WorldWideScience

Sample records for pump turbines

  1. Pump Application as Hydraulic TurbinePump as Turbine (PaT)

    OpenAIRE

    Rusovs, D

    2009-01-01

    The paper considers pump operation as hydraulic turbine with purpose to produce mechanical power from liquid flow. The Francis hydraulic turbine was selected for comparison with centrifugal pump in reverse operation. Turbine and centrifugal pump velocity triangles were considered with purpose to evaluate PaT efficiency. Shape of impeller blades for turbine and pumps was analysed. Specific speed calculation is carried out with purpose to obtain similarity in pump and turbine description. For ...

  2. Characteristics of reversible-pump turbines

    Energy Technology Data Exchange (ETDEWEB)

    Olimstad, Grunde

    2012-07-01

    The primary goal for this PhD project has been to investigate instability of reversible-pump turbines (RPTs) as a phenomenon and to find remedies to solve it. The instability occurs for turbines with s-shaped characteristics, unfavourable waterway and limited rotating inertia. It is only observed for certain operation pints at either high speed or low load. These correspond to ether high values of Ned or low values of Qed. The work done in this PhD thesis can be divided in to the three following categories. Investigate and understand the behaviour of a pump turbine: A model was designed in order to investigate the pump turbine behaviour related to its characteristics. This model was manufactured and measurements were performed in the laboratory. By using throttling valves or torque as input the full s-shaped characteristics was measured. When neither of these techniques is used, the laboratory system has unstable operation points which result in hysteresis behaviour. Global behaviour of the RPT in power plant system was investigated through analytical stability analysis and dynamic system simulations. The latter included both rigid and elastic representation of the water column. Turbine internal flow: The flow inside the runner was investigated by computer simulations (CFD). Two-dimensional analysis was used to study the inlet part of the runner. This showed that a vortex forming at the inlet is one of the causes for the unstable operation range. Measurements at different pressure levels showed that the characteristics were dependent on the Reynolds number at high Ned values in turbine mode. This means that the similarity of flows is not sufficiently described by constant Qed and Ned values at this part of the characteristics. Design modifications: The root of the stability problem was considered to be the runners geometric design at the inlet in turbine mode. Therefore different design parameters were investigated to find relations to the characteristics. Methods

  3. Pumps used as turbines power recovery, energy efficiency, CFD analysis

    OpenAIRE

    Bogdanović-Jovanović Jasmina B.; Milenković Dragica R.; Svrkota Dragan M.; Bogdanović Božidar; Spasić Živan T.

    2014-01-01

    As the global demand for energy grows, numerous studies in the field of energy efficiency are stimulated, and one of them is certainly the use of pumps in turbine operating mode. In order to reduce time necessary to determine pump characteristic in turbine operating mode problem was studied by computational fluid dynamics approach. The paper describes various problems faced during modeling (pump and turbine mode) and the approaches used to resolve the probl...

  4. Distribution of Pressure Fluctuations in a Prototype Pump Turbine at Pump Mode

    OpenAIRE

    Sun, Yuekun; Zuo, Zhigang; Liu, Shuhong; Liu, Jintao; Wu, Yulin

    2014-01-01

    Pressure fluctuations are very important characteristics in pump turbine’s operation. Many researches have focused on the characteristics (amplitude and frequencies) of pressure fluctuations at specific locations, but little researches mentioned the distribution of pressure fluctuations in a pump turbine. In this paper, 3D numerical simulations using SST k-ω turbulence model were carried out to predict the pressure fluctuations distribution in a prototype pump turbine at pump mode. Three oper...

  5. The numerical simulation based on CFD of hydraulic turbine pump

    Science.gov (United States)

    Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.

    2016-05-01

    As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.

  6. Pumps used as turbines power recovery, energy efficiency, CFD analysis

    Directory of Open Access Journals (Sweden)

    Bogdanović-Jovanović Jasmina B.

    2014-01-01

    Full Text Available As the global demand for energy grows, numerous studies in the field of energy efficiency are stimulated, and one of them is certainly the use of pumps in turbine operating mode. In order to reduce time necessary to determine pump characteristic in turbine operating mode problem was studied by computational fluid dynamics approach. The paper describes various problems faced during modeling (pump and turbine mode and the approaches used to resolve the problems. Since in the majority of applications, the turbine is a pump running in reverse, many attempts have been made to predict the turbine performance from the known pump performance, but only for best efficiency point. This approach does not provide reliable data for the design of the system with maximum energy efficiency and does not allow the determination of the head for a wide range of flow rates. This paper presents an example of centrifugal norm pump operating in both (pump and turbine regime and comparison of experimentally obtained results and computational fluid dynamics simulations. [Projekat Ministarstva nauke Republike Srbije, br. TR33040: Revitalization of existing and designing new micro and mini hydropower plants (from 100 to 1000 kW in the territory of South and Southeast Serbia

  7. A Mathematical Model of Gas-Turbine Pump Complex

    Science.gov (United States)

    Shpilevoy, V. A.; Chekardovsky, S. M.; Zakirazkov, A. G.

    2016-10-01

    The articles analyzes the state of an extensive network of main oil pipelines of Tyumen region on the basis of statistical data, and also suggest ways of improving the efficiency of energy-saving policy on the main transport oil. Various types of main oil pipelines pump drives were examined. It was determined that now there is no strict analytical dependence between main operating properties of the power turbine of gas turbine engine. At the same time it is necessary to determine the operating parameters using a turbine at GTPU, interconnection between power and speed frequency, as well as the feasibility of using a particular mode. Analysis of foreign experience, the state of domestic enterprises supplying the country with gas turbines, features of the further development of transport of hydrocarbon resources allows us to conclude the feasibility of supplying the oil transportation industry of our country with pumping units based on gas turbine drive.

  8. Model tests on a semi-axial pump turbine

    Energy Technology Data Exchange (ETDEWEB)

    Strohmer, F.; Horacek, G.

    1984-03-01

    Due to their good hydraulic characteristic semi-axial pump turbines are used in the medium head range of pumped storage plants. This paper describes model tests performed on a semiaxial pump turbine model and shows the results of these tests. The aim of the model tests was the optimization of the hydraulic water passage, the measurement of the hydraulic characteristics over the whole operating range, the investigation of the cavitation behaviour, the investigation of the hydraulic forces and torques as well as the proof of the values guaranteed to the customer.

  9. Experimental and Numerical Analysis of Performance Discontinuity of a Pump-Turbine under Pumping Mode

    Science.gov (United States)

    Zhang, X.; Burgstaller, R.; Lai, X.; Gehrer, A.; Kefalas, A.; Pang, Y.

    2016-11-01

    The performance discontinuity of a pump-turbine under pumping mode is harmful to stable operation of units in hydropower station. In this paper, the performance discontinuity phenomenon of the pump-turbine was studied by means of experiment and numerical simulation. In the experiment, characteristics of the pump-turbine with different diffuser vane openings were tested in order to investigate the effect of pumping casing to the performance discontinuity. While other effects such as flow separation and rotating stall are known to have an effect on the discontinuity, the present studied test cases show that prerotation is the dominating effect for the instability, positions of the positive slope of characteristics are almost the same in different diffuser vane opening conditions. The impeller has principal effect to the performance discontinuity. In the numerical simulation, CFD analysis of tested pump-turbine has been done with k-ω and SST turbulence model. It is found that the position of performance curve discontinuity corresponds to flow recirculation at impeller inlet. Flow recirculation at impeller inlet is the cause of the discontinuity of characteristics curve. It is also found that the operating condition of occurrence of flow recirculation at impeller inlet is misestimated with k-ω and SST turbulence model. Furthermore, the original SST model has been modified. We predict the occurrence position of flow recirculation at impeller inlet correctly with the modified SST turbulence model, and it also can improve the prediction accuracy of the pump- turbine performance at the same time.

  10. Unsteady Flow Analysis of Pump Mode Small Discharge Condition for a Francis Pump-turbine

    Science.gov (United States)

    Xiaoran, ZHAO; Yexiang, XIAO; Jincai, XU; Wei, XU; Jianbo, SUN; Zhengwei, WANG; Yangyang, YAO

    2016-11-01

    Unsteady flow phenomena, including vortex flow at runner inlet, helical backflow in the draft tube and numerous vortexes inside the guide vanes, can occur in pump-turbines under off design conditions at pump mode and can impact normal operation of pump-turbines. All of these phenomena cause serious pressure pulsation, which is quite different from cases in normal pump mode. There is also a difference of pressure pulsation frequency and amplitude in different place through the runner. This paper builds a whole flow passage of a model pump-turbine, simulates flow characteristics in runner by CFD technology, analyses pressure pulsation in the runner and explores the origin and mechanism of pressure pulsations. The SST-CC turbulence model is adopted to perform unsteady simulations of the pump-turbine under 0.46Q BEP small discharge condition at pump mode. Unsteady flow structures are proceeded combined with hydraulic loss and pressure amplitude spectra. The results indicates that there is complicated disordered flow inside the runner under 0.46Q BEP small discharge condition at pump mode, shows the amplitude and frequency characteristic of pressure pulsations through runner flow passage.

  11. Prediction of rotating stall and cavitation inception in pump turbines

    Energy Technology Data Exchange (ETDEWEB)

    Anciger, D; Jung, A; Aschenbrenner, T, E-mail: Danijel.Anciger@voith.co [Voith Hydro Holding GmbH and Co. KG Alexanderstr. 11, 89522 Heidenheim (Germany)

    2010-08-15

    The current development of modern pump storage plants aims towards a higher flexibility in operation, an extended operation range of the hydraulic machine, especially in the pumping mode, and a higher reliability. A major design target for state-of-the-art reversible Francis-type pump turbines is to find an optimal balance between pumping and generating performance. The pumping requirements are the crucial design drivers, since, even if the turbine mode performance is world class, the success of a project depends on the pump turbine delivering the required maximum pump head and starting reliably in pump mode. The proposed paper describes how advanced computational fluid dynamic (CFD) simulations can help the designer to evaluate his design with respect to hydraulic performance and dynamic phenomena occurring in pump turbines. A standard procedure today is to compute the flow by applying the Reynolds-averaged Navier-Stokes equations (RANS) on the steady-state flow in individual components or in multiple components which are coupled by mixing-plane interfaces (sometimes also called stage-interface). This standard approach gives fast turnaround times and is a good engineering tool. However, accuracy is limited due to necessary simplifications. Therefore methods are developed and evaluated which allow a more reliable prediction of the onset of rotating stall which is the operation limit of the pump under high heads and low flow rates. The behaviour a modern pump turbine design in this instability region is investigated in detail. Another important task in the design process is the proper prediction of cavitation phenomena in the runner. Predicting cavitating flows with multi-phase CFD computations is still a very challenging task. Some results of ongoing work in this field are presented and compared to single phase computations and results from model tests. The relevance and applicability of such computations is discussed. All the information gained from these kinds of

  12. Modeling an autonomous wind turbine electric pump system

    Directory of Open Access Journals (Sweden)

    Andreea Forcos

    2009-10-01

    Full Text Available Being one of the variable renewable energy sources, wind energy integration can be made using storage methods. All of these have been developed during time, but one might be more accessible than others because is using a free natural resource, water. This is pump storage. The purpose of this paper is modeling an autonomous wind turbine connected to an electric pump, in the aim of storage, and finally the determination of the efficiency.

  13. Multiobjective Optimization of a Counterrotating Type Pump-Turbine Unit Operated at Turbine Mode

    Directory of Open Access Journals (Sweden)

    Jin-Hyuk Kim

    2014-05-01

    Full Text Available A multiobjective optimization for improving the turbine output and efficiency of a counterrotating type pump-turbine unit operated at turbine mode was carried out in this work. The blade geometry of both the runners was optimized using a hybrid multiobjective evolutionary algorithm coupled with a surrogate model. Three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model were discretized by finite volume approximations and solved on hexahedral grids to analyze the flow in the pump-turbine unit. As major hydrodynamic performance parameters, the turbine output and efficiency were selected as objective functions with two design variables related to the hub profiles of both the runner blades. These objectives were numerically assessed at twelve design points selected by Latin hypercube sampling in the design space. Response surface approximation models for the objectives were constructed based on the objective function values at the design points. A fast nondominated sorting genetic algorithm for the local search coupled with the response surface approximation models was applied to determine the global Pareto-optimal solutions. The trade-off between the two objectives was determined and described with respect to the Pareto-optimal solutions. The results of this work showed that the turbine outputs and efficiencies of optimized pump-turbine units were simultaneously improved in comparison to the reference unit.

  14. Vertical pump turbine oil environmental evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Culver, G.

    1991-04-01

    In Oregon low-temperature geothermal injection well construction, siting and receiving formations requires approval by the Water Resources Department (OWRD). In addition, the Oregon Department of Environmental Quality (ODEQ) has regulations concerning injection. Conversations with the OWRD and ODEQ representatives indicated they were very concerned about the potential for contamination of the geothermal (and cooler but hydraulically connected) aquifers by oils and grease. Their primary concern was over the practice of putting paraffin, motor oils and other hydrocarbons in downhole heat exchanger (DHE) wells to prevent corrosion. They also expressed considerable concern about the use of oil in production well pumps since the fluids pumped would be injected. Oregon (and Idaho) prohibit the use of oil-lubricated pumps for public water supplies except in certain situations where non-toxic food-grade lubricants are used. Since enclosed-lineshaft oil-lubricated pumps are the mainstay of direct-use pumping equipment, the potential for restricting their use became a concern to the Geo-Heat Center staff. An investigation into alternative pump lubrication schemes and development of rebuttals to potential restrictions was proposed and approved as a contract task. (SM)

  15. Pumps as turbines for low cost micro hydro power

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.A. [Nottingham Trent University (United Kingdom)

    1996-09-01

    Small centrifugal pumps are suitable for use as hydraulic turbines and have the advantage of being mass produced in many countries throughout the world. When used with an integral induction motor, they can be installed as a combined turbine and generator unit. Recent research and development work carried out at Nottingham Trent University in collaboration with the Intermediate Technology Development Group has concentrated on two aspects that had previously held back the wider application of this technology. A standard design of Induction Generator Controller (IGC), enabling these units to be used for isolated micro hydro schemes, has been proven, and is now being manufactured in five countries world-wide. Progress has also been made on the application of performance prediction methods which facilitate the selection of a pump unit for particular site conditions. Sites, suitable for the application of small centrifugal pumps as turbines are of two main types: firstly, as a low-cost alternative to crossflow turbines with an output of 5kW or less; secondly, for energy recovery in pipelines. These types of installation may be suitable for industrialized and developing countries. Three examples of different types of scheme are described in the paper and these show the favourable financial returns that are possible. (Author)

  16. Experimental analysis of the flow pattern of a pump turbine model in pump mode

    Science.gov (United States)

    Guggenberger, Mark; Senn, Florian; Jaberg, Helmut; Gehrer, Arno; Sallaberger, Manfred; Widmer, Christian

    2016-11-01

    Reversible pump turbines are the only means to store primary energy in an highly efficient way. Within a short time their operation can be switched between the different operational regimes thus enhancing the stabilization of the electric grid. These qualities in combination with the operation even at off-design conditions offer a high flexibility to the energy market. However, pump turbines pass through operational regimes where their behaviour becomes unstable. One of these effects occurs when the flowrate is decreased continuously down to a minimum. This point is the physical limitation of the pump operation and is very difficult to predict properly by numerical design without a model test. The purpose of the present study is to identify the fluid mechanical phenomena leading to the occurrence of instabilities of pump turbines in pump mode. A reduced scale model of a ANDRITZ pump turbine was installed on a 4-quadrant test rig for the experimental investigation of unstable conditions in pump mode. The performed measurements are based on the IEC60193-standard. Characteristic measurements at a single guide vane opening were carried out to get a detailed insight into the instabilities in pump mode. The interaction between runner and guide vane was analysed by Particle Image Velocimetry. Furthermore, high-speed visualizations of the suction side part load flow and the suction recirculation were performed. Like never before the flow pattern in the draft tube cone became visible with the help of a high-speed camera by intentionally caused cavitation effects which allow a qualitative view on the flow pattern in the draft tube cone. Suction recirculation is observed in form of single vortices separating from each runner blade and stretching into the draft tube against the main flow direction. To find an explanation for the flow phenomena responsible for the appearance of the unstable head curve also characteristic velocity distributions on the pressure side were combined

  17. Cavitation study of a pump-turbine at turbine mode with critical cavitation coefficient condition

    Science.gov (United States)

    Wang, J.; Yang, D.; Xu, J. W.; Liu, J. T.; Jiao, L.

    2016-05-01

    To study the cavitation phenomenon of a pump-turbine at turbine mode when it ran at the critical cavitation coefficient condition, a high-head model pump-turbine was disperse using hexahedron grid. Three dimensional, steady cavitating flow was numerically studied using SST k-ω model. It is confirmed that ZGB cavitation model and SST k-ω model are useful ways to study the two-phase cavitation flow in pump-turbine. Mass flow inlet and pressure outlet were specified at the casing inlet and draft tube outlet, respectively. The static pressure was set according to the cavitation coefficient. The steady cavitating flows at critical cavitation coefficient condition were analysed. The cavitation area in the runner was investigated. It was found that the pressure of the suction on the blade surface was decreasing gradually with the decrease of the cavitation coefficient. In addition, the vortex flow in the draft tube was observed at the critical cavitation coefficient. It was found that the vortex flow appeared at the center of the draft tube inlet with the decreasing of the cavitation coefficient. Compared with the experimental data, the simulation results show reasonable agreement with the experimental data.

  18. An experimental investigation of pump as turbine for micro hydro application

    Science.gov (United States)

    >N Raman, I Hussein,

    2013-06-01

    This paper presents the results of an experimental investigation of a centrifugal pump working as turbine (PAT). An end suction centrifugal pump was tested in turbine mode at PAT experimental rig installed in the Mechanical Engineering Laboratory of Universiti Tenaga Nasional. The pump with specific speed of 15.36 (m, m3/s) was used in the experiment and the performance characteristic of the PAT was determined. The experiment showed that a centrifugal pump can satisfactorily be operated as turbine without any mechanical problems. As compared to pump operation, the pump was found to operate at higher heads and discharge values in turbine mode. The best efficiency point (BEP) in turbine mode was found to be lower than BEP in pump mode. The results obtained were also compared to the work of some previous researchers.

  19. Quantitative analysis of backflow of reversible pump-turbine in generating mode

    Science.gov (United States)

    Liu, K. H.; Zhang, Y. N.; Li, J. W.; Xian, H. Z.

    2016-05-01

    Significant vibration and pressure fluctuations are usually observed when pump- turbine is operated during the off-design conditions, especially turbine brake and runaway. The root cause of these instability phenomena is the abnormal unsteady flow (especially the backflow) inside the pump-turbine. In the present paper, numerical simulation method is adopted to investigate the characteristics of the flow inside the whole passage of pump-turbine with two guide vane openings (6° and 21° respectively) and three kinds of operating conditions (turbine, runaway and turbine braking respectively). A quantitative analysis of backflow is performed in both the axial and radial directions and the generation and development of backflow in the pump turbine are revealed with great details.

  20. CFD Investigation of Complex Phenomena in S-Shape Region of Reversible Pump-Turbine

    Science.gov (United States)

    Jacquet, C.; Fortes-Patella, R.; Balarac, L.; Houdeline, J.-B.

    2016-11-01

    Pumped Storage Plants (PSP) using reversible pump-turbines offer the possibility to store large amounts of energy with high efficiency and at reasonable cost. For reversible high head pump-turbines, the characteristic curves exhibit an S-shape in the turbine, turbine break and reverse pump quadrants. This S-shape leads to unstable behaviour of the turbine when coupling to the grid (for small guide vane opening) or to surge transient phenomena in case of emergency shutdown (for large guide vane opening). Typically the piping system can be exposed to severe pressure oscillations. Furthermore, the flow inside the pump-turbine is characterized by unsteady complex hydrodynamic phenomena. These phenomena have to be deeply investigated to improve the behaviour of the pump-turbine in such operating conditions. This paper focuses on the numerical analysis of the flow in a reversible pump-turbine in the S- shape region. For this application, we used unsteady computation applying the SAS-SST turbulence model and considered a full computational domain that includes all the component of the pump-turbine. The study highlights the evolution of the flow behaviour for a large range of operating conditions: from the optimal efficiency point to the zero discharge condition, for a given constant guide vane opening.

  1. An evaluation of a hubless inducer and a full flow hydraulic turbine driven inducer boost pump

    Science.gov (United States)

    Lindley, B. K.; Martinson, A. R.

    1971-01-01

    The purpose of the study was to compare the performance of several configurations of hubless inducers with a hydrodynamically similar conventional inducer and to demonstrate the performance of a full flow hydraulic turbine driven inducer boost pump using these inducers. A boost pump of this type consists of an inducer connected to a hydraulic turbine with a high speed rotor located in between. All the flow passes through the inducer, rotor, and hydraulic turbine, then into the main pump. The rotor, which is attached to the main pump shaft, provides the input power to drive the hydraulic turbine which, in turn, drives the inducer. The inducer, rotating at a lower speed, develops the necessary head to prevent rotor cavitation. The rotor speed is consistent with present main engine liquid hydrogen pump designs and the overall boost pump head rise is sufficient to provide adequate main pump suction head. This system would have the potential for operating at lower liquid hydrogen tank pressures.

  2. Resonance investigation of pump-turbine during startup process

    Science.gov (United States)

    He, L. Y.; Wang, Z. W.; Kurosawa, S.; Nakahara, Y.

    2014-12-01

    The causes of resonance of a certain model pump-turbine unit during startup process were investigated in this article. A three-dimensional full flow path analysis model which contains spiral case, stay vanes, guide vanes, runner, gaps outside the runner crown and band, and draft tube was constructed. The transient hydraulic excitation force of full flow path was analyzed under five conditions near the resonance region. Based on one-way fluid- structure interaction (FSI) analysis model, the dynamic stress characteristics of the pump-turbine runner was investigated. The results of pressure pulsation, vibration mode and dynamic stress obtained from simulation were consistent with the test results. The study indicated that the hydraulic excitation frequency (Zg*fn) Hz due to rotor-stator interference corresponding to the natural frequency of 2ND+4ND runner mode is the main cause of resonance. The relationship among pressure pulsation, vibration mode and dynamic stress was discussed in this paper. The results revealed the underlying causes of the resonance phenomenon.

  3. Cost estimation 2012 for the electrical and mechanical equipment of the power house in hydropower projects and pumped storage projects. Equipment with Pelton turbines, Francis turbines, Kaplan Turbines, Kaplan tube turbines, bulb turbines and Francis pump-turbines; Kostenschaetzung 2012 fuer die elektrische und mechanische Ausruestung des Krafthauses in Wasserkraft- und Pumpspeicher-Projekten. Ausruestung mit Pelton-, Francis-, Kaplan-, Kaplan-Rohr-, Bulb-Turbinen oder Francis-Pumpturbinen

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado-Ancieta, Cesar Adolfo

    2012-07-01

    The compilation of statistical data on costs for the electrical and mechanical equipment of approximately 140 selected hydropower projects and pumped storage projects in 46 countries in America, Europe, Asia and Africa provides helpful diagrams with which the cost of the electrical and mechanical equipment of Pelton turbines, Francis turbines, Kaplan Turbines, Kaplan tube turbines, bulb turbines and Francis pump-turbines can be determined.

  4. A comparison of the heat and mechanical energy of a heat-pump wind turbine system

    Energy Technology Data Exchange (ETDEWEB)

    Aybek, A.; Arslan, S.; Yildiz, E.; Atik, K. [University of Kahramanmaras (Turkey). Dept. of Agricultural Machinery

    2000-07-01

    While a variety of applications of wind energy have been studied in Turkey, no significant efforts have been made to utilize heat pumps for heat generation. The use of heat pumps in wind energy systems is worth considering because of the high efficiency of heat production. In this study, a directly coupled wind turbine-heat pump system was designed, constructed, and tested. Measurements determined the mechanical energy of the rotors of the wind turbine and the heat energy generated by the heat pump driven by the rotor shaft. Based on the comparisons between the power generated by the heat pump and the power of the Savonius rotors, it was found that the heat energy gained by the heat pump was four times greater than the mechanical energy obtained from the turbine. It was suggested that heat pumps could be efficiently used in wind energy systems. (Author)

  5. A simple inverse design method for pump turbine

    Science.gov (United States)

    Yin, Junlian; Li, Jingjing; Wang, Dezhong; Wei, Xianzhu

    2014-03-01

    In this paper, a simple inverse design method is proposed for pump turbine. The main point of this method is that the blade loading distribution is first extracted from an existing model and then applied in the new design. As an example, the blade loading distribution of the runner designed with head 200m, was analyzed. And then, the combination of the extracted blade loading and a meridional passage suitable for 500m head is applied to design a new runner project. After CFD and model test, it is shown that the new runner performs very well in terms of efficiency and cavitation. Therefore, as an alternative, the inverse design method can be extended to other design applications.

  6. Energy Saving in a Water Supply Network by Coupling a Pump and a Pump As Turbine (PAT) in a Turbopump

    OpenAIRE

    Armando Carravetta; Lauro Antipodi; Umberto Golia; Oreste Fecarotta

    2017-01-01

    The management of a water distribution network (WDN) is performed by valve and pump control, to regulate both the pressure and the discharge between certain limits. The energy that is usually merely dissipated by valves can instead be converted and used to partially supply the pumping stations. Pumps used as turbines (PAT) can be used in order to both reduce pressure and recover energy, with proven economic benefits. The direct coupling of the PAT shaft with the pump shaft in a PAT-pump turbo...

  7. Influence of guide vane setting in pump mode on performance characteristics of a pump-turbine

    Science.gov (United States)

    Li, Deyou; Wang, Hongjie; Nielsen, Torbjørn K.; Gong, Ruzhi; Wei, Xianzhu; Qin, Daqing

    2016-11-01

    Performance characteristics in pump mode of pump-turbines are vital for the safe and effective operation of pumped storage power plants. They are resultant of Euler head (power input) and hydraulic losses (power dissipation). In this paper, 3-D steady simulations were performed under 13mm, 19mm and 25mm guide vane openings (GVOs). Three groups of operating points under the three GVOs were chosen based on experimental validation to investigate the influence of guide vane setting on flow patterns upstream and downstream. Analysed results show that, the guide vane setting will obviously change the flow pattern downstream, which in turn influences the flow upstream. It shows a strong effect on hydraulic losses in guide and stay vanes. In addition, at the large part load conditions, the change of GVO will increase the relative flow angle at the runner outlet. As a consequence, it decreases the Euler head. However, at other operating conditions, it only has a little influence on Euler head. Flow patterns in pump mode are very dependent on the GVO and discharge.

  8. Development of a pump-turbine runner based on multiobjective optimization

    Science.gov (United States)

    Xuhe, W.; Baoshan, Z.; Lei, T.; Jie, Z.; Shuliang, C.

    2014-03-01

    As a key component of reversible pump-turbine unit, pump-turbine runner rotates at pump or turbine direction according to the demand of power grid, so higher efficiencies under both operating modes have great importance for energy saving. In the present paper, a multiobjective optimization design strategy, which includes 3D inverse design method, CFD calculations, response surface method (RSM) and multiobjective genetic algorithm (MOGA), is introduced to develop a model pump-turbine runner for middle-high head pumped storage plant. Parameters that controlling blade shape, such as blade loading and blade lean angle at high pressure side are chosen as input parameters, while runner efficiencies under both pump and turbine modes are selected as objective functions. In order to validate the availability of the optimization design system, one runner configuration from Pareto front is manufactured for experimental research. Test results show that the highest unit efficiency is 91.0% under turbine mode and 90.8% under pump mode for the designed runner, of which prototype efficiencies are 93.88% and 93.27% respectively. Viscous CFD calculations for full passage model are also conducted, which aim at finding out the hydraulic improvement from internal flow analyses.

  9. Groundwater heat pumps with turbines for the return water; Grundwasser-Waermepumpe mit Rueckgabe-Turbinierung

    Energy Technology Data Exchange (ETDEWEB)

    Eberhard, M.

    2007-09-15

    This final report for the Swiss Federal Office of Energy (SFOE) reports on improvements in the efficiency of a ground water heat pump installation in an office building. The water return well was equipped with a turbine. In this installation, the ground water is pumped up from a depth of 45 meters which means that a lot of electricity is needed for the pumping of the water. Coefficients of performance of the system are quoted for the situation with and without the turbine. The conversion of a pump for use as a turbine is commented on. The construction of a specially developed turbine with reduced electricity consumption is suggested. Seasonal performance data of the system is provided in tabular form.

  10. Full 3-D viscous optimization design of a reversible pump turbine runner

    Science.gov (United States)

    Wang, X. H.; Zhu, B. S.; Cao, S. L.; Tan, L.

    2013-12-01

    The bi-directional operation of reversible pump turbines presents a great challenge in terms of runner design. In the present paper, an optimal design system for the pump turbine runner is presented by coupling three-dimensional (3-D) inverse design with the Computational Fluid Dynamics (CFD), Design of Experiment (DoE), Response Surface Methodology (RSM) and Multi Objective Genetic Algorithm (MOGA). A pump-turbine runner was designed using the system, with selecting blade loading distributions and blade lean as the input parameters, and the runner efficiency for both pump and turbine mode as optimization objectives. The CFD results show that a high efficiency runner can be designed using the present system.

  11. Pump as Turbine (PAT) Design in Water Distribution Network by System Effectiveness

    OpenAIRE

    Oreste Fecarotta; Helena M. Ramos; Giuseppe Del Giudice; Armando Carravetta

    2013-01-01

    Water distribution networks face several problems related to leakages, where the pressure control strategy is a common practice for water loss management. Small-scale hydropower schemes, where pumps as turbines replace pressure reducing valves, can be considered an interesting technical solution, which ensures both economic convenience and system flexibility. Due to the water networks’ variable operating conditions, a new methodology to model the effectiveness of pumps as turbines was develop...

  12. Analysis of S Characteristics and Pressure Pulsations in a Pump-Turbine With Misaligned Guide Vanes

    OpenAIRE

    SUN, HUI; Xiao, Ruofu; Liu, Weichao; Wang, Fujun

    2013-01-01

    Growing environmental concerns and the need for better power balancing and frequency control have increased attention in renewable energy sources such as the reversible pump-turbine which can provide both power generation and energy storage. Pump-turbine operation along the S-shaped curve can lead to difficulties in loading the rejection process with unusual increases in water pressure, which lead to machine vibrations. Pressure fluctuations are the primary reason for unstable operation of pu...

  13. Over 2000 years in review:revival of the Archimedes screw from pump to turbine

    OpenAIRE

    Waters, Shaun; Aggidis, George

    2015-01-01

    The Archimedes pump is one of the oldest feats of engineering still being used today. In recent times, it has seen a major revival in modern engineering, by reversing it for use as a turbine. This is now an established turbine, being used in Europe since 1994. It has been found this new turbine device has a plethora of advantages over current existing devices, with the simplicity and robustness that has kept the pump in use for centuries acting in its favour. Most existing design theory is fo...

  14. Dynamic behaviour of pump-turbine runner: From disk to prototype runner

    Science.gov (United States)

    Huang, X. X.; Egusquiza, E.; Valero, C.; Presas, A.

    2013-12-01

    In recent decades, in order to increase output power of hydroelectric turbomachinery, the design head and the flow rate of the hydraulic turbines have been increased greatly. This has led to serious vibratory problems. The pump-turbines have to work at various operation conditions to satisfy the requirements of the power grid. However, larger hydraulic forces will result in high vibration levels on the turbines, especially, when the machines operate at off-design conditions. Due to the economic considerations, the pump-turbines are built as light as possible, which will change the dynamic response of the structures. According to industrial cases, the fatigue damage of the pump-turbine runner induced by hydraulic dynamic forces usually happens on the outer edge of the crown, which is near the leading edges of blades. To better understand the reasons for this kind of fatigue, it is extremely important to investigate the dynamic response behaviour of the hydraulic turbine, especially the runner, by experimental measurement and numerical simulation. The pump-turbine runner has a similar dynamic response behaviour of the circular disk. Therefore, in this paper the dynamic response analyses for circular disks with different dimensions and disk-blades-disk structures were carried out to better understand the fundamental dynamic behaviour for the complex turbomachinery. The influences of the pattern and number of blades were discussed in detail.

  15. Comprehensive experimental and numerical analysis of instability phenomena in pump turbines

    Science.gov (United States)

    Gentner, Ch; Sallaberger, M.; Widmer, Ch; Bobach, B.-J.; Jaberg, H.; Schiffer, J.; Senn, F.; Guggenberger, M.

    2014-03-01

    The changes in the electricity market have led to changed requirements for the operation of pump turbines. Utilities need to change fast and frequently between pumping and generating modes and increasingly want to operate at off-design conditions for extended periods. Operation of the units in instable areas of the machine characteristic is not acceptable and may lead to self-excited vibration of the hydraulic system. In turbine operation of pump turbines unstable behaviour can occur at low load off-design operation close to runaway conditions (S-shape of the turbine characteristic). This type of instability may impede the synchronization of the machine in turbine mode and thus increase start-up and switch over times. A pronounced S-shaped instability can also lead to significant drop of discharge in the event of load rejection. Low pressure on the suction side and in the tail-race tunnel could cause dangerous separation of the water column. Understanding the flow features that lead to the instable behaviour of pump turbines is a prerequisite to the design of machines that can fulfil the growing requirements relating to operational flexibility. Flow simulation in these instability zones is demanding due to the complex and highly unsteady flow patterns. Only unsteady simulation methods are able to reproduce the governing physical effects in these operating regions. ANDRITZ HYDRO has been investigating the stability behaviour of pump turbines in turbine operation in cooperation with several universities using simulation and measurements. In order to validate the results of flow simulation of unstable operating points, the Graz University of Technology (Austria) performed detailed experimental investigations. Within the scope of a long term research project, the operating characteristics of several pump turbine runners have been measured and flow patterns in the pump turbine at speed no load and runaway have been examined by 2D Laser particle image velocimetry (PIV

  16. Pump-turbines with constant flow direction; Pumpenturbinen mit gleicher Durchstroemrichtung

    Energy Technology Data Exchange (ETDEWEB)

    Mollenkopf, G. [Zentrale Forschung Engineering, KSB AG, Frankenthal (Germany)

    1997-12-31

    This research project was sponsored by the federal ministry of science and technology BMFT (product owner: New Materials and Chemical Technologies - NMT). Its aim was to develop a novel unit that can work both as a pump and a turbine with a constant flow direction through internal blade adjustment. This specifically high-speed pump-turbine is suited for plants where a liquid in one case needs to be hauled against a rising pressure and where, in another case, there is a pressure drop in the same direction. So far, either a separate pump and turbine each are used which are temporarily stopped, involving corresponding effort, or - almost as a rule - the turbine is dispensed with, so that the energy locked up in the pressure drop goes unused. (orig.) [Deutsch] Die Zielsetzung unseres Forschungsvorhabens, das vom BMFT (Produkttraeger: Neue Materialien und Chemische Technologien - NMT) gefoerdert wird, war die Entwicklung eines neuartigen Aggregats, das durch interne Schaufelverstellung in der Lage ist, sowohl als Pumpe als auch als Turbine mit gleichbleibender Durchstroemrichtung zu arbeiten. Diese spezifisch schnellaeufige Pumpturbine kommt fuer Anlagen in Frage, in denen eine Fluessigkeit im einen Fall gegen einen anstehenden Druck gefoerdert werden muss und im anderen Fall in gleicher Richtung ein Druckgefaelle zur Verfuegung steht. Entweder werden bisher getrennt aufgestellte Pumpen und Turbinen mit zeitweisem Stillstand und entsprechendem Aufwand eingesetzt oder es wird - fast in der Regel - auf die Turbine und damit auf die im Druckgefaelle enthaltene Energie verzichtet. (orig.)

  17. CFD Analysis of the Runaway Stability of a Model Pump-Turbine

    Science.gov (United States)

    Xia, L. S.; Cheng, Y. G.; You, J. F.; Jiang, Y. Q.

    2016-11-01

    The relations between the runaway stability characteristics and the flow patterns inside the runner of pump-turbine are supposed to be close and should be studied. The runaway processes of a model pump-turbine at four guide-vane openings (GVOs) were simulated by the three-dimensional computational fluid dynamics. The results show that the runaway stability characteristics for the pump-turbine are different at different GVOs. For the small GVOs, the turbine characteristic trajectory undergoes damped oscillations; however, for large GVOs, the turbine characteristic trajectory settles into an un-damping oscillation. The evolution features of the reverse flow vortex structures (RFVS) at the runner inlet during the runaway oscillations have distinct patterns between the small and large GVOs. For small GVOs, the RFVSs only locate at the mid-span; however, for the large GVOs, the location of the RFVSs switches back and forth between the mid-span section and the hub side when the turbine passes in and out the turbine braking mode. The changes of RFVS at the runner inlet dominate the energy transfer among the hydraulic, mechanical and dissipation energies during the transient processes, and therefore affect the stability of hydraulic system.

  18. Unsteady numerical analysis of the rotating stall in pump- turbine geometry

    Science.gov (United States)

    Ješe, U.; Fortes-Patella, R.

    2016-11-01

    Main challenges in energy sector nowadays are storing and recovering of a large amount of energy in a short time. Pumped Storage Power Plants (PSP), using reversible pump- turbines are among the most cost-efficient solution to answer these needs. To provide a rapid adjustment to the electrical grid, pump-turbines are subjects of quick switching between pumping and generating modes and to extended operation under off-design conditions. To maintain the stability of the grid, the continuous operating area of reversible pump-turbines must be free of hydraulic instabilities. One of the main sources of pumping mode instabilities is the presence of the rotating stall that occurs at the part load. It can be observed as periodic occurrence and decay of recirculation zones in the distributor regions. Consequently, the machine can be exposed to uncontrollable shift between the operating points with the significant discharge modification and the drop of the efficiency. The phenomenon is very complex, three-dimensional and demanding for the investigation. The paper presents cost- efficient numerical methodology that enables the accurate prediction and analysis of the rotating stall. The investigations were made on a reduced-scaled high head pump-turbine design. Unsteady numerical calculations were performed using code FINE/TurboTM and URANS equations. Local flow study was done to describe in details the governing mechanisms of the rotating stall. The analyses enable the investigations of the rotating stall frequencies, the number of stalled cells and the intensity of the rotating stall. Moreover, the unsteady calculations give very good prediction of the pump-turbine performance for both, stable and unstable operating regions. Numerical results show very good qualitative and quantitative agreement with the available experimental data.

  19. Parametric Study on a Horizontal Axis Wind Turbine Proposed for Water Pumping

    Directory of Open Access Journals (Sweden)

    Dr. Abdullateef A. Jadallah

    2014-01-01

    Full Text Available Water pumping is considered an economically competitive sustainable process of providing water to communities, rural areas and livestock's. A parametric analysis on HAWT is carried out to explore the influence of the performance parameters on the power generated and withdrawal quantity of water. Effect of wind speed, radius of rotor, ambient condition, well depth, and efficiencies of turbine, generator and the pump were studied and reflected in important generalized performance maps. These performance graphs are valuable in best understanding of on‐design and off‐ design constraints of the horizontal axis wind turbine in water pumping. The blade geometry was also studied. Results showed the reasonable range of wind turbine performance and the corresponding water discharge within the abovementioned constraints. Rating and the effect of pitch angle on discharged water are also presented. Methodology necessary to achieve the abovementioned results is processed by a computer program written in Matlab

  20. Counter-rotating type pump-turbine unit cooperating with wind power unit

    Science.gov (United States)

    Murakami, Tengen; Kanemoto, Toshiaki

    2013-02-01

    This serial research proposes the hybrid power system combined the wind power unit with the counter-rotating type pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind. In this paper, the tandem impellers of the counter-rotating type pumping unit was operated at the turbine mode, and the performances and the flow conditions were investigated numerically and experimentally. The 3-D turbulent flows in the runners were simulated at the steady state condition by using the commercial CFD code of ANSYS-CFX ver.12 with the SST turbulence model. While providing the pump unit for the turbine mode, the maximum hydraulic efficiency is close to one of the counter-rotating type hydroelectric unit designed exclusively for the turbine mode. Besides, the runner/impeller of the unit works evidently so as to coincide the angular momentum change through the front runners/impellers with that through the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet without the guide vanes. These results show that this type of unit is effective to work at not only the pumping but also the turbine modes.

  1. What we learn from surveillance testing of standby turbine driven and motor driven pumps

    Energy Technology Data Exchange (ETDEWEB)

    Christie, B.

    1996-12-01

    This paper describes a comparison of the performance information collected by the author and the respective system engineers from five standby turbine driven pumps at four commercial nuclear electric generating units in the United States and from two standby motor driven pumps at two of these generating units. Information was collected from surveillance testing and from Non-Test actuations. Most of the performance information (97%) came from surveillance testing. {open_quotes}Conditional Probabilities{close_quotes} of the pumps ability to respond to a random demand were calculated for each of the seven standby pumps and compared to the historical record of the Non-Test actuations. It appears that the Conditional Probabilities are comparable to the rate of success for Non-Test actuations. The Conditional Probabilities of the standby motor driven pumps (approximately 99%) are better than the Conditional Probabilities of the standby turbine driven pumps (82%-96% range). Recommendations were made to improve the Conditional Probabilities of the standby turbine driven pumps.

  2. Fluid-structure coupling in the guide vanes cascade of a pump-turbine scale model

    Energy Technology Data Exchange (ETDEWEB)

    Roth, S; Hasmatuchi, V; Botero, F; Farhat, M; Avellan, F, E-mail: steven.roth@epfl.c [Laboratory for Hydraulic Machines, Ecole Polytechnique Federale de Lausanne Av. de Cour 33bis, Lausanne, 1007 (Switzerland)

    2010-08-15

    The present study concerns fluid-structure coupling phenomena occurring in a guide vane cascade of a pump-turbine scale model placed in the EPFL PF3 test rig. An advanced instrument set is used to monitor both vibrating structures and the surrounding flow. The paper highlights the interaction between vibrating guide vanes and the flow behavior. The pressure fluctuations in the stay vanes region are found to be strongly influenced by the amplitude of the vibrating guide vanes. Moreover, the flow induces different hydrodynamic damping on the vibrating guide vanes depending on the operating point of the pump-turbine.

  3. FOREWORD: 6th International Conference on Pumps and Fans with Compressors and Wind Turbines (ICPF2013)

    Science.gov (United States)

    Wu, Yulin; Wang, Zhengwei; Yuan, Shouqi; Shi, Weidong; Liu, Shuhong; Luo, Xingqi; Wang, Fujun

    2013-12-01

    The 6th International Conference on Pumps and Fans with Compressors and Wind Turbines (ICPF 2013) was held in Beijing, China, 19-22 September 2013, which was jointly organized by Tsinghua University and Jiangsu University. The co-organizers were Zhejiang University, Zhejiang Sci-Tech University, The State Key Laboratory of Hydroscience and Engineering, The State Key Laboratory of Automotive Safety and Energy and Beijing International Science and Technology Cooperation Base for CO2 Utilization and Reduction. The sponsor of the conference was Concepts NREC. The First International Conference on Pumps and Systems (May 1992), the Second International Conference on Pumps and Fans (October 1995), the Third International Conference on Pumps and Fans (October 1998), and the Fourth International Conference on Pumps and Fans (26-29 August 2002) were all held in Beijing and were organized by the late famous Chinese professor on fluid machinery and engineering, Professor Zuyan Mei of Tsinghua University. The conference was interrupted by the death of Professor Mei in 2003. In order to commemorate Professor Mei, the organizing committee of ICPF decided to continue organizing the conference series. The Fifth Conference on Pumps and Systems (2010 ICPF) took place in Hangzhou, Zhejiang Province, China, 18-21 October 2010, and it was jointly organized by Zhejiang University and Tsinghua University. With the development of renewable energy and new energy in China and in the world, some small types of compressor and some types of pump, as well as wind turbines are developing very fast; therefore the ICPF2013 conference included compressors and wind turbines. The theme of the conference was the application of renewable energy of pumps, compressors, fans and blowers. The content of the conference was the basic study, design and experimental study of compressors, fans, blowers and pumps; the CFD application on pumps and fans, their transient behavior, unsteady flows and multi-phase flow

  4. Modeling a high output marine steam generator feedwater control system which uses parallel turbine-driven feed pumps

    Institute of Scientific and Technical Information of China (English)

    QIU Zhi-qiang; ZOU Hai; SUN Jian-hua

    2008-01-01

    Parallel turbine-driven feedwater pumps are needed when ships travel at high speed. In order to study marine steam generator feedwater control systems which use parallel turbine-driven feed pumps,a mathematical model of marine steam generator feedwater control system was developed which includes mathematical models of two steam generators and parallel turbine-driven feed pumps as well as mathematical models of feedwater pipes and feed regulating valves. The operating condition points of the parallel turbine-driven feed pumps were calculated by the Chebyshev curve fit method. A water level controller for the steam generator and a rotary speed controller for the turbine-driven feed pumps were also included in the model. The accuracy of the mathematical models and their controllers was verified by comparing their results with those from a simulator.

  5. Analysis of the Pump-turbine S Characteristics Using the Detached Eddy Simulation Method

    Institute of Scientific and Technical Information of China (English)

    SUN Hui; XIAO Ruofu; WANG Fujun; XIAO Yexiang; LIU Weichao

    2015-01-01

    Current research on pump-turbine units is focused on the unstable operation at off-design conditions, with the characteristic curves in generating mode being S-shaped. Unlike in the traditional water turbines, pump-turbine operation along the S-shaped curve can lead to difficulties during load rejection with unusual increases in the water pressure, which leads to machine vibrations. This paper describes both model tests and numerical simulations. A reduced scale model of a low specific speed pump-turbine was used for the performance tests, with comparisons to computational fluid dynamics(CFD) results. Predictions using the detached eddy simulation(DES) turbulence model, which is a combined Reynolds averaged Naviers-Stokes(RANS) and large eddy simulation(LES) model, are compared with the two-equation turbulence mode results. The external characteristics as well as the internal flow are for various guide vane openings to understand the unsteady flow along the so called S characteristics of a pump-turbine. Comparison of the experimental data with the CFD results for various conditions and times shows that DES model gives better agreement with experimental data than the two-equation turbulence model. For low flow conditions, the centrifugal forces and the large incident angle create large vortices between the guide vanes and the runner inlet in the runner passage, which is the main factor leading to the S-shaped characteristics. The turbulence model used here gives more accurate simulations of the internal flow characteristics of the pump-turbine and a more detailed force analysis which shows the mechanisms controlling of the S characteristics.

  6. Analysis of off-grid hybrid wind turbine/solar PV water pumping systems

    Science.gov (United States)

    While many remote water pumping systems exist (e.g. mechanical windmills, solar photovoltaic , wind-electric, diesel powered), very few combine both the wind and solar energy resources to possibly improve the reliability and the performance of the system. In this paper, off-grid wind turbine (WT) a...

  7. Numerical analysis of misaligned guide vanes effect pressure oscillations in a prototype pump turbine

    Science.gov (United States)

    Xiao, Y. X.; Zhang, J.; Y Luo, Y.; Wang, Z. W.; Xu, H. H.

    2013-12-01

    The unsteady Reynolds-averaged Navier-Stokes equations with the k-ω based SST turbulence model were solved to model the unsteady flow within the entire flow passage of a large Francis Pump turbine with misaligned guide vanes (MGV) device under the rotated speed. Four MGV with three different MGV openings are chosen to analyse the influence of pressure pulse in turbine modes. This study investigates the characteristics of the dominant unsteady flow frequencies in different parts of the pump turbine for various MGV openings. The hydraulic performance and pressure fluctuations were predicted numerically. The computed result shows that the MGV can decrease the relative amplitude in the state part of flow passage, but not for the rotator runner blades.

  8. Counter-rotating type axial flow pump unit in turbine mode for micro grid system

    Science.gov (United States)

    Kasahara, R.; Takano, G.; Murakami, T.; Kanemoto, T.; Komaki, K.

    2012-11-01

    Traditional type pumped storage system contributes to adjust the electric power unbalance between day and night, in general. This serial research proposes the hybrid power system combined the wind power unit with the pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind. In the pumping mode, the pump should operate unsteadily at not only the normal but also the partial discharge. The operation may be unstable in the rising portion of the head characteristics at the lower discharge, and/or bring the cavitation at the low suction head. To simultaneously overcome both weak points, the authors have proposed a superior pump unit that is composed of counter-rotating type impellers and a peculiar motor with double rotational armatures. This paper discusses the operation at the turbine mode of the above unit. It is concluded with the numerical simulations that this type unit can be also operated acceptably at the turbine mode, because the unit works so as to coincide the angular momentum change through the front runners/impellers with that thorough the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet without the guide vanes.

  9. Numerical Analysis of the Transient Behaviour of a Variable Speed Pump-Turbine during a Pumping Power Reduction Scenario

    Directory of Open Access Journals (Sweden)

    Giorgio Pavesi

    2016-07-01

    Full Text Available To achieve the carbon free electricity generation target for 2050, the penetration of renewable energy sources should further increase. To address the impacts of their unpredictable and intermittent characteristics on the future electricity grid, Pumped Hydro Energy Storage (PHES plants should enhance their regulation capability by extending their continuous operating range far beyond the optimal normal working range. However, for the time being, the regulation capability of the new generation of PHES, equipped with reversible pump-turbines due to their cost-effectiveness, is limited at part load by instability problems. The aim of this paper is to analyse, during a pumping power reduction scenario, the onset and development of unsteady phenomena leading to unstable behaviour. A 3D transient numerical simulation was carried out on the first stage of a variable-speed two-stage pump-turbine from full load to the unstable operating zone by progressively reducing the speed from 100% to 88% rpm corresponding to a power reduction from full load to about 60% with a ramp rate of 1.5% per s. Two three-dimensional unsteady flow structures affecting the return channel and the wicket gates at the end of the first stage were identified and their evolution in the power regulation scenario was fluid-dynamically and spectrally characterized to determine the fluid-dynamical conditions causing the head drop in the hump zone.

  10. Investigation of a fast transition from pump mode to generating mode in a model scale reversible pump turbine

    Science.gov (United States)

    Stens, C.; Riedelbauch, S.

    2016-11-01

    Pumped storage power plants are an efficient way to store energy at a large scale. In the last years, the changes between pump and turbine mode have become more and more frequent and the necessity of fast changes has increased. This paper analyses the flow in a model scale pump turbine during a fast transition from pump mode to generating mode by means of CFD. Results will be compared between two different mesh sizes and between simulation and measurement. A linear variation of rotational speed over time is chosen. A time-dependent flow rate through the machine is prescribed at the inlet. Due to the varying conditions, a fully transient analysis is carried out using the open-source code OpenFOAM®. The state of the machine at certain points of time during the transient is compared to the results for steady state simulations with identical boundary conditions. To characterize the phenomena in the guide vane channels, torque on selected guide vanes is evaluated as well as pressure at predefined locations. In the runner, pressure sensors are evaluated near the leading edge on pressure and suction side. In the draft tube, four dynamic pressure sensors in a plane below the runner are analysed. Frequencies and amplitudes are compared to simulation.

  11. Pump as Turbine (PAT Design in Water Distribution Network by System Effectiveness

    Directory of Open Access Journals (Sweden)

    Oreste Fecarotta

    2013-08-01

    Full Text Available Water distribution networks face several problems related to leakages, where the pressure control strategy is a common practice for water loss management. Small-scale hydropower schemes, where pumps as turbines replace pressure reducing valves, can be considered an interesting technical solution, which ensures both economic convenience and system flexibility. Due to the water networks’ variable operating conditions, a new methodology to model the effectiveness of pumps as turbines was developed based on the efficiency and the mechanical reliability of the hydropower device and the flexibility of the plant. System effectiveness is proposed as the objective function in the optimization procedure and applied to a real system, enabling one to emphasize that the hydraulic regulation mode of the plant is better than the electric regulation mode for American Petroleum Industry (API manufacturing standards of pumps.

  12. Operation of the counter-rotating type pump-turbine unit installed in the power stabilizing system

    Science.gov (United States)

    Kanemoto, T.; Honda, H.; Kasahara, R.; Miyaji, T.

    2014-03-01

    This serial research intends to put a unique power stabilization system with a pumped storage into practical use. The pumped storage is equipped with a counter-rotating type pump-turbine unit whose operating mode can be shifted instantaneously in response to the fluctuation of power from renewable resources. This paper verifies that the system is reasonably effective to stabilize the fluctuating power. It is necessary to quickly increase the rotational speed when the operation is shifted from the turbine to the pumping modes, because the unit cannot pump-up water from a lower reservoir at a slow rotational speed while keeping gross/geodetic head constant. The maximum hydraulic efficiency at the turbine mode is close to the efficiency of the counter-rotating type hydroelectric unit designed exclusively for the turbine mode. The system is also provided for a pilot plant to be operated in the field.

  13. Hydroacoustic simulation of rotor-stator interaction in resonance conditions in Francis pump-turbine

    Energy Technology Data Exchange (ETDEWEB)

    Nicolet, C [Power Vision Engineering sarl, Ch. des Champs-Courbes 1, CH-1024 Ecublens (Switzerland); Ruchonnet, N; Alligne, S; Avellan, F [EPFL Laboratory for Hydraulic Machines, Av. de Cour 33bis, CH-1007 Lausanne (Switzerland); Koutnik, J, E-mail: christophe.nicolet@powervision-eng.c [Voith Hydro Holding GmbH and Co. KG, Alexanderstr. 11, 89522 Heidenheim (Germany)

    2010-08-15

    Combined effect of rotating pressure field related to runner blade and wakes of wicket gates leads to rotor stator interactions, RSI, in Francis pump-turbines. These interactions induce pressures waves propagating in the entire hydraulic machine. Superposition of those pressure waves may result in standing wave in the spiral casing and rotating diametrical mode in the guide vanes and can cause strong pressure fluctuations and vibrations. This paper presents the modeling, simulation and analysis of Rotor-Stator Interaction of a scale model of a Francis pump-turbine and related test rig using a one-dimensional approach. The hydroacoustic modeling of the Francis pump-turbine takes into account the spiral casing, the 20 guide vanes, the 9 rotating runner vanes. The connection between stationary and rotating parts is ensured by a valve network driven according to the unsteady flow distribution between guide vanes and runner vanes. Time domain simulations are performed for 2 different runner rotational speeds in turbine mode. The simulation results are analyzed in frequency domain and highlights hydroacoustic resonance between RSI excitations and the spiral case. Rotating diametrical mode in the vaneless gap and standing wave in the spiral case are identified. The influence of the resonance on phase and amplitude of pressure fluctuations obtained for both the spiral case and the vaneless gap is analyzed. The mode shape and frequencies are confirmed using eigenvalues analysis.

  14. Pump used as a turbine (PAT) with flow control - Part 2: Selection of the pump to be transformed into a turbine; Petites centrales hydrauliques. Pompe fonctionnant en turbine avec reglage du debit (Pat-Francis). 2eme partie: selection de la pompe inversee pour fonctionnement en turbine

    Energy Technology Data Exchange (ETDEWEB)

    Chapallaz, J.-M.

    2007-02-15

    This second part of a final report for the Swiss Federal Office of Energy (SFOE) discusses the use of a pump equipped with variable guide vanes, similar to a Francis turbine. This second part of a four-part article deals with the preliminary selection of a pump to be transformed into a turbine. The statistical methods used in this process, which was developed by the author, are described. The method used for the determination of the optimal operating point is presented and discussed, as are the basic differences between pumps and turbines. Mechanical aspects and efficiencies are discussed and characteristic curves are presented, as are examples of the implementation of the concept.

  15. Entropy production analysis for hump characteristics of a pump turbine model

    Science.gov (United States)

    Li, Deyou; Gong, Ruzhi; Wang, Hongjie; Xiang, Gaoming; Wei, Xianzhu; Qin, Daqing

    2016-07-01

    The hump characteristic is one of the main problems for the stable operation of pump turbines in pump mode. However, traditional methods cannot reflect directly the energy dissipation in the hump region. In this paper, 3D simulations are carried out using the SST k- ω turbulence model in pump mode under different guide vane openings. The numerical results agree with the experimental data. The entropy production theory is introduced to determine the flow losses in the whole passage, based on the numerical simulation. The variation of entropy production under different guide vane openings is presented. The results show that entropy production appears to be a wave, with peaks under different guide vane openings, which correspond to wave troughs in the external characteristic curves. Entropy production mainly happens in the runner, guide vanes and stay vanes for a pump turbine in pump mode. Finally, entropy production rate distribution in the runner, guide vanes and stay vanes is analyzed for four points under the 18 mm guide vane opening in the hump region. The analysis indicates that the losses of the runner and guide vanes lead to hump characteristics. In addition, the losses mainly occur in the runner inlet near the band and on the suction surface of the blades. In the guide vanes and stay vanes, the losses come from pressure surface of the guide vanes and the wake effects of the vanes. A new insight-entropy production analysis is carried out in this paper in order to find the causes of hump characteristics in a pump turbine, and it could provide some basic theoretical guidance for the loss analysis of hydraulic machinery.

  16. Pump as turbine - A pico-hydro alternative in Lao People's Democratic Republic

    Energy Technology Data Exchange (ETDEWEB)

    Arriaga, Mariano [Instituto de Investigaciones Electricas, Gerencia de Energias No Convencionales (Electrical Research Institute, Non-conventional Energy Division), Calle Reforma No. 113, Col. Palmira, 62490, Cuernavaca, Morelos (Mexico)

    2010-05-15

    This paper presents the pico-hydro development status in Lao PDR and introduces the Pump as Turbine (PAT) concept as an alternative for isolated communities (40-500 people). The intention is to provide a long-term reproducible system for communities where pico-hydro propeller turbines are insufficient and proper turbines are expensive. This approach presents a high quality and cost-effective solution for rural electrification which can be installed, commissioned, and maintained by local staff and villagers. Furthermore, a 2 kW{sub el} PAT-scheme is proposed for a community in the Xiagnabouli province and considers power generation alternatives, sizing, asynchronous motor simulation, civil works, cost estimation, and social aspects. (author)

  17. Improved pump turbine transient behaviour prediction using a Thoma number-dependent hillchart model

    Science.gov (United States)

    Manderla, M.; Kiniger, K.; Koutnik, J.

    2014-03-01

    Water hammer phenomena are important issues for high head hydro power plants. Especially, if several reversible pump-turbines are connected to the same waterways there may be strong interactions between the hydraulic machines. The prediction and coverage of all relevant load cases is challenging and difficult using classical simulation models. On the basis of a recent pump-storage project, dynamic measurements motivate an improved modeling approach making use of the Thoma number dependency of the actual turbine behaviour. The proposed approach is validated for several transient scenarios and turns out to increase correlation between measurement and simulation results significantly. By applying a fully automated simulation procedure broad operating ranges can be covered which provides a consistent insight into critical load case scenarios. This finally allows the optimization of the closing strategy and hence the overall power plant performance.

  18. Flow Characteristics at the Pump-Turbine Interface of a Torque Converter at Extreme Speed Ratios

    Directory of Open Access Journals (Sweden)

    A. Habsieger

    2003-01-01

    Full Text Available The average velocity field at the pump–turbine interface in a scaled version of a truck torque converter was studied. Seven different turbine-to-pump rotational-speed ratios were examined, ranging from near stall (0.065 to overspeed (1.050 so as to determine the effect of the speed ratio on the flow field and on the mass flow rate. Laser velocimetry was used to measure the flow velocity through the pump's exit and the turbine's inlet plane. At the pump's exit, as the speed ratio increases, the high velocities move to the pressure-shell corner and then to both the core-suction and the pressureshell corners. Concentrated velocity gradients are largest at the lowest speed ratio, but areas of velocity gradients are largest near the coupling point. Near the coupling point, the flow field is most nonuniform, which yields a highly periodic flow into the turbine inlet. Above the coupling point, the high velocity remains in the pressure-shell corner but separation is seen to develop at the highest speed ratio. At the turbine's inlet, reverse flow is seen at low speed ratios and is an indicator of flow leakage through the core. Velocity gradients are very large at low speed ratios. As the speed ratio increases to the coupling point, the high velocities remain on the shell side. Above the coupling point, the high-velocity flow migrates from the shell side to the core side. The mass flow rate decreases significantly and nonlinearly with the increase of the speed ratio, but for speed ratios greater than 1.000, the negative slope decreases.

  19. CFD and comparisons for a pump as turbine: Mesh reliability and performance concerns

    Directory of Open Access Journals (Sweden)

    O. Fecarotta, A. Carravetta1 , H. M. Ramos

    2011-01-01

    Full Text Available The need for saving energy in water supply systems has become one of the main concerns of system managers and it will become more important in a near future. New strategies must be developed and implemented in the major energy consumption systems like those for water supply. In drinking pipe systems the use of Pressure Reducing Valves (PRV as a dissipative device is the common way to uniform the pressure control through a localised head loss. The use of micro-turbines or pumps operating as turbines seem to be an alternative technical and environmental available solution to either control the pressure as well as to produce energy. Pumps as turbines (PAT could be a convenient choice, but a deep study of the machine in different operating conditions is necessary in order to prevent the water system from ruptures. This paper shows that semi-empirical parametrical models do not generally predict with precision the behaviour of a pump operating as a turbine, while CFD analysis could be a reliable tool to better understand the interaction between the hydromechanical equipment and the flow behaviour. Nevertheless the CFD calculation difficulty is generally very high and the minimum complexity of the CFD calculation mesh has been investigated, in order to perform faster and reliable simulations. Thus CFD calculations have been carried out to predict the turbine behaviour under different flow conditions and the performance curves have been obtained. Some calculations in unsteady state flow regimes have been led to investigate the response of the machine to a sudden discharge changing, as a preliminary study of the behaviour of a turbomachine installed in a water distribution system under water hammer situations.

  20. Analysis of S Characteristics and Pressure Pulsations in a Pump-Turbine With Misaligned Guide Vanes.

    Science.gov (United States)

    Sun, Hui; Xiao, Ruofu; Liu, Weichao; Wang, Fujun

    2013-05-01

    Growing environmental concerns and the need for better power balancing and frequency control have increased attention in renewable energy sources such as the reversible pump-turbine which can provide both power generation and energy storage. Pump-turbine operation along the S-shaped curve can lead to difficulties in loading the rejection process with unusual increases in water pressure, which lead to machine vibrations. Pressure fluctuations are the primary reason for unstable operation of pump-turbines. Misaligned guide vanes (MGVs) are widely used to control the stability in the S region. There have been experimental investigations and computational fluid dynamics (CFD) simulations of scale models with aligned guide vanes and MGVs with spectral analyses of the S curve characteristics and the pressure pulsations in the frequency and time-frequency domains at runaway conditions. The course of the S characteristic is related to the centrifugal force and the large incident angle at low flow conditions with large vortices forming between the guide vanes and the blade inlets and strong flow recirculation inside the vaneless space as the main factors that lead to the S-shaped characteristics. Preopening some of the guide vanes enables the pump-turbine to avoid the influence of the S characteristic. However, the increase of the flow during runaway destroys the flow symmetry in the runner leading to all asymmetry forces on the runner that leads to hydraulic system oscillations. The MGV technique also increases the pressure fluctuations in the draft tube and has a negative impact on stable operation of the unit.

  1. Numerical predictions of pressure pulses in a Francis pump turbine with misali-gned guide vanes

    Institute of Scientific and Technical Information of China (English)

    肖业祥; 王正伟; 张瑾; 罗永要

    2014-01-01

    Previous experimental and numerical analyses of the pressure pulse characteristics in a Francis turbine are extended here by using the unsteady Reynolds-averaged Navier-Stokes equations with the shear stress transport (SST) turbulence model to model the unsteady flow within the entire flow passage of a large Francis pump turbine with misaligned guide vanes at the rated rotational speed. The S-curve characteristics are analyzed by a combined use of the model test and the steady state simulation with the aligned guide vane firstly. Four misaligned guide vanes with two different openings are chosen to analyze the influence of pressure pulses in the turbine. The characteristics of the dominant unsteady flow frequencies in different parts of the pump turbine for various misaligned guide vane openings are investigated in detail. The predicted hydraulic performance and the pressure fluctuations show that the misaligned guide vanes reduce the relative pressure fluctuation amplitudes in the stationary part of the flow passage, but not the runner blades. The misaligned guide vanes have changed the low frequencies in the entire flow passage with the change of the pulse amplitudes mainly due to changes in the rotor-stator interaction and the low frequency vortex rope flow behavior.

  2. Aging of turbine drives for safety-related pumps in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Cox, D.F. [Oak Ridge National Lab., TN (United States)

    1995-06-01

    This study was performed to examine the relationship between time-dependent degradation and current industry practices in the areas of maintenance, surveillance, and operation of steam turbine drives for safety-related pumps. These pumps are located in the Auxiliary Feedwater (AFW) system for pressurized-water reactor plants and in the Reactor Core Isolation Cooling and High-Pressure Coolant Injection systems for boiling-water reactor plants. This research has been conducted by examination of failure data in the Nuclear Plant Reliability Data System, review of Licensee Event Reports, discussion of problems with operating plant personnel, and personal observation. The reported failure data were reviewed to determine the cause of the event and the method of discovery. Based on the research results, attempts have been made to determine the predictability of failures and possible preventive measures that may be implemented. Findings in a recent study of AFW systems indicate that the turbine drive is the single largest contributor to AFW system degradation. However, examination of the data shows that the turbine itself is a reliable piece of equipment with a good service record. Most of the problems documented are the result of problems with the turbine controls and the mechanical overspeed trip mechanism; these apparently stem from three major causes which are discussed in the text. Recent improvements in maintenance practices and procedures, combined with a stabilization of the design, have led to improved performance resulting in a reliable safety-related component. However, these improvements have not been universally implemented.

  3. Aerodynamic Design and Numerical Analysis of Supersonic Turbine for Turbo Pump

    Science.gov (United States)

    Fu, Chao; Zou, Zhengping; Kong, Qingguo; Cheng, Honggui; Zhang, Weihao

    2016-09-01

    Supersonic turbine is widely used in the turbo pump of modern rocket. A preliminary design method for supersonic turbine has been developed considering the coupling effects of turbine and nozzle. Numerical simulation has been proceeded to validate the feasibility of the design method. As the strong shockwave reflected on the mixing plane, additional numerical simulated error would be produced by the mixing plane model in the steady CFD. So unsteady CFD is employed to investigate the aerodynamic performance of the turbine and flow field in passage. Results showed that the preliminary design method developed in this paper is suitable for designing supersonic turbine. This periodical variation of complex shockwave system influences the development of secondary flow, wake and shock-boundary layer interaction, which obviously affect the secondary loss in vane passage. The periodical variation also influences the strength of reflecting shockwave, which affects the profile loss in vane passage. Besides, high circumferential velocity at vane outlet and short blade lead to high radial pressure gradient, which makes the low kinetic energy fluid moves towards hub region and produces additional loss.

  4. Performance Analysis of a Wind Turbine Driven Swash Plate Pump for Large Scale Offshore Applications

    Science.gov (United States)

    Buhagiar, D.; Sant, T.

    2014-12-01

    This paper deals with the performance modelling and analysis of offshore wind turbine-driven hydraulic pumps. The concept consists of an open loop hydraulic system with the rotor main shaft directly coupled to a swash plate pump to supply pressurised sea water. A mathematical model is derived to cater for the steady state behaviour of entire system. A simplified model for the pump is implemented together with different control scheme options for regulating the rotor shaft power. A new control scheme is investigated, based on the combined use of hydraulic pressure and pitch control. Using a steady-state analysis, the study shows how the adoption of alternative control schemes in a the wind turbine-hydraulic pump system may result in higher energy yields than those from a conventional system with an electrical generator and standard pitch control for power regulation. This is in particular the case with the new control scheme investigated in this study that is based on the combined use of pressure and rotor blade pitch control.

  5. Monitoring of Rotor-Stator Interaction in Pump-Turbine Using Vibrations Measured with On-Board Sensors Rotating with Shaft

    OpenAIRE

    Cristian G. Rodriguez; Borja Mateos-Prieto; Eduard Egusquiza

    2014-01-01

    Current trends in design of pump-turbines have led into higher rotor-stator interaction (RSI) loads over impeller-runner. These dynamic loads are of special interest having produced catastrophic failures in pump-turbines. Determining RSI characteristics facilitates the proposal of actions that will prevent these failures. Pressure measurements all around the perimeter of the impeller-runner are appropriate to monitor and detect RSI characteristics. Unfortunately most installed pump-turbines a...

  6. Evaluation of advanced turbomachinery for underground pumped hydroelectric storage. Part 3. Multistage unregulated pump/turbines for operating heads of 1000 to 1500 m

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, A.A.; Pistner, C.

    1980-08-01

    This is the final report in a series of three on studies of advanced hydraulic turbomachinery for underground pumped hydroelectric storage. All three reports address Francis-type, reversible pump/turbines. The first report covered single-stage regulated units; the second report covered two-stage regulated units; the present report covers multistage unregulated units. Multistage unregulated pump/turbines offer an economically attractive option for heads of 1000 to 1500 m. The feasibility of developing such machines for capacities up to 500 MW and operating heads up to 1500 m has been evaluated. Preliminary designs have been generated for six multistage pump/turbines. The designs are for nominal capacities of 350 and 500 MW and for operating heads of 1000, 1250, and 1500 m. Mechanical, hydraulic, and economic analyses indicate that these machines will behave according to the criteria used to design them and that they can be built at a reasonable cost with no unsolvable problems. Efficiencies of 85.8% and 88.5% in the generating and pumping modes, respectively, can be expected for the 500-MW, 1500-m unit. Performances of the other five machines are at least comparable, and usually better. Over a 1000 to 1500-m head range, specific $/kW costs of the pump/turbines in mid-1978 US dollars vary from 19.0 to 23.1 for the 500-MW machines, and from 21.0 to 24.1 for the 350-MW machines.

  7. YiXing pump turbine guide vane vibrations: Problem reso lution with advanced CFD analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nennemann, B [Andritz Hydro Ltd., 6100 Trans Canada Hwy., Pointe-Claire, Quebec, H9R 1B9 (Canada); Parkinson, E, E-mail: bernd.nennemann@andritz.co [Andritz Hydro SA, Rue des Deux-Gares 6, Vevey, 1800 Switzerland (Switzerland)

    2010-08-15

    During commissioning of YiXing pump turbine (Jiangsu province, China) by - at the time - GE Energy Hydro a number of guide vane vibration issues occurred. An investigation was launched to determine the root causes of these vibration incidents including analysis of site measurement data from the incidents and a Computation Fluid Dynamics (CFD) study. Several interesting hydro-dynamic phenomena were discovered during the course of this investigation, notably circumferentially synchronized and amplified von Karman vortices at the guide vane trailing edges in pump mode, unexpected flow attachment to the guide vane trailing edge pump mode resulting in bi-stable flow conditions and a self-excited torsion mode flutter vibration. The latter two phenomena explain the vibration incidents at site. The CFD study helped in identifying and quantifying the geometric parameters that influence torsion mode flutter and therefore enabled a targeted modification of the guide vane profile that is stable with respect to self-excitation. Between May 2009 and April 2010 the modified guide vanes were - now by Andritz Hydro Ltd. - installed in all 4 units of the YiXing pumped storage plant and proved to be successful in eliminating the vibration problems. Opening and closing sequences of the guide vanes - including pump start from closed guide vanes and transition from pump to synchronous condenser operation - could be implemented as required by the contract.

  8. Numerical simulation of the influence of distributor pitch diameter on performance and pressure fluctuations in a pump-turbine

    Science.gov (United States)

    Sun, Y. K.; Zuo, Z. G.; Liu, S. H.; Wu, Y. L.; Liu, J. T.

    2012-11-01

    In order to analyse the influence of distributor pitch diameter on performance and pressure fluctuations in a pump turbine, a numerical model based on a pumped storage power station was built to develop the numerical simulation. Steady and unsteady flows were simulated using the SST k-ω turbulence model and SIMPLEC Pressure-Velocity coupling scheme. The performance, inner flow and pressure fluctuations between runner blades and guide vanes of both turbine and pump mode was contrasted in different distributor pitch diameters. The result shows there was a maximum total efficiency in a given distributor pitch diameter instead of the design diameter. Amplitudes and frequencies of pressure fluctuations on this diameter and design diameter were analysed, minor differences were observed. This position can be considered to help improving the flow of the pump turbine.

  9. Prediction of S-shaped characteristics in reversible pump-turbines using different numerical approaches

    Science.gov (United States)

    Lenarcic, M.; Bauer, Ch.; Giese, M.; Jung, A.

    2016-11-01

    The prediction of characteristics and flow phenomena in reversible pump-turbines becomes increasingly important, since operations under off-design conditions are required to respond to frequency fluctuations within the electrical grid as fast as possible. Fulfilling the requirements of a stable and reliable operation under continuously expanding operating ranges challenges the hydraulic design and requires ambitious developments. Beyond that, precise estimations of occurring flow phenomena combined with a detailed understanding of their causes and mechanisms are essential. This study aims at predicting the S-shaped characteristics of two reversible pump-turbines by using different numerical approaches. Therefore, measurements at a constant wicket-gate opening of Δγ = 10° were done. Based on these experimental data, unsteady flow simulations are performed under steady and transient operating conditions respectively: Starting from the best efficiency point in generating mode, through the runaway, along the S-curve, down to operation in reverse pump mode. The hydraulic machines are spatially discretized in model size with a near-wall refinement of y + mean ≤ 5 and y + mean ≥ 30. The application of two different solvers discloses deviations in underlying methods. The turbulence modeling is basically executed by the k-ω-SST and the standard k-ɛ model. Focusing on higher order numerics, the Explicit Algebraic Reynolds Stress Model (EARSM) is selected in the commercial code and extended with an approach for curvature correction (EARSM- CC). In the open-source software, the four-equation v2-f model assumes the role of higher order numerics. The temporal discretization errors are observed using three different time-step sizes. As a supplement, experimental data obtained from the HydroDyna pump-turbine are used as additional validation, providing integral quantities and local pressure distributions at an operating point set on the S-curve. To sum this work up, a

  10. Numerical simulation on the "S" characteristics and pressure fluctuation of reduced pump-turbine at start-up condition

    Science.gov (United States)

    Liu, D. M.; Zheng, J. S.; Wen, G. Z.; Zhao, Y. Z.; Shi, Q. H.

    2012-11-01

    The performance of a reversible pump turbine with S-shaped characteristics is of great importance to the transition processes such as start-up and load rejection. In order to improve the "S" characteristics of reduced pump-turbine, several MGV (misaligned guide vane) schemes are calculated. The SST (shear stress turbulence) model is added to the N-S (Navier-strokes) governing equation. In order to predict the S-shaped curve accurately and develop a reliable tool for design improvement, the "S" characteristic is investigated in a whole pump-turbine including spiral casing, stay vanes, guide vanes, runner and draft tube. To validate the scheme reasonable, the mesh independent is tested. Comparison of unit discharge and unit speed performance showed that good correspondence is obtained between experimental data and calculated results. The "S shape" of reduced pump-turbine is eliminated with MGV schemes. Based on this, internal flow analysis is carried out adopting six typical MGV schemes at the same working condition. Through the calculation, we find that, first the pressure fluctuation is different between the guide vane and runner among the five MGV schemes, second the pressure fluctuation amplitude of MGV schemes D (4*35° and 16*6° average installed) is smallest, third the main frequency is the blade passing frequency and guide vane passing frequency at vane-less space and head cover, respectively. The conclusion is the "S shape" of pump-turbine can be improved with the average installed scheme.

  11. High-speed flow visualization in a pump-turbine under off-design operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hasmatuchi, V; Roth, S; Botero, F; Avellan, F; Farhat, M, E-mail: vlad.hasmatuchi@epfl.c [Laboratory for Hydraulic Machines, Ecole Polytechnique Federale de Lausanne Av. de Cour 33bis, Lausanne, CH-1007 (Switzerland)

    2010-08-15

    The flow hydrodynamics in a low specific speed radial pump-turbine reduced scale model is experimentally investigated under off-design operating conditions in generating mode. Wall pressure measurements, in the stator, synchronized with high-speed flow visualizations in the vaneless space between the impeller and the guide vanes using air bubbles injection are performed. When starting from the best efficiency point and increasing the runner speed, a significant increase of the pressure fluctuations is observed mainly in channels between wicket gates. The spectral analysis shows a rise of one stall cell, rotating with about 70% of the impeller frequency, at runaway, which further increases as the zero discharge condition is approached. Then a specific image processing technique is detailed and applied to create a synthetic instantaneous view of the flow pattern on the entire guide vanes circumference for an operating point in turbine-brake mode, where backflow and vortices accompany the stall passage.

  12. Performance prediction and flow analysis in the vaned distributor of a pump turbine under low flow rate in pump mode

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The main goal of this work is to investigate the possible different flow patterns existing in pump turbine under off-design conditions in pump mode. Numerical simulations by solving the Navier-Stokes equation, coupled with the "SST k-ω" turbulence model, were carried out. Flow characteristics were assumed to be stalled in the appropriate region of ?ow rate levels of Q/QD=0.15–0.61. The simulation result was compared with experimental data and they showed good agreement. Consequently, velocity fields in three axial locations in stay vanes and guide vanes were analysed in details. It was shown that "jet-wake" flow pattern exists near the band, which changes little in the whole shape with flow rate increasing; to the middle location of vanes, reverse flow begins to appear on the interface between the runner and guide vanes, which will disappear gradually as the flow rate increases; massive reverse flow is captured near the crown, whose intensity will be weakened as the flow rate increases. Ultimately, it was found that the special head-flow profile can be ascribed to the special hydraulic loss characteristics of the stay vanes and guide vanes.

  13. Evaluation of advanced hydraulic turbomachinery for underground pumped hydroelectric storage. Part 2. Two-stage regulated pump/turbines for operating heads of 1000 to 1500 m

    Energy Technology Data Exchange (ETDEWEB)

    Blomquist, C.A.; Frigo, A.A.; Degnan, J.R.

    1979-10-01

    This UPHS report applies to Francis-type, reversible pump/turbines regulated with gating systems. The first report, however, covered single-stage regulations; this report covers two-stage regulations. Development of a two-stage regulated pump/turbine appears to be attractive because the proposed single-drop UPHS concept requires turbomachinery with a head range of 1000 to 2000 m. With turbomachinery of this range available, the single-drop scheme offers a simple and economic UPHS option. Six different two-stage, top-gated pump/turbines have been analyzed: three that generate 500 MW and three that generate 350 MW. In each capacity, one machine has an operating head of 1000 m, another has a head of 1250 m, and the third has a head of 1500 m. The rated efficiencies of the machines vary from about 90% (1000-m head) to about 88% (1500-m head). Costs in 1978 $/kW for the three 500-MW units are: 20.5 (1000 m), 16.5 (1250 m), and 13.5 (1500 m). Corresponding costs for the three 350-MW units are 23, 18, and 14 $/kW. No major turbomachinery obstacles are foreseen that could hamper development of these pump/turbines. Further model testing and development are needed before building them.

  14. New JSME standard S008 “Performance Conversion Method for Hydraulic Turbines and Pump-Turbines”

    Science.gov (United States)

    Nakanishi, Y.; Kitahora, T.; Suzuki, S.; Suzuki, T.; Sugishita, K.; Suzuki, R.; Tani, K.

    2016-11-01

    JSME Standard S008 “Performance Conversion Method for Hydraulic Turbines and Pump-Turbines” is now being revised and will be published in 2016. This new revision follows the main theory of previous version S008-1999. It enables us to convert the performance of each flow passage component of spiral case, stay vane, guide vane, runner and draft tube of model turbines and pump-turbines to that of prototypes with one-step calculation. The relevant values needed for the performance conversion, e.g. dimension factor, flow velocity factor, relative scalable loss of components δ ECO , etc. are newly organized as functions of specific speeds of turbines and pump-turbines using polynomial expressions. Additional data for high specific speed turbines are included. The resultant factors for conversion of the specific energy efficiency scale factor F E , the discharge efficiency scale factor F Q and the power efficiency scale factor F T are determined by considering friction coefficient ratio for prototype to the model.

  15. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    Science.gov (United States)

    Kerschberger, P.; Gehrer, A.

    2010-08-01

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  16. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    Energy Technology Data Exchange (ETDEWEB)

    Kerschberger, P; Gehrer, A, E-mail: peter.kerschberger@andritz.co [Andritz Hydro Graz A-8045 Graz, Reichsstrasse 68B (Austria)

    2010-08-15

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  17. Thermodynamic evaluation of the possibility to increase cogeneration turbine efficiency by using a heat pump operating with steam

    Science.gov (United States)

    Batenin, V. M.; Datsenko, V. V.; Zeigarnik, Yu. A.; Kosoi, A. S.; Sinkevich, M. V.

    2016-01-01

    Cogeneration turbines operate in different operation modes that considerably differ as to the working process conditions. In summer time, when heat demand is minimal, almost all steam flow passes through all turbine stages and enters into the condenser (condensing mode of operation). When heat supply is needed, the steam bleed-offs are used. The several last stages of the turbine (low-pressure part—LPP) have a control diaphragm at the inlet. When the heat supply is large, the diaphragm is maximally closed, and the entire steam flow, with an exception for a minimal ventilation flow is delivered to the steam bleed-offs (cogeneration mode). LPP flow path is designed for the optimal operation in the condensing mode. While running in cogeneration mode, the LPP operating conditions are far from optimal. Depending on the ventilation steam flow rate and outlet pressure, the LPP power can drop to zero or even become negative (ventilation mode). It is proposed to control an outlet steam pressure by using the heat pump that operates with steam. The heat pump energy consumption can be compensated and even exceeded by optimizing the steam expansion process in LPP. In this respect, operating conditions of cogeneration turbine LPPs during the cold season are analyzed. A brief description of a heat pump operating with steam is made. The possibility of increasing cogeneration turbine efficiency by using a steam heat pump is shown.

  18. Mechanism study on pressure fluctuation of pump-turbine runner with large blade lean angle

    Science.gov (United States)

    Yulin, Fan; Xuhe, Wang; Baoshan, Zhu; Dongyue, Zhou; Xijun, Zhou

    2016-11-01

    Excessive pressure fluctuations in the vaneless space can cause mechanical vibration and even mechanical failures in pump-turbine operation. Mechanism studies on the pressure fluctuations and optimization design of blade geometry to reduce the pressure fluctuations have important significance in industrial production. In the present paper, two pump-turbine runners with big positive and negative blade lean angle were designed by using a multiobjective design strategy. Model test showed that the runner with negative blade lean angle not only had better power performance, but also had lower pressure fluctuation than the runner with positive blade lean angle. In order to figure out the mechanism of pressure fluctuation reduction in the vaneless;jik8space, full passage model for both runners were built and transient CFD computations were conducted to simulate the flow states inside the channel. Detailed flow field analyses indicated that the difference of low-pressure area in the trailing edge of blade pressure side were the main causes of pressure fluctuation reduction in the vaneless space.

  19. Evaluation of advanced hydraulic turbomachinery for underground pumped hydroelectric storage. Part 1. Single-stage regulated pump turbines for operating heads of 500 to 1000 m

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, A.A.; Blomquist, C.A.; Degnan, J.R.

    1979-10-01

    High-head, large-capacity turbomachinery is needed for the concept of underground pumped hydroelectric storage to be technically and economically attractive. Single-stage, reversible, Francis-type pump turbines with adjustable wicket gates appear to offer the most economically attractive option for heads between about 500 and 1000 m. The feasibility of developing these types of machines for capacities up to 500 MW and operating heads up to 1000 m has been evaluated. Preliminary designs have been generated for six single-stage pump turbines. The designs are for capacities of 350 and 500 MW and for operating heads of 500, 750, and 1000 m. The report contains drawings of the machines along with material specifications and hydraulic performance data. Mechanical, hydraulic, and economic analyses indicate that these machines will behave according to the criteria used to design them and that they can be built at a reasonable cost. The stress and deflection responses of the 500-MW, 100-m-head pump turbine, determined by detailed finite element analysis techniques, give solid evidence of the integrity of the conceptual designs of the six units and indicate no unsolvable problems. Results of a life expectancy analysis of the wicket gates indicate that a near infinite life can be expected for these components when they are subjected to normal design loads. Efficiencies of 90.7 and 91.4% in the generating and pumping modes, respectively, can be expected for the 500-MW, 1000-m-head unit. Performances of the other five machines are comparable. The specific costs of the pump turbines in mid-1978 US dollars per kW vary from 19.2 to 11.8 over a head range of from 500 to 1000 m for the 500-MW machines and from 20.0 to 12.3 for the 350-MW machines.

  20. Low flow's fluctuation characteristics in pump-turbine's pump mode%水泵水轮机泵工况小流量波动特性

    Institute of Scientific and Technical Information of China (English)

    王乐勤; 刘锦涛; 张乐福; 覃大清; 焦磊

    2011-01-01

    为了研究水泵在水轮机泵工况小流量下的流场特性,对某电站水泵水轮机进行建模.采用SIMPLEC算法和剪切压力传输模型(SST k-w)模拟泵工况的流场特性,分析当泵工况活动导叶处于设计开度时在小流量下转轮、导叶的流场,结合实验对水泵水轮机的性能进行对比计算.结果显示,在导叶设计开度下当体积流量为设计流量的15%~53%时扬程曲线有小幅度波动;流量越小在导叶间的类似射流现象越明显,随着流量降低涡结构逐渐增多并且尺度逐渐变大,以至于充满整个活动导叶与固定导叶之间的流域;导叶的存在是小流量下扬程小幅度波动的主要原因.以上结论均可为水泵水轮机的优化设计提供依据.%One power plant's pump-turbine was modeled in order to analyze the field characteristic with low flow conditions in pump mode of pump-turbine. The flow characteristic in pump mode was simulated by SIMPLEC algorithm and shear stress transmission (SST) k-w mode. The flow of runner and vanes was analyzed when pump mode was at the condition of that guide vanes were in designed opening and low flow. The performance of pump-turbine was analyzed combined with experimental results. Results show that the head line is in the small amplitude fluctuations when the flow is 15% - 53% of designed flow and vanes are in designed opening. The phenomenon like a jet between vanes is more obvious when lower flow. The number of vortex is gradually increasing with lower flow , and its scale becomes larger so that the field between stay vanes and guide vanes are filled with vortex. It is the vanes that make the head of pump-turbine fluctuate in small amplitude when the flow is low. Those results can be used to guide the pump-turbine's optimal design.

  1. Pump used as a turbine (PAT) with flow control - Part 1: General; Petites centrales hydrauliques. Pompe fonctionnant en turbine avec reglage du debit (Pat-Francis). 1ere partie: presentation generale

    Energy Technology Data Exchange (ETDEWEB)

    Chapallaz, J.-M.

    2007-02-15

    This first part of a final report for the Swiss Federal Office of Energy (SFOE) discusses the use of a pump equipped with variable guide vanes, similar to a Francis turbine. This first part of a four-part article describes the PAT-Francis project in general. The turbine was realised by removing the existing spiral casing from a standard pump and replacing it with a guide vane system with a new spiral. General topics on the use of pumps as turbines are discussed and the characteristic curves and operational limits of a PAT are examined. The proposed concept for a PAT with variable flow, or PAT-Francis, is presented.

  2. Installation and field trials of pump turbine for standalone power generation for PICO HYDEL system

    Energy Technology Data Exchange (ETDEWEB)

    Chetwani, S.H. [Electrical Research and Development Association, Vadodara, Gujarat (India)

    2010-07-01

    The installation and field trials of pump turbines for standalone power generation for a pico hydel system were discussed in this presentation. Background on the project was first presented. The technology was best suited for distributed generation. The presentation discussed the installation of the unit at the Galibidu Gram Panchayat in the Coorg District of Karnataka in India. An estimate was also provided. Laboratory trials were outlined and site performance was discussed. The total head available at the site was 74 metres. Ten houses were electrified with this unit in the first phase. Three cfls of 15 watts each were energized in each house. It was concluded that in the second phase, it was planned to install a 14 inch television in each house. figs.

  3. Enhanced Component Performance Study: Turbine-Driven Pumps 1998–2012

    Energy Technology Data Exchange (ETDEWEB)

    T. E. Wierman

    2013-10-01

    This report presents an enhanced performance evaluation of turbine-driven pumps (TDPs) at U.S. commercial nuclear power plants. The data used in this study are based on the operating experience failure reports from fiscal year 1998 through 2012 for the component reliability as reported in the Equipment Performance and Information Exchange (EPIX). The TDP failure modes considered are failure to start, failure to run less than or equal to 1 hour, failure to run more than 1 hour, and (for normally running systems) failure to run. The component reliability estimates and the reliability data are trended for the most recent 10-year period while yearly estimates for reliability are provided for the entire active period. No statistically significant increasing trends were identified in the TDP results. Statistically significant decreasing trends were identified for TDP run hours per reactor critical year and start demands.

  4. Frequencies in the Vibration Induced by the Rotor Stator Interaction in a Centrifugal Pump Turbine

    DEFF Research Database (Denmark)

    Rodriguez, Cristian; Egusquiza, Eduard; Santos, Ilmar

    2007-01-01

    of the analysis and after it is carried out in one of the units, the vibration levels are reduced The vibration induced by the RSI is predicted considering the sequence of interaction and different amplitudes in the interactions between the same moving blade and different stationary blades, giving a different......The highest vibration levels in large pump turbines are, in general, originated in the rotor stator interaction (RSI). This vibration has specific characteristics that can be clearly observed in the frequency domain: harmonics of the moving blade passing frequency and a particular relationship...... among their amplitudes. It is valuable for the design and condition monitoring to count on these characteristics. A CFD model is an appropriate tool to determine the force and its characteristics. However it is time consuming and needs highly qualified human resources while usually these results...

  5. Compressible simulation of rotor-stator interaction in pump-turbines

    Energy Technology Data Exchange (ETDEWEB)

    Yan, J; Koutnik, J; Seidel, U; Huebner, B, E-mail: jianping.yan@voith.co [Voith Hydro Holding GmbH and Co. KG Alexanderstr. 11, 89522 Heidenheim (Germany)

    2010-08-15

    This work investigates the influence of water compressibility on pressure pulsations induced by rotor-stator interaction (RSI) in hydraulic machinery, using the commercial CFD solver ANSYS-CFX. A pipe flow example with harmonic velocity excitation at the inlet plane is simulated using different grid densities and time step sizes. Results are compared with a validated code for hydraulic networks (SIMSEN). Subsequently, the solution procedure is applied to a simplified 2.5-dimensional pump-turbine configuration in model scale with an adapted speed of sound. Pressure fluctuations are compared with numerical and experimental data based on prototype scale. The good agreement indicates that the scaling of acoustic effects with an adapted speed of sound works well. Finally, the procedure is applied to a 3-dimensional pump configuration in model scale. Pressure fluctuations are compared with results from prototype measurements. Compared to incompressible computations, compressible simulations provide similar pressure fluctuations in vaneless space, but pressure fluctuations in spiral case and penstock may be much higher. With respect to pressure fluctuation amplitudes along the centerline of runner channels, incompressible solutions exhibit a linear decrease while compressible solutions exhibit sinusoidal distributions with maximum values at half the channel length, coinciding with analytical solutions of one-dimensional acoustics.

  6. 'Neo-Suterian' pump-turbine characteristics and their benefits

    Energy Technology Data Exchange (ETDEWEB)

    Doerfler, P K, E-mail: peter.doerfler@andritz.co [R and D Department, Andritz Hydro Ltd., Zurich (Switzerland)

    2010-08-15

    Conventional representations of the various operation modes of a pump-turbine (4-quadrant characteristics) have important disadvantages. While curves of Q{sub 11} vs n{sub 11} have singularities at E=0 and multiple values in the 'unstable' ranges, the curves E{sub nD}(Q{sub nD}) get singular at n=0. As a remedy, one may split the characteristics into separate parts, and switch between them. Another approach introduced by P. Suter (1966, [1]) defines a different set of variables which avoids singularity and always remains unique-valued. Suter described this artifice for non-regulated pumps; but using it for regulated machines without modifications is not practical due to large distortions at small guide vane opening. A decisive improvement has been described by C.S. Martin [4]. It avoids the distortion of the head-vs-flow curves at low load. The present paper describes how further improvement is possible, in particular with regard to the representation of torque. A modified torque parameter is obtained by subtracting the shutoff torque; this parameter can be handled in the same practical way as the discharge. Other improvements concern the correction for leakage at small guide vane opening, and the treatment of very small and zero opening. These details are concerned with the problem of closed gate where Suter's concept does not work. Applications are demonstrated, not only how to represent the hydraulic performance (head vs. discharge and torque vs. discharge), but also for other characteristics, such as the development of pressure and pressure pulsation in various locations, or the steady-state and unsteady guide vane torque. The advantage of a set of continuous, single-valued functions for all those physical properties greatly simplifies computation of their behavior during transients. Moreover, the, Suterized' properties of pump-turbines of different specific speed are less different from each other than the conventional ones, a fact that

  7. Pump used as a turbine (PAT) with flow control - Part 3: Sizing the variable guide vane system; Petites centrales hydrauliques. Pompe fonctionnant en turbine avec reglage du debit (Pat-Francis). 3eme partie: dimensionnement du distributeur

    Energy Technology Data Exchange (ETDEWEB)

    Chapallaz, J.-M.

    2007-02-15

    This third part of a final report for the Swiss Federal Office of Energy (SFOE) discusses the use of a pump equipped with variable guide vanes, similar to a Francis turbine. This third part of a four-part article deals with the concept and preliminary dimensioning of a variable guide vane system for a standard pump used as a turbine. Geometrical considerations are discussed and the basic data of such machines are presented. The principles behind the geometry and dimensioning of the vanes of the turbine are discussed and a proposal is described.

  8. Exergy, Economic and Environmental Analyses of Gas Turbine Inlet Air Cooling with a Heat Pump Using a Novel System Configuration

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Majdi Yazdi

    2015-10-01

    Full Text Available Gas turbines incur a loss of output power during hot seasons due to high ambient air temperatures, and input air cooling systems are often used to partly offset this problem. Here, results are reported for an investigation of the utilization of a heat pump to cool the inlet air of a gas turbine compressor. The analyses are carried out for two climates: the city of Yazd, Iran, which has a hot, arid climate, and Tehran, Iran, which has a temperate climate. The heat pump input power is obtained from the gas turbine. The following parameters are determined, with and without the heat pump: net output power, first and second law efficiencies, quantities and costs of environmental pollutants, entropy generation and power generation. The results suggest that, by using the air-inlet cooling system, the mean output power increases during hot seasons by 11.5% and 10% for Yazd and Tehran, respectively, and that the costs of power generation (including pollution costs decrease by 11% and 10% for Yazd and Tehran, respectively. Also, the rate of generation of pollutants such as NOx and CO decrease by about 10% for Yazd and 35% for Tehran, while the average annual entropy generation rate increases by 9% for Yazd and 7% for Tehran, through air-inlet cooling. The average increase of the system first law efficiency is 2% and of the system second law efficiency is 1.5% with the inlet-air cooling system.

  9. Enhanced Component Performance Study: Turbine-Driven Pumps 1998–2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    This report presents an enhanced performance evaluation of turbine-driven pumps (TDPs) at U.S. commercial nuclear power plants. The data used in this study are based on the operating experience failure reports from fiscal year 1998 through 2014 for the component reliability as reported in the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The TDP failure modes considered are failure to start (FTS), failure to run less than or equal to one hour (FTR=1H), failure to run more than one hour (FTR>1H), and normally running systems FTS and failure to run (FTR). The component reliability estimates and the reliability data are trended for the most recent 10-year period while yearly estimates for reliability are provided for the entire active period. Statistically significant increasing trends were identified for TDP unavailability, for frequency of start demands for standby TDPs, and for run hours in the first hour after start. Statistically significant decreasing trends were identified for start demands for normally running TDPs, and for run hours per reactor critical year for normally running TDPs.

  10. Modal behavior of a reduced scale pump turbine impeller. Part II: Numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Valero, C; Huang, X; Egusquiza, E [Center for Industrial Diagnostics, Technical University of Catalonia, Av. Diagonal 647, 08028 Barcelona (Spain); Farhat, M; Avellan, F, E-mail: egusquiza@mf.upc.ed [Laboratory for Hydraulic Machines, Ecole Polytechnique Federale de Lausanne Av. De Cour 33 bis, CH-1007 Lausanne (Switzerland)

    2010-08-15

    A numerical simulation has been carried out to analyze the modal behavior of a reduced scale pump-turbine impeller. The simulation has been done using FEM method, in air and in water. The same boundary conditions than in the experiment were considered: free body in air and free body submerged in a reservoir of water. A sensitivity analysis to determine the influence of the number of elements was done. The influence of the input parameters was also taken into account. Finally, a mesh with 165000 elements for the impeller in air and of 508676 for the impeller in water was used. The results obtained with the simulation have been compared with the experimental ones (paper 1). Both the natural frequency values and the mode-shapes were compared. The numerical results showed small deviation from experiment in the first modes in modes with low modal density. In some coupled modes been found. With the updated model the mode-shapes have been analyzed. Some modes with high modal density have been found. As indicated in the experiment, the effect of the added mass reduces the natural frequencies and also changes the characteristics of the coupled modes.

  11. Enhanced Component Performance Study: Turbine-Driven Pumps 1998–2013

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    This report presents an enhanced performance evaluation of turbine-driven pumps (TDPs) at U.S. commercial nuclear power plants. The data used in this study are based on the operating experience failure reports from fiscal year 1998 through 2013 for the component reliability as reported in the Institute of Nuclear Power Operations Consolidated Events Database. The TDP failure modes considered are failure to start, failure to run less than or equal to 1 hour, failure to run more than 1 hour, and (for normally running systems) failure to run. The component reliability estimates and the reliability data are trended for the most recent 10-year period while yearly estimates for reliability are provided for the entire active period. Statistically significant increasing trends were identified for TDP unavailability, for frequency of start demands for standby TDPs, and for run hours in the first hour after start. Statistically significant decreasing trends were identified for start demands for normally running TDPs, and for run hours per reactor critical year for normally running TDPs.

  12. Energy Saving in Water Distribution Network through Pump as Turbine Generators: Economic and Environmental Analysis

    Directory of Open Access Journals (Sweden)

    Mauro De Marchis

    2016-10-01

    Full Text Available Complex systems of water distribution networks (WDS are used to supply water to users. WDSs are systems where a lot of distributed energy is available. Historically, this energy is artificially dissipated by pressure reduction valves (PRVs, thanks to which water utilities manage the pressure level in selected nodes of the network. The present study explores the use of economic hydraulic machines, pumps as turbines (PATs to produce energy in a small network located in a town close to Palermo (Italy. The main idea is to avoid dissipation in favor of renewable energy production. The proposed study is applied to a WDN typical of the Mediterranean countries, where the users, to collect water during the period of water scarcity conditions, install private tanks. The presence of private tanks deeply modifies the network from its designed condition. In the proposed analysis, the economic benefit of PATs application in water distribution networks has been investigated, accounting for the presence of users’ private tanks. The analysis, carried out by mean of a mathematical model able to dynamically simulate the water distribution network with PATs, shows the advantage of their installation in terms of renewable energy recovery, even though the energy production of PATs is strictly conditioned by their installation position.

  13. Stability analysis of the governor-turbine-hydraulic system of pumped storage plant during small load variation

    Science.gov (United States)

    Yu, X. D.; Zhang, J.; Chen, S.; Liu, J. C.

    2016-11-01

    Governor-turbine-hydraulic (GTH) system is complex because of strong couplings of hydraulic, mechanical and electrical system. This paper presents a convenient mathematical model of the GTH system of a pumped storage plant (PSP) during small load variation. By using state space method and eigenvalue method, the stability of the GTH system is analyzed and the stable regions of the system can be given as well, which would help to optimize system design or the turning of governors. The proposed method is used to analyze the stability of a practical pumped storage plant during small load variation, which is also simulated in time domain on the basis of characteristics method. The theoretical analysis is in good agreement with numerical simulations. Based on the proposed method, the effect of the system parameters and operating conditions on the stable regions is investigated. These results are useful for the design of the GTH system of pumped storage plants.

  14. The measured field performances of eight different mechanical and air-lift water-pumping wind-turbines

    Energy Technology Data Exchange (ETDEWEB)

    Kentfield, J.A.C. [Univ. of Calgary, Alberta (Canada)

    1996-12-31

    Results are presented of the specific performances of eight, different, water-pumping wind-turbines subjected to impartial tests at the Alberta Renewable Energy Test Site (ARETS), Alberta, Canada. The results presented which were derived from the test data, obtained independently of the equipment manufacturers, are expressed per unit of rotor projected area to eliminate the influence of machine size. Hub-height wind speeds and water flow rates for a common lift of 5.5 m (18 ft) constitute the essential test data. A general finding was that, to a first approximation, there were no major differences in specific performance between four units equipped with conventional reciprocating pumps two of which employed reduction gearing and two of which did not. It was found that a unit equipped with a Moyno pump performed well but three air-lift machines had, as was expected, poorer specific performances than the more conventional equipment. 10 refs., 9 figs.

  15. A Performance Prediction Method for Pumps as Turbines (PAT Using a Computational Fluid Dynamics (CFD Modeling Approach

    Directory of Open Access Journals (Sweden)

    Emma Frosina

    2017-01-01

    Full Text Available Small and micro hydropower systems represent an attractive solution for generating electricity at low cost and with low environmental impact. The pump-as-turbine (PAT approach has promise in this application due to its low purchase and maintenance costs. In this paper, a new method to predict the inverse characteristic of industrial centrifugal pumps is presented. This method is based on results of simulations performed with commercial three-dimensional Computational Fluid Dynamics (CFD software. Model results have been first validated in pumping mode using data supplied by pump manufacturers. Then, the results have been compared to experimental data for a pump running in reverse. Experimentation has been performed on a dedicated test bench installed in the Department of Civil Construction and Environmental Engineering of the University of Naples Federico II. Three different pumps, with different specific speeds, have been analyzed. Using the model results, the inverse characteristic and the best efficiency point have been evaluated. Finally, results have been compared to prediction methods available in the literature.

  16. Dynamic Runner Forces and Pressure Fluctuations on the Draft Tube Wall of a Model Pump-Turbine

    Science.gov (United States)

    Kirschner, O.; Ruprecht, A.; Göde, E.; Riedelbauch, S.

    2016-11-01

    When Francis-turbines and pump-turbines operate at off-design conditions, typically a vortex rope develops. The vortex rope causes pressure oscillations leading to fluctuations of the forces affecting the runner. The presence of dynamic runner forces over a long period of time might damage the bearings and possibly the runner. In this experimental investigation, the fluctuating part of the runner forces and the pressure oscillations on the draft tube wall were measured on a model pump-turbine with a simplified straight cone draft tube in different operating conditions. The investigation focuses on the correlation of the pressure fluctuations frequency measured at the draft tube wall with the frequency of the fluctuating forces on the runner. The comparison between pressure fluctuations and dynamic forces shows a significant correlation in all operating points. For the comparison of different components in the spatial directions of the forces, the pressure fluctuations were separated in a synchronous part and a rotating part for operating points with higher amplitudes. The rotating pressure fluctuations correlate with the radial forces especially in the operating points with a rotating vortex rope. At frequencies with higher amplitudes in the pressure fluctuations caused by the vortex rope movement, there are also higher amplitudes in the radial forces at the same frequencies.

  17. Modal behavior of a reduced scale pump-turbine impeller. Part 1: Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Escaler, X; Huetter, J K; Egusquiza, E [Center for Industrial Diagnostics, Technical University of Catalonia, Av. Diagonal 647, Barcelona, 08028 (Spain); Farhat, M; Avellan, F, E-mail: escaler@mf.upc.ed [Laboratory for Hydraulic Machines, Ecole Polytechnique Federale de Lausanne, Av. de Cour 33 bis, Lausanne, CH-1007 (Switzerland)

    2010-08-15

    An experimental investigation has been carried out to quantify the effects of surrounding fluid on the modal behavior of a reduced scale pump-turbine impeller. The modal properties of the fluid-structure system have been obtained by Experimental Modal Analysis (EMA) with the impeller suspended in air and inside a water reservoir. The impeller has been excited with an instrumented hammer and the response has been measured by means of miniature accelerometers. The Frequency Response Functions (FRF's) have been obtained from a large number of impacting positions in order to ensure the identification of the main mode shapes. As a result, the main modes of vibration have been well characterized both in air and in water in terms of natural frequency, damping ratio and mode shape. The first mode is the 2 Nodal Diameter (ND), the second one is the 0ND and the following ones are the 3ND coupled with the 1ND. The visual observation of the animated mode shapes and the level of the Modal Assurance Criterion (MAC) have permitted to correlate the homologous modes of vibration of the fluid-structure system in air and in water. From this comparison the added mass effect on the natural frequencies and the fluid effect on the damping ratios have been quantified for the most significant modes. With the surrounding water, the natural frequencies decrease in average by 10%. On the other hand, the damping ratios increase in average by 0.5%. In any case, the damping ratio appears to decrease with the frequency value of the mode.

  18. Assessment of power step performances of variable speed pump-turbine unit by means of hydro-electrical system simulation

    Science.gov (United States)

    Béguin, A.; Nicolet, C.; Hell, J.; Moreira, C.

    2017-04-01

    The paper explores the improvement in ancillary services that variable speed technologies can provide for the case of an existing pumped storage power plant of 2x210 MVA which conversion from fixed speed to variable speed is investigated with a focus on the power step performances of the units. First two motor-generator variable speed technologies are introduced, namely the Doubly Fed Induction Machine (DFIM) and the Full Scale Frequency Converter (FSFC). Then a detailed numerical simulation model of the investigated power plant used to simulate power steps response and comprising the waterways, the pump-turbine unit, the motor-generator, the grid connection and the control systems is presented. Hydroelectric system time domain simulations are performed in order to determine the shortest response time achievable, taking into account the constraints from the maximum penstock pressure and from the rotational speed limits. It is shown that the maximum instantaneous power step response up and down depends on the hydro-mechanical characteristics of the pump-turbine unit and of the motor-generator speed limits. As a results, for the investigated test case, the FSFC solution offer the best power step response performances.

  19. Experimental investigation of vortex control with an axial jet in the draft tube of a model pump-turbine

    Energy Technology Data Exchange (ETDEWEB)

    Kirschner, O; Schmidt, H; Ruprecht, A [Institute of Fluid Mechanics and Hydraulic Machinery, University of Stuttgart, Pfaffenwaldring 10, 70550 Stuttgart (Germany); Mader, R; Meusburger, P, E-mail: kirschner@ihs.uni-stuttgart.d [Vorarlberger Illwerke A G, atloggstrasse 36, 6780 Schruns (Austria)

    2010-08-15

    The operation of hydropower plants, especially of pump-storage plants, changes since the deregulation of the energy market. They are increasingly operating at off-design conditions in order to follow the demand in the electrical grid. Therefore the ability of hydropower plants handling the operation in a wide range of off-design conditions has become more important. In this context one problem is the vortex rope in the draft tube, especially for Francis turbines and pump-turbines running in part load. An experimental investigation in mitigation of the vortex rope phenomenon by injecting water axially in the centre of the draft tube on a pump-turbine model was carried out. Also the mitigation by additionally injected air in the centre of the draft tube was analysed. The results of the experimental investigation are focused on the reduction of the pressure fluctuations in the draft tube. In this paper two different part-load operating points were investigated. One of these operating points is a high part load operating point where a vortex rope exists. The other one is a low part load operating point, where the pressure fluctuation is not caused by a vortex rope. The results of the investigation show, that the injection of stabilizing water can mitigate the pressure fluctuation caused by a vortex rope. But the investigation of operating points where the pressure fluctuation is not caused by a vortex rope shows, that there is no significant reduction in the pressure fluctuation by this method. In these operating points the method of injecting additionally air reduces the pressure fluctuation better.

  20. Pump used as a turbine (PAT) with flow control - Part 4: Sizing the new spiral casing; Petites centrales hydrauliques. Pompe fonctionnant en turbine avec reglage du debit (Pat-Francis). 4eme partie: dimensionnement et construction de la bache spirale

    Energy Technology Data Exchange (ETDEWEB)

    Chapallaz, J.-M.

    2007-02-15

    This fourth and final part of a final report for the Swiss Federal Office of Energy (SFOE) discusses the use of a pump equipped with variable guide vanes, similar to a Francis turbine. This fourth part of a four-part article deals with the selection of a pump and describes the general lay-out of the new spiral casing to be adapted for use in the PAT-Francis turbine. The parameters to be taken into account are looked at and calculation examples are presented. Proposals for a simplified construction are examined.

  1. Investigations of unsteady flow in the draft tube of the pump- turbine model using laser Doppler anemometry

    Science.gov (United States)

    Kaznacheev, A.; Kuznetsov, I.

    2014-03-01

    The measurements and video observation of unsteady flow in the draft tube cone of the pump-turbine model were conducted in the Laboratory of Water Turbines, property of OJSC "Power machines" - "LMZ". The prototype head was about 250 m. The experiments were performed for the turbine mode of operation. Measurements were taken for the unit speed value n11 corresponding to rated head in the generating mode of operation, for a wide range of guide vanes openings at loads ranging from partial to maximum value. The researches of the velocity field in function of the Thoma number were carried out in some operating conditions. The mean values and RMS deviations of the velocity components were the results of laser measurements. The curves of the intensity of the vortex versus the guide vane opening and the Thoma number were plotted. The energy velocity spectra were presented for the points at which the most pronounced frequency precession of the helical axial vortex was observed. Video recording and laser Doppler anemometry were made in the operating conditions of the developed cavitation. Based on the results of video observations and energy spectra obtained via LDA, vortex frequencies were determined i.e. the frequencies of the vortex precession under the runner in the draft tube cone.

  2. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines.

    Science.gov (United States)

    Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Liu, Hong-wei; Gu, Ya-jing

    2015-09-01

    A variable-displacement pump controlled pitch system is proposed to mitigate generator power and flap-wise load fluctuations for wind turbines. The pitch system mainly consists of a variable-displacement hydraulic pump, a fixed-displacement hydraulic motor and a gear set. The hydraulic motor can be accurately regulated by controlling the pump displacement and fluid flows to change the pitch angle through the gear set. The detailed mathematical representation and dynamic characteristics of the proposed pitch system are thoroughly analyzed. An adaptive sliding mode pump displacement controller and a back-stepping stroke piston controller are designed for the proposed pitch system such that the resulting pitch angle tracks its desired value regardless of external disturbances and uncertainties. The effectiveness and control efficiency of the proposed pitch system and controllers have been verified by using realistic dataset of a 750 kW research wind turbine.

  3. Theoretical analysis of inertially irrotational and soleniodal flow in two-demensional radial flow pump and turbine impellers with equiangular blades

    NARCIS (Netherlands)

    Visser, F.C.; Brouwers, J.J.H.; Badie, R.

    1994-01-01

    Using the theory of functions of a complex variable, in particular the method of conformal mapping, the irrotational and solenoidal flow in two-dimensional radialflow pump and turbine impellers fitted with equiangular blades is analysed. Exact solutions are given for the fluid velocity along straigh

  4. Modular pump-turbine concept supporting the integration of renewable energy sources in a decentralised grid; Modulare Pumpturbine als Unterstuetzung bei der Einbindung alternativer Energien ins dezentrale Stromnetz

    Energy Technology Data Exchange (ETDEWEB)

    Doujak, Eduard; Unterberger, Philipp; Bauer, Christian [Technische Univ. Wien (Austria). Inst. fuer Energietechnik und Thermodynamik

    2012-11-01

    The integration of renewable energy systems in Europe leads to several challenges in the energy market. Energy storage for stable grid operation has become a necessity. Pumped storage is the only technology available today that is able to store large amounts of energy efficiently and with low specific storage costs. The Vienna University of Technology is currently investigating how existing artificial lakes for snow production could be integrated in pumped storage production systems. A new modular pump turbine concept and its application prospects are presented. (orig.)

  5. Application of transient CFD-procedures for S-shape computation in pump-turbines with and without FSI

    Science.gov (United States)

    Casartelli, E.; Mangani, L.; Ryan, O.; Schmid, A.

    2016-11-01

    CFD has entered the product development process in hydraulic machines since more than three decades. Beside the actual design process, in which the most appropriate geometry for a certain task is iteratively sought, several steady-state simulations and related analyses are performed with the help of CFD. Basic transient CFD-analysis is becoming more and more routine for rotor-stator interaction assessment, but in general unsteady CFD is still not standard due to the large computational effort. Especially for FSI simulations, where mesh motion is involved, a considerable amount of computational time is necessary for the mesh handling and deformation as well as the related unsteady flow field resolution. Therefore this kind of CFD computations are still unusual and mostly performed during trouble-shooting analysis rather than in the standard development process, i.e. in order to understand what went wrong instead of preventing failure or even better to increase the available knowledge. In this paper the application of an efficient and particularly robust algorithm for fast computations with moving mesh is presented for the analysis of transient effects encountered during highly dynamic procedures in the operation of a pump-turbine, like runaway at fixed GV position and load-rejection with GV motion imposed as one-way FSI. In both cases the computations extend through the S-shape of the machine in the turbine-brake and reverse pump domain, showing that such exotic computations can be perform on a more regular base, even if quite time consuming. Beside the presentation of the procedure and global results, some highlights in the encountered flow-physics are also given.

  6. 抽水蓄能电站可逆式水泵水轮机发展现状与展望%Development of Reversible Pump-Turbines in Pumped Storage Power Stations and Their Prospects

    Institute of Scientific and Technical Information of China (English)

    赵万勇; 马达; 曾玲

    2012-01-01

    On the basis of wind power development in Gansu province and the pumped storage development of the world.the necessity of developing our pumped storage power stations in China is elaborated. Various types of hydraulic pump-turbines in pumped storage power stations are introduced (the tendency of development of reversible hydraulic pump-turbines are discussed;the domestic and international studies in this field are also related. It is pointed out that in China,the R&-D ability of pumped storage power stations is still low,but we have a bright future.%从甘肃省的风电发展和世界抽水蓄能发展情况讨论了我国抽水蓄能电站建设的必要性;介绍了抽水蓄能电站中水泵水轮机的各种型式,分析了国内外在这方面的研究现状;对可逆式水泵水轮机的发展趋势和存在的问题进行了探讨;认为仍需加强我国抽水蓄能电站机组的研发能力,并展望了我国抽水蓄能电站的发展宏图.

  7. Design and Performance Test of Jet Pump for Marine Steam Turbine%船用汽轮机注油器设计与试验研究

    Institute of Scientific and Technical Information of China (English)

    王晗; 徐鹏

    2016-01-01

    The performances of jet pump in marine turbine are calculated in this paper with the method of numerical simulation. The test facilities are built to validate the performance of pump. The results show that the performance is fully satisfied with the demand and the off-design condition is excellent. All above work is the solid base of marine steam turbine development.%通过数值仿真对所设计船用汽轮机注油器进行了数值仿真,并详细分析了其变工况性能,并搭建试验台进行了性能验证,结果表明性能满足设计使用要求,并具有良好的变工况性能,为汽轮发电机组的研制创造了坚实的基础。

  8. PUMPS

    Science.gov (United States)

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  9. CFD simulation of reverse water-hammer induced by collapse of draft-tube cavity in a model pump-turbine during runaway process

    Science.gov (United States)

    Zhang, Xiaoxi; Cheng, Yongguang; Xia, Linsheng; Yang, Jiandong

    2016-11-01

    This paper reports the preliminary progress in the CFD simulation of the reverse water-hammer induced by the collapse of a draft-tube cavity in a model pump-turbine during the runaway process. Firstly, the Fluent customized 1D-3D coupling model for hydraulic transients and the Schnerr & Sauer cavitation model for cavity development are introduced. Then, the methods are validated by simulating the benchmark reverse water-hammer in a long pipe caused by a valve instant closure. The simulated head history at the valve agrees well with the measured data in literature. After that, the more complicated reverse water-hammer in the draft-tube of a runaway model pump-turbine, which is installed in a model pumped-storage power plant, is simulated. The dynamic processes of a vapor cavity, from generation, expansion, shrink to collapse, are shown. After the cavity collapsed, a sudden increase of pressure can be evidently observed. The process is featured by a locally expending and collapsing vapor cavity that is around the runner cone, which is different from the conventional recognition of violent water- column separation. This work reveals the possibility for simulating the reverse water-hammer phenomenon in turbines by 3D CFD.

  10. Researching status of centrifugal pump as turbine%离心泵作透平的研究现状

    Institute of Scientific and Technical Information of China (English)

    王桃; 孔繁余; 何玉洋; 杨孙圣

    2013-01-01

    为深入研究离心泵作透平回收工业余能和开发微型水电,综述了离心泵作透平的研究现状.泵作透平的研究主要采用试验研究、理论分析和数值模拟的方法.总结了泵作透平的主要研究内容:泵作透平的选型及性能预测,特别是透平高效点性能参数的预测;透平过流部件的优化设计与性能提高;透平运行稳定性.着重介绍了泵作透平的选型及性能预测方法:通过试验,获得泵正反转工况的性能参数;基于试验数据,通过理论分析,提出经验公式,得到泵正反转性能参数的关系;CFD技术与试验相结合对泵作透平的性能进行预测.并对离心泵作透平的发展进行了展望,提出今后离心泵作透平的主要研究趋势:准确的选型方法、新的设计理论与方法、振动、非设计工况的稳定运行及大功率多级泵作透平的研究.%PAT (pumps as turbines) is one of the best alternatives for energy recovery.PAT is very important for waste energy resources recovery in industry and the micro-hydropower development in remote areas.In order to further investigation on PAT,the main texts on PAT were briefly reviewed.The available reference materials of research on pumps worked as turbines were mainly conducted based on experimental,theoretical and numerical ways.The relevant research fields of PAT were summarized,such as the optimization design of flow passage components in PAT and performance improvement,the operational stability of PAT,PAT's type-selection and performance prediction,especially the prediction for BEP (best efficiency point).Performance parameters of the pumps and PAT were obtained through experiments.The relationship of performance parameters between pumps and PAT was predicted by theoretical analysis and the empirical formulas based on the experimental data.The PAT performance can be determined by comparing the results from CFD prediction and the tests.Finally,the prospect and future

  11. On the Implementation of Variable Speed in Pump-Turbine Units Providing Primary and Secondary Load-Frequency Control in Generating Mode

    Directory of Open Access Journals (Sweden)

    José Ignacio Sarasúa

    2015-12-01

    Full Text Available This paper analyses different control strategies for the speed control loop of a variable-speed pump-turbine unit equipped with a doubly fed induction generator, operating in generating mode in an isolated power system with high penetration of intermittent renewable energy. The control strategies are evaluated and compared to each other in terms of the amount of water discharged through the pump-turbine and of the wicket gates fatigue while providing primary and secondary load-frequency control. The influence of the penstock length and the initial operating point on the performance of each control strategy is studied in detail. For these purposes, several simulations have been performed with a suitable dynamic model of the pumped-storage hydropower plant and the power system. The results of the paper indicate that a proper control strategy would consist in updating the reference speed according to the power generation schedule and keeping it constant within each scheduling period (typically 1 h.

  12. Research on Different Specific Speed Pumps Used as Turbines%不同比转数离心泵作透平研究

    Institute of Scientific and Technical Information of China (English)

    杨孙圣; 李强; 黄志攀; 孔繁余; 石海峡

    2013-01-01

    为了研究不同比转数离心泵用作透平时的差别,应用数值计算的方法对不同比转数的泵进行了研究,分析了泵作透平的效率与泵效率之间的关系,以及泵作透平时的流量、扬程换算系数随比转数变化的规律,并对不同比转数的泵内部功率损失分布进行了研究.研究结果表明:泵作透平的效率通常不高于泵的效率;泵在透平工况下的流量和扬程比泵工况的流量和扬程大,泵用作透平运行时的流量、扬程换算系数随比转数的增加而逐渐减小;功率损失分布分析表明,叶轮内部的功率损失是泵作透平内部主要的功率损失,并随比转数的增大而逐渐增大,因此对泵作透平的优化设计应当集中在对叶轮的研究.%With the aim to investigate the difference of different specific speed pumps used as turbines, numerical simulation of different specific speed pump was performed. The efficiency between its two modes and the variations of flow rate and pressure head conversion factors of pump as turbine ( PAT) with different specific speed pumps were analyzed. Meanwhile, the power loss distribution within different specific speed PATs were presented. Results showed that the flow rate and pressure head were increased when a pump was operated as a turbine. The efficiency of PAT was no more than its pump mode. The flow rate and head conversion factors decreased with the increase of specific speed. Power loss distribution within each hydraulic part showed that it was the power loss within impeller that took up the majority of the total power loss and this tendency grew with the growth of specific speed. Therefore, the optimization design of PAT should focus on impeller research.

  13. Effect of Splitter Blade on the Performance of Pump as Turbine%长短叶片对液力透平性能的影响

    Institute of Scientific and Technical Information of China (English)

    杨孙圣; 孔繁余; 薛玲; 胡俐

    2012-01-01

    In order to find out the effects of splitter blades on the performance of pump as turbine, a pump as turbine and an open pump as turbine test rig were built. Research results showed that the addition of splitter blades could improve its efficiency, increase its flow rate at the best efficiency point and decrease its required pressure head. Internal flow field analysis showed that the flow field was improved and the area and intensity of vortex region was decreased with the increase of splitter blades. Power loss distribution analysis within pump as turbine showed that power loss within impeller took up the majority of the total power loss. The power loss within impeller was decreased when splitter blades were added to the impeller. With the increase of blade number, the interaction of impeller and volute was enhanced, so the power loss within volute was increased.%为了研究长短叶片对液力透平性能的影响,制作了液力透平样机,搭建了开式液力透平实验台,对有、无长短叶片的叶轮分别进行了数值和实验研究.研究结果表明,长短叶片的增加可以提高液力透平的效率,增加最高效率点的流量,降低液力透平的扬程.内部流场分析表明,长短叶片的增加,可以改善叶轮内部流场分布,减小叶轮内部漩涡的区域和强度,改善液力透平内部流动规律.对液力透平内部功率损失分布分析表明,液力透平内部的功率损失主要集中在叶轮内部,长短叶片的增加,改善了叶轮内部流动,减小了叶轮内部的功率损失.叶片数的增加加剧了叶轮和蜗壳之间的相互作用,因此蜗壳内部的功率损失有所增加.

  14. Hydraulic connection and penstock chambers in the PSP Kops II. Direct crossing from pump- into turbine operation; Hydraulischer Kurzschluss und Druckluftwasserschlosskammern im PSW Kops II. Nahtloser Uebergang vom Pump- in den Turbinenbetrieb

    Energy Technology Data Exchange (ETDEWEB)

    Puerer, E. [Vorarlberger Illwerke AG (VIW), Schruns (Austria)

    2007-04-16

    After a two years' design development phase including the implementation of the approval process and the award of contracts for all major components, the new building of Kopswerk II has been started on the 1st of September 2004. Kopswerk II is a pump storage scheme with an installed capacity of 450 to 510 MW in turbine mode and 450 MW in pumping operation. The conception of this power plant was substantially determined by the modified market conditions since the liberalization of the electricity market. Nowadays the plant is in the third year of construction. The installation of the first turbogenerator unit has advanced and will start-up in at the end of the year 2007. The completion of the total plant with full operation of the three turbogenerator units is planned in the middle of 2008. The erection cost at the end of construction shall be about 370 Mio Euro. (GL)

  15. 泵及泵用作透平时的数值模拟与外特性实验%Numerical Simulation and Performance Experiment on Pump and Pump as Turbine

    Institute of Scientific and Technical Information of China (English)

    杨孙圣; 孔繁余; 宿向辉; 陈浩

    2012-01-01

    An open pump as turbine (PAT) test rig was built to examine the relations between pump and PAT performance characteristics, and its two models' internal flow field. The experiment on a single stage centrifugal pump was conducted to study its performance characteristics under normal and reverse operating conditions. The results show that the reverse operating centrifugal pump has high efficiency. The numerical simulation on the pump and the PAT was performed by adopting all domain and structural mesh technique, and the simulation results are in reasonable consistency with the experimental data. Additionally the analyses were performed on the pressure field and the velocity field inside the pump and the PAT.%针对泵及泵用作透平时的内部流动规律等问题展开了研究,并建立了一种开式泵用作透平时的实验台,同时对一单级单吸离心泵的正反工况进行了外特性实验研究,从而得到了相应比转速的泵在正反工况下的外特性曲线,进而验证了泵在反运转时可用作透平且具有较高的效率.采用全流场和结构化网格技术对泵及泵用作透平时进行了数值计算,计算结果与实验结果吻合良好;对泵及泵用作透平时的内部速度场和压力场进行了分析.

  16. Optimal design of reversible pump-turbine runner%可逆式水泵水轮机转轮的三维反问题优化设计

    Institute of Scientific and Technical Information of China (English)

    王旭鹤; 祝宝山; 曹树良; 谭磊

    2014-01-01

    与常规的水泵或水轮机转轮相比,可逆式水泵水轮机转轮要兼顾水泵和水轮机2种工况下的性能,设计要求高、难度大,且影响转轮性能的设计参数较多,很难通过设计-修正-试验的方法获得2种运行工况下性能均优的可逆式水泵水轮机转轮。针对这些困难,该文将三维反问题设计、CFD计算与多目标优化策略相结合,构建了可逆式水泵水轮机转轮的优化设计系统。该设计系统不仅可缩短转轮设计周期,且能对多个运行工况下的多个目标同时进行优化。利用该优化设计系统,以叶片载荷和叶片倾角为优化变量,以水泵设计工况点的转轮效率和水轮机额定工况点的转轮效率为优化目标,以水泵设计工况的扬程为约束,对某一抽水蓄能电站的水泵水轮机转轮进行了优化设计。结果表明利用该优化设计系统能够设计出在水泵和水轮机2种运行工况下转轮水力效率均高于95%的可逆式水泵水轮机转轮,其中水泵设计工况下转轮效率提高了0.15%,水轮机额定工况下转轮效率提高了2%,表明了该优化设计系统在提高可逆式水泵水轮机转轮性能方面的可行性和有效性。该研究可为水力机械,包括水泵水轮机、常规水轮机、水泵的设计开发提供参考。%As a key component of a reversible pump-turbine unit, a pump-turbine runner rotates at two opposite directions under the pump and turbine modes. The flow states in the runner are quite different under the pump and turbine modes, which creates a great challenge for the design of a pump-turbine runner. Nowadays, a pump-turbine runner is always designed in one mode and verified with the other mode. Since there are several parameters affecting the runner’s performances and one parameter might have contrary effects on runner performances under the pump and turbine modes, it is hard to obtain a runner with high performance

  17. Pressure fluctuation prediction in pump mode using large eddy simulation and unsteady Reynolds-averaged Navier–Stokes in a pump–turbine

    Directory of Open Access Journals (Sweden)

    De-You Li

    2016-06-01

    Full Text Available For pump–turbines, most of the instabilities couple with high-level pressure fluctuations, which are harmful to pump–turbines, even the whole units. In order to understand the causes of pressure fluctuations and reduce their amplitudes, proper numerical methods should be chosen to obtain the accurate results. The method of large eddy simulation with wall-adapting local eddy-viscosity model was chosen to predict the pressure fluctuations in pump mode of a pump–turbine compared with the method of unsteady Reynolds-averaged Navier–Stokes with two-equation turbulence model shear stress transport k–ω. Partial load operating point (0.91QBEP under 15-mm guide vane opening was selected to make a comparison of performance and frequency characteristics between large eddy simulation and unsteady Reynolds-averaged Navier–Stokes based on the experimental validation. Good agreement indicates that the method of large eddy simulation could be applied in the simulation of pump–turbines. Then, a detailed comparison of variation for peak-to-peak value in the whole passage was presented. Both the methods show that the highest level pressure fluctuations occur in the vaneless space. In addition, the propagation of amplitudes of blade pass frequency, 2 times of blade pass frequency, and 3 times of blade pass frequency in the circumferential and flow directions was investigated. Although the difference exists between large eddy simulation and unsteady Reynolds-averaged Navier–Stokes, the trend of variation in different parts is almost the same. Based on the analysis, using the same mesh (8 million, large eddy simulation underestimates pressure characteristics and shows a better result compared with the experiments, while unsteady Reynolds-averaged Navier–Stokes overestimates them.

  18. 基于多块结构矢量裁剪的涡轮离心泵流场模拟%Simulation of Turbine Centrifugal Pump Flow Field Based on Multi Block Structure Vector Cutting

    Institute of Scientific and Technical Information of China (English)

    张明; 张铱鈖

    2015-01-01

    通过对涡轮离心泵的流场优化模拟,提高对涡轮离心泵的机械加工精度.传统方法使用多块结构化网格方法对涡轮离心泵流湍流度进行数值模拟,实现涡轮离心泵转子间隙流场分析,而涡轮离心泵转子的曲率随着转子的半开式旋转动态变化,影响流场分析精度.提出一种基于多块结构矢量裁剪的涡轮离心泵流场模拟方法.设计多块结构化网格,对涡轮离心泵流场分布进行控制设计,为了确保每一区域形成一个基于限定边约束三角网剖分,采用矢量裁剪方法,构建离心泵流场连点成面模型.仿真实验表明,采用该流场模拟方法能有效解决涡轮离心泵构造的层面拟合问题,提高了流场分析和模拟精度,实现涡轮离心泵流场模拟,指导机械加工,降低加工误差.%Through the optimization of flow field simulation of turbine centrifugal pump, improve the machining accuracy of turbine centrifugal pump. The use of unstructured grid method for multi block on the turbine centrifugal pump flow turbu-lence numerical simulation is carried out in the traditional method, the realization of the rotor gap flow field of turbine cen-trifugal pump analysis, while the turbine centrifugal pump rotor curvature with semi open rotary dynamic changes of the ro-tor, the precision analysis of effects of flow. A method is proposed to simulate the flow field of turbine centrifugal pump multi block structure vector based on cutting. Design of multi block structured grids, the flow field distribution of turbine centrifugal pump control design, in order to ensure that every region formed a limited boundary constrained triangulation based on vector, using cutting method, the construction of flow in centrifugal pump even point into a surface model. Simula-tion results show that, using the flow field can effectively solve the problem of turbine centrifugal pump level fitting struc-ture simulation methods, improve the flow field

  19. Some Technical Problems of Reversible Pump Turbine and in the Construction of Pumped-storage Power Stations%抽水蓄能电站建设及可逆式水泵水轮机的若干技术问题

    Institute of Scientific and Technical Information of China (English)

    端润生

    2012-01-01

    从混流可逆式水泵水轮机的选型问题、水泵水轮机全特性曲线、水轮机工况额定水头的选择、水力-机械过渡过程计算、上水库充水问题和首台机组首次启动方式等7个方面对中国抽水蓄能电站建设及可逆式水泵水轮机的若干技术问题进行了综述和分析,并就问题的解决提出了建议和对策.%Some technical problems of reversible pump turbine and in the construction of pumped-storage power stations in China are summarized and analyzed from seven aspects of the selection of Francis reversible pump turbine, the complete characteristics curve of pump turbine, the selection of rated head at turbine mode, the calculation of hydraulic-mechanical transition process, the water filling of upper reservoir and the first start -up mode of first unit. The suggestions and countermeasures for dealing with above problems are also put forward.

  20. 基于反转双吸泵的液力透平全特性的数值预测%Numerical prediction on over-all performance of double suction pump reverse running as turbine

    Institute of Scientific and Technical Information of China (English)

    陈铁军; 郭鹏程; 骆翼; 吴玉林

    2013-01-01

    To study the behavior of a double suction pump with guide vanes when running as a turbine,the performance of the pump was predicted by using the SST k-ω turbulence model; meanwhile,the performance in turbine mode was investigated as well,especially in the braking pump mode and reverse rotation pump mode.It was shown that the pump efficiency at the rated point is 89.3% and the peak efficiency in turbine is as high as 90.5% ; moreover,when the head is more than 200 m,the turbine can keep a higher efficiency over a wider flow rate range.The head curve in pump mode doesn't show a positive slope at all; in turbine mode,however,the curve exhibits a “S” shape zone,suggesting a turbine shouldn't be operated in that zone.The flow patterns in the runner are smooth and there is no reverse or separation phenomenon in the pump and turbine modes at the duty points.The passage between the runner and the double suction pipe is so narrow that the flow swirls strongly there.When the pump is operated in reverse rotation and braking pump modes,the reverse flow in the runner leads to stall phenomena.It is necessary to consider that cavitation may occur in turbine mode,for operation safety occurrence of cavitation should be avoided.%为了研究一种带导叶的双吸泵反转作为液力透平使用时的性能,采用SST k-ω湍流模型,对该双吸泵的性能进行了预测,并对其反转作为液力透平的性能进行研究,对水泵制动工况以及反水泵工况进行预测.通过液力透平全特征曲线分析,该双吸泵额定工况点效率为89.3%,反转为液力透平时,额定工况点效率可达90.5%,且当工作水头大于200 m时,该液力透平具有较宽的工作范围;机组双向运行稳定性均较好,双吸泵不存在驼峰现象,液力透平运行特性曲线中存在明显的“S”特性,运行过程中应尽量避免运行在该“S”区域.通过内流场分析,额定工况下双吸泵和液力透平转轮内部流线规则,无

  1. The utilization of induction generators working with PATs (pumps working as turbines) in electric energy generation; A utilizacao de geradores de inducao acionados por BFTs (bombas funcionando como turbinas) na geracao de energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Viana, Augusto Nelson Carvalho; Rezek, Angelo Jose Junqueira; Medeiros, Daniel de Macedo [Universidade Federal de Itajuba (UNIFEI), MG (Brazil). Programa de Pos-graduacao em Engenharia da Energia], e-mail: augusto@unifei.edu.br, e-mail: rezek@iee.efei.br, e-mail: macedo@unifei.edu.br

    2004-07-01

    The utilization of the Pumps working as Turbines (PATs) in micro hydro-energy resources to replace the conventional turbines as Pelton, Francis and Propeller have been used in countries as USA, Germany and France. In the mean time, in Brazil this practice and the utilization of induction generators working with PATs is still in the scope of the laboratory experiments. This work, based on experimental results carried on in Laboratory of Hydromechanics for Small Hydro Power Plants (Laboratorio Hidromecanico para Pequenas Centrais Hidroeletricas - LHPCH - UNIFEI), (VIANA, 1987), (VIANA e NOGUEIRA, 1990), propose the utilization of asynchronous generator groups operating with PATs. To show the investment cost decrease in micro hydro power plants (MHPs), is showed the Boa Esperanca MPH example, in which is presented a comparison between the synchronous generator group cost working with a Michell-Banki turbine and a asynchronous generator group operating with a PAT. (author)

  2. 泵作透平振动噪声机理分析与试验%Mechanism analysis of vibration and noise for centrifugal pump working as turbine

    Institute of Scientific and Technical Information of China (English)

    代翠; 董亮; 孔繁余; 冯子政; 柏宇星

    2014-01-01

    为了深入了解泵作透平不同流量不同转速下的振动噪声情况,在离心泵作透平开式试验台上,基于INV3020C 数据采集系统和透平测试系统建立了泵作透平振动噪声试验测试系统,实现了性能参数和振动噪声信号的同步采集。为研究泵反转作透平振动和水动力激励诱发的进出口噪声特性,以一台单级单吸离心泵作透平为研究对象,利用加速度传感器和水听器测量了泵作透平在不同转速及流量下的振动和噪声。试验结果表明:随着转速的增加,泵作透平的扬程增大,高效区范围增加,效率有所提高且最高效率点向大流量偏移,同时,泵体加速度的总有效值和进出口噪声总声压级也随转速的增加而增加;随流量的增加,各测点的振动加速度和声压级逐渐升高;泵体的振动强度高于其他测点,各测点的振动强度主要反映于水平向;相同流量下出口噪声的声压级高于进口。该研究可为泵作透平减振降噪提供参考。%Centrifugal pumps as turbine (PAT) are widely used in the petroleum and chemical industry with reasonable efficiency and low cost investment. And it represents the primary source of vibration and acoustic energy in industrial pipeline system. The amount of emitted energy may vary significantly between different designs and it is generally not well known. In order to better understand the flow-induced vibration and noise characteristics of centrifugal pump in reversible turbine operation, a single grade end suction centrifugal pump was chosen as research object. The fluid flows into the PAT through the outlet in pump mode and flows out through the inlet. A synchronous acquisition of performance parameters and vibration and noise signals were realized on the basis of INV3020C data acquisition system and performance test system in an open test loop. The liquid is pressurized through the booster pump, and then the

  3. Cause analysis of axial displacement augmentation for steam feed pump steam turbine%汽动给水泵汽轮机轴向位移增大原因分析

    Institute of Scientific and Technical Information of China (English)

    王占武

    2015-01-01

    Analyzes the problem of axial displacement augmentation for A and B steam feed pump steam turbine of No.2 unit in Ningdong thermal power plant,analyzes the cause factor of failure, puts forward improvement method and preventing measure. the analysis result shows that the main cause of rotor axial displacement augmentation is that low temperature saturation steam of deaerator come into turbine of steam feed pump and result in moving blade of turbine of steam feed pump to bring water induction and induce rotor axial thrust augmentation,further burn-out thrust bearing shoe,abrasion seal gear,axial displacement protection device to act,so caused turbine of steam feed pump to trip.%针对宁东热电厂2号机组A、B汽动给水泵汽轮机轴向位移增大的问题,对事故原因进行分析,提出改进方法及预防措施.分析结果表明:转子轴向位移增大的主要原因是除氧器低温饱和蒸汽进入汽动给水泵汽轮机,造成了汽动给水泵汽轮机动叶受到水冲击,转子轴向推力增大,进而使得推力瓦块烧损,汽封齿磨损,轴向位移保护动作,引发给水泵汽轮机跳闸.

  4. Energy and Economic Efficiency of Gas Turbine Units and Heat Pumps in Power-supply Systems in the Arctic Regions of Russia

    Directory of Open Access Journals (Sweden)

    Suvorov D.M.

    2017-04-01

    Full Text Available Currently, in publications, there is some controversy about the efficiency of various power-supply systems operating in extreme climatic conditions. The need to dispel this controversy explains this study's relevance. The purpose of this study is to evaluate the feasibility of the use of cogeneration gas turbine and microturbine units as the heat-and-power source for a camp-like residential facility in the Arctic regions of Russia. A boiler plant and a heat pump system are analyzed as heat sources for the afore-mentioned camp. The authors used their own mathematical models of the units to do the study. The estimates were based on the annual facility-specific power and heat consumption data, additionally climatic conditions and fuel kind (natural gas were taken into consideration. The study resulted in defining the plants' limits of equal fuel consumption, depending on the substituted power output efficiency and the power/heat production cost to the price of gas correlation. Another result was the evaluation of the power efficiency (by the natural gas consumption and economic feasibility, as well as the payback term. We concluded that in case the natural gas was the only fuel available the ground source vapor-compressing heat pump systems were power-wise and economically unsound, provided they were operated under environmental conditions typical for the Russian North and according to the region-specific heat-supply schedule. The outcome of this study can be used when planning/designing the power-supply facilities in extreme climatic conditions, as well as in evaluating/estimating the power-supply systems' efficiency.

  5. 3D Two-way coupled TEHD analysis on the lubricating characteristics of thrust bearings in pump-turbine units by combining CFD and FEA

    Science.gov (United States)

    Zhai, Liming; Luo, Yongyao; Wang, Zhengwei; Liu, Xin

    2016-01-01

    The thermal elastic hydro dynamic (TEHD) lubrication analysis for the thrust bearing is usually conducted by combining Reynolds equation with finite element analysis (FEA). But it is still a problem to conduct the computation by combining computational fluid dynamics (CFD) and FEA which can simulate the TEHD more accurately. In this paper, by using both direct and separate coupled solutions together, steady TEHD lubrication considering the viscosity-temperature effect for a bidirectional thrust bearing in a pump-turbine unit is simulated combining a 3D CFD model for the oil film with a 3D FEA model for the pad and mirror plate. Cyclic symmetry condition is used in the oil film flow as more reasonable boundary conditions which avoids the oil temperature assumption at the leading and trailing edge. Deformations of the pad and mirror plate are predicted and discussed as well as the distributions of oil film thickness, pressure, temperature. The predicted temperature shows good agreement with measurements, while the pressure shows a reasonable distribution comparing with previous studies. Further analysis of the three-coupled-field reveals the reason of the high pressure and high temperature generated in the film. Finally, the influence of rotational speed of the mirror plate on the lubrication characteristics is illustrated which shows the thrust load should be balanced against the oil film temperature and pressure in optimized designs. This research proposes a thrust bearing computation method by combining CFD and FEA which can do the TEHD analysis more accurately.

  6. Custo de bombas centrífugas funcionando como turbinas em microcentrais hidrelétricas Cost of pumps as hydraulic turbines for micro-scale hydropower

    Directory of Open Access Journals (Sweden)

    Carlos R. Balarim

    2004-04-01

    places where they should be implanted. Pumps As Turbines (PAT have been studied. These equipment costs were obtained by consulting directly the manufacturers, and also the Ponta Grossa - PR city, Brazil, market. The results have shown that, concerning the micro hydroelectric power plants, whenever the costs constitute the major aspect and always considering units until 50 kW power, the option to PAT must be considered instead of hydraulic turbines.

  7. Centrifugal pumps and allied machinery

    CERN Document Server

    Anderson, HH

    1994-01-01

    This book will be of vital interest to all engineers and designers concerned with centrifugal pumps and turbines. Including statistical information derived from 20000 pumps and 700 turbines with capacities of 5gpm to 5000000gpm, this book offers the widest range and scope of information currently available. Statistical analyses suggest practical methods of increasing pump performance and provide valuable data for new design aspects.

  8. Gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ok Ryong

    2004-01-15

    This book introduces gas turbine cycle explaining general thing of gas turbine, full gas turbine cycle, Ericson cycle and Brayton cycle, practical gas turbine cycle without pressure loss, multiaxial type gas turbine cycle and special gas turbine cycle, application of basic theory on a study on suction-cooling gas turbine cycle with turbo-refrigerating machine using the bleed air, and general performance characteristics of the suction-cooling gas turbine cycle combined with absorption-type refrigerating machine.

  9. 热网循环泵电动改汽动的热力学分析%Thermodynamic Analysis of Circulating Pump with Turbine Driven Instead of Electric Power in Heating Network

    Institute of Scientific and Technical Information of China (English)

    高新勇; 何晓红; 庞建锋; 孙士恩; 郑立军

    2016-01-01

    结合热力学定律与分析理论,推导供热系统电动泵改汽驱动的热力学分析模型,并进行能耗分析,结果指出,电驱动工况时的热电厂热效率和效率分别为64.532%和39.723%,均低于小汽机驱动工况;进汽压力一定时,排汽压力的增加均不利于供热系统与主汽机系统,排汽压力应取较低值;排汽压力一定时,小汽机进汽压力的选取,要综合考虑热电厂的热电比;当小汽机驱动工况时,存在一个最佳的压比值,对供热系统与主汽机系统所产生的影响最小。%The thermodynamics analysis model of heating system for steam driven pump instead of electric pump is deduced based on thermodynamic law and exergy analysis theory .The results is that thermal efficiency and exergy efficiency of thermal power plant when electric pump condition are 64.532%and 39.723%,which are less than steam driven pump condition. When initial steam pressure remaining unchanged ,the exhaust steam pressure increasing is not conducive to heating system and main turbine system , the exhaust steam pressure should be relatively low .When exhaust steam pressure remaining unchanged ,inlet steam pressure of small turbine is depending on the heat-to-electric ratio .There is the best pressure ratio to make heating system and main turbine system optimal energy consumption under steam driven pump condition .

  10. 汽泵乏汽供热改造对机组安全运行的影响%Analysis on the Influence of Waste-heat-absorbing Feed Pump Turbine Transformation on Safe Operation of Unit

    Institute of Scientific and Technical Information of China (English)

    王强; 白志刚; 梁健康

    2014-01-01

    介绍了某电厂的汽动给水泵乏汽吸收式热泵机组系统,对该厂的给水泵汽轮机乏汽至主机凝汽器蝶阀进行流量计算,分析蝶阀特性,利用汽动给水泵排汽中间容积特性分析得出热泵机组故障后蝶阀动作时间与汽动给水泵排汽压力的关系,并制定合理的控制逻辑为机组的安全运行提供指导。%Waste-heat-absorbing heat pump unit of steam feed pump in a power plant was introduced. The exhausted steam flow rate between feed water pump turbine and butterfly valve of condenser was calculated. Based on the analysis of butterfly valve feature and steam volume feature,the relationship between the action time of butterfly valve and the discharge pressure of water feed pump was concluded. Besides,reasonable control logic was formulated to provide guidance for safe operation of unit.

  11. Turbinate surgery

    Science.gov (United States)

    Turbinectomy; Turbinoplasty; Turbinate reduction; Nasal airway surgery; Nasal obstruction - turbinate surgery ... There are several types of turbinate surgery: Turbinectomy: All or ... This can be done in several different ways, but sometimes a ...

  12. 可门电厂2A汽动给水泵振动故障的分析和处理%Analysis and Treatment of Vibration Fault in 2A Turbine-driven Feed Water Pump from Kemen Power Plant

    Institute of Scientific and Technical Information of China (English)

    周金顺

    2011-01-01

    可门电厂2A汽动给水泵在运行过程中发生了周期性突振的故障.通过对给水泵振动的测试和分析,得出可门电厂2号机2A汽动给水泵振动大的原因.并针对该振动,提出了有效的解决方法.%A cyclical abrupt vibration fault occurred during 2A turbine-driven feed water pump from kemen power plant running.Based on the feed water pump vibration testing and analysis,this paper come to the reason of turbine-driven feed water pump vibration.And for the vibration, we made effective solution.

  13. INVESTIGATION OF PERFORMANCE CURVES OF THREE STAGE DEEP WELL PUMPS

    OpenAIRE

    Gölcü, Mustafa

    2002-01-01

    In literature, pumps which are known as vertical turbine pump (VTP) have been designed to work vertically. Today, they are known as deep well pumps. These pumps are especially used in narrow and very deep wells where the surface sources are insufficient. Therefore, it is necessary to select suitable stage number to benefit from deep well pumps efficiently. In this study, a new deep well pump has been designed and the performances of three stage deep well pumps have been investigated experimen...

  14. German-Russian cooperation in the field of industrial gas turbines for gas pumping stations in the CIS. Final report; Deutsch-Russische Zusammenarbeit bei Industriegasturbinen fuer Erdgas-Pumpstationen der GUS. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Renkel, M.; Kuehnel, R.; Kraus, M.

    1997-06-23

    The final report contains information on the work performed under the `German-Russian cooperation in the field of industrial gas turbines for gas pumping stations in the CIS` between September 1, 1994 and November 30, 1996. During this period the following major tasks were completed: Task A: Preliminary analysis and design work for the development of components for a new IGT power turbine (preliminary design with aerodynamic blade profiles, turbine disks and casings) Task B: Provision of an improved casting process using a large single-crystal hollow blade as an example (after adaptation of the MTU tools to suit Russian machinery directionally solidified single-crystal blades were cast from Russian alloys furnished by MTU and then evaluated) Task C: Investigations into innovative blade technologies in terms of design and materials. (Description of problems encountered in connection with turbine blades and of corrective measures aimed at increasing the blade life; 3 casting test series at VIAM). Despite the very good cooperation with the Russian partners VIAM/Moscow and Motorostroitel/Samara the project was delayed and finally stopped because of problems with the Russian customs authorities as well as problems in connection with deliveries and contractual matters. (orig.) [Deutsch] Der Schlussbericht enthaelt Angaben ueber die im Rahmen der `Deutsch-Russischen Zusammenarbeit bei Industriegasturbinen fuer Erdgas-Pumpstationen der GUS` durchgefuehrten Arbeiten im Zeitraum zwischen dem 1. September 1994 und dem 30. November 1996. In diesem Zeitraum sind im Arbeitsprogramm folgende Hauptaufgaben bearbeitet worden: Aufgabe A: Analytisch-konstruktive Vorarbeiten zu Komponenten-Entwicklung am Beispiel einer neuen IG-Nutzturbine (Auslegung eines Vorentwurfs mit aerodynamischen Schaufelprofilen, Turbinenscheiben und -gehaeuse). Aufgabe B: Bereitstellung verbesserter Gusstechnologie am Beispiel einer grossen einkristallin erstarrten Hohlschaufel (nach Anpassung von MTU

  15. Analytical methods and verification for determining slip factor at impeller outlet of centrifugal pumps as turbines%离心泵作液力透平叶轮出口滑移系数的解析计算方法及验证

    Institute of Scientific and Technical Information of China (English)

    史广泰; 杨军虎; 苗森春

    2015-01-01

    为了通过理论的方法准确预测液力透平的性能,该文分析了叶轮内部相对环流流动的特征,提出了3种计算离心泵反转作液力透平叶轮出口滑移系数的方法,得到了相应的叶轮出口滑移系数解析计算公式,然后采用10组离心泵反转作液力透平的试验数据对所提出的滑移系数计算公式进行验证,最后得出与试验结果较为吻合的解析公式。结果表明:当假设叶片工作面上的相对涡诱导速度与叶轮出口边上的相对涡诱导速度的比值等于叶片和涡心所张曲边三角形的面积与叶轮出口边和涡心所张曲边三角形的面积之比时,得到的液力透平叶轮出口滑移系数的计算公式最准确,可用于较准确地预测液力透平的性能。在计算液力透平叶轮内的滑移时只需计算叶轮出口的滑移。该研究结果为更加精确地通过理论方法预测液力透平的性能提供了参考。%A centrifugal pump can be operated in its reverse rotational direction as a turbine-a prime motor, and its impeller is a kind of centripetal impeller. It can convert the high pressure energy of a fluid into the rotational mechanical energy of the rotor to drive a generator to generate electricity or drive a working machine, realizing an energy recycling of the high pressure fluid. It is well-known that the slip phenomenon exists in turbomachinery, such as hydraulic turbine, steam turbine, roto-dynamic pumps and compressors. This is also true for a centrifugal pump as turbine. The slip velocity may be smaller in a hydraulic turbine than a centrifugal pump. However, this is not the case for a centrifugal pump as turbine because its number of blades is much less compared with the hydraulic turbine. The constraint ability of blade is less for fluid giving rise a smaller slip factor. In addition, a slip factor is the key parameter to estimate the turbine output power based on its existing geometry and designed

  16. 叶片包角对泵作透平水力径向力的影响%Effect of blade wrap angle on the radial force of centrifugal pump as turbine

    Institute of Scientific and Technical Information of China (English)

    代翠; 孔繁余; 董亮; 张慧; 冯子政

    2015-01-01

    In order to study the effects of blade wrap angle on the radial force of a centrifugal pump as turbine,a single volute vaneless counter-rotating centrifugal pump was chosen as the research object.In the study,the blade wrap angle was varied from 100°to 115°and 130°,while the volute and other geometric parameters were kept constant.The transient flow characteristics under various operating conditions in the whole flow passage of the centrifugal pump as turbine were studied numerically by using the computational fluid mechanics software CFX.The results show that when the blade warp angle increases beyond a certain value,the radial force on the impeller reduces slightly at low flow rates and obviously at high flow rates.The radial force on the volute reduces and moves to the fourth quadrant as the blade warp angle increases.The blade warp angle should be within a suitable range to ensure a lower radial force level at higher flow rates.%为研究叶片包角对离心泵作透平瞬态水力径向力的影响,以一台蜗壳式离心泵反转作透平为研究对象,保持叶轮和蜗壳其他几何参数不变,应用计算流体力学软件 CFX 对泵作透平全流道内多工况瞬态流动特性进行数值计算,并对预测性能进行了试验验证。结果表明,作用在叶轮上的径向力,当叶片包角增加超过一定值时小流量工况下减小不明显,而大流量下减小显著。随包角增加,作用于蜗壳上的径向力减小并向第四象限偏移。叶片包角存在一个合适的取值范围,使得泵作透平运行在大流量工况下时径向力较小。

  17. The UTZ Special Design Office for Construction of Gas Turbines turns fifty

    Science.gov (United States)

    Zyryanov, Yu. P.

    2008-08-01

    The main lines of activities conducted at the ZAO Ural Turbine Works Special Design Office for Construction of Gas Turbines on developing stationary gas turbine units for power engineering, driving gasturbine units for gas pumping stations, and gas turbines for utilizing secondary resources are presented.

  18. Floating wind turbine system

    Science.gov (United States)

    Viterna, Larry A. (Inventor)

    2009-01-01

    A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.

  19. Existing Problems and Corresponding Solutions of Switch Failure of the Main and Auxiliary Oil Pump in Running of Wind Turbine Generators%汽轮机组运行中主辅油泵切换失效存在问题和解决办法

    Institute of Scientific and Technical Information of China (English)

    项东

    2011-01-01

    介绍了汽轮机组运行中主辅油泵切换失效的原因,分析存在的问题,提出了相应的解决办法。%The failure of main and auxiliary oil pump switch in the rtmning of wind turbine generators was introduced, the existing problems were analyzed, and the corresponding solution were proposed.

  20. 泵作透平时叶轮轴向力的数值计算与分析%A Numerical Simulation and Analysis of Impeller Axial Force of Pumps as Turbines

    Institute of Scientific and Technical Information of China (English)

    屈晓云; 孔繁余; 陈浩; 杨孙圣

    2013-01-01

    为了准确预测泵作透平时轴向力的大小,采用流场分析软件CFX对泵作透平进行了全流场三维数值模拟,获得了叶轮盖板、叶轮流道内表面、叶片的压力分布及腔体内液体角速度的分布情况.结果表明:泵作透平在最高效点时每级叶轮受到的盖板力并非相等,随着级数的增加叶轮受到的盖板力呈现越来越小的趋势,而各级叶轮受到的轴向力随着来流水头的增大逐渐增大;并且各级腔内液体角速度的平均值均要高于传统认为的叶轮角速度的一半,且该值并非恒定,范围为0.42~0.70倍的叶轮转速.%In order to predict the axial force of pumps as turbines,computational fluid dynamics software CFX is adopted in the whole flow field numerical simulation of pumps as turbines.The pressure distribution is acquired in all the impellers cover plate and the blades surface.While the angular velocity distribution of liquid is achieved in the cavity.Results show that the axial force of each impellers is not equal at the best efficiency.The value of axial force on first-stage impeller is larger than the next.With the increase in water heads,the axial force of impellers goes up.The average of the liquid angular velocity of all cavities are higher than the traditional calculation value 0.5ω.It ranges from 0.42ω to 0.70ω.

  1. Applications of novel permanent maglev bearings in turbine machines and heart pumps%新型永磁悬浮轴承在透平机及心脏泵中的应用

    Institute of Scientific and Technical Information of China (English)

    钱坤喜; 许自豪; 王颢; 王芳群

    2011-01-01

    为验证永磁悬浮轴承在旋转时能否实现转子的稳定悬浮,将自行设计的新型永磁悬浮轴承应用到透平机和离心式心脏泵中,并利用Hall传感器分别测量二者转子旋转时的偏心距,用速度传感器分别测量二者的旋转速度.发现当转速高于某一临界值(透平机为l 800r·min-1,心脏泵为3 250 r·min-1),透平机和心脏泵的转子偏心距均会明显小于转子和定子的间隙0.15 mm,转子脱离了定子并保持了稳定悬浮.结果表明:高速旋转的悬浮体所具有的陀螺效应能够使永磁悬浮转子稳定平衡;在静止或转速很低的情况下,永磁悬浮转子不能保持稳定的旋转;一旦转速超过某一临界值,它就会获得陀螺效应并借此达到5自由度的稳定悬浮.%To verify the stable suspending of passive magnetic bearing rotor during rotating, a novel selfdesigned passive magnetic bearing was applied in turbine machine and centrifugal heart pump. The rotating eccentricity and speed of rotors were measured by Hall sensors and speed sensors, respectively. The results show that when the rotating speed is higher than a critical value of 1 800 r·min-1 for turbine machine and 3 250 r·min-1 for heart pump, the rotor eccentricities were obviously smaller than 0. 15 mm of the gap between rotors and stators, which indicates that the rotors disaffiliate from stators with stable suspension. High speed rotating levitator with so-called "Gyro-effect" can make passive maglev rotator stable. In static state or in the case of rotating speed lower than the critical value, the passive maglev rotator can not keep rotation stable. When the rotating speed is higher than the critical value, the passive magnetic levitator will have Gyro-effect and obtain stable suspension with five degrees of freedom.

  2. Underground pumped hydroelectric storage

    Science.gov (United States)

    Allen, R. D.; Doherty, T. J.; Kannberg, L. D.

    1984-07-01

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-velocity requirements of a greater metropolitan area with population of 1 million or more.

  3. 浓缩风能型风力发电提水系统及其仿真研究%SIMULATION RESEARCH OF THE CONCENTRATED WIND TURBINE WATER PUMPING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    宋海辉; 田德

    2011-01-01

    将浓缩风能型风力发电机组应用于提水系统,设计控制系统,满足功率控制和最大风能捕获的要求,应用Matlab/Simulink建立该系统仿真模型,对风速阶跃变化情况进行仿真,证明了该系统的合理性及控制策略的可行性和正确性.%The concentrated wind turbine was used for water pumping. The control system was improved, and a fast and stable maximum power point tracking was achieved, which made the generation system capture more wind energy , and finally got the high generation efficiency. The model of this system and the proposed control strategies were realize with the engineering software, Matlab/simuink. Simulation for the case of wind change verifies the validity of the model and the feasibility of the control strategies.

  4. Estimates of the economic and environmental impacts of the use of turbine pumps in an isolated system in Brazil; Estimativas dos impactos economicos e ambientais do uso de bombas funcionando como turbina em um sistema isolado no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, R.B.; Nogueira, L.A.H. [Universidade Federal de Itajuba (EXCEN/UNIFEI), MG (Brazil). Centro de Excelencia em Eficiencia Energetica

    2009-07-01

    Due to the environmental impacts caused by the use of primary sources from fossil fuels for generating electricity, renewable energy is gaining prominence in the world energy scene. In Brazil, particularly for isolated systems, the use of pumps functioning as hydraulic turbines - PFT is already a reality. In addition to care for a low demands systems, the PAT, have economic advantages and environment with respect to conventional sources of electric power generation. In this sense, this study estimates the economic and environmental impacts of the use of PFT in a Brazilian isolate region (North region), using with reference the use of diesel generators. According to the estimates has a potential use for hydraulic power generation of 16.5 kW and the option of using a PFT in comparison of a diesel generator would provide an internal rate of return on the order of 1000% and reductions in emissions of greenhouse gases by 79.5 tCO{sub 2} years.

  5. Hydrodynamics of Pumps

    OpenAIRE

    Brennen, Christopher Earls

    1994-01-01

    The subject of this monograph is the fluid dynamics of liquid turbomachines, particularly pumps. Rather than attempt a general treatise on turbomachines, we shall focus attention on those special problems and design issues associated with the flow of liquid through a rotating machine. There are two characteristics of a liquid that lead to these special problems, and cause a significantly different set of concerns than would occur in, say, a gas turbine. These are the potential for cavitation ...

  6. Pump power plants for wind age; Pumpekraftverk for vindalderen

    Energy Technology Data Exchange (ETDEWEB)

    Bakken, Marte

    2010-07-01

    Power giant Sira-Kvina, Norway, prepares to expand Tonstad power station with pump options to save energy and benefit from price fluctuations in the electricity market. How pump power plant works; Consists mainly of two reservoirs at different heights. Bottom placed a turbine that can run both ways, or a pump and turbine mounted on the generator. The generator acts as an engine of pumping. When saving energy, water is pumped up to the highest magazine. The energy is extracted by letting the water run back through the turbine. Amount of energy that can be saved depends on the height difference between the magazines and magazine size, while the effect is determined by the size of the pump turbine.(AG)

  7. Steam Turbines

    Science.gov (United States)

    1981-01-01

    Turbonetics Energy, Inc.'s steam turbines are used as power generating systems in the oil and gas, chemical, pharmaceuticals, metals and mining, and pulp and paper industries. The Turbonetics line benefited from use of NASA research data on radial inflow steam turbines and from company contact with personnel of Lewis Research Center, also use of Lewis-developed computer programs to determine performance characteristics of turbines.

  8. Measuring the Dynamic Characteristics of a Low Specific Speed Pump—Turbine Model

    Directory of Open Access Journals (Sweden)

    Eve Cathrin Walseth

    2016-03-01

    Full Text Available This paper presents results from an experiment performed to obtain the dynamic characteristics of a reversible pump-turbine model. The characteristics were measured in an open loop system where the turbine initially was run on low rotational speed before the generator was disconnected allowing the turbine to go towards runaway. The measurements show that the turbine experience damped oscillations in pressure, speed and flow rate around runaway corresponding with presented stability criterion in published literature. Results from the experiment is reproduced by means of transient simulations. A one dimensional analytical turbine model for representation of the pump-turbine is used in the calculations. The simulations show that it is possible to reproduce the physics in the measurement by using a simple analytical model for the pump-turbine as long as the inertia of the water masses in the turbine are modeled correctly.

  9. Turbine system

    Energy Technology Data Exchange (ETDEWEB)

    McMahan, Kevin Weston; Dillard, Daniel Jackson

    2016-05-03

    A turbine system is disclosed. The turbine system includes a transition duct having an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The turbine system further includes a turbine section connected to the transition duct. The turbine section includes a plurality of shroud blocks at least partially defining a hot gas path, a plurality of buckets at least partially disposed in the hot gas path, and a plurality of nozzles at least partially disposed in the hot gas path. At least one of a shroud block, a bucket, or a nozzle includes means for withstanding high temperatures.

  10. Gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Farahan, E.; Eudaly, J.P.

    1978-10-01

    This evaluation provides performance and cost data for commercially available simple- and regenerative-cycle gas turbines. Intercooled, reheat, and compound cycles are discussed from theoretical basis only, because actual units are not currently available, except on a special-order basis. Performance characteristics investigated include unit efficiency at full-load and off-design conditions, and at rated capacity. Costs are tabulated for both simple- and regenerative-cycle gas turbines. The output capacity of the gas turbines investigated ranges from 80 to 134,000 hp for simple units and from 12,000 to 50,000 hp for regenerative units.

  11. Pelton turbines

    CERN Document Server

    Zhang, Zhengji

    2016-01-01

    This book concerns the theoretical foundations of hydromechanics of Pelton turbines from the engineering viewpoint. For reference purposes, all relevant flow processes and hydraulic aspects in a Pelton turbine have been analyzed completely and systematically. The analyses especially include the quantification of all possible losses existing in the Pelton turbine and the indication of most available potential for further enhancing the system efficiency. As a guideline the book therefore supports further developments of Pelton turbines with regard to their hydraulic designs and optimizations. It is thus suitable for the development and design engineers as well as those working in the field of turbo machinery. Many laws described in the book can also be directly used to simplify aspects of computational fluid dynamics (CFD) or to develop new computational methods. The well-executed examples help better understand the related flow mechanics.

  12. Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Yeoman, J.C. Jr.

    1978-12-01

    This evaluation of wind turbines is part of a series of Technology Evaluations of possible components and subsystems of community energy systems. Wind turbines, ranging in size from 200 W to 10 MW, are discussed as candidates for prime movers in community systems. Estimates of performance characteristics and cost as a function of rated capacity and rated wind speed are presented. Data concerning material requirements, environmental effects, and operating procedures also are given and are represented empirically to aid computer simulation.

  13. Impact of blade outlet angle on acoustic of centrifugal pump as turbine%叶片出口安放角对离心泵作透平噪声的影响

    Institute of Scientific and Technical Information of China (English)

    董亮; 代翠; 孔繁余; 付磊; 柏宇星

    2015-01-01

    As a kind of energy saving technology by recovery of residual pressure, the centrifugal pump as turbine (PAT) has been widely used in many fields. To improve the efficiency of energy recovery, the PAT is gradually developing for high power. The flow-induced noise becomes one of the most important issues that cause negative effect on reliability. The flow-induced noise consists of flow-borne noise and flow-induced structure noise from dipole source. In order to identify the effect of blade outlet angle on flow-induced noise of the PAT, a single-stage end-suction centrifugal pump as turbine was chosen as research model. The blade outlet angles were set to 20°, 30° and 40° respectively, while the rest geometric parameters of impeller and volute were kept unchanged. The flow-induced interior/exterior acoustics of the PAT were studied experimentally and numerically. A synchronous acquisition of performance parameters and noise signals were realized on the basis of INV3020C data acquisition system and performance test system in an open test loop. The liquid was pressurized through booster pump, and then impacted the turbine’s impeller to make it rotate. The dynamometer consumed and measured the turbine’s energy. The operating condition was adjusted by regulating the converter’s frequency to change the booster pump’s capacity. Experimental studies on acoustic characteristics at downstream of the PAT were carried out on the test bench at variable flow rates. The flow-induced noise signals were collected using hydrophone at a sampling frequency of 25 600 Hz. The signals were amplified and recorded by INV3020C data acquisition system, and Fast Fourier Transform was used to compute the spectra with the Hanning window for reducing the spectrum leakage. The computational fluid dynamics (CFD) numerical simulation was firstly performed to obtain noise-generating fluid forces. In this step, the k-εturbulence model was used to solve transient flow field in the PAT, and

  14. Centrifugal pumps

    CERN Document Server

    Anderson, HH

    1981-01-01

    Centrifugal Pumps describes the whole range of the centrifugal pump (mixed flow and axial flow pumps are dealt with more briefly), with emphasis on the development of the boiler feed pump. Organized into 46 chapters, this book discusses the general hydrodynamic principles, performance, dimensions, type number, flow, and efficiency of centrifugal pumps. This text also explains the pumps performance; entry conditions and cavitation; speed and dimensions for a given duty; and losses. Some chapters further describe centrifugal pump mechanical design, installation, monitoring, and maintenance. The

  15. Pumping life

    DEFF Research Database (Denmark)

    Sitsel, Oleg; Dach, Ingrid; Hoffmann, Robert Daniel

    2012-01-01

    of membrane proteins: P-type ATPase pumps. This article takes the reader on a tour from Aarhus to Copenhagen, from bacteria to plants and humans, and from ions over protein structures to diseases caused by malfunctioning pump proteins. The magazine Nature once titled work published from PUMPKIN ‘Pumping ions......’. Here we illustrate that the pumping of ions means nothing less than the pumping of life....

  16. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 8: Design approaches: UPH

    Science.gov (United States)

    1981-06-01

    The development of the design approaches used to determine the plant and overall layout for a underground pumped hydroelectric (UPH) storage facility having a maximum generating capacity of 2000 MW and a storage capacity of 20,000 MWh is discussed. Key factors were the selection of the high head pump-turbine equipment and the geotechnical considerations relevant to the underground cavern designs. The comparison of pump-turbine alternatives is described leading to the selection for detailed study of both a single-step configurations, using multistage reversible pump-turbines, and a two-step configuration, with single-stage reversible pump-turbines.

  17. 循环水泵前池水位降低对汽轮机冷端系统运行性能影响分析%Influence Analysis of Circulating Water Pump Forebay Water Lowering on the Operating Performance of Steam Turbine Cold-end System

    Institute of Scientific and Technical Information of China (English)

    田思来; 程东涛; 居文平

    2016-01-01

    Water lowering of the power station circulating water pump forebay compared to local water level influences the safety and economy of the steam turbine cold-end system.Through quantitative analysis and qualitative analysis ,the analysis of impact of water lowering of the circulating water pump forebay on the economic performance of the steam turbine cold -end system,clearly put forward decision criteria for operating safety of the steam turbine cold-end system.A set of simple and practical calculation method is developed , applied to the quantitative analysis on the problems existing in the circulating water system,at the same time provides guidance advice for the work of design and selection of circulating water system of same type.%电站循环水泵前池水位相对水源地水位下降,对汽轮机冷端系统安全性和经济性运行产生重要影响。通过定量分析和定性分析相结合,分析计算循环水泵前池水位下降对汽轮机冷端系统运行经济性的影响量,明确了对汽轮机冷端系统运行安全性影响的判定标准。形成了一套简便、实用的分析计算方法,对循环水取水系统存在的问题进行量化分析,同时为同类型循环水取水系统的设计选型工作提供了指导建议。

  18. Condition monitoring of pump-turbines

    OpenAIRE

    Valero Ferrando, M.del Carmen; Egusquiza Estévez, Eduard

    2014-01-01

    At present, new renewables like wind, solar and marine energy are having a strong development. The generation of energy by renewables has the disadvantage that it depends on atmospheric conditions. It means that they can generate energy at any moment independently if this energy is required or not by the consumers. For the stability of the electrical grid, supply and demand of energy has to be matched. The surplus of energy produced when consumption is low has to be stored and del...

  19. Assessment of high-head turbomachinery for underground pumped hydroelectric storage plants

    Science.gov (United States)

    Tam, S. W.; Frigo, A. A.; Blomquist, C. A.

    Underground pumped hydroelectric storage (UPHS) plants equipped with advanced reversible pump turbines for operating heads from 500 to 1500 m are discussed in terms of cost efficiency. It is found that the use of advanced machinery shifts the minimum UPHS plant cost to the head range 1200-1500 m. The interactive effects of pump-turbine efficiencies and charge/discharge ratios are examined. It is shown that under certain conditions, a pump-turbine option with a higher charge-discharge ratio at the expense of somewhat lower operating efficiency may be desirable.

  20. Magnetocaloric pump

    Science.gov (United States)

    Brown, G. V.

    1973-01-01

    Very cold liquids and gases such as helium, neon, and nitrogen can be pumped by using magnetocaloric effect. Adiabatic magnetization and demagnetization are used to alternately heat and cool slug of pumped fluid contained in closed chamber.

  1. Hydroelectric production, pump-turbines for high fall. The hydroelectric equipping of la Coche (Savoie). Dams life. Dams ecology and management. Activities of the control services. Hydroelectric statistics; Production hydroelectrique, turbines-pompes pour haute chute. L'amenagement hydroelectrique de la Coche (Savoie). La vie des barrages. L'ecologie et la gestion des barrages. Activites des services du controle. Statistiques hydroelectriques

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-07-01

    This issue of Barrages newsletter comprises 5 articles. The first article deals with the pumped storage facility of la Coche (Savoie, France). This type of storage facility requires the use of specific reversible pump-turbines for high fall reservoirs (900 m). This paper describes the advantages and drawbacks of multi-stage reversible hydraulic machineries and the installation of the la Coche facility. The second article reports on the results of decennial and annual inspections of French dams for the second quarter of 1999: fissures propagation, water oozing, leaks, concrete swelling etc.. Only the observations requiring a special follow-up are reported. The third article is devoted to the degradation of the aquatic ecosystems during periods of dryness and periods of draining (water chemistry, biological and sedimentological surveys). The forth article reports on some important facts (accidents, reservoirs emptying, administrative instructions, technical meetings, planning of inspections etc.). The last article is just a graph and a table summarizing the status of reservoirs filling and power production during the second quarter of 1999. (J.S.)

  2. Heat pumps

    CERN Document Server

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  3. 离心泵作透平流体诱发内场噪声特性及贡献分析%Flow-induced Noise Characteristic and Contribution to Interior Noise for Centrifugal Pump as Turbine

    Institute of Scientific and Technical Information of China (English)

    董亮; 代翠; 孔繁余; 付磊; 操瑞嘉

    2016-01-01

    对某离心泵作透平流体诱发的内场噪声特性进行数值计算和试验研究。在典型流量下,采用雷诺时均方法获取壳体壁面偶极子声源,并利用边界元方法(Boundary element method, BEM)求解出壳体偶极子源作用的流动噪声,基于有限元结合边界元的声振耦合法(Finite element method/boundary element method, FEM/BEM)计算出流体激励结构振动产生的内场流激噪声及考虑结构振动的流动噪声,分析不同性质噪声源的频谱特性,同时评估内场声源在各个频段下的贡献量。借助水听器对透平出口进行流体声学试验,获得了噪声的频谱特性。结果表明,离心泵作透平出口流体诱发噪声主要集中在中低频段,小流量工况低频噪声特性增强。壳体声源作用下考虑结构振动流动噪声的计算结果与试验结果在较大流量下吻合较好。壳体偶极子作用的流动噪声对内场噪声的贡献最大,其次是考虑结构振动的流动噪声,流激噪声对内场噪声贡献最小。结构的影响使得二阶叶频处声压增加,其余离散频率及宽频处声压均有所降低。该研究结果为低噪声叶轮机械设计提供了一定的参考。%The numerical simulation and experimental investigation are performed on flow-induced interior noise in a centrifugal pump as turbine(PAT). Under typical flow conditions, the casing dipole source is obtained using Reynolds-average method. The flow-borne noise and flow-induced structure noise in interior acoustic field are solved by boundary element method(BEM) and finite element method/ boundary element method(FEM/BEM), respectively. On the basis of this, the spectrum characteristics of each noise source and their contribution to interior noise are distinguished. Meanwhile, the noise spectra are evaluated by hydrophone placed at the outlet of PAT. The results show that the spectrum of flow-induced noise is mainly concentrated on low and

  4. Effects of blade inlet angle on performance of pump as turbine%叶片进口安放角对液力透平性能的影响

    Institute of Scientific and Technical Information of China (English)

    杨孙圣; 孔繁余; 陈浩; 宿向辉

    2013-01-01

    With respect to the insufficient understanding of the effects of blade inlet angle on the pump as turbine (PAT), an open PAT test rig was built to investigate a single stage volute type PAT. Numerical simulation and analysis of all domains were done by adopting structural mesh technique. Through numerical and experimental comparison, the accuracy of numerical simulation was proved. The results show that with the increase of blade inlet angle, its efficiency decreases at small flow rate and increases at large flow. The required pressure head and generated shaft power increase with the increase of blade inlet angle. The power loss within impeller takes up the majority of the total power loss. The power loss within impeller decreases at small flow and increases at large capacity as the blade inlet angle increases. Fluid attack angle decreases when blade inlet angle increases at large flow that causes the decrease of power loss within impeller and increase of efficiency.%针对叶片进口安放角对液力透平性能影响规律认识不足的问题,架设一开式液力透平实验台,对一单级蜗壳式液力透平进行实验研究.采用结构化网格技术对该液力透平进行全流场数值计算与分析,将数值结果与实验结果相结合,验证数值计算的准确性.对不同进口安放角的叶轮进行数值研究.研究结果表明:随着叶片进口安放角的增加,液力透平小流量工况的效率有所下降,大流量工况的效率有所增加;透平的扬程和轴功率随着进口安放角的增加而增加;叶轮内部的功率损失是透平内部主要的功率损失;当叶片安放角增加时,小流量工况的功率损失有所增加,大流量工况下的功率损失有所减小;大流量工况下随着叶轮进口安放角的增加,进口液流冲角逐渐减小,因此,透平在大流量工况下功率损失减小,效率提高.

  5. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  6. Reversible pumped hydro - benefits and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Torbjoern K.; Walseth, Eve C.

    2010-07-01

    Full text: The Norwegian hydro power system is dominated with high head turbines, Pelton and Francis with high capacity in the reservoirs. Originally they were built for secure energy supply. In the system there are also reversible pump turbine (RPT) plants where in times with spare energy, made it possible to pump water from the lower reservoir to the higher. Again the idea was to secure energy supply, which meant pumping in early autumn to fill the reservoirs for winter. In the recent years, a more active use of the RPT plants has been actualized. The free market made price difference between night and day interesting, hence a more frequent pumping was desirable. In the coming years, new-renewable energy sources will utterly enhance a more active use of the RPT plants. More active use of the RPT plants means more frequent starts and stops, both in pumping and in turbine mode. There are a lot of challenges in adopting a new strategy for operating the machinery. More effective start equipment is required. The machinery will be exposed to more frequent dynamic loads; the turbines will be run at part- and full load. The existing RPT plants are connected to huge reservoirs. That means the RPTs are not only for short sighted power regulations, as many RPT-plants in Europe, but are also capable for a substantial energy production. In Norway, the nature is very suitable for RPT plants, both in connection with existing power plants, were reservoirs and conduits are already established, and standing alone with a minimum of energy production. RPTs are, as a design, a compromise between effective generating and stable as well as effective pumping. Stable pumping often results in very steep flow-speed characteristics when operating as a turbine. When dealing with hydraulic transients these characteristics cause a higher change in flow and torque leading to instability during start-up and possible off-design operation point. The instability slows down the synchronization

  7. Wind turbines

    OpenAIRE

    Jorge, Clàudia; Stuer, Joris; Mahy, Philip; Hawksley, Will

    2013-01-01

    The European Project Semester is about much more than a period of study, it is an opportunity to explore new surroundings and embrace new cultures, all while studying in a unique environment with a blend of people from diff erent disciplines. Our project, put together with the help of our supervisor Gunther Steenackers fi nds three product developers and one ICT engineer coming together to work on a project for an urban wind turbine. Our Aim is as follows: “We wi...

  8. 基于响应面法的离心泵作透平水力和声学性能优化%Hydraulic and acoustic property optimization for centrifugal pump as turbine based on response surface method

    Institute of Scientific and Technical Information of China (English)

    代翠; 孔繁余; 董亮; 汪家琼; 柏宇星

    2015-01-01

    为综合优化离心泵作透平的水力和声学性能,建立了一种基于响应面的离心泵作透平水力和声学性能多目标优化方法。首先在对比分析叶轮几何参数对透平水力和噪声影响的基础上,根据敏感度筛选出对噪声影响显著的关键参数;进而应用响应面方法构造显著变量与多目标函数的响应面多元回归模型,分析影响水力效率与噪声的参数间交互作用;最终以水力效率不降低和总声压级最小为响应目标,兼顾性能与噪声确定最优参数组合,即叶片进口安放角为19.5°,叶片出口安放角为20°,叶片出口宽度为16 mm,叶片包角为92°,叶轮进口直径为101 mm,叶片数为12。对某离心泵作透平多目标优化结果表明,叶轮进口直径、叶片出口宽度、叶片数及叶片包角对内场噪声总声压级影响显著;响应面模型能够反映参数与响应值之间的相关性;经试验验证优化后透平水力效率平均提高了1.98个百分点,总声压级降低了4.95 dBA,表明采用的响应面法能够在不影响透平原有水力性能的前提下改善声学性能。%As a way of energy saving by recovery of residual pressure, centrifugal pump as turbine (PAT) has been widely used in many fields. As PAT is gradually developed for high power, flow-induced noise becomes one of the most important issues that cause negative effect on reliability. In order to improve both hydraulic and acoustic performances of PAT, an optimization method combining sensitivity analysis and response surface was established. Firstly, through comparison of impeller parameter impact on hydraulic and noise performances, the geometric parameters with great influence on acoustic were filtered based on sensitivity analysis. Further more, with the efficiency and A-weighted overall sound pressure level (OASPL) as target, the multiple regression models connecting variables and multi-objective functions

  9. Aggregated Control of Domestic Heat Pumps

    DEFF Research Database (Denmark)

    Nielsen, Kirsten M.; Andersen, Palle; Pedersen, Tom S.

    2013-01-01

    A challenge in Denmark in the near future is to balance the electrical grid due to a large increase in the renewable energy production mainly from wind turbines. In this work an aggregated control system using heat pumps in single family houses to help balancing the grid is investigated. The cont...

  10. Centrifugal pumps

    CERN Document Server

    Gülich, Johann Friedrich

    2014-01-01

    This book gives an unparalleled, up-to-date, in-depth treatment of all kinds of flow phenomena encountered in centrifugal pumps including the complex interactions of fluid flow with vibrations and wear of materials. The scope includes all aspects of hydraulic design, 3D-flow phenomena and partload operation, cavitation, numerical flow calculations, hydraulic forces, pressure pulsations, noise, pump vibrations (notably bearing housing vibration diagnostics and remedies), pipe vibrations, pump characteristics and pump operation, design of intake structures, the effects of highly viscous flows, pumping of gas-liquid mixtures, hydraulic transport of solids, fatigue damage to impellers or diffusers, material selection under the aspects of fatigue, corrosion, erosion-corrosion or hydro-abrasive wear, pump selection, and hydraulic quality criteria. As a novelty, the 3rd ed. brings a fully analytical design method for radial impellers, which eliminates the arbitrary choices inherent to former design procedures. The d...

  11. A multiple disk centrifugal pump as a blood flow device.

    Science.gov (United States)

    Miller, G E; Etter, B D; Dorsi, J M

    1990-02-01

    A multiple disk, shear force, valveless centrifugal pump was studied to determine its suitability as a blood flow device. A pulsatile version of the Tesla viscous flow turbine was designed by modifying the original steady flow pump concept to produce physiological pressures and flows with the aid of controlling circuitry. Pressures and flows from this pump were compared to a Harvard Apparatus pulsatile piston pump. Both pumps were connected to an artificial circulatory system. Frequency and systolic duration were varied over a range of physiological conditions for both pumps. The results indicated that the Tesla pump, operating in a pulsatile mode, is capable of producing physiologic pressures and flows similar to the Harvard pump and other pulsatile blood pumps.

  12. Water pumps generate power efficiently; Wasserpumpen erzeugen wirtschaftlich Strom

    Energy Technology Data Exchange (ETDEWEB)

    Orchard, Bryan [KSB Aktiengesellschaft, Frankenthal (Germany)

    2010-09-15

    The water supply utility of Baden-Wuerttemberg and Bavaria (Zweckverband Landeswasserversorgung - ZV-LW) intended to construct another power generation stage in the Geislingen station. A longitudinally divided, single-stage spiral casing pump with a capacity of 600 kW was used as turbine; the investment cost and installation cost was only one fourth of the cost of a Francis turbine. Further, it is an advantage that the pump can also be used conventionally, i.e. in pump operation, to support drinking water transport. (orig.)

  13. Project PAT (Pumps Working as Turbines)/IG (Induction Generators): a new concept for generation of electric power through micro scale hydroelectric power plants; Projeto BFT (Bombas Funcionado como Turbinas)/GI (Geradores de Inducao): um novo conceito para geracao de energia eletrica atraves de microcentrais hidreletricas

    Energy Technology Data Exchange (ETDEWEB)

    Viana, Augusto Nelson Carvalho [Universidade Federal de Itajuba (UNIFEI), Itajuba, MG (Brazil). Inst. de Recursos Naturais. Programa de Pos-graduacao em Engenharia da Energia; Medeiros, Daniel de Macedo; Ricardo, Mateus [Universidade Federal de Itajuba (UNIFEI), Itajuba, MG (Brazil). Inst. de Recursos Naturais], Emails: augusto@unifei.edu.br, macedo@unifei.edu.br, mathidr@yahoo.com.br

    2006-07-01

    The present work has as objective to present the main bases of 'PAT/IG Project', accomplished in Boa Esperanca Farm (Delfim Moreira - MG), by an accord between Itajuba's Federal University and Mines and Energy Ministry. In a moment that the look for sustainable development is the law in Brazil, low costs and environmental impact alternatives must be prioritized. By this way, the PAT/IG Project continuous the Viana's (1987) works, that developed all Brazilian theoretical bases for using Pumps Working as Turbine (PAT). Besides that, the application of induction motors operating as induction generators will be evaluated, as the velocity control system of the PAT/IG group will be developed. The existing Boa Esperanca Farm's micro power plant will be rebuild ed, to receive a new generating group formed for a PAT and a IG, that will be used as natural sized test workbench of Itajuba's Federal University. At the ending of the project, there will be enough subsidies to prove, in practice, the feasibility presented in laboratorial tests by PAT/IG groups as conventional turbines replacer in micro powerplants. (author)

  14. Development of liquid nitrogen Centrifugal Pump

    Energy Technology Data Exchange (ETDEWEB)

    Abe, M; Sagiyama, R; Tsuchiya, H [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Takayama, T [Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585 (Japan); Torii, Y [OMNIX, 1-15-3 Nishishinjuku, Shinjuku, Tokyo, 160-0023 (Japan); Nakamura, M [YN Nakamura Ltd, 3-9-25 Ohjima, Koto, Tokyo, 136-0072 (Japan); Hoshino, Y [JECC TORISHA Co. Ltd, 2-8-52 Yoshinodai, Kawagoe-shi, Saitama, 350-0833 (Japan); Odashima, Y [Department of Basic Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 (Japan)], E-mail: mirei@issp.u-tokyo.ac.jp

    2009-02-01

    Usually liquid nitrogen (LN{sub 2}) transfer from a container to a laboratory equipment takes place by applying pressure to the container to push out liquid or pouring liquid into the cryostat directly by lifting the container. In order to overcome inconvenience of pressuring or lifting containers, we have been developing the Liquid Nitrogen Centrifugal Pump of a small electric turbine pump. Significant advantages that both reducing time to fill LN{sub 2}and controlling the flow rate of liquid into the cryostat are obtained by introducing this pump. We have achieved the lift of about 800mm with the vessel's opening diameter of 28mm.

  15. 水泵水轮机泵工况驼峰特性形成机理瞬态数值研究%Numerical study on unstable head-discharge performance in pump-turbine considering the transient rotor-stator interactions

    Institute of Scientific and Technical Information of China (English)

    肖若富; 陶然; 刘伟超

    2014-01-01

    The unstable head-discharge characteristic affects the stability and security of pump-turbine.In pump mode,the unstable phenomenon may occur when the pump-turbine is starting,shutting down or running at the maximum head condition.To investigate this phenomenon,numerical simulation with SST k-ωturbulence model was conducted.Both steady and transient analysis type were used to forecast the head-discharge characteristic.The whole flow passage was modeled with the adj ustable vane opening an-gle of 20 degrees.The Transient Rotor Stator (TRS)model which considering the transient interaction was set respectively at the “draft tube-runner”and “runner-adj ustable vane”interfaces.In this study, head-discharge curves were plotted and the head losses in the flow passages were calculated to reveal the mechanism of the unstable head variation.Results show that the unstable head-discharge performance is related to the vortex structure and accompanying loss.Compared with steady analysis,the result of tran-sient analysis is more coincident with experimental data and has a more realistic flow field variation in front and behind the rotor-stator interfaces.The transient analysis with considering rotor-stator interac-tions is more suitable for pump-turbine and other turbo-machinery especially under off-design condi-tions.So,this study will provide more valid guidance to improve the operating stability of pump-tur-bines.%针对水泵水轮机泵工况流量-扬程曲线的驼峰特性,采用 SST k-ω湍流模型对水泵水轮机进行模拟,并研究定常与非定常模拟对流量-扬程特性的预测准确性。建立活动导叶开度为20°的水泵水轮机全流道模型,对于非定常模拟,在尾水管(吸水室)-转轮与转轮-活动导叶两动静交接面处,分别设置考虑瞬态效应的 TRS(Transi-ent Rotor Stator )模型,模拟预测机组流量-扬程关系,分析各过流部件扬程损失并研究驼峰区产生机理。模拟结果表

  16. Variable speed drives for pumps used in intensive pond culture systems

    Science.gov (United States)

    Prior to about 2010, the only large pumps on most catfish farms were those associated with the water supply. Water from wells is usually pumped to the surface using single-speed, vertical, lineshaft turbine pumps powered by three phase, electric motors. Since 2010, several catfish farmers have bui...

  17. Turbine main engines

    CERN Document Server

    Main, John B; Herbert, C W; Bennett, A J S

    1965-01-01

    Turbine Main Engines deals with the principle of operation of turbine main engines. Topics covered include practical considerations that affect turbine design and efficiency; steam turbine rotors, blades, nozzles, and diaphragms; lubricating oil systems; and gas turbines for use with nuclear reactors. Gas turbines for naval boost propulsion, merchant ship propulsion, and naval main propulsion are also considered. This book is divided into three parts and begins with an overview of the basic mode of operation of the steam turbine engine and how it converts the pressure energy of the ingoing ste

  18. Rotating housing turbine

    Energy Technology Data Exchange (ETDEWEB)

    Allouche, Erez; Jaganathan, Arun P.

    2016-10-11

    The invention is a new turbine structure having a housing that rotates. The housing has a sidewall, and turbine blades are attached to a sidewall portion. The turbine may be completely open in the center, allowing space for solids and debris to be directed out of the turbine without jamming the spinning blades/sidewall. The turbine may be placed in a generator for generation of electrical current.

  19. Turbine maintenance and modernization

    Energy Technology Data Exchange (ETDEWEB)

    Unga, E. [Teollisuuden Voima Oy, Olkiluoto (Finland)

    1998-12-31

    The disturbance-free operation of the turbine plant plays an important role in reaching good production results. In the turbine maintenance of the Olkiluoto nuclear power plant the lifetime and efficiency of turbine components and the lifetime costs are taken into account in determining the turbine maintenance and modernization/improvement program. The turbine maintenance program and improvement/modernization measures taken in the plant units are described in this presentation. (orig.)

  20. Ferroelectric Pump

    Science.gov (United States)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    2000-01-01

    A ferroelectric pump has one or more variable volume pumping chambers internal to a housing. Each chamber has at least one wall comprising a dome shaped internally prestressed ferroelectric actuator having a curvature and a dome height that varies with an electric voltage applied between an inside and outside surface of the actuator. A pumped medium flows into and out of each pumping chamber in response to displacement of the ferroelectric actuator. The ferroelectric actuator is mounted within each wall and isolates each ferroelectric actuator from the pumped medium, supplies a path for voltage to be applied to each ferroelectric actuator, and provides for positive containment of each ferroelectric actuator while allowing displacement of the entirety of each ferroelectric actuator in response to the applied voltage.

  1. 离心泵作透平异向倾斜叶片与隔舌降噪分析%Noise reduction by counter-leaning blade and tongue for centrifugal pump as turbine

    Institute of Scientific and Technical Information of China (English)

    代翠; 孔繁余; 董亮; 夏斌; 柏宇星

    2016-01-01

    Aiming at reducing fluid‐induced noise in interior/exterior noise of centrifugal pump as turbine (PAT) ,based on the blade and tongue′s paying their leaning share ,the angle formula associated with counter‐leaning blade and tongue in ideal condition was derived .Meanwhile ,the noise‐reduction active‐control approach was put forward by joint leaning blade and tongue ,without losing hydraulic performance .In the validation of calculation method of interior noise and finite element model of casing structure ,the boundary element method (BEM ) and finite element method/automatically matched layer technology (FEM/AML) was respectively used to study interior and exterior noise for three PATs by varying the shape of tongue .The noise reduction effects by leaning tongue as well as joint leaning blade and tongue were subsequently analyzed .Researches show that the leaned tongue can significantly improve PAT′s efficiency over an overall flow range ,with an increase of 0 .67% ~1 .81% .While ,PAT′s original performance can be maintained by joint leaning blade and tongue ,with a slight increase in larger flow rates .Simply by leaning tongue ,the total sound pressure level of PAT can be reduced by 3 .86% ~5 .93% ,and the total sound power level can be lowered by 0 .83% ~11 .34% .Under the joint action ,the total sound pressure level is reduced by 4 .45% ~7 .19% ,and the total sound power level is lowered by 1 .08% ~12 .15% .The noise reduction effect of joint action is better .%为降低离心泵反转作液力透平流体诱发的内外场噪声,基于倾斜程度由叶片和隔舌分摊的思想,建立了理想情况下叶片与隔舌异向倾斜角度关系式,提出了在保证性能前提下联合倾斜叶片与隔舌的主动控制降噪方法。在验证内场噪声计算方法和壳体结构有限元模型的基础上,分别基于声学边界元法(Boundary Element Method , BEM)和声学有限元的自动匹配层技术(Finite Element

  2. Analysis of environmental issues related to small-scale hydroelectric development IV: fish mortality resulting from turbine passage

    Energy Technology Data Exchange (ETDEWEB)

    Turbak, S. C.; Reichle, D. R.; Shriner, C. R.

    1981-01-01

    This document presents a state-of-the-art review of literature concerning turbine-related fish mortality. The review discusses conventional and, to a lesser degree, pumped-storage (reversible) hydroelectric facilities. Much of the research on conventional facilities discussed in this report deals with studies performed in the Pacific Northwest and covers both prototype and model studies. Research conducted on Kaplan and Francis turbines during the 1950s and 1960s has been extensively reviewed and is discussed. Very little work on turbine-related fish mortality has been undertaken with newer turbine designs developed for more modern small-scale hydropower facilities; however, one study on a bulb unit (Kaplan runner) has recently been released. In discussing turbine-related fish mortality at pumped-storage facilities, much of the literature relates to the Ludington Pumped Storage Power Plant. As such, it is used as the principal facility in discussing research concerning pumped storage.

  3. Turbine oil

    Energy Technology Data Exchange (ETDEWEB)

    Eminov, E.A.; Bogdanov, Sh.K.; Dovgopolyi, E.E.; Gryaznov, B.V.; Ivanov, V.S.; Ivanova, Z.M.; Kozlova, E.K.; Nikolaeva, N.M.; Rozhdestvenskaya, A.A.

    1981-03-10

    In the known turbine oil (TO), for the purpose of improving the anticorrosion and demulsifying properties, a polyoxypropylene glycol ether, ethylenediamine or propylene glycol or an alkylphenol are additionally introduced, where the C/sub 8/-C/sub 12/ alkyl has a molecular weight of 2000-10,000. The proportions of the components are: 2, 6-di-tert-butyl-4-methylphenol 0.2-1.0%, quinizarin 0.01-0.05%, an acid ester of an alkenylsuccinic acid 0.02-0.1%, a polyoxypropylene glycol ether 0.02-0.2%, polymethylsiloxane 0.003-0.005%, and petroleum oil the remainder. The TO is prepared by mixing the petroleum oil with the additives in any sequence at a temperature of 60-80/sup 0/ by mechanical stirring. On the five TO samples the antioxidative, demulsifying, and anticorrosion properties by comparison with the prototype were investigated. It was shown that the obtained TO possesses improved anticorrosion properties (time until the appearance of Kr (staining.), up to 60 h as against 35 on the prototype) and demulsifying properties (quantity of water separating on breaking the emulsion 10 mg/L as against 65 mg/L on the prototype) for an antioxidative stability equal to that of the analog. The TO is designated for use in various turbo-units, in the first place in marine steam turbine units, where there is the probability of contact of the TO with seawater. Use of the TO makes it possible to increase the service life of the mechanisms, to reduce the amount of oil mixable in the form of an emulsion (by a factor of 1.5 to 2), and to lower the operating expenses.

  4. Preliminary wind tunnel tests on the pedal wind turbine

    Science.gov (United States)

    Vinayagalingam, T.

    1980-06-01

    High solidity-low speed wind turbines are relatively simple to construct and can be used advantageously in many developing countries for such direct applications as water pumping. Established designs in this class, such as the Savonius and the American multiblade rotors, have the disadvantage that their moving surfaces require a rigid construction, thereby rendering large units uneconomical. In this respect, the pedal wind turbine recently reported by the author and which incorporates sail type rotors offers a number of advantages. This note reports preliminary results from a series of wind tunnel tests which were carried out to assess the aerodynamic torque and power characteristics of the turbine.

  5. Penis Pump

    Science.gov (United States)

    ... claim that they can be used to increase penis size, but there's no evidence that they work for ... circumstances, using a penis pump might help your penis maintain its natural size and shape after prostate surgery or if you ...

  6. Optimization on the System of Centrifugal Pump as Turbine to Generate Electricity%离心泵作透平的发电装置系统优化研究

    Institute of Scientific and Technical Information of China (English)

    纪旭; 吴明亮; 魏源; 李召宪

    2015-01-01

    As the demand for energy and awareness of energy saving is increasing,the hydraulic turbine energy recovery equipment is as the fluid pressure energy conversion into mechanical energy or electric energy equipment.It has a positive effect on reducing energy consumption in per unit of output.The liquid pressure can be recycled in all the presence of the liq-uid pressure which is in the industrial production.Based on the hydraulic turbine,pressure in chemical process can have effi-cient recovery effect.Analyze the advantage and disadvantage of several configurations about hydraulic turbine energy recov-ery of residual pressure.Propose a system that hydraulic turbine direct drive generators to achieve the residual pressure en-ergy recovery,and improvement measures about generator interconnection system based on PLC are raised.Achieve a PC turbine power generation monitoring system based on WinCC.Through practice,hydraulic turbine generator sets have high efficiency in residual pressure energy recovery with the stable and reliable state.%随着人们对能源的需求量不断上升和节能意识的不断提高,离心泵作透平回收余压能发电系统作为把液体液压能转化为电能的能量回收装置,对降低单位产量的耗能量有着积极的作用。而凡是工业生产中有流体压力差的设备中,都存在流体压力能可以回收利用。基于液力透平对化工流程中的余压能起到高效的回收作用,总结分析了液力透平余压能回收的几种配置方式的优缺点,提出了离心泵反转作透平直接驱动发电机发电实现系统余能回收,并提出了基于 PLC 的发电机并网控制系统的改进措施,实现了基于 WinCC 软件的上位透平和发电监控。通过实践证明,液力透平发电机组对余压能的回收量回收效率高,运行稳定、可靠。

  7. Steam turbines and operation of steam turbines 2010. Proceedings; Dampfturbinen und Dampfturbinenbetrieb 2010. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Within the VGB conference an 30th June to 1st July, 2010 in Luebeck (Federal Republic of Germany) the following lectures were held: (1) Application of rifled tubes in power plant heat exchangers (Andreas Grahl); (2) Improved efficiency and potential savings at the 'cool end' through tube cleaning and cooling water filtration (Wolfgang Czolkoss); (3) Material and process improvements in condenser tubing (Pascal Gerard); (4) Automatic eddy current testing of longitudinally welded austentic and titanium tubes for condensers and other heat exchanger (Werner Hannig); (5) Major steam turbine losses: causes, repair measures, recommissioning (Stefan Thumm); (6) Damage on industrial steam turbines (Hans-Guenter Busch); (7) Proper design of turbine draining systems (Ralph Semme); (8) VDMA - Contribution to functional safety of turbomachinery - Required risk reduction by safety functions for steam turbines (Bernhard Wuest); (9) Functional safety by MAN turbo on the example of SIL3 safety loop overspeed detection (Holger Buschmann); (10) Boiler feed pump monitoring, diagnostic and controlling loop (Sohail Ahmed); (11) Experimental investigation to the radial adjustment of brush seals for steam turbines (Heiko Schwarz); (12) The revised VGB guidelines for condenser tubes from copper alloys, stainless steels and titanium (Frank-Udo Leidich); (13) Modernization of HP and LP turbines in coal-fired power plant Bergkamen (Roland Sommer); (14) Mega-components made of cast steel for power plant technology (Reinhold Hanus); (15) Quality monitoring of steam turbine sets for new construction projects of the Vattenfall Europe Generation AG (Marco Rediess); (16) Weld repair of a cracked LP rotor (Andreas Nowi); (17) Steam turbines and CO{sub 2} sequestration (Juergen Klebes); (18) Advanced filter element construction for alleviating electrostatic discharge effects in turbine lubricating systems (John K. Duchowski).

  8. Microfabricated rankine cycle steam turbine for power generation and methods of making the same

    Science.gov (United States)

    Frechette, Luc (Inventor); Muller, Norbert (Inventor); Lee, Changgu (Inventor)

    2009-01-01

    In accordance with the present invention, an integrated micro steam turbine power plant on-a-chip has been provided. The integrated micro steam turbine power plant on-a-chip of the present invention comprises a miniature electric power generation system fabricated using silicon microfabrication technology and lithographic patterning. The present invention converts heat to electricity by implementing a thermodynamic power cycle on a chip. The steam turbine power plant on-a-chip generally comprises a turbine, a pump, an electric generator, an evaporator, and a condenser. The turbine is formed by a rotatable, disk-shaped rotor having a plurality of rotor blades disposed thereon and a plurality of stator blades. The plurality of stator blades are interdigitated with the plurality of rotor blades to form the turbine. The generator is driven by the turbine and converts mechanical energy into electrical energy.

  9. Turbulence and wind turbines

    DEFF Research Database (Denmark)

    Brand, Arno J.; Peinke, Joachim; Mann, Jakob

    2011-01-01

    The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....

  10. Turbine Aerothermal Research

    Science.gov (United States)

    2012-05-01

    SONDERGAARD CHARLES W. STEVENS Project Engineer Branch Chief Turbomachinery Branch Turbomachinery Branch Turbine Engine Division Turbine Engine...distribution unlimited. APPENDIX: LIST OF PUBLICATIONS "Pulsed Film Cooling on a Turbine Blade Leading Edge," Captain James L. Rutledge , PhD...Turbine Blade Leading Edge," Rutledge , King & Rivir, AIAA-2009-5104, Proceedings of the 45th IAA/ASME/SAE/ASEE Joint Propulsion Conference

  11. Sliding vane geometry turbines

    Science.gov (United States)

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  12. New turbomolecular pump with central opening for free axial access

    CERN Document Server

    Mokler, P H

    2004-01-01

    Standard turbomolecular pumps show typically one annular active intake area on the high vacuum flange side (single-flow pumps). The central circular part of the inlet of the compressor turbine is blind for pumping. The new design proposes a central opening of a turbomolecular pump all along the axis. This central bore can be used e.g. for mounting of feed throughs, manipulators, windows or for coupling to further vacuum devices, in particular also for enclosing tube-like vacuum systems. This design allows a multi-use of a pumping port at a vacuum vessel without reducing there the pumping speed. Moreover, the new design is ideal for axial or radial differential pumping arrangements as e.g. needed for all gas jet like set-ups or other pressure reduction stages.

  13. The new 6 MW gas turbine for the power generation; Die neue 6 MW Gasturbine fuer die Stromerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Blaswich, Michael; Theis, Sascha [MAN Diesel and Turbo SE, Oberhausen (Germany)

    2012-07-01

    MAN Diesel and Turbo SE (Oberhausen, Federal Republic of Germany) had developed a new gas turbine in the 6 MW class. This device is the founding stone for a family of gas turbines which at first cover the power range from 6 to 8 MW for the propulsion of pumps, compressors and electric devices. The two-shaft industrial gas turbine consists of a gas generator with an axial compressor with eleven levels, six external single combustion chambers, one two-step high-pressure turbine and a two-step power turbine. Beside the two-shaft industrial gas turbine, there exists a single-shaft industrial gas turbine for the power generation. The single-shaft industrial gas turbine consists of three turbine stages, a gas turbine compressor and combustion chamber being identical in construction to the two-shaft industrial gas turbine. The gas turbine package contains the gas turbine module as well as a filter module. The gas turbine was successfully tested. Further tests and the commissioning of the first customer's plant are planned for this year.

  14. Turbine Imaging Technology Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Moursund, Russell A.; Carlson, Thomas J.

    2004-12-31

    The goal of this project was to identify and evaluate imaging alternatives for observing the behavior of juvenile fish within an operating Kaplan turbine unit with a focus on methods to quantify fish injury mechanisms inside an operating turbine unit. Imaging methods are particularly needed to observe the approach and interaction of fish with turbine structural elements. This evaluation documents both the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. The information may be used to acquire the scientific knowledge to make structural improvements and create opportunities for industry to modify turbines and improve fish passage conditions.

  15. Turbine component, turbine blade, and turbine component fabrication process

    Energy Technology Data Exchange (ETDEWEB)

    Delvaux, John McConnell; Cairo, Ronald Ralph; Parolini, Jason Robert

    2017-05-30

    A turbine component, a turbine blade, and a turbine component fabrication process are disclosed. The turbine component includes ceramic matrix composite plies and a feature configured for preventing interlaminar tension of the ceramic matrix composite plies. The feature is selected from the group consisting of ceramic matrix composite tows or precast insert tows extending through at least a portion of the ceramic matrix composite plies, a woven fabric having fiber tows or a precast insert preventing contact between a first set of the ceramic matrix composite plies and a second set of the ceramic matrix composite plies, and combinations thereof. The process includes laying up ceramic matrix composite plies in a preselected arrangement and securing a feature configured for interlaminar tension.

  16. Bilateral inferior turbinate osteoma

    Science.gov (United States)

    Sahemey, R.; Warfield, A.T.; Ahmed, S.

    2016-01-01

    Osteomas are the most common benign osteoclastic tumours of the paranasal sinuses. However, nasal cavity and turbinate osteomas are extremely rare. Only nine middle turbinate, three inferior turbinate and one inferior turbinate osteoma cases have been reported to date. The present case report describes the management and follow-up of symptomatic bilateral inferior turbinate osteoma. A 60-year-old female presented with symptoms of bilateral nasal obstruction and right-sided epiphora. Radiological investigation found hypertrophic bony changes involving both inferior turbinates. The patient was managed successfully by endoscopic inferior turbinectomies in order to achieve a patent airway, with no further recurrence of tumour after 3 months postoperatively. To the best of our knowledge, this is the first reported case of bilateral inferior turbinate osteoma. We describe a safe and minimally invasive method of tumour resection, which has a better cosmetic outcome compared with other approaches. PMID:27534890

  17. Dynamic modeling of fluid power transmissions for wind turbines

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin Laguna, A.

    2011-01-01

    Fluid power transmission for wind turbines is quietly gaining more ground/interest. The principle of the various concepts presented so far is to convert aerodynamic torque of the rotor blades into a pressurized fluid flow by means of a positive displacement pump. At the other end of the fluid power

  18. Dynamic modeling of fluid power transmissions for wind turbines

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin Laguna, A.

    2011-01-01

    Fluid power transmission for wind turbines is quietly gaining more ground/interest. The principle of the various concepts presented so far is to convert aerodynamic torque of the rotor blades into a pressurized fluid flow by means of a positive displacement pump. At the other end of the fluid power

  19. East Mesa geothermal pump test facility (EMPTF). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olander, R.G.; Roberts, G.K.

    1984-11-28

    The design, fabrication and installation of a geothermal pump test facility (EMPFT) at the DOE geothermal site at East Mesa, California which is capable of testing 70 to 750 horsepower downwell pumps in a controlled geothermal environment were completed. The facility consists of a skid-mounted brine control module, a 160 foot below test well section, a hydraulic turbine for power recovery, a gantry-mounted hoist for pump handling and a 3-phase, 480 VAC, 1200 amp power supply to handle pump electric requirements. Geothermal brine is supplied to the EMPTF from one of the facility wells at East Mesa. The EMPTF is designed with a great amount of flexibility. The 20-inch diameter test well can accommodate a wide variety of pumps. The controls are interactive and can be adjusted to obtain a full complement of pump operation data, or set to maintain constant conditions to allow long-term testing with a minimum of operator support. The hydraulic turbine allows the EMPTF user to recover approximately 46% of the input pump power to help defray the operating cost of the unit. The hoist is provided for material handling and pump servicing and reduces the equipment that the user must supply for pump installation, inspection and removal.

  20. East Mesa geothermal pump test facility (EMPTF). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olander, R.G.; Roberts, G.K.

    1984-11-28

    Barber-Nichols has completed the design, fabrication and installation of a geothermal pump test facility at the DOE geothermal site at East Mesa, California which is capable of testing 70 to 750 horsepower downwell pumps in a controlled geothermal environment. The facility consists of a skid-mounted brine control module, a 160 foot below ground test well section, a hydraulic turbine for power recovery, a gantry-mounted hoist for pump handling and a 3-phase, 480 VAC, 1200 amp power supply to handle pump electric requirements. Geothermal brine is supplied to the EMPTF from one of the facility wells at East Mesa. The EMPTF is designed with a great amount of flexibility to attract the largest number of potential users. The 20-inch diameter test well can accommodate a wide variety of pumps. The controls are interactive and can be adjusted to obtain a full complement of pump operation data, or set to maintain constant conditions to allow long-term testing with a minimum of operator support. The hydraulic turbine allows the EMPTF user to recover approximately 46% of the input pump power to help defray the operating cost of the unit. The hoist is provided for material handling and pump servicing and reduces the equipment that the user must supply for pump installation, inspection and removal.

  1. Pumps; Pumpen

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, H. [Gesellschaft fuer Praktische Energiekunde e.V., Muenchen (Germany). Forschungsstelle fuer Energiewirtschaft; Hellriegel, E. [Gesellschaft fuer Praktische Energiekunde e.V., Muenchen (Germany). Forschungsstelle fuer Energiewirtschaft; Pfitzner, G. [Gesellschaft fuer Praktische Energiekunde e.V., Muenchen (Germany). Forschungsstelle fuer Energiewirtschaft

    1994-11-01

    The technical features of commercial pump types are described with regard to their technical, energy-related and economic parameters, and characteristic data are presented in the form of data sheets. This is to provide a basis for a comparative assessment of different technologies and technical variants. The chapter `System specifications` describes the various fields of application of pumps and the resulting specific requirements. The design and function of the different pump types are described in `Technical description`. `System and plant description dscribes the design and adaptation of pumps, i.e. the adaptation of the plant data to the system requirements. `Data compilation` provides a survey of the types and systematics of the compiled data as well as a decision aid for selecting the pumps best suited to the various applications. The `Data sheet` section describes the structure and handling of the data sheets as well as the data contained therein. The data sheets are contained in the apapendix of this report. The section `General analysis` compares typical technical, energy-related and economic characteristics of the different pump types. This is to enable a rough comparison of pump types and to facilitate decisions. The chapter `Example` illustrates the use of the data sheets by means of a selected example. (orig./GL) [Deutsch] Die vorliegende Arbeit hat zum Ziel, Technik seriengefertigter und marktgaengiger Pumpen in typisierter Form hinsichtlich ihrer technischen, energetischen und wirtschaftlichen Parameter zu beschreiben und ihre charakteristischen Kennwerte in Datenblaettern abzubilden. Damit wird ein grundlegendes Instrument fuer die vergleichende Beurteilung unterschiedlicher Techniken bzw. Technikvarianten hinsichtlich energetischer und wirtschaftlicher Kriterien geschaffen. Im Abschnitt `Systemanforderungen` erfolgt die Beschreibung der einzelnen Anwendungsbereiche fuer Pumpen mit den speziellen daraus resultierenden Anforderungen. Der Aufbau und

  2. Types of Breast Pumps

    Science.gov (United States)

    ... Devices Consumer Products Breast Pumps Types of Breast Pumps Share Tweet Linkedin Pin it More sharing options ... used for feeding a baby. Types of Breast Pumps There are three basic types of breast pumps: ...

  3. Coalescing Wind Turbine Wakes

    Science.gov (United States)

    Lee, S.; Churchfield, M.; Sirnivas, S.; Moriarty, P.; Nielsen, F. G.; Skaare, B.; Byklum, E.

    2015-06-01

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the global meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a “triplet” structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. The turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions.

  4. Valve exploiting the principle of a side channel turbine

    Science.gov (United States)

    Jandourek, Pavel; Pochylý, František; Haban, Vladimír

    2017-04-01

    The presented article deals with a side channel turbine, which can be used as a suitable substitute for a pressure reducing valve. Pressure reducing valves are a source of high hydraulic losses. The aim is to replace them by a side channel turbine. With that in mind, hydraulic losses can be replaced by a production of electrical energy at comparable characteristics of the reducing valve and the side channel turbine. The basis for the design is the loss characteristics of the pressure reducing valve. Thereby create a new kind of turbine valve with speed-controlled flow in dependence of the runner revolution. It is technical innovation and new renewable source of energy, which can be in future used in rehabilitation or projecting of pumped-storage power plants. It also increases the power of the power plant.

  5. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  6. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis Wind...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...

  7. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  8. Wind turbines acoustic measurements

    Science.gov (United States)

    Trematerra, Amelia; Iannace, Gino

    2017-07-01

    The importance of wind turbines has increased over the last few years throughout the European Community. The European energy policy guidelines state that for the year 2020 20% of all energy must be produced by alternative energy sources. Wind turbines are an important type of energy production without petrol. A wind speed in a range from 2.5 m/s to 25.0 m/s is needed. One of the obstacles to the widespread diffusion of wind turbine is noise generation. This work presents some noise measurements of wind turbines in the South of Italy, and discusses the noise problems for the people living near wind farms.

  9. Wind Turbine Technologies

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela

    2017-01-01

    , and with or without gearboxes, using the latest in power electronics, aerodynamics, and mechanical drive train designs [4]. The main differences between all wind turbine concepts developed over the years, concern their electrical design and control. Today, the wind turbines on the market mix and match a variety......, the design of wind turbines has changed from being convention driven to being optimized driven within the operating regime and market environment. Wind turbine designs have progressed from fixed speed, passive controlled and with drive trains with gearboxes, to become variable speed, active controlled......,6] and to implement modern control system strategies....

  10. Rampressor Turbine Design

    Energy Technology Data Exchange (ETDEWEB)

    Ramgen Power Systems

    2003-09-30

    The design of a unique gas turbine engine is presented. The first Rampressor Turbine engine rig will be a configuration where the Rampressor rotor is integrated into an existing industrial gas turbine engine. The Rampressor rotor compresses air which is burned in a traditional stationary combustion system in order to increase the enthalpy of the compressed air. The combustion products are then expanded through a conventional gas turbine which provides both compressor and electrical power. This in turn produces shaft torque, which drives a generator to provide electricity. The design and the associated design process of such an engine are discussed in this report.

  11. CT demonstration of accessory nasal turbinates: secondary middle turbinate and bifid inferior turbinate

    Energy Technology Data Exchange (ETDEWEB)

    Aksungur, Erol H. [Department of Radiodiagnosis, Cukurova University, Balcali Hospital, Adana, 01330 (Turkey); Bicakci, Kenan [Department of Radiodiagnosis, Cukurova University, Balcali Hospital, Adana, 01330 (Turkey); Inal, Mehmet [Department of Radiodiagnosis, Cukurova University, Balcali Hospital, Adana, 01330 (Turkey); Akguel, Erol [Department of Radiodiagnosis, Cukurova University, Balcali Hospital, Adana, 01330 (Turkey); Binokay, Figen [Department of Radiodiagnosis, Cukurova University, Balcali Hospital, Adana, 01330 (Turkey); Aydogan, Barlas [Department of ENT, Cukurova University, Balcali Hospital, Adana, 01330 (Turkey); Oguz, Mahmut [Department of Radiodiagnosis, Cukurova University, Balcali Hospital, Adana, 01330 (Turkey)

    1999-09-01

    Normally, there are three pairs of nasal turbinates in the nasal cavity. Coronal computed tomographies of 253 cases of sinusitis were examined for the presence of additional turbinates and bilateral secondary middle turbinates were detected in two cases. Also, we describe another accessory turbinate, 'bifid inferior turbinate', in one of these cases. Existence of these accessory turbinates may occur during embryologic development of lateral nasal wall.

  12. Simultaneous transient operation of a high head hydro power plant and a storage pumping station in the same hydraulic scheme

    Science.gov (United States)

    Bucur, D. M.; Dunca, G.; Cervantes, M. J.; Cǎlinoiu, C.; Isbǎşoiu, E. C.

    2014-03-01

    This paper presents an on-site experimental analysis of a high head hydro power plant and a storage pumping station, in an interconnected complex hydraulic scheme during simultaneous transient operation. The investigated hydropower site has a unique structure as the pumping station discharges the water into the hydropower plant penstock. The operation regimes were chosen for critical scenarios such as sudden load rejections of the turbines as well as start-ups and stops with different combinations of the hydraulic turbines and pumps operation. Several parameters were simultaneously measured such as the pumped water discharge, the pressure at the inlet pump section, at the outlet of the pumps and at the vane house of the hydraulic power plant surge tank. The results showed the dependence of the turbines and the pumps operation. Simultaneous operation of the turbines and the pumps is possible in safe conditions, without endangering the machines or the structures. Furthermore, simultaneous operation of the pumping station together with the hydropower plant increases the overall hydraulic efficiency of the site since shortening the discharge circuit of the pumps.

  13. Maximizing Storage Flexibility in an Aggregated Heat Pump Portfolio

    DEFF Research Database (Denmark)

    Pedersen, Tom S.; Nielsen, Kirsten M.; Andersen, Palle

    2014-01-01

    To balance the electrical grid due to a large increase in the renewable energy production mainly from wind turbines will be a problem in the near future in Denmark. Smart grid solutions with new storage capacities are essential. In this work single family houses with heat pumps are investigated...

  14. CFD Simulation and Optimization of Very Low Head Axial Flow Turbine Runner

    Directory of Open Access Journals (Sweden)

    Yohannis Mitiku Tobo

    2015-10-01

    Full Text Available The main objective of this work is Computational Fluid Dynamics (CFD modelling, simulation and optimization of very low head axial flow turbine runner  to be used to drive  a centrifugal pump of turbine-driven pump. The ultimate goal of the optimization is to produce a power of 1kW at head less than 1m from flowing  river to drive centrifugal pump using mechanical coupling (speed multiplier gear directly. Flow rate, blade numbers, turbine rotational speed, inlet angle are parameters used in CFD modeling,  simulation and design optimization of the turbine runner. The computed results show that power developed by a turbine runner increases with increasing flow rate. Pressure inside the turbine runner increases with flow rate but, runner efficiency increases for some flow rate and almost constant thereafter. Efficiency and power developed by a runner drops quickly if turbine speed increases due to higher pressure losses and conversion of pressure energy to kinetic energy inside the runner. Increasing blade number increases power developed but, efficiency does not increase always. Efficiency increases for some blade number and drops down due to the fact that  change in direction of the relative flow vector at the runner exit, which decreases the net rotational momentum and increases the axial flow velocity.

  15. Modernisation of pumped storage power plant Waldeck I. Overhaul upper basin; Modernisierung des Pumpspeicherkraftwerkes Waldeck I. Sanierung des Oberbeckens

    Energy Technology Data Exchange (ETDEWEB)

    Koehn, Rolf-Guenter [Lahmeyer International, Bad Vilbel (Germany); Rau, Martin [E.ON Wasserkraft GmbH, Landshut (Germany)

    2010-07-01

    The Waldeck I pumped storage power plant is located near the Edersee Lake in Northern Hesse. The existing power plant, comprising four horizontal turbine and pump combination units with a total installed capacity of 140 MW, was commissioned in 1932. After some 75 years of operation, the plant had reached the end of its service life and the following modernisation concept was developed: Construction on the existing site of a new shaft power house with a pump turbine of approximately 70 MW capacity and refurbishment of two of the Francis turbines and decommissioning of all four pumps and two turbines in the old plant. The existing upper basin will be retained and extensively overhauled, including waterproof lining of the internal walls using a drained synthetic sealing membrane. (orig.)

  16. Characterization of Pump Flow at the Grand Coulee Pumping Station for Fish Passage, 2004

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Thomas J.; Duncan, Joanne P.; Johnson, Robert L.

    2005-03-31

    This report describes a study conducted by PNNL for the Bonneville Power Administration to characterized the conditions fish experience when entrained in pump flow at the Grand Coulee Dam. PNNL used the Sensor Fish to measure the acceleration and pressure conditions that might be experienced by fish who are pulled through the pumps and turbines at Grand Coulee Dam's pump generation station and transported up into the feeder canal leading to Banks Lake. The probability that fish would be struck by the pump generating plant's new 9-bladed turbines was also calculated using Monte Carlo simulations. Our measurements showed relatively low turbulence except in the immediate vicinity of the runner environment. The highest pressure experienced by the Sensor Fish was estimated at 157 psi (the pressure gauge saturated at 155 psi). The probability of strike was also calculated, based on the average length of hatchery-reared juvenile kokanee (land-locked sockeye). Strike probabilities ranged from 0.755 for 2.36-inch fish to 0.3890 for 11.8-inch fish. The probability of strike estimates indicate that the majority (77%) of kokanne would be carried through the pump without being struck and most likely without injury resulting from pressure and turbulence exposure. Of the 23% that might be struck it is expected that 60% would arrive in Banks Lake without visible external injuries. Thus more than 90% of entrained fish would be expected to arrive in Banks Lake without injury.

  17. Matching wind turbine rotors and loads: Computational methods for designers

    Science.gov (United States)

    Seale, J. B.

    1983-04-01

    A comprehensive method for matching wind energy conversion system (WECS) rotors with the load characteristics of common electrical and mechanical applications was reported. A method was developed to convert the data into useful results: (1) from turbine efficiency and load torque characteristics, turbine power is predicted as a function of windspeed; (2) it is decided how turbine power is to be governed to insure safety of all components; (3) mechanical conversion efficiency comes into play to predict how useful delivered power varies with windspeed; (4) wind statistics are used to predict longterm energy output. Most systems are approximated by a graph and calculator approach. The method leads to energy predictions, and to insight into modeled processes. A computer program provides more sophisticated calculations where a highly unusual system is to be modeled, where accuracy is at a premium, or where error analysis is required. The analysis is fleshed out with in depth case studies for induction generator and inverter utility systems; battery chargers; resistance heaters; positive displacement pumps; including three different load compensation strategies; and centrifugal pumps with unregulated electric power transmission from turbine to pump.

  18. Development of a more fish-tolerant turbine runner, advanced hydropower turbine project

    Energy Technology Data Exchange (ETDEWEB)

    Cook, T.C.; Hecker, G.E. [Worcester Polytechnic Inst., Holden, MA (United States). Alden Research Lab.; Faulkner, H.B.; Jansen, W. [Northern Research and Engineering Corp., Woburn, MA (United States)

    1997-02-01

    Alden Research Laboratory, Inc. (ARL) and Northern Research and Engineering Corporation (NREC) conducted a research program to develop a turbine runner which will minimize fish injury and mortality at hydroelectric projects. ARL?NREC have developed a runner shape which minimizes the number of blade leading edges, reduces the pressure versus time and the velocity versus distance gradients within the runner, minimizes or eliminates the clearance between the runner and runner housing, and maximizes the size of the flow passages, all with minimal penalty on turbine efficiency. An existing pump impeller provided the starting point for developing the fish tolerant turbine runner. The Hidrostal pump is a single bladed combined screw/centrifugal pump which has been proven to transport fish with minimal injury. The focus of the ARL/NREC research project was to develop a new runner geometry which is effective in downstream fish passage and hydroelectric power generation. A flow of 1,000 cfs and a head in the range of 75 ft to 100 ft were selected for conceptual design of the new runner. Conceptual design of the new runner began with a re-evaluation of studies which have been previously conducted to identify probable sources of injury to fish passing through hydraulic turbines. Criteria relative to hydraulic characteristics which are favorable for fish passage were prepared based on a reassessment of the available information. Important criteria used to develop the new runner design included low pressure change rates, minimum absolute pressures, and minimum shear. Other criteria which are reflected in the runner design are a minimum number of blades (only two), minimum total length of leading edges, and large flow passages. 86 figs., 5 tabs.

  19. Pump characteristics and applications

    CERN Document Server

    Volk, Michael

    2013-01-01

    Providing a wealth of information on pumps and pump systems, Pump Characteristics and Applications, Third Edition details how pump equipment is selected, sized, operated, maintained, and repaired. The book identifies the key components of pumps and pump accessories, introduces the basics of pump and system hydraulics as well as more advanced hydraulic topics, and details various pump types, as well as special materials on seals, motors, variable frequency drives, and other pump-related subjects. It uses example problems throughout the text, reinforcing the practical application of the formulae

  20. Pumped storage system model and experimental investigations on S-induced issues during transients

    Science.gov (United States)

    Zeng, Wei; Yang, Jiandong; Hu, Jinhong

    2017-06-01

    Because of the important role of pumped storage stations in the peak regulation and frequency control of a power grid, pump turbines must rapidly switch between different operating modes, such as fast startup and load rejection. However, pump turbines go through the unstable S region in these transition processes, threatening the security and stability of the pumped storage station. This issue has mainly been investigated through numerical simulations, while field experiments generally involve high risks and are difficult to perform. Therefore, in this work, the model test method was employed to study S-induced security and stability issues for a pumped storage station in transition processes. First, a pumped storage system model was set up, including the piping system, model units, electrical control systems and measurement system. In this model, two pump turbines with different S-shaped characteristics were installed to determine the influence of S-shaped characteristics on transition processes. The model platform can be applied to simulate any hydraulic transition process that occurs in real power stations, such as load rejection, startup, and grid connection. On the experimental platform, the S-shaped characteristic curves were measured to be the basis of other experiments. Runaway experiments were performed to verify the impact of the S-shaped characteristics on the pump turbine runaway stability. Full load rejection tests were performed to validate the effect of the S-shaped characteristics on the water-hammer pressure. The condition of one pump turbine rejecting its load after another defined as one-after-another (OAA) load rejection was performed to validate the possibility of S-induced extreme draft tube pressure. Load rejection experiments with different guide vane closing schemes were performed to determine a suitable scheme to adapt the S-shaped characteristics. Through these experiments, the threats existing in the station were verified, the

  1. Analysis of Turbine Load Rejection for APR1400 using SPACE

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Jin; Park, Chan Eok; Choi, Jong Ho; Lee, Gyu Cheon [KEPCO Engineering and Construction Co. Ltd., Deajeon (Korea, Republic of)

    2016-10-15

    Turbine Load Rejection event is one of the Performance Related Design Basis Event (PRDBE) that can be stabilized using plant control systems without any safety system actuation. The initiation of the event is turbine load rejection from 100% to 5% in 0.019 seconds. The NSSS control systems of APR1400 is composed of the Power Control System (PCS) and the Process-Component Control System (P-CCS). The PCS includes Reactor Regulating System (RRS), Reactor Power Cutback System (RPCS) and Digital Rod Control System (DRCS). The P-CCS includes the Pressurizer Pressure Control System (PPCS), the Pressurizer Level Control System (PLCS), the Feedwater Control System (FWCS) and the Steam Bypass Control System (SBCS). Turbine load rejection results in the increase of secondary pressure due to sudden blocking of steam flow to turbine. Then the Reactor Coolant System (RCS) cooling through steam generators is decreased rapidly and the RCS temperature will be increased. Turbine load rejection is a typical event to test NSSS control systems since it requires the automatic response of all major NSSS control systems. It is shown that the NSSS control systems of APR1400 have the capability to stabilize the plant without any safety system actuation for turbine load rejection event. This analysis results show that SPACE code has the capability to analyze the turbine load rejection event. However, further validation is necessary for other PRDBEs such as Two Main Feedwater Pumps Trip, Turbine Load Step Change and Turbine Load Ramp Down (5%/min) to verify the capability of SPACE for the full range of performance analyses.

  2. A Day-Ahead Dispatching Strategy for Power Pool Composed of Wind Farms, Photovoltaic Generations, Pumped-Storage Power Stations, Gas Turbine Power Plants and Energy Storage Systems Based on Multi Frequency Scale Analysis%基于功率多频率尺度分析的风光水气储联合系统日前调度策略

    Institute of Scientific and Technical Information of China (English)

    马静; 石建磊; 李文泉; 王增平

    2013-01-01

    Based on multi frequency scale analysis on power output of wind farms and photovoltaic (PV) generation (PWP), a day-ahead dispatching strategy for power pool composed of wind farms, photovoltaic generations, pumped-storage power stations, gas turbine power plants and energy storage systems is proposed. Firstly, according to the control objectives the filter analysis on PWP is performed to extract PWP components corresponding to different frequency scales to draft output schedulings for of all kinds of complementary power generations in the power pool; then using improved particle swamp optimization (PSO) the total power output of the power pool is computed;finally, based on different day-ahead dispatching modes and considering stability and wind power accommodation capability of the power pool, the per-unit generation costs of wind farms, photovoltaic generations, pumped-storage power stations, gas turbine power plants and energy storage systems are optimized to draft final output schedulings. Results of calculation example show that comparing with traditional optimization models and optimization algorithms, the proposed method can cope with the power fluctuation due to grid-connection of large-scale wind farms and PV generations to implement stationary power output of the power pool, meanwhile the economy, efficiency, low-carbon operation and environmental protection of the power pool can be ensured.%  提出一种基于功率多频率尺度分析的风光水气储联合系统日前调度策略。该策略首先根据控制目标对风光出力(power of wind photovoltaic,PWP)进行滤波分析,提取不同频率尺度下的PWP分量,制定各类补偿电站出力计划;然后利用改进粒子群优化算法并行优化各电站内部综合成本,计算联合系统总体输出功率;最后依据不同日前调度模式,考虑稳定性和风光消纳能力,优化风光水气储系统单位发电成本,制定出力计划。算例分析结果

  3. Graphene in turbine blades

    Science.gov (United States)

    Das, D. K.; Swain, P. K.; Sahoo, S.

    2016-07-01

    Graphene, the two-dimensional (2D) nanomaterial, draws interest of several researchers due to its many superior properties. It has extensive applications in numerous fields. A turbine is a hydraulic machine which extracts energy from a fluid and converts it into useful work. Recently, Gudukeya and Madanhire have tried to increase the efficiency of Pelton turbine. Beucher et al. have also tried the same by reducing friction between fluid and turbine blades. In this paper, we study the advantages of using graphene as a coating on Pelton turbine blades. It is found that the efficiency of turbines increases, running and maintenance cost is reduced with more power output. By the application of graphene in pipes, cavitation will be reduced, durability of pipes will increase, operation and maintenance cost of water power plants will be less.

  4. Performance of a 10 kilowatt wind-electric water pumping system for irrigating crops

    Energy Technology Data Exchange (ETDEWEB)

    Vick, B.D.; Clark, R.N. [Conservation and Production Research Lab., Bushland, TX (United States); Molla, S. [Texas A& M Univ., College Station, TX (United States)

    1997-12-31

    A 10 kW wind-electric water pumping system was tested for field crop irrigation at pumping depths from 50 to 120 m. The wind turbine for this system used a permanent magnet alternator that powered off-the-shelf submersible motors and pumps without the use of an inverter. Pumping performance was determined at the USDA-Agricultural Research Service (ARS), Wind Energy Laboratory in Bushland, TX for the 10 kW wind turbine using a pressure valve and a pressure tank to simulate different pumping depths. Pumping performance was measured for two 10 kW wind turbines of the same type at farms near the cities of Garden City, TX and Stiles, TX. The pumping performance data collected at these actual wells compared favorably with the data collected at the USDA-ARS, Wind Energy Laboratory. If utility generated electricity was accessible, payback on the wind turbine depended on the cost of utility generated electricity and the transmission line extension cost.

  5. Wind tunnel experiments to prove a hydraulic passive rotor speed control concept for variable speed wind turbines (poster)

    NARCIS (Netherlands)

    Diepeveen, N.F.B.; Jarquin Laguna, A.

    2012-01-01

    As alternative to geared and direct drive solutions, fluid power drive trains are being developed by several institutions around the world. The common configuration is where the wind turbine rotor is coupled to a hydraulic pump. The pump is connected through a high pressure line to a hydraulic motor

  6. PERFORMANCE EVALUATION OF LOX AND LH2 TURBOPUMP TURBINES FOR A 10 TON THRUST LOX/LH2 ROCKET ENGINE

    OpenAIRE

    HASHIMOTO, Ryohei; Kamijo, Kenjiro; Watanabe, Yoshiaki; Hasegawa, Satoshi; Fujita, Toshihiko; 橋本, 亮平; 上絛, 謙二郎; 渡辺, 義明; 長谷川, 敏; 藤田, 敏彦

    1981-01-01

    The aerodynamic performance evaluation of the pump-drive turbines for a 10 ton thrust liquid oxygen and liquid hydrogen (LOX and LH2) gas generator cycle propulsion system, which has dual-shaft series turbines, was tested mainly using cold nitrogen gas. At design equivalent speed and pressure ratio, the LOX turbine static efficiency was about 35 percent compared to the design value of 32.8 percent. The LH2 turbine static efficiency was very close to the design value of 45 percent. Equivalent ...

  7. LMFBR with booster pump in pumping loop

    Science.gov (United States)

    Rubinstein, H.J.

    1975-10-14

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation.

  8. Heat pump technology

    CERN Document Server

    Von Cube, Hans Ludwig; Goodall, E G A

    2013-01-01

    Heat Pump Technology discusses the history, underlying concepts, usage, and advancements in the use of heat pumps. The book covers topics such as the applications and types of heat pumps; thermodynamic principles involved in heat pumps such as internal energy, enthalpy, and exergy; and natural heat sources and energy storage. Also discussed are topics such as the importance of the heat pump in the energy industry; heat pump designs and systems; the development of heat pumps over time; and examples of practical everyday uses of heat pumps. The text is recommended for those who would like to kno

  9. Trailing edge devices to improve performance and increase lifetime of wind-electric water pumping systems

    Energy Technology Data Exchange (ETDEWEB)

    Vick, B.D.; Clark, R.N. [USDA-Agricultural Research Service, Bushland, TX (United States)

    1996-12-31

    Trailing edge flaps were applied to the blades of a 10 kW wind turbine used for water pumping to try to improve the performance and decrease the structural fatigue on the wind turbine. Most small wind turbines (10 kW and below) use furling (rotor turns out of wind similar to a mechanical windmill) to protect the wind turbine from overspeed during high winds. Some small wind turbines, however, do not furl soon enough to keep the wind turbine from being off line part of the time in moderately high wind speeds (10 - 16 m/s). As a result, the load is disconnected and no water is pumped at moderately high wind speeds. When the turbine is offline, the frequency increases rapidly often causing excessive vibration of the wind turbine and tower components. The furling wind speed could possibly be decreased by increasing the offset between the tower centerline and the rotor centerline, but would be a major and potentially expensive retrofit. Trailing edge flaps (TEF) were used as a quick inexpensive method to try to reduce the furling wind speed and increase the on time by reducing the rotor RPM. One TEF configuration improved the water pumping performance at moderately high wind speeds, but degraded the pumping performance at low wind speeds which resulted in little change in daily water volume. The other TEF configuration differed very little from the no flap configuration. Both TEF configurations however, reduced the rotor RPM in high wind conditions. The TEF, did not reduce the rotor RPM by lowering the furling wind speed as hoped, but apparently did so by increasing the drag which also reduced the volume of water pumped at the lower wind speeds. 6 refs., 9 figs.

  10. Wind turbine acoustics

    Science.gov (United States)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1990-01-01

    Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.

  11. Wind turbine acoustics

    Science.gov (United States)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1990-12-01

    Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.

  12. Composite turbine bucket assembly

    Energy Technology Data Exchange (ETDEWEB)

    Liotta, Gary Charles; Garcia-Crespo, Andres

    2014-05-20

    A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

  13. Dry vacuum pumps

    Science.gov (United States)

    Sibuet, R.

    2008-05-01

    For decades and for ultimate pressure below 1 mbar, oil-sealed Rotary Vane Pumps have been the most popular solution for a wide range of vacuum applications. In the late 80ies, Semiconductor Industry has initiated the development of the first dry roughing pumps. Today SC applications are only using dry pumps and dry pumping packages. Since that time, pumps manufacturers have developed dry vacuum pumps technologies in order to make them attractive for other applications. The trend to replace lubricated pumps by dry pumps is now spreading over many other market segments. For the Semiconductor Industry, it has been quite easy to understand the benefits of dry pumps, in terms of Cost of Ownership, process contamination and up-time. In this paper, Technology of Dry pumps, its application in R&D/industries, merits over conventional pumps and future growth scope will be discussed.

  14. Aeroservoelasticity of Wind Turbines

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    2007-01-01

    This thesis deals with the fundamental aeroelastic interaction between structural motion, Pitch action and control for a wind turbine blade. As wind turbines become larger, the interaction between pitch action, blade motion, aerodynamic forces, and control become even more important to understand...... to a 2D blade section model, and it can be used instead of this in many applications, giving a transparent connection to a real wind turbine blade. In this work the aeroelastic blade model is used to analyze interaction between pitch action, blade motion and wind speed variations. Furthermore the model...... conditions. So, a new aeroelastic blade model has been derived, which includes important features of large wind turbines, yet simple enough to be suitable for analytical analysis and control design....

  15. Gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Lawlor, Shawn P.; Roberts, II, William Byron

    2016-03-08

    A gas turbine engine with a compressor rotor having compressor impulse blades that delivers gas at supersonic conditions to a stator. The stator includes a one or more aerodynamic ducts that each have a converging portion and a diverging portion for deceleration of the selected gas to subsonic conditions and to deliver a high pressure oxidant containing gas to flameholders. The flameholders may be provided as trapped vortex combustors, for combustion of a fuel to produce hot pressurized combustion gases. The hot pressurized combustion gases are choked before passing out of an aerodynamic duct to a turbine. Work is recovered in a turbine by expanding the combustion gases through impulse blades. By balancing the axial loading on compressor impulse blades and turbine impulse blades, asymmetrical thrust is minimized or avoided.

  16. Wind turbine state estimation

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2014-01-01

    Dynamic inflow is an effect which is normally not included in the models used for wind turbine control design. Therefore, potential improvement from including this effect exists. The objective in this project is to improve the methods previously developed for this and especially to verify...... the results using full-scale wind turbine data. The previously developed methods were based on extended Kalman filtering. This method has several drawback compared to unscented Kalman filtering which has therefore been developed. The unscented Kalman filter was first tested on linear and non-linear test cases...... which was successful. Then the estimation of a wind turbine state including dynamic inflow was tested on a simulated NREL 5MW turbine was performed. This worked perfectly with wind speeds from low to nominal wind speed as the output prediction errors where white. In high wind where the pitch actuator...

  17. Monitoring of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    White, Jonathan R.; Adams, Douglas E.; Paquette, Josh

    2017-07-25

    Method and apparatus for determining the deflection or curvature of a rotating blade, such as a wind turbine blade or a helicopter blade. Also, methods and apparatus for establishing an inertial reference system on a rotating blade.

  18. Noise from wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fegeant, Olivier [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Building Sciences

    2002-02-01

    A rapid growth of installed wind power capacity is expected in the next few years. However, the siting of wind turbines on a large scale raises concerns about their environmental impact, notably with respect to noise. To this end, variable speed wind turbines offer a promising solution for applications in densely populated areas like the European countries, as this design would enable an efficient utilisation of the masking effect due to ambient noise. In rural and recreational areas where wind turbines are sited, the ambient noise originates from the action of wind on the vegetation and about the listener's ear (pseudo-noise). It shows a wind speed dependence similar to that of the noise from a variable speed wind turbine and can therefore mask the latter for a wide range of conditions. However, a problem inherent to the design of these machines is their proclivity to pure tone generation, because of the enhanced difficulty of avoiding structural resonances in the mechanical parts. Pure tones are deemed highly annoying and are severely regulated by most noise policies. In relation to this problem, the vibration transmission of structure-borne sound to the tower of the turbine is investigated, in particular when the tower is stiffened at its upper end. Furthermore, since noise annoyance due to wind turbine is mostly a masking issue, the wind-related sources of ambient noise are studied and their masking potentials assessed. With this aim, prediction models for wind-induced vegetation noise and pseudo-noise have been developed. Finally, closely related to the effect of masking, is the difficulty, regularly encountered by local authorities and wind farm developers, to measure noise immission from wind turbines. A new measurement technique has thus been developed in the course of this work. Through improving the signal-to-noise ratio between wind turbine noise and ambient noise, the new technique yields more accurate measurement results.

  19. Development of a more fish tolerant turbine runner advanced hydropower turbine project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cook, T.C.; Hecker, G.E. [Worcester Polytechnic Inst., Holden, MA (United States). Alden Research Lab.; Faulkner, H.B.; Jansen, W. [Northern Research and Engineering Corp., Cambridge, MA (United States)

    1997-01-01

    The Hidrostal pump is a single bladed combined screw/centrifugal pump which has been proven to transport fish with minimal injury. The focus of the ARL/NREC research project was to develop a new runner geometry which is effective in downstream fish passage and hydroelectric power generation. A flow of 1,000 cfs and a head in the range of 75 ft to 100 ft were selected for conceptual design of the new runner. Criteria relative to hydraulic characteristics which are favorable for fish passage were prepared based on a reassessment of the available information. Important criteria used to develop the new runner design included low pressure change rates, minimum absolute pressures, and minimum shear. Other criteria which are reflected in the runner design are a minimum number of blades (only two), minimum total length of leading edges, and large flow passages. Flow characteristics of the new runner were analyzed using two- dimensional and three-dimensional Computational Fluid Dynamic (CFD) models. The basic runner geometry was initially selected using the two-dimensional model. The three-dimensional model was used to investigate the flow characteristics in detail through the entire runner and to refine the design by eliminating potential problem areas at the leading and trailing edges. Results of the analyses indicated that the runner has characteristics which should provide safe fish passage with an overall power efficiency of approximately 90%. The size of the new runner, which is larger than conventional turbine runners with the same design flow and head, will provide engineering, fabrication, and installation.challenges related to the turbine components and the civil works. A small reduction in the overall efficiency would reduce the size of the runner considerably, would simplify the turbine manufacturing operations, and would allow installation of the new turbine at more hydroelectric sites.

  20. Wind turbines and health

    Energy Technology Data Exchange (ETDEWEB)

    Rideout, K.; Copes, R.; Bos, C. [National Colaborating Centre for Environmental Health, Vancouver, BC (Canada)

    2010-01-15

    This document summarized the potential health hazards associated with wind turbines, such as noise and low frequency sound, vibration and infrasound; electromagnetic fields (EMF); shadow flicker; and ice throw and structural failure. Various symptoms can be attributed to wind turbines, including dizziness, sleep disruption, and headaches. A review of available research regarding potential health affects to residents living in close proximity to wind turbines showed that the sound level associated with wind turbines at common residential setbacks is not sufficient to damage hearing, but may lead to annoyance and sleep disturbance. Research has shown that wind turbines are not a significant source of EMF exposure, and although shadows caused by the blades may be annoying, they are not likely to cause epileptic seizures at normal operational speeds. The risk of injury from ice throw can be minimized with setbacks of 200 to 400 m. Examples of Canadian wind turbine setback guidelines and regulations were also offered. It was concluded that setbacks and operational guidelines can be utilized in combination to address safety hazards, sound levels, land use issues, and impacts on people. 46 refs., 2 tabs., 2 figs.

  1. Axial turbine with underwater generator for energy recovery; Axialturbine mit Unterwassergenerator zur Energierueckgewinnung

    Energy Technology Data Exchange (ETDEWEB)

    Welzel, B. [Stuttgart Univ. (Germany). Inst. fuer Stroemungsmechanik und Hydraulische Stroemungsmaschinen

    1997-12-31

    Within the framework of a project sponsored by the Stiftung Energieforschung Baden-Wuerttemberg, an axial turbine was developed as a flash evaporator, which permits energy recovery in all sectors where liquids in piping undergoes pressure relaxation. A specific feature of this turbine is that it forms part, complete with generator, of a single pipeline and that it does not cause any pressure variations worth mentioning in case of mains failure. The report describes the turbine, its advantages, and a pilot operation carried out with a prototype. The turbine`s performance is compared with a return pump. Further, the optimization of the hydraulic design by computer and the results of a market analysis are dealt with. (orig.) [Deutsch] Im Rahmen einer von der Stiftung Energieforschung Baden-Wuerttemberg gefoerderten Neuentwicklung wurde eine Axialturbine als Entspannungsturbine entwickelt, mit der eine Energierueckgewinnung in allen Bereichen erfolgen kann, in denen Fluessigkeiten in Rohrleitungssystemen entspannt werden. Die Turbine zeichnet sich unter anderem dadurch aus, dass sie komplett, inklusive Generator, innerhalb einer Rohrleitung angeordnet ist und bei Netzausfall keine nennenswerte Druckschwankung erzeugt. Es werden die Turbine, deren Vorteile sowie der mit einem Prototypen durchgefuehrte Betriebsversuch beschrieben. Weiterhin werden ein Vergleich des Betriebsverhaltens mit einer rueckwaertslaufenden Pumpe, die rechnerische Optimierung der hydraulischen Formgebung sowie die Ergebnisse einer Marktanalyse behandelt. (orig.)

  2. Centrifugal pump handbook

    CERN Document Server

    Pumps, Sulzer

    2010-01-01

    This long-awaited new edition is the complete reference for engineers and designers working on pump design and development or using centrifugal pumps in the field. This authoritative guide has been developed with access to the technical expertise of the leading centrifugal pump developer, Sulzer Pumps. In addition to providing the most comprehensive centrifugal pump theory and design reference with detailed material on cavitation, erosion, selection of materials, rotor vibration behavior and forces acting on pumps, the handbook also covers key pumping applications topics and operational

  3. Efficiency improvement for wind energy pumped storage systems

    DEFF Research Database (Denmark)

    Forcos, A.; Marinescu, C.; Teodorescu, Remus

    2011-01-01

    Integrating wind energy into the grid may raise stability problems. Solutions for avoiding these situations are studied and energy storage methods are suitable for balancing the energy between the wind turbine and grid. In this paper, an autonomous wind turbine pumped storage system is presented....... The focus of this paper is to improve the efficiency of this system, which is small at low power levels. The driving motorpump group of the storage system is the key point presented in this paper for efficiency improving. Two control methods, experimentally implemented for induction machine are presented...

  4. SINGLE PHASE ANALYTICAL MODELS FOR TERRY TURBINE NOZZLE

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua; Zhang, Hongbin; Zou, Ling; O' Brien, James

    2016-11-01

    All BWR RCIC (Reactor Core Isolation Cooling) systems and PWR AFW (Auxiliary Feed Water) systems use Terry turbine, which is composed of the wheel with turbine buckets and several groups of fixed nozzles and reversing chambers inside the turbine casing. The inlet steam is accelerated through the turbine nozzle and impacts on the wheel buckets, generating work to drive the RCIC pump. As part of the efforts to understand the unexpected “self-regulating” mode of the RCIC systems in Fukushima accidents and extend BWR RCIC and PWR AFW operational range and flexibility, mechanistic models for the Terry turbine, based on Sandia National Laboratories’ original work, has been developed and implemented in the RELAP-7 code to simulate the RCIC system. RELAP-7 is a new reactor system code currently under development with the funding support from U.S. Department of Energy. The RELAP-7 code is a fully implicit code and the preconditioned Jacobian-free Newton-Krylov (JFNK) method is used to solve the discretized nonlinear system. This paper presents a set of analytical models for simulating the flow through the Terry turbine nozzles when inlet fluid is pure steam. The implementation of the models into RELAP-7 will be briefly discussed. In the Sandia model, the turbine bucket inlet velocity is provided according to a reduced-order model, which was obtained from a large number of CFD simulations. In this work, we propose an alternative method, using an under-expanded jet model to obtain the velocity and thermodynamic conditions for the turbine bucket inlet. The models include both adiabatic expansion process inside the nozzle and free expansion process out of the nozzle to reach the ambient pressure. The combined models are able to predict the steam mass flow rate and supersonic velocity to the Terry turbine bucket entrance, which are the necessary input conditions for the Terry Turbine rotor model. The nozzle analytical models were validated with experimental data and

  5. PUMPED STORAGE ENVIRONMENTAL EFFECTS: ASSESSMENT OF RESEARCH NEEDS

    Energy Technology Data Exchange (ETDEWEB)

    DH. Fickeisen

    1979-09-01

    Pumped storage hydroelectric systems convert large quantities of electrical energy to a form that may be stored and efficiently reconverted to electricity. Water is pumped from a lower reservoir to an upper reservoir during periods of low power demand. The stored water is then used to generate additional power when demand peaks. Since the basic requirements of the system are simple, the design of individual plants and their locations vary widely. These variations make assessment of the generic environmental impact of the pumped storage systems difficult. In addition, most studies have not examined the impacts of an operating plant comprehensively. Assessment of the environmental effects of development and operation of a pumped storage plant requires an extensive set of baseline information, which is deficient in several aspects at the present state of the art. Additional research is needed to: • identify species groups likely to survive and reproduce in pumped storage reservoirs, their relationships and habitat preferences, and the basis for their production; • characterize anticipated reservoir ecosystem community development and relate it to physical characteristics of pumped storage reservoirs; • define effects of plant design and operating parameters on transport of organisms through the pump/turbine facility, accounting for behavior of the organisms potentially impacted; • access the mortality rate of organisms likely to pass through pump-turbines; • identify the relative advantages and disadvantages of screening intake structures to prevent passage of large organisms through the plant; • assess the effects of currents and water withdrawal on migration and movement of aquatic species; • investigate the effects of fluctuating water levels on the littoral zone and riparian communities, effects of stranding on entrapment of fishes, and effects on fish spawning; and • review the applicability of water quality and ecosystem models to pumped storage

  6. Next Generation Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, S. Hossein [Western New England Univ., Springfield, MA (United States); Madden, Frank [FloDesign Wind Turbine Corp., Waltham, MA (United States)

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  7. Next Generation Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, S. Hossein [Western New England University; Madden, Frank [FloDesign Wind Turbine Corp

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually benficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT'w mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  8. Application of wind energy to Great Plains irrigation pumping. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, L.J.; Lyles, L.; Skidmore, E.L.

    1979-10-01

    Wind energy systems without energy storage for irrigation in the Great Plains are studied. Major uses of irrigation energy were identified as pumping for surface distribution systems, which could be supplied by variable flow, and pumping for sprinkler systems using constant flow. A computer program was developed to simulate operation of wind-powered irrigation wells. Pumping by wind turbine systems was simulated for 2 variable and 2 constant flow operational modes in which auxiliary motors were used in 3 of the modes. Using the simulation program, the well yields and maximum pumping rates among the 4 modes as a function of drawdown in a typical well are compared.

  9. Alternative backing up pump for turbomolecular pumps

    Science.gov (United States)

    Myneni, Ganapati Rao

    2003-04-22

    As an alternative to the use of a mechanical backing pump in the application of wide range turbomolecular pumps in ultra-high and extra high vacuum applications, palladium oxide is used to convert hydrogen present in the evacuation stream and related volumes to water with the water then being cryo-pumped to a low pressure of below about 1.e.sup.-3 Torr at 150.degree. K. Cryo-pumping is achieved using a low cost Kleemenco cycle cryocooler, a somewhat more expensive thermoelectric cooler, a Venturi cooler or a similar device to achieve the required minimization of hydrogen partial pressure.

  10. Wind turbine control and monitoring

    CERN Document Server

    Luo, Ningsu; Acho, Leonardo

    2014-01-01

    Maximizing reader insights into the latest technical developments and trends involving wind turbine control and monitoring, fault diagnosis, and wind power systems, 'Wind Turbine Control and Monitoring' presents an accessible and straightforward introduction to wind turbines, but also includes an in-depth analysis incorporating illustrations, tables and examples on how to use wind turbine modeling and simulation software.   Featuring analysis from leading experts and researchers in the field, the book provides new understanding, methodologies and algorithms of control and monitoring, comput

  11. Ceramic stationary gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Roode, M. van [Solar Turbines Inc., San Diego, CA (United States)

    1995-10-01

    The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

  12. Ceramic stationary gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Roode, M. van

    1995-12-31

    The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.

  13. Large electromagnetic pumps. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kilman, G.B.

    1976-01-01

    The development of large electromagnetic pumps for the liquid metal heat transfer systems of fission reactors has progressed for a number of years. Such pumps are now planned for fusion reactors and solar plants as well. The Einstein-Szilard (annular) pump has been selected as the preferred configuration. Some of the reasons that electromagnetic pumps may be preferred over mechanical pumps and why the annular configuration was selected are discussed. A detailed electromagnetic analysis of the annular pump, based on slug flow, is presented. The analysis is then used to explore the implications of large size and power on considerations of electromagnetic skin effect, geometric skin effect and the cylindrical geometry.

  14. Banki turbines with power adjustment

    Energy Technology Data Exchange (ETDEWEB)

    Darzan, Mihai; Dumitrache, Marius

    2010-09-15

    The paper presents features of the BANKI turbine realized by SC. Electra Total Consulting SA Bucharest, member of Energy Services Group, in consortium with STRAERO SA Bucharest. In this way is presented the prototype of this turbine and its performances which recommends it for the interior rivers of Romania compared with the Ossberger and/or Cink turbines.

  15. Predicting Noise From Wind Turbines

    Science.gov (United States)

    Grosveld, Ferdinand W.

    1990-01-01

    Computer program WINDY predicts broadband noise spectra of horizontal-axis wind-turbine generators. Enables adequate assessment of impact of broadband wind-turbine noise. Effects of turbulence, trailing-edge wakes, and bluntness taken into account. Program has practical application in design and siting of wind-turbine machines acceptable to community. Written in GW-Basic.

  16. Parametric Analysis of a Two-Shaft Aeroderivate Gas Turbine of 11.86 MW

    Directory of Open Access Journals (Sweden)

    R. Lugo-Leyte

    2015-08-01

    Full Text Available The aeroderivate gas turbines are widely used for power generation in the oil and gas industry. In offshore marine platforms, the aeroderivative gas turbines provide the energy required to drive mechanically compressors, pumps and electric generators. Therefore, the study of the performance of aeroderivate gas turbines based on a parametric analysis is relevant to carry out a diagnostic of the engine, which can lead to operational as well as predictive and/or corrective maintenance actions. This work presents a methodology based on the exergetic analysis to estimate the irrevesibilities and exergetic efficiencies of the main components of a two-shaft aeroderivate gas turbine. The studied engine is the Solar Turbine Mars 100, which is rated to provide 11.86 MW. In this engine, the air is compressed in an axial compressor achieving a pressure ratio of 17.7 relative to ambient conditions and a high pressure turbine inlet temperature of 1220 °C. Even if the thermal efficiency associated to the pressure ratio of 17.7 is 1% lower than the maximum thermal efficiency, the irreversibilities related to this pressure ratio decrease approximately 1 GW with respect to irreversibilities of the optimal pressure ratio for the thermal efficiency. In addition, this paper contributes to develop a mathematical model to estimate the high turbine inlet temperature as well as the pressure ratio of the low and high pressure turbines.

  17. Turbine airfoil manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Kortovich, C. [PCC Airfoils, Inc., Beachwood, OH (United States)

    1995-10-01

    The efficiency and effectiveness of the gas turbine engine is directly related to the turbine inlet temperatures. The ability to increase these temperatures has occurred as a result of improvements in materials, design, and processing techniques. A generic sequence indicating the relationship of these factors to temperature capability is schematically shown in Figure 1 for aircraft engine and land based engine materials. A basic contribution that is not captured by the Figure is the significant improvement in process and manufacturing capability that has accompanied each of these innovations. It is this capability that has allowed the designs and innovations to be applied on a high volume, cost effective scale in the aircraft gas turbine market.

  18. Wind turbine spoiler

    Science.gov (United States)

    Sullivan, W.N.

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  19. Wind Turbine Acoustics

    Science.gov (United States)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    2009-01-01

    Wind turbine generators, ranging in size from a few kilowatts to several megawatts, are producing electricity both singly and in wind power stations that encompass hundreds of machines. Many installations are in uninhabited areas far from established residences, and therefore there are no apparent environmental impacts in terms of noise. There is, however, the potential for situations in which the radiated noise can be heard by residents of adjacent neighborhoods, particularly those neighborhoods with low ambient noise levels. A widely publicized incident of this nature occurred with the operation of the experimental Mod-1 2-MW wind turbine, which is described in detail elsewhere. Pioneering studies which were conducted at the Mod-1 site on the causes and remedies of noise from wind turbines form the foundation of much of the technology described in this chapter.

  20. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen

    2010-01-01

    , the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However...... MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train....

  1. Pump element for a tube pump

    DEFF Research Database (Denmark)

    2011-01-01

    The invention relates to a tube pump comprising a tube and a pump element inserted in the tube, where the pump element comprises a rod element and a first and a second non-return valve member positioned a distance apart on the rod element. The valve members are oriented in the same direction rela...... to a part of the tube. The invention further relates to a method for creating a flow of a fluid within an at least partly flexible tube by means of a pump element as mentioned above.......The invention relates to a tube pump comprising a tube and a pump element inserted in the tube, where the pump element comprises a rod element and a first and a second non-return valve member positioned a distance apart on the rod element. The valve members are oriented in the same direction...... portion acts to alternately close and open the valve members thereby generating a fluid flow through the tube. The invention further relates to a pump element comprising at least two non-return valve members connected by a rod element, and for insertion in an at least partly flexible tube in such tube...

  2. ADVANCED TURBINE SYSTEMS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing

  3. Vertical axis wind turbines

    Science.gov (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  4. Offshore Wind Turbine Design

    DEFF Research Database (Denmark)

    Frandsen, Sten; Hansen, Erik Asp; Ibsen, Lars Bo

    2006-01-01

    Current offshore wind turbine design methods have matured to a 1st generation state, manifested in the draft of a possible standard, IEC 61400-3 (2005). It is now time to investigate the possibilities of improving existing methods. To do so in an efficient manner a clear identification of the most...... important uncertainty drivers specific for offshore wind turbine design loads is required. Describing the initial efforts in a Danish research project, the paper points to focal points for research and development. These are mainly: soil-structure interaction, improved modelling of wave loads from deep...

  5. Ceramic gas turbine shroud

    Science.gov (United States)

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  6. Aerodynamics of wind turbines

    CERN Document Server

    Hansen, Martin O L

    2015-01-01

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis W

  7. Harnessing geothermal energy with heat pumps : a literature review

    Energy Technology Data Exchange (ETDEWEB)

    Arisi, J.A. [Memorial Univ. of Newfoundland, St. John' s, NL (Canada). Dept. of Civil Engineering

    2009-07-01

    Fossil fuel combustion emits large amounts of greenhouse gases (GHGs) into the atmosphere. Renewable fuel sources that do not have a negative impact on the environment are needed to reduce the risk of climatic change. This abstract discussed recent research related to geothermal energy. Two types of geothermal energy were investigated: (1) deep underground heat using turbines to produce electricity; and (2) shallow depth heat using heat pumps to provide space heating. A review of recent research on shallow depth heat harnessing was presented. The costs and GHG emission reductions related to the installation of a geothermal heat pump system for space heating were also discussed.

  8. Proton pump inhibitors

    Science.gov (United States)

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This ...

  9. Development and diversity and defense-in-depth application of ABWR feedwater pump and controller model

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.-W. [Institute of Nuclear Energy Research, No. 1000, Wenhua Road, Chiaan Village, Longtan Township, Taoyuan County, 32546, Taiwan (China)], E-mail: hwhwang@iner.gov.tw; Shih Chunkuan; Hung, H.-C. [Institute of Nuclear Engineering and Science, National Tsing-Hua University, 101, Section 2 Kuang Fu Road, Hsinchu, Taiwan (China); Chen, M.-H. [Institute of Nuclear Energy Research, No. 1000, Wenhua Road, Chiaan Village, Longtan Township, Taoyuan County, 32546, Taiwan (China); Institute of Nuclear Engineering and Science, National Tsing-Hua University, 101, Section 2 Kuang Fu Road, Hsinchu, Taiwan (China)

    2009-06-15

    This work developed an advanced boiling water reactor (ABWR) feedwater pump and controller model, which was incorporated into Personal Computer Transient Analyzer (PCTran)-ABWR, a nuclear power plant simulation code. The feedwater pump model includes three turbine-driven feedwater pumps and one motor-driven feedwater pump. The feedwater controller includes a one-element/three-element water level controller and a specific feedwater speed controller for each feedwater pump. The performance tests, including step change of dome pressure, feedwater pumps transfer, inadvertent closure of all turbine control valves, and one feedwater pump trip at 100% power, demonstrate the feasibility of dynamic response of stand-alone model and incorporated model. Furthermore, a diversity and defense-in-depth analysis is performed to demonstrate the feasibility for motor-driven feedwater pump as an emergency core cooling system (ECCS) automatic diverse back-up. In Lungmen nuclear power plant (NPP), a diverse manual initiation means for the high pressure core flooder (HPCF) loop C is designed as the back-up of digitalized engineered safety features actuation system (ESFAS). If the motor-driven feedwater pump (MDFWP) can be an automatic digital diverse back-up for ESFAS, Lungmen NPP would be more robust to defend against software common-cause failure (CCF)

  10. Mechanical (turbines and auxiliary equipment)

    CERN Document Server

    Sherry, A; Cruddace, AE

    2013-01-01

    Modern Power Station Practice, Volume 3: Mechanical (Turbines and Auxiliary Equipment) focuses on the development of turbines and auxiliary equipment used in power stations in Great Britain. Topics covered include thermodynamics and steam turbine theory; turbine auxiliary systems such as lubrication systems, feed water heating systems, and the condenser and cooling water plants. Miscellaneous station services, and pipework in power plants are also described. This book is comprised of five chapters and begins with an overview of thermodynamics and steam turbine theory, paying particular attenti

  11. Pump for Saturated Liquids

    Science.gov (United States)

    Elliott, D. G.

    1986-01-01

    Boiling liquids pumped by device based on proven components. Expanding saturated liquid in nozzle and diverting its phases along separate paths in liquid/vapor separator raises pressure of liquid. Liquid cooled in process. Pump makes it unnecessary to pressurize cryogenic liquids in order to pump them. Problems of introducing noncondensable pressurizing gas avoided.

  12. Development of a cooling system for superconducting wind turbine generator

    Science.gov (United States)

    Furuse, Mitsuho; Fuchino, Shuichiro; Okano, Makoto; Natori, Naotake; Yamasaki, Hirofumi

    2016-12-01

    This paper deals with the cooling system for high-Tc superconducting (HTS) generators for large capacity wind turbines. We have proposed a cooling system with a heat exchanger and circulation pumps to cool HTS field windings designed for 10 MW-class superconducting generators. In the cooling system, the refrigerants in the stationary and rotational systems are completely separated; heat between the two systems exchanges using a rotational-stationary heat exchanger. The refrigerant in rotational system is circulated by highly reliable pumps. We designed the rotational-stationary heat exchanger based on a conventional shell-and tube type heat exchanger. We also demonstrated that heat exchange in cryogenic temperature is possible with a commercially available heat exchanger. We devised a novel and highly reliable cryogenic helium circulation pump with magnetic reciprocating rotation system and verified its underlying principle with a small-scale model.

  13. Repair of Kaplan turbine shaft sealing based on evaluation of hydraulic conditions

    Science.gov (United States)

    Lakatos, K.; Szamosi, Z.; Bereczkei, S.

    2012-11-01

    This paper has been written to call attention to a potential danger what may occur in Kaplan turbine refurbishments. In Tiszalök hydropower plant, Hungary, the shaft sealing of the refurbished turbine was damaged. In searching for the reasons it was assumed that due to increased internal velocities in the turbine, the pressure at the hub clearance became lower than the atmospheric pressure, and therefore the sealing, which always operated satisfactorily before the refurbishment, had uncertain water supply, dry-running occurred, and after some time the sealing was burnt. First the flow conditions in the turbine and the pressure at the hub clearance were calculated by a one-dimensional flow model. Later this was refined by a two-dimensional approach. The above conclusion was also justified by the data acquisition system and by observing the operation of the small dewatering pump. When the turbine operated at a larger discharge than a certain limit value, then the dewatering pump remained standstill, indicating that no water passed through the shaft sealing. External water supply was then applied, and after this the turbine operated all right.

  14. Low-thrust chemical propulsion system pump technology

    Science.gov (United States)

    Meadville, J. W.

    1980-01-01

    A study was conducted within the thrust range 450 to 9000 N (100 to 2000 pounds). Performance analyses were made on centrifugal, pitot, Barske, drag, Tesla, gear, piston, lobe, and vane pumps with liquid hydrogen, liquid methane, and liquid oxygen as propellants. Gaseous methane and hydrogen driven axial impulse turbines, vane expanders, piston expanders, and electric motors were studied as drivers. Data are presented on performance, sizes, weights, and estimated service lives and costs.

  15. Advanced Pumped Storage Hydropower and Ancillary Services Provision

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Gevorgian, Vahan; Mohanpurkar, Manish; Luo, Yusheng; Hovsapian, Rob; Koritarov, Vladimir

    2017-07-12

    This paper presents a high-level overview of the capability of advanced pumped storage hydropower to provide ancillary services including frequency regulation and oscillation damping. Type 3 and Type 4 generators are discussed. The examples given are for a small power system that uses a diesel generator as the main generator and a very large system that uses a gas turbine as the main generator.

  16. Improving the Energy Efficiency of Pumped-Storage Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Artyukh, S. F., E-mail: artjuch@mail.ru [Kharkov Polytechnic Institute (Ukraine); Galat, V. V. [JSC “UkrHydroEnergo” (Ukraine); Kuz’min, V. V. [JSC “Interregional Electricity Association ELTA” (Ukraine); Chervonenko, I. I. [Kharkov Polytechnic Institute (Ukraine); Shakaryan, Yu. G.; Sokur, P. V. [JSC “R& D Center at Federal Grid Company of Unified Energy System” (Russian Federation)

    2015-01-15

    Possible ways to improve the energy efficiency of hydroelectric generating sets of pumped-storage power plants (PSPPs) are studied. The Kiev PSPP is used as an example to show how its generating sets can be upgraded. It is concluded based on studies conducted that synchronous motor-generators should be replaced with asynchronized motor-generators. The feasibility of changing over the turbine to variable-speed operation is shown.

  17. Using rotor or tip speed in the acoustical analysis of small wind turbines

    Science.gov (United States)

    Acoustical noise data have been collected and analyzed on small wind turbines used for water pumping at the USDA-ARS Conservation and Production Research Laboratory (CPRL) near Bushland, Texas. This acoustical analysis differed from previous research in that the data were analyzed with rotor or tip ...

  18. Wind Turbine Blade

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to a blade for a wind turbine, particularly to a blade that may be produced by an advanced manufacturing process for producing a blade with high quality structural components. Particularly, the structural components, which are preferably manufactured from fibre reinforced...

  19. Turbine exhaust pressure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Burns, J.M. [Stone & Webster Engineering Corp., Boston, MA (United States); Hernandez, E. [Community Energy Alternatives Inc., Ridgewood, NJ (United States)

    1996-05-01

    This paper discusses the dynamic operating environment in the turbine-condenser steam space and the two sensors, basket tips and guideplates, that have been approved by ASME test codes for measurement of the static pressure within that exhaust region. It defines the rigorous geometry and construction requirements of these sensors in order that they be acceptable for guarantee/acceptance testing. The paper also offers a practical alternative to the classical ASME PTC 6 (Turbine Test Code) basket tip design that is easier to fabricate in the typical utility machine shop. The alternative design makes it less expensive, much faster to construct, and facilitates the drainage of any accumulated condensate. Comparative field tests by PSE&G`s Research and Testing Laboratory conducted in 1995 at the 300 MW Mercer Generating Station, Unit 1 will be described which demonstrate the modified basket tip pressure measurements are statistically indistinguishable from those of the PTC 6 design. Noting that basket tip turbine exhaust static pressure sensors are recommended by all the major U.S. turbine manufacturers, the paper also presents the limited available history of the empirical basket tip and the lack of any documented calibration history related to the accuracy of the guideplate. Finally, based on the success of this one basket tip variation, the paper concludes that other even more suitable designs could be developed by further research.

  20. Radial gas turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Krausche, S.; Ohlsson, Johan

    1998-04-01

    The objective of this work was to develop a program dealing with design point calculations of radial turbine machinery, including both compressor and turbine, with as few input data as possible. Some simple stress calculations and turbine metal blade temperatures were also included. This program was then implanted in a German thermodynamics program, Gasturb, a program calculating design and off-design performance of gas turbines. The calculations proceed with a lot of assumptions, necessary to finish the task, concerning pressure losses, velocity distribution, blockage, etc., and have been correlated with empirical data from VAT. Most of these values could have been input data, but to prevent the user of the program from drowning in input values, they are set as default values in the program code. The output data consist of geometry, Mach numbers, predicted component efficiency etc., and a number of graphical plots of geometry and velocity triangles. For the cases examined, the error in predicted efficiency level was within {+-} 1-2% points, and quite satisfactory errors in geometrical and thermodynamic conditions were obtained Examination paper. 18 refs, 36 figs

  1. Turbine imaging technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    Moursund, R. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, T. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2004-12-01

    The goal of this project was to identify and evaluate imaging technologies for observing juvenile fish within a Kaplan turbine, and specifically that would enable scientists to determine mechanisms of fish injury within an operating turbine unit. This report documents the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. These observations were used to make modifications to dam structures and operations to improve conditions for fish passage while maintaining or improving hydropower production. The physical and hydraulic environment that fish experience as they pass through the hydroelectric plants were studied and the regions with the greatest potential for injury were defined. Biological response data were also studied to determine the probable types of injuries sustained in the turbine intake and what types of injuries are detectable with imaging technologies. The study grouped injury-causing mechanisms into two categories: fluid (pressure/cavitation, shear, turbulence) and mechanical (strike/collision, grinding/pinching, scraping). The physical constraints of the environment, together with the likely types of injuries to fish, provided the parameters needed for a rigorous imaging technology evaluation. Types of technology evaluated included both tracking and imaging systems using acoustic technologies (such as sonar and acoustic tags) and optic technologies (such as pulsed-laser videography, which is high-speed videography using a laser as the flash). Criteria for determining image data quality such as frame rate, target detectability, and resolution were used to quantify the minimum requirements of an imaging sensor.

  2. Wind turbine airfoil catalogue

    DEFF Research Database (Denmark)

    Bertagnolio, F.; Sørensen, Niels N.; Johansen, Jeppe

    2001-01-01

    The aim of this work is two-sided. Firstly, experimental results obtained for numerous sets of airfoil measurements (mainly intended for wind turbine applications) are collected and compared with computational results from the 2D Navier-Stokes solverEllipSys2D, as well as results from the panel...

  3. Wind Turbine Blade

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to a blade for a wind turbine, particularly to a blade that may be produced by an advanced manufacturing process for producing a blade with high quality structural components. Particularly, the structural components, which are preferably manufactured from fibre reinforced...

  4. Piezoelectric wind turbine

    Science.gov (United States)

    Kishore, Ravi Anant; Priya, Shashank

    2013-03-01

    In past few years, there has been significant focus towards developing small scale renewable energy based power sources for powering wireless sensor nodes in remote locations such as highways and bridges to conduct continuous health monitoring. These prior efforts have led to the development of micro-scale solar modules, hydrogen fuel cells and various vibration based energy harvesters. However, the cost effectiveness, reliability, and practicality of these solutions remain a concern. Harvesting the wind energy using micro-to-small scale wind turbines can be an excellent solution in variety of outdoor scenarios provided they can operate at few miles per hour of wind speed. The conventional electromagnetic generator used in the wind mills always has some cogging torque which restricts their operation above certain cut-in wind speed. This study aims to develop a novel piezoelectric wind turbine that utilizes bimorph actuators for electro-mechanical energy conversion. This device utilizes a Savonius rotor that is connected to a disk having magnets at the periphery. The piezoelectric actuators arranged circumferentially around the disk also have magnets at the tip which interacts with the magnetic field of the rotating disk and produces cyclical deflection. The wind tunnel experiments were conducted between 2-12 mph of wind speeds to characterize and optimize the power output of the wind turbine. Further, testing was conducted in the open environment to quantify the response to random wind gusts. An attempt was made towards integration of the piezoelectric wind turbine with the wireless sensor node.

  5. A Novel Pumped Hydro Combined with Compressed Air Energy Storage System

    OpenAIRE

    Erren Yao; Xinbing Wang; Liqin Wang; Huanran Wang

    2013-01-01

    A novel pumped hydro combined with compressed air energy storage (PHCA) system is proposed in this paper to resolve the problems of bulk energy storage in the wind power generation industry over an area in China, which is characterised by drought and water shortages. Thermodynamic analysis of the energy storage system, which focuses on the pre-set pressure, storage volume capacity, water air volume ratio, pump performance, and water turbine performance of the storage system, is also presented...

  6. Application requirements for wind turbine gearboxes

    Science.gov (United States)

    Errichello, Robert; Muller, Jane

    1994-09-01

    This report is a technical guide which documents the wind turbine gearbox experience of the GEARTECH consulting firm. The report provides a reference on wind turbine gearbox applications for the gear industry, wind turbine designers, and wind turbine operators. This report will assist in selecting, designing, manufacturing, procuring, operating, and maintaining gearboxes for use on wind turbines.

  7. Water turbine technology for small power stations

    Science.gov (United States)

    Salovaara, T.

    1980-02-01

    The paper examines hydro-power stations and the efficiency and costs of using water turbines to run them. Attention is given to different turbine types emphasizing the use of Kaplan-turbines and runners. Hydraulic characteristics and mechanical properties of low head turbines and small turbines, constructed of fully fabricated steel plate structures, are presented.

  8. Simulasi Numerik Penggunaan Pompa Sebagai Turbin Pada Pembangkit Listrik Tenaga Mikro Hidro (Pltmh) Dengan Head 9,29 M Dan 5,18 M Menggunakan Perangkat Lunak Cfd Pada Pipa Berdiameter 10,16 Cm

    OpenAIRE

    Rafli, Deni

    2013-01-01

    The use of water in turbine power generation systems is still very dominant because only utilize the available water flow in nature. Usually the pump is driven by an electric motor to raise the amount of water to a certain height. On the application of the pump as turbine (PAT), the working principle of the pump is reversed, such as given water falling from a certain height to rotate the pump impeller. Round impeller will be forwarded to turn a generator to produce electricity. In its use to ...

  9. Advanced Load Alleviation for Wind Turbines using Adaptive Trailing Edge Flaps: Sensoring and Control

    DEFF Research Database (Denmark)

    Andersen, Peter Bjørn

    The purpose of wind turbines and their predecessors the windmill, is to convert the energy in the wind to usable energy forms. Whereas windmills of the past focused on the conversion of wind power to torque for grinding, pumping and winching, modern wind turbines convert the wind energy...... into electric power. They do so through incorporation of generators, which convert mechanical torque into electricity. Wind turbines are designed to keep the overall cost per produced Kilo Watt hour as low as possible. One way of improving the performance and lifetime of the wind turbine is through active flow...... control. Active control is often considered costly but if the lifespan of the components can be increased it could be justifiable. This thesis covers various aspects of ‘smart control’ such as control theory, sensoring, optimization, experiments and numerical modeling....

  10. Advanced load alleviation for wind turbines using adaptive trailing edge flaps: Sensoring and control

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Peter Bjoern

    2010-02-15

    The purpose of wind turbines and their predecessors the windmill, is to convert the energy in the wind to usable energy forms. Whereas windmills of the past focused on the conversion of wind power to torque for grinding, pumping and winching, modern wind turbines convert the wind energy into electric power. They do so through incorporation of generators, which convert mechanical torque into electricity. Wind turbines are designed to keep the overall cost per produced Kilo Watt hour as low as possible. One way of improving the performance and lifetime of the wind turbine is through active flow control. Active control is often considered costly but if the lifespan of the components can be increased it could be justifiable. This thesis covers various aspects of 'smart control' such as control theory, sensoring, optimization, experiments and numerical modeling. (author)

  11. From the water wheel to turbines and hydroelectricity. Technological evolution and revolutions

    Science.gov (United States)

    Viollet, Pierre-Louis

    2017-08-01

    Since its appearance in the first century BC, the water wheel has developed with increasing pre-industrial activities, and has been at the origin of the industrial revolution for metallurgy, textile mills, and paper mills. Since the nineteenth century, the water wheel has become highly efficient. The reaction turbine appeared by 1825, and continued to undergo technological development. The impulsion turbine appeared for high chutes, by 1880. Other turbines for low-head chutes were further designed. Turbine development was associated, after 1890, with the use of hydropower to generate electricity, both for industrial activities, and for the benefits of cities. A model ;one city + one plant; was followed in the twentieth century by more complex and efficient schemes when electrical interconnection developed, together with pumped plants for energy storage.

  12. Turbine repair process, repaired coating, and repaired turbine component

    Energy Technology Data Exchange (ETDEWEB)

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  13. SMART POWER TURBINE

    Energy Technology Data Exchange (ETDEWEB)

    Nirm V. Nirmalan

    2003-11-01

    Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was

  14. Proposed Wind Turbine Aeroelasticity Studies Using Helicopter Systems Analysis

    Science.gov (United States)

    Ladkany, Samaan G.

    1998-01-01

    Advanced systems for the analysis of rotary wing aeroelastic structures (helicopters) are being developed at NASA Ames by the Rotorcraft Aeromechanics Branch, ARA. The research has recently been extended to the study of wind turbines, used for electric power generation Wind turbines play an important role in Europe, Japan & many other countries because they are non polluting & use a renewable source of energy. European countries such as Holland, Norway & France have been the world leaders in the design & manufacture of wind turbines due to their historical experience of several centuries, in building complex wind mill structures, which were used in water pumping, grain grinding & for lumbering. Fossil fuel cost in Japan & in Europe is two to three times higher than in the USA due to very high import taxes. High fuel cost combined with substantial governmental subsidies, allow wind generated power to be competitive with the more traditional sources of power generation. In the USA, the use of wind energy has been limited mainly because power production from wind is twice as expensive as from other traditional sources. Studies conducted at the National Renewable Energy Laboratories (NREL) indicate that the main cost in the production of wind turbines is due to the materials & the labor intensive processes used in the construction of turbine structures. Thus, for the US to assume world leadership in wind power generation, new lightweight & consequently very flexible wind turbines, that could be economically mass produced, would have to be developed [4,5]. This effort, if successful, would result in great benefit to the US & the developing nations that suffer from overpopulation & a very high cost of energy.

  15. Design of Wind Turbine Vibration Monitoring System

    National Research Council Canada - National Science Library

    Shoubin Wang; Wei Gong; Gang Su; Hongyue Sun

    2013-01-01

    In order to ensure safety of wind turbine operation and to reduce the occurrence of faults as well as to improve the reliability of wind turbine operation, a vibration monitoring for wind turbine is developed...

  16. Air Turbines for Wave Energy Conversion

    Directory of Open Access Journals (Sweden)

    Manabu Takao

    2012-01-01

    Full Text Available This paper describes the present status of the art on air turbines, which could be used for wave energy conversion. The air turbines included in the paper are as follows: Wells type turbines, impulse turbines, radial turbines, cross-flow turbine, and Savonius turbine. The overall performances of the turbines under irregular wave conditions, which typically occur in the sea, have been compared by numerical simulation and sea trial. As a result, under irregular wave conditions it is found that the running and starting characteristics of the impulse type turbines could be superior to those of the Wells turbine. Moreover, as the current challenge on turbine technology, the authors explain a twin-impulse turbine topology for wave energy conversion.

  17. Development of the helical reaction hydraulic turbine. Final technical report, July 1, 1996--June 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Gorlov, A.

    1998-08-01

    The present report contains the final results obtained during July 1996--July 1998. This report should be considered in association with the Annual Progress Report submitted in July 1997 due to the fact that not all of the intermediate results reflected in the Progress Report have been included in the Final Report. The aim of the project was to build a helical hydraulic turbine prototype and demonstrate its suitability and advantages as a novel apparatus to harness hydropower from ultra low-head rivers and other free water streams such as ocean currents or rivers without dams. The research objectives of the project are: Design, optimization and selection of the hydro foil section for the helical turbine; Design of the turbine for demonstration project; Construction and testing of the turbine module; Assessing test results and determining scale-up feasibility. The research conducted under this project has substantially exceeded the original goals including designing, constructing and testing of a scaled-up triple-helix turbine, as well as developing recommendations for application of the turbine for direct water pumping in irrigation systems and for future use in wind farms. Measurements collected during two years of turbine testing are kept in the PI files.

  18. Fuel flexibility via real-time Raman fuel-gas analysis for turbine system control

    Science.gov (United States)

    Buric, M.; Woodruff, S.; Chorpening, B.; Tucker, D.

    2015-06-01

    The modern energy production base in the U.S. is increasingly incorporating opportunity fuels such as biogas, coalbed methane, coal syngas, solar-derived hydrogen, and others. In many cases, suppliers operate turbine-based generation systems to efficiently utilize these diverse fuels. Unfortunately, turbine engines are difficult to control given the varying energy content of these fuels, combined with the need for a backup natural gas supply to provide continuous operation. Here, we study the use of a specially designed Raman Gas Analyzer based on capillary waveguide technology with sub-second response time for turbine control applications. The NETL Raman Gas Analyzer utilizes a low-power visible pump laser, and a capillary waveguide gas-cell to integrate large spontaneous Raman signals, and fast gas-transfer piping to facilitate quick measurements of fuel-gas components. A U.S. Department of Energy turbine facility known as HYPER (hybrid performance system) serves as a platform for apriori fuel composition measurements for turbine speed or power control. A fuel-dilution system is used to simulate a compositional upset while simultaneously measuring the resultant fuel composition and turbine response functions in real-time. The feasibility and efficacy of system control using the spontaneous Raman-based measurement system is then explored with the goal of illustrating the ability to control a turbine system using available fuel composition as an input process variable.

  19. Promising Direction of Perfection of the Utilization Combine Cycle Gas Turbine Units

    Directory of Open Access Journals (Sweden)

    Gabdullina Albina I.

    2017-01-01

    Full Text Available Issues of improving the efficiency of combined cycle gas turbines (CCGT recovery type have been presented. Efficiency gas turbine plant reaches values of 45 % due to rise in temperature to a gas turbine to 1700 °C. Modern technologies for improving the cooling gas turbine components and reducing the excess air ratio leads to a further increase of the efficiency by 1-2 %. Based on research conducted at the Tomsk Polytechnic University, it shows that the CCGT efficiency can be increased by 2-3 % in the winter time due to the use of organic Rankine cycle, low-boiling substances, and air-cooled condensers (ACC. It is necessary to apply the waste heat recovery with condensation of water vapor from the flue gas, it will enhance the efficiency of the CCGT by 2-3 % to increase the efficiency of the heat recovery steam boiler (HRSB to 10-12 %. Replacing electric pumps gas turbine engine (GTE helps to reduce electricity consumption for auxiliary needs CCGT by 0.5-1.5 %. At the same time the heat of flue gas turbine engine may be useful used in HRSB, thus will increase the capacity and efficiency of the steam turbine.

  20. Wind Turbine Providing Grid Support

    DEFF Research Database (Denmark)

    2011-01-01

    A variable speed wind turbine is arranged to provide additional electrical power to counteract non-periodic disturbances in an electrical grid. A controller monitors events indicating a need to increase the electrical output power from the wind turbine to the electrical grid. The controller...... is arranged to control the wind turbine as follows: after an indicating event has been detected, the wind turbine enters an overproduction period in which the electrical output power is increased, wherein the additional electrical output power is taken from kinetic energy stored in the rotor and without...... changing the operation of the wind turbine to a more efficient working point.; When the rotational speed of the rotor reaches a minimum value, the wind turbine enters a recovery period to re-accelerate the rotor to the nominal rotational speed while further contributing to the stability of the electrical...

  1. Reliability Analysis of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In order to minimise the total expected life-cycle costs of a wind turbine it is important to estimate the reliability level for all components in the wind turbine. This paper deals with reliability analysis for the tower and blades of onshore wind turbines placed in a wind farm. The limit states...... consideres are in the ultimate limit state (ULS) extreme conditions in the standstill position and extreme conditions during operating. For wind turbines, where the magnitude of the loads is influenced by the control system, the ultimate limit state can occur in both cases. In the fatigue limit state (FLS......) the reliability level for a wind turbine placed in a wind farm is considered, and wake effects from neighbouring wind turbines is taken into account. An illustrative example with calculation of the reliability for mudline bending of the tower is considered. In the example the design is determined according...

  2. Introduction to wind turbine aerodynamics

    CERN Document Server

    Schaffarczyk, Alois Peter

    2014-01-01

    Wind-Turbine Aerodynamics is a self-contained textbook which shows how to come from the basics of fluid mechanics to modern wind turbine blade design. It presents a fundamentals of fluid dynamics and inflow conditions, and gives a extensive introduction into theories describing the aerodynamics of wind turbines. After introducing experiments the book applies the knowledge to explore the impact on blade design.The book is an introduction for professionals and students of very varying levels.

  3. Baseline Gas Turbine Development Program. Eleventh quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, F.W.; Wagner, C.E.

    1975-07-31

    Progress is reported for a program to demonstrate by 1976 an experimental gas turbine powered automobile which meets the 1978 Federal Emissions Standards, has significantly improved fuel economy, and is competitive in performance, reliability, and potential manufacturing cost with the conventional piston engine powered, standard size American automobile. NASA completed initial heat balance testing of a baseline engine. An additional 450 hours were run on ceramic regenerators and seals. Seal wear rates are very good, and the elastomeric mounting system was satisfactory. An engine/control oil supply system based on the power steering pump is successfully operating in baseline vehicles. The design of the upgraded engine power turbine nozzle actuator was finalized, and layouts of the inlet guide vane actuator are in process. A lock-up torque converter was installed in the free rotor vehicle. Baseline engine and vehicle testing of water injection and variable inlet guide vanes was completed. A thermal analysis of the gas generator is in process. A steady-state, full power analysis was made. A three-dimensional stress analysis of the compressor cover was made. The power turbine nozzle actuating system layout was completed. The analytical studies of the power turbine rotor bearings were completed. MTI completed the design of the gas generator rotor simulation fixture and is starting to build it. Optimized reduction gears were successfully tested in a baseline engine.

  4. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Marra, John [Siemens Energy, Inc., Orlando, FL (United States)

    2015-09-30

    Under the sponsorship of the U.S. Department of Energy (DOE) National Energy Technology Laboratories, Siemens has completed the Advanced Hydrogen Turbine Development Program to develop an advanced gas turbine for incorporation into future coal-based Integrated Gasification Combined Cycle (IGCC) plants. All the scheduled DOE Milestones were completed and significant technical progress was made in the development of new technologies and concepts. Advanced computer simulations and modeling, as well as subscale, full scale laboratory, rig and engine testing were utilized to evaluate and select concepts for further development. Program Requirements of: A 3 to 5 percentage point improvement in overall plant combined cycle efficiency when compared to the reference baseline plant; 20 to 30 percent reduction in overall plant capital cost when compared to the reference baseline plant; and NOx emissions of 2 PPM out of the stack. were all met. The program was completed on schedule and within the allotted budget

  5. Forecasting Turbine Icing Events

    DEFF Research Database (Denmark)

    Davis, Neil; Hahmann, Andrea N.; Clausen, Niels-Erik;

    2012-01-01

    is not shut down for its protection. We also found that there is a a large spread across the various turbines within a wind park, in the amount of icing. This is currently not taken into account by our model. Evaluating and adding these small scale differences to the model will be undertaken as future work....... accumulations, which have not been seen in observations. In addition to the model evaluation we were able to investigate the potential occurrence of ice induced power loss at two wind parks in Europe using observed data. We found that the potential loss during an icing event is large even when the turbine......In this study, we present a method for forecasting icing events. The method is validated at two European wind farms in with known icing events. The icing model used was developed using current ice accretion methods, and newly developed ablation algorithms. The model is driven by inputs from the WRF...

  6. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Joesph Fadok

    2008-01-01

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the

  7. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Joesph Fadok

    2008-01-01

    Siemens has developed a roadmap to achieve the DOE goals for efficiency, cost reduction, and emissions through innovative approaches and novel technologies which build upon worldwide IGCC operational experience, platform technology, and extensive experience in G-class operating conditions. In Phase 1, the technologies and concepts necessary to achieve the program goals were identified for the gas turbine components and supporting technology areas and testing plans were developed to mitigate identified risks. Multiple studies were conducted to evaluate the impact in plant performance of different gas turbine and plant technologies. 2015 gas turbine technologies showed a significant improvement in IGCC plant efficiency, however, a severe performance penalty was calculated for high carbon capture cases. Thermodynamic calculations showed that the DOE 2010 and 2015 efficiency targets can be met with a two step approach. A risk management process was instituted in Phase 1 to identify risk and develop mitigation plans. For the risks identified, testing and development programs are in place and the risks will be revisited periodically to determine if changes to the plan are necessary. A compressor performance prediction has shown that the design of the compressor for the engine can be achieved with additional stages added to the rear of the compressor. Tip clearance effects were studied as well as a range of flow and pressure ratios to evaluate the impacts to both performance and stability. Considerable data was obtained on the four candidate combustion systems: diffusion, catalytic, premix, and distributed combustion. Based on the results of Phase 1, the premixed combustion system and the distributed combustion system were chosen as having the most potential and will be the focus of Phase 2 of the program. Significant progress was also made in obtaining combustion kinetics data for high hydrogen fuels. The Phase 1 turbine studies indicate initial feasibility of the

  8. Central Control of Heat Pump for Smart Grid Purposes Tested on Single Family Houses

    DEFF Research Database (Denmark)

    Pedersen, Tom S.; Andersen, Palle; Nielsen, Kirsten M.

    2013-01-01

    A challenge in Denmark in the near future is to balance the electrical grid due to a large increase in the renewable energy production mainly from wind turbines. In this work a central control system using heat pumps in single family houses to help balancing the grid is investigated. The central...

  9. Central Control of Heat Pump for Smart Grid Purposes Tested on Single Family Houses

    DEFF Research Database (Denmark)

    Pedersen, Tom S.; Andersen, Palle; Nielsen, Kirsten M.

    2013-01-01

    A challenge in Denmark in the near future is to balance the electrical grid due to a large increase in the renewable energy production mainly from wind turbines. In this work a central control system using heat pumps in single family houses to help balancing the grid is investigated. The central...

  10. Turbine Development in China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In view of the development of the electric power industry in China,in this paper,the author expounds the development of turbine manufacturing industry in recent years and analyses the development trends of the industry in the future,involving domestic market demand,the adjustment of power sources' structure,independent research and development and innovation,product structural adjustment,product technical level,enterprise management and market service,etc.

  11. Turbine Development in China

    Institute of Scientific and Technical Information of China (English)

    Zheng Jianfu; Li Jialu

    2009-01-01

    @@ In view of the development of the electric power industry in China,in this paper,the author expounds the development of turbine manufacturing industry in recent years and analyses the development trends of the industry in the future,involving domestic market demand,the adjustment of power sources' structure,independent research and development and innovation,product structural adjustment,product technical level,enterprise management and market service,etc.

  12. Wind Turbine Radar Cross Section

    Directory of Open Access Journals (Sweden)

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  13. Controls of Hydraulic Wind Turbine

    Directory of Open Access Journals (Sweden)

    Zhang Yin

    2016-01-01

    Full Text Available In this paper a hydraulic wind turbine generator system was proposed based on analysis the current wind turbines technologies. The construction and principles were introduced. The mathematical model was verified using MATLAB and AMsim. A displacement closed loop of swash plate of motor and a speed closed loop of generator were setup, a PID control is introduced to maintain a constant speed and fixed frequency at wind turbine generator. Simulation and experiment demonstrated that the system can connect grid to generate electric and enhance reliability. The control system demonstrates a high performance speed regulation and effectiveness. The results are great significant to design a new type hydraulic wind turbine system.

  14. Regenerative superheated steam turbine cycles

    Science.gov (United States)

    Fuller, L. C.; Stovall, T. K.

    1980-01-01

    PRESTO computer program was developed to analyze performance of wide range of steam turbine cycles with special attention given to regenerative superheated steam turbine cycles. It can be used to model standard turbine cycles, including such features as process steam extraction, induction and feedwater heating by external sources, peaking, and high back pressure. Expansion line efficiencies, exhaust loss, leakages, mechanical losses, and generator losses are used to calculate cycle heat rate and generator output. Program provides power engineer with flexible aid for design and analysis of steam turbine systems.

  15. Biomass combustion gas turbine CHP

    Energy Technology Data Exchange (ETDEWEB)

    Pritchard, D.

    2002-07-01

    This report summarises the results of a project to develop a small scale biomass combustor generating system using a biomass combustor and a micro-gas turbine indirectly fired via a high temperature heat exchanger. Details are given of the specification of commercially available micro-turbines, the manufacture of a biomass converter, the development of a mathematical model to predict the compatibility of the combustor and the heat exchanger with various compressors and turbines, and the utilisation of waste heat for the turbine exhaust.

  16. Turbine and Structural Seals Team Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — Seals Team Facilities conceive, develop, and test advanced turbine seal concepts to increase efficiency and durability of turbine engines. Current projects include...

  17. Gas turbine heat transfer and cooling technology

    CERN Document Server

    Han, Je-Chin; Ekkad, Srinath

    2012-01-01

    FundamentalsNeed for Turbine Blade CoolingTurbine-Cooling TechnologyTurbine Heat Transfer and Cooling IssuesStructure of the BookReview Articles and Book Chapters on Turbine Cooling and Heat TransferNew Information from 2000 to 2010ReferencesTurbine Heat TransferIntroductionTurbine-Stage Heat TransferCascade Vane Heat-Transfer ExperimentsCascade Blade Heat TransferAirfoil Endwall Heat TransferTurbine Rotor Blade Tip Heat TransferLeading-Edge Region Heat TransferFlat-Surface Heat TransferNew Information from 2000 to 20102.10 ClosureReferencesTurbine Film CoolingIntroductionFilm Cooling on Rotat

  18. Turbine and Structural Seals Team Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — Seals Team Facilities conceive, develop, and test advanced turbine seal concepts to increase efficiency and durability of turbine engines. Current projects include...

  19. Tornado type wind turbines

    Science.gov (United States)

    Hsu, Cheng-Ting

    1984-01-01

    A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

  20. Detection of pump degradation

    Energy Technology Data Exchange (ETDEWEB)

    Greene, R.H.; Casada, D.A.; Ayers, C.W. [and others

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented.

  1. Detection of pump degradation

    Energy Technology Data Exchange (ETDEWEB)

    Casada, D. [Oak Ridge National Lab., TN (United States)

    1995-04-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous special vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Pump head and flow rate are also monitored, per code requirements. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition; advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed.

  2. Optically pumped atoms

    CERN Document Server

    Happer, William; Walker, Thad

    2010-01-01

    Covering the most important knowledge on optical pumping of atoms, this ready reference is backed by numerous examples of modelling computation for optical pumped systems. The authors show for the first time that modern scientific computing software makes it practical to analyze the full, multilevel system of optically pumped atoms. To make the discussion less abstract, the authors have illustrated key points with sections of MATLAB codes. To make most effective use of contemporary mathematical software, it is especially useful to analyze optical pumping situations in the Liouville spa

  3. Champagne Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  4. Theory of wind-electric water pumping

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, M.; Probst, O. [Instituto Tecnologico y de Estudios Superiores de Monterrey (Mexico). Physics Dept.; Instituto Tecnologico y de Estudios Superiores de Monterrey (Mexico). Center for Energy Studies; Acevedo, S. [Instituto Tecnologico y de Estudios Superiores de Monterrey (Mexico). Center for Energy Studies; Instituto Tecnologico y de Estudios Superiores de Monterrey (Mexico). Dept. of Electrical Engineering

    2004-05-01

    A proper understanding of the electrical and mechanical behavior of the system and its components is essential for the successful operation of a wind-electric pumping system. In the present article we present a formal theory of such a system, developing a framework for the determination of the steady-state operating point, as well as the study of its transient behavior, particularly at start-up. It is shown that the sufficient accumulation of kinetic energy in the wind turbine before connecting it to its load is critical for a successful start-up, even when the system has been designed to function at optimal steady-state conditions. A detailed discussion of the start-up process in terms of stored kinetic energy in the braking power provided by both the pump and the electrical system losses is given. The results of this analysis are believed to be useful both for the steady-state design of wind-electric pumping systems, as well as the optimization of control schemes and energy capture. (author)

  5. Resonance wave pumping: wave mass transport pumping

    Science.gov (United States)

    Carmigniani, Remi; Violeau, Damien; Gharib, Morteza

    2016-11-01

    It has been previously reported that pinching at intrinsic resonance frequencies a valveless pump (or Liebau pump) results in a strong pulsating flow. A free-surface version of the Liebau pump is presented. The experiment consists of a closed tank with a submerged plate separating the water into a free-surface and a recirculation section connected through two openings at each end of the tank. A paddle is placed at an off-centre position at the free-surface and controlled in a heaving motion with different frequencies and amplitudes. Near certain frequencies identified as resonance frequencies through a linear potential theory analysis, the system behaves like a pump. Particle Image Velocimetry (PIV) is performed in the near free surface region and compared with simulations using Volume of Fluid (VOF) method. The mean eulerian mass flux field (ρ) is extracted. It is observed that the flow is located in the vicinity of the surface layer suggesting Stokes Drift (or Wave Mass Transport) is the source of the pumping. A model is developped to extend the linear potential theory to the second order to take into account these observations. The authors would like to acknowledge the Gordon and Betty Moore Foundation for their generous support.

  6. Composite wind turbine blades

    Science.gov (United States)

    Ong, Cheng-Huat

    Researchers in wind energy industry are constantly moving forward to develop higher efficiency wind turbine. One major component for wind turbine design is to have cost effective wind turbine blades. In addition to correct aerodynamic shape and blade geometry, blade performance can be enhanced further through aero-elastic tailoring design and material selections. An analytical tool for blade design has been improved and validated. This analytical tool is utilized to resolve issues related to elastic tailoring design. The investigation looks into two major issues related to the design and fabrication of a bend-twist-coupled blade. Various design parameters for a blade such as materials, laminate lay-up, skin thickness, ply orientation, internal spar, etc. have been examined for designing a bend-twist-coupled blade. The parametric study indicates that the critical design parameters are the ply material, the ply orientation, and the volume fraction ratio between the anisotropic layers and orthotropic layers. To produce a blade having the bend-twist coupling characteristics, the fiber lay-ups at the top and bottom skins of the blade must have a "mirror" lay-up in relation to the middle plane of the blade. Such lay-up causes fiber discontinuation at the seam. The joint design at the seam is one major consideration in fabricating a truly anisotropic blade. A new joint design was proposed and tensile failure tests were carried out for both the old and new joint designs. The tests investigated the effects of different types of joint designs, the laminate lay-up at the joints, and the stacking sequence of the joint retention strength. A major component of a wind turbine blade, D-spar, was designed to maximum coupling. Two D-spars were then fabricated using the new joint design; one of them was subjected to both static and modal testings. Traditionally, wind turbine blades are made of low cost glass material; however, carbon fibers are proposed as alternative material. Our

  7. Preliminary design study of Underground Pumped Hydro and compressed-air energy storage in hard rock. Volume 8: Design approaches. UPH, Appendix D: Power plant

    Science.gov (United States)

    1981-06-01

    Studies were undertaken to determine power plant arrangements for a single stage reversible pump turbine two step underground pumped hydro (UPH) installation and for a multi-stage reversible pump turbine single step (MSRPT) UPH installation. Arrangements consist of: the underground powerhouses; transformer galleries; associated mechanical and electrical equipment; the administration and control building; hoist head frames; the access; draft tube and bus tunnels; and the switchyard. Primary considerations including the number and size of pump turbine and motor generator units, starting methods, transformers, high voltage connections, geotechnical and construction aspects and safety were studied. A feasibility analysis to minimize costs was conducted. The study led to the selection of suitable equipment and layouts for the powerhouses, transformer galleries, and associated facilities. The material presented and also the cost estimates are based on the requirements for a 2000 MW plant providing 20,000 MWh of storage with a nominal head of 4600 ft.

  8. Demanding pump power; Krevende pumpekraft

    Energy Technology Data Exchange (ETDEWEB)

    Lie, Oeyvind

    2011-07-01

    The potential for pump power in Norway is huge, but it is difficult to exploit it. Norway has some pumping plants, but these are built for seasonal pumping (pumping up to the magazine in the summer, and production in the winter). Pump power plants for short periods do not exist in Norway. (AG)

  9. Pump element for a tube pump

    DEFF Research Database (Denmark)

    2011-01-01

    relative to the rod element so as to allow for a fluid flow in the tube through the first valve member, along the rod element, and through the second valve member. The tube comprises an at least partly flexible tube portion between the valve members such that a repeated deformation of the flexible tube...... portion acts to alternately close and open the valve members thereby generating a fluid flow through the tube. The invention further relates to a pump element comprising at least two non-return valve members connected by a rod element, and for insertion in an at least partly flexible tube in such tube...... pump as mentioned above, thereby acting to generate a fluid flow through the tube upon repeated deformation of the tube between the two valve members. The pump element may comprise a connecting part for coupling to another tube and may comprise a sealing part establishing a fluid tight connection...

  10. Turbine with radial acting seal

    Energy Technology Data Exchange (ETDEWEB)

    Eng, Darryl S; Ebert, Todd A

    2016-11-22

    A floating brush seal in a rim cavity of a turbine in a gas turbine engine, where the floating brush seal includes a seal holder in which the floating brush seal floats, and a expandable seal that fits within two radial extending seal slots that maintains a seal with radial displacement of the floating brush seal and the seal holder.

  11. Wind turbines and idiopathic symptoms

    DEFF Research Database (Denmark)

    Blanes-Vidal, Victoria; Schwartz, Joel

    2016-01-01

    of wind turbines confounders using confounders' selection criteria and used adjusted logistic regression models to estimate associations. When controlling only....... Wind turbines-health associations can be confounded by personal reactions to other environmental co-exposures. Isolated associations reported in the literature may be due to confounding bias....

  12. A Shocking New Pump

    Science.gov (United States)

    2000-01-01

    Hydro Dynamics, Inc. received a technical helping hand from NASA that made their Hydrosonic Pump (HPump) a reality. Marshall engineers resolved a bearing problem in the rotor of the pump and recommended new bearings, housings and mounting hardware as a solution. The resulting HPump is able to heat liquids with greater energy efficiency using shock waves to generate heat.

  13. Water Treatment Technology - Pumps.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on pumps provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pumps in plant and distribution systems, pump…

  14. Development and Implementation of Mechanistic Terry Turbine Models in RELAP-7 to Simulate RCIC Normal Operation Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zou, Ling [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Hongbin [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, James Edward [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    As part of the efforts to understand the unexpected “self-regulating” mode of the RCIC (Reactor Core Isolation Cooling) systems in Fukushima accidents and extend BWR RCIC and PWR AFW (Auxiliary Feed Water) operational range and flexibility, mechanistic models for the Terry turbine, based on Sandia’s original work [1], have been developed and implemented in the RELAP-7 code to simulate the RCIC system. In 2016, our effort has been focused on normal working conditions of the RCIC system. More complex off-design conditions will be pursued in later years when more data are available. In the Sandia model, the turbine stator inlet velocity is provided according to a reduced-order model which was obtained from a large number of CFD (computational fluid dynamics) simulations. In this work, we propose an alternative method, using an under-expanded jet model to obtain the velocity and thermodynamic conditions for the turbine stator inlet. The models include both an adiabatic expansion process inside the nozzle and a free expansion process outside of the nozzle to ambient pressure. The combined models are able to predict the steam mass flow rate and supersonic velocity to the Terry turbine bucket entrance, which are the necessary input information for the Terry turbine rotor model. The analytical models for the nozzle were validated with experimental data and benchmarked with CFD simulations. The analytical models generally agree well with the experimental data and CFD simulations. The analytical models are suitable for implementation into a reactor system analysis code or severe accident code as part of mechanistic and dynamical models to understand the RCIC behaviors. The newly developed nozzle models and modified turbine rotor model according to the Sandia’s original work have been implemented into RELAP-7, along with the original Sandia Terry turbine model. A new pump model has also been developed and implemented to couple with the Terry turbine model. An input

  15. Type IV Wind Turbine Model

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Margaris, Ioannis D.

    project to be incorporated in the wind power plant level. This document describes the Type 4 wind turbine simulation model, implemented in the EaseWind project. The implemented wind turbine model is one of the initial necessary steps toward integrating new control services in the wind power plant level....... In the project, this wind turbine model will be further incorporated in a wind power plant model together with the implementation in the wind power control level of the new control functionalities (inertial response, synchronising power and power system damping). For this purpose an aggregate wind power plant...... (WPP) will be considered. The aggregate WPP model, which will be based on the upscaling of the individual wind turbine model on the electrical part, will make use of an equivalent wind speed. The implemented model follows the basic structure of the generic standard Type 4 wind turbine model proposed...

  16. Reliability Modeling of Wind Turbines

    DEFF Research Database (Denmark)

    Kostandyan, Erik

    Cost reductions for offshore wind turbines are a substantial requirement in order to make offshore wind energy more competitive compared to other energy supply methods. During the 20 – 25 years of wind turbines useful life, Operation & Maintenance costs are typically estimated to be a quarter...... the actions should be made and the type of actions requires knowledge on the accumulated damage or degradation state of the wind turbine components. For offshore wind turbines, the action times could be extended due to weather restrictions and result in damage or degradation increase of the remaining...... for Operation & Maintenance planning. Concentrating efforts on development of such models, this research is focused on reliability modeling of Wind Turbine critical subsystems (especially the power converter system). For reliability assessment of these components, structural reliability methods are applied...

  17. Reliability Assessment of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    Wind turbines can be considered as structures that are in between civil engineering structures and machines since they consist of structural components and many electrical and machine components together with a control system. Further, a wind turbine is not a one-of-a-kind structure...... but manufactured in series production based on many component tests, some prototype tests and zeroseries wind turbines. These characteristics influence the reliability assessment where focus in this paper is on the structural components. Levelized Cost Of Energy is very important for wind energy, especially when...... comparing to other energy sources. Therefore much focus is on cost reductions and improved reliability both for offshore and onshore wind turbines. The wind turbine components should be designed to have sufficient reliability level with respect to both extreme and fatigue loads but also not be too costly...

  18. Reliability assessment of Wind turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    Wind turbines can be considered as structures that are in between civil engineering structures and machines since they consist of structural components and many electrical and machine components together with a control system. Further, a wind turbine is not a one-of-a-kind structure...... but manufactured in series production based on many component tests, some prototype tests and zeroseries wind turbines. These characteristics influence the reliability assessment where focus in this paper is on the structural components. Levelized Cost Of Energy is very important for wind energy, especially when...... comparing to other energy sources. Therefore much focus is on cost reductions and improved reliability both for offshore and onshore wind turbines. The wind turbine components should be designed to have sufficient reliability level with respect to both extreme and fatigue loads but also not be too costly...

  19. Operation ranges and dynamic capabilities of variable-speed pumped-storage hydropower

    Science.gov (United States)

    Mercier, Thomas; Olivier, Mathieu; Dejaeger, Emmanuel

    2017-04-01

    The development of renewable and intermittent power generation creates incentives for the development of both energy storage solutions and more flexible power generation assets. Pumped-storage hydropower (PSH) is the most established and mature energy storage technology, but recent developments in power electronics have created a renewed interest by providing PSH units with a variable-speed feature, thereby increasing their flexibility. This paper reviews technical considerations related to variable-speed PSH in link with the provision of primary frequency control, also referred to as frequency containment reserves (FCRs). Based on the detailed characteristics of a scale model pump-turbine, the variable-speed operation ranges in pump and turbine modes are precisely assessed and the implications for the provision of FCRs are highlighted. Modelling and control for power system studies are discussed, both for fixed- and variable-speed machines and simulation results are provided to illustrate the high dynamic capabilities of variable-speed PSH.

  20. Review of magnetohydrodynamic pump applications

    National Research Council Canada - National Science Library

    Al-Habahbeh, O.M; Al-Saqqa, M; Safi, M; Abo Khater, T

    2016-01-01

    Magneto-hydrodynamic (MHD) principle is an important interdisciplinary field. One of the most important applications of this effect is pumping of materials that are hard to pump using conventional pumps...

  1. Optimization of cold end system of steam turbine

    Institute of Scientific and Technical Information of China (English)

    Bin ZHAO; Ling LIU; Wenbing ZHANG

    2008-01-01

    An optimization of the movement character-istic of the cold end system of the steam turbine was con-ducted from an overall consideration of the condenser and the circulation water pump. An analysis method based on thermodynamics theory that fixes coupling characteristic between the best vacuum and the best circulation dis-charge of water was proposed. The proposed method was applied to the optimized analysis of the operating mode of the cold end system of a 300 MW unit in a power plant.

  2. NEXT GENERATION TURBINE PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    William H. Day

    2002-05-03

    The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which

  3. Reliable, Lightweight Transmissions For Off-Shore, Utility Scale Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Claude Ossyra

    2012-10-25

    The objective of this project was to reduce the technical risk for a hydrostatic transmission based drivetrain for high-power utility-size wind turbines. A theoretical study has been performed to validate the reduction of cost of energy (CoE) for the wind turbine, identify risk mitigation strategies for the drive system and critical components, namely the pump, shaft connection and hydrostatic transmission (HST) controls and address additional benefits such as reduced deployment costs, improved torque density and improved mean time between repairs (MTBR).

  4. Autonomous BDFIG-wind generator with torque and pitch control for maximum efficiency in a water pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Camocardi, P. [LEICI, Universidad Nacional de La Plata, 1 y 47, CC 91 (1900) La Plata (Argentina); CONICET (Argentina); Battaiotto, P. [LEICI, Universidad Nacional de La Plata, 1 y 47, CC 91 (1900) La Plata (Argentina); Mantz, R. [LEICI, Universidad Nacional de La Plata, 1 y 47, CC 91 (1900) La Plata (Argentina); Comision de Investigaciones Cientificas de la Provincia de Buenos Aires (Argentina)

    2010-06-15

    This paper presents and analyzes the operation strategy for an autonomous wind energy conversion system oriented to water pumping. It consists of a wind turbine with a Brushless Doubly-Fed Induction Generator (BDFIG), electrically coupled with a squirrel cage induction machine moving a centrifugal type water pump. Because of no brushes and slip rings, the BDFIG is suitable for autonomous systems, which often work in hard conditions. Additionally, the power flow on the BDFIG principal stator could be driven from a fractional power converter connected on the auxiliary stator winding. This Turbine-BDFIG and Motor-Pump configuration provides a high robustness and reliability, reducing the operational and maintenance costs. The operation strategy proposes, for wind speeds smaller than the rated, to maximize the volume of water pumped based on the optimization of the wind energy capture. To do that, a sliding mode control tracks the optimal turbine torque by means of a torque control. Meanwhile, for wind speeds greater than the rated, a pitch control keeps the water pump within the safe operation area by adjusting the speed and power of the turbine in their rated values. To assess and corroborate the proposed strategy, simulations with different wind profiles are made. (author)

  5. Calculation of gas turbine characteristic

    Science.gov (United States)

    Mamaev, B. I.; Murashko, V. L.

    2016-04-01

    The reasons and regularities of vapor flow and turbine parameter variation depending on the total pressure drop rate π* and rotor rotation frequency n are studied, as exemplified by a two-stage compressor turbine of a power-generating gas turbine installation. The turbine characteristic is calculated in a wide range of mode parameters using the method in which analytical dependences provide high accuracy for the calculated flow output angle and different types of gas dynamic losses are determined with account of the influence of blade row geometry, blade surface roughness, angles, compressibility, Reynolds number, and flow turbulence. The method provides satisfactory agreement of results of calculation and turbine testing. In the design mode, the operation conditions for the blade rows are favorable, the flow output velocities are close to the optimal ones, the angles of incidence are small, and the flow "choking" modes (with respect to consumption) in the rows are absent. High performance and a nearly axial flow behind the turbine are obtained. Reduction of the rotor rotation frequency and variation of the pressure drop change the flow parameters, the parameters of the stages and the turbine, as well as the form of the characteristic. In particular, for decreased n, nonmonotonic variation of the second stage reactivity with increasing π* is observed. It is demonstrated that the turbine characteristic is mainly determined by the influence of the angles of incidence and the velocity at the output of the rows on the losses and the flow output angle. The account of the growing flow output angle due to the positive angle of incidence for decreased rotation frequencies results in a considerable change of the characteristic: poorer performance, redistribution of the pressure drop at the stages, and change of reactivities, growth of the turbine capacity, and change of the angle and flow velocity behind the turbine.

  6. Cogeneration steam turbines from Siemens: New solutions

    Science.gov (United States)

    Kasilov, V. F.; Kholodkov, S. V.

    2017-03-01

    The Enhanced Platform system intended for the design and manufacture of Siemens AG turbines is presented. It combines organizational and production measures allowing the production of various types of steam-turbine units with a power of up to 250 MWel from standard components. The Enhanced Platform designs feature higher efficiency, improved reliability, better flexibility, longer overhaul intervals, and lower production costs. The design features of SST-700 and SST-900 steam turbines are outlined. The SST-700 turbine is used in backpressure steam-turbine units (STU) or as a high-pressure cylinder in a two-cylinder condensing turbine with steam reheat. The design of an SST-700 single-cylinder turbine with a casing without horizontal split featuring better flexibility of the turbine unit is presented. An SST-900 turbine can be used as a combined IP and LP cylinder (IPLPC) in steam-turbine or combined-cycle power units with steam reheat. The arrangements of a turbine unit based on a combination of SST-700 and SST-900 turbines or SST-500 and SST-800 turbines are presented. Examples of this combination include, respectively, PGU-410 combinedcycle units (CCU) with a condensing turbine and PGU-420 CCUs with a cogeneration turbine. The main equipment items of a PGU-410 CCU comprise an SGT5-4000F gas-turbine unit (GTU) and STU consisting of SST-700 and SST-900RH steam turbines. The steam-turbine section of a PGU-420 cogeneration power unit has a single-shaft turbine unit with two SST-800 turbines and one SST-500 turbine giving a power output of N el. STU = 150 MW under condensing conditions.

  7. Aeroservoelasticity of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Skovmose Kallesoee, B.

    2007-12-14

    This thesis deals with the fundamental aeroelastic interaction between structural motion, Pitch action and control for a wind turbine blade. As wind turbines become larger, the interaction between pitch action, blade motion, aerodynamic forces, and control become even more important to understand and address. The main contribution of this thesis is the development of an aeroelastic blade model which on the one hand includes the important effects of steady state blade deformation, gravity and pitch action, and on the other it is transparent, suitable for analytical analysis and parameter studies, and furthermore linear and therefore suitable for control design. The development of the primary aeroelastic blade model is divided into four steps: 1) Nonlinear partial differential equations (PDEs) of structural blade motion are derived together with equations of pitch action and rotor speed; the individual terms in these equations are discussed and given physical interpretations; 2) Steady state blade deformation and induced velocities are computed by combining the PDEs with a steady state aerodynamic model; 3) Aeroelastic modes of motion are computed by combining the linearized PDEs with a linear unsteady aerodynamic model; this model is used to analyze how blade deformation effects the modes of motion; and 4) the linear aeroelastic blade model is derived by a modal expansion of the linearized PDEs combined with a linear unsteady aerodynamic model. The aeroelastic blade model has many similarities to a 2D blade section model, and it can be used instead of this in many applications, giving a transparent connection to a real wind turbine blade. In this work the aeroelastic blade model is used to analyze interaction between pitch action, blade motion and wind speed variations. Furthermore the model is used to develop a state estimator for estimating the wind speed and wind shear, and to suggest a load reducing controller. The state estimator estimates the wind shear very

  8. Floating offshore turbines

    DEFF Research Database (Denmark)

    Tande, John Olav Giæver; Merz, Karl; Schmidt Paulsen, Uwe

    2014-01-01

    phase applying (mostly) well-known technology, albeit in a new setting. DeepWind is a European research project based mostly on new technology. The concepts are described in some detail with emphasis on control and operation. Prospects are discussed including technical challenges and a performance...... metric of energy production per unit steel mass. Floating offshore wind turbines represent a promising technology. The successful operation of HyWind and WindFloat in full scale demonstrates a well advanced technology readiness level, where further development will go into refining the concepts, cost...

  9. Alternative aviation turbine fuels

    Science.gov (United States)

    Grobman, J.

    1977-01-01

    The efficient utilization of fossil fuels by future jet aircraft may necessitate the broadening of current aviation turbine fuel specifications. The most significant changes in specifications would be an increased aromatics content and a higher final boiling point in order to minimize refinery energy consumption and costs. These changes would increase the freezing point and might lower the thermal stability of the fuel and could cause increased pollutant emissions, increased smoke and carbon formation, increased combustor liner temperatures, and poorer ignition characteristics. This paper discusses the effects that broadened specification fuels may have on present-day jet aircraft and engine components and the technology required to use fuels with broadened specifications.

  10. Aerodynamics of wind turbines emerging topics

    CERN Document Server

    Amano, R S

    2014-01-01

    Focusing on Aerodynamics of Wind Turbines with topics ranging from Fundamental to Application of horizontal axis wind turbines, this book presents advanced topics including: Basic Theory for Wind turbine Blade Aerodynamics, Computational Methods, and Special Structural Reinforcement Technique for Wind Turbine Blades.

  11. Aircraft propulsion and gas turbine engines

    National Research Council Canada - National Science Library

    El-Sayed, Ahmed F

    2008-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii xxxi xxxiii xxxv Part I Aero Engines and Gas Turbines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C...

  12. TURBINE COOLING FLOW AND THE RESULTING DECREASE IN TURBINE EFFICIENCY

    Science.gov (United States)

    Gauntner, J. W.

    1994-01-01

    This algorithm has been developed for calculating both the quantity of compressor bleed flow required to cool a turbine and the resulting decrease in efficiency due to cooling air injected into the gas stream. Because of the trend toward higher turbine inlet temperatures, it is important to accurately predict the required cooling flow. This program is intended for use with axial flow, air-breathing jet propulsion engines with a variety of airfoil cooling configurations. The algorithm results have compared extremely well with figures given by major engine manufacturers for given bulk metal temperatures and cooling configurations. The program calculates the required cooling flow and corresponding decrease in stage efficiency for each row of airfoils throughout the turbine. These values are combined with the thermodynamic efficiency of the uncooled turbine to predict the total bleed airflow required and the altered turbine efficiency. There are ten airfoil cooling configurations and the algorithm allows a different option for each row of cooled airfoils. Materials technology is incorporated and requires the date of the first year of service for the turbine stator vane and rotor blade. The user must specify pressure, temperatures, and gas flows into the turbine. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 3080 series computer with a central memory requirement of approximately 61K of 8 bit bytes. This program was developed in 1980.

  13. Efficiency assessment of a wind pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Lara, David D.; Merino, Gabriel G. [Department of Mechanization and Energy, University of Concepcion, Avenida Vicente Mendez 595, Chillan (Chile); Pavez, Boris J. [Department of Electrical Engineering, University of La Frontera, Casilla 54-D, Temuco (Chile); Tapia, Juan A. [Department of Electrical Engineering, University of Concepcion, Casilla 160-C, Concepcion (Chile)

    2011-02-15

    The combined efficiency of the components determines overall system performance in electric wind pumping systems. We evaluated a system composed of a 3 kW wind generator feeding a battery bank of 48 V/880 Ah by means of a non-controlled 6-pulse rectifier. Connected to this battery bank was a 1.5 kW inverter that generated 220 V at 50 Hz, which powers a 1.1 kW single-phase electric pump. At the University of Concepcion, Chile, energy losses in each electrical component was determined using a data collection system configured to measure electrical variables in real time. The electrical power generated by the wind generator for different wind speeds averaged 38% lower than the power curve provided by the manufacturer. Electromechanical tests performed in a lab showed the operation efficiency of the electric generator of the wind turbine averaged 80%. This information, along with the electrical power output, and the wind velocity measured during field operation allowed us to determine the rotor's power coefficient C{sub p}, which had a maximum value of 35%. For the stored energy components measured data indicated that the rectifier, the battery bank, and the inverter operated with average efficiencies of 95%, 78% and 86% respectively. The combined component efficiencies showed a maximum of 17% of the wind energy would be available for water pumping. Since a large amount of wind energy was dissipated during the energy conversion process, new configurations should be analyzed that could avoid such losses in wind pumping systems. (author)

  14. Pumping machinery theory and practice

    CERN Document Server

    Badr, Hassan M

    2014-01-01

    Pumping Machinery Theory and Practice comprehensively covers the theoretical foundation and applications of pumping machinery. Key features: Covers characteristics of centrifugal pumps, axial flow pumps and displacement pumpsConsiders pumping machinery performance and operational-type problemsCovers advanced topics in pumping machinery including multiphase flow principles, and two and three-phase flow pumping systemsCovers different methods of flow rate control and relevance to machine efficiency and energy consumptionCovers different methods of flow rate control and relevance to machine effi

  15. Activities of the NASA/Marshall Space Flight Center pump stage technology team

    Science.gov (United States)

    Garcia, R.; Mcconnaughey, P.; Eastland, A.

    1992-01-01

    In order to advance rocket propulsion technology, the Consortium for Computational Fluid Dynamics (CFD) Application in Propulsion Technology has been formed at Marshall Space Flight Center (MSFC). The Consortium consists of three Teams: the turbine stage team, the pump stage team (PST), and the combustion devices team. The PST has formulated and is implementing a plan for pump technology development whose end product will be validated CFD codes suitable for application to pump components, test data suitable for validating CFD codes, and advanced pump components optimized using CFD codes. The PST's work during the fall of 1991 and the winter and spring of 1992 is discussed in this paper. This work is highlighted by CFD analyses of an advanced impeller design and collection of laser two-focus velocimeter data for the Space Shuttle Main Engine High Pressure Fuel Pump impeller.

  16. Rim seal arrangement having pumping feature

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ching-Pang; Myers, Caleb

    2017-04-25

    A rim seal arrangement for a gas turbine engine includes a first seal face on a rotor component, and a second seal face on a stationary annular rim centered about a rotation axis of the rotor component. The second seal face is spaced from the first seal face along an axial direction to define a seal gap. The seal gap is located between a radially outer hot gas path and a radially inner rotor cavity. The first seal face has a plurality of circumferentially spaced depressions, each having a depth in an axial direction and extending along a radial extent of the first seal face. The depressions influence flow in the seal gap such that during rotation of the rotor component, fluid in the seal gap is pumped in a radially outward direction to prevent ingestion of a gas path fluid from the hot gas path into the rotor cavity.

  17. Potential health impact of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-05-15

    In response to public health concerns about wind turbines, a study was conducted to review the scientific evidence on the potential health effects of wind turbines. Several research questions were examined, including scientific evidence on the potential health impacts of wind turbines; the relationship between wind turbine noise and health; the relationship between low frequency sound, infrasound and health; assessment of exposure to wind turbines; wind turbine health and safety hazards and Ontario wind turbine setbacks; community consultation prior to wind farm construction and data gaps and research needs. The study showed that although some people living near wind turbines reported symptoms such as dizziness, headaches, and sleep disturbance, the scientific evidence available to date does not demonstrate a direct causal link between wind turbine noise and adverse health effects. The sound level from wind turbines at common residential setbacks is not sufficient to cause hearing impairment or other direct health effects, although some people may find it annoying. 41 refs., 1 appendix.

  18. H gas turbine combined cycle

    Energy Technology Data Exchange (ETDEWEB)

    Corman, J. [General Electric Co., Schenectady, NY (United States)

    1995-10-01

    A major step has been taken in the development of the Next Power Generation System - {open_quotes}H{close_quotes} Technology Combined Cycle. This new gas turbine combined-cycle system increases thermal performance to the 60% level by increasing gas turbine operating temperature to 1430 C (2600 F) at a pressure ratio of 23 to 1. Although this represents a significant increase in operating temperature for the gas turbine, the potential for single digit NOx levels (based upon 15% O{sub 2}, in the exhaust) has been retained. The combined effect of performance increase and environmental control is achieved by an innovative closed loop steam cooling system which tightly integrates the gas turbine and steam turbine cycles. The {open_quotes}H{close_quotes} Gas Turbine Combined Cycle System meets the goals and objectives of the DOE Advanced Turbine System Program. The development and demonstration of this new system is being carried out as part of the Industrial/Government cooperative agreement under the ATS Program. This program will achieve first commercial operation of this new system before the end of the century.

  19. Mechanical power efficiency of modified turbine blades

    Science.gov (United States)

    Mahmud, Syahir; Sampebatu, Limbran; Kwang, Suendy Ciayadi

    2017-01-01

    Abstract-The problem of energy crisis has become one of the unsolved issues until today. Indonesia has a lot of non-conventional energy sources that does not utilized effectively yet. For that the available resources must utilized efficiently due to the energy crisis and the growing energy needs. Among the abundant resources of energy, one potential source of energy is hydroelectric energy. This research compares the mechanical power efficiency generated by the Darrieus turbine, Savonius turbine and the Darrieus-Savonius turbine. The comparation of the mechanical power amongst the three turbine starts from the measurement of the water flow rate, water temperature, turbine rotation and force on the shaft on each type of turbine. The comparison will show the mechanical power efficiency of each turbine to find the most efficient turbine that can work optimally. The results show that with 0.637m/s flow velocity and 44.827 Watt of water flow power, the Darrieus-Savonius turbine can generate power equal to 29.927 Watt and shaft force around by 17 N. The Darrieus-Savonius turbine provides around 66.76% efficiency betwen the three turbines; Darrieus turbine, Savonius turbine and the Darrieus-Savonius turbine. Overall, the Darrieus Savonius turbine has the ability to work optimally at the research location.

  20. Laser Velocimeter Measurements in the Pump of an Automotive Torque Converter Part II – Effect of Pump Speed and Oil Viscosity

    Directory of Open Access Journals (Sweden)

    Ronald D. Flack

    2000-01-01

    Full Text Available The velocity field inside a torque converter pump was studied for two separate effects: variable pump rotational speed and variable oil viscosity. Three-dimensional velocity measurements were taken using a laser velocimeter for both the pump mid- and exit planes. The effect ofvariable pump rotational speed was studied by running the pump at two different speeds and holding speed ratio (pump rotational speed]turbine rotational speed constant. Similarly, the effect of viscosity on the pump flow field was studied by varying the temperature and]or using two different viscosity oils as the working fluid in the pump. Threedimensional velocity vector plots, through-flow contour plots, and secondary flow profiles were obtained for both pump planes and all test conditions. Results showed that torque converter mass flows increased approximately linearly with increasing pump rotational speed (and fixed speed ratio but that the flow was not directly proportional to pump rotational speed. However, mass flows were seen to decrease as the oil viscosity was decreased with a resulting increased Reynolds number; for these conditions the high velocity regions were seen to decrease in size and low velocity regions were seen to increase in size. In the pump mid-plane strong counter-clockwise secondary flows and in the exit plane strong clockwise secondary flows were observed. The vorticities and slip factors were calculated from the experimental results and are presented. The torque core-to-shell and blade-to-blade torque distributions were calculated for both planes. Finally, the flow fields were seen to demonstrate similitude when Reynolds numbers were matched.

  1. Innovation in wind turbine design

    CERN Document Server

    Jamieson, Peter

    2011-01-01

    Innovation in Wind Turbine Design addresses the fundamentals of design, the reasons behind design choices, and describes the methodology for evaluating innovative systems and components. Always referencing a state of the art system for comparison, Jamieson discusses the basics of wind turbine theory and design, as well as how to apply existing engineering knowledge to further advance the technology, enabling the reader to gain a thorough understanding of current technology before assessing where it can go in the future. Innovation in Wind Turbine Design is divided into four mai

  2. Turbine efficiency test on a large hydraulic turbine unit

    Institute of Scientific and Technical Information of China (English)

    YAN ZongGuo; ZHOU LingJiu; WANG ZhengWei

    2012-01-01

    The flow rate measurements are the most difficult part of efficiency tests on prototype hydraulic turbines.Among the numerous flow rate measurement methods,the Winter Kennedy method is preferred for measuring turbine flow rates,since it is convenient,practical and economical.This paper describes efficiency tests on a large 300 MW Francis turbine,with the flow rate measured using the Winter Kennedy method and the Winter Kennedy flow rate coefficient calibrated using the Gibson method.The measured turbine efficiency curve is then compared with the curve provided by the manufacturer.The CFD calculations including the spiral case are then used to analyze the influence with the coefficient K and index n in the Winter Kennedy flow rate formula on the flow rate measurement.The uncertainty values of n and K are a key reason for the differences between the curves obtained from the efficiency test and the curves provided by the manufacturer.

  3. Nuclear-pumped lasers

    CERN Document Server

    Prelas, Mark

    2016-01-01

    This book focuses on Nuclear-Pumped Laser (NPL) technology and provides the reader with a fundamental understanding of NPLs, a review of research in the field, and exploration of large scale NPL system design and applications. Early chapters look at the fundamental properties of lasers, nuclear-pumping and nuclear reactions that may be used as drivers for nuclear-pumped lasers. The book goes on to explore the efficient transport of energy from the ionizing radiation to the laser medium and then the operational characteristics of existing nuclear-pumped lasers. Models based on Mathematica, explanations and a tutorial all assist the reader’s understanding of this technology. Later chapters consider the integration of the various systems involved in NPLs and the ways in which they can be used, including beyond the military agenda. As readers will discover, there are significant humanitarian applications for high energy/power lasers, such as deflecting asteroids, space propulsion, power transmission and mining....

  4. Absorption heat pump system

    Science.gov (United States)

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  5. High Voltage Charge Pump

    KAUST Repository

    Emira, Ahmed A.

    2014-10-09

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  6. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  7. Chiral brownian heat pump.

    Science.gov (United States)

    van den Broek, M; Van den Broeck, C

    2008-04-04

    We present the exact analysis of a chiral Brownian motor and heat pump. Optimization of the construction predicts, for a nanoscale device, frequencies of the order of kHz and cooling rates of the order of femtojoule per second.

  8. Chiral Brownian heat pump

    OpenAIRE

    Van Den Broek, Martijn; Van Den Broeck, Christian

    2007-01-01

    We present the exact analysis of a chiral Brownian motor and heat pump. Optimization of the construction predicts, for a nanoscale device, frequencies of the order of kHz and cooling rates of the order of femtojoule per second.

  9. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  10. Gas Turbine Engine Having Fan Rotor Driven by Turbine Exhaust and with a Bypass

    Science.gov (United States)

    Suciu, Gabriel L. (Inventor); Chandler, Jesse M. (Inventor)

    2016-01-01

    A gas turbine engine has a core engine incorporating a core engine turbine. A fan rotor is driven by a fan rotor turbine. The fan rotor turbine is in the path of gases downstream from the core engine turbine. A bypass door is moveable from a closed position at which the gases from the core engine turbine pass over the fan rotor turbine, and moveable to a bypass position at which the gases are directed away from the fan rotor turbine. An aircraft is also disclosed.

  11. Remotely Adjustable Hydraulic Pump

    Science.gov (United States)

    Kouns, H. H.; Gardner, L. D.

    1987-01-01

    Outlet pressure adjusted to match varying loads. Electrohydraulic servo has positioned sleeve in leftmost position, adjusting outlet pressure to maximum value. Sleeve in equilibrium position, with control land covering control port. For lowest pressure setting, sleeve shifted toward right by increased pressure on sleeve shoulder from servovalve. Pump used in aircraft and robots, where hydraulic actuators repeatedly turned on and off, changing pump load frequently and over wide range.

  12. Velocity selective optical pumping

    OpenAIRE

    Aminoff, C. G.; Pinard, M.

    1982-01-01

    We consider optical pumping with a quasi monochromatic tunable light beam, in the low intensity limit where a rate equation regime is obtained The velocity selective optical pumping (V.S.O.P.) introduces a correlation between atomic velocity and internal variables in the ground (or metastable) state. The aim of this article is to evaluate these atomic observables (orientation, alignment, population) as a function of velocity, using a phenomenological description of the relaxation effect of co...

  13. Lunar Base Heat Pump

    Science.gov (United States)

    Walker, D.; Fischbach, D.; Tetreault, R.

    1996-01-01

    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  14. BIOMATERIALS FOR ROTARY BLOOD PUMPS

    NARCIS (Netherlands)

    VANOEVEREN, W

    1995-01-01

    Rotary blood pumps are used for cardiac assist and cardiopulmonary support since mechanical blood damage is less than with conventional roller pumps. The high shear rate in the rotary pump and the reduced anticoagulation of the patient during prolonged pumping enforces high demands on the biocompati

  15. Integrated Turbine Tip Clearance and Gas Turbine Engine Simulation

    Science.gov (United States)

    Chapman, Jeffryes W.; Kratz, Jonathan; Guo, Ten-Huei; Litt, Jonathan

    2016-01-01

    Gas turbine compressor and turbine blade tip clearance (i.e., the radial distance between the blade tip of an axial compressor or turbine and the containment structure) is a major contributing factor to gas path sealing, and can significantly affect engine efficiency and operational temperature. This paper details the creation of a generic but realistic high pressure turbine tip clearance model that may be used to facilitate active tip clearance control system research. This model uses a first principles approach to approximate thermal and mechanical deformations of the turbine system, taking into account the rotor, shroud, and blade tip components. Validation of the tip clearance model shows that the results are realistic and reflect values found in literature. In addition, this model has been integrated with a gas turbine engine simulation, creating a platform to explore engine performance as tip clearance is adjusted. Results from the integrated model explore the effects of tip clearance on engine operation and highlight advantages of tip clearance management.

  16. Pumping a playground swing.

    Science.gov (United States)

    Post, Auke A; de Groot, Gert; Daffertshofer, Andreas; Beek, Peter J

    2007-04-01

    In mechanical studies of pumping a playground swing, two methods of energy insertion have been identified: parametric pumping and driven oscillation. While parametric pumping involves the systematic raising and lowering of the swinger's center of mass (CM) along the swing's radial axis (rope), driven oscillation may be conceived as rotation of the CM around a pivot point at a fixed distance to the point of suspension. We examined the relative contributions of those two methods of energy insertion by inviting 18 participants to pump a swing from standstill and by measuring and analyzing the swing-swinger system (defined by eight markers) in the sagittal plane. Overall, driven oscillation was found to play a major role and parametric pumping a subordinate role, although the relative contribution of driven oscillation decreased as swinging amplitude increased, whereas that of parametric pumping increased slightly. Principal component analysis revealed that the coordination pattern of the swing-swinger system was largely determined (up to 95%) by the swing's motion, while correlation analysis revealed that (within the remaining 5% of variance) trunk and leg rotations were strongly coupled.

  17. Turbine Blade Alloy

    Science.gov (United States)

    MacKay, Rebecca

    2001-01-01

    The High Speed Research Airfoil Alloy Program developed a fourth-generation alloy with up to an +85 F increase in creep rupture capability over current production airfoil alloys. Since improved strength is typically obtained when the limits of microstructural stability are exceeded slightly, it is not surprising that this alloy has a tendency to exhibit microstructural instabilities after high temperature exposures. This presentation will discuss recent results obtained on coated fourth-generation alloys for subsonic turbine blade applications under the NASA Ultra-Efficient Engine Technology (UEET) Program. Progress made in reducing microstructural instabilities in these alloys will be presented. In addition, plans will be presented for advanced alloy development and for computational modeling, which will aid future alloy development efforts.

  18. Sprayed skin turbine component

    Science.gov (United States)

    Allen, David B

    2013-06-04

    Fabricating a turbine component (50) by casting a core structure (30), forming an array of pits (24) in an outer surface (32) of the core structure, depositing a transient liquid phase (TLP) material (40) on the outer surface of the core structure, the TLP containing a melting-point depressant, depositing a skin (42) on the outer surface of the core structure over the TLP material, and heating the assembly, thus forming both a diffusion bond and a mechanical interlock between the skin and the core structure. The heating diffuses the melting-point depressant away from the interface. Subsurface cooling channels (35) may be formed by forming grooves (34) in the outer surface of the core structure, filling the grooves with a fugitive filler (36), depositing and bonding the skin (42), then removing the fugitive material.

  19. Gas turbine combustor

    Science.gov (United States)

    Burd, Steven W. (Inventor); Cheung, Albert K. (Inventor); Dempsey, Dae K. (Inventor); Hoke, James B. (Inventor); Kramer, Stephen K. (Inventor); Ols, John T. (Inventor); Smith, Reid Dyer Curtis (Inventor); Sowa, William A. (Inventor)

    2011-01-01

    A gas turbine engine has a combustor module including an annular combustor having a liner assembly that defines an annular combustion chamber having a length, L. The liner assembly includes a radially inner liner, a radially outer liner that circumscribes the inner liner, and a bulkhead, having a height, H1, which extends between the respective forward ends of the inner liner and the outer liner. The combustor has an exit height, H3, at the respective aft ends of the inner liner and the outer liner interior. The annular combustor has a ratio H1/H3 having a value less than or equal to 1.7. The annular combustor may also have a ration L/H3 having a value less than or equal to 6.0.

  20. Improved automobile gas turbine engine

    Science.gov (United States)

    Kofskey, M. G.; Katsanis, T.; Roelke, R. J.; Mclallin, K. L.; Wong, R. Y.; Schumann, L. F.; Galvas, M. R.

    1976-01-01

    Upgraded engine delivers 100 hp in 3500 lb vehicle. Improved fuel economy is due to combined effects of reduced weight, reduced power-to-weight ratio, increased turbine inlet pressure, and improved component efficiencies at part power.

  1. Probabilistic Design of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Toft, H.S.

    2010-01-01

    Probabilistic design of wind turbines requires definition of the structural elements to be included in the probabilistic basis: e.g., blades, tower, foundation; identification of important failure modes; careful stochastic modeling of the uncertain parameters; recommendations for target reliability....... It is described how uncertainties in wind turbine design related to computational models, statistical data from test specimens, results from a few full-scale tests and from prototype wind turbines can be accounted for using the Maximum Likelihood Method and a Bayesian approach. Assessment of the optimal...... reliability level by cost-benefit optimization is illustrated by an offshore wind turbine example. Uncertainty modeling is illustrated by an example where physical, statistical and model uncertainties are estimated....

  2. Reliability Assessment Of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2014-01-01

    Reduction of cost of energy for wind turbines are very important in order to make wind energy competitive compared to other energy sources. Therefore the turbine components should be designed to have sufficient reliability but also not be too costly (and safe). This paper presents models...... for uncertainty modeling and reliability assessment of especially the structural components such as tower, blades, substructure and foundation. But since the function of a wind turbine is highly dependent on many electrical and mechanical components as well as a control system also reliability aspects...... of these components are discussed and it is described how there reliability influences the reliability of the structural components. Two illustrative examples are presented considering uncertainty modeling, reliability assessment and calibration of partial safety factors for structural wind turbine components exposed...

  3. Online wind turbine measurement laboratory

    DEFF Research Database (Denmark)

    Hansen, K.S.; Helgesen Pedersen, K.O.; Schmidt Paulsen, U.

    2006-01-01

    As part of the International Master of Science Program in Wind Energy at DTU, a complete interactive wind turbine measurement laboratory has been developed. A 500 kW stall regulated wind turbine has been instrumented with sensors for recording 1) turbine operational parameters, 2) meteorological...... conditions, 3) electrical quantities and 4) mechanical loads in terms of strain gauge signals. The data acquisition system has been designed and implemented by Risø together with students and teachers from DTU. It is based on LabVIEW© combined with a MySQL database for data management. The system enables...... calculations and extreme loads estimation in basic wind turbine courses. Power quality analysis is carried out based on high speed sampled, three-phase voltage and current signals. The wide spectrum of sensors enables a detailed study of the correlation between meteorological, mechanical and electrical...

  4. Probabilistic Design of Wind Turbines

    Directory of Open Access Journals (Sweden)

    Henrik S. Toft

    2010-02-01

    Full Text Available Probabilistic design of wind turbines requires definition of the structural elements to be included in the probabilistic basis: e.g., blades, tower, foundation; identification of important failure modes; careful stochastic modeling of the uncertain parameters; recommendations for target reliability levels and recommendation for consideration of system aspects. The uncertainties are characterized as aleatoric (physical uncertainty or epistemic (statistical, measurement and model uncertainties. Methods for uncertainty modeling consistent with methods for estimating the reliability are described. It is described how uncertainties in wind turbine design related to computational models, statistical data from test specimens, results from a few full-scale tests and from prototype wind turbines can be accounted for using the Maximum Likelihood Method and a Bayesian approach. Assessment of the optimal reliability level by cost-benefit optimization is illustrated by an offshore wind turbine example. Uncertainty modeling is illustrated by an example where physical, statistical and model uncertainties are estimated.

  5. Active control: Wind turbine model

    DEFF Research Database (Denmark)

    Bindner, H.

    1999-01-01

    This report is a part of the reporting of the work done in the project 'Active Control of Wind Turbines'. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to designcontrollers. This report describes the model...... developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This hasbeen done with extensive use of measurements as the basis for selection of model complexity and model...... validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending,a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models...

  6. Life cycle assessment of turbines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-10-15

    This report forms part of the final reporting of the project 'LCA and turbines, which has been carried out as a cooperation between Vestas Wind Systems A/S and Tech-wise A/S on behalf of Elsam A/S. The goal of the project was to create a life cycle model for a big Vestas offshore turbine. Based on the offshore model an analysis has been prepared and this analysis will show the most significant environmental impacts a turbine will be subject to during its life cycle. Furthermore we have prepared a recommendation on how an improvement strategy on a selected area can be drafted. Finally, a preliminary environmental declaration of contents will be prepared for the turbine in question and 1 kWh generated from here. (BA)

  7. Cooled Ceramic Turbine Vane Project

    Data.gov (United States)

    National Aeronautics and Space Administration — N&R Engineering will investigate the feasibility of cooled ceramics, such as ceramic matrix composite (CMC) turbine blade concepts that can decrease specific...

  8. CFD analysis of a Darrieus wind turbine

    Science.gov (United States)

    Niculescu, M. L.; Cojocaru, M. G.; Pricop, M. V.; Pepelea, D.; Dumitrache, A.; Crunteanu, D. E.

    2017-07-01

    The Darrieus wind turbine has some advantages over the horizontal-axis wind turbine. Firstly, its tip speed ratio is lower than that of the horizontal-axis wind turbine and, therefore, its noise is smaller, privileging their placement near populated areas. Secondly, the Darrieus wind turbine does needs no orientation mechanism with respect to wind direction in contrast to the horizontal-axis wind turbine. However, the efficiency of the Darrieus wind turbine is lower than that of the horizontal-axis wind turbine since its aerodynamics is much more complex. With the advances in computational fluids and computers, it is possible to simulate the Darrieus wind turbine more accurately to understand better its aerodynamics. For these reasons, the present papers deals with the computational aerodynamics of a Darrieus wind turbine applying the state of the art of CFD methods (anisotropic turbulence models, transition from laminar to turbulent, scale adaptive simulation) to better understand its unsteady behavior.

  9. Application of Circulation Controlled Blades for Vertical Axis Wind Turbines

    Directory of Open Access Journals (Sweden)

    Velissarios Kourkoulis

    2013-07-01

    Full Text Available The blades of a vertical axis wind turbine (VAWT rotor see an inconsistent angle of attack through its rotation. Consequently, VAWT blades generally use symmetrical aerofoils with a lower lift-to-drag ratio than cambered aerofoils tailored to maximise horizontal axis wind turbine rotor performance. This paper considers the feasibility of circulation controlled (CC VAWT blades, using a tangential air jet to provide lift and therefore power augmentation. However CC blade sections require a higher trailing-edge thickness than conventional sections giving rise to additional base drag. The choice of design parameters is a compromise between lift augmentation, additional base drag as well as the power required to pump the air jet. Although CC technology has been investigated for many years, particularly for aerospace applications, few researchers have considered VAWT applications. This paper considers the feasibility of the technology, using Computational Fluid Dynamics to evaluate a baseline CC aerofoil with different trailing-edge ellipse shapes. Lift and drag increments due to CC are considered within a momentum based turbine model to determine net power production. The study found that for modest momentum coefficients significant net power augmentation can be achieved with a relatively simple aerofoil geometry if blowing is controlled through the blades rotation.

  10. Technical and Economic Advantages of Turbo-Drive Variant with TRB Turbines over Turbo-Generator Variant in Low Power Engineering

    OpenAIRE

    N. V. Panteley

    2008-01-01

    The paper contains a comparative analysis of turbo-driven variant application with TRB turbines and turbo-generator variant in the low power engineering. High efficiency of steam-turbine drive application with TRB turbines is proved by calculation which is made on the basis of a SE-1250-140 network pump at one of the boilers of the Republic of Belarus taken as an example. Calculation has been made for the following steam parameters: turbo-drive input – 12 kgs/cm and 250 and parameters behind ...

  11. Turbine Blade Image Processing System

    Science.gov (United States)

    Page, Neal S.; Snyder, Wesley E.; Rajala, Sarah A.

    1983-10-01

    A vision system has been developed at North Carolina State University to identify the orientation and three dimensional location of steam turbine blades that are stacked in an industrial A-frame cart. The system uses a controlled light source for structured illumination and a single camera to extract the information required by the image processing software to calculate the position and orientation of a turbine blade in real time.

  12. Boiler-turbine life extension

    Energy Technology Data Exchange (ETDEWEB)

    Natzkov, S. [TOTEMA, Ltd., Sofia (Bulgaria); Nikolov, M. [CERB, Sofia (Bulgaria)

    1995-12-01

    The design life of the main power equipment-boilers and turbines is about 105 working hours. The possibilities for life extension are after normatively regulated control tests. The diagnostics and methodology for Boilers and Turbines Elements Remaining Life Assessment using up to date computer programs, destructive and nondestructive control of metal of key elements of units equipment, metal creep and low cycle fatigue calculations. As well as data for most common damages and some technical decisions for elements life extension are presented.

  13. Thermally Actuated Hydraulic Pumps

    Science.gov (United States)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  14. Design of a Test Loop for Performance Testing of Steam Turbines Under a Variety of Operating Conditions

    Science.gov (United States)

    Guerrette, Jonathan

    The steam turbine is one of the most widely used energy conversion devices in the world, providing shaft power for electricity production, chemical processing, and HVAC systems. There are new opportunities in growing renewable and combined cycle applications. End-users are asking for energy efficiency improvements that require manufacturers to renew their experimentally verified design methods. A structured design approach was carried out along three integrated research thrusts. The first two thrusts, Turbine Performance Prediction and Measurement Planning, were carried out with the aim of supporting the theoretical modeling required for the third thrust, System Modeling. The primary use of the steam turbine test loop will be to improve performance prediction techniques. Thus the primary focus of the first thrust was to describe empirical loss correlations found in the literature. For the second thrust, a preliminary review of measurement codes and standards was carried out to determine their impact on overall test loop design. For the third thrust, quasi-steady theoretical models were derived from first principles for the turbine, condenser, pump, boiler, and pipe components using control volume analyses. The theoretical models were implemented in a new open source simulation environment that carries out the calculation process over a range of up-to three turbine model inputs. A parametric study was undertaken with the goal of defining preliminary design specifications for the test loop components. The test loop was simulated across a wide range of steady states for three different turbine blade configurations, each at three different values of the blade row enthalpy-loss coefficient. The parametric study demonstrates full coverage of possible turbine operating conditions. The results of the simulations were analyzed to narrow the required operating range of the test loop to a series of turbine test paths. The final operational envelope yielded a set of test loop

  15. Active control: Wind turbine model

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, Henrik

    1999-07-01

    This report is a part of the reporting of the work done in the project `Active Control of Wind Turbines`. This project aim is to develop a simulation model for design of control systems for turbines with pitch control and to use that model to design controllers. This report describes the model developed for controller design and analysis. Emphasis has been put on establishment of simple models describing the dynamic behavior of the wind turbine in adequate details for controller design. This has been done with extensive use of measurements as the basis for selection of model complexity and model validation as well as parameter estimation. The model includes a simple model of the structure of the turbine including tower and flapwise blade bending, a detailed model of the gear box and induction generator, a linearized aerodynamic model including modelling of induction lag and actuator and sensor models. The models are all formulated as linear differential equations. The models are validated through comparisons with measurements performed on a Vestas WD 34 400 kW wind turbine. It is shown from a control point of view simple linear models can be used to describe the dynamic behavior of a pitch controlled wind turbine. The model and the measurements corresponds well in the relevant frequency range. The developed model is therefore applicable for controller design. (au) EFP-91. 18 ills., 22 refs.

  16. Lightning protection of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, T.; Brask, M.H. [DEFU (Denmark); Jensen, F.V.; Raben, N. [SEAS (Denmark); Saxov, J. [Nordjyllandsvaerket (Denmark); Nielsen, L. [Vestkraft (Denmark); Soerensen, P.E. [Risoe National Lab. (Denmark)

    1999-03-01

    Lightning damage to wind turbines is a serious problem for Danish power companies, who have experienced some cases with very costly lightning damage and a large number of cases with minor damage. The most costly cases include one catastrophic damage to an entire wind turbine, and several cases of destruction of blades, main bearings, generators and control systems. Over the years there have been several hundreds of cases with minor damage - typically damage and interruptions of the control and communication systems, or the power systems. The Danish power companies anticipate that the lightning threat will be even bigger for the large off-shore wind turbine installations that are currently being planned in Denmark. Furthermore, it is known from the off-shore wind turbines at Vindeby in Denmark that the costs of inspection and particularly repair work must be expected to be much higher off-shore as compared to wind turbines on land. These considerations was the background for a two year project concerned with investigation of lighting damages and with the formulation of a DEFU Recommendation for lightning protection of wind turbines, which was published in January 1999. The project was funded by the Danish power companies Elsam, Eltra, Elkraft and by DEFU. (au)

  17. Efisiensi Prototipe Turbin Savonius pada Kecepatan Angin Rendah

    OpenAIRE

    Melda Latif

    2013-01-01

    Wind energy can be transformed into electrical energy using wind turbine. Based on rotation axis, there are two types of wind turbine, namely turbine with horizontal axis and the one with vertical axis. Turbine with vertical axis has been known with various names that are Darrieus turbine, Savonius turbine and H turbine. This research designed and implemented a prototype of simple Savonius turbine for small scale wind speed. Resistor with resistance of 200 ohm and LED are used as the load. Ma...

  18. Electronic Unit Pump Test Bench Development and Pump Properties Research

    Institute of Scientific and Technical Information of China (English)

    LIU Bo-lan; HUANG Ying; ZHANG Fu-jun; ZHAO Chang-lu

    2006-01-01

    A unit pump test bench is developed on an in-line pump test platform. The bench is composed of pump adapting assembly, fuel supply subsystem, lubricating subsystem and a control unit. A crank angle domain injection control method is given out and the control accuracy can be 0.1° crank degree. The bench can test bot h mechanical unit pump and electronic unit pump. A test model-PLD12 electronic unit pump is tested. Full pump delivery map and some influence factors test is d one. Experimental results show that the injection quantity is linear with the de livery angle. The quantity change rate is 15% when fuel temperature increases 30℃. The delivery quantity per cycle increases 30mg at 28V drive voltage. T he average delivery difference for two same type pumps is 5%. Test results show that the bench can be used for unit pump verification.

  19. Micro Gas Turbine – A Review

    OpenAIRE

    2013-01-01

    Turbomachines is a class of machines which comprise of turbines and compressors. These machines are widely used for power generation, aircraft propulsion and in a wide range of heavy and medium industries. When we scale down these large turbines, we get micro turbines, which are compact and miniaturized form of these large turbines. The process of scaling down a turbine is not as simple as it looks like, it is a very tedious job and researches are going on in this area. These micro gas turbin...

  20. Evaluation of pump characteristic from measurement of fast deceleration

    Directory of Open Access Journals (Sweden)

    Himr Daniel

    2015-01-01

    Full Text Available Article describes an experiment where a pump connected to the simple hydraulic circuit is decelerated. Since the deceleration is fast enough the operating point of the machine moves from the initial steady position to the breaking zone, turbine zone and back to the new steady position. A dependence of the specific energy and the torque on the flow rate was evaluated from the measurement of the input and output pressure, torque and rotational speed recorded during the deceleration. Obtained characteristic is much wider than curves obtained from regular measurement of steady state.

  1. Heat driven pulse pump

    Science.gov (United States)

    Benner, Steve M (Inventor); Martins, Mario S. (Inventor)

    2000-01-01

    A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.

  2. Wind turbines and human health.

    Science.gov (United States)

    Knopper, Loren D; Ollson, Christopher A; McCallum, Lindsay C; Whitfield Aslund, Melissa L; Berger, Robert G; Souweine, Kathleen; McDaniel, Mary

    2014-01-01

    The association between wind turbines and health effects is highly debated. Some argue that reported health effects are related to wind turbine operation [electromagnetic fields (EMF), shadow flicker, audible noise, low-frequency noise, infrasound]. Others suggest that when turbines are sited correctly, effects are more likely attributable to a number of subjective variables that result in an annoyed/stressed state. In this review, we provide a bibliographic-like summary and analysis of the science around this issue specifically in terms of noise (including audible, low-frequency noise, and infrasound), EMF, and shadow flicker. Now there are roughly 60 scientific peer-reviewed articles on this issue. The available scientific evidence suggests that EMF, shadow flicker, low-frequency noise, and infrasound from wind turbines are not likely to affect human health; some studies have found that audible noise from wind turbines can be annoying to some. Annoyance may be associated with some self-reported health effects (e.g., sleep disturbance) especially at sound pressure levels >40 dB(A). Because environmental noise above certain levels is a recognized factor in a number of health issues, siting restrictions have been implemented in many jurisdictions to limit noise exposure. These setbacks should help alleviate annoyance from noise. Subjective variables (attitudes and expectations) are also linked to annoyance and have the potential to facilitate other health complaints via the nocebo effect. Therefore, it is possible that a segment of the population may remain annoyed (or report other health impacts) even when noise limits are enforced. Based on the findings and scientific merit of the available studies, the weight of evidence suggests that when sited properly, wind turbines are not related to adverse health. Stemming from this review, we provide a number of recommended best practices for wind turbine development in the context of human health.

  3. Wind turbines and human health

    Directory of Open Access Journals (Sweden)

    Loren eKnopper

    2014-06-01

    Full Text Available The association between wind turbines and health effects is highly debated. Some argue that reported health effects are related to wind turbine operation (electromagnetic fields (EMF, shadow flicker, audible noise, low frequency noise, infrasound. Others suggest that when turbines are sited correctly, effects are more likely attributable to a number of subjective variables that result in an annoyed/stressed state. In this review we provide a bibliographic-like summary and analysis of the science around this issue specifically in terms of noise (including audible, low frequency noise and infrasound, EMF and shadow flicker. Now there are roughly 60 scientific peer-reviewed articles on this issue. The available scientific evidence suggests that EMF, shadow flicker, low frequency noise and infrasound from wind turbines are not likely to affect human health; some studies have found that audible noise from wind turbines can be annoying to some. Annoyance may be associated with some self-reported health effects (e.g., sleep disturbance especially at sound pressure levels >40 dB(A. Because environmental noise above certain levels is a recognized factor in a number of health issues, siting restrictions have been implemented in many jurisdictions to limit noise exposure. These setbacks should help alleviate annoyance from noise. Subjective variables (attitudes and expectations are also linked to annoyance and have the potential to facilitate other health complaints via the nocebo effect. Therefore, it is possible that a segment of the population may remain annoyed (or report other health impacts even when noise limits are enforced. Based on the findings and scientific merit of the available studies, the weight of evidence suggests that when sited properly, wind turbines are not related to adverse health. Stemming from this review, we provide a number of recommended best practices for wind turbine development in the context of human health.

  4. Model Predictive Control of Wind Turbines

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian

    the need for maintenance of the wind turbine. Either way, better total-cost-of-ownership for wind turbine operators can be achieved by improved control of the wind turbines. Wind turbine control can be improved in two ways, by improving the model on which the controller bases its design or by improving......Wind turbines play a major role in the transformation from a fossil fuel based energy production to a more sustainable production of energy. Total-cost-of-ownership is an important parameter when investors decide in which energy technology they should place their capital. Modern wind turbines...... are controlled by pitching the blades and by controlling the electro-magnetic torque of the generator, thus slowing the rotation of the blades. Improved control of wind turbines, leading to reduced fatigue loads, can be exploited by using less materials in the construction of the wind turbine or by reducing...

  5. Advanced Turbine Blade Cooling Techniques Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Gas turbine engine technology is constantly challenged to operate at higher combustor outlet temperatures. In a modern gas turbine engine, these temperatures can...

  6. Pulsed differential pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, G.N.; Bagautdinov, F.A.; Rybalov, S.V.

    1985-06-01

    A pulsed differential pumping system is described for extracting an electron beam from a shaping region at a pressure of 10/sup -5/ torr into a volume with a pressure of 10-100 torr. A fast valve is used with appropriate geometrical parameters to reduce the length of the outlet channel considerable while increasing its diameter. Test results are given. The pumping system has two sections which communicate one with the other and with the volume at the elevated pressure which is produced by gasdynamic nozzles.

  7. Heat pump planning handbook

    CERN Document Server

    Bonin, Jürgen

    2015-01-01

    The Heat Pump Planning Handbook contains practical information and guidance on the design, planning and selection of heat pump systems, allowing engineers, designers, architects and construction specialists to compare a number of different systems and options. Including detailed descriptions of components and their functions and reflecting the current state of technology this guide contains sample tasks and solutions as well as new model calculations and planning evaluations. Also economic factors and alternative energy sources are covered, which are essential at a time of rising heat costs. T

  8. Sorption product heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Antonini, G.; Francois, O.; Gendarme, J.P.; Guilleminot, J.J.; Meunier, F.

    1988-07-15

    A continuous operating, and thus with enhanced performance, heat pump is presented. In this heat pump, the heat transfer between the hot source and the output system or network is realized through a solid adsorbent-refrigerant couple having endothermal desorption properties and exothermal adsorption or absorption properties. The sorption products are carried in a closed cycle movement between the two parts of the reactor. Each side of the reactor is assuming always the same function and the thermal inertia have to be overcome only when starting the reactor.

  9. Regenerative adsorbent heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  10. Geothermal Heat Pump Performance

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya L.; Lienau, Paul J.

    1995-01-01

    Geothermal heat pump systems are a promising new energy technology that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to customers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school, and commercial building applications. Information was developed on the status of electric utility marketing programs, barriers to market penetration, incentive programs, and benefits.

  11. Geothermal heat pump performance

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya L.; Lienau, Paul J.

    1995-01-01

    Geothermal heat pump systems are a promising new energy technology that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to customers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school, and commercial building applications. Information was developed on the status of electric utility marketing programs, barriers to market penetration, incentive programs, and benefits.

  12. Molecular heat pump.

    Science.gov (United States)

    Segal, Dvira; Nitzan, Abraham

    2006-02-01

    We propose a molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the slow and fast modulation limits and for different modulation wave forms, thus making it possible to optimize the device performance.

  13. Evaluation of a multiple disk centrifugal pump as an artificial ventricle.

    Science.gov (United States)

    Miller, G E; Sidhu, A; Fink, R; Etter, B D

    1993-07-01

    A multiple-disk centrifugal pump based on the Tesla Turbine design has been modified for potential use as an artificial ventricle or ventricular assist device. The pump consists of a series of interconnected parallel disks placed within a spiral volute housing. This pump normally operates as a continuous flow device; however, a controller circuit has been developed to also allow for pulsatile operation. Frequency, systolic duration, systolic rise time, and diastolic decay time can be independently controlled to produce a wide range of pulsatile pressures and flows. This pumping system was tested in vitro on a mock circulatory system using a blood analogue. Inlet and outlet pressures, outlet flow, and motor rotations per minute were continually monitored over a wide range of physiologic operating conditions. The disk pump output was compared with that of other artificial ventricles and produced favorable results. Direct experimental comparisons were made with a Harvard Apparatus pulsatile piston pump. Unlike the Harvard pump, the disk pump does not use valves. Rather, a slight forward rotation of the disks is used to offset the adverse diastolic pressure gradient, which avoids backflow through the device.

  14. Fatigue damage of steam turbine shaft at asynchronous connections of turbine generator to electrical network

    Science.gov (United States)

    Bovsunovsky, A. P.

    2015-07-01

    The investigations of cracks growth in the fractured turbine rotors point out at theirs fatigue nature. The main reason of turbine shafts fatigue damage is theirs periodical startups which are typical for steam turbines. Each startup of a turbine is accompanied by the connection of turbine generator to electrical network. During the connection because of the phase shift between the vector of electromotive force of turbine generator and the vector of supply-line voltage the short-term but powerful reactive shaft torque arises. This torque causes torsional vibrations and fatigue damage of turbine shafts of different intensity. Based on the 3D finite element model of turbine shaft of the steam turbine K-200-130 and the mechanical properties of rotor steel there was estimated the fatigue damage of the shaft at its torsional vibrations arising as a result of connection of turbine generator to electric network.

  15. Hybrid Turbine Electric Vehicle

    Science.gov (United States)

    Viterna, Larry A.

    1997-01-01

    Hybrid electric power trains may revolutionize today's ground passenger vehicles by significantly improving fuel economy and decreasing emissions. The NASA Lewis Research Center is working with industry, universities, and Government to develop and demonstrate a hybrid electric vehicle. Our partners include Bowling Green State University, the Cleveland Regional Transit Authority, Lincoln Electric Motor Division, the State of Ohio's Department of Development, and Teledyne Ryan Aeronautical. The vehicle will be a heavy class urban transit bus offering double the fuel economy of today's buses and emissions that are reduced to 1/10th of the Environmental Protection Agency's standards. At the heart of the vehicle's drive train is a natural-gas-fueled engine. Initially, a small automotive engine will be tested as a baseline. This will be followed by the introduction of an advanced gas turbine developed from an aircraft jet engine. The engine turns a high-speed generator, producing electricity. Power from both the generator and an onboard energy storage system is then provided to a variable-speed electric motor attached to the rear drive axle. An intelligent power-control system determines the most efficient operation of the engine and energy storage system.

  16. Hydrodynamic and performance of low power turbines: conception, modelling and experimental tests

    Directory of Open Access Journals (Sweden)

    Mariana. Simão, Helena M. Ramos

    2010-05-01

    Full Text Available The present work comprises a research about hydraulic machines with the aim of optimization and the selection of adequate turbines of low power for exploitation of an available energy still unexplored in water supply systems based on analyses of 3D hydrodynamic flows and on characteristic curves which lead to the best efficiency point. The analysis is carried out based on non-dimensional parameters (i.e., discharge, head, efficiency, runner speed and mechanical power in order to be possible comparisons. Mathematical models based on the physical principles, associated to the development of volumetric and rotordynamic machines, are developed. New turbines are suggested, which are based on similar theory among turbo machines based on applications in hydraulic systems with guarantee discharge and available head. The hydrodynamic fluid mechanical analysis requires the use of complex advanced models (CFD which apply the equations of Navier-Stokes by using mathematical models of conservation laws, for the study of the turbulent flow behaviour. To determine the correlation between the flow velocity and pressure fields, the k-? model, is used in this research. Many turbines are evaluated (i.e., positive displacement (PD, pump as turbine (PAT, propeller with volute at inlet, four and five blades tubular propellers and sensitivity analyses, to the best configurations, as well as comparisons between performance curves and experimental tests. Results are presented with the appropriate range variation for each turbine type and application.

  17. The History and State of the Art of Variable-Speed Wind Turbine Technology

    Science.gov (United States)

    Carlin, P. W.; Laxson, A. S.; Muljadi, E. B.

    2003-04-01

    Early wind turbines used for performing mechanical work (pumping, grinding and cutting) optimized aerodynamics by being allowed to run at variable speed. Some of the earliest DC electric wind turbines were allowed to run at variable speed. With the advent of grid-connected AC turbines, rotational speeds were limited in order to control the wind turbine AC frequency output to equal the grid frequency. With the advent of semiconductor devices, attempts began as early as the 1970s to allow variable-speed operation of large-scale turbines. The introduction of a new generation of high-voltage, high-speed power electronic components allows a wide range of variable-speed operation for very-large-scale machines. Over the past 30 years a number of designs have been tested, a few of which have entered commercial operation. A number of these designs and their histories are described. A detailed description of a wide range of electrical methods for allowing variable-speed operation is provided.

  18. Foundations for offshore wind turbines.

    Science.gov (United States)

    Byrne, B W; Houlsby, G T

    2003-12-15

    An important engineering challenge of today, and a vital one for the future, is to develop and harvest alternative sources of energy. This is a firm priority in the UK, with the government setting a target of 10% of electricity from renewable sources by 2010. A component central to this commitment will be to harvest electrical power from the vast energy reserves offshore, through wind turbines or current or wave power generators. The most mature of these technologies is that of wind, as much technology transfer can be gained from onshore experience. Onshore wind farms, although supplying 'green energy', tend to provoke some objections on aesthetic grounds. These objections can be countered by locating the turbines offshore, where it will also be possible to install larger capacity turbines, thus maximizing the potential of each wind farm location. This paper explores some civil-engineering problems encountered for offshore wind turbines. A critical component is the connection of the structure to the ground, and in particular how the load applied to the structure is transferred safely to the surrounding soil. We review previous work on the design of offshore foundations, and then present some simple design calculations for sizing foundations and structures appropriate to the wind-turbine problem. We examine the deficiencies in the current design approaches, and the research currently under way to overcome these deficiencies. Designs must be improved so that these alternative energy sources can compete economically with traditional energy suppliers.

  19. Simulating Collisions for Hydrokinetic Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

    2013-10-01

    Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

  20. The Cross Flow Turbine Behavior towards the Turbine Rotation Quality, Efficiency, and Generated Power

    OpenAIRE

    Haurissa, Jusuf; Wahyudi, Slamet; Irawan, Yudy Surya; Soenoko, Rudy

    2012-01-01

    page number: 448-453; International audience; The focus of this research is the turbine flow behavior toward the turbine rotation quality, the turbine efficiency and the turbine power generated. The turbine rotation quality is really needed for the high quality electricity power generated. The method used in this research is the experimental method. The fluid flow behavior was observed by using a Casio 1000 handy camera and a Canon 550D camera. The data obtained from this observation is in a ...

  1. The Effect of Blade Aeroelasticity and Turbine Parameters on Wind Turbine Noise

    OpenAIRE

    Wu, Daniel

    2017-01-01

    In recent years, the demand for wind energy has dramatically increased as well as the number and size of commercial wind turbines. These large turbines are loud and can cause annoyance to nearby communities. Therefore, the prediction of large wind turbine noise over long distances is critical. The wind turbine noise prediction is a very complex problem since it has to account for atmospheric conditions (wind and temperature), ground absorption, un-even terrain, turbine wake, and blade deforma...

  2. The Cross Flow Turbine Behavior towards the Turbine Rotation Quality, Efficiency, and Generated Power

    OpenAIRE

    Haurissa, Jusuf; Wahyudi, Slamet; Irawan,Yudy Surya; Soenoko, Rudy

    2012-01-01

    page number: 448-453; International audience; The focus of this research is the turbine flow behavior toward the turbine rotation quality, the turbine efficiency and the turbine power generated. The turbine rotation quality is really needed for the high quality electricity power generated. The method used in this research is the experimental method. The fluid flow behavior was observed by using a Casio 1000 handy camera and a Canon 550D camera. The data obtained from this observation is in a ...

  3. Modern low-pollutive industrial gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, A.

    1987-01-01

    As illustrated by aviation gas turbines, industrial gas-turbine engineering saw a rapid development towards light-weight compact units with enhanced efficiency. The Sulzer gas turbine type 10 is a most up-to-date machine which has not been derived simply from the aircraft engine but will also fully meet the requirements for stationary industrial operation.

  4. Meteorological Controls on Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Barthelmie, Rebecca J.; Hansen, Kurt Schaldemose; Pryor, S.C.

    2013-01-01

    The primary control on the magnitude of the power losses induced by wind turbine wakes in large wind farms is the hub-height wind speed via its link to the turbine thrust coefficient. Hence, at low to moderate wind speeds (between cut-in and rated turbine wind speeds) when the thrust coefficient...

  5. Wind turbine with lightning protection system

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a wind turbine comprising a lightning protection system comprising a waveguide interconnecting a communication device and a signal-carrying structure. In other aspects, the present invention relates to the use of a waveguide in a lightning protection system...... of a wind turbine, a power splitter and its use in a lightning protection system of a wind turbine....

  6. Performance of wind turbines during icing events

    Energy Technology Data Exchange (ETDEWEB)

    Gillenwater, D. [Ecole de Technologie Superieure, Montreal, PQ (Canada). Dept. of Mechanical Engineering; Masson, C. [Canada Research Chair on Nordic Environment Aerodynamics of Wind Turbines, Ottawa, ON (Canada)]|[Ecole de Technologie Superieure, Montreal, PQ (Canada); Perron, J. [Quebec Univ., Chicoutimi, PQ (Canada). Anti-Icing Materials International Laboratory

    2007-07-01

    Wind turbines are increasingly being installed in cold climate sites where the cold climate can have a great impact on the operation and performance of the wind turbine. Issues of concern include turbine stoppage, mechanical failure, instrument failure, aerodynamic disruption, difficult access and safety concerns. The scope of this study was to calculate energy losses caused by ice accretions on a wind turbine and to analyze different icing prediction and icing detection tools. The purpose was to improve knowledge on wind turbine operation in cold climate and assist pertinent parties in wind farm siting and wind turbine operation. Another objective was to precisely calculate the financial losses caused by icing of wind turbines. The study was based on stall regulated wind turbines that have a nominal power of 750 kW. Data from Environment Canada included various meteorological measurements as well as visual observations. The reference mast's measurement data included various meteorological measurements as well as some wind turbine operational parameters. The wind turbine's operational data included all measurements saved by the wind turbine's acquisition system. The study revealed that stall controlled turbines are seriously affected by icing and that all measuring instruments should be selected with care. It was recommended that precise evaluation of losses due to icing should be made in order to avoid overestimating losses. The probability and severity of icing events on Quebec territory will be determined. figs.

  7. Innovative Design of Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Chougule, Prasad

    2013-01-01

    The wind turbines can be classified as: i) Horizontal axis wind turbines (HAWT), and ii) Vertical axis wind turbines (VAWT). The HAWT is fully developed and the size is growing higher. Whereas, the VAWT is not developed because of the less efficiency and vibration issues of big structure. However...

  8. The aerodynamic effects of wheelspace coolant injection into the mainstream flow of a high pressure gas turbine

    Science.gov (United States)

    McLean, Christopher Elliot

    Modern gas turbine engines operate with mainstream gas temperatures exceeding 1450°C in the high-pressure turbine stage. Unlike turbine blades, rotor disks and other internal components are not designed to withstand the extreme temperatures found in mainstream flow. In modern gas turbines, cooling air is pumped into the wheelspace cavities to prevent mainstream gas ingestion and then exits through a seal between the rotor and the nozzle guide vane (NGV) thereby mixing with the mainstream flow. The primary purpose for the wheelspace cooling air is the cooling of the turbine wheelspace. However, secondary effects arise from the mixing of the spent cooling air with the mainstream flow. The exiting cooling air is mixed with the hot mainstream flow effecting the aerodynamic and performance characteristics of the turbine stage. The physics underlying this mixing process and its effects on stage performance are not yet fully understood. The relative aerodynamic and performance effects associated with rotor - NGV gap coolant injections were investigated in the Axial Flow Turbine Research Facility (AFTRF) of the Center for Gas Turbines and Power of The Pennsylvania State University. This study quantifies the secondary effects of the coolant injection on the aerodynamic and performance character of the turbines main stream flow for root injection, radial cooling, and impingement cooling. Measurement and analysis of the cooling effects were performed in both stationary and rotational frames of reference. The AFTRF is unique in its ability to perform long duration cooling measurements in the stationary and rotating frames. The effects of wheelspace coolant mixing with the mainstream flow on total-to-total efficiency, energy transport, three dimensional velocity field, and loading coefficient were investigated. Overall, it was found that a small quantity (1%) of cooling air can have significant effects on the performance character and exit conditions of the high pressure stage

  9. Investigation of the 4-Quadrant behaviour of a mixed flow diffuser pump with CFD-methods and test rig evaluation

    Science.gov (United States)

    Höller, S.; Benigni, H.; Jaberg, H.

    2016-11-01

    The complete pump characteristics including its 4-quadrant behaviour are of essential interest for off-design operations such as a pump trip. At this exceptional load case the pump enters the dissipation mode and moves further into the turbine mode while the direction of rotation and the flow direction will change. The time-consuming and expensive experimental investigation of the 4-quadrant behaviour requires a specific test rig, allowing the flow direction as well as the rotational direction of the investigated pump to be reverted. By measuring the pump performance (head and efficiency) at variable positive and negative discharge and rotation the complete pump characteristics are evaluated. Nowadays CFD- analysis allows for the reliable prediction of the hydraulic performance of a pump near the design point. However, abnormal operating conditions lead to complex and unsteady flow phenomena inside the pump. Besides steady-state calculations in the normal operating conditions quite comprehensive transient CFD-investigations are required to simulate the whole pump characteristics accurately. The present study focuses on the comparison of the results obtained on the test rig and by numerical methods and shows a remarkably good agreement between them. It can be shown that it is possible to reliably simulate the 4-quadrant behaviour of a mixed flow diffuser pump based on CFD-methods. Furthermore an exemplary waterhammer calculation shows the successful application of the numerically calculated 4- quadrant behaviour.

  10. Pressurized Vessel Slurry Pumping

    Energy Technology Data Exchange (ETDEWEB)

    Pound, C.R.

    2001-09-17

    This report summarizes testing of an alternate ''pressurized vessel slurry pumping'' apparatus. The principle is similar to rural domestic water systems and ''acid eggs'' used in chemical laboratories in that material is extruded by displacement with compressed air.

  11. Microfluidic "blinking" bubble pump

    NARCIS (Netherlands)

    Yin, Zhizhong; Prosperetti, Andrea

    2005-01-01

    The paper reports data obtained on a simple micropump, suitable for electrolytes, based on the periodic growth and collapse of a single vapor bubble in a microchannel. With a channel diameter of the order of 100 µm, pumping rates of several tens of µl/min and pressure differences of several kPa are

  12. Cold Climate Heat Pump

    Science.gov (United States)

    2013-08-01

    12. Data set 7 – energy consumption of heat pump and furnace ................................ 22 Figure 13. Experimentally adjusted TRNSYS model...minute SCF standard cubic feet SEER seasonal energy efficiency ratio SH superheated TMY Typical Meteorological Year TRNSYS Transient Systems...Simulation Program ( TRNSYS ), to generate an experimentally adjusted, simulation heating seasonal performance. 6.4.1 Simulation Results The TRNSYS model

  13. The Osmotic Pump

    Science.gov (United States)

    Levenspiel, Octave; de Nevers, Noel

    1974-01-01

    Describes the principle involved in an osmotic pump used to extract fresh water from the oceans and in an osmotic power plant used to generate electricity. Although shown to be thermodynamically feasible, the osmotic principle is not likely to be used commerically for these purposes in the near future. (JR)

  14. Sicle software. Pumps and blowers modelling; Code sicle. Modelisation des pompes et soufflantes

    Energy Technology Data Exchange (ETDEWEB)

    Faulot, J.P.; Pastorini, S.

    1993-10-01

    The SICLE software includes a simplified modelization for pumps located on fluid circuits. This modelization is based on operating specifications (four quadrants), on energy conservation equation and on the second law of dynamics. The pump is considered like a punctual component without storage of mass or energy. In that case, it is the simplest punctual component of the different elementary modules of SICLE. Nevertheless, for a user, it represents one of the most complex component to model because of the many geometrical (driving or not by motor, turbine with or without coupling, etc...) and functional possibilities (operating in the four quadrants, motor specifications, turbines specifications, internal loss values, etc...). (authors). 4 figs., 1 ref.

  15. Optimization of compound gear pump

    Institute of Scientific and Technical Information of China (English)

    栾振辉

    2002-01-01

    This paper introduces the performances of compound gear pump. Based on the target of having the smallest mass per unit volume, the paper established a mathematical model of optimization, and obtained the results of optimization of the pump.

  16. RSES heat pump technician certification

    Energy Technology Data Exchange (ETDEWEB)

    Zeiner, J.

    1996-06-01

    In 1987 the National Heat Pump certification test was developed by the Refrigeration Service Engineers Society (RSES), and in 1994, the program was more specifically named Heat Pump Service Technician Certification. This report describes the benefits of certification.

  17. Orbital Liquid Oxygen Pump Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed work will develop a pump, which is based on two novel and unique design features. The first feature is a lobed pumping mechanism which operates with...

  18. Large eddy simulation of a pumped- storage reservoir

    Science.gov (United States)

    Launay, Marina; Leite Ribeiro, Marcelo; Roman, Federico; Armenio, Vincenzo

    2016-04-01

    The last decades have seen an increasing number of pumped-storage hydropower projects all over the world. Pumped-storage schemes move water between two reservoirs located at different elevations to store energy and to generate electricity following the electricity demand. Thus the reservoirs can be subject to important water level variations occurring at the daily scale. These new cycles leads to changes in the hydraulic behaviour of the reservoirs. Sediment dynamics and sediment budgets are modified, sometimes inducing problems of erosion and deposition within the reservoirs. With the development of computer performances, the use of numerical techniques has become popular for the study of environmental processes. Among numerical techniques, Large Eddy Simulation (LES) has arisen as an alternative tool for problems characterized by complex physics and geometries. This work uses the LES-COAST Code, a LES model under development in the framework of the Seditrans Project, for the simulation of an Upper Alpine Reservoir of a pumped-storage scheme. Simulations consider the filling (pump mode) and emptying (turbine mode) of the reservoir. The hydraulic results give a better understanding of the processes occurring within the reservoir. They are considered for an assessment of the sediment transport processes and of their consequences.

  19. Ultimate loading of wind turbines

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Ronold, K.; Ejsing Jørgensen, Hans

    1999-01-01

    An extreme loading study has been conducted comprising a general wind climate analysis as well as a wind turbine reliability study. In the wind climate analysis, the distribution of the (horizontal) turbulence standard deviation, conditioned on the meanwind speed, has been approximated by fitting......, a design turbulence intensity for off-shore application is proposed which, in the IEC code framework, is applicable for extreme as well as for fatigue loaddetermination. In order to establish a rational method to analyse wind turbine components with respect to failure in ultimate loading, and in addition...... to the event of failure in ultimate loading in flapwise bending in the normal operating condition of a site-specific turbine....

  20. Reliability Assessment of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    (and safe). In probabilistic design the single components are designed to a level of reliability, which accounts for an optimal balance between failure consequences, cost of operation & maintenance, material costs and the probability of failure. Furthermore, using a probabilistic design basis...... but manufactured in series production based on many component tests, some prototype tests and zeroseries wind turbines. These characteristics influence the reliability assessment where focus in this paper is on the structural components. Levelized Cost Of Energy is very important for wind energy, especially when...... comparing to other energy sources. Therefore much focus is on cost reductions and improved reliability both for offshore and onshore wind turbines. The wind turbine components should be designed to have sufficient reliability level with respect to both extreme and fatigue loads but also not be too costly...

  1. Heat Transfer in Gas Turbines

    Science.gov (United States)

    Garg, Vijay K.

    2001-01-01

    The turbine gas path is a very complex flow field. This is due to a variety of flow and heat transfer phenomena encountered in turbine passages. This manuscript provides an overview of the current work in this field at the NASA Glenn Research Center. Also, based on the author's preference, more emphasis is on the computational work. There is much more experimental work in progress at GRC than that reported here. While much has been achieved, more needs to be done in terms of validating the predictions against experimental data. More experimental data, especially on film cooled and rough turbine blades, are required for code validation. Also, the combined film cooling and internal cooling flow computation for a real blade is yet to be performed. While most computational work to date has assumed steady state conditions, the flow is clearly unsteady due to the presence of wakes. All this points to a long road ahead. However, we are well on course.

  2. Vertical axis wind turbine airfoil

    Science.gov (United States)

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  3. Inertial response from wind turbines

    Science.gov (United States)

    Moore, Ian F.

    Wind power is an essential part of the strategy to address challenges facing the energy sector. Operation of the electricity network in 2020 will require higher levels of response and reserve from generation. The provision of inertial response from wind turbines was investigated. A model was developed for the simulation of frequency on the mainland UK system, including a simplified model for a synchronous generator to represent Full Power Converter turbines. Two different methods of inertia response, the step method and the inertia coupling method, were modelled and introduced into the turbine torque speed control. Simulations illustrated the effects on primary frequency control for a high penetration of wind turbines. Results are shown for different demand levels with generation losses of 1320GW and 1800GW. A comparison of the inertia functions is included and the effect of wind speed and the constant speed region of the maximum power extraction curve. For the scenarios modelled only a small change in turbine output was required for inertia response (0.02p.u). Without inertia response a large increase in synchronous plant response was needed. A test rig was constructed consisting of a Full Power Converter bridge and a synchronous generator driven by a dc machine. Power converters were designed and constructed by the candidate. Vector control of both the generator converter and grid converter was implemented on a dedicated control platform. The inertia coupling function was implemented and a test frequency deviation injected to represent a load generation imbalance. Results compared closely to those from the model and demonstrated the capability to closely couple turbine speed to system frequency with adjustment of the response via a filter if desired. The experimental work confirmed the adequacy of the simplified generator model and further confirmed the possibility of using inertia response. The inertia coupling function was considered suitable for use for the UK

  4. Turbulence in vertical axis wind turbine canopies

    Science.gov (United States)

    Kinzel, Matthias; Araya, Daniel B.; Dabiri, John O.

    2015-11-01

    Experimental results from three different full scale arrays of vertical-axis wind turbines (VAWTs) under natural wind conditions are presented. The wind velocities throughout the turbine arrays are measured using a portable meteorological tower with seven, vertically staggered, three-component ultrasonic anemometers. The power output of each turbine is recorded simultaneously. The comparison between the horizontal and vertical energy transport for the different turbine array sizes shows the importance of vertical transport for large array configurations. Quadrant-hole analysis is employed to gain a better understanding of the vertical energy transport at the top of the VAWT arrays. The results show a striking similarity between the flows in the VAWT arrays and the adjustment region of canopies. Namely, an increase in ejections and sweeps and decrease in inward and outward interactions occur inside the turbine array. Ejections are the strongest contributor, which is in agreement with the literature on evolving and sparse canopy flows. The influence of the turbine array size on the power output of the downstream turbines is examined by comparing a streamwise row of four single turbines with square arrays of nine turbine pairs. The results suggest that a new boundary layer forms on top of the larger turbine arrays as the flow adjusts to the new roughness length. This increases the turbulent energy transport over the whole planform area of the turbine array. By contrast, for the four single turbines, the vertical energy transport due to turbulent fluctuations is only increased in the near wake of the turbines. These findings add to the knowledge of energy transport in turbine arrays and therefore the optimization of the turbine spacing in wind farms.

  5. VIRTUAL FUEL-PUMP DESIGN

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Some concepts of virtual product are discussed. The key technologies of virtual fuel-pump development are in detail analysed, which include virtual fuel-pump product modeling, intelligent simulation, distributed design environment, and virtual assembly. The virtual fuel-pump development prototype system considers requirement analysis, concept design, injection preferment analysis, detailed design, and assembly analysis.

  6. ADVANCED TURBINE SYSTEMS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Sy Ali

    2002-03-01

    The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these

  7. Small Scroll Pump for Cryogenic Liquids Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a compact, reliable, light weight, electrically driven pump capable of pumping cryogenic liquids, based on scroll pump technology. This pump will...

  8. Improving pumping system efficiency at coal plants

    Energy Technology Data Exchange (ETDEWEB)

    Livoti, W.C.; McCandless, S.; Poltorak, R. [Baldor Electric Co. (United States)

    2009-03-15

    The industry must employ ultramodern technologies when building or upgrading power plant pumping systems thereby using fuels more efficiently. The article discusses the uses and efficiencies of positive displacement pumps, centrifugal pumps and multiple screw pumps. 1 ref., 4 figs.

  9. Rotordynamics analysis of the Space Shuttle main engine high-pressure oxidizer pump

    Science.gov (United States)

    Rowan, B. F.

    1980-01-01

    This study describes the rotordynamics analysis of the Space Shuttle Main Engine (SSME) high-pressure oxidizer turbopump. Modal synthesis methods were used to account for the complex coupling of the pump and engine structure. Cross-coupling elements effecting rotor stability were included in the analysis. Results of the analysis indicated that smaller bearing clearances and a smooth turbine interstage seal would result in longer bearing life and improved stability. Subsequent testing with these design features has shown the same results.

  10. The aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming; Troldborg, Niels

    2013-01-01

    In the paper we present state-of-the-art of research in wind turbine aerodynamics. We start be giving a brief historical review and a survey over aerodynamic research in wind energy. Next, we focus on some recent research results obtained by our wind energy group at Department of Mechanical...... Engineering at DTU. In particular, we show some new results on the classical problem of the ideal rotor and present a series of new results from an on-going research project dealing with the modelling and simulation of turbulent flow structures in the wake behind wind turbines....

  11. Airfoil characteristics for wind turbines

    DEFF Research Database (Denmark)

    Bak, C.; Fuglsang, P.; Sørensen, Niels N.

    1999-01-01

    Airfoil characteristics for use in the Blade Element Momentum (BEM) method calculating the forces on Horizontal Axis Wind Turbines (HAWT) are derived by use of systematic methods. The investigation and derivation of the airfoil characteristics are basedon four different methods: 1) Inverse momentum...... to a commonly used set of airfoil characteristics. The numerical optimisation is based on both the 3D CFDcomputations and measurements on a 41-m rotor with LM 19.1 and LM 19.0 blades, respectively. The method requires power and loads from a turbine and is promising since a set of lift and drag curves is derived...

  12. Extreme Response for Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2009-01-01

    The characteristic load on wind turbines during operation are among others dependent on the mean wind speed, the turbulence intensity and type and settings of the control system. The characteristic load during operation is normally estimated by statistical extrapolation of a limited number...... of simulated 10min time series of the response according to the wind turbine standard IEC 61400-1. However, this method assumes that the individual 10min time series and the extracted peaks from the time series are independent. In the present paper is this assumption investigated based on field measurements...

  13. Appropriate technology for small turbines

    Energy Technology Data Exchange (ETDEWEB)

    Strohmer, F.; Walch, E.

    1981-11-01

    The investment costs of small-scale hydro plants are relatively high; of these the electro-mechanical equipment is generally a high proportion. One way of reducing these costs is to use information and experience gained in the manufacture of equipment for large plants, avoiding expensive testing and assessment. To exploit this experience, a standard program has been developed which can be applied quickly and easily for the design of small turbines. In this way the best choice of turbines and configurations can be determined rapidly for any site.

  14. Preliminary Two-Phase Terry Turbine Nozzle Models for RCIC Off-Design Operation Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, James [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-12

    This report presents the effort to extend the single-phase analytical Terry turbine model to cover two-phase off-design conditions. The work includes: (1) adding well-established two-phase choking models – the Isentropic Homogenous Equilibrium Model (IHEM) and Moody’s model, and (2) theoretical development and implementation of a two-phase nozzle expansion model. The two choking models provide bounding cases for the two-phase choking mass flow rate. The new two-phase Terry turbine model uses the choking models to calculate the mass flow rate, the critical pressure at the nozzle throat, and steam quality. In the divergent stage, we only consider the vapor phase with a similar model for the single-phase case by assuming that the liquid phase would slip along the wall with a much slower speed and will not contribute the impulse on the rotor. We also modify the stagnation conditions according to two-phase choking conditions at the throat and the cross-section areas for steam flow at the nozzle throat and at the nozzle exit. The new two-phase Terry turbine model was benchmarked with the same steam nozzle test as for the single-phase model. Better agreement with the experimental data is observed than from the single-phase model. We also repeated the Terry turbine nozzle benchmark work against the Sandia CFD simulation results with the two-phase model for the pure steam inlet nozzle case. The RCIC start-up tests were simulated and compared with the single-phase model. Similar results are obtained. Finally, we designed a new RCIC system test case to simulate the self-regulated Terry turbine behavior observed in Fukushima accidents. In this test, a period inlet condition for the steam quality varying from 1 to 0 is applied. For the high quality inlet period, the RCIC system behaves just like the normal operation condition with a high pump injection flow rate and a nominal steam release rate through the turbine, with the net addition of water to the primary system; for

  15. Design of Wind Turbine Vibration Monitoring System

    Directory of Open Access Journals (Sweden)

    Shoubin Wang

    2013-04-01

    Full Text Available In order to ensure safety of wind turbine operation and to reduce the occurrence of faults as well as to improve the reliability of wind turbine operation, a vibration monitoring for wind turbine is developed. In this paper, it analyses the enlargement of all the parts of the structure and the working mechanism, the research method of wind turbine operation vibration is introduced, with the focus being the use of the sensor principle. Finally the hardware design and software of this system is introduced and the main function of this system is described, which realizes condition monitoring of the work state of wind turbines.

  16. Aeroelastic instability problems for wind turbines

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    2007-01-01

    This paper deals with the aeroelostic instabilities that have occurred and may still occur for modem commercial wind turbines: stall-induced vibrations for stall-turbines, and classical flutter for pitch-regulated turbines. A review of previous works is combined with derivations of analytical...... stiffness and chordwise position of the center of gravity along the blades are the main parameters for flutter. These instability characteristics are exemplified by aeroelastic stability analyses of different wind turbines. The review of each aeroelastic instability ends with a list of current research...... issues that represent unsolved aeroelostic instability problems for wind turbines. Copyright (c) 2007 John Wiley & Sons, Ltd....

  17. Pumping characteristics of roots blower pumps for light element gases

    Energy Technology Data Exchange (ETDEWEB)

    Hiroki, Seiji; Abe, Tetsuya; Tanzawa, Sadamitsu; Nakamura, Jun-ichi; Ohbayashi, Tetsuro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2002-07-01

    The pumping speed and compression ratio of the two-stage roots blower pumping system were measured for light element gases (H{sub 2}, D{sub 2} and He) and for N{sub 2}, in order to assess validity of the ITER torus roughing system as an ITER R and D task (T234). The pumping system of an Edwards EH1200 (nominal pumping speed of 1200 m{sup 3}/s), two EH250s (ibid. 250 m{sup 3}/s) and a backing pump (ibid. 100 m{sup 3}/s) in series connection was tested under PNEUROP standards. The maximum pumping speeds of the two-stage system for D{sub 2} and N{sub 2} were 1200 and 1300 m{sup 3}/h, respectively at 60 Hz, which satisfied the nominal pumping speed. These experimental data support the design validity of the ITER torus roughing system. (author)

  18. Coordinated Control of Cross-Flow Turbines

    Science.gov (United States)

    Strom, Benjamin; Brunton, Steven; Polagye, Brian

    2016-11-01

    Cross-flow turbines, also known as vertical-axis turbines, have several advantages over axial-flow turbines for a number of applications including urban wind power, high-density arrays, and marine or fluvial currents. By controlling the angular velocity applied to the turbine as a function of angular blade position, we have demonstrated a 79 percent increase in cross-flow turbine efficiency over constant-velocity control. This strategy uses the downhill simplex method to optimize control parameter profiles during operation of a model turbine in a recirculating water flume. This optimization method is extended to a set of two turbines, where the blade motions and position of the downstream turbine are optimized to beneficially interact with the coherent structures in the wake of the upstream turbine. This control scheme has the potential to enable high-density arrays of cross-flow turbines to operate at cost-effective efficiency. Turbine wake and force measurements are analyzed for insight into the effect of a coordinated control strategy.

  19. A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing.

    Science.gov (United States)

    Habhab, Mohammed-Baker; Ismail, Tania; Lo, Joe Fujiou

    2016-11-23

    Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP) based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications.

  20. A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing

    Directory of Open Access Journals (Sweden)

    Mohammed-Baker Habhab

    2016-11-01

    Full Text Available Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications.

  1. A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing

    Science.gov (United States)

    Habhab, Mohammed-Baker; Ismail, Tania; Lo, Joe Fujiou

    2016-01-01

    Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP) based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications. PMID:27886051

  2. SHINE Vacuum Pump Test Verification

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Gregg A; Peters, Brent

    2013-09-30

    Normetex pumps used world-wide for tritium service are no longer available. DOE and other researchers worldwide have spent significant funds characterizing this pump. Identification of alternate pumps is required for performance and compatibility with tritium gas. Many of the pumps that could be used to meet the functional performance requirements (e.g. pressure and flow conditions) of the Normetex pump have features that include the use of polymers or oils and greases that are not directly compatible with tritium service. This study assembles a test system to determine the flow characteristics for candidate alternate pumps. These tests are critical to the movement of tritium through the SHINE Tritium Purification System (TPS). The purpose of the pump testing is two-fold: (1) obtain baseline vacuum pump characteristics for an alternate (i.e. ''Normetex replacement'') pump intended for use in tritium service; and (2) verify that low pressure hydrogen gas can be transported over distances up to 300 feet by the candidate pumps. Flow rates and nominal system pressures have been identified for the SHINE Mo-99 production process Tritium Purification System (TPS). To minimize the line sizes for the transfer of low pressure tritium from the Neutron Driver Accelerator System (NDAS) to the primary processing systems in the TPS, a ''booster'' pump has been located near the accelerator in the design. A series of pump tests were performed at various configurations using hydrogen gas (no tritium) to ensure that this concept is practical and maintains adequate flow rates and required pressures. This report summarizes the results of the tests that have been performed using various pump configurations. The current design of the Tritium Purification System requires the ''booster'' pump to discharge to or to be backed by another vacuum pump. Since Normetex pumps are no longer manufactured, a commercially available Edwards

  3. A Two-Bladed Concept Wind Turbine

    DEFF Research Database (Denmark)

    Kim, Taeseong

    2012-01-01

    This article shows the potential for reducing extreme loads with an innovative design of wind turbine, a partial pitch two-bladed concept turbine. The most extreme conditions to test a turbine are considered to be stand-still combined with a grid failure in which the wind comes from all directions...... from 0 to 360 degrees. All aeroelastic load simulations are done by using the aeroelastic code HAWC2. From the load comparisons between the partial pitch two-bladed turbine and a conventional three-bladed turbine it is observed that the partial pitch two-bladed turbine can reduce the extreme tower...... bottom bending moment by approximately 33% compared to the three-bladed turbine....

  4. Industrial Advanced Turbine Systems Program overview

    Energy Technology Data Exchange (ETDEWEB)

    Esbeck, D.W. [Solar Turbines Inc., San Diego, CA (United States)

    1995-10-01

    The U.S. Department of Energy (DOE), in partnership with industry, has set new performance standards for industrial gas turbines through the creation of the Industrial Advanced Turbine System Program. Their leadership will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in this size class (3-to-20 MW). The DOE has already created a positive effect by encouraging gas turbine system manufacturers to reassess their product and technology plans using the new higher standards as the benchmark. Solar Turbines has been a leader in the industrial gas turbine business, and is delighted to have joined with the DOE in developing the goals and vision for this program. We welcome the opportunity to help the national goals of energy conservation and environmental enhancement. The results of this program should lead to the U.S. based gas turbine industry maintaining its international leadership and the creation of highly paid domestic jobs.

  5. A Two-Bladed Concept Wind Turbine

    DEFF Research Database (Denmark)

    Kim, Taeseong

    2012-01-01

    This article shows the potential for reducing extreme loads with an innovative design of wind turbine, a partial pitch two-bladed concept turbine. The most extreme conditions to test a turbine are considered to be stand-still combined with a grid failure in which the wind comes from all directions...... from 0 to 360 degrees. All aeroelastic load simulations are done by using the aeroelastic code HAWC2. From the load comparisons between the partial pitch two-bladed turbine and a conventional three-bladed turbine it is observed that the partial pitch two-bladed turbine can reduce the extreme tower...... bottom bending moment by approximately 33% compared to the three-bladed turbine....

  6. Dynamic survey of wind turbine vibrations

    Science.gov (United States)

    Chiang, Chih-Hung; Hsu, Keng-Tsang; Cheng, Chia-Chi; Pan, Chieh-Chen; Huang, Chi-Luen; Cheng, Tao-Ming

    2016-04-01

    Six wind turbines were blown to the ground by the wind gust during the attack of Typhoon Soudelor in August 2015. Survey using unmanned aerial vehicle, UAV, found the collapsed wind turbines had been broken at the lower section of the supporting towers. The dynamic behavior of wind turbine systems is thus in need of attention. The vibration of rotor blades and supporting towers of two wind turbine systems have been measured remotely using IBIS, a microwave interferometer. However the frequency of the rotor blade can be analyzed only if the microwave measurements are taken as the wind turbine is parked and secured. Time-frequency analyses such as continuous wavelet transform and reassigned spectrograms are applied to the displacement signals obtained. A frequency of 0.44Hz exists in both turbines B and C at various operating conditions. Possible links between dynamic characteristics and structural integrity of wind turbine -tower systems is discussed.

  7. New guidelines for wind turbine gearboxes

    Energy Technology Data Exchange (ETDEWEB)

    McNiff, B. [McNiff Light Industry, Blue Hill, ME (United States); Errichello, R. [GEARTECH, Townsend, MT (United States)

    1997-12-31

    The American Gear Manufacturers Association in cooperation with the American Wind Energy Association will soon be publishing AGMA/AWEA 921-A97 {open_quotes}Recommended Practices for Design and Specification of Gearboxes for Wind Turbine Generator Systems.{close_quotes} Much has been learned about the unique operation and loading of gearboxes in wind turbine applications since the burgeoning of the modern wind turbine industry in the early 1980`s. AGMA/AWEA 921-A97 documents this experience in a manner that provides valuable information to assist gear manufacturers and wind turbine designers, operators, and manufacturers in developing reliable wind turbine gearboxes. The document provides information on procurement specification development, wind turbine architecture, environmental considerations, and gearbox load determination, as well as the design, manufacturing, quality assurance, lubrication, operation and maintenance of wind turbine gearboxes. This paper presents the salient parts of the practices recommended in AGMA/AWEA 921-A97.

  8. 14 CFR 23.991 - Fuel pumps.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel pumps. 23.991 Section 23.991... § 23.991 Fuel pumps. (a) Main pumps. For main pumps, the following apply: (1) For reciprocating engine installations having fuel pumps to supply fuel to the engine, at least one pump for each engine must be...

  9. Micro Gas Turbine – A Review

    Directory of Open Access Journals (Sweden)

    Tushar Shukla

    2013-10-01

    Full Text Available Turbomachines is a class of machines which comprise of turbines and compressors. These machines are widely used for power generation, aircraft propulsion and in a wide range of heavy and medium industries. When we scale down these large turbines, we get micro turbines, which are compact and miniaturized form of these large turbines. The process of scaling down a turbine is not as simple as it looks like, it is a very tedious job and researches are going on in this area. These micro gas turbines are usually found with a power generating capacity of 250kW. They use any gas like natural gas, biogas, etc. as its input. The advantages of a micro gas turbine are that it has high expansion ratio and less moving components. The drawbacks of these turbines are that it requires high angular velocity as well as advanced electronics which can convert electricity of high frequency which gets produced into useful frequency of 50/60 Hz. This turbine is a very viable solution for distributed power generation which can be used for stationary energy applications. Also, micro gas turbine has found great use as cogeneration systems. These micro gas turbines can produce power between less than a kilowatt to hundreds of watts, which can be used for various purposes like electricity generation or head creation. These turbines are cost-effective, eco-friendly and pollution free as they can work by burning any gas like natural gas, land fill gas, etc. The manuscript presented gives an outlook on the past, present and future of these micro gas turbines. This paper will discuss the advantages and its uses. It will also discuss the drawbacks and the limitations of these turbines. This manuscript will prove to be a reference to all the researchers who want work in this field

  10. Pocket pumped image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kotov, I.V., E-mail: kotov@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States); O' Connor, P. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Murray, N. [Centre for Electronic Imaging, Open University, Milton Keynes, MK7 6AA (United Kingdom)

    2015-07-01

    The pocket pumping technique is used to detect small electron trap sites. These traps, if present, degrade CCD charge transfer efficiency. To reveal traps in the active area, a CCD is illuminated with a flat field and, before image is read out, accumulated charges are moved back and forth number of times in parallel direction. As charges are moved over a trap, an electron is removed from the original pocket and re-emitted in the following pocket. As process repeats one pocket gets depleted and the neighboring pocket gets excess of charges. As a result a “dipole” signal appears on the otherwise flat background level. The amplitude of the dipole signal depends on the trap pumping efficiency. This paper is focused on trap identification technique and particularly on new methods developed for this purpose. The sensor with bad segments was deliberately chosen for algorithms development and to demonstrate sensitivity and power of new methods in uncovering sensor defects.

  11. Wavy tube heat pumping

    Energy Technology Data Exchange (ETDEWEB)

    Haldeman, C. W.

    1985-12-03

    A PVC conduit about 4'' in diameter and a little more than 40 feet long is adapted for being seated in a hole in the earth and surrounds a coaxial copper tube along its length that carries Freon between a heat pump and a distributor at the bottom. A number of wavy conducting tubes located between the central conducting tube and the wall of the conduit interconnect the distributor with a Freon distributor at the top arranged for connection to the heat pump. The wavy conducting tubing is made by passing straight soft copper tubing between a pair of like opposed meshing gears each having four convex points in space quadrature separated by four convex recesses with the radius of curvature of each point slightly less than that of each concave recess.

  12. Advanced heat pump cycle

    Energy Technology Data Exchange (ETDEWEB)

    Groll, E.A.; Radermacher, R.

    1993-07-01

    The desorption and absorption process of a vapor compression heat pump with a solution circuit (VCHSC) proceeds at gliding temperature intervals, which can be adjusted over a wide range. In case that the gliding temperature intervals in the desorber and the absorber overlap, a modification of the VCHSC employing a desorber/absorber heat exchange (DAHX) can be introduced, which results in an extreme reduction of the pressure ratio. Although the DAHX-cycle has features of a two-stage cycle, it still requires only one solution pump, one separator and one compressor. Such a cycle for the working pair ammonia/water is built in the Energy Laboratory of the Center for Environmental Energy Engineering at the University of Maryland. The experimental results obtained with the research plant are discussed and compared to those calculated with a simulation program. The possible temperature lift between heat source and heat sink depending on the achievable COP are presented.

  13. Inertial microfluidic pump

    Science.gov (United States)

    Kornilovitch, Pavel; Govyadinov, Alexander; Markel, David; Torniainen, Erik

    2015-11-01

    The inertial pump is powered by a microheater positioned near one end of a fluidic microchannel. As the microheater explosively boils the surrounding fluid, a vapor bubble expands and then collapses asymmetrically, resulting in net flow. Such devices become an effective means of transporting fluids at microscale. They have no moving parts and can be manufactured in large numbers using standard batch fabrication processes. In this presentation, physical principles behind pump operation are described, in particular the role of reservoirs in dissipating mechanical momentum and the expansion-collapse asymmetry. An effective one-dimensional dynamic model is formulated and solved. The model is compared with full three-dimensional CFD simulations and available experimental data. Potential applications of inertial micropumps are described.

  14. Technology assessment heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Rudolph, R.; Purper, G. (Battelle-Institut e.V., Frankfurt am Main (Germany, F.R.))

    Technology assessment for an increased application of heat pumps is carried out in four areas: Effects in the economics area, i.e. effects on the economic goals which are defined in the Stability Law, on the goals of the power supply policy which result from the energy programme and its projections, and on the economic structure as a whole. The whole range of social problems concerning the use of heat pumps, i.e. the questions which social groups are affected, how they react, and what consequences are they expected to have on energy conservation as an object of social policy. Consequences in the governmental and administrative sectors, i.e. effects on legislation, administration and government budgets. Effects on the ecological systems; of prime interest in this context are the utilisation of environmental energy, changes in the heat balance, and emmission of pollutants.

  15. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-04-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  16. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-02-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  17. Maintenance of Power Steam Turbine

    OpenAIRE

    Kapelovich, Boris; Khmelnik, Solomon; Kapelovich, David; Benenson, Evgeny

    2008-01-01

    The diagnostics system of the power steam turbine is offered. It can be executed also in the form of telediagnostic system. The system is presented on a site http://turbo.mic34.com/ System engineering can is ordered to authors.

  18. Pioneering Heat Pump Project

    Energy Technology Data Exchange (ETDEWEB)

    Aschliman, Dave [Indiana Inst. of Technology, Inc., Fort Wayne, IN (United States); Lubbehusen, Mike [Indiana Inst. of Technology, Inc., Fort Wayne, IN (United States)

    2015-06-30

    This project was initiated at a time when ground coupled heat pump systems in this region were limited in size and quantity. There were economic pressures with costs for natural gas and electric utilities that had many organizations considering ground coupled heat pumps; The research has added to the understanding of how ground temperatures fluctuate seasonally and how this affects the performance and operation of the heat pumps. This was done by using a series of temperature sensors buried within the middle of one of the vertical bore fields with sensors located at various depths below grade. Trending of the data showed that there is a lag in ground temperature with respect to air temperatures in the shoulder months, however as full cooling and heating season arrives, the heat rejection and heat extraction from the ground has a significant effect on the ground temps; Additionally it is better understood that while a large community geothermal bore field serving multiple buildings does provide a convenient central plant to use, it introduces complexity of not being able to easily model and predict how each building will contribute to the loads in real time. Additional controllers and programming were added to provide more insight into this real time load profile and allow for intelligent shedding of load via a dry cooler during cool nights in lieu of rejecting to the ground loop. This serves as a means to ‘condition’ the ground loop and mitigate thermal creep of the field, as is typically observed; and It has been observed when compared to traditional heating and cooling equipment, there is still a cost premium to use ground source heat pumps that is driven mostly by the cost for vertical bore holes. Horizontal loop systems are less costly to install, but do not perform as well in this climate zone for heating mode

  19. Positive displacement rotary pump

    Science.gov (United States)

    Moody, Paul E.

    1994-04-01

    An eccentric drive rotates inside a ring that is hinged to a plate and an elastomeric curtain is wrapped around the ring and across an articulated plate. The curtain moves along a cylindrical wall inside the pump cavity to move fluid from an inlet to an outlet end of the chamber. Two or more chambers can be coupled in series or in parallel with one another.

  20. Nonazeotropic Heat Pump

    Science.gov (United States)

    Ealker, David H.; Deming, Glenn

    1991-01-01

    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  1. Nonazeotropic Heat Pump

    Science.gov (United States)

    Ealker, David H.; Deming, Glenn

    1991-01-01

    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  2. Introduction to Pump Rotordynamics

    Science.gov (United States)

    2006-11-01

    RTO-EN-AVT-143 9 - 1 Introduction to Pump Rotordynamics Luis San Andrés Mast-Childs Tribology Professor Turbomachinery Laboratory Texas A... rotordynamics of turbomachinery, excessive vibration and instability. The acceptable performance of a turbomachine depends on the adequate design and operation...on rotordynamics . The basic equations for the modeling of linear rotor-bearing systems are given along with an example for the rotordynamics of a

  3. 11kW Stand Alone Wind Turbine Based on Proven Wind Turbine

    DEFF Research Database (Denmark)

    Bindner, Henrik; Wodstrup, Jens; Andersen, Jesper

    2004-01-01

    The paper will present the rationale behind the design of a stand-alone version of a existing 11kW wind turbine that has been installed at 100 sites mainly in Denmark. The wind turbine has been developed as a part of the Danish household wind turbine programme that included certification......, and a measurement programme. The positive operational experience with the turbine has motivated the development of a stand-alone version. The stand-alone version uses the standard version of the wind turbine combined with a back-to-back converter arrangement in order to decouple the wind turbine from the grid...

  4. Electrocentrifugal pumping; Bombeo electrocentrifugo

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Perez, Guillermo; Medellin Otero, Hector [Instituto Mexicano del Peroleo (Mexico)

    1996-07-01

    The exploitation of isolated oil deposits, in losing their own energy, enter a phase of secondary recovery. One of the technologies of new development in Mexico is the one of electrocentrifugal pumping , which consists of introducing the motor-pump as an integral part of the production pipe down to the well bottom and pumping directly up to central complexes, from where it is sent inland. In the present paper is intended to explain what this type of secondary recovery consists of. [Spanish] La explotacion de yacimientos aislados de petroleo, al perder su energia propia, entran en una fase de recuperacion secundaria. Una de las tecnologias de nuevo desarrollo en Mexico es la de bombeo electrocentrifugo, la cual consiste en introducir la motobomba como parte integral de la tuberia de produccion hasta el fondo del pozo y bombearlo directamente hasta los complejos centrales, de donde se envia a tierra. En el presente trabajo se pretende explicar en que consiste este tipo de recuperacion secundaria.

  5. Stirling Engine Heat Pump

    Science.gov (United States)

    Kagawa, Noboru

    Recent advances in the feasibility studies related to the Stirling engines and Stirling engine heat pumps which have been considered attractive due to their promising role in helping to solve the global environmental and energy problems,are reviewed. This article begins to describe the brief history of the Stirling engines and theoretical thermodynamic analysis of the Stirling cycle in order to understand several advantages on the Stirling engine. Furthermore,they could throw light on our question why the dream engines had not been promoted to practical applications during two hundred years. The present review shows that the Stirling engines with several unique advantages including 30 to 40% thermal efficiency and preferable exhaust characteristics,had been designed and constructed by recent tackling for the development of the advanced automobile and other applications using them. Based on the current state of art,it is being provided to push the Stirling engines combined with heat pumps based on the reversed Rankine cycle to the market. At present,however, many problems, especially for the durability, cost, and delicate engine parts must be enforced to solve. In addition,there are some possibilities which can increase the attractiveness of the Stirling engines and heat pumps. The review closes with suggestions for further research.

  6. A Magnetically Coupled Cryogenic Pump

    Science.gov (United States)

    Hatfield, Walter; Jumper, Kevin

    2011-01-01

    Historically, cryogenic pumps used for propellant loading at Kennedy Space Center (KSC) and other NASA Centers have a bellows mechanical seal and oil bath ball bearings, both of which can be problematic and require high maintenance. Because of the extremely low temperatures, the mechanical seals are made of special materials and design, have wearing surfaces, are subject to improper installation, and commonly are a potential leak path. The ball bearings are non-precision bearings [ABEC-1 (Annular Bearing Engineering Council)] and are lubricated using LOX compatible oil. This oil is compatible with the propellant to prevent explosions, but does not have good lubricating properties. Due to the poor lubricity, it has been a goal of the KSC cryogenics community for the last 15 years to develop a magnetically coupled pump, which would eliminate these two potential issues. A number of projects have been attempted, but none of the pumps was a success. An off-the-shelf magnetically coupled pump (typically used with corrosive fluids) was procured that has been used for hypergolic service at KSC. The KSC Cryogenics Test Lab (CTL) operated the pump in cryogenic LN2 as received to determine a baseline for modifications required. The pump bushing, bearings, and thrust rings failed, and the pump would not flow liquid (this is a typical failure mode that was experienced in the previous attempts). Using the knowledge gained over the years designing and building cryogenic pumps, the CTL determined alternative materials that would be suitable for use under the pump design conditions. The CTL procured alternative materials for the bearings (bronze, aluminum bronze, and glass filled PTFE) and machined new bearing bushings, sleeves, and thrust rings. The designed clearances among the bushings, sleeves, thrust rings, case, and case cover were altered once again using experience gained from previous cryogenic pump rebuilds and designs. The alternative material parts were assembled into

  7. THE EFFICIENCY OF GAS-PUMPING UNITS

    Directory of Open Access Journals (Sweden)

    E. I. Kupreev

    2016-01-01

    Full Text Available . The reliability of the gas transmission network of the JSC “Gazprom Transgaz Belarus” depends on the efficiency of gas compressor units. Pipeline transport takes the first place among all the other ways to deliver gas because it ensures a uniform and uninterrupted supply of gas at minimum costs. The main objects of main gas pipelines include process areas, including several compressor stations and sections of the pipeline between them. Currently, a significant part of the main equipment of the gas industry is approaching its deadline of operation, which causes decrease in energy efficiency and reliability of the transmission system. At compressor plants of the JSC “Gazprom Transgaz Belarus” there are more than 4000 gas compressor units in operation including about 80% ones with gas turbine drives. It is clear that the drives of these units take a significant proportion of the pumped gas. For many years the company invests and actively participates in the creation of modern gas-pumping units practicing the wide use of conversion potential of the CIS countries. In recent years, a comprehensive approach to the assessment of the reliability and efficiency of objects of gas pipelines on the basis of mathematical modeling is actively applied. Together with the development of computer supervisory and control this opens up opportunities to improve energy efficiency in pipeline transport of gas on the basis of mathematical models and processes. The real effect obtaining is based on the actual performance of the equipment that needs to be monitored over time and to clarify.

  8. Interactive flow field around two Savonius turbines

    Energy Technology Data Exchange (ETDEWEB)

    Shigetomi, Akinari; Murai, Yuichi; Tasaka, Yuji; Takeda, Yasushi [Laboratory for Flow Control, Division of Energy and Environmental System, Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628 (Japan)

    2011-02-15

    The use of a Savonius type of vertical axis wind turbine is expanding in urban environments as a result of its ability to withstand turbulence as well as its relatively quiet operation. In the past, single turbine performance has been investigated primarily for determining the optimum blade configuration. In contrast, combining multiple Savonius turbines in the horizontal plane produces extra power in particular configurations. This results from the interaction between the two flow fields around individual turbines. To understand quantitatively the interaction mechanism, we measured the flow field around two Savonius turbines in close configurations using particle image velocimetry. The phase-averaged flow fields with respect to the rotation angle of the turbines revealed two types of power-improvement interactions. One comes from the Magnus effect that bends the main stream behind the turbine to provide additional rotation of the downstream turbine. The other is obtained from the periodic coupling of local flow between the two turbines, which is associated with vortex shedding and cyclic pressure fluctuations. Use of this knowledge will assist the design of packaged installations of multiple Savonius turbines. (author)

  9. Supercritical waste oxidation pump investigation

    Energy Technology Data Exchange (ETDEWEB)

    Thurston, G.; Garcia, K.

    1993-02-01

    This report investigates the pumping techniques and pumping equipment that would be appropriate for a 5,000 gallon per day supercritical water oxidation waste disposal facility. The pumps must boost water, waste, and additives from atmospheric pressure to approximately 27.6 MPa (4,000 psia). The required flow ranges from 10 gpm to less than 0.1 gpm. For the higher flows, many commercial piston pumps are available. These pumps have packing and check-valves that will require periodic maintenance; probably at 2 to 6 month intervals. Several commercial diaphragm pumps were also discovered that could pump the higher flow rates. Diaphragm pumps have the advantage of not requiring dynamic seals. For the lower flows associated with the waste and additive materials, commercial diaphragm pumps. are available. Difficult to pump materials that are sticky, radioactive, or contain solids, could be injected with an accumulator using an inert gas as the driving mechanism. The information presented in this report serves as a spring board for trade studies and the development of equipment specifications.

  10. Aerodynamic Response of a Pitching Airfoil with Pulsed Circulation Control for Vertical Axis Wind Turbine Applications

    Science.gov (United States)

    Panther, Chad C.

    Vertical Axis Wind Turbines (VAWTs) have experienced a renewed interest in development for urban, remote, and offshore applications. Past research has shown that VAWTs cannot compete with Horizontals Axis Wind Turbines (HAWTs) in terms of energy capture efficiency. VAWT performance is plagued by dynamic stall (DS) effects at low tip-speed ratios (lambda), where each blade pitches beyond static stall multiple times per revolution. Furthermore, for lambdasize and strength of wake vorticity during DS, resulting in lower profile drag relative to baseline and steady actuation cases. A database of pitching airfoil test data, including overshoot and hysteresis of aerodynamic coefficients (Cl, Cd), was compiled for improved analytical model inputs to update CCVAWT performance predictions, where the aforementioned L/D improvements will be directly reflected. Relative to a conventional VAWT with annual power output of 1 MW, previous work at WVU proved that the addition of steady jet CC could improve total output to 1.25 MW. However, the pumping cost to generate the continuous jet reduced yearly CCVAWT net gains to 1.15 MW. The current study has shown that pulsed CC jets can recover 4% of the pumping demands due to reduced mass flow requirements, increasing annual CCVAWT net power production to 1.19 MW, a 19% improvement relative to the conventional turbine.

  11. Study of a fuel injection quantity sensor in diesel engine. Part 3. Experimental evaluation of the improved type micro turbine sensor; Diesel kikan ni okeru nenryo funsharyo sensor no kenkyu. 3. Funsharyo keisoku no seido kojo ni kansuru jikken hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Maehara, H.; Iwasaki, T.; Kobayashi, T. [Zexel Corp., Tokyo (Japan)

    1997-10-01

    A Micro Turbine Sensor has been developed to measure fuel injection quantity and injection rate. Previous reports described results of experiments on the MTS which were carried out under steady and unsteady flow conditions. The MTS has been improved in shape of a holder tip and a detecting procedure for rotating speed of a turbine. As a result revolution speed of the turbine increased 18% over the conventional type holder under steady flow condition. Furthermore the measurement resolution of the MTS came up to about 2(mm{sup 3}/pulse) at 20(mm{sup 3}/stroke) under intermittent spray conditions using fuel injection pump. 11 refs., 11 figs., 1 tab.

  12. Effects of wake-turbine blade interactions on power production of wind turbines

    Science.gov (United States)

    Tadokoro, Maki; Yokoyama, Hiroshi; Iida, Akiyoshi

    2017-01-01

    In offshore wind farms, deterioration in power generation performance due to the mutual interference of flow around the wind turbines is a serious issue. To clarify the effects of wake-turbine blade interactions on the performance of wind farms, we conducted large-scale simulations of the flow around two full-scale wind turbines in a tandem-arrangement with two different spacings. The spacing between the two turbines was L/D = 1.0 and L/D = 2.0, with D being the rotor diameter. The predicted results show that vortices generated in the wake of the first turbine interfere with the blades of the second turbine and the interference becomes more intense for the case of L/D = 1.0. Thus, the power coefficient of the downstream turbine becomes lower by 80% for the case of L/D = 1.0 compared with the case of a single wind turbine.

  13. Final turbine and test facility design report Alden/NREC fish friendly turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Thomas C. [Alden Research Lab., Holden, MA (United States); Cain, Stuart A. [Alden Research Lab., Holden, MA (United States); Fetfatsidis, Paul [Alden Research Lab., Holden, MA (United States); Hecker, George E. [Alden Research Lab., Holden, MA (United States); Stacy, Philip S. [Alden Research Lab., Holden, MA (United States)

    2000-09-01

    The final report provides an overview of the Alden/NREC Fish Friendly turbine design phase, turbine test plan, preliminary test results, costs, schedule, and a hypothetical application at a real world project.

  14. Optimal, reliability-based turbine placement in off-shore wind turbine parks

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2007-01-01

    Offshore wind turbines for electricity production placed in wind farms are expected to be of one of the major future contributors for sustainable energy production. In this paper some of the problems associated with optimal planning and design of wind turbine parks are addressed. The number of wind...... turbines in a park is usually restricted to be placed within a fixed, limited geographical area. Behind a wind turbine a wake is formed where the mean wind speed decreases and the turbulence intensity increases. The distance between the turbines is among other things dependent on the recovery of wind...... energy behind the neighboring turbines and the increased wind load. Models for the mean wind speed and turbulence intensity in wind turbine parks are considered with emphasis on modeling the spatial correlation. Representative limit state equations for structural failure of wind turbine towers...

  15. Direct pumping of four levels lasing materials

    Science.gov (United States)

    Goldring, Sharone; Lavi, Raphael; Tal, Alon; Jackel, Steven M.; Lebiush, Eyal; Tzuk, Yitshak; Azoulay, Ehud

    2003-06-01

    Heat generation and laser performance were studied in Nd:YAG oscillators pumped with a Ti:Sapphire laser in two regimes: band pumping at 802nm and direct pumping at 885nm. Slope efficiencies of 52% and 57%, when pumped at 802nm and 885nm, were obtained, respectively. Heat per unit laser output was found to be 27% lower when pumped at 885nm (direct pumping regime) as compared to traditional band pumping around 808nm.

  16. Proper Sizing of Circulation Pumps

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Nørgaard, Jørgen

    2007-01-01

    , but the results can be applied to Europe in general. Despite the small sample of houses involved in the test, 15 houses, some rather safe conclusions can be drawn from the results, which showed that newly developed pumps with power consumption around 5-8 W, can perform the task of circulating the water...... sufficiently to keep the houses satisfactorily warm during the heating season of the test. The old replaced pumps used 5-10 times more power. In Europe alone, a gradual replacement of the present vastly oversized pumps with such small but sufficient pumps can save the construction of 17 large power plants...... as well as their pollution during operation. Policy measures are proposed of how to ensure that in the future only such energy saving pumps are installed. Furthermore, on the basis of the historic experiences with circulation pumps some con¬clusions are drawn on how to investigate, develop and market new...

  17. Gas turbine Type 10 - a modern, environmentally-compatible industrial turbine

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, A.

    1987-01-01

    A rapid development to lighter, more compact units of higher efficiency has taken place in industrial gas turbine design, following the example set by aviation gas turbines. The Sulzer Type 10 gas turbine is an up-to-date machine, the design of which is not merely derived from that of jet engines, but also fully complies with the requirements of industrial service. The performance of this gas turbine is discussed.

  18. Diffuser Augmented Horizontal Axis Tidal Current Turbines

    Directory of Open Access Journals (Sweden)

    Nasir Mehmood

    2012-09-01

    Full Text Available The renewal energy technologies are increasingly popular to ensure future energy sustenance and address environmental issues. The tides are enormous and consistent untapped resource of renewable energy. The growing interest in exploring tidal energy has compelling reasons such as security and diversity of supply, intermittent but predictable and limited social and environmental impacts. The tidal energy industry is undergoing an increasing shift towards diffuser augmented turbines. The reason is the higher power output of diffuser augmented turbines compared to conventional open turbines. The purpose of this study is to present a comprehensive review of diffuser augmented horizontal axis tidal current turbines. The components, relative advantages, limitations and design parameters of diffuser augmented horizontal axis tidal current turbines are presented in detail. CFD simulation of NACA 0016 airfoil is carried out to explore its potential for designing a diffuser. The core issues associated with diffuser augmented horizontal axis tidal current turbines are also discussed.

  19. Physical model tests for floating wind turbines

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Mikkelsen, Robert Flemming; Borg, Michael

    Floating offshore wind turbines are relevant at sites where the depth is too large for the installation of a bottom fixed substructure. While 3200 bottom fixed offshore turbines has been installed in Europe (EWEA 2016), only a handful of floating wind turbines exist worldwide and it is still...... an open question which floater concept is the most economically feasible. The design of the floaters for the floating turbines relies heavily on numerical modelling. While several coupled models exist, data sets for their validation are scarce. Validation, however, is important since the turbine behaviour...... is complex due to the combined actions of aero- and hydrodynamic loads, mooring loads and blade pitch control. The present talk outlines two recent test campaigns with a floating wind turbine in waves and wind. Two floater were tested, a compact TLP floater designed at DTU (Bredmose et al 2015, Pegalajar...

  20. RBI Optimization of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Ramírez, José G. Rangel; Sørensen, John Dalsgaard

    2009-01-01

    Wind turbines for electricity production have increased significantly the last years both in production capability and size. This development is expected to continue also in the coming years. Offshore wind turbines with an electricity production of 5-10 MW are planned. Typically, the wind turbine...... methods for oil & gas installations, a framework for optimal inspection and maintenance planning of offshore wind turbines is presented. Special aspects for offshore wind turbines considered are the fatigue loading characteristics where usually the wind loading are dominating the wave loading, wake...... support structure is a steel structure consisting of a tower and a monopile, tripod or jacket type foundation. This paper considers aspects of inspection and maintenance planning of fatigue prone details in jacket and tripod type of wind turbine support structures. Based on risk-based inspection planning...