WorldWideScience

Sample records for pump flow monitors

  1. On-line monitoring of main coolant pump seals

    International Nuclear Information System (INIS)

    Stevens, D.M.; Spencer, J.W.; Morris, D.J.; Glass, S.W.; Sommerfield, G.A.; Harrison, D.

    1984-06-01

    The Babcock and Wilcox Company has developed and implemented a Reactor Coolant Pump Monitoring and Diagnostic System (RCPM and DS). The system has been installed at Toledo Edison Company's Davis-Besse Nuclear Power Station Unit 1. The RCPM and PS continuously monitors a number of indicators of pump performance and notifies the plant operator of out-of-tolerance conditions or pump performance trending toward out-of-tolerance conditions. Pump seal parameters being monitored include pump internal pressures, temperatures, and flow rates. Rotordynamic performanvce and plant operating conditions are also measured with a variety of dynamic sensors. This paper describes the implementation of the system and the results of on-line monitoring of four RC pumps

  2. Low-flow operation and testing of pumps in nuclear plants

    International Nuclear Information System (INIS)

    Greenstreet, W.L.

    1989-01-01

    Low-flow operation of centrifugal pumps introduces hydraulic instability and other factors that can cause damage to these machines. The resulting degradation has been studied and recorded for pumps in electric power plants. The objectives of this paper are to (1) describe the damage-producing phenomena, including their sources and consequences; (2) relate these observations to expectations for damage caused by low-flow operation of pumps in nuclear power plants; and (3) assess the utility of low-flow testing. Hydraulic behavior during low-flow operation is reviewed for a typical centrifugal pump stage, and the damage-producing mechanisms are described. Pump monitoring practices, in conjunction with pump performance characteristics, are considered; experience data are reviewed; and the effectiveness of low-flow surveillance monitoring is examined. Degradation caused by low-flow operation is shown to be an important factor, and low-flow surveillance testing is shown to be inadequate. 18 refs., 5 figs., 4 tabs

  3. Selection of Sampling Pumps Used for Groundwater Monitoring at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Schalla, Ronald; Webber, William D.; Smith, Ronald M.

    2001-11-05

    The variable frequency drive centrifugal submersible pump, Redi-Flo2a made by Grundfosa, was selected for universal application for Hanford Site groundwater monitoring. Specifications for the selected pump and five other pumps were evaluated against current and future Hanford groundwater monitoring performance requirements, and the Redi-Flo2 was selected as the most versatile and applicable for the range of monitoring conditions. The Redi-Flo2 pump distinguished itself from the other pumps considered because of its wide range in output flow rate and its comparatively moderate maintenance and low capital costs. The Redi-Flo2 pump is able to purge a well at a high flow rate and then supply water for sampling at a low flow rate. Groundwater sampling using a low-volume-purging technique (e.g., low flow, minimal purge, no purge, or micropurgea) is planned in the future, eliminating the need for the pump to supply a high-output flow rate. Under those conditions, the Well Wizard bladder pump, manufactured by QED Environmental Systems, Inc., may be the preferred pump because of the lower capital cost.

  4. Centrifugal Pump Monitoring and Determination of Pump Characteristic Curves Using Experimental and Analytical Solutions

    Directory of Open Access Journals (Sweden)

    Marius Stan

    2018-02-01

    Full Text Available Centrifugal pumps are widely used in the industry, especially in the oil and gas sector for fluids transport. Classically, these are designed to transfer single phase fluids (e.g., water at high flow rates and relatively low pressures when compared with other pump types. As part of their constructive feature, centrifugal pumps rely on seals to prevent air entrapment into the rotor during its normal operation. Although this is a constructive feature, water should pass through the pump inlet even when the inlet manifold is damaged. Modern pumps are integrated in pumping units which consist of a drive (normally electric motor, a transmission (when needed, an electronic package (for monitoring and control, and the pump itself. The unit also has intake and outlet manifolds equipped with valves. Modern systems also include electronic components to measure and monitor pump working parameters such as pressure, temperature, etc. Equipment monitoring devices (vibration sensors, microphones are installed on modern pumping units to help users evaluate the state of the machinery and detect deviations from the normal working condition. This paper addresses the influence of air-water two-phase mixture on the characteristic curve of a centrifugal pump; pump vibration in operation at various flow rates under these conditions; the possibilities of using the results of experimental investigations in the numerical simulations for design and training purposes, and the possibility of using vibration and sound analysis to detect changes in the equipment working condition. Conclusions show that vibration analysis provides accurate information about the pump’s functional state and the pumping process. Moreover, the acoustic emission also enables the evaluation of the pump status, but needs further improvements to better capture and isolate the usable sounds from the environment.

  5. Sodium flow rate measurement method of annular linear induction pumps

    International Nuclear Information System (INIS)

    Araseki, Hideo; Kirillov, Igor R.; Preslitsky, Gennady V.

    2012-01-01

    Highlights: ► We found a new method of flow rate monitoring of electromagnetic pump. ► The method is very simple and does not require a large space. ► The method was verified with an experiment and a numerical analysis. ► The experimental data and the numerical results are in good agreement. - Abstract: The present paper proposes a method for measuring sodium flow rate of annular linear induction pumps. The feature of the method lies in measuring the leaked magnetic field with measuring coils near the stator end on the outlet side and in correlating it with the sodium flow rate. This method is verified through an experiment and a numerical analysis. The data obtained in the experiment reveals that the correlation between the leaked magnetic field and the sodium flow rate is almost linear. The result of the numerical analysis agrees with the experimental data. The present method will be particularly effective to sodium flow rate monitoring of each one of plural annular linear induction pumps arranged in parallel in a vessel which forms a large-scale pump unit.

  6. Magnetic heat pump flow director

    Science.gov (United States)

    Howard, Frank S. (Inventor)

    1995-01-01

    A fluid flow director is disclosed. The director comprises a handle body and combed-teeth extending from one side of the body. The body can be formed of a clear plastic such as acrylic. The director can be used with heat exchangers such as a magnetic heat pump and can minimize the undesired mixing of fluid flows. The types of heat exchangers can encompass both heat pumps and refrigerators. The director can adjust the fluid flow of liquid or gas along desired flow directions. A method of applying the flow director within a magnetic heat pump application is also disclosed where the comb-teeth portions of the director are inserted into the fluid flow paths of the heat pump.

  7. Experimental research on pressure fluctuation and vibration in a mixed flow pump

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kai; Liu, Houlin; Wang, Wenbo [National Research Center of Pumps and Pumping System Engineering and Technology, Jiangsu University, Zhenjiang (China); Zhou, Xiaohua [Gree Electric Appliance Inc. of Zhuhai, Zhuhai (China)

    2016-01-15

    To study the pressure fluctuation and vibration in mixed flow pumps, we chose a mixed flow pump with specific speed of 436.1 to measure. The time domains and frequency domain at each monitoring point on diffuser and outlet elbow were analyzed, as well as the vibration frequency domain characteristics at the impeller outlet and near the motor. The results show that the peak value of pressure fluctuation peak decreased gradually with the increase of flow rate. The pressure fluctuation of each monitoring point had periodicity, and the frequency domain dominated by blade passing frequency and multiple shaft frequency. The vibration frequency of each monitoring point occurred at shaft frequency and its multiple shaft frequency. The dominant frequency and the second frequency were distributed in shaft frequency and double shaft frequency.

  8. Flow pumping system for physiological waveforms.

    Science.gov (United States)

    Tsai, William; Savaş, Omer

    2010-02-01

    A pulsatile flow pumping system is developed to replicate flow waveforms with reasonable accuracy for experiments simulating physiological blood flows at numerous points in the body. The system divides the task of flow waveform generation between two pumps: a gear pump generates the mean component and a piston pump generates the oscillatory component. The system is driven by two programmable servo controllers. The frequency response of the system is used to characterize its operation. The system has been successfully tested in vascular flow experiments where sinusoidal, carotid, and coronary flow waveforms are replicated.

  9. Pump failure leads to alternative vertical pump condition monitoring technique

    International Nuclear Information System (INIS)

    DeVilliers, Adriaan; Glandon, Kevin

    2011-01-01

    Condition monitoring and detecting early signs of potential failure mechanisms present particular problems in vertical pumps. Most often, the majority of the pump assembly is not readily accessible for visual or audible inspection or conventional vibration monitoring techniques using accelerometers and/or proximity sensors. The root cause failure analysis of a 2-stage vertical centrifugal service-water pump at a nuclear power generating facility in the USA is presented, highlighting this long standing challenge in condition monitoring of vertical pumps. This paper will summarize the major findings of the root cause analysis (RCA), highlight the limitations of traditional monitoring techniques, and present an expanded application of motor current monitoring as a means to gain insight into the mechanical performance and condition of a pump. The 'real-world' example of failure, monitoring and correlation of the monitoring technique to a detailed pump disassembly inspection is also presented. This paper will explain some of the reasons behind well known design principles requiring natural frequency separation from known forcing frequencies, as well as explore an unexpected submerged brittle fracture failure mechanism, and how such issues may be avoided. (author)

  10. Electrokinetic pumping and detection of low-volume flows in nanochannels

    NARCIS (Netherlands)

    Mela, P.; Tas, Niels Roelof; Berenschot, Johan W.; van Nieuwkasteele, Jan William; van den Berg, Albert

    2004-01-01

    Electrokinetic pumping of low-volume rates was performed on-chip in channels of small cross sectional area and height in the sub-m range. The flow was detected with the current monitoring technique by monitoring the change in resistance of the fluid in the channel upon the electroosmosis-driven

  11. Reactor coolant pump seal leakage monitoring

    International Nuclear Information System (INIS)

    Stevens, D.M.; Spencer, J.W.; Morris, D.J.; James, W.; Shugars, H.G.

    1986-01-01

    Problems with reactor coolant pump seals have historically accounted for a large percentage of unscheduled outages. Studies performed for the Electric Power Research Institute (EPRI) have shown that the replacement of coolant pump seals has been one of the leading causes of nuclear plant unavailability over the last ten years. Failures of coolant pump seals can lead to primary coolant leakage rates of 200-500 gallons per minute into the reactor building. Airborne activity and high surface contamination levels following these failures require a major cleanup effort and increases the time and personnel exposure required to refurbish the pump seals. One of the problems in assessing seal integrity is the inability to accurately measure seal leakage. Because seal leakage flow is normally very small, it cannot be sensed directly with normal flow instrumentation, but must be inferred from several other temperature and flow measurements. In operating plants the leakage rate has been quantified with a tipping-bucket gauge, a device which indicates when one quart of water has been accumulated. The tipping-bucket gauge has been used for most rainfall-intensity monitoring. The need for a more accurate and less expensive gauge has been addressed. They have developed a drop-counter precipitation sensor has been developed and optimized. The applicability of the drop-counter device to the problem of measuring seal leakage is being investigated. If a review of system specification and known drop-counter performance indicates that this method is feasible for measuring seal leak rates, a drop-counter gauge will be fabricated and tested in the laboratory. If laboratory tests are successful the gauge will be demonstrated in a pump test loop at Ontario Hydro and evaluated under simulated plant conditions. 3 references, 2 figures

  12. Development of a miniaturized mass-flow meter for an axial flow blood pump based on computational analysis.

    Science.gov (United States)

    Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi

    2011-09-01

    In order to monitor the condition of patients with implantable left ventricular assist systems (LVAS), it is important to measure pump flow rate continuously and noninvasively. However, it is difficult to measure the pump flow rate, especially in an implantable axial flow blood pump, because the power consumption has neither linearity nor uniqueness with regard to the pump flow rate. In this study, a miniaturized mass-flow meter for discharged patients with an implantable axial blood pump was developed on the basis of computational analysis, and was evaluated in in-vitro tests. The mass-flow meter makes use of centrifugal force produced by the mass-flow rate around a curved cannula. An optimized design was investigated by use of computational fluid dynamics (CFD) analysis. On the basis of the computational analysis, a miniaturized mass-flow meter made of titanium alloy was developed. A strain gauge was adopted as a sensor element. The first strain gauge, attached to the curved area, measured both static pressure and centrifugal force. The second strain gauge, attached to the straight area, measured static pressure. By subtracting the output of the second strain gauge from the output of the first strain gauge, the mass-flow rate was determined. In in-vitro tests using a model circulation loop, the mass-flow meter was compared with a conventional flow meter. Measurement error was less than ±0.5 L/min and average time delay was 0.14 s. We confirmed that the miniaturized mass-flow meter could accurately measure the mass-flow rate continuously and noninvasively.

  13. Centrifugal pumps

    CERN Document Server

    Anderson, HH

    1981-01-01

    Centrifugal Pumps describes the whole range of the centrifugal pump (mixed flow and axial flow pumps are dealt with more briefly), with emphasis on the development of the boiler feed pump. Organized into 46 chapters, this book discusses the general hydrodynamic principles, performance, dimensions, type number, flow, and efficiency of centrifugal pumps. This text also explains the pumps performance; entry conditions and cavitation; speed and dimensions for a given duty; and losses. Some chapters further describe centrifugal pump mechanical design, installation, monitoring, and maintenance. The

  14. Analysis of vertical flow during ambient and pumped conditions in four monitoring wells at the Pantex Plant, Carson County, Texas, July-September 2008

    Science.gov (United States)

    Stanton, Gregory P.; Thomas, Jonathan V.; Stoval, Jeffery

    2009-01-01

    The Pantex Plant is a U.S. Department of Energy/National Nuclear Security Administration (USDOE/NNSA)-owned, contractor-operated facility managed by Babcock & Wilcox Technical Services Pantex, LLC (B&W Pantex) in Carson County, Texas, approximately 17 miles northeast of Amarillo. The U.S. Geological Survey, in cooperation with B&W Pantex through the USDOE/NNSA, made a series of flowmeter measurements and collected other borehole geophysical logs during July–September 2008 to analyze vertical flow in screened intervals of four selected monitoring wells (PTX01–1012, PTX06–1044, PTX06–1056, and PTX06–1068) at the Pantex Plant. Hydraulic properties (transmissivity values) of the section of High Plains (Ogallala) aquifer penetrated by the wells also were computed. Geophysical data were collected under ambient and pumped flow conditions in the four monitoring wells. Unusually large drawdowns occurred at two monitoring wells (PTX06–1044 and PTX06–1056) while the wells were pumped at relatively low rates. A decision was made to redevelop those wells, and logs were run again after redevelopment in the two monitoring wells.

  15. Magnetic Heat Pump Containing Flow Diverters

    Science.gov (United States)

    Howard, Frank S.

    1995-01-01

    Proposed magnetic heat pump contains flow diverters for suppression of undesired flows. If left unchecked, undesired flows mix substantial amounts of partially heated and partially cooled portions of working fluid, effectively causing leakage of heat from heated side to cooled side. By reducing leakage of heat, flow diverters increase energy efficiency of magnetic heat pump, potentially offering efficiency greater than compressor-driven refrigerator.

  16. Determination of pump flow rate during cardiopulmonary bypass in obese patients avoiding hemodilution.

    Science.gov (United States)

    Santambrogio, Luisa; Leva, Cristian; Musazzi, Giorgio; Bruno, Piergiorgio; Vailati, Andrea; Zecchillo, Franco; Di Credico, Germano

    2009-01-01

    During cardiopulmonary bypass the pump flow is usually set on 2.4 L/min/m(2) of body surface area (BSA) to guarantee adequate tissue perfusion without differences for patient constitutional type. The present study attempts to evaluate the adequacy of pump flow rate in obese patients, considering the ideal weight instead of the real one, avoiding the overflow side effects and hemodilution. Obese patients with body mass index (BMI) > 30 presented for cardiac surgery were randomized in two groups: in one the cardiopulmonary bypass was led traditionally, in the other, pump flow rate was calculated on ideal BMI of 25. Demographics, preoperative tests, and monitoring data were registered. Mortality at hospital discharge and 30 days after were analyzed. The pump flow rate between the groups was different (4.46 vs. 4.87; p = 0.004); there were no differences in organ perfusion (SvO(2); diuresis) and mortality, but the study group presented fewer complications and blood transfusions. The BSA is widely used as the biometric unit to normalize physiologic parameters included pump flow rate, but it is disputable if this practice is correct also in obese patients. The study group, in which pump flow rate was set on ideal BSA, presented no difference in diuresis and mixed venous saturation but fewer complications and fewer perioperative blood transfusions.

  17. Design Of Pump Monitoring Of Primary Cooling System

    International Nuclear Information System (INIS)

    Indrakoesoema, Koes; Sujarwono

    2000-01-01

    Monitoring of 3 primary cooling pumps done visually by operator on the spot. The operator must be check oil in a sight glass, oil leakage during pump operation and water leakage. If reaktor power increase about more than 3 MW, the radiation exposure also increase in the primary cell and that's way the operator can not check the pumps. To continuing monitor all pump without delay, one system has been added I.e Closed Circuit Television (CCTV). This system using 3 video camera to monitor 3 pumps and connected to one receiver video monitor by coaxial cable located in Main Control Room. The sequence monitoring can be done by sequential switcher

  18. Self Calibrating Flow Estimation in Waste Water Pumping Stations

    DEFF Research Database (Denmark)

    Kallesøe, Carsten Skovmose; Knudsen, Torben

    2016-01-01

    Knowledge about where waste water is flowing in waste water networks is essential to optimize the operation of the network pumping stations. However, installation of flow sensors is expensive and requires regular maintenance. This paper proposes an alternative approach where the pumps and the waste...... water pit are used for estimating both the inflow and the pump flow of the pumping station. Due to the nature of waste water, the waste water pumps are heavily affected by wear and tear. To compensate for the wear of the pumps, the pump parameters, used for the flow estimation, are automatically...... calibrated. This calibration is done based on data batches stored at each pump cycle, hence makes the approach a self calibrating system. The approach is tested on a pumping station operating in a real waste water network....

  19. Experimental study of the influence of flow passage subtle variation on mixed-flow pump performance

    Science.gov (United States)

    Bing, Hao; Cao, Shuliang

    2014-05-01

    In the mixed-flow pump design, the shape of the flow passage can directly affect the flow capacity and the internal flow, thus influencing hydraulic performance, cavitation performance and operation stability of the mixed-flow pump. However, there is currently a lack of experimental research on the influence mechanism. Therefore, in order to analyze the effects of subtle variations of the flow passage on the mixed-flow pump performance, the frustum cone surface of the end part of inlet contraction flow passage of the mixed-flow pump is processed into a cylindrical surface and a test rig is built to carry out the hydraulic performance experiment. In this experiment, parameters, such as the head, the efficiency, and the shaft power, are measured, and the pressure fluctuation and the noise signal are also collected. The research results suggest that after processing the inlet flow passage, the head of the mixed-flow pump significantly goes down; the best efficiency of the mixed-flow pump drops by approximately 1.5%, the efficiency decreases more significantly under the large flow rate; the shaft power slightly increases under the large flow rate, slightly decreases under the small flow rate. In addition, the pressure fluctuation amplitudes on both the impeller inlet and the diffuser outlet increase significantly with more drastic pressure fluctuations and significantly lower stability of the internal flow of the mixed-flow pump. At the same time, the noise dramatically increases. Overall speaking, the subtle variation of the inlet flow passage leads to a significant change of the mixed-flow pump performance, thus suggesting a special attention to the optimization of flow passage. This paper investigates the influence of the flow passage variation on the mixed-flow pump performance by experiment, which will benefit the optimal design of the flow passage of the mixed-flow pump.

  20. Detection and effects of pump low-flow operation

    International Nuclear Information System (INIS)

    Casada, D.A.; Greene, R.H.

    1993-01-01

    Operating experience and previous studies have shown that a significant cause of pump problems and failures can result from low- flow operation. Operation at low-flow rates can create unstable flows within the pump impeller and casing. This condition can result in an increased radial and axial thrust on the rotor, which in turn causes higher shaft stresses, increased shaft deflection, and potential bearing and mechanical seal problems. Two of the more serious results of low-flow pump operation are cavitation and recirculation. Cavitation is the formation and subsequent collapse of vapor bubbles in any flow that is at an ambient pressure less than the vapor pressure of the liquid medium. It is the collapse of these vapor bubbles against the metal surfaces of the impeller or casing that causes surface pitting, erosion, and deterioration. Pump recirculation more damaging than cavitation. If located at the impeller eye, recirculation damages the inlet areas of the casing. At the impeller tips, recirculation alters the outside diameter of the impeller. If recirculation occurs around impeller shrouds, it damages thrust bearings. Recirculation also erodes impellers, diffusers, and volutes and causes failure of mechanical seals and bearings. This paper reports on a utility pump failure caused by low-flow induced phenomena. ORNL is investigating the results of low-flow pump operations by evaluating the types of measurements and diagnostic techniques that are currently used by licensees to detect pump degradation. A new, enhanced application of motor current and power data analysis has been developed that uses a signal comparison methodology to produce an instability ratio indicative of normal or unstable flow conditions. Examples of this type of low-flow detection technique are presented in this paper along with a brief discussion of the various types of technologies currently being used by licensees to evaluate pump operation and determine possible degradation

  1. Numerical and Experimental Study of Pump Sump Flows

    Directory of Open Access Journals (Sweden)

    Wei-Liang Chuang

    2014-01-01

    Full Text Available The present study analyzes pump sump flows with various discharges and gate submergence. Investigations using a three-dimensional large eddy simulation model and an acoustic Doppler velocimeter are performed. Flow patterns and velocity profiles in the approaching flow are shown to describe the flow features caused by various discharges and gate submergence. The variation of a large-scale spanwise vortex behind a sluice gate is examined and discussed. The suction effect on approaching flow near the pipe column is examined using numerical modeling. To gain more understanding of the vortices variation, a comparison between time-averaged and instantaneous flow patterns is numerically conducted. Additionally, swirl angle, a widely used index for evaluating pump efficiency, is experimentally and numerically examined under various flow conditions. The results indicate that the pump becomes less efficient with increasing discharge and gate submergence. The fluctuation of the free surface over the pump sump is also discussed.

  2. Air-lift pumps characteristics under two-phase flow conditions

    International Nuclear Information System (INIS)

    Kassab, Sadek Z.; Kandil, Hamdy A.; Warda, Hassan A.; Ahmed, Wael H.

    2009-01-01

    Air-lift pumps are finding increasing use where pump reliability and low maintenance are required, where corrosive, abrasive, or radioactive fluids in nuclear applications must be handled and when a compressed air is readily available as a source of a renewable energy for water pumping applications. The objective of the present study is to evaluate the performance of a pump under predetermined operating conditions and to optimize the related parameters. For this purpose, an air-lift pump was designed and tested. Experiments were performed for nine submergence ratios, and three risers of different lengths with different air injection pressures. Moreover, the pump was tested under different two-phase flow patterns. A theoretical model is proposed in this study taking into account the flow patterns at the best efficiency range where the pump is operated. The present results showed that the pump capacity and efficiency are functions of the air mass flow rate, submergence ratio, and riser pipe length. The best efficiency range of the air-lift pumps operation was found to be in the slug and slug-churn flow regimes. The proposed model has been compared with experimental data and the most cited models available. The proposed model is in good agreement with experimental results and found to predict the liquid volumetric flux for different flow patterns including bubbly, slug and churn flow patterns

  3. Operating pumps on minimum flow

    International Nuclear Information System (INIS)

    Casada, D.A.; Li, Y.C.

    1992-01-01

    The Nuclear Regulatory Commission (NRC) staff issued Information Notice (IN) 87-59 to alert all licensees to two miniflow design concerns identified by Westinghouse. The first potential problem discussed in this IN involves parallel pump operation. If the head/capacity curve of one of the parallel pumps is greater than the other, the weaker pump may be dead-headed when the pumps are operating at low-flow conditions. The other problem related to potential pump damage as a result of hydraulic instability during low-flow operation. In NRC Bulletin 88-04, dated May 5, 1988, the staff requested all licensees to investigate and correct, as applicable, the two miniflow design concerns. The staff also developed a Temporary Instruction, Tl 2515/105, dated January 29, 1990 to inspect for the adequacy of licensee response and follow-up actions to NRC Bulletin 88-04. Oak Ridge National Laboratory has reviewed utility responses to Bulletin 88-04 under auspices of the NRC's Nuclear Plant Aging Research Program, and participated in several NRC inspections. Examples of actions that have been taken, an assessment of the overall industry response, and resultant conclusions and recommendations are presented

  4. Detection and effects of pump low-flow operation

    International Nuclear Information System (INIS)

    Casada, D.A.; Greene, R.H.

    1994-01-01

    Operating experience and previous studies performed for the Nuclear Plant Aging Research Program have shown that a significant cause of pump problems and failures can result from low-flow operation. Operation at low-flow rates can create unstable flows within the pump impeller and casing. This condition can result in an increased radial and axial thrust on the rotor, which in turn causes higher shaft stresses, increased shaft deflection, and potential bearing and mechanical seal problems. Two of the more serious results of low-flow pump operation are cavitation and recirculation. Both of these conditions can be characterized by crackling sounds that accompany a substantial increase in vibration and noise level, and a reduction in total head and output capacity. Cavitation is the formation and subsequent collapse of vapor bubbles in any flow that is at an ambient pressure less than the vapor pressure of the liquid medium. It is the collapse of these vapor bubbles against the metal surfaces of the impeller or casing that causes surface pitting, erosion, and deterioration. Pump recirculation, reversal of a portion of the flow back through the impeller, can be potentially more damaging than cavitation. If located at the impeller eye, recirculation damages the inlet areas of the casing. At the impeller tips, recirculation alters the outside diameter of the impeller. If recirculation occurs around impeller shrouds, it damages thrust bearings. Recirculation also erodes impellers, diffusers, and volutes and causes failure of mechanical seals and bearings. This paper reports on a utility pump failure cause by low-flow induced phenomena. ORNL has continued to investigate the results of low-flow pump operations by evaluating the types of measurements and diagnostic techniques that are currently used by licensees to detect pump degradation

  5. Liquid metal flow control by DC electromagnetic pumps

    International Nuclear Information System (INIS)

    Borges, Eduardo Madeira; Braz Filho, Francisco Antonio; Guimaraes, Lamartine Nogueira Frutuoso

    2006-01-01

    The cooling system of high-density thermal power requires fluids of high thermal conductivity, such as liquid metals. Electromagnetic pumps can be used to liquid metal fluid flow control in cooling circuits. The operation of electromagnetic pumps used to flow control is based on Lorentz force. This force can be achieved by magnetic field and electric current interaction, controlled by external independent power supplies. This work presents the electromagnetic pump operational principles, the IEAv development scheme and the BEMC-1 simulation code. The theoretical results of BEMC-1 simulation are compared to electromagnetic pump operation experimental data, validating the BEMC-1 code. This code is used to evaluate the DC electromagnetic pump performance applied to Mercury flow control and others liquid metal such as Sodium, Lead and Bismuth, used in nuclear fast reactors. (author)

  6. Some features of the flow in the Holweck pump

    OpenAIRE

    Skovorodko, Petr A.

    2004-01-01

    Numerical algorithm for direct simulation of the gas flow in the Holweck pump is developed. The results illustrating the important features of the flow in the pump are reported. An attention is paid to the problem of the pump design optimization.

  7. Monitoring for shaft cracks on reactor recirculation pumps

    International Nuclear Information System (INIS)

    Kowal, M.G.; O'Brien, J.T. Jr.

    1989-01-01

    The article discusses the vibration characteristics associated with a boiling water reactor (BWR) recirculation pump. It also describes the application of diagnostic techniques and shaft crack theory to an on-line diagnostic monitoring system for reactor recirculation pumps employed at Philadelphia Electric Company's Peach Bottom Atomic Power Station. Specific emphasis is placed on the unique monitoring techniques associated with these variable speed vertical pumps

  8. Flow Simulation and Performance Prediction of Centrifugal Pumps ...

    African Journals Online (AJOL)

    With the aid of computational fluid dynamics, the complex internal flows in water pump impellers can be well predicted, thus facilitating the product development process of pumps. In this paper a commercial CFD code was used to solve the governing equations of the flow field. A 2-D simulation of turbulent fluid flow is ...

  9. Pump and Flow Control Subassembly of Thermal Control Subsystem for Photovoltaic Power Module

    Science.gov (United States)

    Motil, Brian; Santen, Mark A.

    1993-01-01

    The pump and flow control subassembly (PFCS) is an orbital replacement unit (ORU) on the Space Station Freedom photovoltaic power module (PVM). The PFCS pumps liquid ammonia at a constant rate of approximately 1170 kg/hr while providing temperature control by flow regulation between the radiator and the bypass loop. Also, housed within the ORU is an accumulator to compensate for fluid volumetric changes as well as the electronics and firmware for monitoring and control of the photovoltaic thermal control system (PVTCS). Major electronic functions include signal conditioning, data interfacing and motor control. This paper will provide a description of each major component within the PFCS along with performance test data. In addition, this paper will discuss the flow control algorithm and describe how the nickel hydrogen batteries and associated power electronics will be thermally controlled through regulation of coolant flow to the radiator.

  10. Differences in displayed pump flow compared to measured flow under varying conditions during simulated cardiopulmonary bypass.

    LENUS (Irish Health Repository)

    Hargrove, M

    2008-07-01

    Errors in blood flow delivery due to shunting have been reported to reduce flow by, potentially, up to 40-83% during cardiopulmonary bypass. The standard roller-pump measures revolutions per minute and a calibration factor for different tubing sizes calculates and displays flow accordingly. We compared displayed roller-pump flow with ultrasonically measured flow to ascertain if measured flow correlated with the heart-lung pump flow reading. Comparison of flows was measured under varying conditions of pump run duration, temperature, viscosity, varying arterial\\/venous loops, occlusiveness, outlet pressure, use of silicone or polyvinyl chloride (PVC) in the roller race, different tubing diameters, and use of a venous vacuum-drainage device.

  11. Effect of gas quantity on two-phase flow characteristics of a mixed-flow pump

    OpenAIRE

    Qiang Fu; Fan Zhang; Rongsheng Zhu; Xiuli Wang

    2016-01-01

    The inlet gas quantity has a great influence on the performance and inner flow characteristics of a mixed-flow pump. In this article, both numerical and experimental methods are used to carry out this research work. The effects under the steady gas volume fraction state and the transient gas quantity variation process on the mixed-flow pump are investigated and compared in detail. It could be concluded that the head of the mixed-flow pump shows slight decline at the low gas volume fraction st...

  12. CFD Numerical Simulation of the Complex Turbulent Flow Field in an Axial-Flow Water Pump

    Directory of Open Access Journals (Sweden)

    Wan-You Li

    2014-09-01

    Full Text Available Further optimal design of an axial-flow water pump calls for a thorough recognition of the characteristics of the complex turbulent flow field in the pump, which is however extremely difficult to be measured using the up-to-date experimental techniques. In this study, a numerical simulation procedure based on computational fluid dynamics (CFD was elaborated in order to obtain the fully three-dimensional unsteady turbulent flow field in an axial-flow water pump. The shear stress transport (SST k-ω model was employed in the CFD calculation to study the unsteady internal flow of the axial-flow pump. Upon the numerical simulation results, the characteristics of the velocity field and pressure field inside the impeller region were discussed in detail. The established model procedure in this study may provide guidance to the numerical simulations of turbomachines during the design phase or the investigation of flow and pressure field characteristics and performance. The presented information can be of reference value in further optimal design of the axial-flow pump.

  13. Cavitation performance improvement of high specific speed mixed-flow pump

    International Nuclear Information System (INIS)

    Chen, T; Sun, Y B; Wu, D Z; Wang, L Q

    2012-01-01

    Cavitation performance improvement of large hydraulic machinery such as pump and turbine has been a hot topic for decades. During the design process of the pumps, in order to minimize size, weight and cost centrifugal and mixed-flow pump impellers are required to operate at the highest possible rotational speed. The rotational speed is limited by the phenomenon of cavitation. The hydraulic model of high-speed mixed-flow pump with large flow rate and high pumping head, which was designed based on the traditional method, always involves poor cavitation performance. In this paper, on the basis of the same hydraulic design parameters, two hydraulic models of high-speed mixed-flow pump were designed by using different methods, in order to investigate the cavitation and hydraulic performance of the two models, the method of computational fluid dynamics (CFD) was adopted for internal flow simulation of the high specific speed mixed-flow pump. Based on the results of numerical simulation, the influences of impeller parameters and three-dimensional configuration on pressure distribution of the blades' suction surfaces were analyzed. The numerical simulation results shows a better pressure distribution and lower pressure drop around the leading edge of the improved model. The research results could provide references to the design and optimization of the anti-cavitation blade.

  14. Pumping power of nanofluids in a flowing system

    International Nuclear Information System (INIS)

    Routbort, Jules L.; Singh, Dileep; Timofeeva, Elena V.; Yu, Wenhua; France, David M.

    2011-01-01

    Nanofluids have the potential to increase thermal conductivities and heat transfer coefficients compared to their base fluids. However, the addition of nanoparticles to a fluid also increases the viscosity and therefore increases the power required to pump the fluid through the system. When the benefit of the increased heat transfer is larger than the penalty of the increased pumping power, the nanofluid has the potential for commercial viability. The pumping power for nanofluids has been considered previously for flow in straight tubes. In this study, the pumping power was measured for nanofluids flowing in a complete system including straight tubing, elbows, and expansions. The objective was to determine the significance of two-phase flow effects on system performance. Two types of nanofluids were used in this study: a water-based nanofluid containing 2.0–8.0 vol% of 40-nm alumina nanoparticles, and a 50/50 ethylene glycol/water mixture-based nanofluid containing 2.2 vol% of 29-nm SiC nanoparticles. All experiments were performed in the turbulent flow region in the entire test system simulating features typically found in heat exchanger systems. Experimental results were compared to the pumping power calculated from a mathematical model of the system to evaluate the system effects. The pumping power results were also combined with the heat transfer enhancement to evaluate the viability of the two nanofluids.

  15. Effect of gas quantity on two-phase flow characteristics of a mixed-flow pump

    Directory of Open Access Journals (Sweden)

    Qiang Fu

    2016-04-01

    Full Text Available The inlet gas quantity has a great influence on the performance and inner flow characteristics of a mixed-flow pump. In this article, both numerical and experimental methods are used to carry out this research work. The effects under the steady gas volume fraction state and the transient gas quantity variation process on the mixed-flow pump are investigated and compared in detail. It could be concluded that the head of the mixed-flow pump shows slight decline at the low gas volume fraction state, while it decreases sharply at the high gas volume fraction state and then decreases with the increasing gas quantity. There is an obvious asymmetric blade vapor density on the blade suction side under each cavitation state. The cavities can be weakened obviously by increasing the inlet gas volume fraction within a certain range. It has little influence on the internal unsteady flow of the mixed-flow pump when the gas volume fraction is less than 10%, but the pump starts to operate with a great unsteady characteristic when the inlet gas volume fraction increases to 15%.

  16. Numerical investigation on vibration and noise induced by unsteady flow in an axial-flow pump

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Eryun; Ma, Zui Ling; Yang, Ai Ling; Nan, Guo Fang [School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai (China); Zhao, Gai Ping [School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai (China); Li, Guo Ping [Shanghai Marine Equipment Research Institute, Shanghai (China)

    2016-12-15

    Full-scale structural vibration and noise induced by flow in an axial-flow pump was simulated by a hybrid numerical method. An unsteady flow field was solved by a large eddy simulation-based computational fluid dynamics commercial code, Fluent. An experimental validation on pressure fluctuations was performed to impose an appropriate vibration exciting source. The consistency between the computed results and experimental tests were interesting. The modes of the axial-flow pump were computed by the finite element method. After that, the pump vibration and sound field were solved using a coupled vibro-acoustic model. The numerical results indicated that the the blade-passing frequency was the dominant frequency of the vibration acceleration of the pump. This result was consistent with frequency spectral characteristics of unsteady pressure fluctuation. Finally, comparisons of the vibration acceleration between the computed results and the experimental test were conducted. These comparisons validated the computed results. This study shows that using the hybrid numerical method to evaluate the flow-induced vibration and noise generated in an axial-flow pump is feasible.

  17. Pump monitoring and analysis

    International Nuclear Information System (INIS)

    Guy, K.R.

    1992-01-01

    The paper describes how to set up a periodic vibration monitoring program implemented with electronic data loggers. Acquired data will be analyzed and evaluated to determine pump condition. Periodic measuring frequency, reporting procedures, and conditions of mechanical components are discussed in detail based on the actual case study

  18. Development and numerical analysis of low specific speed mixed-flow pump

    International Nuclear Information System (INIS)

    Li, H F; Huo, Y W; Pan, Z B; Zhou, W C; He, M H

    2012-01-01

    With the development of the city, the market of the mixed flow pump with large flux and high head is prospect. The KSB Shanghai Pump Co., LTD decided to develop low speed specific speed mixed flow pump to meet the market requirements. Based on the centrifugal pump and axial flow pump model, aiming at the characteristics of large flux and high head, a new type of guide vane mixed flow pump was designed. The computational fluid dynamics method was adopted to analyze the internal flow of the new type model and predict its performances. The time-averaged Navier-Stokes equations were closed by SST k-ω turbulent model to adapt internal flow of guide vane with larger curvatures. The multi-reference frame(MRF) method was used to deal with the coupling of rotating impeller and static guide vane, and the SIMPLEC method was adopted to achieve the coupling solution of velocity and pressure. The computational results shows that there is great flow impact on the head of vanes at different working conditions, and there is great flow separation at the tailing of the guide vanes at different working conditions, and all will affect the performance of pump. Based on the computational results, optimizations were carried out to decrease the impact on the head of vanes and flow separation at the tailing of the guide vanes. The optimized model was simulated and its performance was predicted. The computational results show that the impact on the head of vanes and the separation at the tailing of the guide vanes disappeared. The high efficiency of the optimized pump is wide, and it fit the original design destination. The newly designed mixed flow pump is now in modeling and its experimental performance will be getting soon.

  19. Development and numerical analysis of low specific speed mixed-flow pump

    Science.gov (United States)

    Li, H. F.; Huo, Y. W.; Pan, Z. B.; Zhou, W. C.; He, M. H.

    2012-11-01

    With the development of the city, the market of the mixed flow pump with large flux and high head is prospect. The KSB Shanghai Pump Co., LTD decided to develop low speed specific speed mixed flow pump to meet the market requirements. Based on the centrifugal pump and axial flow pump model, aiming at the characteristics of large flux and high head, a new type of guide vane mixed flow pump was designed. The computational fluid dynamics method was adopted to analyze the internal flow of the new type model and predict its performances. The time-averaged Navier-Stokes equations were closed by SST k-ω turbulent model to adapt internal flow of guide vane with larger curvatures. The multi-reference frame(MRF) method was used to deal with the coupling of rotating impeller and static guide vane, and the SIMPLEC method was adopted to achieve the coupling solution of velocity and pressure. The computational results shows that there is great flow impact on the head of vanes at different working conditions, and there is great flow separation at the tailing of the guide vanes at different working conditions, and all will affect the performance of pump. Based on the computational results, optimizations were carried out to decrease the impact on the head of vanes and flow separation at the tailing of the guide vanes. The optimized model was simulated and its performance was predicted. The computational results show that the impact on the head of vanes and the separation at the tailing of the guide vanes disappeared. The high efficiency of the optimized pump is wide, and it fit the original design destination. The newly designed mixed flow pump is now in modeling and its experimental performance will be getting soon.

  20. Numerical analysis of the flow field in the pump chamber of a centrifugal pump with back blades

    International Nuclear Information System (INIS)

    Cao, L; Wang, Z W; Luo, Y Y; Liu, M

    2013-01-01

    Black blade is frequently used as a non-contact seal structure in centrifugal pumps transporting solid-liquid two-phase flow. However, it will disturb the flow in the pump and affect the pump performance. Numerical simulation for 3D turbulence in whole flow passage of a centrifugal pump with back blades was carried out based on RANS method, with SST k-ω turbulence model and SIMPLEC algorithm. Calculation for a similar pump without back blades was also carried out as a comparison. Boundary condition was improved due to the existence of back blade. The influence of back blades on the flow field was analysed qualitatively for three typical conditions. Meanwhile the leakage rate was calculated for several conditions and the effect of back blades was discussed. According to the results, compared with the condition without back blades, it could be seen that back blade apparently changed the flow state in the front chamber, improved near the front shroud and worsened near the pump cover. Velocity was increased and more fluid, which flowed into the front chamber from the pump cover side, flowed back to the spiral casing from the impeller shroud side. With the increase of discharge, the absolute value of leakage rate first went up and then dropped, as a consequence of the combination of two factors, discharge and differential pressure between the impeller outlet and inlet. The seal effect of back blades is most obvious under small discharge condition, and the leakage loss diminished as discharge increased

  1. Pre-compression volume on flow ripple reduction of a piston pump

    Science.gov (United States)

    Xu, Bing; Song, Yuechao; Yang, Huayong

    2013-11-01

    Axial piston pump with pre-compression volume(PCV) has lower flow ripple in large scale of operating condition than the traditional one. However, there is lack of precise simulation model of the axial piston pump with PCV, so the parameters of PCV are difficult to be determined. A finite element simulation model for piston pump with PCV is built by considering the piston movement, the fluid characteristic(including fluid compressibility and viscosity) and the leakage flow rate. Then a test of the pump flow ripple called the secondary source method is implemented to validate the simulation model. Thirdly, by comparing results among the simulation results, test results and results from other publications at the same operating condition, the simulation model is validated and used in optimizing the axial piston pump with PCV. According to the pump flow ripples obtained by the simulation model with different PCV parameters, the flow ripple is the smallest when the PCV angle is 13°, the PCV volume is 1.3×10-4 m3 at such operating condition that the pump suction pressure is 2 MPa, the pump delivery pressure 15 MPa, the pump speed 1 000 r/min, the swash plate angle 13°. At the same time, the flow ripple can be reduced when the pump suction pressure is 2 MPa, the pump delivery pressure is 5 MPa,15 MPa, 22 MPa, pump speed is 400 r/min, 1 000 r/min, 1 500 r/min, the swash plate angle is 11°, 13°, 15° and 17°, respectively. The finite element simulation model proposed provides a method for optimizing the PCV structure and guiding for designing a quieter axial piston pump.

  2. Modeling and simulation of flow field in giant magnetostrictive pump

    Science.gov (United States)

    Zhao, Yapeng; Ren, Shiyong; Lu, Quanguo

    2017-09-01

    Recent years, there has been significant research in the design and analysis of giant magnetostrictive pump. In this paper, the flow field model of giant magnetostrictive pump was established and the relationship between pressure loss and working frequency of piston was studied by numerical simulation method. Then, the influence of different pump chamber height on pressure loss in giant magnetostrictive pump was studied by means of flow field simulation. Finally, the fluid pressure and velocity vector distribution in giant magnetostrictive pump chamber were simulated.

  3. Detection of pump degradation

    International Nuclear Information System (INIS)

    Casada, D.

    1995-01-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous special vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Pump head and flow rate are also monitored, per code requirements. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition; advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed

  4. Standard monitoring system for domestic heat pumps

    NARCIS (Netherlands)

    Geelen, C.P.J.M.; Oostendorp, P.A.

    1999-01-01

    In the years to come many domestic heat pump systems are to be installed in the Netherlands. The Dutch agency for energy and environment, NOVEM, and the association of energy utility companies, EnergieNed, give high priority to the monitoring of heat pump systems. The results of the projects,

  5. Bistable flow spectral analysis. Repercussions on jet pumps

    International Nuclear Information System (INIS)

    Gavilan Moreno, C.J.

    2011-01-01

    Highlights: → The most important thing in this paper, is the spectral characterization of the bistable flow in a Nuclear Power Plant. → This paper goes deeper in the effect of the bistable flow over the jet pump and the induced vibrations. → The jet pump frequencies are very close to natural jet pump frequencies, in the 3rd and 6th mode. - Abstract: There have been many attempts at characterizing and predicting bistable flow in boiling water reactors (BWRs). Nevertheless, in most cases the results have only managed to develop models that analytically reproduce the phenomenon (). Modeling has been forensic in all cases, while the capacity of the model focus on determining the exclusion areas on the recirculation flow map. The bistability process is known by its effects given there is no clear definition of its causal process. In the 1980s, Hitachi technicians () managed to reproduce bistable flow in the laboratory by means of pipe geometry, similar to that which is found in recirculation loops. The result was that the low flow pattern is formed by the appearance of a quasi stationary, helicoidal vortex in the recirculation collector's branches. This vortex creates greater frictional losses than regions without vortices, at the same discharge pressure. Neither the behavior nor the dynamics of these vortices were characterized in this paper. The aim of this paper is to characterize these vortices in such a way as to enable them to provide their own frequencies and their later effect on the jet pumps. The methodology used in this study is similar to the one used previously when analyzing the bistable flow in tube arrays with cross flow (). The method employed makes use of the power spectral density function. What differs is the field of application. We will analyze a Loop B with a bistable flow and compare the high and low flow situations. The same analysis will also be carried out on the loop that has not developed the bistable flow (Loop A) at the same moments

  6. Experimental analysis of flow structure in contra-rotating axial flow pump designed with different rotational speed concept

    Science.gov (United States)

    Cao, Linlin; Watanabe, Satoshi; Imanishi, Toshiki; Yoshimura, Hiroaki; Furukawa, Akinori

    2013-08-01

    As a high specific speed pump, the contra-rotating axial flow pump distinguishes itself in a rear rotor rotating in the opposite direction of the front rotor, which remarkably contributes to the energy conversion, the reduction of the pump size, better hydraulic and cavitation performances. However, with two rotors rotating reversely, the significant interaction between blade rows was observed in our prototype contra-rotating rotors, which highly affected the pump performance compared with the conventional axial flow pumps. Consequently, a new type of rear rotor was designed by the rotational speed optimization methodology with some additional considerations, aiming at better cavitation performance, the reduction of blade rows interaction and the secondary flow suppression. The new rear rotor showed a satisfactory performance at the design flow rate but an unfavorable positive slope of the head — flow rate curve in the partial flow rate range less than 40% of the design flow rate, which should be avoided for the reliability of pump-pipe systems. In the present research, to understand the internal flow field of new rear rotor and its relation to the performances at the partial flow rates, the velocity distributions at the inlets and outlets of the rotors are firstly investigated. Then, the boundary layer flows on rotor surfaces, which clearly reflect the secondary flow inside the rotors, are analyzed through the limiting streamline observations using the multi-color oil-film method. Finally, the unsteady numerical simulations are carried out to understand the complicated internal flow structures in the rotors.

  7. Flow Rate In Microfluidic Pumps As A Function Of Tension and Pump Motor Head Speed

    Science.gov (United States)

    Irwin, Anthony; McBride, Krista

    2015-03-01

    As the use of microfluidic devices has become more common in recent years the need for standardization within the pump systems has grown. The pumps are ball bearing rotor microfluidic pumps and work off the idea of peristalsis. The rapid contraction and relaxation propagating down a tube or a microfluidic channel. The ball bearings compress the tube (occlusion) and move along part of the tube length forcing fluid to move inside of the tube in the same direction of the ball bearings. When the ball bearing rolls off the area occupied by the microfluidic channel, its walls and ceiling undergo restitution and a pocket of low pressure is briefly formed pulling more of the liquid into the pump system. Before looking to standardize the pump systems it must be known how the tension placed by the pumps bearing heads onto the PDMS inserts channels affect the pumps performance (mainly the flow rate produced). The relationship of the speed at which the bearings on the motor head spin and the flow rate must also be established. This research produced calibration curves for flow rate vs. tension and rpm. These calibration curves allow the devices to be set to optimal user settings by simply varying either the motor head tension or the motor head speed. I would like to acknowledge the help and support of Vanderbilt University SyBBURE program, Christina Marasco, Stacy Sherod, Franck Block and Krista McBride.

  8. Ground Source Heat Pump in Heating System with Electronics Monitoring

    Directory of Open Access Journals (Sweden)

    NEAMŢU Ovidiu

    2013-10-01

    Full Text Available The monitoring system is implemented for a ground coupled heat pump in heating/ system. The borehole heat exchangers – which are 150 m long - are filled with a mixture of water and ethilene glycol calledbrine. Metering and monitoring energy consumption is achieved for: heat pump, circulation pumps, additional electrical heating, hot air ventilation systems, control systems with sensors: analog and smart sensors. Instantaneous values are stored in a local computer.

  9. Condition monitoring of primary coolant pump-motor units of Indian PHWR

    International Nuclear Information System (INIS)

    Rshikesan, P.B.; Sharma, S.S.; Mhetre, S.G.

    1994-01-01

    As the primary coolant pump motor units are located in shut down accessible area, their start up, satisfactory operation and shut down are monitored from control room. As unavailability of one pump in standardised 220 MWe station reduces the station power to about 110 MWe, satisfactory operation of the pump is also important from economic considerations. All the critical parameters of pump shaft, mechanical seal, bearing system, motor winding and shaft displacement (vibrations) are monitored/recorded to ensure satisfactory operation of critical, capital intensive pump-motor units. (author). 2 tabs., 1 fig

  10. Numerical Simulation on the Performance of a Mixed-Flow Pump under Various Casing Structures

    Directory of Open Access Journals (Sweden)

    Wu Dazhuan

    2013-01-01

    Full Text Available With regard to the reactor coolant pump and high flow-rate circulating pump, the requirements on the compactness of the structure, safety, and hydraulic performance are particularly important. Thus, the mixed-flow pump with cylindrical casing is adopted in some occasions. Due to the different characteristics between the special cylindrical casing and the common pump casing, the influence of the special casing on a mixed-flow pump characteristics was numerically investigated to obtain better performance and flow structure in the casing. The results show that the models with cylindrical casing have much worse head and efficiency characteristics than the experimental model, and this is caused by the flow in the pump casing. By moving the guide vanes half inside the pump casing, the efficiency gets improved while the low pressure zone at the corner of outlet pipe and pump casing disappeared. When the length of pump casing increases from the size equal to the diameter of outlet pipe to that larger than it, the efficiency drops obviously and the flow field in the outlet pipe improved without curved flow. In addition, the length of the pump casing has greater impacts on the pump performance than the radius of it.

  11. Transient simulation in interior flow field of lobe pump

    International Nuclear Information System (INIS)

    Li, Y B; Sang, X H; Shen, H; Jia, K; Meng, Q W

    2013-01-01

    The subject of this paper is mainly focused on the development and control of the double folium and trifolium lobe pump profiles by using the principle of involute engagement and use CAD to get an accurate involute profile. We use the standard k-ε turbulence model and PISO algorithm based on CFD software FLUENT. The dynamic mesh and UDF technology is introduced to simulate the interior flow field inside a lobe pump, and the variation of interior flow field under the condition of the lobe rotating is analyzed. We also analyse the influence produced by the difference in lobes, and then reveal which lobe is best. The results show that dynamic variation of the interior flow field is easily obtained by dynamic mesh technology and the distribution of its pressure and velocity. Because of the small gaps existing between the rotors and pump case, the higher pressure area will flow into the lower area though the small gaps which cause the working area keep with higher pressure all the time. Both of the double folium and trifolium are existing the vortex during the rotting time and its position, size and shape changes all the time. The vortexes even disappear in a circle period and there are more vortexes in double folium lobe pump. The velocity and pressure pulsation of trifolium pump are lower than that of the double folium

  12. Condition monitoring of main coolant pumps, Dhruva

    International Nuclear Information System (INIS)

    Prasad, V.; Satheesh, C.; Acharya, V.N.; Tikku, A.C.; Mishra, S.K.

    2002-01-01

    Full text: Dhruva is a 100 MW research reactor with natural uranium fuel, heavy water as moderator and primary coolant. Three Centrifugal pumps circulate the primary coolant across the core and the heat exchangers. Each pump is coupled to a flywheel (FW) assembly in order to meet operational safety requirements. All the 3 main coolant pump (MCP) sets are required to operate during operation of the reactor. The pump-sets are in operation since the year 1984 and have logged more than 1,00,000 hrs. Frequent breakdowns of its FW bearings were experienced during initial years of operation. Condition monitoring of these pumps, largely on vibration based parameters, was initiated on regular basis. Break-downs of main coolant pumps reduced considerably due to the fair accurate predictions of incipient break-downs and timely maintenance efforts. An effort is made in this paper to share the experience

  13. The research on flow pulsation characteristics of axial piston pump

    Science.gov (United States)

    Wang, Bingchao; Wang, Yulin

    2017-01-01

    The flow pulsation is an important factor influencing the axial piston pump performance. In this paper we implement modeling and simulation of the axial piston pump with AMESim software to explore the flow pulsation characteristics under various factors . Theory analysis shows the loading pressure, angular speed, piston numbers and the accumulator impose evident influence on the flow pulsation characteristics. This simulation and analysis can be used for reducing the flow pulsation rate via properly setting the related factors.

  14. Operation of pumps in two-phase steam-water flow

    International Nuclear Information System (INIS)

    Grison, P.; Lauro, J.F.

    1978-01-01

    Determining the two-phase flow (critical or not) through a pump is an esential element for a complete description of loss of coolant accident in a PWR reactor. This article descibes the theoretical and experimental research being done on this subject in France. The model of the pump is first described and its behaviour is examined in different possible cases, particularly that of critical flow. The analysis of the behaviour of the pump is then used to define the experimental conditions for the tests. Two test loops, EVA and EPOPEE, were built. The experimental results are then compared with the theoretical forecasts [fr

  15. Numerical simulation and analysis of cavitation flows in a double suction centrifugal pump

    International Nuclear Information System (INIS)

    Meng, G; Tan, L; Cao, S L; Jian, W; Liu, W W; Jiang, D J

    2015-01-01

    Cavitation is an unsteady phenomenon, which is nearly inevitable in pumps. It would degrade the pump performance, generate vibrations and noises, and even erode pump flow passage components. The double suction centrifugal pump at design flow rate and large flow rate is numerically simulated using the k-ω turbulence model and the mass transport cavitation model. As a result, the calculated variation of pump head with pump inlet pressure agreed well with the experimental data. The results demonstrate that the numerical model and method can accurately predict the cavitation flows in a double suction centrifugal pump. The cavitation characteristics are analysed in great details. In addition, based on the calculation results, the reason that the plunge of pump head curve is revealed. It is found that the steep fall of pump head happens when the cavity reaches the blade to blade throat and the micro-vortex group appears at the back of the blade suction side. At the same time, this practice can provide guidance for the optimal design of double suction pumps

  16. Pressure fluctuation characteristics of flow field of mixed flow nuclear primary pump

    International Nuclear Information System (INIS)

    Wang Chunlin; Yang Xiaoyong; Li Changjun; Jia Fei; Zhao Binjuan

    2013-01-01

    In order to research the pressure fluctuation characteristics of flow field of mixed flow nuclear primary pump, this study used the technique of ANSYS-Workbench and CFX fluid solid heat coupling to do numerical simulation analysis for model pump. According to the situation of pressure fluctuation of time domain and frequency domain, the main cause of pressure fluctuation was discussed. For different flow, the pressure fluctuations were compared. This study shows it is feasible that large eddy simulation method is used for the research of pressure fluctuation. The pressure fluctuation amplitudes of four sections are increasing from wheel hub to wheel rim. The pressure fluctuation of inlet and outlet of impeller depends on the rotational frequency of impeller. Along with the fluid flowing away from the impeller, the effect of the impeller on the fluid pressure fluctuation weakens gradually. Comparing the different results of three flow conditions, the pressure fluctuation in design condition flow is superior to the others. (authors)

  17. Innovative application of air ejector as a pump for continuous air monitors

    International Nuclear Information System (INIS)

    Dhanasekaran, A.; Ajoy, K.C.; Santhanam, R.; Rajagopal, V.; Jose, M.T.

    2016-01-01

    Workplace monitoring, one of the key components of the radiation protection program is generally carried out by means of instruments installed permanently in respective areas or through portable air sampling instruments. Continuous air monitor (CAM) is one such monitor that constantly monitors the radionuclide concentration in air and triggers alarm as and when the air concentration goes above the pre-set levels. Conventional CAM system has a filter head, detector, display unit and a pump as four major parts. Pump may be either rotary vane or a vibrating diaphragm which are electrically driven using motors. Air lift pumps using ejectors are widely used where pump reliability and low maintenance are required, and where corrosive, abrasive, or radioactive fluids are handled. Since ejectors are uncomplicated alternative to vacuum pumps, an attempt was made to use the same as a pump for conventional CAMs. An ejector based sampling set up was made, tested and the results are represented in this paper

  18. Aging and low-flow degradation of auxilary feedwater pumps

    International Nuclear Information System (INIS)

    Adams, M.L.

    1992-01-01

    This paper documents the results of research done under the auspices of the Nuclear Regulatory Commission Nuclear Plant Aging Research Program. It examines the degradation imparted to safety related Auxiliary Feedwater System pumps at nuclear plants due to the low flow operation. The Auxiliary Feedwater (AFW) System is normally a stand-by system. As such it is operated most often in the test mode. Since few plants are equipped with full flow test loops, most testing is accomplished at minimum flow conditions in pump by-pass lines. It is the vibration and hydraulic forces generated at low flow conditions that have been shown to be the major causes of AFW pump aging and degradation. The wear can be manifested in a number of ways, such as impeller or diffuser breakage, thrust bearing and/or balance device failure due to excessive loading, cavitation damage on such stage impellers, increase seal leakage or failure, sear injection piping failure, shaft or coupling breakage, and rotating element seizure

  19. Aging and low-flow degradation of auxiliary feedwater pumps

    International Nuclear Information System (INIS)

    Adams, M.L.

    1991-01-01

    This paper documents the results of research done under the auspices of the Nuclear Regulatory Commission Nuclear Plant Aging Research Program. It examines the degradation imparted to safety Auxiliary Feedwater System pumps at nuclear plants due to the low flow operation. The Auxiliary Feedwater (AFW) System is normally a stand-by system. As such it is operated most often in the test mode. Since few plants are equipped with full flow test loops, most testing is accomplished at minimum flow conditions in pump by-pass lines. It is the vibration and hydraulic forces generated at low flow conditions that have been shown to be the major causes of AFW pump aging and degradation. The wear can be manifested in a number of ways, such as impeller or diffuser breakage, thrust bearing and/or balance device failure due to excessive loading, cavitation damage on such stage impellers, increase seal leakage or failure, sear injection piping failure, shaft or coupling breakage, and rotating element seizure

  20. Performance and internal flow condition of mini centrifugal pump with splitter blades

    International Nuclear Information System (INIS)

    Shigemitsu, T; Fukutomi, J; Kaji, K; Wada, T

    2012-01-01

    Mini centrifugal pumps having a diameter smaller than 100mm are employed in many fields. But the design method for the mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Therefore, mini centrifugal pumps with simple structure were investigated by this research. Splitter blades were adopted in this research to improve the performance and the internal flow condition of mini centrifugal pump which had large blade outlet angle. The original impeller without the splitter blades and the impeller with the splitter blades were prepared for an experiment. The performance tests are conducted with these rotors in order to investigate the effect of the splitter blades on performance and internal flow condition of mini centrifugal pump. On the other hand, a three dimensional steady numerical flow analysis is conducted with the commercial code (ANSYS-CFX) to investigate the internal flow condition in detail. It is clarified from the experimental results that the performance of the mini centrifugal pump is improved by the effect of the splitter blades. The blade-to-blade low velocity regions are suppressed in the case with the splitter blades and the total pressure loss regions are decreased. The effects of the splitter blades on the performance and the internal flow condition are discussed in this paper.

  1. Design optimization of flow channel and performance analysis for a new-type centrifugal blood pump

    Science.gov (United States)

    Ji, J. J.; Luo, X. W.; Y Wu, Q.

    2013-12-01

    In this paper, a new-type centrifugal blood pump, whose impeller is suspended inside a pump chamber with hydraulic bearings, is presented. In order to improve the hydraulic performance of the pump, an internal flow simulation is conducted to compare the effects of different geometrical parameters of pump flow passage. Based on the numerical results, the pumps can satisfy the operation parameters and be free of hemolysis. It is noted that for the pump with a column-type supporter at its inlet, the pump head and hydraulic efficiency decreases compared to the pump with a step-type support structure. The performance drop is caused by the disturbed flow upstream impeller inlet. Further, the unfavorable flow features such as reverse flow and low velocity in the pump may increases the possibility of thrombus. It is also confirmed that the casing shape can little influence pump performance. Those results are helpful for design optimization in blood pump development.

  2. Blade design loads on the flow exciting force in centrifugal pump

    International Nuclear Information System (INIS)

    Xu, Y; Yang, A L; Langand, D P; Dai, R

    2012-01-01

    The three-dimensional viscous flow field of two centrifugal pumps, which have the same volute, design head, design flow rate and rotational speed but the blade design load, are analyzed based on large eddy simulation. The comparisons are implemented including the hydraulic efficiencies, flow field characteristics, pressure pulsations and unsteady forces applied on the impellers to investigate the effect of the design blade load on hydraulic performance and flow exciting force. The numerical results show that the efficiency of the pump, the impeller blade of which has larger design load, is improved by 1.1%∼2.9% compared to the centrifugal pump with lower blade design load. The pressure fluctuation of the pump with high design load is more remarkable. Its maximum amplitude of coefficient of static pressure is higher by 43% than the latter. At the same time the amplitude of unsteady radial force is increased by 11.6% in the time domain. The results also imply that the blade design load is an important factor on the excitation force in centrifugal pumps.

  3. Study on transient hydrodynamic performance and cavitation characteristic of high-speed mixed-flow pump

    International Nuclear Information System (INIS)

    Chen, T; Liu, Y L; Sun, Y B; Wang, L Q; Wu, D Z

    2013-01-01

    In order to analyse the hydrodynamic performance and cavitation characteristic of a high-speed mixed-flow pump during transient operations, experimental studies were carried out. The transient hydrodynamic performance and cavitation characteristics of the mixed-flow pump with guide vane during start-up operation processes were tested on the pump performance test-bed. Performance tests of the pump were carried out under various inlet pressures and speed-changing operations. The real-time instantaneous external characteristics such as rotational speed, hydraulic head, flow rate, suction pressure and discharge pressure of the pump were measured. Based on the experimental results, the effect of fluid acceleration on the hydrodynamic performances and cavitation characteristics of the mixed-flow pump were analysed and evaluated

  4. Numerical simulation of flow in centrifugal pump under cavitation and sediment condition

    International Nuclear Information System (INIS)

    Lu, J L; Guo, P C; Zheng, X B; Zhao, Q; Luo, X Q

    2012-01-01

    The sediment concentration is very high in many rivers in the world, especially in China. The pumps that designed for the clear water are usually seriously abraded. The probability of pump cavitation is greatly enhanced due to the existence of sand. Under the joint action and mutual promotion of sand erosion and cavitation, serious abrasion could occurred, and the hydraulic performance of the pump may be greatly descended, meanwhile the safety and stability of the whole pump are greatly threatened. Therefore, it is significant to investigate the cavitation characteristic of pump under sediment flow condition. In this paper, the flow in a single stage centrifugal pump under cleat water and sediment flow conditions was numerically simulated. The cavitation performance under clear water was firstly analyzed. Then, The pressure, velocity and solid particle distribution in centrifugal pump under different particle diameter and different particle concentration was investigated by using the two-fluid model; The area and extent of erosion was illustrated by using the particle track model. Finally, the influence of mixed sand on centrifugal pump performance was investigated.

  5. An analytical model for prediction of two-phase (noncondensable) flow pump performance

    International Nuclear Information System (INIS)

    Furuya, O.

    1985-01-01

    During operational transients or a hypothetical LOCA (loss of coolant accident) condition, the recirculating coolant of PWR (pressurized water reactor) may flash into steam due to a loss of line pressure. Under such two-phase flow conditions, it is well known that the recirculation pump becomes unable to generate the same head as that of the single-phase flow case. Similar situations also exist in oil well submersible pumps where a fair amount of gas is contained in oil. Based on the one dimensional control volume method, an analytical method has been developed to determine the performance of pumps operating under two-phase flow conditions. The analytical method has incorporated pump geometry, void fraction, flow slippage and flow regime into the basic formula, but neglected the compressibility and condensation effects. During the course of model development, it has been found that the head degradation is mainly caused by higher acceleration on liquid phase and deceleration on gas phase than in the case of single-phase flows. The numerical results for head degradations and torques obtained with the model favorably compared with the air/water two-phase flow test data of Babcock and Wilcox (1/3 scale) and Creare (1/20 scale) pumps

  6. The flow Rate Accuracy of Elastomeric Infusion Pumps After Repeated Filling.

    Science.gov (United States)

    Mohseni, Masood; Ebneshahidi, Amin

    2014-05-01

    One of the frequent applications of elastomeric infusion pumps is postoperative pain management. In daily practice, the disposable pumps get refilled with modified medication combinations in the successive days; although, the accuracy of infusion rates is unknown to clinicians. Our aim was to evaluate the effect of repeated filling on the delivery rate accuracy of an elastomeric pump available in our market. We examined 10 elastomeric infusion pumps (BOT-802, Nanchang Biotek Medical Device Company, China) with 100 mL capacity and nominal flow of 5 mL/h. Each pump was filled for three times, accounting for 30 series of experiments. A microset scaled in mL was used to measure the pump deliveries. Flow profile and reliability of infusion rate were analyzed after repeated use. The mean flow rate in the three series of measurements showed a gradual increase; however, the difference was not statistically significant (5.01 ± 0.07 vs. 5.03 ± 0.06 vs. 5.06 ± 0.08 mL/h; P = 0.81). The percentage of the flow rate error (deviation from 5 mL/h ± 15%) was 100% in the first and second hours of infusion, 96% in the third hour, 60% in the 20th hour and zero percent in the rest of the infusion time. This study indicated that the delivery rate accuracy of elastomeric infusion pumps is preserved after repeated usage. These laboratory findings suggested that elastomeric pumps could be safely refilled in the successive days to provide postoperative analgesia.

  7. Leakage flow simulation in a specific pump model

    International Nuclear Information System (INIS)

    Dupont, P; Bayeul-Lainé, A C; Dazin, A; Bois, G; Roussette, O; Si, Q

    2014-01-01

    This paper deals with the influence of leakage flow existing in SHF pump model on the analysis of internal flow behaviour inside the vane diffuser of the pump model performance using both experiments and calculations. PIV measurements have been performed at different hub to shroud planes inside one diffuser channel passage for a given speed of rotation and various flow rates. For each operating condition, the PIV measurements have been trigged with different angular impeller positions. The performances and the static pressure rise of the diffuser were also measured using a three-hole probe. The numerical simulations were carried out with Star CCM+ 8.06 code (RANS frozen and unsteady calculations). Comparisons between numerical and experimental results are presented and discussed for three flow rates. The performances of the diffuser obtained by numerical simulation results are compared to the performances obtained by three-hole probe indications. The comparisons show few influence of fluid leakage on global performances but a real improvement concerning the efficiency of the impeller, the pump and the velocity distributions. These results show that leakage is an important parameter that has to be taken into account in order to make improved comparisons between numerical approaches and experiments in such a specific model set up

  8. Flow tube used to cool solar-pumped laser

    Science.gov (United States)

    1968-01-01

    A flow tube has been designed and constructed to provide two major functions in the application of a laser beam for transmission of both sound and video. It maintains the YAG laser at the proper operating temperature of 300 degrees K under solar pumping conditions, and it serves as a pump cavity for the laser crystal.

  9. Numerical simulation of the flow field in pump intakes by means of Lattice Boltzmann methods

    International Nuclear Information System (INIS)

    Schneider, A; Conrad, D; Böhle, M

    2013-01-01

    Lattice Boltzmann Methods are nowadays popular schemes for solving fluid flow problems of engineering interest. This popularity is due to the advantages of these schemes: For example, the meshing of the fluid domain can be performed fully automatically which results in great simplicity in handling complex geometries. In this paper a numerical scheme for the flow simulation in pump intakes based on a Lattice Boltzmann large eddy approach is presented. The ability of this scheme to capture the flow phenomena of the intake flow at different operating conditions is analysed. For the operational reliability and efficiency of pumps and pump systems, the incoming flow conditions are crucial. Since the efficiency and reliability requirements of pumps are rising and must be guaranteed, the flow conditions in pump intakes have to be evaluated during plant planning. Recent trends show that pump intakes are built more and more compact, which makes the flow in the intake even more complex. Numerical methods are a promising technique for conduction flow analysis in pump intakes, because they can be realised rapidly and cheaply

  10. Operation of pumps in two-phase steam-water flow. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Grison, P; Lauro, J F [Electricite de France, 78 - Chatou

    1978-01-01

    Determining the two-phase flow (critical or not) through a pump is an esential element for a complete description of loss of coolant accident in a PWR reactor. This article descibes the theoretical and experimental research being done on this subject in France. The model of the pump is first described and its behaviour is examined in different possible cases, particularly that of critical flow. The analysis of the behaviour of the pump is then used to define the experimental conditions for the tests. Two test loops, EVA and EPOPEE, were built. The experimental results are then compared with the theoretical forecasts.

  11. Suppression of secondary flows in a double suction centrifugal pump with different loading distributions

    International Nuclear Information System (INIS)

    Leng, H F; Wang, F J; Zhang, Z C; Yao, Z F; Zhou, P J

    2013-01-01

    Secondary flow is one of the main reasons for low efficiency in double suction centrifugal pump. In a 3-D inverse design method, the pump blade could be designed by a specified loading distribution to control the flow field in pump. In order to study the influence of loading distribution on secondary flow of a double suction centrifugal pump, the external characteristics and the internal flow field of the pump with three kinds of loading distributions are analysed by using CFD approach. According to the simulation results, it is found that the form of fore-loading distribution at shroud and aft-loading distribution at hub could improve the optimal efficiency and broaden the high efficiency area of the pump. Furthermore, the secondary flow in impeller exit region and volute could be significantly suppressed if the slope of loading distribution curve of shroud is set to be −0.7

  12. FEATURES OF LONG-TERM MECHANICAL CIRCULATORY SUPPORT WITH CONTINUOUS-FLOW PUMP

    Directory of Open Access Journals (Sweden)

    G. P. Itkin

    2012-01-01

    Full Text Available In a review of the comparative analysis of methods and tools for long-term mechanical circulatory support with continuous flow and pulsatile flow implantable pumps. Particular attention is paid to the choice of the optimal modes of the operation of pumps based on the physical principles of the interaction between a the steady flow of blood to the pulsatile mechanics of the heart chambers. 

  13. Arrayed architectures for multi-stage Si-micromachined high-flow Knudsen pumps

    International Nuclear Information System (INIS)

    Qin, Yutao; An, Seungdo; Gianchandani, Yogesh B

    2015-01-01

    This paper reports an evaluation and a comparison of two architectures for implementing Si-micromachined high-flow Knudsen pumps. Knudsen pumps, which operate on the principle of thermal transpiration, have been shown to have great promise for micro-scale gas phase fluidic systems such as micro gas chromatographs. Simultaneously achieving both a high flow rate and adequate blocking pressure has been a persistent challenge, which is addressed in this work by combining multiple pumps in series and addressing the resulting challenges in thermal management. The basic building block is a Si-micromachined pump with  ≈100 000 parallel channels in a 4 mm  ×  6 mm footprint. In the primary approach, multiple pump stages are stacked vertically with interleaved Si-micromachined spacers. A stacked 4-stage Knudsen pump has a form factor of 10 mm  ×  8 mm  ×  6 mm. In an alternate approach, multiple stages are arranged in a planar array. The experimental results demonstrate multiplication of the output pressure head with the number of stages, while the flow rate is maintained. For example, a stacked 4-stage Knudsen pump with 8 W power operated at atmospheric pressure provided a blocking pressure of 0.255 kPa, which was 3.6  ×  of that provided by a single-stage pump with 2 W power; while both provided a  ≈  30 sccm maximum flow rate. The performance can be customized for practical applications such as micro gas chromatography. (paper)

  14. Design and optimization of mixed flow pump impeller blades by varying semi-cone angle

    Science.gov (United States)

    Dash, Nehal; Roy, Apurba Kumar; Kumar, Kaushik

    2018-03-01

    The mixed flow pump is a cross between the axial and radial flow pump. These pumps are used in a large number of applications in modern fields. For the designing of these mixed flow pump impeller blades, a lot number of design parameters are needed to be considered which makes this a tedious task for which fundamentals of turbo-machinery and fluid mechanics are always prerequisites. The semi-cone angle of mixed flow pump impeller blade has a specified range of variations generally between 45o to 60o. From the literature review done related to this topic researchers have considered only a particular semi-cone angle and all the calculations are based on this very same semi-cone angle. By varying this semi-cone angle in the specified range, it can be verified if that affects the designing of the impeller blades for a mixed flow pump. Although a lot of methods are available for designing of mixed flow pump impeller blades like inverse time marching method, the pseudo-stream function method, Fourier expansion singularity method, free vortex method, mean stream line theory method etc. still the optimized design of the mixed flow pump impeller blade has been a cumbersome work. As stated above since all the available research works suggest or propose the blade designs with constant semi-cone angle, here the authors have designed the impeller blades by varying the semi-cone angle in a particular range with regular intervals for a Mixed-Flow pump. Henceforth several relevant impeller blade designs are obtained and optimization is carried out to obtain the optimized design (blade with optimal geometry) of impeller blade.

  15. Numerical Investigation of Transient Flow in a Prototype Centrifugal Pump during Startup Period

    Science.gov (United States)

    Zhang, Yu-Liang; Zhu, Zu-Chao; Dou, Hua-Shu; Cui, Bao-Ling; Li, Yi; Zhou, Zhao-Zhong

    2017-05-01

    Transient performance of pumps during transient operating periods, such as startup and stopping, has drawn more and more attentions recently due to the growing engineering needs. During the startup period of a pump, the performance parameters such as the flow rate and head would vary significantly in a broad range. Therefore, it is very difficult to accurately specify the unsteady boundary conditions for a pump alone to solve the transient flow in the absence of experimental results. The closed-loop pipe system including a centrifugal pump is built to accomplish the self-coupling calculation. The three-dimensional unsteady incompressible viscous flow inside the passage of the pump during startup period is numerically simulated using the dynamic mesh method. Simulation results show that there are tiny fluctuations in the flow rate even under stable operating conditions and this can be attributed to influence of the rotor-stator interaction. At the very beginning of the startup, the rising speed of the flow rate is lower than that of the rotational speed. It is also found that it is not suitable to predict the transient performance of pumps using the calculation method of quasi-steady flow, especially at the earlier period of the startup.

  16. Online Monitoring of Large Centrifugal Pumps in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel, Efenji A.; Faragalla, Mohamed M.; Awwal, Arigi M.; Lee, Yong-kwan [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-10-15

    Online Monitoring detects and diagnoses incipient faults, performs predictive maintenance, and can estimate the Remaining Useful Life (RUL) of Active and Passive Components before they fail. In an effort towards assisting Utility Partners to be proactive in the management of their Assets, the Electric Power Research Institute (EPRI) collaborated with the Idaho National Laboratory (INL) to develop a Fleet-Wide Prognostic and Health Monitoring (FW-PHM) Software Suite. The FW-PHM is a web based diagnostic tools and databases designed for use in commercial NPP. The AFS development process as designed by EPRI can be adapted to Large Centrifugal Pumps (LCP) in Nuclear Power Plants (NPP). For the purpose of this endeavor, the set of LCP considered are Safety Class-Motor Driven-Vertical Centrifugal Pumps for primary flow which includes Safety Injection, Containment Spray, and Residual Heat Removal. Fault Signatures of the LCP for OLM has been developed following the INCOSE V-model systems development approach. The fault types, fault features, and their detection methods and effectiveness for the LCP were established by diligently following the guidelines recommended by EPRI. An optimization of the FS for OLM has been suggested for implementation. As a way of extending this work, a Cost-Benefit Analysis between OLM and the conventional Periodic Maintenance for the LCP in NPP is proposed.

  17. Online Monitoring of Large Centrifugal Pumps in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Emmanuel, Efenji A.; Faragalla, Mohamed M.; Awwal, Arigi M.; Lee, Yong-kwan

    2016-01-01

    Online Monitoring detects and diagnoses incipient faults, performs predictive maintenance, and can estimate the Remaining Useful Life (RUL) of Active and Passive Components before they fail. In an effort towards assisting Utility Partners to be proactive in the management of their Assets, the Electric Power Research Institute (EPRI) collaborated with the Idaho National Laboratory (INL) to develop a Fleet-Wide Prognostic and Health Monitoring (FW-PHM) Software Suite. The FW-PHM is a web based diagnostic tools and databases designed for use in commercial NPP. The AFS development process as designed by EPRI can be adapted to Large Centrifugal Pumps (LCP) in Nuclear Power Plants (NPP). For the purpose of this endeavor, the set of LCP considered are Safety Class-Motor Driven-Vertical Centrifugal Pumps for primary flow which includes Safety Injection, Containment Spray, and Residual Heat Removal. Fault Signatures of the LCP for OLM has been developed following the INCOSE V-model systems development approach. The fault types, fault features, and their detection methods and effectiveness for the LCP were established by diligently following the guidelines recommended by EPRI. An optimization of the FS for OLM has been suggested for implementation. As a way of extending this work, a Cost-Benefit Analysis between OLM and the conventional Periodic Maintenance for the LCP in NPP is proposed

  18. Flow in water-intake pump bays: A guide for utility engineers. Final report

    International Nuclear Information System (INIS)

    Ettema, R.

    1998-09-01

    This report is intended to serve as a guide for power-plant engineers facing problems with flow conditions in pump bays in water-intake structures, especially those located alongside rivers. The guide briefly introduces the typical prevailing flow field outside of a riverside water intake. That flow field often sets the inflow conditions for pump bays located within the water intake. The monograph then presents and discusses the main flow problems associated with pump bays. The problems usually revolve around the formation of troublesome vortices. A novel feature of this monograph is the use of numerical modeling to reveal diagnostically how the vortices form and their sensitivities to flow conditions, such as uniformity of approach flow entering the bay and water-surface elevation relative to pump-bell submergence. The modeling was carried out using a computer code developed specially for the present project. Pump-bay layouts are discussed next. The discussion begins with a summary of the main variables influencing bay flows. The numerical model is used to determine the sensitivities of the vortices to variations in the geometric parameters. The fixes include the use of flow-control vanes and suction scoops for ensuring satisfactory flow performance in severe flow conditions; notably flows with strong cross flow and shallow flows. The monograph ends with descriptions of modeling techniques. An extensive discussion is provided on the use of numerical model for illuminating bay flows. The model is used to show how fluid viscosity affects bay flow. The effect of fluid viscosity is an important consideration in hydraulic modeling of water intakes

  19. Long-term animal experiments with an intraventricular axial flow blood pump.

    Science.gov (United States)

    Yamazaki, K; Kormos, R L; Litwak, P; Tagusari, O; Mori, T; Antaki, J F; Kameneva, M; Watach, M; Gordon, L; Mukuo, H; Umezu, M; Tomioka, J; Outa, E; Griffith, B P; Koyanagai, H

    1997-01-01

    A miniature intraventricular axial flow blood pump (IVAP) is undergoing in vivo evaluation in calves. The IVAP system consists of a miniature (phi 13.9 mm) axial flow pump that resides within the left ventricular (LV) chamber and a brushless DC motor. The pump is fabricated from titanium alloy, and the pump weight is 170 g. It produces a flow rate of over 5 L/min against 100 mmHg pressure at 9,000 rpm with an 8 W total power consumption. The maximum total efficiency exceeds 17%. A purged lip seal system is used in prototype no. 8, and a newly developed "Cool-Seal" (a low temperature mechanical seal) is used in prototype no. 9. In the Cool-Seal system, a large amount of purge flow is introduced behind the seal faces to augment convective heat transfer, keeping the seal face temperature at a low level for prevention of heat denaturation of blood proteins. The Cool-Seal system consumes < 10 cc purge fluid per day and has greatly extended seal life. The pumps were implanted in three calves (26, 30, and 168 days of support). The pump was inserted through a left thoracotomy at the fifth intercostal space. Two pursestring sutures were placed on the LV apex, and the apex was cored with a myocardial punch. The pump was inserted into the LV with the outlet cannula smoothly passing through the aortic valve without any difficulty. Only 5 min elapsed between the time of chest opening and initiation of pumping. Pump function remained stable throughout in all experiments. No cardiac arrhythmias were detected, even at treadmill exercise tests. The plasma free hemoglobin level remained in the acceptable range. Post mortem examination did not reveal any interference between the pump and the mitral apparatus. No major thromboembolism was detected in the vital organs in Cases 1 or 2, but a few small renal infarcts were detected in Case 3.

  20. Condition monitoring of pumps with co-relating field observations

    International Nuclear Information System (INIS)

    Mishra, S.K.; Prasad, V.; Sharma, R.B.

    1994-01-01

    The maintenance of 40 MWth research reactor, Cirus has been carried out for over 30 years following the time based maintenance schedule. With the commissioning of indigenously built 100 MWth nuclear research reactor Dhruva in the year 1985, a systematic work on condition monitoring has been commissioned. Apart from process parameters, which are recorded on hourly basis, vibration, noise, temperature, kurtosis etc. are measured for assessment of condition of pumps. The bearings of flywheel assembly of main pumps, Dhruva broke down almost abruptly during the initial years after first commissioning. The regular measurements of vibration level and kurtosis have greatly helped in avoiding breakdown. In a recent case one newly procured herringbone gear box (300 hp, 1475/1760 rpm) for the primary coolant pump was showing high vibration. In further checking using Fast Fourier Transform (FFT) analyser in a time domain plot the gear teeth damage was indicated. The pump was shut down for inspection and when the gear box was dismantled teeth were found broken. An attempt has been made in this paper to discuss a few interesting field experiences with condition monitoring and correlating field observations on pumps. (author). 3 figs

  1. Reactor coolant pump monitoring and diagnostic system

    International Nuclear Information System (INIS)

    Singer, R.M.; Gross, K.C.; Walsh, M.; Humenik, K.E.

    1990-01-01

    In order to reliably and safely operate a nuclear power plant, it is necessary to continuously monitor the performance of numerous subsystems to confirm that the plant state is within its prescribed limits. An important function of a properly designed monitoring system is the detection of incipient faults in all subsystems (with the avoidance of false alarms) coupled with an information system that provides the operators with fault diagnosis, prognosis of fault progression and recommended (either automatic or prescriptive) corrective action. In this paper, such a system is described that has been applied to reactor coolant pumps. This system includes a sensitive pattern-recognition technique based upon the sequential probability ratio test (SPRT) that detects incipient faults from validated signals, an expert system embodying knowledge bases on pump and sensor performance, extensive hypertext files containing operating and emergency procedures as well as pump and sensor information and a graphical interface providing the operator with easily perceived information on the location and character of the fault as well as recommended corrective action. This system is in the prototype stage and is currently being validated utilizing data from a liquid-metal cooled fast reactor (EBR-II). 3 refs., 4 figs

  2. Integrated Cantilever-Based Flow Sensors with Tunable Sensitivity for In-Line Monitoring of Flow Fluctuations in Microfluidic Systems

    Directory of Open Access Journals (Sweden)

    Nadine Noeth

    2013-12-01

    Full Text Available For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different materials (SU-8 and SiN and with different thicknesses. The integration of arrays of holes with different hole size and number of holes allows the modification of device sensitivity, theoretical detection limit and measurement range. For an average flow in the microliter range, the cantilever deflection is directly proportional to the flow rate fluctuations in the microfluidic channel. The SiN cantilevers show a detection limit below 1 nL/min and the thinnest SU-8 cantilevers a detection limit below 5 nL/min. Finally, the sensor is applied for in-line monitoring of flow fluctuations generated by external pumps connected to the microfluidic system.

  3. Multimodal flow visualization and optimization of pneumatic blood pump for sorbent hemodialysis system.

    Science.gov (United States)

    Shu, Fangjun; Parks, Robert; Maholtz, John; Ash, Steven; Antaki, James F

    2009-04-01

    Renal Solutions Allient Sorbent Hemodialysis System utilizes a two-chambered pneumatic pump (Pulsar Blood Pump, Renal Solutions, Inc., Warrendale, PA, USA) to avoid limitations associated with peristaltic pumping systems. Single-needle access is enabled by counter-pulsing the two pump chambers, thereby obviating compliance chambers or blood reservoirs. Each chamber propels 20 cc per pulse of 3 s (dual access) or 6 s (single access) duration, corresponding to a peak Reynolds number of approximately 8000 (based on inlet velocity and chamber diameter). A multimodal series of flow visualization studies (tracer particle, dye washout, and dye erosion) was conducted on a sequence of pump designs with varying port locations and diaphragms to improve the geometry with respect to risk of thrombogenesis. Experiments were conducted in a simplified flow loop using occluders to simulate flow resistance induced by tubing and dialyzer. Tracer visualization revealed flow patterns and qualitatively indicated turbulence intensity. Dye washout identified dwell volume and areas of flow stagnation for each design. Dye erosion results indicated the effectiveness and homogeneity of surface washing. Compared to a centered inlet which resulted in a fluid jet that produced two counter-rotating vortices, a tangential inlet introduced a single vortex, and kept the flow laminar. It also provided better surface washing on the pump inner surface. However, a tangential outlet did not present as much benefit as expected. On the contrary, it created a sharp defection to the flow when transiting from filling to ejection.

  4. Investigation on Flow-Induced Noise due to Backflow in Low Specific Speed Centrifugal Pumps

    Directory of Open Access Journals (Sweden)

    Qiaorui Si

    2013-01-01

    Full Text Available Flow-induced noise causes disturbances during the operation of centrifugal pumps and also affects their performance. The pumps often work at off-design conditions, mainly at part-load conditions, because of frequent changes in the pump device system. Consequently numerous unstable phenomena occur. In low specific speed centrifugal pumps the main disturbance is the inlet backflow, which is considered as one of the most important factors of flow-induced noise and vibration. In this study, a test rig of the flow-induced noise and vibration of the centrifugal pump was built to collect signals under various operating conditions. The three-dimensional unsteady flow of centrifugal pumps was calculated based on the Reynolds-averaged equations that resemble the shear stress transport (SST k-ω turbulence model. The results show that the blade passing frequency and shaft frequency are dominant in the spectrum of flow-induced noise, whereas the shaft component, amplitude value at shaft frequency, and peak frequencies around the shaft increase with decreasing flow. Through flow field analysis, the inlet backflow of the impeller occurs under 0.7 times the design flow. The pressure pulsation spectrum with backflow conditions validates the flow-induced noise findings. The velocity characteristics of the backflow zone at the inlet pipe were analyzed, and the dynamic characteristics of the backflow eddy during one impeller rotating period were simultaneously obtained by employing the backflow conditions. A flow visualization experiment was performed to confirm the numerical calculations.

  5. Long-term pumping test in borehole KR24 flow measurements

    Energy Technology Data Exchange (ETDEWEB)

    Rouhiainen, P.; Poellaenen, J. [PRG-Tec Oy, Espoo (Finland)

    2005-09-15

    The Difference Flow method can be used for the relatively fast determination of transmissivity and hydraulic head in fractures or fractured zones in cored boreholes. In this study, the Difference Flow method was used for hydraulic crosshole interference tests. The tests were performed in boreholes KR24 (pumped borehole) KR4, KR7, KR8, KRlO, KR14, KR22, KR22B, KR26, KR27, KR27B, KR28 and KR28B at Olkiluoto during the first and second quarters of 2004. The distance between the boreholes varies from approximately tens of meters to hundreds of meters. All the measurements were carried out in open boreholes, i.e. no packers were used. For interpretation, a normal single hole test was first performed in each borehole. Flow rates and drawdown were first measured both without pumping and with pumping the borehole under test. For practical reasons, the data set is neither complete nor similar in all tested boreholes. Connected flow to borehole KR24 was detected in all these boreholes. These flow responses were concentrated on a few zones. (orig.)

  6. Simulation model for centrifugal pump in flow networks based on internal characteristics

    International Nuclear Information System (INIS)

    Sun, Ji-Lin; Xue, Ruo-Jun; Peng, Min-Jun

    2018-01-01

    For the simulation of centrifugal pump in flow network system, in general three approaches can be used, the fitting model, the numerical method and the internal characteristics model. The fitting model is simple and rapid thus widely used. The numerical method can provide more detailed information in comparison with the fitting model, but increases implementation complexity and computational cost. In real-time simulations of flow networks, to simulate the condition out of the rated condition, especially for the volume flow rate, which the accuracy of fitting model is incredible, a new method for simulating centrifugal pumps was proposed in this research. The method based on the theory head and hydraulic loss in centrifugal pumps, and cavitation is also to be considered. The simulation results are verified with experimental benchmark data from an actual pump. The comparison confirms that the proposed method could fit the flow-head curves well, and the responses of main parameters in dynamic-state operations are consistent with theoretical analyses.

  7. Selective pumping in a network: insect-style microscale flow transport

    International Nuclear Information System (INIS)

    Aboelkassem, Yasser; Staples, Anne E

    2013-01-01

    A new paradigm for selective pumping of fluids in a complex network of channels in the microscale flow regime is presented. The model is inspired by internal flow distributions produced by the rhythmic wall contractions observed in many insect tracheal networks. The approach presented here is a natural extension of previous two-dimensional modeling of insect-inspired microscale flow transport in a single channel, and aims to manipulate fluids efficiently in microscale networks without the use of any mechanical valves. This selective pumping approach enables fluids to be transported, controlled and precisely directed into a specific branch in a network while avoiding other possible routes. In order to present a quantitative analysis of the selective pumping approach presented here, the velocity and pressure fields and the time-averaged net flow that are induced by prescribed wall contractions are calculated numerically using the method of fundamental solutions. More specifically, the Stokeslets-meshfree method is used in this study to solve the Stokes equations that govern the flow motions in a network with moving wall contractions. The results presented here might help in understanding some features of the insect respiratory system function and guide efforts to fabricate novel microfluidic devices for flow transport and mixing, and targeted drug delivery applications. (paper)

  8. 3-dimensional Simulation of an Air-lift Pump from Bubbly to Slug Flow

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hongrae; Jo, Daeseong [Kyungpook National Univ, Daegu (Korea, Republic of)

    2015-10-15

    The air-lift pump has been used in various applications with its merit that it can pump up without any moving parts. E.g. coffee percolator, petroleum industry, suction dredge, OTEC i.e. ocean thermal energy conversion and so on. By the merit, it has high durability for high temperature water or vapor, and fluid-solid mixture like waste water, muddy water and crude, which cause problems when it's pumped up with general pumps. In this regard, the air-lift pump has been one of the most desirable technology. A typical air-lift pump configuration is illustrated in Figure 01. The principle of this pump is very simple. When air is injected from the injector at bottom of a submerged tube, i.e., air bubbles are suspended in the liquid, the average density of the mixture in the tube is less than that of the surrounding fluid in the reservoir. Then hydrostatic pressure over the length of the tube is decreased. This buoyancy force causes a pumping action. The comparison of the simulated results, experimental result, and theoretical result is been able by data shown as Figure 04. They have similar trends but they also have a little differences because there are some limits of simulating the flow regimes. At the different flow condition, different coefficients for friction factor or pressure drop should be used, but this simulation uses a laminar condition and the theoretical equations are valid only for slug regime where the air flow rate is lower than the other regimes. From these causes, the differences has arisen, and difference comes bigger as the air flow rate increases, i.e., becoming annular flow regime or churn flow regime.

  9. Dynamic Characteristics of Rotating Stall in Mixed Flow Pump

    Directory of Open Access Journals (Sweden)

    Xiaojun Li

    2013-01-01

    Full Text Available Rotating stall, a phenomenon that causes flow instabilities and pressure hysteresis by propagating at some fraction of the impeller rotational speed, can occur in centrifugal impellers, mixed impellers, radial diffusers, or axial diffusers. Despite considerable efforts devoted to the study of rotating stall in pumps, the mechanics of this phenomenon are not sufficiently understood. The propagation mechanism and onset of rotating stall are not only affected by inlet flow but also by outlet flow as well as the pressure gradient in the flow passage. As such, the complexity of these concepts is not covered by the classical explanation. To bridge this research gap, the current study investigated prerotation generated at the upstream of the impeller, leakage flow at the tip clearance between the casing and the impeller, and strong reserve flow at the inlet of the diffuser. Understanding these areas will clarify the origin of the positive slope of the head-flow performance curve for a mixed flow pump. Nonuniform pressure distribution and adverse pressure gradient were also introduced to evaluate the onset and development of rotating stall within the diffuser.

  10. Performance characteristics of a continuous-flow fluidic pump

    International Nuclear Information System (INIS)

    Robinson, S.M.; Counce, R.M.; Smith, G.V.

    1987-01-01

    The fluidic pump is a type of positive-displacement pump in which basic fluid mechanics phenomena are utilized to eliminate valves and other moving parts that are exposed to the fluid being transferred. The version described in this article is powered by gas pressure serving as gas pistons and is virtually maintenance-free. It utilizes two displacement vessels and is designed to produce a steady and continuous liquid flow. This type of pump may be very useful for the transfer of radioactive or hazardous liquids where mechanical maintenance may be difficult or exposure of personnel to the fluid is undesirable. This paper presents experimental and model-predicted characteristics of such systems. The effects of several geometric parameters and operating conditions on the performance of the pump are briefly discussed

  11. Effects of atmospheric pressure conditions on flow rate of an elastomeric infusion pump.

    Science.gov (United States)

    Wang, Jong; Moeller, Anna; Ding, Yuanpang Samuel

    2012-04-01

    The effects of pressure conditions, both hyperbaric and hypobaric, on the flow rate of an elastomeric infusion pump were investigated. The altered pressure conditions were tested with the restrictor outlet at two different conditions: (1) at the same pressure condition as the Infusor elastomeric balloon and (2) with the outlet exposed to ambient conditions. Five different pressure conditions were tested. These included ambient pressure (98-101 kilopascals [kPa]) and test pressures controlled to be 10 or 20 kPa below or 75 or 150 kPa above the ambient pressure. A theoretical calculation based on the principles of fluid mechanics was also used to predict the pump's flow rate at various ambient conditions. The conditions in which the Infusor elastomeric pump and restrictor outlet were at the same pressure gave rise to average flow rates within the ±10% tolerance of the calculated target flow rate of 11 mL/hr. The flow rate of the Infusor pump decreased when the pressure conditions changed from hypobaric to ambient. The flow rate increased when the pressure conditions changed from hyperbaric to ambient. The flow rate of the Infusor elastomeric pump was not affected when the balloon reservoir and restrictor outlet were at the same pressure. The flow rate varied from 58.54% to 377.04% of the labeled flow rate when the pressure applied to the reservoir varied from 20 kPa below to 150 kPa above the pressure applied to the restrictor outlet, respectively. The maximum difference between observed flow rates and those calculated by applying fluid mechanics was 4.9%.

  12. Water pumping and analysis of flow in burrowing zoobenthos - a short overview

    DEFF Research Database (Denmark)

    Riisgård, Hans Ulrik; Larsen, Poul Scheel

    2005-01-01

    with the measuring of water pumping and the analysis of flow generated by burrowing deposit- and filter-feeding zoobenthos in order to determine the type of pump and mechanisms involved, flow rate, pump pressure, and pumping power. The practical use of fluid mechanical principles is examined, and it is stressed......-feeding animals. In stagnant situations the near-bottom water may be depleted of food particles, depending on the population filtration rate and the intensity of the biomixing induced by the filtering activity. But moderate currents and the biomixing can presumably generate enough turbulence to facilitate mixing...... of water layers at the sea bed with the layers above where food particle concentrations are relatively higher. Following a brief summary of types of burrowing benthic animals, common methods for measuring pumping rates are described along with examples. For estimating the required pump pressure, biofluid...

  13. Numerical Simulation of Borehole Flow in Deep Monitor Wells, Pearl Harbor Aquifer, Oahu, Hawaii

    Science.gov (United States)

    Rotzoll, K.; Oki, D. S.; El-Kadi, A. I.

    2010-12-01

    Salinity profiles collected from uncased deep monitor wells are commonly used to monitor freshwater-lens thickness in coastal aquifers. However, vertical flow in these wells can cause the measured salinity to differ from salinity in the adjacent aquifer. Substantial borehole flow has been observed in uncased wells in the Pearl Harbor aquifer, Oahu, Hawaii. A numerical modeling approach, incorporating aquifer hydraulic characteristics and recharge rates representative of the Pearl Harbor aquifer, was used to evaluate the effects of borehole flow on measured salinity profiles from deep monitor wells. Borehole flow caused by vertical hydraulic gradients associated with the natural regional groundwater-flow system and local groundwater withdrawals was simulated. Model results were used to estimate differences between vertical salinity profiles in deep monitor wells and the adjacent aquifer in areas of downward, horizontal, and upward flow within the regional flow system—for cases with and without nearby pumped wells. Aquifer heterogeneity, represented in the model as layers of contrasting permeability, was incorporated in model scenarios. Results from this study provide insight into the magnitude of the differences between vertical salinity profiles from deep monitor wells and the salinity distributions in the aquifers. These insights are relevant and are critically needed for management and predictive modeling purposes.

  14. A High Performance Pulsatile Pump for Aortic Flow Experiments in 3-Dimensional Models.

    Science.gov (United States)

    Chaudhury, Rafeed A; Atlasman, Victor; Pathangey, Girish; Pracht, Nicholas; Adrian, Ronald J; Frakes, David H

    2016-06-01

    Aortic pathologies such as coarctation, dissection, and aneurysm represent a particularly emergent class of cardiovascular diseases. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies, as well as for planning their surgical repair. In vitro experiments are required to validate the simulations against real world data, and the experiments require a pulsatile flow pump system that can provide physiologic flow conditions characteristic of the aorta. We designed a newly capable piston-based pulsatile flow pump system that can generate high volume flow rates (850 mL/s), replicate physiologic waveforms, and pump high viscosity fluids against large impedances. The system is also compatible with a broad range of fluid types, and is operable in magnetic resonance imaging environments. Performance of the system was validated using image processing-based analysis of piston motion as well as particle image velocimetry. The new system represents a more capable pumping solution for aortic flow experiments than other available designs, and can be manufactured at a relatively low cost.

  15. On-line vibration monitoring for submerged vertical shaft pumps: Final report

    International Nuclear Information System (INIS)

    Walter, T.J.; Marchione, M.M.

    1988-03-01

    The overall goal of this project was to extend to vertical pumps the capability that presently exists to monitor and diagnose vibration problems in horizontal pumps. Specific objectives included the development of analytical techniques to interpret vibration measurements, the verification of these techniqeus by in-plant tests, and the development of recommendations for procuring submergible vibration sensors. A concurrent analytical and experimental approach was used to accomplish these objectives. Rotordynamic analyses of selected pumps were accomplished, and each pump was instrumented and monitored for extended periods of time. The models were used to determine important frequencies and optimum sensor locations and to predict the effect that wear, imbalance, misalighment, and other mechanical changes would have on measured vibration. The predictive ability of the models was confirmed by making changes to instrumented pumps and observing actual changes in pump vibration. Simplified guidelines have been developed to assist the interested user to develop a computer model that realistically predicts the rotordynamic performance of the installed pump. Based on the work accomplished, typical sensor locations have been established. Experience gained in application of commercially available submergible sensors is also related. 11 refs., 11 figs

  16. Diagnosis of Centrifugal Pump Faults Using Vibration Methods

    International Nuclear Information System (INIS)

    Albraik, A; Althobiani, F; Gu, F; Ball, A

    2012-01-01

    Pumps are the largest single consumer of power in industry. This means that faulty pumps cause a high rate of energy loss with associated performance degradation, high vibration levels and significant noise radiation. This paper investigates the correlations between pump performance parameters including head, flow rate and energy consumption and surface vibration for the purpose of both pump condition monitoring and performance assessment. Using an in-house pump system, a number of experiments have been carried out on a centrifugal pump system using five impellers: one in good condition and four others with different defects, and at different flow rates for the comparison purposes. The results have shown that each defective impeller performance curve (showing flow, head, efficiency and NPSH (Net Positive Suction Head) is different from the benchmark curve showing the performance of the impeller in good condition. The exterior vibration responses were investigated to extract several key features to represent the healthy pump condition, pump operating condition and pump energy consumption. In combination, these parameter allow an optimal decision for pump overhaul to be made.

  17. Diagnosis of Centrifugal Pump Faults Using Vibration Methods

    Science.gov (United States)

    Albraik, A.; Althobiani, F.; Gu, F.; Ball, A.

    2012-05-01

    Pumps are the largest single consumer of power in industry. This means that faulty pumps cause a high rate of energy loss with associated performance degradation, high vibration levels and significant noise radiation. This paper investigates the correlations between pump performance parameters including head, flow rate and energy consumption and surface vibration for the purpose of both pump condition monitoring and performance assessment. Using an in-house pump system, a number of experiments have been carried out on a centrifugal pump system using five impellers: one in good condition and four others with different defects, and at different flow rates for the comparison purposes. The results have shown that each defective impeller performance curve (showing flow, head, efficiency and NPSH (Net Positive Suction Head) is different from the benchmark curve showing the performance of the impeller in good condition. The exterior vibration responses were investigated to extract several key features to represent the healthy pump condition, pump operating condition and pump energy consumption. In combination, these parameter allow an optimal decision for pump overhaul to be made [1].

  18. Continuous glucose monitoring-enabled insulin-pump therapy in diabetic pregnancy

    DEFF Research Database (Denmark)

    Secher, Anna L; Schmidt, Signe; Nørgaard, Kirsten

    2010-01-01

    We describe the feasibility of continuous glucose monitoring (CGM)-enabled insulin-pump therapy during pregnancy in a woman with type 1 diabetes, who was treated with CGM-enabled insulin-pump therapy in her third pregnancy. During her first pregnancy, the woman was treated with multiple daily inj...

  19. Water Flow Performance of a Superscale Model of the Fastrac Liquid Oxygen Pump

    Science.gov (United States)

    Skelley, Stephen; Zoladz, Thomas

    2001-01-01

    As part of the National Aeronautics and Space Administration's ongoing effort to lower the cost of access to space, the Marshall Space Flight Center has developed a rocket engine with 60,000 pounds of thrust for use on the Reusable Launch Vehicle technology demonstrator slated for launch in 2000. This gas generator cycle engine, known as the Fastrac engine, uses liquid oxygen and RP-1 for propellants and includes single stage liquid oxygen and RP-1 pumps and a single stage supersonic turbine on a common shaft. The turbopump design effort included the first use and application of new suction capability prediction codes and three-dimensional blade generation codes in an attempt to reduce the turbomachinery design and certification costs typically associated with rocket engine development. To verify the pump's predicted cavitation performance, a water flow test of a superscale model of the Fastrac liquid oxygen pump was conducted to experimentally evaluate the liquid oxygen pump's performance at and around the design point. The water flow test article replicated the flow path of the Fastrac liquid oxygen pump in a 1.582x scale model, including scaled seal clearances for correct leakage flow at a model operating speed of 5000 revolutions per minute. Flow entered the 3-blade axial-flow inducer, transitioned to a shrouded, 6- blade radial impeller, and discharged into a vaneless radial diffuser and collection volute. The test article included approximately 50 total and static pressure measurement locations as well as flush-mounted, high frequency pressure transducers for complete mapping of the pressure environment. The primary objectives of the water flow test were to measure the steady-state and dynamic pressure environment of the liquid oxygen pump versus flow coefficient, suction specific speed, and back face leakage flow rate. Initial results showed acceptable correlation between the predicted and experimentally measured pump head rise at low suction specific speeds

  20. Modeling of fully coupled MHD flows in annular linear induction pumps

    International Nuclear Information System (INIS)

    Roman, C.; Dumont, M.; Letout, S.; Courtessole, C.; Fautrelle, Y.; Vitry, S.; Rey, F.

    2014-01-01

    The paper studies specific pumping characteristics of the Annular Linear Induction Pumps (ALIP) with travelling field for liquid sodium. The present work is focused on the analysis of very large electromagnetic pumps able to provide high flow rates. The magnetic Reynolds number is quite large, therefore, it is necessary to take into account the full magnetohydrodynamic interaction between the electromagnetic field and the liquid metal flow inside pump channel. We couple the electromagnetic aspects with the hydrodynamic ones by means of two commercial softwares. The geometry considered here is 2D axisymmetric. It is found that in such induction pumps the effect of convection is very important. Two main effects have been put forth. Firstly, due to the magnetic entrainment significant end effects are observed for large velocities. This leads to the existence of regions where the axial force is negative. Secondly, a Hartmann effect occurs near the walls. The electric current and the corresponding forces are confined near the wall in Hartmann layers. Global stability of e.m. pump is also analysed. (authors)

  1. Paper number: ID 576... Monitoring and maintenance of pumps in LWR

    International Nuclear Information System (INIS)

    Heller, M.; Einzmann, K.

    2001-01-01

    Due to the liberalization of the European Market for electrical power nuclear power plants are progressively subjected to high pressure in respect of reducing the overall costs including for maintenance actions. This concerns also the maintenance of active components as pumps or valves. Siemens Nuclear Power (SNP) has developed a concept for the transition to an integrated condition based maintenance especially for pumps which shall be presented below. It is proposed to make up future decisions on maintenance of pumps only depending on condition data of the component. The concept must be supported by modern monitoring systems, which shall be installed at pumps which are relevant for the safety and availability of the plants. The main technical features of the SNP monitoring system DIROM are presented in detail as an example. First results of acquiring condition related data of a nuclear feed water pump are reported too. The new maintenance concept promises attractive cost benefits in comparison to a former preventive maintenance concept. (author)

  2. Flow-induced vibration characteristics of the BWR/5-201 jet pump

    International Nuclear Information System (INIS)

    LaCroix, L.V.

    1982-09-01

    A General Electric boiling water reactor BWR/5-201 jet pump was tested for flow-induced vibration (FIV) characteristics in the Large Steam Water Test Facility at Moss Landing, CA, during the period June-July 1978. High level periodic FIV were observed at reactor operating conditions (1027 psia, 532 0 F and prototypical flow rates) for the specific single jet pump assembly tested. High level FIV of similar amplitude and character have been shown capable of damaging jet pump components and associated support hardware if allowed to continue unchecked. High level FIV were effectively suppressed in two special cases tested: (1) lateral load (>500 lb) at the mixer to diffuser slip joint; and (2) a labyrinth seal (5 small, circumferential grooves) on the mixer at the slip joint. Stability criteria for the particular jet pump tested were developed from test data. A cause-effect relationship between the dynamic pressure within the slip joint and the jet pump vibration was established

  3. Numerical analysis of cavitating flow characteristics in impeller of residual heat removal pump

    NARCIS (Netherlands)

    Hong, Feng; Yuan, Jianping; Zhou, Banglun

    2016-01-01

    In order to investigate internal cavitating flow characteristics of the impeller in residual heat removal pumps, the three-dimensional cavitating flow in a residual heat removal model pump is numerically calculated by using the homogeneous mixture cavitation model based on the Rayleigh-Plesset

  4. Experiments of steady state head and torque of centrifugal pumps in two-phase flow

    International Nuclear Information System (INIS)

    Minato, Akihiko; Tominaga, Kenji.

    1988-01-01

    Circulation pump behavior has large effect on coolant discharge flow rate in case of reactor pipe break. Experiment of two-phase pump performance was conducted as a joint study of Japanese BWR user utilities and makers. Two-phase head and torque of three centrifugal pumps in high temperature and high pressure (around 6 MPa) steam/water were measured. Head was decreased from single-phase characteristics when gas was mixed in liquid flow in condition with normal flow and normal rotation directions. When flow rate was large enough, two-phase head was about the same as single-phase one in reversal flow conditions. Two-phase head was smoothly increased as flowing steam volumetic concentration increased when flow rate was small and flow direction was reversal. Changes of torque with gas concentration were correspondent to those of head. This suggested that changes of interaction between flow and impellers due to phase slip effected on torque which caused head differences between single- and two-phase flows. Dependence of dimensionless head and torque of three test pumps on steam concentration were almost the same as each other. (author)

  5. Experimental study on effects of double pumps switching on water supply flow rate

    International Nuclear Information System (INIS)

    Wang Xin; Han Weishi

    2012-01-01

    Flow characteristics in the process of switching one centrifugal pump to the other was investigated experimentally using a closed loop with two centrifugal pumps and two check valves. Characteristics of the check valves responding and the flow rate changing during the process of switching was studied by experimental data analysis. The results show that in the switching process with high and low original flow rate, the restoring time is 26 s and 21 s respectively; the lowest flow rates are 59.4% and 87.2% out of that in normal water supply, and the average deficit of feed water is 20.8% and 7.5% respectively. Compared to double-pump switching with low flow rate, a longer transition time. more intense flow fluctuations and increased water loss are observed with high flow rate, which has significantly effects on the stability of water supply. (authors)

  6. Self-Calibrating, Variable-Flow Pumping System

    Science.gov (United States)

    Walls, Joe T.

    1994-01-01

    Pumping system provides accurate, controlled flows of two chemical liquids mixed in spray head and react to form rigid or flexible polyurethane or polyisocyanurate foam. Compatible with currently used polyurethane-based coating materials and gas-bubble-forming agents (called "blowing agents" in industry) and expected to be compatible with materials that used in near future. Handles environmentally acceptable substitutes for chlorofluorocarbon foaming agents.

  7. Controlling groundwater pumping online.

    Science.gov (United States)

    Zekri, Slim

    2009-08-01

    Groundwater over-pumping is a major problem in several countries around the globe. Since controlling groundwater pumping through water flow meters is hardly feasible, the surrogate is to control electricity usage. This paper presents a framework to restrict groundwater pumping by implementing an annual individual electricity quota without interfering with the electricity pricing policy. The system could be monitored online through prepaid electricity meters. This provides low transaction costs of individual monitoring of users compared to the prohibitive costs of water flow metering and monitoring. The public groundwater managers' intervention is thus required to determine the water and electricity quota and watch the electricity use online. The proposed framework opens the door to the establishment of formal groundwater markets among users at very low transaction costs. A cost-benefit analysis over a 25-year period is used to evaluate the cost of non-action and compare it to the prepaid electricity quota framework in the Batinah coastal area of Oman. Results show that the damage cost to the community, if no active policy is implemented, amounts to (-$288) million. On the other hand, the implementation of a prepaid electricity quota with an online management system would result in a net present benefit of $199 million.

  8. Numerical simulation of interior flow field of nuclear model pump

    International Nuclear Information System (INIS)

    Wang Chunlin; Peng Na; Kang Can; Zhao Baitong; Zhang Hao

    2009-01-01

    Reynolds time-averaged N-S equations and the standard k-ε turbulent model were adopted, and three-dimensional non-structural of tetrahedral mesh division was used for modeling. Multiple reference frame model of rotating fluid mechanical model was used, under the design condition, the three-dimensional incompressible turbulent flow of nuclear model pump was simulated, and the results preferably post the characteristics of the interior flow field. This paper first analyzes the total pressure and velocity distribution in the flow field, and then describes the interior flow field characteristics of each part such as the impeller, diffuser and spherical shell, and also discusses the reasons that cause these characteristics. The study results can be used to estimate the performance of nuclear model pump, and will provide some useful references for its hydraulic optimized design. (authors)

  9. Investigation of the Flow Field and Performances of a Centrifugal Pump at Part Load

    Science.gov (United States)

    Prunières, R.; Inoue, Y.; Nagahara, T.

    2016-11-01

    Centrifugal pump performance curve instability, characterized by a local dent at part load, can be the consequence of flow instabilities in rotating or stationary parts. Such flow instabilities often result in abnormal operating conditions which can damage both the pump and the system. In order for the pump to have reliable operation over a wide flow rate range, it is necessary to achieve a design free of instability. The present paper focuses on performance curve instability of a centrifugal pump of mid specific speed (ωs = 0.65) for which instability was observed at part load during tests. The geometry used for this research consist of the first stage of a multi-stage centrifugal pump and is composed of a suction bend, a closed-type impeller, a vaned diffuser and return guide vanes. In order to analyse the instability phenomenon, PIV and CFD analysis were performed. Both methods qualitatively agree relatively well. It appears that the main difference before and after head drop is an increase of reverse flow rate at the diffuser passage inlet on the hub side. This reverse flow decreases the flow passing area at the diffuser passage inlet, disallowing effective flow deceleration and impairing static pressure recovery.

  10. Sodium flow rate measurement method of annular linear induction pump

    International Nuclear Information System (INIS)

    Araseki, Hideo

    2011-01-01

    This report describes a method for measuring sodium flow rate of annular linear induction pumps arranged in parallel and its verification result obtained through an experiment and a numerical analysis. In the method, the leaked magnetic field is measured with measuring coils at the stator end on the outlet side and is correlated with the sodium flow rate. The experimental data and the numerical result indicate that the leaked magnetic field at the stator edge keeps almost constant when the sodium flow rate changes and that the leaked magnetic field change arising from the flow rate change is small compared with the overall leaked magnetic field. It is shown that the correlation between the leaked magnetic field and the sodium flow rate is almost linear due to this feature of the leaked magnetic field, which indicates the applicability of the method to small-scale annular linear induction pumps. (author)

  11. Numerical Simulation of 3D Solid-Liquid Turbulent Flow in a Low Specific Speed Centrifugal Pump: Flow Field Analysis

    Directory of Open Access Journals (Sweden)

    Baocheng Shi

    2014-06-01

    Full Text Available For numerically simulating 3D solid-liquid turbulent flow in low specific speed centrifugal pumps, the iteration convergence problem caused by complex internal structure and high rotational speed of pump is always a problem for numeral simulation researchers. To solve this problem, the combination of three measures of dynamic underrelaxation factor adjustment, step method, and rotational velocity control means according to residual curves trends of operating parameters was used to improve the numerical convergence. Numeral simulation of 3D turbulent flow in a low specific speed solid-liquid centrifugal pump was performed, and the results showed that the improved solution strategy is greatly helpful to the numerical convergence. Moreover, the 3D turbulent flow fields in pumps have been simulated for the bottom ash-particles with the volume fraction of 10%, 20%, and 30% at the same particle diameter of 0.1 mm. The two-phase calculation results are compared with those of single-phase clean water flow. The calculated results gave the main region of the abrasion of the impeller and volute casing and improve the hydraulic design of the impeller in order to decrease the abrasion and increase the service life of the pump.

  12. Construction of a Vibration Monitoring System for HANARO's Rotating Machinery and Analysis of Pump Vibration Signals

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo; Yoon, Doo Byung

    2005-01-01

    HANARO is an open-tank-in-pool type research reactor with a thermal power of 30MW. In order to remove the heat generated by the reactor core and the reflector vessel, primary cooling pumps and reflector cooling pumps circulate coolant. These pumps are installed at the RCI(Reactor Concrete Island) which is covered by heavy concrete hatches. For the prevention of an abnormal operation of these pumps in the RCI, it is necessary to construct a vibration monitoring system that provides an alarm signal to the reactor control room when the rotating speed or the vibration level exceeds the allowable limit. The first objective of this work is to construct a vibration monitoring system for HANARO's rotating machinery. The second objective is to verify the possibility of condition monitoring of the rotating machinery. To construct a vibration monitoring system, as a first step, the standards and references related to the vibration monitoring system were investigated. In addition, to determine the number and the location of sensors that can effectively characterize the overall vibration of a pump, the vibration of the primary cooling pumps and the reflector cooling pumps were measured. Based on these results, detailed construction plans for the vibration monitoring system for HANARO were established. Then, in accordance with the construction plans, the vibration monitoring system for HANARO's rotating machinery was manufactured and installed at HANARO. To achieve the second objective, FFT analysis and bearing fault detection of the measured vibration signals were performed. The analysis results demonstrate that the accelerometers mounted at the bearing locations of the pumps can effectively monitor the pump condition

  13. Neural network analysis of head-flow curves in deep well pumps

    International Nuclear Information System (INIS)

    Goelcue, Mustafa

    2006-01-01

    In impellers with splitter blades, the difficulty in calculation of the flow area of the impeller is because of the unknown flow rate occurring in the two separate areas when the splitter blades are added. Experimental studies were made to investigate the effects of splitter blade length on deep well pump performance for different numbers of blades. Head-flow curves of deep well pump impellers with splitter blades were investigated using artificial neural networks (ANNs). Gradient descent (GD), Gradient descent with momentum (GDM) and Levenberg-Marquardt (LM) learning algorithms were used in the networks. Experimental studies were completed to obtain training and test data. Blade number (z), non-dimensional splitter blade length (L-bar ) and flow rate (Q) were used as the input layer, while the output is head (H m ). For the testing data, the root mean squared error (RMSE), fraction of variance (R 2 ) and mean absolute percentage error (MAPE) were found to be 0.1285, 0.9999 and 1.6821%, respectively. With these results, we believe that the ANN can be used for prediction of head-flow curves as an appropriate method in deep well pump impellers with splitter blades.

  14. Simulation of three-demensional unsteady flow in hydraulic pumps

    NARCIS (Netherlands)

    van Esch, B.P.M.; van Esch, Bartholomeus Petrus Maria

    1997-01-01

    In this thesis it is shown that the flow in hydraulic pumps of the radial and mixedflow type, operating at conditions not too far from design point, can be considered as an incompressible potential flow, where the influence of viscosity is restricted to thin boundary layers, wakes and mixing areas.

  15. FIX-II/2032, BWR Pump Trip Experiment 2032, Simulation Mass Flow and Power Transients

    International Nuclear Information System (INIS)

    1988-01-01

    1 - Description of test facility: In the FIX-II pump trip experiments, mass flow and power transients were simulated subsequent to a total loss of power to the recirculation pumps in an internal pump boiling water reactor. The aim was to determine the initial power limit to give dryout in the fuel bundle for the specified transient. In addition, the peak cladding temperature was measured and the rewetting was studied. 2 - Description of test: Pump trip experiment 2032 was a part of test group 2, i.e. the mass flow transient was to simulate the pump coast down with a pump inertia of 11.3 kg.m -2 . The initial power in the 36-rod bundle was 4.44 MW which gave dryout after 1.4 s from the start of the flow transient. A maximum rod cladding temperature of 457 degrees C was measured. Rewetting was obtained after 7.6 s. 3 - Experimental limitations or shortcomings: No ECCS injection systems

  16. Hydraulic design of a boiler feed pump to ensure stable operation at reduced flows

    International Nuclear Information System (INIS)

    Singal, R.K.

    1991-01-01

    The boiler feed pumps for industrial and power station boilers have to operate often at reduced capacities to meet the changing demand of steam and electricity. The operation of centrifugal pumps at reduced capacities lead to a number of unfavourable results seriously affecting the pump reliability. Some of these, such as internal recirculation of flow inside the pump have been recently studied. The paper discusses these unfavourable results and analyses various design factors which can control unstable operation of the pumps at reduced flows. The commissioning problems of boiler feed pumps faced at Rajasthan Atomic Power Plant at Kota and modifications carried out in the light of the above studies are described in the paper. (author). 2 tabs

  17. Numerical analysis of the internal flow field in screw centrifugal blood pump based on CFD

    Science.gov (United States)

    Han, W.; Han, B. X.; Y Wang, H.; Shen, Z. J.

    2013-12-01

    As to the impeller blood pump, the high speed of the impeller, the local high shear force of the flow field and the flow dead region are the main reasons for blood damage. The screw centrifugal pump can effectively alleviate the problems of the high speed and the high shear stress for the impeller. The softness and non-destructiveness during the transfer process can effectively reduce the extent of the damage. By using CFD software, the characteristics of internal flow are analyzed in the screw centrifugal pump by exploring the distribution rules of the velocity, pressure and shear deformation rate of the blood when it flows through the impeller and the destructive effects of spiral blades on blood. The results show that: the design of magnetic levitation solves the sealing problems; the design of regurgitation holes solves the problem of the flow dead zone; the magnetic levitated microcirculation screw centrifugal pump can effectively avoid the vortex, turbulence and high shear forces generated while the blood is flowing through the pump. Since the distribution rules in the velocity field, pressure field and shear deformation rate of the blood in the blood pump are comparatively uniform and the gradient change is comparatively small, the blood damage is effectively reduced.

  18. Theoretical investigation on exciplex pumped alkali vapor lasers with sonic-level gas flow

    Science.gov (United States)

    Xu, Xingqi; Shen, Binglin; Huang, Jinghua; Xia, Chunsheng; Pan, Bailiang

    2017-07-01

    Considering the effects of higher excited and ion energy states and utilizing the methodology in the fluid mechanics, a modified model of exciplex pumped alkali vapor lasers with sonic-level flowing gas is established. A comparison of output characters between subsonic flow and supersonic flow is made. In this model, higher excited and ion energy states are included as well, which modifies the analysis of the kinetic process and introduces larger heat loading in an operating CW exciplex-pumped alkali vapor laser. The results of our calculations predict that subsonic flow has an advantage over supersonic flow under the same fluid parameters, and stimulated emission in the supersonic flow would be quenched while the pump power reaching a threshold value of the fluid choking effect. However, by eliminating the influence of fluid characters, better thermal management and higher optical conversion efficiency can be obtained in supersonic flow. In addition, we make use of the "nozzle-diffuser" to build up the closed-circle flowing experimental device and gather some useful simulated results.

  19. A simulation-based analysis of variable flow pumping in ground source heat pump systems with different types of borehole heat exchangers: A case study

    International Nuclear Information System (INIS)

    Zarrella, Angelo; Emmi, Giuseppe; De Carli, Michele

    2017-01-01

    Highlights: • The work focuses on the variable flow in ground source heat pump systems. • The constant and variable speed circulation pumps in the ground loop are compared. • The constant temperature difference control across the heat pump is studied. • The variable flow affects the energy performance of the heat pump. • The constant temperature difference control offers an attractive energy saving. - Abstract: A simulation model of ground source heat pump systems has been used to investigate to what extent a variable flow of the heat-carrier fluid of the ground loop affects the energy efficiency of the entire system. The model contemporaneously considers the borehole heat exchangers, the heat pump, the building load, and the control strategies for the circulation pumps of the ground loop. A constant speed of the circulation pumps of the ground loop was compared with a variable flow controlled by means of a constant temperature difference across the heat pump on the ground side considering the load profile of an office building located in North Italy. The analysis was carried out for a single U-tube, double U-tube and coaxial pipe heat exchangers. The control strategies adopted to manage the flow rate of the heat-carrier fluid of the ground loop affect both the heat exchange rate of the borehole field and the heat pump’s long-term energy efficiency. The simulations show considerable differences in the system’s seasonal energy efficiency. The constant speed of the circulation pumps leads to the best results as far as the heat pump’s energy performance was concerned, but this advantage was lost because of the greater amount of electrical energy used by the circulation pumps; this, of course, affects the energy efficiency of the entire system. The optimal solution appears then to be a constant temperature difference in the heat-carrier fluid across the heat pump.

  20. Flow analysis and port optimization of geRotor pump using commercial CFD code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Jo; Seong, Seung Hak; Yoon, Soon Hyun [Pusan National Univ., Pusan (Korea, Republic of)

    2005-07-01

    GeRotor pump is widely used in the automotive industry for fuel lift, injection, engine oil lubrication, and also in transmission systems. The CFD study of the pump, which is characterized by transient flow with moving rotor boundaries, has been performed to obtain the most optimum shape of the inlet/outlet port of the pump. Various shapes of the port have been tested to investigate how they affect flow rates and fluctuations. Based on the parametric study, an optimum shape has been determined for the maximum flow rate and minimum fluctuations. The result has been confirmed by experiments. For the optimization, Taguchi method has been adapted. The groove shape has been found to be the most important factor among the selected several parameters related to flow rate and fluctuations.

  1. A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing

    Directory of Open Access Journals (Sweden)

    Mohammed-Baker Habhab

    2016-11-01

    Full Text Available Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications.

  2. A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing.

    Science.gov (United States)

    Habhab, Mohammed-Baker; Ismail, Tania; Lo, Joe Fujiou

    2016-11-23

    Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP) based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications.

  3. Unsteady numerical simulation for gas–liquid two-phase flow in self-priming process of centrifugal pump

    International Nuclear Information System (INIS)

    Huang, Si; Su, Xianghui; Guo, Jing; Yue, Le

    2014-01-01

    Highlights: • The transient gas–liquid two-phase flow fields in the self-priming centrifugal pump are simulated. • The self-priming time and performance are estimated. • The air void fraction and two phase distribution are obtained.· The hole on the volute plays a significant role for gas exhausting. • The frequency of the impulsive pressure basically conforms to that of the air exhausted out of the pump. - Abstract: Self-priming pumps start up without pre-irrigation, and then work as common pumps when air in the pump is exhausted. The transient gas–liquid flow at the start-up stage inside a self-priming pump is an interesting process which greatly influences performance of the pump. In this paper, a conventional vertical self-priming centrifugal pump was selected as the object. Using unsteady numerical simulation, the authors investigated the transient gas–liquid two-phase flow in the self-priming centrifugal pump during the self-priming process. The main innovation in the simulation was that a section of the suction pipe filled with air was set as the initial condition, which conformed to the actual self-priming conditions. The gas–liquid two-phase distribution, the pressure and velocity in relation to time were computed and analyzed. Flow rates of both phases with time at the pump inlet and outlet were obtained based on the simulation, which could be used to estimate the self-priming time and other performance parameters. Finally, the numerical method and results for gas–liquid two-phase flow in the self-priming pump was partly validated by the pump performance test

  4. THEORETICAL FLOW MODEL THROUGH A CENTRIFUGAL PUMP USED FOR WATER SUPPLY IN AGRICULTURE IRRIGATION

    Directory of Open Access Journals (Sweden)

    SCHEAUA Fanel Dorel

    2017-05-01

    motion of the rotor. A theoretical model for calculating the flow of the working fluid through the interior of a centrifugal pump model is presented in this paper as well as the numerical analysis on the virtual model performed with the ANSYS CFX software in order to highlight the flow parameters and flow path-lines that are formed during centrifugal pump operation.

  5. Vibration monitoring of large vertical pumps via a remote satellite station

    International Nuclear Information System (INIS)

    Cook, S.A.; Crowe, R.D.; Roblyer, S.P.; Toffer, H.

    1985-01-01

    The Hanford N Reactor is operated by UNC Nuclear Industries for the Department of Energy for the production of special isotopes and electric energy. The reactor has a unique design in which the equipment such as pumps, turbines, generators and diesel engines are located in separate buildings. This equipment arrangement has led to the conclusion that the most cost-effective implementation of a dedicated vibration monitoring system would be to install a computerized network system in lieu of a single analyzing station. In this approach, semi-autonomous micro processor based data collection stations referred to as satellite stations are located near each concentration of machinery to be monitored. The satellite stations provide near continuous monitoring of the machinery. They are linked to a minicomputer using voice grade telephone circuits and hardware and software specifically designed for network communications. The communications link between the satellite stations and the minicomputer permits data and programs to be transmitted between the units. This paper will describe the satellite station associated with large vertical pumps vibration monitoring. The reactor has four of these pumps to supply tertiary cooling to reactor systems. 4 figs

  6. Prediction of flow- induced dynamic stress in an axial pump impeller using FEM

    International Nuclear Information System (INIS)

    Gao, J Y; Hou, Y S; Xi, S Z; Cai, Z H; Yao, P P; Shi, H L

    2013-01-01

    Axial pumps play an important role in water supply and flood control projects. Along with growing requirements for high reliability and large capacity, the dynamic stress of axial pumps has become a key problem. Unsteady flow is a significant reason which results structural dynamic stress of a pump. This paper reports on a flow-induced dynamic stress simulation in an axial pump impeller at three flow conditions by using FEM code. The pressure pulsation obtained from flow simulation using CFD code was set as the force boundary condition. The results show that the maximum stress of impeller appeared at joint between blade and root flange near trailing edge or joint between blade and root flange near leading edge. The dynamic stress of the two zones was investigated under three flow conditions (0.8Q d , 1.0Q d , 1.1Q d ) in time domain and frequency domain. The frequencies of stress at zones of maximum stress are 22.9Hz and 37.5Hz as the fundamental frequency and its harmonics. The fundamental frequencies are nearly equal to vane passing frequency (22.9 Hz) and 3 times blade passing frequency (37.5Hz). The first dominant frequency at zones of maximum stress is equal to the vane passing frequency due to rotor-stator interaction between the vane and the blade. This study would be helpful for axial pumps in reducing stress, improving structure design and fatigue life

  7. Fluid-structure coupling effects on periodically transient flow of a single-blade sewage centrifugal pump

    International Nuclear Information System (INIS)

    Pei, Ji; Yuan, Shouqi; Yuan, Jianping

    2013-01-01

    A partitioned fluid-structure interaction (FSI) solving strategy that depends on problem characteristics is applied to quantitatively obtain the coupling effects of a fluid-structure system in a single-blade centrifugal pump on the unsteady flow. A two-way coupling method is employed to realize strong FSI effects in the calculation procedure. The successful impeller oscillation measurement using two proximity sensors validated the FSI simulation accuracy in a complicated and practical fluid-structure system having a rotating component. The results show that the hydrodynamic force deviation can be observed in the results for the coupled versus uncoupled cases. Additionally, the coupled unsteady pressure is larger than the uncoupled value for every monitoring point at every impeller rotation position. Comparison results for different monitoring points under an overload condition and partial-load condition display the same regularities. To some extent, this interaction mechanism would affect the accuracy and reliability of the unsteady flow and rotor deflection analysis.

  8. Numerical Simulation of Three-Dimensional Flow Through Full Passage and Performance Prediction of Nuclear Reactor Coolant Pump

    International Nuclear Information System (INIS)

    Li Ying; Zhou Wenxia; Zhang Jige; Wang Dezhong

    2009-01-01

    In order to achieve the level of self-design and domestic manufacture of the reactor coolant pump (nuclear main pump), the software FLUENT was used to simulate the three-dimensional flow through full passage of one nuclear main pump basing on RNG κ-ε turbulence model and SIMPLE algorithm. The distribution of pressure and velocity of the flow in the impeller's surface was analyzed in different working conditions. Moreover, the performance of the pump was predicted based on the simulation results. The results show that the distributions of pressure and velocity are reasonable in both the working and back face of the blade in the steady working condition. The pressure of the flow is increased from the inlet to the outlet of the pump, and shows the maximal value in the impeller region. Comparatively satisfactory efficiency and head value were obtained in the condition of the pump design. The shaft power of the nuclear main pump is gradually increased with the increase of the flow flux. These results are helpful in understanding the change of the internal flow field in the nuclear main pump, which is of some importance for the pre-exploration and theoretical research on the domestic manufacture of the nuclear main pump. (authors)

  9. A numerical study on the influence of gas-liquid two phase flow on the rotary pump performances

    International Nuclear Information System (INIS)

    Miao, T C; Liu, Y Y; Zhao, F; Wang, L Q

    2013-01-01

    Rotary pump can be used in many fields because of its strong self-priming ability. Many factors may cause the medium in rotary pump system containing gas-liquid two phase. And the suction capacity of rotary pump will decrease sharply in these situations. To study the internal flow mechanism of rotary pump when transporting medium containing gas, the gas-liquid two phase flow in the rotary pump system has been simulated using VOF model under different gas fractions. And the interaction between rotary pump and the pipeline has been considered. The simulation results coincide well with the theoretical calculation results, and the distribution of the flow field match well with the Mandhane flow pattern map. The main conclusions are as follows: with the increase of gas fraction, the flow pattern in the pipeline has the following evolutionary trend (bubble – plug – slug – wavy), and the suction capacity of the pump will decrease. It is mainly because gas medium can fill the partial vacuum produced by the rotor motion easily and is easier to have backflow

  10. A study on the performance and internal flow characteristics of a very low specific speed centrifugal pump

    International Nuclear Information System (INIS)

    Choi, Young Do; Kurokawa, Junichi; Lee, Young Ho

    2005-01-01

    In the very low specific speed range (n s < 0.25, non-dimensional), the efficiency of centrifugal pump designed by a conventional method is very low in common. Therefore, positive-displacement pumps have long been used widely. Recently, since the centrifugal pumps are becoming higher in rotational speed and smaller in size, there experts to develop a new centrifugal pump with a high performance to replace the positive-displacement pumps. The purpose of this study is to investigate the internal flow characteristics of a very low specific speed centrifugal pump and to examine the effect of internal flow pattern on pump performance. The results show that the theoretical head definition of semi-open impeller should be revised by the consideration of high slip factor in the semi-open impeller, and the leakage flow through the tip clearance results in a large effect on the impeller internal flow. Strong reverse flow at the outlet of semi-open impeller reduces the absolute tangential velocity considerably, and the decreased absolute tangential velocity increases the slip factor with the reduction of theoretical head

  11. Monitoring of a heat pump to energy recovery and process temperature control

    Energy Technology Data Exchange (ETDEWEB)

    Kaneps, M

    1986-03-01

    This reports on the development and implementation of a heat pump monitoring program detailing the application and adaptation of standard commercial heat pump equipment for the extraction and use of themal energy from ocean source seawater along Canada's Atlantic Coast. The specific application was a lobster holding facility owned by Clearwater Lobsters Limited of Halifax, Nova Scotia. Examination of the daata indicated the heat pump system could extract and use thermal energy at or near initial design conditions. The lobsters were able to be held at consistently lower temperatures which improved product quality and reduced shrinkage. Influx of seawater debris, marine growth, and dryland pound heat gain were indentified as the only major problems. The information gathered from the monitoring study indicated that heat pump systems can be adapted to extract and utilize thermal energy from ocean source seawater. 50 figs., 123 tabs.

  12. Flow in a Low Specific Speed Centrifugal Pump Using PIV

    Directory of Open Access Journals (Sweden)

    Cui Dai

    2013-01-01

    Full Text Available The interflow plays important roles in centrifugal pump design. In order to study the effect of rotation and z-axis on internal flow, two-dimensional particle image velocimetry (PIV measurements have been performed to measure the steady velocity field on three planes in all impeller passages of a low specific-speed centrifugal pump. The results show that the relative velocity flows in blade passages are obviously different in terms of the positions of the blade relative to the tongue. The interaction between the impeller and tongue changes the occurrence and development of low velocity region with time. From shroud to hub, the relative velocity gradually increases, and the minimum value moves toward the suction surface. On the midplane, the magnitude increases with increased flow rate from pressure surface to suction surface, while at the shroud and hub, the measured velocity first increases with decreased flow rate from the blade pressure surface to nearly ζ = 0.5 to 0.6.

  13. Transient flow characteristics of nuclear reactor coolant pump in recessive cavitation transition process

    International Nuclear Information System (INIS)

    Wang Xiuli; Yuan Shouqi; Zhu Rongsheng; Yu Zhijun

    2013-01-01

    The numerical simulation calculation of the transient flow characteristics of nuclear reactor coolant pump in the recessive cavitation transition process in the nuclear reactor coolant pump impeller passage is conducted by CFX, and the transient flow characteristics of nuclear reactor coolant pump in the transition process from reducing the inlet pressure at cavitation-born conditions to NPSHc condition is studied and analyzed. The flow field analysis shows that, in the recessive cavitation transition process, the speed diversification at the inlet is relative to the bubble increasing, and makes the speed near the blade entrance increase when the bubble phase region becomes larger. The bubble generation and collapse will affect the the speed fluctuation near the entrance. The vorticity close to the blade entrance gradually increasing is influenced by the bubble phase, and the collapse of bubble generated by cavitation will reduce the vorticity from the collapse to impeller outlet. Pump asymmetric structure causes the asymmetry of the flow, velocity and outlet pressure distribution within every impeller flow passage, which cause the asymmetry of the transient radial force. From the dimensionless t/T = 0.6, the bubble phase starts to have impact on the impeller transient radial force, and results in the irregular fluctuations. (authors)

  14. Investigation of the correlation between noise and vibration characteristics and unsteady flow in a circulator pump

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Denghao; Ren, Yun; Mou, Jiegang; Gu, Yunqing [Zhejiang University of Technology, Hangzhou (China)

    2017-05-15

    Circulator pumps have wide engineering applications but the acoustics, vibration and unsteady flow structures of the circulator pump are still not fully understood. We investigated the noise and vibration characteristics and unsteady flow structures in a circulator pump at different flow rates. Three-dimensional, unsteady RANS equations were solved on high-quality structured meshes with SST k-ω turbulence model numerically. Measurements were made in a semi-anechoic chamber to get an overview of noise and vibration level of a pump at different flow rates. The 1/3 octave-band filter technique was applied to obtain the explicit frequency spectra of sound, pressure fluctuations and vibration signals and their principal frequencies were identified successfully. The air-borne noise level of the designed condition is lower than that of the off-design conditions, and the highest sound pressure level is found at part-load condition. The acoustic emission from the pump is mainly caused by unsteady flow structures and pressure fluctuations. In addition, both the link between air- borne noise and pressure fluctuation, and the correlation between vibration and unsteady hydrodynamic forces, were quantitatively examined and verified. This work offers good data to understand noise and vibration characteristics of circulator pumps and the relationships among the noise, vibration and unsteady flow structures.

  15. Internal fluid flow management analysis for Clinch River Breeder Reactor Plant sodium pumps

    International Nuclear Information System (INIS)

    Cho, S.M.; Zury, H.L.; Cook, M.E.; Fair, C.E.

    1978-12-01

    The Clinch River Breeder Reactor Plant (CRBRP) sodium pumps are currently being designed and the prototype unit is being fabricated. In the design of these large-scale pumps for elevated temperature Liquid Metal Fast Breeder Reactor (LMFBR) service, one major design consideration is the response of the critical parts to severe thermal transients. A detailed internal fluid flow distribution analysis has been performed using a computer code HAFMAT, which solves a network of fluid flow paths. The results of the analytical approach are then compared to the test data obtained on a half-scale pump model which was tested in water. The details are presented of pump internal hydraulic analysis, and test and evaluation of the half-scale model test results

  16. Development of a continuous-flow fluidic pump

    International Nuclear Information System (INIS)

    Robinson, S.M.

    1985-08-01

    A study was made of a fluidic pump which utilizes gas pistons, a venturi-like reverse-flow-diverter, and a planar Y-type flow junction to produce a continuous flow of liquid from a system containing no moving parts. The study included an evaluation of the system performance and of methods for controlling the stability of the fluidic system. A mathematical model of the system was developed for steady-state operation using accepted theories of fluid mechanics. Although more elaborate models are needed for detailed design and optimization of specific systems, the model determined some of the main factors controlling the system performance and will be used in the development of more accurate models. 49 refs., 39 figs., 9 tabs

  17. Internal pump monitoring device

    International Nuclear Information System (INIS)

    Kurosaki, Toshikazu.

    1996-01-01

    In the present invention, a thermometer is disposed at the upper end of an internal pump casing of a coolant recycling system in a BWR type reactor to detect leakage of reactor water thereby ensuring the improvement of reliability of the internal pump. Namely, a thermometer is disposed, which can detect temperature elevation occurred when water in the internal pump leaked from a reactor pressure vessel passes through the gap between a stretch tube and an upper end of the pump casing. Signals from the thermometer are transmitted to a signal processing device by an instrumentation cable. The signal processing device generates an alarm when the temperature signal exceeds a predetermined value and announces that leakage of reactor water occurs in the internal pump. Since the present invention can detect the leakage of the reactor water in the pump casing in an early stage, it can contribute to the improvement of the safety and reliability of the internal pump. (I.S.)

  18. Estimation of daily flow rate of photovoltaic water pumping systems using solar radiation data

    Directory of Open Access Journals (Sweden)

    M. Benghanem

    2018-03-01

    Full Text Available This paper presents a simple model which allows us to contribute in the studies of photovoltaic (PV water pumping systems sizing. The nonlinear relation between water flow rate and solar power has been obtained experimentally in a first step and then used for performance prediction. The model proposed enables us to simulate the water flow rate using solar radiation data for different heads (50 m, 60 m, 70 m and 80 m and for 8S × 3P PV array configuration. The experimental data are obtained with our pumping test facility located at Madinah site (Saudi Arabia. The performances are calculated using the measured solar radiation data of different locations in Saudi Arabia. Knowing the solar radiation data, we have estimated with a good precision the water flow rate Q in five locations (Al-Jouf, Solar Village, AL-Ahsa, Madinah and Gizan in Saudi Arabia. The flow rate Q increases with the increase of pump power for different heads following the nonlinear model proposed. Keywords: Photovoltaic water pumping system, Solar radiation data, Simulation, Flow rate

  19. Numerical Analysis of Rotating Pumping Flows in Inter-Coil Rotor Cavities and Short Cooling Grooves of a Generator

    Directory of Open Access Journals (Sweden)

    Wei Tong

    2001-01-01

    Full Text Available An important characteristic of wall rotating-driven flows is the tendency of fluid with high angular momentum to be flung radially outward. For a generator, the rotor rotating-driven flow, usually referred to as the rotating pumping flow, plays an important role in rotor winding cooling. In this study, three-dimensional numerical analyzes are presented for turbulent pumping flow in the inter-coil rotor cavity and short cooling grooves of a generator. Calculations of the flow field and the mass flux distribution through the grooves were carried out in a sequence of four related cases Under an isothermal condition: (a pumping flow, which is the self-generated flow resulted from the rotor pumping action; (b mixing flow, which is the combination of the ventilating flow and pumping flow, under a constant density condition; (c mixing flow, with density modeled by the ideal gas law; and (d mixing flow, with different pressure differentials applied on the system. The comparisons of the results from these cases can provide useful information regarding the impacts of the ventilating flow, gas density, and system pressure differential on the mass flux distribution in the short cooling grooves. Results show that the pumping effect is strong enough to generate the cooling flow for rotor winding cooling. Therefore, for small- or mid-size generators ventilation fans may be eliminated. It also suggests that increasing the chimney dimension can improve the distribution uniformity of mass flux through the cooling grooves.

  20. Quantifying the energy impact of a variable flow pump in a ground-coupled heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Iolova, K.; Bernier, M.A. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. de Genie Mecanique; Nichols, L. [Dessau-Soprin, Montreal, PQ (Canada)

    2006-07-01

    The thermal behaviour of an energy-efficient public high school building was modelled using the TRNSYS multi-zone building simulation program. The architectural elements such as windows, external and internal walls, roofs, and slabs were described in detail. The two-storey Ecole du Tournant high school near Montreal is the most efficient in Quebec and the second in Canada. It consumes 79.2 per cent less source energy than a typical high school built in accordance with the Model National Energy Code of Canada for Buildings. This presentation described the case study and quantified the energy impact of replacing a constant speed pump with a pump driven by a variable frequency drive in a ground-coupled heat pump (GCHP) system that was installed in the high school. Performance data collected from an on-site energy management system showed that the annual energy consumption of the heat pumps is 33 per cent (63700 kWh) of the total energy consumption of the school while the circulating pump consumes 7.1 per cent (13702 kWh). This performance data was used to validate the energy simulations which were performed using TRNSYS 15. Simulations with variable-flow pumping showed that pumping energy consumption was reduced by about 82 per cent while the total energy used by the circulating pump and heat pumps was reduced by 18.5 per cent. 11 refs., 2 tabs., 13 figs.

  1. Behavior of pumps conveying two-phase liquid flow

    International Nuclear Information System (INIS)

    Grison, Pierre; Lauro, J.-F.

    1979-01-01

    Determination of the two-phase flow (critical or otherwise) through a pump is an essential requirement for complete description of a loss of primary coolant accident in a PWR plant. Theoretical and experimental research at Electricite de France on this subject is described and problems associated with the introduction of a two-phase fluid (with mass transfer) are discussed, with an attempt to single out new phenomena involved and establish their effect on pump behavior. A complementary experimental investigation is described and the results of tests at pressures and temperatures up to 120 bars and 320 0 C respectively are compared with the theoretical model data [fr

  2. Behavior of pumps conveying two-phase liquid flow

    Energy Technology Data Exchange (ETDEWEB)

    Grison, P; Lauro, J F [Electricite de France, 78 - Chatou. Direction des Etudes et Recherches

    1979-01-01

    Determination of the two-phase flow (critical or otherwise) through a pump is an essential requirement for complete description of a loss of primary coolant accident in a PWR plant. Theoretical and experimental research at Electricite de France on this subject is described and problems associated with the introduction of a two-phase fluid (with mass transfer) are discussed, with an attempt to single out new phenomena involved and establish their effect on pump behavior. A complementary experimental investigation is described and the results of tests at pressures and temperatures up to 120 bars and 320/sup 0/C respectively are compared with the theoretical model data.

  3. Slip flow coefficient analysis in water hydraulics gear pump for environmental friendly application

    International Nuclear Information System (INIS)

    Yusof, A A; Wasbari, F; Zakaria, M S; Ibrahim, M Q

    2013-01-01

    Water hydraulics is the sustainable option in developing fluid power systems with environmental friendly approach. Therefore, an investigation on water-based external gear pump application is being conducted, as a low cost solution in the shifting effort of using water, instead of traditional oil hydraulics in fluid power application. As the gear pump is affected by fluid viscosity, an evaluation has been conducted on the slip flow coefficient, in order to understand to what extent the spur gear pump can be used with water-based hydraulic fluid. In this paper, the results of a simulated study of variable-speed fixed displacement gear pump are presented. The slip flow coefficient varies from rotational speed of 250 RPM to 3500 RPM, and provides volumetric efficiency ranges from 9 % to 97% accordingly

  4. Distinct alterations in sublingual microcirculatory blood flow and hemoglobin oxygenation in on-pump and off-pump coronary artery bypass graft surgery

    NARCIS (Netherlands)

    Atasever, Bektaş; Boer, Christa; Goedhart, Peter; Biervliet, Jules; Seyffert, Jan; Speekenbrink, Ron; Schwarte, Lothar; de Mol, Bas; Ince, Can

    2011-01-01

    The authors hypothesized that cardiopulmonary bypass (CPB) (on-pump) is associated with more severe changes in the microcirculatory blood flow and tissue oxygenation as compared with off-pump coronary artery bypass surgery. An observational study. A university hospital and teaching hospital.

  5. Numerical simulation of 3D unsteady flow in a rotating pump by dynamic mesh technique

    International Nuclear Information System (INIS)

    Huang, S; Guo, J; Yang, F X

    2013-01-01

    In this paper, the numerical simulation of unsteady flow for three kinds of typical rotating pumps, roots blower, roto-jet pump and centrifugal pump, were performed using the three-dimensional Dynamic Mesh technique. In the unsteady simulation, all the computational domains, as stationary, were set in one inertial reference frame. The motions of the solid boundaries were defined by the Profile file in FLUENT commercial code, in which the rotational orientation and speed of the rotors were specified. Three methods (Spring-based Smoothing, Dynamic Layering and Local Re-meshing) were used to achieve mesh deformation and re-meshing. The unsteady solutions of flow field and pressure distribution were solved. After a start-up stage, the flow parameters exhibit time-periodic behaviour corresponding to blade passing frequency of rotor. This work shows that Dynamic Mesh technique could achieve numerical simulation of three-dimensional unsteady flow field in various kinds of rotating pumps and have a strong versatility and broad application prospects

  6. Numerical investigation of solid-liquid two phase flow in a non-clogging centrifugal pump at off-design conditions

    International Nuclear Information System (INIS)

    Zhao, B J; Chen, H L; Hou, D H; Huang, Z F

    2012-01-01

    The solid-liquid two-phase flow fields in the non-clogging centrifugal pump with a double-channel impeller have been investigated numerically for the design condition and also off-design conditions, in order to study the solid-liquid two-phase flow pattern and non-clogging mechanism in non-clogging centrifugal pumps. The main conclusions include: The sand volume fraction distribution is extremely inhomogeneous in the whole flow channel of the pump at off-design conditions. In the impeller, particles mainly flow along the pressure surface and hub; In the volute, particles mainly accumulate in the region near to the exit of volute, the largest sand volume fraction is observed at the tongue, and a large number of particles collide with volute wall and exit the volute after circling around the volute for several times. When the particle diameter increases, particles tend to accumulate on the pressure side of the impeller, and more particles crash with the pressure side of the blade. And larger sand volume fraction gratitude is also observed in the whole flow channel of the pump. With the decrease of the inlet sand volume fraction, particles tend to accumulate on the suction side of the blade. Compared with the particle diameter, the inlet sand volume fraction has less influence on the sand volume fraction gratitude in the whole channel of the pump. At the large flow rate, the minimum and maximum sand volume fraction in the whole flow channel of the model pump tends to be smaller than that at the small flow rate. Thus, it is concluded that the water transportation capacity increases with the flow rate. This research will strengthen people's understanding of the multiphase flow pattern in non-clogging centrifugal pumps, thus provides a theoretical basis for the optimal design of non-clogging centrifugal pumps.

  7. Hemolysis research of implantable axial flow pump for two -step heart transplantation in children

    Directory of Open Access Journals (Sweden)

    O. Yu. Dmitrieva

    2017-01-01

    Full Text Available Introduction. One of the main indicators characterizing mechanical circulatory support devices (artificial valve, implantable pumps, etc. is trauma of blood cells. Therefore, while developing new pumps, one of the key studies in vitro is to evaluate blood hemolysis. For an objective hemolysis analysis of pump it is required to create a standardized methodology of hemolysis studies. The object of the study in this paper is implantable axial pump DON for two-step heart transplantation in children.The aim of study is to develop a standardized methodology of hemolysis studies of blood pumps and to conduct research of pediatric axial pump DON.Materials and methods. To conduct hemolysis research we created a mock circulatory system consisting of a reservoir placed in water bath maintaining a constant working fluid (blood temperature, hydrodynamic resistance, connecting tubes, ports for blood sampling and pressure and flow measurement systems, and research pump. Test method is to estimate levels of free hemoglobin pHb obtained by blood samples during pump working in operating mode (for pediatric pump: blood flow 2.5 l/min, pressure difference 80 mmHg. Using the data obtained the standardized indices of hemolysis NIH and MIH are calculated based on pHb values, hematocrit, total hemoglobin, blood flow and working pump time.Results. We developed and realized a standardized methodology of hemolysis research by which we evaluated hemolysis of pediatric axial pump. The results of hemolysis tests allowed us to optimize the design of DON. Obtained values of hemolysis of the latest version of pediatric pump DON-3 have shown that they do conform to the requirements of minimum blood injury and it allows us to proceed to the next step of pediatric pump research – animal experiments.Conclusion. Developed methods and evaluation tools of hemolysis allow us to provide objective information on one of the most important indicators of developing

  8. BWR series pump recirculation system

    International Nuclear Information System (INIS)

    Dillmann, C.W.

    1992-01-01

    This patent describes a recirculation system for driving reactor coolant water contained in an annular downcomer defined between a boiling water reactor vessel and a reactor core spaced radially inwardly therefrom. It comprises a plurality of circumferentially spaced second pumps disposed in the downcomer, each including an inlet for receiving from the downcomer a portion of the coolant water as pump inlet flow, and an outlet for discharging the pump inlet flow pressurized in the second pump as pump outlet flow; and means for increasing pressure of the pump inlet flow at the pump inlet including a first pump disposed in series flow with the second pump for first receiving the pump inlet flow from the downcomer and discharging to the second pump inlet flow pressurized in the first pump

  9. Centrifugal pumps

    CERN Document Server

    Gülich, Johann Friedrich

    2014-01-01

    This book gives an unparalleled, up-to-date, in-depth treatment of all kinds of flow phenomena encountered in centrifugal pumps including the complex interactions of fluid flow with vibrations and wear of materials. The scope includes all aspects of hydraulic design, 3D-flow phenomena and partload operation, cavitation, numerical flow calculations, hydraulic forces, pressure pulsations, noise, pump vibrations (notably bearing housing vibration diagnostics and remedies), pipe vibrations, pump characteristics and pump operation, design of intake structures, the effects of highly viscous flows, pumping of gas-liquid mixtures, hydraulic transport of solids, fatigue damage to impellers or diffusers, material selection under the aspects of fatigue, corrosion, erosion-corrosion or hydro-abrasive wear, pump selection, and hydraulic quality criteria. As a novelty, the 3rd ed. brings a fully analytical design method for radial impellers, which eliminates the arbitrary choices inherent to former design procedures. The d...

  10. 3D-CFD Simulation of Confined Cross-Flow Injection Process Using Single Piston Pump

    Directory of Open Access Journals (Sweden)

    M. Elashmawy

    2017-12-01

    Full Text Available Injection process into a confined cross flow is quite important for many applications including chemical engineering and water desalination technology. The aim of this study is to investigate the performance of the injection process into a confined cross-flow of a round pipe using a single piston injection pump. A computational fluid dynamics (CFD analysis has been carried out to investigate the effect of the locations of the maximum velocity and minimum pressure on the confined cross-flow process. The jet trajectory is analyzed and related to the injection pump shaft angle of rotation during the injection duty cycle by focusing on the maximum instant injection flow of the piston action. Results indicate a low effect of the jet trajectory within the range related to the injection pump operational conditions. Constant cross-flow was used and injection flow is altered to vary the jet to line flow ratio (QR. The maximum jet trajectory exhibits low penetration inside the cross-flow. The results showed three regions of the flow ratio effect zones with different behaviors. Results also showed that getting closer to the injection port causes a significant decrease on the locations of the maximum velocity and minimum pressure.

  11. Full sized tests on a french coolant pump under two-phase flow

    International Nuclear Information System (INIS)

    Huchard, J.C.; Bore, C.; Dueymes, E.

    1997-01-01

    The French Safety Authorities required EDF to demonstrate the ability of the new N4 main coolant pump to withstand two-phase flow conditions without damage. Therefore three full sized tests, simulating a bleeding flow on the primary system, were performed on a laboratory test loop under real operating conditions (temperature = 290 deg. C, pressure = 155 b, flowrate = 7 m 3 /s; electrical power = 7 MW). The maximum value of the mean void fraction reached 75 %. The outcome of the tests is very positive: the mechanical behaviour of the main coolant pump is good, even at high void fraction. The maximum vibration levels were below the limits fixed by the manufacturer. Correlations between the mechanical behaviour of the pump and the pressure pulsation in the test loop have been found. (authors)

  12. In-situ Condition Monitoring of Components in Small Modular Reactors Using Process and Electrical Signature Analysis. Final report, volume 1. Development of experimental flow control loop, data analysis and plant monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyaya, Belle [Univ. of Tennessee, Knoxville, TN (United States); Hines, J. Wesley [Univ. of Tennessee, Knoxville, TN (United States); Damiano, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mehta, Chaitanya [Univ. of Tennessee, Knoxville, TN (United States); Collins, Price [Univ. of Tennessee, Knoxville, TN (United States); Lish, Matthew [Univ. of Tennessee, Knoxville, TN (United States); Cady, Brian [Univ. of Tennessee, Knoxville, TN (United States); Lollar, Victor [Univ. of Tennessee, Knoxville, TN (United States); de Wet, Dane [Univ. of Tennessee, Knoxville, TN (United States); Bayram, Duygu [Univ. of Tennessee, Knoxville, TN (United States)

    2015-12-15

    The research and development under this project was focused on the following three major objectives: Objective 1: Identification of critical in-vessel SMR components for remote monitoring and development of their low-order dynamic models, along with a simulation model of an integral pressurized water reactor (iPWR). Objective 2: Development of an experimental flow control loop with motor-driven valves and pumps, incorporating data acquisition and on-line monitoring interface. Objective 3: Development of stationary and transient signal processing methods for electrical signatures, machinery vibration, and for characterizing process variables for equipment monitoring. This objective includes the development of a data analysis toolbox. The following is a summary of the technical accomplishments under this project: - A detailed literature review of various SMR types and electrical signature analysis of motor-driven systems was completed. A bibliography of literature is provided at the end of this report. Assistance was provided by ORNL in identifying some key references. - A review of literature on pump-motor modeling and digital signal processing methods was performed. - An existing flow control loop was upgraded with new instrumentation, data acquisition hardware and software. The upgrading of the experimental loop included the installation of a new submersible pump driven by a three-phase induction motor. All the sensors were calibrated before full-scale experimental runs were performed. - MATLAB-Simulink model of a three-phase induction motor and pump system was completed. The model was used to simulate normal operation and fault conditions in the motor-pump system, and to identify changes in the electrical signatures. - A simulation model of an integral PWR (iPWR) was updated and the MATLAB-Simulink model was validated for known transients. The pump-motor model was interfaced with the iPWR model for testing the impact of primary flow perturbations (upsets) on

  13. In-situ Condition Monitoring of Components in Small Modular Reactors Using Process and Electrical Signature Analysis. Final report, volume 1. Development of experimental flow control loop, data analysis and plant monitoring

    International Nuclear Information System (INIS)

    Upadhyaya, Belle; Hines, J. Wesley; Damiano, Brian; Mehta, Chaitanya; Collins, Price; Lish, Matthew; Cady, Brian; Lollar, Victor; De Wet, Dane; Bayram, Duygu

    2015-01-01

    The research and development under this project was focused on the following three major objectives: Objective 1: Identification of critical in-vessel SMR components for remote monitoring and development of their low-order dynamic models, along with a simulation model of an integral pressurized water reactor (iPWR). Objective 2: Development of an experimental flow control loop with motor-driven valves and pumps, incorporating data acquisition and on-line monitoring interface. Objective 3: Development of stationary and transient signal processing methods for electrical signatures, machinery vibration, and for characterizing process variables for equipment monitoring. This objective includes the development of a data analysis toolbox. The following is a summary of the technical accomplishments under this project: - A detailed literature review of various SMR types and electrical signature analysis of motor-driven systems was completed. A bibliography of literature is provided at the end of this report. Assistance was provided by ORNL in identifying some key references. - A review of literature on pump-motor modeling and digital signal processing methods was performed. - An existing flow control loop was upgraded with new instrumentation, data acquisition hardware and software. The upgrading of the experimental loop included the installation of a new submersible pump driven by a three-phase induction motor. All the sensors were calibrated before full-scale experimental runs were performed. - MATLAB-Simulink model of a three-phase induction motor and pump system was completed. The model was used to simulate normal operation and fault conditions in the motor-pump system, and to identify changes in the electrical signatures. - A simulation model of an integral PWR (iPWR) was updated and the MATLAB-Simulink model was validated for known transients. The pump-motor model was interfaced with the iPWR model for testing the impact of primary flow perturbations (upsets) on

  14. Analysis of the flow dynamics characteristics of an axial piston pump based on the computational fluid dynamics method

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2017-01-01

    Full Text Available To improve its working performance, the flow ripple characteristics of an axial piston pump were investigated with software which uses computational fluid dynamics (CFD technology. The simulation accuracy was significantly optimized through the use of the improved compressible fluid model. Flow conditions of the pump were tested using a pump flow ripple test rig, and the simulation results of the CFD model showed good agreement with the experimental data. Additionally, the composition of the flow ripple was analyzed using the improved CFD model, and the results showed that the compression ripple makes up 88% of the flow ripple. The flow dynamics of the piston pump is mainly caused by the pressure difference between the intake and discharge ports of the valve plates and the fluid oil compressibility.

  15. Experimental study of an electromagnetic flow meter for liquid metals based on torque measurement during pumping process

    International Nuclear Information System (INIS)

    Dubovikova, N; Kolesnikov, Y; Karcher, Ch

    2015-01-01

    This paper presents a detailed experimental study on an electromagnetic flow measurement technique to measure the flow rate of liquid metals. The experimental setup consists of a contactless electromagnetic pump with a torque sensor mounted on the pump shaft. The electromagnetic pump is composed of two rotating steel discs having embedded permanent magnets with alternating poles. The rotation of the discs creates a travelling sinusoidal magnetic field and eddy currents within the liquid metal. The metal is contained inside the duct located between the discs of the pump. The interaction of the magnetic field and the induced eddy currents generates an electromagnetic Lorentz force providing the pumping effect. The flow rate is proportional to this force. The torque sensor measures the moment of the discs due to the Lorentz force, which is converted to a flow rate value. We name the method Lorentz torque velocimetry (LTV). The full calibration procedure and experimental investigation of the LTV are described. The method can be used as a non-contact flow rate control technique for liquid metals. (paper)

  16. Magnetohydrodynamic pump with a system for promoting flow of fluid in one direction

    Science.gov (United States)

    Lemoff, Asuncion V [Union City, CA; Lee, Abraham P [Irvine, CA

    2010-07-13

    A magnetohydrodynamic pump for pumping a fluid. The pump includes a microfluidic channel for channeling the fluid, a MHD electrode/magnet system operatively connected to the microfluidic channel, and a system for promoting flow of the fluid in one direction in the microfluidic channel. The pump has uses in the medical and biotechnology industries for blood-cell-separation equipment, biochemical assays, chemical synthesis, genetic analysis, drug screening, an array of antigen-antibody reactions, combinatorial chemistry, drug testing, medical and biological diagnostics, and combinatorial chemistry. The pump also has uses in electrochromatography, surface micromachining, laser ablation, inkjet printers, and mechanical micromilling.

  17. Pumping machinery theory and practice

    CERN Document Server

    Badr, Hassan M

    2014-01-01

    Pumping Machinery Theory and Practice comprehensively covers the theoretical foundation and applications of pumping machinery. Key features: Covers characteristics of centrifugal pumps, axial flow pumps and displacement pumpsConsiders pumping machinery performance and operational-type problemsCovers advanced topics in pumping machinery including multiphase flow principles, and two and three-phase flow pumping systemsCovers different methods of flow rate control and relevance to machine efficiency and energy consumptionCovers different methods of flow rate control and relevance to machine effi

  18. Field experiment and numerical simulation of coupling non-Darcy flow caused by curtain and pumping well in foundation pit dewatering

    Science.gov (United States)

    Wang, Jianxiu; Liu, Xiaotian; Wu, Yuanbin; Liu, Shaoli; Wu, Lingao; Lou, Rongxiang; Lu, Jiansheng; Yin, Yao

    2017-06-01

    High-velocity non-Darcy flow produced larger drawdown than Darcy flow under the same pumping rate. When the non-Darcy flow caused by curtain met non-Darcy flow caused by pumping wells, superposition and amplification effect occurred in the coupling area, the non-Darcy flow was defined as coupling non-Darcy flow. The coupling non-Darcy flow can be produced and controlled using different combination of curtain and pumping wells in foundation pit dewatering to obtain the maximum drawdown using the minimum pumping rate. The Qianjiang Century City Station foundation pit of Hangzhou subway, China, was selected as background. Field experiments were performed to observe the coupling non-Darcy flow in round gravel. A generalized conceptual model was established to study the coupling effect under different combination of curtain and pumping wells. Numerical simulations of the coupling non-Darcy flow in foundation pit dewatering were carried out based on the Forchheimer equation. The non-Darcy flow area and flow velocity were influenced by the coupling effect. Short filter tube, large pumping rate, small horizontal distance between filter tube and diaphragm wall, and small vertical distance between the filter tube and confined aquifer roof effectively strengthened the coupling effect and obtained a large drawdown. The pumping wells installed close to a curtain was an intentional choice designed to create coupling non-Darcy flow and obtain the maximize drawdown. It can be used in the dewatering of a long and narrow foundation pit, such as a subway foundation pit.

  19. Estimation of daily flow rate of photovoltaic water pumping systems using solar radiation data

    Science.gov (United States)

    Benghanem, M.; Daffallah, K. O.; Almohammedi, A.

    2018-03-01

    This paper presents a simple model which allows us to contribute in the studies of photovoltaic (PV) water pumping systems sizing. The nonlinear relation between water flow rate and solar power has been obtained experimentally in a first step and then used for performance prediction. The model proposed enables us to simulate the water flow rate using solar radiation data for different heads (50 m, 60 m, 70 m and 80 m) and for 8S × 3P PV array configuration. The experimental data are obtained with our pumping test facility located at Madinah site (Saudi Arabia). The performances are calculated using the measured solar radiation data of different locations in Saudi Arabia. Knowing the solar radiation data, we have estimated with a good precision the water flow rate Q in five locations (Al-Jouf, Solar Village, AL-Ahsa, Madinah and Gizan) in Saudi Arabia. The flow rate Q increases with the increase of pump power for different heads following the nonlinear model proposed.

  20. Application of two turbulence models for computation of cavitating flows in a centrifugal pump

    International Nuclear Information System (INIS)

    He, M; Guo, Q; Zhou, L J; Wang, X; Wang, Z W

    2013-01-01

    To seek a better numerical method to simulate the cavitating flow field in a centrifugal pump, the applications between RNG k- ε and LES turbulence model were compared by using the Zwart-Gerber-Belamri cavitation model. It was found that both the models give almost the same results with respect to pump performance and cavitation evolutions including growth, local contraction, stability and separation in the impeller passage. But the LES model can not only capture the pump suction recirculation and the low frequency fluctuation caused by it, but also combine the changes of the shaft frequency amplitude acting on the impeller with the cavitation unstable characteristics. Thus the LES model has more advantages than RNG k- ε model in calculating the unsteady cavitating flow in a centrifugal pump

  1. Research on energy conversion mechanism of a screw centrifugal pump under the water

    International Nuclear Information System (INIS)

    Quan, H; Li, R N; Han, W; Cheng, X R; Shen, Z J; Su, Q M

    2013-01-01

    In order to research screw centrifugal pump impeller power capability and energy conversion mechanism, we used Navier-Stokes equation and standard k-ε equation turbulence model on the basis of the Euler equations to carry out screw centrifugal pump internal flow numerical simulation. This was explored by simulating specific design conditions; the medium is water, variation of speed and pressure of flow filed under the action of the impeller, and the screw centrifugal impeller shroud line and wheel line segment take monitoring sites. The monitoring points are between dynamic head and static head change to analyze the energy conversion capability along the impeller corners of screw centrifugal pump. The results show that the energy of fluid of the screw centrifugal pump is provided by spiral segment, the spiral segment in front of the impeller has played a multi-level role, it has significant reference value to research the energy conversion mechanism of screw centrifugal pump under solid-liquid two phase

  2. Water Flow Testing and Unsteady Pressure Analysis of a Two-Bladed Liquid Oxidizer Pump Inducer

    Science.gov (United States)

    Schwarz, Jordan B.; Mulder, Andrew; Zoladz, Thomas

    2011-01-01

    The unsteady fluid dynamic performance of a cavitating two-bladed oxidizer turbopump inducer was characterized through sub-scale water flow testing. While testing a novel inlet duct design that included a cavitation suppression groove, unusual high-frequency pressure oscillations were observed. With potential implications for inducer blade loads, these high-frequency components were analyzed extensively in order to understand their origins and impacts to blade loading. Water flow testing provides a technique to determine pump performance without the costs and hazards associated with handling cryogenic propellants. Water has a similar density and Reynolds number to liquid oxygen. In a 70%-scale water flow test, the inducer-only pump performance was evaluated. Over a range of flow rates, the pump inlet pressure was gradually reduced, causing the flow to cavitate near the pump inducer. A nominal, smooth inducer inlet was tested, followed by an inlet duct with a circumferential groove designed to suppress cavitation. A subsequent 52%-scale water flow test in another facility evaluated the combined inducer-impeller pump performance. With the nominal inlet design, the inducer showed traditional cavitation and surge characteristics. Significant bearing loads were created by large side loads on the inducer during synchronous cavitation. The grooved inlet successfully mitigated these loads by greatly reducing synchronous cavitation, however high-frequency pressure oscillations were observed over a range of frequencies. Analytical signal processing techniques showed these oscillations to be created by a rotating, multi-celled train of pressure pulses, and subsequent CFD analysis suggested that such pulses could be created by the interaction of rotating inducer blades with fluid trapped in a cavitation suppression groove. Despite their relatively low amplitude, these high-frequency pressure oscillations posed a design concern due to their sensitivity to flow conditions and

  3. Field Monitoring Protocol. Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maguire, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hancock, C. E. [Mountain Energy Partnership, Longmont, CO (United States)

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  4. Field Monitoring Protocol: Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, E.

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  5. Computer-Based Monitoring and Remote Controlling for Oil Well Pumps Using Scada

    Directory of Open Access Journals (Sweden)

    Rudi Tjiptadi

    2011-12-01

    Full Text Available The research aims to change manually the monitoring and controlling of oil well pumps into a computer-based system using SCADA (Supervisory and Data Acquisition system. To design the protection system which consists of controller unit and display system, RTU (Remote Terminal Unit and MTU (Master Terminal Unit are used. The research results in a controller unit which is able to communicate to personal computer using RS-232 C and an alarm system to protect oil pump motors by detecting sensors installed at the pumps

  6. A method for gear fatigue life prediction considering the internal flow field of the gear pump

    Science.gov (United States)

    Shen, Haidong; Li, Zhiqiang; Qi, Lele; Qiao, Liang

    2018-01-01

    Gear pump is the most widely used volume type hydraulic pump, and it is the main power source of the hydraulic system. Its performance is influenced by many factors, such as working environment, maintenance, fluid pressure and so on. It is different from the gear transmission system, the internal flow field of gear pump has a greater impact on the gear life, therefore it needs to consider the internal hydraulic system when predicting the gear fatigue life. In this paper, a certain aircraft gear pump as the research object, aim at the typical failure forms, gear contact fatigue, of gear pump, proposing the prediction method based on the virtual simulation. The method use CFD (Computational fluid dynamics) software to analyze pressure distribution of internal flow field of the gear pump, and constructed the unidirectional flow-solid coupling model of gear to acquire the contact stress of tooth surface on Ansys workbench software. Finally, employing nominal stress method and Miner cumulative damage theory to calculated the gear contact fatigue life based on modified material P-S-N curve. Engineering practice show that the method is feasible and efficient.

  7. An evaluation of a hubless inducer and a full flow hydraulic turbine driven inducer boost pump

    Science.gov (United States)

    Lindley, B. K.; Martinson, A. R.

    1971-01-01

    The purpose of the study was to compare the performance of several configurations of hubless inducers with a hydrodynamically similar conventional inducer and to demonstrate the performance of a full flow hydraulic turbine driven inducer boost pump using these inducers. A boost pump of this type consists of an inducer connected to a hydraulic turbine with a high speed rotor located in between. All the flow passes through the inducer, rotor, and hydraulic turbine, then into the main pump. The rotor, which is attached to the main pump shaft, provides the input power to drive the hydraulic turbine which, in turn, drives the inducer. The inducer, rotating at a lower speed, develops the necessary head to prevent rotor cavitation. The rotor speed is consistent with present main engine liquid hydrogen pump designs and the overall boost pump head rise is sufficient to provide adequate main pump suction head. This system would have the potential for operating at lower liquid hydrogen tank pressures.

  8. Improving the monitoring of quantitative conditions of peacetime fuel stocks at pumping stations

    Directory of Open Access Journals (Sweden)

    Slaviša M. Ilić

    2011-04-01

    Full Text Available The paper has solved the problem of optimizing the existing inefficient and irrational system of the quantitative monitoring of the situation in peacetime fuel supplies at the pumping stations in the Army of Serbia. A study of existing organizational forms, military pumping stations as well as civilian ones, was carried out. Based on the completion of the survey by competent persons in the military, the methods of expert evaluation and the obtained quantitative indicator of the tested models, a multicriteria optimization was performed in order to select the optimal model. The optimization of the existing models, in terms of efficiency and economy, would be the rationalization and modernization - automation of military capacity and greater reliance on automated civilian pumping stations. Introduction Within the framework of the undergoing reform of the Serbian Army and in order to reduce the total costs, it is necessary to optimize the existing supply system that is technologically outdated, inefficient and uneconomic. The problem of research in this paper is reduced to the selection of an optimal model of the quantitative monitoring of the state of peacetime stocks of fuel at the pumping stations in the Serbian Army, in order to ensure economical operation and efficient monitoring of available and issued quantities, aiming at better decision making and management in the supply system as well as at achieving faster system response, with greater reliance on government logistics. Organization of work and monitoring the fuel quantitative status at pumping stations The existing system of monitoring the quantitative state of fuel pumping stations in the Army of Serbia has the following disadvantages: getting unreliable data, due to outdated equipment for fuel handling and measuring equipment, and manual collection of data; creation of unauthorized shortages (due to subjective human error or deception; inadequate engagement of respective material and

  9. Vibration monitoring/diagnostic techniques, as applied to reactor coolant pumps

    International Nuclear Information System (INIS)

    Sculthorpe, B.R.; Johnson, K.M.

    1986-01-01

    With the increased awareness of reactor coolant pump (RCP) cracked shafts, brought about by the catastrophic shaft failure at Crystal River number3, Florida Power and Light Company, in conjunction with Bently Nevada Corporation, undertook a test program at St. Lucie Nuclear Unit number2, to confirm the integrity of all four RCP pump shafts. Reactor coolant pumps play a major roll in the operation of nuclear-powered generation facilities. The time required to disassemble and physically inspect a single RCP shaft would be lengthy, monetarily costly to the utility and its customers, and cause possible unnecessary man-rem exposure to plant personnel. When properly applied, vibration instrumentation can increase unit availability/reliability, as well as provide enhanced diagnostic capability. This paper reviews monitoring benefits and diagnostic techniques applicable to RCPs/motor drives

  10. Low flow measurement for infusion pumps: implementation and uncertainty determination of the normalized method

    International Nuclear Information System (INIS)

    Cebeiro, J; Musacchio, A; Sardá, E Fernández

    2011-01-01

    Intravenous drug delivery is a standard practice in hospitalized patients. As the blood concentration reached depends directly on infusion rate, it is important to use safe devices that guarantee output accuracy. In pediatric intensive care units, low infusion rates (i.e. lower than 10.0 ml/h) are frequently used. Thus, it would be necessary to use control programs to search for deviations at this flow range. We describe the implementation of a gravimetric method to test infusion pumps in low flow delivery. The procedure recommended by the ISO/IEC 60601-2-24 standard was used being a reasonable option among the methods frequently used in hospitals, such as infusion pumps analyzers and volumetric cylinders. The main uncertainty sources affecting this method are revised and a numeric and graphic uncertainty analysis is presented in order to show its dependence on flow. Additionally, the obtained uncertainties are compared to those presented by an automatic flow analyzer. Finally, the results of a series of tests performed on a syringe infusion pump operating at low rates are shown.

  11. Influences of viscous losses and end effects on liquid metal flow in electromagnetic pumps

    International Nuclear Information System (INIS)

    Kim, Hee Reyoung; Seo, Joon Ho; Hong, Sang Hee; Cho, Su won; Nam, Ho Yun; Cho, Man

    1996-01-01

    Analyses of the viscous and end effects on electromagnetic (EM) pumps of annular linear induction type for the sodium coolant circulation in Liquid Metal Fast Breeder Reactors have been carried out based on the MHD laminar flow analysis and the electromagnetic field theory. A one-dimensional MHD analysis for the liquid metal flowing through an annular channel has been performed on the basis of a simplified model of equivalent current sheets instead of three-phase currents in the discrete primary windings. The calculations show that the developed pressure difference resulted from electromagnetic and viscous forces in the liquid metal is expressed in terms of the slip, and that the viscous loss effects are negligible compared with electromagnetic driving forces except in the low-slip region where the pumps operate with very high flow velocities comparable with the synchronous velocity of the electromagnetic fields, which is not applicable to the practical EM pumps. A two-dimensional electromagnetic field analysis based on an equivalent current sheet model has found the vector potentials in closed form by means of the Fourier transform method. The resultant magnetic fields and driving forces exerted on the liquid metal reveal that the end effects due to finiteness of the pump length are formidable. In addition, a two-dimensional numerical analysis for vector potentials has been performed by the SOR iterative method on a realistic EM pump model with discretely-distributed currents in the primary windings. The numerical computations for the distributions of magnetic fields and developed pressure differences along the pump axial length also show considerable end effects at both inlet and outlet ends, especially at high flow velocities. Calculations of each magnetic force contribution indicate that the end effects are originated from the magnetic force caused by the induced current (υxB) generated by the liquid metal movement across the magnetic field rather than the one

  12. Numerical investigations on cavitating flows with thermodynamic effects in a diffuser-type centrifugal pump

    International Nuclear Information System (INIS)

    Xuelin, Tang Xue; Liyuan, Bian; Fujun, Wang; Xiaoqin, Lin; Man, Hao

    2013-01-01

    A cavitation model with thermodynamic effects for cavitating flows in a diffuser-type centrifugal pump is developed based on the bubble two-phase flow model. The proposed cavitation model includes mass, momentum, and energy transportations according to the thermodynamic mechanism of cavitation. Numerical simulations are conducted inside the entire passage of the centrifugal pump by using the proposed cavitation model and the renormalization group-based k - ε turbulent model coupled with the energy transportation equation. By using the commercial computational fluid dynamics software FLUENT 6.3, we have shown that the predicted performance characteristics of the pump, as well as the pressure, vapor, and density distributions in the impeller, agree well with that calculated by the full cavitation model. Simulation results show that cavitation initially occurs slightly behind the inlet of the blade suction surface, i.e., the area with maximum vapor concentration and minimum pressure. The predicted temperature field shows that the reduction in temperature restrains the growth of cavitating bubbles. Therefore, the thermodynamic effect should be treated as a necessary factor in cavitation models. Comparison results validate the efficiency and accuracy of the numerical technique in simulating cavitation flows in centrifugal pumps.

  13. The role of elastomeric pumps in postoperative analgesia in orthopaedics and factors affecting their flow rate.

    Science.gov (United States)

    Theodorides, Anthony Andreas

    2017-12-01

    Elastomeric pumps are mechanical devices composed of an elastomeric balloon reservoir into which the drug to be infused is stored, a protective casing (used by some manufacturers), a flow controller and a wound catheter. In orthopaedics they are used to provide continuous local infiltration analgesia. In this way patients rely less on other routes of analgesia and thus avoid their systemic side effects. Studies have shown good response to analgesia with these pumps for the first 24 hours but their benefit is not as clear at 48 and 72 hours. There are numerous factors that affect the flow rate of elastomeric pumps. Some are inherent to all elastomeric pumps such as: the pressure exerted by the elastomeric balloon, catheter size, the vertical height of the pump in relation to the wound, viscosity and partial filling. There are also other factors which vary according to the manufacturer such as: the optimal temperature to obtain the desired flow rate as this directly affects viscosity, the dialysate that the analgesic drug is mixed with (ie normal saline or 5% dextrose), and the storage conditions of the fluid to be infused. It is thus essential to follow the clinical guidelines provided by the manufacturer in order to obtain the desired flow rate. Copyright the Association for Perioperative Practice.

  14. Apparatus for monitoring two-phase flow

    Science.gov (United States)

    Sheppard, John D.; Tong, Long S.

    1977-03-01

    A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.

  15. Development of a 3-dimensional flow analysis procedure for axial pump impellers

    International Nuclear Information System (INIS)

    Kim, Min Hwan; Kim, Jong In; Park, Jin Seok; Huh, Houng Huh; Chang, Moon Hee

    1999-06-01

    A fluid dynamic analysis procedure was developed using the three-dimensional solid model of an axial pump impeller which was theoretically designed using I-DEAS CAD/CAM/CAE software. The CFD software FLUENT was used in the flow field analysis. The steady-state flow regime in the MCP impeller and diffuser was simulated using the developed procedure. The results of calculation were analyzed to confirm whether the design requirements were properly implemented in the impeller model. The validity of the developed procedure was demonstrated by comparing the calculation results with the experimental data available. The pump performance at the design point could be effectively predicted using the developed procedure. The computed velocity distributions have shown a good agreement with the experimental data except for the regions near the wall. The computed head, however, was over-predicted than the experiment. The design period and cost required for the development of an axial pump impeller can be significantly reduced by applying the proposed methodology. (author). 7 refs., 2 tabs

  16. Geometric Optimization for Non-Thrombogenicity of a Centrifugal Blood Pump through Flow Visualization

    Science.gov (United States)

    Toyoda, Masahiro; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi; Tsutsui, Tatsuo; Sankai, Yoshiyuki

    A monopivot centrifugal blood pump, whose impeller is supported with a pivot bearing and a passive magnetic bearing, is under development for implantable artificial heart. The hemolysis level is less than that of commercial centrifugal pumps and the pump size is as small as 160 mL in volume. To solve a problem of thrombus caused by fluid dynamics, flow visualization experiments and animal experiments have been undertaken. For flow visualization a three-fold scale-up model, high-speed video system, and particle tracking velocimetry software were used. To verify non-thrombogenicity one-week animal experiments were conducted with sheep. The initially observed thrombus around the pivot was removed through unifying the separate washout holes to a small centered hole to induce high shear around the pivot. It was found that the thrombus contours corresponded to the shear rate of 300s-1 for red thrombus and 1300-1700s-1 for white thrombus, respectively. Thus flow visualization technique was found to be a useful tool to predict thrombus location.

  17. Assessment of turbulence models for pulsatile flow inside a heart pump.

    Science.gov (United States)

    Al-Azawy, Mohammed G; Turan, A; Revell, A

    2016-02-01

    Computational fluid dynamics (CFD) is applied to study the unsteady flow inside a pulsatile pump left ventricular assist device, in order to assess the sensitivity to a range of commonly used turbulence models. Levels of strain and wall shear stress are directly relevant to the evaluation of risk from haemolysis and thrombosis, and thus understanding the sensitivity to these turbulence models is important in the assessment of uncertainty in CFD predictions. The study focuses on a positive displacement or pulsatile pump, and the CFD model includes valves and moving pusher plate. An unstructured dynamic layering method was employed to capture this cyclic motion, and valves were simulated in their fully open position to mimic the natural scenario, with in/outflow triggered at control planes away from the valves. Six turbulence models have been used, comprising three relevant to the low Reynolds number nature of this flow and three more intended to investigate different transport effects. In the first group, we consider the shear stress transport (SST) [Formula: see text] model in both its standard and transition-sensitive forms, and the 'laminar' model in which no turbulence model is used. In the second group, we compare the one equation Spalart-Almaras model, the standard two equation [Formula: see text] and the full Reynolds stress model (RSM). Following evaluation of spatial and temporal resolution requirements, results are compared with available experimental data. The model was operated at a systolic duration of 40% of the pumping cycle and a pumping rate of 86 BPM (beats per minute). Contrary to reasonable preconception, the 'transition' model, calibrated to incorporate additional physical modelling specifically for these flow conditions, was not noticeably superior to the standard form of the model. Indeed, observations of turbulent viscosity ratio reveal that the transition model initiates a premature increase of turbulence in this flow, when compared with

  18. Baxter elastomeric pumps: Weighing as an alternative to visual inspection.

    Science.gov (United States)

    Cusano, Ellen L; Ali, Raafi; Sawyer, Michael B; Chambers, Carole R; Tang, Patricia A

    2018-04-01

    Purpose Elastomeric pumps are used to administer 46-hour infusions of 5-fluorouracil (5FU). Baxter suggests patients visually monitor their pumps to ensure that infusions are proceeding correctly. This can be confusing and lead to concerns about under- or over-dosing. Baxter has not considered weighing pumps as a validated method for monitoring. This study aims to validate weighing as a more accurate method for patients and healthcare professionals, and describe real life Baxter Infusor™ variability. Methods Patients who had been started on a 46-hour 5FU infusion returned to the clinic approximately 24 h after starting treatment. The pump was weighed on a StarFrit kitchen scale, and date, time, and weights recorded. Patients were asked if they had a preference for weighing or visually inspecting their pump. Results Pumps ( n = 103) were weighed between 17.25 and 27.5 h after connection. The average weight of a pump was 189 g. Of 103 pumps weighed, 99 weighed less than expected, corresponding to average flow rates of 5.69 mL/h over the elapsed time. The expected flow rate is 5 mL/h with 10% variability. Average flow rates within the 17.25- to 27.5-hour window were 4.561 mL/h, which is 8.78% slower than expected, but within the 10% known variability. Forty-seven percent of patients didn't have a preference for either method, but for those who did have a preference, more than twice as many preferred weighing. Conclusion With proper education, weighing Baxter Infusors at home with kitchen scales can be an accepted and objective alternative to the current recommendation of visual inspection.

  19. Rotary magnetic heat pump

    Science.gov (United States)

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  20. Computer aided hydraulic design of axial flow pump impeller

    International Nuclear Information System (INIS)

    Sreedhar, B.K.; Rao, A.S.L.K.; Kumaraswamy, S.

    1994-01-01

    Pumps are the heart of any power plant and hence their design requires great attention. Computers with their potential for rapid computation can be successfully employed in the design and manufacture of these machines. The paper discusses a program developed for the hydraulic design of axial flow pump impeller. The program, written in FORTRAN 77, is interactive and performs the functions of design calculation, drafting and generation of numerical data for blade manufacture. The drafting function, which makes use of the software ACAD, is carried out automatically by means of suitable interface programs. In addition data for blade manufacture is also generated in either the x-y-z or r-θ-z system. (author). 4 refs., 3 figs

  1. Flow measurements in a model centrifugal pump by 3-D PIV

    International Nuclear Information System (INIS)

    Yang, H; Xu, H R; Liu, C

    2012-01-01

    PIV (Particle Image Velocimetry), as an non-intrusive flow measurements technology, is widely used to investigate the flow fields in many areas. 3-D (three Dimensional) PIV has seldom been used to measure flow field in rotational impeller of centrifugal pump due to the difficulty of calibration in samll space. In this article, a specially manufactured water tank was used to perform the calibration for 3-D PIV measurement. The instantaneous absolute velocity in one impeller passage was obtained by merging of three sub zones and the relative velocity was acquired by velocity decomposition. The result shows that, when the pump runs at the condition of design flow rate, the radial component velocity W r appears a concave distribution except the condition of R=45 mm. With the increase of radius, the circumference location of the minimum radial component velocity W r moves from the pressure side to the suction side. At the same time, the tangential component velocity W θ on the suction side decreases gradually with the increase of radius, while the component on the pressure side increases gradually. The secondary flow in different radius section has also been shown. At last, the error of PIV measurements was analyzed, which shows that the test results are accurate and the measured data is reliable.

  2. Apparatus for monitoring two-phase flow

    International Nuclear Information System (INIS)

    Sheppard, J.D.; Tong, L.S.

    1977-01-01

    A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods. 3 claims, 9 figures

  3. Uncertainties in modelling and scaling of critical flows and pump model in TRAC-PF1/MOD1

    International Nuclear Information System (INIS)

    Rohatgi, U.S.; Yu, Wen-Shi.

    1987-01-01

    The USNRC has established a Code Scalability, Applicability and Uncertainty (CSAU) evaluation methodology to quantify the uncertainty in the prediction of safety parameters by the best estimate codes. These codes can then be applied to evaluate the Emergency Core Cooling System (ECCS). The TRAC-PF1/MOD1 version was selected as the first code to undergo the CSAU analysis for LBLOCA applications. It was established through this methodology that break flow and pump models are among the top ranked models in the code affecting the peak clad temperature (PCT) prediction for LBLOCA. The break flow model bias or discrepancy and the uncertainty were determined by modelling the test section near the break for 12 Marviken tests. It was observed that the TRAC-PF1/MOD1 code consistently underpredicts the break flow rate and that the prediction improved with increasing pipe length (larger L/D). This is true for both subcooled and two-phase critical flows. A pump model was developed from Westinghouse (1/3 scale) data. The data represent the largest available test pump relevant to Westinghouse PWRs. It was then shown through the analysis of CE and CREARE pump data that larger pumps degrade less and also that pumps degrade less at higher pressures. Since the model developed here is based on the 1/3 scale pump and on low pressure data, it is conservative and will overpredict the degradation when applied to PWRs

  4. Prediction of the relationship between flow of tubular pump and differential pressure within inlet passage with CFD method

    International Nuclear Information System (INIS)

    Yu, Y H; Cheng, B

    2012-01-01

    The measurement of flow of tubular pump, in which the differential pressure of two measuring points within inlet passage is replaced by the mean differential pressure of two specified section of inlet passage to calibrate the relationship between flow and differential pressure, is developed. The numerical simulation on differential pressure of two measuring points within inlet passage, which is started before the pump set test, is carried out with the standard k-ε turbulence model and SIMPLEC algorithm. The comparison of the relationships between flow and differential pressure fitted respectively with the data from numerical simulation and pump set test shows that the calibration accuracy about two different sources of data is nearly same. The conclusion can be drawn that the calibration of the relationship between flow and differential pressure with CFD is feasible. The CFD-based flow measurement method, as a more simple and convenient way, can be applied in tubular pumps.

  5. Research of fluid-induced pressure fluctuation due to impeller-volute interaction in a centrifugal pump

    International Nuclear Information System (INIS)

    Liu, Q Z; Yang, K; Li, D Y; Gong, R Z

    2013-01-01

    The fluid pressure fluctuation generated by unsteady flow is a very important factor to induce vibration of the centrifugal pump. The relative movement between impeller and volute generates an unsteady interaction which affects not only the overall pump performance, but is also responsible for pressure fluctuations. Pressure fluctuations interact with the volute casing or even with the circuit and give rise to dynamic effects over the mechanical parts, which are one of the most important sources of vibration and hydraulic noise. To investigate the flow characteristic in the centrifugal pump, the unsteady flow is simulated by CFD methods in this paper. Unsteady flow characteristic in the centrifugal pump is obtained considering the impeller-volute interaction in the whole flow field. Based on the unsteady flow simulation, amplitude-frequency characteristics of the pressure fluctuation in the centrifugal pump are obtained through setting up monitoring point at the impeller outlet. The research shows that the frequency component include the blade passing frequency as the main component, the multiplication of blade passing frequency, and the harmonic interference due to the unsteady flow

  6. Simulation of the effects of seasonally varying pumping on intraborehole flow and the vulnerability of public-supply wells to contamination

    Science.gov (United States)

    Yager, Richard M.; Heywood, Charles E.

    2014-01-01

    Public-supply wells with long screens in alluvial aquifers can produce waters of differing quality from different depths. Seasonal changes in quality are linked to seasonal changes in pumping rates that influence the distribution of flow into the well screens under pumping conditions and the magnitude and direction of intraborehole flow within the wells under ambient conditions. Groundwater flow and transport simulations with MODFLOW and MT3DMS were developed to quantify the effects of changes in average seasonal pumping rates on intraborehole flow and water quality at two long-screened, public-supply wells, in Albuquerque, New Mexico and Modesto, California, where widespread pumping has altered groundwater flow patterns. Simulation results indicate that both wells produce water requiring additional treatment to maintain potable quality in winter when groundwater withdrawals are reduced because less water is derived from parts of the aquifer that contain water requiring less treatment. Simulation results indicate that the water quality at both wells could be improved by increasing average winter-pumping rates to induce more lateral flow from parts of the aquifer that contain better quality water. Arsenic-bearing water produced by the Albuquerque well could be reduced from 55% to 45% by doubling average winter-pumping rate, while nitrate- and uranium-bearing water produced by the Modesto well could be reduced from 95% to 65% by nearly tripling the average winter-pumping rate. Higher average winter-pumping rates would also reduce the volume of intraborehole flow within both wells and prevent the exchange of poor quality water between shallow and deep parts of both aquifers.

  7. Verification of the machinery condition monitoring technology by fault simulation tests

    International Nuclear Information System (INIS)

    Maehara, Takafumi; Watanabe, Yukio; Osaki, Kenji; Higuma, Koji; Nakano, Tomohito

    2009-01-01

    This paper shows the test items and equipments introduced by Japan Nuclear Energy Safety Organization to establish the monitoring technique for machinery conditions. From the result of vertical pump simulation tests, it was confirmed that fault analysis was impossible by measuring the accelerations on both motor and pump column pipes, however, was possible by measuring of pump shaft vibrations. Because hydraulic whirls by bearing wear had significant influences over bearing misalignments and flow rates, the monitoring trends must be done under the same condition (on bearing alignments and flow rates). We have confirmed that malfunctions of vertical pumps can be diagnosed using measured shaft vibration by ultrasonic sensors from outer surface of pump casing on the floor. (author)

  8. Multi-condition optimization and experimental study of impeller blades in a mixed-flow pump

    Directory of Open Access Journals (Sweden)

    Houlin Liu

    2016-05-01

    Full Text Available On the basis of design of experiment and numerical simulation, a reliable optimization method for blades of a mixed-flow pump is proposed with the maximum weighted average efficiency at multi-conditions as optimum objective. First, the performance of the model pump was measured and the test results were used to validate the simulation method. To improve the simulation accuracy, the check of the grid independence and the comparison of different turbulence models were done in detail. Then, the method of design of experiment for key geometrical parameters was used to obtain the optimization scheme. The maximum weighted average efficiency of pump at three operation conditions was chosen as optimum objective. The optimum solution was gotten and confirmed by the experiment. The results demonstrate that efficiency of the mixed-flow pump with optimized impeller increases by 3.9%, and the high-efficiency zone is increased from 0.021 to 0.040.

  9. Various Parameters of the Flowing Part of a Cylindrical Molecular Vacuum Pump Effecting on Its Characteristics

    Directory of Open Access Journals (Sweden)

    K. E. Demikhov

    2015-01-01

    Full Text Available In the context of modern industry the molecular vacuum pumps (MVP are widely used. The analyzed current market of vacuum technology enables drawing a conclusion that this equipment holds one of the leading positions among the high-vacuum facilities of pumping due to their advantages such as insensitivity to the atmosphere breakthrough, ability to pump out heavy gases quickly, rapid start-up time, and oil-free pumping.The earlier developed authors’ mathematical model and calculation program are used to assess the influence efficiency of the key geometrical parameters of flowing part of the cylindrical molecular pump on its main characteristics. The obtained dependences allow us to solve a relevant, but not completely resolved as yet problem of optimizing the high-vacuum pumping facilities in case of their operation in a wide range of pressures on the suction side.The paper presents graphs of the pumping speed and ratio of the cylindrical vacuum molecular pump pressures versus various parameters of the flowing part, such as the angle of inclination of the helix, the relative diameter and the number of helical starts. Conclusions are drawn.

  10. Energy Performance and Radial Force of a Mixed-Flow Pump with Symmetrical and Unsymmetrical Tip Clearances

    Directory of Open Access Journals (Sweden)

    Yue Hao

    2017-01-01

    Full Text Available The energy performance and radial force of a mixed flow pump with symmetrical and unsymmetrical tip clearance are investigated in this paper. As the tip clearance increases, the pump head and efficiency both decrease. The center of the radial force on the principal axis is located at the coordinate origin when the tip clearance is symmetrical, and moves to the third quadrant when the tip clearance is unsymmetrical. Analysis results show that the total radial force on the principal axis is closely related to the fluctuation of mass flow rate in each single flow channel. Unsteady simulations show that the dominant frequencies of radial force on the hub and blade correspond to the blade number, vane number, or double blade number because of the rotor stator interaction. The radial force on the blade pressure side decreases with the tip clearance increase because of leakage flow. The unsymmetrical tip clearances in an impeller induce uneven leakage flow rate and then result in unsymmetrical work ability of each blade and flow pattern in each channel. Thus, the energy performance decreases and the total radial force increases for a mixed flow pump with unsymmetrical tip clearance.

  11. Development of a magnetic fluid shaft seal for an axial-flow blood pump.

    Science.gov (United States)

    Sekine, Kazumitsu; Mitamura, Yoshinori; Murabayashi, Shun; Nishimura, Ikuya; Yozu, Ryouhei; Kim, Dong-Wook

    2003-10-01

    A rotating impeller in a rotary blood pump requires a supporting system in blood, such as a pivot bearing or magnetic suspension. To solve potential problems such as abrasive wear and complexity of a supporting system, a magnetic fluid seal was developed for use in an axial-flow blood pump. Sealing pressures at motor speeds of up to 8,000 rpm were measured with the seal immersed in water or bovine blood. The sealing pressure was about 200 mm Hg in water and blood. The calculated theoretical sealing pressure was about 230 mm Hg. The seal remained perfect for 743 days in a static condition and for 180+ days (ongoing test) at a motor speed of 7,000 rpm. Results of measurement of cell growth activity indicated that the magnetic fluid has no negative cytological effects. The specially designed magnetic fluid shaft seal is useful for an axial-flow blood pump.

  12. Operation of an organic Rankine cycle dependent on pumping flow rates and expander torques

    International Nuclear Information System (INIS)

    Yang, Xufei; Xu, Jinliang; Miao, Zheng; Zou, Jinghuang; Yu, Chao

    2015-01-01

    An ORC (organic Rankine cycle) was developed with R123 as the working fluid. The heat capacity is in ∼100 kW. The match between pump and expander is investigated. Lower pump frequencies (f 10 Hz) adapt low expander torques only, and cause unstable flow and pump cavitation for larger expander torques. Ultra-low expander torques generate sufficiently high vapor superheatings to decrease expander efficiencies. Ultra-high expander torques achieve saturation vapor at the expander inlet, causing liquid droplets induced shock wave to worsen expander performance. An optimal range of expander torques exists to have better expander performance. A liquid subcooling of 20 °C is necessary to avoid pump cavitation. Expander powers and efficiencies show parabola shapes versus expander torques, or vapor superheatings at the expander inlet. The optimal vapor superheating is 13 °C. The cavitation mechanisms and measures to avoid cavitation are analyzed. This paper notes the overestimation of ORC performance by equilibrium thermodynamic analysis. Assumptions should be dependent on experiments. Future studies are suggested on organic fluid flow, heat transfer and energy conversion in various components. - Highlights: • The match between pump and expander is investigated. • A liquid subcooling of 20 °C is needed at pump inlet. • A vapor superheating of 13 °C is necessary at expander inlet. • Cavitation in pumps and expanders are analyzed. • The equilibrium thermodynamics overestimate ORC performances.

  13. Electrokinetic pumps and actuators

    International Nuclear Information System (INIS)

    Phillip M. Paul

    2000-01-01

    Flow and ionic transport in porous media are central to electrokinetic pumping as well as to a host of other microfluidic devices. Electrokinetic pumping provides the ability to create high pressures (to over 10,000 psi) and high flow rates (over 1 mL/min) with a device having no moving parts and all liquid seals. The electrokinetic pump (EKP) is ideally suited for applications ranging from a high pressure integrated pump for chip-scale HPLC to a high flow rate integrated pump for forced liquid convection cooling of high-power electronics. Relations for flow rate and current fluxes in porous media are derived that provide a basis for analysis of complex microfluidic systems as well as for optimization of electrokinetic pumps

  14. Electrokinetic pumps and actuators

    Energy Technology Data Exchange (ETDEWEB)

    Phillip M. Paul

    2000-03-01

    Flow and ionic transport in porous media are central to electrokinetic pumping as well as to a host of other microfluidic devices. Electrokinetic pumping provides the ability to create high pressures (to over 10,000 psi) and high flow rates (over 1 mL/min) with a device having no moving parts and all liquid seals. The electrokinetic pump (EKP) is ideally suited for applications ranging from a high pressure integrated pump for chip-scale HPLC to a high flow rate integrated pump for forced liquid convection cooling of high-power electronics. Relations for flow rate and current fluxes in porous media are derived that provide a basis for analysis of complex microfluidic systems as well as for optimization of electrokinetic pumps.

  15. The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy

    DEFF Research Database (Denmark)

    Battelino, T; Conget, I; Olsen, B

    2012-01-01

    The aim of this multicentre, randomised, controlled crossover study was to determine the efficacy of adding continuous glucose monitoring (CGM) to insulin pump therapy (CSII) in type 1 diabetes.......The aim of this multicentre, randomised, controlled crossover study was to determine the efficacy of adding continuous glucose monitoring (CGM) to insulin pump therapy (CSII) in type 1 diabetes....

  16. Optical fiber grating vibration sensor for vibration monitoring of hydraulic pump

    Science.gov (United States)

    Zhang, Zhengyi; Liu, Chuntong; Li, Hongcai; He, Zhenxin; Zhao, Xiaofeng

    2017-06-01

    In view of the existing electrical vibration monitoring traditional hydraulic pump vibration sensor, the high false alarm rate is susceptible to electromagnetic interference and is not easy to achieve long-term reliable monitoring, based on the design of a beam of the uniform strength structure of the fiber Bragg grating (FBG) vibration sensor. In this paper, based on the analysis of the vibration theory of the equal strength beam, the principle of FBG vibration tuning based on the equal intensity beam is derived. According to the practical application of the project, the structural dimensions of the equal strength beam are determined, and the optimization design of the vibrator is carried out. The finite element analysis of the sensor is carried out by ANSYS, and the first order resonant frequency is 94.739 Hz. The vibration test of the sensor is carried out by using the vibration frequency of 35 Hz and the vibration source of 50 Hz. The time domain and frequency domain analysis results of test data show that the sensor has good dynamic response characteristics, which can realize the accurate monitoring of the vibration frequency and meet the special requirements of vibration monitoring of hydraulic pump under specific environment.

  17. A multi-phase ferrofluid flow model with equation of state for thermomagnetic pumping and heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Aursand, Eskil, E-mail: eskil.aursand@sintef.no; Gjennestad, Magnus Aa.; Yngve Lervåg, Karl; Lund, Halvor

    2016-03-15

    A one-dimensional multi-phase flow model for thermomagnetically pumped ferrofluid with heat transfer is proposed. The thermodynamic model is a combination of a simplified particle model and thermodynamic equations of state for the base fluid. The magnetization model is based on statistical mechanics, taking into account non-uniform particle size distributions. An implementation of the proposed model is validated against experiments from the literature, and found to give good predictions for the thermomagnetic pumping performance. However, the results reveal a very large sensitivity to uncertainties in heat transfer coefficient predictions. - Highlights: • A multi-phase flow model for thermomagnetically pumped ferrofluid is proposed. • An implementation is validated against experiments from the literature. • Predicted thermomagnetic pumping effect agrees with experiments. • However, a very large sensitivity to heat transfer coefficient is revealed.

  18. Monitoring the ground water level change during the pump test by using the Electric resistivity tomography

    Science.gov (United States)

    Hsu, H.; Chang, P. Y.; Yao, H. J.

    2017-12-01

    For hydrodynamics study of the unconfined aquifer in gravel formation, a pumping test was established to estimate the hydraulic conductivity in the midstream of Zhoushui River in Taiwan. The hydraulic parameters and the cone of depression could be estimated by monitoring the groundwater drawdown in an observation well which was in a short distance far from the pumping well. In this study we carried out the electric resistivity image monitoring during the whole pumping test. The electric resistivity data was measured with the surface and downhole electrodes which would produce a clear subsurface image of groundwater level through a larger distance than the distance between pumping and observation wells. The 2D electric image could also describe how a cone of depression truly created at subsurface. The continuous records could also show the change of groundwater level during the whole pumping test which could give a larger scale of the hydraulic parameters.

  19. Detection of pump degradation

    International Nuclear Information System (INIS)

    Casada, D.

    1994-01-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous spectral vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition: advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed

  20. Analysis of data obtained in two-phase flow tests of primary heat transport pumps

    International Nuclear Information System (INIS)

    Currie, T.C.

    1986-06-01

    This report analyzes data obtained in two-phase flow tests of primary heat transport pumps performed during the period 1980-1983. Phenomena which have been known to cause pump-induced flow oscillations in pressurized piping systems under two-phase conditions are reviewed and the data analyzed to determine whether any of the identified phenomena could have been responsible for the instabilities observed in those tests. Tentative explanations for the most severe instabilities are given based on those analyses. It is shown that suction pipe geometry probably plays an important role in promoting instabilities, so additional experiments to investigate the effect of suction pipe geometry on the stability of flow in a closed pipe loop under two-phase conditions are recommended

  1. Design and optimization of a large flow rate booster pump in SWRO energy recovery system

    International Nuclear Information System (INIS)

    Lai, Z N; Wu, P; Wu, D Z; Wang, L Q

    2013-01-01

    Seawater reverse osmosis (SWRO) is a high energy-consumption industry, so energy efficiency is an important issue. Energy recovery systems, which contain a pressure exchanger and a booster pump, are widely used in SWRO plants. As a key part of energy recovery system, the difficulty of designing booster pumps lies in high inlet pressure, high medium causticity and large flow rate. High inlet pressure adds difficulties to seal design, and large flow rate and high efficiency requirement bring high demand for hydraulic design. In this paper, a 625 m 3 /h booster pump is designed and optimized according to the CFD (Computational Fluid Dynamics) simulation results. The impeller and volute is well designed, a new type of high pressure mechanical seal is applied and axial force is well balanced. After optimization based on blade redesign, the efficiency of the pump was improved. The best efficiency reaches more than 85% at design point according to the CFD simulation result

  2. Design and optimization of a large flow rate booster pump in SWRO energy recovery system

    Science.gov (United States)

    Lai, Z. N.; Wu, P.; Wu, D. Z.; Wang, L. Q.

    2013-12-01

    Seawater reverse osmosis (SWRO) is a high energy-consumption industry, so energy efficiency is an important issue. Energy recovery systems, which contain a pressure exchanger and a booster pump, are widely used in SWRO plants. As a key part of energy recovery system, the difficulty of designing booster pumps lies in high inlet pressure, high medium causticity and large flow rate. High inlet pressure adds difficulties to seal design, and large flow rate and high efficiency requirement bring high demand for hydraulic design. In this paper, a 625 m3/h booster pump is designed and optimized according to the CFD (Computational Fluid Dynamics) simulation results. The impeller and volute is well designed, a new type of high pressure mechanical seal is applied and axial force is well balanced. After optimization based on blade redesign, the efficiency of the pump was improved. The best efficiency reaches more than 85% at design point according to the CFD simulation result.

  3. Investigation on transient flow of a centrifugal charging pump in the process of high pressure safety injection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan, E-mail: zhangfan4060@gmail.com; Yuan, Shouqi; Fu, Qiang; Tao, Yi

    2015-11-15

    Highlights: • The transient flow characteristics of the charging pump with the first stage impeller in the HPSI process have been investigated numerically by CFD. • The hydraulic performance of the charging pump during the HPSI are discussed, andthe absolute errors between the simulated and measured results are analyzed in the paper. • Pressure fluctuation in the impeller and flow pattern in the impeller were studied in the HPSI process. It is influenced little at the beginning of the HPSI process while fluctuates strongly in the end of the HPSI process. - Abstract: In order to investigate the transient flow characteristics of the centrifugal charging pump during the transient transition process of high pressure safety injection (HPSI) from Q = 148 m{sup 3}/h to Q = 160 m{sup 3}/h, numerical simulation and experiment are implemented in this study. The transient flow rate, which is the most important factor, is obtained from the experiment and works as the boundary condition to accurately accomplish the numerical simulation in the transient process. Internal characteristics under the variable operating conditions are analyzed through the transient simulation. The results shows that the absolute error between the simulated and measured heads is less than 2.26% and the absolute error between the simulated and measured efficiency is less than 2.04%. Pressure fluctuation in the impeller is less influenced by variable flow rate in the HPSI process, while flow pattern in the impeller is getting better and better with the flow rate increasing. As flow rate increases, fluid blocks on the tongue of the volute and it strikes in this area at large flow rate. Correspondingly, the pressure fluctuation is intense and vortex occurs gradually during this period, which obviously lowers the efficiency of the pump. The contents of the current work can provide references for the design optimization and fluid control of the pump used in the transient process of variable operating

  4. Investigation on transient flow of a centrifugal charging pump in the process of high pressure safety injection

    International Nuclear Information System (INIS)

    Zhang, Fan; Yuan, Shouqi; Fu, Qiang; Tao, Yi

    2015-01-01

    Highlights: • The transient flow characteristics of the charging pump with the first stage impeller in the HPSI process have been investigated numerically by CFD. • The hydraulic performance of the charging pump during the HPSI are discussed, andthe absolute errors between the simulated and measured results are analyzed in the paper. • Pressure fluctuation in the impeller and flow pattern in the impeller were studied in the HPSI process. It is influenced little at the beginning of the HPSI process while fluctuates strongly in the end of the HPSI process. - Abstract: In order to investigate the transient flow characteristics of the centrifugal charging pump during the transient transition process of high pressure safety injection (HPSI) from Q = 148 m"3/h to Q = 160 m"3/h, numerical simulation and experiment are implemented in this study. The transient flow rate, which is the most important factor, is obtained from the experiment and works as the boundary condition to accurately accomplish the numerical simulation in the transient process. Internal characteristics under the variable operating conditions are analyzed through the transient simulation. The results shows that the absolute error between the simulated and measured heads is less than 2.26% and the absolute error between the simulated and measured efficiency is less than 2.04%. Pressure fluctuation in the impeller is less influenced by variable flow rate in the HPSI process, while flow pattern in the impeller is getting better and better with the flow rate increasing. As flow rate increases, fluid blocks on the tongue of the volute and it strikes in this area at large flow rate. Correspondingly, the pressure fluctuation is intense and vortex occurs gradually during this period, which obviously lowers the efficiency of the pump. The contents of the current work can provide references for the design optimization and fluid control of the pump used in the transient process of variable operating conditions.

  5. Improving ecological response monitoring of environmental flows.

    Science.gov (United States)

    King, Alison J; Gawne, Ben; Beesley, Leah; Koehn, John D; Nielsen, Daryl L; Price, Amina

    2015-05-01

    Environmental flows are now an important restoration technique in flow-degraded rivers, and with the increasing public scrutiny of their effectiveness and value, the importance of undertaking scientifically robust monitoring is now even more critical. Many existing environmental flow monitoring programs have poorly defined objectives, nonjustified indicator choices, weak experimental designs, poor statistical strength, and often focus on outcomes from a single event. These negative attributes make them difficult to learn from. We provide practical recommendations that aim to improve the performance, scientific robustness, and defensibility of environmental flow monitoring programs. We draw on the literature and knowledge gained from working with stakeholders and managers to design, implement, and monitor a range of environmental flow types. We recommend that (1) environmental flow monitoring programs should be implemented within an adaptive management framework; (2) objectives of environmental flow programs should be well defined, attainable, and based on an agreed conceptual understanding of the system; (3) program and intervention targets should be attainable, measurable, and inform program objectives; (4) intervention monitoring programs should improve our understanding of flow-ecological responses and related conceptual models; (5) indicator selection should be based on conceptual models, objectives, and prioritization approaches; (6) appropriate monitoring designs and statistical tools should be used to measure and determine ecological response; (7) responses should be measured within timeframes that are relevant to the indicator(s); (8) watering events should be treated as replicates of a larger experiment; (9) environmental flow outcomes should be reported using a standard suite of metadata. Incorporating these attributes into future monitoring programs should ensure their outcomes are transferable and measured with high scientific credibility.

  6. Improving Ecological Response Monitoring of Environmental Flows

    Science.gov (United States)

    King, Alison J.; Gawne, Ben; Beesley, Leah; Koehn, John D.; Nielsen, Daryl L.; Price, Amina

    2015-05-01

    Environmental flows are now an important restoration technique in flow-degraded rivers, and with the increasing public scrutiny of their effectiveness and value, the importance of undertaking scientifically robust monitoring is now even more critical. Many existing environmental flow monitoring programs have poorly defined objectives, nonjustified indicator choices, weak experimental designs, poor statistical strength, and often focus on outcomes from a single event. These negative attributes make them difficult to learn from. We provide practical recommendations that aim to improve the performance, scientific robustness, and defensibility of environmental flow monitoring programs. We draw on the literature and knowledge gained from working with stakeholders and managers to design, implement, and monitor a range of environmental flow types. We recommend that (1) environmental flow monitoring programs should be implemented within an adaptive management framework; (2) objectives of environmental flow programs should be well defined, attainable, and based on an agreed conceptual understanding of the system; (3) program and intervention targets should be attainable, measurable, and inform program objectives; (4) intervention monitoring programs should improve our understanding of flow-ecological responses and related conceptual models; (5) indicator selection should be based on conceptual models, objectives, and prioritization approaches; (6) appropriate monitoring designs and statistical tools should be used to measure and determine ecological response; (7) responses should be measured within timeframes that are relevant to the indicator(s); (8) watering events should be treated as replicates of a larger experiment; (9) environmental flow outcomes should be reported using a standard suite of metadata. Incorporating these attributes into future monitoring programs should ensure their outcomes are transferable and measured with high scientific credibility.

  7. Swarm intelligence based on modified PSO algorithm for the optimization of axial-flow pump impeller

    International Nuclear Information System (INIS)

    Miao, Fuqing; Kim, Chol Min; Ahn, Seok Young; Park, Hong Seok

    2015-01-01

    This paper presents a multi-objective optimization of the impeller shape of an axial-flow pump based on the Modified particle swarm optimization (MPSO) algorithm. At first, an impeller shape was designed and used as a reference in the optimization process then NPSHr and η of the axial flow pump were numerically investigated by using the commercial software ANSYS with the design variables concerning hub angle β_h, chord angle β_c, cascade solidity of chord σ_c and maximum thickness of blade H. By using the Group method of data handling (GMDH) type neural networks in commercial software DTREG, the corresponding polynomial representation for NPSHr and η with respect to the design variables were obtained. A benchmark test was employed to evaluate the performance of the MPSO algorithm in comparison with other particle swarm algorithms. Later the MPSO approach was used for Pareto based optimization. Finally, the MPSO optimization result and CFD simulation result were compared in a re-evaluation process. By using swarm intelligence based on the modified PSO algorithm, better performance pump with higher efficiency and lower NPSHr could be obtained. This novel algorithm was successfully applied for the optimization of axial-flow pump impeller shape design

  8. Swarm intelligence based on modified PSO algorithm for the optimization of axial-flow pump impeller

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Fuqing; Kim, Chol Min; Ahn, Seok Young [Pusan National University, Busan (Korea, Republic of); Park, Hong Seok [Ulsan University, Ulsan (Korea, Republic of)

    2015-11-15

    This paper presents a multi-objective optimization of the impeller shape of an axial-flow pump based on the Modified particle swarm optimization (MPSO) algorithm. At first, an impeller shape was designed and used as a reference in the optimization process then NPSHr and η of the axial flow pump were numerically investigated by using the commercial software ANSYS with the design variables concerning hub angle β{sub h}, chord angle β{sub c}, cascade solidity of chord σ{sub c} and maximum thickness of blade H. By using the Group method of data handling (GMDH) type neural networks in commercial software DTREG, the corresponding polynomial representation for NPSHr and η with respect to the design variables were obtained. A benchmark test was employed to evaluate the performance of the MPSO algorithm in comparison with other particle swarm algorithms. Later the MPSO approach was used for Pareto based optimization. Finally, the MPSO optimization result and CFD simulation result were compared in a re-evaluation process. By using swarm intelligence based on the modified PSO algorithm, better performance pump with higher efficiency and lower NPSHr could be obtained. This novel algorithm was successfully applied for the optimization of axial-flow pump impeller shape design.

  9. Generating pulsatility by pump speed modulation with continuous-flow total artificial heart in awake calves.

    Science.gov (United States)

    Fukamachi, Kiyotaka; Karimov, Jamshid H; Sunagawa, Gengo; Horvath, David J; Byram, Nicole; Kuban, Barry D; Dessoffy, Raymond; Sale, Shiva; Golding, Leonard A R; Moazami, Nader

    2017-12-01

    The purpose of this study was to evaluate the effects of sinusoidal pump speed modulation of the Cleveland Clinic continuous-flow total artificial heart (CFTAH) on hemodynamics and pump flow in an awake chronic calf model. The sinusoidal pump speed modulations, performed on the day of elective sacrifice, were set at ±15 and ± 25% of mean pump speed at 80 bpm in four awake calves with a CFTAH. The systemic and pulmonary arterial pulse pressures increased to 12.0 and 12.3 mmHg (±15% modulation) and to 15.9 and 15.7 mmHg (±25% modulation), respectively. The pulsatility index and surplus hemodynamic energy significantly increased, respectively, to 1.05 and 1346 ergs/cm at ±15% speed modulation and to 1.51 and 3381 ergs/cm at ±25% speed modulation. This study showed that it is feasible to generate pressure pulsatility with pump speed modulation; the platform is suitable for evaluating the physiologic impact of pulsatility and allows determination of the best speed modulations in terms of magnitude, frequency, and profiles.

  10. Calibration measurements using the ORNL fissile mass flow monitor

    International Nuclear Information System (INIS)

    March-Leuba, J.; Uckan, T.; Sumner, J.; Mattingly, J.; Mihalczo, J.

    1998-01-01

    This paper presents a demonstration of fissile-mass-flow measurements using the Oak Ridge National Laboratory (ORNL) Fissile Mass Flow Monitor in the Paducah Gaseous Diffusion Plant (PGDP). This Flow Monitor is part of a Blend Down Monitoring System (BDMS) that will be installed in at least two Russian Federation (R.F.) blending facilities. The key objectives of the demonstration of the ORNL Flow Monitor are two: (a) demonstrate that the ORNL Flow Monitor equipment is capable of reliably monitoring the mass flow rate of 235 UF 6 gas, and (b) provide a demonstration of ORNL Flow Monitor system in operation with UF 6 flow for a visiting R.F. delegation. These two objectives have been met by the PGDP demonstration, as presented in this paper

  11. A reciprocating liquid helium pump used for forced flow of supercritical helium

    International Nuclear Information System (INIS)

    Krafft, G.; Zahn, G.

    1978-01-01

    The performance of a small double acting piston pump for circulating helium in a closed heat transfer loop is described. The pump was manufactured by LINDE AG, Munich, West Germany. The measured flow rate of supercritical helium was about 17 gs -1 (500 lhr -1 ) with a differential pressure of Δp = 0.5 x 10 5 Nm -2 at a working pressure of p = 6 x 10 5 Nm -2 . At differential pressures beyond 0.5 x 10 5 Nm -2 the volumetric efficiency decreases. (author)

  12. Gas flow through the clearances of screw spindle vacuum pumps; Gasspaltstroemungen in Schraubenspindel-Vakuumpumpen

    Energy Technology Data Exchange (ETDEWEB)

    Kauder, K.; Wenderott, D. [Dortmund Univ. (Germany). FG Fluidenergiemaschinen

    1998-12-31

    The documentation `Schraubenmaschinen` deals with the subject `screw spindle vacuum pump` for the first time. Therefore, this paper presents the type of maschine `screw spindle vacuum pump`, fixes its limits to the better known screw type compressor and finally classifies it in the crossover of vacuum-technology, characteristic geometry and the numerical simulation. The suggested reflections to choose a proper model of flow are based on the geometry of the screw spindle vacuum pump and fundamentals concerning the vacuum-technology and the state of flow. (orig.) [Deutsch] Die Schriftenreihe `Schraubenmaschinen` behandelt erstmals das Thema `Schraubenspindel-Vakuumpumpe`. Aus diesem Grund stellt der vorliegende Beitrag den Maschinentyp Schraubenspindel-Vakuumpumpe vor, grenzt ihn zur bekannteren Schraubenmaschine ab und ordnet ihn in der Schnittmenge aus Vakuumtechnik, charakteristischer Maschinengeometrie und der Simulation ein. Auf den vakuumtechnischen und stroemungstechnischen Grundlagen sowie geometrischen Betrachtungen basieren die genannten Ueberlegungen zur Auswahl geeigneter Stroemungsmodelle. (orig.)

  13. Experimental study of centrifugal pump performance under steam-water two-phase flow conditions at elevated pressures

    International Nuclear Information System (INIS)

    Chan, A.M.C.; Barreca, S.L.; Hartlen, R.T.

    1991-01-01

    The performance of a centrifugal pump under two-phase flow conditions was studied in a closed loop. System voids of increasing magnitude were attained by draining water from the loop in steps. The operating temperature/pressure were varied from 110 degrees C/0.15 MPa to 260 degrees C/4.7 MPa. Only tests in the first quadrant were conducted. In this paper the head-flow characteristics and pump head degradation data are presented and discussed

  14. Ultrafast X-ray tomography for two-phase flow analysis in centrifugal pumps

    International Nuclear Information System (INIS)

    Schaefer, Thomas; Hampel, Uwe; Technische Univ. Dresden

    2017-01-01

    The unsteady behavior of gas-liquid two-phase flow in a centrifugal pump impeller has been visualized, using ultrafast X-ray tomography. Based on the reconstructed tomographic images an evaluation and detailed analysis of the flow conditions has been done. Here, the high temporal resolution of the tomographic images offered the opportunity to get a deep insight into the flow to perform a detailed description of the transient gas-liquid phase distribution inside the impeller. Significant properties of the occurring two-phase flow and characteristic flow patterns have been disclosed. Furthermore, the effects of different air entrainment conditions have been investigated and typical phase distributions inside the impeller have been shown.

  15. Ultrafast X-ray tomography for two-phase flow analysis in centrifugal pumps

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Thomas [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Fluid Dynamics; Hampel, Uwe [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Fluid Dynamics; Technische Univ. Dresden (Germany). AREVA Endowed Chair of Imaging Techniques in Energy and Process Engineering

    2017-07-15

    The unsteady behavior of gas-liquid two-phase flow in a centrifugal pump impeller has been visualized, using ultrafast X-ray tomography. Based on the reconstructed tomographic images an evaluation and detailed analysis of the flow conditions has been done. Here, the high temporal resolution of the tomographic images offered the opportunity to get a deep insight into the flow to perform a detailed description of the transient gas-liquid phase distribution inside the impeller. Significant properties of the occurring two-phase flow and characteristic flow patterns have been disclosed. Furthermore, the effects of different air entrainment conditions have been investigated and typical phase distributions inside the impeller have been shown.

  16. A New Application of Support Vector Machine Method: Condition Monitoring and Analysis of Reactor Coolant Pump

    International Nuclear Information System (INIS)

    Meng Qinghu; Meng Qingfeng; Feng Wuwei

    2012-01-01

    Fukushima nuclear power plant accident caused huge losses and pollution and it showed that the reactor coolant pump is very important in a nuclear power plant. Therefore, to keep the safety and reliability, the condition of the coolant pump needs to be online condition monitored and fault analyzed. In this paper, condition monitoring and analysis based on support vector machine (SVM) is proposed. This method is just to aim at the small sample studies such as reactor coolant pump. Both experiment data and field data are analyzed. In order to eliminate the noise and useless frequency, these data are disposed through a multi-band FIR filter. After that, a fault feature selection method based on principal component analysis is proposed. The related variable quantity is changed into unrelated variable quantity, and the dimension is descended. Then the SVM method is used to separate different fault characteristics. Firstly, this method is used as a two-kind classifier to separate each two different running conditions. Then the SVM is used as a multiple classifier to separate all of the different condition types. The SVM could separate these conditions successfully. After that, software based on SVM was designed for reactor coolant pump condition analysis. This software is installed on the reactor plant control system of Qinshan nuclear power plant in China. It could monitor the online data and find the pump mechanical fault automatically.

  17. Self-pumping effects and radiation linewidth of Josephson flux-flow oscillators

    DEFF Research Database (Denmark)

    Koshelets, V.P.; Shitov, S.V.; Shchukin, A.V.

    1997-01-01

    Flux-flow oscillators (FFO's) are being developed for integration with a SIS mixer for use in submillimeter wave receivers, The present work contains a detailed experimental study of the dc, microwave, and noise properties of Nb-AlOx-Nb FFO's, A model based on the Josephson self-pumping effect...

  18. Flow characteristics of guide vane of diffuser pump by PIV measurement

    International Nuclear Information System (INIS)

    Kim, J. H.; Lee, Young Ho; Choi, J. W.; Kim, M. Y.; Lee, H.

    2000-01-01

    The present experimental study is focused on the application of multi-point simultaneous measurement by PIV(Particle Image Velocimetry) to guide vane region within a diffuser pump. Various different kinds of clearance were selected as experimental conditions. Optimized cross correlation identification to obtain velocity vectors was implemented with direct calculation of correlation coefficients. Fine optical setup important in PIV performance is arranged for the accurate PIV measurement of high-speed complex flow. Various flow patterns are represented quantitatively at the stator passages

  19. Supercritical waste oxidation pump investigation

    International Nuclear Information System (INIS)

    Thurston, G.; Garcia, K.

    1993-02-01

    This report investigates the pumping techniques and pumping equipment that would be appropriate for a 5,000 gallon per day supercritical water oxidation waste disposal facility. The pumps must boost water, waste, and additives from atmospheric pressure to approximately 27.6 MPa (4,000 psia). The required flow ranges from 10 gpm to less than 0.1 gpm. For the higher flows, many commercial piston pumps are available. These pumps have packing and check-valves that will require periodic maintenance; probably at 2 to 6 month intervals. Several commercial diaphragm pumps were also discovered that could pump the higher flow rates. Diaphragm pumps have the advantage of not requiring dynamic seals. For the lower flows associated with the waste and additive materials, commercial diaphragm pumps. are available. Difficult to pump materials that are sticky, radioactive, or contain solids, could be injected with an accumulator using an inert gas as the driving mechanism. The information presented in this report serves as a spring board for trade studies and the development of equipment specifications

  20. Study and development of an air conditioning system operating on a magnetic heat pump cycle (design and testing of flow directors)

    Science.gov (United States)

    Wang, Pao-Lien

    1992-01-01

    This report describes the fabrication, design of flow director, fluid flow direction analysis and testing of flow director of a magnetic heat pump. The objectives of the project are: (1) to fabricate a demonstration magnetic heat pump prototype with flow directors installed; and (2) analysis and testing of flow director and to make sure working fluid loops flow through correct directions with minor mixing. The prototype was fabricated and tested at the Development Testing Laboratory of Kennedy Space Center. The magnetic heat pump uses rear earth metal plates rotate in and out of a magnetic field in a clear plastic housing with water flowing through the rotor plates to provide temperature lift. Obtaining the proper water flow direction has been a problem. Flow directors were installed as flow barriers between separating point of two parallel loops. Function of flow directors were proven to be excellent both analytically and experimentally.

  1. CFD simulation of flow through single and multi vane spiral pump for low pressure application using moving node unsteady computation

    International Nuclear Information System (INIS)

    Banerjee, I.; Mahendra, A.K.; Chandresh, B.G.; Srikanthan, M.R.; Bera, T.K.

    2010-01-01

    A spiral pump uses two interleaved spirals (it can be involutes of a circle, involutes of a square, hybrid wraps, Archimedean spiral, logarithmic spirals and so on). Interleaved spiral orbits eccentrically without rotation around a fixed scroll, thereby trapping and compressing pockets of fluids between the spirals. Another method of providing the compression motion is by virtue of co-rotating the spirals synchronously with an offset in centers of rotation thereby providing relative motion similar to orbiting. Recently spiral pumps for low-pressure application have become popular. Since spiral pumps contain gas volumes, whose shapes and size change continuously, the flow fields inside the pumps is time dependent. The unsteadiness controls the mechanisms responsible for the behavior of the spiral pump components. To improve the spiral pump design for better performance as per our process requirement and reliability, information is required to understand the detailed physics of the unsteady flows inside the spiral pumps. The unsteady flows in a pump are studied numerically. The system simulated includes one side gap between fixed and moving spirals as the other side lies just in the reverse symmetry of the one side. Heavy molecular weight, condensable gas is used as the moving fluid. The mesh free Least Square Kinetic Upwind Method (LSKUM) for moving node is applied for numerical analysis of wobbling spiral. Nodes and boundaries change their positions, for every real time step hence at every iteration nodes take new coordinates. Our work consists of identifying various spiral dimensions and geometry, geometric modeling of suction process, identifying the eccentric orbiting motion of the moving spiral, formation of variable velocity moving nodes. Flow analysis of the spiral pump is done with a view to design and develop new pump as per our requirement. Experimental data from an existing spiral pump is used to carryout validation of the code. (author)

  2. Hydraulic performance numerical simulation of high specific speed mixed-flow pump based on quasi three-dimensional hydraulic design method

    International Nuclear Information System (INIS)

    Zhang, Y X; Su, M; Hou, H C; Song, P F

    2013-01-01

    This research adopts the quasi three-dimensional hydraulic design method for the impeller of high specific speed mixed-flow pump to achieve the purpose of verifying the hydraulic design method and improving hydraulic performance. Based on the two families of stream surface theory, the direct problem is completed when the meridional flow field of impeller is obtained by employing iterative calculation to settle the continuity and momentum equation of fluid. The inverse problem is completed by using the meridional flow field calculated in the direct problem. After several iterations of the direct and inverse problem, the shape of impeller and flow field information can be obtained finally when the result of iteration satisfies the convergent criteria. Subsequently the internal flow field of the designed pump are simulated by using RANS equations with RNG k-ε two-equation turbulence model. The static pressure and streamline distributions at the symmetrical cross-section, the vector velocity distribution around blades and the reflux phenomenon are analyzed. The numerical results show that the quasi three-dimensional hydraulic design method for high specific speed mixed-flow pump improves the hydraulic performance and reveal main characteristics of the internal flow of mixed-flow pump as well as provide basis for judging the rationality of the hydraulic design, improvement and optimization of hydraulic model

  3. Imaging the Flow Networks from a Harmonic Pumping in a Karstic Field with an Inversion Algorithm

    Science.gov (United States)

    Fischer, P.; Lecoq, N.; Jardani, A.; Jourde, H.; Wang, X.; Chedeville, S.; Cardiff, M. A.

    2017-12-01

    Identifying flow paths within karstic fields remains a complex task because of the high dependency of the hydraulic responses to the relative locations between the observation boreholes and the karstic conduits and interconnected fractures that control the main flows of the hydrosystem. In this context, harmonic pumping is a new investigation tool that permits to inform on the flow paths connectivity between the boreholes. We have shown that the amplitude and phase offset values in the periodic responses of a hydrosystem to a harmonic pumping test characterize three different type of flow behavior between the measurement boreholes and the pumping borehole: a direct connectivity response (conduit flow), an indirect connectivity (conduit and short matrix flows), and an absence of connectivity (matrix). When the hydraulic responses to study are numerous and complex, the interpretation of the flow paths requires an inverse modeling. Therefore, we have recently developed a Cellular Automata-based Deterministic Inversion (CADI) approach that permits to infer the spatial distribution of field hydraulic conductivities in a structurally constrained model. This method distributes hydraulic conductivities along linear structures (i.e. karst conduits) and iteratively modifies the structural geometry of this conduits network to progressively match the observed responses to the modeled ones. As a result, this method produces a conductivity model that is composed of a discrete conduit network embedded in the background matrix, capable of producing the same flow behavior as the investigated hydrologic system. We applied the CADI approach in order to reproduce, in a model, the amplitude and phase offset values of a set of periodic responses generated from harmonic pumping tests conducted in different boreholes at the Terrieu karstic field site (Southern France). This association of oscillatory responses with the CADI method provides an interpretation of the flow paths within the

  4. Verification of control system using inverter and canned motor pump

    International Nuclear Information System (INIS)

    Sawada, Yoshiaki; Misato, Hisashi

    2002-01-01

    Control on flow volume and so on of auxiliary systems at power stations is generally carried out by using control valves (CVs), of which numbers and kinds ranges to wide areas. CVs are required for periodical change of packing and so on, of which labor for maintenance is never few. Therefore, to reduce the maintenance of CVs, a system to operate pumps by using an inverter control was investigated. When carrying out flow control by an inverter, valves at output side of pumps was made perfectly open, but because of control on rotation numbers so as to keep required amount excess energy is never consumed. And, by reducing flow volume of a pump, consumed energy is reduced at a rate of its three powers as feature of pumps, so large energy saving effect can be established. Selected canned motor pumps have such characteristics as upgrading of reliability for leakage because of their seal-less ones and extension of periodical inspection period by setting a monitor for abrasion of bearings. As results of some investigations, it could be considered that a control system combining an inverter with a canned motor pump had equal feature as that of a control system using CVs. And, from a test result adding useless time and first order delay element to its control feature forecasting on its application to practical machine could be obtained. (G.K.)

  5. Power flow control based solely on slow feedback loop for heart pump applications.

    Science.gov (United States)

    Wang, Bob; Hu, Aiguo Patrick; Budgett, David

    2012-06-01

    This paper proposes a new control method for regulating power flow via transcutaneous energy transfer (TET) for implantable heart pumps. Previous work on power flow controller requires a fast feedback loop that needs additional switching devices and resonant capacitors to be added to the primary converter. The proposed power flow controller eliminates these additional components, and it relies solely on a slow feedback loop to directly drive the primary converter to meet the heart pump power demand and ensure zero voltage switching. A controlled change in switching frequency varies the resonant tank shorting period of a current-fed push-pull resonant converter, thus changing the magnitude of the primary resonant voltage, as well as the tuning between primary and secondary resonant tanks. The proposed controller has been implemented successfully using an analogue circuit and has reached an end-to-end power efficiency of 79.6% at 10 W with a switching frequency regulation range of 149.3 kHz to 182.2 kHz.

  6. Simulation of the flow obstruction of a jet pump in a BWR reactor with the code RELAP/SCDAPSIM

    International Nuclear Information System (INIS)

    Cardenas V, J.; Filio L, C.

    2016-09-01

    This work simulates the flow obstruction of a jet pump in one of the recirculation loops of a nuclear power plant with a reactor of type BWR at 100% of operating power, in order to analyze the behavior of the total flow of the refrigerant passing through the reactor core, the total flow in each recirculation loop of the reactor, together with the 10 jet pumps of each loop. The behavior of the power and the reactivity insertion due to the change of the refrigerant flow pattern is also analyzed. The simulation was carried out using the RELAP/SCDAPSIM version 3.5 code, using a reactor model with 10 jet pumps in each recirculation loop and a core consisting of 6 radial zones and 25 axial zones. The scenario postulates the flow obstruction in a jet pump in a recirculation loop A when the reactor operates at 100% rated power, causing a change in the total flow of refrigerant in the reactor core, leading to a decrease in power. Once the reactor conditions are established to its new power, the operator tries to recover the nominal power using the flow control valve of the recirculation loop A, opening stepwise as a strategy to safely recover the reactor power. In this analysis is assumed that the intention of the nuclear plant operator is to maintain the operation of the reactor during the established cycle. (Author)

  7. Monitoring measurements by the difference flow method during the year 2008. Drillholes OL-KR4 and OL-KR27

    International Nuclear Information System (INIS)

    Vaeisaesvaara, J.; Kristiansson, S.; Poellaenen, J.

    2009-08-01

    The Posiva Flow Log, Difference Flow Method (PFL DIFF) uses a flowmeter that incorporates a flow guide and can be used for relatively quick determinations of hydraulic conductivity and fresh water head in fractures/fractured zones in cored drillholes. This report presents the principles of the method and the results of measurements carried out in drillholes OL-KR4 and OL-KR27 at the Olkiluoto investigation site during the year 2008. These measurements are a part of the Olkiluoto monitoring programme. The section length of the flow guide in the flow logging measurements was either 2 m or 0.5 m. Flow into the drillhole or from the drillhole to the bedrock was measured within the section lengths and carried out in both pumped and natural (i.e. un-pumped) conditions. Calculations of the transmissivity (T) and the fresh water head (hfw) of the zones are shown in the results. The device used includes a sensor for single point resistance (SPR). SPR was measured in connection with flow measurements. The electrical conductivity (EC) of fracture-specific water was measured in chosen fractures in most of the drillholes. Fractures were selected on the basis of the measured flow from fracture to drillhole. In addition, some previously selected fractures were measured. The EC of the drillhole water was also measured. (orig.)

  8. Test of a cryogenic helium pump

    International Nuclear Information System (INIS)

    Lue, J.W.; Miller, J.R.; Walstrom, P.L.; Herz, W.

    1981-01-01

    The design of a cryogenic helium pump for circulating liquid helium in a magnet and the design of a test loop for measuring the pump performance in terms of mass flow vs pump head at various pump speeds are described. A commercial cryogenic helium pump was tested successfully. Despite flaws in the demountable connections, the piston pump itself has performed satisfactorily. A helium pump of this type is suitable for the use of flowing supercritical helium through Internally Cooled Superconductor (ICS) magnets. It has pumped supercritical helium up to 7.5 atm with a pump head up to 2.8 atm. The maximum mass flow rate obtained was about 16 g/s. Performance of the pump was degraded at lower pumping speeds

  9. Fluid-structure coupling in the guide vanes cascade of a pump-turbine scale model

    International Nuclear Information System (INIS)

    Roth, S; Hasmatuchi, V; Botero, F; Farhat, M; Avellan, F

    2010-01-01

    The present study concerns fluid-structure coupling phenomena occurring in a guide vane cascade of a pump-turbine scale model placed in the EPFL PF3 test rig. An advanced instrument set is used to monitor both vibrating structures and the surrounding flow. The paper highlights the interaction between vibrating guide vanes and the flow behavior. The pressure fluctuations in the stay vanes region are found to be strongly influenced by the amplitude of the vibrating guide vanes. Moreover, the flow induces different hydrodynamic damping on the vibrating guide vanes depending on the operating point of the pump-turbine.

  10. Fluid-structure coupling in the guide vanes cascade of a pump-turbine scale model

    Science.gov (United States)

    Roth, S.; Hasmatuchi, V.; Botero, F.; Farhat, M.; Avellan, F.

    2010-08-01

    The present study concerns fluid-structure coupling phenomena occurring in a guide vane cascade of a pump-turbine scale model placed in the EPFL PF3 test rig. An advanced instrument set is used to monitor both vibrating structures and the surrounding flow. The paper highlights the interaction between vibrating guide vanes and the flow behavior. The pressure fluctuations in the stay vanes region are found to be strongly influenced by the amplitude of the vibrating guide vanes. Moreover, the flow induces different hydrodynamic damping on the vibrating guide vanes depending on the operating point of the pump-turbine.

  11. Electroosmotic pumps for microflow analysis

    Science.gov (United States)

    Wang, Xiayan; Wang, Shili; Gendhar, Brina; Cheng, Chang; Byun, Chang Kyu; Li, Guanbin; Zhao, Meiping; Liu, Shaorong

    2009-01-01

    With rapid development in microflow analysis, electroosmotic pumps are receiving increasing attention. Compared to other micropumps, electroosmotic pumps have several unique features. For example, they are bi-directional, can generate constant and pulse-free flows with flow rates well suited to microanalytical systems, and can be readily integrated with lab-on-chip devices. The magnitude and the direction of flow of an electroosmotic pump can be changed instantly. In addition, electroosmotic pumps have no moving parts. In this article, we discuss common features, introduce fabrication technologies and highlight applications of electroosmotic pumps. PMID:20047021

  12. High-flow, low-head pumps provide safe passage for Pacific salmon

    International Nuclear Information System (INIS)

    Anon

    2004-01-01

    The installation of 29 ultra-low head, high capacity submersible pump and auxiliary equipment at the Rocky Reach Dam in Washington State to allow juvenile salmon safe passage on their journey down the Columbia River to the Pacific Ocean is described. The reputed cost of the project is US$160 million; its purpose is to get juvenile salmon safely around the Rocky Reach Dam without interfering with the dam's original mission of generating electric power. The project is the most expensive fish bypass on any Columbia River dam. Getting the salmon safely around the dam is intended to reduce the impact of hydroelectric power projects on the basin's salmon stocks which are now estimated at less than 10 per cent of their historic size, despite major hatchery programs. The Columbia River has the second largest volume flow of any river in the United States, and millions of people depend on it for employment in water-related industries, and for transportation. The new horizontally installed propeller pump was developed by ITT Flygt; it utilizes planetary gear reduced to match the motor speed with the propeller rpm. Each 90 kW propeller pump has a flow rate of seven cubic meters per second at a head of 0.55 metres. The auxiliary equipment includes 10 racks of flap gates to prevent reverse flow, electric controls, remote supervision, testing, installation and maintenance facilities. It is anticipated that the new bypass will allow the Chelan County Public Utility Department, owners of the facility, to phase out all current spills, except for a 16 per cent spill for 40 days each spring for Sockeye salmon which tend to travel too deep to use the bypass. Prior to installation of this new facility, 60 to 70 per cent of average daily flow in the spring and summer had to be sacrificed to accommodate all species of salmon and steelhead, with corresponding losses of power generating capacity

  13. Scavenged body heat powered infusion pump

    International Nuclear Information System (INIS)

    Bell, Alexander; Ehringer, William D; McNamara, Shamus

    2013-01-01

    An infusion pump powered by body heat is investigated in this paper, with the goal of addressing the needs of dermal wound healing. The infusion pump incorporates a Knudsen gas pump, a type of thermally driven pump, to pneumatic push the pharmaceutical agent from a reservoir. Two designs are considered: an integrated pump and reservoir, and a design with cascaded pump and reservoir. Thermal models are developed for both pumps, and the simulations agree well with the experimental results. The integrated pump and reservoir design uses hydrophobic materials to prevent a flow from occurring unless the infusion pump is placed on a human body. Flow rates in the µL min −1 range for the integrated pump and reservoir, and approximately 70 µL min −1 for the cascaded pump were obtained. The dynamic behavior of the cascaded pump is described based on the thermal models. Multiple copies of the cascaded pump are easily made in series or parallel, to increase either the pressure or the flow rate. The flow rate of multiple pumps in series does not change, and the pressure of multiple pumps in parallel does not change. (paper)

  14. Theoretical study of flow ripple for an aviation axial-piston pump with damping holes in the valve plate

    Directory of Open Access Journals (Sweden)

    Guan Changbin

    2014-02-01

    Full Text Available Based on the structure of a certain type of aviation axial-piston pump’s valve plate which adopts a pre-pressurization fluid path (consisting a damping hole, a buffer chamber, and an orifice to reduce flow ripple, a single-piston model of the aviation axial-piston pump is presented. This single-piston model comprehensively considers fluid compressibility, orifice restriction effect, fluid resistance in the capillary tube, and the leakage flow. Besides, the instantaneous discharge areas used in the single-piston model have been calculated in detail. Based on the single-piston model, a multi-piston pump model has been established according to the simple hydraulic circuit. The single- and multi-piston pump models have been realized by the S-function in Matlab/Simulink. The developed multi-piston pump model has been validated by being compared with the numerical result by computational fluid dynamic (CFD. The effects of the pre-pressurization fluid path on the flow ripple and the instantaneous pressure in the piston chamber have been studied and optimized design recommendations for the aviation axial-piston pump have been given out.

  15. Liquid metal monitor

    International Nuclear Information System (INIS)

    Caldwell-Nichols, C.J.; Roach, P.F.

    1982-01-01

    A liquid metal monitor of the by-pass plugging meter kind described in British Patent 1,308,466, is further provided with a pump arranged to oppose flow through a by-pass thereby to provide a constant pressure difference across an orifice and improve the sensitivity of the instrument. The monitor estimates the impurity content in a liquid metal stream. (author)

  16. Improvement of centrifugal pump performance through addition of splitter blades on impeller pump

    Science.gov (United States)

    Kurniawan, Krisna Eka; Santoso, Budi; Tjahjana, Dominicus Danardono Dwi Prija

    2018-02-01

    The workable way to improve pump performance is to redesign or modify the impellers of centrifugal pump. The purpose of impeller pump modification is to improve pump efficiency, reduce cross flow, reduce secondary incidence flows, and decrease backflow areas at impeller outlets. Number blades and splitter blades in the impeller are three. The outlet blade angle is 20°, and the rotating speed of impeller is 2400 rpm. The added splitter blades variations are 0.25, 0.375, and 0.5 of the original blade length. The splitter blade placements are on the outer side of the impeller. The addition of splitter blades on the outer side of the impeller with 0.5L increases the pump head until 22% and the pump has 38.66% hydraulic efficiency. The best efficiency point of water flow rate pump (Qbep) was 3.02 × 10-3 m3/s.

  17. A study on tip leakage vortex dynamics and cavitation in axial-flow pump

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Lei; Zhang, Desheng; Jin, Yongxin; Shi, Weidong [Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013 (China); Esch, B P M van, E-mail: zds@ujs.edu.cn [Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB (Netherlands)

    2017-06-15

    The tip leakage flows and related cavitation in the tip region of an axial-flow pump were investigated in detail using the numerical and experimental methods. The numerical results of the pump model performance were in good agreement with experimental data. The flow structures in the tip clearance were clarified clearly with detailed data involving the axial velocity and turbulent kinetic energy. When depicting the feature of vortex core, the advanced vortex identification method λ {sub 2}-criterion was used. Simultaneously, the minimum tension criterion was also applied to predict the cavitation inception for different flow rates and it is consistent with the distributions of vorticity and pressure in the vortex core. The roll-up process of TLV is highly three-dimensional and the entrainment would follow different paths. Then, both the numerical and experimental approaches show the cavitation patterns for different cavitation conditions, and it also finds that slight cavitation would promote the development of tip leakage vortex (TLV) while the TLV seems to be eliminated for a low cavitation number, especially before a specific location of blade tip due to the blade loading change induced by cavitation possibly. (paper)

  18. Numerical Investigations of Unsteady Flow in a Centrifugal Pump with a Vaned Diffuser

    Directory of Open Access Journals (Sweden)

    Olivier Petit

    2013-01-01

    Full Text Available Computational fluid dynamics (CFD analyses were made to study the unsteady three-dimensional turbulence in the ERCOFTAC centrifugal pump test case. The simulations were carried out using the OpenFOAM Open Source CFD software. The test case consists of an unshrouded centrifugal impeller with seven blades and a radial vaned diffuser with 12 vanes. A large number of measurements are available in the radial gap between the impeller and the diffuse, making this case ideal for validating numerical methods. Results of steady and unsteady calculations of the flow in the pump are compared with the experimental ones, and four different turbulent models are analyzed. The steady simulation uses the frozen rotor concept, while the unsteady simulation uses a fully resolved sliding grid approach. The comparisons show that the unsteady numerical results accurately predict the unsteadiness of the flow, demonstrating the validity and applicability of that methodology for unsteady incompressible turbomachinery flow computations. The steady approach is less accurate, with an unphysical advection of the impeller wakes, but accurate enough for a crude approximation. The different turbulence models predict the flow at the same level of accuracy, with slightly different results.

  19. Investigations of internal turbulent flows in a low-head tubular pump and its performance predictions

    International Nuclear Information System (INIS)

    Tang, X L; Chen, X S; Wang, F J; Yang, W; Wu, Y L

    2012-01-01

    Based on the RANS equations, standard k−ε turbulence model and SIMPLE algorithm, the internal turbulent flows in a low-head tubular pump were simulated by using the FLUENT software. Based on the predicted flow fields, the external performance curves including the head-discharge, efficiency-discharge and power-discharge curves were further obtained. The calculated results indicate that the internal flow pattern is smooth at the best efficiency point (BEP). When it works under off-design operating cases, the flow pattern inside the diffuser and the discharge passage is disorder, and at the same time, the hydraulic losses mainly come from the secondary flows. At large flow rates, the minimum static pressure near the inlet of the blade pressure surfaces due to the negative attack angle. At small flow rates, the minimum value happens near the inlet of the suction surfaces. At the BEP, the lowest static pressure appears in the region behind the suction surfaces inlet. The newly-designed model is validated by the comparisons between its predicted external performance and the experimental data of the JGM-3 model. This research provides some important references for the optimization of a low-head tubular pump.

  20. Pump element for a tube pump

    DEFF Research Database (Denmark)

    2011-01-01

    The invention relates to a tube pump comprising a tube and a pump element inserted in the tube, where the pump element comprises a rod element and a first and a second non-return valve member positioned a distance apart on the rod element. The valve members are oriented in the same direction...... relative to the rod element so as to allow for a fluid flow in the tube through the first valve member, along the rod element, and through the second valve member. The tube comprises an at least partly flexible tube portion between the valve members such that a repeated deformation of the flexible tube...... portion acts to alternately close and open the valve members thereby generating a fluid flow through the tube. The invention further relates to a pump element comprising at least two non-return valve members connected by a rod element, and for insertion in an at least partly flexible tube in such tube...

  1. The sponge pump: the role of current induced flow in the design of the sponge body plan.

    Directory of Open Access Journals (Sweden)

    Sally P Leys

    Full Text Available Sponges are suspension feeders that use flagellated collar-cells (choanocytes to actively filter a volume of water equivalent to many times their body volume each hour. Flow through sponges is thought to be enhanced by ambient current, which induces a pressure gradient across the sponge wall, but the underlying mechanism is still unknown. Studies of sponge filtration have estimated the energetic cost of pumping to be 0.75 with the ambient current velocity. During short bursts of high ambient current the sponges filtered two-thirds of the total volume of water they processed daily. Our model indicates that the head loss across the sponge collar filter is 10 times higher than previously estimated. The difference is due to the resistance created by a fine protein mesh that lines the collar, which demosponges also have, but was so far overlooked. Applying our model to the in situ measurements indicates that even modest pumping rates require an energetic expenditure of at least 28% of the total in situ respiration. We suggest that due to the high cost of pumping, current-induced flow is highly beneficial but may occur only in thin walled sponges living in high flow environments. Our results call for a new look at the mechanisms underlying current-induced flow and for reevaluation of the cost of biological pumping and its evolutionary role, especially in sponges.

  2. An improved dosimeter having constant flow pump

    International Nuclear Information System (INIS)

    Baker, W.B.

    1980-01-01

    A dosemeter designed for individual use which can be used to monitor toxic radon gas and toxic related products of radon gas in mines and which incorporates a constant air stream flowing through the dosimeter is described. (U.K.)

  3. The Sponge Pump: The Role of Current Induced Flow in the Design of the Sponge Body Plan

    Science.gov (United States)

    Leys, Sally P.; Yahel, Gitai; Reidenbach, Matthew A.; Tunnicliffe, Verena; Shavit, Uri; Reiswig, Henry M.

    2011-01-01

    Sponges are suspension feeders that use flagellated collar-cells (choanocytes) to actively filter a volume of water equivalent to many times their body volume each hour. Flow through sponges is thought to be enhanced by ambient current, which induces a pressure gradient across the sponge wall, but the underlying mechanism is still unknown. Studies of sponge filtration have estimated the energetic cost of pumping to be sponge Aphrocallistes vastus at a 150 m deep reef in situ and in a flow flume; we also modeled the glass sponge filtration system from measurements of the aquiferous system. Excurrent flow from the sponge osculum measured in situ and in the flume were positively correlated (r>0.75) with the ambient current velocity. During short bursts of high ambient current the sponges filtered two-thirds of the total volume of water they processed daily. Our model indicates that the head loss across the sponge collar filter is 10 times higher than previously estimated. The difference is due to the resistance created by a fine protein mesh that lines the collar, which demosponges also have, but was so far overlooked. Applying our model to the in situ measurements indicates that even modest pumping rates require an energetic expenditure of at least 28% of the total in situ respiration. We suggest that due to the high cost of pumping, current-induced flow is highly beneficial but may occur only in thin walled sponges living in high flow environments. Our results call for a new look at the mechanisms underlying current-induced flow and for reevaluation of the cost of biological pumping and its evolutionary role, especially in sponges. PMID:22180779

  4. Experiences in design up-gradation of mechanical seal cooling scheme of Dhruva PHT pumps

    International Nuclear Information System (INIS)

    Balakrishnan, K.T.P.

    2002-01-01

    Full text: Dhruva is a natural uranium fuelled high flux research reactor. Heavy water is used as coolant, moderator and reflector. Heat from the heavy water coolant is removed in heat exchangers by demineralised water. The heavy water coolant is re-circulated between the reactor core and the heat exchangers in three separate loops by three main coolant pumps (MCPs). The MCPs are high capacity centrifugal pumps and are rated for continuous service. The mechanical seal of the pump prevents leakage of the process fluid, which is heavy water, through the pump shaft. Continuous operation of the pump results in the heating up of the seal and necessitates sustained cooling. An integral cooling provision is made by tapping a 15 NB line from the discharge volute of the pump and feeding the process fluid itself as coolant to the seal. A non-indicating type flow-sensing device monitors flow through this line. Limiting values of flow are set and annunciated by a pair of magnetic reed type relays. This cooling line was a built in feature of the pumps as supplied by the manufacturer. This arrangement had the following inherent limitations: 1. There was no on line indication of the coolant flow. 2. The reed type magnetic relays initiated pump trips by spurious actuation, resulting in the interruption of reactor operation. Servicing a faulty flow switch involved lengthy procedures and necessitated draining, filling and venting of the pump. This entailed extended plant outages. Close proximity of these flow switches to a highly radioactive piping element imposed severe restrictions on the planned maintenance activity on them. Efforts were made to provide a suitable alternate cooling and flow measurement scheme to overcome the above-mentioned limitations. After evaluating the relative merits and demerits of several schemes, a turbine type flow sensor, on a modified cooling line was selected as the most suitable alternative. The alternate seal-cooling scheme was implemented for all

  5. Experiences in design up-gradation of mechanical seal cooling scheme of Dhruva PHT pumps

    International Nuclear Information System (INIS)

    Balakrishnan, K.T.P.; Bharathan, R.

    2002-01-01

    Full text: Dhruva is a natural uranium fuelled high flux research reactor. Heavy water is used as coolant, moderator and reflector. Heat from the heavy water coolant is removed in heat exchangers by demineralised water. The heavy water coolant is re-circulated between the reactor core and the heat exchangers in three separate loops by three main coolant pumps (MCPs). The MCPs are high capacity centrifugal pumps and are rated for continuous service. The mechanical seal of the pump prevents leakage of the process fluid, which is heavy water, through the pump shaft. Continuous operation of the pump results in the heating up of the seal and necessitates sustained cooling. An integral cooling provision is made by tapping a 15 NB line from the discharge volute of the pump and feeding the process fluid itself as coolant to the seal. A non-indicating type flow-sensing device monitors flow through this line. Limiting values of flow are set and annunciated by a pair of magnetic reed type relays. This cooling line was a built in feature of the pumps as supplied by the manufacturer. This arrangement had the following inherent limitations : 1. There was no on line indication of the coolant flow. 2. The reed type magnetic relays initiated pump trips by spurious actuation, resulting in the interruption of reactor operation. Servicing a faulty flow switch involved lengthy procedures and necessitated draining, filling and venting of the pump. This entailed extended plant outages. Close proximity of these flow switches to a highly radioactive piping element imposed severe restrictions on the planned maintenance activity on them. Efforts were made to provide a suitable alternate cooling and flow measurement scheme to overcome the above-mentioned limitations. After evaluating the relative merits and demerits of several schemes, a turbine type flow sensor, on a modified cooling line was selected as the most suitable alternative. The alternate seal-cooling scheme was implemented for all

  6. Rotary piston blood pumps: past developments and future potential of a unique pump type.

    Science.gov (United States)

    Wappenschmidt, Johannes; Autschbach, Rüdiger; Steinseifer, Ulrich; Schmitz-Rode, Thomas; Margreiter, Raimund; Klima, Günter; Goetzenich, Andreas

    2016-08-01

    The design of implantable blood pumps is either based on displacement pumps with membranes or rotary pumps. Both pump types have limitations to meet the clinical requirements. Rotary piston blood pumps have the potential to overcome these limitations and to merge the benefits. Compared to membrane pumps, they are smaller and with no need for wear-affected membranes and valves. Compared to rotary pumps, the blood flow is pulsatile instead of a non-physiological continuous flow. Furthermore, the risk of flow-induced blood damage and platelet activation may be reduced due to low shear stress to the blood. The past developments of rotary piston blood pumps are summarized and the main problem for long-term application is identified: insufficient seals. A new approach with seal-less drives is proposed and current research on a simplified rotary piston design is presented. Expert commentary: The development of blood pumps focuses mainly on the improvement of rotary pumps. However, medical complications indicate that inherent limitations of this pump type remain and restrict the next substantial step forward in the therapy of heart failure patients. Thus, research on different pump types is reasonable. If the development of reliable drives and bearings succeeds, rotary piston blood pumps become a promising alternative.

  7. Impact of typical steady-state conditions and transient conditions on flow ripple and its test accuracy for axial piston pump

    Science.gov (United States)

    Xu, Bing; Hu, Min; Zhang, Junhui

    2015-09-01

    The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated working conditions. However, the pump usually has to work in large-scale and time-variant working conditions. Therefore, the flow ripple characteristics of pump and analysis for its test accuracy with respect to variant steady-state conditions and transient conditions in a wide range of operating parameters are focused in this paper. First, a simulation model has been constructed, which takes the kinematics of oil film within friction pairs into account for higher accuracy. Afterwards, a test bed which adopts Secondary Source Method is built to verify the model. The simulation and tests results show that the angular position of the piston, corresponding to the position where the peak flow ripple is produced, varies with the different pressure. The pulsating amplitude and pulsation rate of flow ripple increase with the rise of pressure and the variation rate of pressure. For the pump working at a constant speed, the flow pulsation rate decreases dramatically with the increasing speed when the speed is less than 27.78% of the maximum speed, subsequently presents a small decrease tendency with the speed further increasing. With the rise of the variation rate of speed, the pulsating amplitude and pulsation rate of flow ripple increase. As the swash plate angle augments, the pulsating amplitude of flow ripple increases, nevertheless the flow pulsation rate decreases. In contrast with the effect of the variation of pressure, the test accuracy of flow ripple is more sensitive to the variation of speed. It makes the test accuracy above 96.20% available for the pulsating amplitude of pressure deviating within a range of ±6% from the mean pressure. However, with a variation of speed deviating within a range of ±2% from the mean speed, the attainable test

  8. Monitoring probe for groundwater flow

    Science.gov (United States)

    Looney, B.B.; Ballard, S.

    1994-08-23

    A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.

  9. Development of a tritium monitor combined with an electrochemical tritium pump using a proton conducting oxide

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, M. [National Institute for Fusion Science, Toki, Gifu (Japan); Sugiyama, T. [Nagoya University, Fro-cho, Chikusa-ku, Nagoya (Japan)

    2015-03-15

    The detection of low level tritium is one of the key issues for tritium management in tritium handling facilities. Such a detection can be performed by tritium monitors based on proton conducting oxide technique. We tested a tritium monitoring system composed of a commercial proportional counter combined with an electrochemical hydrogen pump equipped with CaZr{sub 0.9}In{sub 0.1}O{sub 3-α} as proton conducting oxide. The hydrogen pump operated at 973 K under electrolysis conditions using tritiated water vapor (HTO). The proton conducting oxide extracts tritium molecules (HT) from HTO and tritium concentration is measured by the proportional counter. The advantage of the proposed tritium monitoring system is that it is able to convert HTO into molecular hydrogen.

  10. Pumps in nuclear power plants

    International Nuclear Information System (INIS)

    Kim, J.H.

    1991-01-01

    This paper reports that pumps play an important role in nuclear plant operation. For instance, reactor coolant pumps (RCPs) should provide adequate cooling for reactor core in both normal operation and transient or accident conditions. Pumps such as Low Pressure Safety Injection (LPSI) pump in the Emergency Core Cooling System (ECCS) play a crucial role during an accident, and their reliability is of paramount importance. Some key issues involved with pumps in nuclear plant system include the performance of RCP under two-phase flow conditions, piping vibration due to pump operating in two-phase flows, and reliability of LPSI pumps

  11. Ischemia monitoring in off-pump coronary artery bypass surgery using intravascular near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Zerkowski Hans-Reinhard

    2006-05-01

    Full Text Available Abstract Background In off-pump coronary artery bypass surgery, manipulations on the beating heart can lead to transient interruptions of myocardial oxygen supply, which can generate an accumulation of oxygen-dependent metabolites in coronary venous blood. The objective of this study was to evaluate the reliability of intravascular near-infrared spectroscopy as a monitoring method to detect possible ischemic events in off-pump coronary artery bypass procedures. Methods In 15 elective patients undergoing off-pump myocardial revascularization, intravascular near-infrared spectroscopic analysis of coronary venous blood was performed. NIR signals were transferred through a fiberoptic catheter for signal emission and collection. For data analysis and processing, a miniature spectrophotometer with multivariate statistical package was used. Signal acquisition and analysis were performed before and after revascularization. Spectroscopic data were compared with hemodynamic parameters, electrocardiogram, transesophageal echocardiography and laboratory findings. Results A conversion to extracorporeal circulation was not necessary. The mean number of grafts per patient was 3.1 ± 0.6. An intraoperative myocardial ischemia was not evident, as indicated by electrocardiogram and transesophageal echocardiography. Continuous spectroscopic analysis showed reproducible absorption spectra of coronary sinus blood. Due to uneventful intraoperative courses, clear ischemia-related changes could be detected in none of the patients. Conclusion Our initial results show that intravascular near-infrared spectroscopy can reliably be used for an online intraoperative ischemia monitoring in off-pump coronary artery bypass surgery. However, the method has to be further evaluated and standardized to determine the role of spectroscopy in off-pump coronary artery bypass surgery.

  12. Pump-turbines with constant flow direction; Pumpenturbinen mit gleicher Durchstroemrichtung

    Energy Technology Data Exchange (ETDEWEB)

    Mollenkopf, G. [Zentrale Forschung Engineering, KSB AG, Frankenthal (Germany)

    1997-12-31

    This research project was sponsored by the federal ministry of science and technology BMFT (product owner: New Materials and Chemical Technologies - NMT). Its aim was to develop a novel unit that can work both as a pump and a turbine with a constant flow direction through internal blade adjustment. This specifically high-speed pump-turbine is suited for plants where a liquid in one case needs to be hauled against a rising pressure and where, in another case, there is a pressure drop in the same direction. So far, either a separate pump and turbine each are used which are temporarily stopped, involving corresponding effort, or - almost as a rule - the turbine is dispensed with, so that the energy locked up in the pressure drop goes unused. (orig.) [Deutsch] Die Zielsetzung unseres Forschungsvorhabens, das vom BMFT (Produkttraeger: Neue Materialien und Chemische Technologien - NMT) gefoerdert wird, war die Entwicklung eines neuartigen Aggregats, das durch interne Schaufelverstellung in der Lage ist, sowohl als Pumpe als auch als Turbine mit gleichbleibender Durchstroemrichtung zu arbeiten. Diese spezifisch schnellaeufige Pumpturbine kommt fuer Anlagen in Frage, in denen eine Fluessigkeit im einen Fall gegen einen anstehenden Druck gefoerdert werden muss und im anderen Fall in gleicher Richtung ein Druckgefaelle zur Verfuegung steht. Entweder werden bisher getrennt aufgestellte Pumpen und Turbinen mit zeitweisem Stillstand und entsprechendem Aufwand eingesetzt oder es wird - fast in der Regel - auf die Turbine und damit auf die im Druckgefaelle enthaltene Energie verzichtet. (orig.)

  13. Rational ore deposit drilling pattern with construction of cluster pumping wells in the artesian flow conditions

    International Nuclear Information System (INIS)

    Matunov, A.; Pershin, M.

    2014-01-01

    Drilling pattern and quantity of technological (injection and production) wells in the uranium in-situ leaching is determined by the projection of ore deposit to the daylight surface, structure and hydrogeological characteristics of ore-bearing deposits and given well field productivity. The difference between the structure of production and injection wells lies in that the upper part of production well has a submersible pump which, compared to injection wells, requires installation in its the upper part of the casing string with larger diameter pipes to allow for the pump installation. As a result, the production wells can be operated in pumping and injection mode and injection wells only in injection mode. The essence of the new scheme is as follows: • All wells on the block are constructed as injection wells, i.e. without a larger diameter pipe being installed in the upper part of the string. • The wells selected for operation as production wells, are leak-proof connected with “cluster” pumping wells by plastic pipelines. • “Cluster” pumping wells up to 100 m deep equipped with dead-end string with no screen are constructed near the power sources. Submersible pumps are installed in such wells with the total capacity to be determined by the design flow rate of the block and to ensure the steady, directional flow from injection to production wells. The minimum number of such ''cluster'' pumping wells is one per a well field, which well can be piped to up to seven wells designed for production. As a result, the expenses on procurement of cable products and submersible pumps are reduced and funds for well drilling and their piping are saved. The proposed scheme of well field development used under the artesian flow conditions allows not only for the cost reduction on operating block piping but also for the use of injection wells as production wells at different stages of block development by selecting any necessary combinations of technological wells

  14. Non-invasive estimation of pulsatile flow and differential pressure in an implantable rotary blood pump for heart failure patients

    International Nuclear Information System (INIS)

    AlOmari, A H; Savkin, A V; Karantonis, D M; Lim, E; Lovell, N H

    2009-01-01

    We propose dynamical models for pulsatile flow and head estimation in an implantable rotary blood pump. Pulsatile flow and head data were obtained using a circulatory mock loop where fluid solutions with different values of viscosities were used as a blood analogue with varying haematocrit (HCT). Noninvasive measurements of power and pump speed were used with HCT values as inputs to the flow model while the estimated flow was used with the speed as inputs to a head estimation model. Linear regression analysis between estimated and measured flows obtained from a mock loop resulted in a highly significant correlation (R 2 = 0.982) and a mean absolute error (e) of 0.323 L min −1 , while for head, R 2 = 0.933 and e = 7.682 mmHg were obtained. R 2 = 0.849 and e = 0.584 L min −1 were obtained when the same model derived in the mock loop was used for flow estimation in ex vivo porcine data (N = 6). Furthermore, in the steady state, the solution of the presented flow model can be described by a previously designed and verified static model. The models developed herein will play a vital role in developing a robust control system of the pump flow coping with changing physiological demands

  15. Long term monitoring of water production flow rates in boreholes in the Callovo-Oxfordian argillaceous rock

    International Nuclear Information System (INIS)

    Vinsot, A.; Delay, J.; La Vaissiere, R. de; Cruchaudet, M.

    2010-01-01

    Document available in extended abstract form only. Water production was observed in several boreholes in the Callovo-Oxfordian argillaceous rock (COx). These boreholes were implemented in 2005 in the Andra's Underground Research Laboratory (URL) at more than 400 m in depth. Despite the low COx permeability: close to 10-13 m/s, two original experimental setups made it possible to monitor water production flow rates ranging from 0.5 to 50 mL/day during 3 to 4 years in 4 boreholes. This contribution describes the water flow rate evaluation methods and the results obtained from several experimental phases which may be considered as a series of constant pressure production tests. The first experimental concept was based on seepage water collection. It consisted in filling with gas the interval of an ascending borehole at a pressure close to 1 bar and closing it. The hydraulic pressure in the rock surrounding the sealed interval was higher than 30 bars. Due to the hydraulic pressure difference between the interval and the surrounding rock, the interstitial water of the formation flowed into the interval, accumulated at its base by gravity and was pumped out at a controlled flow rate. The pumping rate was adjusted so that the water level would not exceed 40 cm inside the 5-meter-long interval. The water level was deduced from the difference between two absolute pressure measurements: one above the water surface in the gas phase and the other at the bottom of the water column. The total volume of the daily produced formation water was obtained by adding the water volume pumped out during the day and the water volume difference inside the interval between the beginning and the end of the day. This kind of experiment was performed in two boreholes. The second experimental concept was based on water circulation. It consisted in filling with water the interval of a descending borehole. Two water circulation lines and one pressure control line linked the test interval to

  16. Particle image velocimetry measurement of complex flow structures in the diffuser and spherical casing of a reactor coolant pump

    Directory of Open Access Journals (Sweden)

    Yongchao Zhang

    2018-04-01

    Full Text Available Understanding of turbulent flow in the reactor coolant pump (RCP is a premise of the optimal design of the RCP. Flow structures in the RCP, in view of the specially devised spherical casing, are more complicated than those associated with conventional pumps. Hitherto, knowledge of the flow characteristics of the RCP has been far from sufficient. Research into the nonintrusive measurement of the internal flow of the RCP has rarely been reported. In the present study, flow measurement using particle image velocimetry is implemented to reveal flow features of the RCP model. Velocity and vorticity distributions in the diffuser and spherical casing are obtained. The results illuminate the complexity of the flows in the RCP. Near the lower end of the discharge nozzle, three-dimensional swirling flows and flow separation are evident. In the diffuser, the imparity of the velocity profile with respect to different axial cross sections is verified, and the velocity increases gradually from the shroud to the hub. In the casing, velocity distribution is nonuniform over the circumferential direction. Vortices shed consistently from the diffuser blade trailing edge. The experimental results lend sound support for the optimal design of the RCP and provide validation of relevant numerical algorithms. Keywords: Diffuser, Flow Structures, Particle Image Velocimetry, Reactor Coolant Pump, Spherical Casing, Velocity Distribution

  17. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control.

    Science.gov (United States)

    Jenke, Christoph; Pallejà Rubio, Jaume; Kibler, Sebastian; Häfner, Johannes; Richter, Martin; Kutter, Christoph

    2017-04-03

    With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout-differential pressure based flow sensors and thermal calorimetric flow sensors-are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved.

  18. Monitoring and modelling of pumping-induced self-potentials for transmissivity estimation within a heterogeneous confined aquifer

    Science.gov (United States)

    DesRoches, Aaron J.; Butler, Karl E.

    2016-12-01

    Variations in self-potentials (SP) measured at surface during pumping of a heterogeneous confined fractured rock aquifer have been monitored and modelled in order to investigate capabilities and limitations of SP methods in estimating aquifer hydraulic properties. SP variations were recorded around a pumping well using an irregular grid of 31 non-polarizing Pb-PbCl2 that were referenced to a remote electrode and connected to a commercial multiplexer and digitizer/data logger through a passive lowpass filter on each channel. The lowpass filter reduced noise by a factor of 10 compared to levels obtained using the data logger's integration-based sampling method for powerline noise suppression alone. SP signals showed a linear relationship with water levels observed in the pumping and monitoring wells over the pumping period, with an apparent electrokinetic coupling coefficient of -3.4 mV · m-1. Following recent developments in SP methodology, variability of the SP response between different electrodes is taken as a proxy for lateral variations in hydraulic head within the aquifer and used to infer lateral variations in the aquifer's apparent transmissivity. In order to demonstrate the viability of this approach, SP is modelled numerically to determine its sensitivity to (i) lateral variations in the hydraulic conductivity of the confined aquifer and (ii) the electrical conductivity of the confining layer and conductive well casing. In all cases, SP simulated on the surface still varies linearly with hydraulic head modelled at the base on the confining layer although the apparent coupling coefficient changes to varying degrees. Using the linear relationship observed in the field, drawdown curves were inferred for each electrode location using SP variations observed over the duration of the pumping period. Transmissivity estimates, obtained by fitting the Theis model to inferred drawdown curves at all 31 electrodes, fell within a narrow range of (2.0-4.2) × 10-3 m2

  19. Preliminary validation of a new magnetic wireless blood pump.

    Science.gov (United States)

    Kim, Sung Hoon; Ishiyama, Kazushi; Hashi, Shuichiro; Shiraishi, Yasuyuki; Hayatsu, Yukihiro; Akiyama, Masatoshi; Saiki, Yoshikatsu; Yambe, Tomoyuki

    2013-10-01

    In general, a blood pump must be small, have a simple configuration, and have sufficient hydrodynamic performance. Herein, we introduce new mechanisms for a wireless blood pump that is small and simple and provides wireless and battery-free operation. To achieve wireless and battery-free operation, we implement magnetic torque and force control methods that use two external drivers: an external coil and a permanent magnet with a DC-motor, respectively. Power harvesting can be used to drive an electronic circuit for wireless monitoring (the observation of the pump conditions and temperature) without the use of an internal battery. The power harvesting will be used as a power source to drive other electronic devices, such as various biosensors with their driving circuits. To have both a compact size and sufficient pumping capability, the fully magnetic impeller has five stages and each stage includes four backward-curved blades. The pump has total and inner volumes of 20 and 9.8 cc, respectively, and weighs 52 g. The pump produces a flow rate of approximately 8 L/min at 80 mm Hg and the power generator produces 0.3 W of electrical power at 120 Ω. The pump also produces a minimum flow rate of 1.5 L/min and a pressure of 30 mm Hg for circulation at a maximum distance of 7.5 cm. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  20. Monitoring of Rotor-Stator Interaction in Pump-Turbine Using Vibrations Measured with On-Board Sensors Rotating with Shaft

    Directory of Open Access Journals (Sweden)

    Cristian G. Rodriguez

    2014-01-01

    Full Text Available Current trends in design of pump-turbines have led into higher rotor-stator interaction (RSI loads over impeller-runner. These dynamic loads are of special interest having produced catastrophic failures in pump-turbines. Determining RSI characteristics facilitates the proposal of actions that will prevent these failures. Pressure measurements all around the perimeter of the impeller-runner are appropriate to monitor and detect RSI characteristics. Unfortunately most installed pump-turbines are not manufactured with in-built pressure sensors in appropriate positions to monitor RSI. For this reason, vibration measurements are the preferred method to monitor RSI in industry. Usually vibrations are measured in two perpendicular radial directions in bearings where valuable information could be lost due to bearing response. In this work, in order to avoid the effect of bearing response on measurement, two vibration sensors are installed rotating with the shaft. The RSI characteristics obtained with pressure measurements were compared to those determined using vibration measurements. The RSI characteristics obtained with pressure measurements were also determined using vibrations measured rotating with shaft. These RSI characteristics were not possible to be determined using the vibrations measured in guide bearing. Finally, it is recommended to measure vibrations rotating with shaft to detect RSI characteristics in installed pump-turbines as a more practical and reliable method to monitor RSI characteristics.

  1. Mathematical Modeling of Rotary Blood Pumps in a Pulsatile In Vitro Flow Environment.

    Science.gov (United States)

    Pirbodaghi, Tohid

    2017-08-01

    Nowadays, sacrificing animals to develop medical devices and receive regulatory approval has become more common, which increases ethical concerns. Although in vivo tests are necessary for development and evaluation of new devices, nonetheless, with appropriate in vitro setups and mathematical models, a part of the validation process can be performed using these models to reduce the number of sacrificed animals. The main aim of this study is to present a mathematical model simulating the hydrodynamic function of a rotary blood pump (RBP) in a pulsatile in vitro flow environment. This model relates the pressure head of the RBP to the flow rate, rotational speed, and time derivatives of flow rate and rotational speed. To identify the model parameters, an in vitro setup was constructed consisting of a piston pump, a compliance chamber, a throttle, a buffer reservoir, and the CentriMag RBP. A 40% glycerin-water mixture as a blood analog fluid and deionized water were used in the hydraulic circuit to investigate the effect of viscosity and density of the working fluid on the model parameters. First, model variables were physically measured and digitally acquired. Second, an identification algorithm based on regression analysis was used to derive the model parameters. Third, the completed model was validated with a totally different set of in vitro data. The model is usable for both mathematical simulations of the interaction between the pump and heart and indirect pressure measurement in a clinical context. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  2. Laser Velocimeter Measurements in the Pump of an Automotive Torque Converter Part II – Effect of Pump Speed and Oil Viscosity

    Directory of Open Access Journals (Sweden)

    Ronald D. Flack

    2000-01-01

    Full Text Available The velocity field inside a torque converter pump was studied for two separate effects: variable pump rotational speed and variable oil viscosity. Three-dimensional velocity measurements were taken using a laser velocimeter for both the pump mid- and exit planes. The effect ofvariable pump rotational speed was studied by running the pump at two different speeds and holding speed ratio (pump rotational speed]turbine rotational speed constant. Similarly, the effect of viscosity on the pump flow field was studied by varying the temperature and]or using two different viscosity oils as the working fluid in the pump. Threedimensional velocity vector plots, through-flow contour plots, and secondary flow profiles were obtained for both pump planes and all test conditions. Results showed that torque converter mass flows increased approximately linearly with increasing pump rotational speed (and fixed speed ratio but that the flow was not directly proportional to pump rotational speed. However, mass flows were seen to decrease as the oil viscosity was decreased with a resulting increased Reynolds number; for these conditions the high velocity regions were seen to decrease in size and low velocity regions were seen to increase in size. In the pump mid-plane strong counter-clockwise secondary flows and in the exit plane strong clockwise secondary flows were observed. The vorticities and slip factors were calculated from the experimental results and are presented. The torque core-to-shell and blade-to-blade torque distributions were calculated for both planes. Finally, the flow fields were seen to demonstrate similitude when Reynolds numbers were matched.

  3. Design flow factors for sewerage systems in small arid communities

    Directory of Open Access Journals (Sweden)

    Emad H. Imam

    2014-09-01

    Full Text Available Reliable estimation of sewage flow rates is essential for the proper design of sewers, pumping stations, and treatment plants. The design of the various components of the sewerage system should be based on the most critical flow rates with a focus on extremely low and peak flow rates that would be sustained for a duration related to the acceptable limits of behavior of the components under consideration. The extreme flow conditions and to what extent they differ from the average values are closely related to the size of the community or network, and the socioeconomic conditions. A single pumping station is usually sufficient to pump flow from small community in either flat or non-undulating topography. Therefore, the hydraulic loading on the wastewater treatment plant (WWTP results from the pumped flow from the pumping station rather than the trunk sewer flow. The intermittent operation of the pumping units further accentuates the sewage hydrograph in the final trunk sewer. Accordingly, the design flow for the various components of the WWTP should be determined based on their relevant flow factors. In this study, analysis of one representative small community out of five monitored small communities in Egypt and the Kingdom of Saudi Arabia is presented. Pumped sewage flow rates were measured and the sewer incoming flows were hydraulically derived. The hourly and daily sewer and pumped flow records were analyzed to derive the relationship between the flow factors that would be sustained for various durations (instantaneously, 1 h, 2 h, etc. and their probability of non-exceedance. The resulting peaking factors with a consideration for their sustained flow duration and specified probability would permit the design of the various components of the treatment plant using more accurate critical flows.

  4. Design flow factors for sewerage systems in small arid communities.

    Science.gov (United States)

    Imam, Emad H; Elnakar, Haitham Y

    2014-09-01

    Reliable estimation of sewage flow rates is essential for the proper design of sewers, pumping stations, and treatment plants. The design of the various components of the sewerage system should be based on the most critical flow rates with a focus on extremely low and peak flow rates that would be sustained for a duration related to the acceptable limits of behavior of the components under consideration. The extreme flow conditions and to what extent they differ from the average values are closely related to the size of the community or network, and the socioeconomic conditions. A single pumping station is usually sufficient to pump flow from small community in either flat or non-undulating topography. Therefore, the hydraulic loading on the wastewater treatment plant (WWTP) results from the pumped flow from the pumping station rather than the trunk sewer flow. The intermittent operation of the pumping units further accentuates the sewage hydrograph in the final trunk sewer. Accordingly, the design flow for the various components of the WWTP should be determined based on their relevant flow factors. In this study, analysis of one representative small community out of five monitored small communities in Egypt and the Kingdom of Saudi Arabia is presented. Pumped sewage flow rates were measured and the sewer incoming flows were hydraulically derived. The hourly and daily sewer and pumped flow records were analyzed to derive the relationship between the flow factors that would be sustained for various durations (instantaneously, 1 h, 2 h, etc.) and their probability of non-exceedance. The resulting peaking factors with a consideration for their sustained flow duration and specified probability would permit the design of the various components of the treatment plant using more accurate critical flows.

  5. Analysis of magnetohydrodynamic flow in linear induction EM pump

    International Nuclear Information System (INIS)

    Geun Jong Yoo; Choi, H.K.; Eun, J.J.; Bae, Y.S.

    2005-01-01

    Numerical analysis is performed for magnetic and magnetohydrodynamic (MHD) flow fields in linear induction type electromagnetic (EM) pump. A finite volume method is applied to solve magnetic field governing equations and the Navier-Stokes equations. Vector and scalar potential methods are adopted to obtain the electric and magnetic fields and the resulting Lorentz force in solving Maxwell equations. The magnetic field and velocity distributions are found to be influenced by the phase of applied electric current. Computational results indicate that the magnetic flux distribution with changing phase of input electric current is characterized by pairs of counter-rotating closed loops. The velocity distributions are affected by the intensity of Lorentz force. The governing equations for the magnetic and flow fields are only semi-coupled in this study, therefore, further study with fully-coupled governing equations are required. (authors)

  6. Monitoring the performance of Aux. Feedwater Pump using Smart Sensing Model

    Energy Technology Data Exchange (ETDEWEB)

    No, Young Gyu; Seong, Poong Hyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-10-15

    Many artificial intelligence (AI) techniques equipped with learning systems have recently been proposed to monitor sensors and components in NPPs. Therefore, the objective of this study is the development of an integrity evaluation method for safety critical components such as Aux. feedwater pump, high pressure safety injection (HPSI) pump, etc. using smart sensing models based on AI techniques. In this work, the smart sensing model is developed at first to predict the performance of Aux. feedwater pump by estimating flowrate using group method of data handing (GMDH) method. If the performance prediction is achieved by this feasibility study, the smart sensing model will be applied to development of the integrity evaluation method for safety critical components. Also, the proposed algorithm for the performance prediction is verified by comparison with the simulation data of the MARS code for station blackout (SBO) events. In this study, the smart sensing model for the prediction performance of Aux. feedwater pump has been developed. In order to develop the smart sensing model, the GMDH algorithm is employed. The GMDH algorithm is the way to find a function that can well express a dependent variable from independent variables. This method uses a data structure similar to that of multiple regression models. The proposed GMDH model can accurately predict the performance of Aux.

  7. Monitoring the performance of Aux. Feedwater Pump using Smart Sensing Model

    International Nuclear Information System (INIS)

    No, Young Gyu; Seong, Poong Hyun

    2015-01-01

    Many artificial intelligence (AI) techniques equipped with learning systems have recently been proposed to monitor sensors and components in NPPs. Therefore, the objective of this study is the development of an integrity evaluation method for safety critical components such as Aux. feedwater pump, high pressure safety injection (HPSI) pump, etc. using smart sensing models based on AI techniques. In this work, the smart sensing model is developed at first to predict the performance of Aux. feedwater pump by estimating flowrate using group method of data handing (GMDH) method. If the performance prediction is achieved by this feasibility study, the smart sensing model will be applied to development of the integrity evaluation method for safety critical components. Also, the proposed algorithm for the performance prediction is verified by comparison with the simulation data of the MARS code for station blackout (SBO) events. In this study, the smart sensing model for the prediction performance of Aux. feedwater pump has been developed. In order to develop the smart sensing model, the GMDH algorithm is employed. The GMDH algorithm is the way to find a function that can well express a dependent variable from independent variables. This method uses a data structure similar to that of multiple regression models. The proposed GMDH model can accurately predict the performance of Aux

  8. Fast-responsive hydrogel as an injectable pump for rapid on-demand fluidic flow control.

    Science.gov (United States)

    Luo, Rongcong; Dinh, Ngoc-Duy; Chen, Chia-Hung

    2017-05-01

    Chemically synthesized functional hydrogels have been recognized as optimized soft pumps for on-demand fluidic regulation in micro-systems. However, the challenges regarding the slow responses of hydrogels have very much limited their application in effective fluidic flow control. In this study, a heterobifunctional crosslinker (4-hydroxybutyl acrylate)-enabled two-step hydrothermal phase separation process for preparing a highly porous hydrogel with fast response dynamics was investigated for the fabrication of novel microfluidic functional units, such as injectable valves and pumps. The cylinder-shaped hydrogel, with a diameter of 9 cm and a height of 2.5 cm at 25 °C, achieved a size reduction of approximately 70% in less than 30 s after the hydrogels were heated at 40 °C. By incorporating polypyrrole nanoparticles as photothermal transducers, a photo-responsive composite hydrogel was approached and exhibited a remotely triggerable fluidic regulation and pumping ability to generate significant flows, showing on-demand water-in-oil droplet generation by laser switching, whereby the droplet size could be tuned by adjusting the laser intensity and irradiation period with programmable manipulation.

  9. Evaluation of near-wall solution approaches for large-eddy simulations of flow in a centrifugal pump impeller

    Directory of Open Access Journals (Sweden)

    Zhi-Feng Yao

    2016-01-01

    Full Text Available The turbulent flow in a centrifugal pump impeller is bounded by complex surfaces, including blades, a hub and a shroud. The primary challenge of the flow simulation arises from the generation of a boundary layer between the surface of the impeller and the moving fluid. The principal objective is to evaluate the near-wall solution approaches that are typically used to deal with the flow in the boundary layer for the large-eddy simulation (LES of a centrifugal pump impeller. Three near-wall solution approaches –the wall-function approach, the wall-resolved approach and the hybrid Reynolds averaged Navier–Stoke (RANS and LES approach – are tested. The simulation results are compared with experimental results conducted through particle imaging velocimetry (PIV and laser Doppler velocimetry (LDV. It is found that the wall-function approach is more sparing of computational resources, while the other two approaches have the important advantage of providing highly accurate boundary layer flow prediction. The hybrid RANS/LES approach is suitable for predicting steady-flow features, such as time-averaged velocities and hydraulic losses. Despite the fact that the wall-resolved approach is expensive in terms of computing resources, it exhibits a strong ability to capture a small-scale vortex and predict instantaneous velocity in the near-wall region in the impeller. The wall-resolved approach is thus recommended for the transient simulation of flows in centrifugal pump impellers.

  10. Damages on pumps and systems the handbook for the operation of centrifugal pumps

    CERN Document Server

    Merkle, Thomas

    2014-01-01

    Damage on Pumps and Systems. The Handbook for the Operation of Centrifugal Pumps offers a combination of the theoretical basics and practical experience for the operation of circulation pumps in the engineering industry. Centrifugal pumps and systems are extremely vulnerable to damage from a variety of causes, but the resulting breakdown can be prevented by ensuring that these pumps and systems are operated properly. This book provides a total overview of operating centrifugal pumps, including condition monitoring, preventive maintenance, life cycle costs, energy savings and economic aspects. Extra emphasis is given to the potential damage to these pumps and systems, and what can be done to prevent breakdown. Addresses specific issues about pumping of metal chips, sand, abrasive dust and other solids in fluidsEmphasis on economic and efficiency aspects of predictive maintenance and condition monitoring Uses life cycle costs (LCC) to evaluate and calculate the costs of pumping systems

  11. High efficiency, variable geometry, centrifugal cryogenic pump

    International Nuclear Information System (INIS)

    Forsha, M.D.; Nichols, K.E.; Beale, C.A.

    1994-01-01

    A centrifugal cryogenic pump has been developed which has a basic design that is rugged and reliable with variable speed and variable geometry features that achieve high pump efficiency over a wide range of head-flow conditions. The pump uses a sealless design and rolling element bearings to achieve high reliability and the ruggedness to withstand liquid-vapor slugging. The pump can meet a wide range of variable head, off-design flow requirements and maintain design point efficiency by adjusting the pump speed. The pump also has features that allow the impeller and diffuser blade heights to be adjusted. The adjustable height blades were intended to enhance the pump efficiency when it is operating at constant head, off-design flow rates. For small pumps, the adjustable height blades are not recommended. For larger pumps, they could provide off-design efficiency improvements. This pump was developed for supercritical helium service, but the design is well suited to any cryogenic application where high efficiency is required over a wide range of head-flow conditions

  12. Ethernet Flow Monitoring with IPFIX

    NARCIS (Netherlands)

    Hofstede, R.J.; Drago, Idilio; Sperotto, Anna; Pras, Aiko

    The increasing amount of network traffic and the huge bandwidth needed to carry it requires managers to use scalable solutions to monitor their networks. Nowadays, flow-based techniques, such as Cisco’s NetFlow, provide aggregated network data and an overview of network activity at the IP layer.

  13. Method and apparatus for monitoring two-phase flow. [PWR

    Science.gov (United States)

    Sheppard, J.D.; Tong, L.S.

    1975-12-19

    A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.

  14. 40 CFR 63.1303 - Monitoring requirements.

    Science.gov (United States)

    2010-07-01

    ...) Pump revolutions; or (ii) Flow rate. (3) The device used to monitor the parameter from paragraph (b)(2... the National Institute of Standards and Technology Handbook 44 at least once per year by a registered...

  15. Glucose Pump Test can be Used to Measure Blood Flow Rate of ...

    African Journals Online (AJOL)

    The aim of study is to determine whether glucose pump test (GPT) is used for surveillance of native AV fistulas by using Doppler US as reference. Methods: In 93 chronic hemodialysis patients with native AV fistula, blood flow rates were measured by Doppler US and GPT. For GPT, glucose was infused to 16 mL/min by ...

  16. Numerical simulation of dynamic flow characteristics in a centrifugal water pump with three-vaned diffuser

    Directory of Open Access Journals (Sweden)

    Zhi-Jun Shuai

    2015-08-01

    Full Text Available The complex three-dimensional turbulent flow field in a centrifugal water pump with three asymmetrical diffusers was numerically simulated. The characteristics of pressure and force fluctuations inside the model pump were investigated. Fast Fourier transformation was performed to obtain the spectra of pressure and force fluctuations. It indicates that the dominant frequency of pressure fluctuations is the blade passing frequency in all the sub-domains inside the pump and the first blade passing frequency energy (first order of blade passing frequency is the most significant. The dominant frequency of pressure fluctuations at the location of diffuser outlet is featured by low frequency (less than 1 Hz, which may be due to the locally generated eddy structures. Besides, the dominant frequency force fluctuations on the impeller blades are also the blade passing frequency. The existence of the three asymmetrical diffusers has damping effect on the pressure fluctuation amplitude and energy amplitude of pressure fluctuations in the diffuser domain dramatically, which indicates that the diffusers can effectively control the hydraulically excited vibration in the pump. Besides, the prediction of the dominant frequency of pressure fluctuations inside the pump can help to utilize the pump effectively and to extend the pump life. The main findings of this work can provide prediction of the pump performance and information for further optimal design of centrifugal pumps as well.

  17. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control

    Directory of Open Access Journals (Sweden)

    Christoph Jenke

    2017-04-01

    Full Text Available With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout—differential pressure based flow sensors and thermal calorimetric flow sensors—are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved.

  18. Analytical analysis of heat transfer and pumping power of laminar nanofluid developing flow in microchannels

    International Nuclear Information System (INIS)

    Mital, Manu

    2013-01-01

    Thermal management issues are limiting barriers to high density electronics packaging and miniaturization. Liquid cooling using micro and mini channels is an attractive alternative to large and bulky aluminum or copper heat sinks. These channels can be integrated directly into a chip or a heat spreader, and cooling can be further enhanced using nanofluids (liquid solutions with dispersed nanometer-sized particles) due to their enhanced heat transfer effects reported in literature. The goals of this study are to evaluate heat transfer improvement of a nanofluid heat sink with developing laminar flow forced convection, taking into account the pumping power penalty. The phrase heat transfer enhancement ratio (HTR) is used to denote the ratio of average heat transfer coefficient of nanofluid to water at the same pumping power. The proposed model uses semi-empirical correlations to calculate nanofluid thermophysical properties. The predictions of the model are found to be in good agreement with experimental studies. The validated model is used to identify important design variables (Reynolds number, volume fraction and particle size) related to thermal and flow characteristics of the microchannel heat sink with nanofluids. Statistical analysis of the model showed that the volume fraction is the most significant factor impacting the HTR, followed by the particle diameter. The impact of the Reynolds number and other interaction terms is relatively weak. The HTR is maximized at smallest possible particle diameter (since smaller particles improve heat transfer but do not impact pumping power). Then, for a given Reynolds number, an optimal value of volume fraction can be obtained to maximize HTR. The overall aim is to present results that would be useful for understanding and optimal design of microchannel heat sinks with nanofluid flow. - Highlights: ► Validated model is used to investigate heat transfer and pumping power in nanofluids. ► Particles improve heat transfer

  19. Monitoring of aquifer pump tests with Magnetic Resonance Sounding (MRS): a synthetic case study

    DEFF Research Database (Denmark)

    Herckenrath, Daan; Auken, E.; Bauer-Gottwein, Peter

    2011-01-01

    Magnetic Resonance Sounding (MRS) can provide valuable data to constrain and calibrate groundwater flow and transport models. With this non-invasive geophysical technique, measurements of water content and hydraulic conductivity can be obtained. We developed a hydrogeophyiscal forward method, which...... calculates the MRS-signal generated by an aquifer pump test. A synthetic MRS-dataset was subsequently used to determine the hydrogeological parameters in an inverse parameter estimation approach. This was done for a virtual pump test with a partially and a fully penetrating well. With the MRS data we were...

  20. A proposed through-flow inverse method for the design of mixed-flow pumps

    Science.gov (United States)

    Borges, Joao Eduardo

    1991-01-01

    A through-flow (hub-to-shroud) truly inverse method is proposed and described. It uses an imposition of mean swirl, i.e., radius times mean tangential velocity, given throughout the meridional section of the turbomachine as an initial design specification. In the present implementation, it is assumed that the fluid is inviscid, incompressible, and irrotational at inlet and that the blades are supposed to have zero thickness. Only blade rows that impart to the fluid a constant work along the space are considered. An application of this procedure to design the rotor of a mixed-flow pump is described in detail. The strategy used to find a suitable mean swirl distribution and the other design inputs is also described. The final blade shape and pressure distributions on the blade surface are presented, showing that it is possible to obtain feasible designs using this technique. Another advantage of this technique is the fact that it does not require large amounts of CPU time.

  1. Modeling of flowing gas diode pumped alkali lasers: dependence of the operation on the gas velocity and on the nature of the buffer gas.

    Science.gov (United States)

    Barmashenko, B D; Rosenwaks, S

    2012-09-01

    A simple, semi-analytical model of flowing gas diode pumped alkali lasers (DPALs) is presented. The model takes into account the rise of temperature in the lasing medium with increasing pump power, resulting in decreasing pump absorption and slope efficiency. The model predicts the dependence of power on the flow velocity in flowing gas DPALs and checks the effect of using a buffer gas with high molar heat capacity and large relaxation rate constant between the 2P3/2 and 2P1/2 fine-structure levels of the alkali atom. It is found that the power strongly increases with flow velocity and that by replacing, e.g., ethane by propane as a buffer gas the power may be further increased by up to 30%. Eight kilowatt is achievable for 20 kW pump at flow velocity of 20  m/s.

  2. Pump Application as Hydraulic Turbine – Pump as Turbine (PaT)

    OpenAIRE

    Rusovs, D

    2009-01-01

    The paper considers pump operation as hydraulic turbine with purpose to produce mechanical power from liquid flow. The Francis hydraulic turbine was selected for comparison with centrifugal pump in reverse operation. Turbine and centrifugal pump velocity triangles were considered with purpose to evaluate PaT efficiency. Shape of impeller blades for turbine and pumps was analysed. Specific speed calculation is carried out with purpose to obtain similarity in pump and turbine description. For ...

  3. Note: Real-time monitoring via second-harmonic interferometry of a flow gas cell for laser wakefield acceleration.

    Science.gov (United States)

    Brandi, F; Giammanco, F; Conti, F; Sylla, F; Lambert, G; Gizzi, L A

    2016-08-01

    The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gas flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 10(19) cm(-3) range well suited for LWFA.

  4. Note: Real-time monitoring via second-harmonic interferometry of a flow gas cell for laser wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Brandi, F., E-mail: fernando.brandi@ino.it [Intense Laser Irradiation Laboratory (ILIL), Istituto Nazionale di Ottica (INO-CNR), Via Moruzzi 1, 56124 Pisa (Italy); Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy); Giammanco, F.; Conti, F. [Dipartimento di Fisica, Università degli Studi di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Plasma Diagnostics and Technologies Ltd., via Matteucci n.38/D, 56124 Pisa (Italy); Sylla, F. [SourceLAB SAS, 86 Rue de Paris, 91400 Orsay (France); Lambert, G. [LOA, ENSTA ParisTech, CNRS, Ecole Polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Gizzi, L. A. [Intense Laser Irradiation Laboratory (ILIL), Istituto Nazionale di Ottica (INO-CNR), Via Moruzzi 1, 56124 Pisa (Italy)

    2016-08-15

    The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gas flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 10{sup 19} cm{sup −3} range well suited for LWFA.

  5. Note: Real-time monitoring via second-harmonic interferometry of a flow gas cell for laser wakefield acceleration

    Science.gov (United States)

    Brandi, F.; Giammanco, F.; Conti, F.; Sylla, F.; Lambert, G.; Gizzi, L. A.

    2016-08-01

    The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gas flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 1019 cm-3 range well suited for LWFA.

  6. A study of unsteady physiological magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping.

    Science.gov (United States)

    Tripathi, Dharmendra; Bég, O Anwar

    2012-08-01

    Magnetohydrodynamic peristaltic flows arise in controlled magnetic drug targeting, hybrid haemodynamic pumps and biomagnetic phenomena interacting with the human digestive system. Motivated by the objective of improving an understanding of the complex fluid dynamics in such flows, we consider in the present article the transient magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping. Reynolds number is small enough and the wavelength to diameter ratio is large enough to negate inertial effects. Analytical solutions for temperature field, axial velocity, transverse velocity, pressure gradient, local wall shear stress, volume flowrate and averaged volume flowrate are obtained. The effects of the transverse magnetic field, Grashof number and thermal conductivity on the flow patterns induced by peristaltic waves (sinusoidal propagation along the length of channel) are studied using graphical plots. The present study identifies that greater pressure is required to propel the magneto-fluid by peristaltic pumping in comparison to a non-conducting Newtonian fluid, whereas, a lower pressure is required if heat transfer is effective. The analytical solutions further provide an important benchmark for future numerical simulations.

  7. Technical assistance to the manufacture, construction and assembly of Osorio-Canoas oil pipeline flow pumps

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Kellson Takenaka; Rangel Junior, Joilson Rangel; Costa, Jose Coelho [Petroleo Brasileiro S/A (PETROBRAS), Rio de Janeiro, RJ (Brazil)], E-mails: kellson.telsan@petrobras.com.br, joilson_jr@petrobras.com.br, jccoelho.telsan@petrobras.com.br

    2010-07-01

    This paper reports the experiences acquired through the modifications and improvements implemented in the manufacture, construction and assembly of the oil flow centrifugal pumps of the Osorio-Canoas Oil Pipeline (OSCAN 22''), located in Rio Grande do Sul. The OSCAN 22'' pumping capacity expansion was conceived aiming at meeting the Alberto Pasqualini Refinery (REFAP) processing increase project from 20,000 m{sup 3}/day to 30,000 m{sup 3}/day, besides changing the product profile from processed product to national high viscosity national oils. Due to this reason, a new pump park at the Almirante Soares Dutra Terminal (TEDUT) and a new intermediate pump station named Estacao de Santo Antonio da Patrulha (ESPAT) have been erected. Thus, the oil received by a tanker and stored at TEDUT was now pumped to ESPAT and then to REFAP through a 97 km long and 22 inch diameter oil pipeline named OSCAN 22''. In order to get such oil flow done, 03 new main pumps have been installed at TEDUT, one of them being a stand-by one, and other 03 pumps at ESPAT, one of them being also a stand-by one. During the startup of TEDUT's pumps, high vibration levels were observed in the rotors and in the equipment structures. The values defined by the manufacturer for equipment alarm and shutdown were, respectively, 50.0 {mu}m and 75.0 {mu}m, measured on the pump rotors in the bearing region. However, the global vibration levels of the TEDUT's pumps reached 110.0 {mu}m during the startup attended by the manufacturers. The equipment warranty period started after that, and a detailed activity planning was drawn up with the purpose of keeping TEDUT running with the new pumps at the lowest possible operational risk and avoiding a production reduction at REFAP. Simultaneously, various actions were taken in order to identify the vibration sources and reduce its intensity to the lowest possible values. After equipment modifications, median vibration values at 15

  8. Development of a reactor coolant pump monitoring and diagnostic system. Progress report, June 1982-July 1983

    International Nuclear Information System (INIS)

    Morris, D.J.; Sommerfield, G.A.

    1983-12-01

    The quality of operating data has been insufficient to allow proper evaluation of theoretical reactor coolant (RC) pump seal failure mechanisms. The RC pump monitoring and diagnostic system being developed and installed at Toledo Edison's Davis-Besse Nuclear Power Station will examine the relationship between seal failures and three other variables: The rotordynamic behavior of the pump shaft and related components, the internal conditions and performance of the seals, and the plant or pump operating environment (controlled by the plant operator). Interrelationships between these areas will be developed during the data collection task, scheduled to begin in October 1983 (for a full fuel cycle at Davis-Besse). This report describes system software and hardware development, testing, and installation work performed during this period. Also described is a parallel effort being conducted by a B and W/Byron Jackson/Utility group to improve pump seal performance

  9. Fault diagnosis and performance monitoring for pumps by means of vibration measurement and pattern recognition

    International Nuclear Information System (INIS)

    Grabner, A.; Weiss, F.P.

    1984-12-01

    In recent years the early detection of malfunctions with noise and vibration analysis techniques has become a more and more important method for increasing availability and safety of various components in technical plants. The possibility of pattern recognition assisted vibration monitoring and its practical realization are demonstrated by failure diagnosis and trend analysis of the condition of large centrifugal pumps in hydraulic circuits. Some problems as, e.g., the finding of dynamic failure models, signal analysis, feature extraction and statistical pattern recognition, which helps automatically to decide whether the pump works normally or not, are discussed in more detail. In the paper it is shown that for various types of machines the chance of success of condition based maintenance can be enhanced by such an automatic vibration monitoring. (author)

  10. Monitoring the thermal performance of a heat pump with borehole heat exchangers in Lugano (TI); Projet: mesure des performances thermiques d'une PAC sur sondes geothermiques a Lugano (TI)

    Energy Technology Data Exchange (ETDEWEB)

    Pahud, D.; Lachal, B.

    2001-07-01

    This report presents a heat pump system installed in a single-family house in Lugano, Switzerland, and the results of its monitoring for nine months. The 14 kW heat pump is meant exclusively for space heating while the domestic hot water is provided by a solar water heater with 7.8 m{sup 2} collector area. The cold source of the heat pump is formed by three 80 m deep underground wells from which the geothermal energy is extracted by water circulation. The installation allows to transfer excess heat from the solar collector to the underground wells. The whole system is equipped with a couple of flow meters, temperature sensors and electric counters, in order to characterise its dynamic response and efficiency. Diagrams show monthly values of the thermal energy extracted from the wells, the energy re-injected to the wells, the energy delivered by the heat pump as well as its electrical energy consumption. The heat pump coefficient of performance, which is roughly 4, is discussed.

  11. The effect of balance holes to centrifugal pump performance

    Science.gov (United States)

    Babayigit, O.; Ozgoren, M.; Aksoy, M. H.; Kocaaslan, O.

    2017-07-01

    The aim of this study is to analyze of a centrifugal pump with and without balance holes by using ANSYS-Fluent software. The pump used in the study is a commercial centrifugal pump consisting of two stages that is a model of Sempa Pump Company. Firstly, models of impeller, diffuser, suction and discharge sections of the centrifugal pump were separately drawn using Ansys and Solidworks software. Later, grid structures were generated on the flow volume of the pump. Turbulent flow volume was numerically solved by realizable k-є turbulence model. The flow analyses were focused on the centrifugal pump performance and the flow characteristics under different operational conditions with/without balance holes. Distributions of flow characteristics such as velocity and pressure distributions in the flow volume were also determined, numerically. The results of Computational Fluid Dynamics (CFD) with/without balance holes for the pump head and hydraulic efficiency on the design flow rate of 80 m3/h were found to be 81.5/91.3 m and 51.9/65.3%, respectively.

  12. Mechanical pumping at low temperature

    International Nuclear Information System (INIS)

    Perin, J.P.; Claudet, G.; Disdier, F.

    1995-01-01

    This novel concept consist of a mechanical pump able to run at low temperature (25K). Since gas density varies inversely with temperature, this pump would deliver much higher mass flow rate than at room temperature for a given size. Advantages of this concept are order of magnitude reduction in size, weight, when compared to a conventional pump scaled to perform the same mass flow rate at room temperature. This pump would be a solution to allow continuously tritium extraction and minimize the mass inventory. (orig.)

  13. Enzyme-Powered Pumps: From Fundamentals to Applications

    Science.gov (United States)

    Ortiz-Rivera, Isamar

    , covering also the effect of the thermodynamics of the enzymatic reaction in the pumping behavior, and (3) the applicability of enzyme pumps as fluid flow-based inhibitor assays and as drug delivery devices. Our findings in each of these areas, gets us closer to our ultimate goal, where we aim to identify the optimal conditions needed for enzyme micropump operation, and construct a general model that could accurately predict enzyme micropump behavior for any enzyme-substrate combination. The information aforementioned has been divided in four chapters. Chapter 1 gives a quick glance into the development of enzyme-powered micropumps: from the systems and observed behaviors inspiring this work, to the first systems that were developed. The stability, duration, and extent of fluid pumping of enzyme pumps in general, are also discussed, along with the optimization of the enzyme-pump design. This chapter aims to provide a general idea of the motivation behind the concept of "enzyme-powered pumps", what are "enzyme-powered pumps", and which are the key features that characterize these systems. Chapter 2 is an extensive analysis of the mechanisms of actuation proposed for enzyme-powered micropumps. This chapter not only covers the first attempts to understand how enzyme pumps work, but also explores further the behavior of urease-powered pumps, which fluid flow patterns cannot be completely predicted only by considering thermal or solutal gradients. The findings of these studies could allow us to rationally control fluid flow for the directed delivery of payloads at designated locations. In Chapters 3 and 4, our focus was to highlight the potential application of enzyme-powered pumps for sensing and delivery. Chapter 3 explores the use of enzyme pumps as fluid flow-based inhibitor assays. At fixed concentrations of an enzyme and its substrate, the presence of an inhibitor can be detected by monitoring the decrease in fluid flow speed. Using this principle, sensors for toxic

  14. A high-flow holweck pump for fusion applications

    International Nuclear Information System (INIS)

    Iseli, M.; Dinner, P.J.; Murdoch, D.K.

    1995-01-01

    Present concepts for power reactors require high pumping speed for the torus exhaust (10 5 -10 6 1/s) with low tritium inventories. Conventional approaches using Compound Cryopumps necessitate high tritium inventories and Turbomolecular pumps require large scale-up in throughput and are sensitive to eddy current heating of the rotor and sudden venting thrust. Cooling the gas to low temperature (20K) increases the gas density at the pump-entrance enough to obtain high throughputs from compact mechanical devices such as molecular drag pumps. A numerical model of such a pump and experimental results confirm the high pumping speed achievable with this concept. The model is used for extrapolation and optimisation of the design of a prototype. (orig.)

  15. The influence of tip clearance on performance and internal flow condition of fluid food pump using low viscous fluid

    International Nuclear Information System (INIS)

    Kubo, S; Ishioka, T; Fukutomi, J; Shigemitsu, T

    2012-01-01

    Fluid machines for fluid food have been used in wide variety of fields i.e. transportation, the filling, and for the improvement of quality of fluid foods. However, flow conditions of it are quite complicated because fluid foods are different from water. Therefore, design methods based on internal flow conditions have not been conducted. In this research, turbo-pumps having a small number of blades were used to decrease shear loss and keep wide flow passage. The influence of the tip clearance was investigated by the numerical analysis using the model with and without the tip clearance. In this paper, the influence of tip clearance on performances and internal flow conditions of turbo-pump using low viscous fluid were clarified by experimental and numerical analysis results. In addition, design methods based on the internal flow were considered. Further, the influences of viscosity on the performance characteristic and internal flow were investigated.

  16. Experimental study on the simple water hammer pump; Kan`igata water hammer pump ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Muto, M; Ushiyama, I [Ashikaga Institute of Technology, Tochigi (Japan)

    1997-11-25

    Outlined herein are experimental results with a water hammer pump. It is a unique pump in that it depends only on potential energy of water to pump-up water. Water flows downwards from a reservoir at a high position into the pump , and is released from the exhaust valve. When velocity of water flowing in the pipe reaches a certain level, hydraulic force exceeds gravity of the exhaust valve to rapidly closes it, which is accompanied by rapid increase in pressure in the pump. High-pressure water flows into the air chamber, after pushing up the lifting valve, to compress air in the chamber. The lifting valve is closed, when pressure in the air chamber exceeds that in the pump, to pump up water in the chamber through the lifting pipe. Closure of the lifting valve produces a negative pressure within the pump, which, together with gravity of the exhaust valve, opens the valve again. The pump lifts water at 1.64l/min under the conditions of head: 3m and lift: 6m at an efficiency of 48.1%. 1 ref., 4 fig., 2 tab.

  17. Remote process cell mercury transfer pumps for DWPF

    International Nuclear Information System (INIS)

    Nielsen, M.G.; Vaughn, V.G.

    1986-01-01

    Final design and the results of the testing performed thus far show that the water displacement of mercury to a height of 40 feet is feasible with just 6 gallons of motive water. Control of the transfer is achieved by monitoring the pump discharge pressure. An air actuated plug valve configuration successfully contained the required discharge pressure of 260 psi. The requirements of low flow and maximum separation of mercury from particulates are achieved due to the configuration of the pressure canister. The pump is capable of transferring a discrete amount of mercury with little additional slurry particulates. The success of this new pumping configuration is highlighted by the fact that it was the inspiration for other remote transfer applications tested at SRP. These application include the dual canister sample pump shown in Figure 7, as well as a successful prototype pump designed at Pacific Northwest Laboratories (PNL). The PNL pump was designed for the purpose of metering waste slurries to an electric melter. Upon completion of final pump fabrication, the Defense Waste Processing facility (DWPF) facility will have a simple and highly reliable method of remotely transferring small discrete batches of mercury as required from radioactive process vessels. 3 refs., 7 figs., 1 tab

  18. Systems and Sensors for Debris-flow Monitoring and Warning

    Directory of Open Access Journals (Sweden)

    Lorenzo Marchi

    2008-04-01

    Full Text Available Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows, their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and nonstructural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche

  19. 40 CFR Appendix K to Part 75 - Quality Assurance and Operating Procedures for Sorbent Trap Monitoring Systems

    Science.gov (United States)

    2010-07-01

    ... Pump. Use a leak-tight, vacuum pump capable of operating within the candidate system's flow range. 5.1... sorbent trap monitoring system typically operates. The gas flow meter shall be equipped with any necessary... system typically operates. You may either follow the procedures in section 10.3.1 of Method 5 in appendix...

  20. Diode-pumped laser with improved pumping system

    Science.gov (United States)

    Chang, Jim J.

    2004-03-09

    A laser wherein pump radiation from laser diodes is delivered to a pump chamber and into the lasing medium by quasi-three-dimensional compound parabolic concentrator light channels. The light channels have reflective side walls with a curved surface and reflective end walls with a curved surface. A flow tube between the lasing medium and the light channel has a roughened surface.

  1. Experimental evaluation of mechanical heart support system based on viscous friction disc pump

    Directory of Open Access Journals (Sweden)

    A. M. Chernyavskiy

    2017-01-01

    Full Text Available Aim. Experimental evaluation of the viscous friction disk pump efficiency, studying the relationship between inter-disk clearance and sizes of input and output ports and pump performance parameters.Materials and methods. To assess the characteristics and to optimize the disk friction pump design the pump model and experimental stand were created. Pump dimensions were set on the basis of medical and biological requirements for mechanical heart support systems and with due consideration of the experimental studies of our colleagues from Pennsylvania. Flow volume of the working fluid was measured by float rotameter Krohne VA-40 with measurement error of not more than 1%. The pressure values in the hydrodynamic circuit were measured using a monitor manufactured by Biosoft-M. Expansion device allowed changing the flow resistance of the system simulating the total peripheral resistance of the circulatory system.Results. Linear direct correlation between the pump performance and the pressure drop of liquid being created at the inlet and outlet of the pump was obtained. The required flow rate (5–7 l/min and pressure (90–100 mmHg were reached when the rotor speed was in the range of 2500–3000 rev/min. It has been shown that the increase of the inlet diameter to 15 mm has not resulted in a significant increase in the pump performance, and that the highest efficiency values can be obtained for the magnitude of inter-disk gap of 0.4–0.5 mm.Conclusion. Designed and manufactured experimental disc pump model for pumping fluid has showed the fundamental possibility to use this model as a system for mechanical support of the heart.

  2. Suppression of the secondary flow in a suction channel of a large centrifugal pump

    International Nuclear Information System (INIS)

    Torii, D; Nagahara, T; Okihara, T

    2013-01-01

    The suction channel configuration of a large centrifugal pump with a 90-degree bend was studied in detail to suppress the secondary flow at the impeller inlet for improving suction performance. Design of experiments (DOE) and computational fluid dynamics (CFD) were used to evaluate the sensitivity of several primary design parameters of the suction channel. A DOE is a powerful tool to clarify the sensitivity of objective functions to design parameters with a minimum of trials. An L9 orthogonal array was adopted in this study and nine suction channels were designed, through which the flow was predicted by steady state calculation. The results indicate that a smaller bend radius with a longer straight nozzle, distributed between the bend and the impeller, suppresses the secondary flow at the impeller inlet. An optimum ratio of the cross sectional areas at the bend inlet and outlet was also confirmed in relationship to the contraction rate of the downstream straight nozzle. These findings were obtained by CFD and verified by experiments. The results will aid the design of large centrifugal pumps with better suction performance and higher reliability

  3. Pulmonary Venous Diastolic Flow Reversal and Flash Pulmonary Edema During Management of Ongoing Myocardial Ischemia with Intraaortic Balloon Pump.

    Science.gov (United States)

    Murray, Davoy; Peng, Yong G

    2015-10-15

    A 65-year-old man was admitted for acute coronary syndrome with depressed left ventricular function and moderate aortic regurgitation. He was managed with an intraaortic balloon pump for circulatory support before coronary artery bypass grafting and subsequently developed flash pulmonary edema with an associated rare finding of diastolic pulmonary venous flow reversal. In this report, we provide a review of intraaortic balloon pump use in current clinical practice and elaborate on the pathophysiology of an uncommon pulmonary venous flow pattern found in our patient.

  4. Incorporating high-pressure electroosmotic pump and a nano-flow gradient generator into a miniaturized liquid chromatographic system for peptide analysis.

    Science.gov (United States)

    Chen, Apeng; Lynch, Kyle B; Wang, Xiaochun; Lu, Joann J; Gu, Congying; Liu, Shaorong

    2014-09-24

    We integrate a high-pressure electroosmotic pump (EOP), a nanoflow gradient generator, and a capillary column into a miniaturized liquid chromatographic system that can be directly coupled with a mass spectrometer for proteomic analysis. We have recently developed a low-cost high-pressure EOP capable of generating pressure of tens of thousands psi, ideal for uses in miniaturized HPLC. The pump worked smoothly when it was used for isocratic elutions. When it was used for gradient elutions, generating reproducible gradient profiles was challenging; because the pump rate fluctuated when the pump was used to pump high-content organic solvents. This presents an issue for separating proteins/peptides since high-content organic solvents are often utilized. In this work, we solve this problem by incorporating our high-pressure EOP with a nano-flow gradient generator so that the EOP needs only to pump an aqueous solution. With this combination, we develop a capillary-based nano-HPLC system capable of performing nano-flow gradient elution; the pump rate is stable, and the gradient profiles are reproducible and can be conveniently tuned. To demonstrate its utility, we couple it with either a UV absorbance detector or a mass spectrometer for peptide separations. Copyright © 2014. Published by Elsevier B.V.

  5. Condensate and feedwater systems, pumps, and water chemistry. Volume seven

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Subject matter includes condensate and feedwater systems (general features of condensate and feedwater systems, condenser hotwell level control, condensate flow, feedwater flow), pumps (principles of fluid flow, types of pumps, centrifugal pumps, positive displacement pumps, jet pumps, pump operating characteristics) and water chemistry (water chemistry fundamentals, corrosion, scaling, radiochemistry, water chemistry control processes, water pretreatment, PWR water chemistry, BWR water chemistry, condenser circulating water chemistry

  6. Study on solid-liquid two-phase unsteady flow characteristics with different flow rates in screw centrifugal pump

    International Nuclear Information System (INIS)

    Li, R N; Wang, H Y; Han, W; Shen, Z J; Ma, W

    2013-01-01

    The screw centrifugal pump is used as an object, and the unsteady numerical simulation of solid-liquid two-phase flow is carried out under different flow rate conditions in one circle by choosing the two-phase flow of sand and water as medium, using the software FLUENT based on the URANS equations, combining with sliding mesh method, and choosing the Mixture multiphase flow model and the SIMPLE algorithm. The results show that, with the flow rate increasing, the change trends for the pressure on volute outlet are almost constant, the fluctuation trends of the impeller axial force have a little change, the pressure and the axial force turn to decrease on the whole, the radial force gradually increases when the impeller maximum radius passes by half a cycle near the volute outlet, and the radial force gradually decreases when the maximum radius passes by the other half a cycle in a rotation cycle. The distributions of the solid particles are very uneven under a small flow rate condition on the face. The solid particles under a big flow rate condition are distributed more evenly than the ones under a small flow rate condition on the back. The theoretical basis and reference are provided for improving its working performance

  7. PIV Investigations of the Flow Field in the Volute of a Rotary Blood Pump

    Science.gov (United States)

    Sankovic, John M.; Kadambi, Jaikrishnan R.; Smith, William A.; Wernet, Mark P.

    2004-01-01

    A full-size acrylic model of a rotary blood pump was developed in order to utilize Particle Image Velocimetry (PIV) to make measurements of the fluid velocities and turbulent stresses throughout the device. The development of an understanding of the hemodynamics within the blood pump is critical to the development and validation of computational models. A blood analog solution, consisting of sodium iodide solution and glycerin, was developed to match physiological kinematic viscosity. The refractive indices of the fluid, the pump casing, and the impeller were matched to facilitate the use of PIV to make velocity measurements. Velocity measurements made in the volute exit/diffuser region are presented for pumps speeds of 3000-3850 rpm. At each speed data were obtained at a physiological pressure of 12 kPa and at a maximum flow condition. Four hundred data pairs were used for each resultant mean velocity vector value, representing greater than an order of magnitude more data pairs than reported previously in the literature on similar devices and resulting in velocity uncertainty levels of approximately 22.9%.

  8. Flow ripple reduction of an axial piston pump by a combination of cross-angle and pressure relief grooves: Analysis and optimization

    International Nuclear Information System (INIS)

    Xu, Bing; Ye, Shaogan; Zhang, Junhui; Zhang, Chunfeng

    2016-01-01

    This paper investigates the potential of flow ripple reduction of an axial piston pump by a combination of cross-angle and pressure relief grooves. A dynamic model is developed to analyze the pumping dynamics of the pump and validated by experimental results. The effects of cross-angle on the flow ripples in the outlet and inlet ports, and the piston chamber pressure are investigated. The effects of pressure relief grooves on the optimal solutions obtained by a multi-objective optimization method are identified. A sensitivity analysis is performed to investigate the sensitivity of cross-angle to different working conditions. The results reveal that the flow ripples from the optimal solutions are smaller using the cross-angle and pressure relief grooves than those using the cross-angle and ordinary precompression and decompression angles and the cross-angle can be smaller. In addition, when the optimal design is used, the outlet flow ripples sensitivity can be reduced significantly.

  9. Reactor having coolant recycling pump

    International Nuclear Information System (INIS)

    Goto, Tadashi; Karatsuka, Shigeki; Yamamoto, Hajime.

    1991-01-01

    In a coolant recycling pump for an LMFBR type reactor, vertical grooves are formed to a static portion which surrounds a pump shaft as far as the lower end thereof. Sodium mists present in an annular gap of the pump shaft form a rotational flow, lose its centrifugal force at the grooved portion and are collected positively to the grooved portion. Further, since the rotational flow in the grooved channel is in a state of a cavity flow, the pressure is released in the grooved portion and a secondary eddy current is formed thereby providing a depressurized state. Accordingly, by a synergestic effect of the centrifugal force and the cavity flow, sodium mists can be recovered completely. (T.M.)

  10. Pump Coupling & Motor bearing damage detection using Condition Monitoring at DTPS

    Science.gov (United States)

    Bari, H. M.; Deshpande, A. A.; Jalkote, P. S.; Patil, S. S.

    2012-05-01

    This paper shares a success story out of the implementation of Co-ordinated Condition Monitoring techniques at DTPS, wherein imminent Mis-alignment of HT auxiliary BFP - 1B and Motor bearing failure of ID FAN - 1B was diagnosed. On 30/12/2010, Booster Pump DE horizontal reading increased from 4.8 to 5.1 and then upto 5.9 mm/sec. It was suspected that Booster pump was mis-aligned with Motor. To confirm misalignment, Phase Analysis was also done which showed that Coupling phase difference was 180 Degrees. Vibration & Phase Analysis helped in diagnosing the exact root cause of abnormity in advance, saving plant from huge losses which could have caused total cost of £ 104,071. On 06/01/2011, ID fan 1B Motor NDE & DE horizontal vibration readings deviated from 0.5 to 0.8 and 0.6 to 0.8 mm/sec (RMS) respectively. Noise level increased from 99.1 to 101.9 db. It was suspected that Motor bearings had loosened over the shaft. Meanwhile, after opening of Motor, Inner race of NDE side was found cracked and loosened over the shaft. Vibration Analysis & Noise Monitoring helped in diagnosing the exact root cause of abnormity in advance, saving plant from huge losses which could have caused total cost of £ 308,857.

  11. CFD research on runaway transient of pumped storage power station caused by pumping power failure

    International Nuclear Information System (INIS)

    Zhang, L G; Zhou, D Q

    2013-01-01

    To study runaway transient of pumped storage power station caused by pumping power failure, three dimensional unsteady numerical simulations were executed on geometrical model of the whole flow system. Through numerical calculation, the changeable flow configuration and variation law of some parameters such as unit rotate speed,flow rate and static pressure of measurement points were obtained and compared with experimental data. Numerical results show that runaway speed agrees well with experimental date and its error was 3.7%. The unit undergoes pump condition, brake condition, turbine condition and runaway condition with flow characteristic changing violently. In runaway condition, static pressure in passage pulses very strongly which frequency is related to runaway speed

  12. 21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.

    Science.gov (United States)

    2010-04-01

    ... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electronic monitor for gravity flow infusion...

  13. Counter-rotating type axial flow pump unit in turbine mode for micro grid system

    International Nuclear Information System (INIS)

    Kasahara, R; Takano, G; Komaki, K; Murakami, T; Kanemoto, T

    2012-01-01

    Traditional type pumped storage system contributes to adjust the electric power unbalance between day and night, in general. This serial research proposes the hybrid power system combined the wind power unit with the pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind. In the pumping mode, the pump should operate unsteadily at not only the normal but also the partial discharge. The operation may be unstable in the rising portion of the head characteristics at the lower discharge, and/or bring the cavitation at the low suction head. To simultaneously overcome both weak points, the authors have proposed a superior pump unit that is composed of counter-rotating type impellers and a peculiar motor with double rotational armatures. This paper discusses the operation at the turbine mode of the above unit. It is concluded with the numerical simulations that this type unit can be also operated acceptably at the turbine mode, because the unit works so as to coincide the angular momentum change through the front runners/impellers with that thorough the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet without the guide vanes.

  14. Mechanical pumping at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Perin, J.P.; Claudet, G.; Disdier, F.

    1994-12-31

    This new concept consists of a mechanical pump able to run at low temperature (25 K). Since gas density varies inversely with temperature, the pump could deliver much higher mass flow rate than at room temperature for a given size. Advantages of this concept are reduction of an order of magnitude in size and weight when compared to a conventional pump scaled to perform the same mass flow rate at room temperature. Results obtained at 80 K and 25 K with a Holweck type molecular drag pump of 100 mm diameter and with few stages of a turbomolecular pump running at the same temperatures, are given. This pump would be a solution to allow continuous tritium extraction and minimize the mass inventory for the ITER (International Tokamak Experiment Reactor). 5 figs., 2 tabs., 4 refs.

  15. High performance hydraulic design techniques of mixed-flow pump impeller and diffuser

    International Nuclear Information System (INIS)

    Kim, Sung; Lee, Kyoung Yong; Kim, Joon Hyung; Kim, Jin Hyuk; Jung, Uk Hee; Choi, Young Seok

    2015-01-01

    In this paper, we describe a numerical study about the performance improvement of a mixed-flow pump by optimizing the design of the impeller and diffuser using a commercial computational fluid dynamics (CFD) code and design-of-experiments (DOE). The design variables of impeller and diffuser in the vane plane development were defined with a fixed meridional plane. The design variables were defined by the vane plane development, which indicates the blade-angle distributions and length of the impeller and diffuser. The vane plane development was controlled using the blade-angle in a fixed meridional plane. The blade shape of the impeller and diffuser were designed using a traditional method in which the inlet and exit angles are connected smoothly. First, the impeller optimum design was performed with impeller design variables. The diffuser optimum design was performed with diffuser design variables while the optimally designed impeller shape was fixed. The importance of the impeller and diffuser design variables was analyzed using 2 k factorial designs, and the design optimization of the impeller and diffuser design variables was determined using the response surface method (RSM). The objective functions were defined as the total head (Ht) and the total efficiency (ηt) at the design flow rate. The optimally designed model was verified using numerical analysis, and the numerical analysis results for both the optimum model and the reference model were compared to determine the reasons for the improved pump performance. A pump performance test was carried out for the optimum model, and its reliability was proved by a comparative analysis of the results of the numerical analysis and an experiment using the optimum model.

  16. An Optimization Scheme for Water Pump Control in Smart Fish Farm with Efficient Energy Consumption

    Directory of Open Access Journals (Sweden)

    Israr Ullah

    2018-06-01

    Full Text Available Healthy fish production requires intensive care and ensuring stable and healthy production environment inside the farm tank is a challenging task. An Internet of Things (IoT based automated system is highly desirable that can continuously monitor the fish tanks with optimal resources utilization. Significant cost reduction can be achieved if farm equipment and water pumps are operated only when required using optimization schemes. In this paper, we present a general system design for smart fish farms. We have developed an optimization scheme for water pump control to maintain desired water level in fish tank with efficient energy consumption through appropriate selection of pumping flow rate and tank filling level. Proposed optimization scheme attempts to achieve a trade-off between pumping duration and flow rate through selection of optimized water level. Kalman filter algorithm is applied to remove error in sensor readings. We observed through simulation results that optimization scheme achieve significant reduction in energy consumption as compared to the two alternate schemes, i.e., pumping with maximum and minimum flow rates. Proposed system can help in collecting the data about the farm for long-term analysis and better decision making in future for efficient resource utilization and overall profit maximization.

  17. Reactor feedwater pump control device

    International Nuclear Information System (INIS)

    Nishiyama, Hiroyuki.

    1990-01-01

    An amount of feedwater necessary for ensuring reactor inventory after scram is ensured automatically based on the reactor output before scram of a BWR type reactor. That is, if scram should occur, a feedwater flow rate just before the scram is stored by reactor output signals. Further, the amount of feedwater required after the scram is determined based on the output of the memory. The reactor power after the scram based on a feedwater flow rate and a main steam flow rate is inputted to an integrator, to calculate and output the amount of the feedwater flow rate (1) injected after the scram for the inventory. A coast down flowrate (2) in a case of pump trip is forecast by the output signals. Automatic trip is outputted to all turbine driving feedwater pumps when the sum of (1) and (2) exceeds a necessary and sufficient amount of feedwater required for ensuring inventory. For motor driving feedwater pumps, only a portion, for example, one of the pumps is automatically started while other pumps are stopped their operation, only in this case, to prevent excess water feeding. (I.S.)

  18. Experimental study of R134a/R410A cascade cycle for variable refrigerant flow heat pump systems

    International Nuclear Information System (INIS)

    Kim, Jeong Hun; Lee, Jae Wan; Park, Warn Gyu; Choi, Hwan Jong; Lee, Sang Hun; Oh, Sai Kee

    2015-01-01

    Cascade cycle is widely applied to heat pumps operating at low ambient temperature to overcome problems such as low heating capacity and Coefficient of performance (COP) deterioration A number of researches have been conducted on cascade cycle heat pumps, but most of those studies were focused on system optimization to determine optimal intermediate temperature in air-to-water heat pumps. However, experimental optimization in regard to air and water heating simultaneously using a cascade cycle has been an understudied area. Therefore, we focused on experimental analysis for a cascade system with Variable refrigerant flow (VRF) heat pumps. Experiments were conducted under a variety of operating conditions, such as ambient and water inlet temperature. COP increased up to 16% when water inlet temperature decreased. COP of VRF heat pumps with cascade cycle is three-times higher compared with conventional boilers as well as 17% higher compared to single heat pumps

  19. Characteristics of electrostatic gas micro-pump with integrated polyimide passive valves

    International Nuclear Information System (INIS)

    Han, Jeahyeong; Yeom, Junghoon; Mensing, Glennys; Flachsbart, Bruce; Shannon, Mark A

    2012-01-01

    We report on the fabrication and characterization of electrostatic gas micro-pumps integrated with polyimide check valves. Touch-mode capacitance actuation, enabled by a fixed silicon electrode and a metal/polyimide diaphragm, creates the suction and push-out of the ambient gas; the gas flow is rectified by the check valves located at the inlet and outlet of the pump. The fabricated pumps were tested with various actuation voltages at different frequencies and duty cycles; an emphasis was placed on investigating the effect of valve flow conductance on the gas pumping characteristics. The pump with higher valve conductance could increase the operating frequency of the pump and affect the pumping characteristics from a pulsating flow to a continuous flow, leading to a higher gas flow rate. This electrostatic pump has a flow control resolution of 1 µL min −1 ; it could generate a gas flow up to 106 µL min −1 . (paper)

  20. Monitoring and data acquisition system for supervision of a photovoltaic pumping; Sistema de monitoramento e aquisicao de dados para supervisao de uma planta de bombeamento fotovoltaico

    Energy Technology Data Exchange (ETDEWEB)

    Juca, S.; Brito, F. [Instituto Federal de Educacao, Ciencia e Tecnologia do Ceara (IFCE), Maracanau, CE (Brazil)], Emails: sandrojuca@ifce.edu.br, fabio@ifce.edu.br; Carvalho, P. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia Eletrica], Email: carvalho@dee.ufc.br

    2009-07-01

    The development of a micro controlled monitoring system and data acquisition of low cost applied to a pumping plant PV without batteries is described. The results obtained in order to evaluate the system developed and predict the best times to drive the pumps and optimize plant efficiency is also analyzed. Voltage and pressure measures were done for two days in a pump powered by five photovoltaic solar panels arranged in parallel. The system of monitoring and developed data acquisition was set to perform tension and pressure readings every minute on the pump and store the average of these data in an external memory each 10 minutes. A software that monitoring and supervising that perform, via the interface USB, reading the data stored in external memory, records in a database, and builds charts with tension and pressure from the photovoltaic pumping was developed.

  1. PUMP: analog-hybrid reactor coolant hydraulic transient model

    International Nuclear Information System (INIS)

    Grandia, M.R.

    1976-03-01

    The PUMP hybrid computer code simulates flow and pressure distribution; it is used to determine real time response to starting and tripping all combinations of PWR reactor coolant pumps in a closed, pressurized, four-pump, two-loop primary system. The simulation includes the description of flow, pressure, speed, and torque relationships derived through pump affinity laws and from vendor-supplied pump zone maps to describe pump dynamic characteristics. The program affords great flexibility in the type of transients that can be simulated

  2. An alternative arrangement of metered dosing fluid using centrifugal pump

    Science.gov (United States)

    Islam, Md. Arafat; Ehsan, Md.

    2017-06-01

    Positive displacement dosing pumps are extensively used in various types of process industries. They are widely used for metering small flow rates of a dosing fluid into a main flow. High head and low controllable flow rates make these pumps suitable for industrial flow metering applications. However their pulsating flow is not very suitable for proper mixing of fluids and they are relatively more expensive to buy and maintain. Considering such problems, alternative techniques to control the fluid flow from a low cost centrifugal pump is practiced. These include - throttling, variable speed drive, impeller geometry control and bypass control. Variable speed drive and impeller geometry control are comparatively costly and the flow control by throttling is not an energy efficient process. In this study an arrangement of metered dosing flow was developed using a typical low cost centrifugal pump using bypass flow technique. Using bypass flow control technique a wide range of metered dosing flows under a range of heads were attained using fixed pump geometry and drive speed. The bulk flow returning from the system into the main tank ensures better mixing which may eliminate the need of separate agitators. Comparative performance study was made between the bypass flow control arrangement of centrifugal pump and a diaphragm type dosing pump. Similar heads and flow rates were attainable using the bypass control system compared to the diaphragm dosing pump, but using relatively more energy. Geometrical optimization of the centrifugal pump impeller was further carried out to make the bypass flow arrangement more energy efficient. Although both the systems run at low overall efficiencies but the capital cost could be reduced by about 87% compared to the dosing pump. The savings in capital investment and lower maintenance cost very significantly exceeds the relatively higher energy cost of the bypass system. This technique can be used as a cost effective solution for

  3. PUMPS

    Science.gov (United States)

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  4. Storing Data Flow Monitoring in Hadoop

    CERN Document Server

    Georgiou, Anastasia

    2013-01-01

    The on-line data flow monitoring for the CMS data acquisition system produces a large amount of data. Only 5% of data is stored permanently in a relational database due to performance issues and the cost for using dedicated infrastructure (e.g. Oracle systems). In a commercial environment, companies and organizations need to find new innovative approaches to process such big volumes of data, known as “big data”. The Big Data approach is trying to address the problem of a large and complex collection of data sets that become difficult to handle using traditional data processing applications. Using these new technologies, it should be possible to store all the monitoring information for a time window of months or a year. This report contains an initial evaluation of Hadoop for storage of data flow monitoring and subsequent data mining.

  5. Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor

    Science.gov (United States)

    Polzin, Kurt A.; Godfroy, Thomas J.

    2008-01-01

    A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 5 psi, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.5 GPM.

  6. Effects of air flow maldistribution on refrigeration system dynamics of air source heat pump chiller under frosting conditions

    International Nuclear Information System (INIS)

    Gong Jianying; Gao Tieyu; Yuan Xiuling; Huang Dong

    2008-01-01

    The effects of air flow maldistribution on the performance of an air source heat pump chiller under frosting conditions were investigated experimentally. The results indicated that air flow maldistribution was the dominant factor leading to hunting of the thermostatic expansion valve for medium and/or large size finned tube evaporators. With air flow maldistribution degree (AMD) increasing, frost occurred earlier, and the frost layer grew faster. The operating characteristics became lower when AMD was increased. We found such phenomenon seemed to be related to both the difference of refrigerant outlet superheat and the frosting velocity. In the hunting stage, the frost block effect became the main factor degrading the refrigeration system performance. With AMD increasing, the heat pump system pertinent performance data (suction pressure, evaporation temperature, discharge pressure, refrigerant outlet temperature, etc.) were degraded more dramatically

  7. Numerical Investigation of Periodically Unsteady Pressure Field in a High Power Centrifugal Diffuser Pump

    Directory of Open Access Journals (Sweden)

    Ji Pei

    2014-05-01

    Full Text Available Pressure fluctuations are the main factors that can give rise to reliability problems in centrifugal pumps. The periodically unsteady pressure characteristics caused by rotor-stator interaction have been investigated by CFD calculation in a residual heat removal pump. Side chamber flow effect is also considered for the simulation to accurately predict the flow in whole flow passage. The pressure fluctuation results in time and frequency domains were considered for several typical monitoring points in impeller and diffuser channels. In addition, the pressure fluctuation intensity coefficient (PFIC based on standard deviation was defined on each grid node for entire space and impeller revolution period. The results show that strong pressure fluctuation intensity can be found in the gap between impeller and diffuser. As a source, the fluctuation can spread to the upstream and downstream flow channels as well as the side chamber channels. Meanwhile, strong pressure fluctuation intensity can be found in the discharge tube of the circular casing. In addition, the obvious influence of operational flow rate on the PFIC distribution can be found. The analysis indicates that the pressure fluctuations in the aspects of both frequency and intensity can be used to comprehensively evaluate the unsteady pressure characteristics in centrifugal pumps.

  8. In vivo evaluation of centrifugal blood pump for cardiopulmonary bypass-Spiral Pump.

    Science.gov (United States)

    da Silva, Cibele; da Silva, Bruno Utiyama; Leme, Juliana; Uebelhart, Beatriz; Dinkhuysen, Jarbas; Biscegli, José F; Andrade, Aron; Zavaglia, Cecília

    2013-11-01

    The Spiral Pump (SP), a centrifugal blood pump for cardiopulmonary bypass (CPB), has been developed at the Dante Pazzanese Institute of Cardiology/Adib Jatene Foundation laboratories, with support from Sintegra Company (Pompeia, Brazil). The SP is a disposable pump with an internal rotor-a conically shaped fuse with double entrance threads. This rotor is supported by two ball bearings, attached to a stainless steel shaft fixed to the housing base. Worm gears provide axial motion to the blood column, and the rotational motion of the conically shaped impeller generates a centrifugal pumping effect, improving pump efficiency without increasing hemolysis. In vitro tests were performed to evaluate the SP's hydrodynamic performance, and in vivo experiments were performed to evaluate hemodynamic impact during usual CPB. A commercially available centrifugal blood pump was used as reference. In vivo experiments were conducted in six male pigs weighing between 60 and 90 kg, placed on CPB for 6 h each. Blood samples were collected just before CPB (T0) and after every hour of CPB (T1-T6) for hemolysis determination and laboratory tests (hematological and biochemical). Values of blood pressure, mean flow, pump rotational speed, and corporeal temperature were recorded. Also, ergonomic conditions were recorded: presence of noise, difficulty in removing air bubbles, trouble in installing the pump in the drive module (console), and difficulties in mounting the CPB circuit. Comparing the laboratory and hemolysis results for the SP with those of the reference pump, we can conclude that there is no significant difference between the two devices. In addition, reports made by medical staff and perfusionists described a close similarity between the two devices. During in vivo experiments, the SP maintained blood flow and pressure at physiological levels, consistent with those applied in cardiac surgery with CPB, without presenting any malfunction. Also, the SP needed lower rotational

  9. Methodology to monitor and diagnostic vibrations of the motor-pumps used in the primary cooling system of IEAR-1 nuclear research reactor

    International Nuclear Information System (INIS)

    Benevenuti, Erion de Lima

    2004-01-01

    The objectives of this study are to establish a strategy to monitor and diagnose vibrations of the motor pumps used in the primary reactor cooling system of the IEA-R1 nuclear research reactor, to verify the possibility of using the existing installed monitoring vibration system and to implement such strategy in a continuous way. Four types of mechanical problems were considered: unbalancing, misalignment, gaps and faults in bearings. An adequate set of analysis tools, well established by the industry, was selected. These are: global measurements of vibration, velocity spectrum and acceleration envelope spectrum. Three sources of data and information were used; the data measured from the primary pumps, experimental results obtained with a Spectra Quest machine used to simulate mechanical defects and data from the literature. The results show that, for the specific case of the motor-pumps of IEA-R1 nuclear research reactor, although the technique using the envelope of acceleration, which is not available in the current system used to monitor the vibration of the motor pumps, is the one with best performance, the other techniques available in the system are sufficient to monitor the four types of mechanical problems mentioned. The proposed strategy is shown and detailed in this work. (author)

  10. Numerical simulations of the internal flow pattern of a vortex pump compared to the Hamel-Oseen vortex

    International Nuclear Information System (INIS)

    Gerlach, Angela; Preuss, Enrico; Thamsen, Paul Uwe; Lykholt-Ustrup, Flemming

    2017-01-01

    We did a numerical study of the internal flow field of a vortex pump. Five operating points were considered and validated through a measured characteristic curve. The internal flow pattern of a vortex pump was analyzed and compared to the Hamel-Oseen vortex model. The calculated flow field was assessed with respect to the circumferential velocity, the vorticity and the axial velocity. Whereas the trajectories of the circumferential velocity were largely in line with the Hamel-Oseen vortex model, the opposite was true for vorticity. Only the vorticity at strong part load was in line with the predictions of the Hamel-Oseen vortex model. We therefore compared the circumferential velocity and vorticity for strong part load operation to the analytical predictions of the Hamel-Oseen vortex model. The simulated values were below the analytical values. The study therefore suggests that a vortex similar to the Hamel-Oseen vortex is only present at the strong part load operation

  11. Numerical simulations of the internal flow pattern of a vortex pump compared to the Hamel-Oseen vortex

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, Angela; Preuss, Enrico; Thamsen, Paul Uwe [Institute of Fluid System Dynamics, Technische Universitaet, Berlin (Germany); Lykholt-Ustrup, Flemming [Grundfos Holding A/S, Bjerringbro (Denmark)

    2017-04-15

    We did a numerical study of the internal flow field of a vortex pump. Five operating points were considered and validated through a measured characteristic curve. The internal flow pattern of a vortex pump was analyzed and compared to the Hamel-Oseen vortex model. The calculated flow field was assessed with respect to the circumferential velocity, the vorticity and the axial velocity. Whereas the trajectories of the circumferential velocity were largely in line with the Hamel-Oseen vortex model, the opposite was true for vorticity. Only the vorticity at strong part load was in line with the predictions of the Hamel-Oseen vortex model. We therefore compared the circumferential velocity and vorticity for strong part load operation to the analytical predictions of the Hamel-Oseen vortex model. The simulated values were below the analytical values. The study therefore suggests that a vortex similar to the Hamel-Oseen vortex is only present at the strong part load operation.

  12. An analytical model for flow induced by a constant-head pumping in a leaky unconfined aquifer system with considering unsaturated flow

    Science.gov (United States)

    Lin, Ye-Chen; Li, Ming-Hsu; Yeh, Hund-Der

    2017-09-01

    A new mathematical model is developed to describe the flow in response to a constant-head pumping (or constant-head test, CHT) in a leaky unconfined aquifer system of infinite lateral extent with considering unsaturated flow. The model consists of an unsaturated zone on the top, an unconfined aquifer in the middle, and a second aquifer (aquitard) at the bottom. The unsaturated flow is described by Richard's equation, and the flows in unconfined aquifer and second layer are governed by the groundwater flow equation. The well partially penetrates the unconfined aquifer with a constant head in the well due to CHT. The governing equations of the model are linearized by the perturbation method and Gardner's exponential model is adopted to describe the soil retention curves. The solution of the model for drawdown distribution is obtained by applying the methods of Laplace transform and Weber transform. Then the solution for the wellbore flowrate is derived from the drawdown solution with Darcy's law. The issue of the equivalence of normalized drawdown predicted by the present solution for constant-head pumping and Tartakovsky and Neuman's (2007) solution for constant-rate pumping is discussed. On the basis of the wellbore flowrate solution, the results of the sensitivity analysis indicate that the wellbore flowrate is very sensitive to the changes in the radial hydraulic conductivity and the thickness of the saturated zone. Moreover, the results predicted from the present wellbore flowrate solution indicate that this new solution can reduce to Chang's et al. (2010a) solution for homogenous aquifers when the dimensionless unsaturated exponent approaches 100. The unsaturated zone can be considered as infinite extent in the vertical direction if the thickness ratio of the unsaturated zone to the unconfined aquifer is equal to or greater than one. As for the leakage effect, it can be ignored when the vertical hydraulic conductivity ratio (i.e., the vertical hydraulic

  13. Direct monitoring of wind-induced pressure-pumping on gas transport in soil

    Science.gov (United States)

    Laemmel, Thomas; Mohr, Manuel; Schindler, Dirk; Schack-Kirchner, Helmer; Maier, Martin

    2017-04-01

    Gas exchange between soil and atmosphere is important for the biogeochemistry of soils and is commonly assumed to be governed by molecular diffusion. Yet a few previous field studies identified other gas transport processes such as wind-induced pressure-pumping to enhance soil-atmosphere fluxes significantly. However, since these wind-induced non-diffusive gas transport processes in soil often occur intermittently, the quantification of their contribution to soil gas emissions is challenging. To quantify the effects of wind-induced pressure-pumping on soil gas transport, we developed a method for in situ monitoring of soil gas transport. The method includes the use of Helium (He) as a tracer gas which was continuously injected into the soil. The resulting He steady-state concentration profile was monitored. Gas transport parameters of the soil were inversely modelled. We used our method during a field campaign in a well-aerated forest soil over three months. During periods of low wind speed, soil gas transport was modelled assuming diffusion as transport process. During periods of high wind speed, the previously steady diffusive He concentration profile showed temporary concentration decreases in the topsoil, indicating an increase of the effective gas transport rate in the topsoil up to 30%. The enhancement of effective topsoil soil gas diffusivity resulted from wind-induced air pressure fluctuations which are referred to as pressure-pumping. These air pressure fluctuations had frequencies between 0.1 and 0.01 Hz and amplitudes up to 10 Pa and occurred at above-canopy wind speeds greater than 5 m s-1. We could show the importance of the enhancement of the gas transport rate in relation with the wind intensity and corresponding air pressure fluctuations characteristics. We directly detected and quantified the pressure-pumping effect on gas transport in soil in a field study for the first time, and could thus validate and underpin the importance of this non

  14. Transformation of vibration signals in rotary blood pumps: the diagnostic potential of pump failure.

    Science.gov (United States)

    Kawahito, Koji

    2013-09-01

    Although non-destructive and continuous monitoring is indispensable for long-term circulatory support with rotary blood pumps, a practical monitoring system has not yet been developed. The objective of this study was to investigate the possibility of detecting pump failure caused by thrombus formation through the monitoring of vibration signals. The data acquisition equipment included vibration pickups, a charge amplifier, vibration analysis systems, and exclusive hardware. A pivot-bearing centrifugal pump with a mock circuit was investigated for vibration analysis. To simulate the four common areas of thrombus formation, we used a piece of silicon attached to each of the following four locations: the total area of the bottom of the impeller, an eccentric shape on the bottom of the impeller, a circular shape around the shaft top, and an eccentric shape on the top of the impeller. Vibration signals were picked up, and the power spectrum density analysis was performed at pump rotational speeds of 2100, 2400, and 3000 rpm. In this study, pump failure could be detected, and the types of imitation thrombi could be determined. We conclude that vibration detection with a computerized analysis system is a potentially valuable diagnostic tool for long-term circulatory support with rotary blood pumps.

  15. Numerical simulation of 3-D turbulent flow through entire stage in a multistage centrifugal pump

    International Nuclear Information System (INIS)

    Huang, S.; Islam, M.F.; Liu, P.

    2005-01-01

    A three-dimensional turbulent flow through a multistage centrifugal pump is numerically simulated using a commercial CFD software package. The simulation and analysis include flow fields in rotating impeller and stationary diffuser and is completed in a multiple reference frame. The standard k-ε turbulence model is applied. The analysis of the simulation reveals that the reverse flows exist in the zone near the impeller exit and diffuser entrance, resulting in flow field asymmetric and unsteady. There is a considerable interference on velocity field at impeller exit due to the interaction between impeller blades and diffuser vanes. The hydraulic performance is connected and evaluated with the 3-D computational flow field. The current computation is verified by comparing predicted and measured head. (author)

  16. Analytical Solution for Time-drawdown Response to Constant Pumping from a Homogeneous, Confined Horizontal Aquifer with Unidirectional Flow

    Science.gov (United States)

    Parrish, K. E.; Zhang, J.; Teasdale, E.

    2007-12-01

    An exact analytical solution to the ordinary one-dimensional partial differential equation is derived for transient groundwater flow in a homogeneous, confined, horizontal aquifer using Laplace transformation. The theoretical analysis is based on the assumption that the aquifer is homogeneous and one-dimensional (horizontal); confined between impermeable formations on top and bottom; and of infinite horizontal extent and constant thickness. It is also assumed that there is only a single pumping well penetrating the entire aquifer; flow is everywhere horizontal within the aquifer to the well; the well is pumping with a constant discharge rate; the well diameter is infinitesimally small; and the hydraulic head is uniform throughout the aquifer before pumping. Similar to the Theis solution, this solution is suited to determine transmissivity and storativity for a two- dimensional, vertically confined aquifer, such as a long vertically fractured zone of high permeability within low permeable rocks or a long, high-permeability trench inside a low-permeability porous media. In addition, it can be used to analyze time-drawdown responses to pumping and injection in similar settings. The solution can also be used to approximate the groundwater flow for unconfined conditions if (1) the variation of transmissivity is negligible (groundwater table variation is small in comparison to the saturated thickness); and (2) the unsaturated flow is negligible. The errors associated with the use of the solution to unconfined conditions depend on the accuracies of the above two assumptions. The solution can also be used to assess the impacts of recharge from a seasonal river or irrigation canal on the groundwater system by assuming uniform, time- constant recharge along the river or canal. This paper presents the details for derivation of the analytical solution. The analytical solution is compared to numerical simulation results with example cases. Its accuracy is also assessed and

  17. Helium exhaust and forced flow effects with both-leg pumping in W-shaped divertor of JT-60U

    International Nuclear Information System (INIS)

    Sakasai, A.; Takenaga, H.; Higashijima, S.; Kubo, H.; Nakano, T.; Tamai, H.; Sakurai, S.; Akino, N.; Fujita, T.; Asakura, N.; Itami, K.; Shimizu, K.

    2001-01-01

    The W-shaped divertor of JT-60U was modified from inner-leg pumping to both-leg pumping. After the modification, the pumping rate was improved from 3% with inner-leg pumping to 5% with both-leg pumping in a divertor-closure configuration, which means both separatrixes close to the divertor slots. Efficient helium exhaust was realized in the divertor-closure configuration with both-leg pumping. A global particle confinement time of τ* He =0.4s and τ* He /τ E =3 was achieved in attached ELMy H-mode plasmas. The helium exhaust efficiency with both-leg pumping was extended by 45% as compared with inner-leg pumping. By using central helium fueling with He-beam injection, the helium removal from the core plasma inside the internal transport barrier (ITB) in reversed shear plasmas in the divertor-closure configuration was investigated for the first time. The helium density profiles inside the ITB were peaked as compared with those in ELMy H-mode plasmas. In the case of low recycling divertor, it was difficult to achieve good helium exhaust capability in reversed shear plasmas with ITB. However, the helium exhaust efficiency was improved with high recycling divertor. Carbon impurity reduction was observed by the forced flow with gas puff and effective divertor pumping. (author)

  18. Development of a reactor-coolant-pump monitoring and diagnostic system. Semi-annual progress report, December 1981-May 1982

    International Nuclear Information System (INIS)

    Morris, D.J.; Gabler, H.C.

    1982-10-01

    Reactor coolant (RC) pump seal failures have resulted in excessive leakage of primary coolant into reactor containment buildings. In some cases, high levels of airborne activity and surface contamination following these failures have necessitated extensive cleanup efforts and personnel radiation exposure. Unpredictable pump seal performance has also caused forced outages and frequent maintenance. The quality of operating data has been insufficient to allow proper evaluation of theoretical RC pump seal failure mechanisms. The RC pump monitoring and diagnostic system being developed and installed at Toledo Edison's Davis-Besse Nuclear Power Station will examine the relationship between seal failures and three other variables. This report describes system software and hardware development, testing, and installation work performed during the period of December 1981 through May 1982. Also described herein is a parallel effort being conducted by a B and W/Byron Jackson/Utility group to improve pump seal performance

  19. The effects of DDoS attacks on flow monitoring applications

    NARCIS (Netherlands)

    Sadre, R.; Sperotto, Anna; Pras, Aiko

    Flow-based monitoring has become a popular approach in many areas of network management. However, flow monitoring is, by design, susceptible to anomalies that generate a large number of flows, such as Distributed Denial-Of-Service attacks. This paper aims at getting a better understanding on how a

  20. In-well time-of-travel approach to evaluate optimal purge duration during low-flow sampling of monitoring wells

    Science.gov (United States)

    Harte, Philip T.

    2017-01-01

    A common assumption with groundwater sampling is that low (time until inflow from the high hydraulic conductivity part of the screened formation can travel vertically in the well to the pump intake. Therefore, the length of the time needed for adequate purging prior to sample collection (called optimal purge duration) is controlled by the in-well, vertical travel times. A preliminary, simple analytical model was used to provide information on the relation between purge duration and capture of formation water for different gross levels of heterogeneity (contrast between low and high hydraulic conductivity layers). The model was then used to compare these time–volume relations to purge data (pumping rates and drawdown) collected at several representative monitoring wells from multiple sites. Results showed that computation of time-dependent capture of formation water (as opposed to capture of preexisting screen water), which were based on vertical travel times in the well, compares favorably with the time required to achieve field parameter stabilization. If field parameter stabilization is an indicator of arrival time of formation water, which has been postulated, then in-well, vertical flow may be an important factor at wells where low-flow sampling is the sample method of choice.

  1. Flow-Induced Instabilities in Pump-Turbines in China

    Directory of Open Access Journals (Sweden)

    Zhigang Zuo

    2017-08-01

    Full Text Available The stability of pump-turbines is of great importance to the operation of pumped storage power (PSP stations. Both hydraulic instabilities and operational instabilities have been reported in PSP stations in China. In order to provide a reference to the engineers and scientists working on pump-turbines, this paper summarizes the hydraulic instabilities and performance characteristics that promote the operational instabilities encountered in pump-turbine operations in China. Definitions, analytical methods, numerical and experimental studies, and main results are clarified. Precautions and countermeasures are also provided based on a literature review. The gaps between present studies and the need for engineering practice are pointed out.

  2. Numerical Research about Influence of Blade Outlet Angle on Flow-Induced Noise and Vibration for Centrifugal Pump

    Directory of Open Access Journals (Sweden)

    Ailing Yang

    2014-03-01

    Full Text Available A hybrid numerical method was used to calculate the flow-induced noise and vibration of the centrifugal pump in the paper. The unsteady flows inside the centrifugal pumps with different blade outlet angles were simulated firstly. The unsteady pressure on the inner surface of the volute and the unsteady force applied on the impeller were analyzed. Then the vibration of the volute and sound field were calculated based on an acoustic-vibro-coupling method. The results show that the pump head has increased 7% while the hydraulic efficiency decreased 11.75% as blade outlet angles increased from 18° to 39°. The amplitude of pressure fluctuation at the first blade passing frequency has decreased but increased at the second-order blade passing frequency as the angle growing. The total fluctuation power near volute tongue goes up about 12% every 3° increment of blade outlet angle. The results also show that vibrating-velocity of the volute at second-order blade passing frequency is much higher than at other frequencies, and the velocity increases rapidly as blade outlet angle varies from 18° to 39°. At the same time, the sound pressure level outside the pump has increased about 8.6 dB when the angle increased from 18° to 39°.

  3. Parallel operation of primary sodium pumps in FBTR

    International Nuclear Information System (INIS)

    Athmalingam, S.; Ellappan, T.R.; Vaidyanathan, G.; Chetal, S.C.; Bhoje, S.B.

    1994-01-01

    Sodium pumps used in the primary main circuit of Fast Breeder Test Reactor (FBTR) are centrifugal pumps. These pumps have a free level of sodium with a cover gas above it to simplify the pump seal arrangement. The sodium level in the pumps will vary based on the flow. The minimum level is governed by consideration of gas entrainment and net positive suction head (NPSH) to the pump while the maximum level is limited by sodium entering the pump tank gas line. There is a special feature in these pumps in that a small portion of the pump outlet sodium flow is led back into the suction chamber to maintain level and avoid gas entrainment. A control valve in this line helps in controlling the level at the desired value. With parallel operation of two sodium pumps a study was conducted to find the regions of safe operation of the two pumps. The purpose of this paper is to give the various design features and methodology of the analysis to arrive at the limiting condition of operation for the different operating states of the two pumps and the effect of pump speed variations on the fluctuations in sodium flows. (author). 6 figs

  4. Modeling and experiments on differential pumping in linear plasma generators operating at high gas flows

    NARCIS (Netherlands)

    Eck, van H.J.N.; Koppers, W.R.; Rooij, van G.J.; Goedheer, W.J.; Engeln, R.A.H.; Schram, D.C.; Lopes Cardozo, N.J.; Kleyn, A.W.

    2009-01-01

    The direct simulation Monte Carlo (DSMC) method was used to investigate the efficiency of differential pumping in linear plasma generators operating at high gas flows. Skimmers are used to separate the neutrals from the plasma beam, which is guided from the source to the target by a strong axial

  5. Human Aorta Is a Passive Pump

    Science.gov (United States)

    Pahlevan, Niema; Gharib, Morteza

    2012-11-01

    Impedance pump is a simple valveless pumping mechanism that operates based on the principles of wave propagation and reflection. It has been shown in a zebrafish that a similar mechanism is responsible for the pumping action in the embryonic heart during early stages before valve formation. Recent studies suggest that the cardiovascular system is designed to take advantage of wave propagation and reflection phenomena in the arterial network. Our aim in this study was to examine if the human aorta is a passive pump working like an impedance pump. A hydraulic model with different compliant models of artificial aorta was used for series of in-vitro experiments. The hydraulic model includes a piston pump that generates the waves. Our result indicates that wave propagation and reflection can create pumping mechanism in a compliant aorta. Similar to an impedance pump, the net flow and the flow direction depends on the frequency of the waves, compliance of the aorta, and the piston stroke.

  6. An experimental study on pump clogging

    International Nuclear Information System (INIS)

    Isono, M; Nohmi, M; Uchida, H; Kawai, M; Kudo, H; Kawahara, T; Miyagawa, K; Saito, S

    2014-01-01

    For sewage pump that various foreign substance is flowed into, anti-clogging performance is a factor as important as pump efficiency in order to avoid clogging trouble by foreign substance. Many investigations about pump inner flow and pump efficiency estimation have been carried out conventionally in order to realize coexistence with anti-clogging performance and pump performance. And these results have been reflected in construction of the running water section design method. As a index of anti-clogging performance, ''impeller passage diameter'' which is diameter of spherical solid that can pass through the pump is used widely. And there are various type of the sewage pump which have large impeller passage diameter. However real cause of clog is not a solid, and it is fibrous material such as towel and clothes, vinyl and paper diaper. In most case these material accumulate in the pump, so that clog is occurred. In this study, for the purpose of quantification of anti-clogging performance against fibrous materials, the factor that affect to clogging of pump was investigated by pump model test using a string. The test is done based on Taguchi method. In this test, type of the pump model, diameter of the string, material of the string, length of the string and flow rate are selected for the factor, and the effect that they have on the clogging of the pump was investigated. As a result of this test, it was made clear that length of the string has a strong influence on the clogging of the pump. And from the result of this test, evaluation method of anti-clogging performance of the pump against fibrous material by using string was considered. According to the result of above test based on Taguchi method, it was assumed that quantification of anti-clogging performance against fibrous materials is possible by flowing plural strings into the pump and calculating the probability of passing. Plurality sewage pumps of different types were evaluated based

  7. Parametric representation of centrifugal pump homologous curves

    International Nuclear Information System (INIS)

    Veloso, Marcelo A.; Mattos, Joao R.L. de

    2015-01-01

    Essential for any mathematical model designed to simulate flow transient events caused by pump operations is the pump performance data. The performance of a centrifugal pump is characterized by four basic quantities: the rotational speed, the volumetric flow rate, the dynamic head, and the hydraulic torque. The curves showing the relationships between these four variables are called the pump characteristic curves. The characteristic curves are empirically developed by the pump manufacturer and uniquely describe head and torque as functions of volumetric flow rate and rotation speed. Because of comprising a large amount of points, this configuration is not suitable for computational purposes. However, it can be converted to a simpler form by the development of the homologous curves, in which dynamic head and hydraulic torque ratios are expressed as functions of volumetric flow and rotation speed ratios. The numerical use of the complete set of homologous curves requires specification of sixteen partial curves, being eight for the dynamic head and eight for the hydraulic torque. As a consequence, the handling of homologous curves is still somewhat complicated. In solving flow transient problems that require the pump characteristic data for all the operation zones, the parametric form appears as the simplest way to deal with the homologous curves. In this approach, the complete characteristics of a pump can be described by only two closed curves, one for the dynamic head and other for the hydraulic torque, both in function of a single angular coordinate defined adequately in terms of the quotient between volumetric flow ratio and rotation speed ratio. The usefulness and advantages of this alternative method are demonstrated through a practical example in which the homologous curves for a pump of the type used in the main coolant loops of a pressurized water reactor (PWR) are transformed to the parametric form. (author)

  8. Solid and liquid 129Xe NMR signals enhanced by spin-exchange optical pumping under flow

    International Nuclear Information System (INIS)

    Zhou Xin; Luo Jun; Sun Xianping; Zeng Xizhi; Liu Maili; Liu Wuyang

    2002-01-01

    Laser-polarized 129 Xe gas was produced by spin-exchange with Cs atom optically pumped with diode laser array in a low field under flow. The nuclear spin polarizations of the solid and liquid 129 Xe frozen from the laser-polarized 129 Xe gas were 2.16% and 1.45% respectively in the SY-80M NMR spectrometer, which corresponded to the enhancements of 6000 and 5000 compared to those without optical pumping under the same conditions. It could provide the base and possibility for quantum computers using laser-enhanced solid and liquid 129 Xe. Polarization loss of transport and state change was also discussed

  9. Mathematical modelling of flow in disc friction LVAD pump

    Science.gov (United States)

    Medvedev, A. E.; Fomin, V. M.; Prikhodko, Yu. M.; Cherniavskiy, A. M.; Fomichev, V. P.; Fomichev, A. V.; Chekhov, V. P.; Ruzmatov, T. M.

    2017-10-01

    The need for blood circulation support systems in the treatment of chronic heart failure is constantly increasing as 20% of patients on the waiting list die every year. Despite the great need for mechanical heart support systems the use of available systems is limited by the high cost. Therefore, further research in the field of circulatory support systems is appropriate taking into account medical and technical requirements. One of the new research areas is viscous friction disk pumps for transporting liquids based on the Tesla pump principle. The experimental model of LVAD disk pump is developed. Analytical dependencies are obtained to optimize the hydraulic parameters of the pump. On their basis, the experimental model of LVAD disk pump was designed and created. The results of analytical and experimental studies of such a pump are presented.

  10. Validation of designing tools as part of nuclear pump development process

    International Nuclear Information System (INIS)

    Klemm, T.; Sehr, F.; Spenner, P.; Fritz, J.

    2010-01-01

    Nuclear pumps are characterized by high safety standards, operational reliability as well as long life cycles. For the design process it is of common use to have a down scaled model pump to qualify operating data and simulate exceptional operating conditions. In case of modifications of the pump design compared to existing reactor coolant pumps a model pump is required to develop methods and tools to design the full scale pump. In the presented case it has a geometry scale of 1:2 regarding the full scale pump size. The experimental data of the model pump is basis for validation of methods and tools which are applied in the designing process of the full scale pump. In this paper the selection of qualified tools and the validation process is demonstrated exemplarily on a cooling circuit. The aim is to predict the resulting flow rate. Tools are chosen for different components depending on the benefit to effort ratio. For elementary flow phenomena such as fluid flow in straight pipes or gaps analytic or empirical laws can be used. For more complex flow situations numerical methods are utilized. Main focus is set on the validation process of the applied numerical flow simulation. In this case not only integral data should be compared, it is also necessary to validate local flow structure of numerical flow simulation to avoid systematic errors in CFD Model generation. Due to complex design internal flow measurements are not possible. On that reason simple comparisons of similar flow test cases are used. Results of this study show, that the flow simulation data closely match measured integral pump and test case data. With this validation it is now possible to qualify CFD simulations as a design tool for the full scale pump in similar cooling circuit. (authors)

  11. An analytical method for defining the pump`s power optimum of a water-to-water heat pump heating system using COP

    Directory of Open Access Journals (Sweden)

    Nyers Jozsef

    2017-01-01

    Full Text Available This paper analyzes the energy efficiency of the heat pump and the complete heat pump heating system. Essentially, the maximum of the coefficient of performance of the heat pump and the heat pump heating system are investigated and determined by applying a new analytical optimization procedure. The analyzed physical system consists of the water-to-water heat pump, circulation and well pump. In the analytical optimization procedure the "first derivative equal to zero" mathematical method is applied. The objective function is the coefficient of performance of the heat pump, and the heat pump heating system. By using the analytical optimization procedure and the objective function, as the result, the local and the total energy optimum conditions with respect to the mass flow rate of hot and cold water i. e. the power of circulation or well pump are defined.

  12. Dual-pump CARS measurements in a hydrogen diffusion flame in cross-flow with AC dielectric barrier discharge

    Science.gov (United States)

    Nishihara, Munetake; Freund, Jonathan B.; Glumac, Nick G.; Elliott, Gregory S.

    2018-03-01

    This paper presents dual-pump coherent anti-Stokes Raman scattering (CARS) measurements for simultaneous detection of flow temperature and relative concentration, applied to the characterization of a discharge-coupled reacting jet in a cross flow. The diagnostic is hydrogen Q-branch based, providing a much wider dynamic range compared to detection in the S-branch. For a previously developed dielectric barrier discharge, aligned co-axially with the fuel jet, OH planar laser induced fluorescence measurements show that the disturbance in the flame boundary leads to mixing enhancement. The H2-N2 dual-pump CARS measurement was used to map two-dimensional temperature distributions. The increase of the maximum temperature was up to 300 K, with 50% more H2 consumption, providing the reason for the decrease in the flame length by 25%. The increase of the relative H2O-H2 fraction was accompanied with a temperature increase, which indicates local equivalence ratios of below 1. The H2-O2 dual-pump measurements confirmed that the fuel-oxidizer ratios remain in the fuel-lean side at most of the probed locations.

  13. Assessment of guide vane self-excitation stability at small openings in pump flow

    International Nuclear Information System (INIS)

    Nennemann, B; Sallaberger, M; Henggeler, U; Gentner, C; Parkinson, E

    2012-01-01

    A parameter study of self-excited pump turbine guide vane instability at small openings using a combined CFD-1DOF approach shows that clear tendencies are difficult to obtain. Two types of boundary conditions can be used in the simulations: prescribed mass flow and prescribed pressure. Simulations with both show results that - for one specific operating condition - are consistent with a self-excited guide vane incident at a prototype pump turbine. However, over a larger range of reduced velocities, the tendencies obtained with the two boundary condition types are not always consistent. Pressure boundary conditions may be the more realistic option. Results then show that with increasing reduced velocity, guide vanes will eventually reach static instability or divergence. This may not be problematic. In contrast, passing through a zone of dynamic instability during operation should and can be avoided.

  14. Flow Monitoring Experiences at the Ethernet-Layer

    NARCIS (Netherlands)

    Hofstede, Rick; Hofstede, R.J.; Drago, Idilio; Sperotto, Anna; Pras, Aiko; Lehnert, Ralf

    2011-01-01

    Flow monitoring is a scalable technology for providing summaries of network activity. Being deployed at the IP-layer, it uses fixed flow definitions, based on fields of the IP-layer and higher layers. Since several backbone network operators are considering the deployment of (Carrier) Ethernet in

  15. Nuclear power/water pumping-up composite power plant

    International Nuclear Information System (INIS)

    Okamura, Kiyoshi.

    1995-01-01

    In a nuclear power/water pumping-up composite power plant, a reversible pump for pumping-up power generation connected to a steam turbine is connected to an upper water reservoir and a lower water reservoir. A pumping-up steam turbine for driving the turbine power generator, a hydraulic pump for driving water power generator by water flowing from the upper water reservoir and a steam turbine for driving the pumping-up pump by steams from a nuclear reactor are disposed. When power demand is small during night, the steam turbine is rotated by steams of the reactor, to pump up the water in the lower water reservoir to the upper water reservoir by the reversible pump. Upon peak of power demand during day time, power is generated by the steams of the reactor, as well as the reversible pump is rotated by the flowing water from the upper water reservoir to conduct hydraulic power generation. Alternatively, hydraulic power generation is conducted by flowing water from the upper reservoir. Since the number of energy conversion steps in the combination of nuclear power generation and pumping-up power generation is reduced, energy loss is reduced and utilization efficiency can be improved. (N.H.)

  16. Characterizing Structural and Stratigraphic Heterogeneities in a Faulted Aquifer Using Pump Tests with an Array of Westbay Multilevel Monitoring Wells

    Science.gov (United States)

    Johnson, B.; Zhurina, E. N.

    2001-12-01

    We are developing and assessing field testing and analysis methodologies for quantitative characterization of aquifer heterogenities using data measured in an array of multilevel monitoring wells (MLW) during pumping and recovery well tests. We have developed a unique field laboratory to determine the permeability field in a 20m by 40m by 70m volume in the fault partitioned, siliciclastic Hickory aquifer system in central Texas. The site incorporates both stratigraphic variations and a normal fault system that partially offsets the aquifer and impedes cross-fault flow. We constructed a high-resolution geologic model of the site based upon 1050 m of core and a suite of geophysical logs from eleven, closely spaced (3-10m), continuously cored boreholes to depths of 125 m. Westbay multilevel monitoring systems installed in eight holes provide 94 hydraulically isolated measurement zones and 25 injection zones. A good geologic model is critical to proper installation of the MLW. Packers are positioned at all significant fault piercements and selected, laterally extensive, clay-rich strata. Packers in adjacent MLW bracket selected hydrostratigraphic intervals. Pump tests utilized two, uncased, fully penetrating irrigation wells that straddle the fault system and are in close proximity (7 to 65 m) to the MLW. Pumping and recovery transient pressure histories were measured in 85 zones using pressure transducers with a resolution of 55 Pa (0.008 psi). The hydraulic response is that of an anisotropic, unconfined aquifer. The transient pressure histories vary significantly from zone to zone in a single MLW as well as between adjacent MLW. Derivative plots are especially useful for differentiating details of pressure histories. Based on the geologic model, the derivative curve of a zone reflects its absolute vertical position, vertical stratigraphic position, and proximity to either a fault or significant stratigraphic heterogeneity. Additional forward modeling is needed to

  17. Wet motor geroter fuel pump

    Energy Technology Data Exchange (ETDEWEB)

    Wiernicki, M.V.

    1987-05-05

    This patent describes a wet motor gerotor fuel pump for pumping fuel from a fuel source to an internal combustion which consists of: gerotor pump means comprising an inner pump gear, an outer pump gear, and second tang means located on one of the inner and outer pump gears. The second tang means further extends in a second radial direction radially offset from the first radial direction and forms a driving connection with the first tang means such that the fuel pump pumps fuel from the fuel source into the narrow conduit inlet chamber, through the gerotor pump means past the electric motor means into the outlet housing means substantially along the flow axis to the internal combustion engine.

  18. Detection of pump degradation

    International Nuclear Information System (INIS)

    Casada, D.A.

    1994-01-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. These can generally be classified as: Mechanical; Hydraulic; Tribological; Chemical; and Other (including those associated with the pump driver). Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump

  19. Hardware implementation of the ORNL fissile mass flow monitor

    International Nuclear Information System (INIS)

    McEvers, J.; Sumner, J.; Jones, R.; Ferrell, R.; Martin, C.; Uckan, T.; March-Leuba, J.

    1998-01-01

    This paper provides an overall description of the implementation of the Oak Ridge National Laboratory (ORNL) Fissile Mass Flow Monitor, which is part of a Blend Down Monitoring System (BDMS) developed by the US Department of Energy (DOE). The Fissile Mass Flow Monitor is designed to measure the mass flow of fissile material through a gaseous or liquid process stream. It consists of a source-modulator assembly, a detector assembly, and a cabinet that houses all control, data acquisition, and supporting electronics equipment. The development of this flow monitor was first funded by DOE/NE in September 95, and an initial demonstration by ORNL was described in previous INMM meetings. This methodology was chosen by DOE/NE for implementation in November 1996, and the hardware/software development is complete. Successful BDMS installation and operation of the complete BDMS has been demonstrated in the Paducah Gaseous Diffusion Plant (PGDP), which is operated by Lockheed Martin Utility Services, Inc. for the US Enrichment Corporation and regulated by the Nuclear Regulatory Commission. Equipment for two BDMS units has been shipped to the Russian Federation

  20. Assessment of a turbulence model for numerical predictions of sheet-cavitating flows in centrifugal pumps

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Houlin; Wang, Yong; Liu, Dongxi; Yuan, Shouqi; Wang, Jian [Jiangsu University, Zhenjiang (China)

    2013-09-15

    Various approaches have been developed for numerical predictions of unsteady cavitating turbulent flows. To verify the influence of a turbulence model on the simulation of unsteady attached sheet-cavitating flows in centrifugal pumps, two modified RNG k-ε models (DCM and FBM) are implemented in ANSYS-CFX 13.0 by second development technology, so as to compare three widespread turbulence models in the same platform. The simulation has been executed and compared to experimental results for three different flow coefficients. For four operating conditions, qualitative comparisons are carried out between experimental and numerical cavitation patterns, which are visualized by a high-speed camera and depicted as isosurfaces of vapor volume fraction α{sub v} = 0.1, respectively. The comparison results indicate that, for the development of the sheet attached cavities on the suction side of the impeller blades, the numerical results with different turbulence models are very close to each other and overestimate the experiment ones slightly. However, compared to the cavitation performance experimental curves, the numerical results have obvious difference: the prediction precision with the FBM is higher than the other two turbulence models. In addition, the loading distributions around the blade section at midspan are analyzed in detail. The research results suggest that, for numerical prediction of cavitating flows in centrifugal pumps, the turbulence model has little influence on the development of cavitation bubbles, but the advanced turbulence model can significantly improve the prediction precision of head coefficients and critical cavitation numbers.

  1. Estimation of pump operational state with model-based methods

    International Nuclear Information System (INIS)

    Ahonen, Tero; Tamminen, Jussi; Ahola, Jero; Viholainen, Juha; Aranto, Niina; Kestilae, Juha

    2010-01-01

    Pumps are widely used in industry, and they account for 20% of the industrial electricity consumption. Since the speed variation is often the most energy-efficient method to control the head and flow rate of a centrifugal pump, frequency converters are used with induction motor-driven pumps. Although a frequency converter can estimate the operational state of an induction motor without external measurements, the state of a centrifugal pump or other load machine is not typically considered. The pump is, however, usually controlled on the basis of the required flow rate or output pressure. As the pump operational state can be estimated with a general model having adjustable parameters, external flow rate or pressure measurements are not necessary to determine the pump flow rate or output pressure. Hence, external measurements could be replaced with an adjustable model for the pump that uses estimates of the motor operational state. Besides control purposes, modelling the pump operation can provide useful information for energy auditing and optimization purposes. In this paper, two model-based methods for pump operation estimation are presented. Factors affecting the accuracy of the estimation methods are analyzed. The applicability of the methods is verified by laboratory measurements and tests in two pilot installations. Test results indicate that the estimation methods can be applied to the analysis and control of pump operation. The accuracy of the methods is sufficient for auditing purposes, and the methods can inform the user if the pump is driven inefficiently.

  2. The internal flow pattern analysis of a tidal power turbine operating on bidirectional generation-pumping

    International Nuclear Information System (INIS)

    Luo, Y Y; Xiao, Y X; Wang, Z W

    2013-01-01

    Using tidal energy can reduce environment pollution, save conventional energy and improve energy structure, hence it presents great advantage and is developing potential. Influenced by flood tide and low tide, a fully functional tidal power station needs to experience six operating modes, including bidirectional generation, pumping and sluice; the internal unsteady flow pattern and dynamic characters are very complicated. Based on a bidirectional tidal generator unit, three-dimensional unsteady flows in the flow path were calculated for four typical operating conditions with the pressure pulsation characteristics analyzed. According to the numerical results, the internal flow characteristics in the flow path were discussed. The influence of gravity to the hydraulic performance and flow characteristics were analysed. The results provide a theoretical analysis method of the hydraulic optimization design of the same type unit as well as a direction for stable operation and optimal scheduling of existing tidal power unit

  3. Results of Investigations of Failures of Geothermal Direct Use Well Pumps

    Energy Technology Data Exchange (ETDEWEB)

    Culver, G.

    1994-12-01

    Failures of 13 geothermal direct-use well pumps were investigated and information obtained about an additional 5 pumps that have been in service up to 23 years, but have not failed. Pumps with extra long lateral and variable-speed drives had the highest correlation with reduced time in service. There appears to be at least circumstantial evidence that recirculation may be a cause of reduced pump life. If recirculation is a cause of pump failures, pump specifiers will need to be more aware of minimum flow conditions as well as maximum flow conditions when specifying pumps. Over-sizing pumps and the tendency to specify pumps with high flow and low Net Positive Suction Head (NPSH) could lead to increased problems with recirculation.

  4. Detection of pump degradation

    International Nuclear Information System (INIS)

    Greene, R.H.; Casada, D.A.; Ayers, C.W.

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented

  5. Detection of pump degradation

    Energy Technology Data Exchange (ETDEWEB)

    Greene, R.H.; Casada, D.A.; Ayers, C.W. [and others

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented.

  6. Development and computational simulation of thermoelectric electromagnetic pumps for controlling the fluid flow in liquid metal cooled space nuclear reactors

    International Nuclear Information System (INIS)

    Borges, E.M.

    1991-01-01

    Thermoelectric Electromagnetic (TEEM) Pumps can be used for controlling the fluid flow in the primary and secondary circuits of liquid metal cooled space nuclear reactor. In order to simulate and to evaluate the pumps performance, in steady-state, the computer program BEMTE has been developed to study the main operational parameters and to determine the system actuation point, for a given reactor operating power. The results for each stage of the program were satisfactory, compared to experimental data. The program shows to be adequate for the design and simulating of direct current electromagnetic pumps. (author)

  7. Serial Network Flow Monitor

    Science.gov (United States)

    Robinson, Julie A.; Tate-Brown, Judy M.

    2009-01-01

    Using a commercial software CD and minimal up-mass, SNFM monitors the Payload local area network (LAN) to analyze and troubleshoot LAN data traffic. Validating LAN traffic models may allow for faster and more reliable computer networks to sustain systems and science on future space missions. Research Summary: This experiment studies the function of the computer network onboard the ISS. On-orbit packet statistics are captured and used to validate ground based medium rate data link models and enhance the way that the local area network (LAN) is monitored. This information will allow monitoring and improvement in the data transfer capabilities of on-orbit computer networks. The Serial Network Flow Monitor (SNFM) experiment attempts to characterize the network equivalent of traffic jams on board ISS. The SNFM team is able to specifically target historical problem areas including the SAMS (Space Acceleration Measurement System) communication issues, data transmissions from the ISS to the ground teams, and multiple users on the network at the same time. By looking at how various users interact with each other on the network, conflicts can be identified and work can begin on solutions. SNFM is comprised of a commercial off the shelf software package that monitors packet traffic through the payload Ethernet LANs (local area networks) on board ISS.

  8. High reliability flow system - an assessment of pump reliability and optimisation of the number of pumps

    International Nuclear Information System (INIS)

    Butterfield, J.M.

    1981-01-01

    A system is considered where a number of pumps operate in parallel. Normally, all pumps operate, driven by main motors fed from the grid. Each pump has a pony motor fed from an individual battery supply. Each pony motor is normally running, but not engaged to the pump shaft. On demand, e.g. failure of grid supplies, each pony motor is designed to clutch-in automatically when the pump speed falls to a specified value. The probability of all the pony motors failing to clutch-in on demand must be demonstrated with 95% confidence to be less than 10 -8 per demand. This assessment considers how the required reliability of pony motor drives might be demonstrated in practice and the implications on choice of the number of pumps at the design stage. The assessment recognises that not only must the system prove to be extremely reliable, but that demonstration that reliability is adequate must be done during plant commissioning, with practical limits on the amount of testing performed. It is concluded that a minimum of eight pony motors should be provided, eight pumps each with one pony motor (preferred) or five pumps each with two independent pony motors. A minimum of two diverse pony motor systems should be provided. (author)

  9. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    International Nuclear Information System (INIS)

    Kerschberger, P; Gehrer, A

    2010-01-01

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  10. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    Science.gov (United States)

    Kerschberger, P.; Gehrer, A.

    2010-08-01

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  11. Hydraulic testing of intravascular axial flow blood pump designs with a protective cage of filaments for mechanical cavopulmonary assist.

    Science.gov (United States)

    Kapadia, Jugal Y; Pierce, Kathryn C; Poupore, Amy K; Throckmorton, Amy L

    2010-01-01

    To provide hemodynamic support to patients with a failing single ventricle, we are developing a percutaneously inserted, magnetically levitated axial flow blood pump designed to augment pressure in the cavopulmonary circulation. The device is designed to serve as a bridge-to-transplant, bridge-to-recovery, bridge-to-hemodynamic stability, or bridge-to-surgical reconstruction. This study evaluated the hydraulic performance of three blood pump prototypes (a four-bladed impeller, a three-bladed impeller, and a three-bladed impeller with a four-bladed diffuser) whose designs evolved from previous design optimization phases. Each prototype included the same geometric protective cage of filaments, which stabilize the rotor within the housing and protect the housing wall from the rotating blades. All prototypes delivered pressure rises over a range of flow rates and rotational speeds that would be sufficient to augment hemodynamic conditions in the cavopulmonary circulation. The four-bladed impeller outperformed the two remaining prototypes by >40%; this design was able to generate a pressure rise of 4-28 mm Hg for flow rates of 0.5-10 L/min at rotational speeds of 4,000-7,000 RPM. Successful development of this blood pump will provide clinicians with a feasible therapeutic option for mechanically supporting the failing Fontan.

  12. Hazard Monitoring of Growing Lava Flow Fields Using Seismic Tremor

    Science.gov (United States)

    Eibl, E. P. S.; Bean, C. J.; Jónsdottir, I.; Hoskuldsson, A.; Thordarson, T.; Coppola, D.; Witt, T.; Walter, T. R.

    2017-12-01

    An effusive eruption in 2014/15 created a 85 km2 large lava flow field in a remote location in the Icelandic highlands. The lava flows did not threaten any settlements or paved roads but they were nevertheless interdisciplinarily monitored in detail. Images from satellites and aircraft, ground based video monitoring, GPS and seismic recordings allowed the monitoring and reconstruction of a detailed time series of the growing lava flow field. While the use of satellite images and probabilistic modelling of lava flows are quite common tools to monitor the current and forecast the future growth direction, here we show that seismic recordings can be of use too. We installed a cluster of seismometers at 15 km from the vents and recorded the ground vibrations associated with the eruption. This seismic tremor was not only generated below the vents, but also at the edges of the growing lava flow field and indicated the parts of the lava flow field that were most actively growing. Whilst the time resolution is in the range of days for satellites, seismic stations easily sample continuously at 100 Hz and could therefore provide a much better resolution and estimate of the lava flow hazard in real-time.

  13. Performance Optimization of Centrifugal Pump for Crude Oil Delivery

    Directory of Open Access Journals (Sweden)

    S.A.I. Bellary

    2018-02-01

    Full Text Available Crude oil transport is an essential task in oil and gas industries, where centrifugal pumps are extensively used. The design of a centrifugal pump involves a number of independent parameters which affect the pump performance. Altering some of the parameters within a realistic range improves pump performance and saves a significant amount of energy. The present research investigated the pump characteristics by modifying the number of blades and the exit blade-angles. Reynolds-Averaged Navier-Stokes equations with standard k-ε two-equation turbulence closure were used for steady and incompressible flow of crude oil through the pump. The experimental set-up was installed and the pump performance calculated numerically  was compared with the experiments.   The investigations showed that the number of blades and the exit blade-angles have a significant influence on the head, shaft power, and efficiency. The vortical flow structures, recirculation and reverse flow characteristics around the impeller were investigated to explain the flow dynamics of impeller and casing. A larger number of blades on the rotor showed dominant streamlined flow without any wake phenomena. The combined effect of the number of blades and exit blade angle has led to an increase in head and efficiency through the parametric optimization.

  14. Method for eliminating gas blocking in electrokinetic pumping systems

    Science.gov (United States)

    Arnold, Don W.; Paul, Phillip H.; Schoeniger, Joseph S.

    2001-09-11

    A method for eliminating gas bubble blockage of current flow during operation of an electrokinetic pump. By making use of the ability to modify the surface charge on the porous dielectric medium used in electrokinetic pumps, it becomes possible to place electrodes away from the pressurized region of the electrokinetic pump. While gas is still generated at the electrodes they are situated such that the generated gas can escape into a larger buffer reservoir and not into the high pressure region of the pump where the gas bubbles can interrupt current flow. Various combinations of porous dielectric materials and ionic conductors can be used to create pumps that have desirable electrical, material handling, and flow attributes.

  15. Polar representation of centrifugal pump homologous curves

    International Nuclear Information System (INIS)

    Veloso, Marcelo Antonio; Mattos, Joao Roberto Loureiro de

    2008-01-01

    Essential for any mathematical model designed to simulate flow transient events caused by pump operations is the pump performance data. The performance of a centrifugal pump is characterized by four basic parameters: the rotational speed, the volumetric flow rate, the dynamic head, and the hydraulic torque. Any one of these quantities can be expressed as a function of any two others. The curves showing the relationships between these four variables are called the pump characteristic curves, also referred to as four-quadrant curves. The characteristic curves are empirically developed by the pump manufacturer and uniquely describe head and torque as functions of volumetric flow rate and rotation speed. Because of comprising a large amount of points, the four-quadrant configuration is not suitable for computational purposes. However, it can be converted to a simpler form by the development of the homologous curves, in which dynamic head and hydraulic torque ratios are expressed as functions of volumetric flow and rotation speed ratios. The numerical use of the complete set of homologous curves requires specification of sixteen partial curves, being eight for the dynamic head and eight for the hydraulic torque. As a consequence, the handling of homologous curves is still somewhat complicated. In solving flow transient problems that require the pump characteristic data for all the operation zones, the polar form appears as the simplest way to represent the homologous curves. In the polar method, the complete characteristics of a pump can be described by only two closed curves, one for the dynamic head and other for the hydraulic torque, both in function of a single angular coordinate defined adequately in terms of the quotient between volumetric flow ratio and rotation speed ratio. The usefulness and advantages of this alternative method are demonstrated through a practical example in which the homologous curves for a pump of the type used in the main coolant loops of a

  16. Calculating e-flow using UAV and ground monitoring

    Science.gov (United States)

    Zhao, C. S.; Zhang, C. B.; Yang, S. T.; Liu, C. M.; Xiang, H.; Sun, Y.; Yang, Z. Y.; Zhang, Y.; Yu, X. Y.; Shao, N. F.; Yu, Q.

    2017-09-01

    Intense human activity has led to serious degradation of basin water ecosystems and severe reduction in the river flow available for aquatic biota. As an important water ecosystem index, environmental flows (e-flows) are crucial for maintaining sustainability. However, most e-flow measurement methods involve long cycles, low efficiency, and transdisciplinary expertise. This makes it impossible to rapidly assess river e-flows at basin or larger scales. This study presents a new method to rapidly assessing e-flows coupling UAV and ground monitorings. UAV was firstly used to calculate river-course cross-sections with high-resolution stereoscopic images. A dominance index was then used to identify key fish species. Afterwards a habitat suitability index, along with biodiversity and integrity indices, was used to determine an appropriate flow velocity with full consideration of the fish spawning period. The cross-sections and flow velocity values were then combined into AEHRA, an e-flow assessment method for studying e-flows and supplying-rate. To verify the results from this new method, the widely used Tennant method was employed. The root-mean-square errors of river cross-sections determined by UAV are less than 0.25 m, which constitutes 3-5% water-depth of the river cross-sections. In the study area of Jinan city, the ecological flow velocity (VE) is equal to or greater than 0.11 m/s, and the ecological water depth (HE) is greater than 0.8 m. The river ecosystem is healthy with the minimum e-flow requirements being always met when it is close to large rivers, which is beneficial for the sustainable development of the water ecosystem. In the south river channel of Jinan, the upstream flow mostly meets the minimum e-flow requirements, and the downstream flow always meets the minimum e-flow requirements. The north of Jinan consists predominantly of artificial river channels used for irrigation. Rainfall rarely meets the minimum e-flow and irrigation water requirements

  17. Unsteady response of flow system around balance piston in a rocket pump

    Science.gov (United States)

    Kawasaki, S.; Shimura, T.; Uchiumi, M.; Hayashi, M.; Matsui, J.

    2013-03-01

    In the rocket engine turbopump, a self-balancing type of axial thrust balancing system using a balance piston is often applied. In this study, the balancing system in liquid-hydrogen (LH2) rocket pump was modeled combining the mechanical structure and the flow system, and the unsteady response of the balance piston was investigated. The axial vibration characteristics of the balance piston with a large amplitude were determined, sweeping the frequency of the pressure fluctuation on the inlet of the balance piston. This vibration was significantly affected by the compressibility of LH2.

  18. LOX/LH2 vane pump for auxiliary propulsion systems

    Science.gov (United States)

    Hemminger, J. A.; Ulbricht, T. E.

    1985-01-01

    Positive displacement pumps offer potential efficiency advantages over centrifugal pumps for future low thrust space missions. Low flow rate applications, such as space station auxiliary propulsion or dedicated low thrust orbiter transfer vehicles, are typical of missions where low flow and high head rise challenge centrifugal pumps. The positive displacement vane pump for pumping of LOX and LH2 is investigated. This effort has included: (1) a testing program in which pump performance was investigated for differing pump clearances and for differing pump materials while pumping LN2, LOX, and LH2; and (2) an analysis effort, in which a comprehensive pump performance analysis computer code was developed and exercised. An overview of the theoretical framework of the performance analysis computer code is presented, along with a summary of analysis results. Experimental results are presented for pump operating in liquid nitrogen. Included are data on the effects on pump performance of pump clearance, speed, and pressure rise. Pump suction performance is also presented.

  19. Verification Test of Hydraulic Performance for Reactor Coolant Pump

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Jun; Kim, Jae Shin; Ryu, In Wan; Ko, Bok Seong; Song, Keun Myung [Samjin Ind. Co., Seoul (Korea, Republic of)

    2010-01-15

    According to this project, basic design for prototype pump and model pump of reactor coolant pump and test facilities has been completed. Basic design for prototype pump to establish structure, dimension and hydraulic performance has been completed and through primary flow analysis by computational fluid dynamics(CFD), flow characteristics and hydraulic performance have been established. This pump was designed with mixed flow pump having the following design requirements; specific velocity(Ns); 1080.9(rpm{center_dot}m{sup 3}/m{center_dot}m), capacity; 3115m{sup 3}/h, total head ; 26.3m, pump speed; 1710rpm, pump efficiency; 77.0%, Impeller out-diameter; 349mm, motor output; 360kw, design pressure; 17MPaG. The features of the pump are leakage free due to no mechanical seal on the pump shaft which insures reactor's safety and law noise level and low vibration due to no cooling fan on the motor which makes eco-friendly product. Model pump size was reduced to 44% of prototype pump for the verification test for hydraulic performance of reactor coolant pump and was designed with mixed flow pump and canned motor having the following design requirements; specific speed(NS); 1060.9(rpm{center_dot}m{sup 3}/m{center_dot}m), capacity; 539.4m{sup 3}/h, total head; 21.0m, pump speed; 3476rpm, pump efficiency; 72.9%, Impeller out-diameter; 154mm, motor output; 55kw, design pressure; 1.0MPaG. The test facilities were designed for verification test of hydraulic performance suitable for pump performance test, homologous test, NPSH test(cavitation), cost down test and pressure pulsation test of inlet and outlet ports. Test tank was designed with testing capacity enabling up to 2000m{sup 3}/h and design pressure 1.0MPaG. Auxiliary pump was designed with centrifugal pump having capacity; 1100m{sup 3}/h, total head; 42.0m, motor output; 190kw

  20. A pump/intermediate heat exchanger assembly for a liquid metal reactor

    International Nuclear Information System (INIS)

    Nathenson, R.D.; Alexion, C.C.; Sumpman, W.C.

    1987-01-01

    A heat exchanger and electromagnetic pump assembly is disclosed comprising a heat exchanger housing defining an annularly shaped cavity and supporting therein a plurality of heat transfer tubes. An electromagnetic pump disposed beneath the heat exchanger comprises a circular array of flow couplers. Each flow coupler comprises a pump duct receiving primary liquid metal and a generator duct receiving a pumped intermediate liquid metal. A first plenum chamber is in communication with the generator ducts of all the flow couplers and receives intermediate liquid metal from inlet duct. The generator ducts exit their flows of intermediate liquid metal to a second plenum chamber in communication with the heat exchanger annularly shaped cavity to permit the flow of the intermediate liquid metal therethrough. A third plenum chamber receives collectively the flows of the primary liquid metal from the tubes and directs the primary liquid metal to the pump ducts of the flow couplers. The annular magnetic field of the electromagnetic pump is produced by a circular array of electromagnets having hollow windings cooled by a flow of intermediate liquid metal via tubes and manifolds. The leads to the electromagnets pass through an annular space around the inlet duct. (author)

  1. Engineering design of cryocondensation pumps for the DIII-D Radiative Divertor Program

    International Nuclear Information System (INIS)

    Bozek, A.S.; Baxi, C.B.; Del Bene, J.V.; Laughon, G.J.; Reis, E.E.; Shatoff, H.D.; Smith, J.P.

    1995-01-01

    A new double-null, slotted divertor configuration will be installed for the DIII-D Radiative Divertor Program at General Atomics in late 1996. Four cryocondensation pumps, three new and one existing, will be part of this new divertor. The purpose of the pumps is to provide plasma density control and to limit the impurities entering the plasma core by providing pumping at each divertor strike point. The three new pumps are based on the design of the existing pump, installed in 1992 as part of the Advanced Divertor Program. The pump continues to operate successfully. The new pumps require geometry modifications to the original design. Therefore, extensive modal and dynamic analyses were performed to determine the behavior of these pumps and their helium and nitrogen feed lines during disruption events. Thermal and fluid analyses were also performed to characterize the helium two-phase flow regime in the pumps and their feedlines. A flow testing program was completed to test the change in geometry of the pump feed lines with respect to helium flow stability. The results were compared to the helium thermal and fluid analyses to verify predicted flow regimes and flow stability

  2. Research on the induction motor current signature for centrifugal pump at cavitation condition

    Directory of Open Access Journals (Sweden)

    Yin Luo

    2015-11-01

    Full Text Available Cavitation is a major undesirable phenomenon for centrifugal pump because it can cause hydraulic performance deterioration, pump damage by pitting and material erosion, and structural vibration and noise. Cavitation can appear within the entire range of the operating conditions; therefore, it must be prevented by all means. Sensorless monitoring technology based on motor current signature analysis is non-intrusive and economic for monitoring motor-driven equipment. Thus, this technology is suitable for centrifugal pump systems. The motor current signature for centrifugal pump load at the cavitation condition is the basis of this technology. However, systematic research is lacking on sensorless monitoring technology based on motor current signature. As a result, the tentative exploration for motor current signature at cavitation load was conducted in this study. The results show that the stator current is still a sinusoidal alternating current strictly to the law of sine. Moreover, the root mean square of the current fluctuates because of different flow regimes in the cavitation progress and decreases because vapor density is smaller than water density when cavitation is fully formed. For the stator current spectrum, the noise level, noise distribution, rotation speed, and vane pass frequency components show features in the cavitation process. These indicator indexes change according to the stage of cavitation development. Thus, the motor current signature analysis is found to be a feasible and cost-effective method for the stages of cavitation condition.

  3. SLIPPER PERFORMANCE INVESTIGATION IN AXIAL PISTON PUMPS AND MOTORS-FLOW AND VISCOUS POWER LOSSES

    Directory of Open Access Journals (Sweden)

    A. Osman KURBAN

    1997-01-01

    Full Text Available In this study, the slippers being the most effective on the performance of swash plate type axial piston pumps and motors, which is a good example of hydrodynamic-hydrostatic bearing applications, have been investigated. With respect to this, having derived the viscous moment loss, viscous flow leakage loss and power loss equations, the variations of these parameters under different operating conditions have been examined experimentally.

  4. AIR FLOW AND ENVIRONMENTAL WIND VISUALIZATION USING A CW DIODE PUMPED FREQUENCY DOUBLED Nd:YAG Laser

    Directory of Open Access Journals (Sweden)

    Mircea UDREA

    2009-09-01

    Full Text Available Preliminary results obtained in developing a visualisation technique for non-invasive analysis of air flow inside INCAS subsonic wind tunnel and its appendages are presented. The visualisation technique is based on using a green light sheet generated by a continuous wave (cw longitudinally diode pumped and frequency doubled Nd:YAG laser. The output laser beam is expanded on one direction and collimated on rectangular direction. The system is tailored to the requirements of qualitative analysis and vortex tracking requirements inside the INCAS 2.5m x 2.0m subsonic wind tunnel test section, for measurements performed on aircraft models. Also the developed laser techniques is used for non-invasive air flow field analysis into environmental facilities settling room (air flow calming area. Quantitative analysis is enabled using special image processing tools upon movies and pictures obtained during the experiments. The basic experimental layout in the wind tunnel takes advantage of information obtained from the investigation of various aircraft models using the developed visualisation technique. These results are further developed using a Particle Imaging Velocimetry (PIV experimental technique.The focus is on visualisation techniques to be used for wind flow characterization at different altitudes in indus-trial and civil buildings areas using a light sheet generated by a Nd:YAG cw pumped and doubled laser at 532 nm wave-length. The results are important for prevention of biological/chemical disasters such as spreading of extremely toxic pol-lutants due to wind. Numerical simulations of wind flow and experimental visualisation results are compared. A good agreement between these results is observed.

  5. Operation control of fluids pumping in curved pipes during annular flow: a numerical evaluation

    Directory of Open Access Journals (Sweden)

    T Andrade

    2016-10-01

    Full Text Available To generate projects which provide significant volume recovery from heavy oils reservoirs and improve existing projects, is important to develop new production and transport technologies, especially in the scenario of offshore fields. The core-flow technique is one of new technologies used in heavy oil transportation. This core-flow pattern is characterized by a water pellicle that is formed close or adjacent to the inner wall of the pipe, functioning as a lubricant. The oil flows in the center of the pipe causing a reduction in longitudinal pressure drop. In this sense, this work presents a numerical study of heavy oil annular flow (core-flow assisted by computational tool ANSYS CFX® Release 12.0. It was used a three-dimensional, transient and isothermal mathematical model considered by the mixture and turbulence - models to address the water-heavy oil two-phase flow, assuming laminar flow for oil phase and turbulent flow for water phase. Results of the pressure, velocity and volume fraction distributions of the phases and the pressure drop for different operation conditions are presented and evaluated. It was observed that the oil core flowing eccentrically in the pipe and stops of the water flux considerably increases the pressure drop in the pipe after the restart of the pump.

  6. Vortex cavitation and oscillation in a double-suction volute pump

    International Nuclear Information System (INIS)

    Sato, T; Nagahara, T; Tanaka, K; Fuchiwaki, M; Shimizu, F

    2010-01-01

    In recent years, Computational Fluid Dynamics (CFD) codes have been utilized actively in the early part of the product development cycle. Numerical analysis models have also been developed rapidly and have added cavitation flow analysis functions peculiar to hydraulic machines, in which the flow analysis has been developed remarkably with high-precision and high-reliability. On the other hand, it is well known that three kinds of cavitation, such as vortex cavitation, reverse flow cavitation and cloud cavitation appear in a double-suction volute pump. We have much interest in a relationship among the cavitating flows, pump oscillation and noise. In this study, full 3D numerical simulations have been performed using a commercial code inside the pump from the inlet of suction duct to the outlet of delivery duct. The numerical model is based on a combination of multiphase flow equations with the truncated version of the Rayleigh-Plesset model predicting the complicated growth and collapse process of cavity bubbles. This study highlights especially the mechanism of vortex cavitation occurrence from the end of the suction duct in the pump and pump oscillation which causes cavitation noise from the pump. The experimental investigations have also been performed on the cavitating flow with flow visualization to evaluate the numerical results.

  7. Pumps in wearable ultrafiltration devices: pumps in wuf devices.

    Science.gov (United States)

    Armignacco, Paolo; Garzotto, Francesco; Bellini, Corrado; Neri, Mauro; Lorenzin, Anna; Sartori, Marco; Ronco, Claudio

    2015-01-01

    The wearable artificial kidney (WAK) is a device that is supposed to operate like a real kidney, which permits prolonged, frequent, and continuous dialysis treatments for patients with end-stage renal disease (ESRD). Its functioning is mainly related to its pumping system, as well as to its dialysate-generating and alarm/shutoff ones. A pump is defined as a device that moves fluids by mechanical action. In such a context, blood pumps pull blood from the access side of the dialysis catheter and return the blood at the same rate of flow. The main aim of this paper is to review the current literature on blood pumps, describing the way they have been functioning thus far and how they are being engineered, giving details about the most important parameters that define their quality, thus allowing the production of a radar comparative graph, and listing ideal pumps' features. © 2015 S. Karger AG, Basel.

  8. GAS METERING PUMP

    Science.gov (United States)

    George, C.M.

    1957-12-31

    A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.

  9. Inservice testing of vertical pumps

    International Nuclear Information System (INIS)

    Cornman, R.E. Jr.; Schumann, K.E.

    1994-01-01

    This paper focuses on the problems that may occur with vertical pumps while inservice tests are conducted in accordance with existing American Society of Mechanical Engineers Code, Section XI, standards. The vertical pump types discussed include single stage, multistage, free surface, and canned mixed flow pumps. Primary emphasis is placed on the hydraulic performance of the pump and the internal and external factors to the pump that impact hydraulic performance. In addition, the paper considers the mechanical design features that can affect the mechanical performance of vertical pumps. The conclusion shows how two recommended changes in the Code standards may increase the quality of the pump's operational readiness assessment during its service life

  10. Transient two-phase performance of LOFT reactor coolant pumps

    International Nuclear Information System (INIS)

    Chen, T.H.; Modro, S.M.

    1983-01-01

    Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed

  11. Specificities of reactor coolant pumps units with lead and lead-bismuth coolant

    International Nuclear Information System (INIS)

    Beznosov, A.V.; Anotonenkov, M.A.; Bokov, P.A.; Baranova, V.S.; Kustov, M.S.

    2009-01-01

    The analysis results of impact of lead and lead-bismuth coolants specific properties on the coolants flow features in flow channels of the main and auxiliary circulating pumps are presented. Impossibility of cavitation initiation in flow channels of vane pumps pumping lead and lead-bismuth coolants was demonstrated. The experimental research results of discontinuity of heavy liquid metal coolant column were presented and conditions of gas cavitation initiation in coolant flow were discussed. Invalidity of traditional calculation methods of water and sodium coolants circulation pumps calculations for lead and lead-bismuth coolants circulation pumps was substantiated [ru

  12. Cavitation simulation and NPSH prediction of a double suction centrifugal pump

    International Nuclear Information System (INIS)

    Li, P; Huang, Y F; Li, J

    2012-01-01

    This paper illustrates the flow field numerical analysis of the double-suction centrifugal pump. For the study of the cavitation flow inside the double-suction centrifugal pump, the professional pump/motor simulation software PumpLinx and its Full Cavitation Model has been employed. According to the PumpLinx calculation result and the Cavitation damage index, the cavitation position, level and the cavitation characteristics of the double-suction centrifugal pump has been predicted. For the further objective, the simulation of the flow field in the double-suction centrifugal pump under different inlet conditions has been carried out. By the result analysis, NPSHr has been predicted; the reliability of the results has been verified by comparing with the experimental data. At the same time, this practice can provide guidance for the optimal design of double-suction pump.

  13. Application of a compressible flow solver and barotropic cavitation model for the evaluation of the suction head in a low specific speed centrifugal pump impeller channel

    International Nuclear Information System (INIS)

    Limbach, P; Müller, T; Skoda, R

    2015-01-01

    Commonly, for the simulation of cavitation in centrifugal pumps incompressible flow solvers with VOF kind cavitation models are applied. Since the source/sink terms of the void fraction transport equation are based on simplified bubble dynamics, empirical parameters may need to be adjusted to the particular pump operating point. In the present study a barotropic cavitation model, which is based solely on thermodynamic fluid properties and does not include any empirical parameters, is applied on a single flow channel of a pump impeller in combination with a time-explicit viscous compressible flow solver. The suction head curves (head drop) are compared to the results of an incompressible implicit standard industrial CFD tool and are predicted qualitatively correct by the barotropic model. (paper)

  14. Knudsen pump driven by a thermoelectric material

    International Nuclear Information System (INIS)

    Pharas, Kunal; McNamara, Shamus

    2010-01-01

    The first use of a thermoelectric material in the bidirectional operation of a gas pump using thermal transpiration has been demonstrated. The thermoelectric material maintains a higher temperature difference which favors thermal transpiration and thus increases the efficiency of gas pumping. Since the hot and cold sides of the thermoelectric material are reversible, the direction of the pump may be changed by reversing the electrical current direction. Two different pump designs are presented that illustrate some of the design tradeoffs. The pumps are characterized by measuring the pressure difference that may be generated and by measuring the flow rate in the forward and reverse directions. For a pump composed of a porous material with a pore size of 100 nm, a maximum flow rate of 0.74 cm 3 min −1 and a maximum pressure of 1.69 kPa are achieved

  15. International symposium on cavitation and multiphase flow noise - 1986

    International Nuclear Information System (INIS)

    Arndt, R.E.A.; Billet, M.L.; Blake, W.K.

    1986-01-01

    This book presents the papers given at a symposium on multiphase flow and cavitation. Topics considered at the conference included the development of a cavitation-free sodium pump for a breeder reactor, the stochastic behavior (randomness) of acoustic pressure pulses in the near-subcavitating range, cavitation monitoring of two axial-flow hydroturbines, and noise generated by cavitation in orifice plates with some gaseous effects

  16. Magnetohydrodynamic generator and pump system

    International Nuclear Information System (INIS)

    Birzvalk, Yu.A.; Karasev, B.G.; Lavrentyev, I.V.; Semikov, G.T.

    1983-01-01

    The MHD generator-pump system, or MHD coupling, is designed to pump liquid-metal coolant in the primary circuit of a fast reactor. It contains a number of generator and pump channels placed one after another and forming a single electrical circuit, but hydraulically connected parallel to the second and first circuits of the reactor. All the generator and pump channels are located in a magnetic field created by the magnetic system with an excitation winding that is fed by a regulated direct current. In 500 to 2000 MW reactors, the flow rate of the coolant in each loop of the primary circuit is 3 to 6 m 3 /s and the hydraulic power is 2 to 4 MW. This paper examines the primary characteristics of an MHD generator-pump system with various dimensions and number of channels, wall thicknesses, coolant flow rates, and magnetic fields. It is shown that its efficiency may reach 60 to 70%. The operating principle of the MHD generator-pump system is explained in the referenced patent and involves the transfer of hydraulic power from generator channels to pump channels using a magnetic field and electrical circuit common to both channels. Variations of this system may be analyzed using an equivalent circuit. 7 refs., 5 figs

  17. MK-III function tests in JOYO. Primary main cooling pump

    International Nuclear Information System (INIS)

    Isozaki, Kazunori; Saito, Takakazu; Sumino, Kouzo; Karube, Kouji; Terano, Toshihiro; Sakaba, Hideo; Nakai, Satoru

    2004-06-01

    MK-III function test (SKS-1) that was carried out from October 17, 2001 through October 23, 2001 using MK-III transition core configuration and MK-III function tests (SKS-2) was carried out from January 27, 2003 through February 13, 2003 using MK-III core configuration. The major function tests results of primary cooling system were shown as follows; (1) The stability of the primary main pump flow control system was confirmed on both CAS (cascade) mode and Man (manual) mode. Also no divergence of flow and revolution of the pump were observed at step flow change disturbance. (2) The main motor was shifted to run-back flow control operation in about 54 seconds after scram. The flow rate and pump revolution at run-back operation of A and B cooling system were 167 m 3 /h and 117 rpm, 185m 3 /h and 118 rpm respectively. The pump revolution was within the design target revolution 122 rpm ± 8 rpm and the flow was over the 10% of the rated flow. (3) The pony motor was engaged in operation in about 39 seconds after the primary main pump trip. The flow rate and pump revolution at the pony motor operation of A and B cooling system were 180 m 3 /h and 124 rpm, 190 m 3 /h and 123 rpm respectively. These values were satisfied the design low limit of 93 rpm and 10% of the rated flow. (4) Free flow coast down time constant was longer than 10 seconds that was design shortest time at both the primary pump trip and run-back operation. (5) Pump over flow column sodium levels of both A and B cooling system at rated operating condition were NL-1550 mm and, NL-1468 mm respectively and were lower than NL-1581 mm of the design value. This result shows the new IHX pressure loss estimation was conservative. (6) It was confirmed that the primary main pump could operate with out scram for up to 0.6 seconds of external power supply loss. (author)

  18. Pump testing in the nuclear industry: The comprehensive test and other considerations

    International Nuclear Information System (INIS)

    Hoyle, T.F.

    1992-01-01

    The American Society of Mechanical Engineers Operations and Maintenance Working Group on Pumps and Valves is working on a revision to their pump testing Code, ISTB-1990. This revision will change the basic philosophy of pump testing in the nuclear industry. Currently, all pumps are required to be tested quarterly, except those installed in dry sumps. In the future standby pumps will receive only a start test quarterly to ensure the pump comes up to speed and pressure or flow. Then, on a biennial basis all pumps would receive a more extensive test. This comprehensive test would require high accuracy test gauges to be used, and the pumps would be required to be tested near pump design flow. Testing on minimum flow loops would not be permitted except in rare cases. Additionally. during the comprehensive test, measurements of vibration, flow, and pressure would all be taken. The OM-6 standard (ISTB Code) will also require that reference values of flow rate and differential pressure be taken at several points instead of just one point, which is current practice. The comprehensive test is just one step in ensuring the adequacy of pump testing in the nuclear industry. This paper also addresses other concerns and makes recommendations for increased quality of testing of certain critical pumps and recommendations for less stringent or no tests on less critical pumps

  19. Main coolant pump testing at Ontario Hydro

    International Nuclear Information System (INIS)

    Hartlen, R.

    1991-01-01

    This article describes Ontario Hydro Research Division's experience with a computerized data acquisition and analysis system for monitoring mechanical vibration in reactor coolant pumps. The topics covered include bench-marking of the computer system and the coolant pumps, signatures of normal and malfunctioning pumps, analysis of data collected by the monitoring system, simulation of faults, and concerns that have been expressed about data interpretation, sensor types and locations, alarm/shutdown limits and confirmation of nondestructive examination testing. This presentation consists of overheads only

  20. High-speed flow visualization in a pump-turbine under off-design operating conditions

    International Nuclear Information System (INIS)

    Hasmatuchi, V; Roth, S; Botero, F; Avellan, F; Farhat, M

    2010-01-01

    The flow hydrodynamics in a low specific speed radial pump-turbine reduced scale model is experimentally investigated under off-design operating conditions in generating mode. Wall pressure measurements, in the stator, synchronized with high-speed flow visualizations in the vaneless space between the impeller and the guide vanes using air bubbles injection are performed. When starting from the best efficiency point and increasing the runner speed, a significant increase of the pressure fluctuations is observed mainly in channels between wicket gates. The spectral analysis shows a rise of one stall cell, rotating with about 70% of the impeller frequency, at runaway, which further increases as the zero discharge condition is approached. Then a specific image processing technique is detailed and applied to create a synthetic instantaneous view of the flow pattern on the entire guide vanes circumference for an operating point in turbine-brake mode, where backflow and vortices accompany the stall passage.

  1. Hydraulic optimization of 'S' characteristics of the pump-turbine for Xianju pumped storage plant

    International Nuclear Information System (INIS)

    Liu, W C; Zheng, J S; Cheng, J; Shi, Q H

    2012-01-01

    The pump-turbine with a rated power capacity of 375MW each at Xianju pumped storage plant is the most powerful one under construction in China. In order to avoid the instability near no-load conditions, the hydraulic design of the pump-turbine has been optimized to improving the 'S' characteristic in the development of the model pump-turbine. This paper presents the cause of 'S' characteristic of a pump-turbine by CFD simulation of the internal flow. Based on the CFD analysis, the hydraulic design optimization of the pump-turbine was carried out to eliminate the 'S' characteristics of the machine at Xianju pumped storage plant and a big step for removing the 'S' characteristic of a pump-turbine has been obtained. The model test results demonstrate that the pump-turbine designed for Xianju pumped storage plant can smoothly operate near no-load conditions without an addition of misaligned guide vanes.

  2. The influence of Reynolds numbers on resistance properties of jet pumps

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Q. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Zhou, G. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Li, Q. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); State Key laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry (China)

    2014-01-29

    Jet pumps are widely used in thermoacoustic Stirling heat engines and pulse tube cryocoolers to eliminate the effect of Gedeon streaming. The resistance properties of jet pumps are principally influenced by their structures and flow regimes which are always characterized by Reynolds numbers. In this paper, the jet pump of which cross section contracts abruptly is selected as our research subject. Based on linear thermoacoustic theory, a CFD model is built and the oscillating flow of the working gas is simulated and analyzed with different Reynolds numbers in the jet pump. According to the calculations, the influence of different structures and Reynolds numbers on the resistance properties of the jet pump are analyzed and presented. The results show that Reynolds numbers have a great influence on the resistance properties of jet pumps and some empirical formulas which are widely used are unsuitable for oscillating flow with small Reynolds numbers. This paper provides a more comprehensive understanding on resistance properties of jet pumps with oscillating flow and is significant for the design of jet pumps in practical thermoacoustic engines and refrigerators.

  3. Laboratory evaluation of the emulsifying characteristics of pumps

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, A.C.; Guzdar, A.R.; Friswell, D.R.

    1973-10-01

    The program was devoted to a laboratory investigation of the emulsifying characteristics of different pumps suitable for shipboard pumping of bilge and ballast water oily wastes. The tests were designed to investigate the effect of several parameters, such as oil type, input oil concentration, detergent, pump operating characteristics (pressure and flow rate), and salt vs. fresh water, on emulsification. Tests were conducted on the Foster-Miller test loop. No. 2 fuel oil, lubricating oil and No. 6 fuel oil were the oils tested at concentrations ranging from 1 to 10%. The oils were tested with and without the addition of 10% Gamlen D surfactant. The pumps used were a Parker Diaphragm pump, a Blackmer Sliding Vane pump, an Ingersoll Rand Centrifugal pump, and a Deming Centrifugal pump. Pump pressure ranged from 10 to 60 psi and flow rates from 10 to 100 gpm. A total of 270 tests was conducted covering 198 different operating points, 108 concerning pump comparison, 54 concerning oil concentration and surfactant, and 45 concerning salt water.

  4. Considerations for reference pump curves

    International Nuclear Information System (INIS)

    Stockton, N.B.

    1992-01-01

    This paper examines problems associated with inservice testing (IST) of pumps to assess their hydraulic performance using reference pump curves to establish acceptance criteria. Safety-related pumps at nuclear power plants are tested under the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (the Code), Section 11. The Code requires testing pumps at specific reference points of differential pressure or flow rate that can be readily duplicated during subsequent tests. There are many cases where test conditions cannot be duplicated. For some pumps, such as service water or component cooling pumps, the flow rate at any time depends on plant conditions and the arrangement of multiple independent and constantly changing loads. System conditions cannot be controlled to duplicate a specific reference value. In these cases, utilities frequently request to use pump curves for comparison of test data for acceptance. There is no prescribed method for developing a pump reference curve. The methods vary and may yield substantially different results. Some results are conservative when compared to the Code requirements; some are not. The errors associated with different curve testing techniques should be understood and controlled within reasonable bounds. Manufacturer's pump curves, in general, are not sufficiently accurate to use as reference pump curves for IST. Testing using reference curves generated with polynomial least squares fits over limited ranges of pump operation, cubic spline interpolation, or cubic spline least squares fits can provide a measure of pump hydraulic performance that is at least as accurate as the Code required method. Regardless of the test method, error can be reduced by using more accurate instruments, by correcting for systematic errors, by increasing the number of data points, and by taking repetitive measurements at each data point

  5. Keeping Up with the Diabetes Technology: 2016 Endocrine Society Guidelines of Insulin Pump Therapy and Continuous Glucose Monitor Management of Diabetes.

    Science.gov (United States)

    Galderisi, Alfonso; Schlissel, Elise; Cengiz, Eda

    2017-09-23

    Decades after the invention of insulin pump, diabetes management has encountered a technology revolution with the introduction of continuous glucose monitoring, sensor-augmented insulin pump therapy and closed-loop/artificial pancreas systems. In this review, we discuss the significance of the 2016 Endocrine Society Guidelines for insulin pump therapy and continuous glucose monitoring and summarize findings from relevant diabetes technology studies that were conducted after the publication of the 2016 Endocrine Society Guidelines. The 2016 Endocrine Society Guidelines have been a great resource for clinicians managing diabetes in this new era of diabetes technology. There is good body of evidence indicating that using diabetes technology systems safely tightens glycemic control while managing both type 1 and type 2 diabetes. The first-generation diabetes technology systems will evolve as we gain more experience and collaboratively work to improve them with an ultimate goal of keeping people with diabetes complication and burden-free until the cure for diabetes becomes a reality.

  6. Pump efficiency in solar-energy systems

    Science.gov (United States)

    1978-01-01

    Study investigates characteristics of typical off-the-shelf pumping systems that might be used in solar systems. Report includes discussion of difficulties in predicting pump efficiency from manufacturers' data. Sample calculations are given. Peak efficiencies, flow-rate control, and noise levels are investigated. Review or theory of pumps types and operating characteristics is presented.

  7. Experimental study on hydraulic characteristic around trash rack of a pumping station

    Science.gov (United States)

    Zhou, MinZhe; Li, TongChun; Lin, XiangYang; Liu, XiaoQing; Ding, Yuan; Liu, GuangYuan

    2017-11-01

    This paper focuses on flow pattern around trash rack of intake of a pumping station project. This pumping station undertake the task of supplying up to 3,500,000 m3 water per day for a megacity. Considering the large flow rate, high lift, multi-pipe supply and long-time operation in this water conveyance pumping station, we built a physical model test to measure the flow velocity and observe the flow pattern to verify the reasonability of preliminary design. In this test, we set 3 layers of current meters around each trash rack of intake in reservoir to collect the flow velocity. Furthermore, we design 2 operating conditions of 9 pumps to observe the change of flow pattern. Finally, we found the velocity data were in a normal range under 2 different operating conditions of the 9 pump units.

  8. Simulation of LMFBR pump transients and comparison to LOF that occurred at EBR-II

    International Nuclear Information System (INIS)

    Koenig, F.F.; Dean, E.M.

    1985-01-01

    In a large LMFBR plant design, a number of pumps in parallel will feed the core. It must be demonstrated that the plant can continue to operate with the loss of one of the primary pumps. It is desirable not to have check valves in the loop from a reliability and economic standpoint. Simulations have been made to determine the consequences of a loss of one pump in a four-loop pool plant in which no plant protection action is taken. This analysis would be used to determine the required power rundown that would accompany pump loss. The two primary centrifugal pumps in EBR-II feed the core and blanket plenums in two parallel flow paths. The loss of one pump will result in decrease core flow and reverse flow through the down pump since no check valves are present in the system. For a large pool plant with four primary pumps, the loss of one pump will also result in reverse flow through the down pump if check valves of flow diodes are not included. The resulting flow transient has been modeled for EBR-II and the large plant using the DNSP program

  9. Methods for monitoring heat flow intensity in the blast furnace wall

    Directory of Open Access Journals (Sweden)

    L'. Dorčák

    2010-04-01

    Full Text Available In this paper we present the main features of an online system for real-time monitoring of the bottom part of the blast furnace. Firstly, monitoring concerns the furnace walls and furnace bottom temperatures measurement and their visualization. Secondly, monitored are the heat flows of the furnace walls and furnace bottom. In the case of two measured temperatures, the heat flow is calculated using multi-layer implicit difference scheme and in the case of only one measured temperature, the heat flow is calculated using a method based on application of fractional-order derivatives. Thirdly, monitored is the theoretical temperature of the blast furnace combustion process in the area of tuyeres.

  10. Reactor coolant purification system circulation pumps (CUW pumps)

    International Nuclear Information System (INIS)

    Tsutsui, Toshiaki

    1979-01-01

    Coolant purification equipments for BWRs have been improved, and the high pressure purifying system has become the main type. The quantity of purifying treatment also changed to 2% of the flow rate of reactor feed water. As for the circulation pumps, canned motor pumps are adopted recently, and the improvements of reliability and safety are attempted. The impurities carried in by reactor feed water and the corrosion products generated in reactors and auxiliary equipments are activated by neutron irradiation or affect heat transfer adversely, adhering to fuel claddings are core structures. Therefore, a part of reactor coolant is led to the purification equipments, and returned to reactors after the impurities are eliminated perfectly. At the time of starting and stopping reactors, excess reactor water and the contaminated water from reactors are transferred to main condenser hot wells or waste treatment systems. Thus the prescribed water quality is maintained. The operational modes of and the requirements for the CUW pumps, the construction and the features of the canned motor type CUW pumps are explained. Recently, a pump operated for 11 months without any maintenance has been disassembled and inspected, but the wear of bearings has not been observed, and the high reliability of the pump has been proved. (Kako, I.)

  11. Centrifugal pumps: fundamentals and classification

    International Nuclear Information System (INIS)

    Solar Manuel, A. M.

    2009-01-01

    Centrifugal pumps are usually employed to impulse water to elevate it, dose it or give it pressure or speed. They can be used with clean water or loaded with high solid concentration and don't work properly with air or another gas flow. There are another less used pumps, coming from volumetric or ram pumps to magnetic ones for specific uses. Centrifugal ones are rotokinetic pumps, like peripherical or lateral channel pumps. They work in a different way that non rotational kinetic ones and static ones. The work approaches their pre definition, selection, installation, operation and maintenance. It also review their morphology, hidromechanic principles and the basic elements pumps are made of. (Author)

  12. Evaluation of reciprocating electromagnetic air pumping for portable PEMFC

    International Nuclear Information System (INIS)

    Kwon, Kilsung; Kang, Ho; Kang, Seongwon; Kim, Daejoong

    2013-01-01

    In this paper, we present a proton exchange membrane fuel cell (PEMFC) integrated with an electromagnetic (EM) air pump. The EM air pump provides the PEMFC with air by reciprocating motions of the permanent magnet attached to a flexible membrane. We performed a parametric study to decide the optimal dimensions of the reciprocating EM air pump. The effects of various operating parameters on the EM air pump were investigated with the root-mean-square (RMS) flow rate and current. A core with a higher relative permeability shows better performance. The RMS current linearly increases with the applied voltage and shows no dependence on the frequency. The RMS flow rate also increases with the voltage. The RMS flow rate per power consumption is highest at the frequency around 20 Hz and decreases as the applied voltage increases. When the reciprocating EM air pump was used to supply air to the portable PEMFC, it was found that the power density of the PEMFC increases with the applied voltage and shows the highest performance at the frequency of 10 Hz. We compared the performance of the PEMFC between the flow meter and the EM air pump used as an air supplier. About 81% of the output power using the flow meter was obtained when the EM air pump is operated at the applied voltage of 5 V. The parasitic power ratio reaches at its minimum value about 0.1 with an EM applied voltage of 0.25V. (paper)

  13. Development and Optimized Design of Propeller Pump System & Structure with VFD in Low-head Pumping Station

    Science.gov (United States)

    Rentian, Zhang; Honggeng, Zhu; Arnold, Jaap; Linbi, Yao

    2010-06-01

    Compared with vertical-installed pumps, the propeller (bulb tubular) pump systems can achieve higher hydraulic efficiencies, which are particularly suitable for low-head pumping stations. More than four propeller pumping stations are being, or will be built in the first stage of the S-to-N Water Diversion Project in China, diverting water from Yangtze River to the northern part of China to alleviate water-shortage problems and develop the economy. New structures of propeller pump have been developed for specified pumping stations in Jiangsu and Shandong Provinces respectively and Variable Frequency Drives (VFDs) are used in those pumping stations to regulate operating conditions. Based on the Navier-Stokes equations and the standard k-e turbulent model, numerical simulations of the flow field and performance prediction in the propeller pump system were conducted on the platform of commercial software CFX by using the SIMPLEC algorithm. Through optimal design of bulb dimensions and diffuser channel shape, the hydraulic system efficiency has improved evidently. Furthermore, the structures of propeller pumps have been optimized to for the introduction of conventional as well as permanent magnet motors. In order to improve the hydraulic efficiency of pumping systems, both the pump discharge and the motor diameter were optimized respectively. If a conventional motor is used, the diameter of the pump casing has to be increased to accommodate the motor installed inside. If using a permanent magnet motor, the diameter of motor casing can be decreased effectively without decreasing its output power, thus the cross-sectional area is enlarged and the velocity of flowing water decreased favorably to reduce hydraulic loss of discharge channel and thereby raising the pumping system efficiency. Witness model tests were conducted after numerical optimization on specific propeller pump systems, indicating that the model system hydraulic efficiencies can be improved by 0.5%˜3.7% in

  14. Glucose pump test can be used to measure blood flow rate of native arteriovenous fistula in chronic hemodialysis.

    Science.gov (United States)

    Yavuz, Y C; Selcuk, N Y; Altıntepe, L; Güney, I; Yavuz, S

    2018-01-01

    In chronic hemodialysis patients, the low flow of vascular access may leads to inadequate dialysis, increased rate of hospitalization, morbidity, and mortality. It was found that surveillance should be performed for native arteriovenous (AV) should not be performed for AV graft in various studies. However, surveillance was done in graft AV fistulas in most studies. Doppler ultrasonography (US) was suggested for surveillance of AV fistulas by the last vascular access guideline of National Kidney Foundation Disease Outcomes Quality Initiative (NKF KDOQI). The aim of study is to determine whether glucose pump test (GPT) is used for surveillance of native AV fistulas by using Doppler US as reference. In 93 chronic hemodialysis patients with native AV fistula, blood flow rates were measured by Doppler US and GPT. For GPT, glucose was infused to 16 mL/min by pump and was measured at basal before the infusion and 11 s after the start of the infusion by glucometer. Doppler US was done by an expert radiologist. Used statistical tests were Mann-Whitney U test, Friedman test, regression analysis, and multiple regression analysis. Median values of blood flow rates measured by GPT (707 mL/min) and by Doppler US (700 mL/min) were not different (Z = 0.414, P = 0.678). Results of GPT and Doppler US measurements were positive correlate by regression analysis. The mean GPT value of diabetic patients (n = 39; 908 mL/min) was similar to that of nondiabetic patients (n = 54; 751 mL/min; Z = 1.31, P = 0.188). GPT values measured at three different dialysis session did not differ from each other that by Friedman test (F = 0.92, P = 0.39). This showed that GPT was stable and reliable. Glucose pump test can be used to measure blood flow rate of native AV fistula. GPT is an accurate and reliable test.

  15. Design of a high-pressure circulating pump for viscous liquids.

    Science.gov (United States)

    Seifried, Bernhard; Temelli, Feral

    2009-07-01

    The design of a reciprocating dual action piston pump capable of circulating viscous fluids at pressures of up to 34 MPa (5000 psi) and temperatures up to 80 degrees C is described. The piston of this pump is driven by a pair of solenoids energized alternatively by a 12 V direct current power supply controlled by an electronic controller facilitating continuously adjustable flow rates. The body of this seal-less pump is constructed using off-the-shelf parts eliminating the need for custom made parts. Both the electronic controller and the pump can be assembled relatively easily. Pump performance has been evaluated at room temperature (22 degrees C) and atmospheric pressure using liquids with low and moderately high viscosities, such as ethanol and corn oil, respectively. At ambient conditions, the pump delivered continuous flow of ethanol and corn oil at a flow rate of up to 170 and 17 cm3/min, respectively. For pumping viscous fluids comparable to corn oil, an optimum reciprocation frequency was ascertained to maximize flow rate. For low viscosity liquids such as ethanol, a linear relationship between the flow rate and reciprocation frequency was determined up to the maximum reciprocation frequency of the pump. Since its fabrication, the pump has been used in our laboratory for circulating triglycerides in contact with supercritical carbon dioxide at pressures of up to 25 MPa (3600 psi) and temperatures up to 70 degrees C on a daily basis for a total of more than 1500 h of operation functioning trouble free.

  16. Sealing properties of mechanical seals for an axial flow blood pump.

    Science.gov (United States)

    Tomioka, J; Mori, T; Yamazaki, K; Koyanagi, H

    1999-08-01

    A miniature intraventricular axial flow blood pump for left ventricular support is under development. One of the key technologies required for such pumps is sealing of the motor shaft. In this study, to prevent blood backflow into the motor side, mechanical seals were developed and their sealing properties investigated. In the experimental apparatus, the mechanical seal separated the bovine blood on the chamber side from the cooling water on the motor side. A leakage of the blood was measured by inductively coupled plasma (ICP) light emission analysis. The rate of hemolysis was measured by the cyanmethemoglobin method. Frictional torque acting on the shaft was measured by a torque transducer. In the experiments, the rotational speed of the shaft was changed from 1,000 to 10,000 rpm, and the contact force of the seal faces was changed from 1.96 to 4.31 N. To estimate lubrication regimes, the Stribeck curve, a diagram of the coefficient of friction against the bearing characteristic G number, was drawn. The results of the experiments showed that both the leakage of blood and the rate of hemolysis were very small. The friction loss was also very small. The mechanical seal was operated in various lubrication regimes, from a fluid lubrication regime to a mixed lubrication regime.

  17. Using the motor to monitor pump conditions

    International Nuclear Information System (INIS)

    Casada, D.

    1996-01-01

    When the load of a mechanical device being driven by a motor changes, whether in response to changes in the overall process or changes in the performance of the driven device, the motor inherently responds. For induction motors, the current amplitude and phase angle change as the shaft load changes. By examining the details of these changes in amplitude and phase, load fluctuations of the driven device can be observed. The usefulness of the motor as a transducer to improve the understanding of devices with high torque fluctuations, such as positive displacement compressors and motor-operated valves, has been recognized and demonstrated for a number of years. On such devices as these, the spectrum of the motor current amplitude, phase, or power normally has certain characteristic peaks associated with various load components, such as the piston stroke or gear tooth meshing frequencies. Comparison and trending of the amplitudes of these peaks has been shown to provide some indication of their mechanical condition. For most centrifugal pumps, the load fluctuations are normally low in torque amplitude, and as a result, the motor experiences a correspondingly lower level of load fluctuation. However, both laboratory and field test data have demonstrated that the motor does provide insight into some important pump performance conditions, such as hydraulic stability and pump-to-motor alignment. Comparisons of other dynamic signals, such as vibration and pressure pulsation, to motor data for centrifugal pumps are provided. The effects of inadequate suction head, misalignment, mechanical and hydraulic unbalance on these signals are presented

  18. Using the motor to monitor pump conditions

    Energy Technology Data Exchange (ETDEWEB)

    Casada, D. [Oak Ridge National Lab., TN (United States)

    1996-12-01

    When the load of a mechanical device being driven by a motor changes, whether in response to changes in the overall process or changes in the performance of the driven device, the motor inherently responds. For induction motors, the current amplitude and phase angle change as the shaft load changes. By examining the details of these changes in amplitude and phase, load fluctuations of the driven device can be observed. The usefulness of the motor as a transducer to improve the understanding of devices with high torque fluctuations, such as positive displacement compressors and motor-operated valves, has been recognized and demonstrated for a number of years. On such devices as these, the spectrum of the motor current amplitude, phase, or power normally has certain characteristic peaks associated with various load components, such as the piston stroke or gear tooth meshing frequencies. Comparison and trending of the amplitudes of these peaks has been shown to provide some indication of their mechanical condition. For most centrifugal pumps, the load fluctuations are normally low in torque amplitude, and as a result, the motor experiences a correspondingly lower level of load fluctuation. However, both laboratory and field test data have demonstrated that the motor does provide insight into some important pump performance conditions, such as hydraulic stability and pump-to-motor alignment. Comparisons of other dynamic signals, such as vibration and pressure pulsation, to motor data for centrifugal pumps are provided. The effects of inadequate suction head, misalignment, mechanical and hydraulic unbalance on these signals are presented.

  19. Part-load pumping operation, control and behaviour

    International Nuclear Information System (INIS)

    1988-01-01

    Twenty one papers are printed. Their main concern is with pump performance under abnormal operating conditions or when operating at part-load. The effect of part-load operation on pump performance, pump internal flow and pump cavitation and noise were considered. The pumps considered are used in a variety of situations and some case studies were discussed. One paper about part-load operation of the boiler pumps for French pressurized water reactors and one paper on pressure pulsations of centrifugal pumps at very low flowrate, are indexed separately. (U.K.)

  20. Analysis of pumping performances in one-stage turbomolecular pump by 3D direct simulation Monte Carlo calculation

    International Nuclear Information System (INIS)

    Sheng Wang; Hisashi Ninokata

    2005-01-01

    The turbomolecular pump (TMP) has been applied in many fields for producing high and ultrahigh vacuum. It works mainly in conditions of free molecular and transitional flow where the mathematical model is the Boltzmann equation. In this paper, direct simulation Monte Carlo (DSMC) method is applied to simulate the one-stage TMP with a 3D analysis in a rotating reference frame. Considering the Coriolis and centrifugal accelerations, the equations about the molecular velocities and position are deduced. The VSS model and NTC collision schemes are used to calculate the intermolecular collisions. The diffuse reflection is employed on the molecular reflection from the surfaces of boundary. The transmission probabilities of gas flow in two opposite flow direction, the relationship between the mass flow rate and the pressure difference, the pumping performances including the maximum compression ratio on different outlet pressures in free molecular flow and transitional flow and the maximum pumping efficiency on different blade angles are calculated. The transmission probabilities are applied to analyze the relationship between the outlet pressure and the maximum pressure ratio. The numerical results show good quantitative agreement with the existing experiment data. (authors)

  1. Low-voltage electroosmotic pumping using polyethylene terephthalate track-etched membrane

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ceming; Wang Lin [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Xue Jianming, E-mail: jmxue@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China)

    2012-09-01

    We present experimental investigations of electroosmotic (EO) pumping using polyethylene terephthalate (PET) track-etched membrane at a low applied voltage. An EO pump based on PET track-etched membrane has been designed and fabricated. Pumping performance of the device is experimentally studied in terms of flow rate as a function of applied voltage and KCl aqueous concentration. The PET track-etched membrane EO pump can generate flow rates on the order of 10 {mu}l min{sup -1} cm{sup -2} at several applied volts. The measured flow rate tends to decrease with increasing KCl aqueous concentration. In addition, we study the EO flow in cylindrical nanopore with use of a continuum model, composed of Nernst Planck equations, Poisson equation and Navier Stokes equations.

  2. Insights on pumping well interpretation from flow dimension analysis: The learnings of a multi-context field database

    Science.gov (United States)

    Ferroud, Anouck; Chesnaux, Romain; Rafini, Silvain

    2018-01-01

    The flow dimension parameter n, derived from the Generalized Radial Flow model, is a valuable tool to investigate the actual flow regimes that really occur during a pumping test rather than suppose them to be radial, as postulated by the Theis-derived models. A numerical approach has shown that, when the flow dimension is not radial, using the derivative analysis rather than the conventional Theis and Cooper-Jacob methods helps to estimate much more accurately the hydraulic conductivity of the aquifer. Although n has been analysed in numerous studies including field-based studies, there is a striking lack of knowledge about its occurrence in nature and how it may be related to the hydrogeological setting. This study provides an overview of the occurrence of n in natural aquifers located in various geological contexts including crystalline rock, carbonate rock and granular aquifers. A comprehensive database is compiled from governmental and industrial sources, based on 69 constant-rate pumping tests. By means of a sequential analysis approach, we systematically performed a flow dimension analysis in which straight segments on drawdown-log derivative time series are interpreted as successive, specific and independent flow regimes. To reduce the uncertainties inherent in the identification of n sequences, we used the proprietary SIREN code to execute a dual simultaneous fit on both the drawdown and the drawdown-log derivative signals. Using the stated database, we investigate the frequency with which the radial and non-radial flow regimes occur in fractured rock and granular aquifers, and also provide outcomes that indicate the lack of applicability of Theis-derived models in representing nature. The results also emphasize the complexity of hydraulic signatures observed in nature by pointing out n sequential signals and non-integer n values that are frequently observed in the database.

  3. Study of Peak Expiratory Flow Rate as the Assessment of Lung Function in Occupationally Exposed Petrol Pump Workers of Western Maharashtra

    Directory of Open Access Journals (Sweden)

    Patil Smita V

    2016-04-01

    Full Text Available Background: Fast urbanization trends, rapid industrial growth, globalization, and poor environmental conditions at work places have created a lot of healthrelated issues. Aim and Objectives: The aim of this study is to investigate Peak Expiratory Flow Rate (PEFR as the assessment of lung function in occupationally exposed petrol pump workers and also check whether PEFR increases or decreases with duration of exposure. Material and Methods: The study was conducted on 60 male petrol pump workers between age group of 20-40 years who were working as petrol filling attendants for more than one year from western Maharashtra. 50 normal healthy males with same socioeconomic status were chosen as controls to find out the effect of occupational exposure to petroleum product on PEFR as the assessment of lung function tests. Petrol pump workers were divided into three groups based on their duration of exposure i.e. 1- 5 yrs, 6- 10 yrs and more than 11 years. PEFR of petrol pump workers and control was measured by using a Mini Wright peak flow meter which is a portable device for measuring ventilator functions. Comparisons was done using unpaired t-test for 2 groups comparisons and one way ANOVAfor multiple groups of exposures. Results: The PEFR was significantly lower decrease (p=0.001 around petrol pump workers (389.17 as compared to control (534.2. As year of exposure increased mean value of PEFR was significantly decreased from 452.17, 378.00 and 283.64 respectively in petrol pump workers. Conclusion: The results suggested that respiratory functions i.e. PEFR of occupationally exposed petrol pump workers are significantly reduced as compared to controls, also PEFR is significantly reduced with increase in the duration of exposure.

  4. Recycling flow rate control device in BWR type reactor

    International Nuclear Information System (INIS)

    Fujiwara, Tadashi; Koda, Yasushi

    1988-01-01

    Purpose: To reduce the recycling pump speed if the pressure variation width and the variation ratio in the nuclear reactor exceed predetermined values, to thereby avoid the shutdown of the plant. Constitution: There has been proposed a method of monitoring the neutron flux increase thereby avoiding unnecessary plant shutdown, but it involves a problems of reactor scram depending on the state of the plant and the set values. In view of the above, in the plant using internal pumps put under the thyristor control and having high response to recycling flow rate, the reactor pressure is monitored and the speed of the internal pump is rapidly reduced when the pressure variation width and variation ratio exceed predetermined values to reduce the reactor power and avoid the plant shutdown. This can reduce the possibility of unnecessary power reduction due to neutron flux noises or the possibility of plant shutdown under low power conditions. Further, since the reactor operation can be continued without stopping the recycling pump, the operation upon recovery can be made rapid. (Horiuchi, T.)

  5. Fabrication of micro metallic valve and pump

    Science.gov (United States)

    Yang, Ming; Kabasawa, Yasunari; Ito, Kuniyoshi

    2010-03-01

    Fabrication of micro devices by using micro metal forming was proposed by the authors. We developed a desktop servo-press machine with precise tooling system. Precise press forming processes including micro forging and micro joining has been carried out in a progressive die. In this study, micro metallic valve and pump were fabricated by using the precise press forming. The components are made of sheet metals, and assembled in to a unit in the progressive die. A micro check-valve with a diameter of 3mm and a length of 3.2mm was fabricated, and the property of flow resistance was evaluated. The results show that the check valve has high property of leakage proof. Since the valve is a unit parts with dimensions of several millimeters, it has advantage to be adapted to various pump design. Here, two kinds of micro pumps with the check-valves were fabricated. One is diaphragm pump actuated by vibration of the diaphragm, and another is tube-shaped pump actuated by resonation. The flow quantities of the pumps were evaluated and the results show that both of the pumps have high pumping performance.

  6. Electromagnetic pump

    International Nuclear Information System (INIS)

    Ito, Koji; Suetake, Norio; Aizawa, Toshie; Nakasaki, Masayoshi

    1998-01-01

    The present invention provides an electromagnetic pump suitable to a recycling pump for liquid sodium as coolants of an FBR type reactor. Namely, a stator module of the electromagnetic pump of the present invention comprises a plurality of outer laminate iron core units and outer stator modules stacked alternately in the axial direction. With such a constitution, even a long electromagnetic pump having a large number of outer stator coils can be manufactured without damaging electric insulation of the outer stator coils. In addition, the inner circumferential surface of the outer laminate iron cores is urged and brought into contact with the outer circumferential surface of the outer duct by an elastic material. With such a constitution, Joule loss heat generated in the outer stator coils and internal heat generated in the outer laminate iron cores can be released to an electroconductive fluid flowing the inner circumference of the outer duct by way of the outer duct. (I.S.)

  7. Wet motor gerotor fuel pump with self-aligning bearing

    Energy Technology Data Exchange (ETDEWEB)

    Carleton, W.A.

    1987-02-24

    A wet motor gerotor fuel pump is described for pumping fuel from a fuel source to an internal combustion engine comprising: a pump case having one end, an opposite end and a flow axis therethrough, the pump case further comprising an inlet end bore at the one end adapted to communicate with the fuel source; an inlet chamber adjacent to the inlet end bore; a motor chamber located in the opposite end of the pump case; a pump chamber interposed the motor chamber and the inlet chamber; first means for sealing the pump case, the first means for sealing located at the opposite end of the pump case; inlet housing means mounted in the pump chamber, the inlet housing means comprising an annular hub protruding into the inlet chamber. The inlet housing means further comprises a gerotor cavity about a gerotor axis located parallel to and displaced a predetermined distance in an eccentric radial direction from the flow axis.

  8. Blocking device especially for circulating pumps

    International Nuclear Information System (INIS)

    Susil, J.; Vychodil, V.; Lorenc, P.

    1976-01-01

    The claim of the invention is a blocking device which blocks reverse flow occurring after the shutdown of circulating pumps, namely in the operation of nuclear power plants or in pumps with a high delivery head. (F.M.)

  9. Neutral pumping rates for a next step tokamak ignition device

    International Nuclear Information System (INIS)

    Galambos, J.D.; Peng, Y.K.M.; Heifetz, D.

    1985-01-01

    Neutral pumping rates are calculated for pump-limiter and divertor options of a next step tokamak ignition device using a method that accounts for the coupled effects of neutral transport and plasma transport. For both pump limiters and divertors the plasma flow into the channel surrounding the neutralizer plate is greatly reduced by the neutral recycling. The fraction of this flow that is pumped can be large (>50%) but in general is dependent on the particular geometry and plasma conditions. It is estimated that pumping speeds greater than or approximately 10 5 L/s are adequate for the exhaust requirements in the pump-limiter and the divertor cases

  10. An electrical sensor for long-term monitoring of ultrafine particles in workplaces

    International Nuclear Information System (INIS)

    Lanki, Timo; Taimisto, Pekka; Tikkanen, Juha; Janka, Kauko; Lehtimaeki, Matti

    2011-01-01

    Pegasor Oy Ltd. (Finland) has developed a diffusion charging measurement device that enables continuous monitoring of fine particle concentration at a low initial and lifecycle cost. The innovation, for which an international process and apparatus patent has been applied for, opens doors for monitoring nanoparticle concentrations in workplaces. The Pegasor Particle Sensor (PPS) operates by electrostatically charging particles passing through the sensor and then measuring the current caused by the charged particles as they leave the sensor. The particles never touch the sensor and so never accumulate on its surfaces or need to be cleaned off. The sensor uses an ejector pump to draw a constant sample flow into the sensing area where it is mixed with the clean, charged pump flow air (provided by an external source). The sample flow containing charged particles passes through the sensor. The current generated by the charge leaving the detection volume is measured and related to the particle surface area. This system is extremely simple and reliable - no contact, no moving parts, and all critical parts of the sensor are constantly cleaned by a stream of fresh, filtered air. Due to the ejector pump, the sample flow, and respectively the sensor response is independent of the flow and pressure conditions around the sampling inlet. Tests with the Pegasor Particle Sensor have been conducted in a laboratory, and at a workplace producing nanoparticles for glass coatings. A new measurement protocol has been designed to ensure that process workers are not exposed to unusually high nanoparticle concentrations at any time during their working day. One sensor is placed inside the process line, and a light alarm system indicates the worker not to open any protective shielding or ventilation systems before concentration inside has reached background levels. The benefits of PPS in industrial hygiene are that the same monitoring technology can be used at the source as well as at the

  11. Pump/heat exchanger assembly for pool-type reactor

    International Nuclear Information System (INIS)

    Nathenson, R.D.; Slepian, R.M.

    1987-01-01

    A heat exchanger and pump assembly comprising a heat exchanger including a housing for defining an annularly shaped cavity and supporting therein a plurality of heat transfer tubes. A pump is disposed beneath the heat exchanger and is comprised of a plurality of flow couplers disposed in a circular array. Each flow coupler is comprised of a pump duct for receiving a first electrically conductive fluid, i.e. the primary liquid metal, from a pool thereof, and a generator duct for receiving a second electrically conductive fluid, i.e. the intermediate liquid metal. The primary liquid metal is introduced from the reactor pool into the top, inlet ends of the tubes, flowing downward therethrough to be discharged from the tubes' bottom ends directly into the reactor pool. The primary liquid metal is variously introduced into the pump ducts directly from the reactor pool, either from the bottom or top end of the flow coupler. The intermediate fluid introduced into the generator ducts via the inlet duct and inlet plenum and after leaving the generator ducts passes through the annular cavity of the exchanger to cool the primary liquid in the tubes. The annular magnetic field of the pump is produced by a circular array of electromagnets having hollow windings cooled by a flow of the intermediate metal. (author)

  12. A simple preparative free-flow electrophoresis joined with gratis gravity: I. Gas cushion injector and self-balance collector instead of multiple channel pump.

    Science.gov (United States)

    Chen, Su; Palmer, James F; Zhang, Wei; Shao, Jing; Li, Si; Fan, Liu-Yin; Sun, Ren; Dong, Yu-Chao; Cao, Cheng-Xi

    2009-06-01

    This paper describes a novel free-flow electrophoresis (FFE), which is joined with gratis gravity, gas cushion injector (GCI) and self-balance collector instead of multiple channel pump, for the purpose of preparative purification. The FFE was evaluated by systemic experiments. The results manifest that (i) even though one-channel peristaltic pump is used for the driving of background buffer, there is still stable flow in the FFE chamber; (ii) the stable flow is induced by the gravity-induced pressure due to the difference of buffer surfaces in the GCI and self-balance collector; (iii) the pulse flow of background buffer induced by the peristaltic pump is greatly reduced by the GCI with good compressibility of included air; (iv) the FFE can be well used for zone electrophoretic separation of amino acids; (v) up to 20 inlets simultaneous sample injection and up to five to tenfold condensation of amino acid can be achieved by combining the FFE device with the method of moving reaction boundary. To the best of authors' knowledge, FFE has not been used for such separation and condensation of amino acids. The relevant results achieved in the paper have evident significance for the development of preparative FFE.

  13. Theoretical study of flow ripple for an aviation axial-piston pump with damping holes in the valve plate

    OpenAIRE

    Guan, Changbin; Jiao, Zongxia; He, Shouzhan

    2014-01-01

    Based on the structure of a certain type of aviation axial-piston pump’s valve plate which adopts a pre-pressurization fluid path (consisting a damping hole, a buffer chamber, and an orifice) to reduce flow ripple, a single-piston model of the aviation axial-piston pump is presented. This single-piston model comprehensively considers fluid compressibility, orifice restriction effect, fluid resistance in the capillary tube, and the leakage flow. Besides, the instantaneous discharge areas used ...

  14. Different elution modes and field programming in gravitational field-flow fractionation. III. Field programming by flow-rate gradient generated by a programmable pump.

    Science.gov (United States)

    Plocková, J; Chmelík, J

    2001-05-25

    Gravitational field-flow fractionation (GFFF) utilizes the Earth's gravitational field as an external force that causes the settlement of particles towards the channel accumulation wall. Hydrodynamic lift forces oppose this action by elevating particles away from the channel accumulation wall. These two counteracting forces enable modulation of the resulting force field acting on particles in GFFF. In this work, force-field programming based on modulating the magnitude of hydrodynamic lift forces was implemented via changes of flow-rate, which was accomplished by a programmable pump. Several flow-rate gradients (step gradients, linear gradients, parabolic, and combined gradients) were tested and evaluated as tools for optimization of the separation of a silica gel particle mixture. The influence of increasing amount of sample injected on the peak resolution under flow-rate gradient conditions was also investigated. This is the first time that flow-rate gradients have been implemented for programming of the resulting force field acting on particles in GFFF.

  15. Pulsatile fluidic pump demonstration and predictive model application

    International Nuclear Information System (INIS)

    Morgan, J.G.; Holland, W.D.

    1986-04-01

    Pulsatile fluidic pumps were developed as a remotely controlled method of transferring or mixing feed solutions. A test in the Integrated Equipment Test facility demonstrated the performance of a critically safe geometry pump suitable for use in a 0.1-ton/d heavy metal (HM) fuel reprocessing plant. A predictive model was developed to calculate output flows under a wide range of external system conditions. Predictive and experimental flow rates are compared for both submerged and unsubmerged fluidic pump cases

  16. Gas-lift pumps for flowing and purifying molten silicon

    Science.gov (United States)

    Kellerman, Peter L.; Carlson, Frederick

    2016-02-23

    The embodiments herein relate to a sheet production apparatus. A vessel is configured to hold a melt of a material and a cooling plate is disposed proximate the melt. This cooling plate configured to form a sheet of the material on the melt. A pump is used. In one instance, this pump includes a gas source and a conduit in fluid communication with the gas source. In another instance, this pump injects a gas into a melt. The gas can raise the melt or provide momentum to the melt.

  17. Interaction effects on the unstable discharge-energy characteristic of pump-turbine in pump mode

    Science.gov (United States)

    Tao, R.; Xiao, R. F.; Yang, W.; Liu, W. C.

    2013-12-01

    For a pump-turbine, unstable discharge-energy characteristic is an important factor for operating stability. In this study, the rotor-stator interaction effects on the pump-turbine which has the unstable discharge-energy characteristic has been studied. A series of transient CFD simulations under different discharge conditions have been conducted. Through the contrast between the simulations and experiments, it is found out that the energy decline is strongly affected by the flow loss in the adjustable vane. More importantly, the magnitude and direction of fluid flowing into the adjustable vane are varying with the impeller rotating. Disordered flow structure occurs in the adjustable vane and causes the energy losses due to the interaction effects. Based on this study, improvements on the flow uniformity at impeller outlet will help us to solve the unstable discharge-energy problem.

  18. Theoretical prediction of fast 3D AC electro-osmotic pumps.

    Science.gov (United States)

    Bazant, Martin Z; Ben, Yuxing

    2006-11-01

    AC electro-osmotic (ACEO) pumps in microfluidics currently involve planar electrode arrays, but recent work on the underlying phenomenon of induced-charge electro-osmosis (ICEO) suggests that three-dimensional (3D) geometries may be exploited to achieve faster flows. In this paper, we present some new design principles for periodic 3D ACEO pumps, such as the "fluid conveyor belt" of ICEO flow over a stepped electrode array. Numerical simulations of these designs (using the standard low-voltage model) predict flow rates almost twenty times faster than existing planar ACEO pumps, for the same applied voltage and minimum feature size. These pumps may enable new portable or implantable lab-on-a-chip devices, since rather fast (mm s(-1)), tuneable flows should be attainable with battery voltages (<10 V).

  19. Improvements in or relating to pumps

    Energy Technology Data Exchange (ETDEWEB)

    Strong, R E; Boyle, K

    1976-06-30

    A pump is described that has what is termed a fluid diode in the inlet and outlet. Each such diode has non-moving parts and is operable to allow fluid to flow therethrough easily in one direction and to give restricted flow in the reverse direction. A suction leg is provided, connected to an ejector having a passage for compressed gas, and a valve is provided in the passage downstream of the ejector operable to open and close the passage periodically, thereby creating alternate negative and positive pumping pressures within the pump chamber. The valve may take the form of a solenoid valve and may include electrically linked means for sensing liquid levels. The pump is stated to be particularly attractive for plants in which it is desirable to avoid pump maintenance. Examples of its application includes the transfer of toxic and radioactive liquids. The exhaust from the ejector can be fed into a containment vessel from which it can be extracted through a normal venting system for plant handling such materials. It is also suitable for sludge pumping. The solenoid valve does not come into contact with the fluid being pumped, and can be located so that it is accessible for maintenance. Stainless steel is normally a convenient constructional material.

  20. Numerical research on the effects of impeller pump-out vanes on axial force in a solid-liquid screw centrifugal pump

    International Nuclear Information System (INIS)

    Cheng, X R; Li, R N; Gao, Y; Guo, W L

    2013-01-01

    A commercial CFD code has been used to predict the performance of a screw centrifugal pump with pump-out vanes, especially when changing regularity of impeller axial force based on the solid-liquid two-phase flow. The Unsteady Reynolds Averaged Navier-Stokes (URANS) approach has been applied to solve the unsteady, incompressible, three-dimensional turbulent. The SIMPLEC algorithm, standard wall functions and mix two-phase flow model were applied. The RNG k ε-model was used to account the turbulence effects. By changing the number of impeller pump-out vanes and width, six different screw centrifugal pump numerical simulation projects were given, and each scheme in the different solid volume fraction were calculated respectively. The change rules of axial force, velocity and pressure distribution of flow field were obtained on the different condition and different volume fraction. The results showed that the axial forces values based solid-fluid two-phase greater than based single-phase clear water, but both changing regularity of the axial force were consistent; as same condition, the same solid-phase volume concentration, with the increase of pump-out vanes number or width, the impeller axial force increased as well. Meanwhile the number of the pump-out vanes and the width of pump-out vanes in balancing the impeller axial force, there are the most optimal value

  1. Validated design of the ITER main vacuum pumping systems

    International Nuclear Information System (INIS)

    Day, Chr.; Antipenkov, A.; Dremel, M.; Haas, H.; Hauer, V.; Mack, A.; Boissin, J.-C.; Class, G.; Murdoch, D.K.; Wykes, M.

    2005-01-01

    Forschungszentrum Karlsruhe is developing the ITER high vacuum cryogenic pumping systems (torus, cryostat, NBI) as well as the corresponding mechanical roughing pump trains. All force-cooled big cryopumps incorporate similar design of charcoal coated cryopanels cooled to 5 K with supercritical helium. A model of the torus exhaust cryopump was comprehensively characterised in the TIMO testbed at Forschungszentrum. This paper discusses the vacuum performance results of the model pump and outlines how these data were incorporated in a sound design of the whole ITER torus exhaust pumping system. To do this, the dedicated software package ITERVAC was developed which is able to describe gas flow in viscous, transitional and molecular flow regimes as needed for the gas coming through the divertor slots and along the pump ducts into the cryopumps. The entrance section between the divertor cassettes and each pumping duct was identified to be the bottleneck of the gas flow. The interrelation of achievable throughputs as a function of the divertor pressure and the cryopump pumping speed is discussed. The system design is completed by assessment of the NBI cryopump system and integrating performance curves for the roughing pump trains needed during the regeneration phases of the cryopumps. (author)

  2. Absorption heat pump for space applications

    Science.gov (United States)

    Nguyen, Tuan; Simon, William E.; Warrier, Gopinath R.; Woramontri, Woranun

    1993-01-01

    In the first part, the performance of the Absorption Heat Pump (AHP) with water-sulfuric acid and water-magnesium chloride as two new refrigerant-absorbent fluid pairs was investigated. A model was proposed for the analysis of the new working pairs in a heat pump system, subject to different temperature lifts. Computer codes were developed to calculate the Coefficient of Performance (COP) of the system with the thermodynamic properties of the working fluids obtained from the literature. The study shows the potential of water-sulfuric acid as a satisfactory replacement for water-lithium bromide in the targeted temperature range. The performance of the AHP using water-magnesium chloride as refrigerant-absorbent pair does not compare well with those obtained using water-lithium bromide. The second part concentrated on the design and testing of a simple ElectroHydrodynamic (EHD) Pump. A theoretical design model based on continuum electromechanics was analyzed to predict the performance characteristics of the EHD pump to circulate the fluid in the absorption heat pump. A numerical method of solving the governing equations was established to predict the velocity profile, pressure - flow rate relationship and efficiency of the pump. The predicted operational characteristics of the EHD pump is comparable to that of turbomachinery hardware; however, the overall efficiency of the electromagnetic pump is much lower. An experimental investigation to verify the numerical results was conducted. The pressure - flow rate performance characteristics and overall efficiency of the pump obtained experimentally agree well with the theoretical model.

  3. Experimental investigation on predictive models for motive flow calculation through ejectors for transcritical CO2 heat pumps

    Science.gov (United States)

    Boccardi, G.; Lillo, G.; Mastrullo, R.; Mauro, A. W.; Saraceno, L.; Pieve, M.; Trinchieri, R.

    2017-11-01

    Nowadays, air conditioning systems, especially those used in residential and office buildings, contribute largely to the energy consumptions and to the direct and indirect emissions of greenhouse gases. Carbon dioxide (CO2) is an interesting option to replace traditional HFCs in vapor compression systems, due to its environmentally friendly characteristics: zero ODP and extremely low GWP. In the case of heat pumps, the use of ejection systems for the expansion phase can contribute to recovery a fraction of the mechanical energy otherwise dissipated as friction, bringing to significant benefits in terms of performance. Currently, at the laboratory DTE-PCU-SPCT of the research center ENEA (Casaccia) in cooperation with the Industrial Engineering Department of Federico II University of Naples, a project is in progress, in order to evaluate experimentally the effect of several ejectors geometries on the global performance of a CO2 heat pump working with a transcritical cycle. As a part of this project, measurements of the motive flow mass flow rate have been carried out, in transcritical CO2 conditions. The ejector sizing is a crucial point for the balancing of components and the correct operation of the CO2 heat pump and therefore the availability of reliable calculation methods for the motive flowrate would be useful. This paper presents the results obtained by a comparison between the new experimental data and the predictions of some predictive semi-empirical correlations available in the open literature for transcritical CO2 conditions. Their predictions are analyzed as a function of the main physical parameters of the process to assess their reliability compared to the experimental data. Based on these indications and of the available experimental data, a new semi-empirical correlations and a calculation method based on the hypothesis of isentropic and choked two-phase flow are presented.

  4. Bromide as chemical tracer to measure the liquid effluent flow at IPEN-CNEN/SP

    International Nuclear Information System (INIS)

    Silva, Douglas B.; Faustino, Mainara G.; Monteiro, Lucilena R.; Cotrim, Marycel E.B.; Pires, Maria Aparecida F.

    2013-01-01

    Due to recent changes in CONAMA Resolution 357, which occurred through the publication of Resolution 430, on May 13, 2011 that now set standards about the effluent release, IPEN-CNEN/SP initiated several actions to improve the Environmental Monitoring Program (PMA-Q) of stable chemical compounds. Besides various parameters (physical and chemical) established by CONAMA, the submission of an annual pollution inventory report became necessary. The liquid effluent flow measurement is required to implement this inventory. Thereby, this paper describes a study that uses bromide as a chemical tracer. This paper presents the results of 6 tracer releases in IPEN wastewater collection network between 2011 and 2012. Two tracer releases designs were performed: single pulse and continuous releases performed with 1 to 6 hours duration, done by using one single piston pump manufactured by DIONEX. After the release, one fraction of the effluent was collected every 15 minutes at IPEN effluent monitoring station. The tracer concentration in the effluent was analyzed by ion chromatography and flow was calculated considering the dilution in the system and pump flow set up for the release. The flow values were measured in 6 events were determined and evaluated as per Brazilian regulation requirements. Experimental designs to be implemented during 2013 monitoring were also discussed in this paper, contributing to legal compliance and to improve IPEN's Environmental Monitoring Program for stable chemical compounds (PMA-Q). (author)

  5. Concrete volute pumps: technology review and improvement

    Science.gov (United States)

    Prunières, R.; Longatte, F.; Catelan, F. X.; Philippot, J. M.

    2012-11-01

    When pumps need to deliver large water flow rates (typically more than 5 m3.s-1), concrete volute pumps (CVP) offer an interesting alternative to standard vertical wet-pit pumps. One of the major advantages of CVP is its simplicity in terms of design, manufacturability and maintainability. In addition, CVP geometrical arrangement allows to reach high performances in terms of hydraulic and mechanical behaviour. These advantages can be specifically appreciated when such pumps are used in the energy field for Power Plants which need high flow rate and reliability, and can lead to important financial savings over the Plant lifetime compared to vertical wet-pit pumps. Finally, as CVP was for a long time limited to total head rise lower than 30 mWC, it was established through CFD analysis that the addition of guide vanes between the impeller and the volute allows to achieve higher head rise without risk.

  6. Investigation on the influence of jetting equipment on the characteristics of centrifugal pump

    Directory of Open Access Journals (Sweden)

    Qiaorui Si

    2016-08-01

    Full Text Available To reduce radial noises from the motor of centrifugal pumps, this study designed a water cooling system called jetting equipment to replace traditional fan cooling systems in pump motors. By measuring radiated noises, head, efficiency, and cavitation performance, the research compared the differences among experimental results of the original pump unit, the one with a normal design jetting pipe and another one with a larger jetting pipe. Results show that the radiated sound pressure level of the model pump was significantly reduced by 8.3 dB after integrating the jetting pipe. With a normal jetting pipe, no significant changes were observed in the head, efficiency, and shaft power curves, and cavitation performance improved under small flow rate. However, the performance with the larger jetting pipe worsened, except the hump phenomenon of the model pump under a small flow rate was enhanced. Computational fluid dynamics method was used to calculate the internal flow of three model pumps in order to investigate the jetting flow effect. A comparison among the flow fields at the inlet of the three types of pumps indicated that high-pressure water injection can effectively control inlet recirculation and improve velocity distribution in the inlet flow field with decreased recirculation vortex strength and recirculation onset critical flow rate.

  7. The in situ permeable flow sensor: A device for measuring groundwater flow velocity

    International Nuclear Information System (INIS)

    Ballard, S.; Barker, G.T.; Nichols, R.L.

    1994-03-01

    A new technology called the In Situ Permeable Flow Sensor has been developed at Sandia National Laboratories. These sensors use a thermal perturbation technique to directly measure the direction and magnitude of the full three dimensional groundwater flow velocity vector in unconsolidated, saturated, porous media. The velocity measured is an average value characteristic of an approximately 1 cubic meter volume of the subsurface. During a test at the Savannah River Site in South Carolina, two flow sensors were deployed in a confined aquifer in close proximity to a well which was screened over the entire vertical extent of the aquifer and the well was pumped at four different pumping rates. In this situation horizontal flow which is radially directed toward the pumping well is expected. The flow sensors measured horizontal flow which was directed toward the pumping well, within the uncertainty in the measurements. The observed magnitude of the horizontal component of the flow velocity increased linearly with pumping rate, as predicted by theoretical considerations. The measured horizontal component of the flow velocity differed from the predicted flow velocity, which was calculated with the assumptions that the hydraulic properties of the aquifer were radially homogeneous and isotropic, by less than a factor of two. Drawdown data obtained from other wells near the pumping well during the pump test indicate that the hydraulic properties of the aquifer are probably not radially homogeneous but the effect of the inhomogeneity on the flow velocity field around the pumping well was not modeled because the degree and distribution of the inhomogeneity are unknown. Grain size analysis of core samples from wells in the area were used to estimate the vertical distribution of hydraulic conductivity

  8. Pump system characterization and reliability enhancement

    International Nuclear Information System (INIS)

    Staunton, R.H.

    1998-01-01

    Pump characterization studies were performed at the Oak Ridge National Laboratory (ORNL) to review and analyze six years (1990-1995) of data from pump systems at domestic nuclear plants. The studies considered not only pumps and pump motors but also pump-related circuit breakers and turbine drives (i.e., the pump system). One significant finding was that the number of 'significant' failures of the pump circuit breaker exceeds the number of significant failures of the pump itself. The study also shows how regulatory code testing was designed for the pump only and therefore did not lead to the discovery of other significant pump system failures. Potential diagnostic technologies, both experimental and mature, suitable for on-line and off-line pump testing were identified. The study does not select or recommend technologies but proposes diagnostic technologies and monitoring techniques that should be further evaluated/developed for making meaningful and critically-needed improvements in the reliability of the pump system. (author)

  9. Improving the Efficiency of the Heat Pump Control System of Carbon Dioxide Heat Pump with Several Evaporators and Gas Coolers

    Directory of Open Access Journals (Sweden)

    Sit M.L.

    2016-12-01

    Full Text Available The problem of coordination of the values of the refrigerant flow through the evaporators and gas coolers of the heat pump for the simultaneous production of heat and cold is studied. The compensation of the variations of the total flow through the evaporators is implemented using the variation of the capacity of the compressor and a corresponding change in flow through the auxiliary gas cooler of the heat pump. Control system of this gas cooler is constructed using the invariance principle of the output value (outlet temperature of the heated agent with respect to perturbations on the control channel (the refrigerant flow through the gas cooler. Principle of dual-channel compensation of the disturbance and advancing signal on input of control valve of the refrigerant through the gas cooler is ensured. Due to proposed solution, the intensity of the disturbances on the flow of refrigerant is reduced. Due to proposed technical solution power consumed by the heat pump compressor drive under transients is decreased.

  10. Pump Coastdown with the Submerged Flywheel

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyun-Gi; Seo, KyoungWoo; Kim, Seong Hoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Many research reactors are generally designed as open pool types in consideration of the heat removal of the nuclear fuels, reactor operation and accessibility. Reactor structure assembly is generally placed at the pool bottom as shown in Fig. 1. Primary cooling system pump circulates the coolant from the reactor structure to the heat exchanger in order to continuously remove the heat generated from the reactor core in the research reactor as shown in Fig. 1. The secondary cooling system releases the transferred heat to the atmosphere by the cooling tower. Coastdown flow rate of the primary cooling system pump with the submerged flywheel are calculated analytically in case of the accident situation. Coastdown flow rate is maintained until almost 80 sec when the pump stops normally. But, coastdown flow rate is rapidly decreased when the flywheel is submerged because of the friction load on the flywheel surface.

  11. Pump/heat exchanger assembly for pool-type reactor

    International Nuclear Information System (INIS)

    Nathenson, R.D.; Slepian, R.M.

    1989-01-01

    This patent describes a heat exchanger and pump assembly for transferring thermal energy from a heated, first electrically conductive fluid to a pumped, second electrically conductive fluid and for transferring internal energy from the pumped, second electrically conductive fluid to the first electrically conductive fluid, the assembly adapted to be disposed within a pool of the first electrically conductive fluid and comprising: a heat exchanger comprising means for defining a first annularly shaped cavity for receiving a flow of the second electrically conductive fluid and a plurality of tubes disposed within the cavity, whereby the second electrically conductive fluid in the cavity is heated, each of the tubes having an input and an output end. The input ends being disposed at the top of the heat exchanger for receiving from the pool a flow of the first electrically conductive fluid therein. The output ends being disposed at the bottom of and free of the cavity defining means for discharging the first electrically conductive fluid directly into the pool; a pump disposed beneath the heat exchanger and comprised of a plurality of flow couplers disposed in a circular array, each flow coupler comprised of a pump duct for receiving the first electrically conductive fluid and a generator duct for receiving the second electrically conductive fluid

  12. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    Directory of Open Access Journals (Sweden)

    Sabanskis A.

    2016-04-01

    Full Text Available Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  13. Multidisciplinary Design Optimization of a Swash-Plate Axial Piston Pump

    Directory of Open Access Journals (Sweden)

    Guangjun Liu

    2016-12-01

    Full Text Available This work proposes an MDO (multidisciplinary design optimization procedure for a swash-plate axial piston pump based on co-simulation and integrated optimization. The integrated hydraulic-mechanical model of the pump is built to reflect its actual performance, and a hydraulic-mechanical co-simulation is conducted through data exchange between different domains. The flow ripple of the pump is optimized by using a MDO procedure. A CFD (Computational Fluid Dynamics simulation of the pump’s flow field is done, which shows that the hydrodynamic shock of the pump is improved after optimization. To verify the MDO effect, an experimental system is established to test the optimized piston pump. Experimental results show that the simulated and experimental curves are similar. The flow ripple is improved by the MDO procedure. The peak of the pressure curve is lower than before optimization, and the pressure pulsation is reduced by 0.21 MPa, which shows that the pressure pulsation is improved with the decreasing of the flow ripple. Comparing the experimental and simulation results shows that MDO method is effective and feasible in the optimization design of the pump.

  14. Comparison of infusion pumps calibration methods

    Science.gov (United States)

    Batista, Elsa; Godinho, Isabel; do Céu Ferreira, Maria; Furtado, Andreia; Lucas, Peter; Silva, Claudia

    2017-12-01

    Nowadays, several types of infusion pump are commonly used for drug delivery, such as syringe pumps and peristaltic pumps. These instruments present different measuring features and capacities according to their use and therapeutic application. In order to ensure the metrological traceability of these flow and volume measuring equipment, it is necessary to use suitable calibration methods and standards. Two different calibration methods can be used to determine the flow error of infusion pumps. One is the gravimetric method, considered as a primary method, commonly used by National Metrology Institutes. The other calibration method, a secondary method, relies on an infusion device analyser (IDA) and is typically used by hospital maintenance offices. The suitability of the IDA calibration method was assessed by testing several infusion instruments at different flow rates using the gravimetric method. In addition, a measurement comparison between Portuguese Accredited Laboratories and hospital maintenance offices was performed under the coordination of the Portuguese Institute for Quality, the National Metrology Institute. The obtained results were directly related to the used calibration method and are presented in this paper. This work has been developed in the framework of the EURAMET projects EMRP MeDD and EMPIR 15SIP03.

  15. Review of magnetohydrodynamic pump applications

    Directory of Open Access Journals (Sweden)

    O.M. Al-Habahbeh

    2016-06-01

    Full Text Available Magneto-hydrodynamic (MHD principle is an important interdisciplinary field. One of the most important applications of this effect is pumping of materials that are hard to pump using conventional pumps. In this work, the progress achieved in this field is surveyed and organized according to the type of application. The literature of the past 27 years is searched for the major developments of MHD applications. MHD seawater thrusters are promising for a variety of applications requiring high flow rates and velocity. MHD molten metal pump is important replacement to conventional pumps because their moving parts cannot stand the molten metal temperature. MHD molten salt pump is used for nuclear reactor coolants due to its no-moving-parts feature. Nanofluid MHD pumping is a promising technology especially for bioapplications. Advantages of MHD include silence due to no-moving-parts propulsion. Much progress has been made, but with MHD pump still not suitable for wider applications, this remains a fertile area for future research.

  16. Development of the methodology for the MHD analysis in a linear induction electro-magnetic pump

    International Nuclear Information System (INIS)

    Seong, Seung Hwan; Hur, Seop; Kim, Seong O; Choi, Seok Ki; Wi, Myung Hwan; Jeon, Won Dae

    2004-01-01

    Generally, fast breeder reactors have adopted a liquid metal as a coolant for the heat transfer from the reactor to the heat exchangers. Since a liquid metal has an electrical conductivity, the pumping of the liquid metal may use an induction electro-magnetic (EM) pump which induces electrical current and body force on the metal flow. These linear induction pumps use a traveling magnetic field wave created by poly-phase currents and the induced currents and their associated magnetic field generate the Lorentz force whose effect can be actually the pumping of the liquid metal. The flow behaviors in the pump are very complex such as the existence of a rotational force, pulsation and so on, because the induction EM pump has time-varying magnetic fields and the induced convective currents which originate form the flow of the liquid metal. These phenomena generate a stability problem in the pump and depend on the changes of the magnetic field and fluid flow field due to the induced currents and the fluid flow of the liquid metal with time and complex pump geometry. Therefore, an exact flow analysis is required for designing and evaluating the stability of a pump

  17. Energy efficiency in pumps

    International Nuclear Information System (INIS)

    Kaya, Durmus; Yagmur, E. Alptekin; Yigit, K. Suleyman; Kilic, Fatma Canka; Eren, A. Salih; Celik, Cenk

    2008-01-01

    In this paper, 'energy efficiency' studies, done in a big industrial facility's pumps, are reported. For this purpose; the flow rate, pressure and temperature have been measured for each pump in different operating conditions and at maximum load. In addition, the electrical power drawn by the electric motor has been measured. The efficiencies of the existing pumps and electric motor have been calculated by using the measured data. Potential energy saving opportunities have been studied by taking into account the results of the calculations for each pump and electric motor. As a conclusion, improvements should be made each system. The required investment costs for these improvements have been determined, and simple payback periods have been calculated. The main energy saving opportunities result from: replacements of the existing low efficiency pumps, maintenance of the pumps whose efficiencies start to decline at certain range, replacements of high power electric motors with electric motors that have suitable power, usage of high efficiency electric motors and elimination of cavitation problems

  18. Design and optimization of a Holweck pump via linear kinetic theory

    Science.gov (United States)

    Naris, Steryios; Koutandou, Eirini; Valougeorgis, Dimitris

    2012-05-01

    The Holweck pump is widely used in the vacuum pumping industry. It can be a self standing apparatus or it can be part of a more advanced pumping system. It is composed by an inner rotating cylinder (rotor) and an outer stationary cylinder (stator). One of them, has spiral guided grooves resulting to a gas motion from the high towards the low vacuum port. Vacuum pumps may be simulated by the DSMC method but due to the involved high computational cost in many cases manufactures commonly resort to empirical formulas and experimental data. Recently a computationally efficient simulation of the Holweck pump via linear kinetic theory has been proposed by Sharipov et al [1]. Neglecting curvature and end effects the gas flow configuration through the helicoidal channels is decomposed into four basic flows. They correspond to pressure and boundary driven flows through a grooved channel and through a long channel with a T shape cross section. Although the formulation and the methodology are explained in detail, results are very limited and more important they are presented in a normalized way which does not provide the needed information about the pump performance in terms of the involved geometrical and flow parameters. In the present work the four basic flows are solved numerically based on the linearized BGK model equation subjected to diffuse boundary conditions. The results obtained are combined in order to create a database of the flow characteristics for a large spectrum of the rarefaction parameter and various geometrical configurations. Based on this database the performance characteristics which are critical in the design of the Holweck pump are computed and the design parameters such as the angle of the pump and the rotational speed, are optimized. This modeling may be extended to other vacuum pumps.

  19. Design and optimization of a Holweck pump via linear kinetic theory

    International Nuclear Information System (INIS)

    Naris, Steryios; Koutandou, Eirini; Valougeorgis, Dimitris

    2012-01-01

    The Holweck pump is widely used in the vacuum pumping industry. It can be a self standing apparatus or it can be part of a more advanced pumping system. It is composed by an inner rotating cylinder (rotor) and an outer stationary cylinder (stator). One of them, has spiral guided grooves resulting to a gas motion from the high towards the low vacuum port. Vacuum pumps may be simulated by the DSMC method but due to the involved high computational cost in many cases manufactures commonly resort to empirical formulas and experimental data. Recently a computationally efficient simulation of the Holweck pump via linear kinetic theory has been proposed by Sharipov et al [1]. Neglecting curvature and end effects the gas flow configuration through the helicoidal channels is decomposed into four basic flows. They correspond to pressure and boundary driven flows through a grooved channel and through a long channel with a T shape cross section. Although the formulation and the methodology are explained in detail, results are very limited and more important they are presented in a normalized way which does not provide the needed information about the pump performance in terms of the involved geometrical and flow parameters. In the present work the four basic flows are solved numerically based on the linearized BGK model equation subjected to diffuse boundary conditions. The results obtained are combined in order to create a database of the flow characteristics for a large spectrum of the rarefaction parameter and various geometrical configurations. Based on this database the performance characteristics which are critical in the design of the Holweck pump are computed and the design parameters such as the angle of the pump and the rotational speed, are optimized. This modeling may be extended to other vacuum pumps.

  20. Optimization of High-Energy Implanter Beamline Pumping

    International Nuclear Information System (INIS)

    LaFontaine, Marvin; Pharand, Michel; Huang Yongzhang; Pokidov, Ilya; Ferrara, Joseph

    2006-01-01

    A high-energy implanter process chamber and its pumping configuration were designed to minimize the residual gas density in the endstation. A modified Nastran trade mark sign finite-element analysis (FEA) code was used to calculate the pressure distribution and gas flow within the process chamber. The modified FE method was readily applied to the internal geometry of the scan chamber, the corrector magnet waveguide, and the process chamber, which included the scan arm assembly, 300mm wafer, and plasma electron flood gun (PEF). Using the modified Nastran code, the gas flow and pressure distribution within the beamline geometry were calculated. The gas load consisted of H2, which is generated by photoresist (PR) outgassing from the 300mm wafer, and Xe from the plasma electron flood gun. Several pumping configurations were assessed, with each consisting of various locations and pumping capacities of vacuum pumps. The pressure distribution results for each configuration are presented, along with pumping efficiency results which are helpful in selecting the optimum pump configuration. The analysis results were compared to measured data, indicating a good correlation between the two

  1. Determination of Volumetric Losses in Hydrodynamic Pump Using Numerical Modelling

    Directory of Open Access Journals (Sweden)

    Lukáš ZAVADIL

    2012-06-01

    Full Text Available This paper deals with the numerical modelling of the flow in the single-stage centrifugal pump. The main objective is to determine leakage losses through annular seals at the suction side of the pump. Leakage through a shaft seal is not included in the simulation. The amount of liquid that circulates from the impeller discharge back to suction of the pump is determined in dependence on the flow rate. Losses in the pump are further discussed as well as the possibility of their prediction.

  2. A metal foil vacuum pump for the fuel cycle of fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Giegerich, Thomas; Day, Christian [Karlsruher Institut fuer Technologie (KIT), Institut fuer Technische Physik (ITEP), Eggenstein-Leopoldshafen (Germany)

    2013-07-01

    At KIT Karlsruhe, a new vacuum pump based on the physical principle of superpermeation is under development. This metal foil pump shall be used in the fuel cycle of a fusion reactors and forms the central part of the Direct Internal Recycling concept (DIR), a shortcut between the machine exhaust pumping and the fuelling systems. This vacuum pump simplifies the fusion fuel cycle dramatically and provides two major functions simultaneously: A separating and pumping function. It separates a hydrogen isotopes and impurities containing gas flow sharply into a pure H-isotopes flow that is also being compressed. The remaining impurity enriched gas flow passes the pump without being pumped. For superpermeability, a source of molecular hydrogen is needed. This can be achieved by different methods inside of the pump. Most important are plasma based or hot rod (atomizer) based methods. In this talk, the physical working principle and the modeling of this pump is presented and the development towards a technical separator pumping module is shown up.

  3. Valveless pumping mechanics of the embryonic heart during cardiac looping: Pressure and flow through micro-PIV.

    Science.gov (United States)

    Bark, D L; Johnson, B; Garrity, D; Dasi, L P

    2017-01-04

    Cardiovascular development is influenced by the flow-induced stress environment originating from cardiac biomechanics. To characterize the stress environment, it is necessary to quantify flow and pressure. Here, we quantify the flow field in a developing zebrafish heart during the looping stage through micro-particle imaging velocimetry and by analyzing spatiotemporal plots. We further build upon previous methods to noninvasively quantify the pressure field at a low Reynolds number using flow field data for the first time, while also comparing the impact of viscosity models. Through this method, we show that the atrium builds up pressure to ~0.25mmHg relative to the ventricle during atrial systole and that atrial expansion creates a pressure difference of ~0.15mmHg across the atrium, resulting in efficient cardiac pumping. With these techniques, it is possible to noninvasively fully characterize hemodynamics during heart development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Shear Evaluation by Quantitative Flow Visualization Near the Casing Surface of a Centrifugal Blood Pump

    Science.gov (United States)

    Nishida, Masahiro; Yamane, Takashi; Tsukamoto, Yuki; Ito, Kazuyuki; Konishi, Yoshiaki; Masuzawa, Toru; Tsukiya, Tomonori; Endo, Seiko; Taenaka, Yoshiyuki

    To clarify the correlation between high-shear flow and hemolysis in blood pumps, detail shear velocity distribution was quantified by an experimental method with a model centrifugal blood pump that has a series data of hemolysis tests and computational fluid dynamic analyses. Particular attention was paid to the shear velocity near the casing surface in the volute where the high shear causes in circumferentially wide region that is considerable to cause high hemolysis. Three pump models were compared concern with the radial gap width between the impeller and casing (the radial volute width) also with the outlet position whereas the impeller geometry was identical. These casing geometries were as follows: model 1-the gap width is standard 3mm and the outlet locates to make a smooth geometrical connection with the volute, model 2-the gap width is small 0.5mm and the outlet locates to make the smooth geometrical connection with the volute, and model 3-the gap width is small 0.5mm and the outlet locates to hardly make the smooth geometrical connection with the volute but be similar radial position with that of model 1. Velocity was quantified with a particle tracking velocimetry that is one of the quantitative flow visualization techniques, and the shear velocity was calculated. Results showed that all large shear velocity existed within the layers of about 0.1mm from the casing surface and that those layers were hardly affected by a vane passage even if the gap width is 0.5mm. They also showed that the maximum shear velocity appeared on the casing surface, and the shear velocities of models 2 and 3 were almost twice as large as that of model 1. This finding is in full corresponding with the results of hemolysis tests which showed that the hemolysis levels of both models 2 and 3 were 1.5 times higher than that of model 1. These results suggest that detailed high-shear evaluation near the casing surface in the volute is one of the most important keys in estimating the

  5. Experimental and numerical investigation of centrifugal pumps with asymmetric inflow conditions

    Science.gov (United States)

    Mittag, Sten; Gabi, Martin

    2015-11-01

    Most of the times pumps operate off best point states. Reasons are changes of operating conditions, modifications, pollution and wearout or erosion. As consequences non-rotational symmetric flows, transient operational conditions, increased risk of cavitation, decrease of efficiency and unpredictable wearout can appear. Especially construction components of centrifugal pumps, in particular intake elbows, contribute to this matter. Intake elbows causes additional losses and secondary flows, hence non-rotational velocity distributions as intake profile to the centrifugal pump. As a result the impeller vanes experience permanent changes of the intake flow angle and with it transient flow conditions in the blade channels. This paper presents the first results of a project, experimentally and numerically investigating the consequences of non-rotational inflow to leading edge flow conditions of a centrifugal pump. Therefore two pumpintake- elbow systems are compared, by only altering the intake elbow geometry: a common single bended 90° elbow and a numerically optimized elbow (improved regarding rotational symmetric inflow conditions and friction coefficient). The experiments are carried out, using time resolved stereoscopic PIV on a full acrylic pump with refractions index matched (RIM) working fluid. This allows transient investigations of the flow field simultaneously for all blade leading edges. Additional CFD results are validated and used to further support the investigation i.e. for comparing an analog pump system with ideal inflow conditions.

  6. Implementation of an RHR/LPSI pump coupling retrofit program

    International Nuclear Information System (INIS)

    Dudiak, J.G.; Koch, R.P.; Orewyler, R.; Tipton, J.W.

    1994-01-01

    Nuclear plant operating experience has shown the RHR and LPSI services to be very demanding on pumps. The systems handle borated water at high temperatures and pressures with frequent step changes in both temperature and pressure. Additionally, the industry trend towards reduced flow rates during plant mid-loop (reduced inventory) conditions has resulted in extended pump operation at flow rates significantly below the pump best efficiency point flow. Operation at these low flow fates is known to cause high thrust loads and large shaft deflections. The combination of these and other factors have resulted in short mechanical seal life and short motor bearing life, thus requiring frequent pump and motor maintenance. For many nuclear plants, including Southern California Edison's (SCE) San Onofre Units 2 and 3, these pumps have represented a major operations and maintenance (O ampersand M) expenditure and a significant source of radiation exposure to plant personnel. SCE management determined that a pump upgrade was justified to reduce the O ampersand M costs and to improve plant availability. SCE decided to proceed with a pump retrofit program to improve the pump maintainability, reliability and availability. Installation was completed for four LPSI pumps at San Onofre Units 2 and 3 during the Cycle 7 refueling outages in 1993. A key to the program's success was the removal of many traditional supplier and customer barriers and revision of supplier and customer roles to create a unified team. This paper traces the RHR/LPSI retrofit program for San Onofre from problem identification to project implementation. The team approach used for this program and the lessons learned may be useful to other utilities and vendors when evaluating or implementing system and equipment upgrades

  7. Infusion of iloprost without a peristaltic pump: Safety and tolerability

    Directory of Open Access Journals (Sweden)

    Paola Faggioli

    2013-04-01

    Full Text Available Introduction: Iloprost is a potent prostacyclin (PGI2 analogue that is effective in the treatment of peripheral arterial disease, vasculitis, pulmonary hypertension, and secondary Raynaud’s phenomenon. Intravenous infusions are generally administered with the aid of a peristaltic pump to reduce the risk of adverse reactions caused by unintentional increases in the infusion rate. This increases the cost of care in terms of equipment and personnel and may limit the use of this drug. Materials and methods: We retrospectively analyzed 18,432 iloprost infusions administered between 1999 and 2009 to 272 patients with systemic sclerosis (n = 253 and 19 with peripheral arterial disease (n = 19. All infusions were administered in the day hospital over 6 h with a normal IV set-up with a roller flow regulator. Flow rates were set to deliver iloprost at 1-2 ng/kg/min. Rates were verified by direct drop counts during the first 15-20 minutes of the infusion and at each subsequent check. Results: There were no adverse events that were fatal, life-threatening, or associated with prolongation of hospitalization and very few events requiring intensive care or continuous monitoring. The latter included 4 cases of tachycardia/arrhythmia (extrasystoles in most cases, 3 cases of hypotension (systolic pressure < 80 mmHg, and 2 cases of hypertension (BP > 170/100 mmHg. All other adverse reactions were mild, reversible, and similar to those seen with iloprost infusion with peristaltic pump. Only one patient had to be switched to another prostanoid (due to intolerance. Discussion: Iloprost infusion administered with a normal IV flow regulator appears to be as safe, well tolerated, and effective as traditional infusion with a peristaltic pump.

  8. Method and apparatus for protection of pump systems

    International Nuclear Information System (INIS)

    Youngborg, L.H.

    1987-01-01

    This patent describes a nuclear power plant having a fluid-filler reactor vessel with a vapor outflow line for removing vapor from the reactor vessel, and liquid inflow means for injecting liquid to the reactor vessel. The inflow means includes an inflow line, a centrifugal pump disposed along the inflow line having an inlet and an outlet, an induction motor to drive the pump, flow control means along the inflow line between the pump and the reactor vessel from the pump. A means is included for generating a first control signal in response to liquid level in the reactor vessel and net vapor outflow versus liquid inflow with respect to the reactor vessel, the first control signal generating means being effective to generate a first signal to open and a second signal to close the flow control means to maintain liquid level in the vessel within predetermined limits. A pump and pump motor protection apparatus is described comprising: means for measuring the pressure of the liquid in the inlet of the pump; means for measuring the temperature of the liquid in the inlet of the pump; means for determining a required subcooling for the pump at the instantaneous temperature of the liquid in the inlet of the pump; and means for determining the enthalpy of the liquid in the inlet of the pump from the pressure and temperature of the liquid

  9. Fluid Dynamics in Rotary Piston Blood Pumps.

    Science.gov (United States)

    Wappenschmidt, Johannes; Sonntag, Simon J; Buesen, Martin; Gross-Hardt, Sascha; Kaufmann, Tim; Schmitz-Rode, Thomas; Autschbach, Ruediger; Goetzenich, Andreas

    2017-03-01

    Mechanical circulatory support can maintain a sufficient blood circulation if the native heart is failing. The first implantable devices were displacement pumps with membranes. They were able to provide a sufficient blood flow, yet, were limited because of size and low durability. Rotary pumps have resolved these technical drawbacks, enabled a growing number of mechanical circulatory support therapy and a safer application. However, clinical complications like gastrointestinal bleeding, aortic insufficiency, thromboembolic complications, and impaired renal function are observed with their application. This is traced back to their working principle with attenuated or non-pulsatile flow and high shear stress. Rotary piston pumps potentially merge the benefits of available pump types and seem to avoid their complications. However, a profound assessment and their development requires the knowledge of the flow characteristics. This study aimed at their investigation. A functional model was manufactured and investigated with particle image velocimetry. Furthermore, a fluid-structure interaction computational simulation was established to extend the laboratory capabilities. The numerical results precisely converged with the laboratory measurements. Thus, the in silico model enabled the investigation of relevant areas like gap flows that were hardly feasible with laboratory means. Moreover, an economic method for the investigation of design variations was established.

  10. Study of brushless fuel pump (improvement of pump and motor parts). 2nd Report. Blushless dendo fuel pump no kento. 2

    Energy Technology Data Exchange (ETDEWEB)

    Mine, K; Takada, S; Tatematsu, M; Takeuchi, H [Aisan Industry Co. Ltd., Aichi (Japan)

    1992-10-01

    A methanol use electrically driven fuel pump was developed as reported in the present report. Mixed fuel of gasoline with alcohol can be handled by a brushless fuel pump which was proposed and improved as reported. The flow rate performance was heightened to 25g/sec by heightening in output power of motor, while the high temperature performance was 17% heightened against the conventional ratio of lowering in flow rate by heightening in vapor jet capacity. Against the corrosiveness of methanol, an in-tank type was applied to the pump, and all its electrically conductive and other mechanical parts were made to be both anti-corrosive and anti-abrasive. It is structurally of a two-stage series turbine type of non-volume form. A sensor method was applied to the motor by confining the miniaturized control circuit of brushless motor in the motor so that the transistor is controlled against the heightening in temperature. The motor is a three-phase half-wave driving motor. Also developed was a fuel supply system which is useful for the mixed fuel covering a range of 100% methanol through 100% gasoline. The present pump is dimensionally interchangeable with the conventional gasoline use one. Its operational life is more than 10000 hours. 3 refs., 17 figs., 1 tab.

  11. Transient behaviour of main coolant pump in nuclear power plants

    International Nuclear Information System (INIS)

    Delja, A.

    1986-01-01

    A basic concept of PWR reactor coolant pump thermo-hydraulic modelling in transient and accident operational condition is presented. The reactor coolant pump is a component of the nuclear steam supply system which forces the coolant through the reactor and steam generator, maintaining design heat transfer condition. The pump operating conditions have strong influence on the flow and thermal behaviour of NSSS, both in the stationary and nonstationary conditions. A mathematical model of the reactor coolant pump is formed by using dimensionless homologous relations in the four-quadrant regimes: normal pump, turbine, dissipation and reversed flow. Since in some operational regimes flow of mixture, liquid and steam may occur, the model has additional correction members for two-phase homologous relations. Modular concept has been used in developing computer program. The verification is performed on the simulation loss of offsite power transient and obtained results are presented. (author)

  12. Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems

    DEFF Research Database (Denmark)

    Noeth, Nadine-Nicole; Keller, Stephan Sylvest; Boisen, Anja

    2014-01-01

    For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different...... is directly proportional to the flow rate fluctuations in the microfluidic channel. The SiN cantilevers show a detection limit below 1 nL/min and the thinnest SU-8 cantilevers a detection limit below 5 nL/min. Finally, the sensor is applied for in-line monitoring of flow fluctuations generated by external...

  13. Quantitative assessment of haemolysis secondary to modern infusion pumps.

    Science.gov (United States)

    Poder, T G; Boileau, J-C; Lafrenière, R; Thibault, L; Carrier, N; de Grandmont, M-J; Beauregard, P

    2017-04-01

    Although most studies have shown that little haemolysis is induced by infusion pumps, there are some notable exceptions. Only limited data are available on the actual infusion pumps that are most used in hospitals in Quebec and elsewhere, namely, the Infusomat ® Space (peristaltic), Plum A+™ (piston) and Colleague ® CXE (shuttle) pumps. Haemolysis and potassium levels were compared before and after the use of the three different infusion pumps. Using 135 units of packed red blood cells (RBCs) aged from 10 to 28 days, 27 measurements were taken for each pump at various flow rates (30, 60, 150, 300 and 450 ml/h) and were compared with measurements taken before using the pumps. The range of flow rates was chosen to cover those of paediatric and adult transfusions. The shuttle- and piston-type pumps resulted in low haemolysis levels. The peristaltic-type pump produced significantly more haemolysis, which worsened at low flow rates, but the absolute value of haemolysis remained within the range recommended by the regulatory agencies in North America and Europe. Approximately two-thirds of the haemolysis produced by the peristaltic-type pump seemed to be secondary to the use of an antisiphon valve (ASV) on the transfusion line recommended by the manufacturer. Potassium levels did not increase with the use of the pumps. Modern infusion pumps widely used in hospitals in Quebec and elsewhere produce non-threatening levels of haemolysis during the transfusion of packed RBCs aged from 10 to 28 days. ASVs appear to induce additional haemolysis, and we do not recommend using them for blood transfusion. © 2017 International Society of Blood Transfusion.

  14. Method of starting internal pumps of a nuclear reactor

    International Nuclear Information System (INIS)

    Kumagami, Shoji.

    1985-01-01

    Purpose: To reduce the noise effects by decreasing the invading current into the main line upon starting an internal pump type nuclear reactor adapted to forcively recycle the reactor water by a plurality of internal pumps. Method: A plurality of internal pumps are divided into several groups and, upon starting pumps belonging to the individual unit group, the starting instances for the respective pumps are deviated to reduce the surges applied to the main line and suppress the invading current lower to reduce the earth noises. As a result, effects caused to other devices or equipments can be moderated to improve the reliability. Furthermore, by actuating the respective pumps on every group units in a starting pattern along the orthogonal line, flow rate distribution in the reactor can be balanced. Then, the instability region during low rotation of pumps, that is, instability of the flow rate near the resonance frequency can be decreased. (Kawakami, Y.)

  15. Magnetic composite Hydrodynamic Pump with Laser Induced Graphene Electrodes

    KAUST Repository

    Khan, Mohammed Asadullah; Hristovski, Ilija R.; Marinaro, Giovanni; Kosel, Jü rgen

    2017-01-01

    A polymer based magneto hydrodynamic pump capable of actuating saline fluids is presented. The benefit of this pumping concept to operate without any moving parts is combined with simple and cheap fabrication methods and a magnetic composite material, enabling a high level of integration. The operating principle, fabrication methodology and flow characteristics of the pump are detailed. The pump electrodes are created by laser printing of polyimide, while the permanent magnet is molded from an NdFeB powder - polydimethylsiloxane (PDMS) composite. The cross-section area of the pump is 240 mm $^2$ . The electrode length is 5 mm. The magnetic characteristics of the NdFeB-PDMS composite indicate high degree of magnetization, which increases the pump efficiency. Using a saline solution similar to seawater, the pump produces 3.4 mm/s flow velocity at a voltage of 7.5V and a current density of 30 mA/cm $^2$ .

  16. Magnetic composite Hydrodynamic Pump with Laser Induced Graphene Electrodes

    KAUST Repository

    Khan, Mohammed Asadullah

    2017-05-24

    A polymer based magneto hydrodynamic pump capable of actuating saline fluids is presented. The benefit of this pumping concept to operate without any moving parts is combined with simple and cheap fabrication methods and a magnetic composite material, enabling a high level of integration. The operating principle, fabrication methodology and flow characteristics of the pump are detailed. The pump electrodes are created by laser printing of polyimide, while the permanent magnet is molded from an NdFeB powder - polydimethylsiloxane (PDMS) composite. The cross-section area of the pump is 240 mm $^2$ . The electrode length is 5 mm. The magnetic characteristics of the NdFeB-PDMS composite indicate high degree of magnetization, which increases the pump efficiency. Using a saline solution similar to seawater, the pump produces 3.4 mm/s flow velocity at a voltage of 7.5V and a current density of 30 mA/cm $^2$ .

  17. Energy Efficient Pump Control for an Offshore Oil Processing System

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Soleiman, Kian; Løhndorf, Bo

    2012-01-01

    The energy efficient control of a pump system for an offshore oil processing system is investigated. The seawater is lifted up by a pump system which consists of three identical centrifugal pumps in parallel, and the lifted seawater is used to cool down the crude oil flowing out of a threephase...... separator on one of the Danish north-sea platform. A hierarchical pump-speed control strategy is developed for the considered system by minimizing the pump power consumption subject to keeping a satisfactory system performance. The proposed control strategy consists of online estimation of some system...... operating parameters, optimization of pump configurations, and a real-time feedback control. Comparing with the current control strategy at the considered system, where the pump system is on/off controlled, and the seawater flows are controlled by a number of control valves, the proposed control strategy...

  18. Improving the Efficiency of the Heat Pump Control System of Carbon Di-oxide Heat Pump with Several Evaporators and Gas Coolers

    OpenAIRE

    Sit, M.L.; Juravliov, A.A.; Sit, B.M.; Timchenko, D.

    2016-01-01

    The problem of coordination of the values of the refrigerant flow through the evaporators and gas coolers of the heat pump for the simultaneous production of heat and cold is studied. The compensation of the variations of the total flow through the evaporators is implemented using the variation of the capacity of the compressor and a corresponding change in flow through the auxiliary gas cooler of the heat pump. Control system of this gas cooler is constructed using the invariance principle o...

  19. Nuclear power plant safety related pump issues

    Energy Technology Data Exchange (ETDEWEB)

    Colaccino, J.

    1996-12-01

    This paper summarizes of a number of pump issues raised since the Third NRC/ASME Symposium on Valve and Pump Testing in 1994. General issues discussed include revision of NRC Inspection Procedure 73756, issuance of NRC Information Notice 95-08 on ultrasonic flow meter uncertainties, relief requests for tests that are determined by the licensee to be impractical, and items in the ASME OM-1995 Code, Subsection ISTB, for pumps. The paper also discusses current pump vibration issues encountered in relief requests and plant inspections - which include smooth running pumps, absolute vibration limits, and vertical centrifugal pump vibration measurement requirements. Two pump scope issues involving boiling water reactor waterlog and reactor core isolation cooling pumps are also discussed. Where appropriate, NRC guidance is discussed.

  20. Nuclear power plant safety related pump issues

    International Nuclear Information System (INIS)

    Colaccino, J.

    1996-01-01

    This paper summarizes of a number of pump issues raised since the Third NRC/ASME Symposium on Valve and Pump Testing in 1994. General issues discussed include revision of NRC Inspection Procedure 73756, issuance of NRC Information Notice 95-08 on ultrasonic flow meter uncertainties, relief requests for tests that are determined by the licensee to be impractical, and items in the ASME OM-1995 Code, Subsection ISTB, for pumps. The paper also discusses current pump vibration issues encountered in relief requests and plant inspections - which include smooth running pumps, absolute vibration limits, and vertical centrifugal pump vibration measurement requirements. Two pump scope issues involving boiling water reactor waterlog and reactor core isolation cooling pumps are also discussed. Where appropriate, NRC guidance is discussed

  1. Variation in polydispersity in pump- and pressure-driven micro-droplet generators

    Science.gov (United States)

    Zeng, Wen; Jacobi, Ian; Li, Songjing; Stone, Howard A.

    2015-11-01

    The polydispersity of droplets produced in a typical T-junction microfluidic channel under both syringe-pump-driven and pressure-driven flow configurations is measured quantitatively. Both flow systems exhibit high-frequency flow fluctuations that result in an intrinsic polydispersity due to the mechanism of droplet generation. In addition to this intrinsic polydispersity, the syringe-pump-driven device also exhibits low-frequency fluctuations due to mechanical oscillations of the pump, which overwhelm the high-frequency flow fluctuations and produce a signficantly heightened level of polydispersity. The quantitative difference in polydispersity between the two configurations and time-resolved measurements of individual droplet sizes are presented in order to enable the design of better flow control systems for droplet production.

  2. Study of an electromagnetic pump applied to a primary main pump of a large scale sodium cooled reactor

    International Nuclear Information System (INIS)

    Aizawa, Kosuke; Kotake, Shoji; Chikazawa, Yoshitaka; Ara, Kuniaki; Araseki, Hideo; Aizawa, Rie; Ota, Hiroyuki

    2009-01-01

    This paper describes a future innovative design options with a parallel electromagnetic pump (EMP) system as the main circulating pump of the JSFR design. A conceptual design of EMPs integrated with an intermediate heat exchanger (IHX) is carried out. The major design parameters are consistent with the current JSFR design, where the main flow rate is 630 m 3 /min and the flow halving time is the same of the mechanical pump with the similar reliability. As a result of several design studies, a five parallel EMPs with IHX system has been selected from the geometry suitability for JSFR design. The EMP advantages comparing with mechanical pumps are investigated from the views of in-service inspection, maintenance and reliability. Numerical analysis with two dimensional MHD codes is conducted on a former experiment of a 160 m 3 /min flow rate EMP. The overall trend of the experimental data and the numerical results agrees with that in small-scale EMPs. However, the difference between the experimental data and the numerical results seems larger compared with the small-scale EMPs, which comes from large magnetic Reynolds number and interaction parameter of 160 m 3 /min EMP. (author)

  3. Numerical groundwater-flow modeling to evaluate potential effects of pumping and recharge: implications for sustainable groundwater management in the Mahanadi delta region, India

    Science.gov (United States)

    Sahoo, Sasmita; Jha, Madan K.

    2017-12-01

    Process-based groundwater models are useful to understand complex aquifer systems and make predictions about their response to hydrological changes. A conceptual model for evaluating responses to environmental changes is presented, considering the hydrogeologic framework, flow processes, aquifer hydraulic properties, boundary conditions, and sources and sinks of the groundwater system. Based on this conceptual model, a quasi-three-dimensional transient groundwater flow model was designed using MODFLOW to simulate the groundwater system of Mahanadi River delta, eastern India. The model was constructed in the context of an upper unconfined aquifer and lower confined aquifer, separated by an aquitard. Hydraulic heads of 13 shallow wells and 11 deep wells were used to calibrate transient groundwater conditions during 1997-2006, followed by validation (2007-2011). The aquifer and aquitard hydraulic properties were obtained by pumping tests and were calibrated along with the rainfall recharge. The statistical and graphical performance indicators suggested a reasonably good simulation of groundwater flow over the study area. Sensitivity analysis revealed that groundwater level is most sensitive to the hydraulic conductivities of both the aquifers, followed by vertical hydraulic conductivity of the confining layer. The calibrated model was then employed to explore groundwater-flow dynamics in response to changes in pumping and recharge conditions. The simulation results indicate that pumping has a substantial effect on the confined aquifer flow regime as compared to the unconfined aquifer. The results and insights from this study have important implications for other regional groundwater modeling studies, especially in multi-layered aquifer systems.

  4. Review of pump suction reducer selection: Eccentric or concentric reducers

    OpenAIRE

    Mahaffey, R M; van Vuuren, S J

    2014-01-01

    Eccentric reducers are traditionally recommended for the pump suction reducer fitting to allow for transportation of air through the fitting to the pump. The ability of a concentric reducer to provide an improved approach flow to the pump while still allowing air to be transported through the fitting is investigated. Computational fluid dynamics (CFD) were utilised to analyse six concentric and six eccentric reducer geometries at four different inlet velocities to determine the flow velocity ...

  5. Simulating of single phase flow in typical centrifugal pumps oil industry; Simulacao do escoamento monofasico em bombas centrifugas tipicas da industria do petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Ana Carla Costa; Silva, Aldrey Luis Morais da; Maitelli, Carla Wilza Souza de Paula [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil)

    2012-07-01

    With the various techniques applied in production processes and oil exploration, has been using the artificial lift equipment with the aim of promoting an increase in flow in oil wells and gas. Choosing the most appropriate method of elevation depends on certain factors, among them the initial costs of installation, maintenance and conditions in the producing field, resulting in a more precise analysis of the project. Although there are other methods that represent a low cost and easy maintenance, the BCS method (Electrical Submersible Pumping), appears to be quite effective when it is intended to pump more flow of liquids from both terrestrial and marine environments, in conditions adverse temperature, presence of free gas in the mixture and viscous fluids. This method is based in most cases where the vessel pressure was low, and the fluid does not reach the surface without intervention of an artificial means which can lift them. Similar happens at the end of productive life of a resurgence for the well, or even when the flow of it is far below what is expected to produce, requiring a complement of natural energy through artificial lift. By definition, the BCS is a method of artificial lift in which a subsurface electric motor turns electrical energy into mechanical centrifugal pump and a multistage overlapping converts mechanical energy into kinetic energy of the engine bringing the fluid surface. In this study we performed computer simulations using a commercial program ANSYS #Registered Sign# CFX #Registered Sign# dimensions previously obtained by the 3D geometry in CAD format, with the objective of evaluating the single-phase flow inside typical centrifugal pump submerged in the oil industry. The variable measured was the height of elevation and drilling fluids are oil and water.(author)

  6. METAL:LIC target failure diagnostics by means of liquid metal loop vibrations monitoring

    International Nuclear Information System (INIS)

    Dementjevs, S.; Barbagallo, F.; Wohlmuther, M.; Thomsen, K.; Zik, A.; Nikoluskins, R.

    2014-01-01

    A target mock-up, developed as an European Spallation Source comparative solution, (METAL:LIC) has been tested in a dedicated lead bismuth eutectic (LBE) loop in the Institute of Physics at the University of Latvia. In particular, the feasibility of diagnostic vibration monitoring has been investigated. The loop parameters were: operation temperature 300°C; tubing ∅100 mm, overall length 8 m; electromagnetic pump based on permanent magnets, flow rate 180 kg/s. With sufficient static pressure of a few bars, cavitation was avoided. The vibrations in the loop were measured and analyzed. Several vibrational characteristics of the set-up were derived including resonance frequencies and the dependence of excited vibrations on flow conditions and the pump rotation speed. A high sensitivity to obstructions in the loop has been confirmed, and several indicators for target failure diagnostics were tested and compared. A problem in the electromagnetic pump's gear box has been detected in a very early state long before it manifested itself in the operation of the loop. The vibration monitoring has been demonstrated as a sensitive and reliable probe for the target failure diagnostics. (author)

  7. Aging assessment of auxiliary feedwater pumps

    International Nuclear Information System (INIS)

    Greenstreet, W.L.

    1987-01-01

    ORNL is conducting aging assessments of auxiliary feedwater pumps to provide recommendations for monitoring and assessing the severity of time-dependent degradation as well as to recommend maintenance and replacement practices. Cornerstones of these activities are the identification of failure modes and causes and ranking of causes. Failure modes and causes of interest are those due to aging and service wear. Design details, functional requirements, and operating experience data were used to identify failure modes and causes and to rank the latter. Based on this input, potentially useful inspection, surveillance, and condition monitoring methods that are currently available for use or in the developmental stage were examined and recommendations made. The methods selected are listed and discussed in terms of use and information to be obtained. Relationships between inspection, surveillance, and monitoring and maintenance practices entered prominently into maintenance recommendations. These recommendations, therefore, embrace predictive as well as corrective and preventative maintenance practices. The recommendations are described, inspection details are discussed, and periodic inspection and maintenance interval guidelines are given. Surveillance testing at low-flow conditions is also discussed. It is shown that this type of testing can lead to accelerated aging

  8. An electrochemical pumping system for on-chip gradient generation.

    Science.gov (United States)

    Xie, Jun; Miao, Yunan; Shih, Jason; He, Qing; Liu, Jun; Tai, Yu-Chong; Lee, Terry D

    2004-07-01

    Within the context of microfluidic systems, it has been difficult to devise pumping systems that can deliver adequate flow rates at high pressure for applications such as HPLC. An on-chip electrochemical pumping system based on electrolysis that offers certain advantages over designs that utilize electroosmotic driven flow has been fabricated and tested. The pump was fabricated on both silicon and glass substrates using photolithography. The electrolysis electrodes were formed from either platinum or gold, and SU8, an epoxy-based photoresist, was used to form the pump chambers. A glass cover plate and a poly(dimethylsiloxane) (PDMS) gasket were used to seal the chambers. Filling of the chambers was accomplished by using a syringe to inject liquid via filling ports, which were later sealed using a glass cover plate. The current supplied to the electrodes controlled the rate of gas formation and, thus, the resulting fluid flow rate. At low backpressures, flow rates >1 microL/min have been demonstrated using polymer electrospray nozzle, we have confirmed the successful generation of a solvent gradient via a mass spectrometer.

  9. A linear-flow interpretation of the H-3 multiwell pumping test conducted at the Waste Isolation Pilot Plant (WIPP) site

    International Nuclear Information System (INIS)

    Tomasko, D.; Jensen, A.L.

    1987-07-01

    Unlike previous interpretations of this test that used a double-porosity radial-flow model, this interpretation is based on a linear-flow process. Drawdowns in pumped well H-3b2 responded as if the Culebra Dolomite Member of the Rustler Formation were pumped from an elongated feature with a significantly higher permeability than the surrounding porous medium. Drawdowns in observation wells DOE-1 and H-11 exhibited nearly classic linear-flow behavior in specialty plots of drawdowns had excellent type-curve matches with a linear-flow type curve. The orientation of the linear feature using data from a multiwell interference test was found by minimizing the squared differences between field observations and linear flow calculations. A second technique was used to calculate the transmissivity and width of the feature. To calculate consistent system parameters, this technique required developing a least-squares fitting procedure to minimize the effects of noise in the drawdown measurements. While the underlying assumptions of the linear-flow model differ from those of a double-porosity radial-flow model, the properties calculated for the Culebra are similar to those previously presented and indicate a basic insensitivity to the system flow model. In addition to yielding hydrologic values that are approximately the same, the two models are complementary and provide unique information for characterizing the aquifer - double-porosity parameters from one model, and the orientation and width of a high-permeability elongated strip from the other. The two interpretations also provide a consistent picture of an extensively fractured porous medium in the vicinity of the H-3 hydropad. 24 refs., 27 figs., 3 tabs

  10. Development of LMR Coolant Technology - Development of a submersible-in-pool electromagnetic pump

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Hi; Kim, Hee Reyoung; Lee, Sang Don; Seo, Joon Ho [Seoul National University, Seoul (Korea, Republic of); Cho, Su Won [Kyoungki University, Suwon (Korea, Republic of)

    1997-07-15

    A submersible-in-pool type annular linear induction pumps of 60 l/min and 200 l/min, and 600 deg C has been designed with optimum geometrical and operating values found from MHD and circuit analyses reflecting the high-temperature characteristics of pump materials. Through the characteristics analyses inside the narrow flow channel of electromagnetic pump, the distribution of the time-varying flow field is calculated, and magnetic flux and force density are evaluated by end effects of linear induction electromagnetic pump and the instability analyses are carried out introducing one-dimensional linear perturbation. Testing the pump with the flow rate of 60 l/min in the suitably manufactured loop system shows a flow rate of 58 l/min at an input power of 1,377 VA with 60Hz. The design of a scaled-up pump is further taken into account LMR coolant system requiring increased capacity, and a basic analysis is carried out on the pump of 40,000 l/min for KALIMER. The present project contributes to the further design of engineering prototype electromagnetic pumps with higher capacity and to the development of liquid metal reactor with innovative simplicity. 89 refs., 8 tabs., 45 figs. (author)

  11. Energy efficiency in pumps

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Durmus; Yagmur, E. Alptekin [TUBITAK-MRC, P.O. Box 21, 41470 Gebze, Kocaeli (Turkey); Yigit, K. Suleyman; Eren, A. Salih; Celik, Cenk [Engineering Faculty, Kocaeli University, Kocaeli (Turkey); Kilic, Fatma Canka [Department of Air Conditioning and Refrigeration, Kocaeli University, Kullar, Kocaeli (Turkey)

    2008-06-15

    In this paper, ''energy efficiency'' studies, done in a big industrial facility's pumps, are reported. For this purpose; the flow rate, pressure and temperature have been measured for each pump in different operating conditions and at maximum load. In addition, the electrical power drawn by the electric motor has been measured. The efficiencies of the existing pumps and electric motor have been calculated by using the measured data. Potential energy saving opportunities have been studied by taking into account the results of the calculations for each pump and electric motor. As a conclusion, improvements should be made each system. The required investment costs for these improvements have been determined, and simple payback periods have been calculated. The main energy saving opportunities result from: replacements of the existing low efficiency pumps, maintenance of the pumps whose efficiencies start to decline at certain range, replacements of high power electric motors with electric motors that have suitable power, usage of high efficiency electric motors and elimination of cavitation problems. (author)

  12. High-efficiency pump for space helium transfer. Final Technical Report

    International Nuclear Information System (INIS)

    Hasenbein, R.; Izenson, M.G.; Swift, W.L.; Sixsmith, H.

    1991-12-01

    A centrifugal pump was developed for the efficient and reliable transfer of liquid helium in space. The pump can be used to refill cryostats on orbiting satellites which use liquid helium for refrigeration at extremely low temperatures. The pump meets the head and flow requirements of on-orbit helium transfer: a flow rate of 800 L/hr at a head of 128 J/kg. The overall pump efficiency at the design point is 0.45. The design head and flow requirements are met with zero net positive suction head, which is the condition in an orbiting helium supply Dewar. The mass transfer efficiency calculated for a space transfer operation is 0.99. Steel ball bearings are used with gas fiber-reinforced teflon retainers to provide solid lubrication. These bearings have demonstrated the longest life in liquid helium endurance tests under simulated pumping conditions. Technology developed in the project also has application for liquid helium circulation in terrestrial facilities and for transfer of cryogenic rocket propellants in space

  13. How to Interpret the Responses of a Karstic Field to a Harmonic Pumping

    Science.gov (United States)

    Fischer, P.; Jardani, A.; Cardiff, M. A.; Lecoq, N.

    2017-12-01

    In a karstic field, the flow paths are very complex as they globally follow the conduit network. The drawdown responses to a pumping test at constant rate in this type of aquifer are highly variable spatially and difficult to interpret. Furthermore, a constant-rate pumping tends to mobilize matrix diffusive flows and, thus, the conduit flows become `blurred'. Harmonic pumping tests represent a new investigation method for characterizing the subsurface groundwater flows. They have several advantages compared to a constant-rate pumping (i.e. more signal possibilities, extracting the signal in the responses, possibility of closed loop investigation). In the case of a karstic field investigation, several works have shown that a harmonic pumping test allows a better characterization of the local field hydraulic properties. We show in our recent works that interpreting the responses from a harmonic pumping test permit to go further in the conduit network characterization by delineating a connectivity degree between measurement points. We have studied the amplitude and phase offset values in the responses to a harmonic pumping test in a theoretical synthetic modeling case in order to define an interpretation method for the responses. According to the amplitude and phase offset values in a response, relative to the pumping signal, we have distinguished three different type of responses to be interpreted: a direct connectivity response (conduit flow), an indirect connectivity (conduit and short matrix flows), and an absence of connectivity. We have applied this interpretation method on a true field responses (from a karstic field in Southern France). Firstly we have stated that the whole set of field responses appears to be coherent toward the observation that have been made in the theoretical case. Then, by comparing the periodic responses between them and with the pumping signal, we could interpret and delineate easily and quickly the main flow paths, through the degree

  14. Pumping tests in nonuniform aquifers - The radially symmetric case

    Science.gov (United States)

    Butler, J.J.

    1988-01-01

    Traditionally, pumping-test-analysis methodology has been limited to applications involving aquifers whose properties are assumed uniform in space. This work attempts to assess the applicability of analytical methodology to a broader class of units with spatially varying properties. An examination of flow behavior in a simple configuration consisting of pumping from the center of a circular disk embedded in a matrix of differing properties is the basis for this investigation. A solution describing flow in this configuration is obtained through Laplace-transform techniques using analytical and numerical inversion schemes. Approaches for the calculation of flow properties in conditions that can be roughly represented by this simple configuration are proposed. Possible applications include a wide variety of geologic structures, as well as the case of a well skin resulting from drilling or development. Of more importance than the specifics of these techniques for analysis of water-level responses is the insight into flow behavior during a pumping test that is provided by the large-time form of the derived solution. The solution reveals that drawdown during a pumping test can be considered to consist of two components that are dependent and independent of near-well properties, respectively. Such an interpretation of pumping-test drawdown allows some general conclusions to be drawn concerning the relationship between parameters calculated using analytical approaches based on curve-matching and those calculated using approaches based on the slope of a semilog straight line plot. The infinite-series truncation that underlies the semilog analytical approaches is shown to remove further contributions of near-well material to total drawdown. In addition, the semilog distance-drawdown approach is shown to yield an expression that is equivalent to the Thiem equation. These results allow some general recommendations to be made concerning observation-well placement for pumping

  15. Effect of intra-aortic balloon pump on coronary blood flow during different balloon cycles support: A computer study.

    Science.gov (United States)

    Aye, Thin Pa Pa; Htet, Zwe Lin; Singhavilai, Thamvarit; Naiyanetr, Phornphop

    2015-01-01

    Intra-aortic balloon pump (IABP) has been used in clinical treatment as a mechanical circulatory support device for patients with heart failure. A computer model is used to study the effect on coronary blood flow (CBF) with different balloon cycles under both normal and pathological conditions. The model of cardiovascular and IABP is developed by using MATLAB SIMULINK. The effect on coronary blood flow has been studied under both normal and pathological conditions using different balloon cycles (balloon off; 1:4; 1:2; 1:1). A pathological heart is implemented by reducing the left ventricular contractility. The result of this study shows that the rate of balloon cycles is related to the level of coronary blood flow.

  16. Interaction of impeller and guide vane in a series-designed axial-flow pump

    International Nuclear Information System (INIS)

    Kim, S; Choi, Y S; Lee, K Y; Kim, J H

    2012-01-01

    In this paper, the interaction of the impeller and guide vane in a series-designed axial-flow pump was examined through the implementation of a commercial CFD code. The impeller series design refers to the general design procedure of the base impeller shape which must satisfy the various flow rate and head requirements by changing the impeller setting angle and number of blades of the base impeller. An arc type meridional shape was used to keep the meridional shape of the hub and shroud with various impeller setting angles. The blade angle and the thickness distribution of the impeller were designed as an NACA airfoil type. In the design of the guide vane, it was necessary to consider the outlet flow condition of the impeller with the given setting angle. The meridional shape of the guide vane were designed taking into consideration the setting angle of the impeller, and the blade angle distribution of the guide vane was determined with a traditional design method using vane plane development. In order to achieve the optimum impeller design and guide vane, three-dimensional computational fluid dynamics and the DOE method were applied. The interaction between the impeller and guide vane with different combination set of impeller setting angles and number of impeller blades was addressed by analyzing the flow field of the computational results.

  17. Using Variable Speed Control on Pump Application

    Directory of Open Access Journals (Sweden)

    Dr.Sc. Aida Spahiu

    2012-06-01

    Full Text Available Pumps are one of the most common variable speed drive (VSD system applications and special interest has focused on improving their energy efficiency by using variable speed control instead of throttling or other less efficient flow control methods. Pumps are the single largest user of electricity in industry in the European Union, consuming 160 TWh per annum of electricity and accounting for 79 million tonnes of carbon dioxide (CO2 emissions [1]. Centrifugal pumps are the most likely pump style to provide a favorable return based on energy savings when applied with a variable speed drive. To help illustrate this, are conducted benchmark testing to document various head and flow scenarios and their corresponding effect on energy savings. Paper shows the relationship of static and friction head in the energy efficiency equation and the effect of motor, pump and VSD efficiencies. The received results are good reference points for engineers and managers of water sector in Albania to select the best prospects for maximizing efficiency and energy savings.

  18. Advanced porous electrodes with flow channels for vanadium redox flow battery

    Science.gov (United States)

    Bhattarai, Arjun; Wai, Nyunt; Schweiss, Ruediger; Whitehead, Adam; Lim, Tuti M.; Hng, Huey Hoon

    2017-02-01

    Improving the overall energy efficiency by reducing pumping power and improving flow distribution of electrolyte, is a major challenge for developers of flow batteries. The use of suitable channels can improve flow distribution through the electrodes and reduce flow resistance, hence reducing the energy consumption of the pumps. Although several studies of vanadium redox flow battery have proposed the use of bipolar plates with flow channels, similar to fuel cell designs, this paper presents the use of flow channels in the porous electrode as an alternative approach. Four types of electrodes with channels: rectangular open channel, interdigitated open cut channel, interdigitated circular poked channel and cross poked circular channels, are studied and compared with a conventional electrode without channels. Our study shows that interdigitated open channels can improve the overall energy efficiency up to 2.7% due to improvement in flow distribution and pump power reduction while interdigitated poked channel can improve up to 2.5% due to improvement in flow distribution.

  19. Physics design of fissile mass-flow monitoring system

    International Nuclear Information System (INIS)

    Mattingly, J.K.; March-Leuba, J.; Valentine, T.E.; Mihalczo, J.T.; Uckan, T.

    1997-01-01

    The system measures the flow rate and uranium-235 content in liquid or gas streams; it does not penetrate the process piping. A moderated fission neutron source is used to periodicially introduce a burst of thermal neutrons into the fluid stream to induce fission; delayed gamma emissions from the resulting fission fragments are detected by high-efficiency scintillators downstream of the neutron source. The fluid flow rate is measure from the time between initiation of the thermal neutron burst and detection of the fission product gamma emissions, and the U-235 content is inferred from the intensity of the gamma burst detected. Design of the fissile mass flow monitor requires satisfaction of several competing constraints. Efficient operation of the monitor requires that source-induced fission rate and detection efficiency be maximized while the source-induced background rate is simultaneoulsy minimized. Near optical nuclear design of the system was achieved using numerous Monte Carlo calculations and measurements. This paper addresses calculational aspects of the physics design for the system applied to UF 6 gas

  20. Hydraulic performance of a low specific speed centrifugal pump with Spanwise-Slotted Blades

    International Nuclear Information System (INIS)

    Ye, D X; Li, H; Wang, Y

    2013-01-01

    The hydraulic efficiency of a low specific speed centrifugal pump is low because of the long and narrow meridian flow passage, and the severe disk friction. Spanwise slotted blade flow control technology has been applied to the low specific speed centrifugal pump. This paper concluded that spanwise slotted blades can improve the pump performance in both experiments and simulations. In order to study the influence to the impeller and volute by spanwise slotted blade, impeller efficiency and volute efficiency were defined. The minimum volute efficiency and the maximum pump efficiency appear at the same time in the design flow condition in the unsteady simulation. The mechanism of spanwise slotted blade flow control technology should be researched furthermore