WorldWideScience

Sample records for pump mechanical seal

  1. Materials for water pump mechanical seals

    International Nuclear Information System (INIS)

    Brousse, P.

    1992-01-01

    In view of the continually increasing power ratings of conventional and nuclear power plants and the related reliability and safety problems, plant builders have had to develop seal systems compatible with current water pump performances. In 1970, EDF/R and DD was already concerned by this problem. It soon became obvious that the nature of the materials used for the friction surfaces was decisive for seal durability. Exceptional loads (transients, high vibration levels, etc...) hasten aging. To begin with, friction surfaces consisted of a hard material (tungsten carbide) mated with a soft material (carbon). Resistance was unpredictable and not compatible with industrial requirements. Tests performed on the EDF/R and DD test benches evidenced the same types of degradation. The mechanical seal manufacturers then began to use ceramic materials (silicon carbide), which raised high expectations. Unfortunately, these were recent materials and their manufacturing process was not thoroughly understood. Hopes were soon dashed in many applications, including that of mechanical seals. Fluctuating results were obtained over the next few years. The raw material suppliers made progress, especially with regard to reducing fragility. On a parallel, the mechanical seal manufacturers initiated comparative tests on the friction resistance of materials. It has also been established that ceramics have to be stringently supervised at all levels: part design, inspection, assembly, use. EDF has much insisted that mechanical seal suppliers guarantee the constant quality of their products. EDF/R and DD has systematically tested new sensitive devices, under normal and exceptional conditions, prior to their installation at the plants. At the present time, the silicon carbides proposed by the mechanical seal suppliers are entirely satisfactory. The carbon mating surface was far less problematic. The required reliability was obtained by replacing resin binder carbons by the more resistant

  2. Development of new design mechanical seal tester for Primary Loop Recirculation Pump (PLR Pump)

    International Nuclear Information System (INIS)

    Fukushima, Naoki; Koshiba, Koremutsu

    1995-01-01

    The mechanical seal for a Primary Loop Recirculation Pump (PLR Pump) is an important part of a BWR plant. This study describes a new mechanical seal tester developed to certify mechanical seal performance before installation in a PLR Pump on site. (author)

  3. Sealing properties of mechanical seals for an axial flow blood pump.

    Science.gov (United States)

    Tomioka, J; Mori, T; Yamazaki, K; Koyanagi, H

    1999-08-01

    A miniature intraventricular axial flow blood pump for left ventricular support is under development. One of the key technologies required for such pumps is sealing of the motor shaft. In this study, to prevent blood backflow into the motor side, mechanical seals were developed and their sealing properties investigated. In the experimental apparatus, the mechanical seal separated the bovine blood on the chamber side from the cooling water on the motor side. A leakage of the blood was measured by inductively coupled plasma (ICP) light emission analysis. The rate of hemolysis was measured by the cyanmethemoglobin method. Frictional torque acting on the shaft was measured by a torque transducer. In the experiments, the rotational speed of the shaft was changed from 1,000 to 10,000 rpm, and the contact force of the seal faces was changed from 1.96 to 4.31 N. To estimate lubrication regimes, the Stribeck curve, a diagram of the coefficient of friction against the bearing characteristic G number, was drawn. The results of the experiments showed that both the leakage of blood and the rate of hemolysis were very small. The friction loss was also very small. The mechanical seal was operated in various lubrication regimes, from a fluid lubrication regime to a mixed lubrication regime.

  4. Mechanical seal program

    International Nuclear Information System (INIS)

    Lowery, G.B.

    1983-01-01

    The experimental plans and timing for completion of the mechanical seal program for both the slurry and transfer pumps are given. The slurry pump seal program will be completed by April 1984 with turnover of two seals in pumps to SRP Tank 15H. Transfer pump seal design will be released for plant use by May 1984. Also included are various other pump and seal related tests

  5. Primary heat transport pump mechanical seal replacement strategy for Pickering B

    International Nuclear Information System (INIS)

    Chacinsi, V.

    1995-01-01

    Pickering Nuclear Generating Station is a CANDU PHWR eight unit station located on Lake Ontario. The station is divided into Pickering A (Units 1 to 4) and Pickering B (Units 5 to 8). Pickering B is the focus of this paper. Each unit is rated at 540 MWe. The Primary Heat Transport (PHT) system, which is used to cool the fuel, is divided into four quadrants. Each quadrant has four vertical Byron Jackson PHT main circulation pumps. Three pumps in each quadrant are required for normal operation, leaving one pump in each quadrant as a spare. Each Pickering PHT pump has a Byron Jackson Type SU two stage mechanical seal. The typical pressure breakdown across the seal is 8.7-4.5-1.0 MPa. Certain features of seal operation and the PHT system which influence seal replacement are discussed below. (author)

  6. Increasing nuclear safety and operational reliability by upgrading the charging pump mechanical sealing system

    Energy Technology Data Exchange (ETDEWEB)

    Loenhout, Gerard van [Flowserve Corporation, Etten-Leur (Netherlands); Nilsson, Peter [Flowsys Technologies AB, Moelndal (Sweden); Jehander, Magnus [Ringhals AB, Vaeroebacka (Sweden)

    2016-07-01

    For the Ringhals-2 nuclear power plant, three installed centrifugal pumps were designated to have a combined High Head Safety Injection function, as well as a Chemical Volume Control System function. The pumps were originally installed with rubber bellow type mechanical seals, which over time had demonstrated an unreliable sealing performance by displaying high leakages. In 2002, the Ringhals Maintenance engineers initiated to identify a more reliable and robust shaft sealing solution. In 2007, the project was launched and the installation of the first, new mechanical sealing solution took place in the autumn of 2011. In October 2014, these mechanical seals were dismantled and inspected. The inspection confirmed the expected reliability of the new solution.

  7. Increasing nuclear safety and operational reliability by upgrading the charging pump mechanical sealing system

    Energy Technology Data Exchange (ETDEWEB)

    Loenhout, Gerard van [Flowserve Corporation, Etten-Leur (Netherlands); Nilsson, Peter [Flowsys Technologies AB, Moelndal (Sweden); Jehander, Magnus [Ringhals AB, Vaeroebacka (Sweden)

    2016-03-15

    For the Ringhals-2 nuclear power plant, three installed centrifugal pumps were designated to have a combined High Head Safety Injection function, as well as a Chemical Volume Control System function. The pumps were originally installed with rubber bellow type mechanical seals, which over time had demonstrated an unreliable sealing performance by displaying high leakages. In 2002, the Ringhals Maintenance engineers initiated to identify a more reliable and robust shaft sealing solution. In 2007, the project was launched and the installation of the first, new mechanical sealing solution took place in the autumn of 2011. In October 2014, these mechanical seals were dismantled and inspected. The inspection confirmed the expected reliability of the new solution.

  8. Increasing nuclear safety and operational reliability by upgrading the charging pump mechanical sealing system

    International Nuclear Information System (INIS)

    Loenhout, Gerard van; Nilsson, Peter; Jehander, Magnus

    2016-01-01

    For the Ringhals-2 nuclear power plant, three installed centrifugal pumps were designated to have a combined High Head Safety Injection function, as well as a Chemical Volume Control System function. The pumps were originally installed with rubber bellow type mechanical seals, which over time had demonstrated an unreliable sealing performance by displaying high leakages. In 2002, the Ringhals Maintenance engineers initiated to identify a more reliable and robust shaft sealing solution. In 2007, the project was launched and the installation of the first, new mechanical sealing solution took place in the autumn of 2011. In October 2014, these mechanical seals were dismantled and inspected. The inspection confirmed the expected reliability of the new solution.

  9. Mechanical seals qualification procedure of the main pumps of nuclear power plants in France

    International Nuclear Information System (INIS)

    Buchdahl, D.; Martin, R.; Girault, J.M.

    1992-12-01

    Many important pumps in the nuclear power plants are equipped with mechanical seals. The good behaviour and reliability of mechanical seals depend specially on the quality and the stability of an interface of several microns. Peripheral speed reaches 50 m/s and pressure 5 MPa, shaft diameter may be 200 mm. Any failure of the mechanical seals may stop the production of electricity or may compromise nuclear safety. As far back as 1970, EDF has conducted qualification actions for the most important mechanical seals in terms of availability and safety. A qualification of mechanical seals needs three steps: - constructor test (tuning) at normal conditions, -qualification test on test rig at EDF/DER (semi-industrial) at normal, exceptional and incidental conditions lasting about 1500 h, - industrial qualification test in nuclear power station over one year. Several supplying sources are absolutely necessary. Any pump may receive mechanical seals from at least two different suppliers. A compromise had to be found to restrict the suppliers' number down to three. This choice concerned three high technology suppliers. A consistent modification procedure had been developed (references file procedure). For each power plant series, about ten types of mechanical seals are concerned. The selection criteria are the higher loads factors P, Vg or the safety related importance. This expensive approach is useful for EDF, many functional failures have been detected before the serial mechanical seals installation in the power plants. (authors). 1 annexe

  10. Optimization of the pumping ring in a mechanical seal with an integrated cooler for feed-water pumps

    International Nuclear Information System (INIS)

    Buchdahl, D.; Martin, R.; Gueret, G.; Blanc, M.

    1994-07-01

    To simplify maintenance, E.D.F. along with its collaborators undertook the study of mechanical seal with integrated cooler used in feed-water pumps in the nuclear power plants. The cooler, integrated to the pump acts as a thermal barrier as well as a cooler of the mechanical seal. The water circulation in the cooler is assumed by an integrated pumping ring in the rotary part of the mechanical seal, with a matching screw thread in the pumping case. This assembly of mechanical seal/integrated cooler is tested in a test loop at the EDF/DER Laboratory. All working conditions are similar to that at site. Tests with different configurations of the rotor/stator profiles are performed, i.e.; different lengths and types of threading. Hydraulic performances and the global thermal balance of this assembly are studied. Our basic aim during these tests is to optimize the hydraulic performance of the pumping ring so as to best cool the mechanical seal faces. The different results obtained and the conclusions drawn during these tests are presented. (authors). 7 figs., 3 refs

  11. Research on performance of upstream pumping mechanical seal with different deep spiral groove

    International Nuclear Information System (INIS)

    Wang, Q; Chen, H L; Liu, T; Liu, Y H; Liu, Z B; Liu, D H

    2012-01-01

    As one new type of mechanical seal, Upstream Pumping Mechanical Seal has been widely used in fluid machinery. In this paper, structure of spiral groove is innovatively optimized to improve performance of Upstream Pumping Mechanical Seal with Spiral Groove: keeping the dam zone and the weir zone not changed, changing the bottom shape of spiral groove only, substituting different deep spiral groove for equal deep spiral groove. The simulation on Upstream Pumping Mechanical Seal with different deep spiral grooves is done using FVM method. According to calculation, the performances of opening force and pressure distribution on seals face are obtained. Five types of spiral grooves are analyzed, namely equal deep spiral groove, circumferential convergent ladder-like different deep spiral groove, circumferential divergent ladder-like different deep spiral groove, radial convergent ladder-like different deep spiral groove and radial divergent ladder-like different deep spiral groove. This paper works on twenty-five working conditions. The results indicate the performances of circumferential divergent 2-ladder different deep spiral groove are better than the others, with more opening force and better stabilization, while with the same leakage. The outcome provides theoretical support for application of Upstream Pumping Mechanical Seal with circumferential convergent ladder-like different deep spiral groove.

  12. Research on performance of upstream pumping mechanical seal with different deep spiral groove

    Science.gov (United States)

    Wang, Q.; Chen, H. L.; Liu, T.; Liu, Y. H.; Liu, Z. B.; Liu, D. H.

    2012-11-01

    As one new type of mechanical seal, Upstream Pumping Mechanical Seal has been widely used in fluid machinery. In this paper, structure of spiral groove is innovatively optimized to improve performance of Upstream Pumping Mechanical Seal with Spiral Groove: keeping the dam zone and the weir zone not changed, changing the bottom shape of spiral groove only, substituting different deep spiral groove for equal deep spiral groove. The simulation on Upstream Pumping Mechanical Seal with different deep spiral grooves is done using FVM method. According to calculation, the performances of opening force and pressure distribution on seals face are obtained. Five types of spiral grooves are analyzed, namely equal deep spiral groove, circumferential convergent ladder-like different deep spiral groove, circumferential divergent ladder-like different deep spiral groove, radial convergent ladder-like different deep spiral groove and radial divergent ladder-like different deep spiral groove. This paper works on twenty-five working conditions. The results indicate the performances of circumferential divergent 2-ladder different deep spiral groove are better than the others, with more opening force and better stabilization, while with the same leakage. The outcome provides theoretical support for application of Upstream Pumping Mechanical Seal with circumferential convergent ladder-like different deep spiral groove.

  13. The thermal and mechanical deformation study of up-stream pumping mechanical seal

    International Nuclear Information System (INIS)

    Chen, H L; Xu, C; Zuo, M Z; Wu, Q B

    2015-01-01

    Taking the viscosity-temperature relationship of the fluid film into consideration, a 3-D numerical model was established by ANSYS software which can simulate the heat transfer between the upstream pumping mechanical seal stationary and rotational rings and the fluid film between them as well as simulate the thermal deformation, structure deformation and the coupling deformation of them. According to the calculation result, thermal deformation causes the seal face expansion and the maximum thermal deformation appears at the inside of the seal ring. Pressure results in a mechanical deformation, the maximum deformation occurs at the top of the spiral groove and the overall trend is inward the mating face, opposite to the thermal deformation. The coupling deformation indicate that the thermal deformation can be partly counteracted by pressure deformation. Using this model, the relationship between deformation and shaft speed and the sealing liquid pressure was studied. It's found that the shaft speed will both enhance the thermal and structure deformation and the fluid pressure will enhance the structure deformation but has little to do with the thermal deformation. By changing the sealing material, it's found that material with low thermal expansion coefficient and low elastic modulus will suffer less thermal-pressure deformation

  14. The thermal and mechanical deformation study of up-stream pumping mechanical seal

    Science.gov (United States)

    Chen, H. L.; Xu, C.; Zuo, M. Z.; Wu, Q. B.

    2015-01-01

    Taking the viscosity-temperature relationship of the fluid film into consideration, a 3-D numerical model was established by ANSYS software which can simulate the heat transfer between the upstream pumping mechanical seal stationary and rotational rings and the fluid film between them as well as simulate the thermal deformation, structure deformation and the coupling deformation of them. According to the calculation result, thermal deformation causes the seal face expansion and the maximum thermal deformation appears at the inside of the seal ring. Pressure results in a mechanical deformation, the maximum deformation occurs at the top of the spiral groove and the overall trend is inward the mating face, opposite to the thermal deformation. The coupling deformation indicate that the thermal deformation can be partly counteracted by pressure deformation. Using this model, the relationship between deformation and shaft speed and the sealing liquid pressure was studied. It's found that the shaft speed will both enhance the thermal and structure deformation and the fluid pressure will enhance the structure deformation but has little to do with the thermal deformation. By changing the sealing material, it's found that material with low thermal expansion coefficient and low elastic modulus will suffer less thermal-pressure deformation.

  15. Mechanical seals

    CERN Document Server

    Mayer, E

    1977-01-01

    Mechanical Seals, Third Edition is a source of practical information on the design and use of mechanical seals. Topics range from design fundamentals and test rigs to leakage, wear, friction and power, reliability, and special designs. This text is comprised of nine chapters; the first of which gives a general overview of seals, including various types of seals and their applications. Attention then turns to the fundamentals of seal design, with emphasis on six requirements that must be considered: sealing effectiveness, length of life, reliability, power consumption, space requirements, and c

  16. Supply of clean water to the bearings and mechanical seals of the backup pumps

    International Nuclear Information System (INIS)

    Jolas, C.

    1997-01-01

    The purpose of the backup pumps is to cool the primary circuit and pressurised water reactor containment in the case of a primary cooler loss accident. The water taken in by these pumps in the case of accident is loaded with solid particles. In order to ensure correct operation of the bearings and mechanical seals of these machines, they must be supplied with clean water. In other words, the solid particles must be removed from the water intake. Manufacturers generally use cyclonic separators to achieve this. (author)

  17. Research on Cavitation Regions of Upstream Pumping Mechanical Seal Based on Dynamic Mesh Technique

    Directory of Open Access Journals (Sweden)

    Huilong Chen

    2014-08-01

    Full Text Available In order to study the cavitation area of the Upstream Pumping Mechanical Seal, three-dimensional microgap inner flow field of the Upstream Pumping Mechanical Seal was simulated with multiphase flow cavitation model and dynamic mesh technique based on hydrodynamic lubrication theory. Furthermore, the simulated result was compared with the experimental data. The results show that the simulated result with the Zwart-Gerber-Belamri cavitation model was much closer to the experimental data. The area of cavitation inception mainly occurred at the concave side of the spiral groove and surrounding region without spiral grooves, which was nearly covered by the inner diameter to roots of grooves; in addition, the region near the surface of the stationary ring was primary cavitation location. The area of cavitation has little relationship with the medium pressure; however, it became larger following increasing rotating speed in the range of researched operating conditions. Moreover the boundary of cavitated area was transformed from smooth to rough, which occurred in similar film thickness. When cavitation number was decreasing, which was conducive to improving the lubrication performance of sealed auxiliary, it made the sealing stability decline.

  18. Experiences in design up-gradation of mechanical seal cooling scheme of Dhruva PHT pumps

    International Nuclear Information System (INIS)

    Balakrishnan, K.T.P.

    2002-01-01

    Full text: Dhruva is a natural uranium fuelled high flux research reactor. Heavy water is used as coolant, moderator and reflector. Heat from the heavy water coolant is removed in heat exchangers by demineralised water. The heavy water coolant is re-circulated between the reactor core and the heat exchangers in three separate loops by three main coolant pumps (MCPs). The MCPs are high capacity centrifugal pumps and are rated for continuous service. The mechanical seal of the pump prevents leakage of the process fluid, which is heavy water, through the pump shaft. Continuous operation of the pump results in the heating up of the seal and necessitates sustained cooling. An integral cooling provision is made by tapping a 15 NB line from the discharge volute of the pump and feeding the process fluid itself as coolant to the seal. A non-indicating type flow-sensing device monitors flow through this line. Limiting values of flow are set and annunciated by a pair of magnetic reed type relays. This cooling line was a built in feature of the pumps as supplied by the manufacturer. This arrangement had the following inherent limitations: 1. There was no on line indication of the coolant flow. 2. The reed type magnetic relays initiated pump trips by spurious actuation, resulting in the interruption of reactor operation. Servicing a faulty flow switch involved lengthy procedures and necessitated draining, filling and venting of the pump. This entailed extended plant outages. Close proximity of these flow switches to a highly radioactive piping element imposed severe restrictions on the planned maintenance activity on them. Efforts were made to provide a suitable alternate cooling and flow measurement scheme to overcome the above-mentioned limitations. After evaluating the relative merits and demerits of several schemes, a turbine type flow sensor, on a modified cooling line was selected as the most suitable alternative. The alternate seal-cooling scheme was implemented for all

  19. Experiences in design up-gradation of mechanical seal cooling scheme of Dhruva PHT pumps

    International Nuclear Information System (INIS)

    Balakrishnan, K.T.P.; Bharathan, R.

    2002-01-01

    Full text: Dhruva is a natural uranium fuelled high flux research reactor. Heavy water is used as coolant, moderator and reflector. Heat from the heavy water coolant is removed in heat exchangers by demineralised water. The heavy water coolant is re-circulated between the reactor core and the heat exchangers in three separate loops by three main coolant pumps (MCPs). The MCPs are high capacity centrifugal pumps and are rated for continuous service. The mechanical seal of the pump prevents leakage of the process fluid, which is heavy water, through the pump shaft. Continuous operation of the pump results in the heating up of the seal and necessitates sustained cooling. An integral cooling provision is made by tapping a 15 NB line from the discharge volute of the pump and feeding the process fluid itself as coolant to the seal. A non-indicating type flow-sensing device monitors flow through this line. Limiting values of flow are set and annunciated by a pair of magnetic reed type relays. This cooling line was a built in feature of the pumps as supplied by the manufacturer. This arrangement had the following inherent limitations : 1. There was no on line indication of the coolant flow. 2. The reed type magnetic relays initiated pump trips by spurious actuation, resulting in the interruption of reactor operation. Servicing a faulty flow switch involved lengthy procedures and necessitated draining, filling and venting of the pump. This entailed extended plant outages. Close proximity of these flow switches to a highly radioactive piping element imposed severe restrictions on the planned maintenance activity on them. Efforts were made to provide a suitable alternate cooling and flow measurement scheme to overcome the above-mentioned limitations. After evaluating the relative merits and demerits of several schemes, a turbine type flow sensor, on a modified cooling line was selected as the most suitable alternative. The alternate seal-cooling scheme was implemented for all

  20. Impact of mechanical- and maintenance-induced failures of main reactor coolant pump seals on plant safety

    International Nuclear Information System (INIS)

    Azarm, M.A.; Boccio, J.L.; Mitra, S.

    1985-12-01

    This document presents an investigation of the safety impact resulting from mechanical- and maintenance-induced reactor coolant pump (RCP) seal failures in nuclear power plants. A data survey of the pump seal failures for existing nuclear power plants in the US from several available sources was performed. The annual frequency of pump seal failures in a nuclear power plant was estimated based on the concept of hazard rate and dependency evaluation. The conditional probability of various sizes of leak rates given seal failures was then evaluated. The safety impact of RCP seal failures, in terms of contribution to plant core-melt frequency, was also evaluated for three nuclear power plants. For leak rates below the normal makeup capacity and the impact of plant safety were discussed qualitatively, whereas for leak rates beyond the normal make up capacity, formal PRA methodologies were applied. 22 refs., 17 figs., 19 tabs

  1. Continuous improvement of pump seals

    International Nuclear Information System (INIS)

    Wong, W.; Eyvindson, A.; Rhodes, D.B.

    2003-01-01

    Pump seal reliability continues to be an area needing improvement and ongoing vigilance. Methods have been developed for identifying and assessing factors relating to seal performance, selecting the most relevant ones for a specific station, and then focusing on the most significant aspects and how to improve. Discussion invariably addresses maintenance practices, seal design, monitoring capabilities, operating conditions, transients, and pump and motor design. Success in reliability improvement requires ongoing dialogue among the station operators, pump manufacturers and seal designers. AECL CAN-seals lead the nuclear industry in reliability and seal life. They effectively save operators millions of dollars in outage time and person-rem. This paper describes some of the significant developments in AECL's ongoing program in seal R and D, as well as recent new installations following the most demanding seal qualification programs to date. (author)

  2. Dynamic analysis of the mechanical seals of the rotor of the labyrinth screw pump

    Science.gov (United States)

    Lebedev, A. Y.; Andrenko, P. M.; Grigoriev, A. L.

    2017-08-01

    A mathematical model of the work of the mechanical seal with smooth rings made from cast tungsten carbide in the condition of liquid friction is drawn up. A special feature of this model is the allowance for the thermal expansion of a liquid in the gap between the rings; this effect acting in the conjunction with the frictional forces creates additional pressure and lift which in its turn depends on the width of the gap and the speed of sliding. The developed model displays the processes of separation, transportation and heat removal in the compaction elements and also the resistance to axial movement of the ring arising in the gap caused by the pumping effect and the friction in the flowing liquid; the inertia of this fluid is taken into account by the mass reduction method. The linearization of the model is performed and the dynamic characteristics of the transient processes and the forced oscillations of the device are obtained. The conditions imposed on the parameters of the mechanical seal are formulated to provide a regime of the liquid friction, which minimizes the wear.

  3. Sealing performance of a magnetic fluid seal for rotary blood pumps.

    Science.gov (United States)

    Mitamura, Yoshinori; Takahashi, Sayaka; Kano, Kentaro; Okamoto, Eiji; Murabayashi, Shun; Nishimura, Ikuya; Higuchi, Taka-Aki

    2009-09-01

    A magnetic fluid (MF) for a rotary blood pump seal enables mechanical contact-free rotation of the shaft and, hence, has excellent durability. The performance of a MF seal, however, has been reported to decrease in liquids. We have developed a MF seal that has a "shield" mechanism and a new MF with a higher magnetization of 47.9 kA/m. The sealing performance of the MF seal installed in a rotary blood pump was studied. Under the condition of continuous flow, the MF seal remained in perfect condition against a pressure of 298 mm Hg (pump flow rate: 3.96 L/min). The seal was also perfect against a pressure of 170 mm Hg in a continuous flow of 3.9 L/min for 275 days. We have developed a MF seal that works in liquid against clinically used pressures. The MF seal is promising as a shaft seal for rotary blood pumps.

  4. Mechanical seal assembly

    Science.gov (United States)

    Kotlyar, Oleg M.

    2001-01-01

    An improved mechanical seal assembly is provided for sealing rotating shafts with respect to their shaft housings, wherein the rotating shafts are subject to substantial axial vibrations. The mechanical seal assembly generally includes a rotating sealing ring fixed to the shaft, a non-rotating sealing ring adjacent to and in close contact with the rotating sealing ring for forming an annular seal about the shaft, and a mechanical diode element that applies a biasing force to the non-rotating sealing ring by means of hemispherical joint. The alignment of the mechanical diode with respect to the sealing rings is maintained by a series of linear bearings positioned axially along a desired length of the mechanical diode. Alternative embodiments include mechanical or hydraulic amplification components for amplifying axial displacement of the non-rotating sealing ring and transferring it to the mechanical diode.

  5. Mechanical Seal Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kotlyar, Oleg M.

    1999-06-18

    An improved mechanical seal assembly is provided for sealing rotating shafts with respect to their shaft housings, wherein the rotating shafts are subject to substantial axial vibrations. The mechanical seal assembly generally includes a rotating sealing ring fixed to the shaft, a non-rotating sealing ring adjacent to and in close contact with the rotating sealing ring for forming an annular seal about the shaft, and a mechanical diode element that applies a biasing force to the non-rotating sealing ring by means of hemispherical joint. The alignment of the mechanical diode with respect to the sealing rings is maintained by a series of linear bearings positioned axially along a desired length of the mechanical diode. Alternative embodiments include mechanical or hydraulic amplification components for amplifying axial displacement of the non-rotating sealing ring and transferring it to the mechanical diode.

  6. Application of a magnetic fluid seal to rotary blood pumps

    International Nuclear Information System (INIS)

    Mitamura, Y; Arioka, S; Azegami, M; Sakota, D; Sekine, K

    2008-01-01

    A magnetic fluid seal enables mechanical contact-free rotation of a shaft without frictional heat and material wear and hence has excellent durability. However, the durability of a magnetic fluid seal decreases in liquid. The life of a seal applied to a rotary blood pump is not known. We have developed a magnetic fluid seal that has a shield mechanism minimizing the influence of the rotary pump on the magnetic fluid. The developed magnetic fluid seal worked for over 286 days in a continuous flow condition, for 24 days (on-going) in a pulsatile flow condition and for 24 h (electively terminated) in blood flow. The magnetic fluid seal is promising as a shaft seal for rotary blood pumps

  7. Reactor coolant pump seals: improving their performance

    International Nuclear Information System (INIS)

    Pothier, N.E.; Metcalfe, R.

    1986-06-01

    Large CANDU plants are benefitting from transient-resistant four-year reliable reactor coolant pump seal lifetimes, a direct result of AECL's 20-year comprehensive seal improvement program involving R and D staff, manufacturers, and plant designers and operators. An overview of this program is presented, which covers seal modification design, testing, post-service examination, specialized maintenance and quality control. The relevancy of this technology to Light Water Reactor Coolant Pump Seals is also discussed

  8. Analysis on the Viscous Pumping in a Magnetic Fluid Seal Under a Rotating Load and the Seal Design

    OpenAIRE

    長屋, 幸助; 大沼, 浩身; 佐藤, 淳

    1990-01-01

    This paper discusses effects of viscous pumping in a magnetic fluid seal under a rotating load. The Reynolds equation was presented for the seal based on magnetic fluid mechanics, and the expressions for obtaining pressures in the seal, eccentricities of the rotating shaft due to the viscous pumping and seal pressures were given. Numerical Calculations were carried out for some sample problems, and the effect of magnetic flux densities on the pressure in the seal and the seal pressures were c...

  9. A magnetic fluid seal for rotary blood pumps: effects of seal structure on long-term performance in liquid.

    Science.gov (United States)

    Mitamura, Yoshinori; Takahashi, Sayaka; Amari, Shuichi; Okamoto, Eiji; Murabayashi, Shun; Nishimura, Ikuya

    2011-03-01

    A magnetic fluid (MF) seal enables mechanical contact-free rotation of the shaft and hence has excellent durability. The performance of an MF seal, however, has been reported to decrease in liquids. We developed an MF seal that has a "shield" mechanism, and a new MF with a higher magnetization of 47.9 kA/m. The sealing performance of the MF seal installed in a rotary blood pump was studied. Three types of MF seals were used. Seal A was a conventional seal without a shield. Seal B had the same structure as that of Seal A, but the seal was installed at 1 mm below liquid level. Seal C was a seal with a shield and the MF was set at 1 mm below liquid level. Seal A failed after 6 and 11 days. Seal B showed better results (20 and 73 days). Seal C showed long-term durability (217 and 275 days). The reason for different results in different seal structures was considered to be different flow conditions near the magnetic fluid. Fluid dynamics near the MF in the pump were analyzed using computational fluid dynamics (CFD) software. We have developed an MF seal with a shield that works in liquid for >275 days. The MF seal is promising as a shaft seal for rotary blood pumps.

  10. Exit loss model for plain axial seals in multi-stage centrifugal pumps

    NARCIS (Netherlands)

    Bruurs, K.A.J.; van Esch, B.P.M.; van der Schoot, M.S.

    2017-01-01

    Plain axial seals are often used in centrifugal pumps as a means to achieve acceptable sealing against leakage flow without the much higher friction losses that are associated with mechanical seals. Examples of their application are the front seals in shrouded radial and mixed-flow pumps and the

  11. Supply of clean water to the bearings and mechanical seals of the backup pumps; Alimentation en eau propre des paliers et garnitures mecaniques des pompes de sauvetage

    Energy Technology Data Exchange (ETDEWEB)

    Jolas, C. [Department Machines, Service Ensembles de Production, Direction des Etudes et Recherches, Electricite de France (EDF), 92 - Clamart (France)

    1997-01-01

    The purpose of the backup pumps is to cool the primary circuit and pressurised water reactor containment in the case of a primary cooler loss accident. The water taken in by these pumps in the case of accident is loaded with solid particles. In order to ensure correct operation of the bearings and mechanical seals of these machines, they must be supplied with clean water. In other words, the solid particles must be removed from the water intake. Manufacturers generally use cyclonic separators to achieve this. (author) 5 refs., 14 figs.

  12. Reactor coolant pump seal leakage monitoring

    International Nuclear Information System (INIS)

    Stevens, D.M.; Spencer, J.W.; Morris, D.J.; James, W.; Shugars, H.G.

    1986-01-01

    Problems with reactor coolant pump seals have historically accounted for a large percentage of unscheduled outages. Studies performed for the Electric Power Research Institute (EPRI) have shown that the replacement of coolant pump seals has been one of the leading causes of nuclear plant unavailability over the last ten years. Failures of coolant pump seals can lead to primary coolant leakage rates of 200-500 gallons per minute into the reactor building. Airborne activity and high surface contamination levels following these failures require a major cleanup effort and increases the time and personnel exposure required to refurbish the pump seals. One of the problems in assessing seal integrity is the inability to accurately measure seal leakage. Because seal leakage flow is normally very small, it cannot be sensed directly with normal flow instrumentation, but must be inferred from several other temperature and flow measurements. In operating plants the leakage rate has been quantified with a tipping-bucket gauge, a device which indicates when one quart of water has been accumulated. The tipping-bucket gauge has been used for most rainfall-intensity monitoring. The need for a more accurate and less expensive gauge has been addressed. They have developed a drop-counter precipitation sensor has been developed and optimized. The applicability of the drop-counter device to the problem of measuring seal leakage is being investigated. If a review of system specification and known drop-counter performance indicates that this method is feasible for measuring seal leak rates, a drop-counter gauge will be fabricated and tested in the laboratory. If laboratory tests are successful the gauge will be demonstrated in a pump test loop at Ontario Hydro and evaluated under simulated plant conditions. 3 references, 2 figures

  13. Upgrading primary heat transport pump seals

    International Nuclear Information System (INIS)

    Graham, T.; Metcalfe, R.; Rhodes, D.; McInnes, D.

    1995-01-01

    Changes in the operating environment at the Bruce-A Nuclear Generating Station created the need for an upgraded Primary Heat Transport Pump (PHTP) seal. In particular, the requirement for low pressure running during more frequent start-ups exposed a weakness of the CAN2 seal and reduced its reliability. The primary concern at Bruce-A was the rotation of the CAN2 No. 2 stators in their holders. The introduction of low pressure running exacerbated this problem, giving rapid wear of the stator back face, overheating, and thermocracking. In addition, the resulting increase in friction between the stator and its holder increased stationary-side hysteresis and thereby changed the seal characteristic to the point where interseal pressure oscillations became prevalent. The resultant increased hysteresis also led to hard rubbing of the seal faces during temperature transients. An upgraded seal was required for improved reliability to avoid forced outages and to reduce maintenance costs. This paper describes this upgraded 'replacement seal' and its performance history. In spite of the 'teething' problems detailed in this paper, there have been no forced outages due to the replacement seal, and in the words of a seal maintenance worker at Bruce-A, 'it allows me to go home and sleep at night instead of worrying about seal failures.' (author)

  14. A magnetic fluid seal for rotary blood pumps: Long-term performance in liquid

    Science.gov (United States)

    Mitamura, Yoshinori; Takahashi, Sayaka; Amari, Shuichi; Okamoto, Eiji; Murabayashi, Shun; Nishimura, Ikuya

    A magnetic fluid (MF) seal enables mechanical contact-free rotation of the shaft and hence has excellent durability. The performance of a MF seal, however, has been reported to decrease in liquids. We have developed a MF seal that has a 'shield' mechanism and a new MF with a higher magnetization of 47.9 kA/m. The sealing performance of the MF seal installed in a rotary blood pump was studied. The seal was perfect against a pressure of 150 mmHg in a continuous flow of 4.0 L/min for 275 days and against a pressure of 175 mmHg in a continuous flow of 3.9 L/min for 217 days. We have developed a MF seal that works in liquid against pressure mostly used clinically. The magnetic fluid seal is promising as a shaft seal for rotary blood pumps.

  15. High pressure mechanical seal

    Science.gov (United States)

    Babel, Henry W. (Inventor); Anderson, Raymond H. (Inventor)

    1996-01-01

    A relatively impervious mechanical seal is formed between the outer surface of a tube and the inside surface of a mechanical fitting of a high pressure fluid or hydraulic system by applying a very thin soft metal layer onto the outer surface of the hard metal tube and/or inner surface of the hard metal fitting. The thickness of such thin metal layer is independent of the size of the tube and/or fittings. Many metals and alloys of those metals exhibit the requisite softness, including silver, gold, tin, platinum, indium, rhodium and cadmium. Suitably, the coating is about 0.0025 millimeters (0.10 mils) in thickness. After compression, the tube and fitting combination exhibits very low leak rates on the order or 10.sup.-8 cubic centimeters per second or less as measured using the Helium leak test.

  16. The cool seal system: a practical solution to the shaft seal problem and heat related complications with implantable rotary blood pumps.

    Science.gov (United States)

    Yamazaki, K; Mori, T; Tomioka, J; Litwak, P; Antaki, J F; Tagusari, O; Koyanagi, H; Griffith, B P; Kormos, R L

    1997-01-01

    A critical issue facing the development of an implantable, rotary blood pump is the maintenance of an effective seal at the rotating shaft. Mechanical seals are the most versatile type of seal in wide industrial applications. However, in a rotary blood pump, typical seal life is much shorter than required for chronic support. Seal failure is related to adhesion and aggregation of heat denatured blood proteins that diffuse into the lubricating film between seal faces. Among the blood proteins, fibrinogen plays an important role due to its strong propensity for adhesion and low transition temperature (approximately 50 degrees C). Once exposed to temperature exceeding 50 degrees C, fibrinogen molecules fuse together by multi-attachment between heat denatured D-domains. This quasi-polymerized fibrin increases the frictional heat, which proliferates the process into seal failure. If the temperature of the seal faces is maintained well below 50 degrees C, a mechanical seal would not fail in blood. Based on this "Cool-Seal" concept, we developed a miniature mechanical seal made of highly thermally conductive material (SiC), combined with a recirculating purge system. A large supply of purge fluid is recirculated behind the seal face to augment convective heat transfer to maintain the seal temperature below 40 degrees C. It also cools all heat generating pump parts (motor coil, bearing, seal). The purge consumption has been optimized to virtually nil (seal system has now been incorporated into our intraventricular axial flow blood pump (IVAP) and newly designed centrifugal pump. Ongoing in vivo evaluation of these systems has demonstrated good seal integrity for more than 160 days. The Cool-Seal system can be applied to any type of rotary blood pump (axial, diagonal, centrifugal, etc.) and offers a practical solution to the shaft seal problem and heat related complications, which currently limit the use of implantable rotary blood pumps.

  17. Secondary seal effects in hydrostatic non-contact seals for reactor coolant pump shaft

    International Nuclear Information System (INIS)

    Fujita, T.; Koga, T.; Tanoue, H.; Hirabayashi, H.

    1987-01-01

    The paper presents a seal flow analysis in a hydrostatic non-contact seal for a PWR coolant pump shaft. A description is given of the non-contact seal for the reactor coolant pump. Results are presented for a distortion analysis of the seal ring, along with the seal flow characteristics and the contact pressure profiles of the secondary seals. The results of the work confirm previously reported findings that the seal ring distortion is sensitive to the o-ring location (which was placed between the ceramic seal face and the seal ring retainer). The paper concludes that the seal flow characteristics and the tracking performance depend upon the dynamic properties of the secondary seal. (U.K.)

  18. Main-coolant-pump shaft-seal reliability investigation. Interim report

    International Nuclear Information System (INIS)

    Fair, C.E.; Marsi, J.A.; Greer, A.O.

    1982-09-01

    This report contains the results of a survey of reactor coolant pump shaft seal reliability. The survey sample is representatively large (approx. = 27% of total US commercial plant population) and includes the three industry seal suppliers (Bingham-Williamette, Byron Jackson, and Westinghouse). Operationally incurred/induced problems and seal redesign parameters are identified. Failure hypotheses in the form of fault trees have been developed to describe the failure mechanisms. Recommendations are made for seal reliability improvement

  19. HFCVD Diamond-Coated Mechanical Seals

    Directory of Open Access Journals (Sweden)

    Raul Simões

    2018-05-01

    Full Text Available A mechanical seal promotes the connection between systems or mechanisms, preventing the escape of fluids to the exterior. Nonetheless, due to extreme working conditions, premature failure can occur. Diamond, due to its excellent properties, is heralded as an excellent choice to cover the surface of these devices and extend their lifetime. Therefore, the main objective of this work was to deposit diamond films over mechanical seals and test the coated seals on a water pump, under real working conditions. The coatings were created by hot filament chemical vapor deposition (HFCVD and two consecutive layers of micro- and nanocrystalline diamond were deposited. One of the main difficulties is the attainment of a good adhesion between the diamond films and the mechanical seal material (WC-Co. Nucleation, deposition conditions, and pre-treatments were studied to enhance the coating. Superficial wear or delamination of the film was investigated using SEM and Raman characterization techniques, in order to draw conclusions about the feasibility of these coatings in the WC-Co mechanical seals with the purpose of increasing their performance and life time. The results obtained gave a good indication about the feasibility of this process and the deposition conditions used, with the mechanical seals showing no wear and no film delamination after a real work environment test.

  20. Reactor coolant pump shaft seal stability during station blackout

    International Nuclear Information System (INIS)

    Rhodes, D.B.; Hill, R.C.; Wensel, R.G.

    1987-05-01

    Results are presented from an investigation into the behavior of Reactor Coolant Pump shaft seals during a potential station blackout (loss of all ac power) at a nuclear power plant. The investigation assumes loss of cooling to the seals and focuses on the effect of high temperature on polymer seals located in the shaft seal assemblies, and the identification of parameters having the most influence on overall hydraulic seal performance. Predicted seal failure thresholds are presented for a range of station blackout conditions and shaft seal geometries

  1. Reactor coolant pump shaft seal stability during station blackout

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, D B; Hill, R C; Wensel, R G

    1987-05-01

    Results are presented from an investigation into the behavior of Reactor Coolant Pump shaft seals during a potential station blackout (loss of all ac power) at a nuclear power plant. The investigation assumes loss of cooling to the seals and focuses on the effect of high temperature on polymer seals located in the shaft seal assemblies, and the identification of parameters having the most influence on overall hydraulic seal performance. Predicted seal failure thresholds are presented for a range of station blackout conditions and shaft seal geometries.

  2. Development of a resilient mechanical sealing solution to resist electro corrosion in ultrapure feedwater applications

    Energy Technology Data Exchange (ETDEWEB)

    Loenhout, Gerard van [Flowservice Flow Solutions Division, Etten-Leur (Netherlands); Enders, Klaus; Schmerberg, Rainer [Vattenfall Europe Generation AG, Peitz (Germany)

    2012-11-01

    Ever since the introduction of mechanical seals on high speed boiler feed pumps in the sixties, mechanical seals have proven to be a reliable, cost effective sealing method. However, since the introduction of combined water treatment chemistry used in today's modern fossil-fuelled power stations, keeping mechanical seal reliability high, became a challenge. A pragmatic approach is presented. A resilient sealing solution was developed to resist electro corrosion for such critical feed water pumps. (orig.)

  3. Characteristics of Acceleration and Acoustic Emission Signals from Mechanical Seals

    International Nuclear Information System (INIS)

    Lee, Do Hwan; Ha, Che Woong

    2015-01-01

    Based on these results, the applicability of acceleration signals for condition monitoring of mechanical seals is examined in the present study. Mechanical seals are used for pumps to prevent excessive leakage that might be occurred between rotational and stationary parts. The mechanical seals account for the major pump component failures. In spite of its importance, there have been few studies on condition monitoring of the components. Recently, some researchers have paid attention to the application of acoustic emission (AE) sensors for the fault detection of seals. The characteristics of acceleration and AE signals obtained from various defects are investigated. In order to prevent excessive leakage from mechanical seals, a condition monitoring technique is necessary. Based on the previous studies on AE techniques for seal monitoring, the signal characteristics from accelerometer

  4. Characteristics of Acceleration and Acoustic Emission Signals from Mechanical Seals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Do Hwan; Ha, Che Woong [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Based on these results, the applicability of acceleration signals for condition monitoring of mechanical seals is examined in the present study. Mechanical seals are used for pumps to prevent excessive leakage that might be occurred between rotational and stationary parts. The mechanical seals account for the major pump component failures. In spite of its importance, there have been few studies on condition monitoring of the components. Recently, some researchers have paid attention to the application of acoustic emission (AE) sensors for the fault detection of seals. The characteristics of acceleration and AE signals obtained from various defects are investigated. In order to prevent excessive leakage from mechanical seals, a condition monitoring technique is necessary. Based on the previous studies on AE techniques for seal monitoring, the signal characteristics from accelerometer.

  5. Reactor coolant pump shaft seal behavior during station blackout

    International Nuclear Information System (INIS)

    Kittmer, C.A.; Wensel, R.G.; Rhodes, D.B.; Metcalfe, R.; Cotnam, B.M.; Gentili, H.; Mings, W.J.

    1985-04-01

    A testing program designed to provide fundamental information pertaining to the behavior of reactor coolant pump (RCP) shaft seals during a postulated nuclear power plant station blackout has been completed. One seal assembly, utilizing both hydrodynamic and hydrostatic types of seals, was modeled and tested. Extrusion tests were conducted to determine if seal materials could withstand predicted temperatures and pressures. A taper-face seal model was tested for seal stability under conditions when leaking water flashes to steam across the seal face. Test information was then used as the basis for a station blackout analysis. Test results indicate a potential problem with an elastomer material used for O-rings by a pump vendor; that vendor is considering a change in material specification. Test results also indicate a need for further research on the generic issue of RCP seal integrity and its possible consideration for designation as an unresolved safety issue

  6. Wear testing and finite element analysis of nitrile rubber (NBR) hand pump seals

    OpenAIRE

    Alkadhimi, Fadel

    2015-01-01

    The use of Nitrile Butadiene Rubber NBR as seal in machines has increased in recent years. NBR is considered as the standard material for sealing and NBR owes its many applications to a range of special mechanical properties. However, the non-linear mechanical properties and incompressible behaviour of NBR make the analysis of NBR very difficult. The literature review highlighted the fact that the most common technical cause of hand pump failures was the wear of the piston seals. The contact ...

  7. Application of radioisotope technique for investigation of pumps seals

    International Nuclear Information System (INIS)

    Antoszewski, B.; Zorawska, A.

    1988-01-01

    Radioisotope method of measuring the wear of rings of the face mechanical seals, bush in soft seals, and leakage in double mechanical seals is described. The examples are given. It is found that radioisotope technique can be used for investigation of the seals. (author)

  8. Reactor coolant pump shaft seal behavior during blackout conditions

    International Nuclear Information System (INIS)

    Mings, W.J.

    1985-01-01

    The United States Nuclear Regulatory Commission has classified the problem of reactor coolant pump seal failures as an unresolved safety issue. This decision was made in large part due to experimental results obtained from a research program developed to study shaft seal performance during station blackout and reported in this paper. Testing and analysis indicated a potential for pump seal failure under postulated blackout conditions leading to a loss of primary coolant with a concomitant danger of core uncovery. The work to date has not answered all the concerns regarding shaft seal failure but it has helped scope the problem and focus future research needed to completely resolve this issue

  9. A durable, non power consumptive, simple seal for rotary blood pumps.

    Science.gov (United States)

    Mitamura, Y; Sekine, K; Asakawa, M; Yozu, R; Kawada, S; Okamoto, E

    2001-01-01

    One of the key technologic requirements for rotary blood pumps is the sealing of the motor shaft. A mechanical seal, a journal bearing, magnetic coupling, and magnetic suspension have been developed, but they have drawbacks such as wear, thrombus formation, and power consumption. A magnetic fluid seal was developed for an axial flow pump. A magnetic fluid seal is durable, simple, and non power consumptive. Long-term experiments and finite element modeling (FEM) analyses confirmed these advantages. The seal body was composed of a Ned-Fe magnet and two pole pieces; the seal was formed by injecting ferrofluid into the gap (50 microm) between the pole pieces and the motor shaft. To contain the ferrofluid in the seal and to minimize the possibility of ferrofluid making contact with blood, a shield with a small cavity was attached to the pole piece. While submerged in blood, the sealing pressure of the seal was measured and found to be 188 mm Hg with ferrofluid LS-40 (saturated magnetization, 24.3 kA/m) at a motor speed of 10,000 rpm and 225 mm Hg under static conditions. The magnetic fluid seals performed perfectly at a pressure of 100 mm Hg for 594 + days in a static condition, and 51, 39+, and 34+ days at a motor speed of 8,000 rpm. FEM analyses indicated a theoretical sealing pressure of 260 mm Hg. The state of the magnetic fluid in the seal in water was observed with a microscope. Neither splashing of magnetic fluid nor mixing of the magnetic fluid and water was observed. The specially designed magnetic fluid seal for keeping liquids out is useful for axial flow blood pumps. The magnetic fluid seal was incorporated into an intracardiac axial flow pump.

  10. Technical findings related to Generic Issue 23: Reactor coolant pump seal failure

    International Nuclear Information System (INIS)

    Ruger, C.J.; Luckas, W.J. Jr.

    1989-03-01

    Reactor coolant pumps contain mechanical seals to limit the leakage of pressurized coolant from the reactor coolant system to the containment. These seals have the potential to leak, and a few have degraded and even failed resulting in a small break loss of coolant accident (LOCA). As a result, ''Reactor Coolant Pump Seal Failure,'' Generic Issue 23 was established. This report summarizes the findings of a technical investigation generated as part of the program to resolve this issue. These technical findings address the various fact-finding issue tasks developed for the action plan associated with the generic issue, namely background information on seal failure, evaluation of seal cooling, and mechanical- and maintenance-induced failure mechanisms. 46 refs., 15 figs., 14 tabs

  11. Failure analysis and seal life prediction for contacting mechanical seals

    Science.gov (United States)

    Sun, J. J.; He, X. Y.; Wei, L.; Feng, X.

    2008-11-01

    Fault tree analysis method was applied to quantitatively investigate the causes of the leakage failure of mechanical seals. It is pointed out that the change of the surface topography is the main reasons causing the leakage of mechanical seals under the condition of constant preloads. Based on the fractal geometry theory, the relationship between the surface topography and working time were investigated by experiments, and the effects of unit load acting on seal face on leakage path in a mechanical seal were analyzed. The model of predicting seal life of mechanical seals was established on the basis of the relationship between the surface topography and working time and allowable leakage. The seal life of 108 mechanical seal operating at the system of diesel fuel storage and transportation was predicted and the problem of the condition monitoring for the long-period operation of mechanical seal was discussed by this method. The research results indicate that the method of predicting seal life of mechanical seals is feasible, and also is foundation to make scheduled maintenance time and to achieve safe-reliability and low-cost operation for industrial devices.

  12. Nanocrystalline diamond coatings for mechanical seals applications.

    Science.gov (United States)

    Santos, J A; Neto, V F; Ruch, D; Grácio, J

    2012-08-01

    A mechanical seal is a type of seal used in rotating equipment, such as pumps and compressors. It consists of a mechanism that assists the connection of the rotating shaft to the housings of the equipments, preventing leakage or avoiding contamination. A common cause of failure of these devices is end face wear out, thus the use of a hard, smooth and wear resistant coating such as nanocrystalline diamond would be of great importance to improve their working performance and increase their lifetime. In this paper, different diamond coatings were deposited by the HFCVD process, using different deposition conditions. Additionally, the as-grown films were characterized for, quality, morphology and microstructure using scanning electron microscopy (SEM) and Raman spectroscopy. The topography and the roughness of the films were characterized by atomic force microscopy (AFM).

  13. Improved operation in CANDU plants with CAN8 PHT pump seals

    International Nuclear Information System (INIS)

    Graham, T.; McInnes, D.; Rhodes, D.

    1997-01-01

    The CAN8 PHT pump seal is currently operating in twenty-one pumps, twelve at Bruce A, seven at Bruce B and in both pumps at Grand Gulf Nuclear Station (GGNS). The CAN8 seal has markedly improved performance over the CAN2 seal previously used at the Bruce stations and the SU seals previously used at GGNS. Details of the performance improvements are discussed. Prior to installation in Bruce B, the CAN8 seal was slightly modified and then demonstrated to be resistant to reverse pressurization failures, since this was a known failure mechanism with the CAN2 seal. Subsequent experience showed that Bruce A was also susceptible to reverse pressure incidents. A review of plant operating procedures at Bruce A showed reverse pressure was likely the initiating factor for several previously unexplained seal disturbances. The reverse pressure failure mechanism is described, as are the improved system operating procedures designed to prevent it. Preventative procedures have now been implemented across Ontario Hydro Nuclear. The ability to track down seal failure mechanisms such as this is greatly enhanced by the improved system monitoring and data retrieval now in place at Bruce A and Bruce B. (author)

  14. Mechanical seal with textured sidewall

    Energy Technology Data Exchange (ETDEWEB)

    Khonsari, Michael M.; Xiao, Nian

    2017-02-14

    The present invention discloses a mating ring, a primary ring, and associated mechanical seal having superior heat transfer and wear characteristics. According to an exemplary embodiment of the present invention, one or more dimples are formed onto the cylindrical outer surface of a mating ring sidewall and/or a primary ring sidewall. A stationary mating ring for a mechanical seal assembly is disclosed. Such a mating ring comprises an annular body having a central axis and a sealing face, wherein a plurality of dimples are formed into the outer circumferential surface of the annular body such that the exposed circumferential surface area of the annular body is increased. The texture added to the sidewall of the mating ring yields superior heat transfer and wear characteristics.

  15. Analysis of Mechanical Seals for High-Speed Centrifugal Gas Compressors

    OpenAIRE

    K.N. Nwaigwe; P.E. Ugwuoke; E.E. Anyanwu; D.P.S. Abam

    2012-01-01

    A study aimed at seal selection efficiency for centrifugal pumps in the oil and gas industry is presented. A detailed analysis of mechanical seals in use in exploration and production activities of the oil and gas sector was undertaken. The approach of analysis was using seal design equations as mathematical models for simulating the performance of the mechanical seal. The results showed a mechanical seal with balance value of 0.5, an increased surface area between mating surfaces; provided w...

  16. Innovation to reality for improved pump seal performance

    International Nuclear Information System (INIS)

    Wong, W.; Eyvindson, A.; Rhodes, D.B.

    2003-01-01

    'Full-Text:' The nuclear industry requires reliable pump seals. Extended operating conditions for aging plants (i.e., low pressure starts, pressure and temperature transients) and increasing demands from new plants (larger sizes, higher speeds) are pushing the operating envelope for seals. This means that many seals that were previously considered adequate are now requiring increased attention and care. Operating utilities have taken different approaches to addressing their existing, or emerging, seal problems. Primary concerns include maintenance practices, seal design, and monitoring capabilities, as well as operating conditions, transients, pump and motor design. Success in this area requires ongoing dialogue among the station operators, pump manufacturers and seal designers. Regardless of the design, the basic requirement in CANDU is a reliable seal lifetime exceeding 5 years. This paper describes AECL's efforts to meet this requirement through an ongoing program of research and development in seal technology. Current work includes rigorous testing and evaluation of new seal materials and coatings to maximize seal stability and minimize friction and wear (i.e., pressure/temperature transients produce unpredictable shaft movement that can significantly alter face deflections affecting leak rates and seal stability, and sometimes cause the seal to hang-up and de-stage). Also required is a practical method for on-line monitoring of the condition of the seal, whether it is newly installed or after several years of reliable performance. This provides crucial information for inventory, maintenance and outage planning. While new concepts may look good on paper, it is only after they have been demonstrated under fully representative station operating conditions that they can truly be considered ready for field use. AECL CAN-seals lead the nuclear industry in reliability and seal life. They effectively save operators millions of dollars in outage time and person

  17. An implantable centrifugal blood pump with a recirculating purge system (Cool-Seal system).

    Science.gov (United States)

    Yamazaki, K; Litwak, P; Tagusari, O; Mori, T; Kono, K; Kameneva, M; Watach, M; Gordon, L; Miyagishima, M; Tomioka, J; Umezu, M; Outa, E; Antaki, J F; Kormos, R L; Koyanagi, H; Griffith, B P

    1998-06-01

    A compact centrifugal blood pump has been developed as an implantable left ventricular assist system. The impeller diameter is 40 mm, and pump dimensions are 55 x 64 mm. This first prototype, fabricated from titanium alloy, resulted in a pump weight of 400 g including a brushless DC motor. The weight of a second prototype pump was reduced to 280 g. The entire blood contacting surface is coated with diamond like carbon (DLC) to improve blood compatibility. Flow rates of over 7 L/min against 100 mm Hg pressure at 2,500 rpm with 9 W total power consumption have been measured. A newly designed mechanical seal with a recirculating purge system (Cool-Seal) is used for the shaft seal. In this seal system, the seal temperature is kept under 40 degrees C to prevent heat denaturation of blood proteins. Purge fluid also cools the pump motor coil and journal bearing. Purge fluid is continuously purified and sterilized by an ultrafiltration unit which is incorporated in the paracorporeal drive console. In vitro experiments with bovine blood demonstrated an acceptably low hemolysis rate (normalized index of hemolysis = 0.005 +/- 0.002 g/100 L). In vivo experiments are currently ongoing using calves. Via left thoracotomy, left ventricular (LV) apex descending aorta bypass was performed utilizing an expanded polytetrafluoroethylene (ePTFE) vascular graft with the pump placed in the left thoracic cavity. In 2 in vivo experiments, the pump flow rate was maintained at 5-9 L/min, and pump power consumption remained stable at 9-10 W. All plasma free Hb levels were measured at less than 15 mg/dl. The seal system has demonstrated good seal capability with negligible purge fluid consumption (<0.5 ml/day). In both calves, the pumps demonstrated trouble free continuous function over 6 month (200 days and 222 days).

  18. Development of active magnetic bearings and ferrofluid seals toward oil free sodium pumps

    International Nuclear Information System (INIS)

    Sreedhar, B.K.; Kumar, R. Nirmal; Sharma, Prashant; Ruhela, Shivprakash; Philip, John; Sundarraj, S.I.; Chakraborty, N.; Mohana, M.; Sharma, Vijay; Padmakumar, G.; Nashine, B.K.; Rajan, K.K.

    2013-01-01

    Sodium centrifugal pumps employ conventional oil cooled bearings and mechanical seals to support the rotor assembly outside sodium and to seal the cover gas from the atmosphere. Although engineered safety features are incorporated in the design and detailed operational procedures formulated to ensure that no oil contamination of sodium can occur, there have been incidents of oil ingress into sodium. A design variant that eliminates the need for oil in top bearings and seals is therefore a promising option. This paper discusses the work in progress to develop a magnetic bearing and ferrofluid seal combination that can achieve this purpose

  19. Deposition of hematite particles on alumina seal faceplates of nuclear reactor coolant pumps: Laboratory experiments and industrial feedback

    OpenAIRE

    Lefèvre, Grégory; Živković, Ljiljana S.; Jaubertie, Anne

    2012-01-01

    In the primary circuit of pressurized water reactors (PWR), the dynamic sealing system in reactor coolant pumps is ensured by mechanical seals whose ceramic parts are in contact with the cooling solution. During the stretch-out phase in reactor operation, characterized by low boric acid concentration, the leak-off flow has been observed to abnormally evolve in industrial plants. The deposition of hematite particles, originating from corrosion, on alumina seals of coolant pumps is suspec...

  20. Mechanical vaccum pumps

    CERN Document Server

    Chew, A D

    2007-01-01

    This presentation gives an overview of the technology of contemporary primary and secondary mechanical vacuum pumps. For reference a brief history of vacuum and a summary of important and basic vacuum concepts are first presented.

  1. Retrofit of AECL CAN6 seals into the Pickering shutdown cooling pumps

    International Nuclear Information System (INIS)

    Rhodes, D.; Metcalfe, R.; Brown, G.

    1997-01-01

    The existing mechanical seals in the shutdown cooling (SDC) pumps at the eight-unit Pickering Nuclear Generating Station have caused as least seven forced outages in the last fifteen years. The SDC pumps were originally intended to run only during shutdowns, mostly at low pressure, except for short periods during routine testing of SDC isolation valves while the plant is operating at full pressure to verify that the emergency core injection system is available. Unfortunately, in practice, some SDC pumps must be run much more frequently than this to prevent overheating or freezing of components in the system while the plant is at power. This more severe service has decreased seal lifetime from about 8000 running hours to about 3000 running hours. Rather than tackling the difficult task of eliminating on-power running of the pumps, Pickering decided to install a more robust seal design that could withstand this. Through the process of competitive tender, AECL's CAN6 seal was chosen. This seal has a successful history in similarly demanding conditions in boiling water reactors in the USA. To supplement this and demonstrate there would be no 'surprises,' a 2000-hour test program was conducted. Testing consisted of simulating all the expected conditions, plus some special tests under abnormal conditions. This has given assurance that the seal will operate reliably in the Pickering shutdown cooling pumps. (author)

  2. Retrofit of AECL CAN6 seals into the Pickering shutdown cooling pumps

    International Nuclear Information System (INIS)

    Rhodes, D.; Metcalfe, R.; Brown, G.; Kiameh, P.; Burchett, P.

    1997-01-01

    The existing mechanical seals in the shutdown cooling (SDC) pumps at the eight-unit Pickering Nuclear Generating Station have caused at least seven forced outages in the last fifteen years. The SDC pumps were originally intended to run only during shutdowns, mostly at low pressure, except for short periods during routine testing of SDC isolation valves while the plant is operating at full pressure to verify that the emergency core injection system is available. Unfortunately, in practice, some SDC pumps must be run much more frequently than this to prevent overheating or freezing of components in the system while the plant is at power. This more severe service has decreased seal lifetime from about 8000 running hours to about 3000 running hours. Rather than tackling the difficult task of eliminating on-power running of the pumps, Pickering decided to install a more robust seal design that could withstand this. Through the process of competitive tender, AECL's CAN6 seal was chosen. This seal has a successful history in similarly demanding conditions in boiling water reactors in the USA. To supplement this and demonstrate there would be no 'surprises,' a 2000-hour test program was conducted. Testing consisted of simulating all the expected conditions, plus some special tests under abnormal conditions. This has given assurance that the seal will operate reliably in the Pickering shutdown cooling pumps. (author)

  3. Design considerations for mechanical face seals

    Science.gov (United States)

    Ludwig, L. P.; Greiner, H. F.

    1980-01-01

    Two companion reports deal with design considerations for improving performance of mechanical face seals, one of family of devices used in general area of fluid sealing of rotating shafts. One report deals with basic seal configuration and other with lubrication of seal.

  4. Implementation of multiple measures to improve reactor recirculation pump sealing performance in nuclear boiling water reactor service

    Energy Technology Data Exchange (ETDEWEB)

    Loenhout, Gerard van [Flowserve B.V., Etten-Leur (Netherlands). Nuclear Services and Solutions Engineering; Hurni, Juerg

    2015-05-15

    A modern reactor recirculation pump circulates a large volume of high temperature, very pure water from the reactor pressure vessel back to the core by feeding into multiple stationary jet pumps inside the vessel. Together with the jet pumps, they allow station operators to vary coolant flow and variable pump speed provides the best and most stable reactor power control. A crucial technical problem with a recirculation pump, such as a mechanical seal indicating loss of sealing pressure, may result in a power station having to shut down for repair. This article describes the sudden increase in stray current phenomenon leading to rapid and severe deterioration of the mechanical end face shaft seal in a reactor recirculation pump. This occurred after the installation of a variable frequency converter replacing the original motor-generator set. This article will also discuss the 2,500 hour laboratory test results conducted under reactor recirculation pump sealing conditions using a newly developed seal face technology recently implemented to overcome challenges when sealing neutral, ultra-pure water. In addition, the article will describe the elaborate shaft grounding arrangement and the preliminary measurement results achieved in order to eliminate potential damages to both pump and mechanical seal.

  5. Controlling fugitive emissions from mechanical seals

    International Nuclear Information System (INIS)

    Adams, W.V.

    1992-01-01

    This paper reports that enactment of the 1990 Federal Clean Air Amendments will sharply focus efforts in the process industries to reduce fugitive emissions. Moreover, state and local governments may be imposing stricter laws and regulations which will affect allowable fugitive emissions from U.S. refineries and process plants. Plants outside the U.S. have similar concerns. Clearly, mechanical seals for process pumps represent an enormous population and is one category of equipment destined for careful evaluation as a means to control fugitive emissions. Fugitive are unintentional emissions from valves, pumps, flanges, compressors, etc., as opposed to point-source emissions from stacks, vents and flares. Fugitive emissions do not occur as a part of normal plant operations, but result from the effects of: Malfunctions, Age, Lack of proper maintenance, Operator error, Improper equipment specification, Use of inferior technology, and externally caused damage

  6. Enclosed mechanical seal face design for brittle materials copyright

    International Nuclear Information System (INIS)

    Marsi, J.A.

    1994-01-01

    Metal carbides are widely used as seal face material due to their hardness and wear resistance. Silicon carbide (SiC) has excellent performance as a seal face material, but it is relatively brittle and may break due to accidental overloads outside the boundary of normal operating conditions. In mechanical seals for nuclear primary coolant pumps, the shattered SiC pieces can get into the reactor system and cause serious damage. The conventional method of containing an SiC seal face is to shrink-fit it in a holder, which may lead the seal designer to contend with unwanted seal face deflections. This paper presents a successful, tested design which does not rely on shrink-fits. 5 refs., 9 figs., 4 tabs

  7. Reactor coolant pump seal response to loss of cooling

    International Nuclear Information System (INIS)

    Graham, T.; Metcalfe, R.; Burchett, P.

    2000-01-01

    This paper describes the results of a test done to determine the performance of a reactor coolant pump seal for a water cooled nuclear reactor under loss of all cooling conditions. Under these conditions, seal faces can lose their liquid lubricating film and elastomers can rapidly degrade. Temperatures in the seal-cartridge tester reached 230 o C in three hours, at which time the tester was stopped and the temperature increased to 265 o C for a further five hours before cooling was restored. Seal leakage was 'normal' throughout the test. Parts sustained minor damage with no effect on seal integrity. Plant operators were shown to have ample margin beyond their 15 minute allowable reaction time. (author)

  8. Implementation of multiple measures to improve reactor recirculation pump sealing performance in nuclear boiling water reactor service

    Energy Technology Data Exchange (ETDEWEB)

    Loenhout, Gerard van [Flowserve B.V., Etten-Leur (Netherlands). Nuclear Services and Solutions Engineering; Hurni, Juerg

    2014-07-01

    A modern reactor recirculation pump circulates a large volume of high temperature, very pure water from the reactor pressure vessel back to the core. A crucial technical problem with a recirculation pump, such as a mechanical seal indicating loss of sealing pressure, may result in a power station having to shut down for repair. The paper describes the sudden increase in stray current phenomenon leading to rapid and severe deterioration of the mechanical end face shaft seal in a reactor recirculation pump. This occurred after the installation of a variable frequency converter replacing the original motorgenerator set.

  9. Implementation of multiple measures to improve reactor recirculation pump sealing performance in nuclear boiling water reactor service

    International Nuclear Information System (INIS)

    Loenhout, Gerard van; Hurni, Juerg

    2014-01-01

    A modern reactor recirculation pump circulates a large volume of high temperature, very pure water from the reactor pressure vessel back to the core. A crucial technical problem with a recirculation pump, such as a mechanical seal indicating loss of sealing pressure, may result in a power station having to shut down for repair. The paper describes the sudden increase in stray current phenomenon leading to rapid and severe deterioration of the mechanical end face shaft seal in a reactor recirculation pump. This occurred after the installation of a variable frequency converter replacing the original motorgenerator set.

  10. On-line monitoring of main coolant pump seals

    International Nuclear Information System (INIS)

    Stevens, D.M.; Spencer, J.W.; Morris, D.J.; Glass, S.W.; Sommerfield, G.A.; Harrison, D.

    1984-06-01

    The Babcock and Wilcox Company has developed and implemented a Reactor Coolant Pump Monitoring and Diagnostic System (RCPM and DS). The system has been installed at Toledo Edison Company's Davis-Besse Nuclear Power Station Unit 1. The RCPM and PS continuously monitors a number of indicators of pump performance and notifies the plant operator of out-of-tolerance conditions or pump performance trending toward out-of-tolerance conditions. Pump seal parameters being monitored include pump internal pressures, temperatures, and flow rates. Rotordynamic performanvce and plant operating conditions are also measured with a variety of dynamic sensors. This paper describes the implementation of the system and the results of on-line monitoring of four RC pumps

  11. Stirling engine or heat pump having an improved seal

    Science.gov (United States)

    White, Maurice A.; Riggle, Peter; Emigh, Stuart G.

    1985-01-01

    A Stirling Engine or Heat Pump having two relatively movable machine elements for power transmission purposes includes a hermetic seal bellows interposed between the elements for separating a working gas from a pressure compensating liquid that balances pressure across the bellows to reduce bellows stress and to assure long bellows life. The volume of pressure compensating liquid displaced due to relative movement between the machine elements is minimized by enclosing the compensating liquid within a region exposed to portions of both machine elements at one axial end of a slidable interface presented between them by a clearance seal having an effective diameter of the seal bellows. Pressure equalization across the bellows is achieved by a separate hermetically sealed compensator including a movable enclosed bellows. The interior of the compensator bellows is in communication with one side of the seal bellows, and its exterior is in communication with the remaining side of the seal bellows. A buffer gas or additional liquid region can be provided at the remaining axial end of the clearnace seal, along with valved arrangements for makeup of liquid leakage through the clearance seal.

  12. A study on the dynamic characteristics of pump seal, 2

    International Nuclear Information System (INIS)

    Yang, Bosuk; Iwatsubo, Takuzo; Kawai, Ryoji

    1984-01-01

    From the viewpoint of the rate of plant operation, the vibration problems of pumps have been resolved. Owing to the trend toward high speed and large capacity, the flow of liquid films in the bearings and seals of pumps changed from laminar to turbulent flow, and also the effect of the inertia force of liquid films arose, the dynamic characteristics of high pressure non-contact seals due to fluid force have become to exert important effect on the vibration of pump shafts. In this research, the authors analyzed the dynamic characteristics of a seal due to fluid force when the parallel grooves with rectangular sectional form are made on the circumference of a journal. The equations of motion and the method of analysis, and the example of numerical calculation are reported. For determining the fluid force in a seal when parallel grooves exist, the method of dividing the seal into rands and grooves, determining the fluid force on a rand and in a groove successively for each stage, and summing all up is shown. The compound damping coefficient, added mass coefficient, compound spring coefficient, spring coefficient and damping coefficient were affected by the length of groove part and the Reynolds number in circumferential and axial directions. (Kako, I.)

  13. Upstream pumping of radial lip seals by tangentially deforming, rough seal surfaces

    NARCIS (Netherlands)

    Bavel, van P.G.M.; Ruijl, T.A.M.; Leeuwen, van H.J.; Muijderman, E.A.

    1996-01-01

    This paper aims at a theoretical explanation of the following two experimental observations of radial lip seals: fluid film formation and upstream pumping action. The origins of these observations are still poorly understood. A hydrodynamic analysis is presented for the fully flooded contact zone of

  14. Reactor Coolant Pump seal issues and their applicability to new reactor designs

    International Nuclear Information System (INIS)

    Ruger, C.J.; Higgins, J.C.

    1993-01-01

    Reactor Coolant Pumps (RCPs) of various types are used to circulate the primary coolant through the reactor in most reactor designs. RCPs generally contain mechanical seals to limit the leakage of pressurized reactor coolant along the pump drive shaft into the containment. The relatively large number of RCP seal and seal auxiliary system failures experienced at US operating plants during the 1970's and early 1980's raised concerns from the US Nuclear Regulatory Commission (NRC) that gross failures may lead to reactor core uncovery and subsequent core damage. Some seal failure events resulted in a loss of primary coolant to the containment at flow rates greater than the normal makeup capacity of Pressurized Water Reactor (PWR) plants. This is an example of RCP seal failures resulting in a small Loss of Coolant Accident (LOCA). This paper discusses observed and potential causes of RCP seal failure and the recommendations for limiting the likelihood of a seal induced small LOCA. Issues arising out of the research supporting these recommendations and subsequent public comments by the utility industry on them, serve as lessons learned, which are applicable to the design of new reactor plants

  15. Reactor coolant pump seal issues and their applicability to new reactor designs

    International Nuclear Information System (INIS)

    Ruger, C.J.; Higgins, J.C.

    1993-01-01

    Reactor Coolant Pumps (RCPs) of various types are used to circulate the primary coolant through the reactor in most reactor designs. RCPs generally contain mechanical seals to limit the leakage of pressurized reactor coolant along the pump drive shaft into the containment. The relatively large number of RCP seal and seal auxiliary system failures experienced at U.S. operating plants during the 1970's and early 1980's raised concerns from the U.S. Nuclear Regulatory Commission (NRC) that gross failures may lead to reactor core uncovery and subsequent core damage. Some seal failure events resulted in a loss of primary coolant to the containment at flow rates greater than the normal makeup capacity of Pressurized Water Reactor (PWR) plants. This is an example of RCP seal failures resulting in a small Loss of Coolant Accident (LOCA). This paper discusses observed and potential causes of RCP seal failure and the recommendations for limiting the likelihood of a seal induced small LOCA. Issues arising out of the research supporting these recommendations and subsequent public comments by the utility industry on them, serve as lessons learned, which are applicable to the design of new reactor plants

  16. Main-coolant-pump shaft-seal guidelines. Volume 3. Specification guidelines. Final report

    International Nuclear Information System (INIS)

    Fair, C.E.; Greer, A.O.

    1983-03-01

    This report presents a set of guidelines and criteria to aid in the generation of procurement specifications for Main Coolant Pump Shaft Seals. The noted guidelines are developed from EPRI sponsored nuclear power plant seal operating experience studies, a review of pump and shaft seal literature and discussions with pump and seal designers. This report is preliminary in nature and could be expanded and finalized subsequent to completion of further design, test and evaluation efforts

  17. Folded membrane dialyzer with mechanically sealed edges

    Energy Technology Data Exchange (ETDEWEB)

    Markley, F.W.

    A semipermeable membrane is folded in accordion fashion to form a stack of pleats and the edges are sealed so as to isolate the opposite surfaces of the membrane. The stack is contained within a case that provides ports for flow of blood in contact with one surface of the membrane through channels formed by the pleats and also provides ports for flow of a dialysate through channels formed by the pleats in contact with the other surface of the membrane. The serpentine side edges of the membrane are sealed by a solidified plastic material, whereas effective mechanical means are provided to seal the end edges of the folded membrane. The mechanical means include a clamping strip which biases case sealing flanges into a sealed relationship with end portions of the membrane near the end edges, which portions extend from the stack and between the sealing flanges.

  18. Research on RCP400-TB50 type reactor coolant pump shaft seal failure analysis and monitoring method

    International Nuclear Information System (INIS)

    Yuan Chaolian; Shen Yuxian; Wang Chuan; Du Pengcheng

    2014-01-01

    Mechanical seal is widely applied in mechanical devices of nuclear power plant. 3-stages mechanical seal applied in reactor coolant pump (abbreviate to RCP) is a kind of product with top technology and manufacture difficulty. As the only running machine in primary loop of nuclear power plant, RCP is designed with high security, reliability and perform ability. So performance of its key component, 3-stages mechanical seal, could directly decide whether units can operate safely and reliably. In this paper mechanical seal used in RCP400-TB50 type RCP which in designed and manufactured by Andritz AG is selected as a typical example of dynamic pressure type mechanical seal applied in second generation NPP. Its structure and working principle is expounded. Engineering fluid mechanics theory is used to establish the mathematical model using for analyzing status of mechanical seal and deducing the theoretical formula. Its correctness is verified by compare with the test data. So that research result can be used as the theoretical basis for analysis of RCP400-TB50 RCP shaft seal's working condition. According to the shaft seal operation characteristic we can establish a suitable RCP shaft seal monitoring method and interlock protection setting for NPP operation. (authors)

  19. Operating experience feedback report: Experience with pump seals installed in reactor coolant pumps manufactured by Byron Jackson

    International Nuclear Information System (INIS)

    Bell, L.G.; O'Reilly, P.D.

    1992-09-01

    This report examines the reactor coolant pump (RCP) seal operating experience through August 1990 at plants with Byron Jackson (B-J) RCPs. ne operating experience examined in this analysis included a review of the practice of continuing operation with a degraded seal. Plants with B-J RCPs that have had relatively good experience with their RCP seals attribute this success to a combination of different factors, including: enhanced seal QA efforts, modified/new seal designs, improved maintenance procedures and training, attention to detail, improved seal operating procedures, knowledgeable personnel involved in seal maintenance and operation, reduction in frequency of transients that stress the seals, seal handling and installation equipment designed to the appropriate precision, and maintenance of a clean seal cooling water system. As more plants have implemented corrective measures such as these, the number of B-J RCP seal failures experienced has tended to decrease. This study included a review of the practice of continued operation with a degraded seal in the case of PWR plants with Byron Jackson reactor coolant pumps. Specific factors were identified which should be addressed in order to safety manage operation of a reactor coolant pump with indications of a degrading seal

  20. Simulation of leakage through mechanical sealing device

    Science.gov (United States)

    Tikhomorov, V. P.; Gorlenko, O. A.; Izmerov, M. A.

    2018-03-01

    The procedure of mathematical modeling of leakage through the mechanical seal taking into account waviness and roughness is considered. The percolation process is represented as the sum of leakages through a gap between wavy surfaces and percolation through gaps formed by fractal roughness, i.e. the total leakage is determined by the slot model and filtration leakage. Dependences of leaks on the contact pressure of corrugated and rough surfaces of the mechanical seal elements are presented.

  1. Regulatory analysis for Generic Issue 23: Reactor coolant pump seal failure. Draft report for comment

    Energy Technology Data Exchange (ETDEWEB)

    Shaukat, S K; Jackson, J E; Thatcher, D F

    1991-04-01

    This report presents the regulatory/backfit analysis for Generic Issue 23 (GI-23), 'Reactor Coolant Pump Seal Failure'. A backfit analysis in accordance with 10 CFR 50.109 is presented in Appendix E. The proposed resolution includes quality assurance provisions for reactor coolant pump seals, instrumentation and procedures for monitoring seal performance, and provisions for seal cooling during off-normal plant conditions involving loss of all seal cooling such as station blackout. Research, technical data, and other analyses supporting the resolution of this issue are summarized in the technical findings report (NUREG/CR-4948) and cost/benefit report (NUREG/CR-5167). (author)

  2. Development of a magnetic fluid shaft seal for an axial-flow blood pump.

    Science.gov (United States)

    Sekine, Kazumitsu; Mitamura, Yoshinori; Murabayashi, Shun; Nishimura, Ikuya; Yozu, Ryouhei; Kim, Dong-Wook

    2003-10-01

    A rotating impeller in a rotary blood pump requires a supporting system in blood, such as a pivot bearing or magnetic suspension. To solve potential problems such as abrasive wear and complexity of a supporting system, a magnetic fluid seal was developed for use in an axial-flow blood pump. Sealing pressures at motor speeds of up to 8,000 rpm were measured with the seal immersed in water or bovine blood. The sealing pressure was about 200 mm Hg in water and blood. The calculated theoretical sealing pressure was about 230 mm Hg. The seal remained perfect for 743 days in a static condition and for 180+ days (ongoing test) at a motor speed of 7,000 rpm. Results of measurement of cell growth activity indicated that the magnetic fluid has no negative cytological effects. The specially designed magnetic fluid shaft seal is useful for an axial-flow blood pump.

  3. Mechanical pumping at low temperature

    International Nuclear Information System (INIS)

    Perin, J.P.; Claudet, G.; Disdier, F.

    1995-01-01

    This novel concept consist of a mechanical pump able to run at low temperature (25K). Since gas density varies inversely with temperature, this pump would deliver much higher mass flow rate than at room temperature for a given size. Advantages of this concept are order of magnitude reduction in size, weight, when compared to a conventional pump scaled to perform the same mass flow rate at room temperature. This pump would be a solution to allow continuously tritium extraction and minimize the mass inventory. (orig.)

  4. Design of Reactor Coolant Pump Seal Online Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Ah, Sang Ha; Chang, Soon Heung [KAIST, Daejeon (Korea, Republic of); Lee, Song Kyu [Korea Power Engineering Co., Yongin (Korea, Republic of)

    2008-05-15

    As a part of a Department of Korea Power Engineering Co., (KOPEC) Project, Statistical Quality Control techniques have been applied to many aspects of industrial engineering. An application to nuclear power plant maintenance and control is also presented that can greatly improve plant safety. As a demonstration of such an approach, a specific system is analyzed: the reactor coolant pumps (RCPs) and the fouling resistance of heat exchanger. This research uses Shewart X-bar, R charts, Cumulative Sum charts (CUSUM), and Sequential Probability Ratio Test (SPRT) to analyze the process for the state of statistical control. And the Control Chart Analyzer (CCA) has been made to support these analyses that can make a decision of error in process. The analysis shows that statistical process control methods can be applied as an early warning system capable of identifying significant equipment problems well in advance of traditional control room alarm indicators. Such a system would provide operators with enough time to respond to possible emergency situations and thus improve plant safety and reliability. RCP circulates reactor coolant to transfer heat from the reactor to the steam generators. RCP seals are in the pressure part of reactor coolant system, so if it breaks, it can cause small break LOCA. And they are running on high pressure, and high temperature, so they can be easily broken. Since the reactor coolant pumps operate within the containment building, physical access to the pumps occurs only during refueling outages. Engineers depend on process variables transmitted to the control room and through the station's data historian to assess the pumps' condition during normal operation.

  5. Design of Reactor Coolant Pump Seal Online Monitoring System

    International Nuclear Information System (INIS)

    Ah, Sang Ha; Chang, Soon Heung; Lee, Song Kyu

    2008-01-01

    As a part of a Department of Korea Power Engineering Co., (KOPEC) Project, Statistical Quality Control techniques have been applied to many aspects of industrial engineering. An application to nuclear power plant maintenance and control is also presented that can greatly improve plant safety. As a demonstration of such an approach, a specific system is analyzed: the reactor coolant pumps (RCPs) and the fouling resistance of heat exchanger. This research uses Shewart X-bar, R charts, Cumulative Sum charts (CUSUM), and Sequential Probability Ratio Test (SPRT) to analyze the process for the state of statistical control. And the Control Chart Analyzer (CCA) has been made to support these analyses that can make a decision of error in process. The analysis shows that statistical process control methods can be applied as an early warning system capable of identifying significant equipment problems well in advance of traditional control room alarm indicators. Such a system would provide operators with enough time to respond to possible emergency situations and thus improve plant safety and reliability. RCP circulates reactor coolant to transfer heat from the reactor to the steam generators. RCP seals are in the pressure part of reactor coolant system, so if it breaks, it can cause small break LOCA. And they are running on high pressure, and high temperature, so they can be easily broken. Since the reactor coolant pumps operate within the containment building, physical access to the pumps occurs only during refueling outages. Engineers depend on process variables transmitted to the control room and through the station's data historian to assess the pumps' condition during normal operation

  6. Mechanical pumping at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Perin, J.P.; Claudet, G.; Disdier, F.

    1994-12-31

    This new concept consists of a mechanical pump able to run at low temperature (25 K). Since gas density varies inversely with temperature, the pump could deliver much higher mass flow rate than at room temperature for a given size. Advantages of this concept are reduction of an order of magnitude in size and weight when compared to a conventional pump scaled to perform the same mass flow rate at room temperature. Results obtained at 80 K and 25 K with a Holweck type molecular drag pump of 100 mm diameter and with few stages of a turbomolecular pump running at the same temperatures, are given. This pump would be a solution to allow continuous tritium extraction and minimize the mass inventory for the ITER (International Tokamak Experiment Reactor). 5 figs., 2 tabs., 4 refs.

  7. PWR thermocouple mechanical sealing structure

    International Nuclear Information System (INIS)

    Shen Qiuping; He Youguang

    1991-08-01

    The PWR in-core temperature detection device, which is one of measures to insure reactor safety operation, is to monitor and diagnose reactor thermal power output and in-core power distribution. The temperature detection device system uses thermocouples as measuring elements with stainless steel protecting sleeves. The thermocouple has a limited service time and should be replaced after its service time has reached. A new sealing device for the thermocouples of reactor in-core temperature detection system has been developed to facilitate replacement. The structure is complete tight under high temperature and pressure without any leakage and seepage, and easy to be assembled or disassembled in radioactive environment. The device is designed to make it possible to replace the thermocouple one by one if necessary. This is a new, simple and practical structure

  8. Team training using full-scale reactor coolant pump seal mock-ups

    International Nuclear Information System (INIS)

    McDonald, T.J.; Hamill, R.W.

    1987-01-01

    The use of full-scale reactor coolant pump (RCP) seal mock-ups has greatly enhanced Northeast Utilities' ability to effectively utilize the team training approach to technical training. With the advent of the Institute of Nuclear Power Operations accreditation come a new emphasis and standards for the integrated training of plant engineering personnel, maintenance mechanics, quality control personnel, and health physics personnel. The results of purchasing full-scale RCP mock-ups to pilot the concept of team training have far exceeded expectations and cost-limiting factors. The initial training program analysis identified RCP seal maintenance as a task that required training for maintenance department personnel. Due to radiation exposure considerations and the unavailability of actual plant equipment for training purposes, the decision was made to procure a mock-up of an RCP seal assembly and housing. This mock-up was designed to facilitate seal cartridge removal, disassembly, assembly, and installation, duplicating all internal components of the seal cartridge and housing area in exact detail

  9. Main-coolant-pump shaft-seal guidelines. Volume 2. Operational guidelines. Final report

    International Nuclear Information System (INIS)

    Fair, C.E.; Greer, A.O.

    1983-03-01

    This report presents a set of guidelines and criteria for improving main coolant pump shaft seal operational reliability. The noted guidelines are developed from EPRI sponsored nuclear power plant seal operating experience studies. Usage procedures/practices and operational environment influence on seal life and reliability from the most recent such survey are summarized. The shaft seal and its auxiliary supporting systems are discussed both from technical and operational related viewpoints

  10. Mechanical seal having a double-tier mating ring

    Science.gov (United States)

    Khonsari, Michael M.; Somanchi, Anoop K.

    2005-09-13

    An apparatus and method to enhance the overall performance of mechanical seals in one of the following ways: by reducing seal face wear, by reducing the contact surface temperature, or by increasing the life span of mechanical seals. The apparatus is a mechanical seal (e.g., single mechanical seals, double mechanical seals, tandem mechanical seals, bellows, pusher mechanical seals, and all types of rotating and reciprocating machines) comprising a rotating ring and a double-tier mating ring. In a preferred embodiment, the double-tier mating ring comprises a first and a second stationary ring that together form an agitation-inducing, guided flow channel to allow for the removal of heat generated at the seal face of the mating ring by channeling a coolant entering the mating ring to a position adjacent to and in close proximity with the interior surface area of the seal face of the mating ring.

  11. Thermal fluid-solid interaction model and experimental validation for hydrostatic mechanical face seals

    Science.gov (United States)

    Huang, Weifeng; Liao, Chuanjun; Liu, Xiangfeng; Suo, Shuangfu; Liu, Ying; Wang, Yuming

    2014-09-01

    Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants. More accurate models on the operating mechanism of the seals are needed to help improve their performance. The thermal fluid-solid interaction (TFSI) mechanism of the hydrostatic seal is investigated in this study. Numerical models of the flow field and seal assembly are developed. Based on the mechanism for the continuity condition of the physical quantities at the fluid-solid interface, an on-line numerical TFSI model for the hydrostatic mechanical seal is proposed using an iterative coupling method. Dynamic mesh technology is adopted to adapt to the changing boundary shape. Experiments were performed on a test rig using a full-size test seal to obtain the leakage rate as a function of the differential pressure. The effectiveness and accuracy of the TFSI model were verified by comparing the simulation results and experimental data. Using the TFSI model, the behavior of the seal is presented, including mechanical and thermal deformation, and the temperature field. The influences of the rotating speed and differential pressure of the sealing device on the temperature field, which occur widely in the actual use of the seal, are studied. This research proposes an on-line and assembly-based TFSI model for hydrostatic mechanical face seals, and the model is validated by full-sized experiments.

  12. On the lubrication of mechanical face seals

    NARCIS (Netherlands)

    Lubbinge, H.

    1999-01-01

    Hence, in this thesis, a model is presented which is able to calculate a complete Stribeck curve for a mechanical face seal and, as a consequence, the transition from full film to mixed lubrication as a function of the operational conditions. This model is based on a combination of a contact model

  13. Heat generation and hemolysis at the shaft seal in centrifugal blood pumps.

    Science.gov (United States)

    Araki, K; Taenaka, Y; Wakisaka, Y; Masuzawa, T; Tatsumi, E; Nakatani, T; Baba, Y; Yagura, A; Eya, K; Toda, K

    1995-01-01

    The heat and hemolysis around a shaft seal were investigated. Materials were original pumps (Nikkiso HMS-15:N-original, and 3M Delphin:D-original), vane-removed pumps (Nvane(-), Dvane(-)), and a small chamber with a shaft coiled by nichrome wire (mock pump). The original pumps were driven at 500 mmHg and 5 L/min, and vane-removed pumps were driven at the same rotation number. An electrical powers of 0, 0.5, 2, and 10 W was supplied to the mock pumps. In vitro hemolytic testing showed that hemolytic indices were 0.027 g/100 L in N-original, 0.013 in Nvane(-), 0.061 in D-original, and 0.012 in Dvane(-). Measurement of heat with a thermally insulated water chamber showed total heat within the pump of 8.62 and 10.85 W, and heat at the shaft seal of 0.87 and 0.62 W in the Nikkiso and Delphin pumps, respectively. Hemolysis and heat generation of mock pumps remained low. The results indicate that the heat generated around the shaft seal was minimal. Hemolysis at the shaft-seal was considerable but not major. Local heat did not affect hemolysis. It was concluded that the shaft-seal affected hemolysis, not by local heat but friction itself.

  14. Station blackout with reactor coolant pump seal leakage

    International Nuclear Information System (INIS)

    Evinay, A.

    1993-01-01

    The U.S. Nuclear Regulatory Commission (NRC) amended its regulations in 10CFR50 with the addition of a new section, 50.63, open-quotes Loss of All Alternating Current Power.close quotes The objective of these requirements is to ensure that all nuclear plants have the capability to withstand a station blackout (SBO) and maintain adequate reactor core cooling and containment integrity for a specified period of time. The NRC also issued Regulatory Guide (RG) 1.155, open-quotes Station Blackout,close quotes to provide guidance for meeting the requirements of 10CFR50.63. Concurrent with RG-1.155, the Nuclear Utility Management and Resources Council (NUMARC) has developed NUMARC 87-00 to address SBO-coping duration and capabilities at light water reactors. Licensees are required to submit a topical report based on NUMARC 87-00 guidelines, to demonstrate compliance with the SBO rule. One of the key compliance criteria is the ability of the plant to maintain adequate reactor coolant system (RCS) inventory to ensure core cooling for the required coping duration, assuming a leak rate of 25 gal/min per reactor coolant pump (RCP) seal in addition to technical specification (TS) leak rate

  15. Electrochemical Separation, Pumping, and Storage of Hydrogen or Oxygen into Nanocapillaries Via High Pressure MEA Seals

    Science.gov (United States)

    2015-10-13

    412TW-PA-15560 Electrochemical Separation, Pumping, and Storage of Hydrogen or Oxygen into Nanocapillaries Via High Pressure MEA Seals...TITLE AND SUBTITLE Electrochemical Separation, Pumping, and Storage of Hydrogen or Oxygen into Nanocapillaries Via High Pressure MEA Seals...density storage of gases remains a major technological hurdle for many fields. The U.S. Department of Energy (DOE), for example, reduced their hydrogen

  16. Main-coolant-pump shaft-seal guidelines. Volume 1. Maintenance-manual guidelines. Final report

    International Nuclear Information System (INIS)

    Fair, C.E.; Greer, A.O.

    1983-03-01

    This report presents a set of guidelines and a listing of information and data which should be included in maintenance manuals and procedures for Main Coolant Pump Shaft Seals. The noted guidelines and data listing are developed from EPRI sponsored nuclear plant seal operating experience studies. The maintenance oriented results of the most recent such study is summarized. The shaft seal and its auxiliary supporting systems are discussed from both technical and maintenance related viewpoints

  17. Risk Analyses of Charging Pump Control Improvements for Alternative RCP Seal Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun-Chan [Korea Hydro and Nuclear Power Co. Ltd. Daejeon (Korea, Republic of)

    2015-10-15

    There are two events that significantly affect the plant risk during a TLOCCW event. One is an event in which the seal assembly of a reactor coolant pump (RCP) fails due to heating stress from the loss of cooling water; the other is an event in which the operators fail to conduct alternative cooling for the RCP seal during the accident. KHNP reviewed the replacement of the RCP seal with a qualified shutdown seal in order to remove the risk due to RCP seal failure during a TLOCCW. As an optional measure, a design improvement in the alternative cooling method for the RCP seal is being considered. This analysis presents the alternative RCP seal cooling improvement and its safety effect. K2 is a nuclear power plant with a Westinghouse design, and it has a relatively high CDF during TLOCCW events because it has a different CCW system design and difficulty in preparing alternative cooling water sources. This analysis confirmed that an operator action providing cold water to the RWST as RCP seal injection water during a TLOCCW event is very important in K2. The control circuit improvement plan for the auxiliary charging pump was established in order to reduce the failure probability of this operator action. This analysis modeled the improvement as a fault tree and evaluated the resulting CDF change. The consequence demonstrated that the RCP seal injection failure probability was reduced by 89%, and the CDF decreased by 28%.

  18. Mechanical seal monitoring technique by acoustic emission measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Tadashi; Fujita, Yoshihiro; Kawaguchi, Kazunori; Saito, Kazuhiro; Yokota, Setsuo; Hisada, Yasuhide; Masahiro, Komatsu

    1987-09-20

    This report describes a technique for mechanical seal monitoring through acoustic emission (AE) measurement. The equipment consists of an AE sensor, preamplifier, multiplexer, main amplifier, effective value transducer and computer system. When the sealed liquid pressure undergoes a large change, the seal surface configuration is monitored and evaluated accurately through AE measurement. If the mechanical seal surface id damaged or worn, the AE level is kept high or continues to fluctuate largely for a rather long period. When leak occurs, the AE value shows great fluctuations either at extremely low levels or at high levels. The former trend is considered to result from a decrease in solid contact due to an excessive amount of liquid film being formed at the seal surface during leak. In the latter case, the leak is attributed to severe damage to the seal surface. (18 figs, 1 tab, 5 photos, 3 refs)

  19. Ultrananocrystalline diamond film as a wear resistant and protective coating for mechanical seal applications

    International Nuclear Information System (INIS)

    Sumant, A.V.; Krauss, A.R.; Gruen, D.M.; Auciello, O.; Erdemir, A.; Williams, M.; Artiles, A.F.; Adams, W.

    2005-01-01

    Mechanical shaft seals used in pumps are critically important to the safe operation of the paper, pulp, and chemical process industry, as well as petroleum and nuclear power plants. Specifically, these seals prevent the leakage of toxic gases and hazardous chemicals to the environment and final products from the rotating equipment used in manufacturing processes. Diamond coatings have the potential to provide negligible wear, ultralow friction, and high corrosion resistance for the sliding surfaces of mechanical seals, because diamond exhibits outstanding tribological, physical, and chemical properties. However, diamond coatings produced by conventional chemical vapor deposition (CVD) exhibit high surface roughness (R a ≥ 1 μm), which results in high wear of the seal counterface, leading to premature seal failure. To avoid this problem, we have developed an ultrananocrystalline diamond (UNCD) film formed by a unique CH 4 /Ar microwave plasma CVD method. This method yields extremely smooth diamond coatings with surface roughness R a = 20-30 nm and an average grain size of 2-5 nm. We report the results of a systematic test program involving uncoated and UNCD-coated SiC shaft seals. Results confirmed that the UNCD-coated seals exhibited neither measurable wear nor any leakage during long-duration tests that took 21 days to complete. In addition, the UNCD coatings reduced the frictional torque for seal rotation by five to six times compared with the uncoated seals. This work promises to lead to rotating shaft seals with much improved service life, reduced maintenance cost, reduced leakage of environmentally hazardous materials, and increased energy savings. This technology may also have many other tribological applications involving rolling or sliding contacts.

  20. Deposition of hematite particles on alumina seal faceplates of nuclear reactor coolant pumps: Laboratory experiments and industrial feedback

    Directory of Open Access Journals (Sweden)

    Lefèvre Grégory

    2012-01-01

    Full Text Available In the primary circuit of pressurized water reactors (PWR, the dynamic sealing system in reactor coolant pumps is ensured by mechanical seals whose ceramic parts are in contact with the cooling solution. During the stretch-out phase in reactor operation, characterized by low boric acid concentration, the leak-off flow has been observed to abnormally evolve in industrial plants. The deposition of hematite particles, originating from corrosion, on alumina seals of coolant pumps is suspected to be the cause. As better understanding of the adhesion mechanism is the key factor in the prevention of fouling and particle removal, an experimental study was carried out using a laboratory set-up. With model materials, hematite and sintered alumina, the adhesion rate and surface potentials of the interacting solids were measured under different chemical conditions (solution pH and composition in analogy with the PWR ones. The obtained results were in good agreement with the DLVO (Derjaguin-Landau-Verwey- Overbeek theory and used as such to interpret this industrial phenomenon.

  1. Sealing, especially of dropped ceiling of cubide where main circulating pump of nuclear reactor is installed

    International Nuclear Information System (INIS)

    Paucek, V.

    1980-01-01

    The sealing of the dropped ceiling of the cubicle for main circulating pump installation consists of a reinforcing ring in the space of the pump installation and the top annulus of biological shielding whose inner diameter is smaller than the outer diameter of the bottom biological shielding annulus mounted onto the pump body. The sealing comprises a vertically slidable support ring provided on its underside with an outer ring insert and an outer splice bar for functional gap formation. Slidably mounted in the gap is a guide annular plate tightly attached by means of an inner splice bar and bolts to the bottom biological shielding annulus. Spacers are provided between the reinforcing ring underside and the support ring top surface. (B.S.)

  2. Fluid-structure interaction analysis of annular seals and rotor systems in multi-stage pumps

    International Nuclear Information System (INIS)

    Jiang, Qinglei; Zhai, Lulu; Wang, Leqin; Wu, Dazhuan

    2013-01-01

    Annular seals play an important role in determining the vibrational behavior of rotors in multi-stage pumps. To determine the critical speeds and unbalanced responses of rotor systems which consider annular seals, a fluid-structure interaction (FSI) method was developed, and the numerical method was verified by experiments conducted on a model rotor. In a typical FSI process, rotor systems are modeled based on a node-element method, and the motion equations are expressed in a type of matrix. To consider the influence of annular seals, dynamic coefficients of annular seals were introduced into the motion equations through matrix transformation. The test results of the model rotor showed good agreement with the calculated results. Based on the FSI method proposed here, the governing equations of annular seals were solved in two different ways. The results showed that the Childs method is more accurate in predicting a rotor's critical speed. The critical speeds of the model rotor were calculated at different clearance sizes and length/diameter ratios. Tilting coefficients of long seals were added to the dynamic coefficients to consider the influence of tilting. The critical speeds reached their maximum value when the L/D ratio was around 1.25, and tilting enhanced the rotor's stability when long annular seals were located in either end of the shaft.

  3. A coupled mechanical/hydrologic model for WIPP shaft seals

    International Nuclear Information System (INIS)

    Ehgartner, B.

    1991-06-01

    Effective sealing of the Waste Isolation Pilot Plant (WIPP) shafts will be required to isolate defense-generated transuranic wastes from the accessible environment. Shafts penetrate water-bearing hard rock formations before entering a massive creeping-salt formation (Salado) where the WIPP is located. Short and long-term seals are planned for the shafts. Short-term seals, a composite of concrete and bentonite, will primarily be located in the hard rock formations separating the water-bearing zones from the Salado Formation. These seals will limit water flow to the underlying long-term seals in the Salado. The long-term seals will consist of lengthly segments of initially unsaturated crushed salt. Creep closure of the shaft will consolidate unsaturated crushed salt, thereby reducing its permeability. However, water passing through the upper short-term seals and brine inherent to the salt host rock itself will eventually saturate the crushed salt and consolidation could be inhibited. Before saturating, portions of the crushed salt in the shafts are expected to consolidate to a permeability equivalent to the salt host rock, thereby effectively isolating the waste from the overlying water-bearing formations. A phenomenological model is developed for the coupled mechanical/hydrologic behavior of sealed WIPP shafts. The model couples creep closure of the shaft, crushed salt consolidation, and the associated reduction in permeability with Darcy's law for saturated fluid flow to predict the overall permeability of the shaft seal system with time. 17 refs., 6 figs., 1 tab

  4. High pressure shaft seal

    International Nuclear Information System (INIS)

    Martinson, A.R.; Rogers, V.D.

    1980-01-01

    In relation to reactor primary coolant pumps, mechanical seal assembly for a pump shaft is disclosed which features a rotating seal ring mounting system which utilizes a rigid support ring loaded through narrow annular projections in combination with centering non-sealing O-rings which effectively isolate the rotating seal ring from temperature and pressure transients while securely positioning the ring to adjacent parts. A stationary seal ring mounting configuration allows the stationary seal ring freedom of motion to follow shaft axial movement up to 3/4 of an inch and shaft tilt about the pump axis without any change in the hydraulic or pressure loading on the stationary seal ring or its carrier. (author)

  5. Pumping mechanisms in sputter-ion pumps low pressure operation

    International Nuclear Information System (INIS)

    Welch, K.M.

    1991-01-01

    It is shown that significant H 2 pumping occurs in the walls of triode pumps. Also, H 2 is pumped in the anode cells of sputter-ion pumps. This pumping occurs in a manner similar to that by which the inert gases are pumped. That is, H 2 pumped in the walls of the anode cells by high energy neutral burial. Hydrogen in the pump walls and anodes limits the base pressure of the pump. 13 refs., 5 figs., 1 tab

  6. Pumping mechanisms in sputter-ion pumps low pressure operation

    International Nuclear Information System (INIS)

    Welch, K.M.

    1991-01-01

    It is shown that significant H 2 pumping occurs in the walls of triode pumps. Also, H 2 is pumped in the anode cells of sputter-ion pumps. This pumping occurs in a manner similar to that by which the inert gases are pumped. That is, H 2 is pumped in the walls of the anode cells by high energy neutral burial. Hydrogen in the pump walls and anodes limits the base pressure of the pump

  7. Mechanical Seal Opening Condition Monitoring Based on Acoustic Emission Technology

    Directory of Open Access Journals (Sweden)

    Erqing Zhang

    2014-06-01

    Full Text Available Since the measurement of mechanical sealing film thickness and just-lift-off time is very difficult, the sealing film condition monitoring method based on acoustic emission signal is proposed. The mechanical seal acoustic emission signal present obvious characteristics of time-varying nonlinear and pulsating. In this paper, the acoustic emission signal is used to monitor the seal end faces just-lift-off time and friction condition. The acoustic emission signal is decomposed by empirical mode decomposition into a series of intrinsic mode function with independent characteristics of different time scales and different frequency band. The acoustic emission signal only generated by end faces friction is obtained by eliminating the false intrinsic mode function components. The correlation coefficient of acoustic emission signal and Multi-scale Laplace Wavelet is calculated. It is proved that the maximum frequency (8000 Hz of the correlation coefficient is appeared at the spindle speed of 300 rpm. And at this time (300 rpm the end faces have just lifted off. By a set of mechanical oil seal running test, it is demonstrated that this method could accurately identify mechanical seal end faces just-lift-off time and friction condition.

  8. Shaft/shaft-seal interface characteristics of a multiple disk centrifugal blood pump.

    Science.gov (United States)

    Manning, K B; Miller, G E

    1999-06-01

    A multiple disk centrifugal pump (MDCP) is under investigation as a potential left ventricular assist device. As is the case with most shaft driven pumps, leakage problems around the shaft/shaft seal interface are of major interest. If leakage were to occur during or after implantation, potential events such as blood loss, clotting, blood damage, and/or infections might result in adverse effects for the patient. Because these effects could be quite disastrous, potential shaft and shaft seal materials have been investigated to determine the most appropriate course to limit these effects. Teflon and nylon shaft seals were analyzed as potential candidates along with a stainless steel shaft and a Melonite coated shaft. The materials and shafts were evaluated under various time durations (15, 30, 45, and 60 min), motor speeds (800, 1,000, 1,200, and 1,400 rpm), and outer diameters (1/2 and 3/4 inches). The motor speed and geometrical configurations were typical for the MDCP under normal physiologic conditions. An air and water study was conducted to analyze the inner diameter wear, the inner temperature values, and the outer temperature values. Statistical comparisons were computed for the shaft seal materials, the shafts, and the outer diameters along with the inner and outer temperatures. The conclusions made from the results indicate that both the tested shaft seal materials and shaft materials are not ideal candidates to be used for the MDCP. Teflon experienced a significant amount of wear in air and water studies. Nylon did experience little wear, but heat generation was an evident problem. A water study on nylon was not conducted because of its molecular structure.

  9. Emergency recirculation pump driving mechanism

    International Nuclear Information System (INIS)

    Morooka, Shin-ichi.

    1980-01-01

    Purpose: To sufficiently secure the coolant flow rate in a reactor core and restrict the temperature on the surface of fuel elements to low degree when the coolant is lost in a BWR type reactor. Constitution: In order to secure sufficient coolant flow rate in a reactor core and to sufficiently cool the reactor core when the coolant is lost in a BWR type reactor, it is tripped upon loss of power supply simultaneously when an accident occurs, a recycling pump at the side of normal reactor where its rotating speed is decelerated in accordance with its inertia is restarted by the pressure water stored in a tank out of the reactor to increase the coolant flow rate in the reactor core so as to sufficiently cool the reactor core. (Aizawa, K.)

  10. Study of the static airtightness mechanisms of metal seals

    International Nuclear Information System (INIS)

    Tlili, A.

    2013-01-01

    The thesis aims to better understand the sealing mechanisms in contact at the interface between a metal gasket and clamps. The proposed approach is based on the development of a numerical model of the clamping seal by incorporating the laws' behavior of materials that will be determined by micro instrumented indentation testing. This model is particularly interested in identifying ways of providing the fluid leak to be sealed and to determine leakage rates resulting from the identified paths, as well as the evolution of the conductance of the interface over time. Particular attention will be paid to the roughness of the surfaces, changing leak paths at different levels depending on the tightening of the seal and gas flow rates in the different types of defects. The study was conducted in Pierrelatte's Sealing laboratory that develops metal seals for the aerospace, nuclear and scientific research. The thesis focuses on real surfaces and was supplemented by measurements of helium leaks using a press which applies different loads at different gas pressures and different roughness. (author) [fr

  11. Magnet-Sleeve-Sealed Mini Trochoidal-Gear Pump Prototype with Polymer Composite Gear

    Directory of Open Access Journals (Sweden)

    Pedro Javier Gamez-Montero

    2017-09-01

    Full Text Available The trochoidal-gear technology has been growing in groundbreaking fields. Forthcoming applications are demanding to this technology a step forward in the conceiving stage of positive displacement machines. The compendium of the qualities and the inherent characteristics of trochoidal-gear technology, especially towards the gerotor pump, together with scale/size factor and magnetic-driven transmission has led to the idea of a magnet-sleeve-sealed variable flow mini trochoidal-gear pump. From its original concept, to the last phase of the design development, the proof of concept, this new product will intend to overcome problems such as noise, vibration, maintenance, materials, and dimensions. The paper aims to show the technological path followed from the concept, design, and model, to the manufacture of the first prototype, where the theoretical and numerical approaches are not always directly reflected in the prototype performance results. Early in the design process, from a standard-commercial sintered metal mini trochoidal-gear unit, fundamental characteristics and dimensional limitations have been evaluated becoming the strategic parameters that led to its configuration. The main technical challenge to confront is being sealed with non-exterior driveshaft, ensuring that the whole interior is filled and wetted with working fluid and helping the hydrodynamic film formation, the pumping effect, and the heat dissipation. Subsequently, the mini pump architecture, embodiment, methodology, materials, and manufacture are presented. The trend of applications of polymer composite materials and their benefits wanted to be examined with this new mini pump prototype, and a pure polyoxymethylene mini trochoidal-gear set has been designed and manufactured. Finally, both the sintered and the polymer trochoidal-gear units have been experimentally tested in an in-house full-instrumented mini test bench. Although the main goal of the presented work is the

  12. Proton Pumps: Mechanism of Action and Applications

    Science.gov (United States)

    Lanyi, Janos K.; Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Recent progress in understanding molecular structures and mechanisms of action of proton pumps has paved the way to their novel applications in biotechnology. Proton pumps, in particular bacteriorhodopsin and ATP synthases, are capable of continuous, renewable conversion of light to chemical, mechanical or electrical energy, which can be used in macro- or nano-scale devices. The capability of protein systems incorporated into liposomes to generate ATP, which can be further used to drive chemical reactions, and to act as molecular motors has been already demonstrated. Other possible applications of such biochemical devices include targeted drug delivery and biocatalytic re actors. All these devices might prove superior to their inorganic alternatives.

  13. Design considerations in mechanical face seals for improved performance. I - Basic configurations

    Science.gov (United States)

    Ludwig, L. P.; Greiner, H. F.

    1977-01-01

    Basic assembly configurations of the mechanical face seal are described and some advantages associated with each are listed. The various forms of seal components (the primary seal, secondary seal, etc.) are illustrated, and functions pointed out. The technique of seal pressure balancing and its application is described; and the concept of the PV factor, its different forms and limitations are discussed. Brief attention is given to seal lubrication since it is covered in detail in a companion paper. Finally, the operating conditions for various applications of low pressure seals (aircraft transmissions) are listed, and the seal failure mode of a particular application is discussed.

  14. Reactor vessel sealing plug

    International Nuclear Information System (INIS)

    Dooley, R.A.

    1986-01-01

    This invention relates to an apparatus and method for sealing the cold leg nozzles of a nuclear reactor pressure vessel from a remote location during maintenance and inspection of associated steam generators and pumps while the pressure vessel and refueling canal are filled with water. The apparatus includes a sealing plug for mechanically sealing the cold leg nozzle from the inside of a reactor pressure vessel. The sealing plugs include a primary and a secondary O-ring. An installation tool is suspended within the reactor vessel and carries the sealing plug. The tool telescopes to insert the sealing plug within the cold leg nozzle, and to subsequently remove the plug. Hydraulic means are used to activate the sealing plug, and support means serve to suspend the installation tool within the reactor vessel during installation and removal of the sealing plug

  15. Guidelines for meeting emission regulations for rotating machinery with mechanical seals

    Science.gov (United States)

    Mechanical seals have played a major role during many years in minimizing emissions to atmosphere in rotating machinery. A review is presented of the continuing innovations and new technologies to improve mechanical seal performance in terms of emissions.

  16. Development of Mechanical Sealing and Laser Welding Technology to Instrument Thermocouple for Nuclear Fuel Test Rod

    International Nuclear Information System (INIS)

    Joung, Chang-Young; Ahn, Sung-Ho; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho

    2015-01-01

    Zircaloy-4 of the nuclear fuel test rod, AISI 316L of the mechanical sealing parts, and the MI (mineral insulated) cable at a thermocouple instrumentation are hetero-metals, and are difficult to weld to dissimilar materials. Therefore, a mechanical sealing method to instrument the thermocouple should be conducted using two kinds of sealing process as follows: One is a mechanical sealing process using Swagelok, which is composed of sealing components that consists of an end-cap, a seal tube, a compression ring and a Swagelok nut. The other is a laser welding process used to join a seal tube, and an MI cable, which are made of the same material. The mechanical sealing process should be sealed up with the mechanical contact compressed by the strength forced between a seal tube and an end-cap, and the laser welding process should be conducted to have no defects on the sealing area between a seal tube and an MI cable. Therefore, the mechanical sealing and laser welding techniques need to be developed to accurately measure the centerline temperature of the nuclear fuel test rod in an experimental reactor. The mechanical sealing and laser welding tests were conducted to develop the thermocouple instrumentation techniques for the nuclear fuel test rod. The optimum torque value of a Swagelok nut to seal the mechanical sealing part between the end-cap and seal tube was established through various torque tests using a torque wrench. The optimum laser welding conditions to seal the welding part between a seal tube and an MI cable were obtained through various welding tests using a laser welding system

  17. Development of Mechanical Sealing and Laser Welding Technology to Instrument Thermocouple for Nuclear Fuel Test Rod

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Ahn, Sung-Ho; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Zircaloy-4 of the nuclear fuel test rod, AISI 316L of the mechanical sealing parts, and the MI (mineral insulated) cable at a thermocouple instrumentation are hetero-metals, and are difficult to weld to dissimilar materials. Therefore, a mechanical sealing method to instrument the thermocouple should be conducted using two kinds of sealing process as follows: One is a mechanical sealing process using Swagelok, which is composed of sealing components that consists of an end-cap, a seal tube, a compression ring and a Swagelok nut. The other is a laser welding process used to join a seal tube, and an MI cable, which are made of the same material. The mechanical sealing process should be sealed up with the mechanical contact compressed by the strength forced between a seal tube and an end-cap, and the laser welding process should be conducted to have no defects on the sealing area between a seal tube and an MI cable. Therefore, the mechanical sealing and laser welding techniques need to be developed to accurately measure the centerline temperature of the nuclear fuel test rod in an experimental reactor. The mechanical sealing and laser welding tests were conducted to develop the thermocouple instrumentation techniques for the nuclear fuel test rod. The optimum torque value of a Swagelok nut to seal the mechanical sealing part between the end-cap and seal tube was established through various torque tests using a torque wrench. The optimum laser welding conditions to seal the welding part between a seal tube and an MI cable were obtained through various welding tests using a laser welding system.

  18. Seals

    International Nuclear Information System (INIS)

    Welsher, R.A.G.

    1982-01-01

    An aperture through a biological shield is sealed by a flexible sheath having a beading at one end located on an annular member slidable in the aperture such that the beading bears in sealing engagement against the sides of the aperture. The annular member is retained by a retractable latch and can be rejected by pushing it out of the aperture using a replacement annular member with a replacement sheath thereon to butt against the annular member to be rejected. The replacement annular member may be mounted on a tubular device having an outer co-axial member for operating the latch when the replacement annular member butts against the annular member to be rejected. Applications include effecting a seal between a remote handling equipment and a wall through which the equipment extends. (author)

  19. Seal Formation Mechanism Beneath Animal Waste Holding Ponds

    Science.gov (United States)

    Cihan, A.; Tyner, J. S.; Wright, W. C.

    2005-12-01

    Infiltration of animal waste from holding ponds can cause contamination of groundwater. Typically, the initial flux from a pond decreases rapidly as a seal of animal waste particulates is deposited at the base of the pond. The purpose of this study was to investigate the mechanism of the seal formation. Twenty-four soil columns (10-cm diameter by 43-cm long) were hand-packed with sand, silty loam or clay soils. A 2.3 m column of dairy or swine waste was applied to the top of the each column. The leakage rate from each column was measured with respect to time to analyze the effect of seal formation on different soil textures and animal waste types. We tested our hypothesis that seal growth and the subsequent decrease of leachate production adheres to a filter cake growth model. Said model predicts that the cumulative leakage rate is proportional to the square root of time and to the square root of the height of the waste.

  20. 40 CFR 63.1026 - Pumps in light liquid service standards.

    Science.gov (United States)

    2010-07-01

    ... this section. (A) Each dual mechanical seal system is operated with the barrier fluid at a pressure... monomers; (ii) 2,000 parts per million or greater for pumps in food/medical service; and (iii) 1,000 parts...—(1) Dual mechanical seal pumps. Each pump equipped with a dual mechanical seal system that includes a...

  1. Simulation Analysis of Spherical Mechanical Seal Property of Marine Stern Shaft

    Directory of Open Access Journals (Sweden)

    Zhou Xu Hui

    2016-01-01

    Full Text Available The finite element model of spherical mechanical seal wasestablished with ANSYS, and the influence of seawater pressure, shaft speed and other factors on the sealing performance was discussed. The study results show that local contact situation of the spherical mechanical seal is in the outside of the seal rings, and both maximum contact pressure and temperature appearat the same position. As sea water pressure and stern shaft rotary speed are increased, the contact pressure and temperature of the spherical seal surface are raised, and when the contact pressure of seal surface is 0, the spherical seal surface forms two zones including contact one and clearance zone. The former is near the outside of the seal ring, the lateris close to the inside of one. These research results are of important theoretical significance and engineering application value for the development of new kinds of mechanical seals, and improvement of both safety and survivability of underwater vehicles.

  2. Simulation Analysis of Spherical Mechanical Seal Property of Marine Stern Shaft

    OpenAIRE

    Zhou Xu Hui; Zou Li

    2016-01-01

    The finite element model of spherical mechanical seal wasestablished with ANSYS, and the influence of seawater pressure, shaft speed and other factors on the sealing performance was discussed. The study results show that local contact situation of the spherical mechanical seal is in the outside of the seal rings, and both maximum contact pressure and temperature appearat the same position. As sea water pressure and stern shaft rotary speed are increased, the contact pressure and temperature o...

  3. 40 CFR 65.107 - Standards: Pumps in light liquid service.

    Science.gov (United States)

    2010-07-01

    ... mechanical seal pumps. Each pump equipped with a dual mechanical seal system that includes a barrier fluid... million or greater for pumps in food/medical service; and (iii) 1,000 parts per million or greater for all... frequency of drips and to the sensor that indicates failure of the seal system, the barrier fluid system, or...

  4. Design considerations in mechanical face seals for improved performance. 1: Basic configurations

    Science.gov (United States)

    Ludwig, L. P.; Greiner, H. F.

    1977-01-01

    Basic assembly configurations of the mechanical face seal are described and some advantages associated with each are listed. The various forms of seal components are illustrated, and functions pointed out. The technique of seal pressure balancing and its application are described; and the concept of the PV factor, its different forms and limitations are discussed. Brief attention is given to seal lubrication since it is covered in detail in a companion paper. Finally, the operating conditions for various applications of low pressure seals (aircraft transmissions) are listed, and the seal failure mode of a particular application is discussed.

  5. Transient thermal-mechanical coupling behavior analysis of mechanical seals during start-up operation

    Science.gov (United States)

    Gao, B. C.; Meng, X. K.; Shen, M. X.; Peng, X. D.

    2016-05-01

    A transient thermal-mechanical coupling model for a contacting mechanical seal during start-up has been developed. It takes into consideration the coupling relationship among thermal-mechanical deformation, film thickness, temperature and heat generation. The finite element method and multi-iteration technology are applied to solve the temperature distribution and thermal-mechanical deformation as well as their evolution behavior. Results show that the seal gap transforms from negative coning to positive coning and the contact area of the mechanical seal gradually decreases during start-up. The location of the maximum temperature and maximum contact pressure move from the outer diameter to inside diameter. The heat generation and the friction torque increase sharply at first and then decrease. Meanwhile, the contact force decreases and the fluid film force and leakage rate increase.

  6. Seals and sealing handbook

    CERN Document Server

    Flitney, Robert K

    2007-01-01

    Wherever machinery operates there will be seals of some kind ensuring that the machine remains lubricated, the fluid being pumped does not leak, or the gas does not enter the atmosphere. Seals are ubiquitous, in industry, the home, transport and many other places. This 5th edition of a long-established title covers all types of seal by application: static, rotary, reciprocating etc. The book bears little resemblance to its predecessors, and Robert Flitney has re-planned and re-written every aspect of the subject. No engineer, designer or manufacturer of seals can afford to be without this uniq

  7. Study on AE in Mechanical Seal Lift-off Recognition of Mechanical Main Shaft

    Directory of Open Access Journals (Sweden)

    Erqing Zhang

    2014-06-01

    Full Text Available For the problem of the determination of lift-off position and the measurement of end face thickness for mechanical seal more difficult, the method based on acoustic emission signal end face lift-off condition monitoring technology for mechanical seal was proposed. The electric eddy current sensor made direct measurement in the internal of mechanical seal device, and the acoustic emission sensor was fixed in the outside for indirect measurement. The acoustic emission signals were de-noised by wavelet threshold de-noising method. The representative energy features were selected by wavelet packet energy spectrum algorithm. It was established that the Radial Basis Function neural network model used for identification of the mechanical seal lift-off position, and the extracted wavelet energy features as its input. It was confirmed accurate and effective that the acoustic emission identification technology through comparing with the data detected by electric eddy current sensor. So using the acoustic emission technology realized the identification of the mechanical seal lift-off position of mechanical main shaft from inside to outside. It is convenient to be used and promotion in industrial field.

  8. Wear if a NBR seal for a oil jack pump; Desgaste de um retentor de NBR utilizado em uma unidade de bombeio de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Washington B. de; Barros, Levi B.; Machado, Jonata F.; Silva, Jailson H. Costa da [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mail: uoxito@hotmail.com, e-mail: levibarreto@hotmail.com.br, e-mail: jonataferreira@hotmail.com, e-mail: jailson.costa@pop.com.br; Medeiros, Joao Telesforo N. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Grupo de Estudos de Tribologia], e-mail: medeirosj2@asme.org

    2007-07-01

    The NBR seals are used in tribological systems because they are resistance to solvent, oil and fuel. This elastomer is used in the jack pump (oil pump unit-PETROBRAS), it is located in the stuffing box. It converts the rotational movement of an electric motor to a vertical reciprocating movement to drive the pump shaft, generating a tribological contact between the polished rod and the seal, avoiding oil leakage. In this work, was developed an experimental test rig to simulate the sealing conditions of the tribological pair polished rod-seal package for a oil pumping unit in a 1:1 scale. In the experimental part of this work were used several techniques as thermal history, Scanning Electron Microscope (SEM), hardness and mass losses analysis. The friction influence on the temperature was one of the most important effect caused by the contact. The SEM analyses and the hardness losses had evidenced the damage on the surface submitted to the contact. (author)

  9. Seal arrangement

    International Nuclear Information System (INIS)

    Dempsey, J.D.

    1978-01-01

    A hydraulically balanced face type shaft seal is provided in which the opening and closing seal face areas retain concentricity with each other in the event of lateral shaft displacement. The seal arrangement is for a vertical high pressure pump, indented for use in the cooling system of a nuclear reactor. (Auth.)

  10. Design considerations in mechanical face seals for improved performance. II - Lubrication

    Science.gov (United States)

    Ludwig, L. P.; Greiner, H. F.

    1977-01-01

    The importance of sealing technology in the U.S. industrial chemical-orientated society in regard to maintenance and environmental contamination is pointed out. It is stated that seal performance (leakage, life) is directly related to seal lubrication, which is a mechanism not well understood. Current thinking in regard to seal lubrication is reviewed, the effect of energy dissipation in the thin lubricating film separating the sealing faces is pointed out, and the results of vaporization due to heating are illustrated. Also, hydrodynamic lubrication is reviewed, and an inherent tendency for the seal to operate with angular misalignment is pointed out. Recent work on hydrostatic effects is summarized and the conditions for seal instability are discussed. Four different modes of seal lubrication are postulated with the mode type being a strong function of speed and pressure.

  11. Mechanical properties of molybdenum-sealing glass-ceramics

    International Nuclear Information System (INIS)

    Swearengen, J.C.; Eagan, R.J.

    1975-07-01

    Elastic constants, thermal expansion, strength, and fracture toughness were determined for a molybdenum-sealing glass-ceramic containing approximately 31 volume percent Zn 2 SiO 4 crystals in a glass matrix. The microstructure was studied for two different crystallization treatments and moderate changes in composition. Mechanical properties of the composite were compared with the properties of the constituent phases through application of mixture theory and by fractographic observations. The reinforcing effects of the crystal phase at room temperature are evident in comparison with the properties of the residual glass but not necessarily in comparison with the parent glass. Fracture toughness of the composite depends primarily upon additive properties of the separate phases instead of by interactive effects such as microcracks. (U.S.)

  12. Development of a hybrid chemical/mechanical heat pump

    Science.gov (United States)

    Grzyll, Lawrence R.; Silvestri, John J.; Scaringe, Robert P.

    1991-01-01

    The authors present the current development status of a hybrid chemical/mechanical heat pump for low-lift applications. The heat pump provides electronics cooling by evaporating a pure refrigerant from an absorbent/refrigerant mixture in a generator/cold plate. The current development focused on evaluation of absorbent/refrigerant pairs, corrosion testing, pump and compressor design, and electronic cold plate design. Two cycle configurations were considered. The first configuration utilized a standard mechanical compressor and pump. The second cycle configuration investigated pumps and compressors with non-moving parts. An innovative generator/cold plate design is also presented. The development to date shows that this cycle has about the same performance as standard vapor compression heat pumps with standard refrigerants but may have some performance and reliability advantages over vapor compression heat pumps.

  13. Quantum mechanical features of optically pumped CW FIR lasers

    Science.gov (United States)

    Seligson, D.; Leite, J. R. R.; Sanchez, A.; Feld, M. S.; Ducloy, M.

    1977-01-01

    Quantum mechanical predictions for the gain of an optically pumped CW FIR laser are presented for cases in which one or both of the pump and FIR transitions are pressure or Doppler broadened. The results are compared to those based on the rate equation model. Some of the quantum mechanical predictions are verified in CH3OH.

  14. A study of mechanical sealing methods using graphite powder for high pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, H. Y.; Hong, J. T.; Ahn, S. H.; Joung, C. Y. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    The Fuel Test Loop (FTL) is a facility that can conduct fuel irradiation tests at the HANARO (High flux Advanced Neutron Application Reactor). The FTL simulates commercial NPP operating conditions such as pressure, temperature and neutron flux levels to conduct irradiation and thermo hydraulic tests. It is composed of an In Pile test Section (IPS) and an Out Pile System (OPS). The OPS contains a pressurizer, cooler, pump, heater and purification system, which are necessary to maintain the proper fluid conditions. In addition, the OPS contains engineered safety systems that can safely shutdown both HANARO and FTL if an accident occurs. The IPS accommodating fuel pins has a loaded IP 1 hole in HANARO, and a double pressure vessel for the design conditions of 350 .deg. C, 17.5MPa and is composed of an outer assembly and inner assembly. It has instruments such as a thermocouple, LVDT and SPND to measure the fuel performances during the test. FTL coolant is supplied to the IPS at the core of commercial nuclear power plants at the same temperature, pressure and flow conditions. Sensors are installed on the inside of the IPS to send signal transmission MI Cables to the outside for instrumentation through the pressure boundary. Therefore, the pressure boundary should be maintained in the sealing performance. Currently, the sealing of the IPS of the the FTL is maintained through a brazing method. However, A brazing method has disadvantages that can occur owing to thermal deformation or breakage in the instrumentation Mi cable. IPS inner assembly is a very long design length (approximately 5.29m), so it is difficult to perform in a vacuum chamber. Therefore, an easy and reliable way to assemble the instrumentation Mi cable mechanical sealing method has been studied. In this study, criteria tests at the pressure boundary were performed using universally applicable graphite powder for the instrumentation MI cable of various sizes.

  15. A study of mechanical sealing methods using graphite powder for high pressure vessel

    International Nuclear Information System (INIS)

    Jeong, H. Y.; Hong, J. T.; Ahn, S. H.; Joung, C. Y.

    2012-01-01

    The Fuel Test Loop (FTL) is a facility that can conduct fuel irradiation tests at the HANARO (High flux Advanced Neutron Application Reactor). The FTL simulates commercial NPP operating conditions such as pressure, temperature and neutron flux levels to conduct irradiation and thermo hydraulic tests. It is composed of an In Pile test Section (IPS) and an Out Pile System (OPS). The OPS contains a pressurizer, cooler, pump, heater and purification system, which are necessary to maintain the proper fluid conditions. In addition, the OPS contains engineered safety systems that can safely shutdown both HANARO and FTL if an accident occurs. The IPS accommodating fuel pins has a loaded IP 1 hole in HANARO, and a double pressure vessel for the design conditions of 350 .deg. C, 17.5MPa and is composed of an outer assembly and inner assembly. It has instruments such as a thermocouple, LVDT and SPND to measure the fuel performances during the test. FTL coolant is supplied to the IPS at the core of commercial nuclear power plants at the same temperature, pressure and flow conditions. Sensors are installed on the inside of the IPS to send signal transmission MI Cables to the outside for instrumentation through the pressure boundary. Therefore, the pressure boundary should be maintained in the sealing performance. Currently, the sealing of the IPS of the the FTL is maintained through a brazing method. However, A brazing method has disadvantages that can occur owing to thermal deformation or breakage in the instrumentation Mi cable. IPS inner assembly is a very long design length (approximately 5.29m), so it is difficult to perform in a vacuum chamber. Therefore, an easy and reliable way to assemble the instrumentation Mi cable mechanical sealing method has been studied. In this study, criteria tests at the pressure boundary were performed using universally applicable graphite powder for the instrumentation MI cable of various sizes

  16. Thermo-Mechanical Test of Seal System in Flexible Pipe End Fittings

    DEFF Research Database (Denmark)

    Banke, Lars

    1999-01-01

    are driven radially into the barrier layer and supported by the surrounding steel casing. In order to verify the integrity of the concept the seal system is subjected cyclic pressure and temperature variations to simulate the service conditions.The aim of the testing is to demonstrate the sensitivity...... of the seal system geometry and its tolerances necessary to maintain a tight seal. The test is carried out in a purpose built autoclave, in which the seal system can be tested while undergoing variations in pressure and temperature.The paper will present a study on the importance of the geometry of the gasket...... and the inner liner. The inner and outer diameter of the gasket are varied to see the effectiveness of the seal mechanism. The effect of varying the width of the gasket as well as the surface roughness of the components in the seal system is analysed. Finally, it is investigated how the seal system is affected...

  17. Mechanical Behaviour of Glassy Composite Seals for IT-SOFC Application

    DEFF Research Database (Denmark)

    Nielsen, Karsten Agersted; Solvang, Mette; Nielsen, Sofie Birkedal Lund

    2007-01-01

    Glass-based sealants have been developed with emphasis on filler material and surface treatment of the sealing components in order to optimise their mechanical and functional behaviour during the initial sealing process as well as during thermal cycling of the SOFC-stack after exposure to operating...... conditions. The bonding strength and microstructure of the interfaces between composite seals and interconnect materials were investigated as a function of surface treatment of the sealing surfaces, glass matrix composition, sealing pressure and temperature. The initial sealing performance and resistance...... to thermal cycling were then investigated on selected combinations of materials after ageing. Strongest bonding between sodium aluminosilicate glass composite and steel surfaces was obtained for sealing at 850°C. For the strongest interface, having shear strength of 2.35 MPa, rupture occurred in the glass...

  18. Hermetically Sealed Compressor

    Science.gov (United States)

    Holtzapple, Mark T.

    1994-01-01

    Proposed hermetically sealed pump compresses fluid to pressure up to 4,000 atm (400 MPa). Pump employs linear electric motor instead of rotary motor to avoid need for leakage-prone rotary seals. In addition, linear-motor-powered pump would not require packings to seal its piston. Concept thus eliminates major cause of friction and wear. Pump is double-ended diaphragm-type compressor. All moving parts sealed within compressor housing.

  19. Breakaway frictions of dynamic O-rings in mechanical seals

    Science.gov (United States)

    Lai, Tom; Kay, Peter

    1993-05-01

    Breakaway friction of a dynamic O-ring affects the mechanical seal's response to large axial shaft movement and face wear. However, little data exist to help designers. Therefore, a test rig was developed to measure breakaway friction. The research quantitatively shows the effects of lubrication with silicone grease and a change of surface finish. By using the Taguchi statistical experimental design method, the significance of test parameters was evaluated with a minimum number of tests. It was found that fluid pressure, dwell time, and O-ring percentage squeeze affect O-ring breakaway friction more than the O-ring cross sectional diameter and axial sliding speed within the range of values tested. The authors showed that breakaway friction increased linearly with pressure. However, O-rings made of different materials had significantly different increase rates, even if they had nominally the same durometer hardness. Breakaway friction also increased with logarithm of dwell time. Again, the increase rate depended strongly on the specific O-ring material tested. These observations led the authors to believe that the typical approach of generalizing data based on generic polymer type and durometer was inappropriate.

  20. Prediction of leakage in the fixed mechanical seal

    Directory of Open Access Journals (Sweden)

    Asheichik Anatoly A.

    2017-01-01

    Full Text Available The questions of influence of the shape of contact surfaces on leakages through rubber seals in fixed connection of subassemblies are considered in the article. It is known from practice of operation of seals of various designs that the shape of contact surfaces and consequently also the shape of diagram of stresses in a contact zone considerably influences on value of leaks Linking leakage magnitude and distribution of contact stresses enables, firstly, more precisely calculate the amount of leakage for existing seals, and, secondly, to optimize the shape of the seals in their design in each case. As the result of experimental studies on the introduction of the rubber gasket ring fixed indenters different profiles found that by optimizing the shape of the indenter magnitude of leakage can be reduced by 10 times.

  1. Electronically controlled mechanical seal for aerospace applications--Part 2: Transient tests

    Science.gov (United States)

    Wolff, Paul J.; Salant, Richard F.

    1995-01-01

    An electronically controlled mechanical seal for use as the purge gas seal in a liquid oxygen turbopump has been fabricated and tested under transient operating conditions. The thickness of the lubricating film is controlled by adjusting the coning of the carbon face. This is accomplished by applying a voltage to a piezoelectric actuator to which the carbon face is bonded. The seal has been operated with a closed-loop control system that utilizes either the leakage rate or seal face temperature as the feedback. Both speed and pressure transients have been imposed on the seal. The transient tests have demonstrated that the seal is capable of maintaing low leakage rates while limiting face temperatures.

  2. Problems and criteria of quality improvement in end face mechanical seal rings through technological methods

    Science.gov (United States)

    Tarelnik, V.; Belous, A.; Antoszewski, B.; Zukov, A.

    2017-08-01

    In this paper are presented the recommendations for material’s selections of the mechanical seals rings and basic productive and operating requirements. The system of a directional selection of technology that ensures the required quality of working surfaces of the mechanical seals rings covers their entire life cycle. The mathematical frictional model is proposed as an instrument for calculating a linear and weighing abrasion of the mechanical seals rings and helps to improve selection’s criteria and the most rational method of strengthening.

  3. Experimentqal and analytical study on thermocracking of alumina ceramic ring in a mechanical seal

    Science.gov (United States)

    Komiya, M.; Matsuda, K.; Kaneta, M.

    1994-04-01

    A mechanism of thermocracking, which occurs in an alumina ceramic ring of a mechanical face seal, is proposed based on experimental and analytical results. Methods for its prevention are also discussed. The experiments were conducted using an external type mechanical face seal composed of a carbon ring and three kinds of alumina ceramic rings, with distilled water as the liquid to be sealed. By using a layer of gold vacuum deposited onto the surface of the ceramic ring as a part of a DC circuit, the moment of crack initiation was identified. The thermal stresses produced in the ceramic ring by frictional heating were calculated using finite element analysis.

  4. Prediction of leakage and rotordynamic coefficients for the circumferential-groove pump seal using CFD analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Ho; Ha, Tae Woong [Gachon University, Seongnam (Korea, Republic of)

    2016-05-15

    The circumferential-groove seal is commonly used in various turbopumps to reduce leakage. The main goal of this paper is to develop the method of three-dimensional CFD analysis for determining leakage and rotordynamic coefficients of the circumferential-groovepump seal. A relative coordinate system was defined for steady-state simulation to calculate the velocity and pressure distributions of the seal clearance at each rotor whirl speed. Instead of setting the inlet and outlet pressures as the boundary conditions in the three dimensional CFD analysis, as it is more commonly done, we used the inlet velocity and outlet pressure obtained from a preliminary two dimensional CFD analysis. For prediction leakage, the presented analysis shows improvement from the bulk-flow model analysis. For the prediction of rotordynamic coefficients of K, k and C, the presented analysis provides results in closer agreement with the experimental values than those of the bulk-flow model analysis at several rotor speeds.

  5. Experimental research on friction factor of end faces of contacting mechanical seals

    Science.gov (United States)

    Wei, Long; Gu, Bo-qin; Feng, Xiu; Sun, Jian-jun

    2008-11-01

    The friction of the seal faces is the most important phenomenon in working process of contacting mechanical seals. The friction factor f is a key parameter for expressing the friction regime of the seal faces, the frictional power, the wearing capacity, the friction heat productivity, the temperature distortion of the end face and the temperature of the end face. The relationship between the friction factor f and the friction regime of the end faces of contacting mechanical seals was discussed from a microscopic point of view. The friction factor is usually worked out by the friction torque which is measured in the test. In the computer aided testing device of the mechanical seal system, the experimental investigations on the basic performance of the B104a-70 contacting mechanical seal was carried out. The test results indicate that the bigger the spring pressure of B104a-70 contacting mechanical seal, the bigger the friction factor. When the spring pressure is less, the bigger the rotational speed, the bigger the friction factor. But when the spring pressure is equal to 0.0866 MPa, the friction factor is not almost influenced by the rotational speed. When the rotational speed and spring pressure are less, the medium pressure has a less influence on the friction factor. When the rotational speed or spring pressure is bigger, the bigger the medium pressure, the less the friction factor.

  6. Dura Seal recommendations for nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Reactor systems (BWR, PWR and Candu) are briefly reviewed with reference to the pumping services encountered in each system, to indicate the conditions imposed on mechanical seals for nuclear power plant liquid handling equipment. A description of the Dura Seals used in each service is included. (U.K.)

  7. Equipment for checking bearing tolerances in sealed pumps, especially for nuclear engineering

    International Nuclear Information System (INIS)

    Zajic, V.

    1980-01-01

    The equipment consists of a guide pin passing through a coaxial telescopic insert mounted in a support nut for connection to the pump suction branch. The guide pin is fitted with a shoulder engaging with the pump flywheel and comprises a pin for exerting torsional, pitching and sliding motion. The support nut is provided with two guide surfaces (on the front face and on the circumference). A third guide surface is on the guide pin face. (H.S.)

  8. The PTFE-nanocomposites mechanical properties for transport systems dynamic sealing devices elements

    Science.gov (United States)

    Mashkov, Y. K.; Egorova, V. A.; Chemisenko, O. V.; Maliy, O. V.

    2017-06-01

    The mechanical properties study results of polymer nanocomposites based on polytetrafluoroethylene with modifiers in the form of micro- and nanoscale cryptocrystalline graphite and silicon dioxide powders are determined. The nanocomposites mechanical properties determined values provide high sealing degree of transport systems dynamic sealing devices elements. When the temperature changes from cryogenic to high positive then the elastic modulus, tensile strength decrease significantly and nonlinearly, the latter limits the composite usage in heavily loaded tribosystems operating at elevated temperatures.

  9. Study and Development of Face-Contact, Bellows Mechanical Seal for Liquid Hydrogen Turbopump

    OpenAIRE

    NOSAKA, Masataka; SUZUKI, Mineo; MIYAKAWA, Yukio; KAMIJO, Kenjiro; KIKUCHI, Masataka; MORI, Masahiro; 野坂, 正隆; 鈴木, 峰男; 宮川, 行雄; 上絛, 謙二郎; 菊池, 正孝; 森, 雅裕

    1981-01-01

    The development of a 10-ton thrust liquid oxygen and liquid hydrogen (LOX and LH2) rocket engine is under way at the National Space Development Agency. In advance of the development of a liquid hydrogen turbopump, the National Aerospace Laboratory carried out study and development of a face-contact, bellows mechanical seal for a liquid hydrogen turbopump in co-operation with the National Space Development Agency. The present report describes the fundamental experiments of the mechanical seal ...

  10. The Performance test of Mechanical Sodium Pump with Water Environment

    International Nuclear Information System (INIS)

    Cho, Chungho; Kim, Jong-Man; Ko, Yung Joo; Jeong, Ji-Young; Kim, Jong-Bum; Ko, Bock Seong; Park, Sang Jun; Lee, Yoon Sang

    2015-01-01

    As contrasted with PWR(Pressurized light Water Reactor) using water as a coolant, sodium is used as a coolant in SFR because of its low melting temperature, high thermal conductivity, the high boiling temperature allowing the reactors to operate at ambient pressure, and low neutron absorption cross section which is required to achieve a high neutron flux. But, sodium is violently reactive with water or oxygen like the other alkali metal. So Very strict requirements are demanded to design and fabricate of sodium experimental facilities. Furthermore, performance testing in high temperature sodium environments is more expensive and time consuming and need an extra precautions because operating and maintaining of sodium experimental facilities are very difficult. The present paper describes performance test results of mechanical sodium pump with water which has been performed with some design changes using water test facility in SAM JIN Industrial Co. To compare the hydraulic characteristic of model pump with water and sodium, the performance test of model pump were performed using vender's experimental facility for mechanical sodium pump. To accommodate non-uniform thermal expansion and to secure the operability and the safety, the gap size of some parts of original model pump was modified. Performance tests of modified mechanical sodium pump with water were successfully performed. Water is therefore often selected as a surrogate test fluid because it is not only cheap, easily available and easy to handle but also its important hydraulic properties (density and kinematic viscosity) are very similar to that of the sodium. Normal practice to thoroughly test a design or component before applied or installed in reactor is important to ensure the safety and operability in the sodium-cooled fast reactor (SFR). So, in order to estimate the hydraulic behavior of the PHTS pump of DSFR (600 MWe Demonstraion SFR), the performance tests of the model pump such as performance

  11. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations.

    Science.gov (United States)

    Sun, Jingjing; Deng, Ziqing; Yan, Aixin

    2014-10-17

    Multidrug resistance (MDR) refers to the capability of bacterial pathogens to withstand lethal doses of structurally diverse drugs which are capable of eradicating non-resistant strains. MDR has been identified as a major threat to the public health of human being by the World Health Organization (WHO). Among the four general mechanisms that cause antibiotic resistance including target alteration, drug inactivation, decreased permeability and increased efflux, drug extrusion by the multidrug efflux pumps serves as an important mechanism of MDR. Efflux pumps not only can expel a broad range of antibiotics owing to their poly-substrate specificity, but also drive the acquisition of additional resistance mechanisms by lowering intracellular antibiotic concentration and promoting mutation accumulation. Over-expression of multidrug efflux pumps have been increasingly found to be associated with clinically relevant drug resistance. On the other hand, accumulating evidence has suggested that efflux pumps also have physiological functions in bacteria and their expression is subject tight regulation in response to various of environmental and physiological signals. A comprehensive understanding of the mechanisms of drug extrusion, and regulation and physiological functions of efflux pumps is essential for the development of anti-resistance interventions. In this review, we summarize the development of these research areas in the recent decades and present the pharmacological exploitation of efflux pump inhibitors as a promising anti-drug resistance intervention. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Fast Flux Test Facility sodium pump operating experience - mechanical

    International Nuclear Information System (INIS)

    Buonamici, R.

    1987-11-01

    The Heat Transport System (HTS) pumps were designed, fabricated, tested, and installed in the Fast Flux Test Facility (FFTF) Plant during the period from September 1970 through July 1977. Since completion of the installation and sodium fill in December 1978, the FFTF Plant pumps have undergone extensive testing and operation with HTS testing and reactor operation. Steady-state hydraulic and mechanical performances have been and are excellent. In all, FFTF primary and secondary pumps have operated in sodium for approximately 75,000 hours and 79,000 hours, respectively, to August 24, 1987

  13. High-inertia hermetically sealed main coolant pump for next generation passive nuclear power plants

    International Nuclear Information System (INIS)

    Kujawski, Joseph M.; Nair, Bala R.; Vijuk, Ronald P.

    2003-01-01

    The main coolant pump for the Westinghouse AP1000 advanced passive nuclear power plant represents a significant scale-up in power, flow capacity, and physical size from its predecessor designed for the smaller AP600 power plant. More importantly, the AP1000 pump incorporates several innovative features that contribute to improved efficiency, operational reliability, and plant safety. The features include an internals design which provides the highest hydraulic efficiency achieved in commercial nuclear power plant applications. Another feature is the use of a distributed inertial mass system in the rotating assembly to develop the high rotational inertia to meet the extended system flow coastdown requirement for core heat removal in the event of loss of power to the pumps. This advanced canned motor pump also incorporates the latest development in higher operating voltage, providing plant designers with the ability to eliminate plant transformers and operate directly on the site electrical bus in many cases. The salient features of the pump design and performance data are presented in this paper. (author)

  14. Mechanical pumps for liquid metals; Pompes mecaniques pour metaux liquides

    Energy Technology Data Exchange (ETDEWEB)

    Baumier, J; Gollion, H J [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-07-01

    The pumping of liquid metals by centrifugal pumps poses two principal problems. These are hermetic sealing of the rotating shaft and, its guidance where immersed in liquid metal. The solutions to the problems used on 13 experimental pumps are given here. The resolution of the guidance problem consists in the majority of cases in the utilisation of hydrostatic bearings. Accordingly, a theoretical study was instituted for the first time to calculate the bearings of the earlier pumps. After this, an experimental study was carried out, to check the theory by water tests. A relation for bearing calculation of pumps with diffusers is proposed. Finally the influence of the bearing elasticity on the shafts critical speed is studied. (authors) [French] Le pompage des metaux liquides, par des pompes centrifuges, pose 2 principaux problemes, qui sont: d'une part, la realisation d'une excellente etancheite au passage de l'arbre, d'autre part, son guidage sur la partie immergee dans le metal liquide. Les solutions retenues pour resoudre ces problemes sur 13 pompes experimentees sont presentees. Le probleme du guidage de l'arbre, a dans la majorite des cas ete resolu en utilisant un palier hydrostatique, aussi l'etude en a d'abord ete approfondie de facon theorique pour calculer les paliers des premieres pompes, puis experimentale pour controler la theorie, en effectuant des essais a l'eau. On propose une relation pour calculer les paliers des pompes a diffuseurs. On a en outre effectue une etude de l'influence de l'elasticite du palier hydrostatique sur la vitesse critique de l'arbre. (auteurs)

  15. Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes

    Science.gov (United States)

    Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.

    2016-05-01

    A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery.

  16. Performance Tests of a Mechanical Pump in Sodium Environment

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chungho; Kim, Jong-Man; Ko, Yung Joo; Kim, Byeongyeon; Cho, Youngil; Jung, Min-Hwan; Gam, Da-Young; Lee, Yong Bum; Jeong, Ji-Young; Kim, Jong-Bum [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Water is often selected as a surrogate test fluid because it is not only cheap, easily available and easy to handle but also its important hydraulic properties (density and kinematic viscosity) are very similar to that of the sodium. Nevertheless, to ensure the performance, safety, and operability of major components before its installation in the SFR, a series of demonstration experiments of some components in sodium environment should be positively necessary. So, SFR NSSS System Design Division of Korea Atomic Energy Research Institute (KAERI) built various sodium experimental facilities, especially STELLA-1 in 2012. STELLA-1 (Sodium inTegral Effect test Loop for safety simuLation and Assessment) is a large-scale separated effect test facility for demonstrating the thermal-hydraulic performances of major components such as a Sodium-to-Sodium heat exchanger (DHX), Sodium-to-Air heat exchanger (AHX) of the decay heat removal system, and mechanical sodium pump of the primary heat transport system (PHTS). The mechanical pump in-sodium performance test was successfully performed with good reproducibility of the experiment and data to compare hydraulic characteristic of a mechanical pump in-water was collected. In effect of temperature variation on the pump pressure head, reduction of pump pressure head at 250℃ by 0.57% of that of 300℃ maybe the result of an increase in sodium viscosity by 13.6% according to operating temperature decrease by 50℃. Also, we confirmed that the more flywheel weight, the longer halving time and the more initial flow rate when the pump seized, the shorter halving time. The results of the mechanical pump performance test data in sodium environment will be used to compare with that of the in water environment after the evaluation of measurement uncertainty for tests.

  17. Implementation of Statistical Process Control: Evaluating the Mechanical Performance of a Candidate Silicone Elastomer Docking Seal

    Science.gov (United States)

    Oravec, Heather Ann; Daniels, Christopher C.

    2014-01-01

    The National Aeronautics and Space Administration has been developing a novel docking system to meet the requirements of future exploration missions to low-Earth orbit and beyond. A dynamic gas pressure seal is located at the main interface between the active and passive mating components of the new docking system. This seal is designed to operate in the harsh space environment, but is also to perform within strict loading requirements while maintaining an acceptable level of leak rate. In this study, a candidate silicone elastomer seal was designed, and multiple subscale test articles were manufactured for evaluation purposes. The force required to fully compress each test article at room temperature was quantified and found to be below the maximum allowable load for the docking system. However, a significant amount of scatter was observed in the test results. Due to the stochastic nature of the mechanical performance of this candidate docking seal, a statistical process control technique was implemented to isolate unusual compression behavior from typical mechanical performance. The results of this statistical analysis indicated a lack of process control, suggesting a variation in the manufacturing phase of the process. Further investigation revealed that changes in the manufacturing molding process had occurred which may have influenced the mechanical performance of the seal. This knowledge improves the chance of this and future space seals to satisfy or exceed design specifications.

  18. Magnetic shaft seals prevent hazardous leakage from wastewater agitators

    International Nuclear Information System (INIS)

    Traino, F.A.

    1985-01-01

    The US Department of Energy's laboratory in Miamisburg, OH, operated by Monsanto Research Corporation, processes approximately 45,000 gallons per week of low-level radioactive wastewater to meet Federal Environmental Protection Agency quality standards. Preventing the spread of radioactive contamination throughout the operating area demands effective sealing of all process piping, valves, pumps, and agitators. Rotating shafts of pumps and agitators installed a the start of operations in 1947 were sealed by stuffing glands with graphite impregnated asbestos packing. These pumps proved to be unsatisfactory. In the mid-1970's, new process pumps with mechanical seals and some with magnetic drives were installed. Later, in January 1979, new agitator shaft drives with double tandem, spring-loaded mechanical seals were installed, maintenance of these pumps was costly. The agitator drive shafts were redesigned to accommodate magnetic seals of the type successfully used in blowers and vacuum/pressure pumps in other plant locations. One inherent advantage of the magnetic seal is that it operates with a face loading as much as 50% less than a conventional spring-loaded mechanical seal. The lower loading by a predetermined uniform magnetic force contributes to long face life. Other advantages include compactness, ease of assembly with only a few parts, and insensitivity to vibration. The magnetic shaft seals installed on the agitator shafts in February 1983 are still in service without any leakage or need for maintenance. Based on current operating data and a projected five-year meantime between failures, the estimated cost benefit of the magnetic seals over spring-loaded mechanical seals over spring-loaded mechanical seals will be $640 vs $2400 respectively per seal, with 60% less downtime for maintenance

  19. Multi technical analysis of wear mechanisms in axial piston pumps

    Science.gov (United States)

    Schuhler, G.; Jourani, A.; Bouvier, S.; Perrochat, J.-M.

    2017-05-01

    Axial piston pumps convert a motor rotation motion into hydraulic or pneumatic power. Their compactness and efficiency of approximately 0.9 make them suitable for actuation applications especially in aeronautics. However, they suffer a limited life due to the wear of their components. In the literature, studies of axial piston pumps deal with contact between its different elements under lubrication conditions. Nevertheless, they are more focused on analytic or numerical approaches. This study consists in an experimental analysis of worn pump components to highlight and understand wear mechanisms. Piston shoes are central components in the axial piston pump since they are involved in three tribological contacts. These three contacts are thereby studied: piston shoes/swashplate, piston shoes/pistons and piston shoes/shoes hold down plate (SHDP). To perform this analysis, helicopter hydraulic pumps after different operating times have been studied. The wear damage mechanisms and wear debris are analysed using SEM observations. 3D surface roughness measurements are then used to characterize worn surfaces. The observations reveal that in the contact between shoes and swashplate, the main wear mechanism is three-body abrasive wear due to coarse carbides removal. Between shoes and pistons, wear occurs in a less severe way and is mainly due to the debris generated in the first contact and conveyed by the lubricating fluid. In the third contact, the debris are also the prime cause of the abrasive wear and the generation of deep craters in the piston shoes.

  20. Rubber contact mechanics: adhesion, friction and leakage of seals.

    Science.gov (United States)

    Tiwari, A; Dorogin, L; Tahir, M; Stöckelhuber, K W; Heinrich, G; Espallargas, N; Persson, B N J

    2017-12-13

    We study the adhesion, friction and leak rate of seals for four different elastomers: Acrylonitrile Butadiene Rubber (NBR), Ethylene Propylene Diene (EPDM), Polyepichlorohydrin (GECO) and Polydimethylsiloxane (PDMS). Adhesion between smooth clean glass balls and all the elastomers is studied both in the dry state and in water. In water, adhesion is observed for the NBR and PDMS elastomers, but not for the EPDM and GECO elastomers, which we attribute to the differences in surface energy and dewetting. The leakage of water is studied with rubber square-ring seals squeezed against sandblasted glass surfaces. Here we observe a strongly non-linear dependence of the leak rate on the water pressure ΔP for the elastomers exhibiting adhesion in water, while the leak rate depends nearly linearly on ΔP for the other elastomers. We attribute the non-linearity to some adhesion-related phenomena, such as dewetting or the (time-dependent) formation of gas bubbles, which blocks fluid flow channels. Finally, rubber friction is studied at low sliding speeds using smooth glass and sandblasted glass as substrates, both in the dry state and in water. The measured friction coefficients are compared to theory, and the origin of the frictional shear stress acting in the area of real contact is discussed. The NBR rubber, which exhibits the strongest adhesion both in the dry state and in water, also shows the highest friction both in the dry state and in water.

  1. Efflux pumps as antimicrobial resistance mechanisms.

    Science.gov (United States)

    Poole, Keith

    2007-01-01

    Antibiotic resistance continues to hamper antimicrobial chemotherapy of infectious disease, and while biocide resistance outside of the laboratory is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are not uncommon. Efflux mechanisms, both drug-specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials in important human pathogens. Multidrug efflux mechanisms are generally chromosome-encoded, with their expression typically resultant from mutations in regulatory genes, while drug-specific efflux mechanisms are encoded by mobile genetic elements whose acquisition is sufficient for resistance. While it has been suggested that drug-specific efflux systems originated from efflux determinants of self-protection in antibiotic-producing Actinomycetes, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, are appreciated as having an intended housekeeping function unrelated to drug export and resistance. Thus, it will be important to elucidate the intended natural function of these efflux mechanisms in order, for example, to anticipate environmental conditions or circumstances that might promote their expression and, so, compromise antimicrobial chemotherapy. Given the clinical significance of antimicrobial exporters, it is clear that efflux must be considered in formulating strategies for treatment of drug-resistant infections, both in the development of new agents, for example, less impacted by efflux or in targeting efflux directly with efflux inhibitors.

  2. Tests of Shaft Seal Systems of Circulation Pumps during Station Blackout

    Energy Technology Data Exchange (ETDEWEB)

    Beisiegel, A.; Foppe, F.; Wich, M.

    2014-07-01

    AREVA GmbH operates a unique Thermal-hydraulic plat form in Germany, France and USA. It is recognised as a test body according to ISO 17025. The Deutsche Akkreditierungsstelle GmbH (DAkkS - German Society for Accreditation) has also certified the Thermal-hydraulic platform as an independent inspection body Type C according to ISO 17020. A part of this platform is the Component Laboratory located in Karlstein, Germany which is in operation since more than 50 years. The testing activities cover a wide range as: Critical Heat Flux Tests, Valve Testing and Environmental Qualification for safety related components. Since 2011 the Component Qualification Karlstein extended their testing scope for different types of Shaft Seal Systems. (Author)

  3. Study on cavitation effect of mechanical seals with laser-textured porous surface

    Science.gov (United States)

    Liu, T.; Chen, H. l.; Liu, Y. H.; Wang, Q.; Liu, Z. B.; Hou, D. H.

    2012-11-01

    Study on the mechanisms underlying generation of hydrodynamic pressure effect associated with laser-textured porous surface on mechanical seal, is the key to seal and lubricant properties. The theory model of mechanical seals with laser-textured porous surface (LES-MS) based on cavitation model was established. The LST-MS was calculated and analyzed by using Fluent software with full cavitation model and non-cavitation model and film thickness was predicted by the dynamic mesh technique. The results indicate that the effect of hydrodynamic pressure and cavitation are the important reasons to generate liquid film opening force on LST-MS; Cavitation effect can enhance hydrodynamic pressure effect of LST-MS; The thickness of liquid film could be well predicted with the method of dynamic mesh technique on Fluent and it becomes larger as the increasing of shaft speed and the decreasing of pressure.

  4. Study on cavitation effect of mechanical seals with laser-textured porous surface

    International Nuclear Information System (INIS)

    Liu, T; Chen, H l; Liu, Y H; Wang, Q; Liu, Z B; Hou, D H

    2012-01-01

    Study on the mechanisms underlying generation of hydrodynamic pressure effect associated with laser-textured porous surface on mechanical seal, is the key to seal and lubricant properties. The theory model of mechanical seals with laser-textured porous surface (LES-MS) based on cavitation model was established. The LST-MS was calculated and analyzed by using Fluent software with full cavitation model and non-cavitation model and film thickness was predicted by the dynamic mesh technique. The results indicate that the effect of hydrodynamic pressure and cavitation are the important reasons to generate liquid film opening force on LST-MS; Cavitation effect can enhance hydrodynamic pressure effect of LST-MS; The thickness of liquid film could be well predicted with the method of dynamic mesh technique on Fluent and it becomes larger as the increasing of shaft speed and the decreasing of pressure.

  5. Stress and fatigue analysis for lower joint of control rod drive mechanisms seal house

    International Nuclear Information System (INIS)

    Shao Xuejiao; Zhang Liping; Du Juan; Xie Hai

    2013-01-01

    Two kinds of seal houses for control rod drive mechanisms which have different thickness of the lower seal ring was analyzed for its stress and fatigue by finite element method. In the fatigue computation, all the transitions were grouped into several groups, and then the elastoplastic strain correction factor was modified by analyzing thermal and mechanical load separately referring the rules of RCC-M 2002. The results show that the structure with thicker seal ring behaves more safely than the other one except in the second condition. Meanwhile, the amplify of the primary and secondary stress as well as fatigue usage factor can be reduced by regrouping the transients. The precision of fatigue usage factor can be elevated using modified K e when the amplify of the primary and secondary stress is large to some extent produced by both thermal and mechanical loads. (authors)

  6. Numerical analysis of the texture effect on the hydrodynamic performance of a mechanical seal

    Science.gov (United States)

    Adjemout, M.; Brunetiere, N.; Bouyer, J.

    2016-03-01

    The purpose of this paper is to analyze the effect of the main geometrical characteristics of texture on the hydrodynamic lubrication of a mechanical seal. A parametric study was carried out in order to improve the performance of a mechanical seal. The numerical model used in this study solves the Reynolds equation coupled with a mass conservative model which takes into account the cavitation phenomenon. It is shown that among the six dimple shapes tested herein, namely cylinder, square, triangle, truncated cone, truncated pyramid, and spherical cap, the triangular dimples placed symmetrically with respect to their bases are more effective for enhancing the hydrodynamic performance of the mechanical seal. The effect of the area and depth ratios is studied and optimized as well. The optimized solution is able to minimize friction and leakage under a range of operating conditions.

  7. A Study On The Metal Carbide Composite Diffusion Bonding For Mechanical Seal

    Directory of Open Access Journals (Sweden)

    Kim D.-K.

    2015-06-01

    Full Text Available Mechanical Seal use highly efficient alternative water having a great quantity of an aqueous solution and has an advantage no corrosion brine. Metal Carbide composites have been investigated as potential materials for high temperature structural applications and for application in the processing industry. The existing Mechanical seal material is a highly expensive carbide alloy, and it is difficult to take a price advantage. Therefore the study of replacing body area with inexpensive steel material excluding O-ring and contact area which demands high characteristics is needed.

  8. A highly reliable cryogenic mixing pump with no mechanical moving parts

    Science.gov (United States)

    Chen, W.; Niblick, A. L.

    2017-12-01

    This paper presents the design and preliminary test results of a novel cryogenic mixing pump based on magnetocaloric effect. The mixing pump is developed to enable long-term cryogenic propellant storage in space by preventing thermal stratification of cryogens in storage tanks. The mixing pump uses an innovative thermodynamic process to generate fluid jets to promote fluid mixing, eliminating the need for mechanical pumps. Its innovative mechanism uses a solid magnetocaloric material to alternately vaporize and condense the cryogen in the pumping chamber, and thus control the volume of the fluid inside the pumping chamber to produce pumping action. The pump is capable of self-priming and can generate a high-pressure rise. This paper discusses operating mechanism and design consideration of the pump, introduces the configuration of a brassboard cryogenic pump, and presents the preliminary test results of the pump with liquid nitrogen.

  9. Magnetic nanofluids and magnetic composite fluids in rotating seal systems

    International Nuclear Information System (INIS)

    Borbath, T; Borbath, I; Boros, T; Bica, D; Vekas, L; Potencz, I

    2010-01-01

    Recent results are presented concerning the development of magnetofluidic leakage-free rotating seals for vacuum and high pressure gases, evidencing significant advantages compared to mechanical seals. The micro-pilot scale production of various types of magnetizable sealing fluids is shortly reviewed, in particular the main steps of the chemical synthesis of magnetic nanofluids and magnetic composite fluids with light hydrocarbon, mineral oil and synthetic oil carrier liquids. The behavior of different types of magnetizable fluids in the rotating sealing systems is analyzed. Design concepts, some constructive details and testing procedures of magnetofluidic rotating seals are presented such as the testing equipment. The main characteristics of several magnetofluidic sealing systems and their applications will be presented: vacuum deposition systems and liquefied gas pumps applications, mechanical and magnetic nanofluid combined seals, gas valves up to 40 bar equipped by rotating seal with magnetic nanofluids and magnetic composite fluids.

  10. [Influence of mechanical effect due to MRI-magnet on tattoo seal and eye makeup].

    Science.gov (United States)

    Morishita, Yuta; Miyati, Tosiaki; Ueda, Jousei; Shimizu, Mitsuru; Hamaguchi, Takashi; Fujiwara, Yasuhiro; Hayashi, Hiroyuki

    2008-05-20

    The purpose of our study was to assess the mechanical effect on tattoo seals and eye makeup caused by a spatial magnetic gradient in the magnetic resonance imaging (MRI) system. Seven kinds of tattoo seals and three kinds of eye makeup, i.e., mascara, eye shadow, and eyeliner were used. On a 3.0-Tesla MRI, we determined these deflection angles according to a method established by the American Society for Testing and Materials (ASTM) at the position that produced the greatest magnetically induced deflection. Eighty-five percent of the tattoo seals showed deflection angles greater than 45 degrees of the ASTM guidelines, and the mascara and eye shadow showed over 40 degrees. This was because these contained ferromagnetic pigments such as an iron oxide, but those translational forces were very small owing to slight mass. However, it is desirable that these should be removed before MRI examination to prevent secondary problems.

  11. Influence of mechanical effect due to MRI-magnet on tattoo seal and eye makeup

    International Nuclear Information System (INIS)

    Morishita, Yuta; Ueda, Jousei; Miyati, Tosiaki; Hamaguchi, Takashi; Shimizu, Mitsuru; Fujiwara, Yasuhiro; Hayashi, Hiroyuki

    2008-01-01

    The purpose of our study was to assess the mechanical effect on tattoo seals and eye makeup caused by a spatial magnetic gradient in the magnetic resonance imaging (MRI) system. Seven kinds of tattoo seals and three kinds of eye makeup, i.e., mascara, eye shadow, and eyeliner were used. On a 3.0-Tesla MRI, we determined these deflection angles according to a method established by the American Society for Testing and Materials (ASTM) at the position that produced the greatest magnetically induced deflection. Eighty-five percent of the tattoo seals showed deflection angles greater than 45 degrees of the ASTM guidelines, and the mascara and eye shadow showed over 40 degrees. This was because these contained ferromagnetic pigments such as an iron oxide, but those translational forces were very small owing to slight mass. However, it is desirable that these should be removed before MRI examination to prevent secondary problems. (author)

  12. Scroll vacuum pump

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Etsuo; Suganami, Takuya; Nishida, Mitsuhiro; Kitora, Yoshihisa; Yamamoto, Sakuei; Fujii, Kosaburo

    1988-02-25

    An effort is made to apply a scroll machine to development of a vacuum pump. In view of mechanical simplification and load patterns, the vacuum pump uses a rotating mechanism to produce paired vortices rotating around each center. Chip seal and atmospheric pressure are utilized for axial gap sealing while a spring and atmospheric pressure for the radial gap sealing. In both gaps, the sealing direction is stationary relative to the environment during rotation, making it much easier to achieve effective sealing as compared to oscillating pumps. Since the compression ratio is high in vacuum pumps, a zero top clearance form is adopted for the central portion of vortices and an gas release valve is installed in the rotating axis. A compact Oldham coupling with a small inertia force is installed behind the vortices to maintain the required phase relations between the vortices. These improvements result in a vacuum of 1 Pa for dry operation and 10/sup -2/ Pa for oil flooded operation of a single-stage scroll machine at 1800 rpm. (5 figs, 1 tab, 4 refs)

  13. Performance of a hybrid chemical/mechanical heat pump

    Science.gov (United States)

    Silvestri, John J.; Scaringe, Robert P.; Grzyll, Lawrence R.

    1990-01-01

    The authors present the design and preliminary results of the performance of a hybrid chemical/mechanical, low-lift (20 C) heat pump. Studies have indicated that this heat pump has several advantages over the traditional single fluid vapor compression (reverse Rankine) heat pump. Included in these benefits are: 1) increased COPc due to the approximation of the cycle to the Lorenz cycle and due to the availability of the heat of solution, along with the heat of vaporization, to provide cooling; and 2) ease of variation in system cooling capacity by changing the fluid composition. The system performance is predicted for a variety of refrigerant-absorbent pairs. Cooling capacity is determined for systems operating with ammonia as the refrigerant and lithium nitrate and sodium thiocyanate as the absorbents and also with water as the refrigerant and magnesium chloride, potassium hydroxide, lithium bromide, sodium hydroxide, and sulfuric acid as the absorbents. Early indications have shown that the systems operating with water as the refrigerant operate at 2-4 times the capacity of the ammonia-refrigerant-based systems. Using existing working fluids in the proposed innovative design, a coefficient-of-performance improvement of 21 percent is possible when compared to the best vapor compression systems analyzed.

  14. Investigation of positive shaft seals

    Science.gov (United States)

    Pfouts, J. O.

    1970-01-01

    Welded metal bellows secondary seals prevent secondary seal leakage with a minimum number of potential leak paths. High performance seal is obtained by controlling the potentially unstable seal-face movements induced by mechanical vibrations and fluid pressure pulsations.

  15. Comparative modelling approaches of hydro-mechanical processes in sealing experiments at the Tournemire URL

    Czech Academy of Sciences Publication Activity Database

    Millard, A.; Mokni, N.; Barnichon, J. D.; Thatcher, K. E.; Bond, A.; Fraser-Harris, A.; Mc Dermott, C.; Blaheta, Radim; Michalec, Zdeněk; Hasal, Martin; Nguyen, T.; Nasir, O.; Yi, H.; Kolditz, O.

    2017-01-01

    Roč. 76, č. 2 (2017), č. článku 78. ISSN 1866-6280 Institutional support: RVO:68145535 Keywords : hydro-mechanical (HM) coupling * numerical modelling * sealing systems * compacted bentonite–sand mixture Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.569, year: 2016 https://link.springer.com/article/10.1007/s12665-016-6324-8

  16. Coupling analysis of frictional heat of fluid film and thermal deformation of mechanical seal end faces

    International Nuclear Information System (INIS)

    Zhou Jianfeng; Gu Boqin

    2007-01-01

    The heat transfer model of the rotating ring and the stationary ring of mechanical seal was built. The method to calculate the frictional heat that transferred by the rings was given. the coupling analysis of the frictional heat of fluid film and thermal deformation of end faces was carried out by using FEA and BP ANN, and the relationship among the rotational speed ω, the fluid film thickness h i on the inner diameter of sealing face and the radial separation angle β of deformed end faces was obtained. Corresponding to a given ω, h i and β can be obtained by the equilibrium condition between the closing force and the bearing force of fluid film. The relationship between the leakage rate and the closing force was analyzed, and the fundamental of controlling the leakage rate by regulating the closing force was also discussed. (authors)

  17. Investigation of pool thermal hydraulics and temperature distribution in inner vessel under mechanical seal leakage

    International Nuclear Information System (INIS)

    Abraham, Juby; Velusamy, K.; Selvaraj, P.

    2015-01-01

    The primary heat sink of prototype fast breeder reactor is a sodium pool which is partitioned into cold pool and hot pool. The inner vessel which separates the cold and hot pools is having penetrations for intermediate heat exchangers. The hot sodium from hot pool leaks into the cold pool through these penetrations and to reduce the leakage, mechanical seals are provided. Leakage of hot sodium into cold pool can lead to thermal stratification in the cold pool and also will affect the temperature distribution in inner vessel. 3-D CFD studies were performed focusing these features as a function of sodium leakage. The analyses indicate that the maximum temperature difference across the IV thickness is 65°C without any leakage of sodium. The temperature difference is found to decrease with increase in leakage through the seals. It is seen that a leakage of 2.5% is acceptable. (author)

  18. Tendency of nuclear pumps for PWR primary system

    International Nuclear Information System (INIS)

    Shibata, Takeshi

    1976-01-01

    At present, large PWR power stations of more than 1,000 MW are successively constructed, and the pumps used there have become large. The progress and tendency of the technical development of main pumps in primary system are described. The increase of the capacity of power stations is accomplished by increasing the circulating coolant quantity per loop or the number of loops. Same standard primary coolant pumps are employed in the plants from 500 to 1,100 MW. The type of primary coolant pumps changed from canned type to shaft seal type, and the advantages of the shaft seal type are cheap production cost, high efficiency, and the easy utilization of inertia force. The bearings and shaft seals are thermally insulated from primary coolant. As for auxiliary pumps, reciprocating filling-up pumps and centrifugal high pressure injection pumps are used for 500 MW plants, but only centrifugal pumps are used for both purposes in 800 MW plants, and in 1,100 MW plants, the pumps of both types for separate purposes and centrifugal pumps for combined purposes are installed. Horizontal or vertical pumps of same type are used as containment vessel-spraying pumps and excess heat-eliminating pumps. The type of boric acid pumps changed from canned type to mechanical seal type. (Kako, I.)

  19. Tests of dry mechanical forepumps for use in the ITER vacuum pumping system

    International Nuclear Information System (INIS)

    Kirchhof, U.; Kammerer, B.; Perinic, D.

    1995-04-01

    This report is a description of the design and construction of FORTE (Forepumps Test Facility) which has been built in order to enable testing of the pumping speeds of prototypical mechanical forepumps connected in series, as proposed for the ITER forepump system. Three NORMETEX pumps (1300, 600, 60 m 3 /h) and one METAL BELLOWS pump (6m 3 /h) have been integrated into the test bench. Measurements of the pumping characteristics were performed, both with the single pumps and with trains of series connected pumps, using the gases N 2 , H 2 , D 2 , He as well as ITER typical gas mixture. The results of the tests are presented. (orig.)

  20. Magnetically Actuated Seal, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — FTT proposes development of a magnetically actuated dynamic seal. Dynamic seals are used throughout the turbopump in high-performance, pump-fed, liquid rocket...

  1. Magnetically Actuated Seal, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — FTT proposes development of a magnetically actuated dynamic seal. Dynamic seals are used throughout the turbopump in high-performance, pump-fed, liquid rocket...

  2. Drug transport mechanism of the AcrB efflux pump.

    Science.gov (United States)

    Pos, Klaas M

    2009-05-01

    In Gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa, tripartite multidrug efflux systems extrude cytotoxic substances from the cell directly into the medium bypassing periplasm and the outer membrane. In E. coli, the tripartite efflux system AcrA/AcrB/TolC is the pump that extrudes multiple antibiotics, dyes, bile salts and detergents. The inner membrane component AcrB, a member of the Resistance Nodulation cell Division (RND) family, is the major site for substrate recognition and energy transduction of the entire tripartite system. The drug/proton antiport processes in this secondary transporter are suggested to be spatially separated, a feature frequently observed for primary transporters like membrane-bound ATPases. The recently elucidated asymmetric structure of the AcrB trimer reveals three different monomer conformations proposed to represent consecutive states in a directional transport cycle. Each monomer shows a distinct tunnel system with entrances located at the boundary of the outer leaflet of the inner membrane and the periplasm through the periplasmic porter (pore) domain towards the funnel of the trimer and TolC. In one monomer a hydrophobic pocket is present which has been shown to bind the AcrB substrates minocyclin and doxorubicin. The energy conversion from the proton motive force into drug efflux includes proton binding in (and release from) the transmembrane part. The conformational changes observed within a triad of essential, titratable residues (D407/D408/K940) residing in the hydrophobic transmembrane domain appear to be transduced by transmembrane helix 8 and associated with the conformational changes seen in the periplasmic domain. From the asymmetric structure a possible peristaltic pump transport mechanism based on a functional rotation of the AcrB trimer has been postulated. The novel drug transport model combines the alternate access pump mechanism with the rotating site catalysis of F(1)F(o) ATPase as

  3. Liquid metal pump

    Science.gov (United States)

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  4. Liquid metal pump

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair

  5. Severe service sealing solutions

    International Nuclear Information System (INIS)

    Metcalfe, R.; Wensel, R.

    1994-09-01

    Successful sealing usually requires much more than initial leak-tightness. Friction and wear must also be acceptable, requiring a good understanding of tribology at the sealing interface. This paper describes various sealing solutions for severe service conditions. The CAN2A and CAN8 rotary face seals use tungsten carbide against carbon-graphite to achieve low leakage and long lifetime in nuclear main coolant pumps. The smaller CAN6 seal successfully uses tungsten carbide against silicon carbide in reactor water cleanup pump service. Where friction in CANDU fuelling machine rams must be essentially zero, a hydrostatic seal using two silicon carbide faces is the solution. In the NRU reactor moderator pumps, where pressure is much lower, eccentric seals that prevent boiling at the seal faces are giving excellent service. All these rotary face seals rely on supplementary elastomer seals between their parts. An integrated engineering approach to high performance sealing with O-rings is described. This is epitomized in critical Space Shuttle applications, but is increasingly being applied in CANDU plants. It includes gland design, selection and qualification of material, quality assurance, detection of defects and the effects of lubrication, surface finish, squeeze, stretch and volume constraints. In conclusion, for the severe service applications described, customized solutions have more than paid for themselves by higher reliability, lower maintenance requirements and reduced outage time. (author)

  6. PUMPS

    Science.gov (United States)

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  7. Seals and sealing handbook

    CERN Document Server

    Flitney, Robert K

    2014-01-01

    Seals and Sealing Handbook, 6th Edition provides comprehensive coverage of sealing technology, bringing together information on all aspects of this area to enable you to make the right sealing choice. This includes detailed coverage on the seals applicable to static, rotary and reciprocating applications, the best materials to use in your sealing systems, and the legislature and regulations that may impact your sealing choices. Updated in line with current trends this updated reference provides the theory necessary for you to select the most appropriate seals for the job and with its 'Failur

  8. Sensitivity Analysis of Core Damage from Reactor Coolant Pump Seal Leakage during Extended Loss of All AC Power

    Energy Technology Data Exchange (ETDEWEB)

    Park, Da Hee; Kim, Min Gi; Lee, Kyung Jin; Hwang, Su hyun; Lee, Byung Chul [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Yoon, Duk Joo; Lee, Seung Chan [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2015-10-15

    In this study, in order to comprehend the Fukushima accident, the sensitivity analysis was performed to analyze the behavior of Reactor Coolant System (RCS) during ELAP using the RELAP5/MOD3.3 code. The Fukushima accident was caused by tsunami resulted in Station Black Out (SBO) followed by the reactor core melt-down and release of radioactive materials. After the accident, the equipment and strategies for the Extended Loss of All AC Power (ELAP) were recommended strongly. In this analysis, sensitivity studies for the RCP seal failure of the OPR1000 type NPP were performed by using RELAP5/MOD3.3 code. Six cases with different leakage rate of RCP seal were studied for ELAP with operator action or not. The main findings are summarized as follows: (1) Without the operator action, the core uncovery time is determined by the leakage rate of RCP seal. When the leakage rate per RCP seal are 5 gpm, 50 gpm, and 300 gpm respectively, the core uncovery time are 1.62 hr, 1.58 hr, and 1.29 hr respectively. Namely, If the leakage rate of RCP seal was much bigger, the uncover time of core would be shorter. (2) In case that the cooling by SG secondary side was performed using the TDAFP and SG ADV, the core uncovery time was significantly extended.

  9. Conceptual design and related R and D on ITER mechanical based primary pumping system

    International Nuclear Information System (INIS)

    Tanzawa, Sadamitsu; Hiroki, Seiji; Abe, Tetsuya; Shimizu, Katsusuke; Inoue, Masahiko; Watanabe, Mitsunori; Iguchi, Masashi; Sugimoto, Tomoko; Inohara, Takashi; Nakamura, Jun-ichi

    2008-12-01

    The primary vacuum pumping system of the International Thermonuclear Experimental Reactor (ITER) exhausts a helium (He) ash resulting from the DT-burn with excess DT fueling gas, as well as performing a variety of functions such as pump-down, leak testing and wall conditioning. A mechanical based vacuum pumping system has some merits of a continuous pumping, a much lower tritium inventory, a lower operational cost and easy maintenance, comparing with a cryopump system, although demerits of an indispensable magnetic shield and insufficient performance for hydrogen (H 2 ) pumping is are well recognized. To overcome the demerits, we newly fabricated and tested a helical grooved pump (HGP) unit suitable for H 2 pumping at the ITER divertor pressure of 0.1-10 Pa. Through this R and D, we successfully established many design and manufacturing databases of large HGP units for the lightweight gas pumping. Based on the databases, we conceptually designed the ITER vacuum pumping system mainly comprising the HGP with an optimal pump unit layout and a magnetic shield. We also designed conceptually the reduced cost (RC)-ITER pumping system, where a compound molecular pump combining turbine bladed rotors and helical grooved ones was mainly used. The ITER mechanical based primary pumping system proposed has eventually been a back-up solution, whereas a cryopump based one was formally selected to the ITER for construction. The mechanical pumps are increasingly used in many areas with well sophisticated performance, so we believe that fusion reactors of subsequent prototype ones will select the mechanical based pumping system due to primarily a high operational reliability and a cost melt. (author)

  10. A comparison of the heat and mechanical energy of a heat-pump wind turbine system

    Energy Technology Data Exchange (ETDEWEB)

    Aybek, A.; Arslan, S.; Yildiz, E.; Atik, K. [University of Kahramanmaras (Turkey). Dept. of Agricultural Machinery

    2000-07-01

    While a variety of applications of wind energy have been studied in Turkey, no significant efforts have been made to utilize heat pumps for heat generation. The use of heat pumps in wind energy systems is worth considering because of the high efficiency of heat production. In this study, a directly coupled wind turbine-heat pump system was designed, constructed, and tested. Measurements determined the mechanical energy of the rotors of the wind turbine and the heat energy generated by the heat pump driven by the rotor shaft. Based on the comparisons between the power generated by the heat pump and the power of the Savonius rotors, it was found that the heat energy gained by the heat pump was four times greater than the mechanical energy obtained from the turbine. It was suggested that heat pumps could be efficiently used in wind energy systems. (Author)

  11. Experimental study on friction and wear behaviour of amorphous carbon coatings for mechanical seals in cryogenic environment

    Science.gov (United States)

    Wang, Jianlei; Jia, Qian; Yuan, Xiaoyang; Wang, Shaopeng

    2012-10-01

    The service life and the reliability of contact mechanical seal are directly affected by the wear of seal pairs (rotor vs. stator), especially under the cryogenic environment in liquid rocket engine turbopumps. Because of the lower friction and wear rate, amorphous carbon (a-C) coatings are the promising protective coatings of the seal pairs for contact mechanical seal. In this paper, a-C coatings were deposited on 9Cr18 by pulsed DC magnetron sputtering. The tribological performances of the specimen were tested under three sealed fluid conditions (air, water and liquid nitrogen). The results show that the coatings could endure the cryogenic temperature while the friction coefficients decrease with the increased contact load. Under the same contact condition, the friction coefficient of the a-C coatings in liquid nitrogen is higher than that in water and that they are in air. The friction coefficients of the a-C coatings in liquid nitrogen range from 0.10 to 0.15. In the cryogenic environment, the coatings remain their low specific wear rates (0.9 × 10-6 to 1.8 × 10-6 mm3 N-1 m-1). The results provide an important reference for designing a water lubricated bearing or a contact mechanical seal under the cryogenic environment that is both reliable and has longevity.

  12. Design of a Mechanical NaK Pump for Fission Space Power

    Science.gov (United States)

    Mireles, Omar R.; Bradley, David E.; Godfroy, Thomas

    2011-01-01

    Alkali liquid metal cooled fission reactor concepts are under development for spaceflight power requirements. One such concept utilizes a sodium-potassium eutectic (NaK) as the primary loop working fluid, which has specific pumping requirements. Traditionally, electromagnetic linear induction pumps have been used to provide the required flow and pressure head conditions for NaK systems but they can be limited in performance, efficiency, and number of available vendors. The objective of the project was to develop a mechanical NaK centrifugal pump that takes advantages of technology advances not available in previous liquid metal mechanical pump designs. This paper details the design, build, and performance test of a mechanical NaK pump developed at NASA Marshall Space Flight Center. The pump was designed to meet reactor cooling requirements using commercially available components modified for high temperature NaK service.

  13. Design considerations in mechanical face seals for improved performance. 2: Lubrication

    Science.gov (United States)

    Ludwig, L. P.; Greiner, H. F.

    1977-01-01

    The importance of sealing technology in our industrial, chemical-oriented society in regard to maintenance and environmental contamination is pointed out. It is stated that seal performance (leakage, life) is directly related to seal lubrication. Current thinking in regard to seal lubrication is reviewed; the effect of energy dissipation in the thin lubricating film separating the sealing faces is pointed out, and the results of vaporization due to heating are illustrated. Also, hydrodynamic lubrication is reviewed, and an inherent tendency for the seal to operate with angular misalignment is shown. Recent work on hydrostatic effects is summarized and the conditions for seal instability are discussed. Four different modes of seal lubrication are postulated with the mode type being a strong function of speed and pressure.

  14. Improvement and evaluation of thermal, electrical, sealing and mechanical contacts, and their interface materials

    Science.gov (United States)

    Luo, Xiangcheng

    Material contacts, including thermal, electrical, seating (fluid sealing and electromagnetic sealing) and mechanical (pressure) contacts, together with their interface materials, were, evaluated, and in some cases, improved beyond the state of the art. The evaluation involved the use of thermal, electrical and mechanical methods. For thermal contacts, this work evaluated and improved the heat transfer efficiency between two contacting components by developing various thermal interface pastes. Sodium silicate based thermal pastes (with boron nitride particles as the thermally conductive filler) as well as polyethylene glycol (PEG) based thermal pastes were developed and evaluated. The optimum volume fractions of BN in sodium silicate based pastes and PEG based pastes were 16% and 18% respectively. The contribution of Li+ ions to the thermal contact conductance in the PEG-based paste was confirmed. For electrical contacts, the relationship between the mechanical reliability and electrical reliability of solder/copper and silver-epoxy/copper joints was addressed. Mechanical pull-out testing was conducted on solder/copper and silver-epoxy/copper joints, while the contact electrical resistivity was measured. Cleansing of the copper surface was more effective for the reliability of silver-epoxy/copper joint than that of solder/copper joint. For sealing contacts, this work evaluated flexible graphite as an electromagnetic shielding gasket material. Flexible graphite was found to be at least comparable to conductive filled silicone (the state of the art) in terms of the shielding effectiveness. The conformability of flexible graphite with its mating metal surface under repeated compression was characterized by monitoring the contact electrical resistance, as the conformability is important to both electromagnetic scaling and fluid waling using flexible graphite. For mechanical contacts, this work focused on the correlation of the interface structure (such as elastic

  15. Pump

    International Nuclear Information System (INIS)

    Mole, C.J.

    1983-01-01

    An electromagnetic pump for circulating liquid -metal coolant through a nuclear reactor wherein opposite walls of a pump duct serve as electrodes to transmit current radially through the liquid-metal in the ducts. A circumferential electric field is supplied to the liquid-metal by a toroidal electromagnet which has core sections interposed between the ducts. The windings of the electromagnet are composed of metal which is superconductive at low temperatures and the electromagnet is maintained at a temperature at which it is superconductive by liquid helium which is fed through the conductors which supply the excitation for the electromagnet. The walls of the ducts joining the electrodes include metal plates insulated from the electrodes backed up by insulators so that they are capable of withstanding the pressure of the liquid-metal. These composite wall structures may also be of thin metal strips of low electrical conductivity backed up by sturdy insulators. (author)

  16. Recovery Act: Hydroelectric Facility Improvement Project - Replacement of Current Mechanical Seal System with Rope Packing System

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Jessica D.

    2013-05-29

    had an IMD installed. This further study of facilities revealed that the implementation of the project as originally described, while proving the benefits described in the original grant application, would likely intensify sand intake. Increased sand intake would lead to an increase in required shutdowns for maintenance and more rapid depreciation of key equipment which would result in a loss of generation capacity. A better solution to the problem, one that continued to meet the criteria for the original grant and ARRA standards, was developed. A supporting day trip was planned to visit other facilities located on the Arkansas River to determine how they were coping with the same strong amounts of sand, silt, and debris. Upon returning from the trip to other Arkansas River facilities it was extremely clear what direction to go in order to most efficiently address the issue of generator capacity and efficiency. Of the plants visited on the Arkansas River, every one of them was running what is called a rope packing shaft sealing system as opposed to mechanical shaft seals, which the facility was running. Rope packing is a time proven sealing method that has been around for centuries. It has proved to perform very well in dirty water situations just like that of the Arkansas River. In April of 2012 a scope change proposal was submitted to the DOE for approval. In August of 2012 the City received word that the change of scope had been approved. Plans were immediately set in motion to begin the conversion from mechanical seals to a packing box at the facility. Contractors arrived on October 1st, 2012 and the project team began unwatering the unit for disassembly. The seal conversion was completed on February 29th, 2013 with start-up of the unit. Further testing and adjusting was done throughout the first two weeks of March.

  17. Hydro-mechanical modelling of a shaft seal in crystalline and sedimentary host rock media using COMSOL

    Energy Technology Data Exchange (ETDEWEB)

    Priyanto, D.G. [Atomic Energy of Canada Limited, Pinawa, MB (Canada)

    2011-07-01

    Shaft seals are components of the engineered barriers system considered for closure of a Deep Geological Repository (DGR). These seals would be installed in strategic locations of the shafts, where significant fracture zones (FZ) are located and would serve to limit upward flow of groundwater from the repository level towards the surface. This paper presents the results of hydro-mechanical (HM) numerical modelling exercises to evaluate the performance of a shaft seal using a finite element computer code, COMSOL. This study considered a variety of host geological media as part of generic assessments of system evolution in a variety of environments including five hypothetical sedimentary and crystalline host rock conditions. Four simulations of a shaft seal in different sedimentary rocks were completed, including: shale with isotropic permeability; shale with anisotropic permeability; limestone with isotropic permeability; and limestone with anisotropic permeability. The other simulation was a shaft seal in crystalline rock with isotropic permeability. Two different stages were considered in these HM simulations. Stages 1 and 2 simulated the groundwater flow into an open shaft and after installation of shaft sealing components, respectively. As expected, the models were able to simulate that installation of the shaft seal limits groundwater flow through the shaft. Based on the conditions and assumptions defined for the host media and fracture features examined in this study, the following conclusions can be drawn from the results of the numerical modelling exercises. A shaft that remained open for a longer time was beneficial with respect to delaying of seal saturation because it could reduce the groundwater flow rate around the fracture zone. Delaying saturation time indicates slower movement of the groundwater or other substances that may be transported with the groundwater. The core of the shaft seal (i.e., the bentonite-sand mixture (BSM)) became fully saturated

  18. Lubrication and thermal characteristics of mechanical seal with porous surface based on cavitation

    Science.gov (United States)

    Huilong, Chen; Muzi, Zuo; Tong, Liu; Yu, Wang; Cheng, Xu; Qiangbo, Wu

    2014-04-01

    The theory model of mechanical seals with laser-textured porous surface (LST-MS) was established. The liquid film of LST-MS was simulated by the Fluent software, using full cavitation model and non-cavitation model separately. Dynamic mesh technique and relationship between viscosity and temperature were applied to simulate the internal flow field and heat characteristics of LST-MS, based on the more accurate cavitation model. Influence of porous depth ratio porous diameter ɛ and porous density SP on lubrication performance and the variation of lubrication and thermal properties with shaft speed and sealing pressure were analyzed. The results indicate that the strongest hydrodynamic pressure effect and the biggest thickness of liquid film are obtained when ɛ and SP are respectively about 0.025 and 0.5 which were thought to be the optimum value. The frictional heat leads to the increase of liquid film temperature and the decrease of medium viscosity with the shaft speed increasing. The hydrodynamic pressure effect increases as shaft speed increasing, however it decreases as the impact of frictional heat.

  19. Effect of Nb2O5 doping on improving the thermo-mechanical stability of sealing interfaces for solid oxide fuel cells.

    Science.gov (United States)

    Zhang, Qi; Du, Xinhang; Tan, Shengwei; Tang, Dian; Chen, Kongfa; Zhang, Teng

    2017-07-13

    Nb 2 O 5 is added to a borosilicate sealing system to improve the thermo-mechanical stability of the sealing interface between the glass and Fe-Cr metallic interconnect (Crofer 22APU) in solid oxide fuel cells (SOFCs). The thermo-mechanical stability of the glass/metal interface is evaluated experimentally as well as by using a finite element analysis (FEA) method. The sealing glass doped with 4 mol.% Nb 2 O 5 shows the best thermo-mechanical stability, and the sealing couple of Crofer 22APU/glass/GDC (Gd 0.2 Ce 0.8 O 1.9 ) remains intact after 50 thermal cycles. In addition, all sealing couples show good joining after being held at 750 °C for 1000 h. Moreover, the possible mechanism on the thermo-mechanical stability of sealing interface is investigated in terms of stress-based and energy-based perspectives.

  20. 40 CFR 65.116 - Quality improvement program for pumps.

    Science.gov (United States)

    2010-07-01

    ... (for example, piston, horizontal or vertical centrifugal, gear, bellows); pump manufacturer; seal type and manufacturer; pump design (for example, external shaft, flanged body); materials of construction... program. (4) Pump or pump seal inspection. The owner or operator shall inspect all pumps or pump seals...

  1. Numerical and experimental investigation on labyrinth seal mechanism for bypass flow reduction in prismatic VHTR core

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Su-Jong, E-mail: paper80@snu.ac.r [Department of Nuclear Engineering, Seoul National University, San 56-1, Daehak-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of); Lee, Jeong-Hun [Department of Nuclear Engineering, Seoul National University, San 56-1, Daehak-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of); Lee, Sang-Moon [Department of Mechanical Engineering, Inha University, 253 Yonghyun-Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of); Tak, Nam-il; Kim, Min-Hwan [Korea Atomic Energy Research Institute, 150-1 Deokjin-Dong, 1045 Daedeokdaero, Yuseong, Daejeon 305-353 (Korea, Republic of); Kim, Kwang-Yong [Department of Mechanical Engineering, Inha University, 253 Yonghyun-Dong, Nam-Gu, Incheon 402-751 (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University, San 56-1, Daehak-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of)

    2013-09-15

    Highlights: • Bypass flow reduction method was developed by applying labyrinth seal mechanism. • Grooves on side walls of replaceable reflector block were made. • Design of the grooved wall of the reflector block was optimized by the RSA method. • The flow resistance of the bypass gap rose from 18.04 to 26.24 by the optimization. • The bypass ratios at the inlet and outlet were reduced by 36.19% and 14.66%, respectively. -- Abstract: Core bypass flow in block type very high temperature reactor (VHTR) occurs due to the inevitable gaps between the hexagonal core blocks for the block installation and refueling. Since the core bypass flow affects the reactor safety and efficiency, it should be minimized to enhance the core thermal margin. In this regard, the core bypass flow reduction method applying the labyrinth seal mechanism was developed and optimized by using the single-objective shape optimization method. Response surface approximation (RSA) method was adopted as the optimization method. Side wall of the replaceable reflector block was redesigned and response surface approximate model was adopted to optimize the shape of the reflector wall. Computational fluid dynamics (CFD) analyses were carried out not only to assess the limitation of existing method of bypass flow reduction, but also to optimize the design of a newly developed reduction method. The experiment with Seoul National University (SNU) multi-block experimental facility was performed to demonstrate the performance of the reduction method. It was found that the effect of the existing bypass flow reduction method by sealing the bypass gap exit was restricted nearby the lower region of the core. However, the flow resistance factor of the bypass gap increased from 18.04 to 26.24 by the optimized reduction method. The results of the performance test showed that the bypass flow distribution was reduced throughout the entire core regions. The bypass flow ratios at the inlet and the outlet were

  2. Self-sealing of fractures in argillaceous formations - Evidence, mechanisms and implications for performance assesment (an NEA Clay Club project)

    International Nuclear Information System (INIS)

    Bock, H.; Dehandschutter, B.; Martin, C.D.; Mazurek, M.; Haller, A. de; Skoczylas, F.; Davy, C.

    2010-01-01

    of veins and in the sealing of hard fissile clay-stones. Relating to a time scale of the order of 100 years, evidence for self-sealing of natural and induced fractures has been found in old traffic tunnels. Numerous laboratory and URL experiments have shown that, in soft and moderately indurated formations, self-sealing commonly occurs within a time span of months up to a few years. The project has advanced the knowledge on the general geo-conditions (G) (geologic, hydrogeological, geochemical, geotechnical) which must prevail in deep geological repositories that argillaceous formations become amenable to self-sealing. The following seven sealing mechanisms (M) were considered on their respective sealing potential of argillaceous formations in repository conditions: - M-1 Sealing of rock matrix by additional compaction (porosity reduction) - M-2 Closure of fractures by increased effective normal stress sn' - M-3 Contraction of fractures when subjected to shear - M-4 Creep of the fracture wall material towards the open fracture space - M-5 Swelling of the fracture wall material - M-6 Slaking of the fracture wall material (both body and surface slaking) - M-7 Mineral precipitation onto fracture walls. With regard to PA relevance, each self-sealing issue was finally classified in line with a scheme developed within the FEPCAT approach. It is concluded that the scientific knowledge on self-sealing has progressed to a level which, for soft and slight to moderately indurated argillaceous formations, could justify the inclusion of sealing processes in the performance assessment (PA) of deep geological repositories. (authors)

  3. Literature survey, numerical examples, and recommended design studies for main-coolant pumps. Final report

    International Nuclear Information System (INIS)

    Allaire, P.E.; Barrett, L.E.

    1982-06-01

    This report presents an up-to-date literature survey, examples of calculations of seal forces or other pump properties, and recommendations for future work pertaining to primary coolant pumps and primary recirculating pumps in the nuclear power industry. Five main areas are covered: pump impeller forces, fluid annuli, bearings, seals, and rotor calculations. The main conclusion is that forces in pump impellers is perhaps the least well understood area, seals have had some good design work done on them recently, fluid annuli effects are being discussed in the literature, bearing designs are fairly well known, and rotor calculations have been discussed widely in the literature. It should be noted, however, that usually the literature in a given area is not applied to pumps in nuclear power stations. The most immediate need for a combined theoretical and experimental design capability exists in mechanical face seals

  4. Advanced design of the Mechanical Tritium Pumping System for JET DTE2

    International Nuclear Information System (INIS)

    Giegerich, T.; Bekris, N.; Camp, P.; Day, Chr.; Gethins, M.; Lesnoy, S.; Luo, X.; Müller, R.; Ochoa, S.; Pfeil, P.; Smith, R.; Strobel, H.; Stump, H.

    2016-01-01

    For tritium processing in JET during the next Deuterium-Tritium-Experiment (DTE2), a fully tritium compatible and continuously working vacuum pumping system has been developed. This pump train will be used as roughing pump to cover a pressure regime between 10 −1 Pa and ambient pressure. Therefore, a two-stage liquid ring pump in combination with a booster vapor diffusion pump will be applied. In this paper, a close-to-final design of the pumps is being described. Finite element (FEM) simulation results of components where high mechanical stresses due to thermal gradients are expected are presented. Furthermore, the final design of the control and data acquisition system is shown and explained.

  5. Advanced design of the Mechanical Tritium Pumping System for JET DTE2

    Energy Technology Data Exchange (ETDEWEB)

    Giegerich, T., E-mail: thomas.giegerich@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Technical Physics, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Bekris, N. [EUROfusion Program Management Unit (PMU), ITER Physics Department, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Camp, P. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Day, Chr. [Karlsruhe Institute of Technology (KIT), Institute for Technical Physics, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Gethins, M.; Lesnoy, S. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Luo, X.; Müller, R.; Ochoa, S.; Pfeil, P. [Karlsruhe Institute of Technology (KIT), Institute for Technical Physics, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Smith, R. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Strobel, H.; Stump, H. [Karlsruhe Institute of Technology (KIT), Institute for Technical Physics, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-11-01

    For tritium processing in JET during the next Deuterium-Tritium-Experiment (DTE2), a fully tritium compatible and continuously working vacuum pumping system has been developed. This pump train will be used as roughing pump to cover a pressure regime between 10{sup −1} Pa and ambient pressure. Therefore, a two-stage liquid ring pump in combination with a booster vapor diffusion pump will be applied. In this paper, a close-to-final design of the pumps is being described. Finite element (FEM) simulation results of components where high mechanical stresses due to thermal gradients are expected are presented. Furthermore, the final design of the control and data acquisition system is shown and explained.

  6. Core disruptive accident margin seal

    International Nuclear Information System (INIS)

    Golden, M.P.

    1979-01-01

    An apparatus for sealing the annulus defined within a substantially cylindrical rotatable riser assembly and plug combination of a nuclear reactor closure head is described. The apparatus comprises an inflatable sealing mechanism disposed in one portion of the riser assembly near the annulus such that upon inflation the sealing mechanism is radially actuated against the other portion of the riser assembly thereby sealing the annulus. The apparatus further comprises a connecting mechanism which places one end of the sealing mechanism in fluid communication with the reactor cover gas so that overpressurization of the reactor cover gas will increase the radial actuation of the sealing mechanism thus enhancing sealing of the annulus

  7. A rotordynamic analysis of circumferentially-grooved pump seals based on a three-control-volume theory

    International Nuclear Information System (INIS)

    Ha, Tae Woong; Lee, An Sung

    2000-01-01

    In this paper the leakage prediction and rotordynamic analysis of an annular seal with a smooth rotor and circumferentially grooved stator are performed based on a three-control-volume theory. The present analysis is validated by comparing with the experimental data of Iwatsubo and Sheng and theoretical results suggested by Marquette and Childs. For the leakage prediction the present analysis shows a good agreement with Marquette and Childs' result and a qualitation agreement with Iwatsubo and Shengs' experimental data. Direct and cross-coupled stiffness coefficients show closer agreement with the experimental values than those of Marquette and Childs. However, direct damping coefficient shows greater discrepancy from the experimental value than Marquette and Childs'

  8. Inward H+ pump xenorhodopsin: Mechanism and alternative optogenetic approach

    Czech Academy of Sciences Publication Activity Database

    Shevchenko, V.; Mager, T.; Kovalev, K.; Polovinkin, V.; Alekseev, A.; Juettner, J.; Chizhov, I.; Bamann, C.; Vavourakis, C.; Ghai, Rohit; Gushchin, I.; Borshchevskiy, V.; Rogachev, A.; Melnikov, I.; Popov, A.; Balandin, T.; Rodriguez-Valera, F.; Manstein, D. J.; Bueldt, G.; Bamberg, E.; Gordeliy, V.

    2017-01-01

    Roč. 3, č. 9 (2017), č. článku e1603187. ISSN 2375-2548 R&D Projects: GA ČR(CZ) GA17-04828S Institutional support: RVO:60077344 Keywords : sensory rhodopsin * membrane-proteins * purple membrane * proton pump Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology

  9. Mechanical design of the recirculating, terminal pumping in the Lund ...

    Indian Academy of Sciences (India)

    An extremly limited space in the high voltage terminal and the absence of electrical power in the terminal, forced us to provide a unique design for the installation and powering of the new pumps. Details of the technical design, as well as experience of the use of the new system for accelerator mass spectrometry, will be ...

  10. Technical damage analysis of a mechanical seal based on thermal waves and correlated with EDX and SEM

    Science.gov (United States)

    Haj-Daoud, A.; Katscher, U.; Bein, B. K.; Pelzl, J.; Bach, H.; Oswald, W.

    1999-03-01

    A seal which had been in contact with sea water of high salt concentration, has been analysed, in order to characterize the erosion effects and throw light on the erosion mechanisms. The measured effective thermal depth profiles have been interpreted phenomenologically and have been correlated with energy-dispersive X-ray microanalysis (EDX) and scanning electron microscopy (SEM).

  11. Novel Seals and Specialty Component Attachment Mechanisms for Respiratory Protection System (RESPO 21)

    Science.gov (United States)

    1992-10-01

    use in a warm clima ,, Ao~ hccts rovcf rur % Cr. ugc na il oimnte nber o prna in ntting materil coupled to skin separat lc~oe tect wocn f h~i. Sae...the mask shell on the side vagina and cervix of a woman in labor , electrode meam &h thereof facing the face. said sealing tube having a fixed sealed

  12. FEATURES OF LONG-TERM MECHANICAL CIRCULATORY SUPPORT WITH CONTINUOUS-FLOW PUMP

    Directory of Open Access Journals (Sweden)

    G. P. Itkin

    2012-01-01

    Full Text Available In a review of the comparative analysis of methods and tools for long-term mechanical circulatory support with continuous flow and pulsatile flow implantable pumps. Particular attention is paid to the choice of the optimal modes of the operation of pumps based on the physical principles of the interaction between a the steady flow of blood to the pulsatile mechanics of the heart chambers. 

  13. Development of a reactor-coolant-pump monitoring and diagnostic system. Semi-annual progress report, December 1981-May 1982

    International Nuclear Information System (INIS)

    Morris, D.J.; Gabler, H.C.

    1982-10-01

    Reactor coolant (RC) pump seal failures have resulted in excessive leakage of primary coolant into reactor containment buildings. In some cases, high levels of airborne activity and surface contamination following these failures have necessitated extensive cleanup efforts and personnel radiation exposure. Unpredictable pump seal performance has also caused forced outages and frequent maintenance. The quality of operating data has been insufficient to allow proper evaluation of theoretical RC pump seal failure mechanisms. The RC pump monitoring and diagnostic system being developed and installed at Toledo Edison's Davis-Besse Nuclear Power Station will examine the relationship between seal failures and three other variables. This report describes system software and hardware development, testing, and installation work performed during the period of December 1981 through May 1982. Also described herein is a parallel effort being conducted by a B and W/Byron Jackson/Utility group to improve pump seal performance

  14. Mosquitoes drink with a burst in reserve: explaining pumping behavior with a fluid mechanics model

    Science.gov (United States)

    Chatterjee, Souvick; Socha, Jake; Stremler, Mark

    2014-11-01

    Mosquitoes drink using a pair of in-line pumps in the head that draw liquid food through the proboscis. Experimental observations with synchrotron x-ray imaging indicate two modes of drinking: a predominantly occurring continuous mode, in which the cibarial and pharyngeal pumps expand cyclically at a constant phase difference, and an occasional, isolated burst mode, in which the pharyngeal pump expansion is 10 to 30 times larger than in the continuous mode. We have used a reduced order model of the fluid mechanics to hypothesize an explanation of this variation in drinking behavior. Our model results show that the continuous mode is more energetically efficient, whereas the burst mode creates a large pressure drop across the proboscis, which could potentially be used to clear blockages. Comparisons with pump knock-out configurations demonstrate different functional roles of the pumps in mosquito feeding. This material is based upon work supported by the NSF under Grant No. #0938047.

  15. Experimental evaluation of mechanical heart support system based on viscous friction disc pump

    Directory of Open Access Journals (Sweden)

    A. M. Chernyavskiy

    2017-01-01

    Full Text Available Aim. Experimental evaluation of the viscous friction disk pump efficiency, studying the relationship between inter-disk clearance and sizes of input and output ports and pump performance parameters.Materials and methods. To assess the characteristics and to optimize the disk friction pump design the pump model and experimental stand were created. Pump dimensions were set on the basis of medical and biological requirements for mechanical heart support systems and with due consideration of the experimental studies of our colleagues from Pennsylvania. Flow volume of the working fluid was measured by float rotameter Krohne VA-40 with measurement error of not more than 1%. The pressure values in the hydrodynamic circuit were measured using a monitor manufactured by Biosoft-M. Expansion device allowed changing the flow resistance of the system simulating the total peripheral resistance of the circulatory system.Results. Linear direct correlation between the pump performance and the pressure drop of liquid being created at the inlet and outlet of the pump was obtained. The required flow rate (5–7 l/min and pressure (90–100 mmHg were reached when the rotor speed was in the range of 2500–3000 rev/min. It has been shown that the increase of the inlet diameter to 15 mm has not resulted in a significant increase in the pump performance, and that the highest efficiency values can be obtained for the magnitude of inter-disk gap of 0.4–0.5 mm.Conclusion. Designed and manufactured experimental disc pump model for pumping fluid has showed the fundamental possibility to use this model as a system for mechanical support of the heart.

  16. Seal containment system

    International Nuclear Information System (INIS)

    Kugler, R.W.; Gerkey, K.S.; Kasner, W.H.

    1978-01-01

    An automated system for transporting nuclear fuel elements between fuel element assembly stations without contaminating the area outside the sealed assembly stations is described. The system comprises a plurality of assembly stations connected together by an elongated horizontal sealing mechanism and an automatic transport mechanism for transporting a nuclear fuel element in a horizontal attitude between the assembly stations while the open end of the fuel element extends through the sealing mechanism into the assembly station enclosure. The sealing mechanism allows the fuel element to be advanced by the transport mechanism while limiting the escape of radioactive particles from within the assembly station enclosure. 4 claims, 6 figures

  17. Plasma chemistry of the sealed-off slab CO laser active medium pumped by radio-frequency discharge with liquid-nitrogen-cooled electrodes

    Science.gov (United States)

    Ionin, A. A.; Kozlov, A. Yu.; Seleznev, L. V.; Sinitsyn, D. V.

    2017-09-01

    The long-term time behavior of the output power of a sealed-off cryogenic slab CO laser pumped by a repetitively pulsed RF discharge and operating on the overtone (λ = 2.6-3.5 μm) vibrational-rotational transitions of the CO molecule was studied experimentally. It is shown that adding of an anomalously large amount of oxygen (up to 50% with respect to the CO concentration) to the initial gas mixture CO : He = 1 : 10 leads to a manyfold (by several tens of times) increase in the duration of the laser operating cycle (until lasing failure due to the degradation of the active medium). In this case, the laser life-time without replacement of the active medium reaches 105-106 pulses. Using various diagnostics (including luminescence spectroscopy and IR and UV absorption spectroscopy), regularities in the time-behavior of the concentrations of the main component of the active medium (CO molecules) and the products of plasmachemical reactions (O3, CO2) generated in the discharge gap during the laser operating cycle are revealed. Time correlation between the characteristics of the active medium and the laser output power are analyzed. A phenomenological approach to describing the entirety of plasmachemical, purely chemical, gas-dynamic, and diffusion processes determining the behavior of the laser output characteristics throughout the laser operating cycle is offered.

  18. Development of a reactor coolant pump monitoring and diagnostic system. Progress report, June 1982-July 1983

    International Nuclear Information System (INIS)

    Morris, D.J.; Sommerfield, G.A.

    1983-12-01

    The quality of operating data has been insufficient to allow proper evaluation of theoretical reactor coolant (RC) pump seal failure mechanisms. The RC pump monitoring and diagnostic system being developed and installed at Toledo Edison's Davis-Besse Nuclear Power Station will examine the relationship between seal failures and three other variables: The rotordynamic behavior of the pump shaft and related components, the internal conditions and performance of the seals, and the plant or pump operating environment (controlled by the plant operator). Interrelationships between these areas will be developed during the data collection task, scheduled to begin in October 1983 (for a full fuel cycle at Davis-Besse). This report describes system software and hardware development, testing, and installation work performed during this period. Also described is a parallel effort being conducted by a B and W/Byron Jackson/Utility group to improve pump seal performance

  19. Design of a Mechanical NaK Pump for Fission Space Power Systems

    Science.gov (United States)

    Mireles, Omar R.; Bradley, David; Godfroy, Thomas

    2010-01-01

    Alkali liquid metal cooled fission reactor concepts are under development for mid-range spaceflight power requirements. One such concept utilizes a sodium-potassium eutectic (NaK) as the primary loop working fluid. Traditionally, linear induction pumps have been used to provide the required flow and head conditions for liquid metal systems but can be limited in performance. This paper details the design, build, and check-out test of a mechanical NaK pump. The pump was designed to meet reactor cooling requirements using commercially available components modified for high temperature NaK service.

  20. An implantable centrifugal blood pump for long term circulatory support.

    Science.gov (United States)

    Yamazaki, K; Litwak, P; Kormos, R L; Mori, T; Tagusari, O; Antaki, J F; Kameneva, M; Watach, M; Gordon, L; Umezu, M; Tomioka, J; Koyanagi, H; Griffith, B P

    1997-01-01

    A compact centrifugal blood pump was developed as an implantable left ventricular assist system. The impeller diameter is 40 mm and the pump dimensions are 55 x 64 mm. This first prototype was fabricated from titanium alloy, resulting in a pump weight of 400 g including a brushless DC motor. Weight of the second prototype pump was reduced to 280 g. The entire blood contacting surface is coated with diamond like carbon to improve blood compatibility. Flow rates of over 7 L/min against 100 mmHg pressure at 2,500 rpm with 9 W total power consumption have been measured. A newly designed mechanical seal with a recirculating purge system ("Cool-Seal") is used as a shaft seal. In this seal system, seal temperature is kept under 40 degrees C to prevent heat denaturation of blood proteins. Purge fluid also cools the pump motor coil and journal bearing. The purge fluid is continuously purified and sterilized by an ultrafiltration filter incorporated into the paracorporeal drive console. In vitro experiments with bovine blood demonstrated an acceptably low hemolysis rate (normalized index of hemolysis = 0.005 +/- 0.002 g/100 L). In vivo experiments are currently ongoing using calves. Via left thoracotomy, left ventricular apex-descending aorta bypass was performed utilizing a PTFE (Polytetrafluoroethylene) vascular graft, with the pump placed in the left thoracic cavity. In two in vivo experiments, pump flow rate was maintained at 5-8 L/min, and pump power consumption remained stable at 9-10 W. All plasma free hemoglobin levels were measured at < 15 mg/dl. The seal system has demonstrated good seal capability with negligible purge fluid consumption (< 0.5 ml/ day). Both animals remain under observation after 162 and 91 days of continuous pump function.

  1. Maintenance of reactor recirculation pumps [Paper No.: II-1

    International Nuclear Information System (INIS)

    Ansari, M.A.; Bhat, K.P.

    1981-01-01

    At Tarapur Atomic Power Station (TAPS), two reactor recirculation pumps are provided, one each for the two reactor units. The performance of pumps has been uniformly good; however, leakage through the cartridge type, two stage, mechanical seals which are installed on these pumps was encountered on few occasions. The paper describes the leakage problems, identification of certain design deficiencies and rectification carried out at TAPS for overcoming these problems. (author)

  2. Pump selection and application in a pressurized water reactor electric generating plant

    International Nuclear Information System (INIS)

    Kitch, D.M.

    1985-01-01

    Various pump applications utilized in a nuclear pressurized water reactor electric generating plant are described. Emphasis is on pumps installed in the auxiliary systems of the primary nuclear steam supply system. Hydraulic and mechanical details, the ASME Code (Nuclear Design), materials, mechanical seals, shaft design, seismic qualification, and testing are addressed

  3. Housing maintenance of primary cooling pump I of Kartini reactor

    International Nuclear Information System (INIS)

    Agung Nugroho; Wahyu Imam W

    2013-01-01

    Housing maintenance of Primary Cooling Pump have been done with purpose to enhance capability of fluid block and stopping leakage. The procedures of modification are follow: Replace mechanical seal type Nock 560 – 1 ½'' by mechanical seal type Nock 560 - 38, modification gland plate/housing with to lathe the diameter of gland plate/housing from diameter of 54 mm to 60 mm, in size setting-up mechanical seal, alignment and then function test. The result of the modification are: mechanical seal has been installed, housing has been modified, and the leakage of primary cooling water has been repaired and operated properly. Conclusion of the maintenance are the primary cooling water pump is working well, because the primary cooling water is not leakage any more. (author)

  4. Pump characteristics and applications

    CERN Document Server

    Volk, Michael

    2013-01-01

    Providing a wealth of information on pumps and pump systems, Pump Characteristics and Applications, Third Edition details how pump equipment is selected, sized, operated, maintained, and repaired. The book identifies the key components of pumps and pump accessories, introduces the basics of pump and system hydraulics as well as more advanced hydraulic topics, and details various pump types, as well as special materials on seals, motors, variable frequency drives, and other pump-related subjects. It uses example problems throughout the text, reinforcing the practical application of the formulae

  5. Supercritical waste oxidation pump investigation

    International Nuclear Information System (INIS)

    Thurston, G.; Garcia, K.

    1993-02-01

    This report investigates the pumping techniques and pumping equipment that would be appropriate for a 5,000 gallon per day supercritical water oxidation waste disposal facility. The pumps must boost water, waste, and additives from atmospheric pressure to approximately 27.6 MPa (4,000 psia). The required flow ranges from 10 gpm to less than 0.1 gpm. For the higher flows, many commercial piston pumps are available. These pumps have packing and check-valves that will require periodic maintenance; probably at 2 to 6 month intervals. Several commercial diaphragm pumps were also discovered that could pump the higher flow rates. Diaphragm pumps have the advantage of not requiring dynamic seals. For the lower flows associated with the waste and additive materials, commercial diaphragm pumps. are available. Difficult to pump materials that are sticky, radioactive, or contain solids, could be injected with an accumulator using an inert gas as the driving mechanism. The information presented in this report serves as a spring board for trade studies and the development of equipment specifications

  6. RND-type Drug Efflux Pumps from Gram-negative bacteria: Molecular Mechanism and Inhibition

    Directory of Open Access Journals (Sweden)

    Henrietta eVenter

    2015-04-01

    Full Text Available Drug efflux protein complexes confer multidrug resistance on bacteria by transporting a wide spectrum of structurally diverse antibiotics. Moreover, organisms can only acquire resistance in the presence of an active efflux pump. The substrate range of drug efflux pumps is not limited to antibiotics, but it also includes toxins, dyes, detergents, lipids and molecules involved in quorum sensing; hence efflux pumps are also associated with virulence and biofilm formation. Inhibitors of efflux pumps are therefore attractive compounds to reverse multidrug resistance and to prevent the development of resistance in clinically relevant bacterial pathogens. Recent successes on the structure determination and functional analysis of the AcrB and MexB components of the AcrAB-TolC and MexAB-OprM drug efflux systems as well as the structure of the fully assembled, functional triparted AcrAB-TolC complex significantly contributed to our understanding of the mechanism of substrate transport and the options for inhibition of efflux. These data, combined with the well-developed methodologies for measuring efflux pump inhibition, could allow the rational design and subsequent experimental verification of potential efflux pump inhibitors. In this review we will explore how the available biochemical and structural information can be translated into the discovery and development of new compounds that could reverse drug resistance in Gram-negative pathogens. The current literature on efflux pump inhibitors will also be analysed and the reasons why no compounds have yet progressed into clinical use will be explored.

  7. Mechanism of magnetic liquid flowing in the magnetic liquid seal gap of reciprocating shaft

    Science.gov (United States)

    Li, Decai; Xu, Haiping; He, Xinzhi; Lan, Huiqing

    2005-03-01

    In order to solve the problems that exist in the magnetic liquid seal of reciprocating shaft, we have set up an experimental facility, which composes a camera, microscope, step-by-step motor, pin roller screw, reciprocating motion shaft, pole pieces, permanent magnet and the magnetic liquid in the seal gap. Through the optical technology and image process of the experimental facility, we have studied the magnetic liquid flow in the seal gap when the reciprocating shaft moves with different velocities and strokes. This study specially concentrates on: (1) the regular pattern of such flow; (2) the loss quantity of magnetic liquid caused by the reciprocating motion shaft; (3) the failure reasons of this magnetic liquid seal; and (4) the design of a new structure for the magnetic liquid seal of reciprocating shaft. The application indicates that the new structure is very effective in some occasions. The new structure was accepted as the state patent in 2001 and authenticated as the achievement in the scientific research in 2002.

  8. Mechanism of magnetic liquid flowing in the magnetic liquid seal gap of reciprocating shaft

    International Nuclear Information System (INIS)

    Li Decai; Xu Haiping; He Xinzhi; Lan Huiqing

    2005-01-01

    In order to solve the problems that exist in the magnetic liquid seal of reciprocating shaft, we have set up an experimental facility, which composes a camera, microscope, step-by-step motor, pin roller screw, reciprocating motion shaft, pole pieces, permanent magnet and the magnetic liquid in the seal gap. Through the optical technology and image process of the experimental facility, we have studied the magnetic liquid flow in the seal gap when the reciprocating shaft moves with different velocities and strokes. This study specially concentrates on: (1) the regular pattern of such flow; (2) the loss quantity of magnetic liquid caused by the reciprocating motion shaft; (3) the failure reasons of this magnetic liquid seal; and (4) the design of a new structure for the magnetic liquid seal of reciprocating shaft. The application indicates that the new structure is very effective in some occasions. The new structure was accepted as the state patent in 2001 and authenticated as the achievement in the scientific research in 2002

  9. Residual heat removal pump and low pressure safety injection pump retrofit program

    International Nuclear Information System (INIS)

    Dudiak, J.G.; McKenna, J.M.

    1992-01-01

    Residual Heat Removal (RHR) and low pressure safety injection (LPSI) pumps installed in pressurized water-to-reactor power plants are used to provide low-head safety injection in the event of loss of coolant in the reactor coolant system. Because these pumps are subjected to rather severe temperature and pressure transients, the majority of pumps installed in the RHR service are vertical pumps with a single stage impeller. Typically the pump impeller is mounted on an extended motor shaft (close-coupled configuration) and a mechanical seal is employed at the pump end of the shaft. Traditionally RHR and LPSI pumps have been a significant maintenance item for many utilities. Periodic mechanical seal of motor bearing replacement often is considered routine maintenance. The closed-coupled pump design requires disassembly of the casing cover from the lower pump casing while performing these routine maintenance tasks. This paper introduces a design modification developed to convert the close-coupled RHR and LPSI pumps to a coupled configuration

  10. Reinforced seal component

    International Nuclear Information System (INIS)

    Jeanson, G.M.; Odent, R.P.

    1980-01-01

    The invention concerns a seal component of the kind comprising a soft sheath and a flexible reinforcement housed throughout the entire length of the sheath. The invention enables O ring seals to be made capable of providing a radial seal, that is to say between two sides or flat collars of two cylindrical mechanical parts, or an axial seal, that is to say between two co-axial axisymmetrical areas. The seal so ensured is relative, but it remains adequately sufficient for many uses, for instance, to ensure the separation of two successive fixed blading compartments of axial compressors used in gas diffusion isotope concentration facilities [fr

  11. Liquid metals pumping

    International Nuclear Information System (INIS)

    Le Frere, J.P.

    1984-01-01

    Pumps used to pump liquid metals depend on the liquid metal and on the type of application concerned. One deals more particularly with electromagnetic pumps, the main pumps used with mechanical pumps. To pump sodium in the nuclear field, these two types of pumps are used; the pumps of different circuits of Super Phenix are presented and described [fr

  12. Pump safety device

    International Nuclear Information System (INIS)

    Timmermans, Francis; Vandervorst, Jean.

    1981-01-01

    Safety device for longitudinally leak proofing the shaft of a pump in the event of the fracture of the dynamic seal separating the pump fluid high pressure chamber from the low pressure chamber. It is designed for fitting to the primary pumps of nuclear reactors. It includes a hollow cyclindrical piston located coaxially around the pump shaft and normally housed in a chamber provided for this purpose in the fixed housing of the dynamic seal, and means for moving this piston coaxially so as to compress a safety O ring between the shaft and the piston in the event of the dynamic seal failing [fr

  13. Electronically Controlled Mechanical Seal for Aerospace Applications -- Part 1: Design, Analysis, and Steady State Tests

    Science.gov (United States)

    Salant, Richard F.; Wolff, Paul; Navon, Samuel

    1994-01-01

    An electronically-controlled mechanial seal, for use as the purge gas seal in a liquid oxygen turbopump, has been designed, analyzed, and built. The thickness of the lubricating film between the faces is controlled by adjusting the coning of the carbon face. This is done by applying a voltage across a piezoelectric element to which the carbon face is bound. Steady state tests have shown that the leakage rate (and film thickness) can be adjusted over a substantial range, utilizing the available range of voltage.

  14. Electronically controled mechanical seal for aerospace applications -- Part 1: Design, analysis, and steady state tests

    Science.gov (United States)

    Salant, Richard F.; Wolff, Paul; Navon, Samuel

    1994-01-01

    An electronically-controlled mechanial seal, for use as the purge gas seal in a liquid oxygen turbopump, has been designed, analyzed, and built. The thickness of the lubricating film between the faces is controlled by adjusting the coning of the carbon face. This is done by applying a voltage across a piezoelectric element to which the carbon face is bound. Steady state tests have shown that the leakage rate (and film thickness) can be adjusted over a substantial range, utilizing the available range of voltage.

  15. Maintenance experience on reactor recirculation pumps at Tarapur Atomic Power Station

    International Nuclear Information System (INIS)

    Singh, A.K.

    1995-01-01

    Reactor recirculation pumps at Tarapur Atomic Power Station (TAPS) are vertical, single stage centrifugal pumps having mechanical shaft seals and are driven by vertical mounted 3.3 kV, 3 phase, 1500 h.p. electric motors. During these years of operation TAPS has gained enough experience and expertise on the maintenance of reactor recirculation pumps which are dealt in this article. Failure of mechanical shaft seals, damage on pump carbon bearings, motor winding insulation failures and motor shaft damage have been the main areas of concern on recirculation pump. A detailed procedure step by step with component sketches has helped in eliminating errors during shaft seal assembly and installation. Pressure breakdown devices in seal assembly were rebuilt. Additional coolant water injection for shaft seal cooling was provided. These measures have helped in extending the reactor recirculation pump seal life. Pump bearing problems were mainly due to failure of anti-rotation pins and dowel pins of bearing assembly. These pins were redesigned and strengthened. Motor stator winding insulation failures were detected. Stator winding replacement program has been taken up on regular basis to avoid winding insulation failure due to aging. 3 refs., 2 tabs., 7 figs

  16. The operating reliability of the reactor coolant pump

    International Nuclear Information System (INIS)

    Grancy, W.

    1996-01-01

    There is a strong tendency among operating companies and manufacturers of nuclear power stations to further increase safety and operating availability of the plant and of its components. This applies also and particularly to reactor coolant pumps for the primary circuit of nuclear power stations of the type PWR. For 3 decades, ANDRITZ has developed and built such pumps and has attached great importance to the design of the complete pump rotor and of its essential surrounding elements, such as bearing and shaft seal. Apart from questions connected with design functioning of the pump there is one question of top priority: the operating reliability of the reactor coolant pump. The pump rotor (together with the rotor of the drive motor) is the only component within the primary system that permanently rotates at high speed during operation of the reactor plant. Many questions concerning design and configuration of such components cannot be answered purely theoretically, or they can only be answered partly. Therefore comprehensive development work and testing was necessary to increase the operating reliability of the pump rotor itself and of its surrounding elements. This contribution describes the current status of development and, as a focal point, discusses shaft sealing solutions elaborated so far. In this connection also a sealing system will be presented which aims for the first time at using a two-stage mechanical seal in reactor coolant pumps

  17. Ekman pumping mechanism driving precipitation anomalies in response to equatorial heating

    Science.gov (United States)

    Hamouda, Mostafa E.; Kucharski, Fred

    2018-03-01

    In this paper some basic mechanisms for rainfall teleconnections to a localized tropical sea surface temperature anomaly are re-visited using idealized AGCM aqua-planet simulations. The dynamical response is generally in good agreement with the Gill-Matsuno theory. The mechanisms analyzed are (1) the stabilization of the tropical troposphere outside the heating region, (2) the Walker circulation modification and (3) Ekman pumping induced by the low-level circulation responses. It is demonstrated that all three mechanisms, and in particular (2) and (3), contribute to the remote rainfall teleconnections. However, mechanism (3) best coincides with the overall horizontal structure of rainfall responses. It is shown by using the models boundary layer parameterization that low-level vertical velocities are indeed caused by Ekman pumping and that this induces vertical velocities in the whole tropospheric column through convective feedbacks. Also the modification of the responses due to the presence of idealized warm pools is investigated. It is shown that warm pools modify the speed of the tropical waves, consistent with Doppler shifts and are thus able to modify the Walker circulation adjustments and remote rainfall responses. The sensitivity of the responses, and in particular the importance of the Ekman pumping mechanism, to large variations in the drag coefficient is also tested, and it is shown that the Ekman pumping mechanism is robust for a wide range of values.

  18. Long-term animal experiments with an intraventricular axial flow blood pump.

    Science.gov (United States)

    Yamazaki, K; Kormos, R L; Litwak, P; Tagusari, O; Mori, T; Antaki, J F; Kameneva, M; Watach, M; Gordon, L; Mukuo, H; Umezu, M; Tomioka, J; Outa, E; Griffith, B P; Koyanagai, H

    1997-01-01

    A miniature intraventricular axial flow blood pump (IVAP) is undergoing in vivo evaluation in calves. The IVAP system consists of a miniature (phi 13.9 mm) axial flow pump that resides within the left ventricular (LV) chamber and a brushless DC motor. The pump is fabricated from titanium alloy, and the pump weight is 170 g. It produces a flow rate of over 5 L/min against 100 mmHg pressure at 9,000 rpm with an 8 W total power consumption. The maximum total efficiency exceeds 17%. A purged lip seal system is used in prototype no. 8, and a newly developed "Cool-Seal" (a low temperature mechanical seal) is used in prototype no. 9. In the Cool-Seal system, a large amount of purge flow is introduced behind the seal faces to augment convective heat transfer, keeping the seal face temperature at a low level for prevention of heat denaturation of blood proteins. The Cool-Seal system consumes < 10 cc purge fluid per day and has greatly extended seal life. The pumps were implanted in three calves (26, 30, and 168 days of support). The pump was inserted through a left thoracotomy at the fifth intercostal space. Two pursestring sutures were placed on the LV apex, and the apex was cored with a myocardial punch. The pump was inserted into the LV with the outlet cannula smoothly passing through the aortic valve without any difficulty. Only 5 min elapsed between the time of chest opening and initiation of pumping. Pump function remained stable throughout in all experiments. No cardiac arrhythmias were detected, even at treadmill exercise tests. The plasma free hemoglobin level remained in the acceptable range. Post mortem examination did not reveal any interference between the pump and the mitral apparatus. No major thromboembolism was detected in the vital organs in Cases 1 or 2, but a few small renal infarcts were detected in Case 3.

  19. A Rough Set Approach of Mechanical Fault Diagnosis for Five-Plunger Pump

    Directory of Open Access Journals (Sweden)

    Jiangping Wang

    2013-01-01

    Full Text Available Five-plunger pumps are widely used in oil field to recover petroleum due to their reliability and relatively low cost. Petroleum production is, to a great extent, dependent upon the running condition of the pumps. Closely monitoring the condition of the pumps and carrying out timely system diagnosis whenever a fault symptom is detected would help to reduce the production downtime and improve overall productivity. In this paper, a rough set approach of mechanical fault diagnosis is proposed to identify the five-plunger pump faults. The details of the approach, together with the basic concepts of the rough sets theory, are presented. The rough classifier is a set of decision rules derived from lower and upper approximations of decision classes. The definitions of these approximations are based on the indiscernibility relation in the set of objects. The spectrum features of vibration signals are abstracted as the attributes of the learning samples. The minimum decision rule set is used to classify technical states of the considered object. The diagnostic investigation is done on data from a five-plunger pump in outdoor conditions on a real industrial object. Results show that the approach can effectively identify the different operating states of the pump.

  20. Research on energy conversion mechanism of a screw centrifugal pump under the water

    International Nuclear Information System (INIS)

    Quan, H; Li, R N; Han, W; Cheng, X R; Shen, Z J; Su, Q M

    2013-01-01

    In order to research screw centrifugal pump impeller power capability and energy conversion mechanism, we used Navier-Stokes equation and standard k-ε equation turbulence model on the basis of the Euler equations to carry out screw centrifugal pump internal flow numerical simulation. This was explored by simulating specific design conditions; the medium is water, variation of speed and pressure of flow filed under the action of the impeller, and the screw centrifugal impeller shroud line and wheel line segment take monitoring sites. The monitoring points are between dynamic head and static head change to analyze the energy conversion capability along the impeller corners of screw centrifugal pump. The results show that the energy of fluid of the screw centrifugal pump is provided by spiral segment, the spiral segment in front of the impeller has played a multi-level role, it has significant reference value to research the energy conversion mechanism of screw centrifugal pump under solid-liquid two phase

  1. Reynolds number effects on gill pumping mechanics in mayfly nymphs

    Science.gov (United States)

    Sensenig, Andrew; Shultz, Jeffrey; Kiger, Ken

    2006-11-01

    Mayfly nymphs have an entirely aquatic life stage in which they frequently inhabit stagnant water. Nymphs have the capability to generate a ventilation current to compensate for the low oxygen level of the water by beating two linear arrays of plate-like gills that typically line the lateral edge of the abdomen. The characteristic Reynolds number associated with the gill motion changes with animal size, varying over a span of Re = 5 to 100 depending on age and species. The assumption that the system maintains optimal energetic efficiency leads to the prediction that animals transition from rowing to flapping mechanisms with increasing Re, while possibly utilizing a squeeze mechanism to a greater extent at lower Re. To investigate this hypothesis, we capture the motion of the gills through 3D imaging to investigate the effect of Reynolds number on the stroke patterns. PIV is utilized to assess flow rates and viscous dissipation. The effectiveness of the ventilation mechanism at each size has important consequences for the range of oxygen levels, and hence the habitat range, that can be tolerated by that size.

  2. Optical-response properties in an atom-assisted optomechanical system with a mechanical pump

    Science.gov (United States)

    Sun, Xue-Jian; Chen, Hao; Liu, Wen-Xiao; Li, Hong-Rong

    2017-05-01

    We investigate the optical-response properties of a coherent-mechanical pumped optomechanical system (OMS) coupled to a Λ-type three-level atomic ensemble. Due to the optomechanical and the cavity-atom couplings, the optomechanically induced transparency (OMIT) and electromagnetically induced transparency (EIT) phenomena could both be observed from our proposal. In the presence of a coherent mechanical pump, we show that the OMIT behavior of the probe field exhibits a phase-dependent effect, leading to the switch from OMIT to optomechanically induced absorption or amplification, while the feature of EIT remains unchanged. The distinctly different effects of the mechanical pump on OMIT and EIT behavior assure us that the absorption (amplification) and transparency of the output probe field can be simultaneously observed. Moreover, a tunable switch from slow to fast light can also be realized by tuning the phase and amplitude of the mechanical pump. In particular, the presence of the atomic ensemble can further adjust the group delay, providing additional flexibility for achieving the tunable switch.

  3. On the mechanism of irradiation effect on the function of Helix pomatia neuron Na+, K+-pump

    International Nuclear Information System (INIS)

    Ajrapetyan, S.N.; Egorova, E.G.; Sagiyan, A.A.; Dadalyan, S.S.; Dvoretskij, A.I.; Sulejmonyan, M.A.

    1987-01-01

    Mechanism of irradiation effect on passive permeability, Na + /Ca 2+ exchange, Na + , K + -pump function intensity, the number of membrane functionally active pump units (Na + , K + -ATP-ase molecules) was determined using Helix pomatia and nervous ganglions isolated from them and irradiated by 5.16 Kl/kg dose. The data obtained show that ionizing radiation leads to obvious destructions in the mechanisms of neuron Na + , K + -pump functioning

  4. Molecular mechanisms controlling proton pumping by bacteriorhodopsin. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Crouch, Rosalie K.; Ebrey, Thomas G.

    2000-02-10

    Bacteriorhodopsin (bR) is the simplest biological system for the transduction of light energy. Light energy is directly converted to transmembrane proton gradient by a single, small membrane protein. The extraordinary stability of bR makes it an outstanding subject for bioenergetic studies. This project has focused on the role of interactions between key residues of the pigment involved in light-induced proton transfer. Methods to estimate the strength of these interactions and their correlation with the rate and efficiency of proton transfer have been developed. The concept of the coupling of the protonation states of key groups has been applied to individual steps of the proton transfer with the ultimate goal of understanding on the molecular level the driving forces for proton transport and the pathway of the transported proton in bT. The mechanism of light-induced proton release, uptake and the mechanism of recovery of initial state of bT has been examined. The experiments were performed with genetically engineered, site-specific mutants of bR. This has enabled us to characterize the role of individual amino acid residues in bR. Time resolved and low temperature absorption spectroscopy and light-induced photocurrent measurements were used in order to study the photochemical cycle and proton transfer in mutant pigments. Chemical modification and crosslinking of both the specific amino acids to the chromophore or to other amino acids were used to elucidate the role of light-induced conformational changes in the photocycle and the structure of the protein in the ground state. The results of this project provided new knowledge on the architecture of the proton transfer pathways inside the protein, on the mechanism of proton release in bR, and on the role of specific amino acid residues in the structure and function of bR.

  5. Centrifugal pumps

    CERN Document Server

    Anderson, HH

    1981-01-01

    Centrifugal Pumps describes the whole range of the centrifugal pump (mixed flow and axial flow pumps are dealt with more briefly), with emphasis on the development of the boiler feed pump. Organized into 46 chapters, this book discusses the general hydrodynamic principles, performance, dimensions, type number, flow, and efficiency of centrifugal pumps. This text also explains the pumps performance; entry conditions and cavitation; speed and dimensions for a given duty; and losses. Some chapters further describe centrifugal pump mechanical design, installation, monitoring, and maintenance. The

  6. Glass sealing

    Energy Technology Data Exchange (ETDEWEB)

    Brow, R.K.; Kovacic, L.; Chambers, R.S. [Sandia National Labs., Albuquerque, NM (United States)

    1996-04-01

    Hernetic glass sealing technologies developed for weapons component applications can be utilized for the design and manufacture of fuel cells. Design and processing of of a seal are optimized through an integrated approach based on glass composition research, finite element analysis, and sealing process definition. Glass sealing procedures are selected to accommodate the limits imposed by glass composition and predicted calculations.

  7. Compliant seal development

    Science.gov (United States)

    Hendricks, Robert C.

    1993-10-01

    The compliant metallic seal combines the noncontact feature of the labyrinth seal, the low leakage of a mechanical seal, and the compliant nature of the brush seal. It consists of several thin metallic elements or leaves mounted within a ring which is press fit into the housing, and in form, sort of resembles a lip seal sections wiping the shaft. A second set of overlapping cover leaves are placed on top of the shaft riding leaves which reduces leakage and provides stiffness. The leaves can be straight or angle cut. The shaft riding fingers are designed with mismatched curvature to provide lift off similar to the Rayleigh lift pads in mechanical seals with leading edge clearances nearly twice those of the trailing edge as as shown by Fleming to be optimal for gas flows in convergent seal passages. Leading edge clearances range from 300 to 500 microinches. Balance pockets beneath the leaves provide fluid film feed to the 'Rayleigh lift' surface and the proper balance ratio (mechanical seal) when combined with the static pressure and film pressure. The leaves flex in the radial direction and accommodate thermomechanical behavior as well as axial motion and angular misalignment. In the static mode, there is a net closing force on the leaves. The seals were tested to 70 psi at speeds to 16,000 rpm or surface speeds to 330 fps and temperatures from ambient to 440 F. A slow cycle through the rig critical at 10,000 rpm induced a radial vibration response of 0.004 to 0.005 inch were accommodated by the seal. Preliminary performance data are encouraging demonstrating hydrodynamic liftoff and noncontacting operation at pressure and speeds typical of gas turbine engines. The leakage performance data are significantly better than commercial labyrinth and brush seals which should be expected as this design incorporates the features of the low leakage face or mechanical seal along with the flexibility of the brush configuration.

  8. A new box system for a high pressure tritium pump

    International Nuclear Information System (INIS)

    Wilson, S.W.; Borree, R.J.; Chambers, D.I.; Souers, P.C.; Merrill, J.T.; Wiggins, R.K.

    1988-01-01

    A 200 MPa (30 kpsi) high pressure tritium pump inside a box system is described. This system is currently under construction but all representative mechanical parts have been fabricated and tested. The pump is a conventional mechanical-plus-cryostaged system, so that most of the interesting features are in the box. The system contains nine separate sections, with automatic pressure balancing and venting systems. Five sections are hood-to-box convertible enclosures with inflatable door seals. The procedure of cryostaging with liquid argon is described. Special detail is given to valves and motor shaft seals. 3 refs., 4 figs

  9. Labyrinth Seal Flutter Analysis and Test Validation in Support of Robust Rocket Engine Design

    Science.gov (United States)

    El-Aini, Yehia; Park, John; Frady, Greg; Nesman, Tom

    2010-01-01

    High energy-density turbomachines, like the SSME turbopumps, utilize labyrinth seals, also referred to as knife-edge seals, to control leakage flow. The pressure drop for such seals is order of magnitude higher than comparable jet engine seals. This is aggravated by the requirement of tight clearances resulting in possible unfavorable fluid-structure interaction of the seal system (seal flutter). To demonstrate these characteristics, a benchmark case of a High Pressure Oxygen Turbopump (HPOTP) outlet Labyrinth seal was studied in detail. First, an analytical assessment of the seal stability was conducted using a Pratt & Whitney legacy seal flutter code. Sensitivity parameters including pressure drop, rotor-to-stator running clearances and cavity volumes were examined and modeling strategies established. Second, a concurrent experimental investigation was undertaken to validate the stability of the seal at the equivalent operating conditions of the pump. Actual pump hardware was used to construct the test rig, also referred to as the (Flutter Rig). The flutter rig did not include rotational effects or temperature. However, the use of Hydrogen gas at high inlet pressure provided good representation of the critical parameters affecting flutter especially the speed of sound. The flutter code predictions showed consistent trends in good agreement with the experimental data. The rig test program produced a stability threshold empirical parameter that separated operation with and without flutter. This empirical parameter was used to establish the seal build clearances to avoid flutter while providing the required cooling flow metering. The calibrated flutter code along with the empirical flutter parameter was used to redesign the baseline seal resulting in a flutter-free robust configuration. Provisions for incorporation of mechanical damping devices were introduced in the redesigned seal to ensure added robustness

  10. Rotary magnetic heat pump

    Science.gov (United States)

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  11. 40 CFR 63.163 - Standards: Pumps in light liquid service.

    Science.gov (United States)

    2010-07-01

    ... handling polymerizing monomers; (B) 2,000 parts per million or greater for pumps in food/medical service... current monitoring period. (e) Each pump equipped with a dual mechanical seal system that includes a barrier fluid system is exempt from the requirements of paragraphs (a) through (d) of this section...

  12. Sealing device

    Science.gov (United States)

    Garcia-Crespo, Andres Jose

    2013-12-10

    A sealing device for sealing a gap between a dovetail of a bucket assembly and a rotor wheel is disclosed. The sealing device includes a cover plate configured to cover the gap and a retention member protruding from the cover plate and configured to engage the dovetail. The sealing device provides a seal against the gap when the bucket assemply is subjected to a centrifugal force.

  13. Rotatable seal assembly

    International Nuclear Information System (INIS)

    Garibaldi, J.L.; Logan, C.M.

    1982-01-01

    An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an oring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers

  14. Seals in nuclear reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The seals described are for use in a nuclear reactor where there are fuel assemblies in a vessel, an inlet and an outlet for circulating a coolant in heat transfer relationship with the fuel assemblies and a closure head on the vessel in a tight fluid relationship. The closure head comprises rotatable plugs which have mechanical seals disposed in the annulus around each plug while allowing free rotation of the plug when the seal is not actuated. The seal is usually an elastomer or copper. A means of actuating the seal is attached for drawing it vertically into the annulus for sealing. When the reactor coolant is liquid sodium, contact with oxygen must be avoided and argon cover gas fills the space between the bottom of the closure head and the coolant liquid level and the annuli in the closure head. (U.K.)

  15. On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion

    International Nuclear Information System (INIS)

    Persson, B N J; Albohr, O; Tartaglino, U; Volokitin, A I; Tosatti, E

    2005-01-01

    Surface roughness has a huge impact on many important phenomena. The most important property of rough surfaces is the surface roughness power spectrum C(q). We present surface roughness power spectra of many surfaces of practical importance, obtained from the surface height profile measured using optical methods and the atomic force microscope. We show how the power spectrum determines the contact area between two solids. We also present applications to sealing, rubber friction and adhesion for rough surfaces, where the power spectrum enters as an important input. (topical review)

  16. Proton pump inhibitor-induced tumour cell death by inhibition of a detoxification mechanism.

    Science.gov (United States)

    Fais, S

    2010-05-01

    This review presents a possible new approach against cancer, as represented by inhibition of proton pumps, a mechanism used by tumour cells to avoid intracellular accumulation of toxic substances. Proton pump inhibitors (PPIs) belong to a family of pro-drugs that are currently used in the treatment of peptic diseases needing acidity to be activated. PPIs target the acidic tumour mass, where they are metabolized, thus blocking proton traffic. Proton pump inhibition triggers a rapid cell death as a result of intracellular acidification, caspase activation and early accumulation of reactive oxygen species into tumour cells. As a whole, the devastating effect of PPIs on tumour cells suggest the triggering of a fatal cell toxification. Many human tumours, including melanoma, osteosarcoma, lymphomas and various adenocarcinomas are responsive to PPIs. This appears highly conceivable, in as much as almost all human tumours are acidic and express high levels of proton pumps. Paradoxically, metastatic tumours appear to be more responsive to PPIs being more acidic than the majority of primary tumours. However, two clinical trials test the effectiveness of PPIs in chemosensitizing melanoma and osteosarcoma patients. Indeed, tumour acidity represents a very potent mechanism of chemoresistance. A majority of cytotoxic agents, being weak bases, are quickly protonated outside and do not enter the cells, thus preventing drugs to reach specific cellular targets. Clinical data will provide the proof of concept on the use of PPIs as a new class of antitumour agent with a very low level of systemic toxicity as compared with standard chemotherapeutic agents.

  17. UV laser ablation of silicon carbide ring surfaces for mechanical seal applications

    Science.gov (United States)

    Daurelio, Giuseppe; Bellosi, Alida; Sciti, Diletta; Chita, Giuseppe; Allegretti, Didio; Guerrini, Fausto

    2000-02-01

    Silicon carbide ceramic seal rings are treated by KrF excimer laser irradiation. Surface characteristics, induced by laser treatment, depend upon laser fluence, the number of laser pulses, their energy and frequency, the rotation rate of the ring and the processing atmosphere. It was ascertained that silicon carbide has to be processed under an inert atmosphere to avoid surface oxidation. Microstructural analyses of surface and cross section of the laser processed samples showed that the SiC surface is covered by a scale due to the melting/resolidification processes. At high fluence there are no continuous scales on the surfaces; materials is removed by decomposition/vaporization and the ablation depth is linearly dependent on the number of pulses. Different surface morphologies are observed. The evolution of surface morphology and roughness is discussed with reference to compositions, microstructure and physical and optical properties of the ceramic material and to laser processing parameters. Preliminary results on tribological behavior of the treated seals are reported.

  18. Mechanical damage due to corrosion of parts of pump technology and valves of LWR power installations

    International Nuclear Information System (INIS)

    Hron, J.; Krumpl, M.

    1986-01-01

    Two types are described of uneven corrosion of austenitic chromium-nickel steel: pitting and slit corrosion. The occurrence of slit corrosion is typical of parts of pumping technology and valves. The corrosion damage of austenitic chromium-nickel steels spreads as intergranular, transgranular or mixed corrosion. In nuclear power facilities with LWR's, intergranular corrosion is due to chlorides and sulphur compounds while transgranular corrosion is due to the presence of dissolved oxygen and chlorides. In mechanically stressed parts, stress corrosion takes place. The recommended procedures are discussed of reducing the corrosion-mechanical damage of pumping equipment of light water reactors during design, production and assembly. During the service of the equipment, corrosion cracks are detected using nondestructive methods and surface cracks are repaired by grinding and welding. (E.S.)

  19. Pressure Actuated Leaf Seals for Improved Turbine Shaft Sealing

    Science.gov (United States)

    Grondahl, Clayton

    2006-01-01

    This presentation introduces a shaft seal in which leaf seal elements are constructed from slotted shim material formed and layered into a frusto-conical assembly. Limited elastic deflection of seal leaves with increasing system pressure close large startup clearance to a small, non-contacting, steady state running clearance. At shutdown seal elements resiliently retract as differential seal pressure diminishes. Large seal clearance during startup and shutdown provides a mechanism for rub avoidance. Minimum operating clearance improves performance and non-contacting operation promises long seal life. Design features of this seal, sample calculations at differential pressures up to 2400 psid and benefit comparison with brush and labyrinth seals is documented in paper, AIAA 2005 3985, presented at the Advanced Seal Technology session of the Joint Propulsion Conference in Tucson this past July. In this presentation use of bimetallic leaf material will be discussed. Frictional heating of bimetallic leaf seals during a seal rub can relieve the rub condition to some extent with a change in seal shape. Improved leaf seal rub tolerance is expected with bimetallic material.

  20. Hemocompatibility of Axial Versus Centrifugal Pump Technology in Mechanical Circulatory Support Devices.

    Science.gov (United States)

    Schibilsky, David; Lenglinger, Matthias; Avci-Adali, Meltem; Haller, Christoph; Walker, Tobias; Wendel, Hans Peter; Schlensak, Christian

    2015-08-01

    The hemocompatible properties of rotary blood pumps commonly used in mechanical circulatory support (MCS) are widely unknown regarding specific biocompatibility profiles of different pump technologies. Therefore, we analyzed the hemocompatibility indicating markers of an axial flow and a magnetically levitated centrifugal device within an in vitro mock loop. The HeartMate II (HM II; n = 3) device and a CentriMag (CM; n = 3) adult pump were investigated in a human whole blood mock loop for 360 min using the MCS devices as a driving component. Blood samples were analyzed by enzyme-linked immunosorbent assay for markers of coagulation, complement system, and inflammatory response. There was a time-dependent activation of the coagulation (thrombin-antithrombin complexes [TAT]), complement (SC5b-9), and inflammation system (polymorphonuclear [PMN] elastase) in both groups. The mean value of TAT (CM: 4.0 μg/L vs. 29.4 μg/L, P technologies and a magnetically levitated centrifugal pump design might be superior. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals Inc.

  1. Model for Sucker-Rod Pumping Unit Operating Modes Analysis Based on SimMechanics Library

    Science.gov (United States)

    Zyuzev, A. M.; Bubnov, M. V.

    2018-01-01

    The article provides basic information about the process of a sucker-rod pumping unit (SRPU) model developing by means of SimMechanics library in the MATLAB Simulink environment. The model is designed for the development of a pump productivity optimal management algorithms, sensorless diagnostics of the plunger pump and pumpjack, acquisition of the dynamometer card and determination of a dynamic fluid level in the well, normalization of the faulty unit operation before troubleshooting is performed by staff as well as equilibrium ratio determining by energy indicators and outputting of manual balancing recommendations to achieve optimal power consumption efficiency. Particular attention is given to the application of various blocks from SimMechanics library to take into account the pumpjack construction principal characteristic and to obtain an adequate model. The article explains in depth the developed tools features for collecting and analysis of simulated mechanism data. The conclusions were drawn about practical implementation possibility of the SRPU modelling results and areas for further development of investigation.

  2. Dry vacuum pumps

    International Nuclear Information System (INIS)

    Sibuet, R

    2008-01-01

    For decades and for ultimate pressure below 1 mbar, oil-sealed Rotary Vane Pumps have been the most popular solution for a wide range of vacuum applications. In the late 80ies, Semiconductor Industry has initiated the development of the first dry roughing pumps. Today SC applications are only using dry pumps and dry pumping packages. Since that time, pumps manufacturers have developed dry vacuum pumps technologies in order to make them attractive for other applications. The trend to replace lubricated pumps by dry pumps is now spreading over many other market segments. For the Semiconductor Industry, it has been quite easy to understand the benefits of dry pumps, in terms of Cost of Ownership, process contamination and up-time. In this paper, Technology of Dry pumps, its application in R and D/industries, merits over conventional pumps and future growth scope will be discussed

  3. Security seal

    Science.gov (United States)

    Gobeli, Garth W.

    1985-01-01

    Security for a package or verifying seal in plastic material is provided by a print seal with unique thermally produced imprints in the plastic. If tampering is attempted, the material is irreparably damaged and thus detectable. The pattern of the imprints, similar to "fingerprints" are recorded as a positive identification for the seal, and corresponding recordings made to allow comparison. The integrity of the seal is proved by the comparison of imprint identification records made by laser beam projection.

  4. Do sealless pumps belong in hydrocarbon processing services?

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Shawn L. [Sundyne Corporation, Arvada, CO (Brazil)

    2004-07-01

    Sealless pump technology seems unimaginable in the hot, dirty and high-pressure world of hydrocarbon processing. Furthermore the high flow rates typical of the industry seem incompatible with sealless pumps. Seals and their environmental controls used in conventional technologies are not immune from these factors making sealless worth another look. In October 2000 the Sealless Centrifugal Pump Specification API 685 was published. This specification lends sealless pumps credibility and emphasizes the proper application of the technology. In many process units seal leaks can be extremely dangerous and costly. The heavy hydrocarbons can auto-ignite and light hydrocarbons will tend to find a source of ignition. The ever-increasing requirements for clean fuels are driving many of the current refinery upgrades. Best Also available control technology requirements and additional focus on Environmental Health and Safety increase the attractiveness of sealless technology to mitigate the hazards associated with seal leaks. Sealless has a place in hydrocarbon processing to eliminate seals, provide mechanical simplification, and ensure personnel/environmental protection. The proper application involves evaluating canned motor/magnetic drive technology, API 685 Guidelines, and vapor pressure versus pump circuit pressure analysis. There are four (4) specific processes where sealless pumps should be targeted: Alkylation, Sulfur Recovery/Hydrotreating, Naphtha Reforming Production, and Neutralization. (author)

  5. VAK III. Seals and sealing system

    International Nuclear Information System (INIS)

    d'Agraives, B.C.; Dal Cero, G.; Debeir, R.; Mascetti, E.; Toornvliet, J.; Volcan, A.

    1986-01-01

    This report presents the VAK III seals and sealing system, which have been used over a period of two years at the Kahl nuclear facility (Federal Republic of Germany), where field tests and feasibility studies were conducted in order to offer a possible solution for the sealing of LWR fuel assemblies. It has been prepared with the aim of an assessment study to be done at the IAEA. It gives all characteristics and technical descriptions for: the sealing principle, the seal construction, the operating tools, the data processing, the drawings, the publications related to that seal. The main points of progress are: the Strong Random Internal Defects (STRID) incorporated in the seals, allowing the obtention of a good signature stability; the Integrity Check on the Seal Status (broken or not) obtained through a decisive mechanical improvement: the Double Breakage Integrity Check (DOBRIC) and with a better ultrasonic evidence of that status; the provision of new function tools, allowing the performance of Identity Measurements in dry conditions (which means also at the manufacturer plant) or in deeper water (wet storage); the study and development of a new JRC VAK 45 Compact Instrument Box, in which all the measuring functions can be grouped and incorporating an autonomous Minicomputer offering to the Inspection the possibility of performing, on the spot, Correlation and Decision processes. The general benefit of such a feasibility study should be to convince the potential users that such a Safeguards Sealing System can be studied for slightly - or largely - different other applications, provided that the Basic and Operating Functions required to the system be clearly defined, possibly after a common agreement would be stated

  6. Mechanical characteristics of harbor seal (Phoca vitulina) vibrissae under different circumstances and their implications on its sensing methodology

    International Nuclear Information System (INIS)

    Hans, H; Miao, J M; Triantafyllou, M S

    2014-01-01

    In this paper, the mechanical properties of harbor seal vibrissae immersed in various solutions are investigated. As there are no nerves along the length of the vibrissae, all the perturbations have to be transmitted to their bases for sensing. Hence, quantification and understanding of the mechanical properties of the vibrissae are essential in determining the perturbations transmitted to the base of the vibrissae. Two experimental setups are devised for measurements of the different properties of the vibrissae. The first experimental setup is performed with a dynamic mechanical analysis machine. The measured properties in these experiments are the modulus of elasticity and the damping of the vibrissae. Dry, saline water-immersed, water-immersed and Hanks' balanced salt solution (HBSS)-immersed vibrissae are tested to determine the effects of these solutions on the properties of the vibrissae. Tests on the duration of immersion are also performed with saline water-immersed vibrissae. The second experimental setup is performed with a mini-shaker connected to a clamp, which rigidly holds the vibrissae at their bases. The measured properties in these experiments are the natural frequencies of the vibrissae. The results indicate that the moduli of elasticity of the vibrissae are found to decrease along their lengths. However, their damping does not vary along the lengths. HBSS-immersed and saline water-immersed vibrissae show similar characteristics on their properties. An analytical model for predicting the natural frequencies of the vibrissae is also derived. Strong agreement with previous studies on the underwater sensing principle of the harbor seal is also established. (paper)

  7. The direction of water transport on Mars: A possible pumping mechanism

    Science.gov (United States)

    James, P. B.

    1987-01-01

    It is suggested that an atmospheric pumping mechanism might be at work in which water is preferentially transported into the north by a mass outflow wind (due to sublimation from polar cap) that is stronger during southern spring than it is during northern spring. The mechanism is provided by the asymmetric seasonal temperature distribution produced by the eccentric martial orbit and by the associated seasonal asymmetry in the carbon dioxide cycle. The alternating condensation and sublimation of CO2 at the poles produces condensation winds which, in turn, contribute to the meridional transport of water vapor.

  8. Conformational change during photocycle of bacteriorhodopsin and its proton-pumping mechanism.

    Science.gov (United States)

    Chou, K C

    1993-06-01

    Based on the recent finding on the structural difference of seven helix bundles in the all-trans and 13-cis bacteriorhodopsins, the distances among the key groups performing the function of proton translocation as well as their microenvironments have been investigated. Consequently, a pore-gated model was proposed for the light-driven proton-pumping mechanism of bacteriorhodopsin. According to this model, the five double-bounded polyene chain in retinal chromophore can be phenomenologically likened to a molecular "lever," whose one end links to a "piston" (the beta-ionone ring) and the other end to a pump "relay station" (the Schiff base). During the photocycle of bacteriorhodopsin, the molecular "lever" is moving up and down as marked by the position change of the "piston," so as to trigger the gate of pore to open and close alternately. When the "piston" is up, the pore-controlled gate is open so that the water channel from Asp-96 to the Schiff base and that from the Schiff base to Asp-85 is established; when the "piston" is down, the pore-controlled gate is closed and the water channels for proton transportation in both the cytoplasmic half and extracellular half are blocked. The current model allows a consistent interpretation of a great deal of experimental data and also provides a useful basis for further investigating the mechanism of proton pumping by bacteriorhodopsin.

  9. Residual heat removal pump retrofit program

    International Nuclear Information System (INIS)

    Dudiak, J.G.; McKenna, J.M.

    1990-01-01

    Residual Heat Removal (RHR) pumps installed in pressurized water reactor power plants are used to provide the removal of decay heat from the reactor and to provide low head safety injection in the event of loss of coolant in the reactor coolant system. These pumps are subjected to rather severe temperature and pressure transients, therefore, the majority of pumps installed in the RHR service are vertical pumps with a single stage impeller. RHR pumps have traditionally been a significant maintenance item for many utilities. The close-coupled pump design requires disassembly of the casing cover from the lower pump casing while performing these routine maintenance tasks. The casing separation requires the loosening of numerous highly torqued studs. Once the casing is separated, the impeller is dropped from the motor shaft to allow removal of the mechanical seal and casing cover from the motor shaft. Galling of the impeller to the motor shaft is not uncommon. The RHR pump internals are radioactive and the separation of the pump casing to perform routine maintenance exposes the maintenance personnel to high radiation levels. The handling of the impeller also exposes the maintenance personnel to high radiation levels. This paper introduces a design modification developed to convert the close-coupled RHR pumps to a coupled configuration

  10. Application of a hydrophilic Fe-Co magnetic fluid to the oil seal of a rotary shaft

    International Nuclear Information System (INIS)

    Lee, J. H.; Ryu, B. O.; Song, W. S.; Hong, G. P.; Zoo, Y. S.

    2003-01-01

    Existing oil seals of rotary shafts are made of rubber or ceramic goods (rubber retainer or mechanical seal). Thus if they are used for a long time, lubricant's leakage is induced from the gap between the shaft and bearings because of stiffening and abrading on the quality of seals due to the friction between rotating shaft and oil seal. Therefore the oil seals is restricted to durability limits and caused to require a quick change of the seal parts and to require significant man - powers for the complicated fabrication of seals. This study is established from the idea for working out these problems. This seal is composed of magnetic fluid to stop up oil in seals. As magnetic fluid between shaft and oil seal stops up oil in seals during rotating shaft, there is a friction but isn't an abrasion between shaft and oil seal so that there is no problem of the durability limits. In this study, with Fe- Co magnetic fluid is produced by hydrophilic ethylene glycol medium, Fe- Co(30 % : Co) powder, ring structure's Nd- permanent magnet of magnetic field strength 3300 Gauss and pole-piece(thickness : 1 mm, mild steel plate). With this arrangement the performance is such that the maximum resisting pressure of the oil seal apparatus was measured to be 25 kg/ cm 2 at the shaft speed 1800 rpm. It is believed that this magnetic fluid of Fe-Co powder used at the oil seal apparatus is the highest value among magnetic fluids in use until now. In an innovation this can give the advantages of lower noise, longer durability, and airtight of sealing as the contact of shaft (solid) to be friction and magnetic fluid(liquid) to seal. For that reason, this magnetic fluid of Fe-Co powder not only has enough specificity about the oil seal of rotary shaft but also shows enough quality as resisting pressure seal apparatus. Applications of this seal include all kinds of pump like high damping seal. This seal apparatus is economical and has an excellent sealing efficiency which can not be

  11. Hydro-mechanical behaviour of bentonite-sand mixture used as sealing materials in radioactive waste disposal galleries

    International Nuclear Information System (INIS)

    Saba, Simona

    2013-01-01

    In order to verify the effectiveness of the geological high-level radioactive waste disposal, the French Institution of Radiation protection and Nuclear Safety (IRSN) has implemented the SEALEX project to control the long-term performance of swelling clay-based sealing systems, and to which this work is closely related. Within this project, In-situ tests are carried out on compacted bentonite-sand mixture in natural conditions and in a representative scale. This material is one of the most appropriate sealing materials because of its low permeability and good swelling capacity. Once installed, this material will be hydrated by water from the host-rock and start swelling to close all gaps in the system, in particular the internal pores, rock fractures and technological voids. Afterwards, swelling pressure will develop. In the present work, laboratory experiments were performed to investigate the sealing properties under this complex hydro-mechanical conditions taking into consideration the effect of technological voids. The microstructure of the material in its initial state was first examined by microfocus X-ray computed tomography (μCT). This allowed identification of the distribution of grains of sand and bentonite as well as the pores in the sample. Macro-pores are found concentrated at the periphery of the sample and between the grains of sand, which could affect in the short term the permeability. The hydration of the same material in limited swelling conditions was then observed by 2D photography and 3D μCT. The swelling mechanism with bentonite gel production, the swelling kinetics, the density decrease and the homogenisation of the material were analyzed. The hydration in the conditions of prevented swelling was also studied by swelling pressure tests with radial and axial measurements of swelling pressure. The difference found between the axial and radial swelling pressures suggested the presence of an anisotropic microstructure. Mock-up tests at a 1

  12. Hydro-mechanical behaviour of bentonite-sand mixture used as sealing materials in radioactive waste disposal galleries

    International Nuclear Information System (INIS)

    Saba, Simona

    2013-01-01

    In order to verify the effectiveness of the geological high-level radioactive waste disposal, the French Institute for Radiation protection and Nuclear Safety (IRSN) has implemented the SEALEX project to control the long-term performance of swelling clay-based sealing systems, and to which this work is closely related. Within this project, In-situ tests are carried out on compacted bentonite-sand mixture in natural conditions and in a representative scale. This material is one of the most appropriate sealing materials because of its low permeability and good swelling capacity. Once installed, this material will be hydrated by water from the host-rock and start swelling to close all gaps in the system, in particular the internal pores, rock fractures and technological voids. Afterwards, swelling pressure will develop. In the present work, laboratory experiments were performed to investigate the sealing properties under these complex hydro-mechanical conditions taking into consideration the effect of technological voids. The microstructure of the material in its initial state was first examined by microfocus X-ray computed tomography (μCT). This allowed identification of the distribution of grains of sand and bentonite as well as the pores in the sample. Macro-pores are found concentrated at the periphery of the sample and between the grains of sand, which could affect in the short term the permeability. The hydration of the same material in limited swelling conditions was then observed by 2D photography and 3D μCT. The swelling mechanism with bentonite gel production, the swelling kinetics, the density decrease and the homogenisation of the material were analyzed. The hydration in the conditions of prevented swelling was also studied by swelling pressure tests with radial and axial measurements of swelling pressure. The difference found between the axial and radial swelling pressures suggested the presence of an anisotropic microstructure. Mock-up tests at a 1

  13. Condition monitoring of primary coolant pump-motor units of Indian PHWR

    International Nuclear Information System (INIS)

    Rshikesan, P.B.; Sharma, S.S.; Mhetre, S.G.

    1994-01-01

    As the primary coolant pump motor units are located in shut down accessible area, their start up, satisfactory operation and shut down are monitored from control room. As unavailability of one pump in standardised 220 MWe station reduces the station power to about 110 MWe, satisfactory operation of the pump is also important from economic considerations. All the critical parameters of pump shaft, mechanical seal, bearing system, motor winding and shaft displacement (vibrations) are monitored/recorded to ensure satisfactory operation of critical, capital intensive pump-motor units. (author). 2 tabs., 1 fig

  14. Double angle seal forming lubricant film

    Science.gov (United States)

    Ernst, William D.

    1984-01-01

    A lubricated piston rod seal which inhibits gas leaking from a high pressure chamber on one side of the seal to a low pressure chamber on the other side of the seal. A liquid is supplied to the surface of the piston rod on the low pressure side of the seal. This liquid acts as lubricant for the seal and provides cooling for the rod. The seal, which can be a plastic, elastomer or other material with low elastic modulus, is designed to positively pump lubricant through the piston rod/seal interface in both directions when the piston rod is reciprocating. The capacity of the seal to pump lubricant from the low pressure side to the high pressure side is less than its capacity to pump lubricant from the high pressure side to the low pressure side which ensures that there is zero net flow of lubricant to the high pressure side of the seal. The film of lubricant between the seal and the rod minimizes any sliding contact and prevents the leakage of gas. Under static conditions gas leakage is prevented by direct contact between the seal and the rod.

  15. Reactor vessel sealing plug

    International Nuclear Information System (INIS)

    Dooley, R.A.

    1986-01-01

    An apparatus is described for sealing a cold leg nozzle of a nuclear reactor pressure vessel from a remote location comprising: at least one sealing plug for mechanically sealing the nozzle from the inside of the reactor pressure vessel. The sealing plug includes a plate and a cone assembly having an end part receptive in the nozzle, the plate being axially moveable relative to the cone assembly. The plate and cone assembly have confronting bevelled edges defining an opening therebetween. A primary O-ring is disposed about the opening and is supported on the bevelled edges, the plate being guidably mounted to the cone assembly for movement toward the cone assembly to radially expand the primary O-ring into sealing engagement with the nozzle. A means is included for providing relative movement between the outer plate and the cone assembly

  16. Demonstration of the reliability of the safety pumps

    International Nuclear Information System (INIS)

    Durand, J.M.

    1989-01-01

    POMPES GUINARD is supplying about 60% of the Nuclear pumps for the French Program. To become the specialist of Safety Related Pumps POMPES GUINARD made a lot of efforts and investments to acquire knowledge and experience. This was possible mainly with test on special loops as it is the only way for a pump manufacturer to progress by controlling hydraulics, components, bearings, mechanical seals, inducer, mechanical and hydraulic behaviour of the units in process of time. We will describe hereafter some of the typical tests which were performed during the last fifteen years

  17. In vitro mechanical stimulation facilitates stress dissipation and sealing ability at the conventional glass ionomer cement-dentin interface.

    Science.gov (United States)

    Toledano, Manuel; Osorio, Raquel; Osorio, Estrella; Cabello, Inmaculada; Toledano-Osorio, Manuel; Aguilera, Fátima S

    2018-06-01

    The aim of this study was to evaluate the induced changes in the chemical and mechanical performance at the glass-ionomer cement-dentin interface after mechanical load application. A conventional glass-ionomer cement (GIC) (Ketac Bond), and a resin-modified glass-ionomer cement (RMGIC) (Vitrebond Plus) were used. Bonded interfaces were stored in simulated body fluid, and then tested or submitted to the mechanical loading challenge. Different loading waveforms were applied: No cycling, 24 h cycled in sine or loaded in sustained hold waveforms. The cement-dentin interface was evaluated using a nano-dynamic mechanical analysis, estimating the complex modulus and tan δ. Atomic Force Microscopy (AFM) imaging, Raman analysis and dye assisted confocal microscopy evaluation (CLSM) were also performed. The complex modulus was lower and tan delta was higher at interfaces promoted with the GIC if compared to the RMGIC unloaded. The conventional GIC attained evident reduction of nanoleakage. Mechanical loading favored remineralization and promoted higher complex modulus and lower tan delta values at interfaces with RMGIC, where porosity, micropermeability and nanoleakage were more abundant. Mechanical stimuli diminished the resistance to deformation and increased the stored energy at the GIC-dentin interface. The conventional GIC induced less porosity and nanoleakage than RMGIC. The RMGIC increased nanoleakage at the porous interface, and dye sorption appeared within the cement. Both cements created amorphous and crystalline apatites at the interface depending on the type of mechanical loading. Remineralization, lower stress concentration and resistance to deformation after mechanical loading improved the sealing of the GIC-dentin interface. In vitro oral function will favor high levels of accumulated energy and permits micropermeability at the RMGIC-dentin interface which will become remineralized. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Development of mechanical-hydraulic models for the prediction of the long-term sealing capacity of concrete based sealing materials in rock salt. Project Titel LASA

    Energy Technology Data Exchange (ETDEWEB)

    Czaikowski, Oliver; Dittrich, Juergen; Hertes, Uwe; Jantschik, Kyra; Wieczorek, Klaus; Zehle, Bernd

    2016-08-15

    The research work leading to these results has received funding from the German Federal Ministry of Economic Affairs and Energy (BMWi) under contract no. 02E11132. This report presents the current state of laboratory investigations and modelling activities related to the LASA project. The work is related to the research and development of plugging and sealing for repositories in salt rock and is of fundamental importance for the salt option which represents one of the three European repository options in addition to the clay rock and the crystalline rock options.

  19. Strong-field dissociation of CS2+ via a pump/dump-like mechanism

    Science.gov (United States)

    Severt, T.; Zohrabi, M.; Betsch, K. J.; Ablikim, U.; Jochim, Bethany; Carnes, K. D.; Zeng, S.; Esry, B. D.; Ben-Itzhak, I.; Uhlíková, T.

    2014-05-01

    Laser-induced dissociation of the quasi-bound electronic ground state of CS2+ is investigated in intense laser pulses (pump/dump-like mechanism to explain this observed feature. Contrary to the conventional pump/dump control scheme, this process occurs within a single laser pulse, where the time delay is caused by the molecular structure. The process begins when the vibrational wavepacket in the electronic ground state of CS2+ is pumped into the electronic first excited state's continuum by a single photon. After a period of stretching at an energy above the potential barrier, the emission of a second photon is stimulated by the same laser pulse, most likely at the Condon point. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, Grants DE-FG02-86ER13491 and DE-FG02-09ER16115. TU supported by GACR and MetaCentrum.

  20. Leak Mitigation in Mechanically Pumped Fluid Loops for Long Duration Space Missions

    Science.gov (United States)

    Miller, Jennifer R.; Birur, Gajanana; Bame, David; Mastropietro, A. J.; Bhandari, Pradeep; Lee, Darlene; Karlmann, Paul; Liu, Yuanming

    2013-01-01

    Mechanically pumped fluid loops (MPFLs) are increasingly considered for spacecraft thermal control. A concern for long duration space missions is the leak of fluid leading to performance degradation or potential loop failure. An understanding of leak rate through analysis, as well as destructive and non-destructive testing, provides a verifiable means to quantify leak rates. The system can be appropriately designed to maintain safe operating pressures and temperatures throughout the mission. Two MPFLs on the Mars Science Laboratory Spacecraft, launched November 26, 2011, maintain the temperature of sensitive electronics and science instruments within a -40 deg C to 50 deg C range during launch, cruise, and Mars surface operations. With over 100 meters of complex tubing, fittings, joints, flex lines, and pumps, the system must maintain a minimum pressure through all phases of the mission to provide appropriate performance. This paper describes the process of design, qualification, test, verification, and validation of the components and assemblies employed to minimize risks associated with excessive fluid leaks from pumped fluid loop systems.

  1. Cover gas seals: FFTF-LMFBR seal test program

    International Nuclear Information System (INIS)

    Kurzeka, W.; Oliva, R.; Welch, T.S.; Shimazaki, T.

    1974-01-01

    The objectives of this program are to: (1) conduct static and dynamic tests to demonstrate or determine the mechanical performance of full-size (cross section) FFTF fuel transfer machine and reactor vessel head seals intended for use in a sodium vapor-inert gas environment, (2) demonstrate that these FFTF seals or new seal configurations provide acceptable fission product and cover gas retention capabilities at Clinch River Breeder Reactor Plant (CRBRP) operating environmental conditions other than radiation, and (3) develop improved seals and seal technology for the CRBRP to support the national objective to reduce all atmospheric contaminations to low levels

  2. Security analysis with improved design of post-confirmation mechanism for quantum sealed-bid auction with single photons

    Science.gov (United States)

    Zhang, Ke-Jia; Kwek, Leong-Chuan; Ma, Chun-Guang; Zhang, Long; Sun, Hong-Wei

    2018-02-01

    Quantum sealed-bid auction (QSA) has been widely studied in quantum cryptography. For a successful auction, post-confirmation is regarded as an important mechanism to make every bidder verify the identity of the winner after the auctioneer has announced the result. However, since the auctioneer may be dishonest and collude with malicious bidders in practice, some potential loopholes could exist. In this paper, we point out two types of collusion attacks for a particular post-confirmation technique with EPR pairs. And it is not difficult to see that there exists no unconditionally secure post-confirmation mechanism in the existing QSA model, if the dishonest participants have the ability to control multiparticle entanglement. In the view of this, we note that some secure implementation could exist if the participants are supposed to be semi-quantum, i.e., they can only control single photons. Finally, two potential methods to design post-confirmation mechanism are presented in this restricted scenario.

  3. Mechanical torques generated by optically pumped atomic spin relaxation at surfaces

    International Nuclear Information System (INIS)

    Herman, R.M.

    1982-01-01

    It is argued that a valuable method of observing certain types of surface-atom interactions may lie in mechanical torques generated through the spin-orbit relaxation of valence electronic spins of optically pumped atoms at surfaces. The unusual feature of this phenomenon is that the less probable spin-orbit relaxation becomes highly visible as compared with the much more rapid paramagnetic relaxation, because of an enhancement, typically by as much as a factor 10 9 , in the torques delivered to mechanical structures, by virtue of a very large effective moment arm. Spin-orbit relaxation operates through an exchange of translational momentum which, in turn, can be identified with the delivery of a gigantic angular momentum (in units of h) relative to a distant axis about which mechanical motion is referred. The spin-orbit relaxation strongly depends upon the atomic number of the surface atoms and the strength of interaction with the optically pumped atoms. Being dominated by high-atomic-number surface atoms, spin-orbit relaxation rates may not be too strongly influenced by minor surface contamination of lighter-weight optically active atoms

  4. Mechanical torques generated by optically pumped atomic spin relaxation at surfaces

    Science.gov (United States)

    Herman, R. M.

    1982-03-01

    It is argued that a valuable method of observing certain types of surface-atom interactions may lie in mechanical torques generated through the spin-orbit relaxation of valence electronic spins of optically pumped atoms at surfaces. The unusual feature of this phenomenon is that the less probable spin-orbit relaxation becomes highly visible as compared with the much more rapid paramagnetic relaxation, because of an enhancement, typically by as much as a factor 109, in the torques delivered to mechanical structures, by virtue of a very large effective moment arm. Spin-orbit relaxation operates through an exchange of translational momentum which, in turn, can be identified with the delivery of a gigantic angular momentum (in units of ℏ) relative to a distant axis about which mechanical motion is referred. The spin-orbit relaxation strongly depends upon the atomic number of the surface atoms and the strength of interaction with the optically pumped atoms. Being dominated by high-atomic-number surface atoms, spin-orbit-relaxation rates may not be too strongly influenced by minor surface contamination of lighter-weight optically active atoms.

  5. Effect of the Shrink Fit and Mechanical Tolerance on Reactor Coolant Pump Flywheel Integrity Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Donghak [Korea KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Reactor coolant pump (RCP) flywheel should satisfy the RCP flywheel integrity criteria of the US NRC standard review plan (SRP) 5.4.1.1 and regulatory guide (RG) 1.14. Shrink-fit and rotational stresses should be calculated to evaluate the integrity. In this paper the effects of the shrink fit and mechanical tolerance on the RCP flywheel integrity evaluation are studied. The shrink fit should be determined by the joint release speed and the stresses in the flywheel will be increased by the shrink fit. The stress at the interface between the hub and the outer wheel shows the highest value. The effect of the mechanical tolerance should be considered for the stress evaluation. And the effect of the mechanical tolerance should be not considered to determine the joint release speed.

  6. Effect of the Shrink Fit and Mechanical Tolerance on Reactor Coolant Pump Flywheel Integrity Evaluation

    International Nuclear Information System (INIS)

    Kim, Donghak

    2015-01-01

    Reactor coolant pump (RCP) flywheel should satisfy the RCP flywheel integrity criteria of the US NRC standard review plan (SRP) 5.4.1.1 and regulatory guide (RG) 1.14. Shrink-fit and rotational stresses should be calculated to evaluate the integrity. In this paper the effects of the shrink fit and mechanical tolerance on the RCP flywheel integrity evaluation are studied. The shrink fit should be determined by the joint release speed and the stresses in the flywheel will be increased by the shrink fit. The stress at the interface between the hub and the outer wheel shows the highest value. The effect of the mechanical tolerance should be considered for the stress evaluation. And the effect of the mechanical tolerance should be not considered to determine the joint release speed

  7. Nozzle seal

    International Nuclear Information System (INIS)

    Herman, R.F.

    1977-01-01

    In an illustrative embodiment of the invention, a nuclear reactor pressure vessel, having an internal hoop from which the heated coolant emerges from the reactor core and passes through to the reactor outlet nozzles, is provided with sealing members operatively disposed between the outlet nozzle and the hoop. The sealing members are biased against the pressure vessel and the hoop and are connected by a leak restraining member establishing a leak-proof condition between the inlet and outlet coolants in the region about the outlet nozzle. Furthermore, the flexible responsiveness of the seal assures that the seal will not structurally couple the hoop to the pressure vessel

  8. Nozzle seal

    International Nuclear Information System (INIS)

    Walling, G.A.

    1977-01-01

    In an illustrative embodiment of the invention, a nuclear reactor pressure vessel, having an internal hoop from which the heated coolant emerges from the reactor core and passes through to the reactor outlet nozzles, is provided with sealing rings operatively disposed between the outlet nozzles and the hoop. The sealing rings connected by flexible members are biased against the pressure vessel and the hoop, establishing a leak-proof condition between the inlet and outlet coolants in the region about the outlet nozzle. Furthermore, the flexible responsiveness of the seal assures that the seal will not structurally couple the hoop to the pressure vessel. 4 claims, 2 figures

  9. Upgrading inflatable door seals

    International Nuclear Information System (INIS)

    Sykes, T.M.; Metcalfe, R.; Welch, L.A.; Josefowich, J.M.

    1997-01-01

    Inflatable door seals are used for airlocks in CANDU stations. They have been a significant source of unreliability and maintenance cost. A program is underway to improve their performance and reliability, backed by environmental qualification testing. Only commercial products and suppliers existed in 1993. For historical reasons, these 'existing products' did not use the most durable material then available. In hindsight, neither had they been adapted nor optimized to combat conditions often experienced in the plants-sagging doors, damaged sealing surfaces, and many thousands of openings and closings per year. Initial attempts to involve the two existing suppliers in efforts to upgrade these seals were unsuccessful. Another suitable supplier had therefore to be found, and a 'new,' COG-owned seal developed; this was completed in 1997. This paper summarizes its testing, along with that of the two existing products. Resistance to aging has been improved significantly. Testing has shown that an accident can be safely withstood after 10 years of service or 40,000 openings-closings, whichever comes first. AECL's Fluid Sealing Technology Unit (FSTU) has invested in the special moulds, test fixtures and other necessary tooling and documentation required to begin commercial manufacture of this new quality product. Accordingly, as with FSTU's other nuclear products such as pump seals, the long-term supply of door seals to CANDU plants is now protected from many external uncertainties-e.g., commercial products being discontinued, materials being changed, companies going out of business. Manufacturing to AECL's detailed specifications is being subcontracted to the new supplier. FSTU is performing the quality surveillance, inspection, testing, and customer service activities concomitant with direct responsibility for supply to the plants. (author)

  10. 85,000-GPM, single-stage, single-suction LMFBR intermediate centrifugal pump

    International Nuclear Information System (INIS)

    Fair, C.E.; Cook, M.E.; Huber, K.A.; Rohde, R.

    1983-01-01

    The mechanical and hydraulic design features of the 85,000-gpm, single-stage, single-suction pump test article, which is designed to circulate liquid-sodium coolant in the intermediate heat-transport system of a Large-Scale Liquid Metal Fast Breeder Reactor (LS-LMFBR), are described. The design and analytical considerations used to satisfy the pump performance and operability requirements are presented. The validation of pump hydraulic performance using a hydraulic scale-model pump is discussed, as is the featute test for the mechanical-shaft seal system

  11. Numerical modelling of the mechanical and fluid flow properties of fault zones - Implications for fault seal analysis

    NARCIS (Netherlands)

    Heege, J.H. ter; Wassing, B.B.T.; Giger, S.B.; Clennell, M.B.

    2009-01-01

    Existing fault seal algorithms are based on fault zone composition and fault slip (e.g., shale gouge ratio), or on fault orientations within the contemporary stress field (e.g., slip tendency). In this study, we aim to develop improved fault seal algorithms that account for differences in fault zone

  12. Ceramic Seal.

    Energy Technology Data Exchange (ETDEWEB)

    Smartt, Heidi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Juan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Custer, Joyce Olsen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hymel, Ross W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Krementz, Dan [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gobin, Derek [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Harpring, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martinez-Rodriguez, Michael [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Varble, Don [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiMaio, Jeff [Tetramer Technologies, Pendleton, SC (United States); Hudson, Stephen [Tetramer Technologies, Pendleton, SC (United States)

    2016-11-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  13. Ceramic Seal

    International Nuclear Information System (INIS)

    Smartt, Heidi A.; Romero, Juan A.; Custer, Joyce Olsen; Hymel, Ross W.; Krementz, Dan; Gobin, Derek; Harpring, Larry; Martinez-Rodriguez, Michael; Varble, Don; DiMaio, Jeff; Hudson, Stephen

    2016-01-01

    Containment/Surveillance (C/S) measures are critical to any verification regime in order to maintain Continuity of Knowledge (CoK). The Ceramic Seal project is research into the next generation technologies to advance C/S, in particular improving security and efficiency. The Ceramic Seal is a small form factor loop seal with improved tamper-indication including a frangible seal body, tamper planes, external coatings, and electronic monitoring of the seal body integrity. It improves efficiency through a self-securing wire and in-situ verification with a handheld reader. Sandia National Laboratories (SNL) and Savannah River National Laboratory (SRNL), under sponsorship from the U.S. National Nuclear Security Administration (NNSA) Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), have previously designed and have now fabricated and tested Ceramic Seals. Tests have occurred at both SNL and SRNL, with different types of tests occurring at each facility. This interim report will describe the Ceramic Seal prototype, the design and development of a handheld standalone reader and an interface to a data acquisition system, fabrication of the seals, and results of initial testing.

  14. Electronic seal

    International Nuclear Information System (INIS)

    Musyck, E.

    1981-01-01

    An electronic seal is presented for a volume such as container for fissile materials. The seal encloses a lock for barring the space as well as a device for the detection and the recording of the intervention of the lock. (AF)

  15. Ferrules seals

    Science.gov (United States)

    Smith, J.L.

    1984-07-10

    A device is provided for sealing an inner tube and an outer tube without excessively deforming the tubes. The device includes two ferrules which cooperate to form a vacuum-tight seal between the inner tube and outer tube and having mating surfaces such that overtightening is not possible. 3 figs.

  16. Experimental Study on Fracture Failure of BRW 250 Pump Liquid Valve Mechanical Spring Surface

    Directory of Open Access Journals (Sweden)

    Rui Zeng

    2017-01-01

    Full Text Available In this paper, the singularity analysis method based on the continuous wave for the vibration signal of the plunger pump liquid valve under different conditions was studied, and the LMS based weighted least square method with good robustness and validity was proposed to calculate the LPZ index, which was the judgment criterion for fault of liquid valve mechanical spring. Fault diagnostic test results showed that the method could overcome the singularity of the binary discrete wave in the detection and quantitative accuracy problem, realize the accurate positioning of the singular point in the signal, identify the liquid valve disc in the spring break state to the liquid valve seat or lift limit the impact of the moment, and determine the fault of the liquid valve mechanical spring effectively.

  17. Liquid metal pump

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1981-01-01

    A liquid metal pump comprising a shaft support structure which is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft carries an impeller and the support structure carries an impeller cage which is slidably disposed in a diffuser so as to allow complete removal of pump internals for inspection and repair. The diffuser is concentrically supported in the pump housing which also takes up all reaction forces generated by the discharge of the liquid metal from the diffuser, with floating seals arranged between impeller cage and the diffuser. The space between the diffuser and the pump housing permits the incoming liquid to essentially surround the diffuser. (author)

  18. Sealing devices

    International Nuclear Information System (INIS)

    Coulson, R.A.

    1980-01-01

    A sealing device for minimising the leakage of toxic or radioactive contaminated environments through a biological shield along an opening through which a flexible component moves that penetrates the shield. The sealing device comprises an outer tubular member which extends over a length not less than the maximum longitudinal movement of the component along the opening. An inner sealing block is located intermediate the length of the component by connectors and is positioned in the bore of the outer tubular member to slide in the bore and effect a seal over the entire longitudinal movement of the component. The cross-section of the device may be circular and the block may be of polytetrafluoroethylene or of nylon impregnated with molybdenum or may be metallic. A number of the sealing devices may be combined into an assembly for a plurality of adjacent longitudinally movable components, each adapted to sustain a tensile load, providing the various drives of a master-slave manipulator. (author)

  19. Influence of different functionalization on mechanical and interface behavior of MWCNTs/NBR sealing composites

    Science.gov (United States)

    Li, Kun; Gu, Boqin

    2017-04-01

    Rubber sealants are key components in processing industries. Carbon nanotubes (CNTs), which are randomly dispersed in polymer, are able to generate exciting effects. Focusing on mechanical properties of composites and interface characteristic between the fillers and matrix, carrying out SEM, DMA and uniaxial tensile tests, the tensile strength of the composites with 4 phr (parts by weight per hundred parts of rubber) multiwalled carbon nanotubes (MWNTs) is obviously improved. MWNTs with different functionalization have different influence on the viscoelastic and mechanical properties of the composites. Results indicate that MWNTs-COOH are broken when composites fractured. While MWNTs, MWNTs-OH and MWNTs-NH2 are pulled out from the matrix because interface debonds under the tensile failure. The interfacial shear stress (IFSS) is about 4.7 MPa in composites. The glass transition temperature (T g) shifts higher temperatures compared to pure NBR (Acrylonitrile-butadiene Rubber). The presence of the nanotubes limite the movement of NBR macromolecules.

  20. Miniature magnetic fluid seal working in liquid environments

    Energy Technology Data Exchange (ETDEWEB)

    Mitamura, Yoshinori, E-mail: ymitamura@par.odn.ne.jp [Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814 (Japan); Durst, Christopher A., E-mail: chris@procyrion.com [Procyrion, Inc., Houston, TX 77027 (United States)

    2017-06-01

    This study was carried out to develop a miniature magnetic fluid (MF) seal working in a liquid environment. The miniature MF seal is intended for use in a catheter blood pump. The requirements for the MF seal included a size of less than Ø4×4.5 mm, shaft diameter of 1 mm, sealing pressure of 200 mmHg, shaft speed of up to 40000 rpm, and life of one month. The miniature MF seal was composed of an NdFeB magnet (Ø4×Ø2×1) sandwiched between two pole pieces (Ø4×Ø1.1×0.5). A shield (Ø4×Ø1.2×1.5) was placed on the pole piece facing the liquid to minimize the influence of pump flow on the MF. The seal was installed on a Ø1 shaft. A seal was formed by injecting MF (Ms: 47.8 kA/m and η: 0.5 Pa·sec) into the gap between the pole pieces and the shaft. Total volume of the MF seal was 44 μL. A sealing pressure of 370 mmHg was obtained at motor speeds of 0-40,000 rpm. The seal remained perfect for 10 days in saline under the condition of a pump flow of 1.5 L/min (The test was terminated in accordance with plans). The seal remained intact after ethylene oxide sterilization during which the seal was exposed to high pressures. In conclusion, the newly developed MF seal will be useful for a catheter pump. - Highlights: • A miniature magnetic fluid seal working in a liquid environment was developed. • The seal can be installed on Ø1 mm shaft and can seal against 370 mmHg at 40000 rpm. • The magnetic fluid seal will be useful for a catheter blood pump.

  1. Sodium pumping: pump problems

    International Nuclear Information System (INIS)

    Guer, M.; Guiton, P.

    Information on sodium pumps for LMFBR type reactors is presented concerning ring pump design, pool reactor pump design, secondary pumps, sodium bearings, swivel joints of the oscillating annulus, and thermal shock loads

  2. Selection of vacuum seals for EBT-P

    International Nuclear Information System (INIS)

    Dillow, C.F.; Adlon, G.L.; Stubblefield, V.E.

    1981-01-01

    Elmo Bumpy Torus Proof of Principle (EBT-P) is a magnetic fusion RandD facility being constructed by McDonnell Douglas Astronautics Company - St. Louis Division of Oak Ridge National Laboratory (ORNL). EBT-P is a truly unique fusion device requiring careful consideration in selecting both the primary vacuum seals on the toroidal vessel and the secondary vacuum seals in components such as vacuum pumps and and valves. The vacuum seal environment is described and the considerations in vacuum seal selection fully discussed. Methods for protecting vacuum seals in pumps and valves from the microwave environments are also presented

  3. Coronal heating driven by a magnetic gradient pumping mechanism in solar plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Baolin, E-mail: bltan@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Beijing 100012 (China)

    2014-11-10

    The heating of the solar corona is a longstanding mystery in astrophysics. Considering that the solar magnetic field is spatially inhomogeneous with a considerable magnetic gradient from the solar surface to the corona, this work proposes a magnetic gradient pumping (MGP) mechanism to try to explain the formation of hot plasma upflows, such as hot type II spicules and hot plasma ejections. In the MGP mechanism, the magnetic gradient may drive the energetic particles to move upward from the underlying solar atmosphere and form hot upflows. These upflow energetic particles are deposited in the corona, causing it to become very hot. Rough estimations indicate that the solar corona can be heated to above 1 million degrees, and the upflow velocity is about 40 km s{sup –1} in the chromosphere and about 130 km s{sup –1} in the corona. The solar magnetic flux tubes act as pumpers to extract energetic particles from the underlying thermal photosphere, convey them, and deposit them in the corona. The deposit of these energetic particles causes the corona to become hot, and the escape of such particles from the photosphere leaves it a bit cold. This mechanism can present a natural explanation to the mystery of solar coronal heating.

  4. Brief communication: sliding displacement of amnion and chorion following controlled laser wounding suggests a mechanism for short-term sealing of ruptured membranes.

    Science.gov (United States)

    Behzad, F; Dickinson, M R; Charlton, A; Aplin, J D

    1994-10-01

    The Erbium-YAG laser was used to produce narrow wounds of defined depth in term amniochorion. The charring effect of the laser meant that sites could be readily localized in histological sections. During brief post-wounding incubations, sliding displacement of the amnion relative to the chorion occurred through the plane of the spongy layer. This suggests a possible short-term mechanism whereby a spontaneous rupture could be sealed in vivo.

  5. Development of simplified rotating plug seal structure

    International Nuclear Information System (INIS)

    Ueta, M.; Ichimiya, M.; Kanaoka, T.; Sekiya, H.; Ueda, S.; Ishibashi, S.

    1991-01-01

    We studied a compact and simplified rotating plug seal structure and conducted experiments for key elements of the concept such us the mechanical seal structure and sodium deposit prevention system. Good characteristics were confirmed for the mechanical seal structure, which utilizes an elastomer seal and thin lathe bearing. Applicability of the density barrier concept was also confirmed as the sodium deposit prevention system. This concept can be applied to actual plants. (author)

  6. Mechanical Face Seal Dynamics.

    Science.gov (United States)

    1985-12-01

    1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE -,1 - " P V 7 V - • ... f -N- PRE FACE This final...dimensionless mass m and support damping 1), ~ at-e aisas M"= -1,,i -4 4) y positive. ’he damping D is Ihe tinplete system of momeints acting on tile

  7. Miniature Scroll Pumps Fabricated by LIGA

    Science.gov (United States)

    Wiberg, Dean; Shcheglov, Kirill; White, Victor; Bae, Sam

    2009-01-01

    Miniature scroll pumps have been proposed as roughing pumps (low - vacuum pumps) for miniature scientific instruments (e.g., portable mass spectrometers and gas analyzers) that depend on vacuum. The larger scroll pumps used as roughing pumps in some older vacuum systems are fabricated by conventional machining. Typically, such an older scroll pump includes (1) an electric motor with an eccentric shaft to generate orbital motion of a scroll and (2) conventional bearings to restrict the orbital motion to a circle. The proposed miniature scroll pumps would differ from the prior, larger ones in both design and fabrication. A miniature scroll pump would include two scrolls: one mounted on a stationary baseplate and one on a flexure stage (see figure). An electromagnetic actuator in the form of two pairs of voice coils in a push-pull configuration would make the flexure stage move in the desired circular orbit. The capacitance between the scrolls would be monitored to provide position (gap) feedback to a control system that would adjust the drive signals applied to the voice coils to maintain the circular orbit as needed for precise sealing of the scrolls. To minimize power consumption and maximize precision of control, the flexure stage would be driven at the frequency of its mechanical resonance. The miniaturization of these pumps would entail both operational and manufacturing tolerances of pump components. In addition, the vibrations of conventional motors and ball bearings exceed these tight tolerances by an order of magnitude. Therefore, the proposed pumps would be fabricated by the microfabrication method known by the German acronym LIGA ( lithographie, galvanoformung, abformung, which means lithography, electroforming, molding) because LIGA has been shown to be capable of providing the required tolerances at large aspect ratios.

  8. Diagnosis of mechanical pumping system using neural networks and system parameters analysis

    International Nuclear Information System (INIS)

    Tsai, Tai Ming; Wang, Wei Hui

    2009-01-01

    Normally, a mechanical pumping system is equipped to monitor some of the important input and output signals which are set to the prescribed values. This paper addressed dealing with these signals to establish the database of input- output relation by using a number of neural network models through learning algorithms. These signals encompass normal and abnormal running conditions. The abnormal running conditions were artificially generated. Meanwhile, for the purpose of setting up an on-line diagnosis network, the learning speed and accuracy of three kinds of networks, viz., the backpropagation (BPN), radial basis function (RBF) and adaptive linear (ADALINE) neural networks have been compared and assessed. The assessment criteria of the networks are compared with the correlation result matrix in terms of the neuron vectors. Both BPN and RBF are judged by the maximum vector based on the post-regression analysis, and the ADALINE is judged by the minimum vector based on the least mean square error analysis. By ignoring the neural network training time, it has been shown that if the mechanical diagnosis system is tackled off-line, the RBF method is suggested. However, for on-line diagnosis, the BPN method is recommended

  9. Diagnosis of mechanical pumping system using neural networks and system parameters analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Tai Ming; Wang, Wei Hui [National Taiwan Ocean University, Keelung (China)

    2009-01-15

    Normally, a mechanical pumping system is equipped to monitor some of the important input and output signals which are set to the prescribed values. This paper addressed dealing with these signals to establish the database of input- output relation by using a number of neural network models through learning algorithms. These signals encompass normal and abnormal running conditions. The abnormal running conditions were artificially generated. Meanwhile, for the purpose of setting up an on-line diagnosis network, the learning speed and accuracy of three kinds of networks, viz., the backpropagation (BPN), radial basis function (RBF) and adaptive linear (ADALINE) neural networks have been compared and assessed. The assessment criteria of the networks are compared with the correlation result matrix in terms of the neuron vectors. Both BPN and RBF are judged by the maximum vector based on the post-regression analysis, and the ADALINE is judged by the minimum vector based on the least mean square error analysis. By ignoring the neural network training time, it has been shown that if the mechanical diagnosis system is tackled off-line, the RBF method is suggested. However, for on-line diagnosis, the BPN method is recommended

  10. Design technology development of the main coolant pump for an integral reactor

    International Nuclear Information System (INIS)

    Park, J. S.; Lee, J. S.; Kim, M. H.; Kim, D. W.; Kim, J. I.

    2004-01-01

    All of the reactor coolant pump currently used in commercial nuclear power plant were imported from foreign country. Now, the developing program of design technology for the reactor coolant pump will be started in a few future by domestic researchers. At this stage, the design technology of the main coolant pump for an integral reactor is developed based on the regulation of domestic nuclear power plant facilities. The main coolant pump is a canned motor axial pump, which accommodates all constraints required from the integral reactor system. The main coolant pump does not have mechanical seal device because the rotor of motor and the shaft of impeller are the same one. There is no flywheel on the rotating shaft of main coolant pump so that the coastdown duration time is short when the electricity supply is cut off

  11. Experimental Studies of Sealing Mechanism of a Dismountable Microsystem-to-Macropart Fluidic Connector for High Pressure and a Wide Range of Temperature

    Directory of Open Access Journals (Sweden)

    Hugo Nguyen

    2010-01-01

    Full Text Available As fluidic microelectromechanical devices are developing and often attached to, or embedded in, large, complex, and expensive systems, the issues of modularity, maintenance, and subsystem replacement arise. In this work, a robust silicon connector suitable for high-pressure applications—likely with harsh fluids—in the temperature range of +100 to −100° C is demonstrated and tested together with a stainless steel nipple representing a simple and typical macropart. With a micromachined circular membrane equipped with a 5 μm high ridge, this connector is able to maintain a leak rate below 2.0×10−8 scc/s of gaseous helium with a pressure of up to 9.7 bar. Degradation of the sealing performance on reassembly is associated with the indentation of the ridge. However, the ridge makes the sealing interface less sensitive to particles in comparison with a flat reference. Most evaluation is made through the so-called heat-until-leak tests conducted to determine the maximum working temperature and the sealing mechanism of the connector. A couple of these are followed by cryogenic testing. The effect of thermal mismatch of the components is discussed and utilized as an early warning mechanism.

  12. Stagnations of increasing trends in negative pressure with repeated cavitation in water/metal Berthelot tubes as a result of mechanical sealing

    International Nuclear Information System (INIS)

    Hiro, Kazuki; Ohde, Yoshihito; Tanzawa, Yasutoshi

    2003-01-01

    To investigate effects of mechanical sealing on negative pressures in water/metal tube Berthelot systems, trends in negative pressure are observed through runs of temperature cycles below 90 deg. C in two systems made of metals having small amounts of gas inclusions. The first system is a pre-degassed all-stainless-steel tube/plug system. The steel is a special product for vacuum engineering. The second is the same tube sealed with plugs made of silver solidified one-dimensionally in a vacuum furnace. A new type of trend, stagnation for intermediate cycles is found in both systems so long as sealing distortion of each plug is small in amount. The stagnation period for the first system is longer than that for the second one. A metallurgical mechanism of a gas-being-replenished crevice model is proposed: distorted parts of metals undergo heat-treatment during runs of temperature cycles, and the heat-treatment enhances the rates of impurity gas transports to crevices on the metal surface where cavitation occurs, and the transport causes the stagnation for cycles during which the rates are still high

  13. Development of a rotary clap mechanism for positive-displacement rotary pumps: Kinematic analysis and working principle

    International Nuclear Information System (INIS)

    Shim, Sung Bo; Kim, Kyeong Uk; Park, Young Jun; Kim, Jong Mun

    2015-01-01

    A five-bar spatial mechanism named as a rotary clap mechanism is developed as a pumping device for positive displacement rotary pumps. The mechanism comprises a driving crank, a shaft link with two pins and two gears mounted on the middle and both ends, two rotors with jaws equally spaced along their circumferences, and two fixed internal gears. As the crank rotates, the gear pin-jointed to the crank rotates about the crank pin and at the same time rotates about the center of the fixed internal gears like a hypo-cyclic gear train. The gear-attached shaft link also rotates about the crank pin and about the fixed internal gears at the same time. This motion of the shaft link makes the pins rotate about the center of the fixed internal gears with a periodically varying radius. Therefore, two rotors driven by the pins rotate with different angular velocities. One rotor alternately leads and lags relative to the other rotor. These lead-lag motions between the two jaws of the rotors, which result in suction and discharge required for pumping, resemble hand clapping from which the mechanism was named. Construction and design parameters of the rotary clap mechanism are introduced, and kinematic analysis of this mechanism is performed. The relationships among design parameters, inherent constraints, and effects of design parameters on the is placement of mechanism are also presented.

  14. Borehole sealing method and apparatus

    International Nuclear Information System (INIS)

    Hartley, J.N.; Jansen, G. Jr.

    1977-01-01

    A method and apparatus is described for sealing boreholes in the earth. The borehole is blocked at the sealing level, and a sealing apparatus capable of melting rock and earth is positioned in the borehole just above seal level. The apparatus is heated to rock-melting temperature and powdered rock or other sealing material is transported down the borehole to the apparatus where it is melted, pooling on the mechanical block and allowed to cool and solidify, sealing the hole. Any length of the borehole can be sealed by slowly raising the apparatus in the borehole while continuously supplying powdered rock to the apparatus to be melted and added to the top of the column of molten and cooling rock, forming a continuous borehole seal. The sealing apparatus consists of a heater capable of melting rock, including means for supplying power to the heater, means for transporting powdered rock down the borehole to the heater, means for cooling the apparatus and means for positioning the apparatus in the borehole. 5 claims, 1 figure

  15. Mechanical Properties and Chemical Resistance of New Composites for Oil Pump Impellers

    Directory of Open Access Journals (Sweden)

    Dilyus I. Chukov

    2018-05-01

    Full Text Available In this paper, a new class of high-performance composites and a method of their production based on the carbonization of an elastomeric matrix are proposed. The use of elastomeric matrix makes it possible to manufacture products with complex shapes, while the subsequent carbonization can significantly improve their properties by changing the chemical nature of the elastomeric matrix. Such an approach can reduce the products’ machining cost, especially for composites reinforced with super hard fillers such as silicon carbide at high filling degrees. Low-temperature carbonization makes it possible to obtain composites with mechanical behavior similar to that of ceramics. In contrast to classical elastomeric materials, the nitrile butadiene rubber (NBR-based compounds were highly filled (300 parts per hundred rubber-PHR with different carbon fillers and silicon carbide; then cured and carbonized at low-temperature 360 °C with the carbonization cycle of 12 h. The feasibility of the production method was validated through the manufacturing of products with complex shapes—impellers for electric centrifugal pumps. It was found that the carbonized composites have good chemical resistance and low water absorption. The composites have high Shore D hardnesses (93–96, ultimate tensile strengths (62–85 MPa, Young’s moduli (17–24 GPa, and compressive strengths (155–181 MPa.

  16. Improved sealing for in-core systems

    International Nuclear Information System (INIS)

    Dunford, S.

    1989-01-01

    The in-core instrumentation sealing nozzles designed by Framatome have three mechanical seals in series instead of the one traditional seal, and are pressurized by simply tightening up the nozzle covers. They have been installed from the start on all Framatome PWRs, as well as having been backfitted on Belgium and Yugoslavian units and chosen for the Chinese Qinshan plant. (author)

  17. Specialists' meeting on cavitation criteria for designing mechanisms working in sodium: Application to pumps. Summary report

    International Nuclear Information System (INIS)

    2002-01-01

    The purpose of the meeting was to provide a forum for discussions and exchanges of views on cavitation phenomena in sodium, cavitation tests on pump models in water and sodium, application of test results to LMFBR plants, impact on sodium pump design. Topics of interest were also detection methods for cavitation during tests and cavitation problems in electro-magnetic pumps. Two categories of papers were presented: national position papers and specialised topical papers. The main topics discussed, in three sessions were the following: National papers on cavitation; cavitation tests, performance, measuring methods and results; application of test results and implications on the future programmes

  18. Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting.

    Science.gov (United States)

    Fot, Evgenia V; Izotova, Natalia N; Yudina, Angelika S; Smetkin, Aleksei A; Kuzkov, Vsevolod V; Kirov, Mikhail Y

    2017-01-01

    The discontinuation of mechanical ventilation after coronary surgery may prolong and significantly increase the load on intensive care unit personnel. We hypothesized that automated mode using INTELLiVENT-ASV can decrease duration of postoperative mechanical ventilation, reduce workload on medical staff, and provide safe ventilation after off-pump coronary artery bypass grafting (OPCAB). The primary endpoint of our study was to assess the duration of postoperative mechanical ventilation during different modes of weaning from respiratory support (RS) after OPCAB. The secondary endpoint was to assess safety of the automated weaning mode and the number of manual interventions to the ventilator settings during the weaning process in comparison with the protocolized weaning mode. Forty adult patients undergoing elective OPCAB were enrolled into a prospective single-center study. Patients were randomized into two groups: automated weaning ( n  = 20) using INTELLiVENT-ASV mode with quick-wean option; and protocolized weaning ( n  = 20), using conventional synchronized intermittent mandatory ventilation (SIMV) + pressure support (PS) mode. We assessed the duration of postoperative ventilation, incidence and duration of unacceptable RS, and the load on medical staff. We also performed the retrospective analysis of 102 patients (standard weaning) who were weaned from ventilator with SIMV + PS mode based on physician's experience without prearranged algorithm. Realization of the automated weaning protocol required change in respiratory settings in 2 patients vs. 7 (5-9) adjustments per patient in the protocolized weaning group. Both incidence and duration of unacceptable RS were reduced significantly by means of the automated weaning approach. The FiO 2 during spontaneous breathing trials was significantly lower in the automated weaning group: 30 (30-35) vs. 40 (40-45) % in the protocolized weaning group ( p  ventilation in a more protective way, reduces the

  19. Design and optimization of a large flow rate booster pump in SWRO energy recovery system

    International Nuclear Information System (INIS)

    Lai, Z N; Wu, P; Wu, D Z; Wang, L Q

    2013-01-01

    Seawater reverse osmosis (SWRO) is a high energy-consumption industry, so energy efficiency is an important issue. Energy recovery systems, which contain a pressure exchanger and a booster pump, are widely used in SWRO plants. As a key part of energy recovery system, the difficulty of designing booster pumps lies in high inlet pressure, high medium causticity and large flow rate. High inlet pressure adds difficulties to seal design, and large flow rate and high efficiency requirement bring high demand for hydraulic design. In this paper, a 625 m 3 /h booster pump is designed and optimized according to the CFD (Computational Fluid Dynamics) simulation results. The impeller and volute is well designed, a new type of high pressure mechanical seal is applied and axial force is well balanced. After optimization based on blade redesign, the efficiency of the pump was improved. The best efficiency reaches more than 85% at design point according to the CFD simulation result

  20. Design and optimization of a large flow rate booster pump in SWRO energy recovery system

    Science.gov (United States)

    Lai, Z. N.; Wu, P.; Wu, D. Z.; Wang, L. Q.

    2013-12-01

    Seawater reverse osmosis (SWRO) is a high energy-consumption industry, so energy efficiency is an important issue. Energy recovery systems, which contain a pressure exchanger and a booster pump, are widely used in SWRO plants. As a key part of energy recovery system, the difficulty of designing booster pumps lies in high inlet pressure, high medium causticity and large flow rate. High inlet pressure adds difficulties to seal design, and large flow rate and high efficiency requirement bring high demand for hydraulic design. In this paper, a 625 m3/h booster pump is designed and optimized according to the CFD (Computational Fluid Dynamics) simulation results. The impeller and volute is well designed, a new type of high pressure mechanical seal is applied and axial force is well balanced. After optimization based on blade redesign, the efficiency of the pump was improved. The best efficiency reaches more than 85% at design point according to the CFD simulation result.

  1. Electrokinetic pumps and actuators

    International Nuclear Information System (INIS)

    Phillip M. Paul

    2000-01-01

    Flow and ionic transport in porous media are central to electrokinetic pumping as well as to a host of other microfluidic devices. Electrokinetic pumping provides the ability to create high pressures (to over 10,000 psi) and high flow rates (over 1 mL/min) with a device having no moving parts and all liquid seals. The electrokinetic pump (EKP) is ideally suited for applications ranging from a high pressure integrated pump for chip-scale HPLC to a high flow rate integrated pump for forced liquid convection cooling of high-power electronics. Relations for flow rate and current fluxes in porous media are derived that provide a basis for analysis of complex microfluidic systems as well as for optimization of electrokinetic pumps

  2. Electrokinetic pumps and actuators

    Energy Technology Data Exchange (ETDEWEB)

    Phillip M. Paul

    2000-03-01

    Flow and ionic transport in porous media are central to electrokinetic pumping as well as to a host of other microfluidic devices. Electrokinetic pumping provides the ability to create high pressures (to over 10,000 psi) and high flow rates (over 1 mL/min) with a device having no moving parts and all liquid seals. The electrokinetic pump (EKP) is ideally suited for applications ranging from a high pressure integrated pump for chip-scale HPLC to a high flow rate integrated pump for forced liquid convection cooling of high-power electronics. Relations for flow rate and current fluxes in porous media are derived that provide a basis for analysis of complex microfluidic systems as well as for optimization of electrokinetic pumps.

  3. Mechanical design of the recirculating, terminal pumping in the Lund Pelletron, and experimental experience

    International Nuclear Information System (INIS)

    Hellborg, R.; Hakansson, K.; Faarinen, M.; Kiisk, M.; Persson, P.; Skog, G.; Stenstroem, K.

    2002-01-01

    A recirculating terminal pumping system has been installed in the 3 MV Pelletron tandem accelerator in Lund. An extremely limited space in the high voltage terminal and the absence of electrical power in the terminal, forced us to provide a unique design for the installation and powering of the new pumps. Details of the technical design, as well as experience of the use of the new system for accelerator mass spectrometry, will be given. (author)

  4. Several particular aspects of hydrostatic shaft guide bearings in mechanical liquid sodium pumps

    International Nuclear Information System (INIS)

    Elie, X.

    A number of problems arise with immersed hydrostatic shaft guide bearings in sodium pumps, mainly at high-temperature operation. Experience has shown that a substantial bearing clearance is required which, in present designs, takes a considerable amount of fluid from the pumps. A new design is suggested, resulting in a very appreciable reduction in the additional flow requirement, while maintaining a comparable load capacity by a hydrodynamic effect

  5. Investigation on the ultrasonic propagation mechanism and its application on air-source heat pump defrosting

    International Nuclear Information System (INIS)

    Tan, Haihui; Xu, Guanghua; Tao, Tangfei; Zhang, Sicong; Luo, Ailing

    2016-01-01

    Highlights: • Optimal defrosting mode for finned-tube evaporator is S0 mode. • Stress excited by ultrasonic vibration is larger than ice adhesion stress 0.4 MPa. • Frequency matching can enhance the defrosting efficiency effectively. • Ultrasonic vibration can effectively suppressing the frost deposition. • Thermal comfort and heat transfer efficiency enhanced with ultrasonic vibration. - Abstract: Frosting deposited on the outdoor coil of air-source heat pump (ASHP) units deteriorates the operational performance and energy efficiency. Therefore, periodic defrosting is necessary. First, the dispersion curves for the propagation mechanism of an ultrasonic guided wave in the evaporator are determined through numerical calculation. In addition, the shear stress and vibration characteristics under ultrasonic excitation are analysed using finite element method (FEM). Finally, the vibration amplitude and defrosting performance of ultrasonic vibration is analysed. The numerical calculation results indicate that three guided wave modes exist in the evaporator, including both A0 and S0 modes of the Lamb wave and SH0 mode of the SH wave, with the optimal defrosting mode being S0 of the Lamb wave. The FEM results show that the vibrational shapes of S0 mode and longitudinal mode clearly exists in the fin and tube, the torsional and flexural modes also exist in the tube, and the FEM results are consistent with the numerical calculation results. The impedance analysis and laser vibrometer results indicate that the resonance frequency shifting, electro-acoustic converting efficiency and vibration energy decrease is due to increasing external load. The ultrasonic defrosting experimental results indicate that ultrasonic vibration can suppress frost deposit on the fin surface.

  6. Reversible oxidative modification: a key mechanism of Na+-K+ pump regulation.

    Science.gov (United States)

    Figtree, Gemma A; Liu, Chia-Chi; Bibert, Stephanie; Hamilton, Elisha J; Garcia, Alvaro; White, Caroline N; Chia, Karin K M; Cornelius, Flemming; Geering, Kaethi; Rasmussen, Helge H

    2009-07-17

    Angiotensin II (Ang II) inhibits the cardiac sarcolemmal Na(+)-K(+) pump via protein kinase (PK)C-dependent activation of NADPH oxidase. We examined whether this is mediated by oxidative modification of the pump subunits. We detected glutathionylation of beta(1), but not alpha(1), subunits in rabbit ventricular myocytes at baseline. beta(1) Subunit glutathionylation was increased by peroxynitrite (ONOO(-)), paraquat, or activation of NADPH oxidase by Ang II. Increased glutathionylation was associated with decreased alpha(1)/beta(1) subunit coimmunoprecipitation. Glutathionylation was reversed after addition of superoxide dismutase. Glutaredoxin 1, which catalyzes deglutathionylation, coimmunoprecipitated with beta(1) subunit and, when included in patch pipette solutions, abolished paraquat-induced inhibition of myocyte Na(+)-K(+) pump current (I(p)). Cysteine (Cys46) of the beta(1) subunit was the likely candidate for glutathionylation. We expressed Na(+)-K(+) pump alpha(1) subunits with wild-type or Cys46-mutated beta(1) subunits in Xenopus oocytes. ONOO(-) induced glutathionylation of beta(1) subunit and a decrease in Na(+)-K(+) pump turnover number. This was eliminated by mutation of Cys46. ONOO(-) also induced glutathionylation of the Na(+)-K(+) ATPase beta(1) subunit from pig kidney. This was associated with a approximately 2-fold decrease in the rate-limiting E(2)-->E(1) conformational change of the pump, as determined by RH421 fluorescence. We propose that kinase-dependent regulation of the Na(+)-K(+) pump occurs via glutathionylation of its beta(1) subunit at Cys46. These findings have implications for pathophysiological conditions characterized by neurohormonal dysregulation, myocardial oxidative stress and raised myocyte Na(+) levels.

  7. Hermetically sealed superconducting magnet motor

    Science.gov (United States)

    DeVault, Robert C.; McConnell, Benjamin W.; Phillips, Benjamin A.

    1996-01-01

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit.

  8. Performance evaluation study of IHX-IV seal assembly

    Energy Technology Data Exchange (ETDEWEB)

    Padmakumar, G.; Venkatramanan, J.; Balasubramanian, V.; Prakash, V.; Vaidyanathan, G. [Indira Gandhi Centre for Atomic Research, Kalpakkam - 603102 (India); Konnur, M.S.; Ram Mohan, S.; Suresh, M.; Manikandan, S.; Rajesh, V. [Fluid Control Research Institute, Palakkad - 678 623 (India)

    2005-07-01

    Full text of publication follows: The construction of the 500 MWe Prototype Fast Breeder Reactor (PFBR) has commenced at IGCAR, Kalpakkam. PFBR has four intermediate Heat Exchangers (IHX) and two primary Sodium Pumps. The secondary circuits consist of two loops with each loop having one secondary pump, two intermediate heat exchangers, one surge tank and four steam generators. Primary circuit has both hot and cold sodium and is separated into hot and cold pools by Inner Vessel(IV). IHX forms the interface between the primary circuit and secondary circuit of PFBR. The IHX and pumps are supported from at the top in the roof slab and penetrate through the conical portion of inner vessel. Proper sealing arrangements are necessary to prevent leakage of hot sodium into the cold pool through the penetration. The Mechanical Seal is employed to minimize the leakage through the penetration. This seal arrangement can facilitate Differential radial and thermal expansion between IHX and IV stand pipe at the region of penetration Relative tilting between the axis of IHX and IV stand pipe Smooth installation during commissioning and easy removal during maintenance Minimizes the forces transmitted to IV The hydraulic simulation study, of the IHX - IV mechanical seal assembly was undertaken at the Fluid Control Research Institute, Palghat. The seal has two leakage paths viz. Axial and radial. The leakage depends on the contact pressure on the sealing surface and the head causing the leakage. High leakage flow may lead to damage of inner vessel and may affect the thermal efficiency of the IHX. CFD analysis of the geometry was done in detail. This was done for prototype and the model condition. The optimized design obtained using CFD was employed for experimental evaluation. In the experimental set up, the leakage characteristics was studied for varying axial and radial clearance that prevails during the various stages of operation of the seal assembly in the reactor. A 1/2 scaled

  9. Quick-sealing design for radiological containment

    International Nuclear Information System (INIS)

    Rampdla, D.S.; Speer, E.

    1991-01-01

    This patent describes a quick-sealing assembly and method for forming an adhesive seal on opposite sides of a mechanical seal for a flexible containment bag of the type used for working with radioactively contaminated objects. The assembly includes an elongated mechanical fastener having opposing engaging members affixed at a predetermined distance from each of the elongated edges, with an adhesive layer formed between the mechanical fastener and the elongated edge such that upon engagement of the mechanical fastener and adhesive layers to opposing containment fabric, a neat triple hermetic seal is formed

  10. Quick-sealing design for radiological containment

    International Nuclear Information System (INIS)

    Rampolia, D.S.; Speer, E.

    1990-01-01

    This patent describes a quick-sealing assembly and method for forming an adhesive seal on opposite sides of a mechanical seal for a flexible containment bag of the type used for working with radioactively contaminated objects. The assembly includes an elongated mechanical fastener having opposing engaging members affixed at a predetermined distance from each of the elongated edges, with an adhesive layer formed between the mechanical fastener and the elongated edge such that upon engagement of the mechanical fastener and adhesive layers to opposing containment fabric, a neat triple hermetic seal is formed

  11. Quick-sealing design for radiological containment

    Science.gov (United States)

    Rampolia, Donald S.; Speer, Elmer

    1990-01-01

    A quick-sealing assembly and method for forming an adhesive seal on opposite sides of a mechanical seal for a flexible containment bag of the type used for working with radioactively contaminated objects. The assembly includes an elongated mechanical fastener having opposing engaging members affixed at a predetermined distance from each of the elongated edges, with an adhesive layer formed between the mechanical fastener and the elongated edge such that upon engagement of the mechanical fastener and adhesive layers to opposing containment fabric, a neat triple hermetic seal is formed.

  12. The mechanical design of a vapor compressor for a heat pump to be used in space

    Science.gov (United States)

    Berner, F.; Oesch, H.; Goetz, K.; Savage, C. J.

    1982-01-01

    A heat pump developed for use in Spacelab as a stand-alone refrigeration unit as well as within a fluid loop system is discussed. It will provide an active thermal control for payloads. Specifications for the heat pump were established: (1) heat removal rates at the source; (2) heat source temperatures from room temperature; (3) heat-sink fluid temperatures at condenser inlet; and (4) minimum power consumption. A reversed Carnot cycle heat pump using Freon 12 as working fluid incorporating a one-cylinder reciprocating compressor was selected. The maximum crankshaft speed was fixed relatively high at 100 rpm. The specified cooling rates then made it necessary to select a cylinder volume of 10 cu cm, which was obtained with a bore of 40 mm and a stroke of 8 mm.

  13. Countermeasure against thermal fatigue crack of primary loop recirculation pump in BWR

    International Nuclear Information System (INIS)

    Noda, Hiroshi; Narabayashi, Tadashi; Takahashi, Yuuji

    2008-01-01

    The reactor water was fed to the purge water of the mechanical seal on the original design of the primary loop recirculation pump. Because the mechanical seal had a short life due to the cruds in the reactor water, the clean purge water was adopted instead of the reactor water. After this modification, the shallow cracks were found on the surface of the pump shaft and casing cover due to the temperature fluctuation between the cold purge water and the hot pump discharge water. The fundamental mechanism and countermeasure were investigated by scale test, mock-up test and so on. The flow barrier with a heater was contrived through these tests. It has been introduced gradually in operating and constructing PLR pumps after its completion in 1995. The PLR pumps are overhauled around every 10 years in Japan. The first overhaul of the PLR pumps showed no cracks around the pump shaft and casing over after 10 years' operation. This paper presents both its development process and inspection results. (author)

  14. Possible involvement of membrane lipids peroxidation and oxidation of catalytically essential thiols of the cerebral transmembrane sodium pump as component mechanisms of iron-mediated oxidative stress-linked dysfunction of the pump's activity

    Directory of Open Access Journals (Sweden)

    T.I. Omotayo

    2015-04-01

    Full Text Available The precise molecular events defining the complex role of oxidative stress in the inactivation of the cerebral sodium pump in radical-induced neurodegenerative diseases is yet to be fully clarified and thus still open. Herein we investigated the modulation of the activity of the cerebral transmembrane electrogenic enzyme in Fe2+-mediated in vitro oxidative stress model. The results show that Fe2+ inhibited the transmembrane enzyme in a concentration dependent manner and this effect was accompanied by a biphasic generation of aldehydic product of lipid peroxidation. While dithiothreitol prevented both Fe2+ inhibitory effect on the pump and lipid peroxidation, vitamin E prevented only lipid peroxidation but not inhibition of the pump. Besides, malondialdehyde (MDA inhibited the pump by a mechanism not related to oxidation of its critical thiols. Apparently, the low activity of the pump in degenerative diseases mediated by Fe2+ may involve complex multi-component mechanisms which may partly involve an initial oxidation of the critical thiols of the enzyme directly mediated by Fe2+ and during severe progression of such diseases; aldehydic products of lipid peroxidation such as MDA may further exacerbate this inhibitory effect by a mechanism that is likely not related to the oxidation of the catalytically essential thiols of the ouabain-sensitive cerebral electrogenic pump.

  15. Demonstration and Validation of Corrosion-Mitigation Technologies for Mechanical Room Utility Piping and Cooling-Tower Pumps

    Science.gov (United States)

    2015-05-01

    34advanced material for cooling pump shafts" Stainless steel (316 or 416 ) Floway Pump Company, Fresno, CA 316 or 416 stainless steel shafts to replace...pump 5 incorporating 316 stainless steel housing. .................................... 19 Figure 13. New pump 5 being installed...43 Figure 28. Pump 5 (316 Stainless Steel ), 12 months exposure. .......................................... 43

  16. High pressure liquid gas pump

    Science.gov (United States)

    Acres, R. L.

    1972-01-01

    Design and development of two types of pumps for handling liquefied gases are discussed. One pump uses mechanical valve shift and other uses pneumatic valve shift. Illustrations of pumps are provided and detailed description of operation is included.

  17. Miniature magnetic fluid seal working in liquid environments

    Science.gov (United States)

    Mitamura, Yoshinori; Durst, Christopher A.

    2017-06-01

    This study was carried out to develop a miniature magnetic fluid (MF) seal working in a liquid environment. The miniature MF seal is intended for use in a catheter blood pump. The requirements for the MF seal included a size of less than Ø4×4.5 mm, shaft diameter of 1 mm, sealing pressure of 200 mmHg, shaft speed of up to 40000 rpm, and life of one month. The miniature MF seal was composed of an NdFeB magnet (Ø4×Ø2×1) sandwiched between two pole pieces (Ø4×Ø1.1×0.5). A shield (Ø4×Ø1.2×1.5) was placed on the pole piece facing the liquid to minimize the influence of pump flow on the MF. The seal was installed on a Ø1 shaft. A seal was formed by injecting MF (Ms: 47.8 kA/m and η: 0.5 Pa·sec) into the gap between the pole pieces and the shaft. Total volume of the MF seal was 44 μL. A sealing pressure of 370 mmHg was obtained at motor speeds of 0-40,000 rpm. The seal remained perfect for 10 days in saline under the condition of a pump flow of 1.5 L/min (The test was terminated in accordance with plans). The seal remained intact after ethylene oxide sterilization during which the seal was exposed to high pressures. In conclusion, the newly developed MF seal will be useful for a catheter pump.

  18. Different quantization mechanisms in single-electron pumps driven by surface acoustic waves

    DEFF Research Database (Denmark)

    Utko, P.; Gloos, K.; Hansen, Jørn Bindslev

    2006-01-01

    We have studied the acoustoelectric current in single-electron pumps driven by surface acoustic waves. We have found that in certain parameter ranges two different sets of quantized steps dominate the acoustoelectric current versus gate-voltage characteristics. In some cases, both types of quanti...

  19. Detection and effects of pump low-flow operation

    International Nuclear Information System (INIS)

    Casada, D.A.; Greene, R.H.

    1993-01-01

    Operating experience and previous studies have shown that a significant cause of pump problems and failures can result from low- flow operation. Operation at low-flow rates can create unstable flows within the pump impeller and casing. This condition can result in an increased radial and axial thrust on the rotor, which in turn causes higher shaft stresses, increased shaft deflection, and potential bearing and mechanical seal problems. Two of the more serious results of low-flow pump operation are cavitation and recirculation. Cavitation is the formation and subsequent collapse of vapor bubbles in any flow that is at an ambient pressure less than the vapor pressure of the liquid medium. It is the collapse of these vapor bubbles against the metal surfaces of the impeller or casing that causes surface pitting, erosion, and deterioration. Pump recirculation more damaging than cavitation. If located at the impeller eye, recirculation damages the inlet areas of the casing. At the impeller tips, recirculation alters the outside diameter of the impeller. If recirculation occurs around impeller shrouds, it damages thrust bearings. Recirculation also erodes impellers, diffusers, and volutes and causes failure of mechanical seals and bearings. This paper reports on a utility pump failure caused by low-flow induced phenomena. ORNL is investigating the results of low-flow pump operations by evaluating the types of measurements and diagnostic techniques that are currently used by licensees to detect pump degradation. A new, enhanced application of motor current and power data analysis has been developed that uses a signal comparison methodology to produce an instability ratio indicative of normal or unstable flow conditions. Examples of this type of low-flow detection technique are presented in this paper along with a brief discussion of the various types of technologies currently being used by licensees to evaluate pump operation and determine possible degradation

  20. Verification Test of Hydraulic Performance for Reactor Coolant Pump

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Jun; Kim, Jae Shin; Ryu, In Wan; Ko, Bok Seong; Song, Keun Myung [Samjin Ind. Co., Seoul (Korea, Republic of)

    2010-01-15

    According to this project, basic design for prototype pump and model pump of reactor coolant pump and test facilities has been completed. Basic design for prototype pump to establish structure, dimension and hydraulic performance has been completed and through primary flow analysis by computational fluid dynamics(CFD), flow characteristics and hydraulic performance have been established. This pump was designed with mixed flow pump having the following design requirements; specific velocity(Ns); 1080.9(rpm{center_dot}m{sup 3}/m{center_dot}m), capacity; 3115m{sup 3}/h, total head ; 26.3m, pump speed; 1710rpm, pump efficiency; 77.0%, Impeller out-diameter; 349mm, motor output; 360kw, design pressure; 17MPaG. The features of the pump are leakage free due to no mechanical seal on the pump shaft which insures reactor's safety and law noise level and low vibration due to no cooling fan on the motor which makes eco-friendly product. Model pump size was reduced to 44% of prototype pump for the verification test for hydraulic performance of reactor coolant pump and was designed with mixed flow pump and canned motor having the following design requirements; specific speed(NS); 1060.9(rpm{center_dot}m{sup 3}/m{center_dot}m), capacity; 539.4m{sup 3}/h, total head; 21.0m, pump speed; 3476rpm, pump efficiency; 72.9%, Impeller out-diameter; 154mm, motor output; 55kw, design pressure; 1.0MPaG. The test facilities were designed for verification test of hydraulic performance suitable for pump performance test, homologous test, NPSH test(cavitation), cost down test and pressure pulsation test of inlet and outlet ports. Test tank was designed with testing capacity enabling up to 2000m{sup 3}/h and design pressure 1.0MPaG. Auxiliary pump was designed with centrifugal pump having capacity; 1100m{sup 3}/h, total head; 42.0m, motor output; 190kw

  1. Ceramic/metal seals. [refractory materials for hermetic seals for lighium-metal sulfide batteries

    Science.gov (United States)

    Bredbenner, A. M.

    1977-01-01

    Design criteria are discussed for a hermetic seal capable of withstanding the 450 C operating temperature of a lithium-metal sulfide battery system. A mechanical seal consisting of two high strength alloy metal sleeves welded or brazed to a conductor assembly and pressed onto a ceramic is described. The conductor center passes through the ceramic but is not sealed to it. The seal is effected on the outside of the taper where the tubular part is pressed down over and makes contact.

  2. Lithofacies and Diagenetic Controls on Formation-scale Mechanical, Transport, and Sealing Behavior of Caprocks: A Case Study of the Morrow shale and Thirteen Finger Limestone, Farnsworth Unit, Texas

    Science.gov (United States)

    Trujillo, N. A.; Heath, J. E.; Mozley, P.; Dewers, T. A.; Cather, M.

    2016-12-01

    Assessment of caprock sealing behavior for secure CO2 storage is a multiscale endeavor. Sealing behavior arises from the nano-scale capillarity of pore throats, but sealing lithologies alone do not guarantee an effective seal since bypass systems, such as connected, conductive fractures can compromise the integrity of the seal. We apply pore-to-formation-scale data to characterize the multiscale caprock sealing behavior of the Morrow shale and Thirteen Finger Limestone. This work is part of the Southwest Regional Partnership on Carbon Sequestration's Phase III project at the Farnsworth Unit, Texas. The caprock formations overlie the Morrow sandstone, the target for enhanced oil recovery and injection of over one million metric tons of anthropogenically-sourced CO2. Methods include: focused ion beam-scanning electron microscopy; laser scanning confocal microscopy; electron and optical petrography; multi-stress path mechanical testing and constitutive modeling; core examinations of sedimentary structures and fractures; and a noble gas profile for formation-scale transport of the sealing lihologies and the reservoir. We develop relationships between diagenetic characteristics of lithofacies to mechanical and petrophysical measurements of the caprocks. The results are applied as part of a caprock sealing behavior performance assessment. Funding for this project is provided by the U.S. Department of Energy's National Energy Technology Laboratory through the Southwest Regional Partnership on Carbon Sequestration (SWP) under Award No. DE-FC26-05NT42591. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Design of dry scroll vacuum pumping system for efficient pumping of corrosive gas at medium vacuum range

    International Nuclear Information System (INIS)

    Banerjee, I.; Chandresh, B.G.; Guha, K.C.; Sarkar, S.

    2015-01-01

    Dry vacuum pumping systems attracts many applications because of its inherent capability of corrosion free pumping. It becomes a common trait of application in Thermo Nuclear Fusion, Semi conductor, Isotope separation industries etc. Thermo nuclear fusion requires a train of specially sealed roots pump backed by suitable capacity dry screw or reciprocating pump. Similarly corrosive fluoride gas pumping requires hermetically sealed specially designed dry scroll vacuum pump. Plant emergency operation however involves train of specially sealed roots pump backed with scroll pump for faster evacuation. In our attempt an indigenously designed scroll pump and associated system are designed to pump corrosive gases in a way to confine the corrosion product within the system. In order to execute the design, a numerical code for low pressure application is developed

  4. Ion pump as Brownian motor: theory of electroconformational coupling and proof of ratchet mechanism for Na,K-ATPase action

    Science.gov (United States)

    Tsong, Tian Yow; Chang, Cheng-Hung

    2003-04-01

    This article reviews some concepts of the Brownian Ratchet which are relevant to our discussion of mechanisms of action of Na,K-ATPase, a universal ion pump and an elemental motor protein of the biological cell. Under wide ranges of ionic compositions it can hydrolyze an ATP and use the γ-phosphorous bond energy of ATP to pump 3 Na + out of, and 2 K + into the cell, both being uphill transport. During the ATP-dependent pump cycle, the enzyme oscillates between E1 and E2 states. Our experiment replaces ATP with externally applied electric field of various waveforms, amplitudes, and frequencies. The field enforced-oscillation, or fluctuation of E1 and E2 states enables the enzyme to harvest energy from the applied field and convert it to the chemical gradient energy of cations. A theory of electroconformational coupling (TEC), which embodies all the essential features of the Brownian Ratchet, successfully simulates these experimental results. Our analysis based on a four-state TEC model indicates that the equilibrium and the rate constants of the transport system define the frequency and the amplitude of the field for the optimal activation. Waveform, frequency, and amplitude are three elements of signal. Thus, electric signal of the ion pump is found by TEC analysis of the experimental data. Electric noise (white) superimposed on an electric signal changes the pump efficiency and produces effects similar to the stochastic resonance reported in other biological systems. The TEC concept is compared with the most commonly used Michaelis-Menten enzyme mechanism (MME) for similarities and differences. Both MME and TEC are catalytic wheels, which recycle the catalyst in each turnover. However, a MME can only catalyze reaction of descending free energy while a TEC enzyme can catalyze reaction of ascending free energy by harvesting needed energy from an off-equilibrium electric noise. The TEC mechanism is shown to be applicable to other biological motors and engines, as

  5. Improved circumferential shaft seal

    Science.gov (United States)

    Ludwig, L. P.; Strom, T. N.

    1974-01-01

    Comparative tests of modified and unmodified carbon ring seals showed that addition of helical grooves to conventional segmented carbon ring seals reduced leakage significantly. Modified seal was insensitive to shaft runout and to flooding by lubricant.

  6. Large scale breeder reactor plant prototype mechanical pump conceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    1976-07-01

    This report includes engineering memorandums, drawings, key feature descriptions, and other data. Some of the reports, such as manufacturability and some stress analysis, were done by consultants for Byron Jackson. Review of this report indicates that the design is feasible. The pump can be manufactured to system and specification requirements. The overall length and weight of some pieces will require special consideration, but is within the scope of equipment and technology available today. The fabricated parts are large and heavy, but can be manufactured and machined. Only the high temperature is unique to this size, since previous sodium pumps were smaller. Nondestructive tests as required by the Code are described and are feasible. The performance test of the prototype has been studied thoroughly. It is feasible for a cold water test. There are some problem areas. However, all of them can be solved. Development needs include building and testing a small scale model.

  7. Variable load failure mechanism for high-speed load sensing electro-hydrostatic actuator pump of aircraft

    Directory of Open Access Journals (Sweden)

    Cun SHI

    2018-05-01

    Full Text Available This paper presents a novel transient lubrication model for the analysis of the variable load failure mechanism of high-speed pump used in Load Sensing Electro-Hydrostatic Actuator (LS-EHA. Focusing on the slipper/swashplate pair partial abrasion, which is considered as the dominant failure mode in the high-speed condition, slipper dynamic models are established. A forth sliding motion of the slipper on the swashplate surface is presented under the fact that the slipper center of mass will rotate around the center of piston ball when the swashplate angle is dynamically adjusted. Besides, extra inertial tilting moments will be produced for the slipper based on the theorem on translation of force, which will increase rapidly when LS-EHA pump operates under high-speed condition. Then, a dynamic lubricating model coupling with fluid film thickness field, temperature field and pressure field is proposed. The deformation effects caused by thermal deflection and hydrostatic pressure are considered. A numerical simulation model is established to validate the effectiveness and accuracy of the proposed model. Finally, based on the load spectrum of aircraft flight profile, the variable load conditions and the oil film characteristics are analyzed, and series of variable load rules of oil film thickness with variable speed/variable pressure/variable displacement are concluded. Keywords: Coupling lubrication model, Electro-Hydrostatic Actuator (EHA, High-speed pump, Partial abrasion, Slipper pair, Variable load

  8. Hydraulic testing of intravascular axial flow blood pump designs with a protective cage of filaments for mechanical cavopulmonary assist.

    Science.gov (United States)

    Kapadia, Jugal Y; Pierce, Kathryn C; Poupore, Amy K; Throckmorton, Amy L

    2010-01-01

    To provide hemodynamic support to patients with a failing single ventricle, we are developing a percutaneously inserted, magnetically levitated axial flow blood pump designed to augment pressure in the cavopulmonary circulation. The device is designed to serve as a bridge-to-transplant, bridge-to-recovery, bridge-to-hemodynamic stability, or bridge-to-surgical reconstruction. This study evaluated the hydraulic performance of three blood pump prototypes (a four-bladed impeller, a three-bladed impeller, and a three-bladed impeller with a four-bladed diffuser) whose designs evolved from previous design optimization phases. Each prototype included the same geometric protective cage of filaments, which stabilize the rotor within the housing and protect the housing wall from the rotating blades. All prototypes delivered pressure rises over a range of flow rates and rotational speeds that would be sufficient to augment hemodynamic conditions in the cavopulmonary circulation. The four-bladed impeller outperformed the two remaining prototypes by >40%; this design was able to generate a pressure rise of 4-28 mm Hg for flow rates of 0.5-10 L/min at rotational speeds of 4,000-7,000 RPM. Successful development of this blood pump will provide clinicians with a feasible therapeutic option for mechanically supporting the failing Fontan.

  9. Insecurity of imperfect quantum bit seal

    International Nuclear Information System (INIS)

    Chau, H.F.

    2006-01-01

    Quantum bit seal is a way to encode a classical bit quantum mechanically so that everyone can obtain non-zero information on the value of the bit. Moreover, such an attempt should have a high chance of being detected by an authorized verifier. Surely, a reader looks for a way to get the maximum amount of information on the sealed bit and at the same time to minimize her chance of being caught. And a verifier picks a sealing scheme that maximizes his chance of detecting any measurement of the sealed bit. Here, I report a strategy that passes all measurement detection procedures at least half of the time for all quantum bit sealing schemes. This strategy also minimizes a reader's chance of being caught under a certain scheme. In this way, I extend the result of Bechmann-Pasquinucci et al. by proving that quantum seal is insecure in the case of imperfect sealed bit recovery

  10. Measurement of percent hydrogen in the mechanical vacuum pump gas stream during BWR startup

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Odell, Andrew D.; Giannelli, Joseph F.

    2012-09-01

    All U.S BWRs use a Mechanical Vacuum Pump (MVP) to establish condenser vacuum during start-ups, normally from the initial heat-up to the point where sufficient reactor steam pressure and flow is available to place the Steam Jet Air Ejector (SJAE) and off-gas treatment system in service. MVP operation is restricted to <5% power and gas stream concentrations of <4% H 2 , the lower flammability limit (LFL) for hydrogen/air mixtures. For a particular plant startup prior to hydrogen injection for hydrogen water chemistry (HWC), the MVP %H 2 would depend on the air in-leakage rate, the H 2 gas generation rate from radiolysis and the gas/steam transport rate from the reactor vessel to the main condenser. The radiolysis rate at low power, which is not precisely known and has not been modeled for the BWR, is normally assumed to increase in proportion to thermal power. Two thirds of the radiolytic gas by volume would be H 2 and one third O 2 . The MVP is not equipped with %H 2 sampling and measurement capability, and many MVP systems include no flow measurement. No U.S plant or literature data on MVP %H 2 were found. The industry-first Early Hydrogen Water Chemistry (EHWC) demonstration at the Peach Bottom 3 nuclear power plant involved hydrogen gas injection into the reactor vessel during startup while the MVP was in service. To support the EHWC project, it was necessary to collect baseline MVP %H 2 data during a startup without hydrogen injection and to monitor MVP %H 2 during the startup with EHWC. The MVP system had no normal sample point, but included test taps in the suction and discharge piping. A sampling method and apparatus was invented (EPRI patent pending), designed, built and applied to obtain %H 2 measurements in the MVP gas stream. The apparatus allowed a gas sample stream to be taken from either the suction (vacuum) or discharge side of the MVP. The gas sample stream was preconditioned to remove moisture (the MVP uses water as a liquid compressant), flowed to

  11. A highly self-adaptive cold plate for the single-phase mechanically pumped fluid loop for spacecraft thermal management

    International Nuclear Information System (INIS)

    Wang, Ji-Xiang; Li, Yun-Ze; Zhang, Hong-Sheng; Wang, Sheng-Nan; Liang, Yi-Hao; Guo, Wei; Liu, Yang; Tian, Shao-Ping

    2016-01-01

    Highlights: • A highly self-adaptive cold plate integrated with paraffin-based actuator is proposed. • Higher operating economy is attained due to an energy-efficient strategy. • A greater compatibility of the current space control system is obtained. • Model was entrenched theoretically to design the system efficiently. • A strong self-adaptability of the cold plate is observed experimentally. - Abstract: Aiming to improve the conventional single-phase mechanically pumped fluid loop applied in spacecraft thermal control system, a novel actively-pumped loop using distributed thermal control strategy was proposed. The flow control system for each branch consists primarily of a thermal control valve integrated with a paraffin-based actuator residing in the front part of each corresponding cold plate, where both coolant’s flow rate and the cold plate’s heat removal capability are well controlled sensitively according to the heat loaded upon the cold plate due to a conversion between thermal and mechanical energies. The operating economy enhances remarkably owing to no energy consumption in flow control process. Additionally, realizing the integration of the sensor, controller and actuator systems, it simplifies structure of the traditional mechanically pumped fluid loop as well. Revolving this novel scheme, mathematical model regarding design process of the highly specialized cold plate was entrenched theoretically. A validating system as a prototype was established on the basis of the design method and the scheduled objective of the controlled temperature (43 °C). Then temperature control performances of the highly self-adaptive cold plate under various operating conditions were tested experimentally. During almost all experiments, the controlled temperature remains within a range of ±2 °C around the set-point. Conclusions can be drawn that this self-driven control system is stable with sufficient fast transient responses and sufficient small steady

  12. Investigation into the Effects of the Variable Displacement Mechanism on Swash Plate Oscillation in High-Speed Piston Pumps

    Directory of Open Access Journals (Sweden)

    Xu Fang

    2018-04-01

    Full Text Available High-speed, pressure-compensated variable displacement piston pumps are widely used in aircraft hydraulic systems for their high power density. The swash plate is controlled by the pressure-compensated valve, which uses pressure feedback so that the instantaneous output flow of the pump is exactly enough to maintain a presetting pressure. The oscillation of the swash plate is one of the major excitation sources in the high-speed piston pump, which may cause lower efficiency, shorter service life, and even serious damage. This paper presents an improved model to investigate the influence of the variable displacement mechanism on the swash plate oscillation and introduces some feasible ways to reduce oscillation of the swash plate. Most of the variable structural parameters of the variable displacement mechanism are taken into consideration, and their influences on swash plate oscillation are discussed in detail. The influence of the load pipe on the oscillation of the swash plate is considered in the improved model. A test rig is built and similarities between the experiments and simulated results prove that the simulation model can effectively predict the variable displacement mechanism state. The simulation results show that increasing the volume of the outlet chamber, the spring stiffness of the control valve, the action area of the actuator piston, and offset distance of the actuator piston can significantly reduce the oscillation amplitude of the swash plate. Furthermore, reducing the diameter of the control valve spool and the dead volume of the actuator piston chamber can also have a positive effect on oscillation amplitude reduction.

  13. Leak-thight seals got high pressure testing of pipes, tanks, valves

    International Nuclear Information System (INIS)

    Estrade, J.

    1985-01-01

    Leak-tight seals ensure quick, safe and efficient testing of pipes with plain-ended or flanged openings, valves with flanged or welded edges, manifields, recipients, etc. They are inserted into the pipe end manually then simply a slight turn of the seal treated wheel commences the pressure test. Hydraulic pressure is supplied by a pump through the inlet seal and air is purged through the outlet seal which then closes. The higher the pressure, the greater the sealing strength of the seal which prevents accidental unplugging. There are different types of seals: for interior plain-ended openings, for pipes with plain-ended opening, for flanged pipes. (author)

  14. EVAHEART: an implantable centrifugal blood pump for long-term circulatory support.

    Science.gov (United States)

    Yamazaki, Kenji; Kihara, Shinichiro; Akimoto, Takehide; Tagusari, Osamu; Kawai, Akihiko; Umezu, Mitsuo; Tomioka, Jun; Kormos, Robert L; Griffith, Bartley P; Kurosawa, Hiromi

    2002-11-01

    We developed "EVAHEART": a compact centrifugal blood pump system as an implantable left ventricular assist device for long-term circulatory support. The 55 x 64 mm pump is made from pure titanium, and weighs 370 g. The entire blood-contacting surface is covered with an anti-thrombogenic coating of diamond like carbon (DLC) or 2-methacryloyloxyethyl phosphorylcholine (MPC) to improve blood compatibility. Flows exceeding 12 L/min against 100 mmHg pressure at 2600 rpm was measured. A low-temperature mechanical seal with recirculating cooling system is used to seal the shaft. EVAHEART demonstrated an acceptably low hemolysis rate with normalized index of hemolysis of 0.005 +/- 0.002 g/100L. We evaluated the pump in long-term in-vivo experiments with seven calves. Via left thoracotomy, we conducted left ventricular apex-descending aorta bypass, placing the pump in the left thoracic cavity. Pump flow rates was maintained at 5-9 L/min, pump power consumption remained stable at 9-10 W in all cases, plasma free Hb levels were less than 15 mg/dl, and the seal system showed good seal capability throughout the experiments. The calves were sacrificed on schedule on postoperative day 200, 222, 142, 90, 151, 155, and 133. No thrombi formed on the blood contacting surface with either the DLC or MPC coating, and no major organ thromboembolisms occurred except for a few small renal infarcts. EVAHEART centrifugal blood pump demonstrated excellent performance in long-term in-vivo experiments.

  15. Detection and effects of pump low-flow operation

    International Nuclear Information System (INIS)

    Casada, D.A.; Greene, R.H.

    1994-01-01

    Operating experience and previous studies performed for the Nuclear Plant Aging Research Program have shown that a significant cause of pump problems and failures can result from low-flow operation. Operation at low-flow rates can create unstable flows within the pump impeller and casing. This condition can result in an increased radial and axial thrust on the rotor, which in turn causes higher shaft stresses, increased shaft deflection, and potential bearing and mechanical seal problems. Two of the more serious results of low-flow pump operation are cavitation and recirculation. Both of these conditions can be characterized by crackling sounds that accompany a substantial increase in vibration and noise level, and a reduction in total head and output capacity. Cavitation is the formation and subsequent collapse of vapor bubbles in any flow that is at an ambient pressure less than the vapor pressure of the liquid medium. It is the collapse of these vapor bubbles against the metal surfaces of the impeller or casing that causes surface pitting, erosion, and deterioration. Pump recirculation, reversal of a portion of the flow back through the impeller, can be potentially more damaging than cavitation. If located at the impeller eye, recirculation damages the inlet areas of the casing. At the impeller tips, recirculation alters the outside diameter of the impeller. If recirculation occurs around impeller shrouds, it damages thrust bearings. Recirculation also erodes impellers, diffusers, and volutes and causes failure of mechanical seals and bearings. This paper reports on a utility pump failure cause by low-flow induced phenomena. ORNL has continued to investigate the results of low-flow pump operations by evaluating the types of measurements and diagnostic techniques that are currently used by licensees to detect pump degradation

  16. Actively controlled shaft seals for aerospace applications

    Science.gov (United States)

    Salant, Richard F.

    1995-07-01

    This study experimentally investigates an actively controlled mechanical seal for aerospace applications. The seal of interest is a gas seal, which is considerably more compact than previous actively controlled mechanical seals that were developed for industrial use. In a mechanical seal, the radial convergence of the seal interface has a primary effect on the film thickness. Active control of the film thickness is established by controlling the radial convergence of the seal interface with a piezoelectric actuator. An actively controlled mechanical seal was initially designed and evaluated using a mathematical model. Based on these results, a seal was fabricated and tested under laboratory conditions. The seal was tested with both helium and air, at rotational speeds up to 3770 rad/sec, and at sealed pressures as high as 1.48 x 10(exp 6) Pa. The seal was operated with both manual control and with a closed-loop control system that used either the leakage rate or face temperature as the feedback. The output of the controller was the voltage applied to the piezoelectric actuator. The seal operated successfully for both short term tests (less than one hour) and for longer term tests (four hours) with a closed-loop control system. The leakage rates were typically 5-15 slm (standard liters per minute), and the face temperatures were generally maintained below 100C. When leakage rate was used as the feedback signal, the setpoint leakage rate was typically maintained within 1 slm. However, larger deviations occurred during sudden changes in sealed pressure. When face temperature was used as the feedback signal, the setpoint face temperature was generally maintained within 3 C, with larger deviations occurring when the sealed pressure changes suddenly. the experimental results were compared to the predictions from the mathematical model. The model was successful in predicting the trends in leakage rate that occurred as the balance ratio and sealed pressure changed

  17. The fluid control mechanism of bionic structural heterogeneous composite materials and its potential application in enhancing pump efficiency

    Directory of Open Access Journals (Sweden)

    Limei Tian

    2015-11-01

    Full Text Available Studies have shown that the structure of dolphin skin controls fluid media dynamically. Gaining inspiration from this phenomenon, a kind of bionic structural heterogeneous composite material was designed. The bionic structural heterogeneous composite material is composed of two materials: a rigid metal base layer with bionic structures and an elastic polymer surface layer with the corresponding mirror structures. The fluid control mechanism of the bionic structural heterogeneous composite material was investigated using a fluid–solid interaction method in ANSYS Workbench. The results indicated that the bionic structural heterogeneous composite material’s fluid control mechanism is its elastic deformation, which is caused by the coupling action between the elastic surface material and the bionic structure. This deformation can decrease the velocity gradient of the fluid boundary layer through changing the fluid–solid actual contact surface and reduce the frictional force. The bionic structural heterogeneous composite material can also absorb some energy through elastic deformation and avoid energy loss. The bionic structural heterogeneous composite material was applied to the impeller of a centrifugal pump in a contrast experiment, increasing the pump efficiency by 5% without changing the hydraulic model of the impeller. The development of this bionic structural heterogeneous composite material will be straightforward from an engineering point of view, and it will have valuable practical applications.

  18. GAS METERING PUMP

    Science.gov (United States)

    George, C.M.

    1957-12-31

    A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.

  19. On-line PWR RHR pump performance testing following motor and impeller replacement

    Energy Technology Data Exchange (ETDEWEB)

    DiMarzo, J.T.

    1996-12-01

    On-line maintenance and replacement of safety-related pumps requires the performance of an inservice test to determine and confirm the operational readiness of the pumps. In 1995, major maintenance was performed on two Pressurized Water Reactor (PWR) Residual Heat Removal (RHR) Pumps. A refurbished spare motor was overhauled with a new mechanical seal, new motor bearings and equipped with pump`s `B` impeller. The spare was installed into the `B` train. The motor had never been run in the system before. A pump performance test was developed to verify it`s operational readiness and determine the in-situ pump performance curve. Since the unit was operating, emphasis was placed on conducting a highly accurate pump performance test that would ensure that it satisfied the NSSS vendors accident analysis minimum acceptance curve. The design of the RHR System allowed testing of one train while the other was aligned for normal operation. A test flow path was established from the Refueling Water Storage Tank (RWST) through the pump (under test) and back to the RWST. This allowed staff to conduct a full flow range pump performance test. Each train was analyzed and an expression developed that included an error vector term for the TDH (ft), pressure (psig), and flow rate (gpm) using the variance error vector methodology. This method allowed the engineers to select a test instrumentation system that would yield accurate readings and minimal measurement errors, for data taken in the measurement of TDH (P,Q) versus Pump Flow Rate (Q). Test results for the `B` Train showed performance well in excess of the minimum required. The motor that was originally in the `B` train was similarly overhauled and equipped with `A` pump`s original impeller, re-installed in the `A` train, and tested. Analysis of the `A` train results indicate that the RHR pump`s performance was also well in excess of the vendors requirements.

  20. Detection of pump degradation

    International Nuclear Information System (INIS)

    Casada, D.A.

    1994-01-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. These can generally be classified as: Mechanical; Hydraulic; Tribological; Chemical; and Other (including those associated with the pump driver). Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump

  1. Inservice testing of vertical pumps

    International Nuclear Information System (INIS)

    Cornman, R.E. Jr.; Schumann, K.E.

    1994-01-01

    This paper focuses on the problems that may occur with vertical pumps while inservice tests are conducted in accordance with existing American Society of Mechanical Engineers Code, Section XI, standards. The vertical pump types discussed include single stage, multistage, free surface, and canned mixed flow pumps. Primary emphasis is placed on the hydraulic performance of the pump and the internal and external factors to the pump that impact hydraulic performance. In addition, the paper considers the mechanical design features that can affect the mechanical performance of vertical pumps. The conclusion shows how two recommended changes in the Code standards may increase the quality of the pump's operational readiness assessment during its service life

  2. Cover gas seals. 11 - FFTF-LMFBR seal-test program, January-March 1974

    International Nuclear Information System (INIS)

    Kurzeka, W.; Oliva, R.; Welch, F.

    1974-01-01

    The objectives of this program are to: (1) conduct static and dynamic tests to demonstrate or determine the mechanical performance of full-size (cross section) FFTF fuel transfer machine and reactor vessel head seals intended for use in a sodium vapor - inert gas environment, (2) demonstrate that these FFTF seals or new seal configuration provide acceptable fission product and cover gas retention capabilities at LMFBR Clinch River Plant operating environmental conditions other than radiation, and (3) develop improved seals and seal technology for the LMFBR Clinch River Plant to support the national objective to reduce all atmospheric contaminations to low levels

  3. Rotary plug seal

    International Nuclear Information System (INIS)

    Ito, Koji; Abiko, Yoshihiro.

    1981-01-01

    Purpose: To enable fuel exchange even upon failure of regular seals and also to enable safety seal exchange by the detection of the reduction in the contact pressure of a rotary plug seal. Constitution: If one of a pair of regular tube seals for the rotary plug is failed during ordinary operation of a FBR type reactor, the reduction in the contact pressure of the seal to the plug gibbousness is detected by a pressure gauge and a solenoid valve is thereby closed. Thus, a back-up-tube seal provided above or below the tube seal is press-contacted by way of argon gas to the gibbousness to enter into operation state and lubricants are supplied from an oil tank. In such a structure, the back-up-tube seal is operated before the failure of the tube seal to enable to continue the fuel exchange work, as well as safety exchange for the tube seal. (Moriyama, K.)

  4. Seal design alternatives study

    International Nuclear Information System (INIS)

    Van Sambeek, L.L.; Luo, D.D.; Lin, M.S.; Ostrowski, W.; Oyenuga, D.

    1993-06-01

    This report presents the results from a study of various sealing alternatives for the WIPP sealing system. Overall, the sealing system has the purpose of reducing to the extent possible the potential for fluids (either gas or liquid) from entering or leaving the repository. The sealing system is divided into three subsystems: drift and panel seals within the repository horizon, shaft seals in each of the four shafts, and borehole seals. Alternatives to the baseline configuration for the WIPP seal system design included evaluating different geometries and schedules for seal component installations and the use of different materials for seal components. Order-of-magnitude costs for the various alternatives were prepared as part of the study. Firm recommendations are not presented, but the advantages and disadvantages of the alternatives are discussed. Technical information deficiencies are identified and studies are outlined which can provide required information

  5. Acoustical heat pumping engine

    Science.gov (United States)

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  6. Spray sealing: A breakthrough in integral fuel tank sealing technology

    Science.gov (United States)

    Richardson, Martin D.; Zadarnowski, J. H.

    1989-11-01

    In a continuing effort to increase readiness, a new approach to sealing integral fuel tanks is being developed. The technique seals potential leak sources by spraying elastomeric materials inside the tank cavity. Laboratory evaluations project an increase in aircraft supportability and reliability, an improved maintainability, decreasing acquisition and life cycle costs. Increased usable fuel volume and lower weight than conventional bladders improve performance. Concept feasibility was demonstrated on sub-scale aircraft fuel tanks. Materials were selected by testing sprayable elastomers in a fuel tank environment. Chemical stability, mechanical properties, and dynamic durability of the elastomer are being evaluated at the laboratory level and in sub-scale and full scale aircraft component fatigue tests. The self sealing capability of sprayable materials is also under development. Ballistic tests show an improved aircraft survivability, due in part to the elastomer's mechanical properties and its ability to damp vibrations. New application equipment, system removal, and repair methods are being investigated.

  7. Design of Accumulators and Liquid/Gas Charging of Single Phase Mechanically Pumped Fluid Loop Heat Rejection Systems

    Science.gov (United States)

    Bhandari, Pradeep; Dudik, Brenda; Birur, Gajanana; Karlmann, Paul; Bame, David; Mastropietro, A. J.

    2012-01-01

    For single phase mechanically pumped fluid loops used for thermal control of spacecraft, a gas charged accumulator is typically used to modulate pressures within the loop. This is needed to accommodate changes in the working fluid volume due to changes in the operating temperatures as the spacecraft encounters varying thermal environments during its mission. Overall, the three key requirements on the accumulator to maintain an appropriate pressure range throughout the mission are: accommodation of the volume change of the fluid due to temperature changes, avoidance of pump cavitation and prevention of boiling in the liquid. The sizing and design of such an accumulator requires very careful and accurate accounting of temperature distribution within each element of the working fluid for the entire range of conditions expected, accurate knowledge of volume of each fluid element, assessment of corresponding pressures needed to avoid boiling in the liquid, as well as the pressures needed to avoid cavitation in the pump. The appropriate liquid and accumulator strokes required to accommodate the liquid volume change, as well as the appropriate gas volumes, require proper sizing to ensure that the correct pressure range is maintained during the mission. Additionally, a very careful assessment of the process for charging both the gas side and the liquid side of the accumulator is required to properly position the bellows and pressurize the system to a level commensurate with requirements. To achieve the accurate sizing of the accumulator and the charging of the system, sophisticated EXCEL based spreadsheets were developed to rapidly come up with an accumulator design and the corresponding charging parameters. These spreadsheets have proven to be computationally fast and accurate tools for this purpose. This paper will describe the entire process of designing and charging the system, using a case study of the Mars Science Laboratory (MSL) fluid loops, which is en route to

  8. Nonazeotropic Heat Pump

    Science.gov (United States)

    Ealker, David H.; Deming, Glenn

    1991-01-01

    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  9. Sealing glasses for titanium and titanium alloys

    Science.gov (United States)

    Brow, Richard K.; McCollister, Howard L.; Phifer, Carol C.; Day, Delbert E.

    1997-01-01

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B.sub.2 O.sub.3), barium oxide (BaO), lanthanum oxide (La.sub.2 O.sub.3), and at least one other oxide selected from the group consisting of aluminum oxide (Al.sub.2 O.sub.3), calcium oxide (CaO), lithium oxide (Li.sub.2 O), sodium oxide (Na.sub.2 O), silicon dioxide (SiO.sub.2), or titanium dioxide (TiO.sub.2). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900.degree. C., and generally about 700.degree.-800.degree. C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps).

  10. Reusable tamper-indicating security seal

    International Nuclear Information System (INIS)

    Ryan, M.J.

    1981-01-01

    A reusable tamper-indicating mechanical security seal for use in safeguarding nuclear material has been developed. The high-security seal displays an unpredictable, randomly selected, five-digit code each time it is used. This five digit code serves the same purpose that the serial number does for conventional non-reusable seals - a unique identifier for each use or application. The newly developed reusable seal is completely enclosed within a seamless, tamper-indicating, plastic jacket. The jacket is designed to reveal any attempts to penetrate, section or to chemically remove and replace with a counterfeit for surreptitious purposes

  11. Guide to optimized replacement of equipment seals

    International Nuclear Information System (INIS)

    Gleason, J.F.

    1990-03-01

    A reevaluation of current scheduled replacement intervals of polymeric seals in plant equipment can achieve significant benefits. Information is provided which has the potential for increasing replacement intervals based on better information on how seals have performed through unique nuclear industry tests to qualify equipment, improved elastomers and increased knowledge of the failure mechanisms and related performance. The research was performed by reviewing applications of elastomeric seals in nuclear plants and practice associated with defining seal replacement intervals in the nuclear power and other industries. Performance indicators and how they predict degradation of seals were evaluated. Guidelines and a flow chart for reevaluating seal replacement intervals are provided. 29 refs., 38 figs., 8 tabs

  12. DEVELOPMENT OF A CERAMIC TAMPER INDICATING SEAL: SRNL CONTRIBUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Krementz, D.; Brinkman, K.; Martinez-Rodriguez, M.; Mendez-Torres, A.; Weeks, G.

    2013-06-03

    Savannah River National Laboratory (SRNL) and Sandia National Laboratories (SNL) are collaborating on development of a Ceramic Seal, also sometimes designated the Intrinsically Tamper Indicating Ceramic Seal (ITICS), which is a tamper indicating seal for international safeguards applications. The Ceramic Seal is designed to be a replacement for metal loop seals that are currently used by the IAEA and other safeguards organizations. The Ceramic Seal has numerous features that enhance the security of the seal, including a frangible ceramic body, protective and tamper indicating coatings, an intrinsic unique identifier using Laser Surface Authentication, electronics incorporated into the seal that provide cryptographic seal authentication, and user-friendly seal wire capture. A second generation prototype of the seal is currently under development whose seal body is of Low Temperature Co-fired Ceramic (LTCC) construction. SRNL has developed the mechanical design of the seal in an iterative process incorporating comments from the SNL vulnerability review team. SRNL is developing fluorescent tamper indicating coatings, with recent development focusing on optimizing the durability of the coatings and working with a vendor to develop a method to apply coatings on a 3-D surface. SRNL performed a study on the effects of radiation on the electronics of the seal and possible radiation shielding techniques to minimize the effects. SRNL is also investigating implementation of Laser Surface Authentication (LSA) as a means of unique identification of each seal and the effects of the surface coatings on the LSA signature.

  13. Development of a ceramic tamper indicating seal: SRNL contributions

    International Nuclear Information System (INIS)

    Krementz, Dan; Brinkman, Kyle S.; Martinez-Rodriguez, Michael J.; Mendez-Torres, Adrian E.; Weeks, George E.

    2013-01-01

    Savannah River National Laboratory (SRNL) and Sandia National Laboratories (SNL) are collaborating on development of a Ceramic Seal, also sometimes designated the Intrinsically Tamper Indicating Ceramic Seal (ITICS), which is a tamper indicating seal for international safeguards applications. The Ceramic Seal is designed to be a replacement for metal loop seals that are currently used by the IAEA and other safeguards organizations. The Ceramic Seal has numerous features that enhance the security of the seal, including a frangible ceramic body, protective and tamper indicating coatings, an intrinsic unique identifier using Laser Surface Authentication, electronics incorporated into the seal that provide cryptographic seal authentication, and user-friendly seal wire capture. A second generation prototype of the seal is currently under development whose seal body is of Low Temperature Co-fired Ceramic (LTCC) construction. SRNL has developed the mechanical design of the seal in an iterative process incorporating comments from the SNL vulnerability review team. SRNL is developing fluorescent tamper indicating coatings, with recent development focusing on optimizing the durability of the coatings and working with a vendor to develop a method to apply coatings on a 3-D surface. SRNL performed a study on the effects of radiation on the electronics of the seal and possible radiation shielding techniques to minimize the effects. SRNL is also investigating implementation of Laser Surface Authentication (LSA) as a means of unique identification of each seal and the effects of the surface coatings on the LSA signature.

  14. Nuclear reactor sealing system

    International Nuclear Information System (INIS)

    McEdwards, J.A.

    1983-01-01

    A liquid metal-cooled nuclear reactor sealing system is disclosed. The nuclear reactor includes a vessel sealed at its upper end by a closure head. The closure head comprises at least two components, one of which is rotatable; and the two components define an annulus therebetween. The sealing system includes at least a first and second inflatable seal disposed in series in an upper portion of the annulus. The system further includes a dip seal extending into a body of insulation located adjacent a bottom portion of the closure head. The dip seal comprises a trough formed by a lower portion of one of the components, and a seal blade pendently supported from the other component and extending downwardly into the trough. A body of liquid metal is contained in the trough which submerges a portion of the seal blade. The seal blade is provided with at least one aperture located above the body of liquid metal for providing fluid communication between the annulus intermediate the dip seal and the inflatable seals, and a body of cover gas located inside the vessel. There also is provided means for introducing a purge gas into the annulus intermediate the inflatable seals and the seal blade. The purge gas is introduced in an amount sufficient to substantially reduce diffusion of radioactive cover gas or sodium vapor up to the inflatable seals. The purge gas mixes with the cover gas in the reactor vessel where it can be withdrawn from the vessel for treatment and recycle to the vessel

  15. BIOMATERIALS FOR ROTARY BLOOD PUMPS

    NARCIS (Netherlands)

    VANOEVEREN, W

    Rotary blood pumps are used for cardiac assist and cardiopulmonary support since mechanical blood damage is less than with conventional roller pumps. The high shear rate in the rotary pump and the reduced anticoagulation of the patient during prolonged pumping enforces high demands on the

  16. Sealing of rock fractures

    International Nuclear Information System (INIS)

    Pusch, R.; Erlstroem, M.; Boergesson, L.

    1985-12-01

    The major water-bearing fractures in granite usually from fairly regular sets but the extension and degree of connectivity is varying. This means that only a few fractures that are interconnected with the deposition holes and larger water-bearing structures in a HLW repository are expected and if they can be identified and cut off through sealing it would be possible to improve the isolation of waste packages very effectively. Nature's own fracture sealing mechanisms may be simulated and a survey of the involved processes actually suggests a number of possible filling methods and substances. Most of them require high temperature and pressure and correspondingly sophisticated techniques, but some are of potential interest for immediate application with rather moderate effort. Such a technique is to fill the fractures with clayey substances which stay flexible and low-permeable provided that they remain physically and chemically intact. It is demonstrated in the report that effective grouting requires a very low viscosity and shear strength of the substance and this can be achieved by mechanical agitation as demonstrated in this report. Thus, by superimposing static pressure and shear waves induced by percussion hammering at a suitable frequency, clays and fine-grained silts as well as cement can be driven into fractures with an average aperture as small as 0.1 mm. Experiments were made in the laboratory using concrete and steel plates, and a field pilot test was also conducted under realistic conditions on site in Stripa. They all demonstrated the practicality of the 'dynamic injection technique' and that the fluid condition of the grouts yielded complete filling of the injected space to a considerable distance from the injection point. The field test indicated a good sealing ability as well as a surprisingly high resistance to erosion and piping. (author)

  17. Inboard seal mounting

    Science.gov (United States)

    Hayes, John R. (Inventor)

    1983-01-01

    A regenerator assembly for a gas turbine engine has a hot side seal assembly formed in part by a cast metal engine block having a seal recess formed therein that is configured to supportingly receive ceramic support blocks including an inboard face thereon having a regenerator seal face bonded thereto. A pressurized leaf seal is interposed between the ceramic support block and the cast metal engine block to bias the seal wear face into sealing engagement with a hot side surface of a rotary regenerator matrix.

  18. Evaluation of a hemostatic device with percutaneous collagen application (VasoSeal trademark) compared to a mechanical compression system (Compressar trademark -) after transfemoral catheterization of patients suffering from arterial occlusive disease

    International Nuclear Information System (INIS)

    Neudecker, A.; Lenhart, M.; Zorger, N.; Paetzel, C.; Feuerbach, S.; Link, J.; Manke, C.

    2003-01-01

    Purpose: Comparison of the efficacy of VasoSeal trademark and a mechanical compression system (Compressar trademark ) for percutaneous hemostasis after femoral arterial catheterization of patients with arterial occlusive disease. Materials and Methods: 60 patients underwent either diagnostic angiography or interventional procedures. The level of anticoagulation, blood pressure, and activation clotting time were recorded, and the time to hemostasis after sheath removal was measured. VasoSeal trademark application was considered ''successful'' if the compression time was less than two minutes. On the subsequent day as well as 4 months later, color coded Doppler ultrasound was performed to register treatment success and potential (late) complications. Results: 57 patients qualified for inclusion in this study. In 21 of the 26 patients who underwent the procedure with the VasoSeal trademark , immediate hemostasis was achieved within 1.75 minutes. In all 31 patients who had the Compressar trademark applied, hemostasis was successful with a mean compression time of 17.4 minutes. Thus, VasoSeal trademark significantly reduced hemostasis time irrespective of anticoagulation status, but it had a much higher incidence of minor local complications (bleeding, hematoma) compared to the control group (34.6% vs. 5.8%). The technical success was lower with VasoSeal trademark than with Compressar trademark (81% vs. 100%). Both groups had no severe or late complications. Conclusion: According to our results, VasoSeal trademark does not provide a suitable alternative compared to the effective, safe and cheap application of Compressar trademark as a hemostatic device. (orig.) [de

  19. Nuclear waste vault sealing

    International Nuclear Information System (INIS)

    Gyenge, M.

    1980-01-01

    A nuclear waste vault must be designed and built to ensure adequate isolation of the nuclear wastes from human contact. Consequently, after a vault has been fully loaded, it must be adequately sealed off to prevent radionuclide migration which may be provided by circulating groundwater. Vault sealing entails four major aspects, i.e.: (a) vault grouting; (b) borehole sealing; (c) buffer packing; and (d) backfilling. Of particular concern in vault sealing are the physical and chemical properties of the sealing material, its long-term durability and stability, and the techniques used for its emplacement. Present sealing technology and sealing materials are reviewed in terms of the particular needs of vault sealing. Areas requiring research and development are indicated

  20. Fog seal guidelines.

    Science.gov (United States)

    2003-10-01

    Fog seals are a method of adding asphalt to an existing pavement surface to improve sealing or waterproofing, prevent further stone loss by holding aggregate in place, or simply improve the surface appearance. However, inappropriate use can result in...

  1. The effect of texture on the shaft surface on the sealing performance of radial lip seals

    Science.gov (United States)

    Guo, Fei; Jia, XiaoHong; Gao, Zhi; Wang, YuMing

    2014-07-01

    On the basis of elastohydrodynamic model, the present study numerically analyzes the effect of various microdimple texture shapes, namely, circular, square, oriented isosceles triangular, on the pumping rate and the friction torque of radial lip seals, and determines the microdimple texture shape that can produce positive pumping rate. The area ratio, depth and shape dimension of a single texture are the most important geometric parameters which influence the tribological performance. According to the selected texture shape, parameter analysis is conducted to determine the optimal combination for the above three parameters. Simultaneously, the simulated performances of radial lip seal with texture on the shaft surface are compared with those of the conventional lip seal without any texture on the shaft surface.

  2. Sodium--NaK engineering handbook. Volume IV. Sodium pumps, valves, piping, and auxiliary equipment

    International Nuclear Information System (INIS)

    Foust, O.J.

    1978-01-01

    The handbook is useful for designers in the Liquid Metals Fast Breeder Reactor (LMFBR) program and by the engineering and scientific community performing investigation and experimentation requiring high-temperature Na and NaK technology. Data are presented for pumps, bearings and seals, valves, vessels and piping, and auxiliary equipment including vapor traps, freeze plugs, fuel-channel flow regulators, antivortexing devices, and miscellaneous mechanical elements. Reactor materials are also discussed

  3. Development and application of a unified algorithm for solving the interdisciplinary problem of modeling aeroelastic processes in the labyrinth seal of centrifugal compressors

    Science.gov (United States)

    Butymova, L. N.; Modorskii, V. Ya.

    2017-10-01

    To ensure contactless sealing of the connection between the rotating rotor and the stationary body in aircraft engines [16], high pressure pumps [13, 14], etc., labyrinth seals (LS) are used. In labyrinth seals, the working medium is sealed by throttling it when moving through successive constrictions and expansions. The study of throttling is usually performed when investigating the gas flow in the direction parallel to the rotor axis. However, it was shown in [1] that the wave processes occurring in the circumferential direction of the labyrinth seals during the vibrations of the rotor contribute to the formation of gas dynamic oscillatory processes. It should be noted that sequencing of the constrictions and extensions affects the oscillation amplitude in the gas-dynamic cavity between the LS and the rotor and increases the flow unevenness. Consequently, if these elements are not taken into account in aeroelastic calculation [15, 21] it can give an additional margin of reducing oscillations in LS and, which is important, to solve related problems [18] of continuous media mechanics [19], reduce labor intensity and counting time. Thus, in accordance with the foregoing, the LS calculation is replaced with calculating the gap seal, equivalent (with margin) to the labyrinth seal, if we consider the processes occurring in the LS circumferential direction.

  4. Multi-Canister overpack sealing configuration

    International Nuclear Information System (INIS)

    SMITH, K.E.

    1998-01-01

    The Spent Nuclear Fuel (SNF) position regarding the Multi-Canister Overpack (MCO) sealing configuration is to initially rely on an American Society of Mechanical Engineers (ASME) Section III Subsection NB code compliant mechanical closure/sealing system to quickly and safely establish and maintain full confinement of radioactive materials prior to and during MCO fuel drying activities. Previous studies have shown the mechanical seal to be the preferred closure method, based on dose, cost, and schedule considerations. The cost and schedule impacts of redesigning the mechanical closure to a welded shield plug do not support changing the closure system. The SNF Project has determined that the combined mechanical/welded closure system meets or exceeds the regulatory requirements to provide redundant seals while accommodating key safety and schedule limitations that are unique to K Basins fuel removal effort

  5. Normetex Pump Alternatives Study

    International Nuclear Information System (INIS)

    Clark, Elliot A.

    2013-01-01

    A mainstay pump for tritium systems, the Normetex scroll pump, is currently unavailable because the Normetex company went out of business. This pump was an all-metal scroll pump that served tritium processing facilities very well. Current tritium system operators are evaluating replacement pumps for the Normetex pump and for general used in tritium service. An all-metal equivalent alternative to the Normetex pump has not yet been identified. 1. The ideal replacement tritium pump would be hermetically sealed and contain no polymer components or oils. Polymers and oils degrade over time when they contact ionizing radiation. 2. Halogenated polymers (containing fluorine, chlorine, or both) and oils are commonly found in pumps. These materials have many properties that surpass those of hydrocarbon-based polymers and oils, including thermal stability (higher operating temperature) and better chemical resistance. Unfortunately, they are less resistant to degradation from ionizing radiation than hydrocarbon-based materials (in general). 3. Polymers and oils can form gaseous, condensable (HF, TF), liquid, and solid species when exposed to ionizing radiation. For example, halogenated polymers form HF and HCl, which are extremely corrosive upon reaction with water. If a pump containing polymers or oils must be used in a tritium system, the system must be designed to be able to process the unwanted by-products. Design features to mitigate degradation products include filters and chemical or physical traps (eg. cold traps, oil traps). 4. Polymer components can work in tritium systems, but must be replaced regularly. Polymer components performance should be monitored or be regularly tested, and regular replacement of components should be viewed as an expected normal event. A radioactive waste stream must be established to dispose of used polymer components and oil with an approved disposal plan developed based on the facility location and its regulators. Polymers have varying

  6. Experimental investigation of thixoforging process on microstructure and mechanical properties of the centrifugal pump flange

    Energy Technology Data Exchange (ETDEWEB)

    Kazemi, A.; Nourouzi, S.; Gorji, A. [Babol University of Technology, Babol (Iran, Islamic Republic of); Kolahdooz, A. [Islamic Azad University, Isfahan (Iran, Islamic Republic of)

    2015-07-15

    In this paper, a thixoforging method is studied as one of the semi-solid forming processes. At the first step, the influence of semi-solid temperature, holding time, and ram speed of the hydraulic press are investigated on microstructure and mechanical properties of thixoforged A356 aluminum alloy parts. For this purpose, the slope plate casted billets are heated up to semi-solid temperature of 580, 590, and 600 .deg. C and holding time of 5, 10, and 15 minutes and then are deformed using the press with ram speeds of 1, 3 and 5 mm/s. Results show that the best mechanical properties are related to the thixoforged specimen with the finest microstructure which is thixoforged at semi-solid temperature of 600 .deg. C, holding time of 5 minutes and ram speed of 5 mm/s. Afterwards, the T6 heat treatment is performed to improve mechanical properties of parts produced by thixoforging process. At the final step of experiments in order to investigate the effect of using slope plate prior to reheating on microstructure and mechanical properties, semi-solid forging is done by using the gravity casted billet.

  7. Circumferential shaft seal

    Science.gov (United States)

    Ludwig, L. P. (Inventor)

    1981-01-01

    A circumferential shaft seal comprising two sealing rings held to a rotating shaft by means of a surrounding elastomeric band is disclosed. The rings are segmented and are of a rigid sealing material such as carbon or a polyimide and graphite fiber composite.

  8. Seals in motion

    NARCIS (Netherlands)

    Brasseur, Sophie Marie Jacqueline Michelle

    2017-01-01

    The harbour seal Phoca vitulina and the grey seal Halichoerus grypus have been inhabitants of the Wadden Sea since millennia. Prehistoric findings indicate the presence of both species around 5000 BC. This changed dramatically in the mid Middle-Ages as around 1500 AC, the grey seal disappeared from

  9. Electronic self-monitoring seal

    International Nuclear Information System (INIS)

    Campbell, J.W.

    1978-01-01

    The Electronic Self-Monitoring Seal is a new type of security seal which allows continuous verification of the seal's identity and status. The identity information is a function of the individual seal, time, and seal integrity. A description of this seal and its characteristics are presented. Also described are the use cycle for the seal and the support equipment for programming and verifying the seal

  10. Implementation of an RHR/LPSI pump coupling retrofit program

    International Nuclear Information System (INIS)

    Dudiak, J.G.; Koch, R.P.; Orewyler, R.; Tipton, J.W.

    1994-01-01

    Nuclear plant operating experience has shown the RHR and LPSI services to be very demanding on pumps. The systems handle borated water at high temperatures and pressures with frequent step changes in both temperature and pressure. Additionally, the industry trend towards reduced flow rates during plant mid-loop (reduced inventory) conditions has resulted in extended pump operation at flow rates significantly below the pump best efficiency point flow. Operation at these low flow fates is known to cause high thrust loads and large shaft deflections. The combination of these and other factors have resulted in short mechanical seal life and short motor bearing life, thus requiring frequent pump and motor maintenance. For many nuclear plants, including Southern California Edison's (SCE) San Onofre Units 2 and 3, these pumps have represented a major operations and maintenance (O ampersand M) expenditure and a significant source of radiation exposure to plant personnel. SCE management determined that a pump upgrade was justified to reduce the O ampersand M costs and to improve plant availability. SCE decided to proceed with a pump retrofit program to improve the pump maintainability, reliability and availability. Installation was completed for four LPSI pumps at San Onofre Units 2 and 3 during the Cycle 7 refueling outages in 1993. A key to the program's success was the removal of many traditional supplier and customer barriers and revision of supplier and customer roles to create a unified team. This paper traces the RHR/LPSI retrofit program for San Onofre from problem identification to project implementation. The team approach used for this program and the lessons learned may be useful to other utilities and vendors when evaluating or implementing system and equipment upgrades

  11. Dexamethasone up-regulates skeletal muscle maximal Na+,K+ pump activity by muscle group specific mechanisms in humans

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai; Goodmann, Craig; McKenna, Michael J.

    2005-01-01

    Dexamethasone, a widely clinically used glucocorticoid, increases human skeletal muscle Na+,K+ pump content, but the effects on maximal Na+,K+ pump activity and subunit specific mRNA are unknown. Ten healthy male subjects ingested dexamethasone for 5 days and the effects on Na+,K+ pump content......, maximal activity and subunit specific mRNA level (a1, a2, ß1, ß2, ß3) in deltoid and vastus lateralis muscle were investigated. Before treatment, maximal Na+,K+ pump activity, as well as a1, a2, ß1 and ß2 mRNA levels were higher (P ... increased Na+,K+ pump maximal activity in vastus lateralis and deltoid by 14 ± 7% (P Na+,K+ pump content by 18 ± 9% (P

  12. Penis Pump

    Science.gov (United States)

    ... your appointment might be less involved. Choosing a penis pump Some penis pumps are available without a ... it doesn't get caught in the ring. Penis pumps for penis enlargement Many advertisements in magazines ...

  13. 40 CFR 63.1035 - Quality improvement program for pumps.

    Science.gov (United States)

    2010-07-01

    ...., piston, horizontal or vertical centrifugal, gear, bellows); pump manufacturer; seal type and manufacturer... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Quality improvement program for pumps... improvement program for pumps. (a) Criteria. If, on a 6-month rolling average, at least the greater of either...

  14. 40 CFR 63.176 - Quality improvement program for pumps.

    Science.gov (United States)

    2010-07-01

    ... type (e.g., piston, horizontal or vertical centrifugal, gear, bellows); pump manufacturer; seal type... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Quality improvement program for pumps... improvement program for pumps. (a) In Phase III, if, on a 6-month rolling average, the greater of either 10...

  15. Wet motor gerotor fuel pump with self-aligning bearing

    Energy Technology Data Exchange (ETDEWEB)

    Carleton, W.A.

    1987-02-24

    A wet motor gerotor fuel pump is described for pumping fuel from a fuel source to an internal combustion engine comprising: a pump case having one end, an opposite end and a flow axis therethrough, the pump case further comprising an inlet end bore at the one end adapted to communicate with the fuel source; an inlet chamber adjacent to the inlet end bore; a motor chamber located in the opposite end of the pump case; a pump chamber interposed the motor chamber and the inlet chamber; first means for sealing the pump case, the first means for sealing located at the opposite end of the pump case; inlet housing means mounted in the pump chamber, the inlet housing means comprising an annular hub protruding into the inlet chamber. The inlet housing means further comprises a gerotor cavity about a gerotor axis located parallel to and displaced a predetermined distance in an eccentric radial direction from the flow axis.

  16. Numerical Investigation of the Effect of Radial Lip Seal Geometry on Sealing Performance

    Science.gov (United States)

    Tok, G.; Parlar, Z.; Temiz, V.

    2018-01-01

    Sealing elements are often needed in industry and especially in machine design. With the change and development of machine technology from day to day, sealing elements show continuous development and change in parallel with these developments. Many factors influence the performance of the sealing elements such as shaft surface roughness, radial force, lip geometry etc. In addition, the radial lip seals must have a certain pre-load and interference in order to provide a good sealing. This also affects the friction torque. Researchers are developing new seal designs to reduce friction losses in mechanical systems. In the presented study, the effect of the lip seal geometry on sealing performance will be examined numerically. The numerical model created for this purpose will be verified with experimental data firstly. In the numerical model, shaft and seal will be modeled as hyper-elastic in 2D and 3D. NBR (Nitrile Butadiene Rubber) as seal material will be analyzed for the rotating shaft state at constant speed by applying a uniform radial force.

  17. The IRES electronic seal

    International Nuclear Information System (INIS)

    Autrusson, B.; Brochard, D.; Moreau, J.F.; Martin, J.C.

    2001-01-01

    In the framework of the French Support Program for the IAEA Safeguards, the 'Institut de Protection et de Surete Nucleaire' (IPSN), developed an electronic seal called Integrated and Reusable Electronic Seal (IRES) that enables independent verification by different inspectorates (IAEA, Euratom, and National Inspectorate). The seal can be remotely interrogated by radio frequency and integrated to other Containment/surveillance systems by serial line RS 485. Data are authenticated and the IRESMAG software manages in the seal reader all functionalities of the seal and records inspection data compatible with the IAEA's Seal Database. To perform this development, IPSN relies on industrial partners: SAPHYMO for the general architecture of the seal and the electronics, THALES for the authentication of data and the security of transmission. The main features of the IRES seal are the following: Interrogation by different inspectorate, allowing independent conclusions; Recording of events, including tampering, in a non-volatile memory; Authentication of data and enhanced security of the communication between the seal and the seal reader; Remote interrogation by an inspector or/and automatic for unattended systems or remote monitoring; Reusable after erasing the seal memory and replacement of the batteries

  18. The IRES electronic seal

    International Nuclear Information System (INIS)

    Gourlez, P.; Funk, P.; Brochard, D.; Moreau, J.F.; Martin, J.C.

    2001-01-01

    In the framework of the French Support Program for the IAEA Safeguards, the 'Institut de Protection et de Surete Nucleaire' (IPSN), developed an electronic seal called Integrated and Reusable Electronic Seal (IRES) that enables independent verification by different inspectorates (IAEA, Euratom, and National Inspectorate) Furthermore, a bilateral co-ordination between Euratom and French domestic safeguards takes place in some French facilities regarding a common approach concerning the seals especially in case of crisis situation. The seal can be remotely interrogated by radio frequency and integrated to other Containment/surveillance systems by serial line RS 485. Data are authenticated and the IRESMAG software manages in the seal reader all functionalities of the seal and records inspection data compatible with the IAEA's Seal Database

  19. Investigating the sealing capacity of a seal system in rock salt (DOPAS project)

    Energy Technology Data Exchange (ETDEWEB)

    Jantschik, Kyra; Moog, Helge C.; Czaikowski, Oliver; Wieczorek, Klaus [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Braunschweig (Germany)

    2016-11-15

    This paper describes research and development work on plugging and sealing repositories, an issue of fundamental importance for the rock salt option which represents one of the three European repository options, besides the clay rock and the crystalline rock options. The programme aims at providing experimental data needed for the theoretical analysis of the long-term sealing capacity of concrete- based sealing materials. In order to demonstrate hydro-mechanical material stability under representative load scenarios, a comprehensive laboratory testing programme is carried out. This comprises investigation of the sealing capacity of the combined seal system and impact of the so-called excavation-damaged zones (EDZ) as well as investigation of the hydro-chemical long-term stability of the seal in contact with different brines under diffusive and advective conditions. This paper presents experimental approaches and preliminary results from laboratory investigations on salt concrete and combined systems as obtained to date.

  20. Core disruptive accident margin seal

    International Nuclear Information System (INIS)

    Garin, J.; Belsick, J.C.

    1978-01-01

    Disclosed is an apparatus for sealing the annulus defined between a substantially cylindrical rotatable first riser assembly and plug combination disposed in a substantially cylindrical second riser assembly and plug combination of a nuclear reactor system. The apparatus comprises a flexible member disposed between the first and second riser components and attached to a metal member which is attached to an actuating mechanism. When the actuating mechanism is not actuated, the flexible member does not contact the riser components thus allowing the free rotation of the riser components. When desired, the actuating mechanism causes the flexible member to contact the first and second riser components in a manner to block the annulus defined between the riser components, thereby sealing the annulus between the riser components

  1. Rotary piston blood pumps: past developments and future potential of a unique pump type.

    Science.gov (United States)

    Wappenschmidt, Johannes; Autschbach, Rüdiger; Steinseifer, Ulrich; Schmitz-Rode, Thomas; Margreiter, Raimund; Klima, Günter; Goetzenich, Andreas

    2016-08-01

    The design of implantable blood pumps is either based on displacement pumps with membranes or rotary pumps. Both pump types have limitations to meet the clinical requirements. Rotary piston blood pumps have the potential to overcome these limitations and to merge the benefits. Compared to membrane pumps, they are smaller and with no need for wear-affected membranes and valves. Compared to rotary pumps, the blood flow is pulsatile instead of a non-physiological continuous flow. Furthermore, the risk of flow-induced blood damage and platelet activation may be reduced due to low shear stress to the blood. The past developments of rotary piston blood pumps are summarized and the main problem for long-term application is identified: insufficient seals. A new approach with seal-less drives is proposed and current research on a simplified rotary piston design is presented. Expert commentary: The development of blood pumps focuses mainly on the improvement of rotary pumps. However, medical complications indicate that inherent limitations of this pump type remain and restrict the next substantial step forward in the therapy of heart failure patients. Thus, research on different pump types is reasonable. If the development of reliable drives and bearings succeeds, rotary piston blood pumps become a promising alternative.

  2. Dampers for Stationary Labyrinth Seals

    Science.gov (United States)

    El-Aini, Yehia; Mitchell, William; Roberts, Lawrence; Montgomery, Stuart; Davis, Gary

    2011-01-01

    Vibration dampers have been invented that are incorporated as components within the stationary labyrinth seal assembly. These dampers are intended to supplement other vibration-suppressing features of labyrinth seals in order to reduce the incidence of high-cycle-fatigue failures, which have been known to occur in the severe vibratory environments of jet engines and turbopumps in which labyrinth seals are typically used. A vibration damper of this type includes several leaf springs and/or a number of metallic particles (shot) all held in an annular seal cavity by a retaining ring. The leaf springs are made of a spring steel alloy chosen, in conjunction with design parameters, to maintain sufficient preload to ensure effectiveness of damping at desired operating temperatures. The cavity is vented via a small radial gap between the retaining ring and seal housing. The damping mechanism is complex. In the case of leaf springs, the mechanism is mainly friction in the slippage between the seal housing and individual dampers. In the case of a damper that contains shot, the damping mechanism includes contributions from friction between individual particles, friction between particles and cavity walls, and dissipation of kinetic energy of impact. The basic concept of particle/shot vibration dampers has been published previously; what is new here is the use of such dampers to suppress traveling-wave vibrations in labyrinth seals. Damping effectiveness depends on many parameters, including, but not limited to, coefficient of friction, mode shape, and frequency and amplitude of vibrational modes. In tests, preloads of the order of 6 to 15 lb (2.72 to 6.8 kilograms) per spring damper were demonstrated to provide adequate damping levels. Effectiveness of shot damping of vibrations having amplitudes from 20 to 200 times normal terrestrial gravitational acceleration (196 to 1,960 meters per square second) and frequencies up to 12 kHz was demonstrated for shot sizes from 0.032 to

  3. Flexible ring seal

    International Nuclear Information System (INIS)

    Abbes, Claude; Gournier, Andre; Rouaud, Christian; Villepoix, Raymond de.

    1976-01-01

    The invention concerns a flexible metal ring seal, able to ensure a perfect seal between two bearings due to the crushing and elastic deformation properties akin to similar properties in elastomers. Various designs of seal of this kind are already known, particularly a seal made of a core formed by a helical wire spring with close-wound turns and with high axial compression ratio, closed on itself and having the shape of an annulus. This wire ring is surrounded by at least one envelope having at rest the shape of a toroidal surface of which the generating circle does not close on itself. In a particular design mode, the seal in question can include, around the internal spring, two envelopes of which one in contact with the spring is composed of a low ductility elastic metal, such as mild steel or stainless steel and the other is, on the contrary, made of a malleable metal, such as copper or nickel. The first envelope evenly distributes the partial crushing of the spring, when the seal is tightened, on the second envelope which closely fits the two surfaces between which the seal operates. The stress-crushing curve characteristic of the seal comprises two separate parts, the first with a relatively sharp slope corresponds to the start of the seal compression phase, enabling at least some of these curves to reach the requisite seal threshold very quickly, then, beyond this, a second part, practically flat, where the stress is appreciably constant for a wide operating bracket [fr

  4. 77 FR 2957 - Application for Manufacturing Authority, Liberty Pumps, Inc. (Submersible and Water Pumps...

    Science.gov (United States)

    2012-01-20

    ... formally filed on January 12, 2012. The Liberty Pumps, Inc., facility (108 employees, 9.1 acres, production... from abroad (representing 30 to 40% of the value of the finished pumps) include: Plastic (polyamide) resins, plastic boxes/cases/tanks, articles of plastic, rubber gaskets/seals, labels, wood pallets...

  5. On-line PWR RHR pump performance testing following motor and impeller replacement

    International Nuclear Information System (INIS)

    DiMarzo, J.T.

    1996-01-01

    On-line maintenance and replacement of safety-related pumps requires the performance of an inservice test to determine and confirm the operational readiness of the pumps. In 1995, major maintenance was performed on two Pressurized Water Reactor (PWR) Residual Heat Removal (RHR) Pumps. A refurbished spare motor was overhauled with a new mechanical seal, new motor bearings and equipped with pump's 'B' impeller. The spare was installed into the 'B' train. The motor had never been run in the system before. A pump performance test was developed to verify it's operational readiness and determine the in-situ pump performance curve. Since the unit was operating, emphasis was placed on conducting a highly accurate pump performance test that would ensure that it satisfied the NSSS vendors accident analysis minimum acceptance curve. The design of the RHR System allowed testing of one train while the other was aligned for normal operation. A test flow path was established from the Refueling Water Storage Tank (RWST) through the pump (under test) and back to the RWST. This allowed staff to conduct a full flow range pump performance test. Each train was analyzed and an expression developed that included an error vector term for the TDH (ft), pressure (psig), and flow rate (gpm) using the variance error vector methodology. This method allowed the engineers to select a test instrumentation system that would yield accurate readings and minimal measurement errors, for data taken in the measurement of TDH (P,Q) versus Pump Flow Rate (Q). Test results for the 'B' Train showed performance well in excess of the minimum required. The motor that was originally in the 'B' train was similarly overhauled and equipped with 'A' pump's original impeller, re-installed in the 'A' train, and tested. Analysis of the 'A' train results indicate that the RHR pump's performance was also well in excess of the vendors requirements

  6. Thermomechanical piston pump development

    Science.gov (United States)

    Sabelman, E. E.

    1971-01-01

    A thermally powered reciprocating pump has been devised to replace or augment an electric pump for the transport of temperature-control fluid on the Thermoelectric Outer Planet Spacecraft (TOPS). The thermally powered pump operates cyclically by extracting heat energy from the fluid by means of a vapor-pressure expansion system and by using the heat to perform the mechanical work of pumping. A feasibility test unit has been constructed to provide an output of 7 cu in during a 10- to 100-second cycle. It operates with a fluid input temperature of 200 to 300 F and a heat sink temperature of 0 to 30 F.

  7. Weaning mechanical ventilation after off-pump coronary artery bypass graft procedures directed by noninvasive gas measurements.

    Science.gov (United States)

    Chakravarthy, Murali; Narayan, Sandeep; Govindarajan, Raghav; Jawali, Vivek; Rajeev, Subramanyam

    2010-06-01

    Partial pressure of carbon dioxide and oxygen were transcutaneously measured in adults after off-pump coronary artery bypass (OPCAB) surgery. The clinical use of such measurements and interchangeability with arterial blood gas measurements for weaning patients from postoperative mechanical ventilation were assessed. This was a prospective observational study. Tertiary referral heart hospital. Postoperative OPCAB surgical patients. Transcutaneous oxygen and carbon dioxide measurements. In this prospective observational study, 32 consecutive adult patients in a tertiary care medical center underwent OPCAB surgery. Noninvasive measurement of respiratory gases was performed during the postoperative period and compared with arterial blood gases. The investigator was blinded to the reports of arterial blood gas studies and weaned patients using a "weaning protocol" based on transcutaneous gas measurement. The number of patients successfully weaned based on transcutaneous measurements and the number of times the weaning process was held up were noted. A total of 212 samples (pairs of arterial and transcutaneous values of oxygen and carbon dioxide) were obtained from 32 patients. Bland-Altman plots and mountain plots were used to analyze the interchangeability of the data. Twenty-five (79%) of the patients were weaned from the ventilator based on transcutaneous gas measurements alone. Transcutaneous carbon dioxide measurements were found to be interchangeable with arterial carbon dioxide during 96% of measurements, versus 79% for oxygen measurements. More than three fourths of the patients were weaned from mechanical ventilation and extubated based on transcutaneous gas values alone after OPCAB surgery. The noninvasive transcutaneous carbon dioxide measurement can be used as a surrogate for arterial carbon dioxide measurement to manage postoperative OPCAB patients. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Operating reliability of the shaft seal system of ANDRITZ RCP

    International Nuclear Information System (INIS)

    Grancy, Werner; Zehentner, Martin

    2002-01-01

    The next generation of nuclear power stations will have to fulfil new expectations in terms of safety, operating behaviour and costs. This applies also and especially to reactor coolant pumps for the primary circuit of pressurized water reactor type nuclear power plants (RCP). For 4 decades, ANDRITZ AG has developed and built RCPs and has attached great importance to the design of the complete pump rotor and of its essential surrounding elements, such as e. g. the shaft seal. Many questions concerning design and configuration of the shaft seal system cannot be answered purely theoretically, or they can only be answered partly. Therefore, comprehensive development work and testing was necessary to increase the operating reliability of the seal. Apart from all relevant questions connected with design and functioning of the pump there is one question of top priority: the operating reliability of the shaft seal system. Therefore it is intended to describe the current status of design and development of ANDRITZ RCP for future Korean NPPs, to present the most important design features and to give an introduction concerning experiences for a 3-stage-hydrodynamic seal as well as for a 2-stage-hydrodynamic seal

  9. Seals in nuclear reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The aim of this invention is the provision of improved seals for reactor vessels in which fuel assemblies are located together with inlets and outlets for the circulation of a coolant. The object is to provide a seal arrangement for the rotatable plugs of nuclear reactor closure heads which has good sealing capacities over a wide gap during operation of the reactor but which also permits uninhibited rotation of the plugs for maintenance. (U.K.)

  10. Detection of pump degradation

    International Nuclear Information System (INIS)

    Greene, R.H.; Casada, D.A.; Ayers, C.W.

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented

  11. Detection of pump degradation

    Energy Technology Data Exchange (ETDEWEB)

    Greene, R.H.; Casada, D.A.; Ayers, C.W. [and others

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented.

  12. UPTF loop seal tests and their RELAP simulation

    International Nuclear Information System (INIS)

    Tuomainen, M.; Tuunanen, J.

    1997-01-01

    In a pressurized water reactor the loop seals have an effect on the natural circulation. If a loop seal is filled with water it can cause a flow stagnation in the loop during two-phase natural circulation. Also the pressure loss over a filled loop seal is high, which lowers the water level in the core. Tests to investigate the loop seal behaviour were performed on a German Upper Plenum Test Facility (UPTF). The purpose of the tests was to study the amount of water in the loop seal under different steam flow rates. The tests were simulated with RELAP5/MOD3.2. With high steam flow rates the code had problems in simulating the amount of the water remaining in the pump elbow, but in general the agreement between the calculated results and the experimental data was good. (orig.)

  13. Route, mechanism, and implications of proton import during Na+/K+ exchange by native Na+/K+-ATPase pumps.

    Science.gov (United States)

    Vedovato, Natascia; Gadsby, David C

    2014-04-01

    A single Na(+)/K(+)-ATPase pumps three Na(+) outwards and two K(+) inwards by alternately exposing ion-binding sites to opposite sides of the membrane in a conformational sequence coupled to pump autophosphorylation from ATP and auto-dephosphorylation. The larger flow of Na(+) than K(+) generates outward current across the cell membrane. Less well understood is the ability of Na(+)/K(+) pumps to generate an inward current of protons. Originally noted in pumps deprived of external K(+) and Na(+) ions, as inward current at negative membrane potentials that becomes amplified when external pH is lowered, this proton current is generally viewed as an artifact of those unnatural conditions. We demonstrate here that this inward current also flows at physiological K(+) and Na(+) concentrations. We show that protons exploit ready reversibility of conformational changes associated with extracellular Na(+) release from phosphorylated Na(+)/K(+) pumps. Reversal of a subset of these transitions allows an extracellular proton to bind an acidic side chain and to be subsequently released to the cytoplasm. This back-step of phosphorylated Na(+)/K(+) pumps that enables proton import is not required for completion of the 3 Na(+)/2 K(+) transport cycle. However, the back-step occurs readily during Na(+)/K(+) transport when external K(+) ion binding and occlusion are delayed, and it occurs more frequently when lowered extracellular pH raises the probability of protonation of the externally accessible carboxylate side chain. The proton route passes through the Na(+)-selective binding site III and is distinct from the principal pathway traversed by the majority of transported Na(+) and K(+) ions that passes through binding site II. The inferred occurrence of Na(+)/K(+) exchange and H(+) import during the same conformational cycle of a single molecule identifies the Na(+)/K(+) pump as a hybrid transporter. Whether Na(+)/K(+) pump-mediated proton inflow may have any physiological or

  14. Effects of Polypropylene Orientation on Mechanical and Heat Seal Properties of Polymer-Aluminum-Polymer Composite Films for Pouch Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Fangxinyu Zeng

    2018-01-01

    Full Text Available In this study, polyamide-aluminum foil-polypropylene (PA-Al-PP composite films with different orientation status of the PP layer were prepared, and their morphology, tensile, peeling and heat seal behavior were studied. The comparative study of tensile and fracture behaviors of single-layer film of PA, Al and PP, as well as the composite films of PA-Al, PP-Al and PA-Al-PP revealed that in PA-Al-PP composite film, the PA layer with the highest tensile strength can share the tensile stress from the Al layer during stretching, while the PP layer with the lowest tensile strength can prevent further development of the small cracks on boundary of the Al layer during stretching. Moreover, the study of heat seal behavior suggested that both the orientation status and the heat seal conditions were important factors in determining the heat seal strength (HSS and failure behavior of the sample. Four failure types were observed, and a clear correspondence between HSS and failure types was found. The results also elucidated that for the composite film, only in the cases where the tensile stress was efficiently released by each layer during HSS measurement could the composite film exhibit desired high HSS that was even higher than its tensile strength.

  15. Examination of a failed reactor coolant pump rotating assembly from Crystal River Unit 3

    International Nuclear Information System (INIS)

    Hayner, G.O.; Lubnow, T.; Clary, M.

    1990-01-01

    On January 18, 1989, the A reactor coolant pump rotating assembly at the Crystal River Unit 3 Nuclear Power Plant failed during operation. A rotating assembly from this pump had previously failed in 1986. The reactor coolant pump was fabricated by Byron Jackson Pump Division of Borg-Warner Ind. Products, Inc. from UNS S66286 superalloy (Alloy A286). A root cause failure analysis examination was performed on the pump shaft and other components. The failure analysis included shaft vibrational mode and stress analyses, pump clearance and alignment analyses, and detailed destructive examination of the shaft and hydrostatic bearing assemblies. Based on the detailed physical examination of the shaft it was concluded that cracks initiated in the pump shaft at two sites approximately 180 0 apart in a band of shallow, thermally induced fatigue cracks. The cracks initiated at the bottom edge of the motor end shrink fit pad under the shrink fit sleeve supporting the hydrostatic bearing journal. The band of thermally induced fatigue cracks was apparently caused by mixing of cold seal injection water and hot reactor coolant in gaps between the pump shaft and sleeve. The motor end shrink fit was apparently not effective in preventing introduction of the seal injection water to this area. Initial crack propagation occurred by fatigue due to lateral vibration; however, the majority of crack propagation occurred by abnormal torsional fatigue loading induced by contact and sticking between the rotating and stationary portions of the hydrostatic bearing. Final fracture of the shaft occurred by torsional overload. Metallurgical characteristics and mechanical properties of the shaft were within design specification and probably did not significantly influence the cracking process

  16. On the Mechanism of Human Red Blood Cell Longevity: Roles of Calcium, the Sodium Pump, PIEZO1, and Gardos Channels

    Directory of Open Access Journals (Sweden)

    Virgilio L. Lew

    2017-12-01

    Full Text Available In a healthy adult, the transport of O2 and CO2 between lungs and tissues is performed by about 2 · 1013 red blood cells, of which around 1.7 · 1011 are renewed every day, a turnover resulting from an average circulatory lifespan of about 120 days. Cellular lifespan is the result of an evolutionary balance between the energy costs of maintaining cells in a fit functional state versus cell renewal. In this Review we examine how the set of passive and active membrane transporters of the mature red blood cells interact to maximize their circulatory longevity thus minimizing costs on expensive cell turnover. Red blood cell deformability is critical for optimal rheology and gas exchange functionality during capillary flow, best fulfilled when the volume of each human red blood cell is kept at a fraction of about 0.55–0.60 of the maximal spherical volume allowed by its membrane area, the optimal-volume-ratio range. The extent to which red blood cell volumes can be preserved within or near these narrow optimal-volume-ratio margins determines the potential for circulatory longevity. We show that the low cation permeability of red blood cells allows volume stability to be achieved with extraordinary cost-efficiency, favouring cell longevity over cell turnover. We suggest a mechanism by which the interplay of a declining sodium pump and two passive membrane transporters, the mechanosensitive PIEZO1 channel, a candidate mediator of Psickle in sickle cells, and the Ca2+-sensitive, K+-selective Gardos channel, can implement red blood cell volume stability around the optimal-volume-ratio range, as required for extended circulatory longevity.

  17. Determination of Volumetric Losses in Hydrodynamic Pump Using Numerical Modelling

    Directory of Open Access Journals (Sweden)

    Lukáš ZAVADIL

    2012-06-01

    Full Text Available This paper deals with the numerical modelling of the flow in the single-stage centrifugal pump. The main objective is to determine leakage losses through annular seals at the suction side of the pump. Leakage through a shaft seal is not included in the simulation. The amount of liquid that circulates from the impeller discharge back to suction of the pump is determined in dependence on the flow rate. Losses in the pump are further discussed as well as the possibility of their prediction.

  18. Operation characteristic of a heat pump of mechanical vapor recompression propelled by fans and its performance analysis applied to waste-water treatment

    Science.gov (United States)

    Weike, Pang; Wenju, Lin; Qilin, Pan; Wenye, Lin; Qunte, Dai; Luwei, Yang; Zhentao, Zhang

    2014-01-01

    In this paper, a set of heat pump (called as Mechanical Vapor Recompression, MVR) propelled by a centrifugal fan is tested and it shows some special characteristic when it works together with a falling film evaporator. Firstly, an analysis of the fan's suction and discharge parameters at stable state, such as its pressure and temperature, indicates that a phenomenon of wet compression is probably to appear during vapor compression. As a result, superheat after saturated vapor is compressed is eliminated, which reduces discharge temperature of the system. It is because drops boil away and absorb the super heat into their latent heat during vapor compression. Meanwhile, drops in the suction vapor add to the compressed vapor, which increase the given heat of the MVR heat pump. Next, assistant electric heat could adjust and keep steady of the operating pressure and temperature of an MVR heat pump. With the evaporation temperature up to be high, heat balance is broken and supplement heat needs to increase. Thirdly, the performance of an MVR heat pump is affect by the balance of falling film and evaporation that has an effect on heat transfer. Then, two parameters standing for the performance are measured as it runs in practical condition. The two important parameters are consumptive electricity power and productive water capacity. According to theoretical work in ideal condition by calculation and fan's input power by measure as running, adiabatic efficiency (ηad) of a centrifugal fan is calculated when it is applied in a heat pump of MVR. Following, based on ηad, practical SMER and COP of an MVR heat pump are discovered to be correlative with it. Finally, in dependence on productive water in theory and in practice, displacement efficiency (ηv) of centrifugal fans is obtained when compressing vapor, and so provide some references of matching a fan for an MVR heat pump. On the other hand, it is helpful to research and develop MVR heat pumps, and also to check

  19. Water displacement mercury pump

    Science.gov (United States)

    Nielsen, M.G.

    1984-04-20

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  20. Route, mechanism, and implications of proton import during Na+/K+ exchange by native Na+/K+-ATPase pumps

    Science.gov (United States)

    Vedovato, Natascia

    2014-01-01

    A single Na+/K+-ATPase pumps three Na+ outwards and two K+ inwards by alternately exposing ion-binding sites to opposite sides of the membrane in a conformational sequence coupled to pump autophosphorylation from ATP and auto-dephosphorylation. The larger flow of Na+ than K+ generates outward current across the cell membrane. Less well understood is the ability of Na+/K+ pumps to generate an inward current of protons. Originally noted in pumps deprived of external K+ and Na+ ions, as inward current at negative membrane potentials that becomes amplified when external pH is lowered, this proton current is generally viewed as an artifact of those unnatural conditions. We demonstrate here that this inward current also flows at physiological K+ and Na+ concentrations. We show that protons exploit ready reversibility of conformational changes associated with extracellular Na+ release from phosphorylated Na+/K+ pumps. Reversal of a subset of these transitions allows an extracellular proton to bind an acidic side chain and to be subsequently released to the cytoplasm. This back-step of phosphorylated Na+/K+ pumps that enables proton import is not required for completion of the 3 Na+/2 K+ transport cycle. However, the back-step occurs readily during Na+/K+ transport when external K+ ion binding and occlusion are delayed, and it occurs more frequently when lowered extracellular pH raises the probability of protonation of the externally accessible carboxylate side chain. The proton route passes through the Na+-selective binding site III and is distinct from the principal pathway traversed by the majority of transported Na+ and K+ ions that passes through binding site II. The inferred occurrence of Na+/K+ exchange and H+ import during the same conformational cycle of a single molecule identifies the Na+/K+ pump as a hybrid transporter. Whether Na+/K+ pump–mediated proton inflow may have any physiological or pathophysiological significance remains to be clarified. PMID

  1. Improved cryogenic shaft seals

    Science.gov (United States)

    Gillon, W. A., Jr.; Tellier, G. F.

    1976-01-01

    Seals are designed for use with liquid propellant ball valves at temperatures ranging from -400 F to 130 F and 8,000 psig. Seals are capable of sustaining 90 degree rotation, with substantial amount of lateral and axial play, caused by large pressure loads and differential thermal contraction.

  2. Sealed radioactive sources toolkit

    International Nuclear Information System (INIS)

    Mac Kenzie, C.

    2005-09-01

    The IAEA has developed a Sealed Radioactive Sources Toolkit to provide information to key groups about the safety and security of sealed radioactive sources. The key groups addressed are officials in government agencies, medical users, industrial users and the scrap metal industry. The general public may also benefit from an understanding of the fundamentals of radiation safety

  3. Detection of pump degradation

    International Nuclear Information System (INIS)

    Casada, D.

    1995-01-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous special vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Pump head and flow rate are also monitored, per code requirements. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition; advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed

  4. Champagne Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  5. Evaluation of benzene exposure in petrol pump attendants and in mechanics by urinary trans, trans-muconic acid (t, t-MA determination

    Directory of Open Access Journals (Sweden)

    Teresa Cirillo

    2004-12-01

    Full Text Available

    Occupational exposure to benzene in petrol pump attendants and in mechanics was studied by examining the benzene content in both the air breathed and in the urinary metabolite trans,trans-muconic acid (t,t-MA. Thirty petrol pump attendants and thirty mechanics (as exposed workers and thirty adult male office workers (as non exposed workers were involved in the study. Measures were taken at the begin and at the end of the working shifts.

     The benzene concentrations in the breathing air samples varied from 2 to 88 μg m-3, lower than the EU acceptable limit for occupational environment. The average urinary t,t-MA in the petrol pump attendants at the begin and at the end of the working shifts ranged between 133 ± 69 and 255 ± 174 μg g-1 creatinine and in the mechanics between 204 ± 139 and 300 ± 211 μg g-1 creatinine, respectively.

    In all the participants the mean levels of urinary t,t-MA at the end of the working shifts were significantly higher than those at the beginning. In the exposed workers mean levels of urinary t,t-MA were significantly higher than in those of the non-exposed workers. The influence of the smoking was demonstrated by the urinary t,t-MA levels in smoking non-exposed subjects.

  6. A quantum chemical study of the mechanism for proton-coupled electron transfer leading to proton pumping in cytochrome c oxidase

    Science.gov (United States)

    Blomberg, Margareta R. A.; Siegbahn, Per E. M.

    2010-10-01

    The proton pumping mechanism in cytochrome c oxidase, the terminal enzyme in the respiratory chain, has been investigated using hybrid DFT with large chemical models. In previous studies, a gating mechanism was suggested based on electrostatic interpretations of kinetic experiments. The predictions from that analysis are tested here. The main result is that the suggestion of a positively charged transition state for proton transfer is confirmed, while some other suggestions for the gating are not supported. It is shown that a few critical relative energy values from the earlier studies are reproduced with quite high accuracy using the present model calculations. Examples are the forward barrier for proton transfer from the N-side of the membrane to the pump-loading site when the heme a cofactor is reduced, and the corresponding back leakage barrier when heme a is oxidised. An interesting new finding is an unexpected double-well potential for proton transfer from the N-side to the pump-loading site. In the intermediate between the two transition states found, the proton is bound to PropD on heme a. A possible purpose of this type of potential surface is suggested here. The accuracy of the present values are discussed in terms of their sensitivity to the choice of dielectric constant. Only one energy value, which is not critical for the present mechanism, varies significantly with this choice and is therefore less certain.

  7. Rotary shaft seal

    International Nuclear Information System (INIS)

    Langebrake, C.O.

    1984-01-01

    The invention is a novel rotary shaft seal assembly which provides positive-contact sealing when the shaft is not rotated and which operates with its sealing surfaces separated by a film of compressed ambient gas whose width is independent of the speed of shaft rotation. In a preferred embodiment, the assembly includes a disc affixed to the shaft for rotation therewith. Axially movable, non-rotatable plates respectively supported by sealing bellows are positioned on either side of the disc to be in sealing engagement therewith. Each plate carries piezoelectric transducer elements which are electrically energized at startup to produce films of compressed ambient gas between the confronting surfaces of the plates and the disc. Following shutdown of the shaft, the transducer elements are de-energized. A control circuit responds to incipient rubbing between the plate and either disc by altering the electrical input to the transducer elements to eliminate rubbing

  8. Sealing a conduit end

    International Nuclear Information System (INIS)

    Mentz, R.M.

    1993-01-01

    An apparatus for sealing or blocking conduits, such as the primary nozzles of a nuclear steam generator is described. It includes an annular bracket sealingly attached to the open end of the nozzle, the bracket having a plurality of threaded holes therein. Mounted atop the bracket is a generally circular nozzle dam for covering the opening. Interposed between the nozzle dam and the bracket is an extrusion-resistant seal member having a plurality of apertures therethrough for receiving each bolt. The seal member is configured to resist extrusion by having laminated layers of differing hardnesses, so that the seal member will not laterally extrude away from each bolt in a manner that enlarges the aperture surrounding each bolt as the nozzle dam is bolted to the bracket. (author)

  9. Brush seal performance measurement system

    OpenAIRE

    Aksoy, Serdar; Akşit, Mahmut Faruk; Aksit, Mahmut Faruk; Duran, Ertuğrul Tolga; Duran, Ertugrul Tolga

    2009-01-01

    Brush seals are rapidly replacing conventional labyrinth seals in turbomachinery applications. Upon pressure application, seal stiffness increases drastically due to frictional bristle interlocking. Operating stiffness is critical to determine seal wear life. Typically, seal stiffness is measured by pressing a curved shoe to brush bore. The static-unpressurized measurement is extrapolated to pressurized and high speed operating conditions. This work presents a seal stiffness measurement syste...

  10. Heat pumps

    CERN Document Server

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  11. The measured field performances of eight different mechanical and air-lift water-pumping wind-turbines

    Energy Technology Data Exchange (ETDEWEB)

    Kentfield, J.A.C. [Univ. of Calgary, Alberta (Canada)

    1996-12-31

    Results are presented of the specific performances of eight, different, water-pumping wind-turbines subjected to impartial tests at the Alberta Renewable Energy Test Site (ARETS), Alberta, Canada. The results presented which were derived from the test data, obtained independently of the equipment manufacturers, are expressed per unit of rotor projected area to eliminate the influence of machine size. Hub-height wind speeds and water flow rates for a common lift of 5.5 m (18 ft) constitute the essential test data. A general finding was that, to a first approximation, there were no major differences in specific performance between four units equipped with conventional reciprocating pumps two of which employed reduction gearing and two of which did not. It was found that a unit equipped with a Moyno pump performed well but three air-lift machines had, as was expected, poorer specific performances than the more conventional equipment. 10 refs., 9 figs.

  12. Tamper-indicating quantum optical seals

    Energy Technology Data Exchange (ETDEWEB)

    Humble, Travis S [ORNL; Williams, Brian P [ORNL

    2015-01-01

    Confidence in the means for identifying when tampering occurs is critical for containment and surveillance technologies. Fiber-optic seals have proven especially useful for actively surveying large areas or inventories due to the extended transmission range and flexible layout of fiber. However, it is reasonable to suspect that an intruder could tamper with a fiber-optic sensor by accurately replicating the light transmitted through the fiber. In this contribution, we demonstrate a novel approach to using fiber-optic seals for safeguarding large-scale inventories with increased confidence in the state of the seal. Our approach is based on the use of quantum mechanical phenomena to offer unprecedented surety in the authentication of the seal state. In particular, we show how quantum entangled photons can be used to monitor the integrity of a fiber-optic cable - the entangled photons serve as active sensing elements whose non-local correlations indicate normal seal operation. Moreover, we prove using the quantum no-cloning theorem that attacks against the quantum seal necessarily disturb its state and that these disturbances are immediately detected. Our quantum approach to seal authentication is based on physical principles alone and does not require the use of secret or proprietary information to ensure proper operation. We demonstrate an implementation of the quantum seal using a pair of entangled photons and we summarize our experimental results including the probability of detecting intrusions and the overall stability of the system design. We conclude by discussing the use of both free-space and fiber-based quantum seals for surveying large areas and inventories.

  13. Mechanisms of isoform-specific Na/K pump regulation by short- and long-term adrenergic activation in rat ventricular myocytes.

    Science.gov (United States)

    Yin, Jian; Guo, Hui-Cai; Yu, Ding; Wang, Hui-Ci; Li, Jun-Xia; Wang, Yong-Li

    2014-01-01

    Many stressful conditions, including cardiovascular diseases, induce long-term elevations in circulating catecholamines, thereby leading to changes of the Na/K pump and thus affecting myocardial functions. However, only short-term adrenergic regulation of the Na/K pump has been reported. The present study is the first investigation of long-term adrenergic regulation of the Na/K pump and the potential mechanism. After acutely isolated Sprague-Dawley rat myocytes were incubated with noradrenaline or isoprenaline for 24 h, Na/K pump high- (IPH) and low-affinity current (IPL), α-isoform mRNA, and α-isoform protein were examined using patch-clamp, RT-PCR, and Western blotting techniques, respectively. After the short-term incubation, isoprenaline reduced the IPL through a PKA-dependent pathway that involves α1-isoform translocation from the membrane to early endosomes, and noradrenaline increased the IPH through a PKC-dependent pathway that involves α2-isoform translocation from late endosomes to the membrane. After long-term incubation, isoprenaline increased the IPL, α1-isoform mRNA, and α1-isoform protein, and noradrenaline reduced the IPH, α2-isoform mRNA, and α1-isoform protein through a PKA-or PKC-dependent pathway, respectively. These results suggest that long-term adrenergic Na/K pump regulation is isoform-specific and negatively feeds back on the short-term response. Furthermore, long-term regulation involves transcription and translation of the respective α-isoform, whereas short-term regulation involves the translocation of the available α-isoform to the plasma membrane. © 2014 S. Karger AG, Basel.

  14. Mechanisms of Isoform-Specific Na/K Pump Regulation by Short- and Long-Term Adrenergic Activation in Rat Ventricular Myocytes

    Directory of Open Access Journals (Sweden)

    Jian Yin

    2014-05-01

    Full Text Available Background: Many stressful conditions, including cardiovascular diseases, induce long-term elevations in circulating catecholamines, thereby leading to changes of the Na/K pump and thus affecting myocardial functions. However, only short-term adrenergic regulation of the Na/K pump has been reported. The present study is the first investigation of long-term adrenergic regulation of the Na/K pump and the potential mechanism. Methods: After acutely isolated Sprague-Dawley rat myocytes were incubated with noradrenaline or isoprenaline for 24 h, Na/K pump high- (IPH and low-affinity current (IPL, α-isoform mRNA, and α-isoform protein were examined using patch-clamp, RT-PCR, and Western blotting techniques, respectively. Results: After the short-term incubation, isoprenaline reduced the IPL through a PKA-dependent pathway that involves α1-isoform translocation from the membrane to early endosomes, and noradrenaline increased the IPH through a PKC-dependent pathway that involves α2-isoform translocation from late endosomes to the membrane. After long-term incubation, isoprenaline increased the IPL, α1-isoform mRNA, and α1-isoform protein, and noradrenaline reduced the IPH, α2-isoform mRNA, and α1-isoform protein through a PKA-or PKC-dependent pathway, respectively. Conclusions: These results suggest that long-term adrenergic Na/K pump regulation is isoform-specific and negatively feeds back on the short-term response. Furthermore, long-term regulation involves transcription and translation of the respective α-isoform, whereas short-term regulation involves the translocation of the available α-isoform to the plasma membrane.

  15. Pillow seal system at the BigRIPS separator

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K., E-mail: ktanaka@riken.jp; Inabe, N.; Yoshida, K.; Kusaka, K.; Kubo, T.

    2013-12-15

    Highlights: • Pillow seal system has been installed for a high-intensity RI-beam facility at RIKEN. • It is aimed at facilitating remote maintenance under high residual radiation. • Local radiation shields are integrated with one of the pillow seals. • Pillow seals have been aligned to the beam axis within 1mm accuracy. • A leakage rate of 10{sup –9} Pa m{sup 3}/s has been achieved with our pillow seal system. -- Abstract: We have designed and installed a pillow seal system for the BigRIPS fragment separator at the RIKEN Radioactive Isotope Beam Factory (RIBF) to facilitate remote maintenance in a radioactive environment. The pillow seal system is a device to connect a vacuum chamber and a beam tube. It allows quick attachment and detachment of vacuum connections in the BigRIPS separator and consists of a double diaphragm with a differential pumping system. The leakage rate achieved with this system is as low as 10{sup –9} Pa m{sup 3}/s. We have also designed and installed a local radiation-shielding system, integrated with the pillow seal system, to protect the superconducting magnets and to reduce the heat load on the cryogenic system. We present an overview of the pillow seal and the local shielding systems.

  16. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  17. Temporary fire sealing of penetrations on TFTR

    International Nuclear Information System (INIS)

    Hondorp, H.L.

    1981-02-01

    The radiation shielding provided for TFTR for D-D and D-T operation will be penetrated by numerous electrical and mechanical services. Eventually, these penetrations will have to be sealed to provide the required fire resistance, tritium sealability, pressure integrity and radiation attenuation. For the initial hydrogen operation, however, fire sealing of the penetrations in the walls and floor is the primary concern. This report provides a discussion of the required and desirable properties of a temporary seal which can be used to seal these penetrations for the hydrogen operation and then subsequently be removed and replaced as required for the D-D and D-T operations. Several candidate designs are discussed and evaluated and recommendations are made for specific applications

  18. Reactor cavity seal ring

    International Nuclear Information System (INIS)

    Hankinson, M.F.

    1986-01-01

    A hydrostatic seal is described for sealing an annular gap between two flat substantially horizontal coplanar surfaces comprising, in combination: a generally flat annular plate of a width sufficient to span a gap between two surfaces: compressible annular sealing means disposed on the bottom surface of the flat annular plate for sealingly engaging the two flat surfaces in response to a downward force exerted on the plate; and fastening means, distributed along the center line of the plate, for releasably fastening the plate in a position to span the gap to be sealed and exert a downward force on the plate, each fastening means including a pair of elongated members of a size to fit into the gap to be sealed, means for mounting the members on the bottom surface of the plate so that at least a portion of each member is radially moveable in a direction toward a respective one of the vertical side surfaces defining the gap to be sealed to engage same and so that the plate is moveable relative to the members in a downward direction in response to hydrostatic pressure applied to the upper surface of the plate when the members are engaging the vertical side surfaces of an annular gap, and an actuating means, mounted on the plate for movement therewith in response to hydrostatic pressure, for radially moving the members, the actuating means extending through a bore in the plate to the upper surface of the plate

  19. Tunnel sealing: concept and feasibility evidence

    International Nuclear Information System (INIS)

    Brenner, R.P.; Eppinger, G.; Mettler, K.

    1991-01-01

    This report discusses first the aim and purpose of tunnel seals as well as the requirements which should be satisfied. The basic seal concept is a zoned plug consisting of key zones and intermediate zones. The key zones act as barrier elements and will be placed into sections of competent and sound rock. The main function of the intermediate zones is that of a support and the requirements for sealing efficiency may be somewhat relaxed. Three sealing concepts have been devised for both the key zones and the intermediate zones. They differ in the materials used for the seal and in the placement method. For the key zones highly compacted bentonite is recommended, but also cement-based materials, such as standard concrete or prepact concrete are considered suitable. For the intermediate zones, the use of pumped concrete with subsequent grouting of the roof zone is favourable, but also a combination of concrete with a sand/gravel mixture or with properly compacted excavation material is feasible. The concepts introduced can all be realized by conventional tunnelling methods. Excavation by tunnel boring machine is most advantageous as it minimizes disturbance of the rock caused by the cavity-forming process. By employing simple material models, it can be shown that the depth of the excavation disturbed zone can be minimized if support of the tunnel is provided as early as possible after excavation. The cutting of a groove in the tunnel wall along the key zone can further contribute to reduce the depth of the excavation-disturbed zone. In order to ensure the quality of a seal, the quantities of the materials used can be checked and the work procedures to place the seal can be supervised. For the latter the experiences obtained from a large-scale test should be available. Finally, it is also shown that when considering safety analytical aspects, the proposed sealing concepts represent adequate solutions in spite of the probably increased permeability in the excavation

  20. Azole resistance in Candida spp. isolated from Catú Lake, Ceará, Brazil: an efflux-pump-mediated mechanism

    Directory of Open Access Journals (Sweden)

    Raimunda S.N. Brilhante

    2016-03-01

    Full Text Available Abstract Since, there is no study reporting the mechanism of azole resistance among yeasts isolated from aquatic environments; the present study aims to investigate the occurrence of antifungal resistance among yeasts isolated from an aquatic environment, and assess the efflux-pump activity of the azole-resistant strains to better understand the mechanism of resistance for this group of drugs. For this purpose, monthly water and sediment samples were collected from Catú Lake, Ceará, Brazil, from March 2011 to February 2012. The obtained yeasts were identified based on morphological and biochemical characteristics. Of the 46 isolates, 37 were Candida spp., 4 were Trichosporon asahii, 3 were Cryptococcus laurentii, 1 Rhodotorula mucilaginosa, and 1 was Kodamaea ohmeri. These isolates were subjected to broth microdilution assay with amphotericin B, itraconazole, and fluconazole, according to the methodology standardized by the Clinical and Laboratory Standards Institute (CLSI. The minimum inhibitory concentrations (MICs of amphotericin B, itraconazole, and fluconazole were 0.03125–2 µg/mL, 0.0625 to ≥16 µg/mL, and 0.5 to ≥64 µg/mL, respectively, and 13 resistant azole-resistant Candida isolates were detected. A reduction in the azole MICs leading to the phenotypical reversal of the azole resistance was observed upon addition of efflux-pump inhibitors. These findings suggest that the azole resistance among environmental Candida spp. is most likely associated with the overexpression of efflux-pumps.

  1. Diaphragm Pump With Resonant Piezoelectric Drive

    Science.gov (United States)

    Izenson, Michael G.; Kline-Schoder, Robert J.; Shimko, Martin A.

    2007-01-01

    A diaphragm pump driven by a piezoelectric actuator is undergoing development. This pump is intended to be a prototype of lightweight, highly reliable pumps for circulating cooling liquids in protective garments and high-power electronic circuits, and perhaps for some medical applications. The pump would be highly reliable because it would contain no sliding seals or bearings that could wear, the only parts subject to wear would be two check valves, and the diaphragm and other flexing parts could be designed, by use of proven methods, for extremely long life. Because the pump would be capable of a large volumetric flow rate and would have only a small dead volume, its operation would not be disrupted by ingestion of gas, and it could be started reliably under all conditions. The prior art includes a number piezoelectrically actuated diaphragm pumps. Because of the smallness of the motions of piezoelectric actuators (typical maximum strains only about 0.001), the volumetric flow rates of those pumps are much too small for typical cooling applications. In the pump now undergoing development, mechanical resonance would be utilized to amplify the motion generated by the piezoelectric actuator and thereby multiply the volumetric flow rate. The prime mover in this pump would be a stack of piezoelectric ceramic actuators, one end of which would be connected to a spring that would be part of a spring-and-mass resonator structure. The mass part of the resonator structure would include the pump diaphragm (see Figure 1). Contraction of the spring would draw the diaphragm to the left, causing the volume of the fluid chamber to increase and thereby causing fluid to flow into the chamber. Subsequent expansion of the spring would push the diaphragm to the right, causing the volume of the fluid chamber to decrease, and thereby expelling fluid from the chamber. The fluid would enter and leave the chamber through check valves. The piezoelectric stack would be driven electrically to

  2. SEALING SIMULATED LEAKS

    Energy Technology Data Exchange (ETDEWEB)

    Michael A. Romano

    2004-09-01

    This report details the testing equipment, procedures and results performed under Task 7.2 Sealing Simulated Leaks. In terms of our ability to seal leaks identified in the technical topical report, Analysis of Current Field Data, we were 100% successful. In regards to maintaining seal integrity after pigging operations we achieved varying degrees of success. Internal Corrosion defects proved to be the most resistant to the effects of pigging while External Corrosion proved to be the least resistant. Overall, with limitations, pressure activated sealant technology would be a viable option under the right circumstances.

  3. Mechanism and significance of P4 ATPase-catalyzed lipid transport: lessons from a Na+/K+-pump

    NARCIS (Netherlands)

    Puts, C.F.; Holthuis, J.C.M.

    2009-01-01

    Members of the P4 subfamily of P-type ATPases are believed to catalyze phospholipid transport across membrane bilayers, a process influencing a host of cellular functions. Atomic structures and functional analysis of P-type ATPases that pump small cations and metal ions revealed a transport

  4. Centrifugal turbocompressor with contactless sealing for H-2 S

    International Nuclear Information System (INIS)

    Peculea, M.; Balint, I.; Hirean, I.; Dumitrescu, C.; Pitigoi, Gh.; Balanuca, C.

    1995-01-01

    This paper reports the development of a centrifugal turbocompressor with contactless sealing for H 2 S specially designed for the ROMAG Drobeta heavy water plant. The bench-scale experiments are described and the resulted main characteristics are given. For this equipment an asymmetric automatic anti-pumping protection system has been developed and patented

  5. Detection of pump degradation

    International Nuclear Information System (INIS)

    Casada, D.

    1994-01-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous spectral vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition: advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed

  6. Salt brickwork as long-term sealing in salt formations

    International Nuclear Information System (INIS)

    Walter, F.; Yaramanci, U.

    1993-01-01

    Radioactive wastes can be disposed of in deep salt formations. Rock salt is a suitable geologic medium because of its unique characteristics. Open boreholes, shafts and drifts are created to provide physical access to the repository. Long-term seals must be emplaced in these potential pathways to prevent radioactive release into the biosphere. The sealing materials must be mechanically and, most important, geochemically stable within the host rock. Salt bricks made from compressed salt-powder are understood to be the first choice long-term sealing material. Seals built of salt bricks will be ductile. Large sealing systems are built by combining the individual bricks with mortar. Raw materials for mortar are fine-grained halite powder and ground saliferous clay. This provides for the good adhesive strength of the mortar to the bricks and the high shear-strength of the mortar itself. To test the interaction of rock salt with an emplaced long-term seal, experiments will be carried out in situ, in the Asse salt mine in Germany. Simple borehole sealing experiments will be performed in horizontal holes and a complicated drift sealing experiment is planned, to demonstrate the technology of sealing a standard size drift or shaft inside a disturbed rock mass. Especially, the mechanical stability of the sealing system has to be demonstrated

  7. Upgrading elastomer seals for nuclear service

    Energy Technology Data Exchange (ETDEWEB)

    Wittich, K C; Wensel, R; LaRose, R; Kuran, S

    1995-06-01

    Pumps, valves and instruments in nuclear plants have historically contained whatever elastomer each equipment supplier traditionally used for corresponding non-nuclear service. The proliferation of elastomer compounds, and their sometimes uncertain reliability, is now being reduced by upgrading and standardizing on a handful of compounds that have each been verified to be high performers for their class of service conditions. The objective is to make cost-effective improvements in the reliability and integrity of equipment in Canadian-designed nuclear plants. The effort focuses on elastomer seals and includes: understanding sealing fundamentals, developing relevant data for superior compounds for each service, and improving quality assurance methods, including handling and inspection guidelines. In practice, discussions with plant personnel and review of plant records are the first step. Two severe-service examples are given where these needs have been met by the following progression of activities: inspecting and laboratory testing of seals removed from service, preliminary and qualification testing of improvements, introduction into service, and monitoring the upgraded seals during phase-in periods. Large gains in reliability and integrity have been demonstrated for simulated normal and accident service conditions of heat, radiation and other deteriorative influences. Significant savings in maintenance costs are also projected. (author). 2 refs., 6 figs.

  8. Upgrading elastomer seals for nuclear service

    International Nuclear Information System (INIS)

    Wittich, K.C.; Wensel, R.; LaRose, R.; Kuran, S.

    1995-06-01

    Pumps, valves and instruments in nuclear plants have historically contained whatever elastomer each equipment supplier traditionally used for corresponding non-nuclear service. The proliferation of elastomer compounds, and their sometimes uncertain reliability, is now being reduced by upgrading and standardizing on a handful of compounds that have each been verified to be high performers for their class of service conditions. The objective is to make cost-effective improvements in the reliability and integrity of equipment in Canadian-designed nuclear plants. The effort focuses on elastomer seals and includes: understanding sealing fundamentals, developing relevant data for superior compounds for each service, and improving quality assurance methods, including handling and inspection guidelines. In practice, discussions with plant personnel and review of plant records are the first step. Two severe-service examples are given where these needs have been met by the following progression of activities: inspecting and laboratory testing of seals removed from service, preliminary and qualification testing of improvements, introduction into service, and monitoring the upgraded seals during phase-in periods. Large gains in reliability and integrity have been demonstrated for simulated normal and accident service conditions of heat, radiation and other deteriorative influences. Significant savings in maintenance costs are also projected. (author). 2 refs., 6 figs

  9. Upgrading elastomer seals for nuclear service

    International Nuclear Information System (INIS)

    Wittich, K.C.; Wensel, R.; Larose, R.; Kuran, S.

    1998-01-01

    Pumps, valves and instruments in nuclear plants have historically contained whatever elastomer each equipment supplier traditionally used for corresponding non-nuclear service. The proliferation of elastomer compounds, and their sometimes uncertain reliability, is now being reduced by upgrading and standardizing on a handful of compounds that have each been verified to be high performers for their class of service conditions. The objective is to make cost-effective improvements in the reliability and integrity of equipment in Canadian-designed nuclear plants. The effort focuses on elastomer seals and includes: understanding sealing fundamentals, developing relevant data for superior compounds for each service, and improving quality assurance methods, including handling and inspection guidelines. In practice, discussion with plant personnel and review of plant records are the first step. Two severe-service examples are given where these needs have been met by the following progression of activities: inspecting and laboratory testing of seals removed from service, preliminary and qualification testing of improvements, introduction into service, and monitoring the upgraded seals during phase-in periods. Large gains in reliability and integrity have been demonstrated for simulated normal and accident service conditions of heat, radiation and other deteriorative influences. Significant savings in maintenance costs are also projected. (author)

  10. Cover-gas seals: 11-LMFBR seal-test program

    International Nuclear Information System (INIS)

    Steele, O.P. III; Horton, P.H.

    1977-01-01

    The objective of the Cover Gas Seal Material Development Program is to perform the engineering development required to provide reliable seals for LMFBR application. Specific objectives are to verify the performance of commercial solid cross-section and inflatable seals under reactor environments including radiation, to develop advanced materials and configurations capable of achieving significant improvement in radioactive gas containment and seal temperature capabilities, and to optimize seal geometry for maximum reliability and minimal gas permeation

  11. Self-acting shaft seals

    Science.gov (United States)

    Ludwig, L. P.

    1978-01-01

    Self-acting seals are described in detail. The mathematical models for obtaining a seal force balance and the equilibrium operating film thickness are outlined. Particular attention is given to primary ring response (seal vibration) to rotating seat face runout. This response analysis reveals three different vibration models with secondary seal friction being an important parameter. Leakage flow inlet pressure drop and affects of axisymmetric sealing face deformations are discussed. Experimental data on self-acting face seals operating under simulated gas turbine conditions are given. Also a spiral groove seal design operated to 244 m/sec (800 ft/sec) is described.

  12. Sealing arrangement for radioactive material

    International Nuclear Information System (INIS)

    Gray, I.L.S.; Sievwright, R.W.T.; Elliott, J.C.

    1993-01-01

    A sealing arrangement for hermetically sealing two mating surfaces comprises two seals arranged to lie between the surfaces. Each seal provides hermetic sealing over a respective different temperature range and lie serially along the surfaces between the regions to be isolated. A main seal integrity test arrangement is provided in the form of a port and passage. This allows for the introduction of a fluid into or the evacuation of a region between the two seals to detect a leak. The port is also provided with at least two test port seals which seal with a plug. The plug is also provided with a test port to allow the integrity of the test port seal to be tested. (UK)

  13. Centrifugal pumps

    CERN Document Server

    Gülich, Johann Friedrich

    2014-01-01

    This book gives an unparalleled, up-to-date, in-depth treatment of all kinds of flow phenomena encountered in centrifugal pumps including the complex interactions of fluid flow with vibrations and wear of materials. The scope includes all aspects of hydraulic design, 3D-flow phenomena and partload operation, cavitation, numerical flow calculations, hydraulic forces, pressure pulsations, noise, pump vibrations (notably bearing housing vibration diagnostics and remedies), pipe vibrations, pump characteristics and pump operation, design of intake structures, the effects of highly viscous flows, pumping of gas-liquid mixtures, hydraulic transport of solids, fatigue damage to impellers or diffusers, material selection under the aspects of fatigue, corrosion, erosion-corrosion or hydro-abrasive wear, pump selection, and hydraulic quality criteria. As a novelty, the 3rd ed. brings a fully analytical design method for radial impellers, which eliminates the arbitrary choices inherent to former design procedures. The d...

  14. Study of Hydrogen Pumping through Condensed Argon in Cryogenic pump

    International Nuclear Information System (INIS)

    Jadeja, K A; Bhatt, S B

    2012-01-01

    In ultra high vacuum (UHV) range, hydrogen is a dominant residual gas in vacuum chamber. Hydrogen, being light gas, pumping of hydrogen in this vacuum range is limited with widely used UHV pumps, viz. turbo molecular pump and cryogenic pump. Pre condensed argon layers in cryogenic pump create porous structure on the surface of the pump, which traps hydrogen gas at a temperature less than 20° K. Additional argon gas injection in the cryogenic pump, at lowest temperature, generates multiple layers of condensed argon as a porous frost with 10 to 100 A° diameters pores, which increase the pumping capacity of hydrogen gas. This pumping mechanism of hydrogen is more effective, to pump more hydrogen gas in UHV range applicable in accelerator, space simulation etc. and where hydrogen is used as fuel gas like tokamak. For this experiment, the cryogenic pump with a closed loop refrigerator using helium gas is used to produce the minimum cryogenic temperature as ∼ 14° K. In this paper, effect of cryosorption of hydrogen is presented with different levels of argon gas and hydrogen gas in cryogenic pump chamber.

  15. A new hypothesis on the simultaneous direct and indirect proton pump mechanisms in NADH-quinone oxidoreductase (complex I).

    Science.gov (United States)

    Ohnishi, Tomoko; Nakamaru-Ogiso, Eiko; Ohnishi, S Tsuyoshi

    2010-10-08

    Recently, Sazanov's group reported the X-ray structure of whole complex I [Nature, 465, 441 (2010)], which presented a strong clue for a "piston-like" structure as a key element in an "indirect" proton pump. We have studied the NuoL subunit which has a high sequence similarity to Na(+)/H(+) antiporters, as do the NuoM and N subunits. We constructed 27 site-directed NuoL mutants. Our data suggest that the H(+)/e(-) stoichiometry seems to have decreased from (4H(+)/2e(-)) in the wild-type to approximately (3H(+)/2e(-)) in NuoL mutants. We propose a revised hypothesis that each of the "direct" and the "indirect" proton pumps transports 2H(+) per 2e(-). Copyright © 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. Pumping life

    DEFF Research Database (Denmark)

    Sitsel, Oleg; Dach, Ingrid; Hoffmann, Robert Daniel

    2012-01-01

    The name PUMPKIN may suggest a research centre focused on American Halloween traditions or the investigation of the growth of vegetables – however this would be misleading. Researchers at PUMPKIN, short for Centre for Membrane Pumps in Cells and Disease, are in fact interested in a large family o......’. Here we illustrate that the pumping of ions means nothing less than the pumping of life....

  17. The acidity of the tumor microenvironment is a mechanism of immune escape that can be overcome by proton pump inhibitors

    Science.gov (United States)

    Bellone, Matteo; Calcinotto, Arianna; Filipazzi, Paola; De Milito, Angelo; Fais, Stefano; Rivoltini, Licia

    2013-01-01

    We have recently reported that lowering the pH to values that are frequently detected in tumors causes reversible anergy in both human and mouse CD8+ T lymphocytes in vitro. The same occurs in vivo, in the tumor microenvironment and the administration of proton pump inhibitors, which buffer tumor acidity, can revert T-cell anergy and increase the efficacy of immunotherapy. PMID:23483769

  18. Stable and self-adaptive performance of mechanically pumped CO2 two-phase loops for AMS-02 tracker thermal control in vacuum

    International Nuclear Information System (INIS)

    Zhang, Z.; Sun, X.-H.; Tong, G.-N.; Huang, Z.-C.; He, Z.-H.; Pauw, A.; Es, J. van; Battiston, R.; Borsini, S.; Laudi, E.; Verlaat, B.; Gargiulo, C.

    2011-01-01

    A mechanically pumped CO 2 two-phase loop cooling system was developed for the temperature control of the silicon tracker of AMS-02, a cosmic particle detector to work in the International Space Station. The cooling system (called TTCS, or Tracker Thermal Control System), consists of two evaporators in parallel to collect heat from the tracker's front-end electronics, two radiators in parallel to emit the heat into space, and a centrifugal pump that circulates the CO 2 fluid that carries the heat to the radiators, and an accumulator that controls the pressure, and thus the temperature of the evaporators. Thermal vacuum tests were performed to check and qualify the system operation in simulated space thermal environment. In this paper, we reported the test results which show that the TTCS exhibited excellent temperature control ability, including temperature homogeneity and stability, and self-adaptive ability to the various external heat flux to the radiators. Highlights: → The active-pumped CO 2 two-phase cooling loop passed the thermal vacuum test. → It provides high temperature homogeneity and stability thermal boundaries. → Its working temperature is controllable in vacuum environment. → It possesses self-adaptive ability to imbalanced external heat fluxes.

  19. Nuclear instrumentation cable end seal

    International Nuclear Information System (INIS)

    Cannon, C.P.; Brown, D.P.

    1979-01-01

    An improved coaxial end seal for hermetically sealed nuclear instrumentation cable exhibiting an improved breakdown pulse noise characteristic under high voltage, high temperature conditions is described. A tubular insulator body has metallized interior and exterior surface portions which are braze sealed to a center conductor and an outer conductive sheath. The end surface of the insulator body which is directed toward the coaxial cable to which it is sealed has a recessed surface portion within which the braze seal material terminates

  20. Space Shuttle Orbiter AFT heat shield seal

    Science.gov (United States)

    Walkover, L. J.

    1979-01-01

    The evolution of the orbiter aft heat shield seal (AHSS) design, which involved advancing mechanical seal technology in severe thermal environment is discussed. The baseline design, various improvements for engine access, and technical problem solution are presented. It is a structure and mechanism at the three main propulsion system (MPS) engine interfaces to the aft compartment structure. Access to each MPS engine requires disassembly and removal of the AHSS. Each AHSS accommodates the engine movement, is exposed to an extremely high temperature environment, and is part of the venting control of the aft compartment.

  1. Cooling device for leaking fluid from a centrifugal pump

    International Nuclear Information System (INIS)

    Raymond, J.R.; Thomson, C.I.

    1978-01-01

    The patented device consists of an integrated heat exchanger in a centrifugal primary cooling circuit pump whose purpose is to cool the coolant medium which leaks along the pump shaft so that the shaft seals are not damaged. The cooling water passes through spirally arranged banks of tubes round the shaft, with baffle plates to direct the leaking coolant. (JIW)

  2. Evaluating Moisture Control of Variable-Capacity Heat Pumps in Mechanically Ventilated, Low-Load Homes in Climate Zone 2A

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Eric [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center; Withers, Chuck [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center; McIlvaine, Janet [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center; Chasar, Dave [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center; Beal, David [Univ. of Central Florida, Orlando, FL (United States). Florida Solar Energy Center

    2018-02-07

    The well-sealed, highly insulated building enclosures constructed by today's home building industry coupled with efficient lighting and appliances are achieving significantly reduced heating and cooling loads. These low-load homes can present a challenge when selecting appropriate space-conditioning equipment. Conventional, fixed-capacity heating and cooling equipment is often oversized for small homes, causing increased first costs and operating costs. Even if fixed-capacity equipment can be properly specified for peak loads, it remains oversized for use during much of the year. During these part-load cooling hours, oversized equipment meets the target dry-bulb temperatures very quickly, often without sufficient opportunity for moisture control. The problem becomes more acute for high-performance houses in humid climates when meeting ASHRAE Standard 62.2 recommendations for wholehouse mechanical ventilation.

  3. Design and performance of a mechanically pumped two-phase loop to support the evaporation-condensation experiments on the TZ1

    Directory of Open Access Journals (Sweden)

    Z.R. Wang

    2017-09-01

    Full Text Available The mechanically pumped two-phase loop (MPTL has the advantages of long distance heat transport, high heat density and good temperature control. On TZ1, the MPTL technology is adopted to support a series experiments of evaporation and condensation. The main objective is to provide accurate (±0.5 ℃ temperature control from −5 ℃ to 40 ℃ and remove 80 W heat from the experimental setup. In this paper, the requirements, system design, hardware and performance of the MPTL are introduced.

  4. An Experimental Study of Cavitation Detection in a Centrifugal Pump Using Envelope Analysis

    Science.gov (United States)

    Tan, Chek Zin; Leong, M. Salman

    Cavitation represents one of the most common faults in pumps and could potentially lead to a series of failure in mechanical seal, impeller, bearing, shaft, motor, etc. In this work, an experimental rig was setup to investigate cavitation detection using vibration envelope analysis method, and measured parameters included sound, pressure and flow rate for feasibility of cavitation detection. The experiment testing included 3 operating points of the centrifugal pump (B.E.P, 90% of B.E.P and 80% of B.E.P). Suction pressure of the centrifugal pump was decreased gradually until the inception point of cavitation. Vibration measurements were undertaken at various locations including casing, bearing, suction and discharge flange of the centrifugal pump. Comparisons of envelope spectrums under cavitating and non-cavitating conditions were presented. Envelope analysis was proven useful in detecting cavitation over the 3 testing conditions. During the normal operating condition, vibration peak synchronous to rotational speed was more pronounced. It was however during cavitation condition, the half order sub-harmonic vibration component was clearly evident in the envelope spectrums undertaken at all measurement locations except at the pump bearing. The possible explanation of the strong sub-harmonic (½ of BPF) during cavitation existence in the centrifugal pump was due to insufficient time for the bubbles to collapse completely before the end of the single cycle.

  5. Evaluation of RF seals for resonant cavity applications

    International Nuclear Information System (INIS)

    Rusnak, B.; Spalek, G.; Bolme, G.O.; Bultman, N.; Klapetkzy, A.; Kemp, E.L.; Stovall, J.E.; Rose, J.

    1991-01-01

    In radio-frequency quadrupoles (RFQ) and drift-tube linacs (DTL), electrical seals are required at mechanical interfaces to preserve the cavity quality factor (Q). Studies determined the response of copper-plated C-seals to continuous wave (cw), highfield operating conditions. In addition, low-power evaluations of machined-surface, knife-edge, indium wire, C-type, and multilam seals were done at room temperature and cryogenic (25 K) temperatures. For the high-field tests, the Q as well as seal temperature, was measured with power. For the low power test, the Q was measured as a function of temperature

  6. Sensitivity analysis overlaps of friction elements in cartridge seals

    Directory of Open Access Journals (Sweden)

    Žmindák Milan

    2018-01-01

    Full Text Available Cartridge seals are self-contained units consisting of a shaft sleeve, seals, and gland plate. The applications of mechanical seals are numerous. The most common example of application is in bearing production for automobile industry. This paper deals with the sensitivity analysis of overlaps friction elements in cartridge seal and their influence on the friction torque sealing and compressive force. Furthermore, it describes materials for the manufacture of sealings, approaches usually used to solution of hyperelastic materials by FEM and short introduction into the topic wheel bearings. The practical part contains one of the approach for measurement friction torque, which results were used to specifying the methodology and precision of FEM calculation realized by software ANSYS WORKBENCH. This part also contains the sensitivity analysis of overlaps friction elements.

  7. Shaft seal assembly and method

    Science.gov (United States)

    Keba, John E. (Inventor)

    2007-01-01

    A pressure-actuated shaft seal assembly and associated method for controlling the flow of fluid adjacent a rotatable shaft are provided. The seal assembly includes one or more seal members that can be adjusted between open and closed positions, for example, according to the rotational speed of the shaft. For example, the seal member can be configured to be adjusted according to a radial pressure differential in a fluid that varies with the rotational speed of the shaft. In addition, in the closed position, each seal member can contact a rotatable member connected to the shaft to form a seal with the rotatable member and prevent fluid from flowing through the assembly. Thus, the seal can be closed at low speeds of operation and opened at high speeds of operation, thereby reducing the heat and wear in the seal assembly while maintaining a sufficient seal during all speeds of operation.

  8. Superconducting bearings for a LHe transfer pump

    Science.gov (United States)

    Kloeppel, S.; Muehsig, C.; Funke, T.; Haberstroh, C.; Hesse, U.; Lindackers, D.; Zielke, S.; Sass, P.; Schoendube, R.

    2017-12-01

    Superconducting bearings are used in a number of applications for high speed, low loss suspension. Most of these applications suspend a warm shaft and thus require continuous cooling, which leads to additional power consumption. Therefore, it seems advantageous to use these bearings in systems that are inherently cold. One respective application is a submerged pump for the transfer of liquid helium into mobile dewars. Centrifugal pumps require tight sealing clearances, especially for low viscosity fluids and small sizes. This paper covers the design and qualification of superconducting YBCO bearings for a laboratory sized liquid helium transfer pump. Emphasis is given to the axial positioning, which strongly influences the achievable volumetric efficiency.

  9. [Ambulant treatment of wounds by vacuum sealing].

    Science.gov (United States)

    Ziegler, U E; Schmidt, K; Breithaupt, B; Menig, R; Debus, E S; Thiede, A

    2000-01-01

    The treatment of chronic wounds by vacuum sealing as an outpatient procedure is a new method of wound conditioning before closing the defect. The quality of life for the patient in his usual surrounding is maintained. Financial aspects also play a role in this treatment since costs for the health care system can be reduced. Various vacuum pumps, drainages and polymere foams are available and suitable for the outpatient treatment. The most important condition is to regularly check the vacuum. This can performed by the patient, the relatives or nursing staff. The main complication consists in loss of vacuum but technical and local or systemic complications can also appear. Individually applied vacuum dressings (polyvinyl foam, drainage tube and polymere foil) are practical. The ideal pump systems for the outpatient treatment are still not trial.

  10. Modeling the rubbing contact in honeycomb seals

    Science.gov (United States)

    Fischer, Tim; Welzenbach, Sarah; Meier, Felix; Werner, Ewald; kyzy, Sonun Ulan; Munz, Oliver

    2018-03-01

    Metallic honeycomb labyrinth seals are commonly used as sealing systems in gas turbine engines. Because of their capability to withstand high thermo-mechanical loads and oxidation, polycrystalline nickel-based superalloys, such as Hastelloy X and Haynes 214, are used as sealing material. In addition, these materials must exhibit a tolerance against rubbing between the rotating part and the stationary seal component. The tolerance of the sealing material against rubbing preserves the integrity of the rotating part. In this article, the rubbing behavior at the rotor-stator interface is considered numerically. A simulation model is incorporated into the commercial finite element code ABAQUS/explicit and is utilized to simulate a simplified rubbing process. A user-defined interaction routine between the contact surfaces accounts for the thermal and mechanical interfacial behavior. Furthermore, an elasto-plastic constitutive material law captures the extreme temperature conditions and the damage behavior of the alloys. To validate the model, representative quantities of the rubbing process are determined and compared with experimental data from the literature. The simulation results correctly reproduce the observations made on a test rig with a reference stainless steel material (AISI 304). A parametric study using the nickel-based superalloys reveals a clear dependency of the rubbing behavior on the sliding and incursion velocity. Compared to each other, the two superalloys studied exhibit a different rubbing behavior.

  11. Dual-shank attachment design for omega seals

    International Nuclear Information System (INIS)

    Sattinger, S.S.

    1978-01-01

    An improved apparatus and process is disclosed for attaching welded omega seal segments to reactor heads, standpipes, mechanisms, and plugs which comprises a first shank in combination with a second shank to attach an omega seal at a metal-to-metal interface

  12. On the scaling of gas leakage from static seals

    International Nuclear Information System (INIS)

    Chivers, T.C.; Hunt, R.P.

    1977-01-01

    The interaction between gas leakage from static seals and eight potential variables is discussed. From a consideration of the interaction of these various parameters and the mechanical design of the seal system the importance of correctly interpreting leakage data is demonstrated. Given a situation where model experiments are necessary, this document forms a basis for the definition and interpretation of a test programme. (author)

  13. Optimization and studies of the welding processes, automation of the sealing welding system and fracture mechanics in the vessels surveillance in nuclear power plants

    International Nuclear Information System (INIS)

    Gama R, G.

    2011-01-01

    Inside this work the optimization of two welding systems is described, as well as the conclusion of a system for the qualification of containers sealing in the National Institute of Nuclear Research that have application in the surveillance programs of nuclear reactors vessels and the correspondent extension of the operation license. The test tubes Charpy are assay to evaluate the embrittlement grade, when obtaining the increment in the reference temperature and the decrease of the absorbed maximum energy, in the transition curve fragile-ductile of the material. After the test two test tube halves are obtained that should take advantage to follow the surveillance of the vessel and their possible operation extension, this is achieved by means of rebuilding (being obtained of a tested test tube two reconstituted test tubes). The welding system for the rebuilding of test tubes Charpy, was optimized when diminishing the union force at solder, achieving the elimination of the rejection for penetration lack for spill. For this work temperature measurements were carried out at different distances of the welding interface from 1 up to 12 mm, obtaining temperature profiles. With the maximum temperatures were obtained a graph and equation that represents the maximum temperature regarding the distance of the interface, giving as a result practical the elimination of other temperature measurements. The reconstituted test tubes were introduced inside pressurized containers with helium of ultra high purity to 1 pressure atmosphere. This process was carried out in the welding system for containers sealing, where an automatic process was implemented by means of an application developed in the program LabVIEW, reducing operation times and allowing the remote control of the process, the acquisition parameters as well as the generation of welding reports, avoiding with this the human error. (Author)

  14. Pool gateway seal

    International Nuclear Information System (INIS)

    Starr, J.A.; Steinert, L.A.

    1983-01-01

    A device for sealing a gateway between interconnectable pools in a nuclear facility comprising a frame supporting a liquid impermeable sheet positioned in a u-shaped gateway between the pools. An inflatable tube carried in a channel in the periphery of the frame and adjoining the gateway provides a seal therebetween when inflated. A restraining arrangement on the bottom edge of the frame is releasably engagable with an adjacent portion of the gateway to restrict the movement of the frame in the u-shaped gateway upon inflation of the tube, thereby enhancing the seal. The impermeable sheet is formed of an elastomer and thus is conformable to a liquid permeable supportive wall upon application of liquid pressure to the side of the sheet opposite the wall

  15. Pump, sodium, inducer, intermediate size (ISIP) (impeller/inducer/diffuser retrofit)

    International Nuclear Information System (INIS)

    Paradise, D.R.

    1978-01-01

    This specification defines the requirements for the Intermediate-Size Inducer Pump (ISIP), which is to be made by replacing the impeller of the FFTF Prototype Pump with a new inducer, impeller, diffuser, seal, and necessary adapter hardware. Subsequent testing requirements of the complete pump assembly are included

  16. HMSRP Hawaiian Monk Seal Master Identification Records (seal)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains records of all individually identified Hawaiian monk seals since 1981. These seals were identified by PSD personnel and cooperating scientists...

  17. A sealed turbo-alternator using any working-fluid

    International Nuclear Information System (INIS)

    Chollet, Maurice.

    1973-01-01

    The invention relates to a sealed turbo-alternator operating with a working fluid other than water. The turbo-alternator and the feed and lubricating pumps thereof are housed in a sealed casing. The latter constitutes, with the heat pump and the heat sink, a sealed enclosure containing the working and lubricating fluid. The alternator, which comprises neither collector nor brushes, is dipped in the working fluid vapor. Electric energy leaves the sealed enclosure through insulating sealed passager. In view of the absence of leakage it is possible to select (e.g. among freons) a working fluid well suited to the temperature differential between the heat source and the heat sink, and, accordingly to use temperature drops which could be too small in the case of steam. The various applications are as follows: recovery of calories at the exhaust of diesels and of gas turbines or in the cooling water of diesels; equipment of isotopic generators; recovery of calories from factory waste thrown into rivers (anti-pollution effect in view of the lowering of water temperature); non-polluting engine for special electrical vehicles [fr

  18. Dye filled security seal

    International Nuclear Information System (INIS)

    Wilson, D.C.

    1982-01-01

    A security seal for providing an indication of unauthorized access to a sealed object includes an elongate member to be entwined in the object such that access is denied unless the member is removed. The elongate member has a hollow, pressurizable chamber extending throughout its length that is filled with a permanent dye under greater than atmospheric pressure. Attempts to cut the member and weld it together are revealed when dye flows through a rupture in the chamber wall and stains the outside surface of the member

  19. CRBRP sodium circulating pump design evaluation

    International Nuclear Information System (INIS)

    Marrujo, F.; Cook, M.; Manners, L.; Cothran, H.

    1977-12-01

    The following topics are discussed: (1) primary sodium pump design concept; (2) pump level control system; (3) resolution of design problems in stress analysis, dynamics analysis, and mechanical design; (4) model testing; (5) planned performance tests; and (6) fabrication status

  20. Leak rate analysis of the Westinghouse Reactor Coolant Pump

    International Nuclear Information System (INIS)

    Boardman, T.; Jeanmougin, N.; Lofaro, R.; Prevost, J.

    1985-07-01

    An independent analysis was performed by ETEC to determine what the seal leakage rates would be for the Westinghouse Reactor Coolant Pump (RCP) during a postulated station blackout resulting from loss of ac electric power. The object of the study was to determine leakage rates for the following conditions: Case 1: All three seals function. Case 2: No. 1 seal fails open while Nos. 2 and 3 seals function. Case 3: All three seals fail open. The ETEC analysis confirmed Westinghouse calculations on RCP seal performance for the conditions investigated. The leak rates predicted by ETEC were slightly lower than those predicted by Westinghouse for each of the three cases as summarized below. Case 1: ETEC predicted 19.6 gpm, Westinghouse predicted 21.1 gpm. Case 2: ETEC predicted 64.7 gpm, Westinghouse predicted 75.6 gpm. Case 3: ETEC predicted 422 gpm, Westinghouse predicted 480 gpm. 3 refs., 22 figs., 6 tabs

  1. An Investigation of Loop Seal Clearings in ATLAS SBLOCA Tests

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeonsik; Cho, Seok; Kang, Kyoungho; Park, Hyunsik; Min, Kyeongho; Choi, Namhyeon; Park, Jonggook; Kim, Bokdeuk; Choi, Kiyong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    In most of the SBLOCA cases, the pressure of the upper-head region will increase mainly owing to the accumulated steam and water inventory in the upper-plenum. This build-up pressure acts as a suppression force to the core water level, and resultantly the core water level will decrease possibly up to and/or below the top of the active core region. Simultaneously, the downcomer water level will increase owing to the evacuated water inventory from the lower part of the core region. This unbalanced hydro-static pressure between the core and downcomer region acts as a potential pushing force to the reactor coolant pump (RCP) side intermediate leg. The potential pushing force will be increased with time to overcome the hydro-static head in the upflow intermediate leg. The unbalanced hydro-static pressure can finally be dissolved with the occurrence of the loop seal clearing. A minimum core collapsed water level, located below the elevation of the loop seal bottom leg in the ATLAS tests, is taken at this time. Since the loop seal bottom leg is located below the core top for typical PWR plants such as an APR1400, the water level depression may uncover the core upper regions until the core water level recovers with the progress of the clearing of the loop seal upflow leg. At this moment, the core temperature may increase to a peak cladding temperature (PCT) owing to an excessive core uncovery by the minimum core collapsed water level. Therefore, the loop seal clearing phenomenon is very important with respect to the PCT occurrence, which is one of the most important parameters to insure the safety of the reactor system. The loop seal clearing behavior seems to be closely related to the break location and break size. Usually, a loop seal in the break loop is cleared first, and the number of loop seal clearings is dependent on the break size. The larger the break size, the more the loop seals that are cleared. An investigation of LSC in the SBLOCA for DVI line and CL breaks

  2. Cost saving synergistic shaft seal

    Science.gov (United States)

    Ludwig, L. P.; Strom, T. N.

    1976-01-01

    Segmented carbon rings, used to replace elastomeric seal lip, provide resistance to high temperatures generated in lubricating film. Machining and close manufacturing tolerances of conventional segmented seal are avoided by mounting segmented rings in elastomeric flex section.

  3. Upconversion and pump saturation mechanisms in Er3+/Yb3+ co-doped Y2Ti2O7 nanocrystals

    International Nuclear Information System (INIS)

    Wang, Fengxiao; Song, Feng; Zhang, Gong; Han, Yingdong; Li, Qiong; Tian, Jianguo; Ming, Chengguo

    2014-01-01

    The Er 3+ /Yb 3+ co-doped Y 2 Ti 2 O 7 nanocrystals were synthesized by the sol–gel method. X-ray diffraction, transmission electronic microscopy, and photoluminescence spectra were measured to verify the Y 2 Ti 2 O 7 nanocrystalline produced in the sample annealed at 800 °C. The anomalous slopes of the fitted line in the log-log plots for upconversion emissions and the pump-saturation effect of near-infrared emission were observed in the nanocrystalline samples. A theoretical model of practical Er 3+ /Yb 3+ co-doped system based on the rate equations were put forward and explained the experimental phenomena well

  4. Valveless pumping mechanics of the embryonic heart during cardiac looping: Pressure and flow through micro-PIV.

    Science.gov (United States)

    Bark, D L; Johnson, B; Garrity, D; Dasi, L P

    2017-01-04

    Cardiovascular development is influenced by the flow-induced stress environment originating from cardiac biomechanics. To characterize the stress environment, it is necessary to quantify flow and pressure. Here, we quantify the flow field in a developing zebrafish heart during the looping stage through micro-particle imaging velocimetry and by analyzing spatiotemporal plots. We further build upon previous methods to noninvasively quantify the pressure field at a low Reynolds number using flow field data for the first time, while also comparing the impact of viscosity models. Through this method, we show that the atrium builds up pressure to ~0.25mmHg relative to the ventricle during atrial systole and that atrial expansion creates a pressure difference of ~0.15mmHg across the atrium, resulting in efficient cardiac pumping. With these techniques, it is possible to noninvasively fully characterize hemodynamics during heart development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Intratracheal Seal Disc

    DEFF Research Database (Denmark)

    Christiansen, Karen J; Moeslund, Niels; Lauridsen, Henrik

    2017-01-01

    . The device consisted of an intratracheal silicone seal disc fixated by a cord through the stoma to an external part. At day 14, computed tomography (CT) was performed before the device was extracted. With the pulling of a cord, the disc unraveled into a thin thread and was extracted through the stoma. At day...

  6. GOLD PRESSURE VESSEL SEAL

    Science.gov (United States)

    Smith, A.E.

    1963-11-26

    An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)

  7. Electromagnetic pump

    International Nuclear Information System (INIS)

    Ito, Koji; Suetake, Norio; Aizawa, Toshie; Nakasaki, Masayoshi

    1998-01-01

    The present invention provides an electromagnetic pump suitable to a recycling pump for liquid sodium as coolants of an FBR type reactor. Namely, a stator module of the electromagnetic pump of the present invention comprises a plurality of outer laminate iron core units and outer stator modules stacked alternately in the axial direction. With such a constitution, even a long electromagnetic pump having a large number of outer stator coils can be manufactured without damaging electric insulation of the outer stator coils. In addition, the inner circumferential surface of the outer laminate iron cores is urged and brought into contact with the outer circumferential surface of the outer duct by an elastic material. With such a constitution, Joule loss heat generated in the outer stator coils and internal heat generated in the outer laminate iron cores can be released to an electroconductive fluid flowing the inner circumference of the outer duct by way of the outer duct. (I.S.)

  8. Electrokinetic pump

    Science.gov (United States)

    Patel, Kamlesh D.

    2007-11-20

    A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.

  9. Shaft Seal Compensates for Cold Flow

    Science.gov (United States)

    Myers, W. N.; Hein, L. A.

    1985-01-01

    Seal components easy to install. Ring seal for rotating or reciprocating shafts spring-loaded to compensate for slow yielding (cold flow) of sealing material. New seal relatively easy to install because components preassembled, then installed in one piece.

  10. Fiber Optic Safeguards Sealing System

    Science.gov (United States)

    1978-01-01

    8217 or trade names does not constitute an official indorsement or approval of the use thereof. Destroy this report when it is no longer needed. Do not...an intergrity check of a seal than to photograph the seal’s fingerprints and to match positive/negative overlays. The seal identification time and

  11. Ultrasonic dip seal maintenance system

    International Nuclear Information System (INIS)

    Poindexter, A.M.; Ricks, H.E.

    1978-01-01

    Disclosed is a system for removing impurities from the surfaces of liquid dip seals and for wetting the metal surfaces of liquid dip seals in nuclear components. The system comprises an ultrasonic transducer that transmits ultrasonic vibrations along an ultrasonic probe to the metal and liquid surfaces of the dip seal thereby loosening and removing those impurities

  12. Radial lip seals, thermal aspects

    NARCIS (Netherlands)

    Stakenborg, M.J.L.; van Ostaijen, R.A.J.; Dowson, D.

    1989-01-01

    In this paper the influence of temperature on tne seal-snarc contact is studied, using coupled temperature-stress FEH analysis. A thermal network model is used to calculate the seal-shaft contact temperature for steady-state and transient conditions. Contact temperatures were measured under the seal

  13. Pumps and pump facilities. 2. ed.

    International Nuclear Information System (INIS)

    Bohl, W.; Bauerfeind, H.; Gutmann, G.; Leuschner, G.; Matthias, H.B.; Mengele, R.; Neumaier, R.; Vetter, G.; Wagner, W.

    1981-01-01

    This book deals with the common fundamental aspects of liquid pumps and gives an exemplary choice of the most important kinds of pumps. The scientific matter is dealt with by means of practical mathematical examples among other ways of presenting the matter. Survey of contents: Division on main operational data of pumps - pipe characteristics - pump characteristics - suction behaviour of the pumps - projecting and operation of rotary pumps - boiler feed pumps - reactor feed pumps - oscillating positive-displacement pumps - eccentric spiral pumps. (orig./GL) [de

  14. Heat pumping in nanomechanical systems.

    Science.gov (United States)

    Chamon, Claudio; Mucciolo, Eduardo R; Arrachea, Liliana; Capaz, Rodrigo B

    2011-04-01

    We propose using a phonon pumping mechanism to transfer heat from a cold to a hot body using a propagating modulation of the medium connecting the two bodies. This phonon pump can cool nanomechanical systems without the need for active feedback. We compute the lowest temperature that this refrigerator can achieve. © 2011 American Physical Society

  15. Heat pumping in nanomechanical systems

    OpenAIRE

    Chamon, Claudio; Mucciolo, Eduardo R.; Arrachea, Liliana; Capaz, Rodrigo B.

    2010-01-01

    We propose using a phonon pumping mechanism to transfer heat from a cold to a hot body using a propagating modulation of the medium connecting the two bodies. This phonon pump can cool nanomechanical systems without the need for active feedback. We compute the lowest temperature that this refrigerator can achieve.

  16. The Plasma Membrane Calcium Pump

    Science.gov (United States)

    Rasmussen, H.

    1983-01-01

    Three aspect of cellular calcium metabolism in animal cells was discussed including the importance of the plasma membrane in calcium homeostasis, experiments dealing with the actual mechanism of the calcium pump, and the function of the pump in relationship to the mitochondria and to the function of calmodulin in the intact cell.

  17. Hemolytic performance of a MagLev disposable rotary blood pump (MedTech Dispo): effects of MagLev gap clearance and surface roughness.

    Science.gov (United States)

    Hoshi, Hideo; Asama, Junichi; Hijikata, Wataru; Hara, Chikara; Shinshi, Tadahiko; Yasuda, Toshitaka; Ohuchi, Katsuhiro; Shimokohbe, Akira; Takatani, Setsuo

    2006-12-01

    Mechanical shaft seal bearing incorporated in the centrifugal blood pumps contributes to hemolysis and thrombus formation. In addition, the problem of durability and corrosion of mechanical shaft seal bearing has been recently reported from the safety point of view. To amend the shortcomings of the blood-immersed mechanical bearings, a magnetic levitated centrifugal rotary blood pump (MedTech Dispo Model 1; Tokyo Medical and Dental University, Tokyo, Japan) has been developed for extracorporeal disposable application. In this study, the hemolytic performance of the MedTech Dispo Model 1 centrifugal blood pump system was evaluated, with special focus on the narrow blood path clearance at the magnetic bearing between rotor and stator, and on the pump housing surface roughness. A pump flow of 5 L/min against the head pressure of 100 mm Hg for 4 h was included in the hemolytic test conditions. Anticoagulated fresh porcine blood was used as a working fluid. The clearance of blood path at the magnetic bearing was in the range of 100-250 micro m. Pump housing surface roughness was controlled to be around Ra = 0.1-1.5 micro m. The lowest hemolytic results were obtained at the clearance of 250 micro m and with the polished surface (Ra = 0.1 micro m) yielding the normalized index of hemolysis (NIH) of less than 0.001 g/100 L, which was 1/5 of the Biopump BP-80 (Medtronic Inc., Minneapolis, MN, USA, and 1/4 of the BPX-80. In spite of rough surface and narrow blood path, NIH levels were less than clinically acceptable level of 0.005 g/100 L. The noncontact, levitated impeller system is useful to improve pump performance in blood environment.

  18. Human Aorta Is a Passive Pump

    Science.gov (United States)

    Pahlevan, Niema; Gharib, Morteza

    2012-11-01

    Impedance pump is a simple valveless pumping mechanism that operates based on the principles of wave propagation and reflection. It has been shown in a zebrafish that a similar mechanism is responsible for the pumping action in the embryonic heart during early stages before valve formation. Recent studies suggest that the cardiovascular system is designed to take advantage of wave propagation and reflection phenomena in the arterial network. Our aim in this study was to examine if the human aorta is a passive pump working like an impedance pump. A hydraulic model with different compliant models of artificial aorta was used for series of in-vitro experiments. The hydraulic model includes a piston pump that generates the waves. Our result indicates that wave propagation and reflection can create pumping mechanism in a compliant aorta. Similar to an impedance pump, the net flow and the flow direction depends on the frequency of the waves, compliance of the aorta, and the piston stroke.

  19. Fast breeder reactor electromagnetic pump

    International Nuclear Information System (INIS)

    Araseki, Hideo; Murakami, Takahiro

    2008-01-01

    Main pumps circulating sodium in the FBR type reactor have been mechanical types, not electromagnetic pumps. Electromagnetic pump of 1-2 m 3 /min has been used as an auxiliary pump. Large sized electromagnetic pumps such as several hundred m 3 /min have not been commercialized due to technical difficulties with electromagnetic instability and pressure pulsations. This article explained electromagnetic and fluid equations and magnetic Reynolds number related with electromagnetic pumps and numerical analysis of instability characteristics and pressure pulsations and then described applications of the results to FBR system. Magnetic Reynolds number must be chosen less than one with appropriate operating frequency and optimum slip of 0.2-0.4. (T. Tanaka)

  20. Coaxial twin-shaft magnetic fluid seals applied in vacuum wafer-handling robot

    Science.gov (United States)

    Cong, Ming; Wen, Haiying; Du, Yu; Dai, Penglei

    2012-07-01

    Compared with traditional mechanical seals, magnetic fluid seals have unique characters of high airtightness, minimal friction torque requirements, pollution-free and long life-span, widely used in vacuum robots. With the rapid development of Integrate Circuit (IC), there is a stringent requirement for sealing wafer-handling robots when working in a vacuum environment. The parameters of magnetic fluid seals structure is very important in the vacuum robot design. This paper gives a magnetic fluid seal device for the robot. Firstly, the seal differential pressure formulas of magnetic fluid seal are deduced according to the theory of ferrohydrodynamics, which indicate that the magnetic field gradient in the sealing gap determines the seal capacity of magnetic fluid seal. Secondly, the magnetic analysis model of twin-shaft magnetic fluid seals structure is established. By analyzing the magnetic field distribution of dual magnetic fluid seal, the optimal value ranges of important parameters, including parameters of the permanent magnetic ring, the magnetic pole tooth, the outer shaft, the outer shaft sleeve and the axial relative position of two permanent magnetic rings, which affect the seal differential pressure, are obtained. A wafer-handling robot equipped with coaxial twin-shaft magnetic fluid rotary seals and bellows seal is devised and an optimized twin-shaft magnetic fluid seals experimental platform is built. Test result shows that when the speed of the two rotational shafts ranges from 0-500 r/min, the maximum burst pressure is about 0.24 MPa. Magnetic fluid rotary seals can provide satisfactory performance in the application of wafer-handling robot. The proposed coaxial twin-shaft magnetic fluid rotary seal provides the instruction to design high-speed vacuum robot.