WorldWideScience

Sample records for puparium

  1. Description of larva and puparium of Oplodontha rubrithorax (Diptera: Stratiomyidae) from the Oriental Region.

    Science.gov (United States)

    Nerudová, Jana; Kovac, Damir; Tóthová, Andrea

    2015-05-01

    This is the first description of larva and puparium of Oplodontha rubrithorax (Macquart, 1838) from the Oriental Region. Larvae were found at a hot spring in North Thailand. The morphological features and cuticular structures of the larva are documented by drawings and SEM micrographs and the main characters are compared with the European O. viridula (Fabricius, 1775), the only described larva of this genus. Differences between larvae of both species were only found in pubescence. The characteristic, somewhat dilated and slightly clavate hairs on the dorsal surface of the body segments of O. viridula larva are apparently lacking in the larva of O. rubrithorax.

  2. Pholeomyia comans (Diptera: Milichiidae) an associate of Atta texana: larval anatomy and notes on biology

    Science.gov (United States)

    John C. Moser; Stuart E. Neff

    1971-01-01

    Adults of Pholeomyia comans enter the nests of Atta texana and lay eggs in the underground detritus cavities, where the maggots feed on exhausted fungus garden substrate and nest refuse recently deposited by workers. The thirdstage larva and the puparium are described. A diapriid wasp was obtained from P. comans puparia. One...

  3. Calycomyza hyptidis Spencer (Diptera,Agromyzidae: descriptions, redescriptions and first record in Ocimum basilicum (Lamiaceae in Brazil

    Directory of Open Access Journals (Sweden)

    Viviane Rodrigues de Sousa

    2013-06-01

    Full Text Available Calycomyza hyptidis Spencer (Diptera, Agromyzidae: descriptions, redescriptions and first record in Ocimum basilicum (Lamiaceae in Brazil. All phases of the leafminer Calycomyza hyptidis Spencer are for the first time described, including the larva, puparium and adult female. Illustrations are presented for male and female terminalia, mine, larva and pupa. The species is first recorded in leaves of Ocimum basilicum L. (Lamiaceae in Brazil.

  4. A further new species of Sarcofahrtiopsis Hall (Diptera: Sarcophagidae) associated with faeces of the disk-winged bat (Thyroptera Spix: Chiroptera) in Brazil and the redescription of the female terminalia of S. cuneata (Townsend).

    Science.gov (United States)

    Carvalho-Filho, Fernando Da Silva; Esposito, Maria Cristina; Silva, Amanda De Azevedo

    2014-11-28

    The male, female and puparium are described for Sarcofahrtiopsis cupendipe sp. nov., whose larvae live in the roosts of disk-winged bats (Thyroptera species). Sarcofahrtiopsis cupendipe and S. thyropteronthos Pape, Dechmann & Vonhof are both associated with the faeces of the disk-winged bat and are the only species of Sarcofahrtiopsis with wing vein R1 fully setose dorsally and a short parameral apodeme in the male terminalia. In addition, the female terminalia of S. cuneata (Townsend) is redescribed.

  5. Molecular identification of Malaysian Chrysomya megacephala (Fabricius) and Chrysomya rufifacies (Macquart) using life stage specific mitochondrial DNA.

    Science.gov (United States)

    Kavitha, R; Tan, T C; Lee, H L; Nazni, W A; Sofian, A M

    2013-06-01

    DNA identification of blow fly species can be a very useful tool in forensic entomology. One of the potential benefits that mitochondrial DNA (mtDNA) has offered in the field of forensic entomology is species determination. Conventional identification methods have limitations for sibling and closely related species of blow fly and stage and quality of the specimen used. This could be overcome by DNA-based identification methods using mitochondrial DNA which does not demand intact or undamaged specimens. Mitochondrial DNA is usually isolated from whole blow fly and legs. Alternate sources for mitochondrial DNA isolation namely, egg, larva, puparium and empty puparium were explored in this study. The sequence of DNA obtained for each sample for every life cycle stage was 100% identical for a particular species, indicating that the egg, 1st instar, 2nd instar, 3rd instar, pupa, empty puparium and adult from the same species and obtained from same generation will exhibit similar DNA sequences. The present study also highlighted the usefulness of collecting all life cycle stages of blow fly during crime scene investigation with proper preservation and subsequent molecular analysis. Molecular identification provides a strong basis for species identification and will prove an invaluable contribution to forensic entomology as an investigative tool in Malaysia.

  6. Morphology of immature stages of Hemipyrellia ligurriens (Wiedemann) (Diptera: Calliphoridae) for use in forensic entomology applications.

    Science.gov (United States)

    Sukontason, Kabkaew L; Sribanditmongkol, Pongruk; Chaiwong, Tarinee; Vogtsberger, Roy C; Piangjai, Somsak; Sukontason, Kom

    2008-09-01

    In forensic investigations, all immature stages of flies (egg, larvae, and puparium) can serve as entomological evidence at death scenes. These insects are primarily used to estimate the post mortem interval (PMI), but can also be involved in the analysis of toxic substances, determining manner of death, and in indicating relocation of a corpse in homicide cases. In this study, we present the morphology of the egg, larvae, and puparium of Hemipyrellia ligurriens, a blow fly species of forensic importance in Thailand. Examination was conducted using scanning electron microscopy (SEM). The egg stage was found to display a relatively wide plastron region (or median hatch line area) that spans almost the entire length of the egg. The median hatch line is oriented in an upright position. External chorionic sculpture of the egg is present in a hexagonal pattern whose reticular boundaries are slightly elevated. In the larval stages, the most prominent morphological changes were detected upon comparison of the first to the second instar; whereas, the differences between second and third instar larvae were less obvious outside of the increase in number of posterior spiracular slits. Most of the major differences involve body size and structure of the anterior and posterior spiracles. Each anterior spiracle in both the second and third instars projects five to seven papillae apically. Each posterior spiracular disc of a third instar exhibits a complete peritreme, three spiracular slits, and a prominent button that is ventromedially located. The puparium is coarctate and features a clustered bubble membrane comprised of approximately 57 mammillate structures positioned dorsolaterally on each side of the first abdominal segment in young puparia. This feature is replaced by short, tubular respiratory horns in aged puparia. This study provides more detailed exposure of important morphological features that can be used for accurate identification of immature stages of H

  7. Development sites, feeding modes and early stages of seven European Palloptera species (Diptera, Pallopteridae).

    Science.gov (United States)

    Rotheray, Graham E

    2014-12-19

    Two hundred and ninety-eight rearing records and 87 larvae and puparia were obtained of seven species of Palloptera Fallén (Diptera, Pallopteridae), mainly in Scotland during 2012-2013. The third stage larva and puparium of each species were assessed morphologically and development sites and feeding modes investigated by rearing, observation and feeding tests. Early stages appear to be distinguished by the swollen, apico-lateral margins of the prothorax which are coated in vestiture and a poorly developed anal lobe with few spicules. Individual pallopteran species are separated by features of the head skeleton, locomotory spicules and the posterior respiratory organs. Five species can be distinguished by unique character states. Observations and feeding tests suggest that the frequently cited attribute of zoophagy is accidental and that saprophagy is the primary larval feeding mode with autumn/winter as the main period of development. Food plants were confirmed for flowerhead and stem developing species and rain is important for maintaining biofilms on which larvae feed. Due to difficulties in capturing adults, especially males, the distribution and abundance of many pallopteran species is probably underestimated. Better informed estimates are possible if early stages are included in biodiversity assessments. To facilitate this for the species investigated, a key to the third stage larva and puparium along with details on finding them, is provided. 

  8. Calliphora vicina (Diptera: Calliphoridae) pupae: a timeline of external morphological development and a new age and PMI estimation tool.

    Science.gov (United States)

    Brown, Katherine; Thorne, Alan; Harvey, Michelle

    2015-07-01

    The minimum postmortem interval (PMI(min)) is commonly estimated using calliphorid larvae, for which there are established age estimation methods based on morphological and development data. Despite the increased duration and sedentary nature of the pupal stage of the blowfly, morphological age estimation methods are poorly documented and infrequently used for PMI determination. The aim of this study was to develop a timeline of metamorphosis, focusing on the development of external morphology (within the puparium), to provide a means of age and PMI estimation for Calliphora vicina (Rob-Desvoidy) pupae. Under controlled conditions, 1,494 pupae were reared and sampled at regular time intervals. After puparium removal, observations of 23 external metamorphic developments were correlated to age in accumulated degree hours (ADH). Two age estimation methods were developed based on (1) the combination of possible age ranges observed for each characteristic and (2) regression analyses to generate age estimation equations employing all 23 characteristics observed and a subset of ten characteristics most significantly correlated with age. Blind sample analysis indicated that, using the combination of both methods, pupal age could be estimated to within ±500 ADH with 95% reliability.

  9. A biological timer in the fat body comprising Blimp-1, βFtz-f1 and Shade regulates pupation timing in Drosophila melanogaster.

    Science.gov (United States)

    Akagi, Kazutaka; Sarhan, Moustafa; Sultan, Abdel-Rahman S; Nishida, Haruka; Koie, Azusa; Nakayama, Takumi; Ueda, Hitoshi

    2016-07-01

    During the development of multicellular organisms, many events occur with precise timing. In Drosophila melanogaster, pupation occurs about 12 h after puparium formation and its timing is believed to be determined by the release of a steroid hormone, ecdysone (E), from the prothoracic gland. Here, we demonstrate that the ecdysone-20-monooxygenase Shade determines pupation timing by converting E to 20-hydroxyecdysone (20E) in the fat body, which is the organ that senses nutritional status. The timing of shade expression is determined by its transcriptional activator βFtz-f1. The βftz-f1 gene is activated after a decline in the expression of its transcriptional repressor Blimp-1, which is temporally expressed around puparium formation in response to a high titer of 20E. The expression level and stability of Blimp-1 is critical for the precise timing of pupation. Thus, we propose that Blimp-1 molecules function like sand in an hourglass in this precise developmental timer system. Furthermore, our data suggest that a biological advantage results from both the use of a transcriptional repressor for time determination and the association of developmental timing with nutritional status of the organism. © 2016. Published by The Company of Biologists Ltd.

  10. DNA degradation and genetic analysis of empty puparia: genetic identification limits in forensic entomology.

    Science.gov (United States)

    Mazzanti, Morena; Alessandrini, Federica; Tagliabracci, Adriano; Wells, Jeffrey D; Campobasso, Carlo P

    2010-02-25

    Puparial cases are common remnants of necrophagous flies in crime investigations. They usually represent the longest developmental time and, therefore, they can be very useful for the estimation of the post-mortem interval (PMI). However, before any PMI estimate, it is crucial to identify the species of fly eclosed from each puparium associated with the corpse. Morphological characteristics of the puparium are often distinctive enough to permit a species identification. But, even an accurate morphological analysis of empty puparia cannot discriminate among different species of closely related flies. Furthermore, morphological identification may be impossible if the fly puparia are poorly preserved or in fragments. This study explores the applicability of biomolecular techniques on empty puparia and their fragments for identification purposes. A total of 63 empty puparia of necrophagous Diptera resulting from forensic casework were examined. Samples were divided into three groups according to size, type and time of eclosion in order to verify whether the physical characteristics and puparia weathering can influence the amount of DNA extraction. The results suggest that a reliable genetic identification of forensically important flies may also be performed from empty puparia and/or their fragments. However, DNA degradation can deeply compromise the genetic analysis since the older the fly puparia, the smaller are the amplified fragments.

  11. Mechanical Control of Whole Body Shape by a Single Cuticular Protein Obstructor-E in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Reiko Tajiri

    2017-01-01

    Full Text Available Body shapes are much more variable than body plans. One way to alter body shapes independently of body plans would be to mechanically deform bodies. To what extent body shapes are regulated physically, or molecules involved in physical control of morphogenesis, remain elusive. During fly metamorphosis, the cuticle (exoskeleton covering the larval body contracts longitudinally and expands laterally to become the ellipsoidal pupal case (puparium. Here we show that Drosophila melanogaster Obstructor-E (Obst-E is a protein constituent of the larval cuticle that confers the oriented contractility/expandability. In the absence of obst-E function, the larval cuticle fails to undergo metamorphic shape change and finally becomes a twiggy puparium. We present results indicating that Obst-E regulates the arrangement of chitin, a long-chain polysaccharide and a central component of the insect cuticle, and directs the formation of supracellular ridges on the larval cuticle. We further show that Obst-E is locally required for the oriented shape change of the cuticle during metamorphosis, which is associated with changes in the morphology of those ridges. Thus, Obst-E dramatically affects the body shape in a direct, physical manner by controlling the mechanical property of the exoskeleton.

  12. Mechanical Control of Whole Body Shape by a Single Cuticular Protein Obstructor-E in Drosophila melanogaster

    Science.gov (United States)

    Ogawa, Nobuhiro; Fujiwara, Haruhiko

    2017-01-01

    Body shapes are much more variable than body plans. One way to alter body shapes independently of body plans would be to mechanically deform bodies. To what extent body shapes are regulated physically, or molecules involved in physical control of morphogenesis, remain elusive. During fly metamorphosis, the cuticle (exoskeleton) covering the larval body contracts longitudinally and expands laterally to become the ellipsoidal pupal case (puparium). Here we show that Drosophila melanogaster Obstructor-E (Obst-E) is a protein constituent of the larval cuticle that confers the oriented contractility/expandability. In the absence of obst-E function, the larval cuticle fails to undergo metamorphic shape change and finally becomes a twiggy puparium. We present results indicating that Obst-E regulates the arrangement of chitin, a long-chain polysaccharide and a central component of the insect cuticle, and directs the formation of supracellular ridges on the larval cuticle. We further show that Obst-E is locally required for the oriented shape change of the cuticle during metamorphosis, which is associated with changes in the morphology of those ridges. Thus, Obst-E dramatically affects the body shape in a direct, physical manner by controlling the mechanical property of the exoskeleton. PMID:28076349

  13. New Host Record for Camponotophilus delvarei (Hymenoptera: Eurytomidae, a Parasitoid of Microdontine Larvae (Diptera: Syrphidae, Associated with the Ant Camponotus sp. aff. textor

    Directory of Open Access Journals (Sweden)

    Gabriela Pérez-Lachaud

    2013-01-01

    Full Text Available Microdontine syrphid flies are obligate social parasites of ants. Larvae prey on ant brood whereas adults live outside the nests. Knowledge of their interaction with their host is often scarce, as it is information about their natural enemies. Here we report the first case of parasitism of a species of microdontine fly by a myrmecophilous eurytomid wasp. This is also the first host record for Camponotophilus delvarei Gates, a recently described parasitic wasp discovered in Chiapas, Mexico, within the nests of the weaver ant, Camponotus sp. aff. textor Forel. Eleven pupal cases of a microdontine fly were found within a single nest of this ant, five of them being parasitized. Five adult C. delvarei females were reared from a puparium and 29 female and 2 male pupae were obtained from another one. The eurytomid is a gregarious, primary ectoparasitoid of larvae and pupae of Microdontinae, its immature stages developing within the protective puparium of the fly. The species is synovigenic. Adult females likely locate and parasitize their hosts within the ant nest. As some species of Microdontinae are considered endangered, their parasitoids are likewise threatened and in need of accurate and urgent surveys in the future.

  14. Biology and immature stages of Pherbellia limbata (Diptera: Sciomyzidae), a parasitoid of the terrestrial snail Granaria frumentum.

    Science.gov (United States)

    Nerudová-Horsáková, Jana; Murphy, William L; Vala, Jean-Claude

    2016-05-30

    The very rare Palaearctic Pherbellia limbata (Meigen, 1830) lives in limestone steppes and other xerothermic habitats in central and southern Europe. For the first time, the egg, first-, second- and third-instar larvae and the puparium are described. Scanning electron micrographs of various morphological features of immature stages are provided. Larvae of P. limbata are parasitoids exclusively of the terrestrial snail Granaria frumentum (Draparnaud, 1801). Results of this study are integrated with those of previous studies of the biology, ecology, immature stages, and mollusc-prey habitat of the other 28 (of 96) Pherbellia species for which life cycles have been completely or partially elucidated. Recent published taxonomic approaches to clarifying the phylogeny of the Sciomyzidae are discussed, particularly those involving DNA analyses of Pherbellia species.

  15. Meadow-grass gall midge

    DEFF Research Database (Denmark)

    Hansen, Lars Monrad

    The area with meadow-grass (Poa pratensis, L.) grown for seed production in Den-mark is a significant proportion of the entire seed production. The meadow-grass gall midge (Mayetiola schoberi, Barnes 1958) is of considerable economic importance since powerful attacks can reduce the yield...... drastically. It overwinters as larvae in a puparium, in the soil, and begins to hatch on average in late April, but the time is de-pending on the temperature. Emergence of the meadow-grass gall midge in spring takes place over a 2-3 week period. Beginning of emergence of the meadow-grass gall midge takes...... maximum. Therefore, the spraying frequency could be lowered signifi-cantly and in many cases lowered to only one insecticide application in meadow-grass every year....

  16. Identifikasi kutukebul (Hemiptera: Aleyrodidae dari beberapa tanaman inang dan perkembangan populasinya

    Directory of Open Access Journals (Sweden)

    Purnama Hidayat

    2017-02-01

    Full Text Available Whiteflies (Hemiptera: Aleyrodidae can cause direct and indirect damages on plants, especially vegetables. There is only limited information regarding taxonomy and population dynamic of whiteflies attacking vegetables in Indonesia. This research is conducted to identify species of whitefly collected from chili pepper, tomato, and soybean, and to study their population dynamic. The information gathered from these studies will be useful to support whitefly management in the field. Based on morphology identification of the puparium collected directly from the host plants, there were four species of whitefly identified from chili pepper, tomato, and soybean in Bogor, Cianjur, and Sukabumi, i.e. Bemisia tabaci, Aleurodicus dispersus, Trialeurodes vaporariorum, and Dialeurodes sp. The presence of B. tabaci on chili pepper and tomato was associated with virus infection that causes yellowing and leaf curl disease. This population of B. tabaci tended to increase along with plant growth and generally reached the highest population when the plant was 60-70 days after planting.

  17. Ultrastructure analysis of the immature stages of Ravinia belforti (Diptera: Sarcophagidae), a species of medical-veterinary and forensic importance, by scanning electron microscopy.

    Science.gov (United States)

    da-Silva-Xavier, Alexandre; de Carvalho Queiroz, Margareth Maria

    2016-07-01

    The postmortem interval is related to the age of immature species of flies found on corpses and can be estimated using data available in the literature on the biology of the species. The flesh fly Ravinia belforti is a carrier of enteric pathogens that can affect human and animal health as well as being of forensic importance. As the morphology of many immature Sarcophagidae is unknown, these immature forms must be collected and characterized after the emergence of the adult male. Here we describe and analyze the morphological characteristics of the larvae stages L1, L2, L3 and the puparium of R. belforti by scanning electron microscopy (SEM). Ten specimens of each stage were analyzed. Larvae of R. belforti follow the typical muscoid vermiform pattern with 12 segments. The anterior region is pointed, while the posterior region is thicker. The spines of the cephalic collar are flattened and with double, triple or quadruple points, different from the spines along the body that only have a single point. In L2, the anterior spiracle is present with a varying number of papillae (16-22), differing from other species. The posterior spiracles are located within the peritreme. The spiracular cavity is internalized in the posterior region, following the pattern that differs Sarcophagidae from other families. L3 features more visible and developed spines around the cephalic collar, getting thicker and denser near to the first thoracic segment. Puparium is similar to other species of Sarcophagidae. This paper presents important data on this family which has both health and forensic importance. Furthermore, R. belforti shows significant differences from other species of Sarcophagidae. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Interaction effects of temperature and food on the development of forensically important fly, Megaselia scalaris (Loew) (Diptera: Phoridae).

    Science.gov (United States)

    Zuha, Raja Muhammad; Razak, Tasnim Abdul; Ahmad, Nazni Wasi; Omar, Baharudin

    2012-11-01

    In forensic entomology, breeding of fly larvae in a controlled laboratory environment using animal tissue is a common technique to obtain insect developmental time for the estimation of postmortem interval. Previous studies on growth media are mostly on the effect of different diets on fly development. However, the interaction effects between temperature and food type used have not been explored. The objective of this study was to compare the use of cow's liver agar and raw liver on the development of a forensically important fly, Megaselia scalaris (Loew). This study also determined the interaction between different temperatures and different food types on the growth of this species. A total of 100 M. scalaris eggs were transferred into each of the two media mentioned above. Liver agar was prepared by adding dried ground liver into nutrient agar, whilst raw liver was naturally prepared from the same animal source. This experiment was conducted at 27, 30 and 33 °C in an incubator in a continuously dark condition. Length and weight of larvae, puparia and adult samples were determined. Total developmental times for larvae feeding on liver agar at each temperature were approximately 7-15 h slower than those feeding on raw liver. Survival rates were almost equal in both diets but were lower at 33 °C. Mean larva length in both diets did not differ significantly at all temperatures, but larvae feeding on liver agar had lower mean weight values than those in raw liver at 30 and 33 °C. The effect of temperature was significant in female puparia weight and male adult weight whereas the effect of diet types was significant in both male and female puparia size and weight. Interaction effects of temperature and food type on M. scalaris puparium size and adult weight were significant, indicating that puparium size and adult weight depended on both food type and temperature. This experiment highlighted the use of cow's liver agar as an alternative diet to breed M. scalaris in

  19. Identification of immature stages of carrion-breeding phorid flies indoors in Shenyang%沈阳地区室内常见尸食性蚤蝇幼期识别

    Institute of Scientific and Technical Information of China (English)

    冯典兴; 刘广纯

    2013-01-01

    利用尸食性蝇类发育生物学推断死后间隔时间的前提是对其幼期种属的准确鉴定.本文对沈阳地区室内常见的4种尸食性蚤蝇幼期的主要形态特征进行了描述.结果表明:根据其口器、体壁突起、气门和呼吸角等特征不仅可以区分虫龄,还可以鉴别4种蚤蝇.%The accurate identification of the fly larva or puparium to species is the premise when the development biology of carrion-breeding flies is used to estimate post-mortem interval. This paper presented the description of the main morphological features of immature stages of four most common carrion-breeding phorid flies indoors in Shenyang. The results show that the features, cephalopharyngeal skeleton, tubercles of integument, spiracles and respiratory horns, were not only used to differentiate the three instars, but also identify the four phorid flies.

  20. Biology of the citrus blackfly, Aleurocanthus woglumi Ashby (Hemiptera: Aleyrodidae), in three host plants; Biologia da mosca-negra-dos-citros, Aleurocanthus woglumi Ashby (Hemiptera: Aleyrodidae), em tres plantas hospedeiras

    Energy Technology Data Exchange (ETDEWEB)

    Pena, Marcia R.; Silva, Neliton M. da [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil).Lab. de Entomologia Agricola], e-mail: marciarpena@yahoo.com.br, e-mail: nmarques@ufam.edu.br; Venframim, Jose D.; Haddad, Marineia de L. [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Lab. de Resistencia de Plantas e Plantas Inseticidas], e-mail: jdvendra@esalq.usp.br, e-mail: mlhaddad@esalq.usp.br; Lourencao, Andre L. [Instituto Agronomico de Campinas (IAC), SP (Brazil)], e-mail: andre@iac.sp.gov.br

    2009-03-15

    The citrus blackfly, Aleurocanthus woglumi Ashby, was detected in Brazil in 2001. The aim of this research was to evaluate the biology, biometry and host preference of A. woglumi in sweet orange, acid lime Tahiti and mango. Experiments were set in laboratory conditions with insects collected in rangpur lime plants in Manaus, State of Amazonas, from January to June of 2006. The following parameters were evaluated: number of spirals (ovo positions) and eggs per plant, number of eggs by spiral per plant, survival of the immature (eggs, 1st, 2nd, 3rd and 4th instars), and length and survival of the immature stage. The mean embrionary period was 15 days for the three hosts. The 4th nymph (puparium) was the longest during nymph development. Second and third instars had the highest survival. The mean length of the egg-adult cycle was 70 days for the three hosts evaluated. The eggs were laid in a spiral shape on the adaxial leaf surface. The 1st instars moved to short distances from the spiral, while the 2nd, 3rd and 4th are sessile and have bristles on the whole body. Based on the highest oviposition and the highest survival of the immature stage of the citrus blackfly in acid lime Tahiti, this plant can be considered the most suitable host to A. woglumi. (author)

  1. Where Is My Food? Brazilian Flower Fly Steals Prey from Carnivorous Sundews in a Newly Discovered Plant-Animal Interaction

    Science.gov (United States)

    Rivadavia, Fernando; Gonella, Paulo M.; Pérez-Bañón, Celeste; Mengual, Ximo; Rojo, Santos

    2016-01-01

    A new interaction between insects and carnivorous plants is reported from Brazil. Larvae of the predatory flower fly Toxomerus basalis (Diptera: Syrphidae: Syrphinae) have been found scavenging on the sticky leaves of several carnivorous sundew species (Drosera, Droseraceae) in Minas Gerais and São Paulo states, SE Brazil. This syrphid apparently spends its whole larval stage feeding on prey trapped by Drosera leaves. The nature of this plant-animal relationship is discussed, as well as the Drosera species involved, and locations where T. basalis was observed. 180 years after the discovery of this flower fly species, its biology now has been revealed. This is (1) the first record of kleptoparasitism in the Syrphidae, (2) a new larval feeding mode for this family, and (3) the first report of a dipteran that shows a kleptoparasitic relationship with a carnivorous plant with adhesive flypaper traps. The first descriptions of the third instar larva and puparium of T. basalis based on Scanning Electron Microscope analysis are provided. PMID:27144980

  2. Neotropical Copestylum Macquart (Diptera: Syrphidae) Breeding in Fruits and Flowers, Including 7 New Species

    Science.gov (United States)

    Ricarte, Antonio; Marcos-García, M. Ángeles; Hancock, E. Geoffrey; Rotheray, Graham E.

    2015-01-01

    Ten species of Copestylum (Diptera: Syrphidae) were reared from fruits and flowers in Costa Rica, Ecuador and Trinidad. Seven were new and in this paper, we describe them, their development sites and the third stage larva and/or the puparium of all ten species. One new synonym is proposed, Copestylum pinkusi (Curran) [= Copestylum cinctiventre (Curran)]. Similarities and differences between these new and other Copestylum species, suggest they separate into two groups, referred to as the Vagum and Cinctiventre species groups. Features characterising these groups for both adult and early stages are assessed. Each species was also distinguished using adult and early stage characters. Within the Vagum group, adults were more disparate morphologically than the larval stage; this was reversed in the Cinctiventre group. Adult colour patterns are probably cryptic in function and for disguise. Vagum species have disruptive marks, while the Cinctiventre species have reflective colours. Biologically, the groups are almost distinguished by larval development sites. Vagum species use predominantly fruits and have a larval stage that is relatively generalised in form and habit. Cinctiventre species are confined to developing in flowers and the larva is more specialised. A key to both adult and early stages of all ten species is provided. PMID:26580811

  3. Neotropical Copestylum Macquart (Diptera: Syrphidae Breeding in Fruits and Flowers, Including 7 New Species.

    Directory of Open Access Journals (Sweden)

    Antonio Ricarte

    Full Text Available Ten species of Copestylum (Diptera: Syrphidae were reared from fruits and flowers in Costa Rica, Ecuador and Trinidad. Seven were new and in this paper, we describe them, their development sites and the third stage larva and/or the puparium of all ten species. One new synonym is proposed, Copestylum pinkusi (Curran [= Copestylum cinctiventre (Curran]. Similarities and differences between these new and other Copestylum species, suggest they separate into two groups, referred to as the Vagum and Cinctiventre species groups. Features characterising these groups for both adult and early stages are assessed. Each species was also distinguished using adult and early stage characters. Within the Vagum group, adults were more disparate morphologically than the larval stage; this was reversed in the Cinctiventre group. Adult colour patterns are probably cryptic in function and for disguise. Vagum species have disruptive marks, while the Cinctiventre species have reflective colours. Biologically, the groups are almost distinguished by larval development sites. Vagum species use predominantly fruits and have a larval stage that is relatively generalised in form and habit. Cinctiventre species are confined to developing in flowers and the larva is more specialised. A key to both adult and early stages of all ten species is provided.

  4. Larval endoparasitoids (Hymenoptera of frugivorous flies (Diptera, Tephritoidea reared from fruits of the cerrado of the State of Mato Grosso do Sul , Brazil

    Directory of Open Access Journals (Sweden)

    Manoel A. Uchôa-Fernandes

    2003-01-01

    Full Text Available This paper presents a five years survey of endoparasitoids obtained from the larvae of frugivorous Tephritidae and Lonchaeidae flies. The insects were reared from cultivated and wild fruits collected in areas of the cerrado in the State of Mato Grosso do Sul, Brazil. The flies obtained from 14 host fruit species were eight Anastrepha species, Ceratitis capitata (Wiedemann, 1824 (Tephritidae; Dasiops sp. and Neosilba spp. (Lonchaeidae. Eleven parasitoid species were collected: Braconidae - Asobara anastrephae (Muesebek, 1958, Doryctobracon areolatus (Szépligeti, 1911, D. fluminensis (Costa Lima, 1938, Opius bellus Gahan, 1930 and Utetes anastrephae (Viereck, 1913; Figitidae - Aganaspis nordlanderi Wharton, 1998, Lopheucoila anastrephae (Rhower, 1919, Odontosema anastrephae (Borgmeier, 1935 and Trybliographa infuscata Gallardo, Díaz & Uchôa-Fernandes, 2000 and, Pteromalidae - Spalangia gemina Boucek, 1963 and S. endius Walker, 1839. In all cases only one parasitoid emerged per puparium. D. areolatus was the most abundant and frequent parasitoid of fruit fly species, as was L. anastrephae in Neosilba spp. larvae. This is the first record of A. nordlanderi in the midwestern Brazilian region.

  5. Spatial Patterns of Recurved Sensory Organs in Drosophila

    Science.gov (United States)

    Gunaratne, Gemunu

    2008-03-01

    The fruit fly Drosophila is one of the most intensely studied models of development. A subset of -nominally- identical cells on the anterior wing of Drosophila begins to differentiate at puparium formation, each developing a sensory organ. In wild type flies, every fifth cell becomes such a sensory organ. Recent studies on mutant flies have shown that the transcription factor Senseless and the micro RNA miR-9a play significant roles in the choice of bristle density and the regularity of their arrangement. We propose that this cell differentiation is due to a Turing-type bifurcation whereby periodic concentration gradients emerge spontaneously from a uniform background. A paradigmatic model with intra-cellular networks and lateral activation and inhibition between neighboring cells (for example, through the Notch signaling pathway) is shown to generate the observed arrangements of sensory organs. The theory makes several experimentally verifiable predictions. For example, we propose methods to create mutant flies with systematically increasing numbers of ectopic bristles. In our theory, post-transcriptional regulatory action of the micro RNA occurs through the choice of stable solutions of the network.

  6. SEM studies on immature stages of the drone flies (diptera, syrphidae): Eristalis similis (Fallen, 1817) and Eristalis tenax (Linnaeus, 1758).

    Science.gov (United States)

    Pérez-Bañón, Celeste; Hurtado, Pilar; García-Gras, Elena; Rojo, Santos

    2013-08-01

    Adult drone flies (Syrphidae: Eristalis spp.) resemble male honeybees in appearance. Their immature stages are commonly known as rat-tailed maggots due to the presence of a very long anal segment and a telescopic breathing tube. The larvae are associated with decaying organic material in liquid or semi-liquid media, as in the case of other saprophagous eristalines. Biological and morphological data were obtained from both laboratory cultures and sampling in the field. Drone flies are important pollinators for wild flowers and crops. In fact, mass rearing protocols of Eristalis species are being developed to be used as efficient alternative pollinators. However, deeper knowledge of larval morphology and biology is required to improve artificial rearing. The production quality control of artificial rearing must manage the consistency and reliability of the production output avoiding, for example contamination with similar species. This article presents the first description of the larva and puparium of E. similis, including a comparative morphological study of preimaginal stages of the anthropophilic and ubiquitous European hoverfly species E. tenax. Scanning electron microscopy has been used for the first time to describe larvae and puparia of both species. Moreover, the preimaginal morphology of E. similis has been compared with all known descriptions of the genus Eristalis. The main diagnostic characters of the preimaginal stages of E. similis are the morphology of the anterior spiracles (shape of clear area and arrangement of facets) and pupal spiracles (length, shape, and arrangement of tubercles).

  7. Morphology of immature stages of Dohrniphora cornuta (Bigot) (Diptera: Phoridae).

    Science.gov (United States)

    Feng, Dian-Xing; Liu, Guang-Chun

    2012-11-01

    Morphology of all larval instars and puparium of Dohrniphora cornuta (Bigot), a most common phorid fly species indoors in China, is presented using scanning electron microscopy. The first instar larva was composed of 12 segments, each of segments 3-11 with six slender tubercles situated dorsally, dorsolaterally, and laterally in transverse row. These tubercles divided into two segments, of which the basal one was smooth, and the brush-shaped distal one was comprised of a cluster of fine spines. Antennae and maxillary palp complex were visible. Two slits could be seen at the posterior spiracle. Besides the presence of anterior spiracle, the tubercles of second instar became stouter than those of first instar and were covered by numerous long bristles from the base to top. The posterior spiracle contained four slits. Third larval instar was similar to second instar. The bubble membrane comprised of ≈120 globules with a pointed tip on their top presented at the segment 5 of third instar larvae. Puparia showed a retracted cephalic region and a pair of distinct pupal respiratory horns on the dorsum. The respiratory horns were long and bore numerous branches from base to apex. The apex of branch with two longitudinal slits was relatively broad and curled dorsally.

  8. Transcriptional profiling of olfactory system development identifies distal antenna as a regulator of subset of neuronal fates

    Science.gov (United States)

    Barish, Scott; Li, Qingyun; Pan, Jia W.; Soeder, Charlie; Jones, Corbin; Volkan, Pelin C.

    2017-01-01

    Drosophila uses 50 different olfactory receptor neuron (ORN) classes that are clustered within distinct sensilla subtypes to decipher their chemical environment. Each sensilla subtype houses 1–4 ORN identities that arise through asymmetric divisions of a single sensory organ precursor (SOP). Despite a number of mutational studies investigating the regulation of ORN development, a majority of the transcriptional programs that lead to the different ORN classes in the developing olfactory system are unknown. Here we use transcriptional profiling across the time series of antennal development to identify novel transcriptional programs governing the differentiation of ORNs. We surveyed four critical developmental stages of the olfactory system: 3rd instar larval (prepatterning), 8 hours after puparium formation (APF, SOP selection), 40 hrs APF (neurogenesis), and adult antennae. We focused on the expression profiles of olfactory receptor genes and transcription factors—the two main classes of genes that regulate the sensory identity of ORNs. We identify distinct clusters of genes that have overlapping temporal expression profiles suggesting they have a key role during olfactory system development. We show that the expression of the transcription factor distal antenna (dan) is highly similar to other prepatterning factors and is required for the expression of a subset of ORs. PMID:28102318

  9. Parasites of mammals on the Sevilleta National Wildlife Refuge, Socorro, New Mexico: Cuterebra austeni and C. neomexicana (Diptera:Oestridae) from Neotoma and Peromyscus (Rodentia:Muridae), 1991-1994.

    Science.gov (United States)

    Wilson, W D; Hnida, J A; Duszynski, D W

    1997-05-01

    In total, 6,486 rodents representing 3 families (Muridae, Heteromyidae, and Sciuridae) and 24 species were trapped May through August of 1991 through 1994. Of these, only the white-throated woodrat. Neotoma albigula Hartley; piñon mouse, Peromyscus truei Shufeldt; and white-footed mouse, P. leucopus Rafinesque, were infested with Cuterebra Clark larvae. Of the 594 N. albigula that were captured 103 (17.3%) were infested with 139 Cuterebra larvae with all infestations occurring in the throat region. N. albigula infestations were observed in 4 of 5 habitats sampled. The highest prevalence of infestation occurred during May-June (27.2%) versus July-August (9.1%) and in males (25.2%) versus females (18.3%). Prevalence of infestation was not significantly different between animals from the mark-release webs versus removal webs or adults versus juveniles. Also, there was no correlation between relative density of N. albigula and prevalence of infestation. Fifteen adults were reared from puparia and identified as C. austeni Sabrosky. Of 716 P. truei captured, 22 (3.1%) were infested with a total of 25 Cuterebra larvae with all infestations occurring in the scapular region. Although P. truei were captured in all 5 habitats, they were only infested in the piñon-juniper habitat: the highest prevalence of infestation occurred during July-August (10.9%) versus May-June (3.3%). Prevalence of infestation was not significantly different between animals from mark-release webs versus removal webs, males versus females, or adults versus juveniles. As in the N. albigula, there was no correlation between relative density of P. truei and prevalence of infestation. The adult reared from a puparium was identified as C. neomexicana Sabrosky. Of the 310 P. leucopus captured, only 3 (1%) were infested with Cuterebra larvae.

  10. Age estimation during the blow fly intra-puparial period: a qualitative and quantitative approach using micro-computed tomography.

    Science.gov (United States)

    Martín-Vega, Daniel; Simonsen, Thomas J; Wicklein, Martina; Hall, Martin J R

    2017-05-04

    Minimum post-mortem interval (minPMI) estimates often rely on the use of developmental data from blow flies (Diptera: Calliphoridae), which are generally the first colonisers of cadavers and, therefore, exemplar forensic indicators. Developmental data of the intra-puparial period are of particular importance, as it can account for more than half of the developmental duration of the blow fly life cycle. During this period, the insect undergoes metamorphosis inside the opaque, barrel-shaped puparium, formed by the hardening and darkening of the third instar larval cuticle, which shows virtually no external changes until adult emergence. Regrettably, estimates based on the intra-puparial period are severely limited due to the lack of reliable, non-destructive ageing methods and are frequently based solely on qualitative developmental markers. In this study, we use non-destructive micro-computed tomography (micro-CT) for (i) performing qualitative and quantitative analyses of the morphological changes taking place during the intra-puparial period of two forensically relevant blow fly species, Calliphora vicina and Lucilia sericata, and (ii) developing a novel and reliable method for estimating insect age in forensic practice. We show that micro-CT provides age-diagnostic qualitative characters for most 10% time intervals of the total intra-puparial period, which can be used over a range of temperatures and with a resolution comparable to more invasive and time-consuming traditional imaging techniques. Moreover, micro-CT can be used to yield a quantitative measure of the development of selected organ systems to be used in combination with qualitative markers. Our results confirm micro-CT as an emerging, powerful tool in medico-legal investigations.

  11. A theory for the arrangement of sensory organs in Drosophila

    Science.gov (United States)

    Zhu, Huifeng; Gunaratne, Preethi H.; Roman, Gregg W.; Gunaratne, Gemunu H.

    2010-03-01

    We study the arrangements of recurved bristles on the anterior wing margin of wild-type and mutant Drosophila. The epidermal or neural fate of a proneural cell depends on the concentrations of proteins of the achaete-scute complex. At puparium formation, concentrations of proteins are nearly identical in all cells of the anterior wing and each cell has the potential for neural fate. In wild-type flies, the action of regulatory networks drives the initial state to one where a bristle grows out of every fifth cell. Recent experiments have shown that the frequency of recurved bristles can be made to change by adjusting the mean concentrations of the zinc-finger transcription factor Senseless and the micro-RNA miR-9a. Specifically, mutant flies with reduced levels of miR-9a exhibit ectopic bristles, and those with lower levels of both miR-9a and Senseless show regular organization of recurved bristles, but with a lower periodicity of 4. We argue that these characteristics can be explained assuming an underlying Turing-type bifurcation whereby a periodic pattern spontaneously emerges from a uniform background. However, bristle patterns occur in a discrete array of cells, and are not mediated by diffusion. We argue that intracellular actions of transmembrane proteins such as Delta and Notch can play a role of diffusion in destabilizing the homogeneous state. In contrast to diffusion, intercellular actions can be activating or inhibiting; further, there can be lateral cross-species interactions. We introduce a phenomenological model to study bristle arrangements and make several model-independent predictions that can be tested in experiments. In our theory, miRNA-9a is one of the components of the underlying network and has no special regulatory role. The loss of periodicity in its absence is due to the transfer of the system to a bistable state.

  12. Significance and survival of Enterococci during the house fly development.

    Science.gov (United States)

    Ghosh, Anuradha; Akhtar, Mastura; Holderman, Chris; Zurek, Ludek

    2014-01-01

    House flies are among the most important nonbiting insect pests of medical and veterinary importance. Larvae develop in decaying organic substrates and their survival strictly depends on an active microbial community. House flies have been implicated in the ecology and transmission of enterococci, including multi-antibiotic-resistant and virulent strains of Enterococcus faecalis. In this study, eight American Type Culture Collection type strains of enterococci including Enterococcus avium, Enterococcus casseliflavus, Enterococcus durans, Enterococcus hirae, Enterococcus mundtii, Enterococcus gallinarum, Enterococcusfaecalis, and Enterococcusfaecium were evaluated for their significance in the development of house flies from eggs to adults in bacterial feeding assays. Furthermore, the bacterial colonization of the gut of teneral flies as well as the importance of several virulence traits of E. faecalis in larval mortality was assessed. Overall survival of house flies (egg to adult) was significantly higher when grown with typically nonpathogenic enterococcal species such as E. hirae (76.0% survival), E. durans (64.0%), and E. avium (64.0%) compared with that with clinically important species E. faecalis (24.0%) and E. faecium (36.0%). However, no significant differences in survival of house fly larvae were detected when grown with E. faecalis strains carrying various virulence traits, including isogenic mutants of the human clinical isolate E. faecalis V583 with in-frame deletions of gelatinase, serine protease, and capsular polysaccharide serotype C. Enterococci were commonly detected in fly puparia (range: 75-100%; concentration: 103-105 CFU/puparium);however, the prevalence of enterococci in teneral flies varied greatly: from 25.0 (E. casseliflavus) to 89.5% (E. hirae). In conclusion, depending on the species, enterococci variably support house fly larval development and colonize the gut of teneral adults. The human pathogenic species, E. faecalis and E. faecium

  13. Blistered: a gene required for vein/intervein formation in wings of Drosophila.

    Science.gov (United States)

    Fristrom, D; Gotwals, P; Eaton, S; Kornberg, T B; Sturtevant, M; Bier, E; Fristrom, J W

    1994-09-01

    We have characterized the blistered (bs) locus phenotypically, genetically and developmentally using a set of new bs alleles. Mutant defects range from wings with ectopic veins and intervein blisters to completely ballooned wings where the distinction between vein and intervein is lost. Mosaic analyses show that severe bs alleles behave largely autonomously; homozygous patches having vein-like properties. Developmental analyses were undertaken using light and electron microscopy of wild-type and bs wings as well as confocal microscopy of phalloidin- and laminin-stained preparations. bs defects were first seen early in the prepupal period with the failure of apposition of dorsal and ventral wing epithelia. Correspondingly, during definitive vein/intervein differentiation in the pupal period (18-36 hours after puparium formation), the extent of dorsal/ventral reapposition is reduced in bs wings. Regions of the wing that fail to become apposed differentiate properties of vein cells; i.e. become constricted apically and acquire a laminin-containing matrix basally. To further understand bs function, we examined genetic interactions between various bs alleles and mutants of two genes whose products have known functions in wing development. (i) rhomboid, a component of the EGF-R signalling pathway, is expressed in vein cells and is required for specification of vein cell fate. rhove mutations (lacking rhomboid in wings) suppress the excess vein formation and associated with bs. Conversely, rho expression in prepupal and pupal bs wings is expanded in the regions of increased vein formation. (ii) The integrin genes, inflated and myospheroid, are expressed in intervein cells and are required for adhesion between the dorsal and ventral wing surfaces. Loss of integrin function results in intervein blisters. Integrin mutants interact with bs mutants to increase the frequency of intervein blisters but do not typically enhance vein defects. Both developmental and genetic analyses

  14. A Molecular Probe for the Detection of Polar Lipids in Live Cells.

    Science.gov (United States)

    Bader, Christie A; Shandala, Tetyana; Carter, Elizabeth A; Ivask, Angela; Guinan, Taryn; Hickey, Shane M; Werrett, Melissa V; Wright, Phillip J; Simpson, Peter V; Stagni, Stefano; Voelcker, Nicolas H; Lay, Peter A; Massi, Massimiliano; Plush, Sally E; Brooks, Douglas A

    2016-01-01

    Lipids have an important role in many aspects of cell biology, including membrane architecture/compartment formation, intracellular traffic, signalling, hormone regulation, inflammation, energy storage and metabolism. Lipid biology is therefore integrally involved in major human diseases, including metabolic disorders, neurodegenerative diseases, obesity, heart disease, immune disorders and cancers, which commonly display altered lipid transport and metabolism. However, the investigation of these important cellular processes has been limited by the availability of specific tools to visualise lipids in live cells. Here we describe the potential for ReZolve-L1™ to localise to intracellular compartments containing polar lipids, such as for example sphingomyelin and phosphatidylethanolamine. In live Drosophila fat body tissue from third instar larvae, ReZolve-L1™ interacted mainly with lipid droplets, including the core region of these organelles. The presence of polar lipids in the core of these lipid droplets was confirmed by Raman mapping and while this was consistent with the distribution of ReZolve-L1™ it did not exclude that the molecular probe might be detecting other lipid species. In response to complete starvation conditions, ReZolve-L1™ was detected mainly in Atg8-GFP autophagic compartments, and showed reduced staining in the lipid droplets of fat body cells. The induction of autophagy by Tor inhibition also increased ReZolve-L1™ detection in autophagic compartments, whereas Atg9 knock down impaired autophagosome formation and altered the distribution of ReZolve-L1™. Finally, during Drosophila metamorphosis fat body tissues showed increased ReZolve-L1™ staining in autophagic compartments at two hours post puparium formation, when compared to earlier developmental time points. We concluded that ReZolve-L1™ is a new live cell imaging tool, which can be used as an imaging reagent for the detection of polar lipids in different intracellular

  15. Venom of the ectoparasitoid, Nasonia vitripennis, influences gene expression in Musca domestica hemocytes.

    Science.gov (United States)

    Qian, Cen; Liu, Yang; Fang, Qi; Min-Li, Yan; Liu, Shu-Sheng; Ye, Gong-Yin; Li, Yan-Min

    2013-08-01

    Insect hosts have evolved potent innate immunity against invasion by parasitoid wasps. Host/parasitoids live in co-evolutionary relationships. Nasonia vitripennis females inject venom into their dipteran hosts just prior to laying eggs on the host's outer integument. The parasitoid larvae are ectoparasitoids because they feed on their hosts within the puparium, but do not enter the host body. We investigated the influence of N. vitripennis venom on the gene expression profile of hemocytes of their hosts, pupae of the housefly, Musca domestica. We prepared venom by isolating venom glands and treated experimental host pupae with venom. We used suppression subtractive hybridization (SSH) to determine the influence of venom on hemocyte gene expression. At 1 h post treatment, we recorded decreases in transcript levels of 133 EST clones derived from forward a subtractive library of host hemocytes and upregulation in transcript levels of 111 EST clones from the reverse library. These genes are related to immune and stress response, cytoskeleton, cell cycle and apoptosis, metabolism, transport, and transcription/translation regulation. We verified the reliability of our data with reverse transcription quantitative real-time PCR analysis of randomly selected genes, and with assays of enzyme activities. These analyses showed that the expression level of all selected genes were downregulated after venom treatment. Outcomes of our experiments support the hypothesis that N. vitripennis venom influences the gene expression in host hemocytes. We conclude that the actions of venom on host gene expression influence host biology in ways that benefit the development and emergence of the next generation of parasitoids.

  16. rst transcriptional activity influences kirre mRNA concentration in the Drosophila pupal retina during the final steps of ommatidial patterning.

    Directory of Open Access Journals (Sweden)

    Maiaro Cabral Rosa Machado

    Full Text Available BACKGROUND: Drosophila retinal architecture is laid down between 24-48 hours after puparium formation, when some of the still uncommitted interommatidial cells (IOCs are recruited to become secondary and tertiary pigment cells while the remaining ones undergo apoptosis. This choice between survival and death requires the product of the roughest (rst gene, an immunoglobulin superfamily transmembrane glycoprotein involved in a wide range of developmental processes. Both temporal misexpression of Rst and truncation of the protein intracytoplasmic domain, lead to severe defects in which IOCs either remain mostly undifferentiated and die late and erratically or, instead, differentiate into extra pigment cells. Intriguingly, mutants not expressing wild type protein often have normal or very mild rough eyes. METHODOLOGY/PRINCIPAL FINDINGS: By using quantitative real time PCR to examine rst transcriptional dynamics in the pupal retina, both in wild type and mutant alleles we showed that tightly regulated temporal changes in rst transcriptional rate underlie its proper function during the final steps of eye patterning. Furthermore we demonstrated that the unexpected wild type eye phenotype of mutants with low or no rst expression correlates with an upregulation in the mRNA levels of the rst paralogue kin-of-irre (kirre, which seems able to substitute for rst function in this process, similarly to their role in myoblast fusion. This compensatory upregulation of kirre mRNA levels could be directly induced in wild type pupa upon RNAi-mediated silencing of rst, indicating that expression of both genes is also coordinately regulated in physiological conditions. CONCLUSIONS/SIGNIFICANCE: These findings suggest a general mechanism by which rst and kirre expression could be fine tuned to optimize their redundant roles during development and provide a clearer picture of how the specification of survival and apoptotic fates by differential cell adhesion during the

  17. A Molecular Probe for the Detection of Polar Lipids in Live Cells

    Science.gov (United States)

    Bader, Christie A.; Shandala, Tetyana; Carter, Elizabeth A.; Ivask, Angela; Guinan, Taryn; Hickey, Shane M.; Werrett, Melissa V.; Wright, Phillip J.; Simpson, Peter V.; Stagni, Stefano; Voelcker, Nicolas H.; Lay, Peter A.; Massi, Massimiliano; Brooks, Douglas A.

    2016-01-01

    Lipids have an important role in many aspects of cell biology, including membrane architecture/compartment formation, intracellular traffic, signalling, hormone regulation, inflammation, energy storage and metabolism. Lipid biology is therefore integrally involved in major human diseases, including metabolic disorders, neurodegenerative diseases, obesity, heart disease, immune disorders and cancers, which commonly display altered lipid transport and metabolism. However, the investigation of these important cellular processes has been limited by the availability of specific tools to visualise lipids in live cells. Here we describe the potential for ReZolve-L1™ to localise to intracellular compartments containing polar lipids, such as for example sphingomyelin and phosphatidylethanolamine. In live Drosophila fat body tissue from third instar larvae, ReZolve-L1™ interacted mainly with lipid droplets, including the core region of these organelles. The presence of polar lipids in the core of these lipid droplets was confirmed by Raman mapping and while this was consistent with the distribution of ReZolve-L1™ it did not exclude that the molecular probe might be detecting other lipid species. In response to complete starvation conditions, ReZolve-L1™ was detected mainly in Atg8-GFP autophagic compartments, and showed reduced staining in the lipid droplets of fat body cells. The induction of autophagy by Tor inhibition also increased ReZolve-L1™ detection in autophagic compartments, whereas Atg9 knock down impaired autophagosome formation and altered the distribution of ReZolve-L1™. Finally, during Drosophila metamorphosis fat body tissues showed increased ReZolve-L1™ staining in autophagic compartments at two hours post puparium formation, when compared to earlier developmental time points. We concluded that ReZolve-L1™ is a new live cell imaging tool, which can be used as an imaging reagent for the detection of polar lipids in different intracellular

  18. Krüppel homolog 1 (Kr-h1) mediates juvenile hormone action during metamorphosis of Drosophila melanogaster.

    Science.gov (United States)

    Minakuchi, Chieka; Zhou, Xiaofeng; Riddiford, Lynn M

    2008-01-01

    Juvenile hormone (JH) given at pupariation inhibits bristle formation and causes pupal cuticle formation in the abdomen of Drosophila melanogaster due to its prolongation of expression of the transcription factor Broad (BR). In a microarray analysis of JH-induced gene expression in abdominal integument, we found that Krüppel homolog 1 (Kr-h1) was up-regulated during most of adult development. Quantitative real-time PCR analyses showed that Kr-h1 up-regulation began at 10h after puparium formation (APF), and Kr-h1 up-regulation occurred in imaginal epidermal cells, persisting larval muscles, and larval oenocytes. Ectopic expression of Kr-h1 in abdominal epidermis using T155-Gal4 to drive UAS-Kr-h1 resulted in missing or short bristles in the dorsal midline. This phenotype was similar to that seen after a low dose of JH or after misexpression of br between 21 and 30 h APF. Ectopic expression of Kr-h1 prolonged the expression of BR protein in the pleura and the dorsal tergite. No Kr-h1 was seen after misexpression of br. Thus, Kr-h1 mediates some of the JH signaling in the adult abdominal epidermis and is upstream of br in this pathway. We also show for the first time that the JH-mediated maintenance of br expression in this epidermis is patterned and that JH delays the fusion of the imaginal cells and the disappearance of Dpp in the dorsal midline.

  19. Post eclosion age predicts the prevalence of midgut trypanosome infections in Glossina.

    Directory of Open Access Journals (Sweden)

    Deirdre P Walshe

    Full Text Available The teneral phenomenon, as observed in Glossina sp., refers to the increased susceptibility of the fly to trypanosome infection when the first bloodmeal taken is trypanosome-infected. In recent years, the term teneral has gradually become synonymous with unfed, and thus fails to consider the age of the newly emerged fly at the time the first bloodmeal is taken. Furthermore, conflicting evidence exists of the effect of the age of the teneral fly post eclosion when it is given the infected first bloodmeal in determining the infection prevalence. This study demonstrates that it is not the feeding history of the fly but rather the age (hours after eclosion of the fly from the puparium of the fly when it takes the first (infective bloodmeal that determines the level of fly susceptibility to trypanosome infection. We examine this phenomenon in male and female flies from two distinct tsetse clades (Glossina morsitans morsitans and Glossina palpalis palpalis infected with two salivarian trypanosome species, Trypanosoma (Trypanozoon brucei brucei and Trypanosoma (Nannomonas congolense using Fisher's exact test to examine differences in infection rates. Teneral tsetse aged less than 24 hours post-eclosion (h.p.e. are twice as susceptible to trypanosome infection as flies aged 48 h.p.e. This trend is conserved across sex, vector clade and parasite species. The life cycle stage of the parasite fed to the fly (mammalian versus insect form trypanosomes does not alter this age-related bias in infection. Reducing the numbers of parasites fed to 48 h.p.e., but not to 24 h.p.e. flies, increases teneral refractoriness. The importance of this phenomenon in disease biology in the field as well as the necessity of employing flies of consistent age in laboratory-based infection studies is discussed.

  20. Desarrollo post-embrionario de Microcerella acrydiorum (Diptera: Sarcophagidae bajo condiciones de laboratorio Post-embrionary development of Microcerella acrydiorum (Diptera: Sarcophagidae under laboratory conditions

    Directory of Open Access Journals (Sweden)

    Andrea V. De Arriba

    2006-07-01

    Full Text Available Se estudió el desarrollo post-embrionario de Microcerella acrydiorum (Weyenbergh bajo condiciones controladas (temperatura media: 27,50 ± 2,60 ° C, humedad relativa media: 36,47 ± 8,10% y fotoperíodo artificial: 14 horas luz y se determinaron los siguientes parámetros biológicos: tiempo de desarrollo larval y pupal, período de prelarviposición, supervivencia y razón sexual. El tiempo de desarrollo larval fue de 3,78 ± 0,81 días, el tiempo de desarrollo pupal de 8,63 ± 1,45 días, el período de prelarviposición de 18,25 ± 4,06 días y el ciclo completo fue de 30,66 días. La probabilidad de supervivencia al estado adulto fue de 75,80%. Al menos el 98,73% de las larvas lograron formar el pupario, de estas el 85,81% completó la metamorfosis y transformadas en adultos abandonaron los puparios; sólo el 89,47% de los adultos emergió a la superficie. El estado pupal resultó ser el más susceptible, concentrando casi el 58% de las muertes. La proporción de sexos no se apartó de la relación esperada 1:1 (p > 0,15.We studied Microcerella acrydiorum (Weyenbergh postembrionary development and we determined the following biological parameters: time of larval and pupal development, prelarviposition period, survival, and sexual rate; under controlled conditions (average temperature: 27.50 ± 2.60 ° C, average relative humidity: 36.47 ± 8.10% and artificial photoperiod: 14 hours light. The average time of larval development was of 3.78 ± 0.81 days, the average time of pupal development was of 8.63 ± 1.45 days, the prelarviposition period was of 18.25 ± 4.06 days, and the total cycle was of 30.66 days. Survival probability to the adult stage was of 75.80%. At least, 98.73% of the larvae reached the pupal stage; 85.81% of the latter fully completed metamorphosis, and once transformed into adults, they abandoned the puparium. Only 89.47% of adults did emerge to the surface. Pupal stage was the most susceptible concentrating