WorldWideScience

Sample records for pump performance testing

  1. Verification Test of Hydraulic Performance for Reactor Coolant Pump

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Jun; Kim, Jae Shin; Ryu, In Wan; Ko, Bok Seong; Song, Keun Myung [Samjin Ind. Co., Seoul (Korea, Republic of)

    2010-01-15

    According to this project, basic design for prototype pump and model pump of reactor coolant pump and test facilities has been completed. Basic design for prototype pump to establish structure, dimension and hydraulic performance has been completed and through primary flow analysis by computational fluid dynamics(CFD), flow characteristics and hydraulic performance have been established. This pump was designed with mixed flow pump having the following design requirements; specific velocity(Ns); 1080.9(rpm{center_dot}m{sup 3}/m{center_dot}m), capacity; 3115m{sup 3}/h, total head ; 26.3m, pump speed; 1710rpm, pump efficiency; 77.0%, Impeller out-diameter; 349mm, motor output; 360kw, design pressure; 17MPaG. The features of the pump are leakage free due to no mechanical seal on the pump shaft which insures reactor's safety and law noise level and low vibration due to no cooling fan on the motor which makes eco-friendly product. Model pump size was reduced to 44% of prototype pump for the verification test for hydraulic performance of reactor coolant pump and was designed with mixed flow pump and canned motor having the following design requirements; specific speed(NS); 1060.9(rpm{center_dot}m{sup 3}/m{center_dot}m), capacity; 539.4m{sup 3}/h, total head; 21.0m, pump speed; 3476rpm, pump efficiency; 72.9%, Impeller out-diameter; 154mm, motor output; 55kw, design pressure; 1.0MPaG. The test facilities were designed for verification test of hydraulic performance suitable for pump performance test, homologous test, NPSH test(cavitation), cost down test and pressure pulsation test of inlet and outlet ports. Test tank was designed with testing capacity enabling up to 2000m{sup 3}/h and design pressure 1.0MPaG. Auxiliary pump was designed with centrifugal pump having capacity; 1100m{sup 3}/h, total head; 42.0m, motor output; 190kw

  2. The Performance test of Mechanical Sodium Pump with Water Environment

    International Nuclear Information System (INIS)

    Cho, Chungho; Kim, Jong-Man; Ko, Yung Joo; Jeong, Ji-Young; Kim, Jong-Bum; Ko, Bock Seong; Park, Sang Jun; Lee, Yoon Sang

    2015-01-01

    As contrasted with PWR(Pressurized light Water Reactor) using water as a coolant, sodium is used as a coolant in SFR because of its low melting temperature, high thermal conductivity, the high boiling temperature allowing the reactors to operate at ambient pressure, and low neutron absorption cross section which is required to achieve a high neutron flux. But, sodium is violently reactive with water or oxygen like the other alkali metal. So Very strict requirements are demanded to design and fabricate of sodium experimental facilities. Furthermore, performance testing in high temperature sodium environments is more expensive and time consuming and need an extra precautions because operating and maintaining of sodium experimental facilities are very difficult. The present paper describes performance test results of mechanical sodium pump with water which has been performed with some design changes using water test facility in SAM JIN Industrial Co. To compare the hydraulic characteristic of model pump with water and sodium, the performance test of model pump were performed using vender's experimental facility for mechanical sodium pump. To accommodate non-uniform thermal expansion and to secure the operability and the safety, the gap size of some parts of original model pump was modified. Performance tests of modified mechanical sodium pump with water were successfully performed. Water is therefore often selected as a surrogate test fluid because it is not only cheap, easily available and easy to handle but also its important hydraulic properties (density and kinematic viscosity) are very similar to that of the sodium. Normal practice to thoroughly test a design or component before applied or installed in reactor is important to ensure the safety and operability in the sodium-cooled fast reactor (SFR). So, in order to estimate the hydraulic behavior of the PHTS pump of DSFR (600 MWe Demonstraion SFR), the performance tests of the model pump such as performance

  3. Performance test of a ceramic turbo-viscous pump

    International Nuclear Information System (INIS)

    Abe, Tetsuya; Hiroki, Seiji; Murakami, Yoshio; Shiraishi, Shigeyuki; Totoura, Sadayuki; Ohtaki, Takashi.

    1994-01-01

    In the special fields of nuclear fusion facilities and semiconductor production installation, the development of new vacuum pumps which can cope with strong magnetic fields, high temperature gas and corrosive gas is demanded. Mitsubishi Heavy Industries Ltd. has advanced the development of ceramic turbo-molecular pumps and ceramic turbo-viscous pumps, which use ceramic rotors and gas bearings since 1985. The evaluation test of the ceramic turbo-viscous vacuum pump CT-3000H which can evacuate from atmospheric pressure to high vacuum with one pump was carried out, and the experimental results on the performance and the reliability were obtained, therefore, those are reported in this paper. The structure, specification and features of the CT-3000H are shown. The exhaust performance test of the pump was carried out in conformity with the standard of the Vacuum Society of Japan, JVIS 005 'Method of performance test for turbo-molecular pumps'. The gases used were nitrogen and helium. The results are shown. The exhaust test from atmospheric pressure was carried out by two methods, and the results are shown. (K.I.)

  4. Multiphase pumping: indoor performance test and oilfield application

    Science.gov (United States)

    Kong, Xiangling; Zhu, Hongwu; Zhang, Shousen; Li, Jifeng

    2010-03-01

    Multiphase pumping is essentially a means of adding energy to the unprocessed effluent which enables the liquid and gas mixture to be transported over a long distances without prior separation. A reduction, consolidation, or elimination of the production infrastructure, such as separation equipments and offshore platforms can be developed more economically. Also it successfully lowed the backpressure of wells, revived dead wells and improved the production and efficiency of oilfield. This paper reviews the issues related to indoor performance test and an oilfield application of the helico-axial multiphase pump designed by China University of Petroleum (Beijing). Pump specification and its hydraulic design are given. Results of performance testing under different condition, such as operational speed and gas volume fraction (GVF) etc are presented. Experimental studies on combination of theoretical analysis showed the multiphase pump satisfies the similitude rule, which can be used in the development of new MPP design and performance prediction. Test results showed that rising the rotation speed and suction pressure could better its performance, pressure boost improved, high efficiency zone expanding and the flow rate related to the optimum working condition increased. The pump worked unstable as GVF increased to a certain extent and slip occurred between two phases in the pump, creating surging and gas lock at a high GVF. A case of application in Nanyang oilfield is also studied.

  5. Performance Tests of a Mechanical Pump in Sodium Environment

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chungho; Kim, Jong-Man; Ko, Yung Joo; Kim, Byeongyeon; Cho, Youngil; Jung, Min-Hwan; Gam, Da-Young; Lee, Yong Bum; Jeong, Ji-Young; Kim, Jong-Bum [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Water is often selected as a surrogate test fluid because it is not only cheap, easily available and easy to handle but also its important hydraulic properties (density and kinematic viscosity) are very similar to that of the sodium. Nevertheless, to ensure the performance, safety, and operability of major components before its installation in the SFR, a series of demonstration experiments of some components in sodium environment should be positively necessary. So, SFR NSSS System Design Division of Korea Atomic Energy Research Institute (KAERI) built various sodium experimental facilities, especially STELLA-1 in 2012. STELLA-1 (Sodium inTegral Effect test Loop for safety simuLation and Assessment) is a large-scale separated effect test facility for demonstrating the thermal-hydraulic performances of major components such as a Sodium-to-Sodium heat exchanger (DHX), Sodium-to-Air heat exchanger (AHX) of the decay heat removal system, and mechanical sodium pump of the primary heat transport system (PHTS). The mechanical pump in-sodium performance test was successfully performed with good reproducibility of the experiment and data to compare hydraulic characteristic of a mechanical pump in-water was collected. In effect of temperature variation on the pump pressure head, reduction of pump pressure head at 250℃ by 0.57% of that of 300℃ maybe the result of an increase in sodium viscosity by 13.6% according to operating temperature decrease by 50℃. Also, we confirmed that the more flywheel weight, the longer halving time and the more initial flow rate when the pump seized, the shorter halving time. The results of the mechanical pump performance test data in sodium environment will be used to compare with that of the in water environment after the evaluation of measurement uncertainty for tests.

  6. On-line PWR RHR pump performance testing following motor and impeller replacement

    Energy Technology Data Exchange (ETDEWEB)

    DiMarzo, J.T.

    1996-12-01

    On-line maintenance and replacement of safety-related pumps requires the performance of an inservice test to determine and confirm the operational readiness of the pumps. In 1995, major maintenance was performed on two Pressurized Water Reactor (PWR) Residual Heat Removal (RHR) Pumps. A refurbished spare motor was overhauled with a new mechanical seal, new motor bearings and equipped with pump`s `B` impeller. The spare was installed into the `B` train. The motor had never been run in the system before. A pump performance test was developed to verify it`s operational readiness and determine the in-situ pump performance curve. Since the unit was operating, emphasis was placed on conducting a highly accurate pump performance test that would ensure that it satisfied the NSSS vendors accident analysis minimum acceptance curve. The design of the RHR System allowed testing of one train while the other was aligned for normal operation. A test flow path was established from the Refueling Water Storage Tank (RWST) through the pump (under test) and back to the RWST. This allowed staff to conduct a full flow range pump performance test. Each train was analyzed and an expression developed that included an error vector term for the TDH (ft), pressure (psig), and flow rate (gpm) using the variance error vector methodology. This method allowed the engineers to select a test instrumentation system that would yield accurate readings and minimal measurement errors, for data taken in the measurement of TDH (P,Q) versus Pump Flow Rate (Q). Test results for the `B` Train showed performance well in excess of the minimum required. The motor that was originally in the `B` train was similarly overhauled and equipped with `A` pump`s original impeller, re-installed in the `A` train, and tested. Analysis of the `A` train results indicate that the RHR pump`s performance was also well in excess of the vendors requirements.

  7. On-line PWR RHR pump performance testing following motor and impeller replacement

    International Nuclear Information System (INIS)

    DiMarzo, J.T.

    1996-01-01

    On-line maintenance and replacement of safety-related pumps requires the performance of an inservice test to determine and confirm the operational readiness of the pumps. In 1995, major maintenance was performed on two Pressurized Water Reactor (PWR) Residual Heat Removal (RHR) Pumps. A refurbished spare motor was overhauled with a new mechanical seal, new motor bearings and equipped with pump's 'B' impeller. The spare was installed into the 'B' train. The motor had never been run in the system before. A pump performance test was developed to verify it's operational readiness and determine the in-situ pump performance curve. Since the unit was operating, emphasis was placed on conducting a highly accurate pump performance test that would ensure that it satisfied the NSSS vendors accident analysis minimum acceptance curve. The design of the RHR System allowed testing of one train while the other was aligned for normal operation. A test flow path was established from the Refueling Water Storage Tank (RWST) through the pump (under test) and back to the RWST. This allowed staff to conduct a full flow range pump performance test. Each train was analyzed and an expression developed that included an error vector term for the TDH (ft), pressure (psig), and flow rate (gpm) using the variance error vector methodology. This method allowed the engineers to select a test instrumentation system that would yield accurate readings and minimal measurement errors, for data taken in the measurement of TDH (P,Q) versus Pump Flow Rate (Q). Test results for the 'B' Train showed performance well in excess of the minimum required. The motor that was originally in the 'B' train was similarly overhauled and equipped with 'A' pump's original impeller, re-installed in the 'A' train, and tested. Analysis of the 'A' train results indicate that the RHR pump's performance was also well in excess of the vendors requirements

  8. Performance of Wind Pump Prototype

    African Journals Online (AJOL)

    Mulu

    Mekelle University, Mekelle, Ethiopia (*mul_at@yahoo.com). ABSTRACT. A wind ... balanced rotor power and reciprocating pump, hence did not consider the effect of pump size. ... Keywords: Wind pump, Windmill, Performance testing, Pump efficiency, Pump discharge, ... Unfortunately, in rural places, where the houses are.

  9. Inservice testing of vertical pumps

    International Nuclear Information System (INIS)

    Cornman, R.E. Jr.; Schumann, K.E.

    1994-01-01

    This paper focuses on the problems that may occur with vertical pumps while inservice tests are conducted in accordance with existing American Society of Mechanical Engineers Code, Section XI, standards. The vertical pump types discussed include single stage, multistage, free surface, and canned mixed flow pumps. Primary emphasis is placed on the hydraulic performance of the pump and the internal and external factors to the pump that impact hydraulic performance. In addition, the paper considers the mechanical design features that can affect the mechanical performance of vertical pumps. The conclusion shows how two recommended changes in the Code standards may increase the quality of the pump's operational readiness assessment during its service life

  10. Test results for the Oasis 3C high performance water-pumping windmill

    Energy Technology Data Exchange (ETDEWEB)

    Eggleston, D.M. [DME Engineering, Midland, TX (United States)

    1997-12-31

    The WINDTech International, L.L.C. Oasis 3C, a 3 m diameter, high-performance water-pumping windmill, was tested at the DME Engineering Wind Test Site just south of Midland, Texas from August through December, 1996. This machine utilizes a 3:1 gearbox with rotating counterweights, similar to a conventional oilfield pumping unit, driven by a multibladed rotor. The rotating counterweight system balances most of the pumping loads and reduces gear loads and starting torque by a factor of at least two and often by a factor of four or more. The torque reduction substantially extends gear and bearing life, and reduces wind speeds required for starting by 30 to 50% or more. The O3C was tested pumping from a quiescent fluid depth of 12.2 m (40 ft) from a 28.3 m (93 ft)-deep well, with additional pumping depth simulated using a pressure regulator valve system. A 9.53 cm (3.75 in.) diameter Harbison-Fischer seal-less single-acting piston pump was used to eliminate pump seal friction as a variable, and standard O3C stroke lengths of 30.5 and 15.2 cm (12 and 6 inches) were used. The regulator spring was set to give a maximum stroke rate of 33 strokes per minute. The water pumped was returned to the well after flowing through a settling tank. The tests were performed in accordance with AWEA WECS testing standards. Instrumentation provided 16 channels of data to accurately measure machine performance, including starting wind speeds, flow rates, O3C azimuth, tail furl angle, wind direction tracking errors, RPM, sucker rod loads, and other variables. The most significant performance data is summarized herein. A mathematical model of machine performance was developed that fairly accurately predicts performance for each of three test conditions. The results verify that the O3C is capable of pumping water at wind speeds from 30% to more than 50% lower than comparable un-counterbalanced units.

  11. First in situ operation performance test of ground source heat pump in Tunisia

    International Nuclear Information System (INIS)

    Naili, Nabiha; Attar, Issam; Hazami, Majdi; Farhat, Abdelhamid

    2013-01-01

    Highlights: • Evaluate the geothermal energy in Tunisia. • Study of the performance of GSHP system for cooling space. • GSHP is a promising alternative for building cooling in Tunisia. - Abstract: The main purpose of this paper is to study the energetic potential of the deployment in Tunisia of the Ground Source Heat Pump (GSHP) system for cooling mode application. Therefore, a pilot GSHP system using horizontal Ground Heat Exchanger (GHE) was installed and experimented in the Research and Technology Center of Energy (CRTEn), Borj Cédria. The experiment is conducted in a test room with a floor area of about 12 m 2 . In the floor of the tested room is integrated a polyethylene exchanger (PEX) used as a radiant floor cooling (RFC) system. The experimental setup mainly includes the ground temperature, the temperature and flow rate of water circulating in the heat pump and the GHE, as well as the power consumption of the heat pump and circulating pumps. These experimental data are essentially used to evaluate the coefficient of performance of the heat pump (COP hp ) and the overall system (COP sys ) for continuous operation mode. The COP hp and the COP sys were found to be 4.25 and 2.88, respectively. These results reveal that the use of the ground source heat pump is very appropriate for Tunisian building cooling

  12. Design, in-sodium testing and performance evaluation of annular linear induction pump for a sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Nashine, B.K.; Rao, B.P.C.

    2014-01-01

    Highlights: • Derivation of applicable design equations. • Design of an annular induction pump based on these equations. • Testing of the designed pump in a sodium test facility. • Performance evaluation of the designed pump. - Abstract: Annular linear induction pumps (ALIPs) are used for pumping electrically conducting liquid metals. These pumps find wide application in fast reactors since the coolant in fast reactors is liquid sodium which a good conductor of electricity. The design of these pumps is usually done using equivalent circuit approach in combination with numerical simulation models. The equivalent circuit of ALIP is similar to that of an induction motor. This paper presents the derivation of equivalent circuit parameters using first principle approach. Sodium testing of designed ALIP using the equivalent circuit approach is also described and experimental results of the testing are presented. Comparison between experimental and analytical calculations has also been carried out. Some of the reasons for variation have also been listed in this paper

  13. The Performance Test for Reactor Coolant Pump (RCP) adopting Variable Restriction Orifice Type Control Valve

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.; Bae, B. U.; Cho, Y. J. and others

    2014-05-15

    The design values of the RCPTF are 17.2 MPa, 343 .deg. C, 11.7 m{sup 3}/s, and 13 MW in the maximum pressure, temperature, flow rate, and electrical power, respectively. In the RCPTF, various types of tests can be performed including a hydraulic performance test to acquire a H-Q curve as well seal transient tests, thrust bearing transient test, cost down test, NPSHR verification test, and so on. After a commissioning startup test was successfully perfomed, mechanical structures are improved including a flow stabilizer and variable restriction orifice. Two- branch pipe (Y-branch) was installed to regulate the flow rate in the range of performance tests. In the main pipe, a flow restrictor (RO: Restriction Orifice) for limiting the maximum flow rate was installed. In the branch pipe line, a globe valve and a butterfly valves for regulating the flow rate was located on the each branch line. When the pressure loss of the valve side is smaller than that of the RO side, the flow rate of valve side was increasing and the flow disturbance was occurred in the lower pipe line. Due to flow disturbnace, it is to cause an error when measuring RCP head and flow measurement of the venturi flow meter installed in the lower main pipe line, and thus leading to a decrease in measurement accuracy as a result. To increase the efficiency of the flow control availability of the test facility, the variable restriction orifice (VRO) type flow control valve was designed and manufactured. In the RCPTF in KAERI, the performance tests and various kinds of transient tests of the RCP were successfully performed. In this study, H-Q curve of the pump using the VRO revealed a similar trend to the result from two ROs. The VRO was confirmed to effectively cover the full test range of the flow rate.

  14. Test of a cryogenic helium pump

    International Nuclear Information System (INIS)

    Lue, J.W.; Miller, J.R.; Walstrom, P.L.; Herz, W.

    1981-01-01

    The design of a cryogenic helium pump for circulating liquid helium in a magnet and the design of a test loop for measuring the pump performance in terms of mass flow vs pump head at various pump speeds are described. A commercial cryogenic helium pump was tested successfully. Despite flaws in the demountable connections, the piston pump itself has performed satisfactorily. A helium pump of this type is suitable for the use of flowing supercritical helium through Internally Cooled Superconductor (ICS) magnets. It has pumped supercritical helium up to 7.5 atm with a pump head up to 2.8 atm. The maximum mass flow rate obtained was about 16 g/s. Performance of the pump was degraded at lower pumping speeds

  15. Enhance pump reliability through improved inservice testing

    International Nuclear Information System (INIS)

    Healy, J.J.

    1990-01-01

    EPRI has undertaken a study to assess the effectiveness of existing testing programs to accurately monitor and predict performance changes before either pump performance degrades or an actual failure occurs. Anticipated changes in inservice testing techniques are directed towards enhancing the validity of test data, ensuring its repeatability, and avoiding deterioration of the pump assembly. There is a new-found interest in test programs of all types that has occurred, in part, because of an increase in reported pump degradation and pump failure. Inservice testing of pumps, which has long been a basis for assuring operability, has apparently produced an opposite effect; namely, the appearance of a reduction in reliability

  16. Geothermal heat pump performance

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya L.; Lienau, Paul J.

    1995-01-01

    Geothermal heat pump systems are a promising new energy technology that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to customers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school, and commercial building applications. Information was developed on the status of electric utility marketing programs, barriers to market penetration, incentive programs, and benefits.

  17. Geothermal Heat Pump Performance

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya L.; Lienau, Paul J.

    1995-01-01

    Geothermal heat pump systems are a promising new energy technology that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to customers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school, and commercial building applications. Information was developed on the status of electric utility marketing programs, barriers to market penetration, incentive programs, and benefits.

  18. Reactor recirculation pump test loop

    International Nuclear Information System (INIS)

    Taka, Shusei; Kato, Hiroyuki

    1979-01-01

    A test loop for a reactor primary loop recirculation pumps (PLR pumps) has been constructed at Ebara's Haneda Plant in preparation for production of PLR pumps under license from Byron Jackson Pump Division of Borg-Warner Corporation. This loop can simulate operating conditions for test PLR pumps with 130 per cent of the capacity of pumps for a 1100 MWe BWR plant. A main loop, primary cooling system, water demineralizer, secondary cooling system, instrumentation and control equipment and an electric power supply system make up the test loop. This article describes the test loop itself and test results of two PLR pumps for Fukushima No. 2 N.P.S. Unit 1 and one main circulation pump for HAZ Demonstration Test Facility. (author)

  19. Vivitron dead section pumping tests

    International Nuclear Information System (INIS)

    Heugel, J.; Bayet, J.P.; Brandt, C.; Delhomme, C.; Krieg, C.; Kustner, F.; Meiss, R.; Riehl, R.; Roth, C.; Schlewer, B.; Six, P.; Weber, A.

    1990-10-01

    Pumping tests have been conducted on a simulated accelerator dead section. The behavior of different pump types are compared and analyzed. Vacuum conditions to be expected in the Vivitron are reached and several parameters are verified. Selection of a pump for the Vivitron dead section is confirmed

  20. Results of heating mode performance tests of a solar-assisted heat pump

    Science.gov (United States)

    Jones, C. B.; Smetana, F. O.

    1979-01-01

    The performance of a heat pump, utilizing 8.16 square meters of low-cost solar collectors as the evaporator in a Freon-114 refrigeration cycle, was determined under actual insolation conditions during the summer and fall of 1976. C.O.P.'s (coefficient of performance) greater than 3 were obtained with condensing temperatures around 78 C and evaporating temperatures around 27 C. Ambient temperatures were about 3 C above evaporating temperatures. Similar performance levels were obtained at other insolation and temperature conditions. Experience with the system has identified some component and system changes which should increase the obtainable C.O.P. to about 4.0. These are described along with the system's design rationale. The accumulated data are presented as an appendix.

  1. HSB 84A pumping test

    Energy Technology Data Exchange (ETDEWEB)

    Maloney, W.

    2000-03-06

    Two constant discharge, multiple well pumping tests were performed in the Congaree aquifer at the H-Area seepage basins during the weeks of April 30 through May 11. The purpose of the tests was to collect information that might determine the source of groundwater contamination in the Congaree aquifer and to estimate the hydraulic parameters of the aquifer. Transmissivity estimates from data collected in Test One ranged from 1,644 ft{sup 2}/day to 2,253 ft{sup 2}/day with an average of 2,013 ft{sup 2}/day and from 1,812 ft{sup 2}/day to 2,562 ft{sup 2}/day with an average of 2,269 ft{sup 2}/day in Test Two. Some leakage through the confining bed was apparent in the vicinity of observation well HSB 69A. This report includes the data collected, the analyses, results and interpretation of the pumping tests performed at HSB 84A. It should serve as a good baseline for future studies on the subject of contaminant migration in the Congaree aquifer on the Savannah River Site.

  2. HSB 84A pumping test

    International Nuclear Information System (INIS)

    Maloney, W.

    2000-01-01

    Two constant discharge, multiple well pumping tests were performed in the Congaree aquifer at the H-Area seepage basins during the weeks of April 30 through May 11. The purpose of the tests was to collect information that might determine the source of groundwater contamination in the Congaree aquifer and to estimate the hydraulic parameters of the aquifer. Transmissivity estimates from data collected in Test One ranged from 1,644 ft 2 /day to 2,253 ft 2 /day with an average of 2,013 ft 2 /day and from 1,812 ft 2 /day to 2,562 ft 2 /day with an average of 2,269 ft 2 /day in Test Two. Some leakage through the confining bed was apparent in the vicinity of observation well HSB 69A. This report includes the data collected, the analyses, results and interpretation of the pumping tests performed at HSB 84A. It should serve as a good baseline for future studies on the subject of contaminant migration in the Congaree aquifer on the Savannah River Site

  3. Evaluating vibration performance of a subsea pump module by full-scale testing and numerical modelling

    NARCIS (Netherlands)

    Beek, P.J.G. van; Pereboom, H.P.; Slot, H.J.

    2016-01-01

    Prior to subsea installation, a subsea system has to be tested to verify whether it performs in accordance with specifications and component specific performance evaluation criteria. It is important to verify that the assembled components work in accordance with the assumptions and design criteria

  4. Break-In, Performance, and Endurance Tests Results on Fixed Displacement Hydraulic Fluid Power Vane Pumps.

    Science.gov (United States)

    1982-07-15

    most critical . It is best to install it inside the housing to measure the temperature inside the pump. If the outlet temperature probe is installed in...141I1HL PPE’SSUPL IS: :M49.65 PS It THE S5THNDiAPL L’E’,J.’I- OF (1-HE: r’EASUREL’ F LOW’ 1 ’-:-- A-. caPM MEASURED. S.PEED’I 9 i;*-j3%1 P* MEASURED

  5. Performance Testing of Unitary Split-System Heat Pump with an Energy Recovery Expansion Device

    OpenAIRE

    Czapla, Nicholas; Inamdar, Harshad; Salts, Nicholas; Groll, Eckhard

    2016-01-01

    Due to the rising demand of using energy resources more efficiently, the HVAC&R industry is constantly facing the challenge of meeting strict energy consumption requirements. This paper presents a study that focuses on improving the efficiency of a residential split-system vapor compression heat pump using R410A as the refrigerant. R410A, when used as any sub-critical refrigerant in a vapor compression cycle, has a meaningful difference in potential energy savings when using a practically ach...

  6. Performance evaluation on vacuum pumps using nanolubricants

    Energy Technology Data Exchange (ETDEWEB)

    Lue, Yeou Feng; Hsu, Yu Chun; Teng, Tun Ping [Dept. of Industrial EducationNational Taiwan Normal University, Taiwan (China)

    2016-09-15

    This study produced alumina (Al{sub 2}O{sub 3}) nanovacuum-pump lubricants (NVALs) by involving the dispersion of Al{sub 2}O{sub 3} nanoparticles in a vacuum-pump lubricant (VAL) with oleic as a dispersant. Experiments were conducted to evaluate the suspension performance, thermal conductivity, viscosity, specific heat, tribological performance and vacuum-pump performance of the NVALs. The experimental results obtained from the vacuum-pump performance tests show that the NVALs with Al{sub 2}O{sub 3} concentration of 0.2 wt.% and oleic concentration of 0.025 wt.% yielded the lowest electricity consumption, conserving 2.39% of electricity compared with the VAL. No marked difference was observed between the temperatures of the vacuum pump using VAL and NVAL. Furthermore, evacuation (i.e., the minimal pressure of -99.5 kPa) was reached faster by the vacuum pump with the NVALs, and the evacuation time could be reduced by 4.91% under optimal conditions. In addition, the vacuum pump with the NVALs exhibited superior overall effectiveness under relatively lower ambient temperatures.

  7. Performing Pumping Test Data Analysis Applying Cooper-Jacob’s Method for Estimating of the Aquifer Parameters

    Directory of Open Access Journals (Sweden)

    Dana Khider Mawlood

    2016-06-01

    Full Text Available Single well test is more common than aquifer test with having observation well, since the advantage of single well test is that the pumping test can be conducted on the production well with the absence of observation well. A kind of single well test, which is step-drawdown test used to determine the efficiency and specific capacity of the well, however in case of single well test it is possible to estimate Transmissivity, but the other parameter which is Storativity is overestimated, so the aim of this study is to analyze four pumping test data located in KAWRGOSK area by using cooper-Jacob’s (1946 time drawdown approximation of Theis method to estimate the aquifer parameters, also in order to determine the reasons which are affecting the reliability of the Storativity value and obtain the important aspect behind that in practice.

  8. Transient two-phase performance of LOFT reactor coolant pumps

    International Nuclear Information System (INIS)

    Chen, T.H.; Modro, S.M.

    1983-01-01

    Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed

  9. Performing Pumping Test Data Analysis Applying Cooper-Jacob’s Method for Estimating of the Aquifer Parameters

    OpenAIRE

    Dana Khider Mawlood; Jwan Sabah Mustafa

    2016-01-01

    Single well test is more common than aquifer test with having observation well, since the advantage of single well test is that the pumping test can be conducted on the production well with the absence of observation well. A kind of single well test, which is step-drawdown test used to determine the efficiency and specific capacity of the well, however in case of single well test it is possible to estimate Transmissivity, but the other parameter which is Storativity is overestimated, so the a...

  10. AZ-101 Mixer Pump Test Qualification Test Procedures (QTP)

    International Nuclear Information System (INIS)

    THOMAS, W.K.

    2000-01-01

    Describes the Qualification test procedure for the AZ-101 Mixer Pump Data Acquisition System (DAS). The purpose of this Qualification Test Procedure (QTP) is to confirm that the AZ-101 Mixer Pump System has been properly programmed and hardware configured correctly. This QTP will test the software setpoints for the alarms and also check the wiring configuration from the SIMcart to the HMI. An Acceptance Test Procedure (ATP), similar to this QTP will be performed to test field devices and connections from the field

  11. Experimental study on performance of pulsed liquid jet pump

    International Nuclear Information System (INIS)

    Xu Weihui; Gao Chuanchang; Qin Haixia

    2010-01-01

    The device performance characteristics of transformer type pulsed liquid pump device were experimentally studied. The effects of the area ratio, work pressure and pulse parameters on the performance of the pulsed liquid jet pump device were performed in the tests. The potency of pulsed jet on improving the performance of the liquid jet pump device was also studied through the comparison with invariable jet pump at the same conditions. The results show that the pulsed jet can significantly improve the performance of transformer type jet pump devices. Area ratio and pulse parameters are the critical factors to the performance of the pulsed liquid jet pump device. The jet pump device performances are significantly improved by reducing the area ratio or by increasing the pulsed frequency. The flux characteristics of the pulsed liquid jet pump device presents the typical negative linear,the potency of pulsed jet in improving the performance of jet pump device with small area ratio can be more significant. The efficiency curve of pulsed liquid jet pump is similar to the parabola. At higher pulsed frequency, the top efficiency point of the pulsed jet pump moves to the higher flow ratio. The high efficiency area of the pulsed jet pump also is widened with the increase of the pulsed frequency. (authors)

  12. Tests of cooling water pumps at Dukovany nuclear power plant

    International Nuclear Information System (INIS)

    Travnicek, J.

    1986-01-01

    Tests were performed to examine the operating conditions of the 1600 BQDV cooling pumps of the main coolant circuit of unit 1 of the Dukovany nuclear power plant. For the pumps, the performance was tested in the permissible operating range, points were measured below this range and the guaranteed operating point was verified. Pump efficiency was calculated from the measured values. The discussion of the measurement of parameters has not yet been finished because the obtained values of the amount delivered and thus of the pump efficiency were not up to expectation in all detail. It was also found that for obtaining the guaranteed flow the pump impeller had to be opened to 5deg -5.5deg instead of the declared 3deg. Also tested were pump transients, including the start of the pump, its stop, the operation and failure of one of the two pumps. In these tests, pressures were also measured at the inlet and the outlet of the inner part of the TG 11 turbine condenser. It was shown that the time course and the pressure course of the processes were acceptable. In addition to these tests, pressure losses in the condenser and the cooling water flow through the feed pump electromotor cooler wre tested for the case of a failure of one of the two pumps. (E.S.)

  13. Automated surveillance of reactor coolant pump performance

    International Nuclear Information System (INIS)

    Gross, K.C.; Singer, R.M.; Humenik, K.E.

    1992-01-01

    An artificial intelligence based expert system has been developed for continuous surveillance and diagnosis of centrifugal-type reactor coolant pump (RCP) performance and operability. The expert system continuously monitors digitized signals from a variety of physical variables (speed, vibration level, motor power, discharge pressure) associated with RCP performance for annunciation of the incipience or onset of off-normal operation. The system employs an extremely sensitive pattern-recognition technique, the sequential probability ratio test (SPRT) for rapid identification of pump operability degradation. The sequential statistical analysis of the signal noise has been shown to provide the theoretically shortest sampling time to detect disturbances and thus has the potential of providing incipient fault detection information to operators sufficiently early to avoid forced plant shutdowns. The sensitivity and response time of the expert system are analyzed in this paper using monte carlo simulation techniques

  14. Test report for run-in acceptance testing of Project W-151 300 HP mixing pumps

    International Nuclear Information System (INIS)

    Berglin, B.G.

    1998-01-01

    This report documents the results of a performance demonstration and operational checkout of three 300 HP mixer pumps in accordance with WHC-SD-WI51-TS-001 ''Mixer Pump Test Specification for Project W-151'' and Statement of Work 8K520-EMN-95-004 ''Mixer Pump Performance Demonstration at MASF'' in the 400 Area Maintenance and Storage Facility (MASF) building. Testing of the pumps was performed by Fast Flux Test Facility (FFTF) Engineering and funded by the Tank Waste Remediation System (TWRS) Project W-151. Testing began with the first pump on 04-01-95 and ended with the third pump on 11-01-96. Prior to testing, the MASF was modified and prepared to meet the pump testing requirements set forth by the Test Specification and the Statement of Work

  15. Dual-stroke heat pump field performance

    Science.gov (United States)

    Veyo, S. E.

    1984-11-01

    Two nearly identical proprototype systems, each employing a unique dual-stroke compressor, were built and tested. One was installed in an occupied residence in Jeannette, Pa. It has provided the heating and cooling required from that time to the present. The system has functioned without failure of any prototypical advanced components, although early field experience did suffer from deficiencies in the software for the breadboard micro processor control system. Analysis of field performance data indicates a heating performance factor (HSPF) of 8.13 Stu/Wa, and a cooling energy efficiency (SEER) of 8.35 Scu/Wh. Data indicate that the beat pump is oversized for the test house since the observed lower balance point is 3 F whereas 17 F La optimum. Oversizing coupled with the use of resistance heat ot maintain delivered air temperature warmer than 90 F results in the consumption of more resistance heat than expected, more unit cycling, and therefore lower than expected energy efficiency. Our analysis indicates that with optimal mixing the dual stroke heat pump will yield as HSFF 30% better than a single capacity heat pump representative of high efficiency units in the market place today for the observed weather profile.

  16. Impeller inlet geometry effect on performance improvement for centrifugal pumps

    International Nuclear Information System (INIS)

    Luo, Xianwu; Zhang, Yao; Peng, Junqi; Xu, Hongyuan; Yu, Weiping

    2008-01-01

    This research treats the effect of impeller inlet geometry on performance improvement for a boiler feed pump, who is a centrifugal pump having specific speed of 183 m.m 3 min -1 .min -1 and close type impeller with exit diameter of 450 mm. The hydraulic performance and cavitation performance of the pump have been tested experimentally. In order to improve the pump, five impellers have been considered by extending the blade leading edge or applying much larger blade angle at impeller inlet compared with the original impeller. The 3-D turbulent flow inside those pumps has been analyzed basing on RNG k-ε turbulence model and VOF cavitation model. It is noted that the numerical results are fairly good compared with the experiments. Based on the experimental test and numerical simulation, the following conclusions can be drawn: (1) Impeller inlet geometry has important influence on performance improvement in the case of centrifugal pump. Favorite effects on performance improvement have been achieved by both extending the blade leading edge and applying much larger blade angle at impeller inlet: (2) It is suspected that the extended leading edge have favorite effect for improving hydraulic performance, and the much larger blade angle at impeller inlet have favorite effect for improving cavitation performance for the test pump: (3) Uniform flow upstream of impeller inlet is helpful for improving cavitation performance of the pump

  17. Impeller inlet geometry effect on performance improvement for centrifugal pumps

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xianwu; Zhang, Yao; Peng, Junqi; Xu, Hongyuan [Tsinghua University, Beijing (China); Yu, Weiping [Zhejiang Pump Works, Zhejiang (China)

    2008-10-15

    This research treats the effect of impeller inlet geometry on performance improvement for a boiler feed pump, who is a centrifugal pump having specific speed of 183 m.m{sup 3}min{sup -1}.min{sup -1} and close type impeller with exit diameter of 450 mm. The hydraulic performance and cavitation performance of the pump have been tested experimentally. In order to improve the pump, five impellers have been considered by extending the blade leading edge or applying much larger blade angle at impeller inlet compared with the original impeller. The 3-D turbulent flow inside those pumps has been analyzed basing on RNG k-{epsilon} turbulence model and VOF cavitation model. It is noted that the numerical results are fairly good compared with the experiments. Based on the experimental test and numerical simulation, the following conclusions can be drawn: (1) Impeller inlet geometry has important influence on performance improvement in the case of centrifugal pump. Favorite effects on performance improvement have been achieved by both extending the blade leading edge and applying much larger blade angle at impeller inlet: (2) It is suspected that the extended leading edge have favorite effect for improving hydraulic performance, and the much larger blade angle at impeller inlet have favorite effect for improving cavitation performance for the test pump: (3) Uniform flow upstream of impeller inlet is helpful for improving cavitation performance of the pump

  18. French nuclear plant safeguard pump qualification testing: EPEC test loop

    International Nuclear Information System (INIS)

    Guesnon, H.

    1985-01-01

    This paper reviews the specifications to which nuclear power plant safeguard pumps must be qualified, and surveys the qualification methods and program used in France to verify operability of the pump assembly and major pump components. The EPEC test loop is described along with loop capabilities and acheivements up to now. This paper shows, through an example, the Medium Pressure Safety Injection Pump designed for service in 1300 MW nuclear power plants, and the interesting possibilities offered by qualification testing

  19. Pump testing - Comparison of factory vs. field test of centrifugal pumps

    International Nuclear Information System (INIS)

    Fehlau, R.

    1992-01-01

    Testing of pumps in situ, i.e., as installed in a system, will typically yield somewhat different performance results from the original manufacturer's factory test. This paper discusses some of the reasons for these variations. It shows that the factory test curves can be used for evaluation of initial acceptance tests but not for reference in normal inservice testing (IST). This is the basis for reference values used in American Society of Mechanical Engineers (ASME) Section 11 specifications and the revised ASME Code 1990

  20. Test specification for decant pump and winch assembly. Revision 2

    International Nuclear Information System (INIS)

    Staehr, T.W.

    1995-01-01

    This specification provides the requirements for testing of the vertical turbine decant pump including the floating suction with load sensing winch control, instrumentation and the associated PLC/PC control system. All assembly necessary for testing including piping, temporary wiring, etc., shall be performed by the Seller. All referenced figures are at the back of this document. The testing consists of performance testing, winch testing and calibration, instrumentation verification testing and run-in testing of the pump. Testing shall be done in the presence and under the direction of the Buyer in accordance with this procedure

  1. Fast Flux Test Facility sodium pump operating experience - mechanical

    International Nuclear Information System (INIS)

    Buonamici, R.

    1987-11-01

    The Heat Transport System (HTS) pumps were designed, fabricated, tested, and installed in the Fast Flux Test Facility (FFTF) Plant during the period from September 1970 through July 1977. Since completion of the installation and sodium fill in December 1978, the FFTF Plant pumps have undergone extensive testing and operation with HTS testing and reactor operation. Steady-state hydraulic and mechanical performances have been and are excellent. In all, FFTF primary and secondary pumps have operated in sodium for approximately 75,000 hours and 79,000 hours, respectively, to August 24, 1987

  2. Reactor primary pumps dynamic balancing test

    International Nuclear Information System (INIS)

    Lu Qunxian

    2002-01-01

    Reactor primary Pump is the important equipment in the primary circuit, its working quality would directly influence the safety and operation of nuclear power plant. The author describes that the primary pump vibration status, vibration fault diagnosis and dynamic balancing process on site have been performed since commercial operation of DA YA BAY Nuclear Power plant

  3. Darrieus wind-turbine and pump performance for low-lift irrigation pumping

    Science.gov (United States)

    Hagen, L. J.; Sharif, M.

    1981-10-01

    In the Great Plains about 15 percent of the irrigation water pumped on farms comes from surface water sources; for the United States as a whole, the figure is about 22 percent. Because of forecast fuel shortages, there is a need to develop alternative energy sources such as wind power for surface water pumping. Specific objectives of this investigation were to: design and assemble a prototype wind powered pumping system for low lift irrigation pumping; determine performance of the prototype system; design and test an irrigation system using the wind powered prototype in a design and test an farm application; and determine the size combinations of wind turbines, tailwater pits, and temporary storage reservoirs needed for successful farm application of wind powered tailwater pumping systems in western Kansas. The power source selected was a two bladed, 6 m diameter, 9 m tall Darrieus vertical axis wind turbine with 0.10 solidity and 36.1 M(2) swept area.

  4. Evaluation and testing of metering pumps for high-level nuclear waste slurries

    International Nuclear Information System (INIS)

    Peterson, M.E.; Perez, J.M. Jr.; Blair, H.T.

    1986-06-01

    The metering pump system that delivers high-level liquid wastes (HLLW) slurry to a melter is an integral subsystem of the vitrification process. The process of selecting a pump for this application began with a technical review of pumps typically used for slurry applications. The design and operating characteristics of numerous pumps were evaluated against established criteria. Two pumps, an air-displacement slurry (ADS) pump and an air-lift pump, were selected for further development. In the development activity, from FY 1983 to FY 1985, the two pumps were subjected to long-term tests using simulated melter feed slurries to evaluate the pumps' performances. Throughout this period, the designs of both pumps were modified to better adapt them for this application. Final reference designs were developed for both the air-displacement slurry pump and the air-lift pump. Successful operation of the final reference designs has demonstrated the feasibility of both pumps. A fully remote design of the ADS pump has been developed and is currently undergoing testing at the West Valley Demonstration Project. Five designs of the ADS pump were tested and evaluated. The initial four designs proved the operating concept of the ADS pump. Weaknesses in the ADS pump system were identified and eliminated in later designs. A full-scale air-lift pump was designed and tested as a final demonstration of the air-lift pump's capabilities

  5. In situ performance curves measurements of large pumps

    International Nuclear Information System (INIS)

    Anton, A

    2010-01-01

    The complex energetic system on the river Lotru in Romania comprises of a series of lakes and pumping stations and a major hydroelectric power plant: Lotru-Ciunget. All the efforts have been oriented towards the maintenance of the Pelton turbines and very little attention has been directed to the pumps. In the system, there are three large pumping stations and only in the last 5 years, the pump performances have become a concern. The performances where determined using portable ultrasonic flow meters, a Yates meter, precision manometers and appropriate electrical equipment for power measurement (Power Analiser - NORMA D4000 LEM). The measurements are not supposed to interfere with the normal operation so only a limited number of tests could be performed. Based on those tests, portions of the test curves have been measured and represented in specific diagrams.

  6. In situ performance curves measurements of large pumps

    Science.gov (United States)

    Anton, A.

    2010-08-01

    The complex energetic system on the river Lotru in Romania comprises of a series of lakes and pumping stations and a major hydroelectric power plant: Lotru-Ciunget. All the efforts have been oriented towards the maintenance of the Pelton turbines and very little attention has been directed to the pumps. In the system, there are three large pumping stations and only in the last 5 years, the pump performances have become a concern. The performances where determined using portable ultrasonic flow meters, a Yates meter, precision manometers and appropriate electrical equipment for power measurement (Power Analiser - NORMA D4000 LEM). The measurements are not supposed to interfere with the normal operation so only a limited number of tests could be performed. Based on those tests, portions of the test curves have been measured and represented in specific diagrams.

  7. Main coolant pump testing at Ontario Hydro

    International Nuclear Information System (INIS)

    Hartlen, R.

    1991-01-01

    This article describes Ontario Hydro Research Division's experience with a computerized data acquisition and analysis system for monitoring mechanical vibration in reactor coolant pumps. The topics covered include bench-marking of the computer system and the coolant pumps, signatures of normal and malfunctioning pumps, analysis of data collected by the monitoring system, simulation of faults, and concerns that have been expressed about data interpretation, sensor types and locations, alarm/shutdown limits and confirmation of nondestructive examination testing. This presentation consists of overheads only

  8. Reactor coolant pump seals: improving their performance

    International Nuclear Information System (INIS)

    Pothier, N.E.; Metcalfe, R.

    1986-06-01

    Large CANDU plants are benefitting from transient-resistant four-year reliable reactor coolant pump seal lifetimes, a direct result of AECL's 20-year comprehensive seal improvement program involving R and D staff, manufacturers, and plant designers and operators. An overview of this program is presented, which covers seal modification design, testing, post-service examination, specialized maintenance and quality control. The relevancy of this technology to Light Water Reactor Coolant Pump Seals is also discussed

  9. High Efficiency Water Heating Technology Development Final Report. Part I, Lab/Field Performance Evaluation and Accelerated Life Testing of a Hybrid Electric Heat Pump Water Heater (HPWH)

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Murphy, Richard W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linkous, Randall Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    DOE has supported efforts for many years with the objective of getting a water heater that uses heat pump technology (aka a heat pump water heater or HPWH) successfully on the residential equipment market. The most recent previous effort (1999-2002) produced a product that performed very well in ORNL-led accelerated durability and field tests. The commercial partner for this effort, Enviromaster International (EMI), introduced the product to the market under the trade name Watter$aver in 2002 but ceased production in 2005 due to low sales. A combination of high sales price and lack of any significant infrastructure for service after the sale were the principal reasons for the failure of this effort. What was needed for market success was a commercial partner with the manufacturing and market distribution capability necessary to allow economies of scale to lead to a viable unit price together with a strong customer service infrastructure. General Electric certainly meets these requirements, and knowing of ORNL s expertise in this area, approached ORNL with the proposal to partner in a CRADA to produce a high efficiency electric water heater. A CRADA with GE was initiated early in Fiscal Year, 2008. GE initially named its product the Hybrid Electric Water Heater (HEWH).

  10. Hydrodynamical tests with an original PWR heat removal pump

    International Nuclear Information System (INIS)

    Wietstock, P.

    1984-01-01

    GKSS-Forschungszentrum performes hydrodynamical tests with an original PWR heat removal pump to analyse the influences of fluid parameters on the capacity and cavitation behavior of the pump in order to get further improvements of the quantification of the reached safety-level. It can be concluded, that in case of the tested heat removal pump the additional loads during transition from cavitation free operation into fully cavitation for the investigated operation point with 980 m 3 /h will be smaller than the alteration of loads during passing through the total characteristic. The results from cavitation tests for other operation points indicate, that this very important consequence especially for accident operation will be valid for the total specified pump flow area. (orig.)

  11. System Performance and Testing

    NARCIS (Netherlands)

    Frei, U.; Oversloot, H.

    2004-01-01

    This chapter compares and contrasts the system performance of two widely used solar thermal systems using testing and simulation programs. Solar thermal systems are used in many countries for heating domestically used water. In addition to the simple thermosiphon systems, better designed pumped

  12. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of U.S. climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt™ whole-house building simulations.

  13. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

  14. Tests of dry mechanical forepumps for use in the ITER vacuum pumping system

    International Nuclear Information System (INIS)

    Kirchhof, U.; Kammerer, B.; Perinic, D.

    1995-04-01

    This report is a description of the design and construction of FORTE (Forepumps Test Facility) which has been built in order to enable testing of the pumping speeds of prototypical mechanical forepumps connected in series, as proposed for the ITER forepump system. Three NORMETEX pumps (1300, 600, 60 m 3 /h) and one METAL BELLOWS pump (6m 3 /h) have been integrated into the test bench. Measurements of the pumping characteristics were performed, both with the single pumps and with trains of series connected pumps, using the gases N 2 , H 2 , D 2 , He as well as ITER typical gas mixture. The results of the tests are presented. (orig.)

  15. Qualification test of a main coolant pump for SMART pilot

    International Nuclear Information System (INIS)

    Park, Sang Jin; Yoon, Eui Soo; Oh, Hyong Woo

    2006-01-01

    SMART Pilot is a multipurpose small capacity integral type reactor. Main Coolant Pump (MCP) of SMART Pilot is a canned-motor-type axial pump to circulate the primary coolant between nuclear fuel and steam generator in the primary system. The reactor is designed to operate under condition of 310 .deg. C and 14.7 MPa. Thus MCP has to be tested under same operating condition as reactor design condition to verify its performance and safety. In present work, a test apparatus to simulate real operating situations of the reactor has been designed and constructed to test MCP. And then functional tests, performance tests, and endurance tests have been carried out upon a prototype MCP. Canned motor characteristics, homologous head/torque curves, coast-down curves, NPSH curves and life-time performance variations were obtained from the qualification test as well as hydraulic performance characteristics of MCP

  16. Decision document for performing a long-term pumping test at the S-3 Site, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-02-01

    One of the principal problems confronting the remediation of Bear Creek Valley is the cleanup of contaminated groundwater. The S-3 Site is one of the locations in the valley where groundwater is most contaminated, and contamination from the S-3 Site has also caused extensive contamination of downgradient groundwater. This groundwater plume, therefore, has a high priority in the Bear Creek Valley remedial process. Pumping and treating groundwater was identified early in the feasibility study as a likely remedial alternative for the S-3 Site groundwater plume. The hydrology and geochemistry of the plume are extremely complex. There is a high degree of uncertainty in the current understanding of how the aquifer will react physically and chemically to pumping, making evaluation of a pump-and-treat alternative impractical at the present time. Before a pump-and-treat alternative can be evaluated, its technical practicability, effectiveness, and projected cost must be determined. A long-term pumping test (LTPT) at the S-3 Site has been proposed so that the information necessary to carry out this evaluation can be collected. This document constitutes the first phase in the planning process for this test

  17. Tests of a photovoltaic pump: first results

    International Nuclear Information System (INIS)

    Petroselli, A.; Pica, M.; Biondi, P.

    2005-01-01

    The paper deals with a first series of tests conducted in Viterbo (42 deg 25 min North, 12 deg 06 min East) on a PV-DC pump. This series lasted eight months - from the first days of January to the end of August 2003 - and involved measurements of: air and PV-module temperatures; solar radiations, both on horizontal surface and tilted module surface; voltage and intensity of the DC currents from the panel; pump pressures and flow rates. In total, as much as 3,150 data were collected every day. The analysis of the data allowed to obtain some simple empirical relations expressing daily pumped water volumes, instantaneous flow rates and system efficiencies as a function of both radiations and total dynamic heads [it

  18. Performance of a solar augmented heat pump

    Science.gov (United States)

    Bedinger, A. F. G.; Tomlinson, J. J.; Reid, R. L.; Chaffin, D. J.

    Performance of a residential size solar augmented heat pump is reported for the 1979-1980 heating season. The facility located in Knoxville, Tennessee, has a measured heat load coefficient of 339.5 watt/C (644 BTU/hr- F). The solar augmented heat pump system consists of 7.4 cu m of one inch diameter crushed limestone. The heat pump is a nominal 8.8 KW (2 1/2 ton) high efficiency unit. The system includes electric resistance heaters to give the option of adding thermal energy to the pebble bed storage during utility off-peak periods, thus offering considerable load management capability. A 15 KW electric resistance duct heater is used to add thermal energy to the pebble bin as required during off-peak periods. Hourly thermal performance and on site weather data was taken for the period November 1, 1979, to April 13, 1980. Thermal performance data consists of heat flow summations for all modes of the system, pebble bed temperatures, and space temperature. Weather data consists of dry bulb temperature, dew point temperature, total global insolation (in the plane of the collector), and wind speed and direction. An error analysis was performed and the least accurate of the measurements was determined to be the heat flow at 5%. Solar system thermal performance factor was measured to be 8.77. The heat pump thermal performance factor was 1.64. Total system seasonal performance factor was measured to be 1.66. Using a modified version of TRNSYS, the thermal performance of this system was simulated. When simulation results were compared with data collected onsite, the predicted heat flow and power consumption generally were within experimental accuracy.

  19. K-Basin sludge treatment facility pump test report

    International Nuclear Information System (INIS)

    SQUIER, D.M.

    1999-01-01

    Tests of a disc pump and a dual diaphragm pump are stymied by pumping a metal laden fluid. Auxiliary systems added to a diaphragm pump might enable the transfer of such fluids, but the additional system complexity is not desirable for remotely operated and maintained systems

  20. Estimating Aquifer Properties Using Sinusoidal Pumping Tests

    Science.gov (United States)

    Rasmussen, T. C.; Haborak, K. G.; Young, M. H.

    2001-12-01

    We develop the theoretical and applied framework for using sinusoidal pumping tests to estimate aquifer properties for confined, leaky, and partially penetrating conditions. The framework 1) derives analytical solutions for three boundary conditions suitable for many practical applications, 2) validates the analytical solutions against a finite element model, 3) establishes a protocol for conducting sinusoidal pumping tests, and 4) estimates aquifer hydraulic parameters based on the analytical solutions. The analytical solutions to sinusoidal stimuli in radial coordinates are derived for boundary value problems that are analogous to the Theis (1935) confined aquifer solution, the Hantush and Jacob (1955) leaky aquifer solution, and the Hantush (1964) partially penetrated confined aquifer solution. The analytical solutions compare favorably to a finite-element solution of a simulated flow domain, except in the region immediately adjacent to the pumping well where the implicit assumption of zero borehole radius is violated. The procedure is demonstrated in one unconfined and two confined aquifer units near the General Separations Area at the Savannah River Site, a federal nuclear facility located in South Carolina. Aquifer hydraulic parameters estimated using this framework provide independent confirmation of parameters obtained from conventional aquifer tests. The sinusoidal approach also resulted in the elimination of investigation-derived wastes.

  1. Test report for the run-in acceptance testing of the hydrogen mitigation retrieval Pump-3

    International Nuclear Information System (INIS)

    Berglin, B.G.; Nash, Ch.R.

    1997-01-01

    This report will provide the findings of the demonstration test conducted on the Double-Shell Tank (DST) 241-SY-101 HMR Pump-3 in accordance with WHC-SDWM-TP-434 ''Test plan for run-in acceptance testing of hydrogen mitigation/retrieval pump-3'' at the 400 Area Maintenance and Storage Facility (MASF) building from 7 June 1996 through 30 July 1996 per work package 4A-96-92/W. The DST 241-SY-101 hydrogen mitigation retrieval Pump-3 is a 200-HP submersible electric driven pump that has been modified for use in the DST 241-SY-101 containing mixed waste located in the 200W area. The pump has a motor driven rotation mechanism that allows the pump column to rotate through 355 degree. Prior to operation, pre-operational checks were performed which included loop calibration grooming and alignment of instruments, learning how plumb HMR-3 assembly hung in a vertical position and bump test of the motor to determine rotation direction. The pump was tested in the MASF Large Diameter Cleaning Vessel (LDCV) with process water at controlled temperatures and levels. In addition, the water temperature of the cooling water to the motor oil heat exchanger was recorded during testing. A 480-volt source powered a Variable Frequency Drive (VFD). The VFD powered the pump at various frequencies and voltages to control speed and power output of the pump. A second VFD powered the oil cooling pump. A third VFD was not available to operate the rotational drive motor during the 72 hour test, so it was demonstrated as operational before and after the test. A Mini Acquisition and Control System (Mini-DACS) controls pump functions and monitoring of the pump parameters. The Mini-DACS consists of three computers, software and some Programmable Logic Controllers (PLC). Startup and shutdown of either the pump motor or the oil cooling pump can be accomplished by the Mini-DACS. When the pump was in operation, the Mini-DACS monitors automatically collects data electronically. However, some required data

  2. The cryogenic pumping section of KATRIN and the test experiment TRAP

    CERN Document Server

    Eichelhardt, F

    2011-01-01

    The Karlsruhe Tritium Neutrino experiment (KATRIN) employs a Cryogenic Pumping Section (CPS) at ~ 4.5 K to suppress the tritium penetration into the spectrometers. A test experiment (TRAP - Tritium Argon frost Pump) has been set up to investigate the tritium pumping performance of the CPS.

  3. Decant pump assembly and controls qualification testing - test report

    Energy Technology Data Exchange (ETDEWEB)

    Staehr, T.W., Westinghouse Hanford

    1996-05-02

    This report summarizes the results of the qualification testing of the supernate decant pump and controls system to be used for in-tank sludge washing in aging waste tank AZ-101. The test was successful and all components are qualified for installation and use in the tank.

  4. Development of a numerical pump testing framework.

    Science.gov (United States)

    Kaufmann, Tim A S; Gregory, Shaun D; Büsen, Martin R; Tansley, Geoff D; Steinseifer, Ulrich

    2014-09-01

    It has been shown that left ventricular assist devices (LVADs) increase the survival rate in end-stage heart failure patients. However, there is an ongoing demand for an increased quality of life, fewer adverse events, and more physiological devices. These challenges necessitate new approaches during the design process. In this study, computational fluid dynamics (CFD), lumped parameter (LP) modeling, mock circulatory loops (MCLs), and particle image velocimetry (PIV) are combined to develop a numerical Pump Testing Framework (nPTF) capable of analyzing local flow patterns and the systemic response of LVADs. The nPTF was created by connecting a CFD model of the aortic arch, including an LVAD outflow graft to an LP model of the circulatory system. Based on the same geometry, a three-dimensional silicone model was crafted using rapid prototyping and connected to an MCL. PIV studies of this setup were performed to validate the local flow fields (PIV) and the systemic response (MCL) of the nPTF. After validation, different outflow graft positions were compared using the nPTF. Both the numerical and the experimental setup were able to generate physiological responses by adjusting resistances and systemic compliance, with mean aortic pressures of 72.2-132.6 mm Hg for rotational speeds of 2200-3050 rpm. During LVAD support, an average flow to the distal branches (cerebral and subclavian) of 24% was found in the experiments and the nPTF. The flow fields from PIV and CFD were in good agreement. Numerical and experimental tools were combined to develop and validate the nPTF, which can be used to analyze local flow fields and the systemic response of LVADs during the design process. This allows analysis of physiological control parameters at early development stages and may, therefore, help to improve patient outcomes. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  5. A method for evaluating horizontal well pumping tests.

    Science.gov (United States)

    Langseth, David E; Smyth, Andrew H; May, James

    2004-01-01

    Predicting the future performance of horizontal wells under varying pumping conditions requires estimates of basic aquifer parameters, notably transmissivity and storativity. For vertical wells, there are well-established methods for estimating these parameters, typically based on either the recovery from induced head changes in a well or from the head response in observation wells to pumping in a test well. Comparable aquifer parameter estimation methods for horizontal wells have not been presented in the ground water literature. Formation parameter estimation methods based on measurements of pressure in horizontal wells have been presented in the petroleum industry literature, but these methods have limited applicability for ground water evaluation and are based on pressure measurements in only the horizontal well borehole, rather than in observation wells. This paper presents a simple and versatile method by which pumping test procedures developed for vertical wells can be applied to horizontal well pumping tests. The method presented here uses the principle of superposition to represent the horizontal well as a series of partially penetrating vertical wells. This concept is used to estimate a distance from an observation well at which a vertical well that has the same total pumping rate as the horizontal well will produce the same drawdown as the horizontal well. This equivalent distance may then be associated with an observation well for use in pumping test algorithms and type curves developed for vertical wells. The method is shown to produce good results for confined aquifers and unconfined aquifers in the absence of delayed yield response. For unconfined aquifers, the presence of delayed yield response increases the method error.

  6. Mixer pump test plan for double shell tank AZ-101

    International Nuclear Information System (INIS)

    STAEHR, T.W.

    1999-01-01

    Mixer pump systems have been chosen as the method for retrieval of tank wastes contained in double shell tanks at Hanford. This document describes the plan for testing and demonstrating the ability of two 300 hp mixer pumps to mobilize waste in tank AZ-101. The mixer pumps, equipment and instrumentation to monitor the test were installed by Project W-151

  7. Performance of commercially available solar and heat pump water heaters

    International Nuclear Information System (INIS)

    Lloyd, C.R.; Kerr, A.S.D.

    2008-01-01

    Many countries are using policy incentives to encourage the adoption of energy-efficient hot water heating as a means of reducing greenhouse gas emissions. Such policies rely heavily on assumed performance factors for such systems. In-situ performance data for solar and heat pump hot water systems, however, are not copious in the literature. Otago University has been testing some systems available in New Zealand for a number of years. The results obtained are compared to international studies of in-situ performance of solar hot water systems and heat pump hot water systems, by converting the results from the international studies into a single index suitable for both solar and heat pump systems (COP). Variability in the international data is investigated as well as comparisons to model results. The conclusions suggest that there is not too much difference in performance between solar systems that have a permanently connected electric boost backup and heat pump systems over a wide range of environmental temperatures. The energy payback time was also calculated for electric boost solar flat plate systems as a function of both COP and hot water usage for a given value of embodied energy. The calculations generally bode well for solar systems but ensuring adequate system performance is paramount. In addition, such systems generally favour high usage rates to obtain good energy payback times

  8. Study on transient hydrodynamic performance and cavitation characteristic of high-speed mixed-flow pump

    International Nuclear Information System (INIS)

    Chen, T; Liu, Y L; Sun, Y B; Wang, L Q; Wu, D Z

    2013-01-01

    In order to analyse the hydrodynamic performance and cavitation characteristic of a high-speed mixed-flow pump during transient operations, experimental studies were carried out. The transient hydrodynamic performance and cavitation characteristics of the mixed-flow pump with guide vane during start-up operation processes were tested on the pump performance test-bed. Performance tests of the pump were carried out under various inlet pressures and speed-changing operations. The real-time instantaneous external characteristics such as rotational speed, hydraulic head, flow rate, suction pressure and discharge pressure of the pump were measured. Based on the experimental results, the effect of fluid acceleration on the hydrodynamic performances and cavitation characteristics of the mixed-flow pump were analysed and evaluated

  9. The Performance Estimation of PHTS Pump of DSFR

    International Nuclear Information System (INIS)

    Cho, Chungho; Han, Ji-Woong; Kim, Jong-Man; Cho, Youngil; Jung, Min-Hwan; Gam, Da-Young; Lee, Yong-bum; Jeong, Ji-Young

    2015-01-01

    In order to estimate the hydraulic behavior of the PHTS pump in sodium environment, model tests were conducted in water experimental facility by SAMJIN Industrial Co. before model tests using the STELLA-1 with sodium environment in 2015. STELLA-1 (Sodium inTegral Effect test Loop for safety simuLation and Assessment) is a large-scale separate effect test facility for demonstrating the thermal-hydraulic performances of major components such as a Sodium-to-Sodium heat exchanger (DHX), Sodium-to-Air heat exchanger (AHX) of the decay heat removal system, and mechanical sodium pump of the primary heat transport system (PHTS), which are important to ensure the safety of the sodium-cooled fast reactor (SFR). When the model and the prototype have the same the flow coefficient, to maintaining the dynamic similarity both model and prototype the non-dimensional coefficients to be simulated are head coefficient and power coefficient

  10. Evaluation of a nonevaporable getter pump for tritium handling in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Singleton, M.F.; Griffith, C.M.

    1978-01-01

    Lawrence Livermore Laboratory has tested and evaluated a commercially available getter pump for use with tritium in the Tokamak Fusion Test Reactor (TFTR). The pump contains Zr(84%)--Al in cartridge form with a concentric heating unit. It performed well in all tests, except for frequent heater failures

  11. Pumping Test Determination of Unsaturated Aquifer Properties

    Science.gov (United States)

    Mishra, P. K.; Neuman, S. P.

    2008-12-01

    Tartakovsky and Neuman [2007] presented a new analytical solution for flow to a partially penetrating well pumping at a constant rate from a compressible unconfined aquifer considering the unsaturated zone. In their solution three-dimensional, axially symmetric unsaturated flow is described by a linearized version of Richards' equation in which both hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value, the latter defining the interface between the saturated and unsaturated zones. Both exponential functions are characterized by a common exponent k having the dimension of inverse length, or equivalently a dimensionless exponent kd=kb where b is initial saturated thickness. The authors used their solution to analyze drawdown data from a pumping test conducted by Moench et al. [2001] in a Glacial Outwash Deposit at Cape Cod, Massachusetts. Their analysis yielded estimates of horizontal and vertical saturated hydraulic conductivities, specific storage, specific yield and k . Recognizing that hydraulic conductivity and water content seldom vary identically with incremental capillary pressure head, as assumed by Tartakovsky and Neuman [2007], we note that k is at best an effective rather than a directly measurable soil parameter. We therefore ask to what extent does interpretation of a pumping test based on the Tartakovsky-Neuman solution allow estimating aquifer unsaturated parameters as described by more common constitutive water retention and relative hydraulic conductivity models such as those of Brooks and Corey [1964] or van Genuchten [1980] and Mualem [1976a]? We address this question by showing how may be used to estimate the capillary air entry pressure head k and the parameters of such constitutive models directly, without a need for inverse unsaturated numerical simulations of the kind described by Moench [2003]. To assess the validity of such direct estimates we use maximum

  12. LH2 pump component development testing in the electric pump room at test cell C inducer no. 1

    Science.gov (United States)

    Andrews, F. X.; Brunner, J. J.; Kirk, K. G.; Mathews, J. P.; Nishioka, T.

    1972-01-01

    The characteristics of a turbine pump for use with the nuclear engine for rocket vehicles are discussed. It was determined that the pump will be a two stage centrifugal pump with both stages having backswept impellers and an inducer upstream of the first stage impeller. The test program provided demonstration of the ability of the selected design to meet the imposed requirements.

  13. Seismic fragility capacity of equipment--horizontal shaft pump test

    International Nuclear Information System (INIS)

    Iijima, T.; Abe, H.; Suzuki, K.

    2005-01-01

    The current seismic fragility capacity of horizontal shaft pump is 1.6 x 9.8 m/s 2 (1.6 g), which was decided from previous vibration tests and we believe that it must have sufficient margin. The purpose of fragility capacity test is to obtain realistic seismic fragility capacity of horizontal shaft pump by vibration tests. Reactor Building Closed Cooling Water (RCW) Pump was tested as a typical horizontal shaft pump, and then bearings and liner rings were tested as important parts to evaluate critical acceleration and dispersion. Regarding RCW pump test, no damage was found, though maximum input acceleration level was 6 x 9.8 m/s 2 (6 g). Some kinds of bearings and liner rings were tested on the element test. Input load was based on seismic motion which was same with the RCW pump test, and maximum load was equivalent to over 20 times of design seismic acceleration. There was not significant damage that caused emergency stop of pump but degradation of surface roughness was found on some kinds of bearings. It would cause reduction of pump life, but such damage on bearings occurred under large seismic load condition that was equivalent to over 10 to 20 g force. Test results show that realistic fragility capacity of horizontal shaft pump would be at least four times as higher as current value which has been used for our seismic PSA. (authors)

  14. Improvement of centrifugal pump performance through addition of splitter blades on impeller pump

    Science.gov (United States)

    Kurniawan, Krisna Eka; Santoso, Budi; Tjahjana, Dominicus Danardono Dwi Prija

    2018-02-01

    The workable way to improve pump performance is to redesign or modify the impellers of centrifugal pump. The purpose of impeller pump modification is to improve pump efficiency, reduce cross flow, reduce secondary incidence flows, and decrease backflow areas at impeller outlets. Number blades and splitter blades in the impeller are three. The outlet blade angle is 20°, and the rotating speed of impeller is 2400 rpm. The added splitter blades variations are 0.25, 0.375, and 0.5 of the original blade length. The splitter blade placements are on the outer side of the impeller. The addition of splitter blades on the outer side of the impeller with 0.5L increases the pump head until 22% and the pump has 38.66% hydraulic efficiency. The best efficiency point of water flow rate pump (Qbep) was 3.02 × 10-3 m3/s.

  15. Acceptance Test Procedure for New Pumping and Instrumentation Control Skid L

    International Nuclear Information System (INIS)

    KOCH, M.R.

    1999-01-01

    This Acceptance Test Procedure (ATP) provides for the inspection and testing of the new Pumping and Instrumentation Control (PIC) skid designed as ''L''. The ATP will be performed after the construction of the PIC skid in the shop

  16. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid ''P''

    International Nuclear Information System (INIS)

    KOCH, M.R.

    2000-01-01

    This Acceptance Test Procedure (ATP) provides for the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''P''. The ATP will be performed after the construction of the PIC skid in the fabrication shop

  17. Acceptance Test Procedure for New Pumping and Instrumentation Control Skid N

    International Nuclear Information System (INIS)

    KOCH, M.R.

    1999-01-01

    This Acceptance Test Procedure (ATP) provides for the inspection and testing of the new Pumping and Instrumentation Control (PIC) skid designed as ''N''. The ATP will be performed after the construction of the PIC skid in the shop

  18. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid W

    International Nuclear Information System (INIS)

    KOCH, M.R.

    2000-01-01

    This Acceptance Test Procedure (ATP) provides for the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''W''. The ATP will be performed after the construction of the PIC skid in the fabrication shop

  19. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid V

    International Nuclear Information System (INIS)

    KOCH, M.R.

    2000-01-01

    This Acceptance Test Procedure (ATP) provides for the inspection and testing of the new Pumping Instrumentation and Control. (PIC) skid designed as ''V''. The ATP will be performed after the construction of the PIC skid in the fabrication shop

  20. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid ''V''

    International Nuclear Information System (INIS)

    KOCH, M.R.

    2000-01-01

    This Acceptance Test Procedure (ATP) provides for the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designated as ''V''. The ATP will be performed after the construction of the PIC skid in the fabrication shop

  1. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid ''Q''

    International Nuclear Information System (INIS)

    KOCH, M.R.

    2000-01-01

    This Acceptance Test Procedure (ATP) provides for the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''Q''. The ATP will be performed after the construction of the PIC skid in the fabrication shop

  2. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid ''T''

    International Nuclear Information System (INIS)

    KOCH, M.R.

    2000-01-01

    This Acceptance Test Procedure (ATP) provides for the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designated as ''T''. The ATP will be performed after the construction of the PIC skid in the fabrication shop

  3. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid T

    International Nuclear Information System (INIS)

    KOCH, M.R.

    2000-01-01

    This Acceptance Test Procedure (ATP) provides for the inspection and testing Of the new Pumping Instrumentation and Control (PIC) skid designed as ''T''. The ATP will be performed after the construction of the PIC skid in the fabrication shop

  4. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid R

    International Nuclear Information System (INIS)

    KOCH, M.R.

    2000-01-01

    This Acceptance Test Procedure (ATP) provides for the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''R''. The ATP will be performed after the construction of the PIC skid in the fabrication shop

  5. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid ''U''

    International Nuclear Information System (INIS)

    KOCH, M.R.

    2000-01-01

    This Acceptance Test Procedure (ATP) provides for the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''U''. The ATP will be performed after the construction of the PIC skid in the fabrication shop

  6. Test report - 241-AN-274 Caustic Pump Control Building

    International Nuclear Information System (INIS)

    Paintner, G.P.

    1995-05-01

    This Acceptance Test Report documents the test results of test procedure WHC-SD-WM-ATP-135 'Acceptance Test Procedure for the 241-AN- 274 Caustic Pump Control Building.' The objective of the test was to verify that the 241-AN-274 Caustic Pump Control Building functions properly based on design specifications per applicable H-2-85573 drawings and associated ECN's. The objective of the test was met

  7. Residential gas-fired sorption heat pumps. Test and technology evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, M.

    2008-12-15

    Heat pumps may be the next step in gas-fired residential space heating. Together with solar energy it is an option to combine natural gas and renewable energy. Heat pumps for residential space heating are likely to be based on the absorption or adsorption process, i.e. sorption heat pumps. Manufacturers claim that the efficiency could reach 140-160%. The annual efficiency will be lower but it is clear that gas-fired heat pumps can involve an efficiency and technology step equal to the transition from non-condensing gas boilers with atmospheric burners to condensing boilers. This report contains a review of the current sorption gas-fired heat pumps for residential space heating and also the visible development trends. A prototype heat pump has been laboratory tested. Field test results from Germany and the Netherlands are also used for a technology evaluation. The tested heat pump unit combines a small heat pump and a supplementary condensing gas boiler. Field tests show an average annual efficiency of 120% for this prototype design. The manufacturer abandoned the tested design during the project period and the current development concentrates on a heat pump design only comprising the heat pump, although larger. The heat pump development at three manufacturers in Germany indicates a commercial stage around 2010-2011. A fairly high electricity consumption compared to traditional condensing boilers was observed in the tested heat pump. Based on current prices for natural gas and electricity the cost savings were estimated to 12% and 27% for heat pumps with 120% and 150% annual efficiency respectively. There is currently no widespread performance testing procedure useful for annual efficiency calculations of gas-fired heat pumps. The situation seems to be clearer for electric compression heat pumps regarding proposed testing and calculation procedures. A German environmental label exists and gasfired sorption heat pumps are also slightly treated in the Eco-design work

  8. Heat-pump performance: voltage dip/sag, under-voltage and over-voltage

    Directory of Open Access Journals (Sweden)

    William J.B. Heffernan

    2014-12-01

    Full Text Available Reverse cycle air-source heat-pumps are an increasingly significant load in New Zealand and in many other countries. This has raised concern over the impact wide-spread use of heat-pumps may have on the grid. The characteristics of the loads connected to the power system are changing because of heat-pumps. Their performance during under-voltage events such as voltage dips has the potential to compound the event and possibly cause voltage collapse. In this study, results from testing six heat-pumps are presented to assess their performance at various voltages and hence their impact on voltage stability.

  9. Performance Analysis Of Single-Pumped And Dual-Pumped Parametric Optical Amplifier

    Directory of Open Access Journals (Sweden)

    Sandar Myint

    2015-06-01

    Full Text Available Abstract In this study we present a performance analysis of single-pumped and dual- pumped parametric optical amplifier and present the analysis of gain flatness in dual- pumped Fiber Optical Parametric Amplifier FOPA based on four-wave mixing FWM. Result shows that changing the signal power and pump power give the various gains in FOPA. It is also found out that the parametric gain increase with increase in pump power and decrease in signal power. .Moreover in this paper the phase matching condition in FWM plays a vital role in predicting the gain profile of the FOPAbecause the parametric gain is maximum when the total phase mismatch is zero.In this paper single-pumped parametric amplification over a 50nm gain bandwidth is demonstrated using 500 nm highly nonlinear fiber HNLF and signal achieves about 31dB gain. For dual-pumped parametric amplification signal achieves 26.5dB gains over a 50nm gain bandwidth. Therefore dual-pumped parametric amplifier can provide relatively flat gain over a much wider bandwidth than the single-pumped FOPA.

  10. Low-flow operation and testing of pumps in nuclear plants

    International Nuclear Information System (INIS)

    Greenstreet, W.L.

    1989-01-01

    Low-flow operation of centrifugal pumps introduces hydraulic instability and other factors that can cause damage to these machines. The resulting degradation has been studied and recorded for pumps in electric power plants. The objectives of this paper are to (1) describe the damage-producing phenomena, including their sources and consequences; (2) relate these observations to expectations for damage caused by low-flow operation of pumps in nuclear power plants; and (3) assess the utility of low-flow testing. Hydraulic behavior during low-flow operation is reviewed for a typical centrifugal pump stage, and the damage-producing mechanisms are described. Pump monitoring practices, in conjunction with pump performance characteristics, are considered; experience data are reviewed; and the effectiveness of low-flow surveillance monitoring is examined. Degradation caused by low-flow operation is shown to be an important factor, and low-flow surveillance testing is shown to be inadequate. 18 refs., 5 figs., 4 tabs

  11. Performance prediction method for a multi-stage Knudsen pump

    Science.gov (United States)

    Kugimoto, K.; Hirota, Y.; Kizaki, Y.; Yamaguchi, H.; Niimi, T.

    2017-12-01

    In this study, the novel method to predict the performance of a multi-stage Knudsen pump is proposed. The performance prediction method is carried out in two steps numerically with the assistance of a simple experimental result. In the first step, the performance of a single-stage Knudsen pump was measured experimentally under various pressure conditions, and the relationship of the mass flow rate was obtained with respect to the average pressure between the inlet and outlet of the pump and the pressure difference between them. In the second step, the performance of a multi-stage pump was analyzed by a one-dimensional model derived from the mass conservation law. The performances predicted by the 1D-model of 1-stage, 2-stage, 3-stage, and 4-stage pumps were validated by the experimental results for the corresponding number of stages. It was concluded that the proposed prediction method works properly.

  12. Acceptance test report: Field test of mixer pump for 241-AN-107 caustic addition project

    International Nuclear Information System (INIS)

    Leshikar, G.A.

    1997-01-01

    The field acceptance test of a 75 HP mixer pump (Hazleton serial number N-20801) installed in Tank 241-AN-107 was conducted from October 1995 thru February 1996. The objectives defined in the acceptance test were successfully met, with two exceptions recorded. The acceptance test encompassed field verification of mixer pump turntable rotation set-up and operation, verification that the pump instrumentation functions within established limits, facilitation of baseline data collection from the mixer pump mounted ultrasonic instrumentation, verification of mixer pump water flush system operation and validation of a procedure for its operation, and several brief test runs (bump) of the mixer pump

  13. Pump testing in the nuclear industry: The comprehensive test and other considerations

    International Nuclear Information System (INIS)

    Hoyle, T.F.

    1992-01-01

    The American Society of Mechanical Engineers Operations and Maintenance Working Group on Pumps and Valves is working on a revision to their pump testing Code, ISTB-1990. This revision will change the basic philosophy of pump testing in the nuclear industry. Currently, all pumps are required to be tested quarterly, except those installed in dry sumps. In the future standby pumps will receive only a start test quarterly to ensure the pump comes up to speed and pressure or flow. Then, on a biennial basis all pumps would receive a more extensive test. This comprehensive test would require high accuracy test gauges to be used, and the pumps would be required to be tested near pump design flow. Testing on minimum flow loops would not be permitted except in rare cases. Additionally. during the comprehensive test, measurements of vibration, flow, and pressure would all be taken. The OM-6 standard (ISTB Code) will also require that reference values of flow rate and differential pressure be taken at several points instead of just one point, which is current practice. The comprehensive test is just one step in ensuring the adequacy of pump testing in the nuclear industry. This paper also addresses other concerns and makes recommendations for increased quality of testing of certain critical pumps and recommendations for less stringent or no tests on less critical pumps

  14. Performance analysis of air source heat pump system for office building

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dong Won; KIm, Yong Chan [Korea University, Seoul (Korea, Republic of); Chang, Young Soo [School of Mechanical System Engineering, Kookmin University, Seoul (Korea, Republic of)

    2016-11-15

    In this study, the performance of an air source heat pump system installed in a commercial building is analyzed using the developed heat pump performance model and building load simulation data of several regions in Korea. The performance test of an air source heat pump system with a variable speed compressor is tested to develop model that considers changes in the performance characteristics of the heat pump system under various operating conditions. The heat pump system is installed in an environmental chamber, and the experimental equipment is set up according to the manufacturer' specifications as well as the AHRI 1230 test specifications. The performance test conditions of the heat pump system are selected using a central composite design method, in which 29 points for each cooling and heating mode are selected. The developed performance model based on experimental data predicts experimental values with an error of ±5 %. Building cooling and heating loads in three regions in Korea are analyzed using TRNSYS software, which includes standard building and weather data from Seoul, Daejeon and Busan in Korea. The effects of outdoor air temperature and part load ratio on the performance and regional monthly average power consumption of the heat pump system are analyzed.

  15. Heat pumps in field test; Waermepumpen im Feldtest

    Energy Technology Data Exchange (ETDEWEB)

    Becker, R. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Miara, M.; Russ, C.

    2007-09-15

    The Fraunhofer ISE has launched two field tests of newly installed heat pumps in 2006. Both deal with the measurement of a high number of heat pump units under real conditions in small houses. Values of volume flows, temperatures, heat quantity and electricity consumption are collected and daily saved and analysed at the Fraunhofer ISE. (orig.)

  16. Development, testing, and certification of Calmac Mfg. Corp. solar collector and solar operated pump

    Science.gov (United States)

    Parker, J. C.

    1979-01-01

    Development of a rubber tube solar collector and solar operated pump for use with solar heating and cooling systems is discussed. The development hardware, problems encountered during fabrication and testing, and certification statements of performance are included.

  17. Proceedings of the symposium on inservice testing of pumps and valves

    International Nuclear Information System (INIS)

    1990-10-01

    The 1990 Symposium on Inservice Testing of Pumps and Valves, jointly sponsored by the Board on Nuclear Codes and Standards of the American Society of Mechanical Engineers and by the Nuclear Regulatory Commission, provided a forum for the discussion of current programs and methods for inservice testing at nuclear power plants. The symposium also provided an opportunity to discuss the need to improve inservice testing in order to ensure the reliable performance of pumps and valves. The participation of industry representatives, regulators, and consultants resulted in the discussion of a broad spectrum of ideas and perspectives regarding the improvement of inservice testing of pumps and valves at nuclear power plants

  18. Proceedings of the symposium on inservice testing of pumps and valves

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    The 1990 Symposium on Inservice Testing of Pumps and Valves, jointly sponsored by the Board on Nuclear Codes and Standards of the American Society of Mechanical Engineers and by the Nuclear Regulatory Commission, provided a forum for the discussion of current programs and methods for inservice testing at nuclear power plants. The symposium also provided an opportunity to discuss the need to improve inservice testing in order to ensure the reliable performance of pumps and valves. The participation of industry representatives, regulators, and consultants resulted in the discussion of a broad spectrum of ideas and perspectives regarding the improvement of inservice testing of pumps and valves at nuclear power plants.

  19. 热泵与家用太阳热水器联合供热性能试验%Performance jointly test of heat pump water heater with household solar heating

    Institute of Scientific and Technical Information of China (English)

    谌学先; 高文峰; 兰青; 唐润生; 夏朝凤

    2011-01-01

    为解决家用太阳能热水器供热的间歇性和不稳定性,应用热泵辅助可达到全天候供热,该文通过对这种联合供热系统的供热性能和运行性能进行了测试,并对热水器的升温、保温和热泵的加热进行了试验和分析,结果表明:空气源热泵辅助型真空管家用太阳热水系统仅在累积太阳辐照量小于14 MJ/m2时,需要空气源热泵辅助加热,总制热性能系数可达6.18.%To solve the problems of heating intermittent and instability for household solar water heater, application of heat pump for evacuated tube solar water heater system can achieved auxiliary heat supply round-the-clock. Heating performance test and operation of the system were conducted and the temperature rise performance, heat preservation of the solar water heater system and the heating performance of heat pump were tested and analyzed in this paper. The result showed that when the solar radiation was less than 14 MJ/m2 , the system needed heating by air source heat pump,on this occasion, the system total coefficient of performance could reach 6.18.

  20. Photophysical properties of some xanthylium salts performances under CVL pumping

    International Nuclear Information System (INIS)

    Doizi, D.; Lompre, L.A.; Gazeau, M.C.

    1995-01-01

    We report the photochemical and photophysical performances of some new dyes belonging to the xanthylium salts family. Performances under Copper Vapor Laser (CVL) pumping are described and compared to those of Rhodamine 6G. (author)

  1. 241-AZ-101 Mixer Pump Demonstration Test Gamma Cart Acceptance Test Procedure and Quality Test Plan (ATP and QTP)

    International Nuclear Information System (INIS)

    WHITE, D.A.

    2000-01-01

    Shop test of the sludge mobilization cart system to be used in the AZ-101 Mixer Pump Demonstration Test Tests hardware and software. This procedure involves testing the Instrumentation involved with the Gamma Cart System, local and remote, including depth indicators, speed controls, interface to data acquisition software and the raising and lowering functions. This Procedure will be performed twice, once for each Gamma Cart System. This procedure does not test the accuracy of the data acquisition software

  2. 241-AZ-101 Mixer Pump Demonstration Test Gamma Cart Acceptance Test Procedure and Quality Test Plan (ATP and QTP)

    International Nuclear Information System (INIS)

    WHITE, D.A.

    2000-01-01

    Shop Test of the Gamma Cart System to be used in the AZ-101 Mixer Pump Demonstration Test. Tests hardware and software. This procedure involves testing the Instrumentation involved with the Gamma Cart System, local and remote, including: depth indicators, speed controls, interface to data acquisition software and the raising and lowering functions. This Procedure will be performed twice, once for each Gamma Cart System. This procedure does not test the accuracy of the data acquisition software

  3. Fast Flux Test Facility replacement of a primary sodium pump

    International Nuclear Information System (INIS)

    Krieg, S.A.; Thomson, J.D.

    1985-01-01

    The Fast Flux Test Facility is a 400 MW Thermal Sodium Cooled Fast Reactor operated by Westinghouse Hanford Company for the US Department of Energy. During startup testing in 1979, the sodium level in one of the primary sodium pumps was inadvertently raised above the normal height. This resulted in distortion of the pump shaft. Pump replacement was carried out using special maintenance equipment. Nuclear radiation and contamination were not significant problems since replacement operations were carried out shortly after startup of the Fast Flux Test Facility

  4. Performance of solar photovoltaic array fed water pumping system ...

    African Journals Online (AJOL)

    This paper discusses the design and performance analysis of a solar photovoltaic (SPV) array fed water pumping system utilizing a special class of highly rugged machine with simple drive system called switched reluctance motor (SRM) drive. The proposed method of water pumping system also provides the cost effective ...

  5. Development and test of a plastic deep-well pump

    International Nuclear Information System (INIS)

    Zhang, Q H; Gao, X F; Xu, Y; Shi, W D; Lu, W G; Liu, W

    2013-01-01

    To develop a plastic deep-well pump, three methods are proposed on structural and forming technique. First, the major hydraulic components are constructed by plastics, and the connection component is constructed by steel. Thus the pump structure is more concise and slim, greatly reducing its weight and easing its transportation, installation, and maintenance. Second, the impeller is designed by maximum diameter method. Using same pump casing, the stage head is greatly increased. Third, a sealing is formed by impeller front end face and steel end face, and two slots are designed on the impeller front end face, thus when the two end faces approach, a lubricating pair is formed, leading to an effective sealing. With above methods, the pump's axial length is greatly reduced, and its stage head is larger and more efficient. Especially, the pump's axial force is effectively balanced. To examine the above proposals, a prototype pump is constructed, and its testing results show that the pump efficiency exceeds the national standard by 6%, and the stage head is improved by 41%, meanwhile, its structure is more concise and ease of transportation. Development of this pump would provide useful experiences for further popularity of plastic deep-well pumps

  6. DEVELOPMENT OF A HIGH PERFORMANCE COLD CLIMATE HEAT PUMP

    Energy Technology Data Exchange (ETDEWEB)

    Horton, W. Travis [Purdue University; Groll, Eckhard A. [Purdue University; Braun, James E. [Purdue University

    2014-06-01

    The primary goals of the proposed project were to develop, test, and evaluate a high performance and cost-effective vapor compression air-source heat pump for use in cold climate regions. Vapor compression heat pumps are a proven technology, and have been used for many years to meet heating requirements for buildings in residential, commercial, and industrial applications. However, in climate regions that experience very low outdoor ambient temperatures both the heating capacity and coefficient of performance (COP) of traditional air-source vapor compression heat pumps drops dramatically with a decrease in the outdoor air temperature. The efficiency of heat pumping equipment has improved substantially over the past 20 years; however, the efficiencies of the highest rated equipment on the market are approaching practical limits that cannot be surpassed without modifications to the basic cycle and possibly the use of additional hardware. In this report, three technologies to improve the efficiency of vapor compression systems are described. These are a) vapor injected compression, b) oil flooded compression and c) hybrid flow control of the evaporator. Compressor prototypes for both, oil flooded and vapor injected compression were developed by Emerson Climate Technologies. For the oil flooded compressor, the oil injection port location was optimized and an internal oil separator was added using several design iterations. After initial testing at Emerson Climate Technologies, further testing was done at Purdue University, and compressor models were developed. These models were then integrated into a system model to determine the achievable improvement of seasonal energy efficiency (SEER) for Minneapolis (Minnesota) climate. For the oil flooded compression, a 34% improvement in seasonal energy efficiency was found while a 21% improvement in seasonal energy efficiency ratio was found for the vapor injected compression. It was found that one benefit of both tested

  7. Test specification for decant pump and winch assembly

    International Nuclear Information System (INIS)

    Staehr, T.W.

    1994-01-01

    This specification provides the requirements for testing of the vertical turbine decant pump including the floating suction arm with load sensing winch control, instrumentation and the associated PLC/PC control system

  8. ATES/heat pump simulations performed with ATESSS code

    Science.gov (United States)

    Vail, L. W.

    1989-01-01

    Modifications to the Aquifer Thermal Energy Storage System Simulator (ATESSS) allow simulation of aquifer thermal energy storage (ATES)/heat pump systems. The heat pump algorithm requires a coefficient of performance (COP) relationship of the form: COP = COP sub base + alpha (T sub ref minus T sub base). Initial applications of the modified ATES code to synthetic building load data for two sizes of buildings in two U.S. cities showed insignificant performance advantage of a series ATES heat pump system over a conventional groundwater heat pump system. The addition of algorithms for a cooling tower and solar array improved performance slightly. Small values of alpha in the COP relationship are the principal reason for the limited improvement in system performance. Future studies at Pacific Northwest Laboratory (PNL) are planned to investigate methods to increase system performance using alternative system configurations and operations scenarios.

  9. Radial-piston pump for drive of test machines

    Science.gov (United States)

    Nizhegorodov, A. I.; Gavrilin, A. N.; Moyzes, B. B.; Cherkasov, A. I.; Zharkevich, O. M.; Zhetessova, G. S.; Savelyeva, N. A.

    2018-01-01

    The article reviews the development of radial-piston pump with phase control and alternating-flow mode for seismic-testing platforms and other test machines. The prospects for use of the developed device are proved. It is noted that the method of frequency modulation with the detection of the natural frequencies is easily realized by using the radial-piston pump. The prospects of further research are given proof.

  10. Mitigation of Tank 241-SY-101 by pump mixing: Results of testing phases A and B

    Energy Technology Data Exchange (ETDEWEB)

    Allemann, R.T.; Antoniak, Z.I.; Chvala, W.D.; Friley, J.R.; Gregory, W.B.; Hudson, J.D.; Michener, T.E.; Panisko, F.E.; Stewart, C.W.; Wise, B.M. [Pacific Northwest Lab., Richland, WA (United States); Efferding, L.E.; Fadeff, J.G.; Irwin, J.J.; Kirch, N.W. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-03-01

    A spare mixing pump from the Hanford Grout Program was installed in Hanford double-shell waste Tank 241-SY-101 on July 3, 1993, after being modified to take advantage of waste stratification. It was anticipated that pump mixing would prevent large episodic flammable gas releases that had been occurring about every 100-150 days. A cautious initial test plan, called Phase A, was run to find how the pump and tank would behave in response to very brief and gentle pump operation. No large gas releases were triggered, and the pump performed well except for two incidents of nozzle plugging. On October 21, 1993, the next test series, Phase B, began, and the pump was applied more aggressively to mix the tank contents and mitigate uncontrolled gas releases. Orienting the pump in new directions released large volumes of gas and reduced the waste level to a near-record low. Results of the entire period from pump installation to the end of Phase B on December 17, 1993, are presented in detail in this document. Though long-term effects require further evaluation, we conclude from these data that the jet mixer pump is an effective means of controlling flammable gas release and that it has met the success criteria for mitigation in this tank.

  11. Review of RSG-GAS secondary cooling pump performance

    International Nuclear Information System (INIS)

    Marsahala, Y.B.

    1999-01-01

    The control system of RSG-GAS secondary pump is the study for the operation existence of RSG-GAS secondary pump. The research is about characteristic of the secondary pump and its control system. The measuring of characteristic parameter of secondary cooling pump was being done while the pump running. The pump was loading with capacity 1950 m3/hr. with ambient temperature 28.5 oC. The fault effect of public grid (PLN) such as the fluctuation of both voltage and frequency likes voltage drops (dip). Supply block out that effect of the electric motor performances directly will be analyzed. How far those faults will effect the overall performance of secondary cooling system. Analyzing. Will be done according to the control system was installed. Has be done to find the direct effects of the motor performances against the motor rotation fluctuation which run from 1450 rpm to 1475 rpm. The using of start-delta starting method with delay time about 6 seconds, is enough or not to reduce the inrush starting current also analyzed in this paper. From the research can be obtained that in the steady state condition , the electric motor runs with both power and current are still under tolerances permitted. According to the analyzed data above, it will be consider that the control system of secondary pump would be modified or not. Therefore the analyzed data can show the characteristic curve of the secondary cooling system performance

  12. What we learn from surveillance testing of standby turbine driven and motor driven pumps

    Energy Technology Data Exchange (ETDEWEB)

    Christie, B.

    1996-12-01

    This paper describes a comparison of the performance information collected by the author and the respective system engineers from five standby turbine driven pumps at four commercial nuclear electric generating units in the United States and from two standby motor driven pumps at two of these generating units. Information was collected from surveillance testing and from Non-Test actuations. Most of the performance information (97%) came from surveillance testing. {open_quotes}Conditional Probabilities{close_quotes} of the pumps ability to respond to a random demand were calculated for each of the seven standby pumps and compared to the historical record of the Non-Test actuations. It appears that the Conditional Probabilities are comparable to the rate of success for Non-Test actuations. The Conditional Probabilities of the standby motor driven pumps (approximately 99%) are better than the Conditional Probabilities of the standby turbine driven pumps (82%-96% range). Recommendations were made to improve the Conditional Probabilities of the standby turbine driven pumps.

  13. What we learn from surveillance testing of standby turbine driven and motor driven pumps

    International Nuclear Information System (INIS)

    Christie, B.

    1996-01-01

    This paper describes a comparison of the performance information collected by the author and the respective system engineers from five standby turbine driven pumps at four commercial nuclear electric generating units in the United States and from two standby motor driven pumps at two of these generating units. Information was collected from surveillance testing and from Non-Test actuations. Most of the performance information (97%) came from surveillance testing. open-quotes Conditional Probabilitiesclose quotes of the pumps ability to respond to a random demand were calculated for each of the seven standby pumps and compared to the historical record of the Non-Test actuations. It appears that the Conditional Probabilities are comparable to the rate of success for Non-Test actuations. The Conditional Probabilities of the standby motor driven pumps (approximately 99%) are better than the Conditional Probabilities of the standby turbine driven pumps (82%-96% range). Recommendations were made to improve the Conditional Probabilities of the standby turbine driven pumps

  14. Experimental study on energy performance of clean air heat pump

    DEFF Research Database (Denmark)

    Fang, Lei; Nie, Jinzhe; Olesen, Bjarne W.

    2014-01-01

    An innovative clean air heat pump (CAHP) was designed and developed based on the air purification capacity of regenerative silica gel rotor. The clean air heat pump integrated air purification, dehumidification and cooling in one unit. A prototype of the clean air heat pump was developed...... to investigate its energy performance. Energy consumption of the prototype of CAHP was measured in laboratory at different climate conditions including mild-cold, mildhot and extremely hot and humid climates. The energy saving potential of the clean air heat pump compared to a conventional ventilation and air......-conditioning system was calculated. The experimental results showed that the clean air heat pump saved substantial amount of energy compared to the conventional system. For example, the CAHP can save up to 59% of electricity in Copenhagen, up to 40% of electricity in Milan and up to 30% of electricity in Colombo...

  15. The effect of balance holes to centrifugal pump performance

    Science.gov (United States)

    Babayigit, O.; Ozgoren, M.; Aksoy, M. H.; Kocaaslan, O.

    2017-07-01

    The aim of this study is to analyze of a centrifugal pump with and without balance holes by using ANSYS-Fluent software. The pump used in the study is a commercial centrifugal pump consisting of two stages that is a model of Sempa Pump Company. Firstly, models of impeller, diffuser, suction and discharge sections of the centrifugal pump were separately drawn using Ansys and Solidworks software. Later, grid structures were generated on the flow volume of the pump. Turbulent flow volume was numerically solved by realizable k-є turbulence model. The flow analyses were focused on the centrifugal pump performance and the flow characteristics under different operational conditions with/without balance holes. Distributions of flow characteristics such as velocity and pressure distributions in the flow volume were also determined, numerically. The results of Computational Fluid Dynamics (CFD) with/without balance holes for the pump head and hydraulic efficiency on the design flow rate of 80 m3/h were found to be 81.5/91.3 m and 51.9/65.3%, respectively.

  16. Performance Optimization of Centrifugal Pump for Crude Oil Delivery

    Directory of Open Access Journals (Sweden)

    S.A.I. Bellary

    2018-02-01

    Full Text Available Crude oil transport is an essential task in oil and gas industries, where centrifugal pumps are extensively used. The design of a centrifugal pump involves a number of independent parameters which affect the pump performance. Altering some of the parameters within a realistic range improves pump performance and saves a significant amount of energy. The present research investigated the pump characteristics by modifying the number of blades and the exit blade-angles. Reynolds-Averaged Navier-Stokes equations with standard k-ε two-equation turbulence closure were used for steady and incompressible flow of crude oil through the pump. The experimental set-up was installed and the pump performance calculated numerically  was compared with the experiments.   The investigations showed that the number of blades and the exit blade-angles have a significant influence on the head, shaft power, and efficiency. The vortical flow structures, recirculation and reverse flow characteristics around the impeller were investigated to explain the flow dynamics of impeller and casing. A larger number of blades on the rotor showed dominant streamlined flow without any wake phenomena. The combined effect of the number of blades and exit blade angle has led to an increase in head and efficiency through the parametric optimization.

  17. Fabrication and testing of main sodium pumps of Superphenix 1

    International Nuclear Information System (INIS)

    Noel, H.; Pasqualini, G.

    1985-01-01

    The complexity of the loads involved and the extremely fine analysis required necessitates extensive design calculations for the Superphenix 1 primary and secondary pumps and associated expansion tanks, aiming toward detailed design validation, after slight adjustments, mainly to the secondary pumps and expansion tanks. The component parts to be built were far larger than those for the previous pumps (Rapsodie, Phenix), with very low manufacturing tolerances, which led to precision machining and welding operations, together with numerous dimensional inspections and materials characterization tests to achieve the required quality standards

  18. Effects of Crust Ingestion on Mixer Pump Performance in Tank 241-SY-101: Workshop Results

    International Nuclear Information System (INIS)

    Brennen, C.E.; Stewart, C.W.; Meyer, P.A.

    1999-01-01

    constraints) is to monitor discharge pressure and cease pump operation if it falls below a predetermined amount. (5) There are no critically necessary tests to prove pump operability or performance before initiating the transfer and back-dilution sequence

  19. The Phillips Laboratory capillary pumped loop test facility

    Science.gov (United States)

    Gluck, Donald F.; Kaylor, Marc C.

    1996-03-01

    An ammonia capillary pumped loop (CPL) test facility has been designed, fabricated, subject to acceptance tests, and assembled at Phillips Laboratory. Its intent is to support a wide range of Air Force programs, bringing CPL technology to flight readiness for operational systems. The facility provides a high degree of modularity and flexibility with several heating and cooling options, and capability for elevation (+/- 15 in.), tilt (+/-60°) and transport length variation. It has a 182 by 44 by 84 inch envelope, an expected heat load capability of 2500 W, and a temperature range of 0 to 50 °C. The evaporator section has two plates with four capillary pumps (CPs) each, with a starter pump on one plate. The CPs are 5/8 in., with TAG aluminum 6063-T6 casing and UHMW polyethylene wicks. The active lengths are 15 and 30 inch with both 10 and 15 micron wicks. The individual CPs have thermal and hydraulic isolation capability, and are removable. The transport section consists of stainless steel lines in a serpentine configuration, a 216 in3 free volume reservoir, and a mechanical pump. The vapor transport line contains a capillary device (which can be bypassed) for vapor blockage during startup. The condenser consists of two separately valved, parallel cold plates each with a downstream noncondensible gas trap. Cooling of up to 1500 W at -50 °C is provided by an FTS Systems chiller using Flourinert FC-72. An enclosure/exhaust system is provided for safety and emergency venting of ammonia. An ammonia charge station performs or supports the functions of proof pressure, flushing with ammonia, purging with gaseous nitrogen, evacuation of all or part of the CPL to 20 microns, and charging. Instrumentation consists of over 116 thermocouples, five of which are internal; one absolute and six differential pressure transducers; eleven watt transducers, and a reservoir load cell. The data acquisition system consists of a temperature scanner, Bernoulli drive, and two Macintosh

  20. Experimental study of the influence of flow passage subtle variation on mixed-flow pump performance

    Science.gov (United States)

    Bing, Hao; Cao, Shuliang

    2014-05-01

    In the mixed-flow pump design, the shape of the flow passage can directly affect the flow capacity and the internal flow, thus influencing hydraulic performance, cavitation performance and operation stability of the mixed-flow pump. However, there is currently a lack of experimental research on the influence mechanism. Therefore, in order to analyze the effects of subtle variations of the flow passage on the mixed-flow pump performance, the frustum cone surface of the end part of inlet contraction flow passage of the mixed-flow pump is processed into a cylindrical surface and a test rig is built to carry out the hydraulic performance experiment. In this experiment, parameters, such as the head, the efficiency, and the shaft power, are measured, and the pressure fluctuation and the noise signal are also collected. The research results suggest that after processing the inlet flow passage, the head of the mixed-flow pump significantly goes down; the best efficiency of the mixed-flow pump drops by approximately 1.5%, the efficiency decreases more significantly under the large flow rate; the shaft power slightly increases under the large flow rate, slightly decreases under the small flow rate. In addition, the pressure fluctuation amplitudes on both the impeller inlet and the diffuser outlet increase significantly with more drastic pressure fluctuations and significantly lower stability of the internal flow of the mixed-flow pump. At the same time, the noise dramatically increases. Overall speaking, the subtle variation of the inlet flow passage leads to a significant change of the mixed-flow pump performance, thus suggesting a special attention to the optimization of flow passage. This paper investigates the influence of the flow passage variation on the mixed-flow pump performance by experiment, which will benefit the optimal design of the flow passage of the mixed-flow pump.

  1. Test Procedure - pumping system for caustic addition project

    International Nuclear Information System (INIS)

    Leshikar, G.A.

    1994-01-01

    This test procedure provides the requirements for sub-system testing and integrated operational testing of the submersible mixer pump and caustic addition equipment by WHC and Kaiser personnel at the Rotating Equipment Shop run-in pit (Bldg. 272E)

  2. Performances of solar water pumping system using helical pump for a deep well: A case study for Madinah, Saudi Arabia

    International Nuclear Information System (INIS)

    Benghanem, M.; Daffallah, K.O.; Joraid, A.A.; Alamri, S.N.; Jaber, A.

    2013-01-01

    Highlights: ► The best performance of helical pump has been reached for a deep well. ► Very high potential of solar energy at Saudi Arabia. ► Performance of solar water pumping system for a deep well of 120 m. ► We get the best efficiency of helical pump for the head of 80 m. ► The best configuration of PV generator (24 panels) has been obtained. - Abstract: The photovoltaic water pumping systems (PVWPS) constitute a potential option to draw down water in the remote desert locations for domestic usage and livestock watering. However, the widespread of this technique requires accurate information and experiences in such system sizing and installation. The aim of this work is to determine an optimum photovoltaic (PV) array configuration, adequate to supply a DC Helical pump with an optimum energy amount, under the outdoor conditions of Madinah site. Four different PV array configurations have been tested (6S × 3P, 6S × 4P, 8S × 3P and 12S × 2P). The tests have been carried for a head of 80 m, under sunny daylight hours, in a real well at a farm in Madinah site. The best results have been obtained for two PV array configurations (6S × 4P) and (8S × 3P) which are suitable to provide the optimum energy. Powered by the selected PV array configurations, the helical pump (SQF2.5-2) delivered a maximum daily average volume of water needed (22 m 3 /day).

  3. Project W-314 specific test and evaluation plan for 241-AY-02A pump pit upgrade

    International Nuclear Information System (INIS)

    Hays, W.H.

    1998-01-01

    This Specific Test and Evaluation Plan (STEP) defines the test and evaluation activities encompassing the upgrade of the 241-AY-02A Pump Pit for the W-314 Project. The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made to the 241-AY-02A Pump Pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system's performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation Plan (TEP)

  4. Project W-314 specific test and evaluation plan for 241-AY-01A pump pit upgrade

    International Nuclear Information System (INIS)

    Hays, W.H.

    1998-01-01

    This Specific Test and Evaluation Plan (STEP) defines the test and evaluation activities encompassing the upgrade of the 241-AY-0IA Pump Pit for the W-314 Project. The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made to the 241-AY-01A Pump Pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system's performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation Plan (TEP)

  5. Textiles Performance Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Textiles Performance Testing Facilities has the capabilities to perform all physical wet and dry performance testing, and visual and instrumental color analysis...

  6. Automated analysis of pumping tests; Analise automatizada de testes de bombeamento

    Energy Technology Data Exchange (ETDEWEB)

    Sugahara, Luiz Alberto Nozaki

    1996-01-01

    An automated procedure for analysis of pumping test data performed in groundwater wells is described. A computer software was developed to be used under the Windows operational system. The software allows the choice of 3 mathematical models for representing the aquifer behavior, which are: Confined aquifer (Theis model); Leaky aquifer (Hantush model); unconfined aquifer (Boulton model). The analysis of pumping test data using the proper aquifer model, allows for the determination of the model parameters such as transmissivity, storage coefficient, leakage coefficient and delay index. The computer program can be used for the analysis of data obtained from both pumping tests, with one or more pumping rates, and recovery tests. In the multiple rate case, a de superposition procedure has been implemented in order to obtain the equivalent aquifer response for the first flow rate, which is used in obtaining an initial estimate of the model parameters. Such initial estimate is required in the non-linear regression analysis method. The solutions to the partial differential equations describing the aquifer behavior were obtained in Laplace space, followed by numerical inversion of the transformed solution using the Stehfest algorithm. The data analysis procedure is based on a non-linear regression method by matching the field data to the theoretical response of a selected aquifer model, for a given type of test. A least squared regression analysis method was implemented using either Gauss-Newton or Levenberg-Marquardt procedures for minimization of a objective function. The computer software can also be applied to multiple rate test data in order to determine the non-linear well coefficient, allowing for the computation of the well inflow performance curve. (author)

  7. Dynamic Performance of the Standalone Wind Power Driven Heat Pump

    OpenAIRE

    H. Li; P.E. Campana; S. Berretta; Y. Tan; J. Yan

    2016-01-01

    Reducing energy consumption and increasing use of renewable energyin the building sector arecrucial to the mitigation of climate change. Wind power driven heat pumps have been considered as a sustainable measure to supply heat for detached houses, especially those that even don’t have access to the grid. This work is to investigate the dynamic performance of a heat pump system directly driven by a wind turbine. The heat demand of a detached single family house was simulated in details. Accord...

  8. Performance and internal flow condition of mini centrifugal pump with splitter blades

    International Nuclear Information System (INIS)

    Shigemitsu, T; Fukutomi, J; Kaji, K; Wada, T

    2012-01-01

    Mini centrifugal pumps having a diameter smaller than 100mm are employed in many fields. But the design method for the mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Therefore, mini centrifugal pumps with simple structure were investigated by this research. Splitter blades were adopted in this research to improve the performance and the internal flow condition of mini centrifugal pump which had large blade outlet angle. The original impeller without the splitter blades and the impeller with the splitter blades were prepared for an experiment. The performance tests are conducted with these rotors in order to investigate the effect of the splitter blades on performance and internal flow condition of mini centrifugal pump. On the other hand, a three dimensional steady numerical flow analysis is conducted with the commercial code (ANSYS-CFX) to investigate the internal flow condition in detail. It is clarified from the experimental results that the performance of the mini centrifugal pump is improved by the effect of the splitter blades. The blade-to-blade low velocity regions are suppressed in the case with the splitter blades and the total pressure loss regions are decreased. The effects of the splitter blades on the performance and the internal flow condition are discussed in this paper.

  9. Procurement specification high vacuum test chamber and pumping system

    International Nuclear Information System (INIS)

    1976-01-01

    The specification establishes requirements for a high-vacuum test chamber, associated vacuum pumps, valves, controls, and instrumentation that shall be designed and fabricated for use as a test chamber for testing a closed loop Brayton Isotope Power System (BIPS) Ground Demonstration System (GDS). The vacuum system shall include all instrumentation required for pressure measurement and control of the vacuum pumping system. A general outline of the BIPS-GDS in the vacuum chamber and the preliminary piping and instrumentation interface to the vacuum chamber are shown

  10. Heat pumps for geothermal applications: availability and performance. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Reistad, G.M.; Means, P.

    1980-05-01

    A study of the performance and availability of water-source heat pumps was carried out. The primary purposes were to obtain the necessary basic information required for proper evaluation of the role of water-source heat pumps in geothermal energy utilization and/or to identify the research needed to provide this information. The Search of Relevant Literature considers the historical background, applications, achieved and projected performance evaluations and performance improvement techniques. The commercial water-source heat pump industry is considered in regard to both the present and projected availability and performance of units. Performance evaluations are made for units that use standard components but are redesigned for use in geothermal heating.

  11. [Hemolysis Performance Analysis of the Centrifugal Maglev Blood Pump].

    Science.gov (United States)

    Wang, Yiwen; Zhang, Fan; Fang, Yuan; Dong, Baichuan; Zhou, Liang

    2016-05-01

    In order to analyze and study the hemolysis performance of the centrifugal maglev blood pump, which was designed by ourselves, this paper built the mathematical model and computational fluid dynamics analyzed it using Fluent. Then we set up the in vitro hemolysis experiment platform, in case of the design condition, the content of free hemoglobin and hematocrit in plasma were measured in a certain time interval, and calculated the normalized index of hemolysis of the blood pump. The numerical simulation results show the internal static pressure distribution is smooth inside the pump, the wal shear stress inside the pump is less than 150 Pa. Therefore, the red blood cel damage and exposure time is independent. The normalized index of hemolysis is (0.002 9±0.000 7) mg/L, which is in accordance with human physiological requirement.

  12. Performance characteristics of a continuous-flow fluidic pump

    International Nuclear Information System (INIS)

    Robinson, S.M.; Counce, R.M.; Smith, G.V.

    1987-01-01

    The fluidic pump is a type of positive-displacement pump in which basic fluid mechanics phenomena are utilized to eliminate valves and other moving parts that are exposed to the fluid being transferred. The version described in this article is powered by gas pressure serving as gas pistons and is virtually maintenance-free. It utilizes two displacement vessels and is designed to produce a steady and continuous liquid flow. This type of pump may be very useful for the transfer of radioactive or hazardous liquids where mechanical maintenance may be difficult or exposure of personnel to the fluid is undesirable. This paper presents experimental and model-predicted characteristics of such systems. The effects of several geometric parameters and operating conditions on the performance of the pump are briefly discussed

  13. Effect of the collector tube profile on Pitot pump performances

    Science.gov (United States)

    Komaki, K.; Kanemoto, T.; Sagara, K.; Umekage, T.

    2013-12-01

    The pitot pump is composed of the rotating casing with the impeller channel and the pitot tube type collector as the discharge line. The radial impeller feeds water to the rotating casing. The water rotating together with the casing is caught by the stationary pitot tube type collector, and then discharges to the outside. This type pump, as the extra high head pump, is provided mainly for boiler feed systems, and has been designed by trial and error. To optimize the pump profiles, it is desirable to investigate not only performances but also internal flow conditions. This paper discusses experimentally and numerically the relation between the pump performances and the flow conditions in the rotating casing. The moderately larger dimensions of the collector make the pump head and the discharge high with the higher hydraulic efficiency. The flow in the casing is almost the forced vortex type whose velocity is in proportion to the radius but the core velocity is affected with the drag force of the stationary collector. Based upon the above results, the profile of the pitot tube type collector was optimized with the numerical simulation.

  14. Effect of the collector tube profile on Pitot pump performances

    International Nuclear Information System (INIS)

    Komaki, K; Sagara, K; Kanemoto, T; Umekage, T

    2013-01-01

    The pitot pump is composed of the rotating casing with the impeller channel and the pitot tube type collector as the discharge line. The radial impeller feeds water to the rotating casing. The water rotating together with the casing is caught by the stationary pitot tube type collector, and then discharges to the outside. This type pump, as the extra high head pump, is provided mainly for boiler feed systems, and has been designed by trial and error. To optimize the pump profiles, it is desirable to investigate not only performances but also internal flow conditions. This paper discusses experimentally and numerically the relation between the pump performances and the flow conditions in the rotating casing. The moderately larger dimensions of the collector make the pump head and the discharge high with the higher hydraulic efficiency. The flow in the casing is almost the forced vortex type whose velocity is in proportion to the radius but the core velocity is affected with the drag force of the stationary collector. Based upon the above results, the profile of the pitot tube type collector was optimized with the numerical simulation

  15. The design and testing of sodium pumps in the UK to meet the CDFR cavitation criteria

    International Nuclear Information System (INIS)

    Preece, G.E.; Macleod, I.D.; Wilkinson, D.

    2002-01-01

    A primary objective in the design of the sodium pumps for the UK Commercial Demonstration Fast Reactor has been to avoid cavitation during normal operation. This requirement arises from the need to avoid blade erosion and also, in the case of the Primary Sodium Pumps (PSP), the generation of cavitation noise which might otherwise interfere with instrumentation installed to detect noise of boiling in the core. This paper outlines the approach adopted to achieve a pump design with good cavitation performance and the programme of model testing carried out in a water loop to establish the cavitation boundaries for incipient cavitation of selected designs using both visual and acoustic techniques

  16. Design development and testing of a solar PV pump based drip system for orchards

    Energy Technology Data Exchange (ETDEWEB)

    Pande, P.C.; Singh, A.K.; Ansari, S.; Vyas, S.K.; Dave, B.K. [Central Arid Zone Research Inst., Jodhpur (India)

    2003-03-01

    A Solar Photovoltaic (PV) pump operated drip irrigation system has been designed and developed for growing orchards in arid region considering different design parameters like pumps size, water requirements, the diurnal variation in the pressure of the pump due to change in irradiance and pressure compensation in the drippers. The system comprising a PV pump with 900 W{sub p} PV array and 800 W dc motor-pump mono-block, microfilter, main and sub-mains and three open-able low-pressure compensating drippers on each plant was field tested. The emission uniformity was observed to be 92-94% with discharge of 3.8 l/h in the pressure range of 70-100 kPa provided by the pump and thus the system could irrigate some 1 ha area within 2 h. Based on the performance of the PV pump and the drip system, it was inferred that about 5 ha area of orchard could be covered. The projected benefit-cost ratio for growing pomegranate orchards with such a system was evaluated to be above 2 even with the costly PV pump and therefore the system was considered to be an appropriate technology for the development of arid region. (Author)

  17. Endurance Pump Tests With Fresh and Purified MIL-PRF-83282 Hydraulic Fluid

    National Research Council Canada - National Science Library

    Sharma, Shashi

    1999-01-01

    .... Two endurance pump tests were conducted with F-16 aircraft hydraulic pumps, using both fresh and purified MIL-PRF-83282 hydraulic fluid, to determine if fluid purification had any adverse effect on pump life...

  18. Test report for run-in acceptance testing of hydrogen mitigation test pump-2

    International Nuclear Information System (INIS)

    Brewer, A.K.; Kolowith, R.

    1995-01-01

    This document provides the results of the run-in test of the replacement mixer pump for the Tank 241-SY-101. The test was conducted at the 400 Area MASF facility between August 12 and September 29, 1994. The report includes findings, analysis, recommendations, and corrective actions taken

  19. Numerical prediction and performance experiment in a deep-well centrifugal pump with different impeller outlet width

    Science.gov (United States)

    Shi, Weidong; Zhou, Ling; Lu, Weigang; Pei, Bing; Lang, Tao

    2013-01-01

    The existing research of the deep-well centrifugal pump mainly focuses on reduce the manufacturing cost and improve the pump performance, and how to combine above two aspects together is the most difficult and important topic. In this study, the performances of the deep-well centrifugal pump with four different impeller outlet widths are studied by the numerical, theoretical and experimental methods in this paper. Two stages deep-well centrifugal pump equipped with different impellers are simulated employing the commercial CFD software to solve the Navier-Stokes equations for three-dimensional incompressible steady flow. The sensitivity analyses of the grid size and turbulence model have been performed to improve numerical accuracy. The flow field distributions are acquired and compared under the design operating conditions, including the static pressure, turbulence kinetic energy and velocity. The prototype is manufactured and tested to certify the numerical predicted performance. The numerical results of pump performance are higher than the test results, but their change trends have an acceptable agreement with each other. The performance results indicted that the oversize impeller outlet width leads to poor pump performances and increasing shaft power. Changing the performance of deep-well centrifugal pump by alter impeller outlet width is practicable and convenient, which is worth popularizing in the engineering application. The proposed research enhances the theoretical basis of pump design to improve the performance and reduce the manufacturing cost of deep-well centrifugal pump.

  20. Optimization of centrifugal pump cavitation performance based on CFD

    International Nuclear Information System (INIS)

    Xie, S F; Wang, Y; Liu, Z C; Zhu, Z T; Ning, C; Zhao, L F

    2015-01-01

    In order to further improve the cavitation performance of a centrifugal pump, slots on impeller blade near inlet were studied and six groups of hydraulic model were designed. Base on cavitating flow feature inside a centrifugal pump, bubble growth and implosion are calculated from the Rayleigh-Plesset equation which describes the dynamic behavior of spherical bubble and RNG κ-ε model was employed to simulate and analyze the internal two-phase flow of the model pump under the same conditions. The simulation results show that slots on blade near inlet could improve the cavitation performance and cavitation performance improvement of the second group was more obvious. Under the same conditions, the pressure on the back of blade near inlet was higher than the pressure on the back of unmodified blade near inlet, and energy distribution in the flow channel between the two blades was more uniform with a small change of head

  1. Performance of a 10 kilowatt wind-electric water pumping system for irrigating crops

    Energy Technology Data Exchange (ETDEWEB)

    Vick, B.D.; Clark, R.N. [Conservation and Production Research Lab., Bushland, TX (United States); Molla, S. [Texas A& M Univ., College Station, TX (United States)

    1997-12-31

    A 10 kW wind-electric water pumping system was tested for field crop irrigation at pumping depths from 50 to 120 m. The wind turbine for this system used a permanent magnet alternator that powered off-the-shelf submersible motors and pumps without the use of an inverter. Pumping performance was determined at the USDA-Agricultural Research Service (ARS), Wind Energy Laboratory in Bushland, TX for the 10 kW wind turbine using a pressure valve and a pressure tank to simulate different pumping depths. Pumping performance was measured for two 10 kW wind turbines of the same type at farms near the cities of Garden City, TX and Stiles, TX. The pumping performance data collected at these actual wells compared favorably with the data collected at the USDA-ARS, Wind Energy Laboratory. If utility generated electricity was accessible, payback on the wind turbine depended on the cost of utility generated electricity and the transmission line extension cost.

  2. Mitigation of tank 241-SY-101 by pump mixing: Results of full-scale testing

    International Nuclear Information System (INIS)

    Stewart, C.W.; Hudson, J.D.; Friley, J.R.; Panisko, F.E.; Antoniak, Z.I.; Irwin, J.J.; Fadeff, J.G.; Efferding, L.F.; Michener, T.E.; Kirch, N.W.

    1994-06-01

    The Full-Scale Mixer Pump Test Program was performed in Hanford Tank 241-SY-101 from February 4 to April 13, 1994, to confirm the long-term operational strategy for flammable gas mitigation and to demonstrate that mixing can control the gas release and waste level. Since its installation on July 3, 1993, the current pump, operating only a few hours per week, has proved capable of mixing the waste sufficiently to release gas continuously instead of in large episodic events. The results of Full-Scale Testing demonstrated that the pump can control gas release and waste level for long-term mitigation, and the four test sequences formed the basis for the long-term operating schedule. The last test sequence, jet penetration tests, showed that the current pump jet creates flow near the tank wall and that it can excavate portions of the bottom sludge layer if run at maximum power. Pump mixing has altered the open-quote normal close-quote configuration of the waste; most of the original nonconvective sludge has been mixed with the supernatant liquid into a mobile convective slurry that has since been maintained by gentle pump operation and does not readily return to sludge

  3. Performance of a directly-coupled PV water pumping system

    International Nuclear Information System (INIS)

    Mokeddem, Abdelmalek; Midoun, Abdelhamid; Kadri, D.; Hiadsi, Said; Raja, Iftikhar A.

    2011-01-01

    Highlights: → Directly coupled PV water pumping system installed and performance studied. → Configured for two static heads, operate without electronic control and auxiliary power. → The system attains steady state soon after any abrupt change. → Cost effective and useful for low head communicating wells system. - Abstract: This paper describes the experimental study carried out to investigate the performance of a simple, directly coupled dc photovoltaic (PV) powered water pumping system. The system comprises of a 1.5 kWp PV array, dc motor and a centrifugal pump. The experiment was conducted over a period of 4 months and the system performance was monitored under different climatic conditions and varying solar irradiance with two static head configurations. Although the motor-pump efficiency did not exceed 30%, which is typical for directly-coupled photovoltaic pumping systems, such a system is clearly suitable for low head irrigation in the remote areas, not connected to the national grid and where access to water comes as first priority issue than access to technology. The system operates without battery and complex electronic control, therefore not only the initial cost is low but also maintenance, repairing and replacement cost can be saved. The study showed that directly coupled system attains steady state soon after any abrupt change.

  4. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    Institute of Scientific and Technical Information of China (English)

    曲世林; 马飞; 仇安兵

    2009-01-01

    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  5. Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan

    International Nuclear Information System (INIS)

    TEMPLETON, A.M.

    2000-01-01

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification. Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications

  6. Numerical investigation of degas performance on impeller of medium-consistency pump

    Directory of Open Access Journals (Sweden)

    Hong Li

    2015-12-01

    Full Text Available Medium-consistency technology is known as the process with high efficiency and low pollution. The gas distribution was simulated in the medium-consistency pump with different degas hole positions. Rheological behaviors of pulp suspension were obtained by experimental test. A modified Herschel–Bulkley model and the Eulerian gas–liquid two-phase flow model were utilized to approximately represent the behaviors of the medium-consistency pulp suspension. The results show that when the relative position is 0.53, the gas volume ratio is less than 0.1% at the pump outlet and 9.8% at the vacuum inlet, and the pump head is at the maximum. Because of the different numbers of the impeller blades and turbulence blades and the asymmetric volute structure, the gas is distributed unevenly in the impeller. In addition, the pump performance was tested in experiment and the results are used to validate computational fluid dynamics outcomes.

  7. Acceptance Test Procedure for New Pumping and Instrumentation Control Skid M

    International Nuclear Information System (INIS)

    KOCH, M.R.

    1999-01-01

    This Acceptance Test Procedure (ATP) verifies proper construction per the design drawings and tests for proper functioning of the Pumping and Instrumentation Control (PIC) skid ''M''. The Scope section lists the systems and functions to be checked. This ATP will be performed at the Site Fabrication Service's (SFS) shop upon completion of construction of the PIC skid

  8. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid ''V''

    International Nuclear Information System (INIS)

    KOCH, M.R.

    2000-01-01

    This Acceptance Test Procedure (ATP) verifies proper construction per the design drawings and tests for proper functioning of the Pumping Instrumentation and Control (PIC) skid ''V''. The scope section lists the systems and functions to be checked. This ATP will be performed at the Site Fabrication Services (SFS) shop upon completion of the construction of the PIC skid

  9. Hydraulic properties from pumping tests data of aquifers in Azare ...

    African Journals Online (AJOL)

    Pumping test data from twelve boreholes in Azare area were analysed to determine the hydraulic properties of the aquifers, and the availability of water to meet the conjugate demands of the increasing population. The values of the aquifer constants obtained from the Cooper-Jacob's non-equilibrium graphical method were ...

  10. Proceedings of the 4th NRC/ASME symposium on valve and pump testing

    International Nuclear Information System (INIS)

    1996-01-01

    The 1996 Symposium on Valve and Pump Testing, jointly sponsored by the Board on Nuclear Codes and Standards of the American Society of Mechanical Engineers and by the U.S. Nuclear Regulatory Commission, provides a forum for the discussion of current programs and methods for inservice testing and motor-operated valve testing at nuclear power plants. The symposium also provides an opportunity to discuss the need to improve that testing in order to help ensure the reliable performance of pumps and valves. The participation of industry representatives, regulators, and consultants results in the discussion of a broad spectrum of ideas and perspectives regarding the improvement of inservice testing of pumps and valves at nuclear power plants. Individual papers of this Proceedings have been cataloged separately

  11. Proceedings of the 4th NRC/ASME symposium on valve and pump testing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The 1996 Symposium on Valve and Pump Testing, jointly sponsored by the Board on Nuclear Codes and Standards of the American Society of Mechanical Engineers and by the U.S. Nuclear Regulatory Commission, provides a forum for the discussion of current programs and methods for inservice testing and motor-operated valve testing at nuclear power plants. The symposium also provides an opportunity to discuss the need to improve that testing in order to help ensure the reliable performance of pumps and valves. The participation of industry representatives, regulators, and consultants results in the discussion of a broad spectrum of ideas and perspectives regarding the improvement of inservice testing of pumps and valves at nuclear power plants. Individual papers of this Proceedings have been cataloged separately.

  12. Experimental Study on Series Operation of Sliding Vane Pump and Centrifugal Pump

    OpenAIRE

    Li, Tao; Zhang, Weiming; Jiang, Ming; Li, Zhengyang

    2013-01-01

    A platform for sliding vane pump and centrifugal pump tests is installed to study the series operation of them under different characteristics of pipeline. Firstly, the sliding vane pump and the centrifugal pump work independently, and the performance is recorded. Then, the two types of pumps are combined together, with the sliding vane pump acting as the feeding pump. Comparison is made between the performance of the independently working pump and the performance of series operation pump. Re...

  13. Acceptance Test Report for 241-SY Pump Cradle Hydraulic System

    International Nuclear Information System (INIS)

    Koons, B.M.

    1995-01-01

    The purpose of this ATP is to verify that hydraulic system/cylinder procured to replace the cable/winch system on the 101-SY Mitigation Pump cradle assembly fulfills its functional requirements for raising and lowering the cradle assembly between 70 and 90 degrees, both with and without pump. A system design review was performed on the 101-SY Cradle Hydraulic System by the vendor before shipping (See WHC-SD-WM-DRR-045, 241-SY-101 Cradle Hydraulic System Design Review). The scope of this plan focuses on verification of the systems ability to rotate the cradle assembly and any load through the required range of motion

  14. Innovation to reality for improved pump seal performance

    International Nuclear Information System (INIS)

    Wong, W.; Eyvindson, A.; Rhodes, D.B.

    2003-01-01

    'Full-Text:' The nuclear industry requires reliable pump seals. Extended operating conditions for aging plants (i.e., low pressure starts, pressure and temperature transients) and increasing demands from new plants (larger sizes, higher speeds) are pushing the operating envelope for seals. This means that many seals that were previously considered adequate are now requiring increased attention and care. Operating utilities have taken different approaches to addressing their existing, or emerging, seal problems. Primary concerns include maintenance practices, seal design, and monitoring capabilities, as well as operating conditions, transients, pump and motor design. Success in this area requires ongoing dialogue among the station operators, pump manufacturers and seal designers. Regardless of the design, the basic requirement in CANDU is a reliable seal lifetime exceeding 5 years. This paper describes AECL's efforts to meet this requirement through an ongoing program of research and development in seal technology. Current work includes rigorous testing and evaluation of new seal materials and coatings to maximize seal stability and minimize friction and wear (i.e., pressure/temperature transients produce unpredictable shaft movement that can significantly alter face deflections affecting leak rates and seal stability, and sometimes cause the seal to hang-up and de-stage). Also required is a practical method for on-line monitoring of the condition of the seal, whether it is newly installed or after several years of reliable performance. This provides crucial information for inventory, maintenance and outage planning. While new concepts may look good on paper, it is only after they have been demonstrated under fully representative station operating conditions that they can truly be considered ready for field use. AECL CAN-seals lead the nuclear industry in reliability and seal life. They effectively save operators millions of dollars in outage time and person

  15. Pumping tests in nonuniform aquifers - The radially symmetric case

    Science.gov (United States)

    Butler, J.J.

    1988-01-01

    Traditionally, pumping-test-analysis methodology has been limited to applications involving aquifers whose properties are assumed uniform in space. This work attempts to assess the applicability of analytical methodology to a broader class of units with spatially varying properties. An examination of flow behavior in a simple configuration consisting of pumping from the center of a circular disk embedded in a matrix of differing properties is the basis for this investigation. A solution describing flow in this configuration is obtained through Laplace-transform techniques using analytical and numerical inversion schemes. Approaches for the calculation of flow properties in conditions that can be roughly represented by this simple configuration are proposed. Possible applications include a wide variety of geologic structures, as well as the case of a well skin resulting from drilling or development. Of more importance than the specifics of these techniques for analysis of water-level responses is the insight into flow behavior during a pumping test that is provided by the large-time form of the derived solution. The solution reveals that drawdown during a pumping test can be considered to consist of two components that are dependent and independent of near-well properties, respectively. Such an interpretation of pumping-test drawdown allows some general conclusions to be drawn concerning the relationship between parameters calculated using analytical approaches based on curve-matching and those calculated using approaches based on the slope of a semilog straight line plot. The infinite-series truncation that underlies the semilog analytical approaches is shown to remove further contributions of near-well material to total drawdown. In addition, the semilog distance-drawdown approach is shown to yield an expression that is equivalent to the Thiem equation. These results allow some general recommendations to be made concerning observation-well placement for pumping

  16. Water Flow Testing and Unsteady Pressure Analysis of a Two-Bladed Liquid Oxidizer Pump Inducer

    Science.gov (United States)

    Schwarz, Jordan B.; Mulder, Andrew; Zoladz, Thomas

    2011-01-01

    The unsteady fluid dynamic performance of a cavitating two-bladed oxidizer turbopump inducer was characterized through sub-scale water flow testing. While testing a novel inlet duct design that included a cavitation suppression groove, unusual high-frequency pressure oscillations were observed. With potential implications for inducer blade loads, these high-frequency components were analyzed extensively in order to understand their origins and impacts to blade loading. Water flow testing provides a technique to determine pump performance without the costs and hazards associated with handling cryogenic propellants. Water has a similar density and Reynolds number to liquid oxygen. In a 70%-scale water flow test, the inducer-only pump performance was evaluated. Over a range of flow rates, the pump inlet pressure was gradually reduced, causing the flow to cavitate near the pump inducer. A nominal, smooth inducer inlet was tested, followed by an inlet duct with a circumferential groove designed to suppress cavitation. A subsequent 52%-scale water flow test in another facility evaluated the combined inducer-impeller pump performance. With the nominal inlet design, the inducer showed traditional cavitation and surge characteristics. Significant bearing loads were created by large side loads on the inducer during synchronous cavitation. The grooved inlet successfully mitigated these loads by greatly reducing synchronous cavitation, however high-frequency pressure oscillations were observed over a range of frequencies. Analytical signal processing techniques showed these oscillations to be created by a rotating, multi-celled train of pressure pulses, and subsequent CFD analysis suggested that such pulses could be created by the interaction of rotating inducer blades with fluid trapped in a cavitation suppression groove. Despite their relatively low amplitude, these high-frequency pressure oscillations posed a design concern due to their sensitivity to flow conditions and

  17. Vapor compression heat pump system field tests at the tech complex

    Science.gov (United States)

    Baxter, Van D.

    1985-11-01

    The Tennessee Energy Conservation In Housing (TECH) complex has been utilized since 1977 as a field test site for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series, two conventional air-to-air heat pumps, an air-to-air heat pump with desuperheater water heater, and horizontal coil and multiple shallow vertical coil ground-coupled heat pumps (GCHP). A direct comparison of the measured annual performance of the test systems was not possible. However, a cursory examination revealed that the ACES had the best performance, however, its high cost makes it unlikely that it will achieve wide-spread use. Costs for the SAHP systems are similar to those of the ACES but their performance is not as good. Integration of water heating and space conditioning functions with a desuperheater yielded significant efficiency improvement at modest cost. The GCHP systems performed much better for heating than for cooling and may well be the most efficient alternative for residences in cold climates.

  18. A novel energy regeneration system for emulsion pump tests

    Energy Technology Data Exchange (ETDEWEB)

    Yilei, Li; Zhencai, Zhu; Guohua, Cao [China University of Mining and Technology, Xuzhou (China); Guoan, Chen [Command Academy of the Corps of Engineers, Xuzhou (China)

    2013-04-15

    A novel energy regeneration system based on cylinders and a rectifier valve for emulsion pump tests is presented and studied. The overall structure and working principles of this system are introduced. Both simulation and experiments are carried out to investigate the energy regeneration feasibility and capability of this novel system. The simulation and experimental results validate that this system is able to save energy and satisfy the test requirement. The energy recovery coefficient and overall energy regeneration coefficient of the test bench are 0.785 and 0.214, respectively. Measures to improve these two coefficients are also given accordingly after analysis of power loss. This novel system brings a new method of energy regeneration for emulsion pump tests.

  19. Combined pump and marking tests for determining protection zones

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, H.; Brauns, J.

    1982-02-01

    Under difficult conditions the determination of the protection area II on the basis of Mear pump tests becomes uncertain. The report shows how in such cases the results of supplementary marking tests can establish a more accurate finding. The execution of combined pump and marking tests enables us to check data gained on a theoretical basis and possibly alter these. This method is described in an example, in which certain hydrogeological conditions and rival interests of ground water protection prevail on the one side and utilization of land on the other side. A general tendency exists to take the utmost protective measure in safeguarding ground water, however in cases of collision of interests the boundary of the protective area should be optimized. Supplementary marking tests can be of great significance.

  20. Energy performance and consumption for biogas heat pump air conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenjun [Architectural Engineering College, Qingdao Agricultural University, 266109 (China); Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Tianjin University, Tianjin, 300072 (China); Wu, Huaizhi; Wu, Meiling [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Tianjin University, Tianjin, 300072 (China)

    2010-12-15

    Biogas engine-driven heat pump air conditioner is a new-style system which includes biogas engine-driven heat pump, primary heat exchanger, second heat exchanger, sprayed room and fans, pumps, etc. In summertime, the air can be reheated by the waste heat water from the biogas engine in the system, while the air can be reheated and humidified by the waste heat water in winter. Reducing or displacing electrical heating requirements can achieve the great opportunity for significant energy savings. This paper, therefore, aims to improve the energy performance of the AC system by using the waste heat from the biogas engine. The mathematic model was used to research the BHPAC. Explicitly, we investigated the influence of various factors including the outdoor air temperature and humidity in summer and winter. Results show that the biogas engine-driven heat pump air conditioner can save more energy than the electrical power heat pump. In summer, the minimum for percentage of primary energy saving for BHPAC is over 25%. With the outdoor air dry-bulb temperature and the relative humidity rises, the saving energy percentage rises. In winter, the minimum for percentage of primary energy saving for BHPAC is 37%. The more the outdoor air relative humidity of the outdoor air decreases, the more the BHPAC saves energy. It is proved that the system which is a highly actively fully utilizing energy technology has good partial load characteristic and good effects of energy saving. (author)

  1. Performances of four magnetic heat-pump cycles

    International Nuclear Information System (INIS)

    Chen, F.C.; Murphy, R.W.; Mel, V.C.; Chen, G.L.

    1990-01-01

    Magnetic heat pumps have been successfully used for refrigeration applications at near absolute-zero-degree temperatures. In these applications, a temperature lift of a few degrees in a cryogenic environment is sufficient and can be easily achieved by a simple magnetic heat-pump cycle. To extend magnetic heat pumping to other temperature ranges and other types of applications in which the temperature lift is more than just a few degrees requires more involved cycle processes. This paper investigates the characteristics of a few better-known thermomagnetic heat-pump cycles (Carnot, Ericsson, Stirling, and regenerative) in extended ranges of temperature lift. The regenerative cycle is the most efficient one. For gadolinium operating between 0 and 7 T (Tesla) in a heat pump cycle with a heat-rejection temperature of 320 K, our analysis predicted a 42% loss in coefficient of performance at 260 K cooling temperature, and a 15% loss in capacity at 232 K cooling temperature for the constant-field cycle as compared with the ideal regenerative cycle. Such substantial penalties indicate that the potential irreversibilities from this one source (the additional heat transfer that would be needed for the constant-field vs. the ideal regenerative cycle) may adversely affect the viability of certain proposed MHP concepts if the relevant loss mechanisms are not adequately addressed

  2. Nonlinear performances of dual-pump amplifiers in silicon waveguides

    International Nuclear Information System (INIS)

    Meng Fan; Yu Chong-Xiu; Deng Yun-Yi; Yuan Jin-Hui

    2012-01-01

    The performances of a dual-pump parametric and Raman amplification process and the wavelength conversion in silicon waveguides are investigated. By setting the Raman contribution fraction f to be 0.043 in our analytical model, the amplification gain of the probe signal can be obtained to be over 10 dB. The pump transfer noise (PTN), the quantum noise (QN), and the total noise figure (TNF) are discussed, and the TNF has a constant value of about 4 dB in the gain bandwidth. An idler signal generated during the parametric amplification (PA) process can be used to realize the wavelength conversion in wavelength division multiplexing (WDM) systems. In addition, the pump signal parameters, the generated free carrier lifetime and effective mode area (EMA) of the waveguide are analysed for the optimization of signal gain and noise characteristics. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  3. Full sized tests on a french coolant pump under two-phase flow

    International Nuclear Information System (INIS)

    Huchard, J.C.; Bore, C.; Dueymes, E.

    1997-01-01

    The French Safety Authorities required EDF to demonstrate the ability of the new N4 main coolant pump to withstand two-phase flow conditions without damage. Therefore three full sized tests, simulating a bleeding flow on the primary system, were performed on a laboratory test loop under real operating conditions (temperature = 290 deg. C, pressure = 155 b, flowrate = 7 m 3 /s; electrical power = 7 MW). The maximum value of the mean void fraction reached 75 %. The outcome of the tests is very positive: the mechanical behaviour of the main coolant pump is good, even at high void fraction. The maximum vibration levels were below the limits fixed by the manufacturer. Correlations between the mechanical behaviour of the pump and the pressure pulsation in the test loop have been found. (authors)

  4. Development of turbopump cavitation performance test facility and the test of inducer performance

    International Nuclear Information System (INIS)

    Sohn, Dong Kee; Kim, Chun Tak; Yoon, Min Soo; Cha, Bong Jun; Kim, Jin Han; Yang, Soo Seok

    2001-01-01

    A performance test facility for turbopump inducer cavitation was developed and the inducer cavitation performance tests were performed. Major components of the performance test facility are driving unit, test section, piping, water tank, and data acquisition and control system. The maximum of testing capability of this facility are as follows: flow rate - 30kg/s; pressure - 13 bar, rotational speed - 10,000rpm. This cavitation test facility is characterized by the booster pump installed at the outlet of the pump that extends the flow rate range, and by the pressure control system that makes the line pressure down to vapor pressure. The vacuum pump is used for removing the dissolved air in the water as well as the line pressure. Performance tests were carried out and preliminary data of test model inducer were obtained. The cavitation performance test and cavitation bubble flow visualization were also made. This facility is originally designed for turbopump inducer performance test and cavitation test. However it can be applied to the pump impeller performance test in the future with little modification

  5. Effects of the number of inducer blades on the anti-cavitation characteristics and external performance of a centrifugal pump

    International Nuclear Information System (INIS)

    Guo, XiaoMei; Shi, GaoPing; Zhu, ZuChao; Cui, BaoLing

    2016-01-01

    Installing an inducer upstream of the main impeller is an effective approach for improving the anti-cavitation performance of a high speed centrifugal pump. For a high-speed centrifugal pump with an inducer, the number of inducer blades can affect its internal flow and external performance. We studied the manner in which the number of inducer blades can affect the anti-cavitation characteristics and external performance of a centrifugal pump. We first use the Rayleigh-Plesset equation and the mixture model to simulate the vapor liquid flow in a centrifugal pump with an inducer, and then predict its external performance. Finally, we tested the external performance of a centrifugal pump with 2-, 3- and 4-bladed inducers, respectively. The results show that the simulations of external performance in a centrifugal pump are in accordance with our experiments. Based on this, we obtained vapor volume fraction distributions for the inducer, the impeller, and in the corresponding whole flow parts. We discovered that the vapor volume fraction of a centrifugal pump with a 3- bladed inducer is less than that of a centrifugal pump with 2- or 4-bladed inducers, which means that a centrifugal pump with a 3-bladed inducer has a better external and anti-cavitation performance.

  6. Design optimization of flow channel and performance analysis for a new-type centrifugal blood pump

    Science.gov (United States)

    Ji, J. J.; Luo, X. W.; Y Wu, Q.

    2013-12-01

    In this paper, a new-type centrifugal blood pump, whose impeller is suspended inside a pump chamber with hydraulic bearings, is presented. In order to improve the hydraulic performance of the pump, an internal flow simulation is conducted to compare the effects of different geometrical parameters of pump flow passage. Based on the numerical results, the pumps can satisfy the operation parameters and be free of hemolysis. It is noted that for the pump with a column-type supporter at its inlet, the pump head and hydraulic efficiency decreases compared to the pump with a step-type support structure. The performance drop is caused by the disturbed flow upstream impeller inlet. Further, the unfavorable flow features such as reverse flow and low velocity in the pump may increases the possibility of thrombus. It is also confirmed that the casing shape can little influence pump performance. Those results are helpful for design optimization in blood pump development.

  7. Alternative method of inservice hydraulic testing of difficult to test pumps

    International Nuclear Information System (INIS)

    Stockton, N.B.; Shangari, S.

    1994-01-01

    The pump test codes require that system resistance be varied until the independent variable (either the pump flow rate or differential pressure) equals its reference value. Variance from this fixed reference value is not specifically allowed. However, the design of many systems makes it impractical to set the independent variable to an exact value. Over a limited range of pump operation about the fixed reference value, linear interpolation between two points of pump operation can be used to accurately determine degradation at the reference value without repeating reference test conditions. This paper presents an overview of possible alternatives for hydraulic testing of pumps and a detailed discussion of the linear interpolation method. The approximation error associated with linear interpolation is analyzed. Methods to quantify and minimize approximation error are presented

  8. Limited ability of the proton-pump inhibitor test to identify patients with gastroesophageal reflux disease

    DEFF Research Database (Denmark)

    Bytzer, Peter; Jones, Roger; Vakil, Nimish

    2012-01-01

    The efficacy of proton-pump inhibitor (PPI) therapy often is assessed to determine whether patients' symptoms are acid-related and if patients have gastroesophageal reflux disease (GERD), although the accuracy of this approach is questionable. We evaluated the diagnostic performance of the PPI test...

  9. Construction and testing of a double acting bellows liquid helium pump

    International Nuclear Information System (INIS)

    Burns, W.A.; Green, M.A.; Ross, R.R.; Van Slyke, H.

    1980-05-01

    The double acting reciprocating bellows liquid helium pump built and tested at the Lawrence Berkeley Laboratory is described. The pump is capable of delivering 50 gs -1 of liquid helium to supply the two-phase cooling sytem for a large superconducting magnet. The pump is driven by a torque motor at room temperature; the reciprocating motion is transmitted to the pump through a shaft which operates between room temperature and 4 0 K. The design details of this liquid helium pump are presented. The helium pump has operated in a helium bath and in pumped forced flow helium circuits. The results of these experimental tests are presented in this report

  10. Measured Performance of a Low Temperature Air Source Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R. K. [Johnson Research LLC, Pueblo West, CO (United States)

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  11. Operating function tests of the PWR type RHR pump for engineering safety system under simulated strong ground excitation

    International Nuclear Information System (INIS)

    Uga, Takeo; Shiraki, Kazuhiro; Homma, Toshiaki; Inazuka, Hisashi; Nakajima, Norifumi.

    1979-08-01

    Results are described of operating function verification tests of a PWR RHR pump during an earthquake. Of the active reactor components, the PWR residual heat removal pump was chosen from view points of aseismic classification, safety function, structural complexity and past aseismic tests. Through survey of the service conditions and structure of this pump, seismic test conditions such as acceleration level, simulated seismic wave form and earthquake duration were decided for seismicity of the operating pump. Then, plans were prepared to evaluate vibration chracteristics of the pump and to estimate its aseismic design margins. Subsequently, test facility and instrumentation system were designed and constructed. Experimental results could thus be acquired on vibration characteristics of the pump and its dynamic behavior during different kinds and levels of simulated earthquake. In conclusion: (1) Stiffeners attached to the auxiliary system piping do improve aseismic performance of the pump. (2) The rotor-shaft-bearing system is secure unless it is subjected to transient disturbunces having high frequency content. (3) The motor and pump casing having resonance frequencies much higher than frequency content of the seismic wave show only small amplifications. (4) The RHR pump possesses an aseismic design margin more than 2.6 times the expected ultimate earthquake on design basis. (author)

  12. General thermodynamic performance of irreversible absorption heat pump

    International Nuclear Information System (INIS)

    Zhao Xiling; Fu Lin; Zhang Shigang

    2011-01-01

    The absorption heat pump (AHP) was studied with thermodynamics. A four reservoirs model of absorption heat pump was established considering the heat resistance, heat leak and the internal irreversibility. The reasonable working regions, the performance effects of irreversibility, heat leak and the correlation of four components were studied. When studying the effects of internal irreversibility, two internal irreversibility parameters (I he for generator-absorber assembly and I re for evaporator-condenser assembly) were introduced to distinguish the different effects. When studying the heat transfer relations of four components, a universal relationship between the main parameters were deduced. The results which have more realized meaning show that, the reduction of the friction, heat loss, and internal dissipations of the evaporator-condenser assembly are more important than its reduction of generator-absorber assembly, and lessening the heat leak of generator are more important than its reduction of other components to improve the AHP performance.

  13. PUMPS

    Science.gov (United States)

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  14. Performance of a hybrid chemical/mechanical heat pump

    Science.gov (United States)

    Silvestri, John J.; Scaringe, Robert P.; Grzyll, Lawrence R.

    1990-01-01

    The authors present the design and preliminary results of the performance of a hybrid chemical/mechanical, low-lift (20 C) heat pump. Studies have indicated that this heat pump has several advantages over the traditional single fluid vapor compression (reverse Rankine) heat pump. Included in these benefits are: 1) increased COPc due to the approximation of the cycle to the Lorenz cycle and due to the availability of the heat of solution, along with the heat of vaporization, to provide cooling; and 2) ease of variation in system cooling capacity by changing the fluid composition. The system performance is predicted for a variety of refrigerant-absorbent pairs. Cooling capacity is determined for systems operating with ammonia as the refrigerant and lithium nitrate and sodium thiocyanate as the absorbents and also with water as the refrigerant and magnesium chloride, potassium hydroxide, lithium bromide, sodium hydroxide, and sulfuric acid as the absorbents. Early indications have shown that the systems operating with water as the refrigerant operate at 2-4 times the capacity of the ammonia-refrigerant-based systems. Using existing working fluids in the proposed innovative design, a coefficient-of-performance improvement of 21 percent is possible when compared to the best vapor compression systems analyzed.

  15. Performance study of heat-pipe solar photovoltaic/thermal heat pump system

    International Nuclear Information System (INIS)

    Chen, Hongbing; Zhang, Lei; Jie, Pengfei; Xiong, Yaxuan; Xu, Peng; Zhai, Huixing

    2017-01-01

    Highlights: • The testing device of HPS PV/T heat pump system was established by a finished product of PV panel. • A detailed mathematical model of heat pump was established to investigate the performance of each component. • The dynamic and static method was combined to solve the mathematical model of HPS PV/T heat pump system. • The HPS PV/T heat pump system was optimized by the mathematical model. • The influence of six factors on the performance of HPS PV/T heat pump system was analyzed. - Abstract: A heat-pipe solar (HPS) photovoltaic/thermal (PV/T) heat pump system, combining HPS PV/T collector with heat pump, is proposed in this paper. The HPS PV/T collector integrates heat pipes with PV panel, which can simultaneously generate electricity and thermal energy. The extracted heat from HPS PV/T collector can be used by heat pump, and then the photoelectric conversion efficiency is substantially improved because of the low temperature of PV cells. A mathematical model of the system is established in this paper. The model consists of a dynamic distributed parameter model of the HPS PV/T collection system and a quasi-steady state distributed parameter model of the heat pump. The mathematical model is validated by testing data, and the dynamic performance of the HPS PV/T heat pump system is discussed based on the validated model. Using the mathematical model, a reasonable accuracy in predicting the system’s dynamic performance with a relative error within ±15.0% can be obtained. The capacity of heat pump and the number of HPS collectors are optimized to improve the system performance based on the mathematical model. Six working modes are proposed and discussed to investigate the effect of solar radiation, ambient temperature, supply water temperature in condenser, PV packing factor, heat pipe pitch and PV backboard absorptivity on system performance by the validated model. It is found that the increase of solar radiation, ambient temperature and PV

  16. Investigation of the Flow Field and Performances of a Centrifugal Pump at Part Load

    Science.gov (United States)

    Prunières, R.; Inoue, Y.; Nagahara, T.

    2016-11-01

    Centrifugal pump performance curve instability, characterized by a local dent at part load, can be the consequence of flow instabilities in rotating or stationary parts. Such flow instabilities often result in abnormal operating conditions which can damage both the pump and the system. In order for the pump to have reliable operation over a wide flow rate range, it is necessary to achieve a design free of instability. The present paper focuses on performance curve instability of a centrifugal pump of mid specific speed (ωs = 0.65) for which instability was observed at part load during tests. The geometry used for this research consist of the first stage of a multi-stage centrifugal pump and is composed of a suction bend, a closed-type impeller, a vaned diffuser and return guide vanes. In order to analyse the instability phenomenon, PIV and CFD analysis were performed. Both methods qualitatively agree relatively well. It appears that the main difference before and after head drop is an increase of reverse flow rate at the diffuser passage inlet on the hub side. This reverse flow decreases the flow passing area at the diffuser passage inlet, disallowing effective flow deceleration and impairing static pressure recovery.

  17. Performance evaluation of an integrated automotive air conditioning and heat pump system

    International Nuclear Information System (INIS)

    Hosoz, M.; Direk, M.

    2006-01-01

    This study deals with the performance characteristics of an R134a automotive air conditioning system capable of operating as an air-to-air heat pump using ambient air as a heat source. For this aim, an experimental analysis has been performed on a plant made up of original components from an automobile air conditioning system and some extra equipment employed to operate the system in the reverse direction. The system has been tested in the air conditioning and heat pump modes by varying the compressor speed and air temperatures at the inlets of the indoor and outdoor coils. Evaluation of the data gathered in steady state test runs has shown the effects of the operating conditions on the capacity, coefficient of performance, compressor discharge temperature and the rate of exergy destroyed by each component of the system for both operation modes. It has been observed that the heat pump operation provides adequate heating only in mild weather conditions, and the heating capacity drops sharply with decreasing outdoor temperature. However, compared with the air conditioning operation, the heat pump operation usually yields a higher coefficient of performance and a lower rate of exergy destruction per unit capacity. It is also possible to improve the heating mode performance of the system by redesigning the indoor coil, using another refrigerant with a higher heat rejection rate in the condenser and employing a better heat source such as the engine coolant or exhaust gases

  18. Improving the performance of booster heat pumps using zeotropic mixtures

    DEFF Research Database (Denmark)

    Zühlsdorf, B.; Meesenburg, W.; Ommen, T. S.

    2018-01-01

    Abstract This study demonstrated an increase in the thermodynamic performance of a booster heat pump, which was achieved by choosing the working fluid among pure and mixed fluids. The booster heat pump was integrated in an ultra-low-temperature district heating network with a forward temperature...... of 40 °C to produce domestic hot water, by heating part of the forward stream to 60 °C, while cooling the remaining part to the return temperature of 25 °C. The screening of working fluids considered 18 pure working fluids and all possible binary mixtures of these fluids. The most promising solutions...... heat supply system while being economically competitive to pure fluids....

  19. Test Report for Acceptance Test Procedure for Pumping Instrumentation and Control Skid N

    International Nuclear Information System (INIS)

    KOCH, M.R.

    2000-01-01

    This is a Test Report for Acceptance Test Procedure (ATP) RPP-5489. This test report provides the results of the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''N''. The ATP was successfully completed. A copy of the completed ATP is in the Appendix of this document

  20. Test Report for Acceptance Test Procedure for Pumping Instrumentation and Control Skid M

    International Nuclear Information System (INIS)

    KOCH, M.R.

    1999-01-01

    This is a Test Report for Acceptance Test Procedure (ATP) RPP-5073. This test report provides the results of the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''M''. The ATP was successfully completed. A copy of the completed ATP is in the Appendix of this document

  1. Test Report for Acceptance Test Procedure for Pumping Instrumentation and Control Skid L

    Energy Technology Data Exchange (ETDEWEB)

    KOCH, M.R.

    1999-11-09

    This is a Test Report for Acceptance Test Procedure (ATP) RPP-5055. This test report provides the results of the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''L''. The ATP was successfully completed. A copy of the completed ATP is in the Appendix of this document.

  2. Test Report for Acceptance Test Procedure for Pumping Instrumentation and Control Skid L

    International Nuclear Information System (INIS)

    KOCH, M.R.

    1999-01-01

    This is a Test Report for Acceptance Test Procedure (ATP) RPP-5055. This test report provides the results of the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''L''. The ATP was successfully completed. A copy of the completed ATP is in the Appendix of this document

  3. Test Report for Acceptance Test Procedure for Pumping Instrumentation and Control Skid M

    Energy Technology Data Exchange (ETDEWEB)

    KOCH, M.R.

    1999-12-13

    This is a Test Report for Acceptance Test Procedure (ATP) RPP-5073. This test report provides the results of the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''M''. The ATP was successfully completed. A copy of the completed ATP is in the Appendix of this document.

  4. Performance testing of an air/water heat pump using CO{sub 2} (R744) as refrigerant for the preparation of sanitary hot water in a hospital; Mesures des donnees energetiques d'une pompe a chaleur air/eau au CO{sub 2} (R744) pour preparation d'eau chaude sanitaire dans un hopital

    Energy Technology Data Exchange (ETDEWEB)

    Anstett, P.

    2006-07-01

    This final report prepared for the Swiss Federal Office of Energy (SFOE) describes the monitoring equipment and the results of performance tests made on a prototype heat pump of 60 kW power output used for hot water production at the hospital of Le Locle, Switzerland. The heat pump uses carbon dioxide (R744) as the working fluid and ambient air as the heat source. The heat output and the coefficient of performance for various values of cold water temperature and air temperature have been measured. The practically measured values of heat output and COP showed a low reproducibility and remained far behind the theoretical values given by the manufacturer. Instead of producing hot water at 80 {sup o}C as intended originally the authors recommend to use the heat pump only for preheating the water to 60 {sup o}C.

  5. Description of comprehensive pump test change to ASME OM code, subsection ISTB

    International Nuclear Information System (INIS)

    Hartley, R.S.

    1994-01-01

    The American Society of Mechanical Engineers (ASME) Operations and Maintenance (OM) Main Committee and Board on Nuclear Codes and Standards (BNCS) recently approved changes to ASME OM Code-1990, Subsection ISTB, Inservice Testing of Pumps in Light-Water Reactor Power Plants. The changes will be included in the 1994 addenda to ISTB. The changes, designated as the comprehensive pump test, incorporate a new, improved philosophy for testing safety-related pumps in nuclear power plants. An important philosophical difference between the open-quotes old codeclose quotes inservice testing (IST) requirements and these changes is that the changes concentrate on less frequent, more meaningful testing while minimizing damaging and uninformative low-flow testing. The comprehensive pump test change establishes a more involved biannual test for all pumps and significantly reduces the rigor of the quarterly test for standby pumps. The increased rigor and cost of the biannual comprehensive tests are offset by the reduced cost of testing and potential damage to the standby pumps, which comprise a large portion of the safety-related pumps at most plants. This paper provides background on the pump testing requirements, discusses potential industry benefits of the change, describes the development of the comprehensive pump test, and gives examples and reasons for many of the specific changes. This paper also describes additional changes to ISTB that will be included in the 1994 addenda that are associated with, but not part of, the comprehensive pump test

  6. Reactor coolant pump testing using motor current signatures analysis

    Energy Technology Data Exchange (ETDEWEB)

    Burstein, N.; Bellamy, J.

    1996-12-01

    This paper describes reactor coolant pump motor testing carried out at Florida Power Corporation`s Crystal River plant using Framatome Technologies` new EMPATH (Electric Motor Performance Analysis and Trending Hardware) system. EMPATH{trademark} uses an improved form of Motor Current Signature Analysis (MCSA), technology, originally developed at Oak Ridge National Laboratories, for detecting deterioration in the rotors of AC induction motors. Motor Current Signature Analysis (MCSA) is a monitoring tool for motor driven equipment that provides a non-intrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment. The base technology was developed at the Oak Ridge National Laboratory as a means for determining the affects of aging and service wear specifically on motor-operated valves used in nuclear power plant safety systems, but it is applicable to a broad range of electric machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. The motor current variations, resulting from changes in load caused by gears, pulleys, friction, bearings, and other conditions that may change over the life of the motor, are carried by the electrical cables powering the motor and are extracted at any convenient location along the motor lead. These variations modulate the 60 Hz carrier frequency and appear as sidebands in the spectral plot.

  7. Electromechanical performance analysis of inflated dielectric elastomer membrane for micro pump applications

    Science.gov (United States)

    Saini, Abhishek; Ahmad, Dilshad; Patra, Karali

    2016-04-01

    Dielectric elastomers have received a great deal of attention recently as potential materials for many new types of sensors, actuators and future energy generators. When subjected to high electric field, dielectric elastomer membrane sandwiched between compliant electrodes undergoes large deformation with a fast response speed. Moreover, dielectric elastomers have high specific energy density, toughness, flexibility and shape processability. Therefore, dielectric elastomer membranes have gained importance to be applied as micro pumps for microfluidics and biomedical applications. This work intends to extend the electromechanical performance analysis of inflated dielectric elastomer membranes to be applied as micro pumps. Mechanical burst test and cyclic tests were performed to investigate the mechanical breakdown and hysteresis loss of the dielectric membrane, respectively. Varying high electric field was applied on the inflated membrane under different static pressure to determine the electromechanical behavior and nonplanar actuation of the membrane. These tests were repeated for membranes with different pre-stretch values. Results show that pre-stretching improves the electromechanical performance of the inflated membrane. The present work will help to select suitable parameters for designing micro pumps using dielectric elastomer membrane. However this material lacks durability in operation.This issue also needs to be investigated further for realizing practical micro pumps.

  8. Performance optimization of grooved slippers for aero hydraulic pumps

    Directory of Open Access Journals (Sweden)

    Juan Chen

    2016-06-01

    Full Text Available A computational fluid dynamics (CFD simulation method based on 3-D Navier–Stokes equation and Arbitrary Lagrangian–Eulerian (ALE method is presented to analyze the grooved slipper performance of piston pump. The moving domain of grooved slipper is transformed into a fixed reference domain by the ALE method, which makes it convenient to take the effects of rotate speed, body force, temperature, and oil viscosity into account. A geometric model to express the complex structure, which covers the orifice of piston and slipper, vented groove and the oil film, is constructed. Corresponding to different oil film thicknesses calculated in light of hydrostatic equilibrium theory and boundary conditions, a set of simulations is conducted in COMSOL to analyze the pump characteristics and effects of geometry (groove width and radius, orifice size on these characteristics. Furthermore, the mechanics and hydraulics analyses are employed to validate the CFD model, and there is an excellent agreement between simulation and analytical results. The simulation results show that the sealing land radius, orifice size and groove width all dramatically affect the slipper behavior, and an optimum tradeoff among these factors is conducive to optimizing the pump design.

  9. Experimental performance analysis of a direct-expansion ground source heat pump in Xiangtan, China

    International Nuclear Information System (INIS)

    Yang, Wei

    2013-01-01

    The DX GSHP (direct-expansion ground source heat pump), which uses a buried copper piping network through which refrigerant is circulated, is one type of GSHP (ground source heat pump). This study investigates the performance characteristics of a vertical U-bend direct-expansion ground source (geothermal) heat pump system (DX GSHPS) for both heating and cooling. Compared with the conventional GCHP (ground coupled heat pump) system, the DX GSHP system is more efficient, with lower thermal resistance in the GHE (ground heat exchanger) and a lower (higher) condensing (evaporating) temperature in the cooling (heating) mode. In addition, the system performance of the whole DX GSHP system is also higher than that of the conventional GCHP system. A DX GSHP system in Xiangtan, China with a U-bend ground heat exchanger 42 m deep with a nominal outside diameter of 12.7 mm buried in a water well was tested and analysed. The results showed that the performance of this system is very high. The maximum (average) COPs of the system were found to be 6.08 (4.73) and 6.32 (5.03) in the heating and cooling modes, respectively. - Highlights: • The reasons for the higher performance of the DX GSHP (direct-expansion ground source heat pump) are analysed theoretically compared with the conventional GCHP (ground coupled heat pump). • The experimental performance of a DX GSHP system is investigated, which makes a valuable contribution to the literature. • The study is helpful in demonstrating the energy efficiency of the DX GSHP system

  10. Testing of an Annular Linear Induction Pump for the Fission Surface Power Technology Demonstration Unit

    Science.gov (United States)

    Polzin, K. A.; Pearson, J. B.; Webster, K.; Godfoy, T. J.; Bossard, J. A.

    2013-01-01

    Results of performance testing of an annular linear induction pump that has been designed for integration into a fission surface power technology demonstration unit are presented. The pump electromagnetically pushes liquid metal (NaK) through a specially-designed apparatus that permits quantification of pump performance over a range of operating conditions. Testing was conducted for frequencies of 40, 55, and 70 Hz, liquid metal temperatures of 125, 325, and 525 C, and input voltages from 30 to 120 V. Pump performance spanned a range of flow rates from roughly 0.3 to 3.1 L/s (4.8 to 49 gpm), and pressure heads of <1 to 104 kPa (<0.15 to 15 psi). The maximum efficiency measured during testing was 5.4%. At the technology demonstration unit operating temperature of 525 C the pump operated over a narrower envelope, with flow rates from 0.3 to 2.75 L/s (4.8 to 43.6 gpm), developed pressure heads from <1 to 55 kPa (<0.15 to 8 psi), and a maximum efficiency of 3.5%. The pump was supplied with three-phase power at 40 and 55 Hz using a variable-frequency motor drive, while power at 55 and 70 Hz was supplied using a variable-frequency power supply. Measured performance of the pump at 55 Hz using either supply exhibited good quantitative agreement. For a given temperature, the peak in efficiency occurred at different flow rates as the frequency was changed, but the maximum value of efficiency was relative insensitive within 0.3% over the frequency range tested, including a scan from 45 to 78 Hz. The objectives of the FSP technology project are as follows:5 • Develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options. • Establish a nonnuclear hardware-based technical foundation for FSP design concepts to reduce overall development risk. • Reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates. • Generate the key nonnuclear products to allow Agency

  11. 77 FR 8178 - Test Procedures for Central Air Conditioners and Heat Pumps: Public Meeting

    Science.gov (United States)

    2012-02-14

    .... EERE-2010-BT-TP-0038] Test Procedures for Central Air Conditioners and Heat Pumps: Public Meeting... methodologies and gather comments on testing residential central air conditioners and heat pumps designed to use... residential central air conditioners and heat pumps that are single phase with rated cooling capacities less...

  12. Test Report for Acceptance Test Procedure for Pumping Instrumentation and Control Skid ''P''

    International Nuclear Information System (INIS)

    KOCH, M.R.

    2000-01-01

    This Acceptance Test Report (ATR) provides the test results for the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''P''. The ATR summaries the results and provides a copy of the ATP and inspections in the Appendix

  13. Test Report for Acceptance Test Procedure for Pumping Instrumentation and Control Skid Q

    International Nuclear Information System (INIS)

    KOCH, M.R.

    2000-01-01

    This Acceptance Test Report (ATR) provides the test results for the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''Q''. The ATR summaries the results and provides a copy of the ATP and inspections in the Appendix

  14. Effect Analysis of Geometric Parameters on Stainless Steel Stamping Multistage Pump by Experimental Test and Numerical Calculation

    Directory of Open Access Journals (Sweden)

    Chuan Wang

    2013-01-01

    Full Text Available In order to improve the efficiency of stainless steel stamping multistage pump, quadratic regression orthogonal test, hydraulic design, and computational fluid dynamics (CFD are used to analyze the effect of pump geometric parameters. Sixteen impellers are designed based on the quadratic regression orthogonal test, which have three factors including impeller outlet slope, impeller blade outlet stagger angle, and impeller blade outlet width. Through quadratic regression equation, the function relationship between efficiency values and three factors is established. The optimal combination of geometric parameters is found through the analysis of the regression equation. To further study the influence of blade thickness on the performance of multistage pump, numerical simulations of multistage pump with different blade thicknesses are carried out. The influence law of blade thickness on pump performance is built from the external characteristics and internal flow field. In conclusion, with the increase of blade thickness, the best efficiency point of the pump shifts to the small flow rate direction, and the vortex regions inside the pump at rated flow gradually increase, which is the main reason that pump efficiency decreases along with the increase of the blade thickness at rated flow.

  15. Application Research on Testing Efficiency of Main Drainage Pump in Coal Mine Using Thermodynamic Theories

    OpenAIRE

    Shang, Deyong

    2017-01-01

    The efficiency of a drainage pump should be tested at regular intervals to master the status of the drainage pump in real time and thus achieve the goal of saving energy. The ultrasonic flowmeter method is traditionally used to measure the flow of the pump. But there are some defects in this kind of method of underground coal mine. This paper first introduces the principle of testing the main drainage pump efficiency in coal mine using thermodynamic theories, then analyzes the energy transfor...

  16. Performance and Costs of Ductless Heat Pumps in Marine-Climate High-Performance Homes -- Habitat for Humanity The Woods

    Energy Technology Data Exchange (ETDEWEB)

    Lubliner, Michael [Washington State Univ., Pullman, WA (United States); Howard, Luke [Washington State Univ., Pullman, WA (United States); Hales, David [Washington State Univ., Pullman, WA (United States); Kunkle, Rick [Washington State Univ., Pullman, WA (United States); Gordon, Andy [Washington State Univ., Pullman, WA (United States); Spencer, Melinda [Washington State Univ., Pullman, WA (United States)

    2016-02-23

    This final Building America Partnership report focuses on the results of field testing, modeling, and monitoring of ductless mini-split heat pump hybrid heating systems in seven homes built and first occupied at various times between September 2013 and October 2014. The report also provides WSU documentation of high-performance home observations, lessons learned, and stakeholder recommendations for builders of affordable high-performance housing.

  17. Water Flow Performance of a Superscale Model of the Fastrac Liquid Oxygen Pump

    Science.gov (United States)

    Skelley, Stephen; Zoladz, Thomas

    2001-01-01

    As part of the National Aeronautics and Space Administration's ongoing effort to lower the cost of access to space, the Marshall Space Flight Center has developed a rocket engine with 60,000 pounds of thrust for use on the Reusable Launch Vehicle technology demonstrator slated for launch in 2000. This gas generator cycle engine, known as the Fastrac engine, uses liquid oxygen and RP-1 for propellants and includes single stage liquid oxygen and RP-1 pumps and a single stage supersonic turbine on a common shaft. The turbopump design effort included the first use and application of new suction capability prediction codes and three-dimensional blade generation codes in an attempt to reduce the turbomachinery design and certification costs typically associated with rocket engine development. To verify the pump's predicted cavitation performance, a water flow test of a superscale model of the Fastrac liquid oxygen pump was conducted to experimentally evaluate the liquid oxygen pump's performance at and around the design point. The water flow test article replicated the flow path of the Fastrac liquid oxygen pump in a 1.582x scale model, including scaled seal clearances for correct leakage flow at a model operating speed of 5000 revolutions per minute. Flow entered the 3-blade axial-flow inducer, transitioned to a shrouded, 6- blade radial impeller, and discharged into a vaneless radial diffuser and collection volute. The test article included approximately 50 total and static pressure measurement locations as well as flush-mounted, high frequency pressure transducers for complete mapping of the pressure environment. The primary objectives of the water flow test were to measure the steady-state and dynamic pressure environment of the liquid oxygen pump versus flow coefficient, suction specific speed, and back face leakage flow rate. Initial results showed acceptable correlation between the predicted and experimentally measured pump head rise at low suction specific speeds

  18. Pump

    International Nuclear Information System (INIS)

    Mole, C.J.

    1983-01-01

    An electromagnetic pump for circulating liquid -metal coolant through a nuclear reactor wherein opposite walls of a pump duct serve as electrodes to transmit current radially through the liquid-metal in the ducts. A circumferential electric field is supplied to the liquid-metal by a toroidal electromagnet which has core sections interposed between the ducts. The windings of the electromagnet are composed of metal which is superconductive at low temperatures and the electromagnet is maintained at a temperature at which it is superconductive by liquid helium which is fed through the conductors which supply the excitation for the electromagnet. The walls of the ducts joining the electrodes include metal plates insulated from the electrodes backed up by insulators so that they are capable of withstanding the pressure of the liquid-metal. These composite wall structures may also be of thin metal strips of low electrical conductivity backed up by sturdy insulators. (author)

  19. Functional and biocompatibility performances of an integrated Maglev pump-oxygenator.

    Science.gov (United States)

    Zhang, Tao; Cheng, Guangming; Koert, Andrew; Zhang, Juntao; Gellman, Barry; Yankey, G Kwame; Satpute, Aditee; Dasse, Kurt A; Gilbert, Richard J; Griffith, Bartley P; Wu, Zhongjun J

    2009-01-01

    To provide respiratory support for patients with lung failure, a novel compact integrated pump-oxygenator is being developed. The functional and biocompatibility performances of this device are presented. The pump-oxygenator is designed by combining a magnetically levitated pump/rotor with a uniquely configured hollow fiber membrane bundle to create an assembly free, ultracompact, all-in-one system. The hemodynamics, gas transfer and biocompatibility performances of this novel device were investigated both in vitro in a circulatory flow loop and in vivo in an ovine animal model. The in vitro results showed that the device was able to pump blood flow from 2 to 8 L/min against a wide range of pressures and to deliver an oxygen transfer rate more than 300 mL/min at a blood flow of 6 L/min. Blood damage tests demonstrated low hemolysis (normalized index of hemolysis [NIH] approximately 0.04) at a flow rate of 5 L/min against a 100-mm Hg afterload. The data from five animal experiments (4 h to 7 days) demonstrated that the device could bring the venous blood to near fully oxygen-saturated condition (98.6% +/- 1.3%). The highest oxygen transfer rate reached 386 mL/min. The gas transfer performance was stable over the study duration for three 7-day animals. There was no indication of blood damage. The plasma free hemoglobin and platelet count were within the normal ranges. No gross thrombus is found on the explanted pump components and fiber surfaces. Both in vitro and in vivo results demonstrated that the newly developed pump-oxygenator can achieve sufficient blood flow and oxygen transfer with excellent biocompatibility.

  20. An analytical model for prediction of two-phase (noncondensable) flow pump performance

    International Nuclear Information System (INIS)

    Furuya, O.

    1985-01-01

    During operational transients or a hypothetical LOCA (loss of coolant accident) condition, the recirculating coolant of PWR (pressurized water reactor) may flash into steam due to a loss of line pressure. Under such two-phase flow conditions, it is well known that the recirculation pump becomes unable to generate the same head as that of the single-phase flow case. Similar situations also exist in oil well submersible pumps where a fair amount of gas is contained in oil. Based on the one dimensional control volume method, an analytical method has been developed to determine the performance of pumps operating under two-phase flow conditions. The analytical method has incorporated pump geometry, void fraction, flow slippage and flow regime into the basic formula, but neglected the compressibility and condensation effects. During the course of model development, it has been found that the head degradation is mainly caused by higher acceleration on liquid phase and deceleration on gas phase than in the case of single-phase flows. The numerical results for head degradations and torques obtained with the model favorably compared with the air/water two-phase flow test data of Babcock and Wilcox (1/3 scale) and Creare (1/20 scale) pumps

  1. Unconfined aquifer response to infiltration basins and shallow pump tests

    Science.gov (United States)

    Ostendorf, David W.; DeGroot, Don J.; Hinlein, Erich S.

    2007-05-01

    SummaryWe measure and model the unsteady, axisymmetric response of an unconfined aquifer to delayed, arbitrary recharge. Water table drainage follows the initial elastic aquifer response, as modeled for uniform, instantaneous recharge by Zlotnik and Ledder [Zlotnik, V., Ledder, G., 1992. Groundwater flow in a compressible unconfined aquifer with uniform circular recharge. Water Resources Research 28(6), 1619-1630] and delayed drainage by Moench [Moench, A.F., 1995. Combining the Neuman and Boulton models for flow to a well in an unconfined aquifer. Ground Water 33(3), 378-384]. We extend their analyses with a convolution integral that models the delayed response of an aquifer to infiltration from a circular infiltration basin. The basin routes the hydrograph to the water table with a decay constant dependent on a Brooks and Corey [Brooks, R.H., Corey, A.T., 1966. Properties of porous media affecting fluid flow. Journal of the Irrigation and Drainage Division ASCE 92(2), 61-88] unsaturated permeability exponent. The resulting closed form model approaches Neuman's [Neuman, S.P., 1972. Theory of flow in unconfined aquifers considering delayed response of the water table. Water Resources Research 8(4), 1031-1045] partially penetrating pump test equation for a small source radius, instantaneous, uniform drainage and a shallow screen section. Irrigation pump data at a well characterized part of the Plymouth-Carver Aquifer in southeastern Massachusetts calibrate the small source model, while infiltration data from the closed drainage system of State Route 25 calibrate the infiltration basin model. The calibrated permeability, elasticity, specific yield, and permeability exponent are plausible and consistent for the pump and infiltration data sets.

  2. Thermodynamic performance of multi-stage gradational lead screw vacuum pump

    Science.gov (United States)

    Zhao, Fan; Zhang, Shiwei; Sun, Kun; Zhang, Zhijun

    2018-02-01

    As a kind of dry mechanical vacuum pump, the twin-screw vacuum pump has an outstanding pumping performance during operation, widely used in the semiconductor industry. Compared with the constant lead screw (CLS) vacuum pump, the gradational lead screw (GLS) vacuum pump is more popularly applied in recent years. Nevertheless, not many comparative studies on the thermodynamic performance of GLS vacuum pump can be found in the literature. Our study focuses on one type of GLS vacuum pump, the multi-stage gradational lead screw (MGLS) vacuum pump, gives a detailed description of its construction and illustrates it with the drawing. Based on the structural analysis, the thermodynamic procedure is divided into four distinctive processes, including sucking process, transferring (compressing) process, backlashing process and exhausting process. The internal mechanism of each process is qualitatively illustrated and the mathematical expressions of seven thermodynamic parameters are given under the ideal situation. The performance curves of MGLS vacuum pump are plotted by MATLAB software and compared with those of the CLS vacuum pump in the same case. The results can well explain why the MGLS vacuum pump has more favorable pumping performance than the CLS vacuum pump in saving energy, reducing noise and heat dissipation.

  3. Long-term pumping test in borehole KR24 flow measurements

    Energy Technology Data Exchange (ETDEWEB)

    Rouhiainen, P.; Poellaenen, J. [PRG-Tec Oy, Espoo (Finland)

    2005-09-15

    The Difference Flow method can be used for the relatively fast determination of transmissivity and hydraulic head in fractures or fractured zones in cored boreholes. In this study, the Difference Flow method was used for hydraulic crosshole interference tests. The tests were performed in boreholes KR24 (pumped borehole) KR4, KR7, KR8, KRlO, KR14, KR22, KR22B, KR26, KR27, KR27B, KR28 and KR28B at Olkiluoto during the first and second quarters of 2004. The distance between the boreholes varies from approximately tens of meters to hundreds of meters. All the measurements were carried out in open boreholes, i.e. no packers were used. For interpretation, a normal single hole test was first performed in each borehole. Flow rates and drawdown were first measured both without pumping and with pumping the borehole under test. For practical reasons, the data set is neither complete nor similar in all tested boreholes. Connected flow to borehole KR24 was detected in all these boreholes. These flow responses were concentrated on a few zones. (orig.)

  4. Test study on safety features of station blackout accident for nuclear main pump

    International Nuclear Information System (INIS)

    Liu Xiajie; Wang Dezhong; Zhang Jige; Liu Junsheng; Yang Zhe

    2009-01-01

    The theoretical and experimental studies of reactor coolant pump accidents encountered nation-wide and world-wide were described. To investigate the transient hydrodynamic performance of reactor coolant pump (RCP) during the period of rotational inertia in the station blackout accident, some theoretical and experimental studies were carried out, and the analysis of the test results was presented. The experiment parameters, conditions and test methods were introduced. The flow-rate, rotate speed and vibrations were analyzed emphatically. The quadruplicate polynomial curve equation was used to simulate the flow-rate,rotate speed along with time. The test results indicate that the flow-rate and rotator speed decrease rapidly at the very beginning of cut power and the test results accord with the regulation of safety standard. The vibrant displacement of bearing seat is intensified at the moment of lose power, but after a certain period rotor shaft libration changes. The test and analysis results help to understand the hydrodynamic performance of nuclear primary pump under lost of power accident, and provide the basic reference for safety evaluation. (authors)

  5. Performance of a small wind powered water pumping system

    Science.gov (United States)

    Lorentz helical pumps (Henstedt-Ulzburg, Germany) have been powered by solar energy for remote water pumping applications for many years, but from October 2005 to March 2008 a Lorentz helical pump was powered by wind energy at the USDA-ARS Conservation and Production Research Laboratory (CPRL) near ...

  6. Changes in Chemical and Isotopic Composition of Groundwater During a Long Term Pumping Test in Brestovica Karst Aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Mezga, K.; Urbanc, J. [Geological Survey of Slovenia, Department of Hydrogeology, Ljubljana (Slovenia)

    2013-07-15

    A pumping test of the Klarici water supply near Brestovica was performed in August 2008, in order to determine the karst groundwater resource capacity. Groundwater was pumped for a month with a total capacity of 470 L/s. During the experiment, sampling for chemical and isotopic composition of groundwater and surface water was carried out. Intensive pumping in dry meteorological conditions caused a lowering of the water table and changes in the chemical and isotopic composition of pumped water. Local meteoric waters are infiltrated into the aquifer at a lower mean altitude; therefore the {delta}{sup 18}O is enriched with the heavy oxygen isotope. The duration of pumping resulted in changes in the isotopic composition of oxygen due to a greater impact of the intergranular Soca River aquifer on the karst aquifer. On the basis of isotope composition it was possible to quantify the impact of the Soca River on the karst aquifer. (author)

  7. The measured field performances of eight different mechanical and air-lift water-pumping wind-turbines

    Energy Technology Data Exchange (ETDEWEB)

    Kentfield, J.A.C. [Univ. of Calgary, Alberta (Canada)

    1996-12-31

    Results are presented of the specific performances of eight, different, water-pumping wind-turbines subjected to impartial tests at the Alberta Renewable Energy Test Site (ARETS), Alberta, Canada. The results presented which were derived from the test data, obtained independently of the equipment manufacturers, are expressed per unit of rotor projected area to eliminate the influence of machine size. Hub-height wind speeds and water flow rates for a common lift of 5.5 m (18 ft) constitute the essential test data. A general finding was that, to a first approximation, there were no major differences in specific performance between four units equipped with conventional reciprocating pumps two of which employed reduction gearing and two of which did not. It was found that a unit equipped with a Moyno pump performed well but three air-lift machines had, as was expected, poorer specific performances than the more conventional equipment. 10 refs., 9 figs.

  8. Test planning and performance

    International Nuclear Information System (INIS)

    Zola, Maurizio

    2001-01-01

    Testing plan should include Safety guide Q4 - Inspection and testing - A testing plan should be prepared including following information: General information (facility name, item or system reference, procurement document reference, document reference number and status, associated procedures and drawings); A sequential listing of all testing activities; Procedure, work instruction, specification or standard to be followed in respect of each operation and test; Acceptance criteria; Identification of who is performing tests; Identification of hold points; Type of records to be prepared for each test; Persons and organizations having authority for final acceptance. Proposed activities sequence is: visual, electrical and mechanical checks; environmental tests (thermal aging, vibrations aging, radioactive aging); performance evaluation in extreme conditions; dynamic tests with functional checks; final electrical and mechanical checks The planning of the tests should always be performed taking into account an interpretative model: a very tight cooperation is advisable between experimental people and numerical people dealing with the analysis of more or less complex models for the seismic assessment of structures and components. Preparatory phase should include the choice of the following items should be agreed upon with the final user of the tests: Excitation points, Excitation types, Excitation amplitude with respect to frequency, Measuring points. Data acquisition, recording and storage, should take into account the characteristics of the successive data processing: to much data can be cumbersome to be processed, but to few data can make unusable the experimental results. The parameters for time history acquisition should be chosen taking into account data processing: for Shock Response Spectrum calculation some special requirements should be met: frequency bounded signal, high frequency sampling, shock noise. For stationary random-like excitation, the sample length

  9. Performance Optimization of Irreversible Air Heat Pumps Considering Size Effect

    Science.gov (United States)

    Bi, Yuehong; Chen, Lingen; Ding, Zemin; Sun, Fengrui

    2018-06-01

    Considering the size of an irreversible air heat pump (AHP), heating load density (HLD) is taken as thermodynamic optimization objective by using finite-time thermodynamics. Based on an irreversible AHP with infinite reservoir thermal-capacitance rate model, the expression of HLD of AHP is put forward. The HLD optimization processes are studied analytically and numerically, which consist of two aspects: (1) to choose pressure ratio; (2) to distribute heat-exchanger inventory. Heat reservoir temperatures, heat transfer performance of heat exchangers as well as irreversibility during compression and expansion processes are important factors influencing on the performance of an irreversible AHP, which are characterized with temperature ratio, heat exchanger inventory as well as isentropic efficiencies, respectively. Those impacts of parameters on the maximum HLD are thoroughly studied. The research results show that HLD optimization can make the size of the AHP system smaller and improve the compactness of system.

  10. Test bench for operational investigation of photovoltaic pumping systems; Bancada de ensaio para averiguacao operacional de sistemas fotovoltaicos de bombeamento

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Alaan Ubaiara; Fedrizzi, Maria Cristina; Zilles, Roberto [Universidade de Sao Paulo (IEE/USP), SP (Brazil). Inst. de Eletrotecnica e Energia], Emails: alaan@iee.usp.br, fedrizzi@iee.usp.br, zilles@iee.usp.br

    2006-07-01

    From the daily water demand, total head and the daily average irradiation, is possible to determine the size of the PV generator for pumping systems. However, once the equipment is acquired some tests are recommended, specially to verify its performance. One of the most relevant parameters to qualify a pumping system is the daily water delivered (m{sup 3}/day) as a function of daily solar irradiation (Wh/m{sup 2}). Facilities that fit different boundaries conditions, as for example constant total head (m) are not easily available, and just few laboratories have this capability. In this way a simple instrumentation with the capability to determine the daily performance of PV pumping systems is presented. The proposed test tools use a hydraulic circuit with two pumps, one connected to the PV system and the other to the electric grid. The total head is maintained constant by the variable speed drive connected to the grid. (author)

  11. Irreversible absorption heat-pump and its optimal performance

    International Nuclear Information System (INIS)

    Chen Lingen; Qin Xiaoyong; Sun Fengrui; Wu Chih

    2005-01-01

    On the basis of an endoreversible absorption heat-pump cycle, a generalized irreversible four-heat-reservoir absorption heat-pump cycle model is established by taking account of the heat resistances, heat leak and irreversibilities due to the internal dissipation of the working substance. The heat transfer between the heat reservoir and the working substance is assumed to obey the linear (Newtonian) heat-transfer law, and the overall heat-transfer surface area of the four heat-exchangers is assumed to be constant. The fundamental optimal relations between the coefficient of performance (COP) and the heating-load, the maximum COP and the corresponding heating-load, the maximum heating load and the corresponding COP, as well as the optimal temperatures of the working substance and the optimal heat-transfer surface areas of the four heat-exchangers are derived by using finite-time thermodynamics. Moreover, the effects of the cycle parameters on the characteristics of the cycle are studied by numerical examples

  12. Operation performance investigation of ground-coupled heat-pump system for temperate region

    OpenAIRE

    Yi Man; Hongxing Yang; Jinggang Wang; Zhaohong Fang

    2010-01-01

    In order to investigate the operation performance of ground-coupled heat-pump (GCHP) system, an analytical simulation model of GCHP system on short time-step basis and a computer program based on this model to predict system operating parameters are developed in this study. Besides, detailed on-site experiments on GCHP test rig installed in a temperate region of China are carried out. The temperature distributions of borehole as well as ground around borehole at different depths are evaluated...

  13. A Methodology for Evaluation of Inservice Test Intervals for Pumps and Motor-Operated Valves

    International Nuclear Information System (INIS)

    Cox, D.F.; Haynes, H.D.; McElhaney, K.L.; Otaduy, P.J.; Staunton, R.H.; Vesely, W.E.

    1999-01-01

    Recent nuclear industry reevaluation of component inservice testing (IST) requirements is resulting in requests for IST interval extensions and changes to traditional IST programs. To evaluate these requests, long-term component performance and the methods for mitigating degradation need to be understood. Determining the appropriate IST intervals, along with component testing, monitoring, trending, and maintenance effects, has become necessary. This study provides guidelines to support the evaluation of IST intervals for pumps and motor-operated valves (MOVs). It presents specific engineering information pertinent to the performance and monitoring/testing of pumps and MOVs, provides an analytical methodology for assessing the bounding effects of aging on component margin behavior, and identifies basic elements of an overall program to help ensure component operability. Guidance for assessing probabilistic methods and the risk importance and safety consequences of the performance of pumps and MOVs has not been specifically included within the scope of this report, but these elements may be included in licensee change requests

  14. Feed-pump hydraulic performance and design improvement, Phase I: research program design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G.

    1982-03-01

    As a result of prior EPRI-sponsored studies, it was concluded that a research program should be designed and implemented to provide an improved basis for the design, procurement, testing, and operation of large feed pumps with increased reliability and stability over the full range of operating conditions. This two-volume report contains a research plan which is based on a review of the present state of the art and which defines the necessary R and D program and estimates the benefits and costs of the program. The recommended research program consists of 30 interrelated tasks. It is designed to perform the needed research; to verify the results; to develop improved components; and to publish computer-aided design methods, pump specification guidelines, and a troubleshooting manual. Most of the technology proposed in the research plan is applicable to nuclear power plants as well as to fossil-fired plants. This volume discusses the design, performance and failures of feed pumps, and recommendations for research on pump dynamics, design, and specifications.

  15. Performance Assessment for Pump-and-Treat Closure or Transition

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Becker, Dave J. [U.S. Army Corps of Engineers Environmental and Munitions Center of Expertise, Huntsville, AL (United States); Lee, Michelle H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nimmons, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-29

    A structured performance assessment approach is useful to evaluate pump-and-treat (P&T) groundwater remediation, which has been applied at numerous sites. Consistent with the U.S. Environmental Protection Agency’s Groundwater Road Map, performance assessment during remedy implementation may be needed, and should consider remedy optimization, transition to alternative remedies, or remedy closure. In addition, a recent National Research Council study examined groundwater remediation at complex contaminated sites and concluded that it may be beneficial to evaluate remedy performance and the potential need for transition to alternative approaches at these sites. The intent of this document is to provide a structured approach for assessing P&T performance to support a decision to optimize, transition, or close a P&T remedy. The process presented in this document for gathering information and performing evaluations to support P&T remedy decisions includes use of decision elements to distinguish between potential outcomes of a remedy decision. Case studies are used to augment descriptions of decision elements and to illustrate each type of outcome identified in the performance assessment approach. The document provides references to resources for tools and other guidance relevant to conducting the P&T assessment.

  16. SNS Cryogenic Test Facility Kinney Vacuum Pump Commissioning and Operation at 2 K

    Science.gov (United States)

    DeGraff, B.; Howell, M.; Kim, S.; Neustadt, T.

    2017-12-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) has built and commissioned an independent Cryogenic Test Facility (CTF) in support of testing in the Radio-frequency Test Facility (RFTF). Superconducting Radio-frequency Cavity (SRF) testing was initially conducted with the CTF cold box at 4.5 K. A Kinney vacuum pump skid consisting of a roots blower with a liquid ring backing pump was recently added to the CTF system to provide testing capabilities at 2 K. System design, pump refurbishment and installation of the Kinney pump will be presented. During the commissioning and initial testing period with the Kinney pump, several barriers to achieve reliable operation were experienced. Details of these lessons learned and improvements to skid operations will be presented. Pump capacity data will also be presented.

  17. SNS Cryogenic Test Facility Kinney Vacuum Pump Commissioning and Operation at 2 K

    Energy Technology Data Exchange (ETDEWEB)

    Degraff, Brian D. [ORNL; Howell, Matthew P. [ORNL; Kim, Sang-Ho [ORNL; Neustadt, Thomas S. [ORNL

    2017-07-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) has built and commissioned an independent Cryogenic Test Facility (CTF) in support of testing in the Radio-frequency Test Facility (RFTF). Superconducting Radio-frequency Cavity (SRF) testing was initially conducted with the CTF cold box at 4.5 K. A Kinney vacuum pump skid consisting of a roots blower with a liquid ring backing pump was recently added to the CTF system to provide testing capabilities at 2 K. System design, pump refurbishment and installation of the Kinney pump will be presented. During the commissioning and initial testing period with the Kinney pump, several barriers to achieve reliable operation were experienced. Details of these lessons learned and improvements to skid operations will be presented. Pump capacity data will also be presented.

  18. Experimental study of centrifugal pump performance under steam-water two-phase flow conditions at elevated pressures

    International Nuclear Information System (INIS)

    Chan, A.M.C.; Barreca, S.L.; Hartlen, R.T.

    1991-01-01

    The performance of a centrifugal pump under two-phase flow conditions was studied in a closed loop. System voids of increasing magnitude were attained by draining water from the loop in steps. The operating temperature/pressure were varied from 110 degrees C/0.15 MPa to 260 degrees C/4.7 MPa. Only tests in the first quadrant were conducted. In this paper the head-flow characteristics and pump head degradation data are presented and discussed

  19. Vacuum Pumping Performance Comparison of Non-Evaporable Getter Thin Films Deposited Using Argon and Krypton as Sputtering Gases

    CERN Document Server

    Liu, Xianghong; He, Yun; Li, Yulin

    2005-01-01

    Owing to the outstanding vacuum performance and the low secondary electron yield, non-evaporable getter (NEG) thin film deposited onto interior walls has gained widespread acceptance and has been incorporated into many accelerator vacuum system designs. The titanium-zirconium-vanadium (T-Zr-V) NEG thin films were deposited onto the interior wall of stainless steel pipes via DC magnetron sputtering method using either argon or krypton gas as sputtering gas. Vacuum pumping evaluation tests were carried out to compare vacuum pumping performances of the Ti-Zr-V NEG thin films deposited using argon or krypton. The results showed much higher initial pumping speed for the Kr-sputtered NEG film than the Ar-sputtered film, though both films have similar activation behavior. The compositions and textures of both thin films were measured to correlate to the pumping performances.

  20. Optimization of the Performance of a Biomedical Micro-Pump

    Directory of Open Access Journals (Sweden)

    E Bourbaba

    2016-06-01

    Full Text Available This paper discusses the optimization of a micro-pump composed by deformable polymeric membrane in contact with reservoir and examines the effect of the materials property at the performance and the functionality of the system. The Neo Hookean  hyperelastic material model is used to simulate the deformation of polydimethylsiloxane (PDMS elastomer and compared with Poly methyl methacrylate (PMMA. The results of simulation by finite element are presented and discussed.  In second steps we study the power to inject by active membrane a Newtonian and a non Newtonian fluid in microcanalization, the power law is used to model the variation of the blood viscosity and precise the maximum value of flow rate at minimum applied pressure and control the fluid transportation. This type of micropump appears to be suitable for biomedical applications and demonstrate the versatile use of active membrane as moving parts to inject the fluids us blood or glucose.

  1. Performance evaluation of a transformerless multiphase electric submersible pump system

    Directory of Open Access Journals (Sweden)

    Ahmed A. Hakeem

    2014-08-01

    Full Text Available Using of low-voltage variable-frequency drive followed by a step-up transformer is the most preferable way to feed an electrical submersible pump motor. The existence of long feeder between the motor and drive systems usually causes over-voltage problems because of the travelling wave phenomenon, which makes the employment of filter networks on the motor or inverter terminals mandatory. The so-called boost-inverter inherently can solve this problem with filter-less operation as it offers a direct sinusoidal output voltage. As boost inverters have voltage boosting capability, it can provide a transformer-less operation as well. This study investigates the performance of a five-phase modular winding induction machine fed from a boost-inverter through a long feeder. A simulation study using a 1000 Hp system and experimental investigation on a 1 Hp prototype machine are used to support the presented approach.

  2. Pumping test and fluid sampling report - Sawyer No. 1 well, Palo Duro Basin, Texas: unanalyzed data

    International Nuclear Information System (INIS)

    1984-05-01

    This report describes pumping test and fluid sampling activities performed at the Sawyer No. 1 well, Donley County, Texas. Sawyer No. 1 well is located along the eastern margin of the Palo Duro Basin in an area of active dissolution within the Permian salt section. These data were collected by Stone and Webster Engineering Corporation working in conjunction with the Texas Bureau of Economic Geology as part of a nationwide program to identify potential locations for a nuclear waste repository. These data support studies to determine the hydrologic characteristics of deep water-bearing formations. Formation fluid studies samples were analyzed in order to evaluate fluid migration and age relationships in the Permian Basin. These data were collected from June until October, 1981. Zone isolation for pump testing was accomplished in November, 1981. These data are preliminary. They have been neither analyzed nor evaluated

  3. Analysis of data obtained in two-phase flow tests of primary heat transport pumps

    International Nuclear Information System (INIS)

    Currie, T.C.

    1986-06-01

    This report analyzes data obtained in two-phase flow tests of primary heat transport pumps performed during the period 1980-1983. Phenomena which have been known to cause pump-induced flow oscillations in pressurized piping systems under two-phase conditions are reviewed and the data analyzed to determine whether any of the identified phenomena could have been responsible for the instabilities observed in those tests. Tentative explanations for the most severe instabilities are given based on those analyses. It is shown that suction pipe geometry probably plays an important role in promoting instabilities, so additional experiments to investigate the effect of suction pipe geometry on the stability of flow in a closed pipe loop under two-phase conditions are recommended

  4. Endurance Pump Test with MIL-PRF-83282 Hydraulic Fluid, Purified with Malabar Purifier

    National Research Council Canada - National Science Library

    Sharma, Shashi

    2004-01-01

    .... Endurance aircraft hydraulic pump tests under carefully controlled conditions were previously conducted using hydraulic fluid purified with a rotating-disk and vacuum type purifier, the portable...

  5. Performance and Costs of Ductless Heat Pumps in Marine-Climate High-Performance Homes -- Habitat for Humanity The Woods

    Energy Technology Data Exchange (ETDEWEB)

    Lubliner, Michael [Building America Partnership for Improved Residential Construction, Olympia, WA (United States). Washington States Univ. Energy Program; Howard, Luke [Building America Partnership for Improved Residential Construction, Olympia, WA (United States). Washington States Univ. Energy Program; Hales, David [Building America Partnership for Improved Residential Construction, Olympia, WA (United States). Washington States Univ. Energy Program; Kunkle, Rick [Building America Partnership for Improved Residential Construction, Olympia, WA (United States). Washington States Univ. Energy Program; Gordon, Andy [Building America Partnership for Improved Residential Construction, Olympia, WA (United States). Washington States Univ. Energy Program; Spencer, Melinda [Building America Partnership for Improved Residential Construction, Olympia, WA (United States). Washington States Univ. Energy Program

    2016-02-18

    The Woods is a Habitat for Humanity (HFH) community of ENERGY STAR Homes Northwest (ESHNW)-certified homes located in the marine climate of Tacoma/Pierce County, Washington. This research report builds on an earlier preliminary draft 2014 BA report, and includes significant billing analysis and cost effectiveness research from a collaborative, ongoing Ductless Heat Pump (DHP)research effort for Tacoma Public Utilities (TPU) and Bonneville Power Administration (BPA). This report focuses on the results of field testing, modeling, and monitoring of ductless mini-split heat pump hybrid heating systems in seven homes built and first occupied at various times between September 2013 and October 2014. The report also provides WSU documentation of high-performance home observations, lessons learned, and stakeholder recommendations for builders of affordable high-performance housing such as HFH. Tacoma Public Utilities (TPU) and Bonneville Power Administration (BPA). This report focuses on the results of field testing, modeling, and monitoring of ductless mini-split heat pump hybrid heating systems in seven homes built and first occupied at various times between September 2013 and October 2014. The report also provides WSU documentation of high-performance home observations, lessons learned, and stakeholder recommendations for builders of affordable high-performance housing such as HFH.

  6. Measured Performance of a Low Temperature Air Source Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  7. Performance of evaporator-collector and air collector in solar assisted heat pump dryer

    International Nuclear Information System (INIS)

    Hawlader, M.N.A.; Rahman, S.M.A.; Jahangeer, K.A.

    2008-01-01

    A solar assisted heat pump dryer has been designed, fabricated and tested. This paper presents the performance of the evaporator-collector and the air collector when operated under the same meteorological conditions. ASHRAE standard procedure for collector testing has been followed. The evaporator-collector of the heat pump is acting directly as the solar collector, and the temperature of the refrigerant at the inlet to the evaporator-collector always remained below the ambient temperature. Because of the rejection of sensible and latent heats of air at the dehumidifier, the temperature at the inlet to the air collector is lower than that of the ambient air. Hence, the thermal efficiency of the air collector also increases due to a reduction of losses from the collector. The efficiencies of the evaporator-collector and the air collector were found to vary between 0.8-0.86 and 0.7-0.75, respectively, when operated under the meteorological conditions of Singapore

  8. Dynamic Performance of a Residential Air-to-Air Heat Pump.

    Science.gov (United States)

    Kelly, George E.; Bean, John

    This publication is a study of the dynamic performance of a 5-ton air-to-air heat pump in a residence in Washington, D.C. The effect of part-load operation on the heat pump's cooling and heating coefficients of performance was determined. Discrepancies between measured performance and manufacturer-supplied performance data were found when the unit…

  9. Application Research on Testing Efficiency of Main Drainage Pump in Coal Mine Using Thermodynamic Theories

    Directory of Open Access Journals (Sweden)

    Deyong Shang

    2017-01-01

    Full Text Available The efficiency of a drainage pump should be tested at regular intervals to master the status of the drainage pump in real time and thus achieve the goal of saving energy. The ultrasonic flowmeter method is traditionally used to measure the flow of the pump. But there are some defects in this kind of method of underground coal mine. This paper first introduces the principle of testing the main drainage pump efficiency in coal mine using thermodynamic theories, then analyzes the energy transformation during the process of draining water, and finally derives the calculation formulae of the pump efficiency, which meet the on-site precision of engineering. On the basis of analyzing the theories, the protective sleeve and the base of the temperature sensor are designed to measure the water temperature at inlet and outlet of the pump. The efficiencies of pumps with two specifications are measured, respectively, by using the thermodynamic method and ultrasonic flowmeter method. By contrast, the results show that thermodynamic method can satisfy the precision of the testing requirements accuracy for high-flow and high-lift drainage pump under normal temperatures. Moreover, some measures are summed up to improve the accuracy of testing the pump efficiency, which are of guiding significance for on-site testing of the main drainage pump efficiency in coal mine.

  10. A Methodology for Evaluation of Inservice Test Intervals for Pumps and Motor Operated Valves

    International Nuclear Information System (INIS)

    McElhaney, K.L.

    1999-01-01

    The nuclear industry has begun efforts to reevaluate inservice tests (ISTs) for key components such as pumps and valves. At issue are two important questions--What kinds of tests provide the most meaningful information about component health, and what periodic test intervals are appropriate? In the past, requirements for component testing were prescribed by the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code. The tests and test intervals specified in the Code were generic in nature and test intervals were relatively short. Operating experience has shown, however, that performance and safety improvements and cost savings could be realized by tailoring IST programs to similar components with comparable safety importance and service conditions. In many cases, test intervals may be lengthened, resulting in cost savings for utilities and their customers

  11. The performance testing

    International Nuclear Information System (INIS)

    Mayr, A.

    1975-01-01

    Concerning the time-schedule of reactor performance tests they normally begin when suppliers or constructors have finished construction and made all necessary construction and coordinated tests. If the last-mentioned tests are conducted profoundly, they contribute substantially to a quick and simple carrying-out of the last performance tests and to the general quality of components and systems. At this stage all components of a system should be properly fixed, machinery, instruments and electrical components adjusted and calibrated, all set-points tested, electrical and other supply units in operation or ready to operate and all functions pretested. Just at this stage of the work most of the existing defects and failures of systems can be found. Remembering the fact that the difficulty of operation of complex systems results from detail problems, it is extremely useful to remove all things of this kind as soon as possible, at the latest at this time where it is done easily and normally quickly without influencing start-up-procedures of other systems or even of the total plant. (orig./TK) [de

  12. Theoretical Model for the Performance of Liquid Ring Pump Based on the Actual Operating Cycle

    Directory of Open Access Journals (Sweden)

    Si Huang

    2017-01-01

    Full Text Available Liquid ring pump is widely applied in many industry fields due to the advantages of isothermal compression process, simple structure, and liquid-sealing. Based on the actual operating cycle of “suction-compression-discharge-expansion,” a universal theoretical model for performance of liquid ring pump was established in this study, to solve the problem that the theoretical models deviated from the actual performance in operating cycle. With the major geometric parameters and operating conditions of a liquid ring pump, the performance parameters such as the actual capacity for suction and discharge, shaft power, and global efficiency can be conveniently predicted by the proposed theoretical model, without the limitation of empiric range, performance data, or the detailed 3D geometry of pumps. The proposed theoretical model was verified by experimental performances of liquid ring pumps and could provide a feasible tool for the application of liquid ring pump.

  13. AZ-101 Mixer Pump Demonstration and Tests Data Management Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    DOUGLAS, D.G.

    2000-02-22

    This document provides a plan for the analysis of the data collected during the AZ-101 Mixer Pump Demonstration and Tests. This document was prepared after a review of the AZ-101 Mixer Pump Test Plan (Revision 4) [1] and other materials. The plan emphasizes a structured and well-ordered approach towards handling and examining the data. This plan presumes that the data will be collected and organized into a unified body of data, well annotated and bearing the date and time of each record. The analysis of this data will follow a methodical series of steps that are focused on well-defined objectives. Section 2 of this plan describes how the data analysis will proceed from the real-time monitoring of some of the key sensor data to the final analysis of the three-dimensional distribution of suspended solids. This section also identifies the various sensors or sensor systems and associates them with the various functions they serve during the test program. Section 3 provides an overview of the objectives of the AZ-101 test program and describes the data that will be analyzed to support that test. The objectives are: (1) to demonstrate that the mixer pumps can be operated within the operating requirements; (2) to demonstrate that the mixer pumps can mobilize the sludge in sufficient quantities to provide feed to the private contractor facility, and (3) to determine if the in-tank instrumentation is sufficient to monitor sludge mobilization and mixer pump operation. Section 3 also describes the interim analysis that organizes the data during the test, so the analysis can be more readily accomplished. Section 4 describes the spatial orientation of the various sensors in the tank. This section is useful in visualizing the relationship of the Sensors in terms of their location in the tank and how the data from these sensors may be related to the data from other sensors. Section 5 provides a summary of the various analyses that will be performed on the data during the test

  14. AZ-101 Mixer Pump Demonstration and Tests: Data Management (Analysis) Plan

    International Nuclear Information System (INIS)

    DOUGLAS, D.G.

    2000-01-01

    This document provides a plan for the analysis of the data collected during the AZ-101 Mixer Pump Demonstration and Tests. This document was prepared after a review of the AZ-101 Mixer Pump Test Plan (Revision 4) [1] and other materials. The plan emphasizes a structured and well-ordered approach towards handling and examining the data. This plan presumes that the data will be collected and organized into a unified body of data, well annotated and bearing the date and time of each record. The analysis of this data will follow a methodical series of steps that are focused on well-defined objectives. Section 2 of this plan describes how the data analysis will proceed from the real-time monitoring of some of the key sensor data to the final analysis of the three-dimensional distribution of suspended solids. This section also identifies the various sensors or sensor systems and associates them with the various functions they serve during the test program. Section 3 provides an overview of the objectives of the AZ-101 test program and describes the data that will be analyzed to support that test. The objectives are: (1) to demonstrate that the mixer pumps can be operated within the operating requirements; (2) to demonstrate that the mixer pumps can mobilize the sludge in sufficient quantities to provide feed to the private contractor facility, and (3) to determine if the in-tank instrumentation is sufficient to monitor sludge mobilization and mixer pump operation. Section 3 also describes the interim analysis that organizes the data during the test, so the analysis can be more readily accomplished. Section 4 describes the spatial orientation of the various sensors in the tank. This section is useful in visualizing the relationship of the Sensors in terms of their location in the tank and how the data from these sensors may be related to the data from other sensors. Section 5 provides a summary of the various analyses that will be performed on the data during the test

  15. Numerical Simulation on the Performance of a Mixed-Flow Pump under Various Casing Structures

    Directory of Open Access Journals (Sweden)

    Wu Dazhuan

    2013-01-01

    Full Text Available With regard to the reactor coolant pump and high flow-rate circulating pump, the requirements on the compactness of the structure, safety, and hydraulic performance are particularly important. Thus, the mixed-flow pump with cylindrical casing is adopted in some occasions. Due to the different characteristics between the special cylindrical casing and the common pump casing, the influence of the special casing on a mixed-flow pump characteristics was numerically investigated to obtain better performance and flow structure in the casing. The results show that the models with cylindrical casing have much worse head and efficiency characteristics than the experimental model, and this is caused by the flow in the pump casing. By moving the guide vanes half inside the pump casing, the efficiency gets improved while the low pressure zone at the corner of outlet pipe and pump casing disappeared. When the length of pump casing increases from the size equal to the diameter of outlet pipe to that larger than it, the efficiency drops obviously and the flow field in the outlet pipe improved without curved flow. In addition, the length of the pump casing has greater impacts on the pump performance than the radius of it.

  16. Flow Simulation and Performance Prediction of Centrifugal Pumps ...

    African Journals Online (AJOL)

    With the aid of computational fluid dynamics, the complex internal flows in water pump impellers can be well predicted, thus facilitating the product development process of pumps. In this paper a commercial CFD code was used to solve the governing equations of the flow field. A 2-D simulation of turbulent fluid flow is ...

  17. Performances of solar water pumping station with solar tracker

    International Nuclear Information System (INIS)

    Buniatyan, V.V.; Vardanyan, A.A.

    2011-01-01

    For the solar water pumping stations ? solar tracking system with phototransistor is developed. On the basis of the experimental investigations the utility and efficiency of the PV water pumping station with solar tracker under different conditions of varying solar radiation in Armenia is shown

  18. Expert system for the diagnosis of the condition and performance of centrifugal pumps

    Energy Technology Data Exchange (ETDEWEB)

    Jantunen, E; Vaehae-Pietilae, K; Pesonen, K [Technical Research Centre of Finland, Manufacturing Technology, Espoo (Finland)

    1998-12-31

    A brief description of the results of a study concerning the maintenance and downtime costs in Finnish pumping is given. The leakage of seals was found to be the fault that causes the highest downtime and maintenance costs. A small laboratory arrangement has been used to test the effectiveness of various condition monitoring methods. This information has been used in the development of a diagnostic expert system called CEPDIA, which can be used for diagnosing the condition of a pump and its components. The diagnosis is based on measuring results obtained from sensors and on information about maintenance actions carried out with the pump and its components. The principles of the CEPDIA expert system are described. A database is included in the system for handling and saving the measurement results, technical information on the pumps and maintenance actions carried out with the pumps. The diagnosis can also be based on vibration signature analysis, which is quite effective in determining which fault is the actual cause of malfunction of the pump or its components. CEPDIA can also be used to calculate of the efficiency of the electrical motor and the pump. CEPDIA has been tested in the diagnosis of 63 pumps. The average efficiency in pumping was less than 40 %, and more than 10 % of the pumps were pumping with less than 10 % efficiency. (orig.) 11 refs.

  19. Expert system for the diagnosis of the condition and performance of centrifugal pumps

    Energy Technology Data Exchange (ETDEWEB)

    Jantunen, E.; Vaehae-Pietilae, K.; Pesonen, K. [Technical Research Centre of Finland, Manufacturing Technology, Espoo (Finland)

    1997-12-31

    A brief description of the results of a study concerning the maintenance and downtime costs in Finnish pumping is given. The leakage of seals was found to be the fault that causes the highest downtime and maintenance costs. A small laboratory arrangement has been used to test the effectiveness of various condition monitoring methods. This information has been used in the development of a diagnostic expert system called CEPDIA, which can be used for diagnosing the condition of a pump and its components. The diagnosis is based on measuring results obtained from sensors and on information about maintenance actions carried out with the pump and its components. The principles of the CEPDIA expert system are described. A database is included in the system for handling and saving the measurement results, technical information on the pumps and maintenance actions carried out with the pumps. The diagnosis can also be based on vibration signature analysis, which is quite effective in determining which fault is the actual cause of malfunction of the pump or its components. CEPDIA can also be used to calculate of the efficiency of the electrical motor and the pump. CEPDIA has been tested in the diagnosis of 63 pumps. The average efficiency in pumping was less than 40 %, and more than 10 % of the pumps were pumping with less than 10 % efficiency. (orig.) 11 refs.

  20. A Step Towards Electric Propulsion Testing Standards: Pressure Measurements and Effective Pumping Speeds

    Science.gov (United States)

    Dankanich, John W.; Swiatek, Michael W.; Yim, John T.

    2012-01-01

    The electric propulsion community has been implored to establish and implement a set of universally applicable test standards during the research, development, and qualification of electric propulsion systems. Existing practices are fallible and result in testing variations which leads to suspicious results, large margins in application, or aversion to mission infusion. Performance measurements and life testing under appropriate conditions can be costly and lengthy. Measurement practices must be consistent, accurate, and repeatable. Additionally, the measurements must be universally transportable across facilities throughout the development, qualification, spacecraft integration and on-orbit performance. A preliminary step to progress towards universally applicable testing standards is outlined for facility pressure measurements and effective pumping speed calculations. The standard has been applied to multiple facilities at the NASA Glenn Research Center. Test results and analyses of universality of measurements are presented herein.

  1. Artificial neural network based modeling of performance characteristics of deep well pumps with splitter blade

    International Nuclear Information System (INIS)

    Goelcue, Mustafa

    2006-01-01

    Experimental studies were made to investigate the effects of splitter blade length (25%, 35%, 50%, 60% and 80% of the main blade length) on the pump characteristics of deep well pumps for different blade numbers (z=3, 4, 5, 6 and 7). In this study, an artificial neural network (ANN) was used for modeling the performance of deep well pumps with splitter blades. Two hundred and ten experimental results were used to train and test. Forty-two patterns have been randomly selected and used as the test data. The main parameters for the experiments are the blade number (z), non-dimensional splitter blade length (L-bar ), flow rate (Q, l/s), head (H m , m), efficiency (η, %) and power (P e , kW). z, L-bar and Q have been used as the input layer, and H m and η have also been used as the output layer. The best training algorithm and number of neurons were obtained. Training of the network was performed using the Levenberg-Marquardt (LM) algorithm. To determine the effect of the transfer function, different ANN models are trained, and the results of these ANN models are compared. Some statistical methods; fraction of variance (R 2 ) and root mean squared error (RMSE) values, have been used for comparison

  2. Inverse modelling of aquifer parameters in basaltic rock with the help of pumping test method using MODFLOW software

    Directory of Open Access Journals (Sweden)

    Kanak Moharir

    2017-11-01

    The present study of estimation of aquifer factors such as transmissivity (T and storativity (S are vital for the evaluation of groundwater resources. There are several methods to estimate the accurate aquifer parameters (i.e. hydrograph analysis, pumping test, etc.. In initial days, these parameters are projected either by means of in-situ test or execution test on aquifer well samples carried in the laboratory. The simultaneous information on the hydraulic behavior of the well (borehole that provides on this method, the reservoir and the reservoir boundaries, are important for efficient aquifer and well data management and analysis. The most common in-situ test is pumping test performed on wells, which involves the measurement of the fall and increase of groundwater level with respect to time. The alteration in groundwater level (drawdown/recovery is caused due to pumping of water from the well. Theis (1935 was first to propose method to evaluate aquifer parameters from the pumping test on a bore well in a confined aquifer. It is essential to know the transmissivity (T = Kb, where b is the aquifer thickness; pumping flow rate, Q = TW (dh/dl flow through an aquifer and storativity (confined aquifer: S = bSs, unconfined: S = Sy, for the characterization of the aquifer parameters in an unknown area so as to predict the rate of drawdown of the groundwater table/potentiometric surface throughout the pumping test of an aquifer. The determination of aquifer's parameters is an important basis for groundwater resources evaluation, numerical simulation, development and protection as well as scientific management. For determining aquifer's parameters, pumping test is a main method. A case study shows that these techniques have been fast speed and high correctness. The results of parameter's determination are optimized so that it has important applied value for scientific research and geology engineering preparation.

  3. Performance Analysis of Air-to-Water Heat Pump in Latvian Climate Conditions

    Science.gov (United States)

    Kazjonovs, Janis; Sipkevics, Andrejs; Jakovics, Andris; Dancigs, Andris; Bajare, Diana; Dancigs, Leonards

    2014-12-01

    Strategy of the European Union in efficient energy usage demands to have a higher proportion of renewable energy in the energy market. Since heat pumps are considered to be one of the most efficient heating and cooling systems, they will play an important role in the energy consumption reduction in buildings aimed to meet the target of nearly zero energy buildings set out in the EU Directive 2010/31/EU. Unfortunately, the declared heat pump Coefficient of Performance (COP) corresponds to a certain outdoor temperature (+7 °C), therefore different climate conditions, building characteristics and settings result in different COP values during the year. The aim of this research is to investigate the Seasonal Performance factor (SPF) values of air-to-water heat pump which better characterize the effectiveness of heat pump in a longer selected period of time, especially during the winter season, in different types of residential buildings in Latvian climate conditions. Latvia has four pronounced seasons of near-equal length. Winter starts in mid-December and lasts until mid-March. Latvia is characterized by cold, maritime climate (duration of the average heating period being 203 days, the average outdoor air temperature during the heating period being 0.0 °C, the coldest five-day average temperature being -20.7 °C, the average annual air temperature being +6.2 °C, the daily average relative humidity being 79 %). The first part of this research consists of operational air-towater heat pump energy performance monitoring in different residential buildings during the winter season. The second part of the research takes place under natural conditions in an experimental construction stand which is located in an urban environment in Riga, Latvia. The inner area of this test stand, where air-to-water heat pump performance is analyzed, is 9 m2. The ceiling height is 3 m, all external wall constructions (U = 0.16 W/(m2K)) have ventilated facades. To calculate SPF, the

  4. Understanding protocol performance: impact of test performance.

    Science.gov (United States)

    Turner, Robert G

    2013-01-01

    This is the second of two articles that examine the factors that determine protocol performance. The objective of these articles is to provide a general understanding of protocol performance that can be used to estimate performance, establish limits on performance, decide if a protocol is justified, and ultimately select a protocol. The first article was concerned with protocol criterion and test correlation. It demonstrated the advantages and disadvantages of different criterion when all tests had the same performance. It also examined the impact of increasing test correlation on protocol performance and the characteristics of the different criteria. To examine the impact on protocol performance when individual tests in a protocol have different performance. This is evaluated for different criteria and test correlations. The results of the two articles are combined and summarized. A mathematical model is used to calculate protocol performance for different protocol criteria and test correlations when there are small to large variations in the performance of individual tests in the protocol. The performance of the individual tests that make up a protocol has a significant impact on the performance of the protocol. As expected, the better the performance of the individual tests, the better the performance of the protocol. Many of the characteristics of the different criteria are relatively independent of the variation in the performance of the individual tests. However, increasing test variation degrades some criteria advantages and causes a new disadvantage to appear. This negative impact increases as test variation increases and as more tests are added to the protocol. Best protocol performance is obtained when individual tests are uncorrelated and have the same performance. In general, the greater the variation in the performance of tests in the protocol, the more detrimental this variation is to protocol performance. Since this negative impact is increased as

  5. Careful system design. Current interim results of the heat pump field test; Das Gesamtsystem sorgfaeltig auslegen. Aktuelle Zwischenergebnisse im Waermepumpen-Feldtest

    Energy Technology Data Exchange (ETDEWEB)

    Miara, Marek [Fraunhofer-Institut fuer Solare Energiesysteme ISE, Freiburg (Germany)

    2008-09-15

    How efficient are modern electric heat pumps for newly constructed single-family dwellings? This question is to be answered by the project ''Waermepumpen-Effizienz'' (heat pump efficiency), a scientific field test that started in the summer of 2006. The contribution presents first results, including the measured performance data. Further, factors were identified that interfere with the optimum operation of heat pumps. (orig.)

  6. PHYSICAL PROPERTIES OF KAOLIN/SAND SLURRY USED DURING SUBMERSIBLE MIXER PUMP TESTS AT TNX

    International Nuclear Information System (INIS)

    HANSEN, ERICH

    2005-01-01

    The purpose of this task is to characterize the physical properties of the kaolin/sand slurries used during the testing of a new submersible mixer pump (SMP) which had undergone performance testing at the TNX Waste Tank mockup facility from July 2004 through May 2005. During this time period, four identical SMPs were subjected to various water tests and four different tests using different batches of kaolin/sand slurries. The physical properties of the kaolin/sand slurries were measured for three of the four tests. In these tests, three different sample locations were used to pull samples, the SMP cooling water exit (CWE), the SMP fluid flow field (FFF), and SMP effective cleaning radius (ECR). The physical properties measured, though not for each sample, included rheology, weight percent total solids (wt% TS), density, kaolin/sand slurry particle size distribution (PSD), weight percent and particles size distribution of material greater than 45 microns

  7. Dynamic performance of a novel solar photovoltaic/loop-heat-pipe heat pump system

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Zhao, Xudong; Shen, Jingchun; Xu, Jihuan; Yu, Xiaotong

    2014-01-01

    between the PV/LHP heat-pump system and conventional solar/air energy systems was conducted. The research results indicated that under the testing outdoor conditions, the mean daily electrical, thermal and overall energetic and exergetic efficiencies of the PV/LHP module were 9.13%, 39.25%, 48.37% and 15.02% respectively, and the average values of COP th and COP PV/T were 5.51 and 8.71. The PV/LHP module was found to achieve 3–5% higher solar exergetic efficiency than standard PV systems and about 7% higher overall solar energetic efficiency than the independent solar collector. Compared to the conventional solar/air heat pump systems, the PV/LHP heat pump system could achieve a COP figure that is around 1.5–4 times that for the conventional systems. It is concluded that the computer model is able to achieve a reasonable accuracy in predicting the system’s dynamic performance. The PV/LHP heat pump system is able to harvest significant amount of solar heat and electricity, thus enabling achieving enhanced solar thermal and electrical efficiencies. All these indicate a positive implication that the proposed system has potential to be developed into a high performance PV/T technology that can contribute to significant fossil fuel energy saving and carbon emission

  8. Improvement of performance of vibration pump for molten salt at high temperature

    International Nuclear Information System (INIS)

    Watanabe, Hideo; Hashimoto, Hiroyuki; Katagiri, Kazunari; Tang Bomin.

    1996-01-01

    An experimental study was conducted to improve the performance of a vibration pump using a vibrating pipe for conveying the molten salt at 784 K. A new system to measure the pump performance safely at such a high temperature was developed, which was characterized by simplicity in construction and ease of operation. All parts of the system, including a pump, valves and a volume tank to measure the volumetric flow rate, were placed in a cylindrical tank. The pump was driven by an air actuator. Experimental results indicated that the measuring system fulfilled the intended function: the pump worked effectively and its performance was safely evaluated at a high temperature. A few possible improvements related to the construction of the pump were suggested based on the results. (author)

  9. Performance of solar photovoltaic array fed water pumping system ...

    African Journals Online (AJOL)

    DR OKE

    proposed method of water pumping system also provides the cost effective and highly ... in the proposed system because of its similar operational characteristics compared to SPV generator. .... (CCM) regardless of the atmospheric conditions.

  10. Experimental Study of the Performance of Air Source Heat Pump Systems Assisted by Low-Temperature Solar-Heated Water

    Directory of Open Access Journals (Sweden)

    Jinshun Wu

    2013-01-01

    Full Text Available Due to the low temperatures, the heating efficiency of air source heat pump systems during the winter is very low. To address this problem, a low-temperature solar hot water system was added to a basic air source heat pump system. Several parameters were tested and analyzed. The heat collection efficiency of the solar collector was analyzed under low-temperature conditions. The factors that affect the performance of the heat pumps, such as the fluid temperature, pressure, and energy savings, were analyzed for cases where the solar energy auxiliary heat pump and the air source heat pump are used independently. The optimal heating temperature and the changes in the fluid temperature were determined. The influence of the compression ratio and the coefficient of performance (COP were investigated theoretically. The results revealed the parameters that are important to the performance of the system. Several measures for improving the COP of the heat pump units are provided for other applications and future research.

  11. Pumping and recovery test analysis of groundwater Well in Martajasah, Bangkalan, Madura

    International Nuclear Information System (INIS)

    Adi Gunawan Muhammad

    2010-01-01

    Martajasah is one of the villages in Bangkalan Region, Madura, which have difficulty of fresh water. This area has a lot of potential that can be developed, particularly the potential of religious tourism. To increase the utilization potential of the region and support the public healthy, in 2007 PPGN - BATAN cooperated with the Government of Bangkalan has made one (I) exploration/production groundwater - wells with the expectation it can meet a demand of fresh water in the Martajasah Village area. To determine the capacity of the wells, the maximum discharge pumping and the optimum discharge pumping from the wells pumping test it is necessary should be conducted, which includes step draw down pumping test, constant rate pumping test and recovery test. The purpose of this activity is to determine amount of well loss, loss of aquifer, well hydraulics equations and the value of the efficiency of wells to determine the optimum and maximum discharge wells and calculate the value of transmissivity / transmissivity (T) from the aquifer. The scope of these activities include the preparation of working equipment, testing of all equipment, measurement of static groundwater table, pumping test, and analysis of pumping test. Based on the result from step draw down test, well hydraulics equations obtained Sw = 0.0079 Q + 0.000003 Q 2 , so that according to the well hydraulics equations are than obtained a maximum pumping discharge (Q max ) = 3.9 liters / second (336.7 m 3 ) / days) with the well efficiency (E) = 89%, so the optimum pumping discharge (Q opt )=3.455 liters / second = 298.52 m 3 /day. Based on the result from constant rate pumping test and recovery test showed adequate transmissivity of wells, i e T = 136.5 m 2 / day = 5.6875 m 2 / hour = 0.094 m 2 /minute. (author)

  12. Dual throat NaK pump performance evaluation (conceptual design of prototype)

    International Nuclear Information System (INIS)

    Johnson, J.L.

    1972-01-01

    An evaluation of the performance of the dual throat NaK pump for the 5 Kwe Reactor TE System is discussed. Performance at nominal operating conditions and at startup conditions is predicted. The basis for selection of this pump design is presented. (U.S.)

  13. Development of the Floating Centrifugal Pump by Use of Non Contact Magnetic Drive and Its Performance

    Directory of Open Access Journals (Sweden)

    Mitsuo Uno

    2004-01-01

    Full Text Available This article focuses on the impeller construction, non contact driving method and performance of a newly developed shaftless floating pump with centrifugal impeller. The drive principle of the floating impeller pump used the magnet induction method similar to the levitation theory of the linear motor. In order to reduce the axial thrust by the pressure different between shroud and disk side, the balance hole and the aileron blade were installed in the floating impeller. Considering the above effect, floating of an impeller in a pump was realized. Moreover, the performance curves of a developed pump are in agreement with a general centrifugal pump, and the dimensionless characteristic curve also agrees under the different rotational speed due to no mechanical friction of the rotational part. Therefore, utility of a non contacting magnetic-drive style pump with the floating impeller was made clear.

  14. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norfolk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norfolk, CT (United States)

    2016-02-05

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publically available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(TM), A.O. Smith Voltex(R), and Stiebel Eltron Accelera(R) 300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  15. LHI (low head safety injection) emergency cooling pump test for the EPR trademark in operation with solid matter loaded water

    International Nuclear Information System (INIS)

    Ganzmann, I.; Schulte, C.

    2010-01-01

    Emergency cooling pumps are essential and indispensable components of the NPP safety philosophy. In case of a loss-of coolant accident solid matter (debris: fibrous insulation material, concrete dust, pigment particles) might be released into the coolant, LHSI (low head safety injection) pumps have to ensure their performance capacity for a certain amount of debris without damage or loss of power. The authors describe the development of a test facility. The LHSI was tested in continuous operation over a time period of 14 days with a debris content of 1500 ppm (90% mineral wool fibers, 3% concrete dust, 3% pigment particles, 4% microporous insulation material). The pump did not show any damage or loss of hydraulic power. Further tests including thermoshock conditions (temperature changes of 160 C) are planned.

  16. Main boiler feed pump for fast breeder test reactor. Failure analysis and remedial measures

    International Nuclear Information System (INIS)

    Iyer, M.A.K.; Chande, S.K.; Raghuvir, A.D.; Baskar, S.; Kale, R.D.

    1994-01-01

    A small capacity ten stage 670 kw feed water pump is used for supplying feed water at a temperature of 190 deg C to a once through steam generator in the Fast Breeder Test Reactor at Kalpakkam. During preparatory heating up stage to commission the steam generator the pump suffered a severe loss of suction which resulted in failure of hydrostatic journal bearings and extensive damage to pump internals. This paper discusses the detailed mechanism of loss of suction, details of damage to the pump and various modifications carried out to prevent recurrence of the problem. (author). 4 refs., 3 figs., 2 tabs

  17. A Performance Prediction Method for Pumps as Turbines (PAT Using a Computational Fluid Dynamics (CFD Modeling Approach

    Directory of Open Access Journals (Sweden)

    Emma Frosina

    2017-01-01

    Full Text Available Small and micro hydropower systems represent an attractive solution for generating electricity at low cost and with low environmental impact. The pump-as-turbine (PAT approach has promise in this application due to its low purchase and maintenance costs. In this paper, a new method to predict the inverse characteristic of industrial centrifugal pumps is presented. This method is based on results of simulations performed with commercial three-dimensional Computational Fluid Dynamics (CFD software. Model results have been first validated in pumping mode using data supplied by pump manufacturers. Then, the results have been compared to experimental data for a pump running in reverse. Experimentation has been performed on a dedicated test bench installed in the Department of Civil Construction and Environmental Engineering of the University of Naples Federico II. Three different pumps, with different specific speeds, have been analyzed. Using the model results, the inverse characteristic and the best efficiency point have been evaluated. Finally, results have been compared to prediction methods available in the literature.

  18. Performance Evaluation Criterion at Equal Pumping Power for Enhanced Performance Heat Transfer Surfaces

    Directory of Open Access Journals (Sweden)

    Rajendra Karwa

    2013-01-01

    Full Text Available The existing equations for the thermal performance evaluation, at equal pumping power for the artificially roughened and smooth surfaced multitube and rectangular duct heat exchangers, have been critically reviewed because the literature survey indicates that a large number of researchers have not interpreted these equations correctly. Three of the most widely used equations have been restated with clearly defined constraints and conditions for their application. Two new equations have been developed for the design constraints not covered earlier.

  19. Comparison of heat pump performance using fin-and-tube and microchannel heat exchangers under frost conditions

    International Nuclear Information System (INIS)

    Shao, Liang-Liang; Yang, Liang; Zhang, Chun-Lu

    2010-01-01

    Vapor compression heat pumps are drawing more attention in energy saving applications. Microchannel heat exchangers can provide higher performance via less core volume and reduce system refrigerant charge, but little is known about their performance in heat pump systems under frosting conditions. In this study, the system performance of a commercial heat pump using microchannel heat exchangers as evaporator is compared with that using conventional finned-tube heat exchangers numerically and experimentally. The microchannel and finned-tube heat pump system models used for comparison of the microchannel and finned-tube evaporator performance under frosting conditions were developed, considering the effect of maldistribution on both refrigerant and air sides. The quasi-steady-state modeling results are in reasonable agreement with the test data under frost conditions. The refrigerant-side maldistribution is found remarkable impact on the microchannel heat pump system performance under the frost conditions. Parametric study on the fan speed and the fin density under frost conditions are conducted as well to figure out the best trade-off in the design of frost tolerant evaporators. (author)

  20. Monitoring the ground water level change during the pump test by using the Electric resistivity tomography

    Science.gov (United States)

    Hsu, H.; Chang, P. Y.; Yao, H. J.

    2017-12-01

    For hydrodynamics study of the unconfined aquifer in gravel formation, a pumping test was established to estimate the hydraulic conductivity in the midstream of Zhoushui River in Taiwan. The hydraulic parameters and the cone of depression could be estimated by monitoring the groundwater drawdown in an observation well which was in a short distance far from the pumping well. In this study we carried out the electric resistivity image monitoring during the whole pumping test. The electric resistivity data was measured with the surface and downhole electrodes which would produce a clear subsurface image of groundwater level through a larger distance than the distance between pumping and observation wells. The 2D electric image could also describe how a cone of depression truly created at subsurface. The continuous records could also show the change of groundwater level during the whole pumping test which could give a larger scale of the hydraulic parameters.

  1. A single well pumping and recovery test to measure in situ acrotelm transmissivity in raised bogs

    NARCIS (Netherlands)

    Schaaf, van der S.

    2004-01-01

    A quasi-steady-state single pit pumping and recovery test to measure in situ the transmissivity of the highly permeable upper layer of raised bogs, the acrotelm, is described and discussed. The basic concept is the expanding depression cone during both pumping and recovery. It is shown that applying

  2. Performance of a centrifugal pump running in inverse mode

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J. [Universidad de Extramadura, Badajoz (Spain). Departamento de Electronica e Ingenieria Electromecanica; Blanco, E.; Parrondo, J. [Oviedo Univ. (Spain). Departamento de Energia; Stickland, M.; Scanlon, T.J. [Strathclyde Univ., Glasgow (United Kingdom). Dept. of Mechanical Engineering

    2004-08-01

    This paper presents the functional characterization of a centrifugal pump used as a turbine. It shows the characteristics of the machine involved at several rotational speeds, comparing the respective flows and heads. In this way, it is possible to observe the influence of the rotational speed on efficiency, as well as obtaining the characteristics at constant head and runaway speed. Also, the forces actuating on the impeller were studied. An uncertainty analysis was made to assess the accuracy of the results. The research results indicate that the turbine characteristics can be predicted to some extent from the pump characteristics, that water flows out of the runner free of swirl flow at the best efficiency point, and that radial stresses are lower than in pump mode. (author)

  3. Cognitive Dysfunction after On-Pump Operations: Neuropsychological Characteristics and Optimal Core Battery of Tests

    Directory of Open Access Journals (Sweden)

    Anna G. Polunina

    2014-01-01

    Full Text Available Postoperative cognitive dysfunction (POCD is a mild form of perioperative ischemic brain injury, which emerges as memory decline, decreased attention, and decreased concentration during several months, or even years, after surgery. Here we present results of our three neuropsychological studies, which overall included 145 patients after on-pump operations. We found that the auditory memory span test (digit span was more effective as a tool for registration of POCD, in comparison with the word-list learning and story-learning tests. Nonverbal memory or visuoconstruction tests were sensitive to POCD in patients after intraoperative opening of cardiac chambers with increased cerebral air embolism. Psychomotor speed tests (digit symbol, or TMT A registered POCD, which was characteristic for elderly atherosclerotic patients. Finally, we observed that there were significant effects of the order of position of a test on the performance on this test. For example, the postoperative performance on the core tests (digit span and digit symbol showed minimal impairment when either of these tests was administered at the beginning of testing. Overall, our data shows that the selection of tests, and the order of which these tests are administered, may considerably influence the results of studies of POCD.

  4. Operability test procedure for 241-U compressed air system and heat pump

    International Nuclear Information System (INIS)

    Freeman, R.D.

    1994-01-01

    The 241-U-701 compressed air system supplies instrument quality compressed air to Tank Farm 241-U. The supply piping to the 241-U Tank Farm is not included in the modification. Modifications to the 241-U-701 compressed air system include installation of a 15 HP Reciprocating Air Compressor, Ingersoll-Rand Model 10T3NLM-E15; an air dryer, Hankinson, Model DH-45; and miscellaneous system equipment and piping (valves, filters, etc.) to meet the design. A newly installed heat pump allows the compressor to operate within an enclosed relatively dust free atmosphere and keeps the compressor room within a standard acceptable temperature range, which makes possible efficient compressor operation, reduces maintenance, and maximizes compressor operating life. This document is an Operability Test Procedure (OTP) which will further verify (in addition to the Acceptance Test Procedure) that the 241-U-701 compressed air system and heat pump operate within their intended design parameters. The activities defined in this OTP will be performed to ensure the performance of the new compressed air system will be adequate, reliable and efficient. Completion of this OTP and sign off of the OTP Acceptance of Test Results is necessary for turnover of the compressed air system from Engineering to Operations

  5. TESTING OF REFRIGERANT MIXTURES IN RESIDENTIAL HEAT PUMPS

    Science.gov (United States)

    The report gives results of an investigation of four possibilities for replacing Hydrochlorofluorocarbon-22 (HCFC-22) with the non-ozone-depleting new refrigerants R-407D and R-407C in residential heat pumps. The first and simplest scenario was a retrofit with no hardware modific...

  6. High performance hydraulic design techniques of mixed-flow pump impeller and diffuser

    International Nuclear Information System (INIS)

    Kim, Sung; Lee, Kyoung Yong; Kim, Joon Hyung; Kim, Jin Hyuk; Jung, Uk Hee; Choi, Young Seok

    2015-01-01

    In this paper, we describe a numerical study about the performance improvement of a mixed-flow pump by optimizing the design of the impeller and diffuser using a commercial computational fluid dynamics (CFD) code and design-of-experiments (DOE). The design variables of impeller and diffuser in the vane plane development were defined with a fixed meridional plane. The design variables were defined by the vane plane development, which indicates the blade-angle distributions and length of the impeller and diffuser. The vane plane development was controlled using the blade-angle in a fixed meridional plane. The blade shape of the impeller and diffuser were designed using a traditional method in which the inlet and exit angles are connected smoothly. First, the impeller optimum design was performed with impeller design variables. The diffuser optimum design was performed with diffuser design variables while the optimally designed impeller shape was fixed. The importance of the impeller and diffuser design variables was analyzed using 2 k factorial designs, and the design optimization of the impeller and diffuser design variables was determined using the response surface method (RSM). The objective functions were defined as the total head (Ht) and the total efficiency (ηt) at the design flow rate. The optimally designed model was verified using numerical analysis, and the numerical analysis results for both the optimum model and the reference model were compared to determine the reasons for the improved pump performance. A pump performance test was carried out for the optimum model, and its reliability was proved by a comparative analysis of the results of the numerical analysis and an experiment using the optimum model.

  7. An Enhanced Factor Analysis of Performance Degradation Assessment on Slurry Pump Impellers

    Directory of Open Access Journals (Sweden)

    Shilong Sun

    2017-01-01

    Full Text Available Slurry pumps, such as oil sand pumps, are widely used in industry to convert electrical energy to slurry potential and kinetic energy. Because of adverse working conditions, slurry pump impellers are prone to suffer wear, which may result in slurry pump breakdowns. To prevent any unexpected breakdowns, slurry pump impeller performance degradation assessment should be immediately conducted to monitor the current health condition and to ensure the safety and reliability of slurry pumps. In this paper, to provide an alternative to the impeller health indicator, an enhanced factor analysis based impeller indicator (EFABII is proposed. Firstly, a low-pass filter is employed to improve the signal to noise ratios of slurry pump vibration signals. Secondly, redundant statistical features are extracted from the filtered vibration signals. To reduce the redundancy of the statistic features, the enhanced factor analysis is performed to generate new statistical features. Moreover, the statistic features can be automatically grouped and developed a new indicator called EFABII. Data collected from industrial oil sand pumps are used to validate the effectiveness of the proposed method. The results show that the proposed method is able to track the current health condition of slurry pump impellers.

  8. Operation and control strategies in pre-series testing of cold circulating pumps for ITER

    International Nuclear Information System (INIS)

    Bhattacharya, R.; Vaghela, H.; Sarkar, B.; Srinivas, M.; Choukekar, K.

    2013-01-01

    Cryo-distribution system of ITER is responsible for the distribution and control of forced-flow supercritical helium for cooling of the superconducting magnets and the cryo-pumps. The requirements of cold circulating pumps (CCP) for mass flow rates and performance are much higher than presently existing and commercially available one used at 4.0 K helium. Design up-scaling with pre-series test of CCP has been proposed including test infrastructure. Operation and control strategies for the test distribution box (TDB) of test infrastructure have been developed and analyzed using steady state and dynamic process simulation to cope with the functional requirements of CCPs. Off-normal scenario with CCP inlet pressure variation is an important concern, dynamic process responses during such scenario have been evaluated to verify the operability of CCP. The paper describes process simulation to cope with the functional requirements of CCPs along with evaluation of off-normal scenario to verify the operability of CCP. (author)

  9. The effects of design parameters on vortex diode pump performance, 2

    International Nuclear Information System (INIS)

    Yoshitomi, Hideki; Koizumi, Tadao; Muroyama, Kenichi; Wada, Tsutomu.

    1989-01-01

    A fluidic pump with two vortex diodes is a new technology for transporting dangerous corrosive fluids without the use of moving parts. The pump can be connected with the discharge tank through series and cascade connections. In the previous report, we described the fundamentals and design criteria of the pump for the series connection case. This study has been performed with the same object as the previous work for the case of cascade connection. First, we present the basic pump characteristics with some dimensionless performance factors by analyzing the pump model. Then, the effects of the cylinder volumetric coefficient, driving pressure, suction-diode-to-delivery-diode-passage-area ratio and reverse-flow-to-forward-flow-resistance ratio of the vortex diode are investigated. As a result, the characteristic difference between series and cascade connections is clarified. Basic ways to decide the value of each performance factor are suggested. (author)

  10. Validity of in vitro tests on aqueous spray pumps as surrogates for nasal deposition, absorption, and biologic response.

    Science.gov (United States)

    Suman, Julie D; Laube, Beth L; Dalby, Richard

    2006-01-01

    This research investigated the impact of the full range of in vitro spray characterization tests described in the FDA Draft Bioequivalence Guidance on nasal deposition pattern, pharmacokinetics, and biological response to nicotine administered by two aqueous nasal spray pumps in human volunteers. Nicotine was selected as a model drug (even though it is not locally acting) based on its ability to alter cardiac function and available plasma assay. Significant differences in pump performance-including mean volume diameters, spray angle, spray width, and ovality ratios-were observed between the two pumps. There were no significant differences in deposition pattern, or pharmacokinetic or pharmacodynamic response to the nasally administered nicotine. Although there were statistical differences in the in vitro tests between the two pumps, these differences did not result in significant alterations in the site of droplet deposition within the nose, the rate and extent of nicotine absorption, or the physiologic response it induced. These results suggest that current measures of in vitro performance, particularly spray angle and spray pattern (ovality), may not be clinically relevant. Additional research is needed to define what spray pump characteristics are likely to produce differences in deposition pattern and drug response.

  11. Reassessment of debris ingestion effects on emergency core cooling-system pump performance

    International Nuclear Information System (INIS)

    Sciacca, F.W.; Rao, D.V.

    2004-01-01

    A study sponsored by the United States (US) Nuclear Regulatory Commission (NRC) was performed to reassess the effects of ingesting loss of coolant accident (LOCA) generated materials into emergency core cooling system (ECCS) pumps and the subsequent impact of this debris on the pumps' ability to provide long-term cooling to the reactor core. ECCS intake systems have been designed to screen out large post-LOCA debris materials. However, small-sized debris can penetrate these intake strainers or screens and reach critical pump components. Prior NRC-sponsored evaluations of possible debris and gas ingestion into ECCS pumps and attendant impacts on pump performance were performed in the early 1980's. The earlier study focused primarily on pressurised water reactor (PWR) ECCS pumps. This issue was revisited both to factor in our improved knowledge of LOCA generated debris and to address specifically both boiling water reactor (BWR) and PWR ECCS pumps. This study discusses the potential effects of ingested debris on pump seals, bearing assemblies, cyclone debris separators, and seal cooling water subsystems. This assessment included both near-term (less than one hour) and long-term (greater than one hour) effects introduced by the postulated LOCA. The work reported herein was performed during 1996-1997. (authors)

  12. Modeling and simulation performance of sucker rod beam pump

    Energy Technology Data Exchange (ETDEWEB)

    Aditsania, Annisa, E-mail: annisaaditsania@gmail.com [Department of Computational Sciences, Institut Teknologi Bandung (Indonesia); Rahmawati, Silvy Dewi, E-mail: silvyarahmawati@gmail.com; Sukarno, Pudjo, E-mail: psukarno@gmail.com [Department of Petroleum Engineering, Institut Teknologi Bandung (Indonesia); Soewono, Edy, E-mail: esoewono@math.itb.ac.id [Department of Mathematics, Institut Teknologi Bandung (Indonesia)

    2015-09-30

    Artificial lift is a mechanism to lift hydrocarbon, generally petroleum, from a well to surface. This is used in the case that the natural pressure from the reservoir has significantly decreased. Sucker rod beam pumping is a method of artificial lift. Sucker rod beam pump is modeled in this research as a function of geometry of the surface part, the size of sucker rod string, and fluid properties. Besides its length, sucker rod string also classified into tapered and un-tapered. At the beginning of this research, for easy modeling, the sucker rod string was assumed as un-tapered. The assumption proved non-realistic to use. Therefore, the tapered sucker rod string modeling needs building. The numerical solution of this sucker rod beam pump model is computed using finite difference method. The numerical result shows that the peak of polished rod load for sucker rod beam pump unit C-456-D-256-120, for non-tapered sucker rod string is 38504.2 lb, while for tapered rod string is 25723.3 lb. For that reason, to avoid the sucker rod string breaks due to the overload, the use of tapered sucker rod beam string is suggested in this research.

  13. Modeling and simulation performance of sucker rod beam pump

    International Nuclear Information System (INIS)

    Aditsania, Annisa; Rahmawati, Silvy Dewi; Sukarno, Pudjo; Soewono, Edy

    2015-01-01

    Artificial lift is a mechanism to lift hydrocarbon, generally petroleum, from a well to surface. This is used in the case that the natural pressure from the reservoir has significantly decreased. Sucker rod beam pumping is a method of artificial lift. Sucker rod beam pump is modeled in this research as a function of geometry of the surface part, the size of sucker rod string, and fluid properties. Besides its length, sucker rod string also classified into tapered and un-tapered. At the beginning of this research, for easy modeling, the sucker rod string was assumed as un-tapered. The assumption proved non-realistic to use. Therefore, the tapered sucker rod string modeling needs building. The numerical solution of this sucker rod beam pump model is computed using finite difference method. The numerical result shows that the peak of polished rod load for sucker rod beam pump unit C-456-D-256-120, for non-tapered sucker rod string is 38504.2 lb, while for tapered rod string is 25723.3 lb. For that reason, to avoid the sucker rod string breaks due to the overload, the use of tapered sucker rod beam string is suggested in this research

  14. Testing a Quantum Heat Pump with a Two-Level Spin

    Directory of Open Access Journals (Sweden)

    Luis A. Correa

    2016-04-01

    Full Text Available Once in its non-equilibrium steady state, a nanoscale system coupled to several heat baths may be thought of as a “quantum heat pump”. Depending on the direction of its stationary heat flows, it may function as, e.g., a refrigerator or a heat transformer. These continuous heat devices can be arbitrarily complex multipartite systems, and yet, their working principle is always the same: they are made up of several elementary three-level stages operating in parallel. As a result, it is possible to devise external “black-box” testing strategies to learn about their functionality and performance regardless of any internal details. In particular, one such heat pump can be tested by coupling a two-level spin to one of its “contact transitions”. The steady state of this external probe contains information about the presence of heat leaks and internal dissipation in the device and, also, about the direction of its steady-state heat currents. Provided that the irreversibility of the heat pump is low, one can further estimate its coefficient of performance. These techniques may find applications in the emerging field of quantum thermal engineering, as they facilitate the diagnosis and design optimization of complex thermodynamic cycles.

  15. Solar pumping: an introduction and update on the technology, performance, costs, and economics

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, Roy; McNelis, Bernard; Derrick, Anthony

    1993-01-01

    Solar pumping was first introduced into the field in the late nineteen-seventies, and since then manufacturers have refined their products to give considerable increases in performance and reliability. The steady fall in prices of solar photovoltaic (PV) panels means that solar pumping is becoming economic for an increasingly wide range of applications. This guide is written for the potential user to give a simple background to PV pumping technology and to help to identify the situations in which solar pumping should be considered. The early chapters act as a guide to those unfamiliar with PV pumping, illustrating typical applications and reviewing current technology. Following this are sections dealing with the range of currently available equipment and examining experience in the field. The final four sections cover the practical aspects of choosing a pumping system. This includes site evaluation and system sizing, a simple methodology for an economic assessment, and advice on procurement, installation and maintenance. The appendices contain various data and information referred to in the text. Two of these are of particular note: Appendix G, which contains quick reference data for wind, diesel and hand pumping scenarios; and appendix I which reviews the current and future economics of PV pumping in general in comparison with other pumping alternatives. (author)

  16. Development of low-cost, high-performance non-evaporable getter (NEG) pumps

    Energy Technology Data Exchange (ETDEWEB)

    Mase, Kazuhiko, E-mail: mase@post.kek.jp [Institute of Materials Structure Science, KEK, 1-1 Oho, Tsukuba 305-0801 (Japan); SOKENDAI (The Graduate University for Advanced Studies), 1-1 Oho, Tsukuba 305-0801 (Japan); Tanaka, Masato [Faculty of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku 263-8522 (Japan); Ida, Naoya [Faculty of Science and Technology, Hirosaki University, 1 Bunkyocho, Hirosaki 036-8560 (Japan); Kodama, Hiraku [Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan); Kikuchi, Takashi [Institute of Materials Structure Science, KEK, 1-1 Oho, Tsukuba 305-0801 (Japan)

    2016-07-27

    Low-cost, high-performance non-evaporable getter (NEG) pumps were constructed using commercial NEG pills comprising 70 wt% Zr, 24.6 wt% V, and 5.4 wt% Fe, a conflat flange with an outer diameter of 70, 152, or 203 mm (DN 40 CF, DN 100 CF, and DN 160 CF, respectively), and a tantalum heater. After activation at 400 °C for 30 min, the pumping speeds of a DN 40 CF NEG pump measured with the orifice method were 47–40, 8–6, 24–17, and 19–15 L/s for H{sub 2}, N{sub 2}, CO, and CO{sub 2} gasses, respectively. NEG pumps using DN 100 CF and DN 160 CF were also developed, and their pumping speeds are estimated. These NEG pumps are favorable alternatives to sputtering ion pumps in VSX beamlines because they do not produce hydrocarbons except during the activation period. The NEG pumps can also be used for accelerators, front ends, end stations, and differential pumping systems.

  17. Experimental evaluation on energy performance of innovative clean air heat pump for indoor environment control in summer and winter seasons

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Fang, Lei; Olesen, Bjarne W.

    2014-01-01

    Based on the air purification capacity of regenerative silica gel rotor, an innovative clean air heat pump (CAHP) was designed, developed and investigated through experimental studies. The CAHP integrated air purification, dehumidification and heating/cooling in one unit. A prototype of the CAHP...... was developed. Laboratory experimental studies were conducted to investigate its energy performance under different outdoor climates including cold, mild-cold, mild-hot and extremely hot and humid climates. The energy performance of the CAHP was then evaluated by comparing with a conventional air source heat...... pump. The results showed that to keep same indoor air quality, the CAHP could save substantial amount of energy. For example, compared to the conventional air source heat pump, the CAHP could save up to 59%, 40%, 30% of electricity for ventilation and air conditioning in a test room in summer...

  18. 3D Blade Hydraulic Design Method of the Rotodynamic Multiphase Pump Impeller and Performance Research

    Directory of Open Access Journals (Sweden)

    Yongxue Zhang

    2014-02-01

    Full Text Available A hydraulic design method of three-dimensional blade was presented to design the blades of the rotodynamic multiphase pump. Numerical simulations and bench test were conducted to investigate the performance of the example impeller designed by the presented method. The results obtained from the bench test were in good agreement with the simulation results, which indicated the reasonability of the simulation. The distributions of pressure and gas volume fraction were analyzed and the results showed that the designed impeller was good for the transportation of mixture composed of gas and liquid. In addition, the advantage of the impeller designed by the presented method was suitable for using in large volume rate conditions, which were reflected by the comparison of the head performance between this three-dimensional design method and another one.

  19. Optimized design and performance of a shared pump single clad 2 μm TDFA

    Science.gov (United States)

    Tench, Robert E.; Romano, Clément; Delavaux, Jean-Marc

    2018-05-01

    We report the design, experimental performance, and simulation of a single stage, co- and counter-pumped Tm-doped fiber amplifier (TDFA) in the 2 μm signal wavelength band with an optimized 1567 nm shared pump source. We investigate the dependence of output power, gain, and efficiency on pump coupling ratio and signal wavelength. Small signal gains of >50 dB, an output power of 2 W, and small signal noise figures of performance agree well with the experimental data. We also discuss performance tradeoffs with respect to amplifier topology for this simple and efficient TDFA.

  20. Sodium test of the Super-Phenix full size primary pump shaft on the CPV-1 test rig at ENEA-Brasimone

    International Nuclear Information System (INIS)

    Contardi, T.; Rapezzi, L.; Partiti, C.; Zola, M.; Denimal, P.

    1984-01-01

    Tests on FBR Superphenix primary pump shaft were performed within the sodium-cooled FBR common research and development programs provided for by the cooperation agreement between ENEA and CEA. These tests were performed in CPV-1 plant ENEA - Brasimone Energy Research Center. The CPV-1 rig was built by FIAT-TTG and reproduces the reactor operating conditions (sodium-temperature and level, shaft inclination, etc..). Furthermore, CPV-1 rig's most interesting feature is its possibility to apply seismic stresses to test section by means of an oleodynamic actuator. Pivoterie-1 test section was made by JEUMONT-SCHNEIDER which built Superphenix pumps too; it was given to ENEA by FIAT-TTG. Seismic tests were performed with the cooperation of ISMES and FIAT-TTG. (author)

  1. Sudden venting test of an emergency bearing for the magnet bearing type compound molecular pump

    International Nuclear Information System (INIS)

    Hiroki, Seiji; Abe, Tetsuya; Murakami, Yoshio; Okamoto, Masatomo; Iguchi, Masashi; Nakamura, Jyunichi; Nakazeki, Tsugito.

    1995-01-01

    The vacuum evacuation system for nuclear fusion reactors bears the role of exhausting hydrogen isotopes in large quantity together with helium continuously for long hours, and as the high vacuum pumps for this purpose, the mechanical pumps which can do continuous evacuation and decrease the quantity of staying radioactive tritium, such as turbo molecular pumps and compound molecular pumps, are promising. Because of the compatibility with tritium, oil lubrication is not desirable, accordingly, the pumps with ceramic rotating vanes and magnetic bearings are demanded. As a part of the development of a magnetic bearing type mechanical pump which can be used for nuclear fusion reactors, the compound molecular pump, in which emergency bearings were incorporated, was made for trial, and the test of sudden air intrusion was carried out, as the results, various knowledges were obtained. The constitution of the testing setup, and the test results are reported. When air was injected at the pressure rise of 3.3x10 4 Pa/s from exhaust port side, after about 2.5 s, the maximum lift of 4.2x10 3 N arose. When air was injected at the pressure rise of 2.7x10 5 Pa/s from the suction part side, after about 0.4s, the maximum lift of 6.9x10 3 N arose. In the air injection alternately from the suction port and exhaust port sides, the emergency bearings functioned normally in 10 times of the test. (K.I.)

  2. Experimental performance analysis and optimization of a direct expansion solar-assisted heat pump water heater

    International Nuclear Information System (INIS)

    Li, Y.W.; Wang, R.Z.; Wu, J.Y.; Xu, Y.X.

    2007-01-01

    In this study, a direct expansion solar-assisted heat pump water heater (DX-SAHPWH) with rated input power 750 W was tested and analyzed. Through experimental research in spring and thermodynamics analysis about the system performance, some suggestions for the system optimization are proposed. Then, a small-type DX-SAHPWH with rated input power 400 W was built, tested and analyzed. Through exergy analysis for each component of DX-SAHPWH (A) and (B), it can be seen that the highest exergy loss occurs in the compressor and collector/evaporator, followed by the condenser and expansion valve, respectively. Furthermore, some methods are suggested to improve the performance of each component, especially the collector/evaporator. A methodology for the design optimization of the collector/evaporator was introduced and applied. In order to maintain a proper matching between the heat pumping capacity of the compressor and the evaporative capacity of the collector/evaporator under widely varying ambient conditions, the electronic expansion valve and variable frequency compressor are suggested to be utilized for the DX-SAHPWH

  3. Tritium evacuataion performance of a large oil-free reciprocating pump

    International Nuclear Information System (INIS)

    Hayashi, T.; Yamada, M.; Konishi, S.

    1994-01-01

    In fusion reactors large dry vacuum and transfer pumps are needed for various applications such as backing and roughing for torus evacuation, gas transfer and processing in the fuel cycle, and facility vacuum for safety systems. There are some commercial use oil-free pumps, however, most of all these pumps have low pumping function for hydrogen gases and also at high discharge pressure. A large oil-free reciprocating pump has been developed for high tritium services at the Tritium Process Laboratory (TPL) in the Japan Atomic Energy Research Institute (JAERI). This pump is mainly composed four-stage compression vertical cylinders, a single acting piston with piston rings made by carbon polyimide composite and two buffer tanks. Each stage in the cylinder has 16 special check valves. The process line is isolated completely to crank-case oil by dynamic metal bellows. Design pumping speed is 54 m 3 /hr for hydrogen gas at 5 Torr of discharge pressures. After cold testing in TPL, this pump was shipped and installed in the Tritium Systems Test Assembly (TSTA) loop of the Los Alamos National Laboratory under the US-Japan Collaboration program on fusion technology

  4. Cascade Distiller System Performance Testing Interim Results

    Science.gov (United States)

    Callahan, Michael R.; Pensinger, Stuart; Sargusingh, Miriam J.

    2014-01-01

    The Cascade Distillation System (CDS) is a rotary distillation system with potential for greater reliability and lower energy costs than existing distillation systems. Based upon the results of the 2009 distillation comparison test (DCT) and recommendations of the expert panel, the Advanced Exploration Systems (AES) Water Recovery Project (WRP) project advanced the technology by increasing reliability of the system through redesign of bearing assemblies and improved rotor dynamics. In addition, the project improved the CDS power efficiency by optimizing the thermoelectric heat pump (TeHP) and heat exchanger design. Testing at the NASA-JSC Advanced Exploration System Water Laboratory (AES Water Lab) using a prototype Cascade Distillation Subsystem (CDS) wastewater processor (Honeywell d International, Torrance, Calif.) with test support equipment and control system developed by Johnson Space Center was performed to evaluate performance of the system with the upgrades as compared to previous system performance. The system was challenged with Solution 1 from the NASA Exploration Life Support (ELS) distillation comparison testing performed in 2009. Solution 1 consisted of a mixed stream containing human-generated urine and humidity condensate. A secondary objective of this testing is to evaluate the performance of the CDS as compared to the state of the art Distillation Assembly (DA) used in the ISS Urine Processor Assembly (UPA). This was done by challenging the system with ISS analog waste streams. This paper details the results of the AES WRP CDS performance testing.

  5. LOX/LH2 vane pump for auxiliary propulsion systems

    Science.gov (United States)

    Hemminger, J. A.; Ulbricht, T. E.

    1985-01-01

    Positive displacement pumps offer potential efficiency advantages over centrifugal pumps for future low thrust space missions. Low flow rate applications, such as space station auxiliary propulsion or dedicated low thrust orbiter transfer vehicles, are typical of missions where low flow and high head rise challenge centrifugal pumps. The positive displacement vane pump for pumping of LOX and LH2 is investigated. This effort has included: (1) a testing program in which pump performance was investigated for differing pump clearances and for differing pump materials while pumping LN2, LOX, and LH2; and (2) an analysis effort, in which a comprehensive pump performance analysis computer code was developed and exercised. An overview of the theoretical framework of the performance analysis computer code is presented, along with a summary of analysis results. Experimental results are presented for pump operating in liquid nitrogen. Included are data on the effects on pump performance of pump clearance, speed, and pressure rise. Pump suction performance is also presented.

  6. Development and testing of mini heat pump for low-energy houses. Final report; Udvikling og test af minivarmepumpe til lavenergihuse. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Per Henrik; Madsen, Claus; Frederiksen, Klaus; Andreasen, Marcin Blazniak (Teknologisk Institut, Koele- og Varmepumpeteknik, Taastrup (Denmark))

    2010-11-15

    New residential houses are better insulated, and this reduces the need for heat during the winter period. In addition to this many new houses have floor heating systems. This combination is favourable for small heat pumps which can produce heat to central water systems with low water temperatures in the area 25 to 35 C. 4 prototypes of mini heat pumps of the brine/water type was build and tested in the refrigeration laboratory at the Danish Technological Institute (DTI). The prototypes are using a variable speed compressor (Danfoss SLV12) which originally is developed for plug-in supermarket cabinets. The heating capacity of the prototypes can vary between 1.0 and 2.1 kW. The refrigerant charge is 150 grams of R290 (propane). Two prototypes are charged with 375 grams of R134a. Tests were conducted following EN14511 at 0/+35 C and COP was measured to between 3.2 and 3.6 depending of the compressor speed and the type of plate heat exchangers used. This is quite good for such small machines. One of the prototypes was installed in the Energy Flex House which is a new highly insulated test house build at the DTI. The house was equipped with two heat pumps: 1. An exhaust air heat pump taking energy from exhaust air and producing hot tap water and heating the intake air; 2. A mini heat pump for floor heating taking energy from ground source outside the house. A family with four persons lives in the house. During the cold winter 2009/2010 the mini heat pump showed good performance and the COP varies between 2.0 and 4.0. The lower value was caused by a fault in the floor heating hoses, which made it necessary to increase the temperature of the central heating water, which decreased the efficiency of the heat pump during the coldest winter period. The floor heating system has been repaired, and a new prototype heat pump with a slightly bigger compressor has been installed for the heating season 2010/2011. A heat pump manufacturer is now producing this combination of exhaust

  7. Application of the constant rate of pressure change method to improve jet pump performance

    International Nuclear Information System (INIS)

    Long, X P; Yang, X L

    2012-01-01

    This paper adopts a new method named the constant rate of pressure change (CRPC) to improve the jet pump performance. The main contribution of this method is that the diffuser generates uniform pressure gradient. The performance of the jet pump with new diffusers designed by the CRPC method, obtained by CFD methods, was compared with that of the jet pump with traditional conical diffusers. It is found that the CRPC diffuser produces a linear pressure increase indeed. The higher friction loss and the separation decrease the CRPC diffuser efficiency and then lower the pump efficiency. The pump with shorter throats has higher efficiency at small flow ratio while its efficiency is lower than the original pump at lager flow ratio and the peak efficiency of the pumps with the throat length of 5-6 Dt is higher than that of the pumps with other throat length. When the throat length is less than 4 Dt, the CRPC diffuser efficiency is higher than the conical diffuser. The CRPC method could also be used to design the nozzle and other situations needing the pressure change gradually.

  8. Pump performance and reliability follow-up by the French Safety Authorities

    International Nuclear Information System (INIS)

    Clausner, J.P.; De La Ronciere, X.; Scott de Martinville, E.; Courbiere, P.

    1990-12-01

    This paper will present, through actual examples, the methodology of the performance and reliability safety-related pumps evaluation applied by the French Safety Authorities and the lessons drawn from this evaluation

  9. Program listing for heat-pump seasonal-performance model (SPM). [CNHSPM

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-30

    The computer program CNHSPM is listed which predicts heat pump seasonal energy consumption (including defrost, cyclic degradation, and supplementary heat) using steady state rating point performance and binned weather data. (LEW)

  10. Performance of a Solar Heating System with Photovoltaic Thermal Hybrid Collectors and Heat Pump

    DEFF Research Database (Denmark)

    Dannemand, Mark; Furbo, Simon; Perers, Bengt

    2017-01-01

    . When the solar collectors are unable to supply the heat demand an auxiliary heat source is used. Heat pumps can generate this heat. Liquid/water heat pumps have better performance than air/water heat pumps in cold climates but requires installation of a tubing system for the cold side of the heat pump....... The tubes are typically placed in the ground, requires a significant land area and increase the installation cost. A new system design of a solar heating system with two storage tanks and a liquid/water heat pump is presented. The system consists of PVT collectors that generate both heat and electricity......The energy consumption in buildings accounts for a large part of the World’s CO2 emissions. Much energy is used for appliances, domestic hot water preparation and space heating. In solar heating systems, heat is captured by solar collectors when the sun is shining and used for heating purposes...

  11. Titanium sublimation pumping systems and performances on the Tandem Mirror Experiment-Upgrade (TMX-U)

    International Nuclear Information System (INIS)

    Pico, R.E.

    1986-01-01

    This paper presents a brief history of the TMX-U Titanium Sublimation Pumping process (gettering). Titanium sublimation pumps offer an economical means of pumping chemically active gases (especially hydrogen) at high speeds, and serves as additional pumps, along with liquid nitrogen-cooled panels, to provide pumping during each physics experiment. Because of the size of the system, a complex computer program was written which is run-time compiled, and then run by the computer. With the multi-tasking capability of the computer, five programs are used in operation and run simultaneously. All getter wire history, deposition, and system notes are stored on the external disc drive. The progress and performance in the four years the system has been used, two year manually controlled, and two computer controlled with be covered. Emphasis on the computer control system and its by-products, which enhance the operation of the TMX-U, will be the subject of this paper

  12. Analysis of pumping performances in one-stage turbomolecular pump by 3D direct simulation Monte Carlo calculation

    International Nuclear Information System (INIS)

    Sheng Wang; Hisashi Ninokata

    2005-01-01

    The turbomolecular pump (TMP) has been applied in many fields for producing high and ultrahigh vacuum. It works mainly in conditions of free molecular and transitional flow where the mathematical model is the Boltzmann equation. In this paper, direct simulation Monte Carlo (DSMC) method is applied to simulate the one-stage TMP with a 3D analysis in a rotating reference frame. Considering the Coriolis and centrifugal accelerations, the equations about the molecular velocities and position are deduced. The VSS model and NTC collision schemes are used to calculate the intermolecular collisions. The diffuse reflection is employed on the molecular reflection from the surfaces of boundary. The transmission probabilities of gas flow in two opposite flow direction, the relationship between the mass flow rate and the pressure difference, the pumping performances including the maximum compression ratio on different outlet pressures in free molecular flow and transitional flow and the maximum pumping efficiency on different blade angles are calculated. The transmission probabilities are applied to analyze the relationship between the outlet pressure and the maximum pressure ratio. The numerical results show good quantitative agreement with the existing experiment data. (authors)

  13. Analysis of pumping tests: Significance of well diameter, partial penetration, and noise

    Science.gov (United States)

    Heidari, M.; Ghiassi, K.; Mehnert, E.

    1999-01-01

    The nonlinear least squares (NLS) method was applied to pumping and recovery aquifer test data in confined and unconfined aquifers with finite diameter and partially penetrating pumping wells, and with partially penetrating piezometers or observation wells. It was demonstrated that noiseless and moderately noisy drawdown data from observation points located less than two saturated thicknesses of the aquifer from the pumping well produced an exact or acceptable set of parameters when the diameter of the pumping well was included in the analysis. The accuracy of the estimated parameters, particularly that of specific storage, decreased with increases in the noise level in the observed drawdown data. With consideration of the well radii, the noiseless drawdown data from the pumping well in an unconfined aquifer produced good estimates of horizontal and vertical hydraulic conductivities and specific yield, but the estimated specific storage was unacceptable. When noisy data from the pumping well were used, an acceptable set of parameters was not obtained. Further experiments with noisy drawdown data in an unconfined aquifer revealed that when the well diameter was included in the analysis, hydraulic conductivity, specific yield and vertical hydraulic conductivity may be estimated rather effectively from piezometers located over a range of distances from the pumping well. Estimation of specific storage became less reliable for piezemeters located at distances greater than the initial saturated thickness of the aquifer. Application of the NLS to field pumping and recovery data from a confined aquifer showed that the estimated parameters from the two tests were in good agreement only when the well diameter was included in the analysis. Without consideration of well radii, the estimated values of hydraulic conductivity from the pumping and recovery tests were off by a factor of four.The nonlinear least squares method was applied to pumping and recovery aquifer test data in

  14. Factors influencing the performance and efficiency of solar water pumping systems:  a review

    OpenAIRE

    Gouws, Rupert; Lukhwareni, Thendo

    2012-01-01

    The world is having an energy crisis and currently there is a strong drive towards renewable energy. A renewable energy option is solar energy, where by means of photovoltaic (PV) modules electrical energy can be produced. A residential as well as industrial application for these PV modules is solar water pumping systems. Disadvantages of solar water pumping systems are low performance and low energy efficiency. This paper provides a review on the factors that influence the performance and ef...

  15. CRBRP sodium circulating pump design evaluation

    International Nuclear Information System (INIS)

    Marrujo, F.; Cook, M.; Manners, L.; Cothran, H.

    1977-12-01

    The following topics are discussed: (1) primary sodium pump design concept; (2) pump level control system; (3) resolution of design problems in stress analysis, dynamics analysis, and mechanical design; (4) model testing; (5) planned performance tests; and (6) fabrication status

  16. Design and performance of differential pumping system of coating unit

    International Nuclear Information System (INIS)

    Karmakar, P; Maiti, N; Bapat, A V

    2008-01-01

    A box type coating unit has been developed in view of dual purpose of optical and reactive coating. The system is divided in two parts namely, substrate chamber (800mm x 800 mm x 100 mm) and gun chamber (800mm x 800 mm x 100 mm). Coating material is evaporated in the substrate chamber by traverse (270 deg.) electron beams. Reactive gas is injected in the substrate chamber by up-stream pressure controller to reach set pressures in the range of 1x10 -3 mbar to 1x10 -4 mbar for gas flow rate in the range of 0-30 sccm. Traverse EB guns (10 kV, 15 kW, 2 No) are mounted inside gun chamber. The gun chamber vacuum should be better than 1x10 -5 mbar for the operation of EB guns. Both these chambers are connected by the apertures provided on the intermediate bifurcation plate for the passage of electron beams. Through the apertures the reactive gas leaks from the substrate chamber to the gun chamber due to differential pressure. The differential pumping system consists of individual pumping modules for the substrate chamber and the gun chamber. The paper focuses upon the design of differential pumping system in view of determination of steady state differential pressures for different flow rates of reactive gas. It has been noticed that on introduction of reactive gas in the substrate chamber, the pressures in the substrate chamber and the gun chamber oscillates before converging to steady state values. Theoretically calculated values have been compared with the experimental values as design validation

  17. Cavitation performance improvement of high specific speed mixed-flow pump

    International Nuclear Information System (INIS)

    Chen, T; Sun, Y B; Wu, D Z; Wang, L Q

    2012-01-01

    Cavitation performance improvement of large hydraulic machinery such as pump and turbine has been a hot topic for decades. During the design process of the pumps, in order to minimize size, weight and cost centrifugal and mixed-flow pump impellers are required to operate at the highest possible rotational speed. The rotational speed is limited by the phenomenon of cavitation. The hydraulic model of high-speed mixed-flow pump with large flow rate and high pumping head, which was designed based on the traditional method, always involves poor cavitation performance. In this paper, on the basis of the same hydraulic design parameters, two hydraulic models of high-speed mixed-flow pump were designed by using different methods, in order to investigate the cavitation and hydraulic performance of the two models, the method of computational fluid dynamics (CFD) was adopted for internal flow simulation of the high specific speed mixed-flow pump. Based on the results of numerical simulation, the influences of impeller parameters and three-dimensional configuration on pressure distribution of the blades' suction surfaces were analyzed. The numerical simulation results shows a better pressure distribution and lower pressure drop around the leading edge of the improved model. The research results could provide references to the design and optimization of the anti-cavitation blade.

  18. Performance analysis of diesel engine heat pump incorporated with heat recovery

    International Nuclear Information System (INIS)

    Shah, N.N.; Huang, M.J.; Hewitt, N.J.

    2016-01-01

    Highlights: • Diesel engine heat pump with heat recovery. • Water-to-water source heat pump based on R134a. • Possibility for different flow temperature for heat distribution system. • Possible retrofit application in off-gas or weak electricity network area. • Potential to diversify use of fossil fuel, primary energy and CO_2 emission savings. - Abstract: This paper presents experimental study of diesel engine heat pump (DEHP) system to find potential as retrofit technology in off-gas or weak electricity network area to replace existing gas/oil/electric heating system in domestic sector. Test set-up of diesel engine driven water-to-water heat pump system was built which included heat recovery arrangement from the engine coolant & exhaust gas. The system was designed to meet typical house heating demand in Northern Ireland. Performance of DEHP was evaluated to meet house-heating demand at different flow temperature (35, 45, 55 & 65 °C), a typical requirement of underfloor space heating, medium/high temperature radiators and domestic hot water. The performance was evaluated against four-evaporator water inlet temperature (0, 5, 10 & 15 °C) and at three different engine speed 1600, 2000 & 2400 rpm. Experiment results were analysed in terms of heating/cooling capacity, heat recovery, total heat output, primary energy ratio (PER), isentropic efficiency, etc. Test results showed that DEHP is able to meet house-heating demand with help of heat recovery with reduced system size. Heat recovery contributed in a range of 22–39% in total heat output. It is possible to achieve high flow temperature in a range of 74 °C with help of heat recovery. Overall system PER varied in a range of 0.93–1.33. Speed increment and flow temperature has significant impact on heat recovery, total heat output and PER. A case scenario with different flow temperature to match house-heating demand has been presented to show working potential with different heat distribution system

  19. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-02-01

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads.

  20. Calculation method for the seasonal performance of heat pump compact units and validation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wemhoener, C.; Dott, R.; Afjei, Th. [University of Applied Sciences Northwestern Switzerland, Institute of Energy in Buildings, Muttenz (Switzerland); Huber, H.; Helfenfinger, D.; Keller, P.; Furter, R. [University of Applied Sciences Lucerne (HTA), Test center HLKS, Horw (Switzerland)

    2007-02-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) takes a look at compact heat pump units that have been developed for the heating of low energy consumption houses built to MINERGIE or MINERGIE-P standards. These units, which combine the functions of space heating, domestic hot water preparation and ventilation in one unit are described. A testing procedure developed at the University of Applied Science in Lucerne, Switzerland, using a test rig for the measurement of the seasonal performance factor (SPF) is described. A calculation method based on temperature classes for the calculation of the SPF of combined heat pump systems for space heating and domestic hot water preparation that was developed by the Institute of Energy in Buildings at the University of Applied Sciences Northwestern Switzerland is examined. Two pilot plants allowing detailed field monitoring of two compact units are described. One pilot plant installed in a single-family house built to MINERGIE standard in Gelterkinden, Switzerland, provided data on a compact unit. These results of measurements made on this and a further installation in a MINERGIE-P ultra-low energy consumption house in Zeiningen, Switzerland, are presented and discussed. Calculation methods, including exergy considerations are reviewed and their validation is discussed.

  1. Wear Performance of Bionic Dimpled-Shape Pistons of Mud Pump

    Directory of Open Access Journals (Sweden)

    Xuejing Cheng

    2017-01-01

    Full Text Available The piston is one of the parts that most easily become worn out and experience failure in mud pumps for well drilling. By imitating the body surface morphology of the dung beetle, this paper proposed a new type (BW-160 of mud pump piston that had a dimpled shape in the regular layout on the piston leather cup surface and carried out a performance test on the self-built test rig. Firstly, the influence of different dimple diameters on the service life of the piston was analyzed. Secondly, the analysis of the influence of the dimple central included angle on the service life of the piston under the same dimple area density was obtained. Thirdly, the wear of the new type of piston under the same wear time was analyzed. The experimental results indicated that the service life of the piston with dimples on the surface was longer than that of L-Standard pistons, and the maximum increase in the value of service life was 92.06%. Finally, the Workbench module of the software ANSYS was used to discuss the wear-resisting mechanism of the new type of piston.

  2. James A. FitzPatrick Nuclear Power Plant recirculation pumps vibration system installation and performance since July 7, 1990

    International Nuclear Information System (INIS)

    Lefter, J.

    1992-01-01

    James A. FitzPatrick recirculation pumps are vertical units consisting of General Electric 5,300 hp variable speed motors driving Byron Jackson Pumps. Speed range is from 400 rpm at 20% reactor power to 1,480 rpm at 100% power. Full speed pump output is 42,500 gpm at 530 ft. head. This paper describes the vibration monitoring system. The design of this vibration monitoring system took about five months and was installed during plant refueling outage between February and May 1990. The objectives of this project were as follows: (1) document and assess the mechanical condition of each RRP during plant startup normal operation and shutdown; (2) identify any areas of operation that might be harmful to the unit; (3) perform impact testing of the proximity probe brackets to determine if any bracket resonances existed in the 0 to 20 times operating speed region (0 to 20X); (4) define and recommend Acceptance Regions in the TDM system

  3. Centrifugal pumps

    CERN Document Server

    Anderson, HH

    1981-01-01

    Centrifugal Pumps describes the whole range of the centrifugal pump (mixed flow and axial flow pumps are dealt with more briefly), with emphasis on the development of the boiler feed pump. Organized into 46 chapters, this book discusses the general hydrodynamic principles, performance, dimensions, type number, flow, and efficiency of centrifugal pumps. This text also explains the pumps performance; entry conditions and cavitation; speed and dimensions for a given duty; and losses. Some chapters further describe centrifugal pump mechanical design, installation, monitoring, and maintenance. The

  4. Design and performance prediction of an adsorption heat pump with multi-cooling tubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.C.; Zhang, J.P. [College of Electromechanical Engineering, Qingdao University, Qingdao 266071 (China)

    2009-05-15

    Widespread application of adsorption heat pumps has been delayed not only by poor heat and mass transfer performance but also by low operating reliability because high vacuum must be maintained in the adsorption cooling system, especially in a water system. An adsorption cooling tube is a tube in which an adsorber, a condenser and an evaporator are all completely housed to construct a small scale adsorption cooling unit. In this work, an adsorption cooling tube and an adsorption heat pump with multi-cooling tubes are designed. A theoretical model is built to simulate the performance of the designed chiller. According to the results, the coefficient of performance and specific cooling power reach about 0.5 and 85 W/kg adsorbent, respectively, at the hot water temperature of 85 C. These results indicate that the designed heat pump in this work would provide a better choice if the operating reliability became crucial for an adsorption heat pump. (author)

  5. Design and performance prediction of an adsorption heat pump with multi-cooling tubes

    International Nuclear Information System (INIS)

    Wang, D.C.; Zhang, J.P.

    2009-01-01

    Widespread application of adsorption heat pumps has been delayed not only by poor heat and mass transfer performance but also by low operating reliability because high vacuum must be maintained in the adsorption cooling system, especially in a water system. An adsorption cooling tube is a tube in which an adsorber, a condenser and an evaporator are all completely housed to construct a small scale adsorption cooling unit. In this work, an adsorption cooling tube and an adsorption heat pump with multi-cooling tubes are designed. A theoretical model is built to simulate the performance of the designed chiller. According to the results, the coefficient of performance and specific cooling power reach about 0.5 and 85 W/kg adsorbent, respectively, at the hot water temperature of 85 deg. C. These results indicate that the designed heat pump in this work would provide a better choice if the operating reliability became crucial for an adsorption heat pump.

  6. Algorithm to determine electrical submersible pump performance considering temperature changes for viscous crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Valderrama, A. [Petroleos de Venezuela, S.A., Distrito Socialista Tecnologico (Venezuela); Valencia, F. [Petroleos de Venezuela, S.A., Instituto de Tecnologia Venezolana para el Petroleo (Venezuela)

    2011-07-01

    In the heavy oil industry, electrical submersible pumps (ESPs) are used to transfer energy to fluids through stages made up of one impeller and one diffuser. Since liquid temperature increases through the different stages, viscosity might change between the inlet and outlet of the pump, thus affecting performance. The aim of this research was to create an algorithm to determine ESPs' performance curves considering temperature changes through the stages. A computational algorithm was developed and then compared with data collected in a laboratory with a CG2900 ESP. Results confirmed that when the fluid's viscosity is affected by the temperature changes, the stages of multistage pump systems do not have the same performance. Thus the developed algorithm could help production engineers to take viscosity changes into account and optimize the ESP design. This study developed an algorithm to take into account the fluid viscosity changes through pump stages.

  7. Prediction of Hydraulic Performance of a Scaled-Down Model of SMART Reactor Coolant Pump

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sun Guk; Park, Jin Seok; Yu, Je Yong; Lee, Won Jae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-08-15

    An analysis was conducted to predict the hydraulic performance of a reactor coolant pump (RCP) of SMART at the off-design as well as design points. In order to reduce the analysis time efficiently, a single passage containing an impeller and a diffuser was considered as the computational domain. A stage scheme was used to perform a circumferential averaging of the flux on the impeller-diffuser interface. The pressure difference between the inlet and outlet of the pump was determined and was used to compute the head, efficiency, and break horse power (BHP) of a scaled-down model under conditions of steady-state incompressible flow. The predicted curves of the hydraulic performance of an RCP were similar to the typical characteristic curves of a conventional mixed-flow pump. The complex internal fluid flow of a pump, including the internal recirculation loss due to reverse flow, was observed at a low flow rate.

  8. Energy Performance and Pressure Fluctuation of a Multiphase Pump with Different Gas Volume Fractions

    Directory of Open Access Journals (Sweden)

    Jinsong Zhang

    2018-05-01

    Full Text Available Large petroleum resources in deep sea, and huge market demands for petroleum need advanced petroleum extraction technology. The multiphase pump, which can simultaneously transport oil and gas with considerable efficiency, has been a crucial technology in petroleum extraction. A numerical approach with mesh generation and a Navier-Stokes equation solution is employed to evaluate the effects of gas volume fraction on energy performance and pressure fluctuations of a multiphase pump. Good agreement of experimental and calculation results indicates that the numerical approach can accurately simulate the multiphase flow in pumps. The pressure rise of a pump decreases with the increasing of flow rate, and the pump efficiency decreases with the increasing of GVF (the ratio of the gas volume to the whole volume. Results show that the dominant frequencies of pressure fluctuation in the impeller and diffuser are eleven and three times those of the impeller rotational frequency, respectively. Due to the larger density of water and centrifugal forces, the water aggregates to the shroud and the gas gathers to the hub, which renders the distribution of GVF in the pump uneven. A vortex develops at the blade suction side, near the leading edge, induced by the leakage flow, and further affects the pressure fluctuation in the impeller. The obvious vortex in the diffuser indicates that the design of the divergence angle of the diffuser is not optimal, which induces flow separation due to large diffusion ratio. A uniform flow pattern in the impeller indicates good hydraulic performance of the pump.

  9. Seismic tests in sodium of the SPX-1 primary pump shaft carried out in the CPV-1 test rig at ENEA-Brasimone

    International Nuclear Information System (INIS)

    Contardi, T.; Rapezzi, L.; Le Coz, P.; Tigeot, Y.; Partiti, C.; Zola, M.; Denimal, P.

    1988-01-01

    Dynamic tests were carried out by ISMES, on behalf of ENEA and CEA and in co-operation with FIAT/TTG, on a SPX-1 primary pump shaft. These tests were conducted, mainly in sodium, in the CPV-1 test rig at the ENEA Brasimone Center. The excitation was applied to the flange supporting the hydrostatic bearing. After some preliminary analysis performed in absence of liquid sodium and at ambient temperature, the following tests were performed on the rig filled with sodium at operating temperature: (A) sine sweeps between 1 and 15 Hz, (B) ambient vibration investigation, and (C) seismic tests with a SSE acceleration time-history (20 s duration) calculated by CEA at hydrostatic bearing level. Two sets of seismic tests were carried out, each time increasing amplitudes up to 70% of SSE. This value was not exceeded for safety reasons and actuator power limit. The first set of tests began in nominal operating conditions; when 70% of SSE was reached, pressure feed to hydrostatic bearing was reduced lowering its effective support. This simulated a larger earthquake. The second set of tests was representative of SPX-1 pump actual operating conditions, because both hydrostatic bearing pressure and shaft rotating speed were simultaneously reduced following the primary pump characteristic curve. The tests allowed the SPX-1 pump rotating set to be widely qualified. Among the main results, it is worth noting that the stiffness of the hydrostatic bearing system was generally compatible with seismic requirements. Finally, it is worth pointing out that, in order to allow the above-mentioned tests to be carried out, a full seismic qualification of the CPV-1 test rig was necessary: thus, this rig might be used in the future for further seismic tests on LMFBR components and systems in sodium. (author). Figs and tabs

  10. Sealing performance of a magnetic fluid seal for rotary blood pumps.

    Science.gov (United States)

    Mitamura, Yoshinori; Takahashi, Sayaka; Kano, Kentaro; Okamoto, Eiji; Murabayashi, Shun; Nishimura, Ikuya; Higuchi, Taka-Aki

    2009-09-01

    A magnetic fluid (MF) for a rotary blood pump seal enables mechanical contact-free rotation of the shaft and, hence, has excellent durability. The performance of a MF seal, however, has been reported to decrease in liquids. We have developed a MF seal that has a "shield" mechanism and a new MF with a higher magnetization of 47.9 kA/m. The sealing performance of the MF seal installed in a rotary blood pump was studied. Under the condition of continuous flow, the MF seal remained in perfect condition against a pressure of 298 mm Hg (pump flow rate: 3.96 L/min). The seal was also perfect against a pressure of 170 mm Hg in a continuous flow of 3.9 L/min for 275 days. We have developed a MF seal that works in liquid against clinically used pressures. The MF seal is promising as a shaft seal for rotary blood pumps.

  11. Exploratory use of periodic pumping tests for hydraulic characterization of faults

    Science.gov (United States)

    Cheng, Yan; Renner, Joerg

    2018-01-01

    Periodic pumping tests were conducted using a double-packer probe placed at four different depth levels in borehole GDP-1 at Grimselpass, Central Swiss Alps, penetrating a hydrothermally active fault. The tests had the general objective to explore the potential of periodic testing for hydraulic characterization of faults, representing inherently complex heterogeneous hydraulic features that pose problems for conventional approaches. Site selection reflects the specific question regarding the value of this test type for quality control of hydraulic stimulations of potential geothermal reservoirs. The performed evaluation of amplitude ratio and phase shift between pressure and flow rate in the pumping interval employed analytical solutions for various flow regimes. In addition to the previously presented 1-D and radial-flow models, we extended the one for radial flow in a system of concentric shells with varying hydraulic properties and newly developed one for bilinear flow. In addition to these injectivity analyses, we pursued a vertical-interference analysis resting on observed amplitude ratio and phase shift between the periodic pressure signals above or below packers and in the interval by numerical modeling of the non-radial-flow situation. When relying on the same model the order of magnitude of transmissivity values derived from the analyses of periodic tests agrees with that gained from conventional hydraulic tests. The field campaign confirmed several advantages of the periodic testing, for example, reduced constraints on testing time relative to conventional tests since a periodic signal can easily be separated from changing background pressure by detrending and Fourier transformation. The discrepancies between aspects of the results from the periodic tests and the predictions of the considered simplified models indicate a hydraulically complex subsurface at the drill site that exhibits also hydromechanical features in accord with structural information

  12. Numerical identification of blade exit angle effect on the performance for a multistage centrifugal pump impeller

    Directory of Open Access Journals (Sweden)

    Babayigit Osman

    2015-01-01

    Full Text Available Nowadays, single and multistage centrifugal pumps are widely used in industrial and mining enterprises. One of the most important components of a centrifugal pump is the impeller. The performance characteristics are related to the pump comprising the head and the overall efficiency rely a great deal on the impeller geometry. In this work, effects of blade exit angle change on hydraulic efficiency of a multi stage pump impeller are investigated via Ansys-Fluent computational fluid dynamics software for constant width impeller entrance and exit gates, blade numbers and blade thickness. Firstly, the flow volume of a centrifugal pump impeller is generated and then mesh structure is formed for the full impeller flow volume. Secondly, rotational periodic flow model are adopted in order to examine the effect of periodic flow assumption on the performance predictions. Corresponding to the available experimental data, inlet mass flow rate, outlet static pressure and rotation of impeller are taken as 0.02m3s-1, 450 kPa and 2950 rpm, respectively for the water fluid. No slip boundary condition is exposed to all solid of surface in the flow volume. The continuity and Navier-Stokes equations with the k-ε turbulence model and the standard wall functions are used. During the study, numerical analyses are conducted for the blade exit angle values of 18°, 20°, 25°, 30° and 35°. In consequence of the performed analyses, it is determined that hydraulic efficiency of the pump impeller value is changed between 81.0-84.6%. The most convenient blade exit angle that yields 84.6% hydraulic efficiency at is 18°. The obtained results show that the blade exit angle range has an impact on the centrifugal pump performance describing the pump head and the hydraulic efficiency.

  13. Booster Pump Performance Analysis Towards Rotation Of Impeller For CSD Dredger Type

    Directory of Open Access Journals (Sweden)

    Tony Bambang Musriyadi

    2017-12-01

    Full Text Available Dredger are a vessel for lift materials from sub surface to another place above the water surface. Dredger divided into some types such Suction Dredger, Bucket Dredger, Backhoe Dredger, and Water Injection Dredger. Cutter Suction Dredger is equipped with a rotating cutter head, for cutting and fragmenting hard soils. The soil is sucked up by means of dredge pumps, and discharged through a floating pipeline and pipes on shore, to a deposit area. In some cases, the material is discharged into split hopper barges that are moored alongside the Cutter Suction Dredger. These split hopper barges unload the soil at the deposit area. The most important part of dredger are the pump unit, NPSH is needed to figure the pump performance ability and how the efficiency number of the pump. Booster pump performance analysist are needed to mantain the pump's performance and efficiency. This thesis are describe about drawing process and computerized simulation at Ansys Software for pump performance with 3 different fluid types and 5 variations of impeller rotation. The number of NPSHa are 6.8 m and 2.8 for the NPSHr. Based on the pure water state, the lowest RPM value of 300 was obtained with V = 1.1366 m / s and Q = 1227.52 m3 / h, the highest RPM value of 600 with the result v = 1.1259 m / s and Q = 1215.97 m3 / h. Then the pumps used in this final project are more efficiently used for fluid types which tend to be condensed from the liquid, and less efficient for use in the state of pure water fluid

  14. Thoroughly tested. Field test to determine the real efficieny of heat pumps; Auf Herz und Nieren. Felduntersuchung zur realen Effizienz von Waermepumpen

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Danny; Miara, Marek [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany)

    2011-10-15

    Field tests of Fraunhofer ISE showed that the coefficients of performance of heat pumps vary widely, so that the use of calculated mean values should be reconsidered. The wide variation is due to faulty installation and operation but also to a change in the specific heat demand of buildings. New buildings have better thermal insulation and therefore more heat is consumed proportionally for freshwater heating, so the coefficient of performance will be lower.

  15. Performance Analysis of a Thermoelectric Solar Collector Integrated with a Heat Pump

    Science.gov (United States)

    Lertsatitthanakorn, C.; Jamradloedluk, J.; Rungsiyopas, M.; Therdyothin, A.; Soponronnarit, S.

    2013-07-01

    A novel heat pump system is proposed. A thermoelectric solar collector was coupled to a solar-assisted heat pump (TESC-HP) to work as an evaporator. The cooling effect of the system's refrigerant allowed the cold side of the system's thermoelectric modules to work at lower temperature, improving the conversion efficiency. The TESC-HP system mainly consisted of transparent glass, an air gap, an absorber plate that acted as a direct expansion-type collector/evaporator, an R-134a piston-type hermetic compressor, a water-cooled plate-type condenser, thermoelectric modules, and a water storage tank. Test results indicated that the TESC-HP has better coefficient of performance (COP) and conversion efficiency than the separate units. For the meteorological conditions in Mahasarakham, the COP of the TESC-HP system can reach 5.48 when the average temperature of 100 L of water is increased from 28°C to 40°C in 60 min with average ambient temperature of 32.5°C and average solar intensity of 815 W/m2, whereas the conversion efficiency of the TE power generator was around 2.03%.

  16. Use of expert judgment in the development and evaluation of risk-based inservice testing strategies for pumps and valves

    Energy Technology Data Exchange (ETDEWEB)

    McAllister, W.J.; Perdue, R.K.; Balkey, K.R.; Closky, N.B. [and others

    1996-12-01

    This paper describes a rigorous approach for quantitatively evaluating inservice testing effectiveness that evolved from two pilot plant studies. These studies prototyped methodologies for designing and selecting inservice testing (IST) strategies in a manner structured to insure that the targeted components will perform their required safety functions while minimizing life cycle inservice testing costs. The paper concentrates on the use of expert judgment in developing test effectiveness measures that move risk-based methods beyond ranking to optimization of plant IST programs. Selected results for check valves and pumps are shown to illustrate the practical significance of the approach.

  17. Use of expert judgment in the development and evaluation of risk-based inservice testing strategies for pumps and valves

    International Nuclear Information System (INIS)

    McAllister, W.J.; Perdue, R.K.; Balkey, K.R.; Closky, N.B.

    1996-01-01

    This paper describes a rigorous approach for quantitatively evaluating inservice testing effectiveness that evolved from two pilot plant studies. These studies prototyped methodologies for designing and selecting inservice testing (IST) strategies in a manner structured to insure that the targeted components will perform their required safety functions while minimizing life cycle inservice testing costs. The paper concentrates on the use of expert judgment in developing test effectiveness measures that move risk-based methods beyond ranking to optimization of plant IST programs. Selected results for check valves and pumps are shown to illustrate the practical significance of the approach

  18. Studies of the impact of prerotation problem of the secondary impeller on performance of multi-stage centrifugal pumps

    International Nuclear Information System (INIS)

    Zhai, L L; Wu, P; Jiang, Q L; Wang, L Q

    2012-01-01

    In engineering practice, part of the multi-stage centrifugal pumps is designed without space guide vanes due to the size restrictions and the volute is distorted much in shape. In these pumps, tangential velocity of the fluid at the outlet of the first-stage impeller is so great that it has caused a prerotation problem which will affect the inlet flow conditions of the secondary impeller leading to serious efficiency and head decline of the secondary impeller. The head problem of the second stage in multi-stage centrifugal pumps caused by prerotation at the entrance of the second stage was analyzed and the internal hydraulic performance was optimized by setting clapboards in the volute in this paper. CFD numerical simulation method combined with experiment was applied to predict the effect of internal clapboards on the performance of the centrifugal pump. The original prototype was transformed according to the simulation result and tested to verify the optimization work. The experiment result shows that hydraulic performance is remarkably improved compared with the original one and the prerotation problem is basically solved.

  19. Solar Assisted Ground Source Heat Pump Performance in Nearly Zero Energy Building in Baltic Countries

    Science.gov (United States)

    Januševičius, Karolis; Streckienė, Giedrė

    2013-12-01

    In near zero energy buildings (NZEB) built in Baltic countries, heat production systems meet the challenge of large share domestic hot water demand and high required heating capacity. Due to passive solar design, cooling demand in residential buildings also needs an assessment and solution. Heat pump systems are a widespread solution to reduce energy use. A combination of heat pump and solar thermal collectors helps to meet standard requirements and increases the share of renewable energy use in total energy balance of country. The presented paper describes a simulation study of solar assisted heat pump systems carried out in TRNSYS. The purpose of this simulation was to investigate how the performance of a solar assisted heat pump combination varies in near zero energy building. Results of three systems were compared to autonomous (independent) systems simulated performance. Different solar assisted heat pump design solutions with serial and parallel solar thermal collector connections to the heat pump loop were modelled and a passive cooling possibility was assessed. Simulations were performed for three Baltic countries: Lithuania, Latvia and Estonia.

  20. Simulation and analysis on thermodynamic performance of surface water source heat pump system

    Institute of Scientific and Technical Information of China (English)

    Nan Lv; Qing Zhang; Zhenqian Chen; Dongsheng Wu

    2017-01-01

    This work established a thermodynamic performance model of a heat pump system containing a heat pump unit model, an air conditioning cooling and heating load calculation model, a heat exchanger model and a water pump performance model based on mass and energy balances. The thermodynamic performance of a surface water source heat pump air conditioning system was simulated and verified by comparing the simulation results to an actual engineering project. In addition, the effects of the surface water temperature, heat exchanger structure and surface water pipeline transportation system on the thermodynamic performance of the heat pump air conditioning system were analyzed. Under the simulated conditions in this paper with a cooling load of 3400 kW, the results showed that a 1 ℃ decrease in the surface water temperature leads to a 2.3 percent increase in the coefficient of performance; furthermore, an additional 100 m of length for the closed-loop surface water heat exchanger tube leads to a 0.08 percent increase in the coefficient of performance. To decrease the system energy consumption, the optimal working point should be specified according to the surface water transportation length.

  1. Domestic heat pumps in the UK. User behaviour, satisfaction and performance

    Energy Technology Data Exchange (ETDEWEB)

    Caird, S.; Roy, R.; Potter, S. [Design Innovation Group, Dept. Design, Development, Environment and Materials, Faculty of Mathematics, Computing and Technology, The Open University, Milton Keynes, MK7 6AA (United Kingdom)

    2012-08-15

    Consumer adoption of microgeneration technologies is part of the UK strategy to reduce carbon emissions from buildings. Domestic heat pumps are viewed as a potentially important carbon saving technology, given the ongoing decarbonisation of the electricity supply system. To address the lack of independent evaluation of heat pump performance, the Energy Saving Trust undertook the UK's first large-scale heat pump field trial, which monitored 83 systems in real installations. As part of the trial, the Open University studied the consumers' experience of using a domestic heat pump. An in-depth user survey investigated the characteristics, behaviour, and satisfactions of private householders and social housing residents using ground source and air source heat pumps for space and/or water heating, and examined the influence of user-related factors on measured heat pump system efficiency. The surveys found that most users were satisfied with the reliability, heating, hot water, warmth and comfort provided by their system. Analysis of user characteristics showed that higher system efficiencies were associated with greater user understanding of their heat pump system, and more continuous heat pump operation, although larger samples are needed for robust statistical confirmation. The analysis also found that the more efficient systems in the sample were more frequently located in the private dwellings than at the social housing sites and this difference was significant. This is explained by the interaction between differences in the systems, dwellings and users at the private and social housing sites. The implications for heat pump research, practice and policy are discussed.

  2. Performance analysis on a large scale borehole ground source heat pump in Tianjin cultural centre

    Science.gov (United States)

    Yin, Baoquan; Wu, Xiaoting

    2018-02-01

    In this paper, the temperature distribution of the geothermal field for the vertical borehole ground-coupled heat pump was tested and analysed. Besides the borehole ground-coupled heat pump, the system composed of the ice storage, heat supply network and cooling tower. According to the operation data for nearly three years, the temperature constant zone is in the ground depth of 40m -120m with a temperature gradient of about 3.0°C/100m. The temperature of the soil dropped significantly in the heating season, increased significantly in the cooling season, and reinstated in the transitional season. With the energy balance design of the heating and cooling and the existence of the soil thermal inertia, the soil temperature stayed in a relative stable range and the ground source heat pump system was operated with a relative high efficiency. The geothermal source heat pump was shown to be applicable for large scale utilization.

  3. Coefficient of Performance Optimization of Single-Effect Lithium-Bromide Absorption Cycle Heat Pumps

    DEFF Research Database (Denmark)

    Vinther, Kasper; Just Nielsen, Rene; Nielsen, Kirsten Mølgaard

    2015-01-01

    In this paper, we investigate the coefficient of performance (COP) of a LiBr absorption cycle heat pump under different operating conditions. The investigation is carried out using a dynamical model fitted against data recorded from an actual heat pump used for district heating in S......⊘nderborg, Denmark. Since the model is too complex to study analytically, we vary different input variables within the permissible operating range of the heat pump and evaluate COP at the resulting steady-state operating points. It is found that the best set-point for each individual input is located at an extreme......-state operation of the heat pump, while avoiding crystallization issues....

  4. Hydraulic performance of a low specific speed centrifugal pump with Spanwise-Slotted Blades

    International Nuclear Information System (INIS)

    Ye, D X; Li, H; Wang, Y

    2013-01-01

    The hydraulic efficiency of a low specific speed centrifugal pump is low because of the long and narrow meridian flow passage, and the severe disk friction. Spanwise slotted blade flow control technology has been applied to the low specific speed centrifugal pump. This paper concluded that spanwise slotted blades can improve the pump performance in both experiments and simulations. In order to study the influence to the impeller and volute by spanwise slotted blade, impeller efficiency and volute efficiency were defined. The minimum volute efficiency and the maximum pump efficiency appear at the same time in the design flow condition in the unsteady simulation. The mechanism of spanwise slotted blade flow control technology should be researched furthermore

  5. Influence of the positive prewhirl on the performance of centrifugal pumps with different airfoils

    International Nuclear Information System (INIS)

    Zhou, C M; Wang, H M; Huang, X; Lin, H

    2012-01-01

    According to the basic theory of turbomachinery design and inlet guide vanes prewhirl regulation, two different airfoils inlet guide vanes of prewhirl regulation device were designed, the influence of the positive prewhirl to the performance of centrifugal pump were studied based on different airfoils. The results show that, for a single-suction centrifugal pump: Gottingen bowed blade-type inlet guide vane adjustment effect is better than straight blade-type inlet guide; appropriate design of positive prewhirl can elevate the efficiency of centrifugal pumps. Compared with no vane conditions, the efficiency of centrifugal pump with prewhirl vanes has been greatly improved and the power consumption has been reduced significantly, while has little influence on the head.

  6. Comparative Evaluation of Different Computational Models for Performance of Air Source Heat Pumps Based on Real World Data

    NARCIS (Netherlands)

    Tabatabaei, Seyed Amin; Treur, Jan; Waumans, Erik

    2015-01-01

    To reduce energy usage and CO2 emission due to heating, heat pumps have turned out a good option. For example, to obtain a net zero house, often a combination of solar panels and a heat pump is used. A computational model of the performance of a heat pump provides a useful tool for prediction and

  7. Impaired exercise performance and muscle Na(+),K(+)-pump activity in renal transplantation and haemodialysis patients.

    Science.gov (United States)

    Petersen, Aaron C; Leikis, Murray J; McMahon, Lawrence P; Kent, Annette B; Murphy, Kate T; Gong, Xiaofei; McKenna, Michael J

    2012-05-01

    We examined whether abnormal skeletal muscle Na(+),K(+)-pumps underlie impaired exercise performance in haemodialysis patients (HDP) and whether these are improved in renal transplant recipients (RTx). Peak oxygen consumption ( O(2peak)) and plasma [K(+)] were measured during incremental exercise in 9RTx, 10 HDP and 10 healthy controls (CON). Quadriceps peak torque (PT), fatigability (decline in strength during thirty contractions), thigh muscle cross-sectional area (TMCSA) and vastus lateralis Na(+),K(+)-pump maximal activity, content and isoform (α(1)-α(3), β(1)-β(3)) abundance were measured. O(2peak) was 32 and 35% lower in RTx and HDP than CON, respectively (P Na(+),K(+)-pump activity was 28 and 31% lower in RTx and HDP, respectively than CON (P Na(+),K(+)-pump activity (r = 0.45, P = 0.02). O(2peak) and muscle Na(+),K(+)-pump activity were depressed and muscle fatigability increased in HDP, with no difference observed in RTx. These findings are consistent with the possibility that impaired exercise performance in HDP and RTx may be partially due to depressed muscle Na(+),K(+)-pump activity and relative TMCSA.

  8. Seasonal performance evaluation of electric air-to-water heat pump systems

    International Nuclear Information System (INIS)

    Dongellini, Matteo; Naldi, Claudia; Morini, Gian Luca

    2015-01-01

    A numerical model for the calculation of the seasonal performance of different kinds of electric air-to-water heat pumps is presented. The model is based on the procedure suggested by the European standard EN 14825 and the Italian standard UNI/TS 11300-4, which specify the guidelines for calculation of the seasonal performance of heat pumps during the heating season (SCOP), the cooling season (SEER) and for the production of domestic hot water. In order to consider the variation of outdoor conditions the developed model employs the bin-method. Different procedures are proposed in the paper for the analysis of the seasonal performance of mono-compressor, multi-compressor and variable speed compressor air-to-water heat pumps. The numerical results show the influence of the effective operating mode of the heat pumps on the SCOP value and put in evidence the impact of the design rules on the seasonal energy consumption of these devices. The study also highlights the importance of the correct sizing of the heat pump in order to obtain high seasonal efficiency and it shows that, for a fixed thermal load, inverter-driven and multi-compressor heat pumps have to be slightly oversized with respect to mono-compressor ones in order to obtain for the same building the highest SCOP values. - Highlights: • A model for the prediction of seasonal performance of HPs has been developed. • The model considers mono-compressor, multi-compressor and inverter-driven HPs. • The procedure takes into account HPs performances at partial load. • Optimization of heat pump sizing depending on its control system.

  9. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid ''P''

    International Nuclear Information System (INIS)

    KOCH, M.R.

    2000-01-01

    This Test Plan provides a test method to dedicate the leak detection relays used on the new Pumping Instrumentation and Control (PIC) skids. The new skids are fabricated on-site. The leak detection system is a safety class system per the Authorization Basis

  10. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid Q

    International Nuclear Information System (INIS)

    KOCH, M.R.

    2000-01-01

    This Test Plan provides a test method to dedicate the leak detection relays used on the new Pumping Instrumentation and Control (PIC) skids. The new skids are fabricated on-site. The leak detection system is a safety class system per the Authorization Basis

  11. Operational test for photovoltaic pumping systems; Procedimento para averiguacao operacional de sistemas fotovoltaicos de bombeamento

    Energy Technology Data Exchange (ETDEWEB)

    Fedrizzi, Maria Cristina; Brito, Alaan Ubaiara; Zilles, Roberto [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Lab. de Sistemas Fotovoltaicos], e-mail: fedrizzi@iee.usp.br, e-mail: alaan@iee.usp.br, e-mail: zilles@iee.usp.br

    2004-07-01

    This paper presents an operational test for photovoltaic pumping systems daily production, m{sup 3}/dia. The procedure does not involve expensive instrumentation and is easy to be applied in the field as acceptance and qualification tools. In this way, the paper presents the boundary conditions for operational test accomplishment that allows its application. (author)

  12. Failure cause and failure rate evaluation on pumps of BWR plants in PSA. Hypothesis testing for typical or plant specific failure rate of pumps

    International Nuclear Information System (INIS)

    Sanada, Takahiro; Nakamura, Makoto

    2009-01-01

    In support of domestic nuclear industry effort to gather and analyze failure data of components concerning nuclear power plants, Nuclear Information Archives (NUCIA) are published for useful information to help PSA. This report focuses on NUCIA pertaining to pumps in domestic nuclear power plants, and provides the reliable estimation on failure rate of pumps resulting from failure cause analysis and hypothesis testing of classified and plant specific failure rate of pumps for improving quality in PSA. The classified and plant specific failure rate of pumps are estimated by analyzing individual domestic nuclear power plant's data of 26 Boiling Water Reactors (BWRs) concerning functionally structurally classified pump failures reported from beginning of commercial operation to March 31, 2007. (author)

  13. Uniform peanut performance test 2017

    Science.gov (United States)

    The Uniform Peanut Performance Tests (UPPT) are designed to evaluate the commercial potential of advanced breeding peanut lines not formally released. The tests are performed in ten locations across the peanut production belt. In this study, 2 controls and 14 entries were evaluated at 8 locations....

  14. Inspection system performance test procedure

    International Nuclear Information System (INIS)

    Jensen, C.E.

    1995-01-01

    This procedure establishes requirements to administer a performance demonstration test. The test is to demonstrate that the double-shell tank inspection system (DSTIS) supplied by the contractor performs in accordance with the WHC-S-4108, Double-Shell Tank Ultrasonic Inspection Performance Specification, Rev. 2-A, January, 1995. The inspection system is intended to provide ultrasonic (UT) and visual data to determine integrity of the Westinghouse Hanford Company (WHC) site underground waste tanks. The robotic inspection system consists of the following major sub-systems (modules) and components: Mobile control center; Deployment module; Cable management assembly; Robot mechanism; Ultrasonic testing system; Visual testing system; Pneumatic system; Electrical system; and Control system

  15. Large-Scale Pumping Test Recommendations for the 200-ZP-1 Operable Unit

    Energy Technology Data Exchange (ETDEWEB)

    Spane, Frank A.

    2010-09-08

    CH2M Hill Plateau Remediation Company (CHPRC) is currently assessing aquifer characterization needs to optimize pump-and-treat remedial strategies (e.g., extraction well pumping rates, pumping schedule/design) in the 200-ZP-1 operable unit (OU), and in particular for the immediate area of the 241 TX-TY Tank Farm. Specifically, CHPRC is focusing on hydrologic characterization opportunities that may be available for newly constructed and planned ZP-1 extraction wells. These new extraction wells will be used to further refine the 3-dimensional subsurface contaminant distribution within this area and will be used in concert with other existing pump-and-treat wells to remediate the existing carbon tetrachloride contaminant plume. Currently, 14 extraction wells are actively used in the Interim Record of Decision ZP-1 pump-and-treat system for the purpose of remediating the existing carbon tetrachloride contamination in groundwater within this general area. As many as 20 new extraction wells and 17 injection wells may be installed to support final pump-and-treat operations within the OU area. It should be noted that although the report specifically refers to the 200-ZP-1 OU, the large-scale test recommendations are also applicable to the adjacent 200-UP-1 OU area. This is because of the similar hydrogeologic conditions exhibited within these two adjoining OU locations.

  16. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    International Nuclear Information System (INIS)

    Kerschberger, P; Gehrer, A

    2010-01-01

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  17. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    Science.gov (United States)

    Kerschberger, P.; Gehrer, A.

    2010-08-01

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  18. Analysis of pumping tests of partially penetrating wells in an unconfined aquifer using inverse numerical optimization

    Science.gov (United States)

    Hvilshøj, S.; Jensen, K. H.; Barlebo, H. C.; Madsen, B.

    1999-08-01

    Inverse numerical modeling was applied to analyze pumping tests of partially penetrating wells carried out in three wells established in an unconfined aquifer in Vejen, Denmark, where extensive field investigations had previously been carried out, including tracer tests, mini-slug tests, and other hydraulic tests. Drawdown data from multiple piezometers located at various horizontal and vertical distances from the pumping well were included in the optimization. Horizontal and vertical hydraulic conductivities, specific storage, and specific yield were estimated, assuming that the aquifer was either a homogeneous system with vertical anisotropy or composed of two or three layers of different hydraulic properties. In two out of three cases, a more accurate interpretation was obtained for a multi-layer model defined on the basis of lithostratigraphic information obtained from geological descriptions of sediment samples, gammalogs, and flow-meter tests. Analysis of the pumping tests resulted in values for horizontal hydraulic conductivities that are in good accordance with those obtained from slug tests and mini-slug tests. Besides the horizontal hydraulic conductivity, it is possible to determine the vertical hydraulic conductivity, specific yield, and specific storage based on a pumping test of a partially penetrating well. The study demonstrates that pumping tests of partially penetrating wells can be analyzed using inverse numerical models. The model used in the study was a finite-element flow model combined with a non-linear regression model. Such a model can accommodate more geological information and complex boundary conditions, and the parameter-estimation procedure can be formalized to obtain optimum estimates of hydraulic parameters and their standard deviations.

  19. Monitoring of aquifer pump tests with Magnetic Resonance Sounding (MRS): a synthetic case study

    DEFF Research Database (Denmark)

    Herckenrath, Daan; Auken, E.; Bauer-Gottwein, Peter

    2011-01-01

    Magnetic Resonance Sounding (MRS) can provide valuable data to constrain and calibrate groundwater flow and transport models. With this non-invasive geophysical technique, measurements of water content and hydraulic conductivity can be obtained. We developed a hydrogeophyiscal forward method, which...... calculates the MRS-signal generated by an aquifer pump test. A synthetic MRS-dataset was subsequently used to determine the hydrogeological parameters in an inverse parameter estimation approach. This was done for a virtual pump test with a partially and a fully penetrating well. With the MRS data we were...

  20. Lithium bromide high-temperature absorption heat pump: coefficient of performance and exergetic efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, M [Consejo Superior de Investigaciones Cientificas, Madrid (ES). Inst. de Optica; Aroca, S [Escuela Tecnica Superior de Ingenieros Industriales, Valladolid (ES). Catedratico de Ingenieria Termica

    1990-04-01

    A theoretical study of a lithium bromide absorption heat pump, used as a machine type I and aimed to produce heat at 120{sup 0}C via waste heat sources at 60{sup 0}C, is given. Real performance conditions are stated for each component of the machine. By means of thermodynamic diagrams (p, t, x) and (h, x), the required data are obtained for calculation of the heat recovered in the evaporator Q{sub e}, the heat delivered to the absorber Q{sub a} and to the condenser Q{sub c}, and the heat supplied to the generator Q{sub g}. The heat delivered by the hot solution to the cold solution in the heat recovered Q{sub r}, and the work W{sub p} done by the solution pump are calculated. The probable COP is calculated as close to 1.4 and the working temperature in the generator ranges from 178 to 200{sup 0}C. The heat produced by the heat pump is 22% cheaper than that obtained from a cogeneration system comprising a natural gas internal combustion engine and high temperature heat pump with mechanical compression. Compared with a high temperature heat pump with mechanical compression, the heat produced by the absorption heat pump is 31% cheaper. From (h, x) and (s, x) diagrams, exergy losses for each component can be determined leading to an exergetic efficiency of 75% which provides the quality index of the absorption cycle. (author).

  1. System of Thermal Balance Maintenance in Modern Test Benches for Centrifugal Pumps

    Directory of Open Access Journals (Sweden)

    A. I. Petrov

    2015-01-01

    Full Text Available The article “Systems of the heat balance maintenance in modern test benches for centrifugal pumps” makes the case to include cooling systems of a working fluid (heat setting in test bench for impeller pumps. It briefly summarizes an experience of bench building to test centrifugal pumps, developed at the BMSTU Department E-10 over the last 10 years. The article gives the formulas and the algorithm to calculate the heat capacity of different types of impeller pumps when tested at the bench as ell as to determine the heating time of the liquid in the bench without external cooling. Based on analysis of the power balance of a centrifugal pump, it is shown that about 90% of the pump unit-consumed electric power in terminals is used for heating up the working fluid in the loop of the test bench. The article gives examples of elementary heat calculation of the pump operation within the test bench. It presents the main types of systems to maintain thermal balance, their advantages, disadvantages and possible applications. The cooling system schemes for open and closed version of the benches both with built-in and with an independent cooling circuit are analysed. The paper separately considers options of such systems for large benches using the cooling tower as a cooling device in the loop, and to test the pumps using the hydraulic fluids other than water, including those at high temperatures of working fluids; in the latter case a diagram of dual-circuit cooling system "liquid-liquid-air" is shown. The paper depicts a necessity to use ethylene glycol coolant in the two-loop cooling bench. It provides an example of combining the functions of cooling and filtration in a single cooling circuit. Criteria for effectiveness of these systems are stated. Possible ways for developing systems to maintain a thermal balance, modern methods of regulation and control are described. In particular, the paper shows the efficiency of frequency control of the

  2. Thermomechanical piston pump development

    Science.gov (United States)

    Sabelman, E. E.

    1971-01-01

    A thermally powered reciprocating pump has been devised to replace or augment an electric pump for the transport of temperature-control fluid on the Thermoelectric Outer Planet Spacecraft (TOPS). The thermally powered pump operates cyclically by extracting heat energy from the fluid by means of a vapor-pressure expansion system and by using the heat to perform the mechanical work of pumping. A feasibility test unit has been constructed to provide an output of 7 cu in during a 10- to 100-second cycle. It operates with a fluid input temperature of 200 to 300 F and a heat sink temperature of 0 to 30 F.

  3. Field Tests on Hydrodynamic and Hybrid Operation of a Bidirectional Thrust Bearing of a Pump-Turbine

    Directory of Open Access Journals (Sweden)

    Michał Wasilczuk

    2017-12-01

    Full Text Available In vertical shaft pump turbines operating in pumped storage power plants an important role is played by a thrust bearing. Due to the bidirectional character of operation, thrust bearing tilting pads have to be supported symmetrically, which is known to be unfavourable from the point of view of their performance. Large thrust bearings have to be carefully designed so as to minimise excessive thermo-elastic pad deformations. The research into fluid film thrust bearings has been quite extensive over the years, comprising theoretical studies of bearing properties with the use of more and more sophisticated calculation codes. On the other hand, the availability of experimental field data on bearing operation is limited, for obvious reasons. In this paper the authors present part of the results of extensive field tests of a large bearing of a pump-turbine they have conducted in a pumped storage power plant. Hopefully this data will be of interest to other researchers to compare theoretical predictions to measurement data.

  4. MK-III function tests in JOYO. Primary main cooling pump

    International Nuclear Information System (INIS)

    Isozaki, Kazunori; Saito, Takakazu; Sumino, Kouzo; Karube, Kouji; Terano, Toshihiro; Sakaba, Hideo; Nakai, Satoru

    2004-06-01

    MK-III function test (SKS-1) that was carried out from October 17, 2001 through October 23, 2001 using MK-III transition core configuration and MK-III function tests (SKS-2) was carried out from January 27, 2003 through February 13, 2003 using MK-III core configuration. The major function tests results of primary cooling system were shown as follows; (1) The stability of the primary main pump flow control system was confirmed on both CAS (cascade) mode and Man (manual) mode. Also no divergence of flow and revolution of the pump were observed at step flow change disturbance. (2) The main motor was shifted to run-back flow control operation in about 54 seconds after scram. The flow rate and pump revolution at run-back operation of A and B cooling system were 167 m 3 /h and 117 rpm, 185m 3 /h and 118 rpm respectively. The pump revolution was within the design target revolution 122 rpm ± 8 rpm and the flow was over the 10% of the rated flow. (3) The pony motor was engaged in operation in about 39 seconds after the primary main pump trip. The flow rate and pump revolution at the pony motor operation of A and B cooling system were 180 m 3 /h and 124 rpm, 190 m 3 /h and 123 rpm respectively. These values were satisfied the design low limit of 93 rpm and 10% of the rated flow. (4) Free flow coast down time constant was longer than 10 seconds that was design shortest time at both the primary pump trip and run-back operation. (5) Pump over flow column sodium levels of both A and B cooling system at rated operating condition were NL-1550 mm and, NL-1468 mm respectively and were lower than NL-1581 mm of the design value. This result shows the new IHX pressure loss estimation was conservative. (6) It was confirmed that the primary main pump could operate with out scram for up to 0.6 seconds of external power supply loss. (author)

  5. Fire Pumps: Time to Change NFPA 25 Weekly Churn Testing

    Science.gov (United States)

    Saidi, John F.; Davis, Richard J.

    2010-01-01

    APPA, through its Code Advocacy Task Force (CATF), is active with code organizations such as the National Fire Protection Association (NFPA). This article reviews some of the recent work on NFPA 25, Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems, by the CATF and some members of the NFPA 25 Technical…

  6. Pre-test analysis of protected loss of primary pump transients in CIRCE-HERO facility

    Science.gov (United States)

    Narcisi, V.; Giannetti, F.; Del Nevo, A.; Tarantino, M.; Caruso, G.

    2017-11-01

    In the frame of LEADER project (Lead-cooled European Advanced Demonstration Reactor), a new configuration of the steam generator for ALFRED (Advanced Lead Fast Reactor European Demonstrator) was proposed. The new concept is a super-heated steam generator, double wall bayonet tube type with leakage monitoring [1]. In order to support the new steam generator concept, in the framework of Horizon 2020 SESAME project (thermal hydraulics Simulations and Experiments for the Safety Assessment of MEtal cooled reactors), the ENEA CIRCE pool facility will be refurbished to host the HERO (Heavy liquid mEtal pRessurized water cOoled tubes) test section to investigate a bundle of seven full scale bayonet tubes in ALFRED-like thermal hydraulics conditions. The aim of this work is to verify thermo-fluid dynamic performance of HERO during the transition from nominal to natural circulation condition. The simulations have been performed with RELAP5-3D© by using the validated geometrical model of the previous CIRCE-ICE test section [2], in which the preceding heat exchanger has been replaced by the new bayonet bundle model. Several calculations have been carried out to identify thermal hydraulics performance in different steady state conditions. The previous calculations represent the starting points of transient tests aimed at investigating the operation in natural circulation. The transient tests consist of the protected loss of primary pump, obtained by reducing feed-water mass flow to simulate the activation of DHR (Decay Heat Removal) system, and of the loss of DHR function in hot conditions, where feed-water mass flow rate is absent. According to simulations, in nominal conditions, HERO bayonet bundle offers excellent thermal hydraulic behavior and, moreover, it allows the operation in natural circulation.

  7. Compressible Fluid Suspension Performance Testing

    National Research Council Canada - National Science Library

    Hoogterp, Francis

    2003-01-01

    ... compressible fluid suspension system that was designed and installed on the vehicle by DTI. The purpose of the tests was to evaluate the possible performance benefits of the compressible fluid suspension system...

  8. Where Lab Tests Are Performed

    Science.gov (United States)

    ... example, there may be sections that focus on microbiology, hematology, chemistry, and blood banking . Other units may perform highly specialized tests using electron microscopy and immunohistochemistry, and still others ...

  9. Performance characteristics and parametric optimization of an irreversible magnetic Ericsson heat-pump

    International Nuclear Information System (INIS)

    Wei Fang; Lin Guoxing; Chen Jincan; Brueck, Ekkes

    2011-01-01

    Taking into account the finite-rate heat transfer in the heat-transfer processes, heat leak between the two external heat reservoirs, regenerative loss, regeneration time, and internal irreversibility due to dissipation of the cycle working substance, an irreversible magnetic Ericsson heat-pump cycle is presented. On the basis of the thermodynamic properties of magnetic materials, the performance characteristics of the irreversible magnetic Ericsson heat-pump are investigated and the relationship between the optimal heating load and the coefficient of performance (COP) is derived. Moreover, the maximum heating load and the corresponding COP as well as the maximum COP and the corresponding heating load are obtained. Furthermore, the other optimal performance characteristics are discussed in detail. The results obtained here may provide some new information for the optimal parameter design and the development of real magnetic Ericsson heat-pumps. -- Research Highlights: →The effects of multi-irreversibilities on the performance of a magnetic heat-pump are revealed. →Mathematical expressions of the heating load and the COP are derived and the optimal performance and operating parameters are analyzed and discussed. →Several important performance bounds are determined.

  10. On the field performance of PV water pumping system in Libya

    International Nuclear Information System (INIS)

    Sbeta, M.; Sasi, S.

    2012-01-01

    This paper presents the measured performance of an experimental PV water pumping system of 1200Wp installed in the north-east of Libya. Both the monthly and hourly measured data of the system performance are presented and analised, and the over-all system efficiency has been calculated as monthly and daily averages. The monthly average output of the system has been estimated and compared with measured data. The economic analysis of the system has been carried out and the specific water discharge cost (SDC) has been determined, the obtained SDC was very competitive with the published SDC of the PV water pumping projects in some countries. The obtained results have demonstrated the technical and economic feasibility of using the PV systems for water pumping especially in the remote areas of high potential of solar insolation.(author)

  11. The Best Efficiency Point of the Performance of Solar Cell Panel System for Pumping Water at Various Lifting Heads Using 100 W Motor Pump Unit

    OpenAIRE

    Himran, Sukri

    2013-01-01

    This study was carried out experimentally and analytically about the performance of solar cell panel system for operating the pump coupled by dc motor. The solar cell panel with total area 1.9848 m2 consists of three modules of 80 Wp each. The small centrifugal pump powered by dc motor is operated to lift water from 1m to 7m heads in sequence and gives the amount of water pumped over the whole day from 08.00 to 16.00 h are 11988, 10851, 8874, 7695, 5760, 3600...

  12. The Best Efficiency Point of the Performance of Solar Cell Panel System for Pumping Water at Various Lifting Heads Using 100 W Motor- Pump Unit

    OpenAIRE

    S. Himran; B. Mire; N. Salam; L. Sule

    2013-01-01

    This study was carried out experimentally and analytically about the performance of solar cell panel system for operating the pump coupled by dc-motor. The solar cell panel with total area 1.9848 m2 consists of three modules of 80 Wp each. The small centrifugal pump powered by dc-motor is operated to lift water from 1m to 7m heads in sequence and gives the amount of water pumped over the whole day from 08.00 to 16.00 h are 11988, 10851, 8874, 7695, 5760, 3600, 2340 L/d respectively. The hourl...

  13. Design concept of a pump stage with replaceable hydraulic components and prediction of its performance curves

    International Nuclear Information System (INIS)

    Lugova, S O; Knyazeva, E G; Tverdokhleb, I B; Kochevsky, A N

    2010-01-01

    In many cases, centrifugal pump units are expected to deliver the required performance under varying operating conditions. In particular, the pumps for oil extraction and transportation should deliver a constant head, although their capacity often changes during the life cycle. In order to keep the efficiency at a high level and not to replace a whole pump, the authors suggest to replace in such cases only hydraulic components of the pump (impellers and stationary sections of diffuser channels) that are to be installed in the same casing. The paper describes an approach for designing of radial-flow impellers and sections of diffuser channels to be used as replaceable. It allows for delivering a required head and providing a high efficiency in a wide range of capacities. The components intended for smaller capacities are featured with narrower flow passages. However, the dimensions of replaceable components are the same. The paper describes also a numerical simulation of fluid flow in a pump stage with two sets of replaceable radial-flow impellers and sections of diffuser channels. The CFD software used in this research is ANSYS CFX 11. Good correspondence of results is observed. Difference in flow pattern at various capacities and its influence on the performance curves delivered with replaceable components is demonstrated. Basing on the obtained results, the analysis of energy losses is presented.

  14. Evaluation of Factors Influencing Liver Function Test in On-Pump Coronary Artery Bypass Graft Surgery

    Directory of Open Access Journals (Sweden)

    Shahrbano Shahbazi

    2013-12-01

    Full Text Available Background: Liver dysfunction during on-pump coronary artery bypass graft surgery (CABG is a rare complication but is associated with significant morbidity and mortality. The ability to identify high-risk patients may be helpful in planning appropriate management strategies. We aimed to evaluate the factors influencing liver function tests during on-pump CABG. Methods: In 146 patients scheduled for on-pump CABG, the liver function test was done preoperatively and on the first postoperative day. Some preoperative and intraoperative risk factors were checked and then the postoperative liver function tests were compared with the preoperative ones. Probable relationships between these changes and the preoperative and intraoperative risk factors were studied. Results: A medical history of diabetes had a significant relationship with the changes in direct bilirubin. Preoperative central venous pressure had a significant relationship with the changes in aspartate aminotransferase and alanine aminotransferase. Use of intra-aortic balloon pump and duration of aortic cross-clamp were significantly related to the changes in the liver function tests except for alanine aminotransferase and alkaline phosphatase. Conclusion: It seems that the techniques for the reduction of cardiopulmonary bypass and aortic cross-clamp duration may be useful to protect liver function. We recommend that a larger population of patients be studied to confirm these findings.

  15. Glucose Pump Test can be Used to Measure Blood Flow Rate of ...

    African Journals Online (AJOL)

    The aim of study is to determine whether glucose pump test (GPT) is used for surveillance of native AV fistulas by using Doppler US as reference. Methods: In 93 chronic hemodialysis patients with native AV fistula, blood flow rates were measured by Doppler US and GPT. For GPT, glucose was infused to 16 mL/min by ...

  16. Cavitation erosion scaling: tests on a pump impeller in water and in sodium

    International Nuclear Information System (INIS)

    Dorey, J.M.; Rascalou, T.

    1992-01-01

    Tests to quantify cavitation agressivity carried out in water and in sodium (400 deg) on a model pump impeller are presented. The polished samples method has been used. It can be now applied to curved surfaces such as impeller blades with the help of new measurement devices. Results are discussed regarding scaling laws for fluid-to-fluid transposition

  17. Annual energy performance of R744 and R410A heat pumping systems

    International Nuclear Information System (INIS)

    Jin, Zhequan; Eikevik, Trygve M.; Nekså, Petter; Hafner, Armin; Wang, Ruzhu

    2017-01-01

    Highlights: • Annual energy performance of R744 and R410A heat pumping systems is compared. • Several dynamic models of heat pumping systems are developed. • Annual energy efficiency of R744 hybrid ground-coupled heat pumping system. • The seasonal COPc and COPh of R744 hybrid system are 3.55 and 3.32. • The superiority of R744 system on the integration of two heat sinks is discussed. - Abstract: This work compares the annual energy performance of heat pumping systems using R744 and R410A as refrigerant. Focus is the annual energy efficiency of R744 hybrid ground-coupled heat pumping system. The hybrid system uses both ambient air and ground as heat sinks in the cooling mode. This is important to eliminate the underground heat accumulation phenomenon in warm climates. Several quasi-steady state models of heat pumping systems, using R744 and R410A, have been developed. Simulation results show that the annual COP_c and COP_h of an R744 hybrid system reaches 3.55 and 3.32, and its cooling performance is 42% better than for a R744 ASHP and 23% better than for a R744 GCHP system. The annual energy performance factor of a R410A ASHP system is better than for a R744 hybrid system, but the COP_c for the R410A system will be lower when the ambient temperature is higher than 30 °C.

  18. Performance testing With JMeter 29

    CERN Document Server

    Erinle, Bayo

    2013-01-01

    Performance Testing With JMeter 2.9 is a standard tutorial that will help you polish your fundamentals, guide you through various advanced topics, and along the process help you learn new tools and skills.This book is for developers, quality assurance engineers, testers, and test managers new to Apache JMeter, or those who are looking to get a good grounding in how to effectively use and become proficient with it. No prior testing experience is required.

  19. Assessment of the field performance of a photovoltaic pumping ...

    African Journals Online (AJOL)

    The results imply that simple regular maintenance of the system such as dust removal from solar array may reasonably increase the performance of PVP systems. The overall efficiency of the PVP system (1.23 %) was calculated based on the observed and simulated data and found to be appreciably lower than the typical ...

  20. The replacement of an electromagnetic primary sodium sampling pump in the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Grygiel, M.L.; McCargar, C.G.

    1985-01-01

    On November 16, 1984 a leak was discovered in one of the Fast Flux Test Facility (FFTF) Primary Sodium Sampling System electromagnetic pumps. The leak was discovered in the course of routine cell entry to investigate a shorted trace heat element. The purpose of this paper is to describe the circumstances surrounding the occurrence of the leak, the actions taken to replace the damaged pump and the additional steps which were necessary to return the plant to power. In addition, the processes involved in producing the leak are described briefly. The relative ease of recovery from this incident is indicative of the overall feasibility of the Liquid Metal Reactor (LMR) operational concept

  1. Monitoring the performance of Aux. Feedwater Pump using Smart Sensing Model

    Energy Technology Data Exchange (ETDEWEB)

    No, Young Gyu; Seong, Poong Hyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-10-15

    Many artificial intelligence (AI) techniques equipped with learning systems have recently been proposed to monitor sensors and components in NPPs. Therefore, the objective of this study is the development of an integrity evaluation method for safety critical components such as Aux. feedwater pump, high pressure safety injection (HPSI) pump, etc. using smart sensing models based on AI techniques. In this work, the smart sensing model is developed at first to predict the performance of Aux. feedwater pump by estimating flowrate using group method of data handing (GMDH) method. If the performance prediction is achieved by this feasibility study, the smart sensing model will be applied to development of the integrity evaluation method for safety critical components. Also, the proposed algorithm for the performance prediction is verified by comparison with the simulation data of the MARS code for station blackout (SBO) events. In this study, the smart sensing model for the prediction performance of Aux. feedwater pump has been developed. In order to develop the smart sensing model, the GMDH algorithm is employed. The GMDH algorithm is the way to find a function that can well express a dependent variable from independent variables. This method uses a data structure similar to that of multiple regression models. The proposed GMDH model can accurately predict the performance of Aux.

  2. Monitoring the performance of Aux. Feedwater Pump using Smart Sensing Model

    International Nuclear Information System (INIS)

    No, Young Gyu; Seong, Poong Hyun

    2015-01-01

    Many artificial intelligence (AI) techniques equipped with learning systems have recently been proposed to monitor sensors and components in NPPs. Therefore, the objective of this study is the development of an integrity evaluation method for safety critical components such as Aux. feedwater pump, high pressure safety injection (HPSI) pump, etc. using smart sensing models based on AI techniques. In this work, the smart sensing model is developed at first to predict the performance of Aux. feedwater pump by estimating flowrate using group method of data handing (GMDH) method. If the performance prediction is achieved by this feasibility study, the smart sensing model will be applied to development of the integrity evaluation method for safety critical components. Also, the proposed algorithm for the performance prediction is verified by comparison with the simulation data of the MARS code for station blackout (SBO) events. In this study, the smart sensing model for the prediction performance of Aux. feedwater pump has been developed. In order to develop the smart sensing model, the GMDH algorithm is employed. The GMDH algorithm is the way to find a function that can well express a dependent variable from independent variables. This method uses a data structure similar to that of multiple regression models. The proposed GMDH model can accurately predict the performance of Aux

  3. Modeling the Performance of Water-Zeolite 13X Adsorption Heat Pump

    Science.gov (United States)

    Kowalska, Kinga; Ambrożek, Bogdan

    2017-12-01

    The dynamic performance of cylindrical double-tube adsorption heat pump is numerically analysed using a non-equilibrium model, which takes into account both heat and mass transfer processes. The model includes conservation equations for: heat transfer in heating/cooling fluids, heat transfer in the metal tube, and heat and mass transfer in the adsorbent. The mathematical model is numerically solved using the method of lines. Numerical simulations are performed for the system water-zeolite 13X, chosen as the working pair. The effect of the evaporator and condenser temperatures on the adsorption and desorption kinetics is examined. The results of the numerical investigation show that both of these parameters have a significant effect on the adsorption heat pump performance. Based on computer simulation results, the values of the coefficients of performance for heating and cooling are calculated. The results show that adsorption heat pumps have relatively low efficiency compared to other heat pumps. The value of the coefficient of performance for heating is higher than for cooling

  4. Modeling the Performance of Water-Zeolite 13X Adsorption Heat Pump

    Directory of Open Access Journals (Sweden)

    Kowalska Kinga

    2017-12-01

    Full Text Available The dynamic performance of cylindrical double-tube adsorption heat pump is numerically analysed using a non-equilibrium model, which takes into account both heat and mass transfer processes. The model includes conservation equations for: heat transfer in heating/cooling fluids, heat transfer in the metal tube, and heat and mass transfer in the adsorbent. The mathematical model is numerically solved using the method of lines. Numerical simulations are performed for the system water-zeolite 13X, chosen as the working pair. The effect of the evaporator and condenser temperatures on the adsorption and desorption kinetics is examined. The results of the numerical investigation show that both of these parameters have a significant effect on the adsorption heat pump performance. Based on computer simulation results, the values of the coefficients of performance for heating and cooling are calculated. The results show that adsorption heat pumps have relatively low efficiency compared to other heat pumps. The value of the coefficient of performance for heating is higher than for cooling

  5. Proceedings of the Third NRC/ASME Symposium on Valve and Pump Testing. Session 1A--Session 2C: Volume 1

    International Nuclear Information System (INIS)

    1994-07-01

    The 1994 Symposium on Valve and Pump Testing, jointly sponsored by the Board of Nuclear Codes and Standards of the American Society of Mechanical Engineers and by the Nuclear Regulatory Commission, provides a forum for the discussion of current programs and methods for inservice testing and motor-operated valve testing at nuclear power plants. The symposium also provides an opportunity to discuss the need to improve that testing in order to help ensure the reliable performance of pumps and valves. The participation of industry representatives, regulators, and consultants results in the discussion of a broad spectrum of ideas and perspectives regarding the improvement of inservice testing of pumps and valves at nuclear power plants. This document, Volume 1, covers sessions 1A through session 2C. The individual papers have been cataloged separately

  6. Proceedings of the Third NRC/ASME Symposium on Valve and Pump Testing. Session 1A--Session 2C: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The 1994 Symposium on Valve and Pump Testing, jointly sponsored by the Board of Nuclear Codes and Standards of the American Society of Mechanical Engineers and by the Nuclear Regulatory Commission, provides a forum for the discussion of current programs and methods for inservice testing and motor-operated valve testing at nuclear power plants. The symposium also provides an opportunity to discuss the need to improve that testing in order to help ensure the reliable performance of pumps and valves. The participation of industry representatives, regulators, and consultants results in the discussion of a broad spectrum of ideas and perspectives regarding the improvement of inservice testing of pumps and valves at nuclear power plants. This document, Volume 1, covers sessions 1A through session 2C. The individual papers have been cataloged separately.

  7. Effect of going on the performance of a solar water pumping station

    International Nuclear Information System (INIS)

    Younes, M.A.; Amer, E.H.; Helal, M.A.

    2006-01-01

    An extensive experimental study has been carried out to investigate the manner in which photovoltaic pumping systems age. A system, installed over 15 years back, has been tested to study the effect of degradation of components on the system performance. The results are used to provide a basis for more realistic evaluation of the economics of solar energy conversion such as, lifetime of the device and the relationship between device age and its efficiency. The study indicates that the degradation of performance is due mainly to glazing seal failure: antireflection coating destruction, mechanical cracks in the body of the cell and inverter problems. The effect of dirt accumulation on the top surfaces does not appear to have adversely affected the thermal performance. As a result of aging, the system efficiency and power output are reduced by about 5 and 15% respectively. A major conclusion from this study is that many of the more serious problems found were either present at the time of installation or resulted from improper operation by untrained personnel and shutting down the system for long periods without regular maintenance

  8. Annular electromagnetic pumps-construction and testing-theory, and comparison with experimental results

    International Nuclear Information System (INIS)

    Cambillard, E.P.; Schwab, B.L.

    1964-01-01

    This report consists of three sections. The first is concerned with the description of different pumps which have been constructed, tests on these which have been completed and the results obtained. The second section presents a theoretical method for the determination of the coefficients, taking in account the break of the magnetic circuit. It is shown that the preliminary design calculations of the annular pumps can be made, neglecting the break of the magnetic circuit, by further assigning essential magnitudes (pressure, losses) with easily calculated coefficients. The third section of this report uses the theoretical bases exposed in the second section, and develop a new annular pump calculation method which takes-into account both the current out of balance and any type of winding. (authors) [fr

  9. Glucose pump test can be used to measure blood flow rate of native arteriovenous fistula in chronic hemodialysis.

    Science.gov (United States)

    Yavuz, Y C; Selcuk, N Y; Altıntepe, L; Güney, I; Yavuz, S

    2018-01-01

    In chronic hemodialysis patients, the low flow of vascular access may leads to inadequate dialysis, increased rate of hospitalization, morbidity, and mortality. It was found that surveillance should be performed for native arteriovenous (AV) should not be performed for AV graft in various studies. However, surveillance was done in graft AV fistulas in most studies. Doppler ultrasonography (US) was suggested for surveillance of AV fistulas by the last vascular access guideline of National Kidney Foundation Disease Outcomes Quality Initiative (NKF KDOQI). The aim of study is to determine whether glucose pump test (GPT) is used for surveillance of native AV fistulas by using Doppler US as reference. In 93 chronic hemodialysis patients with native AV fistula, blood flow rates were measured by Doppler US and GPT. For GPT, glucose was infused to 16 mL/min by pump and was measured at basal before the infusion and 11 s after the start of the infusion by glucometer. Doppler US was done by an expert radiologist. Used statistical tests were Mann-Whitney U test, Friedman test, regression analysis, and multiple regression analysis. Median values of blood flow rates measured by GPT (707 mL/min) and by Doppler US (700 mL/min) were not different (Z = 0.414, P = 0.678). Results of GPT and Doppler US measurements were positive correlate by regression analysis. The mean GPT value of diabetic patients (n = 39; 908 mL/min) was similar to that of nondiabetic patients (n = 54; 751 mL/min; Z = 1.31, P = 0.188). GPT values measured at three different dialysis session did not differ from each other that by Friedman test (F = 0.92, P = 0.39). This showed that GPT was stable and reliable. Glucose pump test can be used to measure blood flow rate of native AV fistula. GPT is an accurate and reliable test.

  10. Two-phase performance characteristics of a PWR primary pump under LOCA conditions

    International Nuclear Information System (INIS)

    Grison, P.; Lauro, J.F.

    1977-01-01

    A mathematical model, based on the Euler's theory and a limited flashing, is presented for the flow calculation through a pump working in two-phase conditions, Similarity criteria for representative experimental conditions are studied. The experimental test loop and the first experimental results are described. (author)

  11. Experimental analysis on performance of high temperature heat pump and desiccant wheel system

    DEFF Research Database (Denmark)

    Sheng, Ying; Zhang, Yufeng; Deng, Na

    2013-01-01

    In order to solve the problem of high energy consumption for regeneration of desiccant wheel in the rotary desiccant system, high temperature heat pump and desiccant wheel (HTHP&DW) system and corresponding air conditioning unit is built and tested in the extensive thermal hygrometric environment...

  12. Climate Adaptivity and Field Test of the Space Heating Used Air-Source Transcritical CO2 Heat Pump

    Science.gov (United States)

    Song, Yulong; Ye, Zuliang; Cao, Feng

    2017-08-01

    In this study, an innovation of air-sourced transcritical CO2 heat pump which was employed in the space heating application was presented and discussed in order to solve the problem that the heating performances of the transcritical CO2 heat pump water heater deteriorated sharply with the augment in water feed temperature. An R134a cycle was adopted as a subcooling device in the proposed system. The prototype of the presented system was installed and supplied hot water for three places in northern China in winter. The field test results showed that the acceptable return water temperature can be increased up to 55°C, while the supply water temperature was raised rapidly by the presented prototype to up to 70°C directly, which was obviously appropriate to the various conditions of heating radiator in space heating application. Additionally, though the heating capacity and power dissipation decreased with the decline in ambient temperature or the augment in water temperature, the presented heat pump system performed efficiently whatever the climate and water feed temperature were. The real time COP of the presented system was generally more than 1.8 in the whole heating season, while the seasonal performance coefficient (SPC) was also appreciable, which signified that the economic efficiency of the presented system was more excellent than other space heating approaches such as fuel, gas, coal or electric boiler. As a result, the novel system will be a promising project to solve the energy issues in future space heating application.

  13. A Liquid-Liquid Thermoelectric Heat Exchanger as a Heat Pump for Testing Phase Change Material Heat Exchangers

    Science.gov (United States)

    Sheth, Rubik B.; Makinen, Janice; Le, Hung V.

    2016-01-01

    The primary objective of the Phase Change HX payload on the International Space Station (ISS) is to test and demonstrate the viability and performance of Phase Change Material Heat Exchangers (PCM HX). The system was required to pump a working fluid through a PCM HX to promote the phase change material to freeze and thaw as expected on Orion's Multipurpose Crew Vehicle. Due to limitations on ISS's Internal Thermal Control System, a heat pump was needed on the Phase Change HX payload to help with reducing the working fluid's temperature to below 0degC (32degF). This paper will review the design and development of a TEC based liquid-liquid heat exchanger as a way to vary to fluid temperature for the freeze and thaw phase of the PCM HX. Specifically, the paper will review the design of custom coldplates and sizing for the required heat removal of the HX.

  14. The aerodynamic performance of the water pumping wind turbine for Bangladesh

    International Nuclear Information System (INIS)

    Ahmed, S.; Islam, M.Q.

    2004-01-01

    In order to examine the feasibility of wind energy for water pumping in Bangladesh, an experimental investigation of performance characteristics of horizontal axis wind turbines has been conducted. Wind characteristics of various regions of Bangladesh have been analysed and hence a compatible design of horizontal axis wind turbine applicable to the pump has been suggested. The wind data collected by the meteorological department of Bangladesh for a period 16 years of 20 stations at different heights between 5m and 10m have been converted to 20m hub-height using power law. From these data monthly average speeds have been calculated. It is observed that for few regions of Bangladesh, there is reasonable wind speed available throughout the year to extract useful power. Considering a particular prospective region of Bangladesh a wind turbine has been designed for water pumping. The design incorporates the generalized procedure for determination of rotor and pump sizes. Thus it can be also used for any other region as well. In this paper, a generalized design for Bangladesh, a nomogram and an empirical relation have been developed for the rotor and the pump size for a particular region of Bangladesh.(author)

  15. Diode-pumped Yb:Sr5(PO4)3F laser performance

    International Nuclear Information System (INIS)

    Marshall, C.D.; Payne, S.A.; Smith, L.K.

    1995-01-01

    The performance of the first diode-pumped Yb 3+ -doped Sr 5 (PO 4 ) 3 F (Yb:S-FAP) laser is discussed. We found the pumping dynamics and extraction cross-sections of Yb:S-FAP crystals to be similar to those previously inferred by purely spectroscopic techniques. The saturation fluence for pumping was measured to be 2.2 J/cm 2 using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain implies an emission cross section of 6.0 x 10 -20 cm 2 that falls within error bars of the previously reported value of 7.3 x 10 -20 cm 2 , obtained from spectroscopic techniques. Up to 1.7 J/cm 3 of stored energy density was achieved in a 6 x 6 x 44 mm Yb:S-FAP amplifier rod. An InGaAs diode array has been fabricated that has suitable specifications for pumping a 3 x 3 x 30 mm Yb:S-FAP rod. In a free running configuration diode-pumped slope efficiencies up to 43% were observed with output energies up to ∼0.5 J per 1 ms pulse. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz and 500 μs pulses

  16. A practical approach for implementing risk-based inservice testing of pumps at nuclear power plants

    International Nuclear Information System (INIS)

    Hartley, R.S.; Maret, D.; Seniuk, P.; Smith, L.

    1996-01-01

    The American Society of Mechanical Engineers (ASME) Center for Research and Technology Development's (CRTD) Research Task Force on Risk-Based Inservice Testing has developed guidelines for risk-based inservice testing (IST) of pumps and valves. These guidelines are intended to help the ASME Operation and Maintenance (OM) Committee to enhance plant safety while focussing appropriate testing resources on critical components. This paper describes a practical approach for implementing those guidelines for pumps at nuclear power plants. The approach, as described in this paper, relies on input, direction, and assistance from several entities such as the ASME Code Committees, United States Nuclear Regulatory Commission (NRC), and the National Laboratories, as well as industry groups and personnel with applicable expertise. Key parts of the risk-based IST process that are addressed here include: identification of important failure modes, identification of significant failure causes, assessing the effectiveness of testing and maintenance activities, development of alternative testing and maintenance strategies, and assessing the effectiveness of alternative testing strategies with present ASME Code requirements. Finally, the paper suggests a method of implementing this process into the ASME OM Code for pump testing

  17. A practical approach for implementing risk-based inservice testing of pumps at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, R.S. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Maret, D.; Seniuk, P.; Smith, L.

    1996-12-01

    The American Society of Mechanical Engineers (ASME) Center for Research and Technology Development`s (CRTD) Research Task Force on Risk-Based Inservice Testing has developed guidelines for risk-based inservice testing (IST) of pumps and valves. These guidelines are intended to help the ASME Operation and Maintenance (OM) Committee to enhance plant safety while focussing appropriate testing resources on critical components. This paper describes a practical approach for implementing those guidelines for pumps at nuclear power plants. The approach, as described in this paper, relies on input, direction, and assistance from several entities such as the ASME Code Committees, United States Nuclear Regulatory Commission (NRC), and the National Laboratories, as well as industry groups and personnel with applicable expertise. Key parts of the risk-based IST process that are addressed here include: identification of important failure modes, identification of significant failure causes, assessing the effectiveness of testing and maintenance activities, development of alternative testing and maintenance strategies, and assessing the effectiveness of alternative testing strategies with present ASME Code requirements. Finally, the paper suggests a method of implementing this process into the ASME OM Code for pump testing.

  18. Joint inversion of hydraulic head and self-potential data associated with harmonic pumping tests

    Science.gov (United States)

    Soueid Ahmed, A.; Jardani, A.; Revil, A.; Dupont, J. P.

    2016-09-01

    Harmonic pumping tests consist in stimulating an aquifer by the means of hydraulic stimulations at some discrete frequencies. The inverse problem consisting in retrieving the hydraulic properties is inherently ill posed and is usually underdetermined when considering the number of well head data available in field conditions. To better constrain this inverse problem, we add self-potential data recorded at the ground surface to the head data. The self-potential method is a passive geophysical method. Its signals are generated by the groundwater flow through an electrokinetic coupling. We showed using a 3-D saturated unconfined synthetic aquifer that the self-potential method significantly improves the results of the harmonic hydraulic tomography. The hydroelectric forward problem is obtained by solving first the Richards equation, describing the groundwater flow, and then using the result in an electrical Poisson equation describing the self-potential problem. The joint inversion problem is solved using a reduction model based on the principal component geostatistical approach. In this method, the large prior covariance matrix is truncated and replaced by its low-rank approximation, allowing thus for notable computational time and storage savings. Three test cases are studied, to assess the validity of our approach. In the first test, we show that when the number of harmonic stimulations is low, combining the harmonic hydraulic and self-potential data does not improve the inversion results. In the second test where enough harmonic stimulations are performed, a significant improvement of the hydraulic parameters is observed. In the last synthetic test, we show that the electrical conductivity field required to invert the self-potential data can be determined with enough accuracy using an electrical resistivity tomography survey using the same electrodes configuration as used for the self-potential investigation.

  19. 10 CFR 431.107 - Uniform test method for the measurement of energy efficiency of commercial heat pump water...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. [Reserved] 431.107 Section 431.107 Energy DEPARTMENT OF....107 Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters...

  20. 40 CFR Table 6 to Subpart IIIi of... - Optional 3-Mode Test Cycle for Stationary Fire Pump Engines

    Science.gov (United States)

    2010-07-01

    ... Engines [As stated in § 60.4210(g), manufacturers of fire pump engines may use the following test cycle... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Optional 3-Mode Test Cycle for Stationary Fire Pump Engines 6 Table 6 to Subpart IIII of Part 60 Protection of Environment ENVIRONMENTAL...

  1. Finalize field testing of cold climate heat pump (CCHP) based on tandem vapor injection compressors

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    This report describes the system diagram and control algorithm of a prototype air-source cold climate heat pump (CCHP) using tandem vapor injection (VI) compressors. The prototype was installed in Fairbanks, Alaska and underwent field testing starting in 09/2016. The field testing results of the past six months, including compressor run time fractions, measured COPs and heating capacities, etc., are presented as a function of the ambient temperature. Two lessons learned are also reported.

  2. Relaxation of inservice test frequency requirement for Kori 1 ASME code pumps

    International Nuclear Information System (INIS)

    Sohn, Gap Heon; Choi, Hae Yoon; Min, Kyung Sung; Rim, Nam Jin

    1994-08-01

    The objective of this investigation is to evaluate the technical and regulational requirements to justify the relaxation of the test frequency of Kori 1 pumps through reviewing the related rules and codes and standards, technical specifications of Kori 1 and other similar plants, standard technical specifications, research results for tech. spec. improvements and site test records. It is concluded that the relaxation of test frequency to quarterly be justified based on the conformance with rules and codes and standard, quarterly test cases in similar plants and standard tech. spec., recommendations of research result and stable site test records. (Author) 16 refs., 26 figs., 13 tabs

  3. Improving the Performance of Two-Stage Gas Guns By Adding a Diaphragm in the Pump Tube

    Science.gov (United States)

    Bogdanoff, D. W.; Miller, Robert J.

    1995-01-01

    Herein, we study the technique of improving the gun performance by installing a diaphragm in the pump tube of the gun. A CFD study is carried out for the 0.28 in. gun in the Hypervelocity Free Flight Radiation (HFF RAD) range at the NASA Ames Research Center. The normal, full-length pump tube is studied as well as two pump tubes of reduced length (approximately 75% and approximately 33% of the normal length). Significant improvements in performance are calculated to be gained for the reduced length pump tubes upon the addition of the diaphragm. These improvements are identified as reductions in maximum pressures in the pump tube and at the projectile base of approximately 20%, while maintaining the projectile muzzle velocity or as increases in muzzle velocity of approximately 0.5 km/sec while not increasing the maximum pressures in the gun. Also, it is found that both guns with reduced pump tube length (with diaphragms) could maintain the performance of gun with the full length pump tube without diaphragms, whereas the guns with reduced pump tube lengths without diaphragms could not. A five-shot experimental investigation of the pump tube diaphragm technique is carried out for the gun with a pump tube length of 75% normal. The CFD predictions of increased muzzle velocity are borne out by the experimental data. Modest, but useful muzzle velocity increases (2.5 - 6%) are obtained upon the installation of a diaphragm, compared to a benchmark shot without a diaphragm.

  4. Performance comparison of air-source heat pump water heater with different expansion devices

    International Nuclear Information System (INIS)

    Peng, Jing-Wei; Li, Hui; Zhang, Chun-Lu

    2016-01-01

    Highlights: • An air-source heat pump water heater model was developed and validated. • System performance with EEV, capillary tube or short tube orifice were compared. • Short tube orifice is more suitable for heat pump water heater than capillary tube. - Abstract: Air source heat pump water heater (ASHPWH) is designed to work under wide operating conditions. Therefore, both the system and components require higher reliability and stability than ordinary heat pump air-conditioning systems. In this paper, a quasi-steady-state system model of ASHPWH using electronic expansion valve (EEV), capillary tube or short tube orifice as expansion device is developed and validated by a prototype using R134a and scroll compressor, by which the system performance is evaluated and compared at varying water temperature and different ambient temperature. Flow characteristics of those three expansion devices in ASHPWH are comparatively analyzed. Results show that the EEV throttling system performs best. Compared with capillary tube, flow characteristics of short tube orifice are closer to that of EEV and therefore more suitable for ASHPWH. Reliability concern of liquid carryover to the compressor in the system using short tube orifice is investigated as well. Higher superheat or less system refrigerant charge could help mitigate the risk.

  5. Geothermal source heat pump performance for a greenhouse heating system: an experimental study

    Directory of Open Access Journals (Sweden)

    Alexandros Sotirios Anifantis

    2016-09-01

    Full Text Available Greenhouses play a significant function in the modern agriculture economy even if require great amount of energy for heating systems. An interesting solution to alleviate the energy costs and environmental problems may be represented by the use of geothermal energy. The aim of this paper, based on measured experimental data, such as the inside greenhouse temperature and the heat pump performance (input and output temperatures of the working fluid, electric consumption, was the evaluation of the suitability of low enthalpy geothermal heat sources for agricultural needs such as greenhouses heating. The study was carried out at the experimental farm of the University of Bari, where a greenhouse was arranged with a heating system connected to a ground-source heat pump (GSHP, which had to cover the thermal energy request. The experimental results of this survey highlight the capability of the geothermal heat source to ensue thermal conditions suitable for cultivation in greenhouses even if the compressor inside the heat pump have operated continuously in a fluctuating state without ever reaching the steady condition. Probably, to increase the performance of the heat pump and then its coefficient of performance within GSHP systems for heating greenhouses, it is important to analyse and maximise the power conductivity of the greenhouse heating system, before to design an expensive borehole ground exchanger. Nevertheless, according to the experimental data obtained, the GSHP systems are effective, efficient and environmental friendly and may be useful to supply the heating energy demand of greenhouses.

  6. Research on performance of upstream pumping mechanical seal with different deep spiral groove

    International Nuclear Information System (INIS)

    Wang, Q; Chen, H L; Liu, T; Liu, Y H; Liu, Z B; Liu, D H

    2012-01-01

    As one new type of mechanical seal, Upstream Pumping Mechanical Seal has been widely used in fluid machinery. In this paper, structure of spiral groove is innovatively optimized to improve performance of Upstream Pumping Mechanical Seal with Spiral Groove: keeping the dam zone and the weir zone not changed, changing the bottom shape of spiral groove only, substituting different deep spiral groove for equal deep spiral groove. The simulation on Upstream Pumping Mechanical Seal with different deep spiral grooves is done using FVM method. According to calculation, the performances of opening force and pressure distribution on seals face are obtained. Five types of spiral grooves are analyzed, namely equal deep spiral groove, circumferential convergent ladder-like different deep spiral groove, circumferential divergent ladder-like different deep spiral groove, radial convergent ladder-like different deep spiral groove and radial divergent ladder-like different deep spiral groove. This paper works on twenty-five working conditions. The results indicate the performances of circumferential divergent 2-ladder different deep spiral groove are better than the others, with more opening force and better stabilization, while with the same leakage. The outcome provides theoretical support for application of Upstream Pumping Mechanical Seal with circumferential convergent ladder-like different deep spiral groove.

  7. Research on performance of upstream pumping mechanical seal with different deep spiral groove

    Science.gov (United States)

    Wang, Q.; Chen, H. L.; Liu, T.; Liu, Y. H.; Liu, Z. B.; Liu, D. H.

    2012-11-01

    As one new type of mechanical seal, Upstream Pumping Mechanical Seal has been widely used in fluid machinery. In this paper, structure of spiral groove is innovatively optimized to improve performance of Upstream Pumping Mechanical Seal with Spiral Groove: keeping the dam zone and the weir zone not changed, changing the bottom shape of spiral groove only, substituting different deep spiral groove for equal deep spiral groove. The simulation on Upstream Pumping Mechanical Seal with different deep spiral grooves is done using FVM method. According to calculation, the performances of opening force and pressure distribution on seals face are obtained. Five types of spiral grooves are analyzed, namely equal deep spiral groove, circumferential convergent ladder-like different deep spiral groove, circumferential divergent ladder-like different deep spiral groove, radial convergent ladder-like different deep spiral groove and radial divergent ladder-like different deep spiral groove. This paper works on twenty-five working conditions. The results indicate the performances of circumferential divergent 2-ladder different deep spiral groove are better than the others, with more opening force and better stabilization, while with the same leakage. The outcome provides theoretical support for application of Upstream Pumping Mechanical Seal with circumferential convergent ladder-like different deep spiral groove.

  8. Performance Testing of Cutting Fluids

    DEFF Research Database (Denmark)

    Belluco, Walter

    The importance of cutting fluid performance testing has increased with documentation requirements of new cutting fluid formulations based on more sustainable products, as well as cutting with minimum quantity of lubrication and dry cutting. Two sub-problems have to be solved: i) which machining...... tests feature repeatability, reproducibility and sensitivity to cutting fluids, and ii) to what extent results of one test ensure relevance to a wider set of machining situations. The present work is aimed at assessing the range of validity of the different testing methods, investigating correlation...... within the whole range of operations, materials, cutting fluids, operating conditions, etc. Cutting fluid performance was evaluated in turning, drilling, reaming and tapping, and with respect to tool life, cutting forces, chip formation and product quality (dimensional accuracy and surface integrity...

  9. Device and method for measuring the coefficient of performance of a heat pump

    Science.gov (United States)

    Brantley, V.R.; Miller, D.R.

    1982-05-18

    A method and instrument is provided which allows quick and accurate measurement of the coefficient of performance of an installed electrically powered heat pump including auxiliary resistane heaters. Temperature-sensitive resistors are placed in the return and supply air ducts to measure the temperature increase of the air across the refrigerant and resistive-heating elements of the system. The voltages across the resistors which are directly proportional to the respective duct tempertures are applied to the inputs of a differential amplifier so that its output voltage is proportional to the temperature difference across the unit. A voltage-to-frequency converter connected to the output of the differential amplifier converts the voltage signal to a proportional-frequency signal. A digital watt meter is used to measure the power to the unit and produces a signal having a frequency proportional to the input power. A digital logic circuit ratios the temperature difference signal and the electric power input signal in a unique manner to produce a single number which is the coefficient of performance of the unit over the test interval. The digital logic and an in-situ calibration procedure enables the instrument to make these measurements in such a way that the ratio of heat flow/power input is obtained without computations. No specialized knowledge of thermodynamics or electrons is required to operate the instrument.

  10. Field Performance of Inverter-Driven Heat Pumps in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, James [Consortium of Advanced Residential Buildings, Norwalk, CT (United States); Aldrich, Robb [Consortium of Advanced Residential Buildings, Norwalk, CT (United States)

    2015-08-19

    Traditionally, air-source heat pumps (ASHPs) have been used more often in warmer climates; however, some new ASHPs are gaining ground in colder areas. These systems operate at subzero (Fahrenheit) temperatures and many do not include backup electric resistance elements. There are still uncertainties, however, about capacity and efficiency in cold weather. Also, questions such as “how cold is too cold?” do not have clear answers. These uncertainties could lead to skepticism among homeowners; poor energy savings estimates; suboptimal system selection by heating, ventilating, and air-conditioning contractors; and inconsistent energy modeling. In an effort to better understand and characterize the heating performance of these units in cold climates, the U.S. Department of Energy Building America team, Consortium for Advanced Residential Buildings (CARB), monitored seven inverter-driven, ductless ASHPs across the Northeast. Operating data were collected for three Mitsubishi FE18 units, three Mitsubishi FE12 units, and one Fujitsu 15RLS2 unit. The intent of this research was to assess heat output, electricity consumption, and coefficients of performance (COPs) at various temperatures and load conditions. This assessment was accomplished with long- and short-term tests that measured power consumption; supply, return, and outdoor air temperatures; and airflow through the indoor fan coil.

  11. LFK, FORTRAN Application Performance Test

    International Nuclear Information System (INIS)

    McMahon, F.H.

    1991-01-01

    1 - Description of program or function: LFK, the Livermore FORTRAN Kernels, is a computer performance test that measures a realistic floating-point performance range for FORTRAN applications. Informally known as the Livermore Loops test, the LFK test may be used as a computer performance test, as a test of compiler accuracy (via checksums) and efficiency, or as a hardware endurance test. The LFK test, which focuses on FORTRAN as used in computational physics, measures the joint performance of the computer CPU, the compiler, and the computational structures in units of Mega-flops/sec or Mflops. A C language version of subroutine KERNEL is also included which executes 24 samples of C numerical computation. The 24 kernels are a hydrodynamics code fragment, a fragment from an incomplete Cholesky conjugate gradient code, the standard inner product function of linear algebra, a fragment from a banded linear equations routine, a segment of a tridiagonal elimination routine, an example of a general linear recurrence equation, an equation of state fragment, part of an alternating direction implicit integration code, an integrate predictor code, a difference predictor code, a first sum, a first difference, a fragment from a two-dimensional particle-in-cell code, a part of a one-dimensional particle-in-cell code, an example of how casually FORTRAN can be written, a Monte Carlo search loop, an example of an implicit conditional computation, a fragment of a two-dimensional explicit hydrodynamics code, a general linear recurrence equation, part of a discrete ordinates transport program, a simple matrix calculation, a segment of a Planck distribution procedure, a two-dimensional implicit hydrodynamics fragment, and determination of the location of the first minimum in an array. 2 - Method of solution: CPU performance rates depend strongly on the maturity of FORTRAN compiler machine code optimization. The LFK test-bed executes the set of 24 kernels three times, resetting the DO

  12. Summary of three dimensional pump testing of a fractured rock aquifer in the western Siberian Basin

    International Nuclear Information System (INIS)

    Nichols, R.L.; Looney, B.B.; Eddy-Dilek, C.A.; Drozhko, E.G.; Glalolenko, Y.V.; Mokrov, Y.G.; Ivanov, I.A.; Glagolev, A.V.; Vasil'kova, N.A.

    1996-01-01

    A group of scientists from the Savannah River Technology Center and Russia successfully completed a 17 day field investigation of a fractured rock aquifer at the MAYAK PA nuclear production facility in Russia. The test site is located in the western Siberian Basin near the floodplain of the Mishelyak river. The fractured rock aquifer is composed of orphyrites, tuff, tuffbreccia and lava and is overlain by 0.5--12 meters of elluvial and alluvial sediments. A network of 3 uncased wells (176, 1/96, and 2/96) was used to conduct the tests. Wells 176 and 2/96 were used as observation wells and the centrally located well 1/96 was used as the pumping well. Six packers were installed and inflated in each of the observation wells at a depth of up to 85 meters. The use of 6 packers in each well resulted in isolating 7 zones for monitoring. The packers were inflated to different pressures to accommodate the increasing hydrostatic pressure. A straddle packer assembly was installed in the pumping well to allow testing of each of the individual zones isolated in the observation wells. A constant rate pumping test was run on each of the 7 zones. The results of the pumping tests are included in Appendix A. The test provided new information about the nature of the fractured rock aquifers in the vicinity of the Mishelyak river and will be key information in understanding the behavior of contaminants originating from process wastes discharged to Lake Karachi. Results from the tests will be analyzed to determine the hydraulic properties of different zones within the fractured rock aquifer and to determine the most cost effective clean-up approach for the site

  13. Radioactive material packaging performance testing

    International Nuclear Information System (INIS)

    Romano, T.; Cruse, J.M.

    1991-02-01

    To provide uniform packaging of hazardous materials on an international level, the United Nations has developed packaging recommendations that have been implemented worldwide. The United Nations packaging recommendations are performance oriented, allowing for a wide variety of package materials and systems. As a result of this international standard, efforts in the United States are being directed toward use of performance-oriented packaging and elimination of specification (designed) packaging. This presentation will focus on trends, design evaluation, and performance testing of radioactive material packaging. The impacts of US Department of Transportation Dockets HM-181 and HM-169A on specification and low-specific activity radioactive material packaging requirements are briefly discussed. The US Department of Energy's program for evaluating radioactive material packings per US Department of Transportation Specification 7A Type A requirements, is used as the basis for discussing low-activity packaging performance test requirements. High-activity package testing requirements are presented with examples of testing performed at the Hanford Site that is operated by Westinghouse Hanford Company for the US Department of Energy. 5 refs., 2 tabs

  14. Influence of ambient temperatures on performance of a CO2 heat pump water heating system

    International Nuclear Information System (INIS)

    Yokoyama, Ryohei; Shimizu, Takeshi; Ito, Koichi; Takemura, Kazuhisa

    2007-01-01

    In residential applications, an air-to-water CO 2 heat pump is used in combination with a domestic hot water storage tank, and the performance of this system is affected significantly not only by instantaneous ambient air and city water temperatures but also by hourly changes of domestic hot water consumption and temperature distribution in the storage tank. In this paper, the performance of a CO 2 heat pump water heating system is analyzed by numerical simulation. A simulation model is created based on thermodynamic equations, and the values of model parameters are estimated based on measured data for existing devices. The calculated performance is compared with the measured one, and the simulation model is validated. The system performance is clarified in consideration of seasonal changes of ambient air and city water temperatures

  15. Monitored performance of residential geothermal heat pumps in central Texas and Southern Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, W.N.

    1997-11-01

    This report summarizes measured performance of residential geothermal heat pumps (GHP`s) that were installed in family housing units at Ft. Hood, Texas and at Selfridge Air National Guard base in Michigan. These units were built as part of a joint Department of Defense/Department of Energy program to evaluate the energy savings potential of GHP`s installed at military facilities. At the Ft. Hood site, the GHP performance was compared to conventional forced air electric air conditioning and natural gas heating. At Selfridge, the homes under test were originally equipped with electric baseboard heat and no air conditioning. Installation of the GHP systems at both sites was straightforward but more problems and costs were incurred at Selfridge because of the need to install ductwork in the homes. The GHP`s at both sites produced impressive energy savings. These savings approached 40% for most of the homes tested. The low cost of energy on these bases relative to the incremental cost of the GHP conversions precludes rapid payback of the GHP`s from energy savings alone. Estimates based on simple payback (no inflation and no interest on capital) indicated payback times from 15 to 20 years at both sites. These payback times may be reduced by considering the additional savings possible due to reduced maintenance costs. Results are summarized in terms of 15 minute, hourly, monthly, and annual performance parameters. The results indicate that all the systems were working properly but several design shortcomings were identified. Recommendations are made for improvements in future installations at both sites.

  16. Experimental performance of R432A to replace R22 in residential air-conditioners and heat pumps

    International Nuclear Information System (INIS)

    Park, Ki-Jung; Shim, Yun-Bo; Jung, Dongsoo

    2009-01-01

    In this study, thermodynamic performance of R432A and HCFC22 is measured in a heat pump bench tester under both air-conditioning and heat pumping conditions. R432A has no ozone depletion potential and very low greenhouse warming potential of less than 5. R432A also offers a similar vapor pressure to HCFC22 for 'drop-in' replacement. Test results showed that the coefficient of performance and capacity of R432A are 8.5-8.7% and 1.9-6.4% higher than those of HCFC22 for both conditions. The compressor discharge temperature of R432A is 14.1-17.3 deg. C lower than that of HCFC22 while the amount of charge for R432A is 50% lower than that of HCFC22 due to its low density. Overall, R432A is a good long term 'drop-in' environmentally friendly alternative to replace HCFC22 in residential air-conditioners and heat pumps due to its excellent thermodynamic and environmental properties

  17. Performance of R433A for replacing HCFC22 used in residential air-conditioners and heat pumps

    International Nuclear Information System (INIS)

    Park, Ki-Jung; Shim, Yun-Bo; Jung, Dongsoo

    2008-01-01

    In this study, thermodynamic performance of R433A and HCFC22 is measured in a heat pump bench tester under air-conditioning and heat pumping conditions. R433A has no ozone depletion potential and very low greenhouse warming potential of less than 5. R433A also offers a similar vapor pressure to HCFC22 for possible 'drop-in' replacement. Test results showed that the coefficient of performance of R433A is 4.9-7.6% higher than that of HCFC22 while the capacity of R433A is 1.0-5.5% lower than that of HCFC22 for both conditions. The compressor discharge temperature of R433A is 22.6-27.9 deg. C lower than that of HCFC22 while the amount of charge for R433A is 57.0-57.7% lower than that of HCFC22 due to its low density. Overall, R433A is a good long term environmentally friendly alternative to replace HCFC22 in residential air-conditioners and heat pumps due to its excellent thermodynamic and environmental properties with minor adjustments

  18. GEM: Performance and aging tests

    International Nuclear Information System (INIS)

    Cho, H.S.; Kadyk, J.; Han, S.H.; Hong, W.S.; Perez-Mendez, V.; Wenzel, W.; Pitts, K.; Martin, M.D.; Hutchins, J.B.

    1999-01-01

    Performance and aging tests have been done to characterize Gas Electron Multipliers (GEMs), including further design improvements such as a thicker GEM and a closed GEM. Since the effective GEM gain is typically smaller than the absolute GEM gain, due to trapping of avalanche electrons at the bottom GEM electrode, the authors performed field simulations and measurements for better understanding, and discuss methods to eliminate this effect. Other performance parameters of the GEMs are also presented, including absolute GEM gain, short-term and long-term gain stabilities

  19. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    International Nuclear Information System (INIS)

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL's). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL's which are appropriate for material processing applications, low and intermediate average power DPSSL's are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications

  20. Trailing edge devices to improve performance and increase lifetime of wind-electric water pumping systems

    Energy Technology Data Exchange (ETDEWEB)

    Vick, B.D.; Clark, R.N. [USDA-Agricultural Research Service, Bushland, TX (United States)

    1996-12-31

    Trailing edge flaps were applied to the blades of a 10 kW wind turbine used for water pumping to try to improve the performance and decrease the structural fatigue on the wind turbine. Most small wind turbines (10 kW and below) use furling (rotor turns out of wind similar to a mechanical windmill) to protect the wind turbine from overspeed during high winds. Some small wind turbines, however, do not furl soon enough to keep the wind turbine from being off line part of the time in moderately high wind speeds (10 - 16 m/s). As a result, the load is disconnected and no water is pumped at moderately high wind speeds. When the turbine is offline, the frequency increases rapidly often causing excessive vibration of the wind turbine and tower components. The furling wind speed could possibly be decreased by increasing the offset between the tower centerline and the rotor centerline, but would be a major and potentially expensive retrofit. Trailing edge flaps (TEF) were used as a quick inexpensive method to try to reduce the furling wind speed and increase the on time by reducing the rotor RPM. One TEF configuration improved the water pumping performance at moderately high wind speeds, but degraded the pumping performance at low wind speeds which resulted in little change in daily water volume. The other TEF configuration differed very little from the no flap configuration. Both TEF configurations however, reduced the rotor RPM in high wind conditions. The TEF, did not reduce the rotor RPM by lowering the furling wind speed as hoped, but apparently did so by increasing the drag which also reduced the volume of water pumped at the lower wind speeds. 6 refs., 9 figs.

  1. Development of advanced heat pump (2). Prelimirary test of two-stage compression heat pump. Koseino onreinetsu kyokyu heat pump system no kaihatsu. Dai 2 ho 2dan attsusyuku system shisakuki no yobi jikken kekka

    Energy Technology Data Exchange (ETDEWEB)

    Iwatsubo, Tetsushiro; Saikawa, Michinori; Hamamatsu, Teruhide

    1988-03-01

    A heat pump driven by electricity is one of the excellent electricity utilization systems and is promoted to be widely used. An advanced heat pump has been investigated to enlarge its applications in the field of hot water supply for domestic use which will be competitive with city gas and air conditioning in large scale buildings. An experimental unit with two-stage compression system was designed, which has the multi-function of air conditioning and hot water supply, and the trial system was fabricated. In the design, followings were considered; cooperative operations of two compressors by inverter driving, the temperature conditions of both the air for the air conditioning and the heat source, additional setting of the intermediate heat exchanger. The test operation was carried out with checking the start up procedure, the control sequence and so on. The probability of five operation modes: cooling, heating, hot water supply, cooling/hot water supply, and heating/hot water supply, were confirmed. In the mode of heating/hot water supply the hot water temperature was increased to 65/sup 0/C, the excellent performance in hot water supply was demonstrated. (21 figs, 8 tabs, 1 photo, 5 refs)

  2. Performance variations of river water source heat pump system according to heat exchanger capacity variations

    International Nuclear Information System (INIS)

    Park, Seong Ryong; Baik, Young Jin; Lee, Young Soo; Kim, Hee Hwan

    2003-01-01

    The utilization of unused energy is important because it can afford to offer a chance to increase energy efficiency of a heat pump system. One of the promising unused energy sources is river water. It can be used as a heat source in both heating and cooling effectively with its superior features as a secondary working fluids. In this study, the performance of a 5HP heat pump system using river water as a heat source is investigated by both experiment and simulation. According to system simulation results, performance improvement of condenser seems more effective than that of evaporator for better COPH. The serial connection is also preferred among several methods to improve plate type heat exchanger performance. The experimental results show that the hot water of 50∼60 .deg. C can be acquired from water heat source of 5∼9 .deg. C with COPH of 2.7∼3.5

  3. Groundwater heat pump performance improvement with pre-coolers and pump modification: Final report for the 1985-86 SOMED (School of Mines and Energy Development) project year

    Energy Technology Data Exchange (ETDEWEB)

    Kavanaugh, S.

    1986-09-30

    Improved performance of groundwater heat pumps can be realized with a more effective and efficient utilization of the thermal properties of shallow groundwater. These systems circulate water from aquifers through water source heat pumps to achieved high efficiencies and capacities. This project concludes that a 10 to 15 percent cooling performance improvement can be realized by pre-cooling the room air with the 55/sup 0/ to 67/sup 0/F groundwater available in large portions of the Southeast. Proper design of these pre-coolers eliminates unnecessary auxiliary energy requirements. The efficiency of the overall system can be further improved with modifications to current methods of water circulation system design. Pressure requirements are minimized by maintaining a low unit inlet pressure (8 psig maximum), removing unnecessary loop restrictions and injection below the water table. Standard submersible water pumps exceed the resulting required size for residential groundwater heat pumps. Simple modifications can be made by the manufacturer to correct this problem. The result is an overall 15 to 40 percent performance improvement over high efficiency air source heat pumps with a simple payback of between 0 to 10 years in most cases.

  4. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  5. Cooling performance of a vertical ground-coupled heat pump system installed in a school building

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yujin; Lee, Jae-Keun; Jeong, Young-Man; Koo, Kyung-Min [Department of Mechanical Engineering, Pusan National University, San 30, Jangjeon-Dong, Kumjung-Ku, Busan 609-735 (Korea); Lee, Dong-Hyuk; Kim, In-Kyu; Jin, Sim-Won [LG Electronics, 391-2 Gaeumjeong-dong, Changwon City, Gyeongnam (Korea); Kim, Soo H. [Department of Nanosystems and Nanoprocess Engineering, Pusan National University, San 30, Jangjeon-Dong, Kumjung-Ku, Busan 609-735 (Korea)

    2009-03-15

    This paper presents the cooling performance of a water-to-refrigerant type ground heat source heat pump system (GSHP) installed in a school building in Korea. The evaluation of the cooling performance has been conducted under the actual operation of GSHP system in the summer of year 2007. Ten heat pump units with the capacity of 10 HP each were installed in the building. Also, a closed vertical typed-ground heat exchanger with 24 boreholes of 175 m in depth was constructed for the GSHP system. To analyze the cooling performance of the GSHP system, we monitored various operating conditions, including the outdoor temperature, the ground temperature, and the water temperature of inlet and outlet of the ground heat exchanger. Simultaneously, the cooling capacity and the input power were evaluated to determine the cooling performance of the GSHP system. The average cooling coefficient of performance (COP) and overall COP of the GSHP system were found to be {proportional_to}8.3 and {proportional_to}5.9 at 65% partial load condition, respectively. While the air source heat pump (ASHP) system, which has the same capacity with the GSHP system, was found to have the average COP of {proportional_to}3.9 and overall COP of {proportional_to}3.4, implying that the GSHP system is more efficient than the ASHP system due to its lower temperature of condenser. (author)

  6. Cooling and heating performances of a CO2 heat pump with the variations of operating conditions

    International Nuclear Information System (INIS)

    Baek, Chang Hyun; Lee, Eung Chan; Kang, Hun; Kim, Yong Chan; Cho, Hong Hyun

    2008-01-01

    Since operating conditions are significantly different for heating and cooling mode operations in a CO 2 heat pump system, it is difficult to optimize the performance of the CO 2 cycle. In addition, the performance of a CO 2 heat pump is very sensitive to outdoor temperature and gascooler pressure. In this study, the cooling and heating performances of a variable speed CO 2 heat pump with a twin-rotary compressor were measured and analyzed with the variations of EEV opening and compressor frequency. As a result, the cooling and heating COPs were 2.3 and 3.0, respectively, when the EEV opening was 22%. When the optimal EEV openings for heating and cooling were 28% and 16%, the cooling and heating COPs increased by 3.3% and 3.9%, respectively, over the COPs at the EEV opening of 22%. Beside, the heating performance was more sensitive to EEV opening than the cooling performance. As the compressor speed decreased by 5 Hz, the cooling COP increased by 2%, while the heating COP decreased by 8%

  7. Aquifer pumping test report for the burn site groundwater area of concern

    Energy Technology Data Exchange (ETDEWEB)

    Skelly, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ferry, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    The Aquifer Pumping Test Report for the Burn Site Groundwater (BSG) Area of Concern is being submitted by National Technology and Engineering Solutions of Sandia, LLC and the U.S. Department of Energy (DOE)/National Nuclear Security Administration to describe the results of the aquifer pumping test program and related field activities that were completed at the BSG Area of Concern. This report summarizes the results of the field work and data analyses, and is being submitted to the New Mexico Environment Department (NMED) Hazardous Waste Bureau, as required by the April 14, 2016 letter, Summary of Agreements and Proposed Milestones Pursuant to the Meeting of July 20, 2015, (NMED April 2016).

  8. Considerations for reference pump curves

    International Nuclear Information System (INIS)

    Stockton, N.B.

    1992-01-01

    This paper examines problems associated with inservice testing (IST) of pumps to assess their hydraulic performance using reference pump curves to establish acceptance criteria. Safety-related pumps at nuclear power plants are tested under the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (the Code), Section 11. The Code requires testing pumps at specific reference points of differential pressure or flow rate that can be readily duplicated during subsequent tests. There are many cases where test conditions cannot be duplicated. For some pumps, such as service water or component cooling pumps, the flow rate at any time depends on plant conditions and the arrangement of multiple independent and constantly changing loads. System conditions cannot be controlled to duplicate a specific reference value. In these cases, utilities frequently request to use pump curves for comparison of test data for acceptance. There is no prescribed method for developing a pump reference curve. The methods vary and may yield substantially different results. Some results are conservative when compared to the Code requirements; some are not. The errors associated with different curve testing techniques should be understood and controlled within reasonable bounds. Manufacturer's pump curves, in general, are not sufficiently accurate to use as reference pump curves for IST. Testing using reference curves generated with polynomial least squares fits over limited ranges of pump operation, cubic spline interpolation, or cubic spline least squares fits can provide a measure of pump hydraulic performance that is at least as accurate as the Code required method. Regardless of the test method, error can be reduced by using more accurate instruments, by correcting for systematic errors, by increasing the number of data points, and by taking repetitive measurements at each data point

  9. Gas fired heat pumps

    International Nuclear Information System (INIS)

    Seifert, M.

    2006-01-01

    The condensing gas boiler is now state of the art and there is no more room for improvement in performance, technically speaking. The next logical step to improve the overall efficiency is to exploit ambient heat in combination with the primary source of energy, natural gas. That means using natural-gas driven heat pumps and gas-fired heat pumps. Based on this, the Swiss Gas Industry decided to set up a practical test programme enjoying a high priority. The aim of the project 'Gas-fired heat pump practical test' is to assess by field tests the characteristics and performance of the foreign serial heat pumps currently on the market and to prepare and promote the introduction on the market place of this sustainable natural-gas technology. (author)

  10. Comparison of Different Approaches to Predict the Performance of Pumps As Turbines (PATs

    Directory of Open Access Journals (Sweden)

    Mauro Venturini

    2018-04-01

    Full Text Available This paper deals with the comparison of different methods which can be used for the prediction of the performance curves of pumps as turbines (PATs. The considered approaches are four, i.e., one physics-based simulation model (“white box” model, two “gray box” models, which integrate theory on turbomachines with specific data correlations, and one “black box” model. More in detail, the modeling approaches are: (1 a physics-based simulation model developed by the same authors, which includes the equations for estimating head, power, and efficiency and uses loss coefficients and specific parameters; (2 a model developed by Derakhshan and Nourbakhsh, which first predicts the best efficiency point of a PAT and then reconstructs their complete characteristic curves by means of two ad hoc equations; (3 the prediction model developed by Singh and Nestmann, which predicts the complete turbine characteristics based on pump shape and size; (4 an Evolutionary Polynomial Regression model, which represents a data-driven hybrid scheme which can be used for identifying the explicit mathematical relationship between PAT and pump curves. All approaches are applied to literature data, relying on both pump and PAT performance curves of head, power, and efficiency over the entire range of operation. The experimental data were provided by Derakhshan and Nourbakhsh for four different turbomachines, working in both pump and PAT mode with specific speed values in the range 1.53–5.82. This paper provides a quantitative assessment of the predictions made by means of the considered approaches and also analyzes consistency from a physical point of view. Advantages and drawbacks of each method are also analyzed and discussed.

  11. Test Driven Development: Performing Art

    Science.gov (United States)

    Bache, Emily

    The art of Test Driven Development (TDD) is a skill that needs to be learnt, and which needs time and practice to master. In this workshop a select number of conference participants with considerable skill and experience are invited to perform code katas [1]. The aim is for them to demonstrate excellence and the use of Test Driven Development, and result in some high quality code. This would be for the benefit of the many programmers attending the conference, who could come along and witness high quality code being written using TDD, and get a chance to ask questions and provide feedback.

  12. Operational Test Report (OTR) for U-105 Pumping and Instrumentation and Control (PIC) Skid

    International Nuclear Information System (INIS)

    KOCH, M.R.

    2000-01-01

    Attached is the completed Operation Test Procedure (OTP-200-004, Rev. A-18). OTP includes a print out of the Programmable Logic Controller (PLC) Ladder Diagram. Ladder Diagram was designed for installation in the PLC used to monitor and control pumping activity for Tank Farm 241-U-105. The completed OTP and OTR are referenced in the IS PIC Skid Configuration Drawing (H-2-829998)

  13. THE COURSE IN TESTING THE WEARING OUT OF MUD PUMPS PARTS

    Directory of Open Access Journals (Sweden)

    Davorin Matanović

    1989-12-01

    Full Text Available Piston and cylinder are such parts in the mud pumps which cause the greatest expences due to the work stoppage of drilling rig. To reduce so caused expences it is necessary to produce spare parts of better quality. In determining the abrasion wear resistance for chosen materials, so called dry sand/rubber wheel abrasion test as an ASTM standard has been used (the paper is published in Croatian.

  14. Operational Test Report (OTR) for U-105 Pumping and Instrumentation and Control (PIC) Skid

    Energy Technology Data Exchange (ETDEWEB)

    KOCH, M.R.

    2000-02-28

    Attached is the completed Operation Test Procedure (OTP-200-004, Rev. A-18). OTP includes a print out of the Programmable Logic Controller (PLC) Ladder Diagram. Ladder Diagram was designed for installation in the PLC used to monitor and control pumping activity for Tank Farm 241-U-105. The completed OTP and OTR are referenced in the IS PIC Skid Configuration Drawing (H-2-829998).

  15. Operational Test Report (OTR) for U-102 Pumping and Instrumentation and Control (PIC) Skid

    Energy Technology Data Exchange (ETDEWEB)

    KOCH, M.R.

    2000-02-28

    Attached is the completed Operation Test Procedure (OTP-200-004, Rev. A-19 and Rev. A-20). OTP includes a print out of the Programmable Logic Controller (PLC) Ladder Diagram. Ladder Diagram was designed for installation in the PLC used to monitor and control pumping activity for Tank Farm 241-U-102. The completed OTP and OTR are referenced in the IS PIC Skid Configuration Drawing (H-2-829998).

  16. Operational Test Report (OTR) for U-103 Pumping and Instrumentation and Control (PIC) Skid

    Energy Technology Data Exchange (ETDEWEB)

    KOCH, M.R.

    2000-02-28

    Attached is the completed Operation Test Procedure (OTP-200-004, Rev. A-16). OTP includes a print out of the Programmable Logic Controller (PLC) Ladder Diagram. Ladder Diagram was designed for installation in the PLC used to monitor and control pumping activity for Tank Farm 241-U-103. The completed OTP and OTR are referenced in the 25 PIC Skid Configuration Drawing (H-2-829998).

  17. Performance Analysis of a Wind Turbine Driven Swash Plate Pump for Large Scale Offshore Applications

    International Nuclear Information System (INIS)

    Buhagiar, D; Sant, T

    2014-01-01

    This paper deals with the performance modelling and analysis of offshore wind turbine-driven hydraulic pumps. The concept consists of an open loop hydraulic system with the rotor main shaft directly coupled to a swash plate pump to supply pressurised sea water. A mathematical model is derived to cater for the steady state behaviour of entire system. A simplified model for the pump is implemented together with different control scheme options for regulating the rotor shaft power. A new control scheme is investigated, based on the combined use of hydraulic pressure and pitch control. Using a steady-state analysis, the study shows how the adoption of alternative control schemes in a the wind turbine-hydraulic pump system may result in higher energy yields than those from a conventional system with an electrical generator and standard pitch control for power regulation. This is in particular the case with the new control scheme investigated in this study that is based on the combined use of pressure and rotor blade pitch control

  18. A High Performance Pulsatile Pump for Aortic Flow Experiments in 3-Dimensional Models.

    Science.gov (United States)

    Chaudhury, Rafeed A; Atlasman, Victor; Pathangey, Girish; Pracht, Nicholas; Adrian, Ronald J; Frakes, David H

    2016-06-01

    Aortic pathologies such as coarctation, dissection, and aneurysm represent a particularly emergent class of cardiovascular diseases. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies, as well as for planning their surgical repair. In vitro experiments are required to validate the simulations against real world data, and the experiments require a pulsatile flow pump system that can provide physiologic flow conditions characteristic of the aorta. We designed a newly capable piston-based pulsatile flow pump system that can generate high volume flow rates (850 mL/s), replicate physiologic waveforms, and pump high viscosity fluids against large impedances. The system is also compatible with a broad range of fluid types, and is operable in magnetic resonance imaging environments. Performance of the system was validated using image processing-based analysis of piston motion as well as particle image velocimetry. The new system represents a more capable pumping solution for aortic flow experiments than other available designs, and can be manufactured at a relatively low cost.

  19. Experience in maintenance of pumps in test facilities at R.E.D., B.A.R.C. [Paper No.: II-5

    International Nuclear Information System (INIS)

    Nangia, H.V.; Soni, K.L.; Kamath, K.V.; Mahajan, S.C.

    1981-01-01

    Centrifugal pumps are used for circulating water in various test facilities which are meant for testing reactor components. Operating pressures are about 85 bars at 250 degC. Reciprocating pumps are used for make up service at pressures upto 160 bars. A primary heat transport pump for 200 MWe Candu type reactor, is being tested for checking its performance and for collection of base data. The following are discussed: (i) failure of hydrostatic seal and hydrostatic bearing and its causes, (ii) subsequent repairs and reconditioning, (iii) steps taken to avoid repetition of such failures, and (iv) problems in assembly. For a pump used in the fuelling machine test facility, following maintenance problems are discussed: (1) failure of various components like bearings, mechanical, seals, wear rings, etc., (2) causes of failure and steps taken to remedy the deficiencies noted, (3) experience with the indigenous antifriction bearings, and (4) experience with indigenous spiral wound gaskets. For the reciprocating pumps, leakage through gland packing is a problem. Experience with various types of packing and other parameters, affecting leakage are discussed. (author)

  20. Artificial neural networks for the performance prediction of heat pump hot water heaters

    Science.gov (United States)

    Mathioulakis, E.; Panaras, G.; Belessiotis, V.

    2018-02-01

    The rapid progression in the use of heat pumps, due to the decrease in the equipment cost, together with the favourable economics of the consumed electrical energy, has been combined with the wide dissemination of air-to-water heat pumps (AWHPs) in the residential sector. The entrance of the respective systems in the commercial sector has made important the modelling of the processes. In this work, the suitability of artificial neural networks (ANN) in the modelling of AWHPs is investigated. The ambient air temperature in the evaporator inlet and the water temperature in the condenser inlet have been selected as the input variables; energy performance indices and quantities characterising the operation of the system have been selected as output variables. The results verify that the, easy-to-implement, trained ANN can represent an effective tool for the prediction of the AWHP performance in various operation conditions and the parametrical investigation of their behaviour.

  1. A Simple Approach for Enhancing the Output Performance of Solar-Pumped Solid-State Lasers

    Directory of Open Access Journals (Sweden)

    Dawei Liang

    2009-01-01

    Full Text Available A simple truncated fused silica elliptical cavity is proposed to enhance the output performance of solar-pumped solid-state lasers. The imaging property of the truncated elliptical cavity ensures an enhanced absorption distribution within an Nd:YAG rod. Optimum pumping parameters are found through ZEMAX nonsequential ray-tracing and LASCAD laser cavity analyses. Compared with the output laser performance of a 3D-compound parabolic concentrator-2D-compound parabolic concentrator (3D-CPC-2D-CPC cavity, the truncated cavity provides 11% more multimode and 72.7% more TEM00 laser powers. A laser beam of high beam quality can be produced efficiently. The standard tracking error for multimode laser power is also reduced to only 4.0% by the truncated cavity.

  2. A magnetic fluid seal for rotary blood pumps: Long-term performance in liquid

    Science.gov (United States)

    Mitamura, Yoshinori; Takahashi, Sayaka; Amari, Shuichi; Okamoto, Eiji; Murabayashi, Shun; Nishimura, Ikuya

    A magnetic fluid (MF) seal enables mechanical contact-free rotation of the shaft and hence has excellent durability. The performance of a MF seal, however, has been reported to decrease in liquids. We have developed a MF seal that has a 'shield' mechanism and a new MF with a higher magnetization of 47.9 kA/m. The sealing performance of the MF seal installed in a rotary blood pump was studied. The seal was perfect against a pressure of 150 mmHg in a continuous flow of 4.0 L/min for 275 days and against a pressure of 175 mmHg in a continuous flow of 3.9 L/min for 217 days. We have developed a MF seal that works in liquid against pressure mostly used clinically. The magnetic fluid seal is promising as a shaft seal for rotary blood pumps.

  3. SLIPPER PERFORMANCE INVESTIGATION IN AXIAL PISTON PUMPS AND MOTORS-FLOW AND VISCOUS POWER LOSSES

    Directory of Open Access Journals (Sweden)

    A. Osman KURBAN

    1997-01-01

    Full Text Available In this study, the slippers being the most effective on the performance of swash plate type axial piston pumps and motors, which is a good example of hydrodynamic-hydrostatic bearing applications, have been investigated. With respect to this, having derived the viscous moment loss, viscous flow leakage loss and power loss equations, the variations of these parameters under different operating conditions have been examined experimentally.

  4. Evaluation of personal air sampling pumps

    International Nuclear Information System (INIS)

    Ritter, P.D.; Novick, V.J.; Alvarez, J.L.; Huntsman, B.L.

    1987-01-01

    Personal air samplers are used to more conveniently obtain breathing zone samples from individuals over periods of several hours. Personal air sampling pumps must meet minimum performance levels under all working conditions to be suitable for use in radiation protection programs. In addition, the pumps should be simple to operate and as comfortable to wear as possible. Ten models of personal air sampling pumps were tested to evaluate their mechanical performance and physical characteristics. The pumps varied over a wide range in basic performance and operating features. Some of the pumps were found to have adequate performance for use in health physics air sampling applications. 3 references, 2 figures, 5 tables

  5. The performance of a residential heat pump operating with a nonazeotropic binary refrigerant mixture

    Science.gov (United States)

    Didion, D.; Mulroy, W.

    Results of laboratory measurement of the performance change of a substantially unmodified residential heat pump designed for 222 when charged with a non azeotropic, binary mixture of R1381 and R152a is presented. Results are presented for various sizes of fixed expansion devices. The effect of gliding temperature in the saturation zone was found to be small. The effect of compositions shift by flash distillation in the accumulator was found to measurably improve low temperature heating performance. It was further observed that some system modification (such as the addition of a receiver) could have further enhanced this low temperature heating performance improvement.

  6. Analysis of an Advanced Test Reactor Small-Break Loss-of-Coolant Accident with an Engineered Safety Feature to Automatically Trip the Primary Coolant Pumps

    International Nuclear Information System (INIS)

    Polkinghorne, Steven T.; Davis, Cliff B.; McCracken, Richard T.

    2000-01-01

    A new engineered safety feature that automatically trips the primary coolant pumps following a low-pressure reactor scram was recently installed in the Advanced Test Reactor (ATR). The purpose of this engineered safety feature is to prevent the ATR's surge tank, which contains compressed air, from emptying during a small-break loss-of-coolant accident (SBLOCA). If the surge tank were to empty, the air introduced into the primary coolant loop could potentially cause the performance of the primary and/or emergency coolant pumps to degrade, thereby reducing core thermal margins. Safety analysis performed with the RELAP5 thermal-hydraulic code and the SINDA thermal analyzer shows that adequate thermal margins are maintained during an SBLOCA with the new engineered safety feature installed. The analysis also shows that the surge tank will not empty during an SBLOCA even if one of the primary coolant pumps fails to trip

  7. Full-Scale Validation of a Comprehensive Criterion to Predict Fish-Friendliness of Pumps

    NARCIS (Netherlands)

    Krakers, L.A.; Kruyt, Nicolaas P.; Rutjes, H.A.

    2015-01-01

    Many pumping stations in drainage & irrigation applications are currently equipped with conventional (not fish friendly designed) pumps. Field tests have been performed [1] for several pump types of a certain size at certain pumping conditions to assess survival rates of fish passing through pumps.

  8. Performance Degradation Analysis of Aviation Hydraulic Piston Pump Based on Mixed Wear Theory

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2017-06-01

    Full Text Available This paper focuses on the mathematical modeling of axial piston pump through dividing the failure development of friction pair into lubrication, mixed lubrication and abrasion. Directing to the wedge-shaped oil film between cylinder block and valve plate, the support force distribution under the temperature variance was obtained. Considering the rough peak of valve plate, the contact load model is built under plastic deformation and elastic deformation and the corresponding wear volume is calculated. Computing the wear and tear along the counter-clockwise, the total amount of friction and wear can be calculated. Simulation and preliminary wear particle monitoring test indicates that proposed modeling and analysis can effectively reflect the real abrasion process of hydraulic piston pump.

  9. Two years of recorded data for a multisource heat pump system: A performance analysis

    International Nuclear Information System (INIS)

    Busato, F.; Lazzarin, R.M.; Noro, M.

    2013-01-01

    The concept of a low energy building in a temperate climate (according to the Koppen climate classification) is based upon the following principles: reduction of heat losses through enhanced insulation; the inclusion of heat recovery on mechanical ventilation; and the use of high efficiency heating/cooling systems integrated with renewable technologies. It is almost impossible to achieve optimum results in terms of global energy efficiency if one of these elements is omitted from the design. In 2009, a new school building, integrating these three key elements, was opened in Agordo town, located in northern Italy. The main design features of the building incorporate a well insulated envelope and a space heating and ventilation system driven by an innovative multisource heat pump system. Outdoor air is a common heat source, although it does have widely documented limitations. Heat pump systems can utilise more efficient sources than air, including those of ground heat, solar heat, and heat recovery. The installed system within the school building incorporates these three sources. A multisource system aims to enhance the performance of the heat pump, both in terms of heating capacity and overall efficiency. The present work includes evaluation and analysis of data obtained through real time monitoring of the working system in operation, for a period of approximately two heating seasons. During this time, the behaviour of the system was assessed and the incorrect settings of the plant were identified and subsequently adjusted as required. The energy balance indicates that the integration of different sources not only increases the thermal performance of the system as a whole, but also optimizes the use of each source. Further savings can be obtained through correct adjustment of the set point of the indoor temperature. During the final stage of the study, the total energy consumption of the new building is calculated and compared to that of the former building that

  10. Development of model pump for establishing hydraulic design of primary sodium pumps in PFBR

    International Nuclear Information System (INIS)

    Chougule, R.J.; Sahasrabudhe, H.G.; Rao, A.S.L.K.; Balchander, K.; Kale, R.D.

    1994-01-01

    Indira Gandhi Centre for Atomic Research, Kalpakkam indicated requirement of indigenous development of primary sodium pump, handling liquid sodium as coolant in Fast Breeder Reactor. The primary sodium pump concept selected in its preliminary design is a vertical, single stage, with single suction impeller, suction facing downwards. The pump is having diffuser, discharge casing and discharge collector. The 1/3 rd size model pump is developed to establish the hydraulic performance of the prototype primary sodium pump. The main objectives were to verify the hydraulic design to operate on low net positive suction head available (NPSHA), no evidence of visible cavitation at available NPSHA, the pump should be designed with a diffuser etc. The model pump PSP 250/40 was designed and successfully developed by Research and Development Division of M/s Kirloskar Brothers Ltd., Kirloskarvadi. The performance testing using model pump was successfully carried out on a closed circuit test rig. The performance of a model pump at three different speeds 1900 rpm, 1456 rpm and 975 rpm was established. The values of hydraulic axial thrust with and without balancing holes on impeller at 1900 rpm was measured. Visual cavitation study at 1900 rpm was carried out to establish the NPSH at bubble free operation of the pump. The tested performance of the model pump is converted to the full scale prototype pump. The predicted performance of prototype pump at 700 rpm was found to be meeting fully with the expected duties. (author). 6 figs., 3 tabs

  11. Sodium pumping: pump problems

    International Nuclear Information System (INIS)

    Guer, M.; Guiton, P.

    Information on sodium pumps for LMFBR type reactors is presented concerning ring pump design, pool reactor pump design, secondary pumps, sodium bearings, swivel joints of the oscillating annulus, and thermal shock loads

  12. Numerical Simulation of Three-Dimensional Flow Through Full Passage and Performance Prediction of Nuclear Reactor Coolant Pump

    International Nuclear Information System (INIS)

    Li Ying; Zhou Wenxia; Zhang Jige; Wang Dezhong

    2009-01-01

    In order to achieve the level of self-design and domestic manufacture of the reactor coolant pump (nuclear main pump), the software FLUENT was used to simulate the three-dimensional flow through full passage of one nuclear main pump basing on RNG κ-ε turbulence model and SIMPLE algorithm. The distribution of pressure and velocity of the flow in the impeller's surface was analyzed in different working conditions. Moreover, the performance of the pump was predicted based on the simulation results. The results show that the distributions of pressure and velocity are reasonable in both the working and back face of the blade in the steady working condition. The pressure of the flow is increased from the inlet to the outlet of the pump, and shows the maximal value in the impeller region. Comparatively satisfactory efficiency and head value were obtained in the condition of the pump design. The shaft power of the nuclear main pump is gradually increased with the increase of the flow flux. These results are helpful in understanding the change of the internal flow field in the nuclear main pump, which is of some importance for the pre-exploration and theoretical research on the domestic manufacture of the nuclear main pump. (authors)

  13. Radioactive material packaging performance testing

    International Nuclear Information System (INIS)

    Romano, T.

    1992-06-01

    In an effort to provide uniform packaging of hazardous material on an international level, recommendations for the transport of dangerous goods have been developed by the United Nations. These recommendations are performance oriented and contrast with a large number of packaging specifications in the US Department of Transportation's hazard materials regulations. This dual system presents problems when international shipments enter the US Department of Transportation's system. Faced with the question of continuing a dual system or aligning with the international system, the Research and Special Programs Administration of the US Department of Transportation responded with Docket HM-181. This began the transition toward the international transportation system. Following close behind is Docket HM-169A, which addressed low specific activity radioactive material packaging. This paper will discuss the differences between performance-oriented and specification packaging, the transition toward performance-oriented packaging by the US Department of Transportation, and performance-oriented testing of radioactive material packaging by Westinghouse Hanford Company. Dockets HM-181 and HM-169A will be discussed along with Type A (low activity) and Type B (high activity) radioactive material packaging evaluations

  14. A study of waste and delivery valve design modification to the pump performance

    Science.gov (United States)

    Harith, M. N.; Bakar, R. A.; Ramasamy, D.; Kardigama, K.; Quanjin, Ma

    2018-04-01

    This paper objective is to share design revolution of waste and delivery valve that contribute to the overall pump performance. In this paper, 3 new designs of waste and delivery valve pump are presented with comprehensive internal flow analysis using computational fluid dynamics (CFD) simulation over 4 cases that have been deeply study for one of the design chosen. 4 cases involving opening and closing both valve or either one. 0.265m height size of customized waste valve with an opening limiter and spring was used to demonstrate cyclic closing and opening valve operation extended up to 0.164m gap. Based on result, this characteristics contribute to 10-20% waste water reduction and enhancement of flow rate height up to 80m. Apart from that this paper also share some of pressure (dynamic, total, static), velocity (x, y, z axis) simulation including the vector flow were under different flow cases.

  15. ASSESSMENT OF WATER PUMPING SYSTEM AND IMPROVEMENT IN HYDRO-ENERGETIC PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Augusto da Gama Rego

    2017-01-01

    Full Text Available Within the policy of sanitation services for all and the need t o lower electricity consumption, the current analysis evaluates the water pumping s ystem and defines actions for the improvement of hydro-energetic performance. The present research was divided into two sections: assessment of the water pumping syst em (based on hydro- energetic simulation and an analysis of the impact of ineffici ency on electric energy consumption (based on computer simulation. Results revealed th at methodology was satisfactory and that the main operational issues could be iden tified and corrections could be computer-simulated. A potential 16% reduction in consu mption and in electricity costs could be obtained.

  16. Heating Performance Analysis of a Geothermal Heat Pump Working with Different Zeotropic and Azeotropic Mixtures

    Directory of Open Access Journals (Sweden)

    Robert Bedoić

    2018-06-01

    Full Text Available The aim of the paper is to examine the possibility of application of the spreadsheet calculator and Reference Fluid Thermodynamic and Transport Properties database to a thermodynamic process. The heating process of a real soil-to-water heat pump, including heat transfer in the borehole heat exchanger has been analysed. How the changes of condensing temperature, at constant evaporating temperature, influence the following: heating capacity, compressor effective power, heat supplied to evaporator, compression discharge temperature and coefficient of performance, are investigated. Also, the energy characteristics of a heat pump using different refrigerants for the same heating capacity and the same temperature regime are compared. The following refrigerants are considered: two zeotropic mixtures, R407C and R409A, a mixture with some zeotropic characteristics, R410A, and an azeotropic mixture, R507A.

  17. Advanced performance of small diaphragm vacuum pumps through the use of mechatronics

    Science.gov (United States)

    Lachenmann, R.; Dirscherl, J.

    Oil-free diaphragm vacuum pumps have proven to be the best way in vacuum generation for the chemical laboratory and they also find increasing use as backing pumps for modern wide-range turbo molecular pumps. The majority of vacuum pumps in practical use pump only a rather small percentage of their lifetime at full gas load. A pump backing a turbo molecular pump does not have to pump a significant gas load when the high-vacuum pump is running at ultimate vacuum pressure. Also, for a vacuum distillation the vacuum pump has to operate at full speed only at the beginning to lower the pressure inside the system to a vacuum level where evaporation starts. In a rather leak-tight system the distillation process continues by evaporating from the hot liquid and condensing at the cold condenser without the need of a mechanical vacuum pump. Rotational speed controlled diaphragm pumps are now available through progress in mechatronics and offer high pumping speed capability for fast pump-down cycles and precise pressure control for distillations. At low gas load the rotational speed can be reduced, improving maintenance intervals, power consumption, noise, vibration and - surprisingly - also ultimate pressure. The different behaviour in pumping speed and ultimate pressure of rotational speed controlled diaphragm pumps in comparison to constant-speed pumps is related to the mechanical properties of the valves and gas dynamics .

  18. Comparison of performance between a parallel and a series solar-heat pump system; Solar heat pump system ni okeru heiretsu setsuzoku no seino hikaku

    Energy Technology Data Exchange (ETDEWEB)

    Kanayama, K; Zhao, J; Baba, H; Endo, N [Kitami Institute of Technology, Hokkaido (Japan)

    1997-11-25

    In a solar heat pump system, a single-tank system was fabricated, in which a heat pump is installed in series between a heat collecting tank and a heat storage tank. At the same time, a double-tank system was also fabricated, in which two tanks are assembled into one to which a solar system and a heat pump are connected in parallel. Performance of both systems was analyzed by using measured values and estimated values. Heat collecting efficiency in the double-tank system is higher by about 13 points than in the single-tank system. Nevertheless, the coefficient of performance for the single-tank system is 1.03 to 1.51 times greater than that of the double-tank system. Dependency of the single-tank system on natural energy is higher by 0.3 to 3 points than the double-tank system. Putting the above facts together, it may be said that the single-tank system connecting the solar system and the heat pump in parallel is superior in performance to the double-tank system of the series connection. 3 refs., 5 figs., 2 tabs.

  19. Performance analysis of ejector absorption heat pump using ozone safe fluid couple through artificial neural networks

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol; Oezalp, Mehmet

    2004-01-01

    Thermodynamic analysis of absorption thermal systems is too complex because the analytic functions calculating the thermodynamic properties of fluid couples involve the solution of complex differential equations and simulation programs. This study aims at easing this complex situation and consists of three cases: (i) A special ejector, located at the absorber inlet, instead of the common location at the condenser inlet, to increase overall performance was used in the ejector absorption heat pump (EAHP). The ejector has two functions: Firstly, it aids the pressure recovery from the evaporator and then upgrades the mixing process and pre-absorption by the weak solution of the methanol coming from the evaporator. (ii) Use of artificial neural networks (ANNs) has been proposed to determine the properties of the liquid and two phase boiling and condensing of an alternative working fluid couple (methanol/LiCl), which does not cause ozone depletion. (iii) A comparative performance study of the EAHP was performed between the analytic functions and the values predicted by the ANN for the properties of the couple. The back propagation learning algorithm with three different variants and logistic sigmoid transfer function were used in the network. In order to train the neural network, limited experimental measurements were used as training and test data. In the input layer, there are temperature, pressure and concentration of the couples. Specific volume is in the output layer. After training, it was found that the maximum error was less than 3%, the average error was less than 1.2% and the R 2 values were about 0.9999. Additionally, in comparison of the analysis results between analytic equations obtained by using experimental data and by means of the ANN, the deviations of the refrigeration effectiveness of the system for cooling (COP r ), exergetic coefficient of performance of the system for cooling (ECOP r ) and circulation ratio (F) for all working temperatures were

  20. Multi-point optimization on meridional shape of a centrifugal pump impeller for performance improvement

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Ji; Wang, Wen Jie; Yuan, Shouqi [National Research Center of Pumps, Jiangsu University, Zhenjiang (China)

    2016-11-15

    A wide operating band is important for a pump to safely perform at maximum efficiency while saving energy. To widen the operating range, a multi-point optimization process based on numerical simulations in order to improve impeller performance of a centrifugal pump used in nuclear plant applications is proposed by this research. The Reynolds average Navier Stokes equations are utilized to perform the calculations. The meridional shape of the impeller was optimized based on the following four parameters; shroud arc radius, hub arc radius, shroud angle, and hub angle as the design variables. Efficiencies calculated under 0.6Qd, 1.0Qd and 1.62Qd were selected as the three optimized objectives. The Design of experiment method was applied to generate various impellers while 35 impellers were generated by the Latin hypercube sampling method. A Response surface function based on a second order function was applied to construct a mathematical relationship between the objectives and design variables. A multi-objective genetic algorithm was utilized to solve the response surface function to obtain the best optimized objectives as well as the best combination of design parameters. The results indicated that the pump performance predicted by numerical simulation was in agreement with the experimental performance. The optimized efficiencies based on the three operating conditions were increased by 3.9 %, 6.1 % and 2.6 %, respectively. In addition, the velocity distribution, pressure distribution, streamline and turbulence kinetic energy distribution of the optimized and reference impeller were compared and analyzed to illustrate the performance improvement.

  1. Multi-point optimization on meridional shape of a centrifugal pump impeller for performance improvement

    International Nuclear Information System (INIS)

    Pei, Ji; Wang, Wen Jie; Yuan, Shouqi

    2016-01-01

    A wide operating band is important for a pump to safely perform at maximum efficiency while saving energy. To widen the operating range, a multi-point optimization process based on numerical simulations in order to improve impeller performance of a centrifugal pump used in nuclear plant applications is proposed by this research. The Reynolds average Navier Stokes equations are utilized to perform the calculations. The meridional shape of the impeller was optimized based on the following four parameters; shroud arc radius, hub arc radius, shroud angle, and hub angle as the design variables. Efficiencies calculated under 0.6Qd, 1.0Qd and 1.62Qd were selected as the three optimized objectives. The Design of experiment method was applied to generate various impellers while 35 impellers were generated by the Latin hypercube sampling method. A Response surface function based on a second order function was applied to construct a mathematical relationship between the objectives and design variables. A multi-objective genetic algorithm was utilized to solve the response surface function to obtain the best optimized objectives as well as the best combination of design parameters. The results indicated that the pump performance predicted by numerical simulation was in agreement with the experimental performance. The optimized efficiencies based on the three operating conditions were increased by 3.9 %, 6.1 % and 2.6 %, respectively. In addition, the velocity distribution, pressure distribution, streamline and turbulence kinetic energy distribution of the optimized and reference impeller were compared and analyzed to illustrate the performance improvement

  2. Transient drawdown solution for a constant pumping test in finite two-zone confined aquifers

    Directory of Open Access Journals (Sweden)

    C.-T. Wang

    2012-02-01

    Full Text Available The drawdown solution has been widely used to analyze pumping test data for the determination of aquifer parameters when coupled with an optimization scheme. The solution can also be used to predict the drawdown due to pumping and design the dewatering system. The drawdown solution for flow toward a finite-radius well with a skin zone in a confined aquifer of infinite extent in radial direction had been developed before. To our best knowledge, the drawdown solution in confined aquifers of finite extent with a skin zone so far has never before been presented in the groundwater literature. This article presents a mathematical model for describing the drawdown distribution due to a constant-flux pumping from a finite-radius well with a skin zone in confined aquifers of finite extent. The analytical solution of the model is developed by applying the methods of Laplace transforms, Bromwich contour integral, and residue theorem. This solution can be used to investigate the effects of finite boundary and conductivity ratio on the drawdown distribution. In addition, the inverse relationship between Laplace- and time-domain variables is used to develop the large time solution which can reduce to the Thiem solution if there is no skin zone.

  3. Experimental investigation on heating performance of heat pump for electric vehicles at −20 °C ambient temperature

    International Nuclear Information System (INIS)

    Qin, Fei; Xue, Qingfeng; Albarracin Velez, Giovanny Marcelo; Zhang, Guiying; Zou, Huiming; Tian, Changqing

    2015-01-01

    Highlights: • An ASHP system with refrigerant injection for EVs is designed, for cold regions. • The heat performances of the system are tested at −20 °C ambient temperature. • The system cycle process with refrigerant injection are analyzed on lgP-H diagrams. • The effects of refrigerant injection, dryness, and in-car inlet state are discussed. • The new system can improve heating and own better application prospect. - Abstract: Since the performance of conventional air source heat pump (ASHP) for electric vehicles (EVs) is apt to decline sharply in low ambient temperature, it will consume more electricity of the cell, and affect driving mileage in cold regions. Aiming at developing high efficiency heating system for EVs in cold regions, an ASHP system applying refrigerant injection for EVs is designed, as well as the test bench is built to investigate its performance. According to the operation condition of EVs, heating performances are tested on different in-car inlet air temperature and various fresh air ratios under −20 °C ambient temperature. The system cycle process with refrigerant injection, as well as the influences of refrigerant injection and dryness are also analyzed and discussed. The results show that the heating capacity of the ASHP with refrigerant injection can be increased up to 31%, and in comparison with the conventional heat pump system its heating performance is better when in-car inlet temperature is above −10 °C. Therefore, ASHP with refrigerant injection has great potentiality to be applied for the EVs in cold regions

  4. Modeling and Performance Improvement of the Constant Power Regulator Systems in Variable Displacement Axial Piston Pump

    Science.gov (United States)

    Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik

    2013-01-01

    An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software. PMID:24282389

  5. Modeling and Performance Improvement of the Constant Power Regulator Systems in Variable Displacement Axial Piston Pump

    Directory of Open Access Journals (Sweden)

    Sung Hwan Park

    2013-01-01

    Full Text Available An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software.

  6. Modeling and performance improvement of the constant power regulator systems in variable displacement axial piston pump.

    Science.gov (United States)

    Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik

    2013-01-01

    An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software.

  7. Changes in Chemical and Isotopic Composition of Groundwater during Long-Term Pumping Test in Brestovica Karst Aquifer

    International Nuclear Information System (INIS)

    Mezga, Kim; Urbanc, Janko

    2011-01-01

    The main aim of the experimental pumping test, which was carried out in the dry summer period in August 2008 for 30 days, was to assess the groundwater resource quantity which could be pumped at the time of the highest water needs for the Slovene Coast and Karst areas. Further, we wanted to test the chemical status of groundwater to assure its suitability for further use and to assess the influence of the Soca River aquifer on this karst aquifer

  8. Test Performance Related Dysfunctional Beliefs

    Directory of Open Access Journals (Sweden)

    Recep TÜTÜNCÜ

    2012-11-01

    Full Text Available Objective: Examinations by using tests are very frequently used in educational settings and successful studying before the examinations is a complex matter to deal with. In order to understand the determinants of success in exams better, we need to take into account not only emotional and motivational, but also cognitive aspects of the participants such as dysfunctional beliefs. Our aim is to present the relationship between candidates’ characteristics and distorted beliefs/schemata just before an examination. Method: The subjects of the study were 30 female and 30 male physicians who were about to take the medical specialization exam (MSE in Turkey. Dysfunctional Attitude Scale (DAS and Young Schema Questionnaire Short Form (YSQ-SF were applied to the subjects. The statistical analysis was done using the F test, Mann-Whitney, Kruskal-Wallis, chi-square test and spearman’s correlation test. Results: It was shown that some of the DAS and YSQ-SF scores were significantly higher in female gender, in the group who could not pass the exam, who had repetitive examinations, who had their first try taking an examination and who were unemployed at the time of the examination. Conclusion: Our findings indicate that candidates seeking help before MSE examination could be referred for cognitive therapy or counseling even they do not have any psychiatric diagnosis due to clinically significant cognitive distortion. Measurement and treatment of cognitive distortions that have negative impact on MSE performance may improve the cost-effectiveness and mental well being of the young doctors.

  9. Enhanced Component Performance Study: Motor-Driven Pumps 1998-2014

    International Nuclear Information System (INIS)

    Schroeder, John Alton

    2016-01-01

    This report presents an enhanced performance evaluation of motor-driven pumps at U.S. commercial nuclear power plants. The data used in this study are based on the operating experience failure reports from fiscal year 1998 through 2014 for the component reliability as reported in the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The motor-driven pump failure modes considered for standby systems are failure to start, failure to run less than or equal to one hour, and failure to run more than one hour; for normally running systems, the failure modes considered are failure to start and failure to run. An eight hour unreliability estimate is also calculated and trended. The component reliability estimates and the reliability data are trended for the most recent 10-year period while yearly estimates for reliability are provided for the entire active period. Statistically significant increasing trends were identified in pump run hours per reactor year. Statistically significant decreasing trends were identified for standby systems industry-wide frequency of start demands, and run hours per reactor year for runs of less than or equal to one hour.

  10. Enhanced Component Performance Study: Motor-Driven Pumps 1998–2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    This report presents an enhanced performance evaluation of motor-driven pumps at U.S. commercial nuclear power plants. The data used in this study are based on the operating experience failure reports from fiscal year 1998 through 2014 for the component reliability as reported in the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The motor-driven pump failure modes considered for standby systems are failure to start, failure to run less than or equal to one hour, and failure to run more than one hour; for normally running systems, the failure modes considered are failure to start and failure to run. An eight hour unreliability estimate is also calculated and trended. The component reliability estimates and the reliability data are trended for the most recent 10-year period while yearly estimates for reliability are provided for the entire active period. Statistically significant increasing trends were identified in pump run hours per reactor year. Statistically significant decreasing trends were identified for standby systems industry-wide frequency of start demands, and run hours per reactor year for runs of less than or equal to one hour.

  11. Hemolytic performance of a MagLev disposable rotary blood pump (MedTech Dispo): effects of MagLev gap clearance and surface roughness.

    Science.gov (United States)

    Hoshi, Hideo; Asama, Junichi; Hijikata, Wataru; Hara, Chikara; Shinshi, Tadahiko; Yasuda, Toshitaka; Ohuchi, Katsuhiro; Shimokohbe, Akira; Takatani, Setsuo

    2006-12-01

    Mechanical shaft seal bearing incorporated in the centrifugal blood pumps contributes to hemolysis and thrombus formation. In addition, the problem of durability and corrosion of mechanical shaft seal bearing has been recently reported from the safety point of view. To amend the shortcomings of the blood-immersed mechanical bearings, a magnetic levitated centrifugal rotary blood pump (MedTech Dispo Model 1; Tokyo Medical and Dental University, Tokyo, Japan) has been developed for extracorporeal disposable application. In this study, the hemolytic performance of the MedTech Dispo Model 1 centrifugal blood pump system was evaluated, with special focus on the narrow blood path clearance at the magnetic bearing between rotor and stator, and on the pump housing surface roughness. A pump flow of 5 L/min against the head pressure of 100 mm Hg for 4 h was included in the hemolytic test conditions. Anticoagulated fresh porcine blood was used as a working fluid. The clearance of blood path at the magnetic bearing was in the range of 100-250 micro m. Pump housing surface roughness was controlled to be around Ra = 0.1-1.5 micro m. The lowest hemolytic results were obtained at the clearance of 250 micro m and with the polished surface (Ra = 0.1 micro m) yielding the normalized index of hemolysis (NIH) of less than 0.001 g/100 L, which was 1/5 of the Biopump BP-80 (Medtronic Inc., Minneapolis, MN, USA, and 1/4 of the BPX-80. In spite of rough surface and narrow blood path, NIH levels were less than clinically acceptable level of 0.005 g/100 L. The noncontact, levitated impeller system is useful to improve pump performance in blood environment.

  12. Test results of distributed ion pump designs for the PEP-II Asymmetric B-Factory collider

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, M.; Holdener, F.; Peterson, D. [Lawrence Livermore National Lab., CA (United States)] [and others

    1994-07-01

    The testing facility measurement methods and results of prototype distributed ion pump (DIP) designs for the PEP-II B-Factory High Energy Ring are presented. Two basic designs with 5- or 7-anode plates were tested at LLNL with penning cell sizes of 15, 18, and 21 mm. Direct comparison of 5- and 7-plate anodes with 18 mm holes shows increased pumping speed with the 7-plate design. The 5-plate, 18 mm and 7-plate, 15 mm designs both gave an average pumping speed of 135 1/s/m at 1 {times} 10{sup {minus}8} Torr nitrogen base pressure in a varying 0.18 T peak B-field. Comparison of the three hole sizes indicates that cells smaller than the 15 mm tested can be efficiently used to obtain higher pumping speeds for the same anode plate sizes used.

  13. Test results of distributed ion pump designs for the PEP-II Asymmetric B-Factory collider

    International Nuclear Information System (INIS)

    Calderon, M.; Holdener, F.; Peterson, D.

    1994-07-01

    The testing facility measurement methods and results of prototype distributed ion pump (DIP) designs for the PEP-II B-Factory High Energy Ring are presented. Two basic designs with 5- or 7-anode plates were tested at LLNL with penning cell sizes of 15, 18, and 21 mm. Direct comparison of 5- and 7-plate anodes with 18 mm holes shows increased pumping speed with the 7-plate design. The 5-plate, 18 mm and 7-plate, 15 mm designs both gave an average pumping speed of 135 1/s/m at 1 x 10 -8 Torr nitrogen base pressure in a varying 0.18 T peak B-field. Comparison of the three hole sizes indicates that cells smaller than the 15 mm tested can be efficiently used to obtain higher pumping speeds for the same anode plate sizes used

  14. Examples, clarifications, and guidance on preparing requests for relief from pump and valve inservice testing requirements

    International Nuclear Information System (INIS)

    Ransom, C.B.; Hartley, R.S.

    1996-02-01

    In this report, the Idaho National Engineering Laboratory reviewers discuss related to requests for relief from the American Society of Mechanical Engineers code requirements for inservice testing (IST) of safety-related pumps and valves at commercial nuclear power plants. This report compiles information and examples that may be useful to licensees in developing relief requests submitted to US Nuclear Regulatory Commission (NRC) for their consideration and provides insights and recommendations on related IST issues. The report also gives specific guidance on relief requests acceptable and not acceptable to the NRC and advises licensees in the use of this information for application at their facilities

  15. Implementation of multiple measures to improve reactor recirculation pump sealing performance in nuclear boiling water reactor service

    Energy Technology Data Exchange (ETDEWEB)

    Loenhout, Gerard van [Flowserve B.V., Etten-Leur (Netherlands). Nuclear Services and Solutions Engineering; Hurni, Juerg

    2015-05-15

    A modern reactor recirculation pump circulates a large volume of high temperature, very pure water from the reactor pressure vessel back to the core by feeding into multiple stationary jet pumps inside the vessel. Together with the jet pumps, they allow station operators to vary coolant flow and variable pump speed provides the best and most stable reactor power control. A crucial technical problem with a recirculation pump, such as a mechanical seal indicating loss of sealing pressure, may result in a power station having to shut down for repair. This article describes the sudden increase in stray current phenomenon leading to rapid and severe deterioration of the mechanical end face shaft seal in a reactor recirculation pump. This occurred after the installation of a variable frequency converter replacing the original motor-generator set. This article will also discuss the 2,500 hour laboratory test results conducted under reactor recirculation pump sealing conditions using a newly developed seal face technology recently implemented to overcome challenges when sealing neutral, ultra-pure water. In addition, the article will describe the elaborate shaft grounding arrangement and the preliminary measurement results achieved in order to eliminate potential damages to both pump and mechanical seal.

  16. Heat pump concepts for nZEB Technology developments, design tools and testing of heat pump systems for nZEB in the USA: Country report IEA HPT Annex 40 Task 2, Task 3 and Task 4 of the USA

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Payne, W. Vance [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Ling, Jiazhen [Univ. of Maryland, College Park, MD (United States); Radermacher, Reinhard [Univ. of Maryland, College Park, MD (United States)

    2015-12-01

    The IEA HPT Annex 40 "Heat pump concepts for Nearly Zero Energy Buildings" deals with the application of heat pumps as a core component of the HVAC system for Nearly or Net Zero energy buildings (nZEB). This report covers Task 2 on the system comparison and optimisation and Task 3 dedicated to the development of adapted technologies for nZEB and field monitoring results of heat pump systems in nZEB. In the US team three institutions are involved and have worked on the following projects: The Oak Ridge National Laboratory (ORNL) will summarize development activities through the field demonstration stage for several integrated heat pump (IHP) systems electric ground-source (GS-IHP) and air-source (AS-IHP) versions and an engine driven AS-IHP version. The first commercial GS-IHP product was just introduced to the market in December 2012. This work is a contribution to Task 3 of the Annex. The University of Maryland will contribute a software development project to Task 2 of the Annex. The software ThermCom evaluates occupied space thermal comfort conditions accounting for all radiative and convective heat transfer effects as well as local air properties. The National Institute of Standards and Technology (NIST) is working on a field study effort on the NIST Net Zero Energy Residential Test Facility (NZERTF). This residential building was constructed on the NIST campus and officially opened in summer 2013. During the first year, between July 2013 and June 2014, baseline performance of the NZERTF was monitored under a simulated occupancy protocol. The house was equipped with an air-to-air heat pump which included a dedicated dehumidification operating mode. Outdoor conditions, internal loads and modes of heat pump operation were monitored. Field study results with respect to heat pump operation will be reported and recommendations on heat pump optimization for a net zero energy building will be provided. This work is a contribution to Task 3 of the Annex.

  17. Calculation method for the seasonal performance of heat pump compact units and validation. Appendix

    Energy Technology Data Exchange (ETDEWEB)

    Wemhoener, C.; Dott, R.; Afjei, Th. [University of Applied Sciences Northwestern Switzerland, Institute of Energy in Buildings, Muttenz (Switzerland); Huber, H.; Helfenfinger, D.; Keller, P.; Furter, R. [University of Applied Sciences Lucerne (HTA), Test center HLKS, Horw (Switzerland)

    2007-02-15

    This appendix to a comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of tests made on compact heat pump units that have been developed for the heating of low energy consumption houses built to MINERGIE or MINERGIE-P standards. The tests on these units, which combine the functions of space heating, domestic hot water preparation and ventilation in one unit are presented and discussed. Test conditions are described; these cover ventilation, acoustic, hygiene and safety aspects. Detailed results from the two test objects - buildings built to MINERGIE and MINERGIE-P low energy consumption standards - are presented and discussed. The calculation methods used are examined and discussed.

  18. Evaluation of the performance of elastomeric pumps in practice: are we under-delivering on chemotherapy treatments?

    Science.gov (United States)

    Salman, Dahlia; Biliune, Jurga; Kayyali, Reem; Ashton, Jane; Brown, Peter; McCarthy, Tim; Vikman, Elin; Barton, Stephen; Swinden, Julian; Nabhani-Gebara, Shereen

    2017-12-01

    Elastomeric pumps are widely used to facilitate ambulatory chemotherapy, and studies have shown that they are safe and well received by patients. Despite these advantages, their end of infusion time can fluctuate significantly. The aim of this research was to observe the performance of these pumps in real practice and to evaluate patients' satisfaction. This was a two-phase study conducted at three cancer units over 6 months. Phase-1 was an observational study recording the status of pumps at the scheduled disconnection time and noting remaining volume of infusion. Phase-2 was a survey of patients and their perception/satisfaction. Ethical approval was granted. A total of 92 cases were observed covering 50 cases disconnected at hospital and 42 disconnected at home. The infusion in 40% of hospital disconnection cases was slow, with patients arriving at hospital with unfinished pumps; 58% of these had an estimated remaining volume which exceeded 10 mL with 35% exceeded 20 mL. In 73% of these cases, and regardless of the remaining volume, the patient was disconnected and the pump was discarded. The performance of pumps varied, which affected nurse workload and patients' waiting-times. A smart system is an option to monitor the performance of pumps and to predict their accuracy.

  19. Performance of discrete heat engines and heat pumps in finite time

    Science.gov (United States)

    Feldmann; Kosloff

    2000-05-01

    The performance in finite time of a discrete heat engine with internal friction is analyzed. The working fluid of the engine is composed of an ensemble of noninteracting two level systems. External work is applied by changing the external field and thus the internal energy levels. The friction induces a minimal cycle time. The power output of the engine is optimized with respect to time allocation between the contact time with the hot and cold baths as well as the adiabats. The engine's performance is also optimized with respect to the external fields. By reversing the cycle of operation a heat pump is constructed. The performance of the engine as a heat pump is also optimized. By varying the time allocation between the adiabats and the contact time with the reservoir a universal behavior can be identified. The optimal performance of the engine when the cold bath is approaching absolute zero is studied. It is found that the optimal cooling rate converges linearly to zero when the temperature approaches absolute zero.

  20. Performance evaluation of the PITBULL trademark pump for the removal of hazardous waste

    International Nuclear Information System (INIS)

    Hatchell, B.K.; Combs, W.H.; Hymas, C.R.; Powell, M.R.; Rinker, M.W.; White, M.

    1998-09-01

    One objective of the Waste Removal Project at the Department of Energy's Savannah River Site (SRS) is to explore methods to successfully remove waste heels that will remain in the high-level waste tanks after bulk waste removal has been completed. Tank closure is not possible unless this residue is removed. As much as 151,000 liters of residue can remain after a conventional waste removal campaign. The waste heels can be comprised of sludge, zeolite, and silica. The heels are generally hardened or compacted insoluble particulate with relatively rapid settling velocities. A PITBULL trademark pump is being considered by SRS to retrieve sludge-type waste from Tank 19. Sections 1 through 4 of this report present the scope and objectives of the test program, describe the principles of operation of the PITBULL, and present the test approach, set-up, and instrumentation. Test results, including pumping rates with water and slurry, are provided in Section 5, along with considerations for remote operation. Conclusions and recommendations are provided in Section 6

  1. Magnetic-Flux Pumping in High-Performance, Stationary Plasmas with Tearing Modes

    International Nuclear Information System (INIS)

    Petty, C. C.; Austin, M. E.; Holcomb, C. T.; Jayakumar, R. J.; La Haye, R. J.; Luce, T. C.; Makowski, M. A.; Politzer, P. A.; Wade, M. R.

    2009-01-01

    Analysis of the change in the magnetic field pitch angles during edge localized mode events in high performance, stationary plasmas on the DIII-D tokamak shows rapid (<1 ms) broadening of the current density profile, but only when a m/n=3/2 tearing mode is present. This observation of poloidal magnetic-flux pumping explains an important feature of this scenario, which is the anomalous broadening of the current density profile that beneficially maintains the safety factor above unity and forestalls the sawtooth instability

  2. Field Performance of Inverter-Driven Heat Pumps in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, James [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Aldrich, Robb [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2015-08-01

    CARB observed a wide range of operating efficiencies and outputs from site to site. Maximum capacities were found to be generally in line with manufacturer's claims as outdoor temperatures fell to -10°F. The reasons for the wide range in heating performance likely include: low indoor air flow rates, poor placement of outdoor units, relatively high return air temperatures, thermostat set back, integration with existing heating systems, and occupants limiting indoor fan speed. Even with lower efficiencies than published in other studies, most of the heat pumps here still provide heat at lower cost than oil, propane, or certainly electric resistance systems.

  3. 40 CFR 60.8 - Performance tests.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Performance tests. 60.8 Section 60.8... PERFORMANCE FOR NEW STATIONARY SOURCES General Provisions § 60.8 Performance tests. (a) Except as specified in... conduct performance test(s) and furnish the Administrator a written report of the results of such...

  4. Computer simulation of steady-state performance of air-to-air heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, R D; Creswick, F A

    1978-03-01

    A computer model by which the performance of air-to-air heat pumps can be simulated is described. The intended use of the model is to evaluate analytically the improvements in performance that can be effected by various component improvements. The model is based on a trio of independent simulation programs originated at the Massachusetts Institute of Technology Heat Transfer Laboratory. The three programs have been combined so that user intervention and decision making between major steps of the simulation are unnecessary. The program was further modified by substituting a new compressor model and adding a capillary tube model, both of which are described. Performance predicted by the computer model is shown to be in reasonable agreement with performance data observed in our laboratory. Planned modifications by which the utility of the computer model can be enhanced in the future are described. User instructions and a FORTRAN listing of the program are included.

  5. Fabrication of an electromagnetic pump with gas circulation

    International Nuclear Information System (INIS)

    Ravoire, J.

    1959-01-01

    This note reports the design and production of a pump aimed at circulating a gas in a closed circuit, and possessing some specific properties (tightness, gas in contact only with glass, operation pressure range, rates, resistance to overpressure). After a description of pump operation principle, the author describes the glassware part of the pump, its electromagnetic and electronic parts. He reports tests performed to assess pump characteristics. Obtained data are graphically presented, as well as a drawing of the pump

  6. Sensitivity analysis on the performances of a closed-loop Ground Source Heat Pump

    Science.gov (United States)

    Casasso, Alessandro; Sethi, Rajandrea

    2014-05-01

    Ground Source Heat Pumps (GSHP) permit to achieve a significant reduction of greenhouse gas emissions, and the margins for economic saving of this technology are strongly correlated to the long-term sustainability of the exploitation of the heat stored in the soil. The operation of a GSHP over its lifetime should be therefore modelled considering realistic conditions, and a thorough characterization of the physical properties of the soil is essential to avoid large errors of prediction. In this work, a BHE modelling procedure with the finite-element code FEFLOW is presented. Starting from the governing equations of the heat transport in the soil around a GSHP and inside the BHE, the most important parameters are individuated and the adopted program settings are explained. A sensitivity analysis is then carried on both the design parameters of the heat exchanger, in order to understand the margins of improvement of a careful design and installation, and the physical properties of the soil, with the aim of quantifying the uncertainty induced by their variability. The relative importance of each parameter is therefore assessed by comparing the statistical distributions of the fluid temperatures and estimating the energy consumption of the heat pump, and practical conclusions are from these results about the site characterization, the design and the installation of a BHE. References Casasso A., Sethi R., 2014 Efficiency of closed loop geothermal heat pumps: A sensitivity analysis, Renewable Energy 62 (2014), pp. 737-746 Chiasson A.C., Rees S.J., Spitler J.D., 2000, A preliminary assessment of the effects of groundwater flow on closed-loop ground-source heat pump systems, ASHRAE Transactions 106 (2000), pp. 380-393 Delaleux F., Py X., Olives R., Dominguez A., 2012, Enhancement of geothermal borehole heat exchangers performances by improvement of bentonite grouts conductivity, Applied Thermal Engineering 33-34, pp. 92-99 Diao N., Li Q., Fang Z., 2004, Heat transfer in

  7. Performance evaluation and parametric choice criteria of a Brayton pumped thermal electricity storage system

    International Nuclear Information System (INIS)

    Guo, Juncheng; Cai, Ling; Chen, Jincan; Zhou, Yinghui

    2016-01-01

    A more realistic thermodynamic model of the pumped thermal electricity storage (PTES) system consisting of a Brayton cycle and a reverse Brayton cycle is proposed, where the internal and external irreversible losses are took into account and several important controlling parameters, e.g., the pressure ratio and heat flows of the two isobaric processes in the Brayton cycle, are introduced. Analytic expressions for the round trip efficiency and power output of the PTES system are derived. The general performance characteristics of the PTES system are revealed. The optimal relationship between the round trip efficiency and the power output is obtained. The influences of some important controlling parameters on the performance characteristics of the PTES system are discussed and the optimally operating regions of these parameters are determined. - Highlights: • A cycle model of the Brayton pumped thermal electricity storage system is proposed. • Internal and external irreversible losses are considered. • Maximum power output and efficiency of the system are calculated. • Optimum performance characteristics of the system are revealed. • Rational ranges of key controlling parameters are determined.

  8. Comparisons of Hydraulic Performance in Permanent Maglev Pump for Water-Jet Propulsion

    Directory of Open Access Journals (Sweden)

    Puyu Cao

    2014-08-01

    Full Text Available The operation of water-jet propulsion can generate nonuniform inflow that may be detrimental to the performance of the water-jets. To reduce disadvantages of the nonuniform inflow, a rim-driven water-jet propulsion was designed depending on the technology of passive magnetic levitation. Insufficient understanding of large performance deviations between the normal water-jets (shaft and permanent maglev water-jets (shaftless is a major problem in this paper. CFD was directly adopted in the feasibility and superiority of permanent maglev water-jets. Comparison and discussion of the hydraulic performance were carried out. The shaftless duct firstly has a drop in hydraulic losses (K1, since it effectively avoids the formation and evolution of the instability secondary vortex by the normalized helicity analysis. Then, the shaftless intake duct improves the inflow field of the water-jet pump, with consequencing the drop in the backflow and blocking on the blade shroud. So that the shaftless water-jet pump delivers higher flow rate and head to the propulsion than the shaft. Eventually, not only can the shaftless model increase the thrust and efficiency, but it has the ability to extend the working range and broaden the high efficiency region as well.

  9. A study on the performance and internal flow characteristics of a very low specific speed centrifugal pump

    International Nuclear Information System (INIS)

    Choi, Young Do; Kurokawa, Junichi; Lee, Young Ho

    2005-01-01

    In the very low specific speed range (n s < 0.25, non-dimensional), the efficiency of centrifugal pump designed by a conventional method is very low in common. Therefore, positive-displacement pumps have long been used widely. Recently, since the centrifugal pumps are becoming higher in rotational speed and smaller in size, there experts to develop a new centrifugal pump with a high performance to replace the positive-displacement pumps. The purpose of this study is to investigate the internal flow characteristics of a very low specific speed centrifugal pump and to examine the effect of internal flow pattern on pump performance. The results show that the theoretical head definition of semi-open impeller should be revised by the consideration of high slip factor in the semi-open impeller, and the leakage flow through the tip clearance results in a large effect on the impeller internal flow. Strong reverse flow at the outlet of semi-open impeller reduces the absolute tangential velocity considerably, and the decreased absolute tangential velocity increases the slip factor with the reduction of theoretical head

  10. The effect of step height on the performance of three-dimensional ac electro-osmotic microfluidic pumps.

    Science.gov (United States)

    Urbanski, John Paul; Levitan, Jeremy A; Burch, Damian N; Thorsen, Todd; Bazant, Martin Z

    2007-05-15

    Recent numerical and experimental studies have investigated the increase in efficiency of microfluidic ac electro-osmotic pumps by introducing nonplanar geometries with raised steps on the electrodes. In this study, we analyze the effect of the step height on ac electro-osmotic pump performance. AC electro-osmotic pumps with three-dimensional electroplated steps are fabricated on glass substrates and pumping velocities of low ionic strength electrolyte solutions are measured systematically using a custom microfluidic device. Numerical simulations predict an improvement in pump performance with increasing step height, at a given frequency and voltage, up to an optimal step height, which qualitatively matches the trend observed in experiment. For a broad range of step heights near the optimum, the observed flow is much faster than with existing planar pumps (at the same voltage and minimum feature size) and in the theoretically predicted direction of the "fluid conveyor belt" mechanism. For small step heights, the experiments also exhibit significant flow reversal at the optimal frequency, which cannot be explained by the theory, although the simulations predict weak flow reversal at higher frequencies due to incomplete charging. These results provide insight to an important parameter for the design of nonplanar electro-osmotic pumps and clues to improve the fundamental theory of ACEO.

  11. Energy performance of air-to-water and water-to-water heat pumps in hotel applications

    International Nuclear Information System (INIS)

    Lam, Joseph C.; Chan, Wilco W.

    2003-01-01

    We present work on measurement of the energy performance of heat pumps for hotel operations in subtropical climates. Two city hotels in Hong Kong were investigated. The first case was an application of an air-to-water heat pump to provide heating for an outdoor swimming pool during the heating season. The second case was the installation of three water-to-water heat pumps to complement an existing boiler system for hot water supply. The heating energy output and corresponding electricity use were measured. The heat pump energy efficiency was evaluated in terms of the coefficient of performance (COP), defined as the heating energy output to the electrical energy use. The air-to-water heat pump provided 49.1 MW h heating while consuming 24.6 MW h electricity during the 6((1)/(2))-month heating season from mid-October to April. For the water-to-water heat pumps, the estimated annual heating output and the electricity use were 952 and 544 MW h, respectively. It was found that the heat pumps generally operated in a COP range of 1.5-2.4, and the payback period was about two years, which was considered financially attractive

  12. Design, construction and testing of replacement nuclear coolant pump stators to meet today's equipment reliability expectations

    International Nuclear Information System (INIS)

    Fostier, L.; Howell, D.

    2005-01-01

    The reliability expectations of equipment and components in today's nuclear power plant are much greater than three or more decades ago when nuclear plants were first constructed due to economic impact of a failure. Very few components in a pressurized water reactor plant can have as much impact of the plants capacity factor as a catastrophic failure of a reactor coolant pump winding. This paper describes the maintenance approach taken by one North American utility in attempt to preclude such failures. The paper will discuss the challenges of the reactor coolant pump application and the enhancements made in the winding design and construction by the supplier to address failure mechanisms so as to better meet present reliability expectations in accordance with dedicated specifications. The paper will also present the in-process and final testing requirements and limits imposed in an attempt to ensure quality of the machine windings, along with selected test results from the stators that have been designed and constructed to these specifications to date. (author)

  13. Operability Test Report for 241-T compressed air system and heat pump

    International Nuclear Information System (INIS)

    Freeman, R.D.

    1995-02-01

    This Operability Test Report (OTR) documents the results of functional testing performed on the operating parameters of the 241-T-701 Compressed Air System. The System was successfully installed and tested per work package 2W-92-01172

  14. Performance of miniature electromagnetic pump at liquid nitrogen temperature; Kogata deji ponpu no ekitai chiso ondo ni okeru seino

    Energy Technology Data Exchange (ETDEWEB)

    Nagashima, K.; Herai, T. [Railway Technical Research Inst., Tokyo (Japan)

    1999-11-10

    Though it cools the radiant heat shield board of superconducting magnet for levitation system railway by the liquid nitrogen, the piping on the shield board must be made to circulate the refrigerant in order to maintain the large area, which covers superconducting coil at the uniform temperature. Though as a circulating pump, it had developed thermal pumps using the heater and systems using natural circulation, etc. until now, it examined circulation performance of liquid nitrogen using the electromagnetic pump that here, it was small, and that to do the operation is sure. (NEDO)

  15. Low-cost, high-performance nonevaporable getter pumps using nonevaporable getter pills

    International Nuclear Information System (INIS)

    Kodama, Hiraku; Ohno, Shinya; Tanaka, Masatoshi; Tanaka, Masato; Okudaira, Koji K.; Mase, Kazuhiko; Kikuchi, Takashi

    2016-01-01

    Nonevaporable getter (NEG) pumps are widely used for maintaining a clean ultrahigh vacuum (UHV) of ≤10"−"8" Pa because of their high pumping speeds for hydrogen (H_2) and active gases in the UHV region. In addition, they are oil free, evaporation free, sputtering free, sublimation free, magnetic field free, vibration free, economical, compact, lightweight, and energy saving. In the present paper, the authors report a new NEG pump which is composed of commercial 60 NEG pills (ϕ10 × 3 mm; 70 wt. % Zr, 24.6 wt. % V, and 5.4 wt. % Fe), titanium parts, a DN 40 conflat flange, and a tantalum heater. The NEG pills are vertically and radially aligned around the heater to maximize the effective area for pumping. After activation at 400 °C for 30 min, the pumping speeds of the NEG pump were measured with the orifice method. Pumping speeds of 140–130, 200–140, 190–130, and 35–17 l/s were estimated for H_2, CO, CO_2, and N_2 gasses, respectively, in a pumped-quantity range of 0.01–0.1 Pa l. Since the NEG pump is composed of a heating unit and a NEG module, the pumping speeds can be improved by increasing the number of NEG modules. These NEG pumps are favorable alternatives to sputtering ion pumps or titanium sublimation pumps.

  16. In-Situ Pumping Test for Multilayer Hydrogeological Site in Taiwan

    Science.gov (United States)

    Lin, S.; Tan, Y.; Lien, I.; Hsu, G.; Bao, K.

    2010-12-01

    Pingtung plain is located the in the southwestern Taiwan, and rainfall concentrated from May to October with the average annual precipitation of 2000 mm. However, topographic steepest rushing stream lead to most of the precipitation becomes runoff and drains to the ocean in short time. Due to the shortage of surface water, the groundwater is an important one of much water recourses. Additionally, the government will be set up artificial lakes in proximal-fan of pingtung plain, which increases recharge and supply to usage of the agricultural and aquaculture. However, the locations of pumping wells are decided not only affecting the developmental quantity of the groundwater but economic growth serious limited. Therefore, MODFLOW-96 was used to simulate the groundwater distribution and optimal the better recharge zone in the regional scale. Based on the model calibration and verification results, the tuku farm of the kaoping lake study is better recharged from Laonong Stream and the northeast, and the safe yield is much than other study zone. Additionally, directional variations in permeability anisotropic formations have important effects on velocities and storage of the groundwater recourses. We have further utilized modifying ANN (artificial neural networks) approach, as well as incorporating the Papadopoulos analytical solution [Lin et al, 2010], to estimate the directional and magnitude of the permeability parameters for pumping test at the tuku farm of the kaoping lake study, which the methodology will be improve accuracy of the estimation parameter. According to drawdown record data of six observation wells, results suggest that the locations of the pumping wells are set up in the northeast and northwest which since sedimentary formations are more permeable along the major direction from the northeast and northwest. Hence, the information can be helpful the groundwater management and supply in the Pingtung plain.

  17. Heat pump using dual heat sources of air and water. Performance in cooling mode; Mizu kuki ryonetsugen heat pump no kenkyu. Reibo unten ni okeru seino

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S; Miura, N [Kanagawa Institute of Technology, Kanagawa (Japan); Uchikawa, Y [Kubota Corp., Osaka (Japan)

    1997-11-25

    When a heat pump is used for cooling purpose, it is possible to utilize different kinds of waste water as high-heat sources. However, these heat sources would have their temperatures vary with seasons and time in a day. Therefore, a discussion was given on performance of a heat pump when water and air heat sources are used for condensers during cooling operation independently, in series and in parallel, respectively. The air condenser shows an equivalent COP as compared with the water condenser when air temperature is lower by about 8 degC than water temperature. At the same heat source temperature, the COP for the water condenser indicated a value higher by about 0.6 than the case of the air condenser. A method to use condensers in parallel experiences little contribution from the air heat source, and performance of the heat pump decreases below the case of using the water heat source independently when the air heat source temperature becomes higher than that of the water heat source. In the case of series use in which a water condenser is installed in front and an air condenser in rear, its effect is exhibited when temperature in the air heat source is lower than that in the water heat source. Better performance was shown than in operating the water heat source independently. 2 refs., 9 figs.

  18. An experimental evaluation on air purification performance of Clean-Air Heat Pump (CAHP) air cleaner

    DEFF Research Database (Denmark)

    Sheng, Ying; Fang, Lei; Sun, Yuexia

    2018-01-01

    was 96.8%, which indicated that the most of gaseous pollutants were not accumulated in the CAHP. The regeneration temperature for the wheel could affect the air purification performance of CAHP. At 70 °C of regeneration temperature, the air-cleaning efficiency reached 96.7%. Up to 70% of the outdoor air......The escalation of energy consumption in buildings and heightened concerns about acceptable indoor air quality stimulate interest in the usage of air cleaner as an adjunct for indoor environmental conditioning. A regenerative desiccant wheel integrated into a ventilation system termed Clean-Air Heat...... Pump (CAHP) can improve the air quality during the process of dehumidification without using additional energy. An experimental study in a field lab was performed to investigate the air cleaning performance of CAHP. Photoacoustic gas analyzer-INNOVA was used to characterize chemical removal of indoor...

  19. Performance of ultra low temperature district heating systems with utility plant and booster heat pumps

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Thorsen, Jan Eric; Markussen, Wiebke Brix

    2017-01-01

    The optimal integration of booster heat pumps in ultra low temperature district heating (ULTDH) was investigated and compared to the performance of low temperature district heating. Two possible heat production technologies for the DH networks were analysed, namely extraction combined heat...... temperature and the heat consumption profile. For reference conditions, the optimal return of ULTDH varies between 21 °C and 27 °C. When using a central HP to supply the DH system, the resulting coefficient of system performance (COSP) was in the range of 3.9 (-) to 4.7 (-) for equipment with realistic...... component efficiencies and effectiveness, when including the relevant parameters such as DH system pressure and heat losses. By using ULTDH with booster HPs, performance improvements of 12% for the reference calculations case were found, if the system was supplied by central HPs. Opposite results were found...

  20. Normetex Pump Alternatives Study

    International Nuclear Information System (INIS)

    Clark, Elliot A.

    2013-01-01

    A mainstay pump for tritium systems, the Normetex scroll pump, is currently unavailable because the Normetex company went out of business. This pump was an all-metal scroll pump that served tritium processing facilities very well. Current tritium system operators are evaluating replacement pumps for the Normetex pump and for general used in tritium service. An all-metal equivalent alternative to the Normetex pump has not yet been identified. 1. The ideal replacement tritium pump would be hermetically sealed and contain no polymer components or oils. Polymers and oils degrade over time when they contact ionizing radiation. 2. Halogenated polymers (containing fluorine, chlorine, or both) and oils are commonly found in pumps. These materials have many properties that surpass those of hydrocarbon-based polymers and oils, including thermal stability (higher operating temperature) and better chemical resistance. Unfortunately, they are less resistant to degradation from ionizing radiation than hydrocarbon-based materials (in general). 3. Polymers and oils can form gaseous, condensable (HF, TF), liquid, and solid species when exposed to ionizing radiation. For example, halogenated polymers form HF and HCl, which are extremely corrosive upon reaction with water. If a pump containing polymers or oils must be used in a tritium system, the system must be designed to be able to process the unwanted by-products. Design features to mitigate degradation products include filters and chemical or physical traps (eg. cold traps, oil traps). 4. Polymer components can work in tritium systems, but must be replaced regularly. Polymer components performance should be monitored or be regularly tested, and regular replacement of components should be viewed as an expected normal event. A radioactive waste stream must be established to dispose of used polymer components and oil with an approved disposal plan developed based on the facility location and its regulators. Polymers have varying

  1. Impact of global warming on performance of ground source heat pumps in US climate zones

    International Nuclear Information System (INIS)

    Shen, Pengyuan; Lukes, Jennifer R.

    2015-01-01

    Highlights: • Used morphing method to have downscaled hourly local weather data from GCM. • Selected representative cities in different climate zones in the US for case study on GSHP performance. • Used hourly building simulation tools (eQuest and TRNSYS) to project GSHP performance in future. • Analysis on GSHP performance in 2050 for both residential and office building in the US are conducted. - Abstract: Ground source heat pumps (GSHP) have attracted increasing attention because of their high energy efficiencies. The aim of this paper is to study the performance of (GSHP) in future climate conditions (2040–2069) by using projected future hourly weather data of selected representative cities in the US to estimate future ground temperature change. The projected hourly weather data and estimated ground temperatures are input to an hourly simulation tool (TRNSYS and eQuest for this research), which provides reliable coupling of GSHP system and building performance. The simulation results show that global warming will decrease the energy efficiency of GSHP in US residential buildings because a rise in inlet and outlet water temperature is predicted for GSHP systems during the cooling season and because buildings will become more cooling dominated in the future. For office buildings, although the cooling performance of GSHP will not drop significantly under future climate, the overall energy efficiency for the system will decrease due to the increasing energy consumption of the ground loop pump. In the future, considering the significant ground heat imbalance for GSHP operation, GSHP will become less competitive both economically and technically than it is now in the context of US climate zones

  2. Investigations of internal turbulent flows in a low-head tubular pump and its performance predictions

    International Nuclear Information System (INIS)

    Tang, X L; Chen, X S; Wang, F J; Yang, W; Wu, Y L

    2012-01-01

    Based on the RANS equations, standard k−ε turbulence model and SIMPLE algorithm, the internal turbulent flows in a low-head tubular pump were simulated by using the FLUENT software. Based on the predicted flow fields, the external performance curves including the head-discharge, efficiency-discharge and power-discharge curves were further obtained. The calculated results indicate that the internal flow pattern is smooth at the best efficiency point (BEP). When it works under off-design operating cases, the flow pattern inside the diffuser and the discharge passage is disorder, and at the same time, the hydraulic losses mainly come from the secondary flows. At large flow rates, the minimum static pressure near the inlet of the blade pressure surfaces due to the negative attack angle. At small flow rates, the minimum value happens near the inlet of the suction surfaces. At the BEP, the lowest static pressure appears in the region behind the suction surfaces inlet. The newly-designed model is validated by the comparisons between its predicted external performance and the experimental data of the JGM-3 model. This research provides some important references for the optimization of a low-head tubular pump.

  3. Development of Design Concept and Applied Technology for RCP Performance Test Facility

    International Nuclear Information System (INIS)

    Park, Sang Jin; Lee, Jung Ho; Yoon, Seok Ho

    2010-02-01

    Performance test facility for RCP (reactor coolant pump) is essential to verify the performance and reliability of RCP before installation in the nuclear power plant. The development of RCP for new-type reactor and the performance verification of hydraulic revolving body also needs the RCP test facility. The design concept of test loop and the technology of flow rate measurement are investigated in this research

  4. Stereotype Threat, Test Anxiety, and Mathematics Performance

    Science.gov (United States)

    Tempel, Tobias; Neumann, Roland

    2014-01-01

    We investigated the combined effects of stereotype threat and trait test anxiety on mathematics test performance. Stereotype threat and test anxiety interacted with each other in affecting performance. Trait test anxiety predicted performance only in a diagnostic condition that prevented stereotype threat by stereotype denial. A state measure of…

  5. Application of computational fluid dynamics and surrogate-coupled evolutionary computing to enhance centrifugal-pump performance

    Directory of Open Access Journals (Sweden)

    Sayed Ahmed Imran Bellary

    2016-01-01

    Full Text Available To reduce the total design and optimization time, numerical analysis with surrogate-based approaches is being used in turbomachinery optimization. In this work, multiple surrogates are coupled with an evolutionary genetic algorithm to find the Pareto optimal fronts (PoFs of two centrifugal pumps with different specifications in order to enhance their performance. The two pumps were used a centrifugal pump commonly used in industry (Case I and an electrical submersible pump used in the petroleum industry (Case II. The objectives are to enhance head and efficiency of the pumps at specific flow rates. Surrogates such as response surface approximation (RSA, Kriging (KRG, neural networks and weighted-average surrogates (WASs were used to determine the PoFs. To obtain the objective functions’ values and to understand the flow physics, Reynolds-averaged Navier–Stokes equations were solved. It is found that the WAS performs better for both the objectives than any other individual surrogate. The best individual surrogates or the best predicted error sum of squares (PRESS surrogate (BPS obtained from cross-validation (CV error estimations produced better PoFs but was still unable to compete with the WAS. The high CV error-producing surrogate produced the worst PoFs. The performance improvement in this study is due to the change in flow pattern in the passage of the impeller of the pumps.

  6. Simulations and field tests of a reactor coolant pump emergency start-up by means of remote gas units

    International Nuclear Information System (INIS)

    Omahen, P.; Gubina, F.

    1992-01-01

    The problem of the reactor coolant pump start-up in case of emergency by means of remote gas power plant units was analyzed. In this paper a simulation model is developed which enabled a detailed simulation of the transient process occurring at the start-up. The start-up of the RCP motor set was simulated in case of available one and two gas units. The field tests were performed and the measured variable values complied well with the simulation results. Two gas units have been determined as a safe start-up scheme of the RCP motor set considering for safety reasons accepted busbars and motor protection settings. A derived model for deep rotor bars was experimentally confirmed as effective means for the RCP motor set start-up transient simulation. Start-up procedures have been designed and adopted to the safety procedures of the Nuclear Power Plant Krsko

  7. An experimental study on pump clogging

    International Nuclear Information System (INIS)

    Isono, M; Nohmi, M; Uchida, H; Kawai, M; Kudo, H; Kawahara, T; Miyagawa, K; Saito, S

    2014-01-01

    For sewage pump that various foreign substance is flowed into, anti-clogging performance is a factor as important as pump efficiency in order to avoid clogging trouble by foreign substance. Many investigations about pump inner flow and pump efficiency estimation have been carried out conventionally in order to realize coexistence with anti-clogging performance and pump performance. And these results have been reflected in construction of the running water section design method. As a index of anti-clogging performance, ''impeller passage diameter'' which is diameter of spherical solid that can pass through the pump is used widely. And there are various type of the sewage pump which have large impeller passage diameter. However real cause of clog is not a solid, and it is fibrous material such as towel and clothes, vinyl and paper diaper. In most case these material accumulate in the pump, so that clog is occurred. In this study, for the purpose of quantification of anti-clogging performance against fibrous materials, the factor that affect to clogging of pump was investigated by pump model test using a string. The test is done based on Taguchi method. In this test, type of the pump model, diameter of the string, material of the string, length of the string and flow rate are selected for the factor, and the effect that they have on the clogging of the pump was investigated. As a result of this test, it was made clear that length of the string has a strong influence on the clogging of the pump. And from the result of this test, evaluation method of anti-clogging performance of the pump against fibrous material by using string was considered. According to the result of above test based on Taguchi method, it was assumed that quantification of anti-clogging performance against fibrous materials is possible by flowing plural strings into the pump and calculating the probability of passing. Plurality sewage pumps of different types were evaluated based

  8. Human performance in nondestructive inspections and functional tests: Final report

    International Nuclear Information System (INIS)

    Harris, D.H.

    1988-10-01

    Human performance plays a vital role in the inspections and tests conducted to assure the physical integrity of nuclear power plants. Even when technically-sophisticated equipment is employed, the outcome is highly dependent on human control actions, calibrations, observations, analyses, and interpretations. The principal consequences of inadequate performance are missed or falsely-reported defects. However, the cost-avoidance that stems from addressing potential risks promptly, and the increasing costs likely with aging plants, emphasize that timeliness and efficiency are important inspection-performance considerations also. Human performance issues were studied in a sample of inspections and tests regularly conducted in nuclear power plants. These tasks, selected by an industry advisory panel, were: eddy-current inspection of steam-generator tubes; ultrasonic inspection of pipe welds; inservice testing of pumps and valves; and functional testing of shock suppressors. Information was obtained for the study from industry and plant procedural documents; training materials; research reports and related documents; interviews with training specialists, inspectors, supervisory personnel, and equipment designers; and first-hand observations of task performance. Eleven recommendations are developed for improving human performance on nondestructive inspections and functional tests. Two recommendations were for the more-effective application of existing knowledge; nine recommendations were for research projects that should be undertaken to assure continuing improvements in human performance on these tasks. 25 refs., 9 figs., 1 tab

  9. Thermal performance analysis of a direct-expansion solar-assisted heat pump water heater

    International Nuclear Information System (INIS)

    Kong, X.Q.; Zhang, D.; Li, Y.; Yang, Q.M.

    2011-01-01

    A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described, which can supply hot water for domestic use during the whole year. The system mainly employs a bare flat-plate collector/evaporator with a surface area of 4.2 m 2 , an electrical rotary-type hermetic compressor, a hot water tank with the volume of 150 L and a thermostatic expansion valve. R-22 is used as working fluid in the system. A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. Given the structure parameters, meteorological parameters, time step and final water temperature, the numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. The effect of various parameters, including solar radiation, ambient temperature, wind speed and compressor speed, has been analyzed on the thermal performance of the system. -- Highlights: ► A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described. ► A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. ► The numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. ► Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. ► The effect of various parameters has been analyzed on the thermal performance of the system.

  10. Design and research on nuclear power plant EAS jet pump

    International Nuclear Information System (INIS)

    Chen Xingjiang; Fang Xiquan; Xie Jian; Yang Bin; Wang Xueling; Qi Yanli

    2014-01-01

    The jet pump is an important part of the PWR containment spray system. It will be performed the security functions under the accident conditions, which the containment spray system adds the right amount of sodium hydroxide through the jet pump to spray water. This paper describes the principle of jet pump. And the optimum structure dimensions were calculated according to the performance parameter and requirement of the jet pump. On the basis of foreign EAS jet pump design experience, the structure dimensions were modified according to the CFD analysis and performance test. Finally, the results of CFD analysis and performance test were provided. (authors)

  11. Summary of Test Results From a 1 kW(sub e)-Class Free-Piston Stirling Power Convertor Integrated With a Pumped NaK Loop

    Science.gov (United States)

    Briggs, Maxwell H.; Geng, Steven M.; Pearson, J. Boise; Godfroy, Thomas J.

    2010-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors was modified to operate with a NaK liquid metal pumped loop for thermal energy input. This was the first-ever attempt at powering a free-piston Stirling engine with a pumped liquid metal heat source and is a major FSP project milestone towards demonstrating technical feasibility. The tests included performance mapping the convertors over various hot and cold-end temperatures, piston amplitudes and NaK flow rates; and transient test conditions to simulate various start-up and fault scenarios. Performance maps of the convertors generated using the pumped NaK loop for thermal input show increases in power output over those measured during baseline testing using electric heating. Transient testing showed that the Stirling convertors can be successfully started in a variety of different scenarios and that the convertors can recover from a variety of fault scenarios.

  12. Summary of Test Results From a 1 kWe-Class Free-Piston Stirling Power Convertor Integrated With a Pumped NaK Loop

    Science.gov (United States)

    Briggs, Maxwell H.; Geng, Steven M.; Pearson, J. Boise; Godfroy, Thomas J.

    2010-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors was modified to operate with a NaK liquid metal pumped loop for thermal energy input. This was the first-ever attempt at powering a free-piston Stirling engine with a pumped liquid metal heat source and is a major FSP project milestone towards demonstrating technical feasibility. The tests included performance mapping the convertors over various hot and cold-end temperatures, piston amplitudes and NaK flow rates; and transient test conditions to simulate various start-up and fault scenarios. Performance maps of the convertors generated using the pumped NaK loop for thermal input show increases in power output over those measured during baseline testing using electric heating. Transient testing showed that the Stirling convertors can be successfully started in a variety of different scenarios and that the convertors can recover from a variety of fault scenarios.

  13. Operator performance in non-destructive testing: A study of operator performance in a performance test

    Energy Technology Data Exchange (ETDEWEB)

    Enkvist, J.; Edland, A.; Svenson, Ola [Stockholm Univ. (Sweden). Dept. of Psychology

    2000-05-15

    In the process industries there is a need of inspecting the integrity of critical components without disrupting the process. Such in-service inspections are typically performed with non-destructive testing (NDT). In NDT the task of the operator is to (based on diagnostic information) decide if the component can remain in service or not. The present study looks at the performance in NDT. The aim is to improve performance, in the long run, by exploring the operators' decision strategies and other underlying factors and to this way find out what makes some operators more successful than others. Sixteen operators performed manual ultrasonic inspections of four test pieces with the aim to detect (implanted) cracks. In addition to these performance demonstration tests (PDT), the operators performed independent ability tests and filled out questionnaires. The results show that operators who trust their gut feeling more than the procedure (when the two come to different results) and that at the same time have a positive attitude towards the procedure have a higher PDT performance. These results indicate the need for operators to be motivated and confident when performing NDT. It was also found that the operators who performed better rated more decision criteria higher in the detection phase than the operators who performed worse. For characterizing it was the other way around. Also, the operators who performed better used more time, both detecting and characterizing, than the operators who performed worse.

  14. Operator performance in non-destructive testing: A study of operator performance in a performance test

    International Nuclear Information System (INIS)

    Enkvist, J.; Edland, A.; Svenson, Ola

    2000-05-01

    In the process industries there is a need of inspecting the integrity of critical components without disrupting the process. Such in-service inspections are typically performed with non-destructive testing (NDT). In NDT the task of the operator is to (based on diagnostic information) decide if the component can remain in service or not. The present study looks at the performance in NDT. The aim is to improve performance, in the long run, by exploring the operators' decision strategies and other underlying factors and to this way find out what makes some operators more successful than others. Sixteen operators performed manual ultrasonic inspections of four test pieces with the aim to detect (implanted) cracks. In addition to these performance demonstration tests (PDT), the operators performed independent ability tests and filled out questionnaires. The results show that operators who trust their gut feeling more than the procedure (when the two come to different results) and that at the same time have a positive attitude towards the procedure have a higher PDT performance. These results indicate the need for operators to be motivated and confident when performing NDT. It was also found that the operators who performed better rated more decision criteria higher in the detection phase than the operators who performed worse. For characterizing it was the other way around. Also, the operators who performed better used more time, both detecting and characterizing, than the operators who performed worse

  15. Diagnostic value of the proton pump inhibitor test for gastro-oesophageal reflux disease in primary care

    NARCIS (Netherlands)

    Aanen, M. C.; Weusten, B. L. A. M.; Numans, M. E.; de Wit, N. J.; Baron, A.; Smout, A. J. P. M.

    2006-01-01

    AIM: To assess the diagnostic accuracy of the proton pump inhibitor test in a primary care population as well as its additional value over reflux history, using the symptom association probability outcome during 24-h oesophageal pH recording as reference test for gastro-oesophageal reflux disease.

  16. Performance of water source heat pump system using high-density polyethylene tube heat exchanger wound with square copper wire

    Directory of Open Access Journals (Sweden)

    Xin Wen Zhang

    2015-07-01

    Full Text Available Surface water source heat pump system is an energy-efficient heat pump system. Surface water heat exchanger is an important part of heat pump system that can affect the performance of the system. In order to enhance the performance of the system, the overall heat transfer coefficient (U value of the water exchanger using a 32A square copper coiled high-density polyethylene tube was researched. Comparative experiments were conducted between the performance of the coiled high-density polyethylene tube and the 32A smooth high-density polyethylene tube. At the same time, the coefficient of performance of the heat pump was investigated. According to the result, the U value of the coiled tube was 18% higher than that of the smooth tube in natural convection and 19% higher in forced convection. The coefficient of performance of the heat pump with the coiled tube is higher than that with the smooth tube. The economic evaluation of the coiled tube was also investigated.

  17. Preliminary experiences with material testing at the oxyfuel pilot plant at Schwarze Pumpe

    Energy Technology Data Exchange (ETDEWEB)

    Hjoernhede, Anders [Vattenfall Power, Gothenborg (Sweden); Montgomery, Melanie [Technical Univ. Denmark, Lyngby (Denmark). Inst. for Mekanisk Teknologi; Vattenfall Heat Nordic, Lyngby (Denmark); Bjurman, Martin; Henderson, Pamela [Vattenfall AB (Sweden). Research and Development; Gerhardt, Alexander [Vattenfall AB, Berlin (Germany). Research and Development

    2010-07-01

    Several material related issues may arise from oxyfuel combustion of coal due to the presence of CO{sub 2} but also as an effect of the partial recirculation of the flue gas. Two examples are increased corrosion and carburisation which may limit steam data, hence limiting the efficiency. A number of corrosion tests, in both conventional air-firing and oxyfuel mode, have been made in Vattenfalls 30 MW oxyfuel pilot plant located in Schwarze Pumpe, Germany. Internally cooled corrosion probes, equipped with ferritic, austenitic, super austenitic steels as well as Ni-based and FeCrAl alloys, simulating superheaters, economisers and air preheaters were exposed for up to 1500 hrs. The analyses show an indication of higher material wastage in oxyfuel compared to air combustion especially at the lower exposure temperatures. This may be due to increased sulphur concentration in corrosion front, increased heat flux, carburisation or other precipitate formations on austenitic steels and Ni-based alloys. (orig.)

  18. Effects of divertor geometry and pumping on plasma performance on DIII-D

    International Nuclear Information System (INIS)

    Allen, S.L.; Hill, D.N.; Porter, G.D.

    1997-06-01

    This paper reports the status of an ongoing investigation to discern the influence of the divertor and plasma geometry on the confinement of both ELM-free and ELMing discharges in DIII-D. The ultimate goal is to achieve a high-performance core plasma which coexists with an advanced divertor plasma. The divertor plasma must reduce the heat flux to acceptable levels; the current technique disperses the heat flux over a wide area by radiation (a radiative divertor). To date, we have obtained our best performance in double-null (DN) high-triangularity (δ ∼ 0.8) ELM-free discharges. As discussed in detail elsewhere, there are several advantages for both the core and divertor plasma with highly-shaped DN operation. Previous radiative-divertor experiments with D 2 injection in DN high-δ ELMing H-mode have shown that this configuration is more sensitive to gas puffing (τ decreases). Moving the X-point away from the target plate (to ∼15 cm above the plate) decreases this sensitivity. Preliminary measurements also indicate that gas puffing reduces the divertor heat flux but does not reduce the plasma pressure along the field line. The up/down heat flux balance can be varied magnetically (by changing the distance between the separatrices), with a slight magnetic imbalance required to balance the heat flux. The overall mission of the Radiative Divertor Project (RDP) is to install a fully pumped and baffled high-δ DN divertor. To date, however, both the DIII-D divertor diagnostics and pump were optimized for lower single-null (LSN) low-δ (δ∼ 0.4) plasmas, so much of the divertor physics has been performed in LSN; these results are discussed in Section 2. As part of the first phase of the RDP, we have installed a new high-δ USN divertor baffle and pump; these results are discussed in Section 3. Both divertor and core parameters are discussed in each case

  19. Effects of impeller diameter and rotational speed on performance of pump running in turbine mode

    International Nuclear Information System (INIS)

    Jain, Sanjay V.; Swarnkar, Abhishek; Motwani, Karan H.; Patel, Rajesh N.

    2015-01-01

    Highlights: • Experiments done between 900 and 1500 rpm with original, 10% and 20% trimmed impellers. • The performance of PAT was found better in speed range of 1000–1200 rpm. • Blade rounding led to 3–4% rise in efficiency at rated speed with existing impeller. • Correlation developed has predicted η BEP within ±10% of experimental results. - Abstract: The major limitations of mini/micro hydropower schemes is the higher cost of small capacity hydro turbines. Also, it is very cumbersome, time consuming and expensive to develop the site specific turbines corresponding to local site conditions in mini/micro hydro range. In such plants, small centrifugal pumps can be used in turbine mode by running in the reverse direction. The efficiency of pump as turbines (PATs) is usually lower than the conventional hydro turbines; however, there may be substantial decrease in the capital cost of the plant. Hydropower plants usually runs at part load for several months in a year due to insufficient water availability for the power generation. The application range of PAT can be widened if its part load and/or maximum efficiency can be improved. In the present study, experimental investigations are carried out on centrifugal pump running in turbine mode to optimize its geometric and operational parameters e.g. impeller diameter and rotational speed. The experiments were performed in the wide range of rotational speeds varying from 900 to 1500 rpm with original (∅ 250 mm), 10% trimmed (∅ 225 mm) and 20% trimmed (∅ 200 mm) impellers. Impeller trimming led to improvement in efficiency at part load operating conditions. The performance of PAT was found better at the lower speeds than that at the rated speed. The effects of blade rounding were studied in all the cases and it led to 3–4% rise in efficiency at rated speed with the original impeller. The empirical correlation is also developed for prediction of efficiency in terms of impeller diameter and rotational

  20. Thermodynamic analysis and performance assessment of an integrated heat pump system for district heating applications

    International Nuclear Information System (INIS)

    Soltani, Reza; Dincer, Ibrahim; Rosen, Marc A.

    2015-01-01

    A Rankine cycle-driven heat pump system is modeled for district heating applications with superheated steam and hot water as products. Energy and exergy analyses are performed, followed by parametric studies to determine the effects of varying operating conditions and environmental parameters on the system performance. The district heating section is observed to be the most inefficient part of system, exhibiting a relative irreversibility of almost 65%, followed by the steam evaporator and the condenser, with relative irreversibilities of about 18% and 9%, respectively. The ambient temperature is observed to have a significant influence on the overall system exergy destruction. As the ambient temperature decreases, the system exergy efficiency increases. The electricity generated can increase the system exergy efficiency at the expense of a high refrigerant mass flow rate, mainly due to the fact that the available heat source is low quality waste heat. For instance, by adding 2 MW of excess electricity on top of the targeted 6 MW of product heat, the refrigerant mass flow rate increases from 12 kg/s (only heat) to 78 kg/s (heat and electricity), while the production of 8 MW of product heat (same total output, but in form of heat) requires a refrigerant mass flow rate of only 16 kg/s. - Highlights: • A new integrated heat pump system is developed for district heating applications. • An analysis and assessment study is undertaken through exergy analysis methodology. • A comparative efficiency evaluation is performed for practical applications. • A parametric study is conducted to investigate how varying operating conditions and state properties affect energy and exergy efficiencies.