvaginal removal of mesh erosion involving the bladder can be done safely and is feasible.

  18. Bayesian modeling and prediction of solar particles flux

    International Nuclear Information System (INIS)

    Dedecius, Kamil; Kalova, Jana

    2010-01-01

    An autoregression model was developed based on the Bayesian approach. Considering the solar wind non-homogeneity, the idea was applied of combining the pure autoregressive properties of the model with expert knowledge based on a similar behaviour of the various phenomena related to the flux properties. Examples of such situations include the hardening of the X-ray spectrum, which is often followed by coronal mass ejection and a significant increase in the particles flux intensity

  19. The role of jet and film drops in controlling the mixing state of submicron sea spray aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaofei; Deane, Grant B.; Moore, Kathryn A.; Ryder, Olivia S.; Stokes, M. Dale; Beall, Charlotte M.; Collins, Douglas B.; Santander, Mitchell V.; Burrows, Susannah M.; Sultana, Camille M.; Prather, Kimberly A.

    2017-06-19

    Covering 71% of the Earth’s surface, oceans represent a significant global source of atmospheric aerosols. The size and composition of sea spray aerosols (SSA) affect their ability to serve as cloud seeds and thus understanding the factors controlling their composition is critical to predicting their impact on clouds and climate. SSA particles have been shown to be an external mixture of particles with different compositions. Film and jet drop production mechanisms ultimately determine the individual particle compositions which are comprised of an array of salt/organic mixtures ranging from pure sea salt to nearly pure organic particles. It is often assumed that the majority of submicron SSA are formed by film drops produced from bursting hydrophobic organic-rich bubble film caps at the sea surface, and in contrast, jet drops are postulated to produce larger supermicron particles from underlying seawater comprised largely of salts and water soluble organic species. However, here we show that jet drops produced by bursting sub-100 m bubbles account for up to 40 % of all submicron particles. They have distinct chemical compositions, organic volume fractions and ice nucleating activities from submicron film drops. Thus a substantial fraction of submicron particles will not necessarily be controlled by the composition of the sea surface microlayer as has been assumed in many studies. This finding has significant ramifications for the size-resolved mixing states of SSA particles which must be taken into consideration when accessing SSA impacts on clouds.

  20. Zero time tunneling: macroscopic experiments with virtual particles

    Directory of Open Access Journals (Sweden)

    Nimtz Günter

    2015-01-01

    Full Text Available Feynman introduced virtual particles in his diagrams as intermediate states of an interaction process. They represent necessary intermediate states between observable real states. Such virtual particles were introduced to describe the interaction process between an electron and a positron and for much more complicated interaction processes. Other candidates for virtual particles are evanescent modes in optics and in elastic fields. Evanescent modes have a purely imaginary wave number, they represent the mathematical analogy of the tunneling solutions of the Schrödinger equation. Evanescent modes exist in the forbidden frequency bands of a photonic lattice and in undersized wave guides, for instance. The most prominent example for the occurrence of evanescent modes is the frustrated total internal reflection (FTIR at double prisms. Evanescent modes and tunneling lie outside the bounds of the special theory of relativity. They can cause faster than light (FTL signal velocities. We present examples of the quantum mechanical behavior of evanescent photons and phonons at a macroscopic scale. The evanescent modes of photons are described by virtual particles as predicted by former QED calculations.

  1. Comparison of hydrogen storage properties of pure Mg and milled ...

    Indian Academy of Sciences (India)

    Administrator

    increase the hydriding and dehydriding rates, pure Mg was ground under hydrogen atmosphere (reactive .... Hydrogen storage properties of pure Mg and milled pure Mg. 833. Figure 3. ... elongated and flat shapes via collisions with the steel.

  2. Single-Particle States in $^{133}$Sn

    CERN Multimedia

    Huck, A

    2002-01-01

    % IS338 \\\\ \\\\ It is suggested to investigate the $\\beta^- $-decay of $^{133}$In and $^{134}$In in order to determine the single-particle states in $^{133}$Sn, which are so far unknown and needed for the shell-model description of the region close to $^{132}$Sn. Large hyper-pure Ge-detectors will be used for the $\\gamma$-ray spectroscopy. In the experiments with $^{134}$In, delayed neutrons in coincidence with $\\gamma$-rays from excited states in $^{133}$Sn provide the opportunity for a very selective detection of the states in question.

  3. Motion and twisting of magnetic particles ingested by alveolar macrophages in non-smokers and smokers: Implementation of viscoelasticity

    International Nuclear Information System (INIS)

    Moeller, Winfried; Felten, Kathrin; Kohlhaeufl, Martin; Haeussinger, Karl; Kreyling, Wolfgang G.

    2007-01-01

    Ferrimagnetic iron oxide particles were inhaled by 17 healthy volunteers (9 non-smokers, 8 smokers), and the retained particles were magnetized and detected by a SQUID. Stochastic particle transport due to cytoskeletal reorganizations within macrophages (relaxation) and directed particle motion in a weak magnetic twisting field were investigated with respect to viscous and elastic properties of the cytoskeleton. Relaxation and cytoskeletal stiffness were not influenced by cigarette smoking. Relaxation and particle twisting revealed a non-Newtonian viscosity with a pure viscous and a viscoelastic compartment. Viscous and elastic data obtained from relaxation correlated with particle twisting, indicating that the proposed simple model is a reasonable approximation of cytoskeletal mechanical properties

  4. Mining candidate genes associated with powdery mildew resistance in cucumber via super-BSA by specific length amplified fragment (SLAF) sequencing.

    Science.gov (United States)

    Zhang, Peng; Zhu, Yuqiang; Wang, Lili; Chen, Liping; Zhou, Shengjun

    2015-12-14

    Powdery mildew (PM) is the most common fungal disease of cucumber and other cucurbit crops, while breeding the PM-resistant materials is the effective way to defense this disease, and the recent development of modern genetics and genomics make us aware of that studying the resistance genes is the essential way to breed the PM high-resistance plant. With the ever increasing throughput of next-generation sequencing (NGS), the development of specific length amplified fragment sequencing (SLAF-seq) as a high-resolution strategy for large-scale de novo SNP discovery is gradually applied for functional gene mining. Here we combined the bulked segregant analysis (BSA) with SLAF-seq to identify candidate genes associated with PM resistance in cucumber. A segregating population comprising 251 F2 individuals was developed using H136 (female parent) as susceptible parent and BK2 (male parent) as resistance donor. After PMR test, total genomic DNA was prepared from each plant. Systemic genomic analysis of the GC content, repeat sequence, etc. was carried out by prediction software SLAF_Predict to establish condition to ensure the uniformity and density of the molecular markers. After samples were gel purified, SLAFs were generated at Biomarker Technologies Corporation in Beijing. Based on SLAF tags and the PMR test result, the hot region were annotated. A total of 73,100 high-quality SLAF tags with an average depth of 99.11× were sequenced. Among these, 5,355 polymorphic tags were identified with a polymorphism rate of 7.34 %, including 7.09 % SNPs and other polymorphism types. Finally, 140 associated SLAFs were identified, and two main Hot Regions were detected on chromosome 1 and 6, which contained five genes invovled in defense response, toxin metabolism, cell stress response, and injury response in cucumber. Associated markers identified by super-BSA in this study, could not only speed up the study of the PMR genes, but also provide a feasible solution for breeding the

  5. Potential of using coconut shell particle fillers in eco-composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Sarki, J., E-mail: sarksj@yahoo.com [Department of Fire and Safety, Kaduna International Airport, Kaduna-State (Nigeria); Department of Metallurgical and Materials Engineering, Ahmadu Bello University, Samaru, Zaria (Nigeria); Hassan, S.B., E-mail: hassbolaji@yahoo.com [Department of Fire and Safety, Kaduna International Airport, Kaduna-State (Nigeria); Department of Metallurgical and Materials Engineering, Ahmadu Bello University, Samaru, Zaria (Nigeria); Aigbodion, V.S., E-mail: aigbodionv@yahoo.com [Department of Fire and Safety, Kaduna International Airport, Kaduna-State (Nigeria); Department of Metallurgical and Materials Engineering, Ahmadu Bello University, Samaru, Zaria (Nigeria); Oghenevweta, J.E. [Department of Fire and Safety, Kaduna International Airport, Kaduna-State (Nigeria); Department of Metallurgical and Materials Engineering, Ahmadu Bello University, Samaru, Zaria (Nigeria)

    2011-02-03

    Research highlights: > The production and characterization of the composites has been done. - Abstract: Morphology and mechanical properties of coconut shell particles reinforced epoxy composites were evaluated to assess the possibility of using it as a new material in engineering applications. Coconut shell filled composites were prepared from epoxy polymer matrix containing up to 30 wt% coconut shell fillers. The effects of coconut shell particle content on the mechanical properties of the composites were investigated. Scanning electron microscopy (SEM) of the composite surfaces indicates that there are fairly good interfacial interaction between coconut shell particles and epoxy matrix. It was shown that the value of tensile modulus and tensile strength values increases with the increase of coconut shell particles content, while the impact strength slightly decreased, compared to pure epoxy resin. This work has shown that coconut shell particles can be used to improve properties of epoxy polymer composite to be used in eco-buildings.

  6. Potential of using coconut shell particle fillers in eco-composite materials

    International Nuclear Information System (INIS)

    Sarki, J.; Hassan, S.B.; Aigbodion, V.S.; Oghenevweta, J.E.

    2011-01-01

    Research highlights: → The production and characterization of the composites has been done. - Abstract: Morphology and mechanical properties of coconut shell particles reinforced epoxy composites were evaluated to assess the possibility of using it as a new material in engineering applications. Coconut shell filled composites were prepared from epoxy polymer matrix containing up to 30 wt% coconut shell fillers. The effects of coconut shell particle content on the mechanical properties of the composites were investigated. Scanning electron microscopy (SEM) of the composite surfaces indicates that there are fairly good interfacial interaction between coconut shell particles and epoxy matrix. It was shown that the value of tensile modulus and tensile strength values increases with the increase of coconut shell particles content, while the impact strength slightly decreased, compared to pure epoxy resin. This work has shown that coconut shell particles can be used to improve properties of epoxy polymer composite to be used in eco-buildings.

  7. Preparation, characterization and cytotoxic evaluation of bovine serum albumin nanoparticles encapsulating 5-methylmellein: A secondary metabolite isolated from Xylaria psidii.

    Science.gov (United States)

    Arora, Divya; Kumar, Amit; Gupta, Prasoon; Chashoo, Gousia; Jaglan, Sundeep

    2017-12-01

    In this study, 5-methylmellein (5-MM) loaded bovine serum albumin nanoparticles (BSA NPs) were developed using desolvation technique. The developed nanoparticles were characterized for their mean particle size, polydispersity, zeta potential, loading efficiency, X-ray diffractometry (XRD), differential scanning calorimetry (DSC) and release profile. The developed nanoparticles were spherical in shape under transmission electron microscopy (TEM) and atomic force microscopy (AFM). The developed 5-MM loaded BSA NPs demonstrated a mean particle size with a diameter of 154.95 ± 4.44 nm. The results from XRD and DSC studies demonstrated that the crystal state of the 5-MM was converted to an amorphous state in polymeric matrix. The encapsulation and loading efficiency was found to be 73.26 ± 4.48% and 7.09 ± 0.43%. The in vitro cytotoxicity in human prostate cancer cell line (PC-3), human colon cancer cells (HCT-116) and human breast adenocarcinoma cell line (MCF-7) cells demonstrated enhanced cytotoxicity of 5-MM BSA NPs as compared to native 5-MM after 72-h treatment. The enhancement in cytotoxicity of 5-MM BSA NPs was also supported by increase in cellular apoptosis, mitochondrial membrane potential loss and generation of high reactive oxygen species (ROS). In conclusion, these findings collectively indicated that BSA nanoparticles may serve as promising drug delivery system for improving the efficacy of 5-methylmellein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Pure Science and Applied Science

    Directory of Open Access Journals (Sweden)

    Robert J. Aumann

    2011-01-01

    Full Text Available (Excerpt The name of my talk is Pure Science and Applied Science, and the idea I would like to sell to you today is that there is no such thing as “pure” or “applied” science. In other words, there is such a thing as science, but there is no difference between pure and applied science. Science is one entity and cannot be separated into different categories. In order to back that up, I would like to tell you a little story. As an undergraduate, I studied mathematics at City College in New York. At that time, what was called Pure Mathematics was in vogue, and the more prominent mathematicians were a little contemptuous of any kind of application. A very famous, prominent mathematician in the first half of the previous century by the name of G. H. Hardy, who was in a branch of mathematics called number theory, said that the only thing he regretted was that he unwittingly did some important work in mathematical genetics that eventually turned out to have some application. … Such was the atmosphere in the late ’40s of the previous century and, being a young man and impressionable, I was swept up in this atmosphere.

  9. Preparation and characterization of emulsifier-free polyphenylsilsesquioxane-poly (styrene–butyl acrylate) hybrid particles

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Ruiqin; Qiu, Teng, E-mail: qiuteng@mail.buct.edu.cn; Han, Feng; He, Lifan; Li, Xiaoyu, E-mail: lixy@mail.buct.edu.cn

    2013-10-01

    The core–shell polyphenylsilsesquioxane-poly (styrene–butyl acrylate) hybrid latex paticles with polyphenylsilsesquioxane as core and poly (styrene–butyl acrylate) as shell were successfully synthesized by seeded emulsion polymerization using polyphenylsisesquioxane (PPSQ) latex particles as seeds. X-ray diffraction (XRD) indicated that the polyphenylsilsesquioxane (PPSQ) had ladder structure, and PPSQ had incorporated into the hybrid latex particles. Transmission electron microscopy (TEM) confirmed that the resultant hybrid latex particles had the core–shell structure. TEM and dynamic light scattering (DLS) analysis indicated that the polyphenylsisesquioxane latex particles and obtained core–shell hybrid latex particles were uniform and possessed narrow size distributions. X-ray photoelectron spectroscopy (XPS) analysis also indicated that the PPSQ core particles were enwrapped by the polymer shell. In addition, compared with pure poly (styrene–butyl acrylate) latex film, the polyphenylsilsesquioxane-poly (styrene–butyl acrylate) hybrid latex film exhibited lower water uptake, higher pencil hardness and better thermal stability.

  10. Magnetic and Mössbauer studies of pure and Ti-doped YFeO {sub 3} nanocrystalline particles prepared by mechanical milling and subsequent sintering

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, N. O. [University of Khartoum, Physics Department, Faculty of Science (Sudan); Widatallah, H. M., E-mail: hishammw@squ.edu.om; Gismelseed, A. M.; Al-Mabsali, F. N.; Sofin, R. G. S. [Sultan Qaboos University, Physics Department, College of Science (Oman); Pekala, M. [University of Warsaw, Chemistry Department (Poland)

    2016-12-15

    Single-phased nanocrystalline particles of pure and 10 % Ti {sup 4+}-doped perovskite-related YFeO {sub 3}were prepared via mechanosynthesis at 450{sup ∘}C. This temperature is ∼150–350 {sup ∘}C lower than those at which the materials, in bulk form, are normally prepared. Rietveld refinements of the X-ray diffraction patterns reveal that the dopant Ti {sup 4+} ions prefer interstitial octahedral sites in the orthorhombic crystal lattice rather than those originally occupied by the expelled Fe {sup 3+} ions. Magnetic measurements show canted antiferromagnetism in both types of nanoparticles. Doping with Ti {sup 4+} lowers the Néel temperature of the YFeO {sub 3} nanoparticles from ∼ 586 K to ∼ 521 K. The Ti {sup 4+}-doped YFeO {sub 3} nanoparticles exhibit enhanced magnetization and coercivity but less magnetic hyperfine fields relative to the un-doped nanoparticles. The {sup 57}Fe Mössbauer spectra show ∼ 15 % of the YFeO {sub 3} nanoparticles and ∼22 of Ti {sup 4+}-doped YFeO {sub 3} ones to be superparamagnetic with blocking temperatures < 78 K. The broadened magnetic components in the {sup 57}Fe Mössbauer spectra suggest size-dependent hyperfine magnetic fields at the {sup 57}Fe nuclear sites and were associated with collective magnetic excitations. The {sup 57}Fe Mössbauer spectra show the local environments of the Fe {sup 3+} ions in the superparamagnetic nanoparticles to be more sensitive to the presence of the Ti {sup 4+} ions relative to those in the larger magnetic nanoparticles.

  11. Graph Theory to Pure Mathematics: Some Illustrative Examples

    Indian Academy of Sciences (India)

    Graph Theory to Pure Mathematics: Some. Illustrative Examples v Yegnanarayanan is a. Professor of Mathematics at MNM Jain Engineering. College, Chennai. His research interests include graph theory and its applications to both pure maths and theoretical computer science. Keywords. Graph theory, matching theory,.

  12. Particle size dependence of the Young's modulus of filled polymers: 1. Preliminary experiments

    NARCIS (Netherlands)

    Vollenberg, P.H.T.; Heikens, D.

    1989-01-01

    Experimental results are reported from which it appears that in the case of polymer filled with silane-treated glass beads the Young's modulus is, in accordance with present theory, independent of the particle size of the filler. However, if pure glass beads are used as filler, the Young's modulus

  13. The synthesis of nanostructured, phase pure catalysts by hydrodynamic cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Moser, W.R.; Sunstrom, J.E.; Marshik-Geurts, B.J. [Worcester Polytechnic Institute, Worcester, MA (United States)

    1995-12-01

    A new process for the synthesis of advanced catalytic materials based on performing the synthesis under hydrodynamic cavitation conditions has been discovered. This continuous process for catalyst synthesis resulted in the formation of both supported and unsupported catalysts. The advantage of the process over classical methods of synthesis is that it permits the formation of a wide variety of nanostructured catalysts in exceptionally high phase purities. The synthesis of platinum and palladium catalysts supported on alumina and other supports resulted in high dispersions of the noble metals. The synthesis of alpha, beta- and gamma-bismuth molybdates resulted in catalysts having superior phase purities as compared to several other classical methods of synthesis. The beta-bismuth molybdate was synthesized directly onto Cabosil. These studies showed that the particle size of the active component could be varied from a few manometers to much larger grains. The process enabled the synthesis of other complex metal oxides like perovskites as pure phases. The process uses a commercially available Microfluidizer.

  14. Effect of calcination temperature on the structural, optical and magnetic properties of pure and Fe-doped ZnO nanoparticles

    Directory of Open Access Journals (Sweden)

    Pal Singh Raminder Preet

    2016-06-01

    Full Text Available In the present study, pure ZnO and Fe-doped ZnO (Zn0.97Fe0.03O nanoparticles were synthesized by simple coprecipitation method with zinc acetate, ferric nitrate and sodium hydroxide precursors. Pure ZnO and Fe-doped ZnO were further calcined at 450 °C, 600 °C and 750 °C for 2 h. The structural, morphological and optical properties of the samples were characterized by X-ray diffractometer (XRD, scanning electron microscope (SEM, energy dispersive spectroscopy (EDS and UV-Vis absorption spectroscopy. The X-ray diffraction studies revealed that the as-synthesized pure and doped ZnO nanoparticles have hexagonal wurtzite structure. The average crystallite size was calculated using Debye-Scherrer’s formula. The particle size was found to be in nano range and increased with an increase in calcination temperature. SEM micrographs confirmed the formation of spherical nanoparticles. Elemental compositions of various elements in pure and doped ZnO nanoparticles were determined by EDX spectroscopy. UV-Vis absorption spectra showed red shift (decrease in band gap with increasing calcination temperature. Effect of calcination on the magnetic properties of Fe-doped ZnO sample was also studied using vibrating sample magnetometer (VSM. M-H curves at room temperature revealed that coercivity and remanent polarization increase with an increase in calcination temperature from 450 °C to 750 °C, whereas reverse effect was observed for magnetization saturation.

  15. Quasi-classical derivation of the Dirac and one-particle Schroedinger equations

    International Nuclear Information System (INIS)

    Wignall, J.W.G.

    1990-08-01

    The quasi-classical approach, in which particles are regarded as extended periodic excitations of a classical nonlinear field, is for the first time applied quantitatively in the quantum domain. It is shown that the twofold intrinsic 'spin' degree of freedom possessed by an electron can be interpreted in a purely classical way, and that the Lorentz covariant incorporation of this degree of freedom requires that the spacetime evolution of an electron excitation in a prescribed external field be given by the Dirac equation and hence, in the nonrelativistic limit, by the Pauli or Schroedinger one-particle equations. 17 refs

  16. Expander graphs in pure and applied mathematics

    OpenAIRE

    Lubotzky, Alexander

    2012-01-01

    Expander graphs are highly connected sparse finite graphs. They play an important role in computer science as basic building blocks for network constructions, error correcting codes, algorithms and more. In recent years they have started to play an increasing role also in pure mathematics: number theory, group theory, geometry and more. This expository article describes their constructions and various applications in pure and applied mathematics.

  17. Pure odd-order oscillators with constant excitation

    Science.gov (United States)

    Cveticanin, L.

    2011-02-01

    In this paper the excited vibrations of a truly nonlinear oscillator are analyzed. The excitation is assumed to be constant and the nonlinearity is pure (without a linear term). The mathematical model is a second-order nonhomogeneous differential equation with strong nonlinear term. Using the first integral, the exact value of period of vibration i.e., angular frequency of oscillator described with a pure nonlinear differential equation with constant excitation is analytically obtained. The closed form solution has the form of gamma function. The period of vibration depends on the value of excitation and of the order and coefficient of the nonlinear term. For the case of pure odd-order-oscillators the approximate solution of differential equation is obtained in the form of trigonometric function. The solution is based on the exact value of period of vibration. For the case when additional small perturbation of the pure oscillator acts, the so called 'Cveticanin's averaging method' for a truly nonlinear oscillator is applied. Two special cases are considered: one, when the additional term is a function of distance, and the second, when damping acts. To prove the correctness of the method the obtained results are compared with those for the linear oscillator. Example of pure cubic oscillator with constant excitation and linear damping is widely discussed. Comparing the analytically obtained results with exact numerical ones it is concluded that they are in a good agreement. The investigations reported in the paper are of special interest for those who are dealing with the problem of vibration reduction in the oscillator with constant excitation and pure nonlinear restoring force the examples of which can be found in various scientific and engineering systems. For example, such mechanical systems are seats in vehicles, supports for machines, cutting machines with periodical motion of the cutting tools, presses, etc. The examples can be find in electronics

  18. Effect of fuel particles' size variations on multiplication factor in pebble-bed nuclear reactor

    International Nuclear Information System (INIS)

    Snoj, L.; Ravnik, M.

    2005-01-01

    The pebble-bed reactor (Pbr) spherical fuel element consists of two radial zones: the inner zone, in which the fissile material in form of the so-called TRISO particles is uniformly dispersed in graphite matrix and the outer zone, a shell of pure graphite. A TRISO particle is composed of a fissile kernel (UO 2 ) and several layers of carbon composites. The effect of TRISO particles' size variations and distance between them on PBR multiplication factor is studied using MCNP code. Fuel element is modelled in approximation of a cubical unit cell with periodic boundary condition. The multiplication factor of the fuel element depends on the size of the TRISO particles due to resonance self-shielding effect and on the inter-particle distance due to inter-kernel shadowing. (author)

  19. Similarities and differences between learning abilities, "pure" learning disabilities, "pure" ADHD and comorbid ADHD with learning disabilities.

    Science.gov (United States)

    Mangina, Constantine A; Beuzeron-Mangina, Helen

    2009-08-01

    This research pursues the crucial question of the differentiation of preadolescents with "Pure" ADHD, comorbid ADHD with learning disabilities, "Pure" learning disabilities and age-matched normal controls. For this purpose, Topographic Mapping of Event-Related Brain Potentials (ERPs) to a Memory Workload Paradigm with visually presented words, Bilateral Electrodermal Activity during cognitive workload and Mangina-Test performance were used. The analysis of Topographic distribution of amplitudes revealed that normal preadolescents were significantly different from "Pure" ADHD (Plearning disabilities (Plearning disabilities (Plearning disabilities have shown a marked reduction of prefrontal and frontal negativities (N450). As for the "Pure" Learning Disabled preadolescents, very small positivities (P450) in prefrontal and frontal regions were obtained as compared to the other pathological groups. Bilateral Electrodermal Activity during cognitive workload revealed a significant main effect for groups (P<0.00001), Left versus Right (P=0.0029) and sessions (P=0.0136). A significant main effect for the Mangina-Test performance which separated the four groups was found (P<0.000001). Overall, these data support the existence of clear differences and similarities between the pathological preadolescent groups as opposed to age-matched normal controls. The psychophysiological differentiation of these groups, provides distinct biological markers which integrate central, autonomic and neuropsychometric variables by targeting the key features of these pathologies for diagnosis and intervention strategies and by providing knowledge for the understanding of normal neurocognitive processes and functions.

  20. Corrosion of pure magnesium under thin electrolyte layers

    International Nuclear Information System (INIS)

    Zhang Tao; Chen Chongmu; Shao Yawei; Meng Guozhe; Wang Fuhui; Li Xiaogang; Dong Chaofang

    2008-01-01

    The corrosion behavior of pure magnesium was investigated by means of cathodic polarization curve, electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN) under aerated and deaerated thin electrolyte layers (TEL) with various thicknesses. Based on shot noise theory and stochastic theory, the EN results were quantitatively analyzed by using the Weibull and Gumbel distribution function, respectively. The results show that the cathodic process of pure magnesium under thin electrolyte layer was dominated by hydrogen reduction. With the decreasing of thin electrolyte layer thickness, cathodic process was retarded slightly while the anodic process was inhibited significantly, which indicated that both the cathodic and anodic process were inhibited in the presence of oxygen. The absence of oxygen decreased the corrosion resistance of pure magnesium in case of thin electrolyte layer. The corrosion was more localized under thin electrolyte layer than that in bulk solution. The results also demonstrate that there exist two kinds of effects for thin electrolyte layer on the corrosion behavior of pure magnesium: (1) the rate of pit initiation was evidently retarded compared to that in bulk solution; (2) the probability of pit growth oppositely increased. The corrosion model of pure magnesium under thin electrolyte layer was suggested in the paper

  1. Engineering arbitrary pure and mixed quantum states

    International Nuclear Information System (INIS)

    Pechen, Alexander

    2011-01-01

    Controlled manipulation by atomic- and molecular-scale quantum systems has attracted a lot of research attention in recent years. A fundamental problem is to provide deterministic methods for controlled engineering of arbitrary quantum states. This work proposes a deterministic method for engineering arbitrary pure and mixed states of a wide class of quantum systems. The method exploits a special combination of incoherent and coherent controls (incoherent and coherent radiation) and has two properties which are specifically important for manipulating by quantum systems: it realizes the strongest possible degree of their state control, complete density matrix controllability, meaning the ability to steer arbitrary pure and mixed initial states into any desired pure or mixed final state, and it is all-to-one, such that each particular control transfers all initial system states into one target state.

  2. Particle interaction of lubricated or unlubricated binary mixtures according to their particle size and densification mechanism.

    Science.gov (United States)

    Di Martino, Piera; Joiris, Etienne; Martelli, Sante

    2004-09-01

    The aim of this study is to assess an experimental approach for technological development of a direct compression formulation. A simple formula was considered composed by an active ingredient, a diluent and a lubricant. The active ingredient and diluent were selected as an example according to their typical densification mechanism: the nitrofurantoine, a fragmenting material, and the cellulose microcrystalline (Vivapur), which is a typical visco-elastic material, equally displaying good bind and disintegrant properties. For each ingredient, samples of different particle size distribution were selected. Initially, tabletability of pure materials was studied by a rotary press without magnesium stearate. Vivapur tabletability decreases with increase in particle size. The addition of magnesium stearate as lubricant decreases tabletability of Vivapur of greater particle size, while it kept unmodified that of Vivapur of lower particle size. Differences in tabletability can be related to differences in particle-particle interactions; for Vivapur of higher particle size (Vivapur 200, 102 and 101), the lower surface area develops lower surface available for bonds, while for Vivapur of lower particle size (99 and 105) the greater surface area allows high particle proximity favouring particle cohesivity. Nitrofurantoine shows great differences in compression behaviour according to its particle size distribution. Large crystals show poorer tabletability than fine crystals, further decreased by lubricant addition. The large crystals poor tabletability is due to their poor compactibility, in spite of high compressibility and plastic intrinsic deformability; in fact, in spite of the high densification tendency, the nature of the involved bonds is very weak. Nitrofurantoine samples were then mixed with Vivapurs in different proportions. Compression behaviour of binary mixes (tabletability and compressibility) was then evaluated according to diluents proportion in the mixes. The

  3. Impact of microgalvanic corrosion on the degradation morphology of WE43 and pure magnesium under exposure to simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Kalb, H., E-mail: Hermann.Kalb@biomed.uni-erlangen.de [Max Schaldach Endowed Professorship for Biomedical Engineering, Center for Medical Physics and Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Henkestrasse 91, Erlangen 91052 (Germany); Rzany, A., E-mail: Alexander.Rzany@biomed.uni-erlangen.de [Max Schaldach Endowed Professorship for Biomedical Engineering, Center for Medical Physics and Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Henkestrasse 91, Erlangen 91052 (Germany); Hensel, B., E-mail: Bernhard.Hensel@biomed.uni-erlangen.de [Max Schaldach Endowed Professorship for Biomedical Engineering, Center for Medical Physics and Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Henkestrasse 91, Erlangen 91052 (Germany)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Localized Corrosion of WE43 and pure magnesium under static exposure to SBF. Black-Right-Pointing-Pointer Vigorous hydrogen evolution at particles, which act as micro-cathodes. Black-Right-Pointing-Pointer Zr at WE43 and Fe at pure magnesium are dominant micro-cathodes. Black-Right-Pointing-Pointer Protection of surrounding bulk and volcano-shaped depositions. Black-Right-Pointing-Pointer A comprehensive corrosion model including a corrosion double-layer is proposed. - Abstract: Corrosion of magnesium alloys was studied during exposure to simulated body fluid (SBF). Microgalvanic processes dominate degradation morphology and formation of the corrosion/conversion layer. Localized corrosion with vigorous hydrogen evolution was observed at zirconium- and iron-rich precipitates that act as micro-cathodes. These are surrounded by volcano-shaped deposits of Mg(OH){sub 2}. Circular areas around cathodic centers were found to be protected from corrosion, while bulk degradation takes place in between. In SBF, conversion to a corrosion double layer was demonstrated. Differences observed for WE43 and pure magnesium (Mg) are discussed within the framework of a comprehensive model of the mechanisms of corrosion.

  4. How changing the particle structure can speed up protein mass transfer kinetics in liquid chromatography.

    Science.gov (United States)

    Gritti, Fabrice; Horvath, Krisztian; Guiochon, Georges

    2012-11-09

    The mass transfer kinetics of a few compounds (uracil, 112 Da), insulin (5.5 kDa), lysozyme (13.4 kDa), and bovine serum albumin (BSA, 67 kDa) in columns packed with several types of spherical particles was investigated under non-retained conditions, in order to eliminate the poorly known contribution of surface diffusion to overall sample diffusivity across the porous particles in RPLC. Diffusivity across particles is then minimum. Based on the porosity of the particles accessible to analytes, it was accurately estimated from the elution times, the internal obstruction factor (using Pismen correlation), and the hindrance diffusion factor (using Renkin correlation). The columns used were packed with fully porous particles 2.5 μm Luna-C(18) 100 Å, core-shell particles 2.6 μm Kinetex-C(18) 100 Å, 3.6 μm Aeris Widepore-C(18) 200 Å, and prototype 2.7 μm core-shell particles (made of two concentric porous shells with 100 and 300 Å average pore size, respectively), and with 3.3 μm non-porous silica particles. The results demonstrate that the porous particle structure and the solid-liquid mass transfer resistance have practically no effect on the column efficiency for small molecules. For them, the column performance depends principally on eddy dispersion (packing homogeneity), to a lesser degree on longitudinal diffusion (effective sample diffusivity along the packed bed), and only slightly on the solid-liquid mass transfer resistance (sample diffusivity across the particle). In contrast, for proteins, this third HETP contribution, hence the porous particle structure, together with eddy dispersion govern the kinetic performance of columns. Mass transfer kinetics of proteins was observed to be fastest for columns packed with core-shell particles having either a large core-to-particle ratio or having a second, external, shell made of a thin porous layer with large mesopores (200-300 Å) and a high porosity (~/=0.5-0.7). The structure of this external shell seems

  5. Linking variations in sea spray aerosol particle hygroscopicity to composition during two microcosm experiments

    Directory of Open Access Journals (Sweden)

    S. D. Forestieri

    2016-07-01

    Full Text Available The extent to which water uptake influences the light scattering ability of marine sea spray aerosol (SSA particles depends critically on SSA chemical composition. The organic fraction of SSA can increase during phytoplankton blooms, decreasing the salt content and therefore the hygroscopicity of the particles. In this study, subsaturated hygroscopic growth factors at 85 % relative humidity (GF(85 % of predominately submicron SSA particles were quantified during two induced phytoplankton blooms in marine aerosol reference tanks (MARTs. One MART was illuminated with fluorescent lights and the other was illuminated with sunlight, referred to as the "indoor" and "outdoor" MARTs, respectively. Optically weighted GF(85 % values for SSA particles were derived from measurements of light scattering and particle size distributions. The mean optically weighted SSA diameters were 530 and 570 nm for the indoor and outdoor MARTs, respectively. The GF(85 % measurements were made concurrently with online particle composition measurements, including bulk composition (using an Aerodyne high-resolution aerosol mass spectrometer and single particle (using an aerosol time-of-flight mass spectrometer measurement, and a variety of water-composition measurements. During both microcosm experiments, the observed optically weighted GF(85 % values were depressed substantially relative to pure inorganic sea salt by 5 to 15 %. There was also a time lag between GF(85 % depression and the peak chlorophyll a (Chl a concentrations by either 1 (indoor MART or 3-to-6 (outdoor MART days. The fraction of organic matter in the SSA particles generally increased after the Chl a peaked, also with a time lag, and ranged from about 0.25 to 0.5 by volume. The observed depression in the GF(85 % values (relative to pure sea salt is consistent with the large observed volume fractions of non-refractory organic matter (NR-OM comprising the SSA. The GF(85 % values

  6. Effect of gamma-irradiation of bovine serum albumin solution on the formation of zigzag film textures

    Science.gov (United States)

    Glibitskiy, Dmitriy M.; Gorobchenko, Olga A.; Nikolov, Oleg T.; Cheipesh, Tatiana A.; Roshal, Alexander D.; Zibarov, Artem M.; Shestopalova, Anna V.; Semenov, Mikhail A.; Glibitskiy, Gennadiy M.

    2018-03-01

    Formation of patterns on the surface of dried films of saline biopolymer solutions is influenced by many factors, including particle size and structure. Proteins may be modified under the influence of ionizing radiation. By irradiating protein solutions with gamma rays, it is possible to affect the formation of zigzag (Z) structures on the film surface. In our study, the films were obtained by desiccation of bovine serum albumin (BSA) solutions, which were irradiated by a 60Co gamma-source at doses ranging from 1 Gy to 12 kGy. The analysis of the resulting textures on the surface of the films was carried out by calculating the specific length of Z-structures. The results are compared against the absorption and fluorescence spectroscopy and dynamic light scattering (DLS) data. Gamma-irradiation of BSA solutions in the 1-200 Gy range practically does not influence the amount of Z-structures on the film surface. The decrease in fluorescence intensity and increase in absorbance intensity point to the destruction of BSA structure at 2 and 12 kGy, and DLS shows a more than 160% increase in particle size as a result of BSA aggregation at 2 kGy. This prevents the formation of Z-structures, which is reflected in the decrease of their specific length.

  7. Complex windmill transformation producing new purely magnetic fluids

    International Nuclear Information System (INIS)

    Lozanovski, C; Wylleman, L

    2011-01-01

    Minimal complex windmill transformations of G 2 IB(ii) spacetimes (admitting a two-dimensional Abelian group of motions of the so-called Wainwright B(ii) class) are defined and the compatibility with a purely magnetic Weyl tensor is investigated. It is shown that the transformed spacetimes cannot be perfect fluids or purely magnetic Einstein spaces. We then determine which purely magnetic perfect fluids (PMpfs) can be windmill-transformed into purely magnetic anisotropic fluids (PMafs). Assuming separation of variables, complete integration produces two, algebraically general, G 2 I-B(ii) PMpfs: a solution with zero 4-acceleration vector and spatial energy-density gradient, previously found by the authors, and a new solution in terms of Kummer's functions, where these vectors are aligned and non-zero. The associated windmill PMafs are rotating but non-expanding. Finally, an attempt to relate the spacetimes to each other by a simple procedure leads to a G 2 I-B(ii) one-parameter PMaf generalization of the previously found metric.

  8. Purely leptonic currents

    International Nuclear Information System (INIS)

    Gourdin, M.

    1976-01-01

    In most gauge theories weak neutral currents appear as a natural consequence of the models, but the specific properties are not predicted in a general way. In purely leptonic interactions the structure of these currents can be tested without making assumptions about the weak couplings of the hadrons. The influence of neutral currents appearing in the process e + e - → μ + μ - can be measured using the polarization of the outgoing myons. (BJ) [de

  9. Language as Pure Potential

    Science.gov (United States)

    Park, Joseph Sung-Yul

    2016-01-01

    Language occupies a crucial position in neoliberalism, due to the reimagination of language as commodified skill. This paper studies the role of language ideology in this transformation by identifying a particular ideology that facilitates this process, namely the ideology which views language as pure potential. Neoliberalism treats language as a…

  10. Dahlbeck and Pure Ontology

    Science.gov (United States)

    Mackenzie, Jim

    2016-01-01

    This article responds to Johan Dahlbeck's "Towards a pure ontology: Children's bodies and morality" ["Educational Philosophy and Theory," vol. 46 (1), 2014, pp. 8-23 (EJ1026561)]. His arguments from Nietzsche and Spinoza do not carry the weight he supposes, and the conclusions he draws from them about pedagogy would be…

  11. The toxicity of particles from combustion processes

    International Nuclear Information System (INIS)

    Henderson, R.F.; Mauderly, J.L.

    1991-01-01

    The pulmonary toxicity of inhaled particles will depend on their size, solubility and inherent toxicity. Many combustion-derived particles, such as soot and fly ash, are of a respirable size and, being poorly soluble, are retained for prolonged periods in the lung. The acute toxicity of fly ash from coal combustion was compared to that of a known toxic particle, alpha-quartz, by exposures of rats to 35 mg/m 3 of each type of particle for 7 hr/day, 5 days/wk for 4 wk. The acute pulmonary toxicity was measured by analysis of bronchoalveolar lavage fluid. One year after the exposures, fibrosis with granulomas was observed in the quartz-exposed rats, while little or no fibrosis developed in the fly-ash-exposed rats. The toxicity of soot from diesel exhaust was determined by chronic (30 mo) exposures of rats, 7 hr/day, 5 days/wk to exhaust containing 0.35, 3.5 or 7.0 mg/m 3 soot. The two higher exposures caused persistent pulmonary inflammation, fibrosis and neoplasmas. Rats exposed to the lowest concentration demonstrated no toxic responses and there was no life shortening caused by any exposure. Ongoing comparative studies indicate that pure carbon black particles cause responses similar to those caused by diesel exhaust, indicating that much of the toxicity induced by the diesel soot results from the presence of the large lung burdens of carbonaceous particles

  12. Liquid crystal phase behaviour of attractive disc-like particles.

    Science.gov (United States)

    Wu, Liang; Jackson, George; Müller, Erich A

    2013-08-08

    We employ a generalized van der Waals-Onsager perturbation theory to construct a free energy functional capable of describing the thermodynamic properties and orientational order of the isotropic and nematic phases of attractive disc particles. The model mesogen is a hard (purely repulsive) cylindrical disc particle decorated with an anisotropic square-well attractive potential placed at the centre of mass. Even for isotropic attractive interactions, the resulting overall inter-particle potential is anisotropic, due to the orientation-dependent excluded volume of the underlying hard core. An algebraic equation of state for attractive disc particles is developed by adopting the Onsager trial function to characterize the orientational order in the nematic phase. The theory is then used to represent the fluid-phase behaviour (vapour-liquid, isotropic-nematic, and nematic-nematic) of the oblate attractive particles for varying values of the molecular aspect ratio and parameters of the attractive potential. When compared to the phase diagram of their athermal analogues, it is seen that the addition of an attractive interaction facilitates the formation of orientationally-ordered phases. Most interestingly, for certain aspect ratios, a coexistence between two anisotropic nematic phases is exhibited by the attractive disc-like fluids.

  13. Chapter 12. Pure Tap Water Hydraulic Systems and Applications

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders

    1997-01-01

    Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications.......Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications....

  14. Synthesis of pure and Sr-doped LaGaO{sub 3}, LaFeO{sub 3} and LaCoO{sub 3} and Sr,Mg-doped LaGaO{sub 3} for ITSOFC application using different wet chemical routes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M. [National Metallurgical Laboratory-Madras Center, CSIR Madras Complex, Chennai 600113 (India); Srikanth, S. [National Metallurgical Laboratory-Madras Center, CSIR Madras Complex, Chennai 600113 (India)], E-mail: s_srikanth_99@yahoo.com; Ravikumar, B.; Alex, T.C.; Das, S.K. [National Metallurgical Laboratory, Jamshedpur 831007 (India)

    2009-02-15

    Pure and Sr-doped LaGaO{sub 3}, LaFeO{sub 3} and LaCoO{sub 3} and Sr,Mg-doped LaGaO{sub 3} were synthesized by various wet chemical routes, namely combustion, co-precipitation and citrate-gel methods. The effect of the various process parameters on the phase purity, particle size and surface area and morphology of the synthesized powders were determined by XRD, simultaneous TG-DTA, laser light scattering, BET and scanning electron microscopy. The stability of the synthesized pure phases in oxidizing and reducing atmosphere was also studied by thermogravimetry. It was observed that pure and Sr-doped single perovskite phases of lanthanum ferrite, cobaltite and gallate and Sr,Mg-doped lanthanum gallate could be synthesized by combustion and citrate-gel methods under suitable process conditions. Synthesis using the co-precipitation method yielded incomplete reaction irrespective of the calcination temperature adopted. The citrate-gel method yielded better powder properties in terms of particle size and morphology and surface area compared to combustion synthesis. It was found that pure and Sr-doped lanthanum ferrite, lanthanum cobaltite, lanthanum gallate and Sr,Mg-doped lanthanum gallate were stable in the oxidizing atmosphere. In the reducing atmosphere, pure and Sr-doped lanthanum ferrite and Sr,Mg-doped lanthanum gallate was found to be stable at least during the timeframe of the thermogravimetric experiment whereas pure and Sr-doped lanthanum cobaltite was partially reduced in hydrogen atmosphere.

  15. Mechanisms of photosensitization by drugs: Involvement of tyrosines in the photomodification of proteins mediated by tiaprofenic acid in vitro.

    Science.gov (United States)

    Miranda, M A; Castell, J V; Sarabia, Z; Hernández, D; Puertes, I; Morera, I M; Gómez-Lechón, M J

    1997-10-01

    The photosensitizing potential of drugs must be related to their photoreactivity towards the target biomolecules. In this context, a representative photosensitizing drug (tiaprofenic acid) was co-irradiated with a model protein, bovine serum albumin (BSA). This led to a significant degree of protein crosslinking and to the formation of trace amounts of drug-BSA photoadducts. Amino acid analysis of the hydrolysed (HC1) protein showed that His and Tyr undergo a dramatic decrease (approx. 90%) as a consequence of drug-mediated photodynamic processes. When the drug was irradiated in the presence of the pure amino acids, extensive phototransformation of the latter was observed. Other photosensitizing drugs gave rise to similar processes when irradiated in the presence of BSA or the isolated amino acids. In conclusion, histidine and tyrosine appear to be key sites for the photosensitized damage to proteins. Photodegradation of the isolated amino acids in vitro may be an indicator of the photosensitizing potential of drugs.

  16. [Aerodynamic focusing of particles and heavy molecules

    International Nuclear Information System (INIS)

    de la Mora, J.F.

    1990-01-01

    By accelerating a gas containing suspended particles or large molecules through a converging nozzle, the suspended species may be focused and therefore used to write fine lines on a surface. Our objective was to study the limits on how narrow this focal region could be as a function of particle size. We find that, for monodisperse particles with masses m p some 3.6 x 10 5 times larger than the molecular mass m of the carrier gas (diameters above some 100 angstrom), there is no fundamental obstacle to directly write submicron features. However, this conclusion has been verified experimentally only with particles larger than 0.1 μm. Experimental, theoretical and numerical studies on the defocusing role of Brownian motion for very small particles or heavy molecules have shown that high resolution (purely aerodynamic) focusing is impossible with volatile molecules whose masses are typically smaller than 1000 Dalton. For these, the minimal focal diameter after optimization appears to be 5√(m/m p ) times the nozzle diameter d n . But combinations of focused lasers and aerodynamic focusing appear as promising for direct writing with molecular precursors. Theoretical and numerical schemes capable of predicting the evolution of the focusing beam, including Brownian motion effects, have been developed, although further numerical work would be desirable. 11 refs

  17. Production of pure metals

    Science.gov (United States)

    Philipp, W. H.; Marsik, S. J.; May, C. E. (Inventor)

    1974-01-01

    A process for depositing elements by irradiating liquids is reported. Ultra pure elements are precipitated from aqueous solutions or suspensions of compounds. A solution of a salt of a metal to be prepared is irradiated, and the insoluble reaction product settles out. Some chemical compounds may also be prepared in this manner.

  18. Entropy balance in pure interactions of open quantum systems

    International Nuclear Information System (INIS)

    Urigu, R.

    1989-01-01

    Processes are considered in which a statistical ensemble w of quantum systems is split into ensembles, or channels (w i ), conditional to the occurrence, with respective probabilities (p i w ), of associated macroscopic effects. These processes are described here by a family of operations T i : w → p i w w iT , which remarkably generalize the usual state reductions of the nondestructive measurements. In a previous work it was proved that the microscopic entropy of the given open system decreases or at most remains constant if all the T i are pure operations, i.e., they transform pure states into pure states; it is proved here that the increase in entropy of the external world, computed as S Tm (w) = - Σ i p i w lg p i w , is sufficient to compensate for such an entropy decrease whenever the T i are all pure operations of the first kind, whereas whenever some T i is pure of the second kind (or nonpure, too), the total entropy, computed as above, may decrease

  19. Transport of inertial particles in a turbulent premixed jet flame

    International Nuclear Information System (INIS)

    Battista, F; Picano, F; Casciola, C M; Troiani, G

    2011-01-01

    The heat release, occurring in reacting flows, induces a sudden fluid acceleration which particles follow with a certain lag, due to their finite inertia. Actually, the coupling between particle inertia and the flame front expansion strongly biases the spatial distribution of the particles, by inducing the formation of localized clouds with different dimensions downstream the thin flame front. A possible indicator of this preferential localization is the so-called Clustering Index, quantifying the departure of the actual particle distribution from the Poissonian, which would correspond to a purely random spatial arrangement. Most of the clustering is found in the flame brush region, which is spanned by the fluctuating instantaneous flame front. The effect is significant also for very light particles. In this case a simple model based on the Bray-Moss-Libby formalism is able to account for most of the deviation from the Poissonian. When the particle inertia increases, the effect is found to increases and persist well within the region of burned gases. The effect is maximum when the particle relaxation time is of the order of the flame front time scale. The evidence of this peculiar source of clustering is here provided by data from a direct numerical simulation of a turbulent premixed jet flame and confirmed by experimental data.

  20. The influence of particles of a minor component on the matrix strength of sodium chloride

    NARCIS (Netherlands)

    Van Veen, B.; van der Voort Maarschalk, Kees; Bolhuis, G.K; Gons, M.; Zuurman, K.; Frijlink, H.W

    2002-01-01

    This paper deals with the matrix strength of sodium chloride particles in pure sodium chloride tablets and in tablets compressed from binary mixtures of sodium chloride with low concentrations of pregelatinised starch. Because this study concerns the strength of the sodium chloride matrix, the

  1. Decreasing biotoxicity of fume particles produced in welding process.

    Science.gov (United States)

    Yu, Kuei-Min; Topham, Nathan; Wang, Jun; Kalivoda, Mark; Tseng, Yiider; Wu, Chang-Yu; Lee, Wen-Jhy; Cho, Kuk

    2011-01-30

    Welding fumes contain heavy metals, such as chromium, manganese, and nickel, which cause respiratory diseases and cancer. In this study, a SiO(2) precursor was evaluated as an additive to the shielding gas in an arc welding process to reduce the biotoxicity caused by welding fume particles. Transmission electron micrographic images show that SiO(2) coats on the surface of welding fume particles and promotes particle agglomeration. Energy dispersive X-ray spectroscopy further shows that the relative amount of silicon in these SiO(2)-coated agglomerates is higher than in baseline agglomerates. In addition, Escherichia coli (E. coli) exposed to different concentrations of pure SiO(2) particles generated from the arc welding process exhibits similar responses, suggesting that SiO(2) does not contribute to welding fume particle toxicity. The trend of E. coli growth in different concentrations of baseline welding fume particle shows the most significant inhibition occurs in higher exposure concentrations. The 50% lethal logarithmic concentrations for E. coli in arc welding particles of baseline, 2%, and 4.2% SiO(2) precursor additives were 823, 1605, and 1800 mg/L, respectively. Taken together, these results suggest that using SiO(2) precursors as an additive to arc welding shielding gas can effectively reduce the biotoxicity of welding fume. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Peccei-Quinn symmetric pure gravity mediation

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Jason L.; Olive, Keith A. [University of Minnesota, William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, Minneapolis, MN (United States); Ibe, Masahiro [University of Tokyo, ICRR, Kashiwa (Japan); University of Tokyo, Kavli IPMU (WPI), TODIAS, Kashiwa (Japan); Yanagida, Tsutomu T. [University of Tokyo, Kavli IPMU (WPI), TODIAS, Kashiwa (Japan)

    2014-07-15

    Successful models of pure gravity mediation (PGM) with radiative electroweak symmetry breaking can be expressed with as few as two free parameters, which can be taken as the gravitinomass and tan β. These models easily support a 125-126 GeV Higgs mass at the expense of a scalar spectrum in the multi-TeV range and a much lighter wino as the lightest supersymmetric particle. In these models, it is also quite generic that the Higgs mixing mass parameter, μ, which is determined by the minimization of the Higgs potential is also in the multi-TeV range. For μ > 0, the thermal relic density of winos is too small to account for the darkmatter. The same is true for μ < 0 unless the gravitinomass is of order 500 TeV. Here, we consider the origin of a multi-TeV μ parameter arising from the breakdown of a Peccei-Quinn (PQ) symmetry. A coupling of the PQ-symmetry breaking field, P, to the MSSM Higgs doublets, naturally leads to a value of μ ∝ left angle P right angle {sup 2}/M{sub P} ∝ O(100) TeV and of the order that is required in PGM models. In this case, axions make up the dark matter or some fraction of the dark matter with the remainder made up from thermal or non-thermal winos. We also provide solutions to the problem of isocurvature fluctuations with axion dark matter in this context. (orig.)

  3. Foundations of relational particle dynamics

    International Nuclear Information System (INIS)

    Anderson, Edward

    2008-01-01

    Relational particle dynamics include the dynamics of pure shape and cases in which absolute scale or absolute rotation are additionally meaningful. These are interesting as regards the absolute versus relative motion debate as well as the discussion of conceptual issues connected with the problem of time in quantum gravity. In spatial dimensions 1 and 2, the relative configuration spaces of shapes are n-spheres and complex projective spaces, from which knowledge I construct natural mechanics on these spaces. I also show that these coincide with Barbour's indirectly constructed relational dynamics by performing a full reduction on the latter. Then the identification of the configuration spaces as n-spheres and complex projective spaces, for which spaces much mathematics is available, significantly advances the understanding of Barbour's relational theory in spatial dimensions 1 and 2. I also provide the parallel study of a new theory for which the position and scale are purely relative but the orientation is absolute. The configuration space for this is an n-sphere regardless of the spatial dimension, which renders this theory a more tractable arena for investigation of implications of scale invariance than Barbour's theory itself

  4. Scavenger receptor-mediated endocytosis by sinusoidal cells in rat bone marrow

    International Nuclear Information System (INIS)

    Geoffroy, J.S.

    1987-01-01

    Endocytosis of serum albumin by sinusoidal endothelial cells in rat bone marrow was investigated initially at the ultrastructural level with subsequent biochemical investigation of the specificity mediating this event. Bovine serum albumin adsorbed to 20nm colloidal gold particles (AuBSA) was chosen as the electron microscopic probe. Morphological data strongly suggested that a receptor was involved in uptake of AuBSA. Confirmation of receptor involvement in the uptake of AuBSA by marrow sinusoidal endothelial cells was achieved utilizing an in situ isolated hind limb perfusion protocol in conjunction with unlabeled, radiolabeled, and radio-/colloidal gold labeled probes. The major findings of competition and saturation experiments were: (1) endocytosis of AuBSA was mediated by a receptor for modified/treated serum albumin; (2) endocytosis of formaldehyde-treated serum albumin was mediated by a binding site which may be the same or closely related to the site responsible for the uptake of AuBSA; and (3) endocytosis of native untreated albumin was not mediated by receptor and probably represents fluid-phase pinocitosis

  5. Nigeria Journal of Pure and Applied Physics: Journal Sponsorship

    African Journals Online (AJOL)

    Nigeria Journal of Pure and Applied Physics: Journal Sponsorship. Journal Home > About the Journal > Nigeria Journal of Pure and Applied Physics: Journal Sponsorship. Log in or Register to get access to full text downloads.

  6. Nigeria Journal of Pure and Applied Physics: Site Map

    African Journals Online (AJOL)

    Nigeria Journal of Pure and Applied Physics: Site Map. Journal Home > About the Journal > Nigeria Journal of Pure and Applied Physics: Site Map. Log in or Register to get access to full text downloads.

  7. Two-Particle Four-Mode Interferometer for Atoms

    Science.gov (United States)

    Dussarrat, Pierre; Perrier, Maxime; Imanaliev, Almazbek; Lopes, Raphael; Aspect, Alain; Cheneau, Marc; Boiron, Denis; Westbrook, Christoph I.

    2017-10-01

    We present a free-space interferometer to observe two-particle interference of a pair of atoms with entangled momenta. The source of atom pairs is a Bose-Einstein condensate subject to a dynamical instability, and the interferometer is realized using Bragg diffraction on optical lattices, in the spirit of our recent Hong-Ou-Mandel experiment. We report on an observation ruling out the possibility of a purely mixed state at the input of the interferometer. We explain how our current setup can be extended to enable a test of a Bell inequality on momentum observables.

  8. Exact Solutions of Fragmentation Equations with General Fragmentation Rates and Separable Particles Distribution Kernels

    Directory of Open Access Journals (Sweden)

    S. C. Oukouomi Noutchie

    2014-01-01

    Full Text Available We make use of Laplace transform techniques and the method of characteristics to solve fragmentation equations explicitly. Our result is a breakthrough in the analysis of pure fragmentation equations as this is the first instance where an exact solution is provided for the fragmentation evolution equation with general fragmentation rates. This paper is the key for resolving most of the open problems in fragmentation theory including “shattering” and the sudden appearance of infinitely many particles in some systems with initial finite particles number.

  9. Covariant spinor representation of iosp(d,2/2) and quantization of the spinning relativistic particle

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, P.D.; Corney, S.P.; Tsohantjis, I. [School of Mathematics and Physics, University of Tasmania, Hobart Tas (Australia)

    1999-12-03

    A covariant spinor representation of iosp(d,2/2) is constructed for the quantization of the spinning relativistic particle. It is found that, with appropriately defined wavefunctions, this representation can be identified with the state space arising from the canonical extended BFV-BRST quantization of the spinning particle with admissible gauge fixing conditions after a contraction procedure. For this model, the cohomological determination of physical states can thus be obtained purely from the representation theory of the iosp(d,2/2) algebra. (author)

  10. Black hole attractors and pure spinors

    International Nuclear Information System (INIS)

    Hsu, Jonathan P.; Maloney, Alexander; Tomasiello, Alessandro

    2006-01-01

    We construct black hole attractor solutions for a wide class of N = 2 compactifications. The analysis is carried out in ten dimensions and makes crucial use of pure spinor techniques. This formalism can accommodate non-Kaehler manifolds as well as compactifications with flux, in addition to the usual Calabi-Yau case. At the attractor point, the charges fix the moduli according to Σf k = Im(CΦ), where Φ is a pure spinor of odd (even) chirality in IIB (A). For IIB on a Calabi-Yau, Φ = Ω and the equation reduces to the usual one. Methods in generalized complex geometry can be used to study solutions to the attractor equation

  11. Black Hole Attractors and Pure Spinors

    International Nuclear Information System (INIS)

    Hsu, Jonathan P.; Maloney, Alexander; Tomasiello, Alessandro

    2006-01-01

    We construct black hole attractor solutions for a wide class of N = 2 compactifications. The analysis is carried out in ten dimensions and makes crucial use of pure spinor techniques. This formalism can accommodate non-Kaehler manifolds as well as compactifications with flux, in addition to the usual Calabi-Yau case. At the attractor point, the charges fix the moduli according to Σf k = Im(CΦ), where Φ is a pure spinor of odd (even) chirality in IIB (A). For IIB on a Calabi-Yau, Φ = (Omega) and the equation reduces to the usual one. Methods in generalized complex geometry can be used to study solutions to the attractor equation

  12. Interaction of nucleic acids with Coomassie Blue G-250 in the Bradford assay.

    Science.gov (United States)

    Wenrich, Broc R; Trumbo, Toni A

    2012-09-15

    The Bradford assay has been used reliably for decades to quantify protein in solution. The analyte is incubated in acidic solution of Coomassie Blue G-250 dye, during which reversible ionic and nonionic binding interactions form. Bradford assay color yields were determined for salmon, bovine, shrimp, and kiwi fruit genomic DNA; baker's yeast RNA; bovine serum albumin (BSA); and hen egg lysozyme. Pure DNA and RNA bound the dye, with color yields of 0.0017 mg⁻¹ cm⁻¹ and 0.0018 mg⁻¹ cm⁻¹, respectively. The nucleic acid-Coomassie Blue response was significant, at roughly 9% of that for BSA and 18% of that for lysozyme. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Pure Air`s Bailly scrubber: A four-year retrospective

    Energy Technology Data Exchange (ETDEWEB)

    Manavi, G.B.; Vymazal, D.C. [Pure Air, Allentown, PA (United States); Sarkus, T.A. [Dept. of Energy, Pittsburgh, PA (United States)

    1997-12-31

    Pure Air`s Advanced Flue Gas Desulfurization (AFGD) Clean Coal Project has completed four highly successful years of operation at NIPSCO`s Bailly Station. As part of their program, Pure Air has concluded a six-part study of system performance. This paper summarizes the results of the demonstration program, including AFGD performance on coals ranging from 2.0--2.4% sulfur. The paper highlights novel aspects of the Bailly facility, including pulverized limestone injection, air rotary sparger for oxidation, wastewater evaporation system and the production of PowerChip{reg_sign} gypsum. Operations and maintenance which have led to the facility`s notable 99.47% availability record are also discussed. A project company, Pure Air on the Lake Limited Partnership, owns the AFGD facility. Pure Air was the turn key contractor and Air Products and Chemicals, Inc. is the operator of the AFGD system.

  14. A deformable particle-in-cell method for advective transport in geodynamic modeling

    Science.gov (United States)

    Samuel, Henri

    2018-06-01

    This paper presents an improvement of the particle-in-cell method commonly used in geodynamic modeling for solving pure advection of sharply varying fields. Standard particle-in-cell approaches use particle kernels to transfer the information carried by the Lagrangian particles to/from the Eulerian grid. These kernels are generally one-dimensional and non-evolutive, which leads to the development of under- and over-sampling of the spatial domain by the particles. This reduces the accuracy of the solution, and may require the use of a prohibitive amount of particles in order to maintain the solution accuracy to an acceptable level. The new proposed approach relies on the use of deformable kernels that account for the strain history in the vicinity of particles. It results in a significant improvement of the spatial sampling by the particles, leading to a much higher accuracy of the numerical solution, for a reasonable computational extra cost. Various 2D tests were conducted to compare the performances of the deformable particle-in-cell method with the particle-in-cell approach. These consistently show that at comparable accuracy, the deformable particle-in-cell method was found to be four to six times more efficient than standard particle-in-cell approaches. The method could be adapted to 3D space and generalized to cases including motionless transport.

  15. Shunting arc plasma source for pure carbon ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y. [Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2012-02-15

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm{sup 2} at the peak of the pulse.

  16. Shunting arc plasma source for pure carbon ion beam.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.

  17. Corrosion of pure OFHC-copper in simulated repository conditions

    International Nuclear Information System (INIS)

    Aaltonen, P.

    1990-04-01

    The research program 'Corrosion of pure OFHC-copper in simulated repository conditions' was planned to provide an experimental evaluation with respect to the theoretical calculations and forecasts made for the corrosion behaviour of pure copper in bentonite groundwater environments at temperatures between 20-80 deg C. The aim of this study in the first place is to evaluate the effects of groundwater composition, bentonite and temperature on the equilibrium and possible corrosion reactions between pure copper and the simulated repository environment. The progress report includes the results obtained after 36 months exposure time

  18. Pure Electric and Pure Magnetic Resonances in Near-Infrared Metal Double-Triangle Metamaterial Arrays

    International Nuclear Information System (INIS)

    Cao Zhi-Shen; Pan Jian; Chen Zhuo; Zhan Peng; Min Nai-Ben; Wang Zhen-Lin

    2011-01-01

    We experimentally and numerically investigate the optical properties of metamaterial arrays composed of double partially-overlapped metallic nanotriangles fabricated by an angle-resolved nanosphere lithography. We demonstrate that each double-triangle can be viewed as an artificial magnetic element analogous to the conventional metal split-ring-resonator. It is shown that under normal-incidence conditions, individual double-triangle can exhibit a strong local magnetic resonance, but the collective response of the metamaterial arrays is purely electric because magnetic resonances of the two double-triangles in a unit cell having opposite openings are out of phase. For oblique incidences the metamaterial arrays are shown to support a pure magnetic response at the same frequency band. Therefore, switchable electric and magnetic resonances are achieved in double-triangle arrays. Moreover, both the electric and magnetic resonances are shown to allow for a tunability over a large spectral range down to near-infrared. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. MR imaging of ore for heap bioleaching studies using pure phase encode acquisition methods

    Science.gov (United States)

    Fagan, Marijke A.; Sederman, Andrew J.; Johns, Michael L.

    2012-03-01

    Various MRI techniques were considered with respect to imaging of aqueous flow fields in low grade copper ore. Spin echo frequency encoded techniques were shown to produce unacceptable image distortions which led to pure phase encoded techniques being considered. Single point imaging multiple point acquisition (SPI-MPA) and spin echo single point imaging (SESPI) techniques were applied. By direct comparison with X-ray tomographic images, both techniques were found to be able to produce distortion-free images of the ore packings at 2 T. The signal to noise ratios (SNRs) of the SESPI images were found to be superior to SPI-MPA for equal total acquisition times; this was explained based on NMR relaxation measurements. SESPI was also found to produce suitable images for a range of particles sizes, whereas SPI-MPA SNR deteriorated markedly as particles size was reduced. Comparisons on a 4.7 T magnet showed significant signal loss from the SPI-MPA images, the effect of which was accentuated in the case of unsaturated flowing systems. Hence it was concluded that SESPI was the most robust imaging method for the study of copper ore heap leaching hydrology.

  20. The average angular distribution of emitted particles in multi-step compound processes

    International Nuclear Information System (INIS)

    Bonetti, R.; Carlson, B.V.; Hussein, M.S.; Toledo, A.S. de

    1983-05-01

    A simple model for the differential cross-section that describes the angular distribution of emitted particles in heavy-ion induced multi-step compound reactions, is constructed. It is suggested that through a careful analysis of the deviations of the experimental data from the pure Hauser-Feshbach behaviour may shed light on the physical nature of the pre-compound, heavy-ion configuration. (Author) [pt

  1. Superposing pure quantum states with partial prior information

    Science.gov (United States)

    Dogra, Shruti; Thomas, George; Ghosh, Sibasish; Suter, Dieter

    2018-05-01

    The principle of superposition is an intriguing feature of quantum mechanics, which is regularly exploited in many different circumstances. A recent work [M. Oszmaniec et al., Phys. Rev. Lett. 116, 110403 (2016), 10.1103/PhysRevLett.116.110403] shows that the fundamentals of quantum mechanics restrict the process of superimposing two unknown pure states, even though it is possible to superimpose two quantum states with partial prior knowledge. The prior knowledge imposes geometrical constraints on the choice of input states. We discuss an experimentally feasible protocol to superimpose multiple pure states of a d -dimensional quantum system and carry out an explicit experimental realization for two single-qubit pure states with partial prior information on a two-qubit NMR quantum information processor.

  2. The origin, composition and distribution of 'hot particles' derived from the nuclear industry and dispersed in the environment

    International Nuclear Information System (INIS)

    Hamilton, E.I.; Clifton, R.J.

    1987-10-01

    Today, recent sediments of the Esk estuary, Cumbria, contain few hot particles derived from BNF compared with those deposited during peak releases of 1972-74. Overall the hot particles account for about 10% of the total alpha particle activity of the sediments. At some horizons, in buried sediments, concentrations of hot particles probably represent rapid transport on the sea surface under conditions of minimum erosion. Similar particles, usually less well defined, occur in accreting sediments but are corroded. Representative types of the most radioactive particles have been isolated and contain Pu, Am and Cm but only trace amounts of naturally occuring alpha emitters. Microprobe analysis of these particles often shows the presence of fairly pure uranium as the major element. On the basis of radioactivity and elemental composition many of these particles appear to be irradiated nuclear fuel debris. (author)

  3. Influence of agitation intensity on flotation rate of apatite particles

    Directory of Open Access Journals (Sweden)

    Francisco Gregianin Testa

    Full Text Available Abstract The agitation intensity has a directly influence on flotation performance, lifting the particles and promoting the contact of bubbles and particles. In this paper, the energy input by the agitation on apatite flotation was investigated. The influence of pulp agitation in the flotation rate of particles with different sizes and two dosage levels was evaluated by batch testing. The flotation tests were conducted in an oscillating grid flotation cell (OGC, developed to promote a near isotropic turbulence environment. The cell is able to control the intensity of agitation and measure the energy transferred to the pulp phase. A sample of pure apatite was crushed (P80=310µm, characterized and floated with sodium oleate as collector. Four levels of energy dissipation, from 0.1 to 2 kWm-3, and two levels of collector dosage are used during the tests. The flotation kinetics by particle size were determined in function of the energy transferred. The results show a strong influence of the agitation intensity on the apatite flotation rate with both low and high dosage. For fine particles, when increasing the energy input, the flotation rate increase too, and this fact can be attributed to elevation of bubble-particle collisions. The kinetic result for the coarse particles demonstrated a reduction of the flotation rate whenever the energy input for this particle size was increased, whereby the turbulence caused by the agitation promotes the detachment of bubble-particle.

  4. Minimal covariant observables identifying all pure states

    Energy Technology Data Exchange (ETDEWEB)

    Carmeli, Claudio, E-mail: claudio.carmeli@gmail.com [D.I.M.E., Università di Genova, Via Cadorna 2, I-17100 Savona (Italy); I.N.F.N., Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Heinosaari, Teiko, E-mail: teiko.heinosaari@utu.fi [Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku (Finland); Toigo, Alessandro, E-mail: alessandro.toigo@polimi.it [Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); I.N.F.N., Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy)

    2013-09-02

    It has been recently shown by Heinosaari, Mazzarella and Wolf (2013) [1] that an observable that identifies all pure states of a d-dimensional quantum system has minimally 4d−4 outcomes or slightly less (the exact number depending on d). However, no simple construction of this type of minimal observable is known. We investigate covariant observables that identify all pure states and have minimal number of outcomes. It is shown that the existence of this kind of observables depends on the dimension of the Hilbert space.

  5. Critical opalescence in the pure Coulomb system

    Science.gov (United States)

    Bobrov, V. B.; Trigger, S. A.

    2011-04-01

    Based on the dielectric formalism and quantum field theory methods, the phenomenon of critical opalescence is explained for light scattering in pure matter as a two-component electron-nuclear system with Coulomb interaction. A similar phenomenon is shown to occur in the case of neutron scattering in pure substances as well. The obtained results are valid for quantum case and arbitrary strong Coulomb interaction. Thus, the relations between structure factors derived for the electron-nuclear system are the exact result of the quantum statistical mechanics.

  6. Synthesis and characterization of magnetite nanoparticles having different cover layer and investigation of cover layer effect on the adsorption of lysozyme and bovine serum albumin.

    Science.gov (United States)

    Shah, Muhammad Tariq; Alveroglu, Esra

    2017-12-01

    In this study, differently coated superparamagnetic Fe 3 O 4 (magnetite) nanoparticles were synthesized, characterized and used for lysozyme (Ly) and bovine serum albumin (BSA) adsorption. SiO 2 , carbon nanotubes (CNTs) and graphene were used for covering the readily synthesized magnetite nanoparticles to elucidate the effect of cover layer on the protein adsorption kinetics and capacities of nanostructure. XRD, FTIR, AFM, SEM, VSM and fluorescence measurements were used for the characterization of the samples and investigating the adsorption kinetics of Ly and BSA by these nanoparticles. The average particle size of the Fe 3 O 4 nanoparticles are approximately found as 10nm and VSM measurement shows that the Fe 3 O 4 particles have superparamagnetic behavior with no hysteresis and remnant. The adsorption kinetic of proteins on nanosized material is followed via fluorescence method. All the nanostructures with different cover layers obey pseudo first order kinetics and SiO 2 coated nanoparticles show the fastest kinetics and capabilities for Ly and BSA adsorption. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron

    International Nuclear Information System (INIS)

    Nie, F L; Zheng, Y F; Wei, S C; Hu, C; Yang, G

    2010-01-01

    Bulk nanocrystalline pure iron rods were fabricated by the equal channel angular pressure (ECAP) technique up to eight passes. The microstructure and grain size distribution, natural immersion and electrochemical corrosion in simulated body fluid, cellular responses and hemocompatibility were investigated in this study. The results indicate that nanocrystalline pure iron after severe plastic deformation (SPD) would sustain durable span duration and exhibit much stronger corrosion resistance than that of the microcrystalline pure iron. The interaction of different cell lines reveals that the nanocrystalline pure iron stimulates better proliferation of fibroblast cells and preferable promotion of endothelialization, while inhibits effectively the viability of vascular smooth muscle cells (VSMCs). The burst of red cells and adhesion of the platelets were also substantially suppressed on contact with the nanocrystalline pure iron in blood circulation. A clear size-dependent behavior from the grain nature deduced by the gradual refinement microstructures was given and well-behaved in vitro biocompatibility of nanocrystalline pure iron was concluded.

  8. An unaccounted fraction of marine biogenic CaCO3 particles.

    Directory of Open Access Journals (Sweden)

    Mikal Heldal

    Full Text Available Biogenic production and sedimentation of calcium carbonate in the ocean, referred to as the carbonate pump, has profound implications for the ocean carbon cycle, and relate both to global climate, ocean acidification and the geological past. In marine pelagic environments coccolithophores, foraminifera and pteropods have been considered the main calcifying organisms. Here, we document the presence of an abundant, previously unaccounted fraction of marine calcium carbonate particles in seawater, presumably formed by bacteria or in relation to extracellular polymeric substances. The particles occur in a variety of different morphologies, in a size range from 100 µm, and in a typical concentration of 10(4-10(5 particles L(-1 (size range counted 1-100 µm. Quantitative estimates of annual averages suggests that the pure calcium particles we counted in the 1-100 µm size range account for 2-4 times more CaCO(3 than the dominating coccolithophoride Emiliania huxleyi and for 21% of the total concentration of particulate calcium. Due to their high density, we hypothesize that the particles sediment rapidly, and therefore contribute significantly to the export of carbon and alkalinity from surface waters. The biological and environmental factors affecting the formation of these particles and possible impact of this process on global atmospheric CO(2 remains to be investigated.

  9. Compact objects in pure Lovelock theory

    Science.gov (United States)

    Dadhich, Naresh; Hansraj, Sudan; Chilambwe, Brian

    For static fluid interiors of compact objects in pure Lovelock gravity (involving only one Nth order term in the equation), we establish similarity in solutions for the critical odd and even d = 2N + 1, 2N + 2 dimensions. It turns out that in critical odd d = 2N + 1 dimensions, there cannot exist any bound distribution with a finite radius, while in critical even d = 2N + 2 dimensions, all solutions have similar behavior. For exhibition of similarity, we would compare star solutions for N = 1, 2 in d = 4 Einstein and d = 6 in Gauss-Bonnet theory, respectively. We also obtain the pure Lovelock analogue of the Finch-Skea model.

  10. Resonance-sum model for Reggeization in the scattering of particles with arbitrary spin

    International Nuclear Information System (INIS)

    King, M.J.; Durand, L.; Wali, K.C.

    1976-01-01

    Using a field-theoretic description of nonzero-spin particles, center-of-mass helicity amplitudes have been obtained which correspond to pole terms in four-particle reactions with arbitrary-spin external particles. Construction of a van Hove-Durand--type model starting from these helicity amplitudes (which have a well specified kinematic structure in the field-theoretic description) is discussed. Special attention has been paid to boson-fermion scattering. Straightforward Reggeization of helicity amplitudes assuming linear trajectories is known to produce parity doubling. One cannot have a pure fermion Regge pole unaccompanied by cuts. This conclusion has important consequences on both fitting data using Regge formulas in, say, backward scattering in boson-fermion scattering and theoretical considerations such as dual bootstrap models

  11. Sodium Caseinate-Carrageenan Biopolymeric Nanocomplexes as a Carrier of Vitamin D: Study of Complex Formation, Particles Size and Encapsulation Efficiency

    Directory of Open Access Journals (Sweden)

    Maryam Khoshmanzar

    2014-04-01

    Full Text Available The protein-polysaccharide complex-based nanocapsule is one type of polymeric nanocarrier which can be potentially useful for encapsulation of hydrophobic nutraceuticals. In this research, caseinate-carrageenan complex was used for encapsulation of vitamin D. The complex formation between caseinate and carrageenan was carried out by lowering the pH under isoelectric point of protein. The Fourier transform infrared spectroscopy (FTIR and differential scanning colorimetry (DSC confirmed complex formation between carrageenan, caseinate and vitamin D. The particle size of 1% caseinate particles was in the range of 150-300 nanometer and by addition of vitamin D the particle size increased to 450-750 nanometer. Moreover, carrageenan of all concentrations (at constant concentration of caseinate (1% and pH4.9 resulted in lower particle size below 100 nanometer. The stability of caseinate and its complex formation with carrageenan showed that encapsulation was achieved at 45% efficiency and also vitamin D stability (during 5 days storage was higher in nanocomplex compared to pure caseinate particles (60-63% compared to 53%. The complex formation between caseinate and carrageenan was carried out by pH decreasing under isoelectric point of protein. The FTIR and DSC confirmed complex formation between carrageenan, caseinate and vitamin D. The particle size of caseinate 1% particles were in the range of 150 -300 nanometer and with adding vitamin D, particle size increased to 450-750 nanometer. Moreover, adding carrageenan at all used concentration (at constant concentration of caseinate (1% and pH4.9 resulted in reduced particle size to less than 100 nanometer and vitamin D stability (during 5 days storage was higher (60-63% in nanocomplex compared to pure caseinate particles (53%.The protein-polysaccharide complex based nanocapsule is one type of the polymeric nanocarriers which can potentially be used for encapsulation of hydrophobic nutraceuticals. In

  12. Rheology of dense suspensions of non colloidal particles

    Science.gov (United States)

    Guazzelli, Élisabeth

    2017-06-01

    Dense suspensions are materials with broad applications both in industrial processes (e.g. waste disposal, concrete, drilling muds, metalworking chip transport, and food processing) and in natural phenomena (e.g. flows of slurries, debris, and lava). Despite its long research history and its practical relevance, the mechanics of dense suspensions remain poorly understood. The major difficulty is that the grains interact both by hydrodynamic interactions through the liquid and by mechanical contact. These systems thus belong to an intermediate regime between pure suspensions and granular flows. We show that we can unify suspension and granular rheology under a common framework by transferring the frictional approach of dry granular media to wet suspensions of spherical particles. We also discuss non-Newtonian behavior such as normal-stress differences and shear-induced migration. Beyond the classical problem of dense suspension of hard spheres which is far from being completely resolved, there are also entirely novel avenues of study concerning more complex mixtures of particles and fluids such as those involving other types of particles (e.g. fibers) or non-Newtonian fluids that we will also address.

  13. Inorganic salts interact with oxalic acid in submicron particles to form material with low hygroscopicity and volatility

    Science.gov (United States)

    Drozd, G.; Woo, J.; Häkkinen, S. A. K.; Nenes, A.; McNeill, V. F.

    2014-05-01

    Volatility and hygroscopicity are two key properties of organic aerosol components, and both are strongly related to chemical identity. While the hygroscopicities of pure salts, di-carboxylic acids (DCA), and DCA salts are known, the hygroscopicity of internal mixtures of these components, as they are typically found in the atmosphere, has not been fully characterized. Here we show that inorganic-organic component interactions typically not considered in atmospheric models can lead to very strongly bound metal-organic complexes and greatly affect aerosol volatility and hygroscopicity; in particular, the bi-dentate binding of DCA to soluble inorganic ions. We have studied the volatility of pure, dry organic salt particles and the hygroscopicity of internal mixtures of oxalic acid (OxA, the dominant DCA in the atmosphere) and a number of salts, both mono- and di-valent. The formation of very low volatility organic salts was confirmed, with minimal evaporation of oxalate salt particles below 75 °C. Dramatic increases in the cloud condensation nuclei (CCN) activation diameter for particles with di-valent salts (e.g., CaCl2) and relatively small particle volume fractions of OxA indicate that standard volume additivity rules for hygroscopicity do not apply. Thus small organic compounds with high O : C ratios are capable of forming low-volatility and very low hygroscopicity particles. Given current knowledge of the formation mechanisms of OxA and M-Ox salts, surface enrichment of insoluble M-Ox salts is expected. The resulting formation of an insoluble coating of metal-oxalate salts can explain low-particle hygroscopicities. The formation of particles with a hard coating could offer an alternative explanation for observations of glass-like particles without the need for a phase transition.

  14. On pure spinor formalism for quantum superstring and spinor moving frame

    International Nuclear Information System (INIS)

    Bandos, Igor A

    2013-01-01

    The D = 10 pure spinor constraint can be solved in terms of spinor moving frame variables v -α q and eight-component complex null vector Λ + q , Λ + q Λ + q =0, which can be related to the κ-symmetry ghost. Using this and similar solutions for the conjugate pure spinor and other elements of the non-minimal pure spinor formalism, we present a (hopefully useful) reformulation of the measure of the pure spinor path integral for superstring in terms of products of Cartan forms corresponding to the coset of 10D Lorentz group and to the coset of complex orthogonal group SO(8, C). Our study suggests a possible complete reformulation of the pure spinor superstring in terms of new irreducible set of variable. (paper)

  15. Cohomology in the Pure Spinor Formalism for the Superstring

    International Nuclear Information System (INIS)

    Berkovits, Nathan

    2000-01-01

    A manifestly super-Poincare covariant formalism for the superstring has recently been constructed using a pure spinor variable. Unlike the covariant Green-Schwarz formalism, this new formalism is easily quantized with a BRST operator and tree-level scattering amplitudes have been evaluated in a manifestly covariant manner. In this paper, the cohomology of the BRST operator in the pure spinor formalism is shown to give the usual light-cone Green-Schwarz spectrum. Although the BRST operator does not directly involve the Virasoro constraint, this constraint emerges after expressing the pure spinor variable in terms of SO(8) variables. (author)

  16. The potential of kiwifruit puree as a clean label ingredient to stabilize high pressure pasteurized cloudy apple juice during storage.

    Science.gov (United States)

    Yi, Junjie; Kebede, Biniam; Kristiani, Kristiani; Buvé, Carolien; Van Loey, Ann; Grauwet, Tara; Hendrickx, Marc

    2018-07-30

    In the fruit juice industry, high pressure (HP) processing has become a commercial success. However, enzymatic browning, cloud loss, and flavor changes during storage remain challenges. The aim of this study is to combine kiwifruit puree and HP pasteurization (600 MPa/3 min) to stabilize cloudy apple juice during storage at 4 °C. A wide range of targeted and untargeted quality characteristics was evaluated using a multivariate approach. Due to high ascorbic acid content and high viscosity, kiwifruit puree allowed to prevent enzymatic browning and phase separation of an apple-kiwifruit mixed juice. Besides, no clear changes in organic acids, viscosity, and particle size distribution were detected in mixed juice during storage. Sucrose of apple and mixed juices decreased with glucose and fructose increasing during storage. The volatile changes of both juices behaved similar, mainly esters being degraded. Sensory evaluation demonstrated consumer preferred the aroma of mixed juice compared to apple juice. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Albumin/gentamicin microspheres produced by supercritical assisted atomization: optimization of size, drug loading and release.

    Science.gov (United States)

    Della Porta, G; Adami, R; Del Gaudio, P; Prota, L; Aquino, R; Reverchon, E

    2010-11-01

    In this work, the supercritical assisted atomization (SAA) is proposed, for the first time, not only as a micronization technology but also as a thermal coagulation process for the production of bovine serum albumin (BSA) microspheres charged with Gentamicin sulfate (GS). Particularly, different water solutions of BSA/GS were processed by SAA to produce protein microspheres with different size and antibiotic content. SAA precipitation temperature was selected in the range 100-130 °C to generate protein coagulation and to recover micronized BSA in form of hydrophobic aggregates; GS loading was varied between 10% and 50% (w/w) with an encapsulation efficiency which often reached 100%. In all cases, spherical and noncoalescing particles were successfully produced with a mean particle size of 2 µm and with a standard deviation of about ±1 µm. The microspheres also showed a good stability and constant water content after 60 days of storage. The release profiles of the entrapped drug were monitored using Franz cells to evaluate the possible application of the produced microspheres in wound dressing formulations. Particularly, the microspheres with a BSA/GS ratio of 4:1 after the first burst effect (of 40% of GS loaded) were able to release the GS continuously over 10 days. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  18. Particles identification using nuclear emulsion in OPERA

    International Nuclear Information System (INIS)

    Manai, K.

    2007-10-01

    The Opera experiment will try to confirm the ν μ → ν τ oscillations by the appearance of the ν τ in a pure ν μ beam. Indeed, a neutrino beam almost pure is produced at CERN (CNGS Beam) and sent to the Opera detector. The detector is composed of two muons spectrometers and a target formed by walls of bricks. Each brick is an alternation of lead plates and emulsions. This modular structure allows to reconstruct the kink topology of the τ lepton decay with a high spatial resolution. The great challenge of the Opera experiment is to detect the ν τ interactions with the less uncertainty. To reduce this uncertainty it is essential to identify with the greatest efficiency any background event not including a tau particle. My work permits to reduce background. My principal contribution concerns the selection development, the reconstruction and the muons identification at low energy. This work is based on the setting of variables related to the deposit energy and the multiple scattering. Previously, only deposit energy was used in the analyses of pion/muon separation. This study allows doubling the muon identification efficiency at low energy. This leads to increase the background events rejection in Opera and to decrease the contamination by 30%. I also studied the nuclear emulsions capacity to identify charged particles through the analysis of a test beam carried out by the Nagoya group. This test contains protons and pions with different energies. My work proves that the European scan system gives comparable results with those obtained by the Japanese scan system. (author)

  19. Properties and distribution of pure GA-sequences of mammalian genomes.

    Directory of Open Access Journals (Sweden)

    Guenter Albrecht-Buehler

    Full Text Available The article describes DNA sequences of mammalian genomes that are longer than 50 bases, but consist exclusively of G's and A's ('pure GA-sequences'. Although their frequency of incidence should be 10(-16 or smaller, the chromosomes of human, chimpanzee, dog, cat, rat, and mouse contained many tens of thousands of them ubiquitously located along the chromosomes with a species-dependent density, reaching sizes of up to 1300 [b]. With the exception of a small number of poly-A-, poly-G-, poly-GA-, and poly-GAAA-sequences (combined <0.5%, all pure GA-sequences of the mammals tested were unique individuals, contained several repeated short GA-containing motifs, and shared a common hexa-nucleotide spectrum. At most 2% of the human GA-sequences were transcribed into mRNAs; all others were not coding for proteins. Although this could have made them less subject to natural selection, they contained many [corrected] times fewer point mutations than one should expect from the genome at large. As to the presence of other sequences with similarly restricted base contents, there were approximately as many pure TC-sequences as pure GA-sequences, but many fewer pure AC-, TA, and TG-sequences. There were practically no pure GC-sequences. The functions of pure GA-sequences are not known. Supported by a number of observations related to heat shock phenomena, the article speculates that they serve as genomic sign posts which may help guide polymerases and transcription factors to their proper targets, and/or as spatial linkers that help generate the 3-dimensional organization of chromatin.

  20. Application of plug-plug technique to ACE experiments for discovery of peptides binding to a larger target protein: a model study of calmodulin-binding fragments selected from a digested mixture of reduced BSA.

    Science.gov (United States)

    Saito, Kazuki; Nakato, Mamiko; Mizuguchi, Takaaki; Wada, Shinji; Uchimura, Hiromasa; Kataoka, Hiroshi; Yokoyama, Shigeyuki; Hirota, Hiroshi; Kiso, Yoshiaki

    2014-03-01

    To discover peptide ligands that bind to a target protein with a higher molecular mass, a concise screening methodology has been established, by applying a "plug-plug" technique to ACE experiments. Exploratory experiments using three mixed peptides, mastoparan-X, β-endorphin, and oxytocin, as candidates for calmodulin-binding ligands, revealed that the technique not only reduces the consumption of the protein sample, but also increases the flexibility of the experimental conditions, by allowing the use of MS detection in the ACE experiments. With the plug-plug technique, the ACE-MS screening methodology successfully selected calmodulin-binding peptides from a random library with diverse constituents, such as protease digests of BSA. Three peptides with Kd values between 8-147 μM for calmodulin were obtained from a Glu-C endoprotease digest of reduced BSA, although the digest showed more than 70 peaks in its ACE-MS electropherogram. The method established here will be quite useful for the screening of peptide ligands, which have only low affinities due to their flexible chain structures but could potentially provide primary information for designing inhibitors against the target protein. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The effect of pure state structure on nonequilibrium dynamics

    International Nuclear Information System (INIS)

    Newman, C M; Stein, D L

    2008-01-01

    Motivated by short-range Ising spin glasses, we review some rigorous results and their consequences for the relation between the number/nature of equilibrium pure states and nonequilibrium dynamics. Two of the consequences for spin glass dynamics following an instantaneous deep quench to a temperature with broken spin flip symmetry are: (1) almost all initial configurations lie on the boundary between the basins of attraction of multiple pure states; (2) unless there are uncountably many pure states with almost all pairs having zero overlap, there can be no equilibration to a pure state as time t → ∞. We discuss the relevance of these results to the difficulty of equilibration of spin glasses. We also review some results concerning the 'nature versus nurture' problem of whether the large-t behavior of both ferromagnets and spin glasses following a deep quench is determined more by the initial configuration (nature) or by the dynamics realization (nurture)

  2. Control of Partial Coalescence of Self-Assembled Metal Nano-Particles across Lyotropic Liquid Crystals Templates towards Long Range Meso-Porous Metal Frameworks Design

    Directory of Open Access Journals (Sweden)

    Ludovic F. Dumée

    2015-10-01

    Full Text Available The formation of purely metallic meso-porous metal thin films by partial interface coalescence of self-assembled metal nano-particles across aqueous solutions of Pluronics triblock lyotropic liquid crystals is demonstrated for the first time. Small angle X-ray scattering was used to study the influence of the thin film composition and processing conditions on the ordered structures. The structural characteristics of the meso-structures formed demonstrated to primarily rely on the lyotropic liquid crystal properties while the nature of the metal nano-particles used as well as the their diameters were found to affect the ordered structure formation. The impact of the annealing temperature on the nano-particle coalescence and efficiency at removing the templating lyotropic liquid crystals was also analysed. It is demonstrated that the lyotropic liquid crystal is rendered slightly less thermally stable, upon mixing with metal nano-particles and that low annealing temperatures are sufficient to form purely metallic frameworks with average pore size distributions smaller than 500 nm and porosity around 45% with potential application in sensing, catalysis, nanoscale heat exchange, and molecular separation.

  3. Biomimetic routes to nanoscale-toughened oxide ceramics

    Science.gov (United States)

    Deschaume, Olivier

    In this work, a novel anion exchange technique has been developed and optimised in order to prepare extra-pure, hydroxide-free solutions of aluminium polyoxocations (A113 and A130) as well as for the preparation of nanosized, highly monodisperse aluminium hydroxide particles in the particle size range 20-200nm. In order for the evolution and composition of the resulting systems to be monitored, an array of characterisation techniques including 27A1 NMR, dynamic light scattering, po-tentiometry, conductometry and UV-Vis spectroscopy, have been implemented and complemented with successful data treatment strategies. The quantitative data obtained indicates that the static anion exchange method is a soft, environmentally friendly, low-cost, energy-saving and convenient procedure for the preparation of Al- containing model systems. The A1 species obtained can be used for high-precision model studies on A1 speciation, and serve as nanosize precursors to a variety of Al-containing materials. The use of these pure A1 precursors has a clear advantage in materials synthesis arising from an improved understanding and better control of A1 speciation. In a second development of the project, the model systems have been used in a nanotectonic approach to biomimetic materials synthesis, with possible applications to the optimisation of Al-containing materials such as ceramics or composite films. Bearing this aim in mind, the interactions of the prepared aluminium species with the model protein BSA and a bioelastomer, elastin, were monitored and the resulting composite materials characterised. The methodology developed for the synthesis and characterisation of pure A1 species and A1 species/biomolecule systems is a robust base for further studies spanning research fields such as Chemistry, Biology or Environmental sciences, and possess a large potential for application to industrial products and processes.

  4. Use of accelerators in activation analysis, specially for the characterization of pure substances

    International Nuclear Information System (INIS)

    Engelmann, C.

    1979-01-01

    The principal means of activation, their respective potential performance and their preferential fields of application are briefly reviewed. The possibilities offered by charged particles and gamma photons where the determination of light elements or of other impurities is concerned, in pure substances, are discussed. Examples, relating to the evaluation of boron, carbon, nitrogen, oxygen or fluorine levels in metals (Na, Al, Ti, Ni, Cu, Zr, Mo, Ta, W, Pb, etc.), in alloys (PbCuTe, PbSnCd) and in semiconductors (Si, AsGa, InP, etc.) are presented. Where some of these products are concerned, the results obtained by nuclear methods are compared with the values provided by other analytical techniques. The superiority of the first, when the concentration levels of these impurities are less than 1 μg.g -1 , is clearly apparent [fr

  5. Novel regenerative large-volume immobilized enzyme reactor: preparation, characterization and application.

    Science.gov (United States)

    Ruan, Guihua; Wei, Meiping; Chen, Zhengyi; Su, Rihui; Du, Fuyou; Zheng, Yanjie

    2014-09-15

    A novel large-volume immobilized enzyme reactor (IMER) on small column was prepared with organic-inorganic hybrid silica particles and applied for fast (10 min) and oriented digestion of protein. At first, a thin enzyme support layer was formed in the bottom of the small column by polymerization with α-methacrylic acid and dimethacrylate. After that, amino SiO2 particles was prepared by the sol-gel method with tetraethoxysilane and 3-aminopropyltriethoxysilane. Subsequently, the amino SiO2 particles were activated by glutaraldehyde for covalent immobilization of trypsin. Digestive capability of large-volume IMER for proteins was investigated by using bovine serum albumin (BSA), cytochrome c (Cyt-c) as model proteins. Results showed that although the sequence coverage of the BSA (20%) and Cyt-c (19%) was low, the large-volume IMER could produce peptides with stable specific sequence at 101-105, 156-160, 205-209, 212-218, 229-232, 257-263 and 473-451 of the amino sequence of BSA when digesting 1mg/mL BSA. Eight of common peptides were observed during each of the ten runs of large-volume IMER. Besides, the IMER could be easily regenerated by reactivating with GA and cross-linking with trypsin after breaking the -C=N- bond by 0.01 M HCl. The sequence coverage of BSA from regenerated IMER increased to 25% comparing the non-regenerated IMER (17%). 14 common peptides. accounting for 87.5% of first use of IMER, were produced both with IMER and regenerated IMER. When the IMER was applied for ginkgo albumin digestion, the sequence coverage of two main proteins of ginkgo, ginnacin and legumin, was 56% and 55%, respectively. (Reviewer 2) Above all, the fast and selective digestion property of the large-volume IMER indicated that the regenerative IMER could be tentatively used for the production of potential bioactive peptides and the study of oriented protein digestion. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Visual processing in pure alexia

    DEFF Research Database (Denmark)

    Starrfelt, Randi; Habekost, Thomas; Gerlach, Christian

    2010-01-01

    affected. His visual apprehension span was markedly reduced for letters and digits. His reduced visual processing capacity was also evident when reporting letters from words. In an object decision task with fragmented pictures, NN's performance was abnormal. Thus, even in a pure alexic patient with intact...

  7. TEM analysis of the microstructure in TiF3-catalyzed and pure MgH2 during the hydrogen storage cycling

    International Nuclear Information System (INIS)

    Danaie, Mohsen; Mitlin, David

    2012-01-01

    We utilized transmission electron microscopy (TEM) analysis, with a cryogenically cooled sample stage, to detail the microstructure of partially transformed pure and titanium fluoride-catalyzed magnesium hydride powder during hydrogenation cycling. The TiF 3 -catalyzed MgH 2 powder demonstrated excellent hydrogen storage kinetics at various temperatures, whereas the uncatalyzed MgH 2 showed significant degradation in both kinetics and capacity. TEM analysis on the partially hydrogen absorbed and partially desorbed pure Mg(MgH 2 ) revealed a large fraction of particles that were either not transformed at all or were completely transformed. On the other hand, in the MgH 2 +TiF 3 system it was much easier to identify regions with both the hydride and the metal phase coexisting in the same particle. This enabled us to establish the metal hydride orientation relationship (OR) during hydrogen absorption. The OR was determined to be (1 1 0)MgH 2 || (−1 1 0 −1)Mg and [−1 1 1]MgH 2 || [0 1 −1 1]Mg. During absorption the number density of the hydride nuclei does not show a dramatic increase due the presence of TiF 3 . Conversely, during desorption the TiF 3 catalyst substantially increases the number of the newly formed Mg crystallites, which display a strong texture correlation with respect to the parent MgH 2 phase. Titanium fluoride also promotes extensive twinning in the hydride phase.

  8. Encapsulation of albumin in self-assembled layer-by-layer microcapsules: comparison of co-precipitation and adsorption techniques.

    Science.gov (United States)

    Labala, Suman; Mandapalli, Praveen Kumar; Bhatnagar, Shubhmita; Venuganti, Venkata Vamsi Krishna

    2015-01-01

    The objective of this study is to prepare and characterize polymeric self-assembled layer-by-layer microcapsules (LbL-MC) to deliver a model protein, bovine serum albumin (BSA). The aim is to compare the BSA encapsulation in LbL-MC using co-precipitation and adsorption methods. In co-precipitation method, BSA was co-precipitated with growing calcium carbonate particles to form a core template. Later, poly(styrene sulfonate) and poly(allylamine hydrochloride) were sequentially adsorbed onto the CaCO3 templates. In adsorption method, preformed LbL-MC were incubated with BSA and encapsulation efficiency is optimized for pH and salt concentration. Free and BSA-encapsulated LbL-MC were characterized using Zetasizer, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy and differential scanning calorimeter. Later, in vitro release studies were performed using dialysis membrane method at pH 4, 7.4 and 9. Results from Zetasizer and SEM showed free LbL-MC with an average size and zeta-potential of 2.0 ± 0.6 μm and 8.1 ± 1.9 mV, respectively. Zeta-potential of BSA-loaded LbL-MC was (-)7.4 ± 0.7 mV and (-)5.7 ± 1.0 mV for co-precipitation and adsorption methods, respectively. In adsorption method, BSA encapsulation in LbL-MC was found to be greater at pH 6.0 and 0.2 M NaCl. Co-precipitation method provided four-fold greater encapsulation efficiency (%) of BSA in LbL-MC compared with adsorption method. At pH 4, the BSA release from LbL-MC was extended up to 120 h. Polyacrylamide gel electrophoresis showed that BSA encapsulated in LBL-MC through co-precipitation is stable toward trypsin treatment. In conclusion, co-precipitation method provided greater encapsulation of BSA in LbL-MC. Furthermore, LbL-MC can be developed as carriers for pH-controlled protein delivery.

  9. Experimental and numerical study on penetration of micro/nano diamond particle into metal by underwater shock wave

    Directory of Open Access Journals (Sweden)

    S Tanaka

    2016-09-01

    Full Text Available In order to develop composite materials, new attempting was conducted. When an explosive is exploded in water, underwater shock wave is generated. Metal plate is accelerated by the underwater shock wave and collided with diamond particles at high velocity. In this paper, pure aluminum and magnesium alloy plates are used as matrix. Micro and nano sized diamond particles were used as reinforcement. Micro diamond particles were closely coated on metal surface. Some of micro diamond particles were penetrated into aluminum. Improvement of base metal property (wearing resistance was verified by wear test for recovering metal plate. In order to confirm the deformation of the aluminum plate during the collision with diamond particles, simplified numerical simulation was conducted by using LS-DYNA software. From the result of numerical simulation, large deformation of aluminum and process of particle penetration were verified.

  10. Laser-induced generation of pure tensile stresses

    International Nuclear Information System (INIS)

    Niemz, M.H.; Lin, C.P.; Pitsillides, C.; Cui, J.; Doukas, A.G.; Deutsch, T.F.

    1997-01-01

    While short compressive stresses can readily be produced by laser ablation, the generation of pure tensile stresses is more difficult. We demonstrate that a 90 degree prism made of polyethylene can serve to produce short and pure tensile stresses. A compressive wave is generated by ablating a thin layer of strongly absorbing ink on one surface of the prism with a Q-switched frequency-doubled Nd:YAG laser. The compressive wave driven into the prism is reflected as a tensile wave by the polyethylene-air interface at its long surface. The low acoustic impedance of polyethylene makes it ideal for coupling tensile stresses into liquids. In water, tensile stresses up to -200bars with a rise time of the order of 20 ns and a duration of 100 ns are achieved. The tensile strength of water is determined for pure tensile stresses lasting for 100 ns only. The technique has potential application in studying the initiation of cavitation in liquids and in comparing the effect of compressive and tensile stress transients on biological media. copyright 1997 American Institute of Physics

  11. Pure spinor formalism as an N = 2 topological string

    International Nuclear Information System (INIS)

    Berkovits, Nathan

    2005-01-01

    Following suggestions of Nekrasov and Siegel, a non-minimal set of fields are added to the pure spinor formalism for the superstring. Twisted c-circumflex = 3 N = 2 generators are then constructed where the pure spinor BRST operator is the fermionic spin-one generator, and the formalism is interpreted as a critical topological string. Three applications of this topological string theory include the super-Poincare covariant computation of multiloop superstring amplitudes without picture-changing operators, the construction of a cubic open superstring field theory without contact-term problems, and a new four-dimensional version of the pure spinor formalism which computes F-terms in the spacetime action

  12. Pure soliton solutions of some nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Fuchssteiner, B.

    1977-01-01

    A general approach is given to obtain the system of ordinary differential equations which determines the pure soliton solutions for the class of generalized Korteweg-de Vries equations. This approach also leads to a system of ordinary differential equations for the pure soliton solutions of the sine-Gordon equation. (orig.) [de

  13. Pure Surface Texture Mapping Technology and it's Application for Mirror Image

    Directory of Open Access Journals (Sweden)

    Wei Feng Wang

    2013-02-01

    Full Text Available Based on the study of pure surface texture mapping technology, pure texture surface rendering method is proposed. The method is combined pure surface texture rendering and view mirror, real-time rendering has an index of refraction, reflection, and the flow of water ripple effect. Through the experimental verification of the validity of the algorithm.

  14. Nigeria Journal of Pure and Applied Physics: About this journal

    African Journals Online (AJOL)

    Nigeria Journal of Pure and Applied Physics: About this journal. Journal Home > Nigeria Journal of Pure and Applied Physics: About this journal. Log in or Register to get access to full text downloads.

  15. Suspended particles only marginally reduce pyrethroid toxicity to the freshwater invertebrate Gammarus pulex (L.) during pulse exposure

    DEFF Research Database (Denmark)

    Rasmussen, Jes; Cedergreen, Nina; Kronvang, Brian

    2016-01-01

    Current ecotoxicological research on particle associated pyrethroids in freshwater systems focuses almost exclusively on sediment-exposure scenarios and sediment-dwelling macroinvertebrates. We studied how suspended particles influence acute effects of lambda-cyhalothrin and bifenthrin on the epi......Current ecotoxicological research on particle associated pyrethroids in freshwater systems focuses almost exclusively on sediment-exposure scenarios and sediment-dwelling macroinvertebrates. We studied how suspended particles influence acute effects of lambda-cyhalothrin and bifenthrin....... MM suspensions adsorbed a variable fraction of pyrethroids (10% for bifenthrin and 70% for lambda-cyhalothrin) but did not significantly change the concentration–response relationship compared to pure pyrethroid treatments. Behavioral responses and immobilisation rate of G. pulex were reduced...

  16. Pure type systems with subtyping

    NARCIS (Netherlands)

    Zwanenburg, J.; Girard, J.-Y.

    1999-01-01

    We extend the framework of Pure Type Systems with subtyping, as found in F = ¿ . This leads to a concise description of many existing systems with subtyping, and also to some new interesting systems. We develop the meta-theory for this framework, including Subject Reduction and Minimal Typing. The

  17. How Low Can You Go: Spatial Frequency Sensitivity in Pure Alexia

    DEFF Research Database (Denmark)

    Starrfelt, Randi; Nielsen, S.; Habekost, T.

    Objective: Pure alexia is a seemingly selective deficit in reading, follow- ing focal lesions to the posterior left hemisphere. The hallmark feature of pure alexia is a word length effect in single word reading, where reaction times may increase with hundreds of milliseconds per additional letter...... in a word. Other language functions, including writing, are intact. It has been suggested that pure alexia is caused by a general deficit in visual processing, one that affects reading disproportionally compared to other visual stimuli. The most concrete hypothesis to date suggests that pure alexia...... is caused by a lack of sensitivity to particular spatial frequencies (e.g., Fiset et al., 2006), and that this results in the characteristic word length effect, as well as effects of letter confusability on reading times. Participants and Methods: We have tested this hypothesis in a patient with pure alexia...

  18. Influence of ECAP process on mechanical and corrosion properties of pure Mg and ZK60 magnesium alloy for biodegradable stent applications

    Science.gov (United States)

    Mostaed, Ehsan; Vedani, Maurizio; Hashempour, Mazdak; Bestetti, Massimiliano

    2014-01-01

    Equal channel angular pressing (ECAP) was performed on ZK60 alloy and pure Mg in the temperature range 150–250 °C. A significant grain refinement was detected after ECAP, leading to an ultrafine grain size (UFG) and enhanced formability during extrusion process. Comparing to conventional coarse grained samples, fracture elongation of pure Mg and ZK60 alloy were significantly improved by 130% and 100%, respectively, while the tensile strength remained at high level. Extrusion was performed on ECAP processed billets to produce small tubes (with outer/inner diameter of 4/2.5 mm) as precursors for biodegradable stents. Studies on extruded tubes revealed that even after extrusion the microstructure and microhardness of the UFG ZK60 alloy were almost stable. Furthermore, pure Mg tubes showed an additional improvement in terms of grain refining and mechanical properties after extrusion. Electrochemical analyses and microstructural assessments after corrosion tests demonstrated two major influential factors in corrosion behavior of the investigated materials. The presence of Zn and Zr as alloying elements simultaneously increases the nobility by formation of a protective film and increase the local corrosion damage by amplifying the pitting development. ECAP treatment decreases the size of the second phase particles thus improving microstructure homogeneity, thereby decreasing the localized corrosion effects. PMID:25482411

  19. Research on the Applicable Method of Valuation of Pure Electric Used vehicles

    Science.gov (United States)

    Cai, yun; Tan, zhengping; Wang, yidong; Mao, pan

    2018-03-01

    With the rapid growth in the ownership of pure electric vehicles, the research on the valuation of used electric vehicles has become the key to the development of the pure electric used vehicle market. The paper analyzed the application of the three value assessment methods, current market price method, capitalized earning method and replacement cost method, in pure electric used vehicles, and draws a conclusion that the replacement cost method is more suitable for pure electric used car. At the same time, the article also conducted a parametric correction exploration research, aiming at the characteristics of pure electric vehicles and replacement cost of the constituent factors. Through the analysis of the applicability parameters of physical devaluation, functional devaluation and economic devaluation, the revised replacement cost method can be used for the valuation of purely used electric vehicles for private use.

  20. Pattern Nulling of Linear Antenna Arrays Using Backtracking Search Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Kerim Guney

    2015-01-01

    Full Text Available An evolutionary method based on backtracking search optimization algorithm (BSA is proposed for linear antenna array pattern synthesis with prescribed nulls at interference directions. Pattern nulling is obtained by controlling only the amplitude, position, and phase of the antenna array elements. BSA is an innovative metaheuristic technique based on an iterative process. Various numerical examples of linear array patterns with the prescribed single, multiple, and wide nulls are given to illustrate the performance and flexibility of BSA. The results obtained by BSA are compared with the results of the following seventeen algorithms: particle swarm optimization (PSO, genetic algorithm (GA, modified touring ant colony algorithm (MTACO, quadratic programming method (QPM, bacterial foraging algorithm (BFA, bees algorithm (BA, clonal selection algorithm (CLONALG, plant growth simulation algorithm (PGSA, tabu search algorithm (TSA, memetic algorithm (MA, nondominated sorting GA-2 (NSGA-2, multiobjective differential evolution (MODE, decomposition with differential evolution (MOEA/D-DE, comprehensive learning PSO (CLPSO, harmony search algorithm (HSA, seeker optimization algorithm (SOA, and mean variance mapping optimization (MVMO. The simulation results show that the linear antenna array synthesis using BSA provides low side-lobe levels and deep null levels.

  1. Quasinormal modes in pure de Sitter spacetimes

    International Nuclear Information System (INIS)

    Du Daping; Wang Bin; Su Ruheng

    2004-01-01

    We have studied scalar perturbations as well as fermion perturbations in pure de Sitter spacetimes. For scalar perturbations we have shown that well-defined quasinormal modes in d-dimensions can exist provided that the mass of scalar field m>(d-1/2l). The quasinormal modes of fermion perturbations in three and four dimensional cases have also been investigated. We found that different from other dimensional cases, in the three dimensional pure de Sitter spacetime there is no quasinormal mode for the s-wave. This interesting difference caused by the spacial dimensions is true for both scalar and fermion perturbations

  2. Controlling the size and morphology of precipitated calcite particles by the selection of solvent composition

    Science.gov (United States)

    Konopacka-Łyskawa, Donata; Kościelska, Barbara; Karczewski, Jakub

    2017-11-01

    Precipitated calcium carbonate is used as an additive in the manufacture of many products. Particles with specific characteristics can be obtained by the selection of precipitation conditions, including temperature and the composition of solvent. In this work, calcium carbonate particles were obtained in the reaction of calcium hydroxide with carbon dioxide at 65 °C. Initial Ca(OH)2 suspensions were prepared in pure water and aqueous solutions of ethylene glycol or glycerol of the concentration range up to 20% (vol.). The course of reaction was monitored by conductivity measurements. Precipitated solids were analyzed by FTIR, XRD, SEM and the particles size distribution was determined by a laser diffraction method. The adsorption of ethylene glycol or glycerol on the surface of scalenohedral and rhombohedral calcite was testes by a normal-phase high-performance liquid chromatography. The addition of organic solvents changed the viscosity of reaction mixtures, the rate of carbon dioxide absorption and the solubility of inorganic components and therefore influence calcium carbonate precipitation conditions. All synthesized calcium carbonate products were in a calcite form. Scalenohedral calcite crystals were produced when water was a liquid phase, whereas addition of organic solvents resulted in the formation of rhombo-scalenohedral particles. The increase in organic compounds concentration resulted in the decrease of mean particles size from 2.4 μm to 1.7 μm in ethylene glycol solutions and to 1.4 μm in glycerol solutions. On the basis of adsorption tests, it was confirm that calcite surface interact stronger with glycerol than ethylene glycol. The interaction between scalenohedral calcite and used organic additives was higher in comparison to the pure rhombohedral form applied as a stationary phase.

  3. Dynamics of many-body localization in the presence of particle loss

    Science.gov (United States)

    van Nieuwenburg, EPL; Yago Malo, J.; Daley, AJ; Fischer, MH

    2018-01-01

    At long times, residual couplings to the environment become relevant even in the most isolated experiments, a crucial difficulty for the study of fundamental aspects of many-body dynamics. A particular example is many-body localization in a cold-atom setting, where incoherent photon scattering introduces both dephasing and particle loss. Whereas dephasing has been studied in detail and is known to destroy localization already on the level of non-interacting particles, the effect of particle loss is less well understood. A difficulty arises due to the ‘non-local’ nature of the loss process, complicating standard numerical tools using matrix product decomposition. Utilizing symmetries of the Lindbladian dynamics, we investigate the particle loss on both the dynamics of observables, as well as the structure of the density matrix and the individual states. We find that particle loss in the presence of interactions leads to dissipation and a strong suppression of the (operator space) entanglement entropy. Our approach allows for the study of the interplay of dephasing and loss for pure and mixed initial states to long times, which is important for future experiments using controlled coupling of the environment.

  4. Nigeria Journal of Pure and Applied Physics: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. Nigeria Journal of Pure and Applied Physics publishes papers of the highest quality and significance in specific areas of physics, pure and applied, as listed below. The journal content reflects core physics disciplines, but is also open to a broad range of topics whose central theme falls within the bounds ...

  5. Production of tomato puree: an alternative to conservation of locally ...

    African Journals Online (AJOL)

    Mo

    suggest a mean of conservation of the surplus of production by processing tomato into puree. The most produced local ... processing into puree on industrial scale. The main .... functions contributing to the reaction of non-enzymatic browning ...

  6. International Standardization of Pure Beta Emitters

    International Nuclear Information System (INIS)

    Los Arcos, Jose Maria; Rodriguez, Leonor

    2006-01-01

    The paper describes the traditional methods of standardization of Pure Beta Emitters, their principal characteristics, advantage and drawbacks. It does comparisons between two metrological LSC methods: Triple to double coincidence ratio (TDCR) method and the CIEMAT/NIST method and presents the result obtained with several Key Comparisons serving as practical test of both methods. Both of them represent the siferrit of methods of standardization of pure (and mixed decay) radionuclides. ESIR WG of CCRI(II) is to implement a reference exchange system for the permanent equivalence of β, α and electron capture nuclides, similar to traditional SIR gamma. ESIR project is currently testing a new XAN scintillator and operational tests of the whole system at BIPM are expected by the end of 2006 (test restricted to ESIR NMI members)

  7. Square-root measurement for pure states

    International Nuclear Information System (INIS)

    Huang Siendong

    2005-01-01

    Square-root measurement is a very useful suboptimal measurement in many applications. It was shown that the square-root measurement minimizes the squared error for pure states. In this paper, the least squared error problem is reformulated and a new proof is provided. It is found that the least squared error depends only on the average density operator of the input states. The properties of the least squared error are then discussed, and it is shown that if the input pure states are uniformly distributed, the average probability of error has an upper bound depending on the least squared error, the rank of the average density operator, and the number of the input states. The aforementioned properties help explain why the square-root measurement can be effective in decoding processes

  8. Synthesis of pure colloidal silver nanoparticles with high electroconductivity for printed electronic circuits: the effect of amines on their formation in aqueous media.

    Science.gov (United States)

    Natsuki, Jun; Abe, Takao

    2011-07-01

    This paper describes a practical and convenient method to prepare stable colloidal silver nanoparticles for use in printed electronic circuits. The method uses a dispersant and two kinds of reducing agents including 2-(dimethylamino) ethanol (DMAE), which play important roles in the reduction of silver ions in an aqueous medium. The effect of DMAE and dispersant, as well as the factors affecting particle size and morphology are investigated. In the formation of the silver nanoparticles, reduction occurs rapidly at room temperature and the silver particles can be separated easily from the mixture in a short time. In addition, organic solvents are not used. Pure, small and relatively uniform particles with a diameter less than 10 nm can be obtained that exhibit high electroconductivity. The silver nanoparticles are stable, and can be isolated as a dried powder that can be fully redispersed in deionized water. This method of producing colloidal silver nanoparticles will find practical use in electronics applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Purely Functional Structured Programming

    OpenAIRE

    Obua, Steven

    2010-01-01

    The idea of functional programming has played a big role in shaping today's landscape of mainstream programming languages. Another concept that dominates the current programming style is Dijkstra's structured programming. Both concepts have been successfully married, for example in the programming language Scala. This paper proposes how the same can be achieved for structured programming and PURELY functional programming via the notion of LINEAR SCOPE. One advantage of this proposal is that m...

  10. Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode

    Directory of Open Access Journals (Sweden)

    P. Seibert

    2004-01-01

    Full Text Available The possibility to calculate linear-source receptor relationships for the transport of atmospheric trace substances with a Lagrangian particle dispersion model (LPDM running in backward mode is shown and presented with many tests and examples. This mode requires only minor modifications of the forward LPDM. The derivation includes the action of sources and of any first-order processes (transformation with prescribed rates, dry and wet deposition, radioactive decay, etc.. The backward mode is computationally advantageous if the number of receptors is less than the number of sources considered. The combination of an LPDM with the backward (adjoint methodology is especially attractive for the application to point measurements, which can be handled without artificial numerical diffusion. Practical hints are provided for source-receptor calculations with different settings, both in forward and backward mode. The equivalence of forward and backward calculations is shown in simple tests for release and sampling of particles, pure wet deposition, pure convective redistribution and realistic transport over a short distance. Furthermore, an application example explaining measurements of Cs-137 in Stockholm as transport from areas contaminated heavily in the Chernobyl disaster is included.

  11. DEVELOPMENT OF VEGETABLE PUREES AND DRINKS BY LACTIC ACID FERMENTATION

    Directory of Open Access Journals (Sweden)

    At. Kraevska

    2014-03-01

    Full Text Available The object of this work was to investigate the possibility for development of vegetable purees and drinks by lactic acid fermentation. It was found that by the direct lactic acid fermentation of Lb.plantarum strain 226/1 the vitamin composition of vegetable purees is preserved and the biological value is increased. Drinks, prepared from fermented vegetable purees were remarkable with the pleasant lactic acid taste, the sucrose-acid composition was stable and balanced and they can be used both in the rational and in the dietary nutrition.

  12. CMCTS stabilized Fe3O4 particles with extremely low toxicity as highly efficient near-infrared photothermal agents for in vivo tumor ablation

    Science.gov (United States)

    Shen, Song; Kong, Fenfen; Guo, Xiaomeng; Wu, Lin; Shen, Haijun; Xie, Meng; Wang, Xinshi; Jin, Yi; Ge, Yanru

    2013-08-01

    With the potential uses of photothermal therapy (PTT) in cancer treatment with excellent efficacy, and the growing concerns about the nanotoxicity of hyperthermia agents such as carbon nanotubes and gold-based nanomaterials, the importance of searching for a biocompatible hyperthermia agent cannot be emphasized too much. In this work, a novel promising hyperthermia agent employing magnetic Fe3O4 particles with fairly low toxicity was proposed. This hyperthermia agent showed rapid heat generation under NIR irradiation. After modification with carboxymethyl chitosan (CMCTS), the obtained Fe3O4@CMCTS particles could disperse stably in PBS and serum without any aggregation. The modification of CMCTS could decrease the adsorption of bovine serum albumin (BSA) and improve the cellular uptake. In a comparative study with hollow gold nanospheres (HAuNS), Fe3O4@CMCTS particles exhibited a comparable photothermal effect and fairly low cytotoxicity. The in vivo magnetic resonance (MR) images of mice revealed that by attaching a magnet to the tumor, Fe3O4@CMCTS particles accumulated in the tumor after intravenous injection and showed a low distribution in the liver. After being exposed to a 808 nm laser for 5 min at a low power density of 1.5 W cm-2, the tumors on Fe3O4@CMCTS-injected mice reached a temperature of ~52 °C and were completely destroyed. Thus, a kind of multifunctional magnetic nanoparticle with extremely low toxicity and a simple structure for simultaneous MR imaging, targeted drug delivery and photothermal therapy can be easily fabricated.With the potential uses of photothermal therapy (PTT) in cancer treatment with excellent efficacy, and the growing concerns about the nanotoxicity of hyperthermia agents such as carbon nanotubes and gold-based nanomaterials, the importance of searching for a biocompatible hyperthermia agent cannot be emphasized too much. In this work, a novel promising hyperthermia agent employing magnetic Fe3O4 particles with fairly low

  13. Coolability of volumetrically heated particle beds

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Muhammad

    2017-03-22

    In case of a severe nuclear reactor accident, with loss of coolant, a particle bed may be formed from the fragmentation of the molten core in the residual water at different stages of the accident. To avoid further propagation of the accident and maintain the integrity of the reactor pressure vessel, the decay heat of the particle bed must be removed. To better understand the various thermo-hydraulic processes within such heat-generating particle beds, the existing DEBRIS test facility at IKE has been modified to be able to perform novel boiling, dryout and quenching experiments. The essential experimental data includes the pressure gradients measured by 8 differential pressure transducers along the bed height as a function of liquid and vapour superficial velocities, the determination of local dryout heat fluxes for different system pressures as well as the local temperature distribution measured by a set of 51 thermocouples installed inside the particle bed. The experiments were carried out for two different particle beds: a polydispersed particle bed which consisted of stainless steel balls (2 mm, 3 mm and 6 mm diameters) and an irregular particle bed which consisted of a mixture of steel balls (3 mm and 6 mm) and irregularly shaped Al{sub 2}O{sub 3} particles. Additionally, all experiments were carried out for different flow conditions, such as the reference case of passive 1D top-flooding, 1D bottom flooding (driven by external pumps and different downcomer configurations) and 2D top-/bottom-/lateral flooding with a perforated downcomer. In this work, it has been observed that for both particle beds with downcomer configurations an open downcomer leads to the best coolability (dryout heat flux = 1560 kW/m{sup 2}, polydispersed particle bed, psys = 1 bar) of the particle bed, mainly due to bottom-flow with enhanced natural convection. It has also been shown that a potential lateral flow via a perforation of the downcomer does not bring any further improvements

  14. Coolability of volumetrically heated particle beds

    International Nuclear Information System (INIS)

    Rashid, Muhammad

    2017-01-01

    In case of a severe nuclear reactor accident, with loss of coolant, a particle bed may be formed from the fragmentation of the molten core in the residual water at different stages of the accident. To avoid further propagation of the accident and maintain the integrity of the reactor pressure vessel, the decay heat of the particle bed must be removed. To better understand the various thermo-hydraulic processes within such heat-generating particle beds, the existing DEBRIS test facility at IKE has been modified to be able to perform novel boiling, dryout and quenching experiments. The essential experimental data includes the pressure gradients measured by 8 differential pressure transducers along the bed height as a function of liquid and vapour superficial velocities, the determination of local dryout heat fluxes for different system pressures as well as the local temperature distribution measured by a set of 51 thermocouples installed inside the particle bed. The experiments were carried out for two different particle beds: a polydispersed particle bed which consisted of stainless steel balls (2 mm, 3 mm and 6 mm diameters) and an irregular particle bed which consisted of a mixture of steel balls (3 mm and 6 mm) and irregularly shaped Al 2 O 3 particles. Additionally, all experiments were carried out for different flow conditions, such as the reference case of passive 1D top-flooding, 1D bottom flooding (driven by external pumps and different downcomer configurations) and 2D top-/bottom-/lateral flooding with a perforated downcomer. In this work, it has been observed that for both particle beds with downcomer configurations an open downcomer leads to the best coolability (dryout heat flux = 1560 kW/m 2 , polydispersed particle bed, psys = 1 bar) of the particle bed, mainly due to bottom-flow with enhanced natural convection. It has also been shown that a potential lateral flow via a perforation of the downcomer does not bring any further improvements in

  15. Novel water soluble morpholine substituted Zn(II) phthalocyanine: Synthesis, characterization, DNA/BSA binding, DNA photocleavage and topoisomerase I inhibition.

    Science.gov (United States)

    Barut, Burak; Demirbaş, Ümit; Özel, Arzu; Kantekin, Halit

    2017-12-01

    In this study, novel peripherally tetra 3-morpholinophenol substituted zinc(II) phthalocyanine (4) and its water soluble form quaternized zinc(II) phthalocyanine (ZnQ) were synthesized for the first time. These novel compounds were characterized by a combination of different spectroscopic techniques such as FT-IR, 1 H NMR, 13 C NMR, UV-vis and mass. The DNA binding of ZnQ was investigated using UV-vis absorption titration, competitive ethidium bromide, thermal denaturation and viscosity experiments that the ZnQ bound to CT-DNA via intercalation mode. ZnQ indicated photocleavage activity on supercoiled pBR322 plasmid DNA via formation of singlet oxygen under irradiation at 700nm. Besides, the topoisomerase I inhibitory effect experiments showed that ZnQ inhibited topoisomerase I enzyme in a concentration-dependent manner. The bovine serum albumin (BSA) binding experiments indicated that ZnQ bound to proteins through a static quenching mechanism. All of these results claim that ZnQ has potential agent for photodynamic therapy owing to its nucleic acid interactions and photobiological or photochemical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Characteristics of selective fluoride adsorption by biocarbon-Mg/Al layered double hydroxides composites from protein solutions: kinetics and equilibrium isotherms study.

    Science.gov (United States)

    Ma, Wei; Lv, Tengfei; Song, Xiaoyan; Cheng, Zihong; Duan, Shibo; Xin, Gang; Liu, Fujun; Pan, Decong

    2014-03-15

    In the study, two novel applied biocarbon-Mg/Al layered double hydroxides composites (CPLDH and CPLDH-Ca) were successfully prepared and characterized by TEM, ICP-AES, XFS, EDS, FTIR, XRD, BET and pHpzc. The fluoride removal efficiency (RF) and protein recovery ratio (RP) of the adsorbents were studied in protein systems of lysozyme (LSZ) and bovine serum albumin (BSA). The results showed that the CPLDH-Ca presented remarkable performance for selective fluoride removal from protein solution. It reached the maximum RF of 92.1% and 94.8% at the CPLDH-Ca dose of 2.0g/L in LSZ and BSA system, respectively. The RP in both systems of LSZ and BSA were more than 90%. Additionally, the RP of CPLDH-Ca increased with the increase of ionic strengths, and it almost can be 100% with more than 93% RF. Fluoride adsorption by the CPLDH-Ca with different initial fluoride concentrations was found to obey the mixed surface reaction and diffusion controlled adsorption kinetic model, and the overall reaction rate is probably controlled by intra-particle diffusion, boundary layer diffusion and reaction process. The adsorption isotherms of fluoride in BSA system fit the Langmuir-Freundlich model well. The BSA has synergistic effect on fluoride adsorption and the degree increased with the increase of the initial BSA concentration. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Microstructures and mechanical properties of pure Mg processed by rotary swaging

    International Nuclear Information System (INIS)

    Gan, W.M.; Huang, Y.D.; Wang, R.; Wang, G.F.; Srinivasan, A.; Brokmeier, H.-G.; Schell, N.; Kainer, K.U.; Hort, N.

    2014-01-01

    Highlights: • Grain size of pure Mg can be effectively reduced by rotary swaging processing. • The dominated texture of the swaged pure Mg was a basal fibre. • Twinning and non-basal plane sliding accommodated the swaging process. • Gradient texture distribution was observed through the rod diameter. • There existed a slight shear deformation on the surface of the swaged rod. - Abstract: Microstructures and tensile properties of commercial pure magnesium processed by rotary swaging (RS) technique were investigated. Bulk and gradient textures in the RS processed Mg were characterised by neutron and synchrotron diffractions, respectively. Grains of the pure Mg were gradually refined with increase in the RS passes, which largely contributed to an increase in the tensile yield strength. A dominated basal fibre texture was observed in the RS processed pure Mg. Accommodated twinning deformation was also observed. Both the optical observations and texture analyses through the diameter of the swaged rod showed a gradient evolution in microstructure

  18. Topological M Theory from Pure Spinor Formalism

    CERN Document Server

    Grassi, P A; Grassi, Pietro Antonio; Vanhove, Pierre

    2005-01-01

    We construct multiloop superparticle amplitudes in 11d using the pure spinor formalism. We explain how this construction reduces to the superparticle limit of the multiloop pure spinor superstring amplitudes prescription. We then argue that this construction points to some evidence for the existence of a topological M theory based on a relation between the ghost number of the full-fledged supersymmetric critical models and the dimension of the spacetime for topological models. In particular, we show that the extensions at higher orders of the previous results for the tree and one-loop level expansion for the superparticle in 11 dimensions is related to a topological model in 7 dimensions.

  19. Crystal structure of pure ZrO2 nanopowders

    International Nuclear Information System (INIS)

    Lamas, D.G.; Rosso, A.M.; Anzorena, M. Suarez; Fernandez, A.; Bellino, M.G.; Cabezas, M.D.; Walsoee de Reca, N.E.; Craievich, A.F.

    2006-01-01

    The crystal structure of pure (undoped) zirconia nanopowders synthesized by different wet-chemical routes has been investigated by synchrotron X-ray diffraction. Whereas some previous authors reported the retention of the cubic phase in similar materials, we demonstrate here that pure zirconia nanopowders with average crystallite sizes ranging from 5 to 10 nm exhibit the tetragonal phase. In addition, our results suggest that a tetragonal-to-cubic transition for decreasing crystallite size could eventually occur at a very small critical crystallite size

  20. Comparison of several algorithms of the electric force calculation in particle plasma models

    International Nuclear Information System (INIS)

    Lachnitt, J; Hrach, R

    2014-01-01

    This work is devoted to plasma modelling using the technique of molecular dynamics. The crucial problem of most such models is the efficient calculation of electric force. This is usually solved by using the particle-in-cell (PIC) algorithm. However, PIC is an approximative algorithm as it underestimates the short-range interactions of charged particles. We propose a hybrid algorithm which adds these interactions to PIC. Then we include this algorithm in a set of algorithms which we test against each other in a two-dimensional collisionless magnetized plasma model. Besides our hybrid algorithm, this set includes two variants of pure PIC and the direct application of Coulomb's law. We compare particle forces, particle trajectories, total energy conservation and the speed of the algorithms. We find out that the hybrid algorithm can be a good replacement of direct Coulomb's law application (quite accurate and much faster). It is however probably unnecessary to use it in practical 2D models.