Sample records for pumice hot pyroclastic

  1. Juvenile pumice and pyroclastic obsidian reveal the eruptive conditions necessary for the stability of Plinian eruption of rhyolitic magma (United States)

    Giachetti, T.; Shea, T.; Gonnermann, H. M.; McCann, K. A.; Hoxsie, E. C.


    Significant explosive activity generally precedes or coexists with the large effusion of rhyolitic lava (e.g., Mono Craters; Medicine Lake Volcano; Newberry; Chaitén; Cordón Caulle). Such explosive-to-effusive transitions and, ultimately, cessation of activity are commonly explained by the overall waning magma chamber pressure accompanying magma withdrawal, albeit modulated by magma outgassing. The tephra deposits of such explosive-to-effusive eruptions record the character of the transition - abrupt or gradual - as well as potential changes in eruptive conditions, such as magma composition, volatiles content, mass discharge rate, conduit size, magma outgassing. Results will be presented from a detailed study of both the gas-rich (pumice) and gas-poor (obsidian) juvenile pyroclasts produced during the Plinian phase of the 1060 CE Glass Mountain eruption of Medicine Lake Volcano, California. In the proximal deposits, a multitude of pumice-rich sections separated by layers rich in dense clasts suggests a pulsatory behavior of the explosive phase. Density measurements on 2,600 pumices show that the intermediate, most voluminous deposits have a near constant median porosity of 65%. However, rapid increase in porosity to 75-80% is observed at both the bottom and the top of the fallout deposits, suggestive of rapid variations in magma degassing. In contrast, a water content of pyroclastic obsidians of approximately 0.6 wt% does remain constant throughout the eruption, suggesting that the pyroclastic obsidians degassed up to a constant pressure of a few megapascals. Numerical modeling of eruptive magma ascent and degassing is used to provide constraints on eruption conditions.

  2. The recent pumice eruptions of Mt. Pelée volcano, Martinique. Part I: Depositional sequences, description of pumiceous deposits (United States)

    Traineau, Hervé; Westercamp, Denis; Bardintzeff, Jacques-Marie; Miskovsky, Jean-Claude


    Mount Pelée is one of the most active volcanoes of the Lesser Antilles arc, with more than twenty eruptions over the last 5000 years. Both nuée ardente-type eruptions, which are well known, and pumice eruptions, although little known, are very common in the stratigraphic record. The four younger pumice eruptions, P4 (2440 y.B.P.), P3 (2010 y.B.P.), P2 (1670 y.B.P.) and P1 (650 y.B.P.) can be used to reconstruct the eruption sequences. The various pumiceous deposits can be described as fine lithic ash layer, Plinian fall deposits, pumice and ash flow deposits with associated ash cloud fall deposits, and pumice surge deposits. Three kinds of depositional sequences have been defined. The distinctions between them are based on the occurrence of an initial Plinian phase and the generation of intraflow pyroclastic surges. The pumice eruptions of Mt. Pelée are small in intensity and magnitude, as expressed by the dispersal of their products and by the total mass of erupted material which is estimated to be less than 1 km 3 in each case. The pumice fall deposits have dispersal characteristics of small Plinian eruptions, close to the sub-Plinian type. Nevertheless, the probability of an occurrence of a new pumice eruption at Mt. Pelée is high, and the widespread distribution of pumice deposits around the volcano suggests that such an eruption is a major volcanic risk during the present stage of activity.

  3. The 12.1 ka Middle Toluca Pumice: A dacitic Plinian subplinian eruption of Nevado de Toluca in Central Mexico (United States)

    Arce, J. L.; Cervantes, K. E.; Macías, J. L.; Mora, J. C.


    The Nevado de Toluca volcano erupted explosively approximately 12.1 ka ago, producing a Plinian-subplinian eruption that deposited the Middle Toluca Pumice (MTP). The MTP consists of white and gray juvenile pumice, gray dense juvenile lapilli, and red altered lithic lapilli. The pumice is dacitic (63.54-65.06 wt.% SiO 2) with phenocrysts of plagioclase > orthopyroxene > hornblende ± ilmenite and titanomagnetite, and biotite xenocrysts set in a groundmass of rhyolitic glass (70-71 wt.% SiO 2). The MTP has a dispersal axis to the ESE covering an area of 92 km 2, with a minimum volume of 1.8 km 3 (DRE). Stratigraphic relations, grain size, componentry, and vesicularity analyses suggest that the eruption occurred in five major phases: (1) an opening magmatic phase that generated a 20-km-high Plinian column dispersed to the SE; (2) a hydromagmatic explosion followed with the establishment of a subplinian eruptive column (18-19 km high) dispersed tephra to the SE and gradually waned; (3) hydromagmatic explosions emplaced dilute pyroclastic density currents followed by the formation of an eruptive column of unknown height; (4) immediately after, a new magmatic explosion established another eruptive column; and (5) the collapse of the latter column generated two pumiceous pyroclastic density currents that were fully dilute proximally, but transformed into two granular-fluid pyroclastic currents that traveled 19 km from the source.

  4. The Upper Toluca Pumice (10.5 kyr): Product of the last major Plinian eruption of Nevado de Toluca volcano, Central Mexico (United States)

    Arce, J. L.; Macias, J. L.


    The last Plinian eruption at Nevado de Toluca volcano occurred 10.5 kyr ago producing the Upper Toluca Pumice (UTP). The UTP consists of four widespread fallout layers, interbedded with pyroclastic flow and surge deposits. The UTP event occurred under open vent conditions starting with hydromagmatic explosions that emplaced a hot pyroclastic flow (F0) on the east and northern flanks of the volcano. This explosion decompressed the magmatic system allowing almost immediately the formation of a 21 km high Plinian column that was dispersed by predominant winds 5o to the NE (PC0), which waned after some time. The eruption recommenced with the establishment of three Plinian columns that were dispersed in a NE-E direction, reaching heights of 39, 42, and 28 km, and deposited fall layers (PC1, PC2, and PC3) respectively. These Plinian columns were interrupted several times by phreatomagmatic and collapse events that emplaced pyroclastic flows (F1, F2, and F3) and surges (S1, and S2), mainly on the eastern and northern flanks of the volcano. The juvenile components of the UTP sequence are white, gray and banded pumice and gray juvenile lithic clasts both of dacitic composition (63-66wt% SiO2), and minor accidental lithics. The fallout deposits (PC1 and PC2) covered a minimum area of 2000 km2 with a total volume of 14 km3 (ca. 6 km3 D.R.E.); a mass eruption rate ranging from 3\\times107 to 5\\times108 kg/s and a total mass of 1.2\\times1013 kg. The UTP emplaced 1.5 m of gravel-sized pumice in the modern City of Toluca region and ca. 20 cm of fine sand in the Mexico City region. A future event of this magnitude might represent a major catastrophe to the 30 million people living in these cities and their surroundings.

  5. Characterization of juvenile pyroclasts from the Kos Plateau Tuff (Aegean Arc): insights into the eruptive dynamics of a large rhyolitic eruption (United States)

    Bouvet de Maisonneuve, Caroline; Bachmann, Olivier; Burgisser, Alain


    Silicic pumices formed during explosive volcanic eruptions are faithful recorders of the state of the magma in the conduit, close to or at the fragmentation level. We have characterized four types of pumices from the non-welded rhyolitic Kos Plateau Tuff, which erupted 161,000 years ago in the East Aegean Arc, Greece. The dominant type of pumice (>90 vol.%) shows highly elongated tubular vesicles. These tube pumices occur throughout the eruption. Less common pumice types include: (1) “frothy” pumice (highly porous with large, sub-rounded vesicles), which form 5-10 vol.% of the coarsest pyroclastic flow deposits, (2) dominantly “microvesicular” and systematically crystal-poor pumices, which are found in early erupted, fine-grained pyroclastic flow units, and are characterized by many small (<50 μm in diameter) vesicles and few mm-sized, irregular voids, (3) grey or banded pumices, indicating the interaction between the rhyolite and a more mafic magma, which are found throughout the eruption sequence and display highly irregular bubble shapes. Except for the grey-banded pumices, all three other types are compositionally identical and were generated synchronously as they are found in the same pyroclastic units. They, therefore, record different conditions in the volcanic conduit leading to variable bubble nucleation, growth and coalescence. A total of 74 pumice samples have been characterized using thin section observation, SEM imagery, porosimetry, and permeametry. We show that the four pumice types have distinct total and connected porosity, tortuosity and permeability. Grey-banded pumices show large variations in petrophysical characteristics as a response to mingling of two different magmas. The microvesicular, crystal-poor, pumices have a bimodal bubble size distribution, interpreted as reflecting an early heterogeneous bubble nucleation event followed by homogeneous bubble nucleation close to fragmentation. Finally, the significant differences in

  6. Mobility of pyroclastic flows and surges at the Soufriere Hills Volcano, Montserrat (United States)

    Calder, E.S.; Cole, P.D.; Dade, W.B.; Druitt, T.H.; Hoblitt, R.P.; Huppert, H.E.; Ritchie, L.; Sparks, R.S.J.; Young, S.R.


    The Soufriere Hills Volcano on Montserrat has produced avalanche-like pyroclastic flows formed by collapse of the unstable lava dome or explosive activity. Pyroclastic flows associated with dome collapse generate overlying dilute surges which detach from and travel beyond their parent flows. The largest surges partially transform by rapid sedimentation into dense secondary pyroclastic flows that pose significant hazards to distal areas. Different kinds of pyroclastic density currents display contrasting mobilities indicated by ratios of total height of fall H, run-out distance L, area inundated A and volume transported V. Dome-collapse flow mobilities (characterised by either L/H or A/V 2/3) resemble those of terrestrial and extraterrestrial cold-rockfalls (Dade and Huppert, 1998). In contrast, fountain-fed pumice flows and fine-grained, secondary pyroclastic flows travel slower but, for comparable initial volumes and heights, can inundate greater areas.

  7. Correlation and stratigraphic eruption age of the pyroclastic flow deposits and wide spread volcanic ashes intercalated in the Pliocene-Pleistocene strata, central Japan

    International Nuclear Information System (INIS)

    Nagahashi, Yoshitaka; Satoguchi, Yasufumi; Yoshikawa, Shusaku


    Three pyroclastic flow deposits in the Takayama and Omine area, central Honshu, are correlated to the distal widespread volcanic ashes intercalated in the Plio-Pleistocene boundary strata in central Japan. The correlation is based on these stratigraphic relationships, facies, magnetostratigraphy, petrographic properties such as mineral assemblage, refractive index and chemical composition of the volcanic glasses and orthopyroxene. As the result of these correlation, the eruption age of the proximal pyroclastic flow deposits have become clear. And precise correlation between proximal eruption units and distal depositional units is now possible. Ho-Kd 39 Tephra erupted at about 1.76 Ma, forming a co-ignimbrite ash, which deposited in the Kanto sedimentary basin. Eb-Fukuda Tephra erupted at about 1.75 Ma, and distal volcaniclastic deposit sedimented in the Kinki, Niigata and Kanto sedimentary basins. The eruptional and depositional phase are divided into the stage 1, stage 2 (early), stage 2 (late) and stage 3. Stage 1 is phreato-plinian type eruption phase, forming distal ash fall deposit. Stage 2 (early) is plinian pumice fall, intra-plinian pyroclastic flow and plinian pumice fall eruption phase, forming distal ash fall. Stage 2 (late) is final eruptional phase of the biggest pyroclastic flow of the Eb-Fukuda Tephra, forming a co-ignimbrite ash fall. Stage 3 is resedimented stage after the end of the explosive eruption. It is notable that resedimented volcaniclastic deposit reached Osaka sedimentary basin 300 km away from the eruption center. Om-SK110 Tephra erupted at about 1.65 Ma, divided into the stage 1, stage 2 and stage 3. Stage 1 is eruption phase of the plinian pumice fall and first pyroclastic flow. Stage 2 is pauses in eruption activity. Stage 3 is second pyroclastic flow phase, it is inferred that the pyroclastic flow of the stage 3 directly entered the Niigata sedimentary basin and simultaneously formed a co-ignimbrite ash. (author)

  8. Cadmium removal from aqueous solutions by pumice and nano-pumice

    Energy Technology Data Exchange (ETDEWEB)

    Khorzughy, Sara Haddadi; Eslamkish, Teymur [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Ardejani, Faramarz Doulati [University of Tehran, Tehran (Iran, Islamic Republic of); Heydartaemeh, Mohammad Reza [Shahrood University of Technology, Shahrood (Iran, Islamic Republic of)


    Use of low-cost minerals to eliminate mining and industrial pollutants is the main goal of this study. We investigated the ability of pumice and nano-pumice to remove cadmium from a synthetic aqueous solution. Batch experiments were performed to investigate adsorption characteristic; therefore, the effective factors influencing the adsorption process including solution pH, contact time and initial concentration have been considered. Equilibrium data were attempted by Langmuir and Freundlich isotherm models to realize the interaction between adsorbent and adsorbate. The results show that cadmium adsorption on Pumice follows the Langmuir isotherm model with a R{sup 2} of 0.9996 and shows a homogeneous and mono-layer adsorption. Whereas, cadmium adsorption on nano-Pumice follows a Freundlich model (R{sup 2}=0.9939) and exhibits a multi-layer adsorption. The maximum mono-layer capacity (q{sub max}) of cadmium for pumice and nano-pumice was calculated 26 and 200mg/g, respectively. Two different kinetics models including pseudo first-order and pseudo second-order were studied to evaluate the rate and mechanism of cadmium adsorption by pumice and nano-pumice. The kinetics data indicate that a pseudo second-order model provides the best correlation of the experimental data.

  9. Formation of obsidian pyroclasts by sintering of ash particles in the volcanic conduit (United States)

    Gardner, James E.; Llewellin, Edward W.; Watkins, James M.; Befus, Kenneth S.


    The ranges in intensity and style of volcanic eruptions, from highly explosive Plinian eruptions to quiescent lava extrusions, depend on the style and efficiency of gas loss from ascending magma. Obsidian pyroclasts - small, glassy pieces of quenched magma found in some volcanic tephra beds - may preserve valuable information about magma degassing in their vesicle textures and volatile contents. Accurate interpretation of their textures and volatiles, however, requires understanding the mechanism of formation of the pyroclasts. Obsidian pyroclasts from the ca. 1325-1350 C.E. North Mono eruption of Mono Craters (CA, USA) were analyzed and found to have H2O and CO2 contents indicating that they were formed at pressures in the approximate range of 3-40 MPa. Many also contain domains with differing vesicle textures, separated by boundaries containing xenocrystic material, indicating that they are composed of smaller fragments that have sutured together. More than half of the pyroclasts analyzed contained small (∼10 μm), highly distorted vesicles, with multi-cuspate morphology, interpreted as the remnants of interstitial gas trapped amongst sintered fragments of melt/glass. Rounded vesicles are also common and are interpreted to result from surface tension-driven relaxation of the distorted vesicles. Calculated timescales of sintering and relaxation are consistent with timescales for pyroclast formation indicated by H2O re-equilibration within the heterogeneous pyroclasts. This sintering model for the origin of obsidian pyroclasts is further supported by the observation that spherical vesicles are found mainly in H2O-rich pyroclasts, and distorted vesicles mainly in H2O-poor pyroclasts. We conclude that obsidian pyroclasts generated during the North Mono eruption were formed by cycles of fragmentation, sintering/suturing, and relaxation, over a very wide range of depths within the conduit; we find no evidence to support pumice (foam) collapse as the formation

  10. The grain-size distribution of pyroclasts: Primary fragmentation, conduit sorting or abrasion? (United States)

    Kueppers, U.; Schauroth, J.; Taddeucci, J.


    of magma fragmentation at or close to the fragmentation level. Given the high abrasiveness of pumice, hemispherical clasts should be observed if clast break-up followed efficient clast abrasion. As a consequence, finer grained pyroclastic fall deposits do not necessarily proof efficient secondary fragmentation in the conduit but may rather reveal the influence of conduit length on 'What size of pyroclasts can be erupted'?

  11. Interrelations among pyroclastic surge, pyroclastic flow, and lahars in Smith Creek valley during first minutes of 18 May 1980 eruption of Mount St. Helens, USA (United States)

    Brantley, S.R.; Waitt, R.B.


    the underlying dry and hot pyroclastic material that had been deposited only moments earlier. The hummocky unit is the deposit of a high-viscosity debris flow which formed when lahars mingled with the pyroclastic materials on Smith Creek valley floor. Overlying the debris flow are voluminous pyroclastic deposits of pebbly sand cut by fines-poor gas-escape pipes and containing charred wood. The deposits are thickest in topographic lows along margins of the hummocky diamict. Emplaced several minutes after the hot surge had passed, this is the deposit of numerous secondary pyroclastic flows derived from surge material deposited unstably on steep valley sides. ?? 1988 Springer-Verlag.

  12. AMS radiocarbon dating of wood trunks in the pumiceous deposits of the Kikai-Akahoya eruption in Yakushima Island, SW Japan (United States)

    Okuno, Mitsuru; Nakamura, Toshio; Geshi, Nobuo; Kimura, Katsuhiko; Saito-Kokubu, Yoko; Kobayashi, Tetsuo


    Radiocarbon dating using accelerator mass spectrometry (AMS) was performed on numerous wood trunks from pumiceous deposits along the Nagata, Isso and Miyanoura rivers on the northern side of Yakushima Island, 60 km south of Kyushu Island. The obtained 14C dates were around 6.5 ka BP, which, in combination with the geological characteristics of the pumiceous deposits indicates that these specimens were buried during the Kikai-Akahoya (K-Ah) eruption from the Kikai caldera. However, the fact that they are not charred suggests that the origin of these deposits are not pyroclastic flows. Fourteen taxa (Pinus subgen. Diploxylon, Tsuga, Cryptomeria, Chamaecyparis, Myrica, Castanea, Castanopsis, Quercus subgen. Cyclobalanopsis, Trochodendron, Phellodendron, Lagerstroemia, Rhododendron, Myrsine and Symplocos) were identified through anatomical characteristics. This is the first discovery of forest species on the Yakushima Island before the devastating eruption.

  13. AMS radiocarbon dating of wood trunks in the pumiceous deposits of the Kikai-Akahoya eruption in Yakushima Island, SW Japan

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Mitsuru, E-mail: [Department of Earth System Science, Faculty of Science, Fukuoka University, 814-0180 Fukuoka (Japan); AIG Collaborative Research Institute for International Study on Eruptive History and Informatics, Fukuoka University, 814-0180 Fukuoka (Japan); Nakamura, Toshio [Center for Chronological Research, Nagoya University, 464-8602 Nagoya (Japan); Geshi, Nobuo [Geological Survey of Japan, National Institute of Advanced Science and Technology, 305-8567 Tsukuba (Japan); Kimura, Katsuhiko [Division of Environment System Management, Faculty of Symbiotic System Science, Fukushima University, 960-1296 Fukushima (Japan); Saito-Kokubu, Yoko [Tono Geoscience Center, Japan Atomic Energy Agency (JAEA), 959-31 Jorinji, Toki, Gifu 509-5102 (Japan); Kobayashi, Tetsuo [Department of Earth and Environmental Sciences, Graduate School of Science and Engineering, Kagoshima University, 890-0065 Kagoshima (Japan)


    Radiocarbon dating using accelerator mass spectrometry (AMS) was performed on numerous wood trunks from pumiceous deposits along the Nagata, Isso and Miyanoura rivers on the northern side of Yakushima Island, 60 km south of Kyushu Island. The obtained {sup 14}C dates were around 6.5 ka BP, which, in combination with the geological characteristics of the pumiceous deposits indicates that these specimens were buried during the Kikai-Akahoya (K-Ah) eruption from the Kikai caldera. However, the fact that they are not charred suggests that the origin of these deposits are not pyroclastic flows. Fourteen taxa (Pinus subgen. Diploxylon, Tsuga, Cryptomeria, Chamaecyparis, Myrica, Castanea, Castanopsis, Quercus subgen. Cyclobalanopsis, Trochodendron, Phellodendron, Lagerstroemia, Rhododendron, Myrsine and Symplocos) were identified through anatomical characteristics. This is the first discovery of forest species on the Yakushima Island before the devastating eruption.

  14. Clast comminution during pyroclastic density current transport: Mt St Helens (United States)

    Dawson, B.; Brand, B. D.; Dufek, J.


    Volcanic clasts within pyroclastic density currents (PDCs) tend to be more rounded than those in fall deposits. This rounding reflects degrees of comminution during transport, which produces an increase in fine-grained ash with distance from source (Manga, M., Patel, A., Dufek., J. 2011. Bull Volcanol 73: 321-333). The amount of ash produced due to comminution can potentially affect runout distance, deposit sorting, the volume of ash lofted into the upper atmosphere, and increase internal pore pressure (e.g., Wohletz, K., Sheridan, M. F., Brown, W.K. 1989. J Geophy Res, 94, 15703-15721). For example, increased pore pressure has been shown to produce longer runout distances than non-comminuted PDC flows (e.g., Dufek, J., and M. Manga, 2008. J. Geophy Res, 113). We build on the work of Manga et al., (2011) by completing a pumice abrasion study for two well-exposed flow units from the May 18th, 1980 eruption of Mt St Helens (MSH). To quantify differences in comminution from source, sampling and the image analysis technique developed in Manga et al., 2010 was completed at distances proximal, medial, and distal from source. Within the units observed, data was taken from the base, middle, and pumice lobes within the outcrops. Our study is unique in that in addition to quantifying the degree of pumice rounding with distance from source, we also determine the possible range of ash sizes produced during comminution by analyzing bubble wall thickness of the pumice through petrographic and SEM analysis. The proportion of this ash size is then measured relative to the grain size of larger ash with distance from source. This allows us to correlate ash production with degree of rounding with distance from source, and determine the fraction of the fine ash produced due to comminution versus vent-fragmentation mechanisms. In addition we test the error in 2D analysis by completing a 3D image analysis of selected pumice samples using a Camsizer. We find that the roundness of PDC

  15. Petrogenesis and depositional history of felsic pyroclastic rocks from the Melka Wakena archaeological site-complex in South central Ethiopia (United States)

    Resom, Angesom; Asrat, Asfawossen; Gossa, Tegenu; Hovers, Erella


    The Melka Wakena archaeological site-complex is located at the eastern rift margin of the central sector of the Main Ethiopian Rift (MER), in south central Ethiopia. This wide, gently sloping rift shoulder, locally called the "Gadeb plain" is underlain by a succession of primary pyroclastic deposits and intercalated fluvial sediments as well as reworked volcaniclastic rocks, the top part of which is exposed by the Wabe River in the Melka Wakena area. Recent archaeological survey and excavations at this site revealed important paleoanthropological records. An integrated stratigraphic, petrological, and major and trace element geochemical study has been conducted to constrain the petrogenesis of the primary pyroclastic deposits and the depositional history of the sequence. The results revealed that the Melka Wakena pyroclastic deposits are a suite of mildly alkaline, rhyolitic pantellerites (ash falls, pumiceous ash falls and ignimbrites) and slightly dacitic ash flows. These rocks were deposited by episodic volcanic eruptions during early to middle Pleistocene from large calderas along the Wonji Fault Belt (WFB) in the central sector of the MER and from large silicic volcanic centers at the eastern rift shoulder. The rhyolitic ash falls, pumiceous ash falls and ignimbrites have been generated by fractional crystallization of a differentiating basaltic magma while the petrogenesis of the slightly dacitic ash flows involved some crustal contamination and assimilation during fractionation. Contemporaneous fluvial activities in the geomorphologically active Gadeb plain deposited overbank sedimentary sequences (archaeology bearing conglomerates and sands) along meandering river courses while a dense network of channels and streams have subsequently down-cut through the older volcanic and sedimentary sequences, redepositing the reworked volcaniclastic sediments further downstream.

  16. Effect of physical, chemical and electro-kinetic properties of pumice samples on radiation shielding properties of pumice material

    International Nuclear Information System (INIS)

    Tapan, Mücip; Yalçın, Zeynel; İçelli, Orhan; Kara, Hüsnü; Orak, Salim; Özvan, Ali; Depci, Tolga


    Highlights: • Radiation shielding properties of pumice materials are studied. • The relationship between physical, chemical and electro-kinetic properties pumice samples is identified. • The photon atomic parameters are important for the absorber peculiarity of the pumices. - Abstract: Pumice has been used in cement, concrete, brick, and ceramic industries as an additive and aggregate material. In this study, some gamma-ray photon absorption parameters such as the total mass attenuation coefficients, effective atomic number and electronic density have been investigated for six different pumice samples. Numerous values of energy related parameters from low energy (1 keV) to high energy (100 MeV) were calculated using WinXCom programme. The relationship between radiation shielding properties of the pumice samples and their physical, chemical and electro-kinetic properties was evaluated using simple regression analysis. Simple regression analysis indicated a strong correlation between photon energy absorption parameters and density and SiO 2 , Fe 2 O 3 , CaO, MgO, TiO 2 content of pumice samples in this study. It is found that photon energy absorption parameters are not related to electro-kinetic properties of pumice samples

  17. Pumice aggregates for internal water curing

    DEFF Research Database (Denmark)

    Pietro, Lura; Bentz, Dale P.; Lange, David A.


    without pumice and mixes with 4% and 8% pumice by volume of mortar. By addition of pumice, mortars with improved strength, enhanced degree of hydration and reduced autogenous shrinkage were obtained. An important obstacle to the application of this kind of pumice for actual concrete production......A novel concept in internal curing of High Performance Concrete is based on dispersing very small, saturated lightweight aggregates (LWA) in the concrete, containing sufficient water to counteract self-desiccation. With this approach, the amount of water in the LWA can be minimized, thus...... water absorption, but they release a greater percentage of their absorbed water at the equilibrium relative humidity of practical interest in early-age concrete, above 90%. Additionally, early-age properties of mortars with different contents of saturated pumice were investigated: a reference mix...

  18. Geological research for hot spring resources in the Kanno-kawa area, Tsukui-machi, Tanzawa mountains

    Energy Technology Data Exchange (ETDEWEB)


    The Kanno-kawa area is mainly composed of the following geological units: miocene submarine pyroclastic formation and its associated augite dolerite sheets, quartz diorite intrusive, and hornblende andesite dykes. The Miocene pyroclastic rocks mainly consist of tuff, tuff breccia, and agglomerate of basaltic, andestic, and dacitic composition intercalated with subordinate amounts of conglomerate, sandstone, and siltstone beds. These rocks were divided into two lithological facies: basaltic and andestic tuff and tuff breccia facies and a facies of dacitic pumice tuff with characteristic white or gray spots of siliceous pumice (2 to 35 mm in diameter). These pyroclastic rocks suffered metamorphism mainly related to the intrusion of quartz diorite. The metamorphic rocks can be divided into the following four zones: amphibolite, actinolite hornfels, pumpellyite-prehnite, and zeolite. Probably during the late stage of the metamorphism, hornblende andesite intruded along sheared zones running from NE or NNE toward SW or SSW. Above noted Miocene pyroclastic rocks, quartz diorite, and hornblende andesite also suffered a hydrothermal alteration by which many zeolite bearing veins or networks were formed. Mineral waters of the Tanzawa mountains are believed to be related to the intrusion of quartz diorite, hornblende andesite, and formation of zeolite veins. In this respect, mineral water of highly alkaline nature can be expected by deep drilling of 600 to 1,000 m at some places such as Choja-goya and Hikage-zawa of the Kanno-kawa area.

  19. 25 years of ecological change at Mount St. Helens. (United States)

    V.H. Dale; C.M. Crisafulli; F.J. Swanson


    18 May 2005 marks the 25th anniversary of the massive eruption of Mount St. Helens. This eruption involved diverse geological processes (1) that disturbed forests, meadows, lakes, an drivers (2) (see the figure). A huge landslide and searing flows of hot gases and pumic framents (pyroclastic flows) inundated 60 km2 of land, obliterating...

  20. Chronology, morphology and stratigraphy of pumiceous pyroclastic-flow (ignimbrite) deposits from the eruption of Mount St. Helens on 18 May 1983 (United States)

    Criswell, C. W.; Elston, W. E.


    Between 1217 and 1620 hours (PDT), on May 18, 1980, the magmatic eruption column of Mount St. Helens formed an ash fountain and pyroclastic flows dominated the eruption process over tephra ejection. Eurption-rate pulsations generally increased to a maximum at 1600 to 1700 hrs. After 1620 hrs, the eruption assumed an open-vent discharge with strong, vertical ejection of tephra. Relative eruption rates (relative mass flux rates) of the pyroclastic flows were determined by correlating sequential photographs and SLAR images, obtained during the eruption, with stratigraphy and surface morphology of the deposits.

  1. Characteristics of drift pumice from New Caledonia beaches (United States)

    Nicholson, Kirsten Ngaire; Stewart, Ariel


    Siliceous drift pumice was collected from a total of 40 beaches around the main island of New Caledonia, Southwest Pacific, in order to determine its provenance. New Caledonia is enclosed by a barrier reef lagoon whose 2008 designation as a UNESCO World Heritage Site brought attention to the environmental degradation caused by a century of open cast nickel mining. The frequent, voluminous pumice eruptions in the Southwest Pacific provide ample source material that is somewhat durable, highly transportable in water, and easy to collect and analyze. Geochemical and mineralogical analyses were used to identify the source of the pumice in order to map the transport vector across the open ocean and into the lagoon. Drift pumice was sampled during 2008 and 2010. The mineral assemblage of the pumice was consistently calcic plagioclase, clinopyroxene, orthopyroxene, and opaque minerals. All of the pumice was of fairly uniform geochemistry: low in mafic elements, low in alkalis, with LILE enriched compared to HFSE, and negative Eu, Ti, and Zr anomalies. The pumice is predominately dacitic and tholeiitic. This geochemical signature was consistent with published data from the Tonga arc, which is further supported by the mineralogy. With the exception of two samples (which probably came from either the Kermadec arc or Vanuatu) all of the pumice comes from the Tonga arc. The samples from 2008 are consistent with pumice erupted from Metis Shoal in 2006, and the majority of 2010 samples are consistent with pumice erupted from an unnamed volcano (0403-091) that erupted in 2001.

  2. NAA of the 'Minoan pumice' at Thera and comparison to alluvial pumice deposits in the Eastern Mediterranean region

    International Nuclear Information System (INIS)

    Bichler, M.; Egger, H.; Preisinger, A.; Ritter, D.; Stastny, P.


    Neutron activation analysis was used to determine up to 30 elements in the pumice layers from the 'Minoan eruption' at Thera (Santorini, Greece). Mt Pilato (Lipari, Italy) and in alluvial pumice from coasts of the Eastern Mediterranean region. The morphologically well distinguishable layers of the 'Minoan pumice' were found to be of nearly similar composition in respect to the elements determined and their distribution patterns could therefore be used to identify a sample as Santorinian or not. Additionally, this method was applied to pumice lumps found during archaeological excavations in the Nile delta, Egypt. The results showed that two of the three Egyptian samples are products of the Minoan eruption at Thera and therefore chronologically useful. A second group of pumices collected at Antalya (Turkey), Crete (Greece) and also in Egypt was found to have a distinctly different composition and is therefore related to another volcanic event. (author)

  3. Eruptive origins of a lacustrine pyroclastic succession: insights from the middle Huka Falls Formation, Taupo Volcanic Zone, New Zealand

    International Nuclear Information System (INIS)

    Cattell, H.J.; Cole, J.W.; Oze, C.; Allen, S.R.


    Current and ancestral lakes within the central Taupo Volcanic Zone (TVZ) provide depocentres for pyroclastic deposits, providing a reliable record of eruption history. These lakes can also be the source of explosive eruptions that directly feed pyroclast-rich density currents. The lithofacies characteristics of pyroclastic deposits allow discrimination between eruption-fed and resedimented facies. The most frequently recognised styles of subaqueous eruptions in the TVZ are shallow-water phreatomagmatic and phreatoplinian eruptions that form subaerial eruption columns. However, deeper source conditions (>150 m water depth) could generate subaqueous explosive eruptions that feed water-supported pyroclast-rich density currents, similar to neptunian eruptions. Such deep-water eruptions have not previously been recognised in the TVZ. Here we study a subsurface deposit, the middle Huka Falls Formation (MHFF), in the Wairakei-Tauhara geothermal fields (Wairakei-Tauhara), TVZ, which we interpret to be the product of a relatively deep-water pyroclastic eruption (150-250 m). The largely subsurface Huka Falls Formation records past sedimentary and volcaniclastic deposition in ancient Lake Huka. Deposits examined from eight drill cores reveal a lithic-rich lower unit, a middle volumetrically dominant pumice lapilli-tuff and an upper thinly bedded suspension-settled tuff unit. A coarse lithic lapilli-tuff within the lower unit is locally thick and coarse near well THM12, suggesting proximity to a source located beneath Lake Huka. This research provides an understanding of the origin of the MHFF deposit and offers insights for evaluating and interpreting the diversity of subaqueous volcanic lake deposits elsewhere. (author)

  4. The Study of Cr3+ Adsorption Wukirsari Pumice

    International Nuclear Information System (INIS)

    Samin; Susanna TS


    As an alternative to solve an environmental problem of Cr 3+ , the use of Wukirsari pumice has been studied. Before used as an adsorbent. 100-200 mesh of Wukirsari pumice was washed and calcinate. The elements composition of adsorbent was analyzed using Atomic Adsorption Spectrophotometer (AAS) method and presented as their oxides. After calcination, the pumice was saturated by NaCI and then converted to its ceramic. The mineral composition of pumice and its ceramic was determined using XRD method. Experimental results show optimum temperature for calcination was 500 o C and 5 hours duration of contact time was found from adsorption of Na + , with the value of 505 mg/g pumice. The other results show that pH of the solution influence the adsorption. The ion exchange between Na + and Cr 3+ did not follow ideal solution, and one ion Cr 3+ could replace only one ion Na + hence optimum adsorption of Cr 3+ was 1141.47 mg/g pumice. The data XRD shows that mineral composition of the pumice was magnetite, anorthite, and montmorilonite, while composition of its ceramic was feldspar and cristobalite. (author)

  5. Geology of proximal, small-volume trachyte-trachyandesite pyroclastic flows and associated surge deposits, Roccamonfina volcano, Italy (United States)

    Giannetti, Bernardino


    This paper describes the 232 ka B.P. MTTT trachyte-trachyandesite pyroclastic succession of Roccamonfina volcano. This small-volume, proximal sequence crops out along Mulino di Sotto, Paratone, and Pisciariello ravines in the southwest sector of the central caldera, and covers a minimum extent of 3.5 km 2 area. It is made up of seven pyroclastic flows and pyroclastic surge units consisting of trachytic ash matrix containing juvenile trachyandesitic scoria and dense lava fragments, pumice clasts of uncertain trachyandesite, and a foreign trachyandesitic lithic facies. Two stratigraphic markers allow correlation of the units. No paleosoils and Plinian fallout have been observed at the base and within the succession. Some lateral grading of scoria and lithic clasts suggests that MTTT derived from three distinct source vents. The sequence consists of a basal ash flow passing laterally to laminated surge deposits (Unit A). This is overlain by a reversely graded scoria and pumice lapilli flow (Unit B) which is in turn overlain by a thinly cross-stratified scoria lapilli surge (Unit C). Unit C is capped by a prominent ash-and-scoria flow (Unit D). A ground layer (Marker MK1) divides Unit D from a massive ignimbrite which grades upcurrent to sand-wave surge deposits (Unit E). Another ground layer (Marker MK2) separates Unit E from Unit F. This unit consists of a basal ignimbrite passing laterally to bedded surge deposits with convolute structures (subunit Fl), and grading upcurrent to a subhorizontally plane-laminated ash cloud (subunit F2) containing near the top a layer of millimetric lithic clasts embedded in fine ash. The succession is closed by the pyroclastic flow Unit G. Surge Unit C can be interpreted in terms of vertical gradients in turbulence, particle concentration, and velocity during flowage, whereas the bedded surge parts present in the massive deposits of Units A and E-F1 can be related to abrupt changes of velocity down the steep slopes of ravines. Reverse

  6. Classification of archaeologically stratified pumice by INAA

    International Nuclear Information System (INIS)

    Peltz, C.; Bichler, M.


    In the framework of the research program 'Synchronization of Civilization in the Eastern Mediterranean Region in the 2nd Millenium B.C.' instrumental neutron activation analysis (INAA) was used to determine 30 elements in pumice from archaeological excavations to reveal their specific volcanic origin. The widespread pumiceous products of several eruptions in the Aegean region were used as abrasive tools and were therefore popular trade objects. A remarkable quantity of pumice and pumiceous tephra (several km 3 ) was produced by the 'Minoan eruption' of Thera (Santorini), which is assumed to have happened between 1450 and 1650 B.C. Thus the discovery of the primary fallout of 'Minoan' tephra in archaeologically stratified locations can be used as a relative time mark. Additionally, pumice lumps used as abrasive can serve for dating by first appearance. Essential to an identification of the primary volcanic source is the knowledge that pumices from the Aegean region can easily be distinguished by their trace element distribution patterns, as previous work has shown. The elements Al, Ba, Ca, Ce, Co, Cr, Cs, Dy, Eu, Fe, Hf, K, La, Lu, Mn, Na, Nd, Rb, Sb, Sc, Sm, Ta, Tb, Th, Ti, U, V, Yb, Zn and Zr were determined in 16 samples of pumice lumps from excavations in Tell-el-Dab'a and Tell-el-Herr (Egypt). Two irradiation cycles and five measurement runs were applied. A reliable identification of the samples is achieved by comparing these results to the database compiled in previous studies. (author)


    Directory of Open Access Journals (Sweden)

    Güngör TUNCER


    Full Text Available Within this paper, pumice is investigated in general and its importance is emphasized for our county's economy. Pumice which has a hardness of 5-6 with a specific gravity of 1-2 g/cm 3 owns many pores from micro to microscale. Its heat and sound insulation is extremely high whereas its permeability is too low due to its pore's independence from each other. It has got wide use areas in industry today due to those vital physical properties. Pumice which is produced by very simple mining and processing methods, has been used in many different fields, such as construction, textile, chemical and agricultural industries. This work aims to reveal scientific, technical and statistical information about pumice whose importance has been increasing day by day for our country's economy as an industrial mineral and try to raise the common interests of both industrialists and scientists about its mining and processing.

  8. Usage of pumice as bulking agent in sewage sludge composting. (United States)

    Wu, Chuandong; Li, Weiguang; Wang, Ke; Li, Yunbei


    In this study, the impacts of reused and sucrose-decorated pumice as bulking agents on the composting of sewage sludge were evaluated in the lab-scale reactor. The variations of temperature, pH, NH3 and CO2 emission rate, moisture content (MC), volatile solid, dissolved organic carbon, C/N and the water absorption characteristics of pumice were detected during the 25days composting. The MC of pumice achieved 65.23% of the 24h water absorptivity within the first 2h at the mass ratio of 0.6:1 (pumice:sewage sludge). Reused pumice increased 23.68% of CO2 production and reduced 21.25% of NH3 emission. The sucrose-decorated pumice reduced 43.37% of nitrogen loss. These results suggested that adding pumice and sucrose-decorated pumice in sludge composting matrix could not only adjust the MC of materials, but also improve the degradation of organic matters and reduce nitrogen loss. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Chronology and pyroclastic stratigraphy of the May 18, 1980, eruption of Mount St. Helens, Washington (United States)

    Criswell, C. William


    The eruption of Mount St. Helens on May 18, 1980 can be subdivided into six phases: the paroxysmal phase I, the early Plinian phase II, the early ash flow phase III, the climactic phase IV, the late ash flow phase V, and phase VI, the activity of which consisted of a low-energy ash plume. These phases are correlated with stratigraphic subunits of ash-fall tephra and pyroclastic flow deposits. Sustained vertical discharge of phase II produced evolved dacite with high S/Cl ratios. Ash flow activity of phase III is attributed to decreases in gas content, indicated by reduced S/Cl ratios and increased clast density of the less evolved gray pumice. Climactic events are attributed to vent clearing and exhaustion of the evolved dacite.

  10. Rapid, long-distance dispersal by pumice rafting.

    Directory of Open Access Journals (Sweden)

    Scott E Bryan

    Full Text Available Pumice is an extremely effective rafting agent that can dramatically increase the dispersal range of a variety of marine organisms and connect isolated shallow marine and coastal ecosystems. Here we report on a significant recent pumice rafting and long-distance dispersal event that occurred across the southwest Pacific following the 2006 explosive eruption of Home Reef Volcano in Tonga. We have constrained the trajectory, and rate, biomass and biodiversity of transfer, discovering more than 80 species and a substantial biomass underwent a >5000 km journey in 7-8 months. Differing microenvironmental conditions on the pumice, caused by relative stability of clasts at the sea surface, promoted diversity in biotic recruitment. Our findings emphasise pumice rafting as an important process facilitating the distribution of marine life, which have implications for colonisation processes and success, the management of sensitive marine environments, and invasive pest species.

  11. Suitability of Moshi Pumice for Phosphorus Sorption in Constructed ...

    African Journals Online (AJOL)

    The study of Moshi Pumice's phosphorus sorption behaviours and properties was carried out in laboratory scale where by 1-2 mm, 2-4 mm and 4-8 mm grains were tested using batch experiments. The results show that Moshi Pumice has high phosphorus sorption capacity. The sorption capacity for the Moshi Pumice was ...

  12. Mineral resource of the month: pumice and pumicite (United States)



    The article offers information on pumice, an important commodity for the construction, horticulture and abrasives industries. The commodity is described as an extremely light, highly porous extrusive volcanic rock which was formed due to the rapid cooling of air-pocketed lava. It is noted that the characteristics of pumice make it as an ideal aggregate material in lightweight building blocks in the U.S. and abroad. The leading countries in terms of pumice production are Greece and the U.S.

  13. The origin of pumice at Balmoral Beach aboriginal shell midden

    International Nuclear Information System (INIS)

    Attenbrow, V.; Sutherland, L.; Hashimoto, R.; Barron, J.


    Full text: Pumice occurs in varying amounts throughout the 2 m depth of deposits of Balmoral Beach shell midden. In one area a distinct layer of concentrated pumice occurs between 85 cm to 95 cm below present ground level. A radiocarbon date indicates that this layer was deposited around 3300 BP. Petrographic analysis of the pumice from selected levels indicates that pumice in the concentrated layer is distinct and may come from a different source from pumice in levels above and below. It contains sporadic crystals of olivine, pyroxene, feldspar, plagioclase and opaque iron oxides set in a highly vesicular rhyolite glass. Analyses of major and trace elements support such a conclusion. Geomorphological investigations indicate that Balmoral Beach formed progressively between 6000 and 2500 years ago. We hypothesize that the main pumice layer was brought in by wave action along the shoreline and derives from a raft of pumice which formed after a volcanic eruption in an as-yet unknown location. This may be local or from known drift sources, such as New Zealand, Tonga, Indonesia, the Solomon Islands or Southern Ocean sources. Results of the petrographic and major and trace element analyses suggest a potential source in the Tongan-Kermadec region. The mode of deposition of the pumice is also being investigated and will include the possibility of tsunami action

  14. Flexural behavior of reinforced concrete beam with polymer coated pumice (United States)

    Nainggolan, Christin Remayanti; Wijatmiko, Indradi; Wibowo, Ari


    Sustainable development has become an important issue due to the increasing consideration of preserving the nature. Many alternative for coarse aggregate replacement have been investigated ranging from natural and fabricated aggregates. In this study, natural aggregate pumice was investigated since it offers lower density that give paramount benefit in reducing total building weight and hence reducing the earthquake excitation effect and optimizing the structural dimension. However, the characteristic of porous surfaces of pumice causes excessive water absorption during concrete mixing process. Therefore, to reduce the additional water, the pumice aggregates were coated with polymer. The tested specimens consisted of normal concrete beams (NCB), uncoated pumice aggregate concrete beam (UPA) and polymer coated pumice aggregate concrete beam (PCP). The objective of the research was to obtain the effect of coating on the pumice aggregate to the flexural behavior of concrete beams. The lateral load-displacement behavior, ductility and collapse mechanism were studied. The results showed that there were only marginal drop on the load-carrying capacity of the pumice aggregate beam compared to those of normal beam. Additionally, the ductility coefficient of specimens UPA and PCP decreased of 11,97% and 14,03% respectively compared to NCB, and the ultimate load capacity decreased less than 1%. Overall, the pumice aggregate showed good characteristic for replacing normal coarse aggregate.

  15. Formation of a spatter-rich pyroclastic density current deposit in a Neogene sequence of trachytic-mafic igneous rocks at Mason Spur, Erebus volcanic province, Antarctica (United States)

    Martin, A. P.; Smellie, J. L.; Cooper, A. F.; Townsend, D. B.


    Erosion has revealed a remarkable section through the heart of a volcanic island, Mason Spur, in the southwestern Ross Sea, Antarctica, including an unusually well-exposed section of caldera fill. The near-continuous exposure, 10 km laterally and > 1 km vertically, cuts through Cenozoic alkalic volcanic rocks of the Erebus volcanic province (McMurdo Volcanic Group) and permits the study of an ancient volcanic succession that is rarely available due to subsequent burial or erosion. The caldera filling sequence includes an unusual trachytic spatter-rich lapilli tuff (ignimbrite) facies that is particularly striking because of the presence of abundant black fluidal, dense juvenile spatter clasts of trachytic obsidian up to 2 m long supported in a pale cream-coloured pumiceous lapilli tuff matrix. Field mapping indicates that the deposit is an ignimbrite and, together with petrological considerations, it is suggested that mixing of dense spatter and pumiceous lapilli tuff in the investigated deposit occurred during emplacement, not necessarily in the same vent, with the mixed fragmental material emplaced as a pyroclastic density current. Liquid water was not initially present but a steam phase was probably generated during transport and may represent water ingested during passage of the current as it passed over either wet ground, stream, shallow lake or (possibly) snow. Well-exposed caldera interiors are uncommon and that at Mason Spur is helping understand eruption dynamics associated with a complex large island volcano. The results of our study should help to elucidate interpretations of other, less well exposed, pyroclastic density current deposits elsewhere in Antarctica and globally.

  16. Origin and significance of the 2011 El Hierro xeno-pumice (United States)

    Zaczek-Pedroza, Kirsten; Troll, Valentin R.; Deegan, Frances M.; Meade, Fiona C.; Burchardt, Steffi; Carracedo, Juan C.; Klügel, Andreas; Harris, Chris; Wiesmaier, Sebastian; Berg, Sylvia E.; Barker, Abigail K.


    During the first week of the 2011/2012 submarine eruption off El Hierro (Canary Islands), peculiar light-coloured pumiceous rocks (xeno-pumice) were found floating on the sea. The appearance of these rocks led to a potentially inappropriate response from the authorities, because the rocks were viewed as likely indicators of high-silica magma and possible explosive eruptive behaviour. However, the eruption remained a relatively minor and dominantly effusive event and the origin and significance of these peculiar xeno-pumice rocks for volcanic monitoring remains unresolved. Three contrasting models have been put forward, describing them as: a) recycled hydrothermally altered felsic magmatic rocks (Meletlidis et al., 2012, Geophys. Res. Lett., 39:L17302), b) sediment-contaminated high-silica magma (Sigmarsson et al., 2013, Contrib. Mineral. Petrol., 165:601-622) or c) frothy xenoliths from pre-island sedimentary strata that were melted while immersed in magma (Troll et al., 2012, Solid Earth, 3:97-110). Here, we combine the three available datasets to assess the origin of El Hierro xeno-pumice in the light of texture, mineralogy, major and trace element composition, and oxygen isotope characteristics in order to discuss their significance. We note that: 1) Sedimentary relicts occur frequently in xeno-pumice samples with occasionally observed relict bedding. 2) Vesicle sizes are extremely variable, which documents multiple degassing events. The vesicles are biggest especially close to sedimentary relicts, likely the result of a complex mix of minerals and porewaters originally present. 3) The mineral assemblage of xeno-pumice includes quartz, smectite, illite, wollastonite, jasper and mica (XRD) and is akin to marine sedimentary rocks in the region (Hoernle, 1998, J. Petrol.,39:859-880; Robertson & Stillman, 1979, J. Geol. Soc., 136:47 -60; Aparicio et al., 2006, Geol. Mag. 143:181 -193). 4) CIPW norms calculated from xeno-pumice major element compositions show the

  17. Investigating the use of Pyroclastics for Palaeointensity Determinations (United States)

    Paterson, G. A.; Muxworthy, A. R.; Roberts, A. P.; Mac Niocaill, C.


    thermal alteration during the experiment, resulting in the failure of all the samples. At Vesuvius the influences of MD grains, magnetic interactions and CRM overgrowth lead to failure of the palaeointensity experiments. Working with pyroclastic materials has one additional pitfall, as is illustrated by data from Colima. Discrimination between hot pyroclastic deposits and cold mudflow deposits based on field observations alone can be extremely difficult. Inconsistent palaeomagnetic directions recorded by samples from Colima suggest that they are mudflow deposits, the cold nature of which precludes them from meaningful palaeointensity analysis.

  18. Two coarse pyroclastic flow deposits, northern Mono-Inyo Craters, CA (United States)

    Dennen, R. L.; Bursik, M. I.; Stokes, P. J.; Lagamba, M.; Fontanella, N.; Hintz, A. R.; Jayko, A. S.


    The ~1350 A.D., rhyolitic North Mono eruption, Mono-Inyo Craters, CA, included the extrusion and destruction of Panum Dome and associated clastic deposits. Overlying the tephras of the North Mono sequence, the Panum deposits include a block-and-ash flow (BAF) deposit, covering ~3.5 km2. Blocks within the deposit are typically lithic rhyolite and banded gray micro-vesicular glass, showing white, almost powdery marks ranging from circular to linear in shape. These marks are interpreted as friction marks resulting from collisions between clasts. The deposit also contains bread-crusted obsidians with pressed-in clasts as well as reticulite with a bread-crusted surface texture. Near the centerline of the deposit is a ridge-topping train of jigsaw fractured blocks, often with reddish-orange alteration. One house sized jigsaw block sits upstream of a long, thinning pile of reddish orange debris; this “flow shadow” indicates that the block remained relatively stationary while the block and ash flow continued to propagate around it. The bread-crusted reticulite is most common at proximal localities. It is proposed that the dome destruction included a debris avalanche emplacing the train of jigsaw fractured blocks and creating a topographic high, the block-and-ash flow (the farthest reaching deposit from this event) which flowed around the debris avalanche deposits, and a final “lateral expansion” of a magma foam, creating the reticulite seen concentrated at proximal locations. Another coarse pyroclastic flow (here termed the “lower blast deposit”) underlies the North Mono tephra. It is more obsidian rich and finer grained than the Panum BAF. The lower blast deposit may have originated from Pumice Pit vent, which is now capped with an older dome ~0.5 km southeast of Panum. The lower blast deposit extends farther from the Panum vent than does the Panum BAF deposit, and apparently was mistaken for the Panum BAF deposit by previous workers. Hence the run

  19. Pumice stones as potential in-situ burning enhancer

    DEFF Research Database (Denmark)

    Rojas Alva, U.; Andersen, Bjørn Skjønning; Jomaas, Grunde


    Small-scale and mid-scale experiments were conducted in order to evaluate pumice stones as a potential enhancement for in-situ burning (ISB). Four oil types, several emulsification degrees of one crude oil were studied. In general, it was observed that the pumice stones did not improve the burning...... and after the burn, thus bringing the oil into the water column. Finally, the species production of CO and CO2 was not reduced. Based on the presented results, pumice stones have a negative impact on the efficiency of ISB, and they are ruled out as an ISB enhancer and should not be used in relation to ISB....

  20. 14C age of the Satsunai pumice bed, Noboribetsu City, SW Hokkaido, Japan

    International Nuclear Information System (INIS)

    Kawachi, Shinpei; Matsui, Masaru; Miyasaka, Shogo; Akamatsu, Morio; Kasugai, Akira.


    A sample of carbonized fallen tree piece (Picea or Pinus; diameter 5 cm and length 15 cm) was discovered in a crop in the Noboribetsu pumice flow deposit, where fossil-rootless fumaroles had been found recently. It existed in the loam layer immediately above the Satsunai pumice bed covering the Noboribetsu formation and the fumaroles below it. Its 14 C age was determined to be 11,330 +- 320 Y.B.P. Though the distribution and eruption source of Satsunai pumice bed are still unknown, the 14 C age has significance as follows in the Quaternary chronology. (1) The Satsunai pumice bed is important as a pumice bed indicating the boundary between the pleistocene and the Recent epoch. (2) By means of the Satsunai pumice bed, the age of upper Noboribetsu formation is given. (3) As there is no high bench deposit on the Noboribetsu pumice flow deposit, the time gap may be small between the Satsunai pumice bed and the Noboribetsu formation below it. (J.P.N.)

  1. A closer look at the pyroclastic density current deposits of the May 18, 1980 eruption of Mt St Helens (United States)

    Mackaman-Lofland, C. A.; Brand, B. D.; Dufek, J.


    Pyroclastic Density Currents (PDCs) are the most dangerous hazard associated with explosive volcanic eruptions. Due to the danger associated with observing these ground-hugging currents of searing hot gas, ash, and rock in real time, their processes are poorly understood. In order to understand flow dynamics, including what controls how far PDCs travel and how they interact with topography, it is necessary to study their deposits. The May 18th, 1980 eruption of Mt. St. Helens produced multiple PDCs, burying the area north of the volcano under 10s of meters of PDC deposits. Because the eruption is one of the best observed on record, individual flow units can be correlated to changes in eruptive intensity throughout the day (e.g., Criswell, 1987). Deep drainage erosion over the past 30 years has exposed the three-dimensional structure of the PDC deposits, making this intensive study possible. Up to six flow units have been identified along the large western drainage of the pumice plain. Each flow unit has intricate vertical and lateral facies changes and complex cross-cutting relationships away from source. The most proximal PDC deposits associated with the afternoon flows on May 18 are exposed 4 km from source in tributaries of the large drainage on the western side of the pumice plain. Hummocks from the debris avalanche are also exposed above and within these proximal drainages. It is apparent that the PDCs were often erosional, entraining large blocks from the hummocks and depositing them in close proximity downstream. The currents were also depositional, as thick sequences of PDC deposits are found in areas between hummocks, which thin to veneers above them. This indicates that the currents were interacting with complex topography early in their propagation, and is reflected by spatially variable bed conditions including rapid changes in bedding and granulometry characteristics within individual flow units. For example, within 20 lateral meters of a given flow

  2. Drift pumice in the central Indian Ocean Basin: Geochemical evidence

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Mudholkar, A.V.; JaiSankar, S.; Ilangovan, D.

    Abundant white to light grey-coloured pumice without ferromanganese oxide coating occurs within the Quaternary sediments of the Central Indian Ocean Basin (CIOB). Two distinct groups of pumice are identified from their geochemical composition, which...

  3. Drift pumice in the Indian and South Atlantic oceans

    International Nuclear Information System (INIS)

    Frick, C.; Kent, L.E.


    Sixty-three samples of drift pumice, collected at the coasts of South Africa, East Africa, Madagascar, Mauritius, the Cocos Islands, Australia, Indonesia, Brazil, Marion Island and Bouvet Island, were investigated petrographically and geochemically with a view to establishing the possible source areas. Geochemically five distinct groups could be distinguished and some could be liked to specific eruptions in the Indian, Atlantic and Pacific oceans. Group A pumice originated from a submarine eruption off Zavodovski Island in the South Sandwich Island Group in 1962. The pumice in Group B occurs mainly on the beaches bordering the Atlantic Ocean, and was found on the west coast of South Africa, on the sea floor south-west of South Africa, and in Brazil. The source of this group is unknown, but all the evidence indicates that it must have been from the Mid-Atlantic Ridge in the South Atlantic Ocean. The Group C pumice was found in the southern Indian Ocean, probably from the Mid-Indian Ridge. The fourth group originated from a submarine eruption along the Tonga Trench in the Pacific Ocean. Group E, which is by far the most homogeneous, includes samples from Australia, the Indian Ocean islands, East and South Africa and samples of the undisputed Krakatoan origin. Specimens from the Krakatoan eruption are still the most abundant type of drift pumice that can be found

  4. Spectral Unmixing Modeling of the Aristarchus Pyroclastic Deposit: Assessing the Eruptive History of Glass-Rich Regional Lunar Pyroclastic Deposits (United States)

    Jawin, E. R.; Head, J. W., III; Cannon, K.


    The Aristarchus pyroclastic deposit in central Oceanus Procellarum is understood to have formed in a gas-rich explosive volcanic eruption, and has been observed to contain abundant volcanic glass. However, the interpreted color (and therefore composition) of the glass has been debated. In addition, previous analyses of the pyroclastic deposit have been performed using lower resolution data than are currently available. In this work, a nonlinear spectral unmixing model was applied to Moon Mineralogy Mapper (M3) data of the Aristarchus plateau to investigate the detailed mineralogic and crystalline nature of the Aristarchus pyroclastic deposit by using spectra of laboratory endmembers including a suite of volcanic glasses returned from the Apollo 15 and 17 missions (green, orange, black beads), as well as synthetic lunar glasses (orange, green, red, yellow). Preliminary results of the M3 unmixing model suggest that spectra of the pyroclastic deposit can be modeled by a mixture composed predominantly of a featureless endmember approximating space weathering and a smaller component of glass. The modeled spectra were most accurate with a synthetic orange glass endmember, relative to the other glasses analyzed in this work. The results confirm that there is a detectable component of glass in the Aristarchus pyroclastic deposit which may be similar to the high-Ti orange glass seen in other regional pyroclastic deposits, with only minimal contributions of other crystalline minerals. The presence of volcanic glass in the pyroclastic deposit, with the low abundance of crystalline material, would support the model that the Aristarchus pyroclastic deposit formed in a long-duration, hawaiian-style fire fountain eruption. No significant detection of devitrified black beads in the spectral modeling results (as was observed at the Apollo 17 landing site in the Taurus-Littrow pyroclastic deposit), suggests the optical density of the eruptive plume remained low throughout the

  5. Pyroclast textural variation as an indicator of eruption column steadiness in andesitic Plinian eruptions at Mt. Ruapehu (United States)

    Pardo, Natalia; Cronin, Shane J.; Wright, Heather M.N.; Schipper, C. Ian; Smith, Ian; Stewart, Bob


    Between 27 and 11 cal. ka BP, a transition is observed in Plinian eruptions at Mt. Ruapehu, indicating evolution from non-collapsing (steady and oscillatory) eruption columns to partially collapsing columns (both wet and dry). To determine the causes of these variations over this eruptive interval, we examined lapilli fall deposits from four eruptions representing the climactic phases of each column type. All eruptions involve andesite to basaltic andesite magmas containing plagioclase, clinopyroxene, orthopyroxene and magnetite phenocrysts. Differences occur in the dominant pumice texture, the degree of bulk chemistry and textural variability, the average microcrystallinity and the composition of groundmass glass. In order to investigate the role of ascent and degassing processes on column stability, vesicle textures were quantified by gas volume pycnometry (porosity), X-ray synchrotron and computed microtomography (μ-CT) imagery from representative clasts from each eruption. These data were linked to groundmass crystallinity and glass geochemistry. Pumice textures were classified into six types (foamy, sheared, fibrous, microvesicular, microsheared and dense) according to the vesicle content, size and shape and microlite content. Bulk porosities vary from 19 to 95 % among all textural types. Melt-referenced vesicle number density ranges between 1.8 × 102 and 8.9 × 102 mm−3, except in fibrous textures, where it spans from 0.3 × 102 to 53 × 102 mm−3. Vesicle-free magnetite number density varies within an order of magnitude from 0.4 × 102 to 4.5 × 102 mm−3 in samples with dacitic groundmass glass and between 0.0 and 2.3 × 102 mm−3 in samples with rhyolitic groundmass. The data indicate that columns that collapsed to produce pyroclastic flows contained pumice with the greatest variation in bulk composition (which overlaps with but extends to slightly more silicic compositions than other eruptive products); textures

  6. Possible Use of Diatomite and Pumice-Amended Mortar and Plaster in Agricultural Structures

    Directory of Open Access Journals (Sweden)

    Serkan Yazarel


    Full Text Available This study was conducted to investigate the potential use of diatomite (a natural pozzolana and pumice in plasters and mortars to be used in agricultural buildings. Compacted and loose unit weights, specific weight, water absorption, organic matter content, abrasion resistance of aggregate (sand and pumice and pozzolana were investigated and materials were found to comply with the relevant standards. Test results on fresh (unit weight and slum test and hardened (unit weight, capillary water absorption, total water absorption, bending and compressive strength, vapor diffusion test mortar samples revealed that pumice and diatomite could be used in agricultural structures. Diatomite and pumice should be heat-treated and grounded before to use in mortars. In plasters to be made with abundant pumice and diatomite sources, high water holding capacity of the materials should be taken into consideration and further researches should be carried out about their compliance with the other materials.

  7. The structure of pumice by neutron diffraction

    International Nuclear Information System (INIS)

    Floriano, M.A.; Venezia, A.M.; Deganello, G.; Svensson, E.C.; Root, J.H.


    Small-angle neutron scattering (SANS) and wide-angle neutron scattering (WANS) measurements on pumice, an amorphous natural aluminosilicate used as support for metals in the preparation of catalysts, are reported. The SANS spectrum indicates the presence of a broad size distribution of pores and the absence of volume fractality. Surface fractality, however, cannot be ruled out. The structure of pumice, suggested by the pair-correlation function derived from the WANS spectrum and simulated by a random-network structure model, is very similar to that of vitreous silica, consisting mainly of SiO 4- 4 tetrahedra interconnected by bridging O atoms with additional local disorder generated by the replacement, on average, of one in ten Si atoms by aluminium. (orig.)

  8. A note on an occurrence of pseudo-pumice along the beaches of Goa and Karnataka

    Digital Repository Service at National Institute of Oceanography (India)

    Jumaila, C.P.U.; Pattan, J.N.; Mascarenhas, A.; Parthiban, G.; Moraes, C.; Khedekar, V.D.

    -anomaly These light weight fragments do not correspond with natural pumice, but rather appear to be similar to the chemical composition of foam glass/ artificial pumice available in the market Therefore, it is concluded that these pumice clasts are a waste product...

  9. The durability of fired brick incorporating textile factory waste ash and basaltic pumice

    Energy Technology Data Exchange (ETDEWEB)

    Binici, Hanifi [Kahramanmaras Sutcu Imam Univ., Kahramanmaras (Turkey). Dept. of Civil Engineering; Yardim, Yavuz [Epoka Univ., Tirana (Albania). Dept. of Civil Engineering


    This study investigates the durability of fired brick produced with additives of textile factories' waste ash and basaltic pumice. The effects of incorporating waste ash and basaltic pumice on durability and mechanical properties of the clay bricks were studied. Samples were produced with different ratios of the textile factories' waste ash and basaltic pumice added and at different fire temperatures of 700, 900, and 1 050 C for 8 h. The bricks with additives were produced by adding equal amounts of textile factories' waste ash and basaltic pumice, separately and together, with rates of 5, 10 and 20 wt.%. The produced samples were kept one year in sodium sulphate and sodium nitrate and tested under freezing - unfreezing and drying - wetting conditions. Then compression strength and mass loss of the samples with and without additives were investigated. The test results were compared with standards and results obtained from control specimens. The results showed that incorporations up to 10 wt.% of textile factories' waste ash and basaltic pumice is beneficial to the fired brick. Both textile factories' waste ash and basaltic pumice were suitable additives and could be used for more durable clay brick production at 900 C fire temperature. (orig.)

  10. Age and area predict patterns of species richness in pumice rafts contingent on oceanic climatic zone encountered. (United States)

    Velasquez, Eleanor; Bryan, Scott E; Ekins, Merrick; Cook, Alex G; Hurrey, Lucy; Firn, Jennifer


    The theory of island biogeography predicts that area and age explain species richness patterns (or alpha diversity) in insular habitats. Using a unique natural phenomenon, pumice rafting, we measured the influence of area, age, and oceanic climate on patterns of species richness. Pumice rafts are formed simultaneously when submarine volcanoes erupt, the pumice clasts breakup irregularly, forming irregularly shaped pumice stones which while floating through the ocean are colonized by marine biota. We analyze two eruption events and more than 5,000 pumice clasts collected from 29 sites and three climatic zones. Overall, the older and larger pumice clasts held more species. Pumice clasts arriving in tropical and subtropical climates showed this same trend, where in temperate locations species richness (alpha diversity) increased with area but decreased with age. Beta diversity analysis of the communities forming on pumice clasts that arrived in different climatic zones showed that tropical and subtropical clasts transported similar communities, while species composition on temperate clasts differed significantly from both tropical and subtropical arrivals. Using these thousands of insular habitats, we find strong evidence that area and age but also climatic conditions predict the fundamental dynamics of species richness colonizing pumice clasts.

  11. Pyroclastic Deposits in the Floor-fractured Crater Alphonsus (United States)

    Allen, Carlton C.; Donaldson-Hanna, Kerri L.; Pieters, Carle M.; Moriarty, Daniel P.; Greenhagen, Benjamin T.; Bennett, Kristen A.; Kramer, Georgiana Y.; Paige, David A.


    Alphonsus, the 118 km diameter floor-fractured crater, is located immediately east of Mare Nubium. Eleven pyroclastic deposits have been identified on the crater's floor. Early telescopic spectra suggest that the floor of Alphonsus is noritic, and that the pyroclastic deposits contain mixtures of floor material and a juvenile component including basaltic glass. Head and Wilson contend that Nubium lavas intruded the breccia zone beneath Alphonsus, forming dikes and fractures on the crater floor. In this model, the magma ascended to the level of the mare but cooled underground, and a portion broke thru to the surface in vulcanian (explosive) eruptions. Alternatively, the erupted material could be from a source unrelated to the mare, in the style of regional pyroclastic deposits. High-resolution images and spectroscopy from the Moon Mineralogy Mapper (M3), Diviner Lunar Radiometer, and Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (NAC) provide data to test these formation models. Spectra from M3 confirm that the crater floor is primarily composed of noritic material, and that the Nubium lavas are basaltic. Spectra from the three largest pyroclastic deposits in Alphonsus are consistent with a minor low- Ca pyroxene component in a glass-rich matrix. The centers of the 2 micron absorption bands have wavelengths too short to be of the same origin as the Nubium basalts. Diviner Christiansen feature (CF) values were used to estimate FeO abundances for the crater floor, Nubium soil, and pyroclastic deposits. The estimated abundance for the crater floor (7.5 +/- 1.4 wt.%) is within the range of FeO values for Apollo norite samples. However, the estimated FeO abundance for Nubium soil (13.4 +/- 1.4 wt.%) is lower than those measured in most mare samples. The difference may reflect contamination of the mare soil by highland ejecta. The Diviner-derived FeO abundance for the western pyroclastic deposit is 13.8 +/- 3.3 wt.%. This is lower than the values for mare soil

  12. Experimental Determination of Bed Conditions in Concentrated Pyroclastic Density Currents (United States)

    Winner, A.; Ferrier, K.; Dufek, J.


    Pyroclastic density currents (PDCs) are ground-hugging mixtures of hot gas and rock that can reach temperatures > 800 oC and speeds of 200 m/s. These flows are capable of eroding and entraining the underlying bed material into the flow, which can strongly influence flow momentum, runout distance, and hazards associated with PDCs. However, the mechanism of erosion remains poorly constrained, with proposed mechanisms including under-pressure following the head of the fluidized current, force chain enhanced stresses at the bed, and discrete particle impacts and friction. The interactions between PDCs and the bed have been difficult to observe in the field, as their infrequent occurrence, opacity, and hostile environment make real-time measurement difficult. This study is aimed at obtaining a better understanding of the interactions between PDCs and the bed through a quantitative analysis of bed forces. Our experimental apparatus consists of a rotating cylindrical flume of radius 22 cm, within which gas-rich granular material flows along the interior of the cylinder as it rotates. By using a rotating cylinder, we are able to simulate long-duration flows, allowing us to observe impact forces at the bed over timescales comparable to the flow duration of natural PDCs. To measure the distribution and evolution of forces imparted by the flow on the bed, we constructed a cylindrical insert with a non-erodible bed in which we embedded force sensor arrays parallel and perpendicular to the direction of flow. To measure the forces felt by the particles in the flow, we added "smart particles" 25 to 50 mm in diameter to the flow. Each smart particle contains a three-axis accelerometer and a micro SD card enclosed in a spherical plastic casing, and possesses a density similar to that of the pumice in the experimental flow. Each smart particle also contains a three-axis magnetometer which permits its location to be tracked by means of a unique applied magnetic field. Ultimately

  13. Heterogeneous vesiculation of 2011 El Hierro xeno-pumice revealed by X-ray computed microtomography (United States)

    Berg, S. E.; Troll, V. R.; Deegan, F. M.; Burchardt, S.; Krumbholz, M.; Mancini, L.; Polacci, M.; Carracedo, J. C.; Soler, V.; Arzilli, F.; Brun, F.


    During the first week of the 2011 El Hierro submarine eruption, abundant light-coloured pumiceous, high-silica volcanic bombs coated in dark basanite were found floating on the sea. The composition of the light-coloured frothy material (`xeno-pumice') is akin to that of sedimentary rocks from the region, but the textures resemble felsic magmatic pumice, leaving their exact mode of formation unclear. To help decipher their origin, we investigated representative El Hierro xeno-pumice samples using X-ray computed microtomography for their internal vesicle shapes, volumes, and bulk porosity, as well as for the spatial arrangement and size distributions of vesicles in three dimensions (3D). We find a wide range of vesicle morphologies, which are especially variable around small fragments of rock contained in the xeno-pumice samples. Notably, these rock fragments are almost exclusively of sedimentary origin, and we therefore interpret them as relicts an the original sedimentary ocean crust protolith(s). The irregular vesiculation textures observed probably resulted from pulsatory release of volatiles from multiple sources during xeno-pumice formation, most likely by successive release of pore water and mineral water during incremental heating and decompression of the sedimentary protoliths.

  14. 'Chemical fingerprints' of pumice from Cappadocia (Turkey) and Kos (Greece) for archaeological applications

    International Nuclear Information System (INIS)

    Steinhauser, Georg; Sterba, Johannes H.; Bichler, Max


    Pumice has been used as a serviceable abrasive or religious artefact since antiquity and has therefore been an object of trade. It can be found in excavations of ancient workshops all over the Mediterranean. Pumice lumps from the major pumice-bearing rhyolitic tephra units in Cappadocia-the Central Anatolian Volcanic Province, Turkey (in particular the ignimbrites Kavak, Cemilkoey, Tahar, Goerdeles, and the volcanic complexes of Acigoel and Hasan Dagi), were sampled and analyzed for major and trace element concentrations using instrumental neutron activation analysis (INAA). Elements determined were Na, K, Sc, Cr, Fe, Co, Zn, As, Rb, Zr, Sb, Cs, Ba, La, Ce, Nd, Sm, Eu, Tb, Yb, Lu, Hf, Ta, Th, and U. Since the distribution of those elements is characteristic of the products of a certain eruption, this 'chemical fingerprint' can be used to establish the origin of an unknown pumice sample by comparison with samples of known origin. In the course of this study, it could be shown that one pumice finding from the excavation in Miletos (Turkey) probably originates from the Hasan Dagi volcanic complex in Cappadocia. Since it is known that the population in Miletos focused their trade connections on the Mediterranean, this result is somewhat surprising. Two other samples from Miletos show a very high similarity to the chemical fingerprint of pumice from the Kos Plateau Tuff (KPT; Greece): In one case, the identification is doubtless, in the other case identification as KPT seems quite probable

  15. The pumice raft-forming 2012 Havre submarine eruption was effusive (United States)

    Manga, Michael; Fauria, Kristen E.; Lin, Christina; Mitchell, Samuel J.; Jones, Meghan; Conway, Chris E.; Degruyter, Wim; Hosseini, Behnaz; Carey, Rebecca; Cahalan, Ryan; Houghton, Bruce F.; White, James D. L.; Jutzeler, Martin; Soule, S. Adam; Tani, Kenichiro


    A long-standing conceptual model for deep submarine eruptions is that high hydrostatic pressure hinders degassing and acceleration, and suppresses magma fragmentation. The 2012 submarine rhyolite eruption of Havre volcano in the Kermadec arc provided constraints on critical parameters to quantitatively test these concepts. This eruption produced a >1 km3 raft of floating pumice and a 0.1 km3 field of giant (>1 m) pumice clasts distributed down-current from the vent. We address the mechanism of creating these clasts using a model for magma ascent in a conduit. We use water ingestion experiments to address why some clasts float and others sink. We show that at the eruption depth of 900 m, the melt retained enough dissolved water, and hence had a low enough viscosity, that strain-rates were too low to cause brittle fragmentation in the conduit, despite mass discharge rates similar to Plinian eruptions on land. There was still, however, enough exsolved vapor at the vent depth to make the magma buoyant relative to seawater. Buoyant magma was thus extruded into the ocean where it rose, quenched, and fragmented to produce clasts up to several meters in diameter. We show that these large clasts would have floated to the sea surface within minutes, where air could enter pore space, and the fate of clasts is then controlled by the ability to trap gas within their pore space. We show that clasts from the raft retain enough gas to remain afloat whereas fragments from giant pumice collected from the seafloor ingest more water and sink. The pumice raft and the giant pumice seafloor deposit were thus produced during a clast-generating effusive submarine eruption, where fragmentation occurred above the vent, and the subsequent fate of clasts was controlled by their ability to ingest water.

  16. Ilmenite-rich pyroclastic deposits - An ideal lunar resource (United States)

    Hawke, B. R.; Clark, B.; Coombs, C. R.


    With a view of investigating possible economic benefits that a permanent lunar settlement might provide to the near-earth space infrastructures, consideration was given to the ilmenite-rich pyroclastic deposits as sources of oxygen (for use as a propellant) and He-3 (for nuclear fusion fuel). This paper demonstrates that ilmenite-rich pyroclastic deposits would be excellent sources of a wide variety of valuable elements besides O and He-3, including Fe, Ti, H2, N, C, S, Cu, Zn, Cd, Bi, and Pb. It is shown that several ilmenite-rich pyroclastic deposits of regional extent exist on the lunar surface. The suitability of regional pyroclastic deposits for lunar mining operations, construction activities, and the establishment of permanent lunar settlements is examined.

  17. Fission-track dating of pumice from the KBS Tuff, East Rudolf, Kenya (United States)

    Hurford, A.J.; Gleadow, A.J.W.; Naeser, C.W.


    Fission-track dating of zircon separated from two pumice samples from the KBS Tuff in the Koobi Fora Formation, in Area 131, East Rudolf, Kenya, gives an age of 2.44??0.08 Myr for the eruption of the pumice. This result is compatible with the previously published K-Ar and 40Ar/ 39Ar age spectrum estimate of 2.61??0.26 Myr for the KBS Tuff in Area 105, but differs from the more recently published K-Ar date of 1.82??0.04 Myr for the KBS Tuff in Area 131. This study does not support the suggestion that pumice cobbles of different ages occur in the KBS Tuff. ?? 1976 Nature Publishing Group.

  18. Generation of pyroclastic density currents from pyroclastic fountaining or transient explosions: insights from large scale experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sulpizio, Roberto; Dellino, Pierfrancesco; Mele, Daniela; La Volpe, Luigi [CIRISIVU, c/o Dipartimento Geomineralogico, via Orabona 4, 70125, Bari (Italy)], E-mail:


    Pyroclastic density currents (PDCs) are among the most amazing, complex and dangerous volcanic phenomena. They are moving mixtures of particles and gas that flow across the ground, and originate in different ways and from various sources, during explosive eruptions or gravity-driven collapse of domes. We present results from experimental work to investigate the generation of large-scale, multiphase, gravity-driven currents. The experiments described here are particularly devoted to understanding the inception and development of PDCs under impulsive injection conditions by means of the fast application of a finite stress to a finite mass of pyroclastic particles via expansion of compressed gas. We find that, in summary, PDC generation from collapse of pressure-adjusted or overpressurised pyroclastic jets critically depends on behaviour of injection into the atmosphere, which controls the collapsing mechanisms and then the physical parameters of the initiating current.

  19. The Ottaviano eruption of Somma-Vesuvio (8000 y B.P.): a magmatic alternating fall and flow-forming eruption (United States)

    Rolandi, G.; Maraffi, S.; Petrosino, P.; Lirer, L.


    The Ottaviano eruption occurred in the late neolithic (8000 y B.P.). 2.40 km 3 of phonolitic pyroclastic material (0.61 km 3 DRE) were emplaced as pyroclastic flow, surge and fall deposits. The eruption began with a fall phase, with a model column height of 14 km, producing a pumice fall deposit (LA). This phase ended with short-lived weak explosive activity, giving rise to a fine-grained deposit (L1), passing to pumice fall deposits as the result of an increasing column height and mass discharge rate. The subsequent two fall phases (producing LB and LC deposits), had model column heights of 20 and 22 km with eruption rates of 2.5 × 10 7 and 2.81 × 10 7 kg/s, respectively. These phases ended with the deposition of ash layers (L2 and L3), related to a decreasing, pulsing explosive activity. The values of dynamic parameters calculated for the eruption classify it as a sub-plinian event. Each fall phase was characterized by variations in the eruptive intensity, and several pyroclastic flows were emplaced (F1 to F3). Alternating pumice and ash fall beds record the waning of the eruption. Finally, owing to the collapse of a eruptive column of low gas content, the last pyroclastic flow (F4) was emplaced.

  20. Pyroclast/snow interactions and thermally driven slurry formation. Part 2: Experiments and theoretical extension to polydisperse tephra (United States)

    Walder, J.S.


    Erosion of snow by pyroclastic flows and surges presumably involves mechanical scour, but there may be thermally driven phenomena involved as well. To investigate this possibility, layers of hot (up to 400??C), uniformly sized, fine- to medium-grained sand were emplaced vertically onto finely shaved ice ('snow'); thus there was no relative shear motion between sand and snow and no purely mechanical scour. In some cases large vapor bubbles, commonly more than 10 mm across, rose through the sand layer, burst at the surface, and caused complete convective overturn of the sand, which then scoured and mixed with snow and transformed into a slurry. In other cases no bubbling occurred and the sand passively melted its way downward into the snow as a wetting front moved upward into the sand. A continuum of behaviors between these two cases was observed. Vigorous bubbling and convection were generally favored by high temperature, small grain size, and small layer thickness. A physically based theory of heat- and mass transfer at the pyroclast/snow interface, developed in Part 1 of this paper, does a good job of explaining the observations as a manifestation of unstable vapor-driven fluidization. The theory, when extrapolated to the behavior of actual, poorly sorted pyroclastic flow sediments, leads to the prediction that the observed 'thermal-scour' phenomenon should also occur for many real pyroclastic flows passing over snow. 'Thermal scour' is therefore likely to be involved in the generation of lahars.

  1. Isotopic Characteristics and Age Dating of the Pumice in Okinawa Trough

    Institute of Scientific and Technical Information of China (English)

    陈丽蓉; 翟世奎; 申顺喜


    The data on the isotope compositions of rubidium,strontium and oxygen in the pumice ofOkinawa Trough are reported for the first time.The ages of the pumice were successfully dated with themethod of U-series disequilibrium.Then,the material source,crystallization evolution of magma and activi-ty cycles of volcanos are explored.Isotopic data show that pumice magma was originally from the mantle,but had undergone a full crystal-lization differentiation and had been contaminated to a fair extent by crust-derived materials before the mag-ma was erupted out of the sea floor.According to the dating results available so far,the earliest volcaniceruption in Okinawa Trough occurred about 70,000 a ago and the latest eruption was about 10,000 a B.P.During this period,there were three volcanic eruption cycles which were respectively corresponding to themiddle Late Pleistocene,the late Late Pleistocene and the Early Holocene.

  2. Field-trip guide for exploring pyroclastic density current deposits from the May 18, 1980, eruption of Mount St. Helens, Washington (United States)

    Brand, Brittany D.; Pollock, Nicholas; Sarocchi, Damiano; Dufek, Josef; Clynne, Michael A.


    Pyroclastic density currents (PDCs) are one of the most dangerous phenomena associated with explosive volcanism. To help constrain damage potential, a combination of field studies, laboratory experiments, and numerical modeling are used to establish conditions that influence PDC dynamics and depositional processes, including runout distance. The objective of this field trip is to explore field relations that may constrain PDCs at the time of emplacement.The PDC deposits from the May 18, 1980, eruption of Mount St. Helens are well exposed along the steep flanks (10–30° slopes) and across the pumice plain (5–12° slopes) as far as 8 km north of the volcano. The pumice plain deposits represent deposition from a series of concentrated PDCs and are primarily thick (3–12 m), massive, and poorly sorted. In contrast, the steep east-flank deposits are stratified to cross-stratified, suggesting deposition from PDCs where turbulence strongly influenced transport and depositional processes.The PDCs that descended the west flank were largely nondepositional; they maintained a higher flow energy and carrying capacity than PDCs funneled through the main breach, as evidenced by the higher concentration of large blocks in their deposits. The PDC from the west flank collided with PDCs funneled through the breach at various points along the pumice plain. Evidence for flow collision will be explored and debated throughout the field trip.Evidence for substrate erosion and entrainment is found (1) along the steep eastern flank of the volcano, which has a higher degree of rough, irregular topography relative to the west flanks where PDCs were likely nonerosive, (2) where PDCs encountered debris-avalanche hummocks across the pumice plain, and (3) where PDCs eroded and entrained material deposited by PDCs produced during earlier phases of the eruption. Two features interpreted as large-scale (tens of meters wide) levees and a large (~200 m wide) channel scour-and-fill feature

  3. Compositional analyses of small lunar pyroclastic deposits using Clementine multispectral data (United States)

    Gaddis, L.R.; Hawke, B.R.; Robinson, M.S.; Coombs, C.


    Clementine ultraviolet-visible (UVVIS) data are used to examine the compositions of 18 pyroclastic deposits (15 small, three large) at 13 sites on the Moon. Compositional variations among pyroclastic deposits largely result from differing amounts of new basaltic (or juvenile) material and reworked local material entrained in their ejecta upon eruption. Characterization of pyroclastic deposit compositions allows us to understand the mechanisms of lunar explosive volcanism. Evidence for compositional differences between small pyroclastic deposits at a single site is observed at Atlas crater. At all sites, compositional variation among the small pyroclastic deposits is consistent with earlier classification based on Earth-based spectra: three compositional groups can be observed, and the trend of increasing mafic absorption band strength from Group 1 to Group 2 to Group 3 is noted. As redefined here, Group 1 deposits include those of Alphonsus West, Alphonsus Southeast, Alphonsus Northeast 2, Atlas South, Crüger, Franklin, Grimaldi, Lavoisier, Oppenheimer, Orientale, and Riccioli. Group 1 deposits resemble lunar highlands, with weak mafic bands and relatively high UV/VIS ratios. Group 2 deposits include those of Alphonsus Northeast 1, Atlas North, Eastern Frigoris East and West, and Aristarchus Plateau; Group 2 deposits are similar to mature lunar maria, with moderate mafic band depths and intermediate UV/VIS ratios. The single Group 3 deposit, J. Herschel, has a relatively strong mafic band and a low UV/VIS ratio, and olivine is a likely juvenile component. Two of the deposits in these groups, Orientale and Aristarchus, are large pyroclastic deposits. The third large pyroclastic deposit, Apollo 17/Taurus Littrow, has a very weak mafic band and a high UV/VIS ratio and it does not belong to any of the compositional groups for small pyroclastic deposits. The observed compositional variations indicate that highland and mare materials are also present in many large and

  4. Neutron activation analysis of pumice from Lipari, Italy, and the identification of a pumice find from the excavation at Tel Megadim, Israel

    International Nuclear Information System (INIS)

    Steinhauser, G.; Bichler, M.; Eigelsreiter, G.; Tischner, A.


    Sixteen pumice samples produced by the youngest eruption sequences of Mt. Pelato (Island of Lipari, Italy) were analyzed with instrumental neutron activation analysis (INAA) for their major and trace element contents, in particular Al, Ba, Ca, Ce, Co, Cr, Cs, Dy, Eu, Fe, Hf, K, La, Lu, Mn, Na, Nd, Rb, Sb, Sm, Ta, Tb, Th, Ti, U, V, Yb, Zn, and Zr. A pumice from the archaeological excavation in Tel Megadim, Israel, could be correlated to this volcanic source, using its chemical fingerprint. This result, together with the background information about the well dated eruption cycles of this volcano, lead to the assumption that trade connections existed between cultures in Palestine and the Tyrrhenian region during the Persian Period (approx. between the 6th and 3rd century B.C.), in spite of the long distance of over 2000 km. (author)

  5. Pumices from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.

    A better understanding of submarine volcanisms that result in pyroclastics is of universal importance for paleotectonic reconstruction, crustal growth estimates and location of volcanisms throughout the earth's history. Of the volcanogenic...

  6. INAA of Aegaean pumices for the classification of archaeological findings

    International Nuclear Information System (INIS)

    Peltz, C.; Schmid, P.; Bichler, M.


    Instrumental neutron activation analysis (INAA) was used to determine 29 elements in pumice from several volcanic sources (Milos, Nisyros, Yali, Kos and Thera) in the Aegean Sea, Greece, to establish a data basis for the identification of pumice and tephra layers found in archaeological context. The widespread products of the 'Minoan Eruption' of the Thera volcano can now be distinguished clearly from all other sources and will be used to establish a datumline in the Eastern Mediterranean Region in the second millenium B.C. The elements Al, As, Ba, Ca, Ce, Co, Cr, Cs, Dy, Eu, Fe, Hf, K, La, Lu, Mn, Na, Nd, Rb, Sb, Sc, Sm, Ta, Ti, Th, U, V, Yb and Zr were determined in 14 samples from Milos, 25 samples from Nisyros, 7 samples from Kos and 17 samples from Thera. Two cycles of irradiation and four measurement runs were applied. The results were compared and suitable groups, typical for each island, were classified. Due to insufficiently comparable data sets, the criteria for distinguishing the different sources have not been revealed by previous studies. This basic knowledge was used to relate pumice from excavations in Tell-el-Dab'a (Egypt) and Bronze Age Knossos to their specific volcanic origin. (author)

  7. Evaluation of Iron and Manganese-Coated Pumice Application for the Removal of as(v from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Leila Babaie Far


    Full Text Available Arsenic contamination of water has been recognized as a serious environmental issue and there are reports on its epidemiological problems to human health. The objective of this study was to evaluate the performances of iron-coated pumice and manganese-coated pumice as the adsorbents for removing arsenate from aqueous solutions. The effect of various parameters such as adsorbent dose, contact time, pH and initial concentration on removal efficiency of arsenate were evaluated in batch mode. The data obtained from the kinetic studies were analyzed using kinetic models of pseudo-first-order and pseudo-second-order. In addition, two isotherm models of Freundlich and Langmuir were used to fit the experimental data. The results showed that the optimum dosage of iron-coated pumice and manganese-coated pumice for arsenate removal were 40 and 80 g/L whereas the adsorption process reached equilibrium after 80 and 100 min, respectively. The maximum removal efficiency of arsenate using the two adsorbents were both recorded in pH=3 as the removal efficiency gradually declinedfollowing every increase in pH values of the solution. Iron-coated pumice also showed to have high removal efficiency when the initial concentration of arsenate was high while the low concentration of arsenate was efficiently removed by manganese-coated pumice. Moreover, it was depicted that the adsorption kinetics by bothadsorbents followed pseudo-second order equation and the uptake data of arsenate were well fitted with Langmuir isotherm model. Therefore, it could be concluded that iron and manganese-coated pumice could beconsidered as suitable adsorbents for arsenate removal from aqueous solutions.

  8. Natural radioactivity measurement in pumice samples used raw materials in Turkey

    International Nuclear Information System (INIS)

    Turhan, S.; Yuecel, H.; Guenduez, L.; Sahin, S.; Vural, M.; Parmaksiz, A.; Demircioglu, B.


    The activity concentrations of 232 Th, 226 Ra, and 4 K in different pumice samples have been determined by high-resolution γ-ray spectrometry using a 110% HpGe detector. The radium equivalent activities (Ra eq ), external hazard index (H ex ), and internal hazard index (H in ) associated with the natural radionuclides and representative level index (I γ r ) are calculated to assess the radiation hazard of the natural radioactivity in the pumice samples. The mean values of the measured radioactivity concentrations of 232 Th, 226 Ra, and 4 K for pumice samples from the region of lakes (ROL) are 232.4±8.0, 196.9±7.8, and 1325.8±20.4 Bq kg -1 and for pumice samples from Cukurova region (CR) 16.3±4.0, 16.1±4.9, and 479.7±170.4 Bq kg -1 , respectively. The calculated Ra eq values vary from 435.9±12.5 to 883.6±41.5 Bq kg -1 with a mean of 630.9±20.2 Bq kg -1 for the ROL samples and from 49.7±3.3 to 101.9±7.2 Bq kg -1 with a mean of 76.3±23.7 Bq kg -1 for the CR samples. For the ROL samples, Ra eq are above the limit of 370 Bq kg -1 , equivalent to external γ dose of 1.5 mSv yr -1 , recommended for the safe use of construction materials by NEA-OECD, while for the CR samples, Ra eq values are lower than the limit

  9. Retention of phosphorous ions on natural and engineered waste pumice: Characterization, equilibrium, competing ions, regeneration, kinetic, equilibrium and thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Karimaian, Kamal Aldin [Department of Environmental Health Engineering, Faculty of Health, Kurdistan University of Medical Sciences, Sannandaj (Iran, Islamic Republic of); Amrane, Abdeltif [Ecole Nationale Supérieure de Chimie de Rennes, Université Rennes 1, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7 (France); Kazemian, Hossein [Department of Chemical and Biochemical Engineering, Western University, London, ON, Canada N6A 5B9 (Canada); Panahi, Reza [Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Zarrabi, Mansur, E-mail: [Department of Environmental Health Engineering, Faculty of Health, Alborz University of Medical Sciences, Karaj (Iran, Islamic Republic of)


    Natural and Mg{sup 2+} modified pumice were used for the removal of phosphorous. The adsorbents were characterized using XRF, XRD, SEM and FTIR instrumental techniques. In the optimal conditions, namely at equilibrium time (30 min), for a phosphorus concentration of 15 mg/L and pH 6, 69 and 97% phosphorus removals were achieved using 10 g/L of natural and modified pumice adsorbents, respectively. Maximum adsorption capacities were 11.88 and 17.71 mg/g by natural and modified pumice, respectively. Pseudo-second order kinetic model was the most relevant to describe the kinetic of phosphorus adsorption. External mass transfer coefficient decreased for increasing phosphorous concentration and film diffusion was found to be the rate-controlling step. Only a very low dissolution of the adsorbent was observed, leading to a low increase in conductivity and turbidity. Removal efficiency decreased for increasing ionic strength. It also decreased in the presence of competing ions; however modified pumice remained effective, since 67% of phosphorus was removed, versus only 17% for the natural pumice. The efficiency of the modified pumice was confirmed during the regeneration tests, since 96% regeneration yield was obtained after 510 min experiment, while only 22% was observed for the raw pumice.

  10. Characterizing the Morphology, Distribution, and Formation Geometry of Mercury's Pyroclastic Vents (United States)

    Jozwiak, L. M.; Head, J. W.; Wilson, L.


    We present a final catalog of pyroclastic vents on Mercury, identifying 104 candidate pyroclastic vents. We then assess the vent distribution, morphologic variation, and probable formation geometries.

  11. Nature and composition of interbedded marine basaltic pumice in ...

    Indian Academy of Sciences (India)

    (core) of several samples were obtained by drilling, along with ... Ba, V, Ni, Zn) for five pumice samples were deter- mined by XRF ..... may also take place in the shallow water environ- ..... In: Soils and Sediments (eds) Paquet H and Clauer N,.

  12. Impact of the AD 79 explosive eruption on Pompeii, II. Causes of death of the inhabitants inferred by stratigraphic analysis and areal distribution of the human casualties (United States)

    Luongo, Giuseppe; Perrotta, Annamaria; Scarpati, Claudio; De Carolis, Ernesto; Patricelli, Giovanni; Ciarallo, Annamaria


    Detailed descriptions of the effects of explosive eruptions on urban settlements available to volcanologists are relatively rare. Apart from disease and starvation, the largest number of human deaths caused by explosive eruptions in the twentieth century are due to pyroclastic flows. The relationship between the number of victims related to a specific hazard and the presence of urban settlements in the area covered by the eruption has been shown. However, pyroclastic falls are also extremely dangerous under certain conditions. These conclusions are based on archaeological and volcanological studies carried out on the victims of the well-known AD 79 eruption of Vesuvius that destroyed and buried the Roman city of Pompeii. The stratigraphic level in the pyroclastic deposit and the location of all the casualties found are described and discussed. The total number of victims recovered during the archaeological excavations amounts to 1150. Of these, 1044 well recognisable bodies plus an additional group of 100 individuals were identified based on the analysis of several groups of scattered bones. Of the former, 394 were found in the lower pumice lapilli fall deposit and 650 in the upper stratified ash and pumice lapilli pyroclastic density currents (PDCs) deposits. In addition, a tentative evaluation suggests that 464 corpses may still be buried in the unexcavated part of the city. According to the reconstruction presented in this paper, during the first phase of the eruption (August 24, AD 79) a huge quantity of pumice lapilli fell on Pompeii burying the city under 3 m of pyroclastic material. During this eruptive phase, most of the inhabitants managed to leave the city. However, 38% of the known victims were killed during this phase mainly as a consequence of roofs and walls collapsing under the increasing weight of the pumice lapilli deposit. During the second phase of the eruption (August 25, AD 79) 49% of the total victims were on the roadways and 51% inside

  13. Effects of pumice mining on soil quality (United States)

    Cruz-Ruíz, A.; Cruz-Ruíz, E.; Vaca, R.; Del Aguila, P.; Lugo, J.


    México is the worl's fourth most important maize producer; hence, there is a need to maintain soil quality for a sustainable production in the upcoming years. Pumice mining, a superficial operation, modifies large areas in Central Mexico. The main aim was to assess the present state of agricultural soils differing in elapsed-time since pumice mining (0-15 years), in a representative area of the Calimaya region in the State of Mexico. The study sites in 0, 1, 4, 10 and 15 year-old reclaimed soils were compared with adjacent undisturbed site. Our results indicate that soil organic carbon, total nitrogen, microbial biomass carbon and microbial quotients were greatly impacted by disturbance. A general trend of recovery towards the undisturbed condition with reclamation age was found after disturbance. Recovery of soil total nitrogen was faster than soil organic carbon. Principal components analysis was applied. The first three components together explain 71.72 % of the total variability. First factor reveals strong associations between total nitrogen, microbial biomass carbon and pH. The second factor reveals high loading of urease and catalase. The obtained results revealed that the most appropriate indicators to diagnose the quality of the soils were: total nitrogen, microbial biomass carbon and soil organic carbon.

  14. The effect of topography on pyroclastic flow mobility (United States)

    Ogburn, S. E.; Calder, E. S.


    Pyroclastic flows are among the most destructive volcanic phenomena. Hazard mitigation depends upon accurate forecasting of possible flow paths, often using computational models. Two main metrics have been proposed to describe the mobility of pyroclastic flows. The Heim coefficient, height-dropped/run-out (H/L), exhibits an inverse relationship with flow volume. This coefficient corresponds to the coefficient of friction and informs computational models that use Coulomb friction laws. Another mobility measure states that with constant shear stress, planimetric area is proportional to the flow volume raised to the 2/3 power (A∝V^(2/3)). This relationship is incorporated in models using constant shear stress instead of constant friction, and used directly by some empirical models. Pyroclastic flows from Soufriere Hills Volcano, Montserrat; Unzen, Japan; Colima, Mexico; and Augustine, Alaska are well described by these metrics. However, flows in specific valleys exhibit differences in mobility. This study investigates the effect of topography on pyroclastic flow mobility, as measured by the above mentioned mobility metrics. Valley width, depth, and cross-sectional area all influence flow mobility. Investigating the appropriateness of these mobility measures, as well as the computational models they inform, indicates certain circumstances under which each model performs optimally. Knowing which conditions call for which models allows for better model selection or model weighting, and therefore, more realistic hazard predictions.

  15. Microleakage assessment of fissure sealant following fissurotomy bur or pumice prophylaxis use before etching

    Directory of Open Access Journals (Sweden)

    Ali Bagherian


    The aim of this investigation was to compare the microleakage level of fissure sealants prepared by a fissurotomy bur or pumice prophylaxis prior to acid etching. Materials and Methods: Ninety freshly extracted healthy maxillary premolar teeth were randomly selected for this investigation. Teeth were then divided into three fissure sealant preparatory groups of A: Fissurotomy bur + acid etch; B: Pumice prophylaxis + acid etch and C: Acid etch alone. Sealant was applied to the occlusal fissures of all specimens using a plastic instrument. This was to avoid any air trap under the sealant. Sample teeth were first thermocycled (1000 cycles, 20 s dwell time and then coated with two layers of nail varnish leaving 2 mm around the sealant. This was then followed by immersion in basic fuchsin 3%. Processed teeth were sectioned longitudinally and examined under a stereomicroscope for microleakage assessment using a score of 0-3. Collected data was then subjected to Kruskall-Wallis Analysis of Variance and Mann-Whitney U-test. P < 0.05 was considered as significant. Results: Teeth in fissurotomy bur and pumice prophylaxis groups had significantly reduced level of microleakage than those in acid etch alone (P = 0.005 and P = 0.003, respectively. Conclusion: Use of fissurotomy bur and pumice prophylaxis accompanied with acid etching appears to have a more successful reduction of microleakage than acid etch alone.

  16. Pyroclastic sulphur eruption at Poas Volcano, Costa Rica

    Energy Technology Data Exchange (ETDEWEB)

    Francis, P.W.; Thorpe, R.S.; Brown, G.C.; Glasscock, J.


    The recent Voyager missions to Jupiter have highlighted the role of sulphur in volcanic processes on io. Although fumarolic sulphur and SO/sub 2/ gas are almost universal in terrestrial active volcanoes, and rare instances of sulphur lava flows have been reported, sulphur in a pyroclastic form has only been described from Poas Volcano, Costa Rica. Here we amplify the original descriptions by Bennett and Raccichini and describe a recent eruption of pyroclastic sulphur scoria and ejected blocks that are characterised by miniature sulphur stalactites and stalagmites.

  17. Boiling-over dense pyroclastic density currents during the formation of the 100 km3 Huichapan ignimbrite in Central Mexico: Stratigraphic and lithofacies analysis (United States)

    Pacheco-Hoyos, Jaime G.; Aguirre-Díaz, Gerardo J.; Dávila-Harris, Pablo


    A lithofacies analysis of the Huichapan ignimbrite has been undertaken to evaluate its depositional history from large pyroclastic density currents. The Huichapan ignimbrite is a massive ignimbrite sheet with a maximum runout of at least 55 km and thickness variations between 6 and 80 m. The lower portion of the Huichapan ignimbrite consists of a large plateau [ 100 km3; 69 km3 as dense-rock equivalent (DRE)] of massive ignimbrites with welding variations from densely welded to partly welded, devitrification, and high-temperature vapor-phase alteration. The lower part grades laterally to moderately welded and non-devitrified ignimbrites. These variations are interpreted as the sedimentation of density-stratified pyroclastic density currents erupted as boiling-over pulses from the Huichapan-Donguinyó caldera complex at a continuous rate, supporting deposition by quasi-steady progressive aggradation of sustained and hot currents. To the north of the caldera, the lower portion of the ignimbrite consists of a small plateau (< 10 km3) in which the densely welded and devitrified lithofacies are absent. Our interpretation is that the pyroclastic density currents flowed late to the north of the caldera and formed a smaller ignimbrite plateau with respect to the western one. This northern ignimbrite plateau cooled faster than the western ignimbrite plateau. Deposition-induced topographic modifications suggest that topographic obstacles, such as remnants of older volcanoes, may have promoted the deviation of the density currents to the north. The upper portion of the ignimbrite is composed of extensive, massive, coarse clast-rich, non-devitrified, and non-welded ignimbrites with abundant fines-poor pipes. This upper part was deposited from largely sustained and rapidly aggrading high-concentration currents in a near end-member, fluid escape-dominated flow boundary zone. The absence of welding in the upper portion may record pyroclastic density currents cooling during the

  18. Adsorption and transport of cadmium and rhodamine WT in pumice sand columns

    International Nuclear Information System (INIS)

    Pang, L.; Close, M.; Greenfield, H.; Stanton, G.


    The transport and attenuation of cadmium (Cd) and rhodamine WT (RWT) in a pumice sand aquifer media was investigated using column experiments to study a scenario of point-source contamination. A pore-water velocity of 1.7-1.8 m/day, which is a typical field groundwater velocity in a pumice sand aquifer system, was applied to triplicate columns. A pulse of a solution containing Cd and RWT, together with the conservative tracer tritiated water ( 3 H 2 O) at pH = 7, was introduced into the columns. Experimental results showed that concentration breakthrough curves (BTCs) of 3 H 2 O were symmetrical and fitted well into an equilibrium model. In contrast, BTCs of Cd and RWT were asymmetrical with significant tailings and fitted well with a two-site adsorption/desorption model. The symmetric 3 H 2 O BTCs suggest that physical non-equilibrium was absent in the experimental system, therefore the asymmetrical BTCs of Cd and RWT were attributed to chemical non-equilibrium. Modelling results showed that, in comparison with 3 H 2 O, Cd was apparently retarded by 101-108 times in pumice sand aquifer media (apparent adsorption coefficient 7.33-9.24 ml/g) and underwent a mass loss of 20-30% that was probably because of precipitation of CdCO 3 . As CdCO 3 is extremely insoluble, Cd precipitation would be irreversible and therefore it would not contribute to the tailing of the Cd BTCs. The experimental results suggest that the adsorption and desorption of Cd in pumice sand aquifer media in hydrodynamic conditions was a kinetic process. Cd desorption rates were two orders-of-magnitude slower than its adsorption rates. This resulted in a prolonged mean residence time for Cd in pumice sand aquifer media, which was 10-12 days in the 18-cm-long columns under a flow velocity of 1.7-1.8 m/day. Since the mean residence time is only indicative for the arrival of the central of mass in a contaminant BTC, the time required for the total disappearance of Cd will be much longer than the mean

  19. Pyroclastic Eruption Boosts Organic Carbon Fluxes Into Patagonian Fjords (United States)

    Mohr, Christian H.; Korup, Oliver; Ulloa, Héctor; Iroumé, Andrés.


    Fjords and old-growth forests store large amounts of organic carbon. Yet the role of episodic disturbances, particularly volcanic eruptions, in mobilizing organic carbon in fjord landscapes covered by temperate rainforests remains poorly quantified. To this end, we estimated how much wood and soils were flushed to nearby fjords following the 2008 eruption of Chaitén volcano in south-central Chile, where pyroclastic sediments covered >12 km2 of pristine temperate rainforest. Field-based surveys of forest biomass, soil organic content, and dead wood transport reveal that the reworking of pyroclastic sediments delivered 66,500 + 14,600/-14,500 tC of large wood to two rivers entering the nearby Patagonian fjords in less than a decade. A similar volume of wood remains in dead tree stands and buried beneath pyroclastic deposits ( 79,900 + 21,100/-16,900 tC) or stored in active river channels (5,900-10,600 tC). We estimate that bank erosion mobilized 132,300+21,700/-30,600 tC of floodplain forest soil. Eroded and reworked forest soils have been accreting on coastal river deltas at >5 mm yr-1 since the eruption. While much of the large wood is transported out of the fjord by long-shore drift, the finer fraction from eroded forest soils is likely to be buried in the fjords. We conclude that the organic carbon fluxes boosted by rivers adjusting to high pyroclastic sediment loads may remain elevated for up to a decade and that Patagonian temperate rainforests disturbed by excessive loads of pyroclastic debris can be episodic short-lived carbon sources.

  20. Eruptive shearing of tube pumice: pure and simple


    Dingwell, Donald B.; Lavallée, Yan; Hess, Kai-Uwe; Flaws, Asher; Marti, Joan; Nichols, Alexander R. L.; Gilg, H. Albert; Schillinger, Burkhard


    Understanding the physicochemical conditions extant and mechanisms operative during explosive volcanism is essential for reliable forecasting and mitigation of volcanic events. Rhyolitic pumices reflect highly vesiculated magma whose bubbles can serve as a strain indicator for inferring the state of stress operative immediately prior to eruptive fragmentation. Obtaining the full kinematic picture reflected in bubble population geometry has been extremely difficult, involving dissection of a s...

  1. On magma fragmentation by conduit shear stress: Evidence from the Kos Plateau Tuff, Aegean Volcanic Arc (United States)

    Palladino, Danilo M.; Simei, Silvia; Kyriakopoulos, Konstantinos


    Large silicic explosive eruptions are the most catastrophic volcanic events. Yet, the intratelluric mechanisms underlying are not fully understood. Here we report a field and laboratory study of the Kos Plateau Tuff (KPT, 161 ka, Aegean Volcanic Arc), which provides an excellent geological example of conduit processes that control magma vesiculation and fragmentation during intermediate- to large-scale caldera-forming eruptions. A prominent feature of the KPT is the occurrence of quite unusual platy-shaped tube pumice clasts in pyroclastic fall and current deposits from the early eruption phases preceding caldera collapse. On macroscopic and SEM observations, flat clast faces are elongated parallel to tube vesicles, while transverse surfaces often occur at ~ 45° to vesicle elongation. This peculiar pumice texture provides evidence of high shear stresses related to strong velocity gradients normal to conduit walls, which induced vesiculation and fragmentation of the ascending magma. Either an increasing mass discharge rate without adequate enlargement of a narrow central feeder conduit or a developing fissure-like feeder system related to incipient caldera collapse provided suitable conditions for the generation of plate tube pumice within magma volumes under high shear during the pre-climactic KPT eruption phases. This mechanism implies that the closer to the conduit walls (where the stronger are the velocity gradients) the larger was the proportion of plate vs. conventional (lensoid) juvenile fragments in the ascending gas-pyroclast mixture. Consequently, plate pumice clasts were mainly entrained in the outer portions of the jet and convecting regions of a sustained, Plinian-type, eruption column, as well as in occasional lateral blast currents generated at the vent. As a whole, plate pumice clasts in the peripheral portions of the column were transported at lower altitudes and deposited by fallout or partial collapse closer to the vent relative to lensoid ones

  2. Opal-A in Glassy Pumice, Acid Alteration, and the 1817 Phreatomagmatic Eruption at Kawah Ijen (Java), Indonesia (United States)

    Lowenstern, Jacob B.; van Hinsberg, Vincent; Berlo, Kim; Liesegang, Moritz; Iacovino, Kayla; Bindeman, Ilya N.; Wright, Heather M.


    At Kawah Ijen (Indonesia), vigorous SO2 and HCl degassing sustains a hyperacid lake (pH 0) and intensely alters the subsurface, producing widespread residual silica and advanced argillic alteration products. In 1817, a VEI 2 phreatomagmatic eruption evacuated the lake, depositing a widespread layer of muddy ash fall, and sending lahars down river drainages. We discovered multiple types of opaline silica in juvenile low-silica dacite pumice and in particles within co-erupted laharic sediments. Most spectacular are opal-replaced phenocrysts of plagioclase and pyroxene adjacent to pristine matrix glass and melt inclusions. Opal-bearing pumice has been found at numerous sites, including where post-eruption infiltration of acid water is unlikely. Through detailed analyses of an initial sampling of 1817 eruption products, we find evidence for multiple origins of opaline materials in pumice and laharic sediments. Evidently, magma encountered acid-altered materials in the subsurface and triggered phreatomagmatic eruptions. Syn-eruptive incorporation of opal-alunite clasts, layered opal, and fragment-filled vesicles of opal and glass, all suggest magma-rock interactions in concert with vesiculation, followed by cooling within minutes. Our experiments at magmatic temperature confirm that the opaline materials would show noticeable degradation in time periods longer than a few tens of minutes. Some glassy laharic sedimentary grains are more andesitic than the main pumice type and may represent older volcanic materials that were altered beneath the lake bottom and were forcefully ejected during the 1817 eruption. A post-eruptive origin remains likely for most of the opal-replaced phenocrysts in pumice. Experiments at 25°C and 100°C reveal that when fresh pumice is bathed in Kawah Ijen hyperacid fluid for six weeks, plagioclase is replaced without altering either matrix glass or melt inclusions. Moreover, lack of evidence for high-temperature annealing of the opal suggests

  3. Opal-A in glassy pumice, acid alteration, and the 1817 phreatomagmatic eruption at Kawah Ijen (Java), Indonesia (United States)

    Lowenstern, Jacob B.; van Hinsberg, Vincent; Berlo, Kim; Liesegang, Moritz; Iacovino, Kayla D.; Bindeman, Ilya N.; Wright, Heather M.


    At Kawah Ijen (Indonesia), vigorous SO2 and HCl degassing sustains a hyperacid lake (pH ~0) and intensely alters the subsurface, producing widespread residual silica and advanced argillic alteration products. In 1817, a VEI 2 phreatomagmatic eruption evacuated the lake, depositing a widespread layer of muddy ash fall, and sending lahars down river drainages. We discovered multiple types of opaline silica in juvenile low-silica dacite pumice and in particles within co-erupted laharic sediments. Most spectacular are opal-replaced phenocrysts of plagioclase and pyroxene adjacent to pristine matrix glass and melt inclusions. Opal-bearing pumice has been found at numerous sites, including where post-eruption infiltration of acid water is unlikely. Through detailed analyses of an initial sampling of 1817 eruption products, we find evidence for multiple origins of opaline materials in pumice and laharic sediments. Evidently, magma encountered acid-altered materials in the subsurface and triggered phreatomagmatic eruptions. Syn-eruptive incorporation of opal-alunite clasts, layered opal, and fragment-filled vesicles of opal and glass, all suggest magma-rock interactions in concert with vesiculation, followed by cooling within minutes. Our experiments at magmatic temperature confirm that the opaline materials would show noticeable degradation in time periods longer than a few tens of minutes. Some glassy laharic sedimentary grains are more andesitic than the main pumice type and may represent older volcanic materials that were altered beneath the lake bottom and were forcefully ejected during the 1817 eruption. A post-eruptive origin remains likely for most of the opal-replaced phenocrysts in pumice. Experiments at 25°C and 100°C reveal that when fresh pumice is bathed in Kawah Ijen hyperacid fluid for 6 weeks, plagioclase is replaced without altering either matrix glass or melt inclusions. Moreover, lack of evidence for high-temperature annealing of the opal suggests

  4. Evaluation and comparison of aluminum-coated pumice and zeolite in arsenic removal from water resources

    Directory of Open Access Journals (Sweden)

    Heidari Masoumeh


    Full Text Available Abstract In this research the potential of aluminum-coated pumice and zeolite in arsenic, As (V removal was investigated and compared. Scanning Electron Microscopy (SEM, X-Ray Diffraction (XRD and X-Ray Flaorescence Spectrometry (XRF were carried out to determine the properties of the adsorbents. Several parameters including adsorbent dosage] pH, contact time, and initial As(V concentration were studied. The optimum pH obtained for both adsorbents was pH = 7. As(V adsorption by both adsorbents followed the Freundlich isotherm (for aluminum-coated pumice and zeolite respectively with R2 > 0.98 and R2 > 0.99. The obtained data from kinetics showed that the pseudo-second order model could better explain As(V adsorption for both aluminum-coated pumice and zeolite (R2 > 0.98 and R2 > 0.99 respectively. Because of low cost, both adsorbents may be economically used, but aluminum-coated zeolite showed high efficiency of, due to its porosity and surface area. More than 96% of As(V with initial concentration of 250 μg/L was removed by 10 g/L aluminum-coated zeolite at pH = 7 and in 60 minutes to achieve As(V concentration of 10 μg/L, while only 71% of As(V could be removed by aluminum-coated pumice.

  5. Morphology and petrography of pumice from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Karisiddaiah, S.M.

    Majority of pumice are equant with high Corey's shape factor values. Petrographic studies indicate flow bands of isotropic nature, with varied vesicle shape and size, and the diffractograms show them to be mainly composed of amorphous silica...

  6. Explosive eruptive history of Pantelleria, Italy: Repeated caldera collapse and ignimbrite emplacement at a peralkaline volcano (United States)

    Jordan, Nina J.; Rotolo, Silvio G.; Williams, Rebecca; Speranza, Fabio; McIntosh, William C.; Branney, Michael J.; Scaillet, Stéphane


    A new, pre-Green Tuff (46 ka) volcanic stratigraphy is presented for the peralkaline Pantelleria Volcano, Italy. New 40Ar/39Ar and paleomagnetic data are combined with detailed field studies to develop a comprehensive stratigraphic reconstruction of the island. We find that the pre-46 ka succession is characterised by eight silica-rich peralkaline (trachyte to pantellerite) ignimbrites, many of which blanketed the entire island. The ignimbrites are typically welded to rheomorphic, and are commonly associated with lithic breccias and/or pumice deposits. They record sustained radial pyroclastic density currents fed by low pyroclastic fountains. The onset of ignimbrite emplacement is typically preceded (more rarely followed) by pumice fallout with limited dispersal, and some eruptions lack any associated pumice fall deposit, suggesting the absence of tall eruption columns. Particular attention is given to the correlation of well-developed lithic breccias in the ignimbrites, interpreted as probable tracers of caldera collapses. They record as many as five caldera collapse events, in contrast to the two events reported to date. Inter-ignimbrite periods are characterised by explosive and effusive eruptions with limited dispersal, such as small pumice cones, as well as pedogenesis. These periods have similar characteristics as the current post-Green Tuff activity on the island, and, while not imminent, it is reasonable to postulate the occurrence of another ignimbrite-forming eruption sometime in the future.

  7. Spectroscopic analysis of Ahlat stone (ignimbrite) and pumice formed by volcanic activity. (United States)

    Aygun, Z; Aygun, M


    Natural materials such as ignimbrites are preferred commonly not only in historical places but also in houses or in different kind of buildings all over the world especially around Ahlat in Bitlis-Turkey. Durability, lightness and good-insulation are the significative properties of these stones. Also, pumice is an another preferred material because of its advantages in construction industry. In this paper, four kinds of ignimbrite (light-yellow, yellow, black and white) and pumice from Ahlat region have been investigated by EPR method to determine magnetic properties of them. The results obtained by EPR, EDS and XRD methods are evaluated together. SEM technique is also used to understand the surface morphology of the samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Nature and composition of interbedded marine basaltic pumice in the

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 2. Nature and composition of interbedded marine basaltic pumice in the ~52–50 Ma Vastan lignite sequence, western India: Implication for Early Eocene MORB volcanism offshore Arabian Sea. Sarajit Sensarma Hukam Singh R S Rana Debajyoti Paul ...

  9. Tetrachloroethylene Removal Rate from Aqueous Solutions by Pumice Doped with Copper: An Evaluation of the Effect of pH

    Directory of Open Access Journals (Sweden)

    Ali Almasi


    Full Text Available Tetrachloroethylene (TCE is a chlorinated aliphatic hydrocarbon, used in many industries. Effective and efficient treatment of industrial wastewater, containing TCE, is one of the environmental requirements. The purpose of this study was to determine the role of alkaline environments in TCE removal rate from aqueous solutions, using copper-doped pumice. This experimental study was performed, using granulated pumice stones with a mesh 4 (8.4 mm in alkaline conditions; the samples were coated with copper. Copper-doped pumice was prepared as a bed at doses of 1, 2, and 3 g/L; the study was performed at pH ranges of 3, 7, and 11. Based on the results, copper-doped pumice showed good efficacy in TCE removal; in addition, its performance increased in alkaline conditions. Therefore, use of this stone for the treatment of wastewater, containing TCE, is effective due to its availability and low cost. Besides, it can be considered a good option, given its high efficiency in the absorption process.

  10. Fluoride removal from aqueous solution by pumice: case study on ...

    African Journals Online (AJOL)

    The fluoride removal from synthetic water by pumice was studied at batch experiments in this study. The effect of pH, contact time, fluoride concentration and adsorbent dose on the fluoride sequestration was investigated. The optimum conditions were studied on Kuhbonan water as a case study. The results showed that ...

  11. Characterization and stability studies of emulsion systems containing pumice

    Directory of Open Access Journals (Sweden)

    Marilene Estanqueiro


    Full Text Available Emulsions are the most common form of skin care products. However, these systems may exhibit some instability. Therefore, when developing emulsions for topical application it is interesting to verify whether they have suitable physical and mechanical characteristics and further assess their stability. The aim of this work was to study the stability of emulsion systems, which varied in the proportion of the emulsifying agent cetearyl alcohol (and sodium lauryl sulfate (and sodium cetearyl sulfate (LSX, the nature of the oily phase (decyl oleate, cyclomethicone or dimethicone and the presence or absence of pumice (5% w/w. While maintaining the samples at room temperature, rheology studies, texture analysis and microscopic observation of formulations with and without pumice were performed. Samples were also submitted to an accelerated stability study by centrifugation and to a thermal stress test. Through the testing, it was found that the amount of emulsifying agent affects the consistency and textural properties such as firmness and adhesiveness. So, formulations containing LSX (5% w/w and decyl oleate or dimethicone as oily phase had a better consistency and remained stable with time, so exhibited the best features to be used for skin care products.

  12. 76 FR 69700 - Klamath National Forest; California; Pumice Vegetation Management Project (United States)


    ... Management Project AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an environmental impact.... Grantham, Forest Supervisor, Attn: Ben Haupt, Pumice Vegetation Management Project Team Leader, Goosenest... Management Project will recommend implementation of one of the following: (1) The proposed action; (2) an...

  13. Wet Oxidation of Maleic Acid by a Pumice Supported Copper (II ...

    African Journals Online (AJOL)

    Pumice supported Cu (II) Schiff base catalysts were prepared by surface chemical modification followed by complexation with Cu (II) acetate. The resulting materials were characterised by Diffuse Reflectance Fourier Transform Spectroscopy (DRIFTS) to confirm the modification. The materials were tested in a wet oxidation ...

  14. Spectro-Morphologic Analysis of Pyroclastic Deposits on Mercury (United States)

    Doressoundiram, A.; Besse, S.; Hersérant, W.


    Observations of the MESSENGER spacecraft in orbit around Mercury have shown that volcanism is a very important process that has shaped the surface of the planet. Kerber et al. [2011,2014] have identified 200 pyroclastic deposits candidates based on color ratio and morphology images. Goudge et al. [2014] used the visible portion of the MASCS spectrometer to do further analysis on the spectral nature of the deposits. The authors have shown that the deposits have specific UV properties probably caused by Oxygen-Metal charges transfer, and a correlation between the slope of the UV-downturn and the age of the surrounding terrains. In this study, we use the full range of the MASCS spectrometer (300-1400nm) to characterize the spectral properties of the pyroclastic deposits. Moreover, additional observations have been obtained since the last publications, and this allows specific studies of previously non-imaged deposits. This study shows that the visible slope of the deposits is changing as a function of distance from the vent, as seen on the Moon for pyroclastic deposits and their mafic absorption bands [Besse et al, 2013]. This is consistent with a decrease of thickness of the deposits that are mixed with background material. Surprisingly, the UV-downturn parameter proposed by Goudge et al. [2014] does not change as the distance to the vent increase. Eventually, the near infrared portion does not appear to have absorption bands in the range 900nm-1200nm, consistent with the very low iron abundance of the surface of Mercury. This could also be due to the lower signal to noise ratio of the near infrared portion of the MASCS instrument, and further analysis are needed to confirm these results. The use of visible images from the MDIS camera has revealed that some of the pyroclastic deposits candidates are certainly correlated with hollows.

  15. Historical tephra-stratigraphy of the Cosiguina Volcano (Western Nicaragua)

    International Nuclear Information System (INIS)

    Hradecky, Petr; Rapprich, Vladislav


    New detailed geological field studies and 14 C dating of the Cosiguina Volcano (westernmost Nicaragua) have allowed to reconstruct a geological map of the volcano and to establish a recent stratigraphy, including three historical eruptions. Five major sequences are represented. I: pyroclastic flows around 1500 AD, II: pyroclastic flows, scoria and pumice flows and surges, III: pyroclastic deposits related to a littoral crater, IV: pyroclastic flows related to 1709 AD eruption, and finally, V: pyroclastic deposits corresponding to the cataclysmic 1835 AD phreatic, phreatomagmatic and subplinian eruption, which seems to be relatively small-scale in comparison with the preceding historical eruptions. The pulsating geochemical character of the pyroclastic rocks in the last five centuries has been documented. The beginning of every eruption is marked by increasing contents of silica and Zr. Based on that, regardless of present-day volcanic repose, the entire Cosiguina Peninsula should be considered as a very hazardous volcanic area. (author)

  16. Characterization of previously unidentified lunar pyroclastic deposits using Lunar Reconnaissance Orbiter Camera (LROC) data (United States)

    Gustafson, J. Olaf; Bell, James F.; Gaddis, Lisa R.R.; Hawke, B. Ray Ray; Giguere, Thomas A.


    We used a Lunar Reconnaissance Orbiter Camera (LROC) global monochrome Wide-angle Camera (WAC) mosaic to conduct a survey of the Moon to search for previously unidentified pyroclastic deposits. Promising locations were examined in detail using LROC multispectral WAC mosaics, high-resolution LROC Narrow Angle Camera (NAC) images, and Clementine multispectral (ultraviolet-visible or UVVIS) data. Out of 47 potential deposits chosen for closer examination, 12 were selected as probable newly identified pyroclastic deposits. Potential pyroclastic deposits were generally found in settings similar to previously identified deposits, including areas within or near mare deposits adjacent to highlands, within floor-fractured craters, and along fissures in mare deposits. However, a significant new finding is the discovery of localized pyroclastic deposits within floor-fractured craters Anderson E and F on the lunar farside, isolated from other known similar deposits. Our search confirms that most major regional and localized low-albedo pyroclastic deposits have been identified on the Moon down to ~100 m/pix resolution, and that additional newly identified deposits are likely to be either isolated small deposits or additional portions of discontinuous, patchy deposits.

  17. Effects of slope on the formation of dunes in dilute, turbulent pyroclastic currents: May 18th, 1980 Mt. St. Helens eruption (United States)

    Bendana, Sylvana; Brand, Brittany D.; Self, Stephen


    The flanks of Mt St Helens volcano (MSH) are draped with thin, cross-stratified and stratified pyroclastic density current (PDC) deposits. These are known as the proximal bedded deposits produced during the May 18th, 1980 eruption of MSH. While the concentrated portions of the afternoon PDCs followed deep topographic drainages down the steep flanks of the volcano, the dilute overriding cloud partially decoupled to develop fully dilute, turbulent PDCs on the flanks of the volcano (Beeson, D.L. 1988. Proximal Flank Facies of the May 18, 1980 Ignimbrite: Mt. St. Helens, Washington.). The deposits along the flank thus vary greatly from those found in the pumice plain, which are generally thick, massive, poorly-sorted, block-rich deposits associated with the more concentrated portions of the flow (Brand et al, accepted. Dynamics of pyroclastic density currents: Conditions that promote substrate erosion and self-channelization - Mount St Helens, Washington (USA). JVGR). We explore the influence of topography on the formation of these dilute currents and influence of slope on the currents transport and depositional mechanisms. The deposits on steeper slopes (>15°) are fines depleted relative to the proximal bedded deposits on shallower slopes (<15°). Bedform amplitude and wavelength increase with increasing slope, as does the occurrence of regressive dunes. Increasing slope causes an increase in flow velocity and thus an increase in flow turbulence. The fines depleted deposits suggest that fine ash elutriation is more efficient in flows with stronger turbulence. The longer wavelength and amplitudes suggest that bedform morphology is directly related to flow velocity, an important finding since the controls on bedform wavelength and amplitude in density stratified flows remains poorly constrained. The occurrence of regressive dunes, often interpreted as high flow-regime bedforms, on steeper slopes relative to progressive dunes on shallower slopes further attests to the

  18. Characterization of pyroclastic deposits and pre-eruptive soils following the 2008 eruption of Kasatochi Island Volcano, Alaska (United States)

    Wang, B.; Michaelson, G.; Ping, C.-L.; Plumlee, G.; Hageman, P.


    The 78 August 2008 eruption of Kasatochi Island volcano blanketed the island in newly generated pyroclastic deposits and deposited ash into the ocean and onto nearby islands. Concentrations of water soluble Fe, Cu, and Zn determined from a 1:20 deionized water leachate of the ash were sufficient to provide short-term fertilization of the surface ocean. The 2008 pyroclastic deposits were thicker in concavities at bases of steeper slopes and thinner on steep slopes and ridge crests. By summer 2009, secondary erosion had exposed the pre-eruption soils along gulley walls and in gully bottoms on the southern and eastern slopes, respectively. Topographic and microtopographic position altered the depositional patterns of the pyroclastic flows and resulted in pre-eruption soils being buried by as little as 1 m of ash. The different erosion patterns gave rise to three surfaces on which future ecosystems will likely develop: largely pre-eruptive soils; fresh pyroclastic deposits influenced by shallowly buried, pre-eruptive soil; and thick (>1 m) pyroclastic deposits. As expected, the chemical composition differed between the pyroclastic deposits and the pre-eruptive soils. Pre-eruptive soils hold stocks of C and N important for establishing biota that are lacking in the fresh pyroclastic deposits. The pyroclastic deposits are a source for P and K but have negligible nutrient holding capacity, making these elements vulnerable to leaching loss. Consequently, the pre-eruption soils may also represent an important long-term P and K source. ?? 2010 Regents of the University of Colorado.

  19. Surface morphology of caldera-forming eruption deposits revealed by lidar mapping of Crater Lake National Park, Oregon- Implications for emplacement and surface modification (United States)

    Robinson, Joel E.; Bacon, Charles R.; Major, Jon J.; Wright, Heather M.; Vallance, James W.


    Large explosive eruptions of silicic magma can produce widespread pumice fall, extensive ignimbrite sheets, and collapse calderas. The surfaces of voluminous ignimbrites are rarely preserved or documented because most terrestrial examples are heavily vegetated, or severely modified by post-depositional processes. Much research addresses the internal sedimentary characteristics, flow processes, and depositional mechanisms of ignimbrites, however, surface features of ignimbrites are less well documented and understood, except for comparatively small-volume deposits of historical eruptions. The ~7,700 calendar year B.P. climactic eruption of Mount Mazama, USA vented ~50 km3 of magma, deposited first as rhyodacite pumice fall and then as a zoned rhyodacite-to-andesite ignimbrite as Crater Lake caldera collapsed. Lidar collected during summer 2010 reveals the remarkably well-preserved surface of the Mazama ignimbrite and related deposits surrounding Crater Lake caldera in unprecedented detail despite forest cover. The ±1 m lateral and ±4 cm vertical resolution lidar allows surface morphologies to be classified. Surface morphologies are created by internal depositional processes and can point to the processes at work when pyroclastic flows come to rest. We describe nine surface features including furrow-ridge sets and wedge-shaped mounds in pumice fall eroded by high-energy pyroclastic surges, flow- parallel ridges that record the passage of multiple pyroclastic flows, perched benches of marginal deposits stranded by more-mobile pyroclastic-flow cores, hummocks of dense clasts interpreted as lag deposit, transverse ridges that mark the compression and imbrication of flows as they came to rest, scarps indicating ignimbrite remobilization, fields of pit craters caused by phreatic explosions, fractures and cracks caused by extensional processes resulting from ignimbrite volume loss, and stream channels eroded in the newly formed surface. The nine morphologies presented

  20. Crystallization Stages of the Bishop Tuff Magma Body Recorded in Crystal Textures in Pumice Clasts

    Energy Technology Data Exchange (ETDEWEB)

    Pamukcu, Ayla; Gualda, Guilherme A.R.; Anderson, Jr. , Alfred T. (Vanderbilt); (UC)


    The Bishop Tuff is a giant silicic ignimbrite erupted at 0.76 Ma in eastern California, USA. Five pumice clasts from the late-erupted Bishop Tuff (Aeolian Buttes) were studied in an effort to better understand the pre- and syn-eruptive history of the Bishop magma body and place constraints on the timescales of its existence. This study complements and expands on a previous study that focused on early-erupted Bishop Tuff pumice clasts. Bulk densities of pumice clasts were measured using an immersion method, and phenocryst crystal contents were determined using a sieving and winnowing procedure. X-ray tomography was used to obtain qualitative and quantitative textural information, particularly crystal size distributions (CSDs). We have determined CSDs for crystals ranging in size from {approx}10 to {approx}1000 {micro}m for three groups of mineral phases: magnetite ({+-}ilmenite), pyroxene + biotite, quartz + feldspar. Similar to early-erupted pumice, late-erupted pumice bulk density and crystal contents are positively correlated, and comparison of crystal fraction vs size trends suggests that the proportion of large crystals is the primary control on crystallinity. Porosity is negatively correlated with crystal content, which is difficult to reconcile with closed-system crystallization. Magnetite and pyroxene + biotite size distributions are fractal in nature, often attributed to fragmentation; however, crystals are mostly whole and euhedral, such that an alternative mechanism is necessary to explain these distributions. Quartz + feldspar size distributions are kinked, with a shallow-sloped log-linear section describing large crystals (> 140 {micro}m) and a steep-sloped log-linear section describing small crystals (< 140 {micro}m). We interpret these two crystal populations as resulting from a shift in crystallization regime. We suggest that the shallow-sloped section describes a pre-eruptive quartz + feldspar growth-dominated regime, whereas the steep

  1. CT patterns of pleuro-pulmonary damage caused by inhalation of pumice as a model of pneumoconiosis from non-fibrous amorphous silicates. (United States)

    Costa, Chiara; Ascenti, Giorgio; Scribano, Emanuele; D'Angelo, Tommaso; Gaeta, Michele; Fenga, Concettina; Blandino, Alfredo; Mazziotti, Silvio


    The aim of this article is to correlate the radiological features of pleuro-pulmonary damage caused by inhalation of pumice (an extrusive volcanic rock classified as a non-fibrous, amorphous, complex silicate) with exposure conditions. 36 subjects employed in the pumice quarries were evaluated for annual follow-up in a preventive medical surveillance program including spirometry, chest CT lasting from 1999 to 2014. They were only male subjects, mean age 56.92 ± 16.45 years. Subjects had worked in the quarries for an average of 25.03 ± 9.39 years. Domestic or occupational exposure to asbestos or other mineral dusts other than pumice was excluded. Subjects were also classified as smokers, former smokers and nonsmokers. Among the 36 workers examined, we identified four CT patterns which resulted to be dependent on exposure duration and intensity, FVC, FEV1 and FEF25-75, but not on cigarette smoking. The most common symptoms reported by clinical examination were dyspnoea, cough and asthenia. In no case it was proven an evolution of CT findings during follow-up for 10 years. Liparitosis, caused by pumice inhalation, can be considered a representative example of pneumoconiosis derived by amorphous silica compounds, which are extremely widespread for industrial manufacturing as well as for applicative uses, such as nano-materials. Moreover, being pumice free of quartz contamination, it can represent a disease model for exposure to pure non-fibrous silicates.

  2. Hydrothermal signature in ferromanganese oxide coatings on pumice from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Kalangutkar, N.G.; Iyer, S.D.; Mascarenhas-Pereira, M.B.L.; Nath, B.N.

    Mineralogical and elemental analyses of 20 ferromanganese (FeMn)-coated pumice samples from the Central Indian Ocean Basin (CIOB) indicate that todorokite is the major mineral phase, whereas vernadite occurs only rarely. Based on major, trace...

  3. Analysis of the Pyroclastic Flow Deposits of Mount Sinabung and Merapi Using Landsat Imagery and the Artificial Neural Networks Approach

    Directory of Open Access Journals (Sweden)

    Prima Riza Kadavi


    Full Text Available Volcanic eruptions cause pyroclastic flows, which can destroy plantations and settlements. We used image data from Landsat 7 Bands 7, 4 and 2 and Landsat 8 Bands 7, 5 and 3 to observe and analyze the distribution of pyroclastic flow deposits for two volcanos, Mount Sinabung and Merapi, over a period of 10 years (2001–2017. The satellite data are used in conjunction with an artificial neural network method to produce maps of pyroclastic precipitation for Landsat 7 and 8, then we calculated the pyroclastic precipitation area using an artificial neural network method after dividing the images into four classes based on color. Red, green, blue and yellow were used to indicate pyroclastic deposits, vegetation and forest, water and cloud, and farmland, respectively. The area affected by a volcanic eruption was deduced from the neural network processing, including calculating the area of pyroclastic deposits. The main differences between the pyroclastic flow deposits of Mount Sinabung and Mount Merapi are: the sediment deposits of the pyroclastic flows of Mount Sinabung tend to widen, whereas those of Merapi elongated; the direction of pyroclastic flow differed; and the area affected by an eruption was greater for Mount Merapi than Mount Sinabung because the VEI (Volcanic Explosivity Index during the last 10 years of Mount Merapi was larger than Mount Sinabung.

  4. The origin of ferro-manganese oxide coated pumice from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Pearce, N.J.G.; Parthiban, G.; Smith, V.C.; Mudholkar, A.V.; Rao, N.R

    Pumice clasts, partially and fully coated with ferro-manganese oxide from the Central Indian Ocean Basin (CIOB) were analysed for major, trace and rare earth elements; and glass and mineral grain chemistry to assess their possible source...

  5. Measurement of water transport from saturated pumice aggregates to hardening cement paste

    DEFF Research Database (Denmark)

    Lura, Pietro; Bentz, Dale; Lange, David A.


    In internal water curing of High Performance Concrete, it is fundamental to know how and when the water contained in the internal curing agent is released into the hydrating cement paste. In this study, X-ray absorption measurements showed that considerable transport of water from saturated pumice...... the crucial factor to avoid self-desiccation shrinkage at early-age....

  6. Deposits from the 12 July Dome Collapse and Explosive Activity at Soufriere Hills Volcano, 12-15 July 2003 (United States)

    Edmonds, M.; Herd, R.; Strutt, M.; Mann, C.


    A large dome collapse took place on 12-13 July 2003 at Soufriere Hills Volcano. This event was the largest in magnitude during the 1995-2003 eruption and involved over 120 million m3 andesite dome and talus material. The collapse took place over 18 hours and culminated in an explosive phase that continued intermittently until 15 July 2003. Prior to the collapse, the total volume of the dome was 230 million m3 and was made up of remnants of lava erupted 1997-2001, talus material and fresh andesite dome lava erupted during the last two years. Talus made up around 50% of the total dome volume. This paper describes and interprets the pyroclastic flow and airfall deposits from this event, using other monitoring data and empirical evidence to reconstruct the dome collapse. The airfall and pyroclastic flow deposits were studied in detail over the weeks following the collapse. Airfall deposits were studied at 45 locations around the island and 75 samples were collected for analysis. The surge deposit stretched over 10 km2 on land and 35 pits were dug at intervals through it. The sections were described and sampled, yielding a further 60 samples for grain size analysis. Further sampling was carried out on the block and ash deposits in the Tar River Valley and on the Tar River Fan. Pumices from the post-collapse explosion sequence were collected and their densities measured and mass coverage estimated. Deposit maps for airfall, lithics and pumices were constructed for all of the individual events and a map to show the distribution of the main surge unit was generated. The collapse was monitored in real-time using the MVO seismic network and observations from the field. The sequence of events was as follows. From 09:00 to 18:00, low-energy pyroclastic flows took place, confined to the Tar River Valley, which reached the sea at the mouth of Tar River. These flows gradually increased in energy throughout the day but were not associated with energetic, large surges. By 18:00 the

  7. Tephrostratigraphy of the A.D. 79 pyroclastic deposits in perivolcanic areas of Mt. Vesuvio (Italy) (United States)

    Lirer, Lucio; Munno, Rosalba; Petrosino, Paola; Vinci, Anna


    Correlations between pyroclastic deposits in perivolcanic areas are often complicated by lateral and vertical textural variations linked to very localized depositional effects. In this regard, a detailed sampling of A.D. 79 eruption products has been performed in the main archaeological sites of the perivolcanic area, with the aim of carrying out a grain-size, compositional and geochemical investigation so as to identify the marker layers from different stratigraphic successions and thus reconstruct the eruptive sequence. In order to process the large number of data available, a statistical approach was considered the most suitable. Statistical processing highlighted 14 marker layers among the fall, stratified surge and pyroclastic flow deposits. Furthermore statistical analysis made it possible to correlate pyroclastic flow and surge deposits interbedded with fall, interpreted as a lateral facies variation. Finally, the passage from magmatic to hydromagmatic activity is marked by the deposition of pyroclastic flow, surge and accretionary lapilli-bearing deposits. No transitional phase from magmatic to hydromagmatic activity has been recognized.

  8. Field-trip guide to Mount St. Helens, Washington - An overview of the eruptive history and petrology, tephra deposits, 1980 pyroclastic density current deposits, and the crater (United States)

    Pallister, John S.; Clynne, Michael A.; Wright, Heather M.; Van Eaton, Alexa R.; Vallance, James W.; Sherrod, David R.; Kokelaar, B. Peter


    This field trip will provide an introduction to several fascinating features of Mount St. Helens. The trip begins with a rigorous hike of about 15 km from the Johnston Ridge Observatory (9 km north-northeast of the crater vent), across the 1980 Pumice Plain, to Windy Ridge (3.6 km northeast of the crater vent) to examine features that document the dynamics and progressive emplacement of pyroclastic flows. The next day, we examine classic tephra outcrops of the past 3,900 years and observe changes in thickness and character of these deposits as we traverse their respective lobes. We examine clasts in the deposits and discuss how the petrology and geochemistry of Mount St. Helens deposits reveal the evolution of the magmatic system through time. We also investigate the stratigraphy of the 1980 blast deposit and review the chronology of this iconic eruption as we travel through the remains of the blown-down forest. The third day is another rigorous hike, about 13 km round trip, climbing from the base of Windy Ridge (elevation 1,240 m) to the front of the Crater Glacier (elevation 1,700 m). En route we examine basaltic andesite and basalt lava flows emplaced between 1,800 and 1,700 years before present, a heterolithologic flow deposit produced as the 1980 blast and debris avalanche interacted, debris-avalanche hummocks that are stranded on the north flank and in the crater mouth, and shattered dacite lava domes that were emplaced between 3,900 and 2,600 years before present. These domes underlie the northern part of the volcano. In addition, within the crater we traverse well-preserved pyroclastic-flow deposits that were emplaced on the crater floor during the summer of 1980, and a beautiful natural section through the 1980 deposits in the upper canyon of the Loowit River.Before plunging into the field-trip log, we provide an overview of Mount St. Helens geology, geochemistry, petrology, and volcanology as background. The volcano has been referred to as a

  9. Hydrological modelling of a slope covered with shallow pyroclastic deposits from field monitoring data

    Directory of Open Access Journals (Sweden)

    R. Greco


    Full Text Available A one-dimensional hydrological model of a slope covered with pyroclastic materials is proposed. The soil cover is constituted by layers of loose volcanic ashes and pumices, with a total thickness between 1.8 m and 2.5 m, lying upon a fractured limestone bedrock. The mean inclination of the slope is around 40°, slightly larger than the friction angle of the ashes. Thus, the equilibrium of the slope, significantly affected by the cohesive contribution exerted by soil suction in unsaturated conditions, may be altered by rainfall infiltration. The model assumes a single homogeneous soil layer occupying the entire depth of the cover, and takes into account seasonally variable canopy interception of precipitation and root water uptake by vegetation, mainly constituted by deciduous chestnut woods with a dense underbrush growing during late spring and summer. The bottom boundary condition links water potential at the soil–bedrock interface with the fluctuations of the water table of the aquifer located in the fractured limestone, which is conceptually modelled as a linear reservoir. Most of the model parameters have been assigned according to literature indications or from experimental data. Soil suction and water content data measured between 1 January 2011 and 20 July 2011 at a monitoring station installed along the slope allowed the remaining parameters to be identified. The calibrated model, which reproduced very closely the data of the calibration set, has been applied to the simulation of the hydrological response of the slope to the hourly precipitation record of 1999, when a large flow-like landslide was triggered close to the monitored location. The simulation results show that the lowest soil suction ever attained occurred just at the time the landslide was triggered, indicating that the model is capable of predicting slope failure conditions.

  10. La phase explosive précédant l'extrusion des dômes volcaniques : exemple du dôme rhyodacitique de Dikkartin Dag, Erciyes, Anatolie centrale, TurquieInitial explosive phases during extrusion of volcanic lava domes: example from rhyodacitic dome of Dikkartin Dag, Erciyes stratovolcano, Central Anatolia, Turkey (United States)

    Sen, Erdal; Aydar, Erkan; Gourgaud, Alain; Kurkcuoglu, Biltan


    The Erciyes stratovolcano, in Central Anatolia, exhibits rhyodacitic domes on its flanks that emplaced after important eruptive pyroclastic events. The changes in eruption dynamics are well defined. Measurements of density and porosity of pumices have been carried out. Initial gas content of erupted magma decreased during the first Plinian phase (units 1 to 3) and then the gas content progressively increased in U4 and in pumiceous ash flow. The latter two deposits contain bread crust bombs that become very abundant in following phreatomagmatic products. The Last Plinian phase, rich in vitreous fragments, where porosity is minimum while density is maximal, preceded the dome extrusion. Although mineralogical and chemical compositions, further thermodynamical conditions of erupted magmas did not change during the eruptive sequence, the eruption mode changed. These changes in eruption mode are the results of the degassing of magma and the meteoric water contribution to the eruption. The transition observed is as follows: Plinian, pyroclastic flow, phreatomagmatism, Plinian and extrusion. To cite this article: E. Sen et al., C. R. Geoscience 334 (2002) 27-33

  11. Physical properties, morphology and petrological characteristics of pumices from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Kalangutkar, N.G.; Iyer, S.D.; Ilangovan, D.

    About 400 pumice clasts collected from the Central Indian Ocean Basin (CIOB) were studied for their morphology and classified based on their shape and size. A majority of the samples range between less than 1 cm and 36 cm and in the Zinggs shape...

  12. Proximal stratigraphy and event sequence of the c. 5600 cal. yr BP Whakatane rhyolite eruption episode from Haroharo volcano, Okataina Volcanic Centre, New Zealand

    International Nuclear Information System (INIS)

    Kobayashi, T.; Nairn, I.; Smith, V.; Shane, P.


    The c. 5600 cal. yr BP Whakatane eruption episode consisted of a sequence of intracaldera rhyolite eruptions from at least five vents spread over 11 km of the Haroharo linear vent zone within Okataina Volcanic Centre. Initial vent-opening eruptions from the Haroharo vent produced coarse lithic clast 'blast beds' and pyroclastic density currents surges). These were immediately followed by eruption of very mobile pumiceous pyroclastic surges from the Makatiti vent 6 km to the southwest. Major plinian eruptions from the Makatiti vent then dispersed Whakatane Tephra pumice fall deposits (bulk volume c. 6 km 3 ) across the northeastern North Island while smaller explosive eruptions produced pyroclastic flows and falls from the Haroharo-Rotokohu vents and at the Pararoa vent on the caldera rim 11 km northeast from Makatiti. The pyroclastic eruptions at all vents were followed by the extrusion of lava flows and domes; extruded lava volumes ranged from 0.03 km 3 for the Pararoa dome to 7.5 km 3 for the Makatiti-Tapahoro lava flows and domes. Minor variations in whole rock and glass chemistry show that the three main vent areas each tapped a slightly different high-silica rhyolite magma. About 10 km 3 of M-type magma was erupted from the Makatiti-Tapahoro vents; c. 1.3 km 3 of H-type magma from the Haroharo-Rotokohu vents, and 0.04 km 3 of P-type magma from the Pararoa vent. There are no significant weathering or erosional breaks within the Whakatane eruptive sequence, which suggests that all Whakatane eruptions occurred within a short time interval. However, extrusion of the Haroharo dome within the Makatiti pyroclastic eruption sequence suggests a duration of c. 2 yr for the main pyroclastic eruption phase. Emplacement of the following voluminous (7.5 km 3 ) lavas from the Makatiti-Tapahoro vents would have occurred over >10 yr at the c. 10-20 m 3 /s inferred extrusion rates. (author). 19 refs., 16 figs., 7 tabs

  13. Comparison of Different Methods of Denim Stone Washing by Pumice Stone, Acid Cellulases and Neutral Cellulases

    Directory of Open Access Journals (Sweden)

    M. Montazer


    Full Text Available Denim is a casual garment normally used by young people and extremely influential in shaping the fashion industry. Among various garments, these garments are subjected to innovations. This work is an attempt to compare the different methods of stone washing using pumice stones, acid cellulases and neutral cellulases or in combination of these methods. The effects of different processing conditions on the garment are compared and reported. Color differences of samples are probed by reflective colorimeter on the front side as well as the backside and also the white pocket of the garment.The abrasion resistance, tensile strength and crease recovery angle of samples are also reported. The XRD spectra are used to calculate the crystalline degrees of the selected samples. Moreover, fiber surfaces of some treated samples have been observed by SEM. The results indicate that treatment of denim with pumice stone with equal weight of garment causes a small color differences. The addition of cellulases to the washing, however, accelerates the color fading. Also, lower staining observed on the white pocket when the garment was treated with cellulases. However, the neutralcellulases increase the garment fading and decrease the staining on the white pocket. It is also observed that pumice stone with cellulases damages the fabric surface, although it is of a minimal damage.

  14. Anomalously high porosity in subduction inputs to the Nankai Trough (SW Japan) potentially caused by volcanic ash and pumice (United States)

    Huepers, A.; Ikari, M.; Underwood, M.; Kopf, A.


    At convergent margins, the sedimentary section seaward of the trench on the subducting oceanic lithosphere provides the source material for accretionary prisms and eventually becomes the host rock of the plate boundary megathrust. The mechanical properties of the sediments seaward of the subduction zone have therefore a first order control on subduction zone forearc mechanics and hydrogeology. At the Nankai Trough (SW Japan) the majority of sediment approaching the subduction zone is clay-rich. Scientific drilling expeditions in the framework of the Ocean Drilling Program (ODP) and the Integrated Ocean Drilling Program (IODP) have revealed an anomalous zone of high porosity in a major lithologic unit known as the Upper Shikoku Basin facies (USB), which is associated with elevated volcanic ash content and high amounts of silica in the interstitial water. The existence of the high porosity zone has previously been associated with advanced silica cementation, driven by the dual diagenetic transition of opal-A to opal-CT, and opal-CT to quartz. However, temperature estimates from recent drilling expeditions offshore the Kii peninsula reveal different in situ temperatures at the proposed diagenetic boundary in the Shikoku Basin. Furthermore, laboratory measurements using core samples from the USB show that cohesive strength is not elevated in the high porosity zone, suggesting that a process other than cementation may be responsible. The USB sediment is characterized by abundant volcanic ash and pumice, therefore the high porosity zone in the USB may be closely linked to the mechanical behavior of this phase. We conducted consolidation tests in the range 0.1 to 8 MPa effective vertical stress on artificial ash-smectite and pumice-smectite mixtures, as well as intact and remolded natural samples from the IODP Sites C0011 and C0012 to investigate the role of the volcanic constituent on porosity loss with progressive burial. Our results show that both remolded and intact

  15. Eruption dynamics and explosive-effusive transitions during the 1400 cal BP eruption of Opala volcano, Kamchatka, Russia (United States)

    Andrews, Benjamin J.; Dufek, Josef; Ponomareva, Vera


    Deposits and pumice from the 1400 cal BP eruption of Opala volcano record activity that occurred at the explosive-effusive transition, resulting in intermittent, or stop-start, behavior, where explosive activity resumed following a pause. The eruption deposited distinctive, biotite-bearing rhyolite tephra across much of Kamchatka, and its stratigraphy consists of a lithic-rich pumice fall, overlain by pumice falls and pyroclastic density deposits, with the proportion of the latter increasing with height. This sequence repeats such that the middle of the total deposit is marked by a lithic-rich fall with abundant obsidian clasts. Notably, the eruptive pumice are poorly vesiculated, with vesicle textures that record fragmentation of a partially collapsed magmatic foam. The eruption vent, Baranii Amphitheater is filled with obsidian lavas of the same composition as the rhyolite tephra. Based upon the stratigraphic and compositional relations, we divide the eruption into four phases. Phase I initiated with eruption of a lithic-rich pumice fall, followed by eruption of Plinian falls and pyroclastic density currents. During Phase II, the eruption paused for at least 5-6 h; in this time, microlites nucleated and began to grow in the magma. Phase III essentially repeated the Phase I sequence. Obsidian lavas were emplaced during Phase IV. The pumice textures suggest that the magma ascended very near the threshold decompression rate for the transition between explosive (fast) and effusive (slow) behavior. The pause during Phase II likely occurred as decompression slowed enough for the magma to develop sufficient permeability for gas to escape resulting in collapse of the magmatic foam, stopping the eruption and temporarily sealing the conduit. After about 5-6 h, eruption resumed with, once again, magma decompressing very near the explosive-effusive transition. Phase III ended when the decompression rate slowed and lava dome emplacement began. Distributions of pumice and

  16. Lithostratigraphy of the Calico Hills Formation and Prow Pass Tuff (Crater Flat Group) at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Moyer, T.C.; Geslin, J.K.


    Lithostratigraphic relations within the Calico Hills Formation and Prow Pass Tuff (Crater Flat Group) were reconstructed from analysis of core samples and observation of outcrop exposures. The Calico Hills Formation is composed of five nonwelded pyroclastic units (each formed of one or more pyroclastic-flow deposits) that overlie an interval of bedded tuff and a basal volcaniclastic sandstone unit. The Prow Pass Tuff is divided into four pyroclastic units and an underlying interval of bedded tuff. The pyroclastic units of the Prow Pass Tuff are distinguished by the sizes and amounts of their pumice and lithic clasts and their degree of welding. Pyroclastic units of the Prow Pass Tuff are distinguished from those of the Calico Hills Formation by their phenocryst assemblage, chemical composition, and ubiquitous siltstone lithic clasts. Downhole resistivity tends to mirror the content of authigenic minerals, primarily zeolites, in both for-mations and may be useful for recognizing the vitric-zeolite boundary in the study area. Maps of zeolite distribution illustrate that the bedded tuff and basal sandstone units of the Calico Hills Formation are altered over a wider area than the pyroclastic units of both the Calico Hills Formation and the upper Prow Pass Tuff

  17. Lithostratigraphy of the Calico Hills Formation and Prow Pass Tuff (Crater Flat Group) at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, T.C.; Geslin, J.K. [Science Applications International Corp., Las Vegas, NV (United States)


    Lithostratigraphic relations within the Calico Hills Formation and Prow Pass Tuff (Crater Flat Group) were reconstructed from analysis of core samples and observation of outcrop exposures. The Calico Hills Formation is composed of five nonwelded pyroclastic units (each formed of one or more pyroclastic-flow deposits) that overlie an interval of bedded tuff and a basal volcaniclastic sandstone unit. The Prow Pass Tuff is divided into four pyroclastic units and an underlying interval of bedded tuff. The pyroclastic units of the Prow Pass Tuff are distinguished by the sizes and amounts of their pumice and lithic clasts and their degree of welding. Pyroclastic units of the Prow Pass Tuff are distinguished from those of the Calico Hills Formation by their phenocryst assemblage, chemical composition, and ubiquitous siltstone lithic clasts. Downhole resistivity tends to mirror the content of authigenic minerals, primarily zeolites, in both for-mations and may be useful for recognizing the vitric-zeolite boundary in the study area. Maps of zeolite distribution illustrate that the bedded tuff and basal sandstone units of the Calico Hills Formation are altered over a wider area than the pyroclastic units of both the Calico Hills Formation and the upper Prow Pass Tuff.

  18. Estimating the Wet-Rock P-Wave Velocity from the Dry-Rock P-Wave Velocity for Pyroclastic Rocks (United States)

    Kahraman, Sair; Fener, Mustafa; Kilic, Cumhur Ozcan


    Seismic methods are widely used for the geotechnical investigations in volcanic areas or for the determination of the engineering properties of pyroclastic rocks in laboratory. Therefore, developing a relation between the wet- and dry-rock P-wave velocities will be helpful for engineers when evaluating the formation characteristics of pyroclastic rocks. To investigate the predictability of the wet-rock P-wave velocity from the dry-rock P-wave velocity for pyroclastic rocks P-wave velocity measurements were conducted on 27 different pyroclastic rocks. In addition, dry-rock S-wave velocity measurements were conducted. The test results were modeled using Gassmann's and Wood's theories and it was seen that estimates for saturated P-wave velocity from the theories fit well measured data. For samples having values of less and greater than 20%, practical equations were derived for reliably estimating wet-rock P-wave velocity as function of dry-rock P-wave velocity.

  19. Long-term operational studies of lab-scale pumice-woodchip packed stormwater biofilters. (United States)

    Cheng, Jing; Yuan, Qingke; Kim, Youngchul


    The performance of three pumice-woodchip packed stormwater biofilter (PWSWBF) systems with three packing volume ratios of pumice to woodchip (1:2, 1:1 and 2:1) were compared. The results show that the PWSWBF system packed with a lower percentage of woodchip attained a higher removal efficiency of TCOD, TN, NH 4 -N and TP, whereas all three systems completely removed nitrate. The highest removal efficiencies for TCOD, TN, NH 4 -N, NO 3 -N and TP were 95%, 70%, 86%, 100% and 100%, respectively. In the biofilter with a lower percentage of woodchip, the pollutants that get removed through aerobic biological processes were removed more significantly, which is attributed to less oxygen depletion via woodchip decomposition, which is common under wet conditions. Nitrate was significantly removed via denitrification in all three systems, indicating that the woodchip that occupied one-third of the main media was sufficient for denitrification, and also that the oxygen condition inside the column was proper for denitrification to proceed. A smaller amount of woodchip as the packing material also mitigated the adverse effect of the release of organics from the media during the initial period. In addition, the system showed very good buffering capacity, in that the outflow pH was constant within the optimal range for microorganism growth.

  20. Caracterización morfoscópica de los materiales piroclásticos sálicos del sur de Tenerife (Islas Canarias

    Directory of Open Access Journals (Sweden)

    Alonso, J. J.


    Full Text Available In this work, several morphological aspects of volcanic ash grains from southern Tenerife are studied by S.E.M. Important variations in vesiculation, fracture and wheathering of pyroclasts are observed. It's possible to characterize diferent types of deposits (pyroclastic falIs, pyroclastic flow, surges, etc. in function of the pumice fragments surface.En este trabajo se estudian mediante M.E.B. (Microscopio Electrónico de Barrido diversos aspectos morfológicos de granos de cenizas volcánicas del sur de Tenerife. Son observadas importantes variaciones en la vesiculación, fracturación y alteraciones de los piroclastos. Es posible caracterizar distintos tipos de depósitos (piroclastos de caída, coladas piroclásticas, surges, etc. en función de las características superficiales de los fragmentos pumíticos.

  1. New tools to investigate textures of pyroclastic deposits

    Energy Technology Data Exchange (ETDEWEB)

    Sarocchi, Damiano [Instituto de GeologIa / Fac. IngenierIa UASLP, Dr. M. Nava No 5, Zona Universitaria 78240, San Luis PotosI (Mexico); Borselli, Lorenzo [Istituto di Ricerca per la Protezione Idrogeologica, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino (Italy); MacIas, Jose Luis [Departamento de VulcanologIa, Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Coyoacan 04510, D.F. (Mexico)


    A pyroclastic flow deposit keeps a fingerprint of the physical processes that occurred in the flow during transport and settling. Part of this information is recorded in the texture of the deposit offering an instantaneous view of the flow prior to freezing. In this work we introduce some texture's analysis techniques, based on image analysis, that we have developed or tuned during the last years.

  2. Stratigraphy, distribution, and evidence for mafic triggering of the ca. 8.5 ka Driftwood Pumice eruption, Makushin Volcano, Alaska, U.S.A (United States)

    Lerner, Allan H.; Crowley, Peter D.; Nicolaysen, Kirsten P.; Hazlett, Richard W.


    Makushin Volcano on Unalaska Island, Alaska, threatens the Aleutian's largest population centers (Unalaska and Dutch Harbor), yet its eruption mechanisms are poorly known. This study presents a detailed stratigraphic and geochemical investigation of Makushin's most recent highly explosive event: the ca. 8.5 ka Driftwood Pumice eruption. The Driftwood Pumice has measured thicknesses of over 2.5 m, and isopach reconstructions estimate a total deposit volume of 0.3 to 1.6 km3, indicating a VEI 4-5 eruption. Proximal deposits consist of normally-graded, tan, dacitic to andesitic pumice, capped by a thinner dark layer of lower-silica andesitic scoria mixed with abundant lithic fragments. This stratigraphy is interpreted as an initial vent-clearing eruption that strengthened into a climactic ejection of pumice and ash and concluded with vent destabilization and the eruption of somewhat more mafic, gas-poor magma. Within the pumice, geochemical trends, disequilibrium mineral populations, and mineral zonation patterns show evidence of magma mixing between a bulk silicic magma and a mafic melt. Euhedral high-Ca plagioclase (An68-91) and high-Mg olivine (Fo69-77) phenocrysts are in disequilibrium with trachydacitic glass (65-68 wt% SiO2) and more abundant sodic plagioclase (An34-55), indicating the former originally crystallized in a more mafic melt. Tephra whole rock compositions become more mafic upwards through the deposit, ranging from a basal low-silica dacite to an andesite (total range: 60.8-63.3 wt% SiO2). Collectively, these compositional variations suggest magma mixing in the Driftwood Pumice (DWP) magma reservoir, with a systematic increase in the amount of a mafic component (up to 25%) upward through the deposit. Olivine-liquid and liquid-only thermometry indicate the mafic magma intruded at temperatures 140-200 °C hotter than the silicic magma. Diffusion rates calculated for 5-7 μm thick, lower-Mg rims on the olivine phenocrysts (Fo60 rim vs Fo76 bulk) suggest

  3. The Synthesis and Characterization of Low-cost Mesoporous Silica SiO2 from Local Pumice Rock

    Directory of Open Access Journals (Sweden)

    Asmaa Mourhly


    removal of water molecules and the OH of silanol groups contained in the material. The investigations performed in this work have indicated that there is great scope for pumice exploitation as a raw material in the production of amorphous silica nanopowder on large scale.

  4. Pesticide behaviour in pumice and rockwool growth media; adsorption and transformation of metalaxyl, oxamyl and carbendazim

    NARCIS (Netherlands)

    Matser, A.M.; Leistra, M.


    Interactions of pesticides with substrates were studied. The adsorption of metalaxyl, oxamyl and carbendazim on unused pumice and rock-wool is much weaker than that on soils. The transformation rate of the pesticides in nutrient solution in contact with unused substrates is low. Metalaxyl is

  5. First Volcanological-Probabilistic Pyroclastic Density Current and Fallout Hazard Map for Campi Flegrei and Somma Vesuvius Volcanoes. (United States)

    Mastrolorenzo, G.; Pappalardo, L.; Troise, C.; Panizza, A.; de Natale, G.


    Integrated volcanological-probabilistic approaches has been used in order to simulate pyroclastic density currents and fallout and produce hazard maps for Campi Flegrei and Somma Vesuvius areas. On the basis of the analyses of all types of pyroclastic flows, surges, secondary pyroclastic density currents and fallout events occurred in the volcanological history of the two volcanic areas and the evaluation of probability for each type of events, matrixs of input parameters for a numerical simulation have been performed. The multi-dimensional input matrixs include the main controlling parameters of the pyroclasts transport and deposition dispersion, as well as the set of possible eruptive vents used in the simulation program. Probabilistic hazard maps provide of each points of campanian area, the yearly probability to be interested by a given event with a given intensity and resulting demage. Probability of a few events in one thousand years are typical of most areas around the volcanoes whitin a range of ca 10 km, including Neaples. Results provide constrains for the emergency plans in Neapolitan area.

  6. Topographic controls on pyroclastic density current dynamics: Insight from 18 May 1980 deposits at Mount St. Helens, Washington (USA) (United States)

    Brand, Brittany D.; Bendaña, Sylvana; Self, Stephen; Pollock, Nicholas


    Our ability to interpret the deposits of pyroclastic density currents (PDCs) is critical for understanding the transport and depositional processes that control PDC dynamics. This paper focuses on the influence of slope on flow dynamics and criticality as recorded in PDC deposits from the 18 May 1980 eruption of Mt. St. Helens (USA). PDC deposits are found along the steep flanks (10°-30°) and across the pumice plain ( 5°) up to 8 km north of the volcano. Granulometry, componentry and descriptions of depositional characteristics (e.g., bedform morphology) are recorded with distance from source. The pumice plain deposits are primarily thick (3-12 m), massive and poorly-sorted, and represent deposition from a series of concentrated PDCs. By contrast, the steep flank deposits are stratified to cross-stratified, suggesting deposition from PDCs where turbulence strongly influenced transport and depositional processes. We propose that acceleration of the concentrated PDCs along the steep flanks resulted in thinning of the concentrated, basal region of the current(s). Enhanced entrainment of ambient air, and autofluidization from upward fluxes of air from substrate interstices and plunging breakers across rugged, irregular topography further inflated the currents to the point that the overriding turbulent region strongly influenced transport and depositional mechanisms. Acceleration in combination with partial confinement in slot canyons and high surface roughness would also increase basal shear stress, further promoting shear and traction transport in the basal region of the current. Conditions along the steep flank resulted in supercritical flow, as recorded by regressive bedforms, which gradually transitioned to subcritical flow downstream as the concentrated basal region thickness increased as a function of decreasing slope and flow energy. We also find that (1) PDCs were erosive into the underlying granular substrate along high slopes (> 25°) where currents were

  7. Obsidian Pyroclasts: Where Do They Come From and What Can They Tell Us? (United States)

    Watkins, J. M.; Gardner, J. E.; Befus, K.


    Models for how volcanic gases behave during volcanic eruptions are constructed from measurements of volatiles (δD, H2O and CO2) in melt that has been quenched to glass. Volatile measurements on obsidian pyroclasts from Mono Craters, California, have been central to the development of open- versus closed-system and equilibrium versus non-equilibrium degassing models, and these models have been applied to the interpretation of volatile data from volcanic centers worldwide. Even for the well-studied Mono Craters system, however, there are several different degassing models that are compatible with existing data, and the origin of the vesicle-poor obsidian pyroclasts (upon which the degassing models have been built) remains ambiguous. To better establish the link between the volatiles in the pyroclasts and volcanic eruption processes, we combine textural analysis with area maps of CO2 and H2O. We show that obsidian pyroclasts are heterogeneous with respect to dissolved CO2 and H2O, and that many clasts have multiple textural and chemical domains that are sutured together. The observations suggest that clasts are assembled from non-equilibrated juvenile melt and ash during repeated melt fracturing and healing, ash sintering, and shearing along conduit margins. Melt fracturing promotes gas extraction from magma, whereas healing promotes gas resorption and glass densification. Some of the clasts have bands or patches of elevated CO2 associated with cuspate vesicles, which are evidence for CO2-rich vapor fluxing through the magmatic system. Collectively, the data support a model of open-system, non-equilibrium degassing with intermittent regassing caused by increases in pressure and exposure to different vapor compositions.

  8. Mapping Pyroclastic Flow Inundation Using Radar and Optical Satellite Images and Lahar Modeling

    Directory of Open Access Journals (Sweden)

    Chang-Wook Lee


    Full Text Available Sinabung volcano, located above the Sumatra subduction of the Indo-Australian plate under the Eurasian plate, became active in 2010 after about 400 years of quiescence. We use ALOS/PALSAR interferometric synthetic aperture radar (InSAR images to measure surface deformation from February 2007 to January 2011. We model the observed preeruption inflation and coeruption deflation using Mogi and prolate spheroid sources to infer volume changes of the magma chamber. We interpret that the inflation was due to magma accumulation in a shallow reservoir beneath Mount Sinabung and attribute the deflation due to magma withdrawal from the shallow reservoir during the eruption as well as thermoelastic compaction of erupted material. The pyroclastic flow extent during the eruption is then derived from the LAHARZ model based on the coeruption volume from InSAR modeling and compared to that derived from the Landsat 7 Enhanced Thematic Mapper Plus (ETM+ image. The pyroclastic flow inundation extents between the two different methods agree at about 86%, suggesting the capability of mapping pyroclastic flow inundation by combing radar and optical imagery as well as flow modeling.

  9. Hierarchy of facies of pyroclastic flow deposits generated by Laacher See type eruptions (United States)

    Freundt, A.; Schmincke, H.-U.


    The upper Quaternary pyroclastic flow deposits of Laacher See volcano show compositional and structural facies variations on four different scales: (1) eruptive units of pyroclastic flows, composed of many flow units; (2) depositional cycles of as many as five flow units; flow units containing (3) regional intraflow-unit facies; and (4) local intraflow-unit subfacies. These facies can be explained by successively overlapping processes beginning in the magma column and ending with final deposition. The pyroclastic flow deposits thus reflect major aspects of the eruptive history of Laacher See volcano: (a) drastic changes in eruptive mechanism due to increasing access of water to the magma chamber and (b) change in chemical composition and crystal and gas content as evacuation of a compositionally zoned magma column progressed. The four scales of facies result from four successive sets of processes: (1) differentiation in the magma column and external factors governing the mechanism of eruption; (2) temporal variations of factors inducing eruption column collapse; (3) physical conditions in the eruption column and the way in which its collapse proceeds; and (4) interplay of flow-inherent and morphology-induced transport mechanics.

  10. Tube pumices as strain markers of the ductile-brittle transition during magma fragmentation (United States)

    Martí, J.; Soriano, C.; Dingwell, D. B.


    Magma fragmentation-the process by which relatively slow-moving magma transforms into a violent gas flow carrying fragments of magma-is the defining feature of explosive volcanism. Yet of all the processes involved in explosively erupting systems, fragmentation is possibly the least understood. Several theoretical and laboratory studies on magma degassing and fragmentation have produced a general picture of the sequence of events leading to the fragmentation of silicic magma. But there remains a debate over whether magma fragmentation is a consequence of the textural evolution of magma to a foamed state where disintegration of walls separating bubbles becomes inevitable due to a foam-collapse criterion, or whether magma is fragmented purely by stresses that exceed its tensile strength. Here we show that tube pumice-where extreme bubble elongation is observed-is a well-preserved magmatic `strain marker' of the stress state immediately before and during fragmentation. Structural elements in the pumice record the evolution of the magma's mechanical response from viscous behaviour (foaming and foam elongation) through the plastic or viscoelastic stage, and finally to brittle behaviour. These observations directly support the hypothesis that fragmentation occurs when magma undergoes a ductile-brittle transition and stresses exceed the magma's tensile strength.

  11. Assessment of motion-induced fluidization of dense pyroclastic gravity currents

    Directory of Open Access Journals (Sweden)

    P. Salatino


    Full Text Available The paper addresses some fundamental aspects of the dynamics of dense granular flows down inclines relevant to pyroclastic density currents. A simple mechanistic framework is presented to analyze the dynamics of the frontal zone, with a focus on the establishment of conditions that promote air entrainment at the head of the current and motion-induced self-fluidization of the flow. The one-dimensional momentum balance on the current along the incline is considered under the hypothesis of strongly turbulent flow and pseudo-homogeneous behaviour of the two-phase gas-solid flow. Departures from one-dimensional flow in the frontal region are also analyzed and provide the key to the assessment of air cross-flow and fluidization of the solids in the head of the current. The conditions for the establishment of steady motion of pyroclastic flows down an incline, in either the fluidized or «dry» granular states, are examined.

  12. Slow-moving and far-travelled dense pyroclastic flows during the Peach Spring super-eruption (United States)

    Roche, Olivier; Buesch, David C.; Valentine, Greg A.


    Explosive volcanic super-eruptions of several hundred cubic kilometres or more generate long run-out pyroclastic density currents the dynamics of which are poorly understood and controversial. Deposits of one such event in the southwestern USA, the 18.8 Ma Peach Spring Tuff, were formed by pyroclastic flows that travelled >170 km from the eruptive centre and entrained blocks up to ~70–90 cm diameter from the substrates along the flow paths. Here we combine these data with new experimental results to show that the flow’s base had high-particle concentration and relatively modest speeds of ~5–20 m s−1, fed by an eruption discharging magma at rates up to ~107–108 m3 s−1 for a minimum of 2.5–10 h. We conclude that sustained high-eruption discharge and long-lived high-pore pressure in dense granular dispersion can be more important than large initial velocity and turbulent transport with dilute suspension in promoting long pyroclastic flow distance.

  13. The Te Rere and Okareka eruptive episodes : Okataina Volcanic Centre, Taupo Volcanic Zone, New Zealand

    International Nuclear Information System (INIS)

    Nairn, I.A.


    The Te Rere and Okareka eruptive episodes occurred within the Okataina Volcanic Centre at c. 21 000 and 18 000 yr B.P., respectively. The widespread rhyolitic pumice fall deposits of Te Rere Ash (volume 5 km 3 ) and Okareka Ash (6 km 3 ) are only rarely exposed in near-source areas, and locations of their vent areas have been uncertain. New exposures and petrographic and chemical analyses show that the Te Rere episode eruptions occurred from multiple vents, up to 20 km apart, on the Haroharo linear vent zone. The Okareka episode eruptions occurred from vents since buried beneath the Tarawera volcanic massif. Eruption of the rhyolitic Okareka pumice fall was immediately preceded by a small basaltic scoria eruption, apparently from vents close to those for the following rhyolite eruptions. Dacitic mixed pumices scattered within the rhyolite pumice layers immediately overlying the scoria were formed by mixing of the basalt and rhyolite magmas. The Te Rere and Okareka pyroclastic eruptions were both followed by extrusion of voluminous rhyolite lavas. These eruptive episodes mark the commencement of growth of the present-day Haroharo and Tarawera volcanic complexes. (author). 27 refs., 14 figs., 6 tabs

  14. Volcanic stratigraphy and geochemistry of the Soufrière Volcanic Centre, Saint Lucia with implications for volcanic hazards (United States)

    Lindsay, Jan M.; Trumbull, Robert B.; Schmitt, Axel K.; Stockli, Daniel F.; Shane, Phil A.; Howe, Tracy M.


    The Soufrière Volcanic Complex (SVC), Saint Lucia, represents one of the largest silicic centres in the Lesser Antilles arc. It comprises extensive pumiceous pyroclastic flow deposits, lava flows as well as Peléan-style domes and dome collapse block-and-ash-flow deposits. These deposits occur within and around the Qualibou Depression, a ~ 10-km diameter wide sector collapse structure. To date, vent locations for SVC pyroclastic deposits and their relationship to the sector collapse have been unclear because of limited stratigraphic correlation and few radiometric ages. In this study we reconstruct the geologic history of the SVC in light of new and recently published (U-Th)/He, U-Th and U-Pb zircon chronostratigraphic data, aided by mineralogical and geochemical correlation. Compositionally, SVC deposits are monotonous medium-K, calc-alkaline rocks with 61.6 to 67.7 wt.% SiO2 and display similar trace element abundances. Combined U-Th and (U-Th)/He zircon dating together with 14C ages and mineral fingerprinting reveals significant explosive eruptions at 640, 515, 265, 104, 60 and 40 ka (producing deposits previously grouped together as the "Choiseul" unit) and at 20 ka (Belfond unit). The mineralogically and geochemically distinct Belfond unit is a large, valley-filling pumiceous pyroclastic flow deposit distributed to the north, northeast, south and southeast of the Qualibou Depression that was probably deposited during a single plinian eruption. The unit previously referred to as ‘Choiseul tuff' is much less well defined. The typical Choiseul unit comprises a series of yellowish-white, crystal-poor, non-welded pumiceous pyroclastic deposits cropping out to the north and southeast of the Qualibou depression; however its age is poorly constrained. A number of other units previously mapped as Choiseul can be distinguished based on age, and in some cases mineral and whole rock chemistry. Pyroclastic deposits at Micoud (640 ± 19 ka), Bellevue (264 ± 8 ka), Anse

  15. Towards the definition of AMS facies in the deposits of pyroclastic density currents (United States)

    Ort, M.H.; Newkirk, T.T.; Vilas, J.F.; Vazquez, J.A.; Ort, M.H.; Porreca, Massimiliano; Geissman, J.W.


    Anisotropy of magnetic susceptibility (AMS) provides a statistically robust technique to characterize the fabrics of deposits of pyroclastic density currents (PDCs). AMS fabrics in two types of pyroclastic deposits (small-volume phreatomagmatic currents in the Hopi Buttes volcanic field, Arizona, USA, and large-volume caldera-forming currents, Caviahue Caldera, Neuquén, Argentina) show similar patterns. Near the vent and in areas of high topographical roughness, AMS depositional fabrics are poorly grouped, with weak lineations and foliations. In a densely welded proximal ignimbrite, this fabric is overprinted by a foliation formed as the rock compacted and deformed. Medial deposits have moderate–strong AMS lineations and foliations. The most distal deposits have strong foliations but weak lineations. Based on these facies and existing models for pyroclastic density currents, deposition in the medial areas occurs from the strongly sheared, high-particle-concentration base of a density-stratified current. In proximal areas and where topography mixes this denser base upwards into the current, deposition occurs rapidly from a current with little uniformity to the shear, in which particles fall and collide in a chaotic fashion. Distal deposits are emplaced by a slowing or stalled current so that the dominant particle motion is vertical, leading to weak lineation and strong foliation.

  16. Removal of Arsenic (V) from Aqueous Solutions Using Chitosan-Red Scoria and Chitosan-Pumice Blends. (United States)

    Asere, Tsegaye Girma; Mincke, Stein; De Clercq, Jeriffa; Verbeken, Kim; Tessema, Dejene A; Fufa, Fekadu; Stevens, Christian V; Du Laing, Gijs


    In different regions across the globe, elevated arsenic contents in the groundwater constitute a major health problem. In this work, a biopolymer chitosan has been blended with volcanic rocks (red scoria and pumice) for arsenic (V) removal. The effect of three blending ratios of chitosan and volcanic rocks (1:2, 1:5 and 1:10) on arsenic removal has been studied. The optimal blending ratio was 1:5 (chitosan: volcanic rocks) with maximum adsorption capacity of 0.72 mg/g and 0.71 mg/g for chitosan: red scoria (Ch-Rs) and chitosan: pumice (Ch-Pu), respectively. The experimental adsorption data fitted well a Langmuir isotherm ( R ² > 0.99) and followed pseudo-second-order kinetics. The high stability of the materials and their high arsenic (V) removal efficiency (~93%) in a wide pH range (4 to 10) are useful for real field applications. Moreover, the blends could be regenerated using 0.05 M NaOH and used for several cycles without losing their original arsenic removal efficiency. The results of the study demonstrate that chitosan-volcanic rock blends should be further explored as a potential sustainable solution for removal of arsenic (V) from water.

  17. H2O Contents of Submarine and Subaerial Silicic Pyroclasts from Oomurodashi Volcano, Northern Izu-Bonin Arc (United States)

    McIntosh, I. M.; Tani, K.; Nichols, A. R.


    Oomurodashi volcano is an active shallow submarine silicic volcano in the northern Izu-Bonin Arc, located ~20 km south of the inhabited active volcanic island of Izu-Oshima. Oomurodashi has a large (~20km diameter) flat-topped summit located at 100 - 150 metres below sea level (mbsl), with a small central crater, Oomuro Hole, located at ~200 mbsl. Surveys conducted during cruise NT12-19 of R/V Natsushima in 2012 using the remotely-operated vehicle (ROV) Hyper-Dolphin revealed that Oomuro Hole contains numerous active hydrothermal vents and that the summit of Oomurodashi is covered by extensive fresh rhyolitic lava and pumice clasts with little biogenetic or manganese cover, suggesting recent eruption(s) from Oomuro Hole. Given the shallow depth of the volcano summit, such eruptions are likely to have generated subaerial eruption columns. A ~10ka pumiceous subaerial tephra layer on the neighbouring island of Izu-Oshima has a similar chemical composition to the submarine Oomurodashi rocks collected during the NT12-19 cruise and is thought to have originated from Oomurodashi. Here we present FTIR measurements of the H2O contents of rhyolitic pumice from both the submarine deposits sampled during ROV dives and the subaerial tephra deposit on Izu-Oshima, in order to assess magma degassing and eruption processes occurring during shallow submarine eruptions.

  18. Sedimentology and geomorphology of the deposits from the August 2006 pyroclastic density currents at Tungurahua volcano, Ecuador. (United States)

    Douillet, Guilhem Amin; Tsang-Hin-Sun, Ève; Kueppers, Ulrich; Letort, Jean; Pacheco, Daniel Alejandro; Goldstein, Fabian; Von Aulock, Felix; Lavallée, Yan; Hanson, Jonathan Bruce; Bustillos, Jorge; Robin, Claude; Ramón, Patricio; Hall, Minard; Dingwell, Donald B

    The deposits of the pyroclastic density currents from the August 2006 eruption of Tungurahua show three facies associations depending on the topographic setting: the massive, proximal cross-stratified, and distal cross-stratified facies. (1) The massive facies is confined to valleys on the slopes of the volcano. It contains clasts of >1 m diameter to fine ash material, is massive, and interpreted as deposited from dense pyroclastic flows. Its surface can exhibit lobes and levees covered with disk-shaped and vesicular large clasts. These fragile large clasts must have rafted at the surface of the flows all along the path in order to be preserved, and thus imply a sharp density boundary near the surface of these flows. (2) The proximal cross-stratified facies is exposed on valley overbanks on the upper part of the volcano and contains both massive coarse-grained layers and cross-stratified ash and lapilli bedsets. It is interpreted as deposited from (a) dense pyroclastic flows that overflowed the gentle ridges of valleys of the upper part of the volcano and (b) dilute pyroclastic density currents created from the dense flows by the entrainment of air on the steep upper flanks. (3) The distal cross-stratified facies outcrops as spatially limited, isolated, and wedge-shaped bodies of cross-stratified ash deposits located downstream of cliffs on valleys overbanks. It contains numerous aggrading dune bedforms, whose crest orientations reveal parental flow directions. A downstream decrease in the size of the dune bedforms, together with a downstream fining trend in the grain size distribution are observed on a 100-m scale. This facies is interpreted to have been deposited from dilute pyroclastic density currents with basal tractional boundary layers. We suggest that the parental flows were produced from the dense flows by entrainment of air at cliffs, and that these diluted currents might rapidly deposit through "pneumatic jumps". Three modes are present in the grain

  19. Thorium abundances on the aristarchus plateau: Insights into the composition of the aristarchus pyroclastic glass deposits (United States)

    Hagerty, Justin J.; Lawrence, D.J.; Hawke, B.R.; Gaddis, Lisa R.


    Thorium (Th) data from the Lunar Prospector gamma ray spectrometer (LP-GRS) are used to constrain the composition of lunar pyroclastic glass deposits on top of the Aristarchus plateau. Our goal is to use forward modeling of LP-GRS Th data to measure the Th abundances on the plateau and then to determine if the elevated Th abundances on the plateau are associated with the pyroclastic deposits or with thorium-rich ejecta from Aristarchus crater. We use a variety of remote sensing data to show that there is a large, homogenous portion of the pyroclastics on the plateau that has seen little or no contamination from the Th-rich ejecta of Aristarchus crater. Our results show that the uncontaminated pyroclastic glasses on Aristarchus plateau have an average Th content of 6.7 ppm and ???7 wt % TiO2. These Th and Ti values are consistent with Th-rich, intermediate-Ti yellow glasses from the lunar sample suite. On the basis of this information, we use petrologic equations and interelement correlations for the Moon to estimate the composition of the source region from which the Aristarchus glasses were derived. We find that the source region for the Aristarchus glasses contained high abundances of heat-producing elements, which most likely served as a thermal driver for the prolonged volcanic activity in this region of the Moon. Copyright 2009 by the American Geophysical Union.

  20. Permeability and microstructural changes due to weathering of pyroclastic rocks in Cappadocia, central Turkey (United States)

    Sato, M.; Takahashi, M.; Anma, R.; Shiomi, K.


    Studies of permeability changes of rocks during weathering are important to understand the processes of geomorphological development and how they are influenced by cyclic climatic conditions. Especially volcanic tuffs and pyroclastic flow deposits are easily affected by water absorption and freezing-thawing cycle (Erguler. 2009, Çelik and Ergül 2014). Peculiar erosional landscapes of Cappadocia, central Turkey, with numerous underground cities and carved churches, that made this area a world heritage site, are consists of volcanic tuffs and pyroclastic flow deposits. Understanding permeability changes of such rocks under different conditions are thus important not only to understand fundamental processes of weathering, but also to protect the landscapes of the world heritage sites and archaeological remains. In this study, we aim to evaluate internal void structures and bulk permeability of intact and weathered pyroclastic rocks from Cappadocia using X-ray CT, mercury intrusion porosimetry data and permeability measurement method of flow pump test. Samples of pyroclastic deposits that comprise the landscapes of Rose Valley and Ihlara Valley, were collected from the corresponding strata outside of the preservation areas. Porosity and pore-size distribution for the same samples measured by mercury intrusion porosimetry, indicate that the intact samples have lower porosity than weathered samples and pore sizes were dominantly 1-10μm in calculated radii, whereas weathered samples have more micropores (smaller than 1 μm). X-ray CT images were acquired to observe internal structure of samples. Micro-fractures, probably caused by repeated expansion and contraction due to temperature changes, were observed around clast grains. The higher micropore ratio in weathered samples could be attributed to the development of the micro-farctures. We will discuss fundamental processes of weathering and geomorphological development models using these data.

  1. Evidence for a welded tuff in the Rhyolite of Calico Hills

    International Nuclear Information System (INIS)

    Dickerson, R.P.; Hunter, W.C.


    A welded pyroclastic deposit has been identified in the Rhyolite of Calico Hills near Yucca Mountain, Nevada, where only lava flows and nonwelded pyroclastic deposits were previously described. Field data from Fortymile Wash show that nonwelded, bedded tuff grades upward into partially welded massive ruff, and thence into densely welded vitrophyre. Petrographic data show a progressive decrease in inter- and intragranular porosity and amount of vapor-phase minerals, with increasing welding. Pumice fragments are first deformed, then develop diffuse boundaries which become increasingly obscure with progressive welding. The most densely welded rock is a perlitic vitrophyre. The origin of this welded tuff is not clear, as it could represent an ignimbrite or a tuff fused beneath a thick lava flow

  2. Magmas in motion: Degassing in volcanic conduits and fabrics of pyroclastic density current (United States)

    Burgisser, Alain

    Volcanoes are caused by the transport of magma batches from the Earth's crust to the surface. These magmas in motion undergo drastic changes of rheologic properties during their journey to the surface and this work explores how these changes affect volcanic eruptions. The first part of this study is devoted to the dynamic aspects of degassing and permeability in magmas with high pressure, high temperature experiments on natural volcanic rocks. Degassing is measured by the influence of decompression rate on the growth of the bubbles present in the magma while permeability is deduced from the temporal evolution of these bubbles. The parameterization of our results in a numerical model of volcanic conduit flow show that previous models based on equilibrium degassing overestimate the acceleration and the decompression rate of the magma. Assessing permeability effects derived form our results show that the transition between explosive and effusive eruptions is a strong function of the magma initial ascent rate. The second part of this work is a unification of two end-members of pyroclastic currents (highly concentrated pyroclastic flows and dilute, turbulent pyroclastic surges) using theoretical scaling arguments based on multiphase physics. Starting from the dynamics of the particle interactions with a fundamental eddy, we consider the full spectrum of eddies generated within a turbulent current. We demonstrate that the presence of particles with various sizes induces a density stratification of the current, leading to its segregation into a basal concentrated part overlain by a dilute cloud. To verify our predictions on the interactions of such a segregated pyroclastic current with its surroundings (hills and sea), we studied the products of the 2050 BP caldera-forming eruption of Okmok Volcano (Alaska). This field study allowed us to reconstruct the eruptive sequence and to validate the main aspects of our theoretical model, such as the superposition of a dense and

  3. Pyroclastic density currents at Etna volcano, Italy: The 11 February 2014 case study (United States)

    Andronico, Daniele; Di Roberto, Alessio; De Beni, Emanuela; Behncke, Boris; Bertagnini, Antonella; Del Carlo, Paola; Pompilio, Massimo


    On 11 February 2014, a considerable volume (0.82 to 1.29 × 106 m3) of unstable and hot rocks detached from the lower-eastern flank of the New Southeast Crater (NSEC) at Mt. Etna, producing a pyroclastic density current (PDC). This event was by far the most extensive ever recorded at Mt. Etna since 1999 and has attracted the attention of the scientific community and civil protection to this type of volcanic phenomena, usually occurring without any clear volcanological precursor and especially toward the mechanisms which led to the crater collapse, the PDC flow dynamics and the related volcanic hazard. We present here the results of the investigation carried out on the 11 February 2014 collapse and PDC events; data were obtained through a multidisciplinary approach which includes the analysis of photograph, images from visible and thermal surveillance cameras, and the detailed stratigraphic, textural and petrographic investigations of the PDC deposits. Results suggest that the collapse and consequent PDC was the result of a progressive thermal and mechanical weakening of the cone by repeated surges of magma passing through it during the eruptive activity prior to the 11 February 2014 events, as well as pervasive heating and corrosion by volcanic gas. The collapse of the lower portion of the NSEC was followed by the formation of a relatively hot (up to 750 °C) dense flow which travelled about 2.3 km from the source, stopping shortly after the break of the slope and emplacing the main body of the deposit which ranges between 0.39 and 0.92 × 106 m3. This flow was accompanied a relatively hot cloud of fine ash that dispersed over a wider area. The results presented may contribute to the understanding of this very complex type of volcanic phenomena at Mt. Etna and in similar volcanic settings of the world. In addition, results will lay the basis for the modeling of crater collapse and relative PDC events and consequently for the planning of hazard assessment strategies

  4. Inner structure of La Fossa di Vulcano (Vulcano Island, southern Tyrrhenian Sea, Italy) revealed by high-resolution electric resistivity tomography coupled with self-potential, temperature, and CO2 diffuse degassing measurements


    Revil , A.; Finizola , Anthony; Piscitelli , A.; Rizzo , E.; Ricci , T.; Crespy , A.; Angeletti , B.; Balasco , M.; Barde-Cabusson , Stéphanie; Bennati , L.; Boleve , A.; Byrdina , S.; Carzaniga , N.; Di Gangi , F.; Morin , Julie


    International audience; La Fossa cone is an active stratovolcano located on Vulcano Island in the Aeolian Archipelago (southern Italy). Its activity is characterized by explosive phreatic and phreatomagmatic eruptions producing wet and dry pyroclastic surges, pumice fall deposits, and highly viscous lava flows. Nine 2-D electrical resistivity tomograms (ERTs; electrode spacing 20 m, with a depth of investigation >200 m) were obtained to image the edifice. In addition, we also measured the sel...

  5. Water in melt inclusions from phenocrysts of dacite pumice of the Vetrovoy Isthmus (Iturup Island, Southern Kuriles) (United States)

    Kotov, A. A.; Smirnov, S. Z.; Maksimovich, I. A.; Plechov, P. Yu; Chertkova, N. V.; Befus, A. I.


    This work is devoted to the study of one of the largest caldera eruptions of the Kurile-Kamchatka island-arc system that occurred on the island of Iturup. The object of investigation of this work are phenocrysts of quartz and plagioclase from dacite pumice of the Isthmus of the Isthmus, which is located on the island of Iturup. The purpose of this work is to determine the water content in the melts that participated in the caldera eruption of the Vetrovoy Isthmus and the patterns of their changes during the crystallization of magma. In the course of the work, the following were carried out: 1) adaptation and calibration of the Raman spectroscopy method for determining water in rhyolite melt’s inclusions glasses in quartz and plagioclase from pumice stone; 2) determination of composition and estimation of water content in melt inclusions in quartz and plagioclase according to x-ray spectral analysis; 3) establishment of the regularities of the change in the water content during the evolution of the magmatic melt; 4) evaluation of fluid pressure by comparison with experimental data

  6. Dye Removal From Textile Waste Water Through The Adsorption By Pumice Used In Stone Washing

    Directory of Open Access Journals (Sweden)

    Körlü Aysegül Ekmekçi


    Full Text Available Because the waste production is inevitable in almost all industries, the elimination of these wastes is a requirement in terms of environmental regulations and welfare of all the creatures in the future. In this study, the use of the waste pumice stones of a denim washing mill is intended to eliminate the pollutant by a waste material and obtain economic benefits by converting it to the adsorbent. The pollutants in the effluents obtained from three different localisations of waste water treatment system of the same factory were removed through the adsorption. The experimental studies were carried out in three different steps; characterisation of adsorbent before and after adsorption; adsorption isotherm studies and biological oxygen demand (BOD, chemical oxygen demand (COD measurements. Characterisation studies showed that the waste pumice has almost the same structural properties with unused one except the existence of some organic residues coming from washing process. The results of adsorption studies conducted at the adsorbent concentrations changing from 5 to 35 g/l revealed that the decolourisation was initial dye-concentration dependent. According to the BOD and COD measurements, the supernatants obtained at the end of adsorption could be assumed as somewhat polluted and this result indicates that the organic impurities other than indigo were also removed through the adsorption.

  7. Dynamics of an unusual cone-building trachyte eruption at Pu`u Wa`awa`a, Hualālai volcano, Hawai`i (United States)

    Shea, Thomas; Leonhardi, Tanis; Giachetti, Thomas; Lindoo, Amanda; Larsen, Jessica; Sinton, John; Parsons, Elliott


    The Pu`u Wa`awa`a pyroclastic cone and Pu`u Anahulu lava flow are two prominent monogenetic eruptive features assumed to result from a single eruption during the trachyte-dominated early post-shield stage of Hualālai volcano (Hawaíi). Púu Wa`awa`a is composed of complex repetitions of crudely cross-stratified units rich in dark dense clasts, which reversely grade into coarser pumice-rich units. Pyroclasts from the cone are extremely diverse texturally, ranging from glassy obsidian to vesicular scoria or pumice, in addition to fully crystalline end-members. The >100-m thick Pu`u Anahulu flow is, in contrast, entirely holocrystalline. Using field observations coupled with whole rock analyses, this study aimed to test whether the Pu`u Wa`awa`a tephra and Pu`u Anahulu lava flows originated from the same eruption, as had been previously assumed. Crystal and vesicle textures are characterized along with the volatile contents of interstitial glasses to determine the origin of textural variability within Pu`u Wáawáa trachytes (e.g., magma mixing vs. degassing origin). We find that (1) the two eruptions likely originated from distinct vents and magma reservoirs, despite their proximity and similar age, (2) the textural diversity of pyroclasts forming Pu`u Wa`awa`a can be fully explained by variable magma degassing and outgassing within the conduit, (3) the Pu`u Wa`awa`a cone was constructed during explosions transitional in style between violent Strombolian and Vulcanian, involving the formation of a large cone and with repeated disruption of conduit plugs, but without production of large pyroclastic density currents (PDCs), and (4) the contrasting eruption styles of Hawaiian trachytes (flow-, cone-, and PDC-forming) are probably related to differences in the outgassing capacity of the magmas prior to reaching the surface and not in intrinsic compositional or temperature properties. These results further highlight that trachytes are "kinetically faster" magmas compared

  8. Sr isotope geochemistry of voluminous acidic pyroclastics erupted at 1-3 Ma in Northeast Japan

    International Nuclear Information System (INIS)

    Shirahase, Teruo; Tamanyu, Shiro; Togashi, Shigeko


    Sr isotope ratios are analyzed for voluminous acidic pyroclastics erupted at 1 - 3 Ma in five areas on the volcanic front of Northeast Japan. The initial values of 87 Sr/ 86 Sr ratios range from 0.7040 to 0.7055. There is no significant difference in ratios between 1 - 3 Ma acidic pyroclastics and 0 - 1 Ma andesitic volcanics in each area in spite of differences in age and in mean SiO 2 content. On the other hand, the ratios in both of 1 - 3 Ma and 0 - 1 Ma volcanics vary along arc in the same manner. The changes of Sr and Rb contents in each area are consistent with systematic changes by fractional crystallization. The low 87 Sr/ 86 Sr ratios and chemistry suggest that 1 - 3 Ma acidic pyroclastics of Northeast Japan formed by a high degree of fractional crystallization from basic magma which is common in genesis with young andesitic volcanism. The mechanisms of the formation of the basic magma and the character of mantle source in each area have not changed for the past 3 Ma. Degrees of fractional crystallization changed with changes of the tectonic condition of shallow magma chamber from a weak horizontal compression stress field to a strong one. (author)

  9. High and highly variable cooling rates during pyroclastic eruptions on Axial Seamount, Juan de Fuca Ridge (United States)

    Helo, Christoph; Clague, David A.; Dingwell, Donald B.; Stix, John


    We present a calorimetric analysis of pyroclastic glasses and glassy sheet lava flow crusts collected on Axial Seamount, Juan de Fuca Ridge, NE Pacific Ocean, at a water depth of about 1400 m. The pyroclastic glasses, subdivided into thin limu o Pele fragments and angular, blocky clasts, were retrieved from various stratigraphic horizons of volcaniclastic deposits on the upper flanks of the volcanic edifice. Each analysed pyroclastic sample consists of a single type of fragment from one individual horizon. The heat capacity (cp) was measured via differential scanning calorimetry (DSC) and analysed using relaxation geospeedometry to obtain the natural cooling rate across the glass transition. The limu o Pele samples (1 mm grain size fraction) and angular fragments (0.5 mm grain size fraction) exhibit cooling rates of 104.3 to 106.0 K s- 1 and 103.9 to 105.1 K s- 1, respectively. A coarser grain size fraction, 2 mm for limu o Pele and 1 mm for the angular clasts yields cooling rates at the order of 103.7 K s- 1. The range of cooling rates determined for the different pyroclastic deposits presumably relates to the size or intensity of the individual eruptions. The outer glassy crusts of the sheet lava flows were naturally quenched at rates between 63 K s- 1 and 103 K s- 1. By comparing our results with published data on the very slow quenching of lava flow crusts, we suggest that (1) fragmentation and cooling appear to be coupled dynamically and (2) ductile deformation upon the onset of cooling is restricted due to the rapid increase in viscosity. Lastly, we suggest that thermally buoyant plumes that may arise from rapid heat transfer efficiently separate clasts based on their capability to rise within the plume and as they subsequently settle from it.

  10. A comprehensive view of manganese nodules and volcanics of the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Jauhari, P.; Iyer, S.D.

    the seafloor. Various theories have been proposed to explain the enigma of heavier nodules resting on lighter sediments especially when the rate of sediment accumu- lation is higher than the growth of the nodules. Glasby and Read (1976) observed that due... silicic erup- tion and pumice formation. Moreover, it has been reported that hot pumice sinks faster, due to a greater capacity to absorb water and being nearer to the source as compared to colder pumice (Whitham and Sparks, 1986). We presume...

  11. Joint M3 and Diviner Analysis of the Mineralogy, Glass Composition, and Country Rock Content of Pyroclastic Deposits in Oppenheimer Crater (United States)

    Bennett, Kristen A.; Horgan, Briony H. N.; Greenhagen, Benjamin T.; Allen, Carlton C.; Paige, David A.; Bell, James F., III


    Here we present our analysis of the near- and mid-infrared spectral properties of pyroclastic deposits within the floor fractured Oppenheimer Crater that are hypothesized to be Vulcanian in origin. These are the first results of our global study of lunar pyroclastic deposits aimed at constraining the range of eruption processes on the Moon. In the near-infrared, we have employed a new method of spectral analysis developed in Horgan et al. (2013) of the 1 ?m iron absorption band in Chandrayaan-1 Moon Mineralogy Mapper (M3) spectra. By analyzing both the position and shape of the 1 ?m band we can detect and map the distribution of minerals, glasses, and mixtures of these phases in pyroclastic deposits. We are also using mid-infrared spectra from the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment to develop 200 m/pixel Christiansen Feature (CF) maps, which correlate with silica abundance. One of the benefits of using CF maps for analysis of pyroclastic deposits is that they can be used to detect silicic country rock that may have been emplaced by Vulcanian-style eruptions, and are sensitive to iron abundance in glasses, neither of which is possible in the near-infrared. M3 analysis reveals that the primary spectral endmembers are low-calcium pyroxene and iron-bearing glass, with only minor high-calcium pyroxene, and no detectable olivine. The large deposit in the south shows higher and more extensive glass concentrations than the surrounding deposits. We interpret the M3 spectra of the pyroclastic deposits as indicating a mixture of low-calcium pyroxene country rock and juvenile glass, and no significant olivine. Analysis of Diviner CF maps of the Oppenheimer crater floor indicates an average CF value of 8.16, consistent with a mixture of primarily plagioclase and some pyroxene. The average CF values of the pyroclastic deposits range from 8.31 in the SW to 8.24 in the SE. Since CF values within the deposits are as high as 8.49, the lower average CF

  12. Pre-eruptive conditions of the ~31 ka rhyolitic magma of Tlaloc volcano, Sierra Nevada Volcanic Range, Central Mexico (United States)

    Macias, J.; Arce, J.; Rueda, H.; Gardner, J.


    Tlaloc volcano is located at the northern tip of the Sierra Nevada Volcanic Range in Central Mexico. This Pleistocene to Recent volcanic range consists from north to south of Tlaloc-Telapón-Teyotl-Iztaccíhuatl-and- Popocatépetl volcanoes. While andesitic to barely dacitic volcanism dominates the southern part of the range (i.e. Popocatépetl and Iztaccíhuatl); dacitic and rare rhyolithic volcanism (i.e. Telapón, Tlaloc) dominates the northern end. The known locus of rhyolitic magmatism took place at Tlaloc volcano with a Plinian-Subplinian eruption that occurred 31 ka ago. The eruption emplaced the so-called multilayered fallout and pumiceous pyroclastic flows (~2 km3 DRE). The deposit consists of 95% vol. of juvenile particles (pumice + crystals) and minor altered lithics 5% vol. The mineral association of the pumice fragments (74-76 % wt. SiO2) consists of quartz + plagioclase + sanidine + biotite and rare oxides set in a glassy groundmass with voids. Melt inclusions in quartz phenocrysts suggest that prior to the eruption the rhyolitic contain ~7% of H2O and Nevado de Toluca volcano (~6 km) some 50 km to the southwest.

  13. Criteria for the Identification of Pyroclastic Surge Deposits on Mars: Insight from Hunt's Hole, New Mexico (United States)

    Edgar, L. A.; Grotzinger, J. P.; Southard, J. B.; Ewing, R. C.; Lamb, M. P.


    We combine field observations, Terrestrial Laser Scanning (TLS), and hydrodynamic considerations to understand pyroclastic surge deposits at Hunt’s Hole, New Mexico, and provide criteria for their identification on Mars.

  14. Surface deformation on the west portion of the Chapala lake basin: uncertainties and facts

    Directory of Open Access Journals (Sweden)

    M. Hernandez-Marin


    Full Text Available In this study we investigate different aspects of land subsidence and ground failures occurring in the west portion of Chapala lake basin. Currently, surface discontinuities seem to be associated with subsiding bowls. In an effort to understand some of the conditioning factors to surface deformation, two sounding cores from the upper sequence (11 m depth were extracted for analyzing physical and mechanical properties. The upper subsoil showed a predominant silty composition and several lenses of pumice pyroclastic sand. Despite the relative predominance of fine soil, the subsoil shows mechanical properties with low clay content, variable water content, low plasticity and variable compressibility index, amongst some others. Some of these properties seem to be influenced by the sandy pyroclastic lenses, therefore, a potential source of the ground failure could be heterogeneities in the upper soil.

  15. Pyroclastic Flow Deposits and InSAR: Analysis of Long-Term Subsidence at Augustine Volcano, Alaska

    Directory of Open Access Journals (Sweden)

    David B. McAlpin


    Full Text Available Deformation of pyroclastic flow deposits begins almost immediately after emplacement, and continues thereafter for months or years. This study analyzes the extent, volume, thickness, and variability in pyroclastic flow deposits (PFDs on Augustine Volcano from measuring their deformation rates with interferometric synthetic aperture radar (InSAR. To conduct this analysis, we obtained 48 SAR images of Augustine Volcano acquired between 1992 and 2010, spanning its most recent eruption in 2006. The data were processed using d-InSAR time-series analysis to measure the thickness of the Augustine PFDs, as well as their surface deformation behavior. Because much of the 2006 PFDs overlie those from the previous eruption in 1986, geophysical models were derived to decompose deformation contributions from the 1986 deposits underlying the measured 2006 deposits. To accomplish this, we introduce an inversion approach to estimate geophysical parameters for both 1986 and 2006 PFDs. Our analyses estimate the expanded volume of pyroclastic flow material deposited during the 2006 eruption to be 3.3 × 107 m3 ± 0.11 × 107 m3, and that PFDs in the northeastern part of Augustine Island reached a maximum thickness of ~31 m with a mean of ~5 m. Similarly, we estimate the expanded volume of PFDs from the 1986 eruption at 4.6 × 107 m3 ± 0.62 × 107 m3, with a maximum thickness of ~31 m, and a mean of ~7 m.

  16. Synthesizing large-scale pyroclastic flows: Experimental design, scaling, and first results from PELE (United States)

    Lube, G.; Breard, E. C. P.; Cronin, S. J.; Jones, J.


    Pyroclastic flow eruption large-scale experiment (PELE) is a large-scale facility for experimental studies of pyroclastic density currents (PDCs). It is used to generate high-energy currents involving 500-6500 m3 natural volcanic material and air that achieve velocities of 7-30 m s-1, flow thicknesses of 2-4.5 m, and runouts of >35 m. The experimental PDCs are synthesized by a controlled "eruption column collapse" of ash-lapilli suspensions onto an instrumented channel. The first set of experiments are documented here and used to elucidate the main flow regimes that influence PDC dynamic structure. Four phases are identified: (1) mixture acceleration during eruption column collapse, (2) column-slope impact, (3) PDC generation, and (4) ash cloud diffusion. The currents produced are fully turbulent flows and scale well to natural PDCs including small to large scales of turbulent transport. PELE is capable of generating short, pulsed, and sustained currents over periods of several tens of seconds, and dilute surge-like PDCs through to highly concentrated pyroclastic flow-like currents. The surge-like variants develop a basal <0.05 m thick regime of saltating/rolling particles and shifting sand waves, capped by a 2.5-4.5 m thick, turbulent suspension that grades upward to lower particle concentrations. Resulting deposits include stratified dunes, wavy and planar laminated beds, and thin ash cloud fall layers. Concentrated currents segregate into a dense basal underflow of <0.6 m thickness that remains aerated. This is capped by an upper ash cloud surge (1.5-3 m thick) with 100 to 10-4 vol % particles. Their deposits include stratified, massive, normally and reversely graded beds, lobate fronts, and laterally extensive veneer facies beyond channel margins.

  17. A new high-performance 3D multiphase flow code to simulate volcanic blasts and pyroclastic density currents: example from the Boxing Day event, Montserrat (United States)

    Ongaro, T. E.; Clarke, A.; Neri, A.; Voight, B.; Widiwijayanti, C.


    For the first time the dynamics of directed blasts from explosive lava-dome decompression have been investigated by means of transient, multiphase flow simulations in 2D and 3D. Multiphase flow models developed for the analysis of pyroclastic dispersal from explosive eruptions have been so far limited to 2D axisymmetric or Cartesian formulations which cannot properly account for important 3D features of the volcanic system such as complex morphology and fluid turbulence. Here we use a new parallel multiphase flow code, named PDAC (Pyroclastic Dispersal Analysis Code) (Esposti Ongaro et al., 2005), able to simulate the transient and 3D thermofluid-dynamics of pyroclastic dispersal produced by collapsing columns and volcanic blasts. The code solves the equations of the multiparticle flow model of Neri et al. (2003) on 3D domains extending up to several kilometres in 3D and includes a new description of the boundary conditions over topography which is automatically acquired from a DEM. The initial conditions are represented by a compact volume of gas and pyroclasts, with clasts of different sizes and densities, at high temperature and pressure. Different dome porosities and pressurization models were tested in 2D to assess the sensitivity of the results to the distribution of initial gas pressure, and to the total mass and energy stored in the dome, prior to 3D modeling. The simulations have used topographies appropriate for the 1997 Boxing Day directed blast on Montserrat, which eradicated the village of St. Patricks. Some simulations tested the runout of pyroclastic density currents over the ocean surface, corresponding to observations of over-water surges to several km distances at both locations. The PDAC code was used to perform 3D simulations of the explosive event on the actual volcano topography. The results highlight the strong topographic control on the propagation of the dense pyroclastic flows, the triggering of thermal instabilities, and the elutriation

  18. Nested Architecture of Pyroclastic Bedforms Generated by a Single Flow Event: Outcrop Examples from the Izu Volcanic Islands, Japan (United States)

    Nemoto, Y.; Yoshida, S.


    We claim that compound bedforms, where small bedforms (e.g., dunes and antidunes) occur within and around the larger bedforms, are common in pyroclastic-flow deposits, using Quaternary-Holocene outcrop examples from the modern Izu volcanic island chain some 100-150 km SSW of Tokyo. The nested occurrence of bedforms have been well documented for siliciclastic deposits, as exemplified by compound dunes where small dunes (c. cm- dm thick) occur between the avalanche surfaces within larger dunes, indicating that these dunes of different sizes were produced simultaneously. However, compound dunes have rarely been reported from pyroclastic deposits. In contrast, we have discovered that compound dunes are common in pyroclastic flow deposits in the late Pleistocene & Holocene outcrops in Niijima and Oshima of the Izu volcanic island chain. Moreover, these outcrops contain abundant compound antidunes, which have been reported from neither siliciclastic or pyroclastic deposits. This is probably because flume studies, where most of published antidune studies are based, focus on small (c. cm-dm high) antidunes. In Niijima Island, we examined pyroclastic-flow deposits shed from Mt. Miyatsuka (14 ka) and Mt. Mukai (886 A.D.). Both groups of deposits contain abundant antidune stratifications, which commonly form nested structures in a two- or three-fold hierarchy, with subordinate crossbeddings originated from dune migrations. Each class of antidunes is characterized by multiple scour surfaces and vertical aggradations around mounds of lag deposits above erosion surfaces, and typically has both upstream and downstream accretion components with different proportions. The late Pleistocene pyroclastic outcrops of the nearby Oshima Island exhibit similar patterns. The geometry of the accretion surfaces vary significantly in the outcrops of both Niijima and Oshima. Whereas the antidunes dominated by upstream accretion are characterized by (1) gently inclined accretion surface and (2

  19. The 23,500 y 14C BP White Pumice Plinian eruption and associated debris avalanche and Tochimilco lava flow of Popocatépetl volcano, México (United States)

    Siebe, Claus; Salinas, Sergio; Arana-Salinas, Lilia; Macías, José Luis; Gardner, James; Bonasia, Rosanna


    The White Pumice (WP) is one of the thickest and most voluminous Plinian fallouts produced by Popocatépetl volcano in central Mexico during the Late Pleistocene-Holocene. Its eruption 23,500 14C y BP (27,800 cal BP) was triggered by the catastrophic failure of the SW flank of the volcano. The resulting debris avalanche was highly mobile reaching 72 km from the cone with an apparent coefficient of friction (L/H) of 0.06. The deposit covers an area of 1200 km2, and has a volume of 10.4 km3. This gigantic landslide, characterized by exceptionally large proximal hummocks (> 400 m) provoked the sudden decompression of the hydrothermal and magmatic systems, which produced an initial blast followed by the rise of a Plinian column that reached an altitude of 33 km. The isopach map allows the recognition of a dispersal axis pointing toward the south, where an area of 2490 km2 was covered by > 10 cm of pumice and ash. The total volume of the pumice fallout was estimated at 1.9 km3 DRE (Dense Rock Equivalent). Pumice clasts are dacitic (62-66 wt.% SiO2, anhydrous basis), highly vesicular (55-88 vol.%) and display a seriate texture with phenocrysts of plagioclase + hornblende + augite + hypersthene + oxides (Ti-magnetite and ilmenite) + apatite. As the eruption advanced, discharge rates became more intermittent and the height of the column fluctuated and finally collapsed, generating pumice-and-ash flows that were emplaced around the volcano. This short but intense activity was followed during subsequent years by rain-induced lahars that reached great distances from the volcano. At the same time, more degassed andesitic-dacitic (61-65 wt.% SiO2) magma was erupted effusively (4.4 km3, DRE) in the new horseshoe-shaped 5 km-wide crater from which the Tochimilco lava flow descended toward the SSE, where it inundated an area of 68 km2 and reached as far as 22 km from its source. Since then, multiple eruptions have reconstructed the summit cone, almost completely obliterating the

  20. Structural Controls of Neal Hot Springs Geothermal Field, Malhuer County, Oregon (United States)

    Edwards, J. H.; Faulds, J. E.


    Detailed mapping (1:24,000) of the Neal Hot Springs area (90 km2) in eastern Oregon is part of a larger study of geothermal systems in the Basin and Range, which focuses on the structural controls of geothermal activity. The study area lies within the intersection of two regional grabens, the middle-late Miocene, N-striking, Oregon-Idaho graben and younger late Miocene to Holocene, NW-striking, western Snake River Plain graben. The geothermal field is marked by Neal Hot Springs, which effuse from opaline sinter mounds just north of Bully Creek. Wells producing geothermal fluids, with temperatures at 138°C, intersect a major, W-dipping, NNW-striking, high-angle normal fault at depths of 850-915 m. Displacement along this structure dies southward, with likely horse-tailing, which commonly produces high fracture density and a zone of high permeability conducive for channeling hydrothermal fluids. Mapping reveals that the geothermal resource lies within a local, left step-over. 'Hard-linkage' between strands of the left-stepping normal fault, revealed through a study of well chips and well logs, occurs through two concealed structures. Both are W-striking faults, with one that runs parallel to Cottonwood Creek and one 0.5 km N of the creek. Injection wells intersect these two transverse structures within the step-over. Stepping and displacement continue to the NW of the known geothermal field, along W-dipping, N-striking faults that cut lower to middle Miocene Hog Creek Formation, consisting of silicic and mafic volcanic rocks. These N-striking faults were likely initiated during initial Oregon-Idaho graben subsidence (15.3-15.1 Ma), with continued development through late Miocene. Bully Creek Formation deposits, middle to upper Miocene lacustrine and pyroclastic rocks, concomitantly filled the sub half-grabens, and they dip gently to moderately eastward. Younger, western Snake River Plain deposits, upper Miocene to Pliocene fluvial, lacustrine, and pyroclastic rocks

  1. Snow and ice perturbation during historical volcanic eruptions and the formation of lahars and floods (United States)

    Major, Jon J.; Newhall, Christopher G.


    Historical eruptions have produced lahars and floods by perturbing snow and ice at more than 40 volcanoes worldwide. Most of these volcanoes are located at latitudes higher than 35°; those at lower latitudes reach altitudes generally above 4000 m. Volcanic events can perturb mantles of snow and ice in at least five ways: (1) scouring and melting by flowing pyroclastic debris or blasts of hot gases and pyroclastic debris, (2) surficial melting by lava flows, (3) basal melting of glacial ice or snow by subglacial eruptions or geothermal activity, (4) ejection of water by eruptions through a crater lake, and (5) deposition of tephra fall. Historical records of volcanic eruptions at snow-clad volcanoes show the following: (1) Flowing pyroclastic debris (pyroclastic flows and surges) and blasts of hot gases and pyroclastic debris are the most common volcanic events that generate lahars and floods; (2) Surficial lava flows generally cannot melt snow and ice rapidly enough to form large lahars or floods; (3) Heating the base of a glacier or snowpack by subglacial eruptions or by geothermal activity can induce basal melting that may result in ponding of water and lead to sudden outpourings of water or sediment-rich debris flows; (4) Tephra falls usually alter ablation rates of snow and ice but generally produce little meltwater that results in the formation of lahars and floods; (5) Lahars and floods generated by flowing pyroclastic debris, blasts of hot gases and pyroclastic debris, or basal melting of snow and ice commonly have volumes that exceed 105 m3. The glowing lava (pyroclastic flow) which flowed with force over ravines and ridges...gathered in the basin quickly and then forced downwards. As a result, tremendously wide and deep pathways in the ice and snow were made and produced great streams of water (Wolf 1878).

  2. The Evidence from Inclusions in Pumices for the Direct Degassing of Volatiles from the Magma to the Hydrothermal Fluids in the Okinawa Trough

    Institute of Scientific and Technical Information of China (English)

    YU Zenghui; ZHAI Shikui; ZHAO Guangtao


    This article presents the evidence in support of the direct magma degassing as the principal mechanism of volatilesreleasing into the hydrothermal fluids in the Okinawa Trough, as contrasted to the argument for the hydrothermal strippingof volatiles from the volcanic rocks.Laser Raman microprobe and stepped-heating techniques are employed to determine the compositions and contents of thevolatiles in pumices in the middle Okinawa Trough. The results show that the volatiles are similar to the gases in the hy-drothermal fluids and hydrothermal minerals in composition, the mean percent content of each component and variationtrend. This indicates the direct influence of magma degassing on the hydrothermal fluids. In addition, the contents ofvolatiles in pumices are rather low and do not support the hydrothermal stripping as the main mechanism to enrich the fluidswith gases. The results are consistent with the idea that the direct magma degassing is more important than hydrothermalstripping in supplying gases to the hydrothermal fluids in the Okinawa Trough.

  3. Volcanic Processes and Geology of Augustine Volcano, Alaska (United States)

    Waitt, Richard B.; Beget, James E.


    Augustine Island (volcano) in lower Cook Inlet, Alaska, has erupted repeatedly in late-Holocene and historical times. Eruptions typically beget high-energy volcanic processes. Most notable are bouldery debris avalanches containing immense angular clasts shed from summit domes. Coarse deposits of these avalanches form much of Augustine's lower flanks. A new geologic map at 1:25,000 scale depicts these deposits, these processes. We correlate deposits by tephra layers calibrated by many radiocarbon dates. Augustine Volcano began erupting on the flank of a small island of Jurassic clastic-sedimentary rock before the late Wisconsin glaciation (late Pleistocene). The oldest known effusions ranged from olivine basalt explosively propelled by steam, to highly explosive magmatic eruptions of dacite or rhyodacite shed as pumice flows. Late Wisconsin piedmont glaciers issuing from the mountainous western mainland surrounded the island while dacitic eruptive debris swept down the south volcano flank. Evidence is scant for eruptions between the late Wisconsin and about 2,200 yr B.P. On a few south-flank inliers, thick stratigraphically low pumiceous pyroclastic-flow and fall deposits probably represent this period from which we have no radiocarbon dates on Augustine Island. Eruptions between about 5,350 and 2,200 yr B.P. we know with certainty by distal tephras. On Shuyak Island 100 km southeast of Augustine, two distal fall ashes of Augustinian chemical provenance (microprobe analysis of glass) date respectively between about 5,330 and 5,020 yr B.P. and between about 3,620 and 3,360 yr B.P. An Augustine ash along Kamishak Creek 70 km southwest of Augustine dates between about 3,850 and 3,660 yr B.P. A probably Augustinian ash lying within peat near Homer dates to about 2,275 yr B.P. From before 2,200 yr B.P. to the present, Augustine eruptive products abundantly mantle the island. During this period, numerous coarse debris avalanches swept beyond Augustine's coast, most

  4. Investigation of alteration zones in Garandake and Kurokawa

    Energy Technology Data Exchange (ETDEWEB)

    Kinbara, K [Geological Survey of Japan, Kawasaki; Sudo, S


    The eastern part of the Garan area contains both the Myoban and Tsukahara hot springs. The springs are associated with the Sanin Formation, and an alteration zone is present which strikes easterly. Throughout the altered area, a clear zonation of the alteration is present. The zonation runs: silicified - alunitized - kaolin/argillized - montmorillonite/zeolite. In the Kurokawa area, a total of 0.96 km/sup 2/ of altered zones were observed near Suzumejigoku and throughout Yoshikawa and Tawara. The most heavily altered areas were at Kurokawa hot springs and Yoshikawa, where alunite and kaolinite are abundant. The time of alteration is believed to be prior to the deposition of the Hisazumi pumice. Around the Kurokawa hot springs, where the water temperature is 98/sup 0/C, the alteration extends as far as the pumice.

  5. Bedform reconstruction using Terrestrial Laser Scanning at Hunt's Hole, New Mexico: implications for sediment transport in pyroclastic surge deposits and criteria for their identification on Mars (United States)

    Edgar, L.; Grotzinger, J. P.; Ewing, R. C.; Southard, J. B.; Lamb, M. P.


    Pyroclastic surges are dilute flows of gas and rock fragments, typically generated by the interaction of magma and water. Due to their hazardous nature, very little is known about sediment transport during these eruptions. However, the cross-stratified deposits that they leave behind provide an important record of flow conditions, if properly interpreted. In the absence of geologic context (and volcanic indicators such as bombs and lapilli), it may be difficult to distinguish bedforms in pyroclastic surge deposits from those in eolian or fluvial deposits. There has been some debate about the identification of pyroclastic surge deposits on Mars, suggesting a need to establish better criteria for recognizing these deposits in remote sensing applications. The goals of this study are to use physical characteristics to better understand bedform kinematics and gain insight into the flow dynamics of pyroclastic surges, and to establish criteria to distinguish pyroclastic surges from other depositional environments on Mars. Two examples of pyroclastic surge deposits are exposed in Hunt's Hole (HH) and Kilbourne Hole in southern NM. These volcanic craters expose up to 13 m of stratigraphy, dominated by dm-to-m-scale bedforms. The geomorphic pattern around the rim of HH provides 3D exposures at the scale of the bedforms, which enables observations of bedform geometries. We identify several facies, and measure bedform characteristics in the cross-stratified facies. Bedforms range in height from 25-80 cm, and wavelength from 190-460 cm. Stoss slope angles range from 4-11°, and lee slope from 2-18°. Geometries indicate possible bedform merging, as smaller bedforms overtake others to build larger features. Bedform interactions have been described in modern eolian systems, typically in plan-view, but these surge deposits may provide an opportunity to observe them in outcrop in cross-section. We propose that bedforms in pyroclastic surges can be identified by a unique style of

  6. Fabrication of naturel pumice/hydroxyapatite composite for biomedical engineering. (United States)

    Komur, Baran; Lohse, Tim; Can, Hatice Merve; Khalilova, Gulnar; Geçimli, Zeynep Nur; Aydoğdu, Mehmet Onur; Kalkandelen, Cevriye; Stan, George E; Sahin, Yesim Muge; Sengil, Ahmed Zeki; Suleymanoglu, Mediha; Kuruca, Serap Erdem; Oktar, Faik Nuzhet; Salman, Serdar; Ekren, Nazmi; Ficai, Anton; Gunduz, Oguzhan


    We evaluated the Bovine hydroxyapatite (BHA) structure. BHA powder was admixed with 5 and 10 wt% natural pumice (NP). Compression strength, Vickers micro hardness, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction studies were performed on the final NP-BHA composite products. The cells proliferation was investigated by MTT assay and SEM. Furthermore, the antimicrobial activity of NP-BHA samples was interrogated. Variances in the sintering temperature (for 5 wt% NP composites) between 1000 and 1300 °C, reveal about 700 % increase in the microhardness (~100 and 775 HV, respectively). Composites prepared at 1300 °C demonstrate the greatest compression strength with comparable result for 5 wt% NP content (87 MPa), which are significantly better than those for 10 wt% and those that do not include any NP (below 60 MPa, respectively). The results suggested the optimal parameters for the preparation of NP-BHA composites with increased mechanical properties and biocompatibility. Changes in micro-hardness and compression strength can be tailored by the tuning the NP concentration and sintering temperature. NP-BHA composites have demonstrated a remarkable potential for biomedical engineering applications such as bone graft and implant.

  7. Post-depositional fracturing and subsidence of pumice flow deposits: Lascar Volcano, Chile. (United States)

    Whelley, Patrick L; Jay, J; Calder, E S; Pritchard, M E; Cassidy, N J; Alcaraz, S; Pavez, A

    Unconsolidated pyroclastic flow deposits of the 1993 eruption of Lascar Volcano, Chile, have, with time, become increasingly dissected by a network of deeply penetrating fractures. The fracture network comprises orthogonal sets of decimeter-wide linear voids that form a pseudo-polygonal grid visible on the deposit surface. In this work, we combine shallow surface geophysical imaging tools with remote sensing observations and direct field measurements of the deposit to investigate these fractures and their underlying causal mechanisms. Based on ground penetrating radar images, the fractures are observed to have propagated to depths of up to 10 m. In addition, orbiting radar interferometry shows that deposit subsidence of up to 1 cm/year -1 occurred between 1993 and 1996 with continued subsidence occurring at a slower rate thereafter. In situ measurements show that 1 m below the surface, the 1993 deposits remain 5°C to 15°C hotter, 18 years after emplacement, than adjacent deposits. Based on the observed subsidence as well as estimated cooling rates, the fractures are inferred to be the combined result of deaeration, thermal contraction, and sedimentary compaction in the months to years following deposition. Significant environmental factors, including regional earthquakes in 1995 and 2007, accelerated settling at punctuated moments in time. The spatially variable fracture pattern relates to surface slope and lithofacies variations as well as substrate lithology. Similar fractures have been reported in other ignimbrites but are generally exposed only in cross section and are often attributed to formation by external forces. Here we suggest that such interpretations should be invoked with caution, and deformation including post-emplacement subsidence and fracturing of loosely packed ash-rich deposits in the months to years post-emplacement is a process inherent in the settling of pyroclastic material.

  8. Using InSAR for Characterizing Pyroclastic Flow Deposits at Augustine Volcano Across Two Eruptive Cycles (United States)

    McAlpin, D. B.; Meyer, F. J.; Lu, Z.; Beget, J. E.


    Augustine Island is a small, 8x11 km island in South Central Alaska's lower Cook Inlet. It is approximately 280 km southwest of Anchorage, and occupied entirely by its namesake Augustine Volcano. At Augustine Volcano, SAR data suitable for interferometry is available from 1992 to 2005, from March 2006 to April 2007, and from July 2007 to October 2010. Its last two eruptive episodes, in 1986 and 2006, resulted in substantial pyroclastic flow deposits (PFDs) on the Volcano's north flank. Earlier InSAR analyses of the area, from 1992-1999, identified local subsidence, but no volcano-wide deformation indicative of magma-chamber evacuation. In contrast to previous studies, we use InSAR data to determine a range of geophysical parameters for PFDs emplaced during the Augustine's two most recent eruption cycles. Based on InSAR measurements between 1992 and 2010, we reconstruct the deformation behavior of PFDs emplaced during Augustine's last two eruption cycles. Using a combination of InSAR measurements and modeling, we determine the thickness and long-term deformation of overlaying pyroclastic flow deposits emplaced in 1986 and 2006. Consistent with previous observations of pyroclastic flows, we found that the PFDs on Augustine Island rapidly subsided after emplacement due to an initial compaction of the material. We determined the length of this initial settling period and measured the compaction rate. Subsequent to this initial rapid subsidence, we found that PFD deformation slowed to a more persistent, linear, long-term rate, related to cooling of the deposits. We established that the deposits' contraction rate is linearly related to their thickness and measured the contraction rate. Finally, a study of long term coherence properties of the Augustine PFDs showed remarkable stability of the surface over long time periods. This information provides clues on the structural properties and composition of the emplaced material.

  9. Investigating pyroclast ejection dynamics using shock-tube experiments: temperature, grain size and vent geometry effects. (United States)

    Cigala, V.; Kueppers, U.; Dingwell, D. B.


    Explosive volcanic eruptions eject large quantities of gas and particles into the atmosphere. The portion directly above the vent commonly shows characteristics of underexpanded jets. Understanding the factors that influence the initial pyroclast ejection dynamics is necessary in order to better assess the resulting near- and far-field hazards. Field observations are often insufficient for the characterization of volcanic explosions due to lack of safe access to such environments. Fortunately, their dynamics can be simulated in the laboratory where experiments are performed under controlled conditions. We ejected loose natural particles from a shock-tube while controlling temperature (25˚ and 500˚C), overpressure (15MPa), starting grain size distribution (1-2 mm, 0.5-1 mm and 0.125-0.250 mm), sample-to-vent distance and vent geometry. For each explosion we quantified the velocity of individual particles, the jet spreading angle and the production of fines. Further, we varied the setup to allow for different sample-to-gas ratios and deployed four different vent geometries: 1) cylindrical, 2) funnel with a flaring of 30˚, 3) funnel with a flaring of 15˚ and 4) nozzle. The results showed maximum particle velocities up to 296 m/s, gas spreading angles varying from 21˚ to 37˚ and particle spreading angles from 3˚ to 40˚. Moreover we observed dynamically evolving ejection characteristics and variations in the production of fines during the course of individual experiments. Our experiments mechanistically mimic the process of pyroclast ejection. Thus the capability for constraining the effects of input parameters (fragmentation conditions) and conduit/vent geometry on ballistic pyroclastic plumes has been clearly established. These data obtained in the presence of well-documented conduit and vent conditions, should greatly enhance our ability to numerically model explosive ejecta in nature.

  10. The 21,700 yr b.p. Lower Toluca Pumice Plinian Eruption of Nevado de Toluca Volcano (Mexico): Evidences of Magma Mixing Process as Triggering Mechanism. (United States)

    Capra, L.; Arce, J.; Macias, J.


    Approximately 21,700 yr B.P., after a period of quiescence of 4800 yr, Nevado de Toluca volcano erupted, producing the Lower Toluca Pumice deposit. The activity generated a 24-km-high Plinian column that lasted ~11 h and dispersed 2.3 km3 (0.8 km3 dense rock equivalent) of tephra toward the NE, blanketing the Lerma basin, an area occupied today by the city of Toluca, with up to 5 cm of ash. Subsequent eruptive pulses were sub-Plinian in style, accompanied by phreatomagmatic explosions that emplaced surge deposits. Finally, the column collapsed toward the NE with the emplacement of a pumice flow deposit. The high vesicularity of the pumice from the basal Plinian layer, up to 83% by volume, indicates that exsolution was dominantly magmatic, and that pressurization of the magma chamber was probably due to a magma mixing process. Evidence for this includes the compositional range of juvenile products (from 55 to 65 wt% SiO2), as well as the presence of two types of plagioclase, one in equilibrium and the other one with disequilibrium textures and reverse zoning. This suggests input of an andesitic liquid into the dacitic magma chamber. Based on the eruptive record, the most likely future eruptive activity at Nevado de Toluca volcano will be Plinian. Although quiet for more than 3250 yr, Plinian activity could occur after a long period of quiescence, and it could represent a hazard for the entire Toluca basin, where more than one million people live today.

  11. Monitoring and behavior of unsaturated volcanic pyroclastic in the Metropolitan Area of San Salvador, El Salvador. (United States)

    Chávez, José Alexander; Landaverde, José; Landaverde, Reynaldo López; Tejnecký, Václav


    Field monitoring and laboratory results are presented for an unsaturated volcanic pyroclastic. The pyroclastic belongs to the latest plinian eruption of the Ilopango Caldera in the Metropolitan Area of San Salvador, and is constantly affected by intense erosion, collapse, slab failure, sand/silt/debris flowslide and debris avalanche during the rainy season or earthquakes. Being the flowslides more common but with smaller volume. During the research, preliminary results of rain threshold were obtained of flowslides, this was recorded with the TMS3 (a moisture sensor device using time domain transmission) installed in some slopes. TMS3 has been used before in biology, ecology and soil sciences, and for the first time was used for engineering geology in this research. This device uses electromagnetic waves to obtain moisture content of the soil and a calibration curve is necessary. With the behavior observed during this project is possible to conclude that not only climatic factors as rain quantity, temperature and evaporation are important into landslide susceptibility but also information of suction-moisture content, seepage, topography, weathering, ground deformation, vibrations, cracks, vegetation/roots and the presence of crust covering the surface are necessary to research in each site. Results of the field monitoring indicates that the presence of biological soil crusts a complex mosaic of soil, green algae, lichens, mosses, micro-fungi, cyanobacteria and other bacteria covering the slopes surface can protect somehow the steep slopes reducing the runoff process and mass wasting processes. The results obtained during the assessment will help explaining the mass wasting problems occurring in some pyroclastic soils and its possible use in mitigation works and early warning system.

  12. A "simulation chain" to define a Multidisciplinary Decision Support System for landslide risk management in pyroclastic soils (United States)

    Damiano, E.; Mercogliano, P.; Netti, N.; Olivares, L.


    This paper proposes a Multidisciplinary Decision Support System (MDSS) as an approach to manage rainfall-induced shallow landslides of the flow type (flowslides) in pyroclastic deposits. We stress the need to combine information from the fields of meteorology, geology, hydrology, geotechnics and economics to support the agencies engaged in land monitoring and management. The MDSS consists of a "simulation chain" to link rainfall to effects in terms of infiltration, slope stability and vulnerability. This "simulation chain" was developed at the Euro-Mediterranean Centre for Climate Change (CMCC) (meteorological aspects), at the Geotechnical Laboratory of the Second University of Naples (hydrological and geotechnical aspects) and at the Department of Economics of the University of Naples "Federico II" (economic aspects). The results obtained from the application of this simulation chain in the Cervinara area during eleven years of research allowed in-depth analysis of the mechanisms underlying a flowslide in pyroclastic soil.

  13. Sediment-infill volcanic breccia from the Neoarchean Shimoga greenstone terrane, western Dharwar Craton: Implications on pyroclastic volcanism and sedimentation in an active continental margin (United States)

    Manikyamba, C.; Saha, Abhishek; Ganguly, Sohini; Santosh, M.; Lingadevaru, M.; Rajanikanta Singh, M.; Subba Rao, D. V.


    We report sediment-infill volcanic breccia from the Neoarchean Shimoga greenstone belt of western Dharwar Craton which is associated with rhyolites, chlorite schists and pyroclastic rocks. The pyroclastic rocks of Yalavadahalli area of Shimoga greenstone belt host volcanogenic Pb-Cu-Zn mineralization. The sediment-infill volcanic breccia is clast-supported and comprises angular to sub-angular felsic volcanic clasts embedded in a dolomitic matrix that infilled the spaces in between the framework of volcanic clasts. The volcanic clasts are essentially composed of alkali feldspar and quartz with accessory biotite and opaques. These clasts have geochemical characteristics consistent with that of the associated potassic rhyolites from Daginkatte Formation. The rare earth elements (REE) and high field strength element (HFSE) compositions of the sediment-infill volcanic breccia and associated mafic and felsic volcanic rocks suggest an active continental margin setting for their generation. Origin, transport and deposition of these rhyolitic clasts and their aggregation with infiltrated carbonate sediments may be attributed to pyroclastic volcanism, short distance transportation of felsic volcanic clasts and their deposition in a shallow marine shelf in an active continental margin tectonic setting where the rhyolitic clasts were cemented by carbonate material. This unique rock type, marked by close association of pyroclastic volcanic rocks and shallow marine shelf sediments, suggest shorter distance between the ridge and shelf in the Neoarchean plate tectonic scenario.

  14. Inclusion of geopolymers derivate from fly ash and pumice in reinforced concrete (United States)

    Montaño, A. M.; González, C. P.; Castro, D.; Gualdron, G.; Atencio, R.


    This paper presents results of a research project related to the development of alkali-activated geopolymers, synthesized from alumina-silicate minerals (fly ash and pumice) which are added to concrete. Alkali sources used in geopolymer synthesis were sodium hydroxide and sodium silicate solution. New materials were structurally characterized by Infra-Red spectroscopy (IR) and X-Ray Diffraction (XRD). Concretes obtained after geopolymers addition as Portland cement substitutes at 10%, 20% and 30%, were mechanically analysed by compression resistance at 7, 14, 28 and 90 drying days. Results were referred to standard (concrete of Portland cement) allows to know cementitious characteristics of geopolymers are lower than those for standard, but it keeps growing at longer drying time than Portland cement. By Electrochemical Impedance Spectroscopy (EIS) it is found that this new material shows high electrical resistance and have been proved as a protection agent against corrosion in reinforced concrete exhibiting anticorrosive properties higher than those showed by the conventional concrete mixture.

  15. Volcanic glass signatures in spectroscopic survey of newly proposed lunar pyroclastic deposits (United States)

    Besse, S.; Sunshine, J.M.; Gaddis, L.R.


    Moon Mineralogy Mapper spectroscopic observations are used to assess the mineralogy of five sites that have recently been proposed to include lunar dark mantle deposits (DMDs). Volcanic glasses have, for the first time, clearly been identified at the location of three of the proposed pyroclastic deposits. This is the first time that volcanic glasses have been identified at such a small scale on the lunar surface from remote sensing observations. Deposits at Birt E, Schluter, and Walther A appear to be glassy DMDs. Deposits at Birt E and Schluter show (1) morphological evidence suggesting a likely vent and (2) mineralogical evidence indicative of the presence of volcanic glasses. The Walther A deposits, although they show no morphological evidence of vents, have the spectroscopic characteristics diagnostic of volcanic glasses. The deposits of the Freundlich-Sharonov basin are separated in two areas: (1) the Buys-Ballot deposits lack mineralogical and morphological evidence and thus are found to be associated with mare volcanism not with DMDs and (2) the Anderson crater deposits, which do not exhibit glassy DMD signatures, but they appear to be associated with possible vent structures and so may be classifiable as DMDs. Finally, dark deposits near the crater Kopff are found to be associated with likely mare volcanism and not associated with DMDs. The spectral identification of volcanic glass seen in many of the potential DMDs is a strong indicator of their pyroclastic origin.

  16. A "simulation chain" to define a Multidisciplinary Decision Support System for landslide risk management in pyroclastic soils

    Directory of Open Access Journals (Sweden)

    E. Damiano


    Full Text Available This paper proposes a Multidisciplinary Decision Support System (MDSS as an approach to manage rainfall-induced shallow landslides of the flow type (flowslides in pyroclastic deposits. We stress the need to combine information from the fields of meteorology, geology, hydrology, geotechnics and economics to support the agencies engaged in land monitoring and management. The MDSS consists of a "simulation chain" to link rainfall to effects in terms of infiltration, slope stability and vulnerability. This "simulation chain" was developed at the Euro-Mediterranean Centre for Climate Change (CMCC (meteorological aspects, at the Geotechnical Laboratory of the Second University of Naples (hydrological and geotechnical aspects and at the Department of Economics of the University of Naples "Federico II" (economic aspects. The results obtained from the application of this simulation chain in the Cervinara area during eleven years of research allowed in-depth analysis of the mechanisms underlying a flowslide in pyroclastic soil.

  17. Effect of the use nickeliferous laterite and pumice as additives in the performance and durability of the Portland cement


    Rueda-Gualdrón, María Carolina; Vega-Nuñez, Karen Milena; Ríos-Reyes, Carlos Alberto


    This work evaluated the pozzolanic behavior of the niqueliferous laterite of Cerromatoso (Córdoba) and the pumice of Cemex (Boyacá), based on the NTC standards for fine aggregates. The mortars were prepared with additions of 2.5%, 5% and 10% as substitutes of type I Portland cement, which tested to extreme environments (high temperatures and chemical attacks with H2SO4 y MgSO4). Results demonstrates how these alternative materials increase or decrease their puzolanic degree, as well as the ef...

  18. Determination of Trace and Volatile Element Abundance Systematics of Lunar Pyroclastic Glasses 74220 and 15426 Using LA-ICP-MS (United States)

    McIntosh, E. Carrie; Porrachia, Magali; McCubbin, Francis M.; Day, James M. D.


    Since their recognition as pyroclastic glasses generated by volcanic fire fountaining on the Moon, 74220 and 15426 have garnered significant scientific interest. Early studies recognized that the glasses were particularly enriched in volatile elements on their surfaces. More recently, detailed analyses of the interiors of the glasses, as well as of melt inclusions within olivine grains associated with the 74220 glass beads, have determined high H2O, F, Cl and S contents. Such elevated volatile contents seem at odds with evidence from moderately volatile elements (MVE), such as Zn and K, for a volatile- depleted Moon. In this study, we present initial results from an analytical campaign to study trace element abundances within the pyroclastic glass beads. We report trace element data determined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for 15426 and 74220.

  19. 40Ar/39Ar stratigraphy of pyroclastic units from the Cañadas Volcanic Edifice (Tenerife, Canary Islands) and their bearing on the structural evolution


    Huertas Coronel, María José; Arnaud, N.; Ancochea Soto, Eumenio; Cantagrel, Jean Marie; Fúster Casas, José María


    Many felsic pyroclastic units of various types are exposed in different sectors of Tenerife. New 40Ar/39Ar determinations allow them to be placed more precisely in the general volcano-stratigraphic succession. According to geographic distribution, stratigraphic position and isotopic ages, four main pyroclastic phases may be identified. The first, San Juan de la Rambla phase (2.1 Ma), is only known in the north of Tenerife in the Tigaiga massif. The second, Adeje phase (1.8–1.5 Ma), is most co...

  20. Contrasting styles of deep-marine pyroclastic eruptions revealed from Axial Seamount push core records (United States)

    Portner, Ryan A.; Clague, David A.; Helo, Christoph; Dreyer, Brian M.; Paduan, Jennifer B.


    A comprehensive understanding of explosive basaltic eruption processes in the deep-sea relies upon detailed analysis and comparison of the variety of volcaniclastic lithologies on the seafloor, which has been challenged by insufficient sample recovery. A dedicated ROV-based sampling approach using long push cores offers an unparalleled opportunity to fully characterize the diversity of unconsolidated volcaniclastic lithofacies on a recently active seamount. Lithofacies from Axial Seamount record two styles of pyroclastic eruptions, strombolian and phreatomagmatic, at 1.5 km water depth. Strombolian eruptions are represented by abundant fluidal and highly vesicular (up to 50%) vitriclasts within limu o Pele lapilli tuff and tuffaceous mud lithofacies. Lapilli-ash grain size, normal grading, good sorting, rip-up clasts and homogeneous glass geochemistry characterize individual limu o Pele lapilli tuff beds, and imply proximal deposition from a turbidity flow associated with a single eruption (i.e. event bed). Limu o Pele lapilli tuff beds are interbedded with poorly sorted, chemically heterogeneous and bioturbated tuffaceous mud units that preserve reworking and biologic habitation of more distal pyroclastic fallout and dilute turbidity flows. The phreatomagmatic eruption style is preserved by hydrothermal mineral-bearing muddy tuff that exhibits characteristics distinct from lapilli ash and tuffaceous mud lithofacies. Hydrothermal muddy tuff lithofacies are well-sorted and fine-grained with notable components of non-fluidal basaltic ash (∼45%), fluidal ash (∼30%) and accessory lithics (∼25%). Heterogeneous geochemistry of ash shards implies that juvenile components are minimal. The abundance, mineralogy and texture of lithic components (Fe-Mg clays, pyrite, epidote, actinolite, altered glass, basalt/diabase, hydrothermal breccia and agglutinate), and very fine-grain size of basaltic ash, are consistent with phreatomagmatic eruption deposits. A lack of

  1. Lime treatment of an Italian pyroclastic soil: a multi-scale analysis for the correlation of mechanical and chemo-mineralogical effects. (United States)

    Guidobaldi, Giulia; Cambi, Costanza; Cecconi, Manuela; Comodi, Paola; Zucchini, Azzurra


    In recent years, the ever-growing need to minimize costs and environmental impact in the construction of major civil infrastructure has led to the development of a large amount of methods based on the reuse of local materials. In particular, one of the most diffused methods is represented by lime treatment, widely applied in earthwork field to achieve mechanical improvement of otherwise unsuitable fine grained soils. However, unlike fine grained soils, many other types of world-wide common natural soils still represent a geotechnical obstacle. Among these, pyroclastic soils are a typology widely spread in Central and Southern Italy that finds marginal applications in earthworks practice due to the intrinsic complexities in terms of nature, heterogeneity, microstructural features and unsaturated hydro-mechanical behaviour. The need to overcome the described limitations motivates the focus of this work on the geotechnical characterization of pyroclastic deposits along with the increasing attention on the volume-scale and micro-scale features characterization and correlation. The main goal of the present study is to highlight the effects of lime treatment on a zeolite rich pyroclastic soil, focusing on the relationship between macro and micro modifications induced by lime addition. Within this research, an extensive experimental work was developed on a zeolitic pyroclastic soil coming from Orvieto cliff (Vulsini volcanic district, Central Italy). The overall investigation was organized in three phases: the first phase was devoted to the thorough chemo-physical and mineralogical characterization of the raw soil; subsequently, conventional direct shear tests were performed on reconstituted specimens of both raw and lime treated soil (2% and 5% Ca(OH)2) at increasing curing times and stress levels; finally, a wide chemo-mineralogical investigation was carried out on the lime treated samples to gain a more complete knowledge of the reactions responsible for the mechanical

  2. Pyrolysis of plastic waste using alumina-pumice as catalyst

    International Nuclear Information System (INIS)

    Warnijati, S.; Agra, I.B.; Wibowo, W.


    Efforts to convert plastic waste to liquid fuel have been carried out, but the yield was not so promising yet. Various catalysts have been studied to drive the product more to the liquid fuel. In this study, alumina-pumice produced from cheap local materials, was used as catalyst. Solid polyethylene plastic waste was melted in a feed compartment surrounding the tube reactor, and the vapor flowed downward through the catalyst bed which was supported by small glass marbles. Air and water coolers were used to cool and condense the product. Liquid and uncondensable gas were collected in receivers and bottle filled with brine, respectively. The physical properties of a specific liquid product were tested according to the ASTM methods. Liquid and gas products increased with time and temperature, and the rate of liquid and gas formations followed first order reaction. Using 100 g of plastic waste and 40 g of catalyst, the favorable time and temperature of pyrolysis were 105 minutes and 653-673 K, respectively. Under this condition, 86 - 87 % of liquid, 45 - 53 mL/g of gas, and 1% of solid residue were obtained. The quantity of liquid product was higher than the previous work (which was just 70-75 %) and its physical properties were between those of kerosene and diesel oil. The gross heating value of the liquid was 49 796.03 J/g, and the gas burnt with yellow flame and some soot. (Author)

  3. The 15 September 1991 pyroclastic flows at Unzen Volcano (Japan): a flow model for associated ash-cloud surges (United States)

    Fujii, Toshitsugu; Nakada, Setsuya


    Large-scale collapse of a dacite dome in the late afternoon of 15 September 1991 generated a series of pyroclastic-flow events at Unzen Volcano. Pyroclastic flows with a volume of 1×10 6 m 3 (as DRE) descended the northeastern slope of the volcano, changing their courses to the southeast due to topographic control. After they exited a narrow gorge, an ash-cloud surge rushed straight ahead, detaching the main body of the flow that turned and followed the topographic lows to the east. The surge swept the Kita-Kamikoba area, which had been devastated by the previous pyroclastic-flow events, and transported a car as far as 120 m. Following detachment, the surge lost its force after it moved several hundred meters, but maintained a high temperature. The deposits consist of a bottom layer of better-sorted ash (unit 1), a thick layer of block and ash (unit 2), and a thin top layer of fall-out ash (unit 3). Unit 2 overlies unit 1 with an erosional contact. The upper part of unit 2 grades into better-sorted ash. At distal block-and-ash flow deposits, the bottom part of unit 2 also consists of better-sorted ash, and the contact with the unit 1 deposits becomes ambiguous. Video footage of cascading pyroclastic flows during the 1991-1995 eruption, traveling over surfaces without any topographic barriers, revealed that lobes of ash cloud protruded intermittently from the moving head and sides, and that these lobes surged ahead on the ground surface. This fact, together with the inspection by helicopter shortly after the events, suggests that the protruded lobes consisted of better-sorted ash, and resulted in the deposits of unit 1. The highest ash-cloud plume at the Oshigadani valley exit, and the thickest deposition of fall-out ash over Kita-Kamikoba and Ohnokoba, indicate that abundant ash was also produced when the flow passed through a narrow gorge. In the model presented here, the ash clouds from the pyroclastic flows were composed of a basal turbulent current of high

  4. Arenal-type pyroclastic flows: A probabilistic event tree risk analysis (United States)

    Meloy, Anthony F.


    A quantitative hazard-specific scenario-modelling risk analysis is performed at Arenal volcano, Costa Rica for the newly recognised Arenal-type pyroclastic flow (ATPF) phenomenon using an event tree framework. These flows are generated by the sudden depressurisation and fragmentation of an active basaltic andesite lava pool as a result of a partial collapse of the crater wall. The deposits of this type of flow include angular blocks and juvenile clasts, which are rarely found in other types of pyroclastic flow. An event tree analysis (ETA) is a useful tool and framework in which to analyse and graphically present the probabilities of the occurrence of many possible events in a complex system. Four event trees are created in the analysis, three of which are extended to investigate the varying individual risk faced by three generic representatives of the surrounding community: a resident, a worker, and a tourist. The raw numerical risk estimates determined by the ETA are converted into a set of linguistic expressions (i.e. VERY HIGH, HIGH, MODERATE etc.) using an established risk classification scale. Three individually tailored semi-quantitative risk maps are then created from a set of risk conversion tables to show how the risk varies for each individual in different areas around the volcano. In some cases, by relocating from the north to the south, the level of risk can be reduced by up to three classes. While the individual risk maps may be broadly applicable, and therefore of interest to the general community, the risk maps and associated probability values generated in the ETA are intended to be used by trained professionals and government agencies to evaluate the risk and effectively manage the long-term development of infrastructure and habitation. With the addition of fresh monitoring data, the combination of both long- and short-term event trees would provide a comprehensive and consistent method of risk analysis (both during and pre-crisis), and as such

  5. Petrology of a sequence of pyroclastic rocks from the Taurus-Littrow (Apollo 17 landing site)

    International Nuclear Information System (INIS)

    Heiken, G.; McKay, D.S.


    We have studied 13 samples from core 740012 using petrographic methods and electron probe microanalysis. The samples represent most of the major units described in the core by Nagle (1978). Below 5.5 cm, the samples consist entirely of whole and broken orange glass droplets and the partly to completely crystallized black equivalents. We believe these droplets are pyroclastic ejecta from a lunar volcano. The crystalline droplets contain olivine and ilmenite as major phases. Minor phases include pyroxene, Cr-spinels, and metallic Fe. Four different properties of these droplets suggest that a wide range of cooling rates are represented. These properties are the grain shapes, the degree of crystallization, the olivine shapes or textures, and the olivine compositions. Many droplets contain vesicles indicating that a gas phase was involved in the eruption. Above 5.5 cm the core sequence has undergone in situ reworking by micrometeorites and contains ''exotic'' fragments including basalt and agglutinates. We conclude that the sequence below 5.5 cm represents 3.5 b.y. old volcanic pyroclastic ejecta which was deposited in a relativley short time period, was buried, and was subsequently brought to the lunar surface by the Shorty Crater impact where it was subjected to minor in situ reworking

  6. Autotrophic denitrification of synthetic nitrate-contaminated groundwater in up-flow fixed-bed bioreactor by pumice as porous media

    Directory of Open Access Journals (Sweden)

    Masoud Tourang1


    Full Text Available Background: Background: Increasing nitrate concentrations in groundwater resources is considered a common environmental and public health problem worldwide. In this research, an autotrophic up-flow bioreactor with pumice as media was used to study the effects of the sulfur-to-nitrogen (S/N ratio and empty bed contact time (EBCT on nitrate removal efficiency and byproducts. Methods: Experiments were carried out in a 3.47 L up-flow, fixed-bed reactor with 3 sampling ports. To evaluate the overall impact of S/N ratio and EBCT on the performance of the bioreactor, several phases with different S/N ratios and EBCTs were applied. Results: At a constant S/N ratio of 3.85 g/g, as EBCT decreased from 24 hours to 2 hours, the nitrate removal efficiency decreased from 98% to 64%. On the other hand, at the desired EBCT of 4 hr, as S/N ratio decreased from 3.85 to 1.51 g/g, nitrate removal efficiency was reduced from 85% to 32%. Changing the EBCT and S/N ratio also affected the effluent nitrite and sulfate concentrations as byproducts. At the S/N ratio of 3.85 g/g and EBCT of 24 hours, effluent nitrite and sulfate concentrations were 0.1 mg NO2--N/L and 463 mg SO4 2-/L, respectively. Decreasing the S/N ratio to 1.51 g/g and the EBCT to 4 hours caused drastic changes in effluent nitrite and sulfate concentrations. Conclusion: The results indicated that the autotrophic denitrification with thiosulfate as electron donor and pumice as media was feasible and applicable for nitrate contaminated groundwater.


    Directory of Open Access Journals (Sweden)

    Rodríguez Óscar


    Full Text Available Pyroclastic deposits produced by the domes collapse (resurgence of a caldera collapse, at the west of the Honda Grande creek (Paipa, Boyacá-Colombia were related by INGEOMINAS. These deposits fill the valleys of Olitas, Calderitas and a creek at the south of the Alto de los Volcanes reaching distances near to 3 km from the focus between the Alto de los Volcanes and El Mirador Hill.The flows were modeled using 3D Software (Sheridan and Kover, 1996. A volcanic simulation was done obtaining the height and morphology of the volcanic edifice before the collapse during the last eruptive event.

  8. From hot rocks to glowing avalanches: Numerical modelling of gravity-induced pyroclastic density currents and hazard maps at the Stromboli volcano (Italy) (United States)

    Salvatici, Teresa; Di Roberto, Alessio; Di Traglia, Federico; Bisson, Marina; Morelli, Stefano; Fidolini, Francesco; Bertagnini, Antonella; Pompilio, Massimo; Hungr, Oldrich; Casagli, Nicola


    Gravity-induced pyroclastic density currents (PDCs) can be produced by the collapse of volcanic crater rims or due to the gravitational instability of materials deposited in proximal areas during explosive activity. These types of PDCs, which are also known as ;glowing avalanches;, have been directly observed, and their deposits have been widely identified on the flanks of several volcanoes that are fed by mafic to intermediate magmas. In this research, the suitability of landslide numerical models for simulating gravity-induced PDCs to provide hazard assessments was tested. This work also presents the results of a back-analysis of three events that occurred in 1906, 1930 and 1944 at the Stromboli volcano by applying a depth-averaged 3D numerical code named DAN-3D. The model assumes a frictional internal rheology and a variable basal rheology (i.e., frictional, Voellmy and plastic). The numerical modelling was able to reproduce the gravity-induced PDCs' extension and deposit thicknesses to an order of magnitude of that reported in the literature. The best results when compared with field data were obtained using a Voellmy model with a frictional coefficient of f = 0.19 and a turbulence parameter ξ = 1000 m s- 1. The results highlight the suitability of this numerical code, which is generally used for landslides, to reproduce the destructive potential of these events in volcanic environments and to obtain information on hazards connected with explosive-related, mass-wasting phenomena in Stromboli Island and at volcanic systems characterized by similar phenomena.

  9. Dynamic Statistical Models for Pyroclastic Density Current Generation at Soufrière Hills Volcano (United States)

    Wolpert, Robert L.; Spiller, Elaine T.; Calder, Eliza S.


    To mitigate volcanic hazards from pyroclastic density currents, volcanologists generate hazard maps that provide long-term forecasts of areas of potential impact. Several recent efforts in the field develop new statistical methods for application of flow models to generate fully probabilistic hazard maps that both account for, and quantify, uncertainty. However a limitation to the use of most statistical hazard models, and a key source of uncertainty within them, is the time-averaged nature of the datasets by which the volcanic activity is statistically characterized. Where the level, or directionality, of volcanic activity frequently changes, e.g. during protracted eruptive episodes, or at volcanoes that are classified as persistently active, it is not appropriate to make short term forecasts based on longer time-averaged metrics of the activity. Thus, here we build, fit and explore dynamic statistical models for the generation of pyroclastic density current from Soufrière Hills Volcano (SHV) on Montserrat including their respective collapse direction and flow volumes based on 1996-2008 flow datasets. The development of this approach allows for short-term behavioral changes to be taken into account in probabilistic volcanic hazard assessments. We show that collapses from the SHV lava dome follow a clear pattern, and that a series of smaller flows in a given direction often culminate in a larger collapse and thereafter directionality of the flows change. Such models enable short term forecasting (weeks to months) that can reflect evolving conditions such as dome and crater morphology changes and non-stationary eruptive behavior such as extrusion rate variations. For example, the probability of inundation of the Belham Valley in the first 180 days of a forecast period is about twice as high for lava domes facing Northwest toward that valley as it is for domes pointing East toward the Tar River Valley. As rich multi-parametric volcano monitoring dataset become

  10. Application of Acidic Treated Pumice as an Adsorbent for the Removal of Azo Dye from Aqueous Solutions:kinetic, Equilibrium and Thermodynamic Studies

    Directory of Open Access Journals (Sweden)

    Saied Bashiri


    Full Text Available Colored effluents are one of the important environment pollution sources since they contain unused dye compounds which are toxic and less-biodegradable. In this work removal of Acid Red 14 and Acid Red 18 azo dyes was investigated by acidic treated pumice stone as anefficient adsorbent at various experimental conditions. Removal of dye increased with increase in contact time and initial dye concentration, while decreased for increment in solution temperature and pH. Results of the equilibrium study showed that the removal ofAR14 and AR18 followed Freundlich (r2>0.99 and Langmuir (r2>0.99 isotherm models.Maximum sorption capacities were 3.1 and 29.7 mg/g for AR 14 and AR18, namely significantly higher than those reported in the literature, even for activated carbon. Fitting of experimental data onto kinetic models showed the relevance of the pseudo-second order (r2>0.99 and intra-particle diffusion (r2>0.98 models for AR14 and AR18, respectively. For both dyes, the values of external mass transfer coefficient decreased for increasing initial dye concentrations, showing increasing external mass transfer resistance at solid/liquid layer.Desorption experiments confirmed the relevance of pumice stone for dye removal, since the pH regeneration method showed 86% and 89 % regeneration for AR14 and AR18,respectively.

  11. Application of acidic treated pumice as an adsorbent for the removal of azo dye from aqueous solutions: kinetic, equilibrium and thermodynamic studies

    Directory of Open Access Journals (Sweden)

    Samarghandi Mohammad


    Full Text Available Abstract Colored effluents are one of the important environment pollution sources since they contain unused dye compounds which are toxic and less-biodegradable. In this work removal of Acid Red 14 and Acid Red 18 azo dyes was investigated by acidic treated pumice stone as an efficient adsorbent at various experimental conditions. Removal of dye increased with increase in contact time and initial dye concentration, while decreased for increment in solution temperature and pH. Results of the equilibrium study showed that the removal of AR14 and AR18 followed Freundlich (r2>0.99 and Langmuir (r2>0.99 isotherm models. Maximum sorption capacities were 3.1 and 29.7 mg/g for AR 14 and AR18, namely significantly higher than those reported in the literature, even for activated carbon. Fitting of experimental data onto kinetic models showed the relevance of the pseudo-second order (r2>0.99 and intra-particle diffusion (r2>0.98 models for AR14 and AR18, respectively. For both dyes, the values of external mass transfer coefficient decreased for increasing initial dye concentrations, showing increasing external mass transfer resistance at solid/liquid layer. Desorption experiments confirmed the relevance of pumice stone for dye removal, since the pH regeneration method showed 86% and 89% regeneration for AR14 and AR18, respectively.

  12. 3D imaging of vesicles in hyaloclastic fragments - clues to syn-eruptive shear conditions (United States)

    Helo, C.; Flaws, A.; Hess, K.; Franz, A.; Clague, D. A.; Dingwell, D. B.


    3D imaging of stretched vesicles in hyaloclastic fragments has been used to investigate the shear environment of mild pyroclastic eruptions at mid-ocean ridges. X-ray computed tomography offers an attractive non-invasive method to investigate geomaterials at a high resolution for the geometry of the different phases. In this study, we have imaged vesicles within two types of basaltic glass fragments. Stretched, ellipsoid-shaped vesicles in thin limu o Pele and tubular vesicles in a pumiceous fragment. Both types originate from pyroclastic activity on Axial Seamount, Juan de Fuca ridge. Rapid quenching of the glass has prevented extensive bubble relaxation and information about syn-eruptive shear and differential stress conditions is stored, as the dimensions of a stretched bubble directly relates to the extent and mode of shearing. The X-ray tomography data was processed using a set of codes based on edge detection and ellipsoid fitting to acquire quantitative information on the shape of the stretched vesicles. Preliminary results demonstrate, that the geometry of the stretched vesicles, e.g., the elongation of the vesicle with respect to the calculated undeformed radius, is in accordance with simple shear scenarios. Stored differential stress ranges from 5 kPa to 90 kPa with shear rates between 3.2x102 s-1 and 5.7x3 s-1 within a single limu o Pele fragment. This range may be explained by either variable time available for relaxation as the cooling front proceeds through the fragment, complex interplay in space and time between fragmentation and quenching, bubble clusters mutually inhibiting each others extend of deformation, or any combination of these. Bubble relaxation time scales are less then 0.005 s providing constraints on the timeframe for cooling to the glass transition. Qualitative analyses of the tube pumice indicates that the tubular structures grow in length by coalescence of vertically aligned ellipsoid-shaped vesicles, and in width by coalescence of

  13. Pyroclastic Density Current Hazards in the Auckland Volcanic Field, New Zealand (United States)

    Brand, B. D.; Gravley, D.; Clarke, A. B.; Bloomberg, S. H.


    The most dangerous phenomena associated with phreatomagmatic eruptions are dilute pyroclastic density currents (PDCs). These are turbulent, ground-hugging sediment gravity currents that travel radially away from the explosive center at up to 100 m/s. The Auckland Volcanic Field (AVF), New Zealand, consists of approximately 50 eruptive centers, at least 39 of which have had explosive phreatomagmatic behaviour. A primary concern for future AVF eruptions is the impact of dilute PDCs in and around the Auckland area. We combine field observations from the Maungataketake tuff ring, which has one of the best exposures of dilute PDC deposits in the AVF, with a quantitative model for flow of and sedimentation from a radially-spreading, steady-state, depth-averaged dilute PDC (modified from Bursik and Woods, 1996 Bull Volcanol 58:175-193). The model allows us to explore the depositional mechanisms, macroscale current dynamics, and potential impact on societal infrastructure of dilute PDCs from a future AVF eruption. The lower portion of the Maungataketake tuff ring pyroclastic deposits contains trunks, limbs and fragments of Podocarp trees (strength of the wood, we calculate that dynamic pressures (Pdyn) of 10-75 kPa are necessary to topple trees of this size and composition. Thus the two main criteria for model success based on the field evidence include (a) Pdyn must be >10 kPa nearer than 0.9 km to the vent, and 35 kPa can be expected within 3 km from source, ensuring complete destruction of the area; Pdyn > 15 kPa up to 5 km from source, resulting in heavy structural damage to most buildings and near destruction of weaker buildings; and Pdyn <10 kPa at ~6 km from source, resulting in severe damage to weaker structures at least up to this distance. This exercise illustrates our ability to combine field measurements with numerical techniques to explore controlling parameters of dilute PDC dynamics. These tools can be used to understand and estimate the damage potential and

  14. Giant Subaqueous Pyroclastic-Flow Deposits Revealed: Sedimentological Revision of the Holocene Outcrops of Izu-Oshima Island, Japan (United States)

    Hemmi, R.; Yoshida, S.; Nemoto, Y.; Kotake, N.


    The early-to-middle Holocene outcrops of Izu-Oshima island, 100 km SSW of Tokyo, comprise sand- to gravel-size pyroclasts, and exhibit undulating layered structures, with each wavelet typically measuring 5-10 m high. These outcrops were traditionally interpreted as exemplary subaerial "ash-fall" deposits in volcanology textbooks (e.g. Schmincke 2006). Our detailed sedimentological analyses, however, have revealed that it is of pyroclastic density-current origin, the majority of which formed in shallow-marine settings. The present study focuses on the outcrops along the western coast of the Island, where the three-dimensional architecture of the outcrops is superbly exposed, and the existing archaeological framework provides a reliable chronostratigraphic control. The outcrops contain abundant compound bedforms, where small bedforms (dunes/antidunes) occur within the larger bedforms. The compound bedforms exhibit four-fold hierarchy (ranks 1 to 4), and bedforms for each scale display dominantly upstream-accreting geometry. The largest scale (Rank 1) of these bedforms show wavy parallel-bedding geometry (each wavelet typically measuring 5-10 m high and 50-100 m wide). We interpreted the large-scale architecture as sediment waves (gigantic antidunes) similar to the one reported from the shallow-marine deposits associated with AD 79 Mt. Vesuvius eruptions (Milia et al. 2008). Moreover, we have identified crustacean burrows and other trace fossils indicative of a nearshore shallow-marine environment. The pervasive occurrence of these fossils throughout the outcrops and abundant water-escape structures also suggests their subaqueous origin. On the other hand, evidence of subaerial deposition (e.g., paleosols and rootlets) or subaerial reworking (e.g., lahar) is absent, except for some spots on several regional unconformities that divide 10’s-m-thick sediment-wave deposits. On some of these unconformities, ribbon- to fan-shaped lava and/or ancient human-dwelling sites

  15. Volcanic Hazards Associated with the NE Sector of Tacaná Volcano, Guatemala. (United States)

    Hughes, S. R.; Saucedo, R.; Macias, J.; Arce, J.; Garcia-Palomo, A.; Mora, J.; Scolamacchia, T.


    Tacaná volcano, with a height of 4,030 m above sea level, straddles the southern Mexico/Guatemala border. Last active in 1986, when there was a small phreatic event with a duration of a few days, this volcano presents an impending hazard to over 250,000 people. The NE sector of the volcano reveals the violent volcanic history of Tacaná that may be indicative of a serious potential risk to the area. Its earliest pyroclastic history appears to consist of fall, flow, and surge deposits, together with lavas, that have formed megablocks within a series of old debris avalanche deposits. This sector collapse event is overlain by a sequence of pumice fall and ash flow deposits, of which the youngest, less-altered pumice fall deposit shows a minimum thickness of > 4 m, with a dispersal axis trending toward the NE. A second debris avalanche deposit, separated from the above deposits by a paleosoil, is dominated by megablocks of lava and scoriaceous dome material. The current topography around the northeastern flank of the volcano is determined by a third, and most recent debris avalanche deposit, a thick (> 20 m) sequence of six block and ash flows dated at around 16,000 years BP, each separated by 1-10 cm thick ash cloud surge deposit, together with secondary lahar deposits. These are followed by a at least 4 lava flows that extend 2 km down the flank of the volcano. It appears that the most recent pyroclastic event at Tacaná is also recorded in this sector of the volcano: above the block and ash flows occurs a > 1 m thick ash flow unit that can be seen at least 5 km from the vent. Lastly, the Santa Maria Ash fall deposit, produced in 1902, has capped most of the deposits at Tacaná.

  16. Analisis stratigrafi awal kegiatan Gunung Api Gajahdangak di daerah Bulu, Sukoharjo; Implikasinya terhadap stratigrafi batuan gunung api di Pegunungan Selatan, Jawa Tengah

    Directory of Open Access Journals (Sweden)

    Hill Gendoet Hartono


    Full Text Available, Tertiary volcanisms in the Southern Mountains, Central Jawa were started with the formation of pillow lavas having basalt to basaltic andesite in composition. This initial stage volcanism developed into a  construction period of composite volcanoes that consist of alternating basaltic to andesitic lava flows, breccias, and tuffs. The construction period could be followed by a destructive phase, producing pumice-rich pyroclastic breccias, lapillistones, and tuffs of high silica andesite to dacite, or even rhyolite in composition. A stratigraphic measuring section at Bulu area, Sukoharjo Regency, presents an alternat- ing fine-grained andesitic volcaniclastic material and some limestones, with the total thickness is 143.33 m. The thickness of bedded volcaniclastic material tends to be thickening upward from 35 m until 90 m. The grain size of the volcaniclastic material also tends to be coarsening upward from clay size through silt and fine sand to coarse sand and granules. Paleontological analysis on fossils contained in the lime- stone gives an age of Early Miocene (N7 - N9. The volcaniclastic rocks is conformably overlain by the Mandalika Formation, comprising alternating andesitic breccias, lavas, and tuffs. These data imply that the fine-grained volcaniclastic material is an initial product of the construction period of Gajahdangak Volcano in the area, that formed the Mandalika Formation. This Formation is overlain by the Semilir Formation, composed of pumice-rich pyroclastic breccias and tuffs with dacitic composition. This as- sociated volcanic rock reflects a product of a caldera explosion or a destructive phase. Based on the characteristics of lithology of volcanic products from the initial stage, to a construction and destruction period, and compiled age data, the Southern Mountains represent formal volcanic rock units that are able to be divided into many formations.  

  17. Stratigraphy of the Grande Savane Ignimbrite Sequence, Dominica, Lesser Antilles (United States)

    Schneider, S.; Smith, A. L.; Deuerling, K.; Killingsworth, N.; Daly, G.


    The island of Dominica, located in the central part of the Lesser Antilles island arc has eight potentially active volcanoes. One of these, Morne Diablotins, is a composite stratovolcano with several superimposed stratigraphic sequences ranging in age from Pliocene (4-2 Ma) to "Younger" Pleistocene (22,000 and >40,000 years B.P. The ignimbrite sequences form four flow fans that reached both the east and west coasts of the island. One of these flow fans, the Grande Savane, on the west coast of the island, also extends off-shore for a distance of at least 14 km as a distinctive submarine fan. Stratigraphical studies of the on- shore deposits that make up this fan indicate an older sequence of block and ash flow deposits, within which occurs a distinctive vulcanian fall deposit. These are overlain, with no evidence of an intervening paleosol, by a sequence of ignimbrites containing welded horizons (ranging in thickness from around 4 m to 16m). The lack of fall deposits beneath the ignimbrites suggest they may have been formed by instantaneous continuous collapse of the eruption column. This whole succession is overlain by a series of planar and dune bedded pumiceous surge deposits with interbedded pumiceous lapilli fall and ash fall deposits, that extend laterally outside of the main area of ignimbrite deposition. Beds within this upper sequence often contain accretionary lapilli and gas cavities suggesting magma-water interaction. The youngest deposits from Morne Diablotins appear to be valley- fill deposits of both ignimbrite and block and ash flow. A comparison of the of the Grande Savane pyroclastic sequence with the Pointe Ronde (west coast) and Londonderry (east coast) pyroclastic flow fans will provide information on the eruptive history of this major Plinian episode.

  18. Pyroclastic flows generated by gravitational instability of the 1996-97 lava dome of Soufriere Hills Volcano, Montserrat (United States)

    Cole, P.D.; Calder, E.S.; Druitt, T.H.; Hoblitt, R.; Robertson, R.; Sparks, R.S.J.; Young, S.R.


    Numerous pyroclastic flows were produced during 1996-97 by collapse of the growing andesitic lava dome at Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9 ?? 106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9??106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (<1 km) flows had average flow front velocities in the order of 3-10 m/s while flow fronts of the larger runout distance flows (up to 6.5 km) advanced in the order of 15-30 m/s. Many flows were locally highly erosive. Field relations show that development of the fine grained ash cloud surge component was enhanced during the larger sustained events. Periods of elevated dome pyroclastic flow productivity and sustained collapse events are linked to pulses of high magma extrusion rates.

  19. Integrating field, textural, and geochemical monitoring to track eruption triggers and dynamics: a case study from Piton de la Fournaise (United States)

    Gurioli, Lucia; Di Muro, Andrea; Vlastélic, Ivan; Moune, Séverine; Thivet, Simon; Valer, Marina; Villeneuve, Nicolas; Boudoire, Guillaume; Peltier, Aline; Bachèlery, Patrick; Ferrazzini, Valérie; Métrich, Nicole; Benbakkar, Mhammed; Cluzel, Nicolas; Constantin, Christophe; Devidal, Jean-Luc; Fonquernie, Claire; Hénot, Jean-Marc


    The 2014 eruption at Piton de la Fournaise (PdF), La Réunion, which occurred after 41 months of quiescence, began with surprisingly little precursory activity and was one of the smallest so far observed at PdF in terms of duration (less than 2 days) and volume (less than 0.4 × 106 m3). The pyroclastic material was composed of golden basaltic pumice along with fluidal, spiny iridescent and spiny opaque basaltic scoria. Density analyses performed on 200 lapilli reveal that while the spiny opaque clasts are the densest (1600 kg m-3) and most crystalline (55 vol. %), the golden pumices are the least dense (400 kg m-3) and crystalline (8 vol. %). The connectivity data indicate that the fluidal and golden (Hawaiian-like) clasts have more isolated vesicles (up to 40 vol. %) than the spiny (Strombolian-like) clasts (0-5 vol. %). These textural variations are linked to primary pre-eruptive magma storage conditions. The golden and fluidal fragments track the hotter portion of the melt, in contrast to the spiny fragments and lava that mirror the cooler portion of the shallow reservoir. Exponential decay of the magma ascent and output rates through time revealed depressurization of the source during which a stratified storage system was progressively tapped. Increasing syn-eruptive degassing and melt-gas decoupling led to a decrease in the explosive intensity from early fountaining to Strombolian activity. The geochemical results confirm the absence of new input of hot magma into the 2014 reservoir and confirm the emission of a single shallow, differentiated magma source, possibly related to residual magma from the November 2009 eruption. Fast volatile exsolution and crystal-melt separation (second boiling) were triggered by deep pre-eruptive magma transfer and stress field change. Our study highlights the possibility that shallow magma pockets can be quickly reactivated by deep processes without mass or energy (heat) transfer and produce hazardous eruptions with only short

  20. Hot Deformation Behavior of Hot-Extruded AA7175 Through Hot Torsion Tests. (United States)

    Lee, Se-Yeon; Jung, Taek-Kyun; Son, Hyeon-Woo; Kim, Sang-Wook; Son, Kwang-Tae; Choi, Ho-Joon; Oh, Sang-Ho; Lee, Ji-Woon; Hyun, Soong-Keun


    The hot deformation behavior of hot-extruded AA7175 was investigated with flow curves and processing maps through hot torsion tests. The flow curves and the deformed microstructures revealed that dynamic recrystallization (DRX) occurred in the hot-extruded AA7175 during hot working. The failure strain was highest at medium temperature. This was mainly influenced by the dynamic precipitation of fine rod-shaped MgZn2. The processing map determined the optimal deformation condition for the alloy during hot working.

  1. Contrasting patterns of vesiculation in low, intermediate, and high Hawaiian fountains: A case study of the 1969 Mauna Ulu eruption (United States)

    Parcheta, Carolyn E.; Houghton, Bruce F.; Swanson, Donald A.


    Hawaiian-style eruptions, or Hawaiian fountains, typically occur at basaltic volcanoes and are sustained, weakly explosive jets of gas and dominantly coarse, juvenile ejecta (dense spatter to delicate reticulite). Almost the entire range of styles and mass eruption rates within Hawaiian fountaining occurred during twelve fountaining episodes recorded at Mauna Ulu, Kīlauea between May and December 1969. Such diversity in intensity and style is controlled during magma ascent by many processes that can be constrained by the size and shape of vesicles in the 1969 pyroclasts. This paper describes pyroclast vesicularity from high, intermediate, and low fountaining episodes with eruption rates from 0.05 to 1.3 × 106 m3 h− 1. As each eruptive episode progressed, magma ascent slowed in and around the vent system, offering extended time for bubbles to grow and coalesce. Late ejected pyroclasts are thus characterized by populations of fewer and larger vesicles with relaxed shapes. This progression continued in the intervals between episodes after termination of fountain activity. The time scale for this process of shallow growth, coalescence and relaxation of bubbles is typically tens of hours. Rims and cores of pumiceous pyroclasts from moderate to high fountaining episodes record a second post-fragmentation form of vesicle maturation. Partially thermally insulated pyroclasts can have internal bubble populations evolve more dynamically with continued growth and coalescence, on a time scale of only minutes, during transport in the fountains. Reticulite, which formed in a short-lived fountain 540 m in height, underwent late, short-lived bubble nucleation followed by rapid growth of a uniform bubble population in a thermally insulated fountain, and quenched at the onset of permeability before significant coalescence. These contrasting patterns of shallow degassing and outgassing were the dominant controls in determining both the form and duration of fountaining

  2. Stratigraphic, Granulometric and Geochemical Studies of a Major Plinian Eruption on Dominica, Lesser Antilles (United States)

    Smith, A. L.; Daly, G.; Killingsworth, N.; Deuerling, K.; Schneider, S.; Fryxell, J. E.


    The island of Dominica, located in the center of the Lesser Antilles island arc has witnessed, probably within the last 100,000 years, three large volume Plinian eruptions. One of these, associated with the Morne Diablotins center, forms the Grande Savane pyroclastic flow fan, that extends off shore as a distinctive submarine feature for a distance of at least 14 km. Stratigraphical studies of road cuts and well-exposed sea cliffs indicate the fan is composed of an older unit composed of reworked deposits at the base followed by at least four sequences, based on the presence of paleosols, of block and ash flow deposits. The upper unit of block and ash flows is overlain, with no evidence of an intervening paleosol, by a sequence of ignimbrites and pumiceous surges (representing the Plinian eruption). There is no evidence of an initial Plinian fall deposit, so the lowest bed in the succession is an ignimbrite with a highly irregular base that cuts into the underlying block and ash flow deposits, the upper parts of which are colored red due to thermal effects. This lowest ignimbrite is welded (minimum porosity of 15%) throughout its thickness (maximum thickness of greater than 21 m), although a few outcrops near the margins show a thin (20-30 cm) non-welded but lithified zone beneath the welded zone. The remainder of the sequence is composed of lithified ignimbrite that can be subdivided into three units separated by pumiceous surge layers. The ignimbrite succession is overlain, with no obvious break, by a thin fall deposit containing accretionary lapilli and gas cavities, followed by three pumiceous surge deposits (lower and upper show planar stratification and the middle surge shows massive bedding); towards the north the upper two surge deposits are separated by thin pumiceous lapilli fall and ash fall deposits. This surge sequence extends laterally outside of the main area of ignimbrite deposition. The pumice clasts from the ignimbrites are andesitic in

  3. Glucoamylase biosynthesis by cells of Aspergillus niger C sub 58-III immobilized in sintered glass and pumice stones

    Energy Technology Data Exchange (ETDEWEB)

    Fiedurek, J.; Lobarzewski, J. (Uniwersytet Marii Curie-Sklodowskiej, Lublin (Poland). Inst. Mikrobiologii i Biochemii)


    A simple method of A. niger C{sub 58-III} cell immobilization is described. This strain produces extracellular glucoamylase. According to the proposed method A. niger spores were first immobilized by adsorption in sintered glass Rasching rings (RR) or pumice stones (PS). Growing out from spores, A. niger cells produced extracellular glucoamylase. This technique facilitates the culture growth in a filamentous spongy structure of the supports with a continuous accumulation of biomass. After every 24 h it was possible to obtain culture liquid rich in glucoamylase. This procedure can be repeated 30 times using the same sample of immobilized A. niger culture without any loss of glucoamylase activity in the liquid medium. In a 96 h period immobilized A. niger cells produced 300 units . ml{sup -1} whereas a shake culture of this fungus produced only 186 units . ml{sup -1}. (orig.).

  4. Emplacement processes of tuffaceous sandstones at IODP Site C0011B, Nankai Trough, derived from modal analysis (United States)

    Schindlbeck, J. C.; Kutterolf, S.; Freundt, A.


    Tuffaceous sandstones are characterized by their high amount (25 to 75%) of pyroclasts in their modal composition. During IODP Expedition 322 three interbeds of tuffaceous sandstones have been found within a moderately lithified and bioturbated silty claystone sequence in the late Miocene (>7.07 to ~9.0 Ma) upper part of the middle Shikoku Basin facies. Of the three sandstones, units 1 and 2 are single beds whereas unit 3 is composed of three beds. Modal analyses of 29 sandstone thin sections reveal systematic vertical changes within each bed. Generally low-density pyroclasts are enriched at the top (50-60 vol%) of each sandstone bed whereas dense lithic components (25-30 vol%) and minerals (25-30 vol%) are enriched at the bottom. The vertically varying abundance of various types of lithic fragments (sedimentary, volcanoclastic and metamorphic) suggests that these have also been segregated according to their respective densities. The highest amount of fine-grained matrix glass is found in the middle of each bed. Pumice and lithic fragments in the middle and upper parts of the sandstone beds carry ash coatings. For sandstone package 3, in contrast to 1 and 2, core pictures and thin section analyses indicate a subdivision in three units showing the same significant variations in top to bottom enrichment. This suggests three sedimentation events following each other in short time intervals. Glass and mineral chemistry of each sandstone bed show no significant vertical variations. Specifically the matrix glass-shard major element compositions are identical to the pumice clast composition in each tuffaceous sandstone bed. The compositions of amphibole and pyroxene crystals differ only slightly between the sandstone packages. Application of the Ridolfi et al. (2009) thermobarometric calculations to amphiboles of sandstone packages 1 and 2 suggests that each of these was derived from a volcanic system comprising both a deep and a shallow magma reservoir. Thickness and

  5. Solar 'hot spots' are still hot (United States)

    Bai, Taeil


    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22.

  6. Solar hot spots are still hot

    International Nuclear Information System (INIS)

    Bai, T.


    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22. 14 refs

  7. Investigation on the water retention curve of loose pyroclastic ashes of Campania (Italy) and its potential implications on slope stability (United States)

    Comegna, Luca; Damiano, Emilia; Greco, Roberto; Olivares, Lucio; Piccolo, Marco; Picarelli, Luciano


    Loose pyroclastic soils in Campania cover a large amount of steep slopes in the area surrounding the volcanic complex of Somma-Vesuvius. The stability of such slopes is assured by the contribution of suction to soil shear strength, which decreases during rainy periods till the possible attainment of a failure condition. The resulting landslide may evolve in form of a fast flow, if at the onset of instability the soil is nearly saturated and undrained conditions establish, so that soil liquefaction arises. The attainment of instability near saturation is not uncommon, as it requires the slope to have an inclination close to the friction angle of the soil constituting the deposit. The pyroclastic ashes of Campania are typically silty sands with friction angle between 36° and 38°, and small or even null cohesion. Many of the flow-like landslides, occurred during the last decades, were indeed triggered along slopes with inclination around 40°, which are quite common in Campania. As a suction of few kPa may be enough to guarantee the stability of a slope, knowledge of the water retention curve of the soil constituting the deposit is mandatory to correctly predict soil conditions at failure. Several studies report that the pyroclastic ashes of Campania exhibit a quite complex water retention behavior, showing a bimodal porosity distribution and, in some cases, a marked hysteresis domain, possibly enhanced by air entrapment during the infiltration of steep wetting fronts. In this study, a series of vertical infiltration and evaporation cycles have been carried out over two reconstituted specimens, both 20cm high, of pyroclastic ashes collected at the slope of Cervinara. TDR probes and minitensiometers were buried at various depths to provide coupled measurements of soil water content and suction. In order to highlight the possible hysteretic effects due to air entrapment, different hydraulic boundary conditions were established at the base of the two specimens: in one

  8. Les grandes étapes d'évolution d'un volcan andésitique composite: Exemple du Nevado de Toluca (Méxique) (United States)

    Cantagrel, J. M.; Robin, C.; Vincent, P.


    The Nevado de Toluca, in the middle of the Mexican volcanic belt, has been built by two very dissimilar phases. The first one that lasted more than one million years is mainly andesitic. Numerous massive and autobrecciated lava flows of this phase pass outwards into thick conglomeratic formations. The volume of this primitive volcano represents the essential part of the Nevado. After an intense periode of erosion, the second phase is of very short duration (about 100.000 years) and is dacitic in nature. Three main episode can be distinguished: 1. Eruption of important ash and pumice pyroclastic flows related to caldera collapse above a shallow magmatic reservoir. 2. Extrusions of several dacitic domes within and outside the caldera with numerous associated «nuées ardentes» surrounding the volcano. 3. Plinian eruption leading to widespread pumiceous air-fall and to the opening of the present crater inside the caldera. Extrusion of a new small dacitic dome and late phreatic explosions. This second sequence of events can be interpreted as the progressive emptying of the crustal magmatic chamber without refilling by a new magma supply. The most recent activity in the area is represented by monogenic cones and flows of basic andesites outside the central vent system of the Nevado.

  9. HOT 2015

    DEFF Research Database (Denmark)

    Hannibal, Sara Stefansen


    HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud.......HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud....

  10. HotRegion: a database of predicted hot spot clusters. (United States)

    Cukuroglu, Engin; Gursoy, Attila; Keskin, Ozlem


    Hot spots are energetically important residues at protein interfaces and they are not randomly distributed across the interface but rather clustered. These clustered hot spots form hot regions. Hot regions are important for the stability of protein complexes, as well as providing specificity to binding sites. We propose a database called HotRegion, which provides the hot region information of the interfaces by using predicted hot spot residues, and structural properties of these interface residues such as pair potentials of interface residues, accessible surface area (ASA) and relative ASA values of interface residues of both monomer and complex forms of proteins. Also, the 3D visualization of the interface and interactions among hot spot residues are provided. HotRegion is accessible at

  11. Characterization of volcanic deposits and geoarchaeological studies from the 1815 eruption of Tambora volcano

    Directory of Open Access Journals (Sweden)

    Igan Supriatman Sutawidjaja


    Full Text Available eruption of Tambora volcano on the island of Sumbawa in 1815 is generally considered as the largest and the most violent volcanic event in recorded history. The cataclysmic eruption occurred on 11 April 1815 was initiated by Plinian eruption type on 5 April and killed more than 90,000 people on Sumbawa and nearby Lombok. The type plinian eruptions occurred twice and ejected gray pumice and ash, to form stratified deposits as thick as 40-150 cm on the slopes and mostly distributed over the district west of the volcano. Following this, at about 7 pm, on 11 April the first pyroclastic surge was generated and progressively became greater extending to almost whole direction, mainly to the north, west, and south districts from the eruption center. The deadliest volcanic eruption buried ancient villages by pyroclastic surge and flow deposits in almost intact state, thus preserving important archaeological evidence for the period. High preservation in relatively stable conditions and known date of the eruptions provide approximate dating for the archaeological remains. Archaeological excavations on the site uncovered a variety of remains were relieved by ground penetrating radar (GPR to map structural remains of the ancient villages under the pyroclastic surge and flow deposits. These traverses showed that GPR could define structures as deep as 10 m (velocity 0.090 m/ns and could accurately map the thickness of the stratified volcanic deposits in the Tambora village area.    

  12. Experimental analysis of energy absorption behaviour of Al-tube filled with pumice lightweight concrete under axial loading condition (United States)

    Rajak, D. K.; Deshpande, P. G.; Kumaraswamidhas, L. A.


    This Paper aimed at experimental investigation of compressive behaviour of square tube filled with pumice lightweight concrete (PLC). Square section of 20×20×30 mm is investigated, which is the backbone structure. The compression deformation result shows the better folding mechanism, displacement value, and energy absorption. PLC concrete filled with aluminium thin-wall tubes has been revealed superior energy absorption capacity (EAC) under low strain rate at room temperature. Superior EAC resulted as a result of mutual deformation benefit between aluminium section and PLC is also analysed. PLC was characterised by Fourier Transform Infrared (FTIR) and Field Emission Scanning Electron Microscopy (FESEM), and Energy Dispersive X-ray Spectrometry (EDX) analysis for better understanding of material behaviour. Individual and comparative load bearing graphs is logged for better prospective of analysing. Novel approach aimed at validation of porous lightweight concrete for better lightweight EA filler material.

  13. Catalytic Ozonation by Iron Coated Pumice for the Degradation of Natural Organic Matters

    Directory of Open Access Journals (Sweden)

    Alper Alver


    Full Text Available The use of iron-coated pumice (ICP in heterogeneous catalytic ozonation significantly enhanced the removal efficiency of natural organic matters (NOMs in water, due to the synergistic effect of hybrid processes when compared to sole ozonation and adsorption. Multiple characterization analyses (BET, TEM, XRD, DLS, FT-IR, and pHPZC were employed for a systematic investigation of the catalyst surface properties. This analysis indicated that the ICP crystal structure was α-FeOOH, the surface hydroxyl group of ICP was significantly increased after coating, the particle size of ICP was about 200–250 nm, the BET surface area of ICP was about 10.56 m2 g−1, the pHPZC value of ICP was about 7.13, and that enhancement by iron loading was observed in the FT-IR spectra. The contribution of surface adsorption, hydroxyl radicals, and sole ozonation to catalytic ozonation was determined as 21.29%, 66.22%, and 12.49%, respectively. The reaction kinetic analysis with tert-Butyl alcohol (TBA was used as a radical scavenger, confirming that surface ferrous iron loading promoted the role of the hydroxyl radicals. The phosphate was used as an inorganic probe, and significantly inhibited the removal efficiency of catalytic NOM ozonation. This is an indication that the reactions which occur are more dominant in the solution phase.

  14. Upper pliocene-lower pleistocene 40Ar/39Ar ages of Pudahuel ignimbrite (Diamante-Maipo volcanic complex), Central Chile (33.50S)

    International Nuclear Information System (INIS)

    Wall, R.M.; Lara, L.E.; Perez de Arce, C


    The Pudahuel Ignimbrite (Wall et al., 1996) is a characteristic pyroclastic flow deposit placed in the Central Depression, within the Maipo, Mapocho and Cachapoal valleys and, in the eastern side of the Andes, at Yaucha and Papagayos rivers as well (Harrington, 1989; Guerstein, 1993). Close to Santiago, Pudahuel Ignimbrite reaches 40 m in thickness (Dragicevic, 1962) which decreces up to 5 m 60 km to the west. The deposit is compounded by ash and lapilli size pumice within a cineritic matrix with shards, crystals and pumice fragments. Facies of both, laminar and turbulent flow regime can be distinguished, the latter prevailing near topographic barriers and on river plain floors. There, traction structures like cross-bedding and important amount of litic clasts are characteristic. Pumices are rhyolitic in composition (ca. 75% SiO 2 ; Stern et al., 1984; Guerstein, 1993) and have few 0.5-2 mm long biotite crystals. Two 40 Ar/ 39 Ar step-heating experiments on biotite from pumices of two localities, Maipu (Santiago) and Bollenar (Melipilla), show plateau ages of 2.3±0.3 Ma (RW-371) and 2.2±0.3 Ma (RW-1009). In both cases, the first step of the experiment indicates loss of Ar from the cristal rims wich was removed for the plateau calculus only in the second case. For the RW-371 sample an inverse isocrone age of 1.4±0.8 Ma (MSWD: 0.98) was obtained. Previously, the Pudahuel Ignimbrite was dated by Stern et al. (1984) in ca. 450 ka using zircon fission-tracks. Although inconsistent with our new ages, these pleistocene age seemed coherent with the discovery of an Antifer (deer) bone by Tavera (1978) within the ignimbrite close to Santiago. Nevertheless, as was apointed by Tavera (1978) himself, the Antifer genus is recognized in Argentina in the Pliocene-Quaternary interval and make possible a review of the well known 'pleistocene' mammal vertebrate associations in Chile. Another consequence of the new possible pliocene ages is that, since the ignimbrite does not show

  15. HOT 2012

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen......Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  16. Human survival in volcanic eruptions: Thermal injuries in pyroclastic surges, their causes, prognosis and emergency management. (United States)

    Baxter, Peter J; Jenkins, Susanna; Seswandhana, Rosadi; Komorowski, Jean-Christophe; Dunn, Ken; Purser, David; Voight, Barry; Shelley, Ian


    This study of burns patients from two eruptions of Merapi volcano, Java, in 1994 and 2010, is the first detailed analysis to be reported of thermal injuries in a large series of hospitalised victims of pyroclastic surges, one of the most devastating phenomena in explosive eruptions. Emergency planners in volcanic crises in populated areas have to integrate the health sector into disaster management and be aware of the nature of the surge impacts and the types of burns victims to be expected in a worst scenario, potentially in numbers and in severity that would overwhelm normal treatment facilities. In our series, 106 patients from the two eruptions were treated in the same major hospital in Yogyakarta and a third of these survived. Seventy-eight per cent were admitted with over 40% TBSA (total body surface area) burns and around 80% of patients were suspected of having at least some degree of inhalation injury as well. Thirty five patients suffered over 80% TBSA burns and only one of these survived. Crucially, 45% of patients were in the 40-79% TBSA range, with most suspected of suffering from inhalation injury, for whom survival was most dependent on the hospital treatment they received. After reviewing the evidence from recent major eruptions and outlining the thermal hazards of surges, we relate the type and severity of the injuries of these patients to the temperatures and dynamics of the pyroclastic surges, as derived from the environmental impacts and associated eruption processes evaluated in our field surveys and interviews conducted by our multi-disciplinary team. Effective warnings, adequate evacuation measures, and political will are all essential in volcanic crises in populated areas to prevent future catastrophes on this scale. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  17. Plant community establishment on the volcanic deposits following the 2006 nuées ardentes (pyroclastic flows of Mount Merapi: diversity and floristic variation

    Directory of Open Access Journals (Sweden)



    Full Text Available Sutomo, Hobbs R, Cramer V (2011 Plant community establishment on the volcanic deposits following the 2006 nuées ardentes (pyroclastic flows of Mount Merapi: diversity and floristic variation. Biodiversitas 12: 86-91. Species establishment and composition changes in a substrate with little or no biological legacy is known as primary succession, and volcanoes, erosion, landslides, floodplains and glaciers are some type of disturbances that can create this kind of environment. Mount Merapi with its Merapi-type nuées ardentes or pyroclastic flows provides excellent opportunities to study primary succession. Using chronosequence approach, plant establishment and succession was studied, and thus five areas that were affected by nuées ardentes deposits between 1994 and 2006 were chosen as study sites. Results showed that there was a rapid colonization by vascular plants in primary succession as the sites aged. Imperata cylindrica, Eupatorium riparium, Anaphalis javanica, Athyrium macrocarpum, Brachiaria paspaloides, Dichantium caricosum, Selaginella doederleinii, Eleusine indica, Cyperus flavidus, Calliandra callothyrsus and Acacia decurrens were the species mainly responsible in explaining the differences between sites. Furthermore, the species richness and diversity reach their peak 14 years after disturbance.

  18. Paleomagnetic intensity of Aso pyroclastic flows: Additional results with LTD-DHT Shaw method, Thellier method with pTRM-tail check (United States)

    Maruuchi, T.; Shibuya, H.


    For the sake to calibrate the absolute value of the ’relative paleointensity variation curve’ drawn from sediment cores, Takai et al. (2002) proposed to use pyroclastic flows co-bearing with wide spread tephras. The pyroclastic flows prepare volcanic rocks with TRM, which let us determine absolute paleointensity, and the tephras prepare the correlation with sediment stratigraphy. While 4 out of 6 pyroclastic flows are consistent with Sint-800 paleointensity variation curve, two flows, Aso-2 and Aso-4, show weaker and stronger than Sint-800 beyond the error, respectively. We revisited the paleointensity study of Aso pyroclastic flows, adding LTD- DHT Shaw method, the pTRM-tail check in Thellier experiment, and LTD-DHT Shaw method by using volcanic glasses. We prepared 11 specimens from 3 sites of Aso-1 welded tuff for LTD-DHT Shaw method experiments, and obtained 6 paleointensities satisfied a set of strict criteria. They yield an average paleointensity of 21.3±5.8uT, which is smaller than 31.0±3.4uT provided by Takai et al. (2002). For Aso-2 welded tuff, 11 samples from 3 sites were submitted to Thellier experiments, and 6 passed a set of pretty stringent criteria including pTRM-tail check, which is not performed by Takai et al. (2002). They give an average paleointensity of 20.2±1.5uT, which is virtually identical to 20.2±1.0uT (27 samples) given by Takai et al. (2002). Although the success rate was not good in LTD-DHT Shaw method, 2 out of 12 specimens passed the criteria, and gave 25.8±3.4uT, which is consistent with Takai et al. (2002). In addition, we obtained a reliable paleointensity from a volcanic glass in LTD-DHT Shaw method, it gives a paleointensity of 23.6 uT. It is also consitent with Takai et al. (2002). For Aso-3 welded tuff, we performed only LTD-DHT Shaw method for one specimen from one site yet. It gives a paleointensity of 43.0uT, which is higher than 31.8±3.6uT given by Takai et al. (2002). Eight sites were set for Aso-4 welded tuff

  19. Hot Flashes (United States)

    Hot flashes Overview Hot flashes are sudden feelings of warmth, which are usually most intense over the face, neck and chest. Your skin might redden, as if you're blushing. Hot flashes can also cause sweating, and if you ...

  20. Magma fracturing and degassing associated with obsidian formation: The explosive–effusive transition (United States)

    Cabrera, Agustin; Weinberg, Roberto; Wright, Heather M.


    This paper explores the role of melt fracturing in degassing rhyolitic volcanic systems. The Monte Pilato-Rocche Rosse eruptions in Italy evolved from explosive to effusive in style, and H2O content in quenched glasses changed over time from relatively H2O-rich (~ 0.90 wt.%) to H2O-poor dense obsidian (~ 0.10–0.20 wt.%). In addition, healed fractures have been recorded in all different eruptive materials, from the glass of early-erupted tube pumice and rinds of breadcrusted obsidian pyroclasts, to the glass of late-erupted dense obsidian pyroclasts, and throughout the final effusive Rocche Rosse lava flow. These rocks show multiple fault sets, some with crenulated fault planes indicating resumption of viscous flow after faulting, complex obsidian breccias with evidence for post-brecciation folding and stretching, and centimetre- to metre-thick tuffisite preserved in pyroclasts and lava, representing collapsed foam due to fracturing of vesicle walls. These microstructural observations indicate that multiple fracturing and healing events occurred during both explosive and effusive eruptions. H2O content in glass decreases by as much as 0.14 wt.% towards healed fractures/faults and decreases in stretched obsidian breccias towards regions of intense brecciation. A drop in pressure and/or increase in temperature along fractures caused diffusive H2O migration through melt towards fracture surfaces. Repetitive and pervasive fracturing and healing thereby create conditions for diffusive H2O loss into fractures and subsequent escape through permeable paths. This type of progressive magma degassing provides a potential mechanism to explain the formation of dense obsidian and the evolution from explosive to effusive eruption style.

  1. HOT 2011

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet....

  2. Merging field mapping and modeling to interpret the lithofacies variations from unsteady ash-rich pyroclastic density currents on uneven topography (United States)

    Doronzo, Domenico; Dellino, Pierfrancesco; Sulpizio, Roberto; Lucchi, Federico


    In order to obtain significant volcanological results from computer simulations of explosive eruptions, one either needs a systematic statistical approach to test a wide range of initial and boundary conditions, or needs using a well-constrained field case study. Here we followed the second approach, using data obtained from field mapping of the Grotta dei Palizzi 2 pyroclastic deposits (Vulcano Island, Italy) as input for numerical modeling. This case study deals with impulsive phreatomagmatic explosions that generated ash-rich pyroclastic density currents, interacting with the high topographic obstacle of the La Fossa Caldera rim. We demonstrate that by merging field data with 3D numerical simulation it is possible to highlight the details of the dynamical current-terrain interaction, and to interpret the lithofacies variations of the associated deposits as a function of topography-induced sedimentation rate. Results suggest that a value of the sedimentation rate lower than 5 kg/m2s at the bed load can still be sheared by the overlying current, producing tractional structures in the deposit. Instead, a sedimentation rate in excess of that threshold can preclude the formation of tractional structures, producing thick massive deposits. We think that the approach used in this study could be applied to other case studies to confirm or refine such threshold value of the sedimentation rate, which is to be considered as an upper value as for the limitations of the numerical model.

  3. Suitability of simple rheological laws for the numerical simulation of dense pyroclastic flows and long-runout volcanic avalanches (United States)

    Kelfoun, Karim


    The rheology of volcanic rock avalanches and dense pyroclastic flows is complex, and it is difficult at present to constrain the physics of their processes. The problem lies in defining the most suitable parameters for simulating the behavior of these natural flows. Existing models are often based on the Coulomb rheology, sometimes with a velocity-dependent stress (e.g., Voellmy), but other laws have also been used. Here I explore the characteristics of flows, and their deposits, obtained on simplified topographies by varying source conditions and rheology. The Coulomb rheology, irrespective of whether there is a velocity-dependent stress, forms cone-shaped deposits that do not resemble those of natural long-runout events. A purely viscous or a purely turbulent flow can achieve realistic velocities and thicknesses but cannot form a deposit on slopes. The plastic rheology, with (e.g., Bingham) or without a velocity-dependent stress, is more suitable for the simulation of dense pyroclastic flows and long-runout volcanic avalanches. With this rheology, numerical flows form by pulses, which are often observed during natural flow emplacement. The flows exhibit realistic velocities and deposits of realistic thicknesses. The plastic rheology is also able to generate the frontal lobes and lateral levées which are commonly observed in the field. With the plastic rheology, levée formation occurs at the flow front due to a divergence of the driving stresses at the edges. Once formed, the levées then channel the remaining flow mass. The results should help future modelers of volcanic flows with their choice of which mechanical law corresponds best to the event they are studying.

  4. The Utilization of Remotely Sensed Data to Analyze the Estimated Volume of Pyroclastic Deposits and Morphological Changes Caused by the 2010-2015 Eruption of Sinabung Volcano, North Sumatra, Indonesia (United States)

    Yulianto, Fajar; Suwarsono; Sofan, Parwati


    In this research, remotely sensed data has been used to estimate the volume of pyroclastic deposits and analyze morphological changes that have resulted from the eruption of Sinabung volcano. Topographic information was obtained from these data and used for rapid mapping to assist in the emergency response. Topographic information and change analyses (pre- and syn- eruption) were conducted using digital elevation models (DEMs) for the period 2010-2015. Advanced spaceborne thermal emission and reflection radiometer (ASTER) global digital elevation model (GDEM) data from 2009 were used to generate the initial DEMs for the condition prior to the eruption of 2010. Satellite pour l'observation de la terre 6 (SPOT 6) stereo images acquired on 21 June 2015 and were used to make a DEM for that time. The results show that the estimated total volume of lava and pyroclastic deposits, produced during the period 2010 to mid-2015 is approximately 2.8 × 108 m3. This estimated volume of pyroclastic deposits can be used to predict the magnitude of future secondary lahar hazards, which are also related to the capacity of rivers in the area. Morphological changes are illustrated using cross-sectional analysis of the deposits, which are currently deposited to the east, southeast and south of the volcano. Such analyses can also help in forecasting the direction of the future flow hazards. The remote sensing and analysis methods used at Sinabung can also be applied at other volcanoes and to assess the threats of other types of hazards such as landslides and land subsidence.

  5. HOT 2014

    DEFF Research Database (Denmark)

    Lund, Henriette

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  6. HOT 2010

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  7. HOT 2013

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  8. Suppression of sawtooth oscillations due to hot electrons and hot ions

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Berk, H.L.


    The theory of m = 1 kink mode stabilization is discussed in the presence of either magnetically trapped hot electrons or hot ions. For instability hot ion requires particles peaked inside the q = 1 surface, while hot electrons require that its pressure profile be increasing at the q = 1 surface. Experimentally observed sawtooth stabilization usually occurs with off-axis heating with ECRH and near axis heating with ICRH. Such heating may produce the magnetically trapped hot particle pressure profiles that are consistent with theory. 17 refs., 2 figs

  9. Surface-discharging hydrothermal systems at Yucca Mountain: Examining the evidence

    International Nuclear Information System (INIS)

    Levy, S.S.


    This paper discusses exposures of altered rock that have been thought to form by recent discharge of water from depth. They were examined to address a concern that hydrothermal processes could compromise the isolation capability of a potential high-level nuclear waste repository at Yucca Mountain. Suspected hot-spring and hydrothermal-vent deposits are more likely the products of infiltration of meteoric water into newly deposited and still-hot pyroclastic flows >12 Myr ago

  10. Database for geologic maps of pyroclastic-flow and related deposits of the 1980 eruptions of Mount St. Helens, Washington (United States)

    Furze, Andrew J.; Bard, Joseph A.; Robinson, Joel; Ramsey, David W.; Kuntz, Mel A.; Rowley, Peter D.; MacLeod, Norman S.


    This publication releases digital versions of the geologic maps in U.S. Geological Survey Miscellaneous Investigations Map 1950 (USGS I-1950), “Geologic maps of pyroclastic-flow and related deposits of the 1980 eruptions of Mount St. Helens, Washington” (Kuntz, Rowley, and MacLeod, 1990) ( The 1980 Mount St. Helens eruptions on May 18, May 25, June 12, July 22, August 7, and October 16–18 produced pyroclastic-flow and related deposits. The distribution and morphology of these deposits, as determined from extensive field studies and examination of vertical aerial photographs, are shown on four maps in I-1950 (maps A–D) on two map sheets. Map A shows the May 18, May 25, and June 12 deposits; map B shows the July 22 deposits; map C shows the August 7 deposits; and map D shows the October 16–18 deposits. No digital geospatial versions of the geologic data were made available at the time of publication of the original maps. This data release consists of attributed vector features, data tables, and the cropped and georeferenced scans from which the features were digitized, in order to enable visualization and analysis of these data in GIS software. This data release enables users to digitally re-create the maps and description of map units of USGS I-1950; map sheet 1 includes text sections (Introduction, Physiography of Mount St. Helens at the time of the 1980 eruptions, Processes of the 1980 eruptions, Deposits of the 1980 eruptions, Limitations of the maps, Preparation of the maps, and References cited) and associated tables and figures that are not included in this data release.

  11. Merging field mapping and numerical simulation to interpret the lithofacies variations from unsteady pyroclastic density currents on uneven terrain: The case of La Fossa di Vulcano (Aeolian Islands, Italy) (United States)

    Doronzo, Domenico M.; Dellino, Pierfrancesco; Sulpizio, Roberto; Lucchi, Federico


    In order to obtain results from computer simulations of explosive volcanic eruptions, one either needs a statistical approach to test a wide range of initial and boundary conditions, or needs using a well-constrained field case study via stratigraphy. Here we followed the second approach, using data obtained from field mapping of the Grotta dei Palizzi 2 pyroclastic deposits (Vulcano Island, Italy) as input for numerical modeling. This case study deals with impulsive phreatomagmatic explosions of La Fossa Cone that generated ash-rich pyroclastic density currents, interacting with the topographic high of the La Fossa Caldera rim. One of the simplifications in dealing with well-sorted ash (one particle size in the model) is to highlight the topographic effects on the same pyroclastic material in an unsteady current. We demonstrate that by merging field data with 3D numerical simulation results it is possible to see key details of the dynamical current-terrain interaction, and to interpret the lithofacies variations of the associated deposits as a function of topography-induced sedimentation (settling) rate. Results suggest that a value of the sedimentation rate lower than 5 kg/m2 s at the bed load can still be sheared by the overlying current, producing tractional structures (laminae) in the deposits. Instead, a sedimentation rate higher than that threshold can preclude the formation of tractional structures, producing thicker massive deposits. We think that the approach used in this study could be applied to other case studies (both for active and ancient volcanoes) to confirm or refine such threshold value of the sedimentation rate, which is to be considered as an upper value as for the limitations of the numerical model.


    International Nuclear Information System (INIS)

    Winn, Joshua N.; Albrecht, Simon; Fabrycky, Daniel; Johnson, John Asher


    We show that stars with transiting planets for which the stellar obliquity is large are preferentially hot (T eff > 6250 K). This could explain why small obliquities were observed in the earliest measurements, which focused on relatively cool stars drawn from Doppler surveys, as opposed to hotter stars that emerged more recently from transit surveys. The observed trend could be due to differences in planet formation and migration around stars of varying mass. Alternatively, we speculate that hot-Jupiter systems begin with a wide range of obliquities, but the photospheres of cool stars realign with the orbits due to tidal dissipation in their convective zones, while hot stars cannot realign because of their thinner convective zones. This in turn would suggest that hot Jupiters originate from few-body gravitational dynamics and that disk migration plays at most a supporting role.

  13. Long-term contraction of pyroclastic flow deposits at Augustine Volcano using InSAR (United States)

    McAlpin, D. B.; Meyer, F. J.; Lu, Z.; Beget, J. E.


    Augustine Island is a small, 8x11 km island in South Central Alaska's lower Cook Inlet. It is approximately 280 km southwest of Anchorage, and occupied entirely by its namesake Augustine Volcano. The volcano's nearly symmetrical central cone reaches an altitude of 1260 m, and the surrounding island is composed almost entirely of volcanic deposits. It is the youngest and most frequently active volcano in the lower Cook Inlet, with at least seven known eruptions since the beginning of written records in 1812. Its two most recent eruptions occurred during March-August 1986, and January-March 2006 The 1986 and 2006 Augustine eruptions produced significant pyroclastic flow deposits (PFDs) on the island, both which have been well mapped by previous studies. Subsidence of material deposited by these pyroclastic flows has been measured by InSAR data, and can be attributed to at least four processes: (1) initial, granular settling; (2) thermal contraction; (3) loading of 1986 PFDs from overlying 2006 deposits; and (4) continuing subsidence of 1986 PFDs buried beneath 2006 flows. For this paper, SAR data for PFDs from Augustine Volcano were obtained from 1992 through 2005, from 2006-2007, and from 2007-2011. These time frames provided InSAR data for long-term periods after both 1986 and 2006 eruptions. From time-series analysis of these datasets, deformation rates of 1986 PFDs and 2006 PFDs were determined, and corrections applied where newer deposits were emplaced over old deposits. The combination of data sets analyzed in this study enabled, for the first time, an analysis of long and short term subsidence rates of volcanic deposits emplaced by the two eruptive episodes. The generated deformation time series provides insight into the significance and duration of the initial settling period and allows us to study the thermal regime and heat loss of the PFDs. To extract quantitative information about thermal properties and composition of the PFDs, we measured the thickness

  14. Pyroclastic rocks: another manifestation of ultramafic volcanism on Gorgona Island, Colombia (United States)

    Echeverría, Lina M.; Aitken, Bruce G.


    Tertiary ultramafic volcanism on Gorgona Island, Colombia, is manifested not only by komatiite flows, but also by a more voluminous sequence of tuff breccias, which is cut by comagmatic picrite dikes. The ultramafic pyroclastic rocks are chaotic to stratified mixtures of angular to subrounded glassy picritic blocks and a fine grained volcaniclastic matrix that consists primarily of plastically-deformed, glassy globules. The entire deposit is interpreted to have formed by an explosive submarine eruption of phenocryst-laden picritic magma. MgO contents of tuff breccias and picrite dikes range from 21 to 27 wt%. Relative to nearby komatiite flows, these rocks are MgO-rich, and FeO-, TiO2- and Ni-poor. HREE concentrations are very low (

  15. Fragmentation, nucleation and migration of crystals and bubbles in the Bishop Tuff rhyolitic magma

    Energy Technology Data Exchange (ETDEWEB)

    Gualda, G.; Cook, D.L.; Chopra, R.; Qin, L.; Anderson, A.T.; Rivers, M. (UC)


    The Bishop Tuff (USA) is a large-volume, high-silica pyroclastic rhyolite. Five pumice clasts from three early stratigraphic units were studied. Size distributions were obtained using three approaches: (1) crushing, sieving and winnowing (reliable for crystals >100 {micro}m); (2) microscopy of 1 mm{sup 3} fragments (preferable for crystals <100 {micro}m); and (3) computerised X-ray microtomography of {approx}1 cm{sup 3} pumice pieces. Phenocryst fragments coated with glass are common, and the size distributions for all crystals are concave-upward, indicating that crystal fragmentation is an important magmatic process. Three groups are recognised, characterised by: (1) high-density (0.759-0.902 g cm{sup -3}), high-crystal content (14.4-15.3 wt.%) and abundant large crystals (>800 {micro}m); concave-downward size distributions for whole crystals indicate late-stage growth with limited nucleation, compatible with the slow cooling of a large, gas-saturated, stably stratified magma body; (2) low-density (0.499 g cm{sup -3}), low-crystal content (6.63 wt.%) and few large crystals; the approximately linear size distribution reveals that nucleation was locally important, perhaps close to the walls; and (3) intermediate characteristics in all respects. The volumetric fraction of bubbles inversely correlates with the number of large crystals. This is incompatible with isobaric closed-system crystallisation, but can be explained by sinking of large crystals and rise of bubbles in the magma.

  16. Eruption Depths, Magma Storage and Magma Degassing at Sumisu Caldera, Izu-Bonin Arc: Evidence from Glasses and Melt Inclusions (United States)

    Johnson, E. R.


    Island arc volcanoes can become submarine during cataclysmal caldera collapse. The passage of a volcanic vent from atmospheric to under water environment involves complex modifications of the eruption style and subsequent transport of the pyroclasts. Here, we use FTIR measurements of the volatile contents of glass and melt inclusions in the juvenile pumice clasts in the Sumisu basin and its surroundings (Izu-Bonin arc) to investigate changes in eruption depths, magma storage and degassing over time. This study is based on legacy cores from ODP 126, where numerous unconsolidated (250 m), massive to normally graded pumice lapilli-tuffs were recovered over four cores (788C, 790A, 790B and 791A). Glass and clast geochemistry indicate the submarine Sumisu caldera as the source of several of these pumice lapilli-tuffs. Glass chips and melt inclusions from these samples were analyzed using FTIR for H2O and CO2 contents. Glass chips record variable H2O contents; most chips contain 0.6-1.6 wt% H2O, corresponding to eruption depths of 320-2100 mbsl. Variations in glass H2O and pressure estimates suggest that edifice collapse occurred prior-to or during eruption of the oldest of these samples, and that the edifice may have subsequently grown over time. Sanidine-hosted melt inclusions from two units record variably degassed but H2O-rich melts (1.1-5.6 wt% H2O). The lowest H2O contents overlap with glass chips, consistent with degassing and crystallization of melts until eruption, and the highest H2O contents suggest that large amounts of degassing accompanied likely explosive eruptions. Most inclusions, from both units, contain 2-4 wt% H2O, which further indicates that the magmas crystallized at pressures of ~50-100 MPa, or depths ~400-2800 m below the seafloor. Further glass and melt inclusion analyses, including major element compositions, will elucidate changes in magma storage, degassing and evolution over time.

  17. Drilling a ';super-volcano': volcanology of the proximal rhyolitic volcanic succession in the HOTSPOT deep drill hole, Idaho, Yellowstone hot-spot track (United States)

    Knott, T.; Branney, M. J.; Christiansen, E. H.; Reichow, M. K.; McCurry, M. O.; Shervais, J. W.


    Project HOTSPOT seeks to understand the bimodal volcanism in the Yellowstone-Snake River large igneous province, including the magma generation and eruption history. The 1.9 km-deep Kimberly well in southern Idaho, USA, reveals a proximal mid-Miocene rhyolitic and basaltic volcanic succession marginal to the postulated Twin Falls eruptive centre. Three rhyolitic eruption-units (each we interpret to record a single eruption, based on core descriptions) are separated by basaltic lavas, palaeosols and volcaniclastic sediments, and are being dated by 40Ar-39Ar on plagioclases. Whole-rock and mineral chemical data, from each unit, has been compiled to facilitate correlation with well-studied eruption-units at more distal outcrops, where we have detailed chemical, palaeomagnetic and radiometric characterisation. Results will contribute to frequency and volume calculations for some of the most catastrophic super-eruptions in Earth history. As the volcanism is of Snake River (SR)-type and lacks typical pumice fall deposits and low-moderate grade ignimbrites, interpreting the physical origin of the units can be difficult; many SR-type rheomorphic ignimbrites are flow-banded and resemble lavas, and the distinction between these and true lavas involves interpretation of critical evidence from lower contacts (e.g., distinguishing basal lava autobreccias from peperitic contacts, which can occur at the bases of SR-type lavas and ignimbrites). The lower most eruption-unit, ';Kimberly Rhyolite 1,' is >1323 m thick (base not seen) and suggests ponding in the margin of a caldera. Few vitroclastic textures are preserved, but a rheomorphic ignimbrite origin is inferred by folded fabrics and scattered obsidian chips (2-5 mm in size) within a thick lithoidal zone, which passes sharply upwards into a 39.6 m thick vitrophyre with an autobrecciated top and it is overlain by 18 m (caldera?) lake sediments. However, lithic mesobreccia, that characterise caldera fills elsewhere, are not seen

  18. The Riscos Bayos Ignimbrites of the Caviahue-Copahue volcanic caldera complex, southern Andes, Argentina (United States)

    Colvin, A.; Merrill, M.; Demoor, M.; Goss, A.; Varekamp, J. C.


    The Caviahue-Copahue volcanic complex (38 S, 70 W) is located on the eastern margin of the active arc in the southern Andes, Argentina. Volcán Copahue, an active stratovolcano which hosts an active hydrothermal system, sits on the southwestern rim of the elliptical Caviahue megacaldera (17 x 15 km). The caldera wall sequences are up to 0.6 km thick and consist of lavas with 51 -69 percent SiO2 and 0.2 - 5 percent MgO as well as breccias, dikes, sills, domes and minor ignimbrites. Andesitic lava flows also occur within the caldera, and are overlain by a chaotic complex of silicic lava and intracaldera pyroclastic flow deposits. The eastern wall sequence is capped by several extracaldera ignimbrites (Riscos Bayos formation) of about 50 m maximum thickness which extend 30 km east-southeast of the caldera. Young back-arc alkali basalt scoria cones occur east of the Caviahue-Copahue volcanic complex. The eruption of the Riscos Bayos formation at about 1.1 Ma (12 km cubed) may be related to the Caviahue caldera formation, though the Riscos Bayos account for only about 7 percent of the caldera volume. The Riscos Bayos consists of three lithic-bearing flow units: a grey basal flow, a tan middle flow and a bright-white, highly indurated uppermost flow. The basal unit consists of white and grey pumice fragments, black scoria clasts, black obsidian clasts (which give it the grey color), and accidental volcanic lithics set in a matrix of ash and crystals. The middle unit is composed of large mauve pumice fragments and accidental lithics set in a fine tan ash groundmass. The uppermost unit is composed of small pink and white pumice fragments set in a matrix of fine white ash. These pumices carry quartz and biotite crystals, whereas the lower two units are orthopyroxene-bearing trachy-dacites. The Caviahue-Copahue magmas all bear arc signatures, but possibly some magma mixing between the andesitic arc magmas and basaltic back-arc magmas may have occurred. The evolved top layer

  19. Hot Surface Ignition


    Tursyn, Yerbatyr; Goyal, Vikrant; Benhidjeb-Carayon, Alicia; Simmons, Richard; Meyer, Scott; Gore, Jay P.


    Undesirable hot surface ignition of flammable liquids is one of the hazards in ground and air transportation vehicles, which primarily occurs in the engine compartment. In order to evaluate the safety and sustainability of candidate replacement fuels with respect to hot surface ignition, a baseline low lead fuel (Avgas 100 LL) and four experimental unleaded aviation fuels recommended for reciprocating aviation engines were considered. In addition, hot surface ignition properties of the gas tu...

  20. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, H.; Wade, J.


    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  1. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Hugh [ARIES Collaborative, New York, NY (United States); Wade, Jeremy [ARIES Collaborative, New York, NY (United States)


    While it is important to make the equipment (or "plant") in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10%-30% of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) in five houses near Syracuse, NY, and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  2. Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces. (United States)

    Zerbe, Brandon S; Hall, David R; Vajda, Sandor; Whitty, Adrian; Kozakov, Dima


    In the context of protein-protein interactions, the term "hot spot" refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research, a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening.

  3. Energy flux of hot atoms

    International Nuclear Information System (INIS)

    Wotzak, G.P.; Kostin, M.D.


    The process in which hot atoms collide with thermal atoms of a gas, transfer kinetic energy to them, and produce additional hot atoms is investigated. A stochastic method is used to obtain numerical results for the spatial and time dependent energy flux of hot atoms in a gas. The results indicate that in hot atom systems a front followed by an intense energy flux of hot atoms may develop

  4. Modelling Hot Air Balloons. (United States)

    Brimicombe, M. W.


    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  5. Geophysical evidence for widespread reversely magnetised pyroclastics in the western Taupo Volcanic Zone (New Zealand)

    International Nuclear Information System (INIS)

    Soengkono, S.; Hochstein, M.P.; Smith, I.E.M.; Itaya, T.


    Low-altitude aeromagnetic data show that negative residual anomalies are widespread over the western Taupo Volcanic Zone, New Zealand. Paleomagnetic study of eight rhyolitic ignimbrite units and two lava flows which are exposed in this area, together with new K-Ar dates of four of the ignimbrite units, indicate that the two lava units and seven of the ignimbrite units were erupted during the Matuyama geomagnetic epoch (>0.73 Ma B.P.) and suggest that rhyolitic volcanism in the western Taupo Volcanic Zone began as early as 1.6 Ma B.P. These results provide the basis for an interpretation of our aeromagnetic data which confirms the hypothesis that the magnetic anomalies observed in the western Taupo Volcanic Zone are caused by widespread, thick, reversely magnetised pyroclastic and lava flows. Magnetic modelling also allows thickness estimates of the younger, normally magnetised cover rocks which reach a maximum thickness of the order of 0.5 km in the Mangakino area. The magnetic structure of these volcanic rocks defines approximately the lateral extent of the Mangakino Volcanic Centre. (author). 41 refs., 2 figs., 3 tabs

  6. Probabilistic-numerical assessment of pyroclastic current hazard at Campi Flegrei and Naples city: Multi-VEI scenarios as a tool for "full-scale" risk management. (United States)

    Mastrolorenzo, Giuseppe; Palladino, Danilo M; Pappalardo, Lucia; Rossano, Sergio


    The Campi Flegrei volcanic field (Italy) poses very high risk to the highly urbanized Neapolitan area. Eruptive history was dominated by explosive activity producing pyroclastic currents (hereon PCs; acronym for Pyroclastic Currents) ranging in scale from localized base surges to regional flows. Here we apply probabilistic numerical simulation approaches to produce PC hazard maps, based on a comprehensive spectrum of flow properties and vent locations. These maps are incorporated in a Geographic Information System (GIS) and provide all probable Volcanic Explosivity Index (VEI) scenarios from different source vents in the caldera, relevant for risk management planning. For each VEI scenario, we report the conditional probability for PCs (i.e., the probability for a given area to be affected by the passage of PCs in case of a PC-forming explosive event) and related dynamic pressure. Model results indicate that PCs from VEIextreme event) would affect a large part of the Campanian Plain to the north and the city of Naples to the east. Thus, in case of renewal of eruptive activity at Campi Flegrei, up to 3 million people will be potentially exposed to volcanic hazard, pointing out the urgency of an emergency plan. Considering the present level of uncertainty in forecasting the future eruption type, size and location (essentially based on statistical analysis of previous activity), we suggest that appropriate planning measures should face at least the VEI 5 reference scenario (at least 2 occurrences documented in the last 10 ka).

  7. Software Simulation of Hot Tearing

    DEFF Research Database (Denmark)

    Andersen, S.; Hansen, P.N.; Hattel, Jesper Henri


    The brittleness of a solidifying alloy in a temperature range near the solidus temperature has been recognised since the fifties as the mechanism responsible for hot tearing. Due to this brittlenes, the metal will crack under even small amounts of strain in that temperature range. We see these hot...... tears in castings close to hot centres, where the level of strain is often too high.Although the hot tearing mechanism is well understood, until now it has been difficult to do much to reduce the hot tearing tendency in a casting. In the seventies, good hot tearing criteria were developed by considering...... the solidification rate and the strain rate of the hot tear prone areas. But, until recently it was only possible to simulate the solidification rate, so that the criteria could not be used effectively.Today, with new software developments, it is possible to also simulate the strain rate in the hot tear prone areas...

  8. Spectroscopic and Microscopic Characterization of Volcanic Ash from Puyehue-(Chile Eruption: Preliminary Approach for the Application in the Arsenic Removal

    Directory of Open Access Journals (Sweden)

    Irma Lia Botto


    Full Text Available Volcanic ash from Puyehue Cordon Caulle Volcanic Complex (Chile, emitted on June 4, 2011, and deposited in Villa La Angostura at ~40 km of the source, was collected and analyzed by Raman spectroscopy, optical and scanning electron microscopy (SEM-EDS, X-ray diffraction (XRD, surface area (BET, and chemical analysis (ICP-AES-MS technique. The mineralogical and physicochemical study revealed that the pyroclastic mixture contains iron oxides in the form of magnetite and hematite as well as pyroxene and plagioclase mineral species and amorphous pumiceous shards. Carbonaceous material was also identified. Physicochemical techniques allow us to select two representative samples (average composition and Fe-rich materials which were used to analyze their performances in the adsorption process to remove arsenic from water. Additional iron activation by means of ferric salts was performed under original sample. Results showed that the low-cost feedstock exhibited a good adsorption capacity to remove the contaminant, depending on the iron content and the water pH.

  9. A study of the stability analysis of pyroclastic covers based on electrical resistivity measurements

    International Nuclear Information System (INIS)

    Di Maio, R; Piegari, E


    Usually, the degree of stability of a slope is quantified by the factor of safety whose values depend on physical and mechanical soil properties analysed on samples of much reduced sizes or referring to very small soil volumes around porous probes. To overcome the limit of point-sampled information, we propose a semi-empirical approach based on the use of geophysical methods and the employment of a geophysical factor of safety recently introduced by the authors in terms of local resistivities and slope angles. In this paper, we show an application of our proposal on a test area of about 2000 m 2 on Sarno Mountains (Campania Region, Southern Italy), where shallow landslides involving pyroclastic soils periodically occur triggered by critical rainfall events. Starting from two resistivity tomography surveys performed on the test area in autumn and spring, we obtained maps of the geophysical factor of safety at different depths for the two seasons. We also estimated the values of the factor of safety by using the infinite-slope model in the dry and saturated scenarios. A comparison between the values of the geophysical and geotechnical factors of safety shows advantages and disadvantages of our approach. (paper)

  10. Hot tub folliculitis (United States)

    ... survives in hot tubs, especially tubs made of wood. Symptoms The first symptom of hot tub folliculitis ... may help prevent the problem. Images Hair follicle anatomy References D'Agata E. Pseudomonas aeruginosa and other ...

  11. Hot conditioning equipment conceptual design report

    International Nuclear Information System (INIS)

    Bradshaw, F.W.


    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage

  12. Hot conditioning equipment conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, F.W., Westinghouse Hanford


    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  13. Ignimbrites of Armenia - Paleomagnetic constraints on flow direction and stratigraphy of pyroclastic activity of Mount Aragats (United States)

    Kirscher, Uwe; Meliksetian, Khachatur; Gevorgyan, Hripsime; Navasardyan, Gevorg; Bachtadse, Valerian


    The Aragats volcano is one of the largest stratovolcanoes within the Turkish-Armenian-Iranian orogenic plateau. It is located close to the Armenian capital Yerevan, and only 30 km from the only nuclear power plant within the country. Additional to numerous lava flows, Mount Aragats is thought to be the source of at least two large pyroclastic eruptions leading to a huge number of ignimbrite outcrops, which are located surrounding Mount Aragats with an evaluated eruption radius of 50 km. The age of several ignimbrite outcrops has recently been determined to be 0.65 Ma (Meliksetian et al., 2014). The different ignimbrite flows are characterized by huge diversity of colors, degree of welding and textures. Due to that reason some disagreement exist on how these outcrops can be linked and how the eruption process actually happened in terms of different eruption phases and mixing mechanism of magmas during the eruption. To add constraints to this debate we carried out an intensive paleomagnetic investigation on most of the ignimbrite outcrops (32 sites) in terms of directional and anisotropy measurements. Paleomagnetic directional measurements yield basically two polarities: (1) a well grouped normal polarity is present in the majority of the studied sites including 3 sites which have supposedly originated from a different vent located on Turkish territory in the west; (2) a reversed polarity of the remaining sites with a somewhat increased scatter. Based on secular variation arguments and considering the high quality of the data we suggest that at least all young outcrops represent a single eruption phase in the area at 0.65 Ma, which is in agreement with an occurrence during the Brunhes geomagnetic chron. Additional to that, at least one earlier phase of pyroclastic activity took place prior to the Brunhes-Matuyama boundary (0.781 Ma). Anisotropy of magnetic susceptibility (AMS) suggests initial radial flow directions, which shortly after the eruption become

  14. Character, mass, distribution, and origin of tephra-fall deposits of the 1989-1990 eruption of redoubt volcano, south-central Alaska (United States)

    Scott, W.E.; McGimsey, R.G.


    The 1989-1990 eruption of Redoubt Volcano spawned about 20 areally significant tephra-fall deposits between December 14, 1989 and April 26, 1990. Tephra plumes rose to altitudes of 7 to more than 10 km and were carried mainly northward and eastward by prevailing winds, where they substantially impacted air travel, commerce, and other activities. In comparison to notable eruptions of the recent past, the Redoubt events produced a modest amount of tephra-fall deposits - 6 ?? 107 to 5 ?? 1010 kg for individual events and a total volume (dense-rock equivalent) of about 3-5 ?? 107 m3 of andesite and dacite. Two contrasting tephra types were generated by these events. Pumiceous tephra-fall deposits of December 14 and 15 were followed on December 16 and all later events by fine-grained lithic-crystal tephra deposits, much of which fell as particle aggregates. The change in the character of the tephra-fall deposits reflects their fundamentally different modes of origin. The pumiceous deposits were produced by magmatically driven explosions. The finegrained lithic-crystal deposits were generated by two processes. Hydrovolcanic vent explosions generated tephrafall deposits of December 16 and 19. Such explosions continued as a tephra source, but apparently with diminishing importance, during events of January and February. Ash clouds of lithic pyroclastic flows generated by collapse of actively growing lava domes probably contributed to tephra-fall deposits of all events from January 2 to April 26, and were the sole source of tephra fall for at least the last 4 deposits. ?? 1994.

  15. WESF hot cells waste minimization criteria hot cells window seals evaluation

    International Nuclear Information System (INIS)

    Walterskirchen, K.M.


    WESF will decouple from B Plant in the near future. WESF is attempting to minimize the contaminated solid waste in their hot cells and utilize B Plant to receive the waste before decoupling. WESF wishes to determine the minimum amount of contaminated waste that must be removed in order to allow minimum maintenance of the hot cells when they are placed in ''laid-up'' configuration. The remaining waste should not cause unacceptable window seal deterioration for the remaining life of the hot cells. This report investigates and analyzes the seal conditions and hot cell history and concludes that WESF should remove existing point sources, replace cerium window seals in F-Cell and refurbish all leaded windows (except for A-Cell). Work should be accomplished as soon as possible and at least within the next three years

  16. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water... (United States)


    ... supply boilers, and unfired hot water storage tanks. 431.102 Section 431.102 Energy DEPARTMENT OF ENERGY... Water Heaters, Hot Water Supply Boilers and Unfired Hot Water Storage Tanks § 431.102 Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water storage tanks. The...

  17. Hot springs in Hokuriku District

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K. (Hot Springs Research Center, Japan)


    In the Hokuriku district including Toyama, Ishikawa, and Fukui Prefectures, hot springs of more than 25/sup 0/C were investigated. In the Toyama Prefecture, there are 14 hot springs which are located in an area from the Kurobe River to the Tateyama volcano and in the mountainous area in the southwest. In Ishikawa Prefecture there are 16 hot springs scattered in Hakusan and its vicinity, the Kaga mountains, and in the Noto peninsula. In northern Fukui Prefecture there are seven hot springs. The hot springs in Shirakawa in Gifu Prefecture are characterized as acid springs producing exhalations and H/sub 2/S. These are attributed to the Quaternary volcanoes. The hot springs of Wakura, Katayamazu, and Awara in Ishikawa Prefecture are characterized by a high Cl content which is related to Tertiary andesite. The hot springs of Daishoji, Yamanaka, Yamashiro, Kuritsu, Tatsunokuchi, Yuwaku, and Yunotani are characterized by a low HCO/sub 3/ content. The Ca and SO/sub 4/ content decreases from east to west, and the Na and Cl content increases from west to east. These fluctuations are related to the Tertiary tuff and rhyolite. The hot springs of Kuronagi, Kinshu, and Babadani, located along the Kurobe River are characterized by low levels of dissolved components and high CO/sub 2/ and HCO/sub 3/ content. These trends are related to late Paleozoic granite. Hot springs resources are considered to be connected to geothermal resources. Ten tables, graphs, and maps are provided.

  18. Complex proximal deposition during the Plinian eruptions of 1912 at Novarupta, Alaska (United States)

    Houghton, Bruce F.; Wilson, C.J.N.; Fierstein, J.; Hildreth, W.


    Proximal (Smokes ignimbrite. The proximal products include alternations and mixtures of both locally and regionally dispersed fall ejecta, and numerous thin complex deposits of pyroclastic density currents (PDCs) with no regional analogs. The locally dispersed component of the fall deposits forms sector-confined wedges of material whose thicknesses halve radially from and concentrically about the vent over distances of 100-300 m (cf. several kilometers for the medial-distal fall deposits). This locally dispersed fall material (and many of the associated PDC deposits) is rich in andesitic and banded pumices and richer in shallow-derived wall-rock lithics in comparison with the coeval medial fall units of almost entirely dacitic composition. There are no marked contrasts in grain size in the near-vent deposits, however, between locally and widely dispersed beds, and all samples of the proximal fall deposits plot as a simple continuation of grain size trends for medial-distal samples. Associated PDC deposits form a spectrum of facies from fines-poor, avalanched beds through thin-bedded, landscape-mantling beds to channelized lobes of pumice-block-rich ignimbrite. The origins of the Novarupta near-vent deposits are considered within a spectrum of four transport regimes: (1) sustained buoyant plume, (2) fountaining with co-current flow, (3) fountaining with counter-current flow, and (4) direct lateral ejection. The Novarupta deposits suggest a model where buoyant, stable, regime-1 plumes characterized most of episodes II and III, but were accompanied by transient and variable partitioning of clasts into the other three regimes. Only one short period of vent blockage and cessation of the Plinian plume occurred, separating episodes II and III, which was followed by a single PDC interpreted as an overpressured "blast" involving direct lateral ejection. In contrast, regimes 2 and 3 were reflected by spasmodic sedimentation from the margins of the jet and perhaps lower plume

  19. Syn-eruptive, soft-sediment deformation of deposits from dilute pyroclastic density current: triggers from granular shear, dynamic pore pressure, ballistic impacts and shock waves (United States)

    Douillet, G. A.; Taisne, B.; Tsang-Hin-Sun, E.; Muller, S. K.; Kueppers, U.; Dingwell, D. B.


    Soft-sediment deformation structures can provide valuable information about the conditions of parent flows, the sediment state and the surrounding environment. Here, examples of soft-sediment deformation in deposits of dilute pyroclastic density currents are documented and possible syn-eruptive triggers suggested. Outcrops from six different volcanoes have been compiled in order to provide a broad perspective on the variety of structures: Soufriere Hills (Montserrat), Tungurahua (Ecuador), Ubehebe craters (USA), Laacher See (Germany), and Tower Hill and Purrumbete lakes (both Australia). The variety of features can be classified in four groups: (1) tubular features such as pipes; (2) isolated, laterally oriented deformation such as overturned or oversteepened laminations and vortex-shaped laminae; (3) folds-and-faults structures involving thick (>30 cm) units; (4) dominantly vertical inter-penetration of two layers such as potatoids, dishes, or diapiric flame-like structures. The occurrence of degassing pipes together with basal intrusions suggest fluidization during flow stages, and can facilitate the development of other soft-sediment deformation structures. Variations from injection dikes to suction-driven, local uplifts at the base of outcrops indicate the role of dynamic pore pressure. Isolated, centimeter-scale, overturned beds with vortex forms have been interpreted to be the signature of shear instabilities occurring at the boundary of two granular media. They may represent the frozen record of granular, pseudo Kelvin-Helmholtz instabilities. Their recognition can be a diagnostic for flows with a granular basal boundary layer. Vertical inter-penetration and those folds-and-faults features related to slumps are driven by their excess weight and occur after deposition but penecontemporaneous to the eruption. The passage of shock waves emanating from the vent may also produce trains of isolated, fine-grained overturned beds that disturb the surface bedding

  20. Pigeonholing pyroclasts: Insights from the 19 March 2008 explosive eruption of Kīlauea volcano (United States)

    Houghton, Bruce F.; Swanson, D.A.; Carey, R.J.; Rausch, J.; Sutton, A.J.


    We think, conventionally, of volcanic explosive eruptions as being triggered in one of two ways: by release and expansion of volatiles dissolved in the ejected magma (magmatic explosions) or by transfer of heat from magma into an external source of water (phreatic or phreatomagmatic explosions). We document here an event where neither magma nor an external water source was involved in explosive activity at K??lauea. Instead, the eruption was powered by the expansion of decoupled magmatic volatiles released from deeper magma, which was not ejected by the eruption, and the trigger was a collapse of near-surface wall rocks that then momentarily blocked that volatile flux. Mapping of the advected fall deposit a day after this eruption has highlighted the difficulty of constraining deposit edges from unobserved or prehistoric eruptions of all magnitudes. Our results suggest that the dispersal area of advected fall deposits could be miscalculated by up to 30% of the total, raising issues for accurate hazard zoning and assessment. Eruptions of this type challenge existing classification schemes for pyroclastic deposits and explosive eruptions and, in the past, have probably been interpreted as phreatic explosions, where the eruptive mechanism has been assumed to involve flashing of groundwater to steam. ?? 2011 Geological Society of America.

  1. Detection of Hot Halo Gets Theory Out of Hot Water (United States)


    Scientists using NASA's Chandra X-ray Observatory have detected an extensive halo of hot gas around a quiescent spiral galaxy. This discovery is evidence that galaxies like our Milky Way are still accumulating matter from the gradual inflow of intergalactic gas. "What we are likely witnessing here is the ongoing galaxy formation process," said Kristian Pedersen of the University of Copenhagen, Denmark, and lead author of a report on the discovery. Chandra observations show that the hot halo extends more than 60,000 light years on either side of the disk of the galaxy known as NGC 5746. The detection of such a large halo alleviates a long-standing problem for the theory of galaxy formation. Spiral galaxies are thought to form from enormous clouds of intergalactic gas that collapse to form giant, spinning disks of stars and gas. Chandra X-ray Image of NGC 5746 Chandra X-ray Image of NGC 5746 One prediction of this theory is that large spiral galaxies should be immersed in halos of hot gas left over from the galaxy formation process. Hot gas has been detected around spiral galaxies in which vigorous star formation is ejecting matter from the galaxy, but until now hot halos due to infall of intergalactic matter have not been detected. "Our observations solve the mystery of the missing hot halos around spiral galaxies," said Pedersen. "The halos exist, but are so faint that an extremely sensitive telescope such as Chandra is needed to detect them." DSS Optical Image of NGC 5746 DSS Optical Image of NGC 5746 NGC 5746 is a massive spiral galaxy about a 100 million light years from Earth. Its disk of stars and gas is viewed almost edge-on. The galaxy shows no signs of unusual star formation, or energetic activity from its nuclear region, making it unlikely that the hot halo is produced by gas flowing out of the galaxy. "We targeted NGC 5746 because we thought its distance and orientation would give us the best chance to detect a hot halo caused by the infall of

  2. Runout distance and dynamic pressure of pyroclastic density currents: Evidence from 18 May 1980 blast surge of Mount St. Helens (United States)

    Gardner, J. E.; Andrews, B. J.


    Pyroclastic density currents (flows and surges) are one of the most deadly hazards associated with volcanic eruptions. Understanding what controls how far such currents will travel, and how their dynamic pressure evolves, could help mitigate their hazards. The distance a ground hugging, pyroclastic density current travels is partly limited by when it reverses buoyancy and lifts off into the atmosphere. The 1980 blast surge of Mount St. Helens offers an example of a current seen to lift off. Before lofting, it had traveled up to 20 km and leveled more than 600 km3 of thick forest (the blowdown zone). The outer edge of the devastated area - where burned trees that were left standing (the singe zone) - is where the surge is thought to have lifted off. We recently examined deposits in the outer parts of the blowdown and in the singe zone at 32 sites. The important finding is that the laterally moving surge travelled into the singe zone, and hence the change in tree damage does not mark the run out distance of the ground hugging surge. Eyewitness accounts and impacts on trees and vehicles reveal that the surge consisted of a fast, dilute "overcurrent" and a slower "undercurrent", where most of the mass (and heat) was retained. Reasonable estimates for flow density and velocity show that dynamic pressure of the surge (i.e., its ability to topple trees) peaked near the base of the overcurrent. We propose that when the overcurrent began to lift off, the height of peak dynamic pressure rose above the trees and stopped toppling them. The slower undercurrent continued forward, burning trees but it lacked the dynamic pressure needed to topple them. Grain-size variations argue that it slowed from 30 m/s when it entered the singe zone to 3 m/s at the far end. Buoyancy reversal and liftoff are thus not preserved in the deposits where the surge lofted upwards.

  3. Hot Gas Halos in Galaxies (United States)

    Mulchaey, John

    Most galaxy formation models predict that massive low-redshift disk galaxies are embedded in extended hot halos of externally accreted gas. Such gas appears necessary to maintain ongoing star formation in isolated spirals like the Milky Way. To explain the large population of red galaxies in rich groups and clusters, most galaxy evolution models assume that these hot gas halos are stripped completely when a galaxy enters a denser environment. This simple model has been remarkably successful at reproducing many observed properties of galaxies. Although theoretical arguments suggest hot gas halos are an important component in galaxies, we know very little about this gas from an observational standpoint. In fact, previous observations have failed to detect soft X-ray emission from such halos in disk galaxies. Furthermore, the assumption that hot gas halos are stripped completely when a galaxy enters a group or cluster has not been verified. We propose to combine proprietary and archival XMM-Newton observations of galaxies in the field, groups and clusters to study how hot gas halos are impacted by environment. Our proposed program has three components: 1) The deepest search to date for a hot gas halo in a quiescent spiral galaxy. A detection will confirm a basic tenet of disk galaxy formation models, whereas a non-detection will seriously challenge these models and impose new constraints on the growth mode and feedback history of disk galaxies. 2) A detailed study of the hot gas halos properties of field early-type galaxies. As environmental processes such as stripping are not expected to be important in the field, a study of hot gas halos in this environment will allow us to better understand how feedback and other internal processes impact hot gas halos. 3) A study of hot gas halos in the outskirts of groups and clusters. By comparing observations with our suite of simulations we can begin to understand what role the stripping of hot gas halos plays in galaxy

  4. Tephrostratigraphy of Changbaishan volcano, northeast China, since the mid-Holocene (United States)

    Sun, Chunqing; Liu, Jiaqi; You, Haitao; Nemeth, Karoly


    A detailed tephrostratigraphy of an active volcano is essential for evaluating its eruptive history, forecasting future eruptions and correlation with distal tephra records. Changbaishan volcano is known for its Millennium eruption (ME, AD 940s; VEI 7) and the ME tephra has been detected in Greenland ice cores ∼9000 km from the vent. However, the pre-Millennium (pre-ME) and post-Millennium (post-ME) eruptions are still poorly characterized. In this study, we present a detailed late Holocene eruptive sequence of Changbaishan volcano based on single glass shard compositions from tephra samples collected from around the caldera rim and flanks. Tephra ages are constrained by optically stimulated luminescence (OSL) and AMS 14C dates. Tephra from the mid-Holocene pre-ME eruption can be divided into two pyroclastic fall subunits, and it cannot be correlated with any known Changbaishan-sourced tephra recorded in the Japan Sea based on major element composition of glass shards, such as the B-J (Baegdusan-Japan Basin) and B-V (Baegdusan-Vladivostok-oki) tephras. ME pyroclastic fall deposits from the caldera rims and volcanic flanks can be correlated to the juvenile pumice lapilli or blocks within the pyroclastic density current (PDC) deposits deposited in the valleys around the volcano based on glass shard compositions. Our results indicate that the glass shard compositions of proximal ME tephra are more varied than previously thought and can be correlated with distal ME tephra. In addition, widely-dispersed mafic scoria was ejected by the ME Plinian column and deposited on the western and southern summits and the eastern flank of the volcano. Data for glass from post-ME eruptions, such as the historically-documented AD 1403, AD 1668 and AD 1702 eruptions, are reported here for the first time. Except for the ME, other Holocene eruptions, including pre-ME and post-ME eruptions, had the potential to form widely-distributed tephra layers around northeast Asia, and our dataset

  5. Geology and petrology of the Woods Mountains Volcanic Center, southeastern California: Implications for the genesis of peralkaline rhyolite ash flow tuffs (United States)

    McCurry, Michael


    The Woods Mountains Volcanic Center is a middle Miocene silicic caldera complex located at the transition from the northern to the southern Basin and Range provinces of the western United States. It consists of a trachyte-trachydacite-rhyolite-peralkaline rhyolite association of lava flows, domes, plugs, pyroclastic rocks, and epiclastic breccia. Volcanism began at about 16.4 Ma, near the end of a local resurgence of felsic to intermediate magmatism and associated crustal extension. Numerous metaluminous high-K trachyte, trachydacite, and rhyolite lava flows, domes, and pyroclastic deposits accumulated from vents scattered over an area of 200 km2 forming a broad volcanic field with an initial volume of about 10 km3. At 15.8 Ma, about 80 km3 of metaluminous to mildly peralkaline high-K rhyolite ash flows were erupted from vents in the western part of fhe field in three closely spaced pulses, resulting in the formation of a trap door caldera 10 km in diameter. The ash flows formed the Wild Horse Mesa Tuff, a compositionally zoned ash flow sheet that originally covered an area of about 600 km2 to a maximum thickness of at least 320 m. High-K trachyte pumice lapilli, some of which are intimately banded with rhyolite, were produced late in the two later eruptions, Intracaldera volcanism from widely distributed vents rapidly filled the caldera with about 10 km3 of high-K, mildly peralkaline, high-silica rhyolite lava flows and pyroclastic deposits. These are interlayered with breccia derived from the caldera scarp. They are intruded by numerous compositionally similar plugs, some of which structurally uplifted and fractured the center of the caldera. The center evolved above a high-K trachyte magma chamber about 10 km in diameter that had developed and differentiated within the upper crust at about 15.8 Ma. Petrological, geochemical, and geophysical data are consistent with the idea that a cap of peralkaline rhyolite magma formed within the trachyte chamber as a result

  6. Hot flashes and sleep in women. (United States)

    Moe, Karen E


    Sleep disturbances during menopause are often attributed to nocturnal hot flashes and 'sweats' associated with changing hormone patterns. This paper is a comprehensive critical review of the research on the relationship between sleep disturbance and hot flashes in women. Numerous studies have found a relationship between self-reported hot flashes and sleep complaints. However, hot flash studies using objective sleep assessment techniques such as polysomnography, actigraphy, or quantitative analysis of the sleep EEG are surprisingly scarce and have yielded somewhat mixed results. Much of this limited evidence suggests that hot flashes are associated with objectively identified sleep disruption in at least some women. At least some of the negative data may be due to methodological issues such as reliance upon problematic self-reports of nocturnal hot flashes and a lack of concurrent measures of hot flashes and sleep. The recent development of a reliable and non-intrusive method for objectively identifying hot flashes during the night should help address the need for substantial additional research in this area. Several areas of clinical relevance are described, including the effects of discontinuing combined hormone therapy (estrogen plus progesterone) or estrogen-only therapy, the possibility of hot flashes continuing for many years after menopause, and the link between hot flashes and depression.

  7. A new U-Pb zircon age and a volcanogenic model for the early Permian Chemnitz Fossil Forest (United States)

    Luthardt, Ludwig; Hofmann, Mandy; Linnemann, Ulf; Gerdes, Axel; Marko, Linda; Rößler, Ronny


    The Chemnitz Fossil Forest depicts one of the most completely preserved forest ecosystems in late Paleozoic Northern Hemisphere of tropical Pangaea. Fossil biota was preserved as a T0 taphocoenosis resulting from the instantaneous entombment by volcanic ashes of the Zeisigwald Tuff. The eruption depicts one of the late magmatic events of post-variscan rhyolitic volcanism in Central Europe. This study represents a multi-method evaluation of the pyroclastic ejecta encompassing sedimentological and (isotope) geochemical approaches to shed light on magmatic and volcanic processes, and their role in preserving the fossil assemblage. The Zeisigwald Tuff pyroclastics (ZTP) reveal a radiometric age of 291 ± 2 Ma, pointing to a late Sakmarian/early Artinskian (early Permian) stratigraphic position for the Chemnitz Fossil Forest. The initial eruption was of phreatomagmatic style producing deposits of cool, wet ashes, which deposited from pyroclastic fall out and density currents. Culmination of the eruption is reflected by massive hot and dry ignimbrites. Whole-rock geochemistry and zircon grain analysis show that pyroclastic deposits originated from a felsic, highly specialised magma, which underwent advanced fractionation, and is probably related to post-Carboniferous magmatism in the Western Erzgebirge. The ascending magma recycled old cadomic crust of the Saxo-thuringian zone, likely induced by a mantle-derived heat flow during a phase of post-variscan crustal delamination. Geochemical trends within the succession of the basal pyroclastic horizons reflect inverse zonation of the magma chamber and provide evidence for the continuous eruption and thus a simultaneous burial of the diverse ecosystem.

  8. Update on the KELT Transit Survey: Hot Planets around Hot Stars (United States)

    Gaudi, B. Scott; Stassun, Keivan G.; Pepper, Joshua; KELT Collaboration


    The KELT Transit Survey consists of a pair of small-aperture, wide-angle automated telescopes located at Winer Observatory in Sonoita, Arizona and the South African Astronomical Observatory (SAAO) in Sutherland, South Africa. Together, they are surveying roughly 70% of the sky for transiting planets. By virtue of their small apertures (42 mm) and large fields-of-view (26 degrees x 26 degrees), KELT is most sensitive to hot Jupiters transiting relatively bright (V~8-11), and thus relatively hot stars. I will provide an update on the planets discovered by KELT, focusing in detail on our recent discoveries of very hot planets transiting several bright A and early F stars.

  9. Hot subluminous star: HDE 283048

    International Nuclear Information System (INIS)

    Laget, M.; Vuillemin, A.; Parsons, S.B.; Henize, K.G.; Wray, J.D.


    The star HDE 283048, located at α = 3/sup h/50/sup m/.3, delta = +25 0 36', shows a strong ultraviolet continuum. Ground-based observations indicate a hot-dominated composite spectrum. Several lines of evidence suggest that the hot component is a hot subdwarf. 2 figures

  10. Statistical hot spot analysis of reactor cores

    International Nuclear Information System (INIS)

    Schaefer, H.


    This report is an introduction into statistical hot spot analysis. After the definition of the term 'hot spot' a statistical analysis is outlined. The mathematical method is presented, especially the formula concerning the probability of no hot spots in a reactor core is evaluated. A discussion with the boundary conditions of a statistical hot spot analysis is given (technological limits, nominal situation, uncertainties). The application of the hot spot analysis to the linear power of pellets and the temperature rise in cooling channels is demonstrated with respect to the test zone of KNK II. Basic values, such as probability of no hot spots, hot spot potential, expected hot spot diagram and cumulative distribution function of hot spots, are discussed. It is shown, that the risk of hot channels can be dispersed equally over all subassemblies by an adequate choice of the nominal temperature distribution in the core

  11. Storage conditions of the mafic and silicic magmas at Cotopaxi, Ecuador (United States)

    Martel, Caroline; Andújar, Joan; Mothes, Patricia; Scaillet, Bruno; Pichavant, Michel; Molina, Indira


    The 2015 reactivation of the Cotopaxi volcano urges us to understand the complex eruptive dynamics of Cotopaxi for better management of a potential major crisis in the near future. Cotopaxi has commonly transitioned from andesitic eruptions of strombolian style (lava flows and scoria ballistics) or nuées ardentes (pyroclastic flows and ash falls) to highly explosive rhyolitic ignimbrites (pumiceous pyroclastic flows), which entail drastically different risks. To better interpret geophysical and geochemical signals, Cotopaxi magma storage conditions were determined via existing phase-equilibrium experiments that used starting materials chemically close to the Cotopaxi andesites and rhyolites. The results suggest that Cotopaxi's most mafic andesites (last erupted products) can be stored over a large range of depth from 7 km to ≥16 km below the summit (pressure from 200 to ≥400 MPa), 1000 °C, NNO +2, and contain 4.5-6.0±0.7 wt% H2O dissolved in the melt in equilibrium with 30-40% phenocrysts of plagioclase, two pyroxenes, and Fe-Ti oxides. These mafic andesites sometimes evolve towards more silicic andesites by cooling to 950 °C. Rhyolitic magmas are stored at 200-300 MPa (i.e. 7-11 km below the summit), 750 °C, NNO +2, and contain 6-8 wt% H2O dissolved in a nearly aphyric melt (<5% phenocrysts of plagioclase, biotite, and Fe-Ti oxides). Although the andesites produce the rhyolitic magmas by fractional crystallization, the Cotopaxi eruptive history suggests reactivation of either reservoirs at distinct times, likely reflecting flux or time fluctuations during deep magma recharge.

  12. Mio Pliocene volcaniclastic deposits in the Famatina Ranges, southern Central Andes: A case of volcanic controls on sedimentation in broken foreland basins (United States)

    Martina, Federico; Dávila, Federico M.; Astini, Ricardo A.


    A well-constrained record of Miocene-Pliocene explosive volcanism is preserved within the broken foreland of Western Argentina along the Famatina Ranges. This paper focuses on the volcaniclastic record known as the Río Blanco member of the El Durazno Formation. Three facies can be recognized in the study area: (1) massive tuffs; (2) volcaniclastic conglomerates and (3) pumiceous sandstones. These facies are interpreted as primary pyroclastic flow deposits (ignimbrites) and reworked volcanogenic deposits within interacting volcanic-fluvial depositional systems. Alternation between ignimbrites and volcanogenic sandstones and conglomerates suggest a recurrent pattern of sedimentation related to recurrent volcanic activity. Considering the facies mosaic and relative thicknesses of facies, short periods of syn-eruption sedimentation (volcaniclastic deposits) seem to have been separated by longer inter-eruption periods, where normal stream-flow processes were dominant. The volcaniclastic component decreases up-section, suggesting a gradual reduction in volcanic activity. The mean sedimentation rate of the Río Blanco member is higher (0.44 mm/year) than those obtained for the underlying and overlying units. This increase cannot be fully explained by foreland basement deformation and tectonic loading. Hence, we propose subsidence associated with volcanic activity as the causal mechanism. Volcanism would have triggered additional accommodation space through coeval pyroclastic deposition, modification of the stream equilibrium profile, flexural loading of volcanoes, and thermal processes. These mechanisms may have favored the preservation of volcaniclastic beds in the high-gradient foreland system of Famatina during the Mio-Pliocene. Thus, the Río Blanco member records the response of fluvial systems to large, volcanism-induced sediment loads.

  13. MIS hot electron devices for enhancement of surface reactivity by hot electrons

    DEFF Research Database (Denmark)

    Thomsen, Lasse Bjørchmar

    A Metal-Insulator-Semiconductor (MIS) based device is developed for investigation of hot electron enhanced chemistry. A model of the device is presented explaining the key concepts of the functionality and the character- istics. The MIS hot electron emitter is fabricated using cleanroom technology...... and the process sequence is described. An Ultra High Vacuum (UHV) setup is modified to facilitate experiments with electron emission from the MIS hot electron emitters and hot electron chemistry. Simulations show the importance of keeping tunnel barrier roughness to an absolute minimum. The tunnel oxide...... to be an important energy loss center for the electrons tunneling through the oxide lowering the emission e±ciency of a factor of 10 for a 1 nm Ti layer thickness. Electron emission is observed under ambient pressure conditions and in up to 2 bars of Ar. 2 bar Ar decrease the emission current by an order...

  14. Recent trend of administration on hot springs

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Shigeru [Environment Agency, Tokyo (Japan)


    The Environmental Agency exercises jurisdiction over Hot Spring Act, and plans to protect the source of the hot spring and to utilize it appropriately. From the aspect of utilization, hot springs are widely used as a means to remedy chronic diseases and tourist spots besides places for recuperation and repose. Statistics on Japanese hot springs showed that the number of hot spring spots and utilized-fountainhead increased in 1987, compared with the number in 1986. Considering the utilized-headspring, the number of naturally well-out springs has stabilized for 10 years while power-operated springs have increased. This is because the demand of hot springs has grown as the number of users has increased. Another reason is to keep the amount of hot water by setting up the power facility as the welled-out amount has decreased. Major point of recent administration on the hot spring is to permit excavation and utilization of hot springs. Designation of National hot spring health resorts started in 1954 in order to ensure the effective and original use of hot springs and to promote the public use of them, for the purpose of arranging the sound circumstances of hot springs. By 1988, 76 places were designated. 4 figs., 3 tabs.

  15. Computational Prediction of Hot Spot Residues (United States)

    Morrow, John Kenneth; Zhang, Shuxing


    Most biological processes involve multiple proteins interacting with each other. It has been recently discovered that certain residues in these protein-protein interactions, which are called hot spots, contribute more significantly to binding affinity than others. Hot spot residues have unique and diverse energetic properties that make them challenging yet important targets in the modulation of protein-protein complexes. Design of therapeutic agents that interact with hot spot residues has proven to be a valid methodology in disrupting unwanted protein-protein interactions. Using biological methods to determine which residues are hot spots can be costly and time consuming. Recent advances in computational approaches to predict hot spots have incorporated a myriad of features, and have shown increasing predictive successes. Here we review the state of knowledge around protein-protein interactions, hot spots, and give an overview of multiple in silico prediction techniques of hot spot residues. PMID:22316154

  16. Hot Spots and Hot Moments of Nitrogen in a Riparian Corridor (United States)

    Dwivedi, Dipankar; Arora, Bhavna; Steefel, Carl I.; Dafflon, Baptiste; Versteeg, Roelof


    We use 3-D high-resolution reactive transport modeling to investigate whether the spatial distribution of organic-carbon-rich and chemically reduced sediments located in the riparian zone and temporal variability in groundwater flow direction impact the formation and distribution of nitrogen hot spots (regions that exhibit higher reaction rates when compared to other locations nearby) and hot moments (times that exhibit high reaction rates as compared to longer intervening time periods) within the Rifle floodplain in Colorado. Groundwater flows primarily toward the Colorado River from the floodplain but changes direction at times of high river stage. The result is that oxic river water infiltrates the Rifle floodplain during these relatively short-term events. Simulation results indicate that episodic rainfall in the summer season leads to the formation of nitrogen hot moments associated with Colorado River rise and resulting river infiltration into the floodplain. The results further demonstrate that the naturally reduced zones (NRZs) present in sediments of the Rifle floodplain have a higher potential for nitrate removal, approximately 70% greater than non-NRZs for typical hydrological conditions. During river water infiltration, nitrate reduction capacity remains the same within the NRZs, however, these conditions impact non-NRZs to a greater extent (approximately 95% less nitrate removal). Model simulations indicate chemolithoautotrophs are primarily responsible for the removal of nitrate in the Rifle floodplain. These nitrogen hot spots and hot moments are sustained by microbial respiration and the chemolithoautotrophic oxidation of reduced minerals in the riparian zone.

  17. Theory for Deducing Volcanic Activity From Size Distributions in Plinian Pyroclastic Fall Deposits (United States)

    Iriyama, Yu; Toramaru, Atsushi; Yamamoto, Tetsuo


    Stratigraphic variation in the grain size distribution (GSD) of plinian pyroclastic fall deposits reflects volcanic activity. To extract information on volcanic activity from the analyses of deposits, we propose a one-dimensional theory that provides a formula connecting the sediment GSD to the source GSD. As the simplest case, we develop a constant-source model (CS model), in which the source GSD and the source height are constant during the duration of release of particles. We assume power laws of particle radii for the terminal fall velocity and the source GSD. The CS model can describe an overall (i.e., entire vertically variable) feature of the GSD structure of the sediment. It is shown that the GSD structure is characterized by three parameters, that is, the duration of supply of particles to the source scaled by the fall time of the largest particle, ts/tM, and the power indices of the terminal fall velocity p and of the source GSD q. We apply the CS model to samples of the Worzel D ash layer and compare the sediment GSD structure calculated by using the CS model to the observed structure. The results show that the CS model reproduces the overall structure of the observed GSD. We estimate the duration of the eruption and the q value of the source GSD. Furthermore, a careful comparison of the observed and calculated GSDs reveals new interpretation of the original sediment GSD structure of the Worzel D ash layer.

  18. Hot Spot Removal System: System description

    Energy Technology Data Exchange (ETDEWEB)



    Hazardous wastes contaminated with radionuclides, chemicals, and explosives exist across the Department of Energy complex and need to be remediated due to environmental concerns. Currently, an opportunity is being developed to dramatically reduce remediation costs and to assist in the acceleration of schedules associated with these wastes by deploying a Hot Spot Removal System. Removing the hot spot from the waste site will remove risk driver(s) and enable another, more cost effective process/option/remedial alternative (i.e., capping) to be applied to the remainder of the site. The Hot Spot Removal System consists of a suite of technologies that will be utilized to locate and remove source terms. Components of the system can also be used in a variety of other cleanup activities. This Hot Spot Removal System Description document presents technologies that were considered for possible inclusion in the Hot Spot Removal System, technologies made available to the Hot Spot Removal System, industrial interest in the Hot Spot Removal System`s subsystems, the schedule required for the Hot Spot Removal System, the evaluation of the relevant technologies, and the recommendations for equipment and technologies as stated in the Plan section.

  19. Hot Spot Removal System: System description

    International Nuclear Information System (INIS)


    Hazardous wastes contaminated with radionuclides, chemicals, and explosives exist across the Department of Energy complex and need to be remediated due to environmental concerns. Currently, an opportunity is being developed to dramatically reduce remediation costs and to assist in the acceleration of schedules associated with these wastes by deploying a Hot Spot Removal System. Removing the hot spot from the waste site will remove risk driver(s) and enable another, more cost effective process/option/remedial alternative (i.e., capping) to be applied to the remainder of the site. The Hot Spot Removal System consists of a suite of technologies that will be utilized to locate and remove source terms. Components of the system can also be used in a variety of other cleanup activities. This Hot Spot Removal System Description document presents technologies that were considered for possible inclusion in the Hot Spot Removal System, technologies made available to the Hot Spot Removal System, industrial interest in the Hot Spot Removal System''s subsystems, the schedule required for the Hot Spot Removal System, the evaluation of the relevant technologies, and the recommendations for equipment and technologies as stated in the Plan section

  20. The Distinction of Hot Herbal Compress, Hot Compress, and Topical Diclofenac as Myofascial Pain Syndrome Treatment. (United States)

    Boonruab, Jurairat; Nimpitakpong, Netraya; Damjuti, Watchara


    This randomized controlled trial aimed to investigate the distinctness after treatment among hot herbal compress, hot compress, and topical diclofenac. The registrants were equally divided into groups and received the different treatments including hot herbal compress, hot compress, and topical diclofenac group, which served as the control group. After treatment courses, Visual Analog Scale and 36-Item Short Form Health survey were, respectively, used to establish the level of pain intensity and quality of life. In addition, cervical range of motion and pressure pain threshold were also examined to identify the motional effects. All treatments showed significantly decreased level of pain intensity and increased cervical range of motion, while the intervention groups exhibited extraordinary capability compared with the topical diclofenac group in pressure pain threshold and quality of life. In summary, hot herbal compress holds promise to be an efficacious treatment parallel to hot compress and topical diclofenac.

  1. Hot particles

    International Nuclear Information System (INIS)

    Merwin, S.E.; Moeller, M.P.


    Nuclear Regulatory Commission (NRC) licensees are required to assess the dose to skin from a hot particle contamination event at a depth of skin of7mg/cm 2 over an area of 1 cm 2 and compare the value to the current dose limit for the skin. Although the resulting number is interesting from a comparative standpoint and can be used to predict local skin reactions, comparison of the number to existing limits based on uniform exposures is inappropriate. Most incidents that can be classified as overexposures based on this interpretation of dose actually have no effect on the health of the worker. As a result, resources are expended to reduce the likelihood that an overexposure event will occur when they could be directed toward eliminating the cause of the problem or enhancing existing programs such as contamination control. Furthermore, from a risk standpoint, this practice is not ALARA because some workers receive whole body doses in order to minimize the occurrence of hot particle skin contaminations. In this paper the authors suggest an alternative approach to controlling hot particle exposures

  2. Hot-Film and Hot-Wire Anemometry for a Boundary Layer Active Flow Control Test (United States)

    Lenahan, Keven C.; Schatzman, David M.; Wilson, Jacob Samuel


    Unsteady active flow control (AFC) has been used experimentally for many years to minimize bluff-body drag. This technology could significantly improve performance of rotorcraft by cleaning up flow separation. It is important, then, that new actuator technologies be studied for application to future vehicles. A boundary layer wind tunnel was constructed with a 1ft-x-3ft test section and unsteady measurement instrumentation to study how AFC manipulates the boundary layer to overcome adverse pressure gradients and flow separation. This unsteady flow control research requires unsteady measurement methods. In order to measure the boundary layer characteristics, both hot-wire and hot-film Constant Temperature Anemometry is used. A hot-wire probe is mounted in the flow to measure velocity while a hot-film array lays on the test surface to measure skin friction. Hot-film sensors are connected to an anemometer, a Wheatstone bridge circuit with an output that corresponds to the dynamic flow response. From this output, the time varying flow field, turbulence, and flow reversal can be characterized. Tuning the anemometers requires a fan test on the hot-film sensors to adjust each output. This is a delicate process as several variables drastically affect the data, including control resistance, signal input, trim, and gain settings.

  3. SHOSPA-MOD, Hot Spot Factors for Fuel and Clad, Hot Channel Factors

    International Nuclear Information System (INIS)

    Amendola, A.


    1 - Nature of the physical problem solved: SHOSPA evaluates the hot spot factors for fuel and cladding as well as the hot channel factor as a function of the confidence level. Moreover, it evaluates the probability on n hot subassemblies. The code has been developed with emphasis on sodium cooled fast reactors, but it is applicable to any type of reactors constituted of bundled fuel rods with single phase coolant. An option for plotting is available in this version. 2 - Restrictions on the complexity of the problem: This code is applicable to any type of reactors constituted of fuel rods with single phase coolant

  4. Late Miocene ignimbrites at the southern Puna-northern Sierras Pampeanas border (˜27°S): Stratigraphic correlation (United States)

    Montero-López, Carolina; Guzmán, Silvina; Barrios, Fabiola


    New field observations and petrographic and geochemical data of pyroclastic deposits exposed along the Las Papas valley (border between southern Puna and northern Sierras Pampeanas, Argentina) and further north, lead us to propose a new stratigraphic correlation and classification of the late Miocene volcanism in this area. We redefine the Las Papas, Las Juntas, Aguada Alumbrera and Rosada ignimbrites and define the Agua Caliente and Del Medio ignimbrites. The whole set of ignimbrites are rhyolites and less frequently dacites of calc-alkaline affinity. In the present contribution we divide ignimbrites into the Agua Negra and Rincón groups, based mainly on their geochemical signature. The Agua Negra Group is formed by the Las Papas and Las Juntas ignimbrites, indurated and welded, lithic-rich, with crystal-poor pumices and crystal-rich matrix. The Rincón Group comprises the Agua Caliente, Aguada Alumbrera, Rosada and Del Medio ignimbrites, with variable welding degrees, lithic and crystal content. The greater enrichment of crystals in the matrix in comparison with the crystal content in pumices indicates significant elutriation during flow transport and thus volume estimations are to be considered lower bounds for the actual erupted volume. The total minimum estimated volume for the ignimbrites of the Agua Negra and Rincón groups is 2.8 km3 (2.3 km3 DRE). Field relationships and new analytical data indicate that the different acid ignimbrites that crop out in this small area are related to at least two different magma chambers. The widespread Quaternary volcanism in this area covers the older deposits, thus making it difficult to recognize the volcanic centers that produced these late Miocene ignimbrites.

  5. Application of Cyclone to Removal of Hot Particulate in Hot Cell

    International Nuclear Information System (INIS)

    Kim, Gye Nam; Lee, Sung Yeol; Won, Hui Jun; Jung, Chong Hun; Oh, Won Zin


    The size and main ingredient of hot particulate generated during the nuclide experiment in hot cells of nuclear facilities were 0.5300 μm and UO 2 . A cyclone filter equipment which consists of a cyclone and Bag/HEPA filter was devised to remove hot particulate generated during the nuclide experiment in hot cells of nuclear facilities. The experimental conditions to maximize the collection efficiency of hot particulate were suggested through experiments done with the cyclone filter equipment. With the large size of simulated particulate, the collection efficiency of the particulate was high. When the size of simulated particulate was more than 5 μm, the collection efficiency of the particulate was more than 80% and when the size of simulated particulate was less than 1.0 μm, the collection efficiency decreased by less than. If the inflow velocity of simulated particulate was increased, the collection efficiency of the particulate was also increased. When the inflow velocity of simulated particulate was more than 12 m/sec, the collection efficiency was higher than , but after 17 m/sec inflow velocity, no change observed. The collection efficiency of the simulated particulate can be enhanced with the length of vortex finder inside the chamber. With the length of vortex finder, 7.2 cm, the observed collection efficiency of the particulate was the maximum. Moreover, when the sub-cone was attached under the cyclone, the collection efficiency of cyclone increased 2%. It was found that effect by attachment of sub-cone was not serious.

  6. Ionospheric hot spot at high latitudes

    International Nuclear Information System (INIS)

    Schunk, R.W.; Sojka, J.J.


    A hot spot (or spots) can occur in the high-latitude ionosphere depending on the plasma convection pattern. The hot spot corresponds to a small magnetic local time-magnetic latitude region of elevated ion temperatures located near the dusk and/or dawn meridians. For asymmetric convection electric field patterns, with enhanced flow in either the dusk or dawn sector of the polar cap, a single hot spot should occur in association with the strong convection cell. However, on geomagnetically disturbed days, two strong convection cells can occur, and hence, two hot spots should exist. The hot spot should be detectable when the electric field in the strong convection cell exceeds about 40 mV m -1 . For electric fields of the order of 100 mV m -1 in the convection cell, the ion temperature in the hot spot is greatest at low altitudes, reaching 4000 0 K at 160 km, and decreases with altitude in the F-region. An ionospheric hot spot (or spots) can be expected at all seasons and for a wide range of solar cycle conditions

  7. Menopausal Hot Flashes and White Matter Hyperintensities (United States)

    Thurston, Rebecca C.; Aizenstein, Howard J.; Derby, Carol A.; Sejdić, Ervin; Maki, Pauline M.


    Objective Hot flashes are the classic menopausal symptom. Emerging data links hot flashes to cardiovascular disease (CVD) risk, yet how hot flashes are related to brain health is poorly understood. We examined the relationship between hot flashes - measured via physiologic monitor and self-report - and white matter hyperintensities (WMH) among midlife women. Methods Twenty midlife women ages 40-60 without clinical CVD, with their uterus and both ovaries, and not taking hormone therapy were recruited. Women underwent 24 hours of ambulatory physiologic and diary hot flash monitoring to quantify hot flashes; magnetic resonance imaging to assess WMH burden; 72 hours of actigraphy and questionnaires to quantify sleep; and a blood draw, questionnaires, and physical measures to quantify demographics and CVD risk factors. Test of a priori hypotheses regarding relations between physiologically-monitored and self-reported wake and sleep hot flashes and WMH were conducted in linear regression models. Results More physiologically-monitored hot flashes during sleep were associated with greater WMH, controlling for age, race, and body mass index [beta(standard error)=.0002 (.0001), p=.03]. Findings persisted controlling for sleep characteristics and additional CVD risk factors. No relations were observed for self-reported hot flashes. Conclusions More physiologically-monitored hot flashes during sleep were associated with greater WMH burden among midlife women free of clinical CVD. Results suggest that relations between hot flashes and CVD risk observed in the periphery may extend to the brain. Future work should consider the unique role of sleep hot flashes in brain health. PMID:26057822

  8. Hot tearing studies in AA5182 (United States)

    van Haaften, W. M.; Kool, W. H.; Katgerman, L.


    One of the major problems during direct chill (DC) casting is hot tearing. These tears initiate during solidification of the alloy and may run through the entire ingot. To study the hot tearing mechanism, tensile tests were carried out in semisolid state and at low strain rates, and crack propagation was studied in situ by scanning electron microscopy (SEM). These experimentally induced cracks were compared with hot tears developed in an AA5182 ingot during a casting trial in an industrial research facility. Similarities in the microstructure of the tensile test specimens and the hot tears indicate that hot tearing can be simulated by performing tensile tests at semisolid temperatures. The experimental data were compared with existing hot tearing models and it was concluded that the latter are restricted to relatively high liquid fractions because they do not take into account the existence of solid bridges in the crack.

  9. Do scientists trace hot topics? (United States)

    Wei, Tian; Li, Menghui; Wu, Chensheng; Yan, Xiao-Yong; Fan, Ying; Di, Zengru; Wu, Jinshan


    Do scientists follow hot topics in their scientific investigations? In this paper, by performing analysis to papers published in the American Physical Society (APS) Physical Review journals, it is found that papers are more likely to be attracted by hot fields, where the hotness of a field is measured by the number of papers belonging to the field. This indicates that scientists generally do follow hot topics. However, there are qualitative differences among scientists from various countries, among research works regarding different number of authors, different number of affiliations and different number of references. These observations could be valuable for policy makers when deciding research funding and also for individual researchers when searching for scientific projects.

  10. 'Hot' cognition in major depressive disorder

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla W; Carvalho, Andre F


    Major depressive disorder (MDD) is associated with significant cognitive dysfunction in both 'hot' (i.e. emotion-laden) and 'cold' (non-emotional) domains. Here we review evidence pertaining to 'hot' cognitive changes in MDD. This systematic review searched the PubMed and PsycInfo computerized......-limbic network with hyper-activity in limbic and ventral prefrontal regions paired with hypo-activity of dorsal prefrontal regions subserve these abnormalities. A cross-talk of 'hot' and 'cold' cognition disturbances in MDD occurs. Disturbances in 'hot cognition' may also contribute to the perpetuation......' cognition deficits in healthy relatives of patients with MDD. Taken together, these findings suggest that abnormalities in 'hot' cognition may constitute a candidate neurocognitive endophenotype for depression....

  11. A review on hot tearing of magnesium alloys

    Directory of Open Access Journals (Sweden)

    Jiangfeng Song


    Full Text Available Hot tearing is often a major casting defect in magnesium alloys and has a significant impact on the quality of their casting products. Hot tearing of magnesium alloys is a complex solidification phenomenon which is still not fully understood, it is of great importance to investigate the hot tearing behaviour of magnesium alloys. This review attempts to summarize the investigations on hot tearing of magnesium alloys over the past decades. The hot tearing criteria including recently developed Kou's criterion are summarized and compared. The numeric simulation and assessing methods of hot tearing, factors influencing hot tearing, and hot tearing susceptibility (HTS of magnesium alloys are discussed.

  12. Ninth international symposium on hot atom chemistry. Abstracts

    International Nuclear Information System (INIS)


    Abstracts of the papers presented at the Symposium are compiled. The topics considered were chemical dynamics of high energy reactions, hot atom chemistry in organic compounds of tritium, nitrogen, oxygen, and halogens, theory and chemical dynamics of hot atom reactions as determined by beam studies, solid state reactions of recoil atoms and implanted ions, hot atom chemistry in energy-related research, hot atom chemistry in inorganic compounds of oxygen and tritium, hot positronium chemistry, applied hot atom chemistry in labelling, chemical effects of radioactive decay, decay-induced reactions and excitation labelling, physical methods in hot atom chemistry, and hot atom reactions in radiation and stratospheric chemistry

  13. Penicillium digitatum immobilized on pumice stone as a new solid phase extractor for preconcentration and/or separation of trace metals in environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Baytak, Sitki [Department of Chemistry, Faculty of Science and Arts, Harran University, 63100 Sanliurfa (Turkey); Kenduezler, Erdal [Department of Primary Education, Faculty of Education, Ahi Evran University, 40100 Kirsehir (Turkey); Tuerker, Ali Rehber [Department of Chemistry, Faculty of Science and Arts, Gazi University, 06500 Ankara (Turkey)], E-mail:; Goek, Nuray [Department of Environmental Engineering, Faculty of Engineering, Harran University, 63000 Sanliurfa (Turkey)


    This study presents a column solid phase extraction procedure based on column biosorption of Cu(II), Zn(II) and Pb(II) ions on Penicillium digitatum immobilized on pumice stone. The analytes were determined by flame atomic absorption spectrometry (FAAS). The optimum conditions such as: pH values, amount of solid phase, elution solution and flow rate of sample solution were evaluated for the quantitative recovery of the analytes. The effect of interfering ions on the recovery of the analytes has also been investigated. The recoveries of copper, zinc and lead under the optimum conditions were found to be 97 {+-} 2, 98 {+-} 2 and 98 {+-} 2%, respectively, at 95% confidence level. For the analytes, 50-fold preconcentration was obtained. The analytical detection limits for Cu(II), Zn(II) and Pb(II) were 1.8, 1.3 and 5.8 ng mL{sup -1}, respectively. The proposed procedure was applied for the determination of copper, zinc and lead in dam water, waste water, spring water, parsley and carrot. The accuracy of the procedure was checked by determining copper, zinc and lead in standard reference tea samples (GBW-07605)

  14. Penicillium digitatum immobilized on pumice stone as a new solid phase extractor for preconcentration and/or separation of trace metals in environmental samples

    International Nuclear Information System (INIS)

    Baytak, Sitki; Kenduezler, Erdal; Tuerker, Ali Rehber; Goek, Nuray


    This study presents a column solid phase extraction procedure based on column biosorption of Cu(II), Zn(II) and Pb(II) ions on Penicillium digitatum immobilized on pumice stone. The analytes were determined by flame atomic absorption spectrometry (FAAS). The optimum conditions such as: pH values, amount of solid phase, elution solution and flow rate of sample solution were evaluated for the quantitative recovery of the analytes. The effect of interfering ions on the recovery of the analytes has also been investigated. The recoveries of copper, zinc and lead under the optimum conditions were found to be 97 ± 2, 98 ± 2 and 98 ± 2%, respectively, at 95% confidence level. For the analytes, 50-fold preconcentration was obtained. The analytical detection limits for Cu(II), Zn(II) and Pb(II) were 1.8, 1.3 and 5.8 ng mL -1 , respectively. The proposed procedure was applied for the determination of copper, zinc and lead in dam water, waste water, spring water, parsley and carrot. The accuracy of the procedure was checked by determining copper, zinc and lead in standard reference tea samples (GBW-07605)

  15. Hot Fuel Examination Facility (HFEF) (United States)

    Federal Laboratory Consortium — The Hot Fuel Examination Facility (HFEF) is one of the largest hot cells dedicated to radioactive materials research at Idaho National Laboratory (INL). The nation's...

  16. Nuclear magnetic resonance analysis of freeze-thaw damage in natural pumice concrete

    Directory of Open Access Journals (Sweden)

    Wang, Xiaoxiao


    Full Text Available This paper presents an analysis of the damage propagation features of the pore structure of natural pumice lightweight aggregate concrete (LWC under freeze-thaw cyclic action. After freeze-thaw cycling, we conducted nuclear magnetic resonance (NMR tests on the concrete and acquired the porosity, distribution of transverse relaxation time T2, and magnetic resonance imaging (MRI results. The results showed the following. The T2 distribution of the LWC prior to freeze-thaw cycling presented four peaks representative of a preponderance of small pores. After 50, 100, 150, and 200 freeze-thaw cycles, the total area of the T2 spectrum and the porosity increased significantly. The MRI presented the changing spatial distribution of pores within the LWC during freeze-thaw cycling. Ultrasonic testing technology was applied simultaneously to analyze the NMR results, which verified that the new NMR technology demonstrated high accuracy and practicability for research regarding freeze-thaw concrete damage.En este trabajo se analiza la propagación de los daños que se producen en la estructura porosa de hormigón aligerado a base de piedra pómez natural sometido a la acción cíclica de hielo-deshielo. Después de realizarse los ensayos de hielo-deshielo, el hormigón se analizó mediante resonancia magnética nuclear (RMN, determinándose la porosidad y la distribución del tiempo de relajación transversal, T2, y registrándose las imágenes captadas por resonancia magnética. De acuerdo con los resultados obtenidos, antes de los ciclos de hielo-deshielo la distribución de T2 del hormigón aligerado presentaba cuatro picos, indicativos de un predominio de poros pequeños. Después de que se sometiera a 50, 100, 150, y 200 ciclos, se observó un aumento importante tanto de la porosidad como de la superficie total del espectro de T2. Las imágenes captadas por resonancia magnética evidenciaron la modificación de la distribución espacial de los poros del

  17. Measuring hot flash phenomenonology using ambulatory prospective digital diaries (United States)

    Fisher, William I.; Thurston, Rebecca C.


    Objective This study provides the description, protocol, and results from a novel prospective ambulatory digital hot flash phenomenon diary. Methods This study included 152 midlife women with daily hot flashes who completed an ambulatory electronic hot flash diary continuously for the waking hours of 3 consecutive days. In this diary, women recorded their hot flashes and accompanying characteristics and associations as the hot flashes occurred. Results Self-reported hot flash severity on the digital diaries indicated that the majority of hot flashes were rated as mild (41.3%) or moderate (43.7%). Severe (13.1%) and very severe (1.8%) hot flashes were less common. Hot flash bother ratings were rated as mild (43%), or moderate (33.5%), with fewer hot flashes reported bothersome (17.5%) or very bothersome (6%). The majority of hot flashes were reported as occurring on the on the face (78.9%), neck (74.7%), and chest (61.3%). Prickly skin was reported concurrently with 32% of hot flashes, 7% with anxiety and 5% with nausea. A novel finding, 38% of hot flashes were accompanied by a premonitory aura. Conclusion A prospective electronic digital hot flash diary allows for a more precise quantitation of hot flashes while overcoming many of the limitations of commonly employed retrospective questionnaires and paper diaries. Unique insights into the phenomenology, loci and associated characteristics of hot flashes were obtained using this device. The digital hot flash phenomenology diary is recommended for future ambulatory studies of hot flashes as a prospective measure of the hot flash experience. PMID:27404030

  18. Computational prediction of protein hot spot residues. (United States)

    Morrow, John Kenneth; Zhang, Shuxing


    Most biological processes involve multiple proteins interacting with each other. It has been recently discovered that certain residues in these protein-protein interactions, which are called hot spots, contribute more significantly to binding affinity than others. Hot spot residues have unique and diverse energetic properties that make them challenging yet important targets in the modulation of protein-protein complexes. Design of therapeutic agents that interact with hot spot residues has proven to be a valid methodology in disrupting unwanted protein-protein interactions. Using biological methods to determine which residues are hot spots can be costly and time consuming. Recent advances in computational approaches to predict hot spots have incorporated a myriad of features, and have shown increasing predictive successes. Here we review the state of knowledge around protein-protein interactions, hot spots, and give an overview of multiple in silico prediction techniques of hot spot residues.

  19. Uncertainty analysis for hot channel

    International Nuclear Information System (INIS)

    Panka, I.; Kereszturi, A.


    The fulfillment of the safety analysis acceptance criteria is usually evaluated by separate hot channel calculations using the results of neutronic or/and thermo hydraulic system calculations. In case of an ATWS event (inadvertent withdrawal of control assembly), according to the analysis, a number of fuel rods are experiencing DNB for a longer time and must be regarded as failed. Their number must be determined for a further evaluation of the radiological consequences. In the deterministic approach, the global power history must be multiplied by different hot channel factors (kx) taking into account the radial power peaking factors for each fuel pin. If DNB occurs it is necessary to perform a few number of hot channel calculations to determine the limiting kx leading just to DNB and fuel failure (the conservative DNBR limit is 1.33). Knowing the pin power distribution from the core design calculation, the number of failed fuel pins can be calculated. The above procedure can be performed by conservative assumptions (e.g. conservative input parameters in the hot channel calculations), as well. In case of hot channel uncertainty analysis, the relevant input parameters (k x, mass flow, inlet temperature of the coolant, pin average burnup, initial gap size, selection of power history influencing the gap conductance value) of hot channel calculations and the DNBR limit are varied considering the respective uncertainties. An uncertainty analysis methodology was elaborated combining the response surface method with the one sided tolerance limit method of Wilks. The results of deterministic and uncertainty hot channel calculations are compared regarding to the number of failed fuel rods, max. temperature of the clad surface and max. temperature of the fuel (Authors)

  20. 3-D thermoelastic analysis of the straight section of a PWR hot leg containing a hot spot using BEM

    International Nuclear Information System (INIS)

    Bains, R.S.; Sugimoto, J.


    A 3-D steady state thermoelastic analysis using the boundary element method has been successfully employed to investigate the structural response of the straight section of a pressurised water reactor hot leg containing a localised hot spot. With the present severe accident thermal boundary conditions, the analysis produces a nonuniform expansion across the hot leg thickness. This expansion was most predominant on the inner surface, especially at the hot spot location where surface swelling was obtained. Furthermore, the hot spot generates large tangential and axial tensile stresses on the outer surface. These could be detrimental to the integrity of the hot leg by acting as potential sites of crack initiation and subsequent propagation. (orig.)

  1. Hot-pressing steatite bodies

    International Nuclear Information System (INIS)

    Aparicio Arroyo, E.


    Requirements for some special nuclear engineering ceramic shapes are: big size, impervious, dimensional accuracy and good mechanical and dielectric properties. Limitations of te conventional methods and advantages of te hot pressing techniques for the manufacturing of these shapes are discussed. Hot pressing characteristics of a certain steatite powder are studied. Occurrence of an optimum densification temperature just above the tale decomposition range is found. Experimental data show that the height/diameter ratio of the specimen has no effect on the sintering conditions. Increasing darkness from the graphite mould is detected above the optimum temperature. The hot-pressed steatite is compared with a fired dry-pressed sample of the same composition. (Author) 13 refs

  2. HOT 2017

    DEFF Research Database (Denmark)

    Hannibal, Sara Stefansen

    HOT er en kvalitativ undersøgelse, der hvert år diskuterer og undersøger en lille udvalgt skare af danskkyndige fagpersoners bud på, hvad de er optagede af på literacyområdet her og nu – altså hvilke emner, de vil vurdere som aktuelle at forholde sig til i deres nuværende praksis.......HOT er en kvalitativ undersøgelse, der hvert år diskuterer og undersøger en lille udvalgt skare af danskkyndige fagpersoners bud på, hvad de er optagede af på literacyområdet her og nu – altså hvilke emner, de vil vurdere som aktuelle at forholde sig til i deres nuværende praksis....

  3. [History of hot spring bath treatment in China]. (United States)

    Hao, Wanpeng; Wang, Xiaojun; Xiang, Yinghong; Gu Li, A Man; Li, Ming; Zhang, Xin


    As early as the 7th century B.C. (Western Zhou Dynasty), there is a recording as 'spring which contains sulfur could treat disease' on the Wentang Stele written by WANG Bao. Wenquan Fu written by ZHANG Heng in the Easten Han Dynasty also mentioned hot spring bath treatment. The distribution of hot springs in China has been summarized by LI Daoyuan in the Northern Wei Dynasty in his Shuijingzhu which recorded hot springs in 41 places and interpreted the definition of hot spring. Bencao Shiyi (by CHEN Cangqi, Tang Dynasty) discussed the formation of and indications for hot springs. HU Zai in the Song Dynasty pointed out distinguishing hot springs according to water quality in his book Yuyin Conghua. TANG Shenwei in the Song Dynasty noted in Jingshi Zhenglei Beiji Bencao that hot spring bath treatment should be combined with diet. Shiwu Bencao (Ming Dynasty) classified hot springs into sulfur springs, arsenicum springs, cinnabar springs, aluminite springs, etc. and pointed out their individual indications. Geologists did not start the work on distribution and water quality analysis of hot springs until the first half of the 20th century. There are 972 hot springs in Wenquan Jiyao (written by geologist ZHANG Hongzhao and published in 1956). In July 1982, the First National Geothermal Conference was held and it reported that there were more than 2600 hot springs in China. Since the second half of the 20th century, hot spring sanatoriums and rehabilitation centers have been established, which promoted the development of hot spring bath treatment.

  4. Hot workability of aluminium alloys

    International Nuclear Information System (INIS)

    Yoo, Yeon Chul; Oh, Kyung Jin


    Hot Workability of aluminium alloys, 2024, 6061 and 7075, has been studied by hot torsion tests at temperatures from 320 to 515 deg C and at strain rates from 1.26 x 10 -3 to 5.71 x 10 -3 sec -1 . Hot working condition of these aluminium alloys was determined quantitatively from the constitutive equations obtained from flow stress curves in torsion. Experimental data of the logarith of the Zener-Hollomonn parameter showed good linear relationships to the logarith of sinh(ασ-bar)

  5. Thermal interactions of the AD79 Vesuvius pyroclastic density currents and their deposits at Villa dei Papiri (Herculaneum archaeological site, Italy) (United States)

    Giordano, G.; Zanella, E.; Trolese, M.; Baffioni, C.; Vona, A.; Caricchi, C.; De Benedetti, A. A.; Corrado, S.; Romano, C.; Sulpizio, R.; Geshi, N.


    Pyroclastic density currents (PDCs) can have devastating impacts on urban settlements, due to their dynamic pressure and high temperatures. Our degree of understanding of the interplay between these hot currents and the affected infrastructures is thus fundamental not only to implement our strategies for risk reduction, but also to better understand PDC dynamics. We studied the temperature of emplacement of PDC deposits that destroyed and buried the Villa dei Papiri, an aristocratic Roman edifice located just outside the Herculaneum city, during the AD79 plinian eruption of Mt Vesuvius (Italy) by using the thermal remanent magnetization of embedded lithic clasts. The PDC deposits around and inside the Villa show substantial internal thermal disequilibrium. In areas affected by convective mixing with surface water or with collapsed walls, temperatures average at around 270 °C (min 190 °C, max 300 °C). Where the deposits show no evidence of mixing with external material, the temperature is much higher, averaging at 350 °C (min 300 °C; max 440 °C). Numerical simulations and comparison with temperatures retrieved at the very same sites from the reflectance of charcoal fragments indicate that such thermal disequilibrium can be maintained inside the PDC deposit for time-scales well over 24 hours, i.e. the acquisition time of deposit temperatures for common proxies. We reconstructed in detail the history of the progressive destruction and burial of Villa dei Papiri and infer that the rather homogeneous highest deposit temperatures (average 350 °C) were carried by the ash-sized fraction in thermal equilibrium with the fluid phase of the incoming PDCs. These temperatures can be lowered on short time- (less than hours) and length-scales (meters to tens of meters) only where convective mixing with external materials or fluids occurs. By contrast, where the Villa walls remained standing the thermal exchange was only conductive and very slow, i.e. negligible at 50 cm

  6. Hot dry rock heat mining

    International Nuclear Information System (INIS)

    Duchane, D.V.


    Geothermal energy utilizing fluids from natural sources is currently exploited on a commercial scale at sites around the world. A much greater geothermal resource exists, however, in the form of hot rock at depth which is essentially dry. This hot dry rock (HDR) resource is found almost everywhere, but the depth at which usefully high temperatures are reached varies from place to place. The technology to mine the thermal energy from HDR has been under development for a number of years. Using techniques adapted from the petroleum industry, water is pumped at high pressure down an injection well to a region of usefully hot rock. The pressure forces open natural joints to form a reservoir consisting of a small amount of water dispensed in a large volume of hot rock. This reservoir is tapped by second well located at some distance from the first, and the heated water is brought to the surface where its thermal energy is extracted. The same water is then recirculated to mine more heat. Economic studies have indicated that it may be possible to produce electricity at competitive prices today in regions where hot rock is found relatively close to the surface

  7. Hydrological sensitivity of volcanically disturbed watersheds—a lesson reinforced at Pinatubo (United States)

    Major, J. J.; Janda, R. J.


    The climactic June 1991 eruption of Mount Pinatubo devastated many surrounding catchments with thick pyroclastic fall and flow deposits, and subsequent hydrogeomorphic responses were dramatic and persisted for years. But in the 24 hours preceding the climactic eruption there was less devastating eruptive activity that had more subtle, yet significant, impact on catchment hydrology. Stratigraphic relations show damaging lahars swept all major channels east of the volcano, starting late on June 14 and continuing through (and in some instances after) midday on June 15, before the climactic phase of the eruption began and before Typhoon Yunya struck the region. These early lahars were preceded by relatively small explosions and pyroclastic surges that emplaced fine-grained ash in the upper catchments, locally damaged or destroyed vegetation, reduced hillside infiltration capacity, and smoothed surface roughness. Thus the lahars, likely triggered by typical afternoon monsoon storms perhaps enhanced by local thermal influences of fresh volcanic deposits, did not result from extraordinary tropical rainfall or exceptional volcaniclastic deposition. Instead, direct rainfall-runoff volume increased substantially as a consequence of vegetation damage and moderate deposition of fine ash. Rapid runoff from hillsides to channels initiated hillside and bank erosion as well as channel scour, producing debris flows and hyperconcentrated flows. Timing of some lahars varied across catchments as well as downstream within catchments with respect to climactic pumice fall, demonstrating complex interplay among volcanic processes, variations in catchment disturbance, and rainfall timing and intensity. Occurrence of these early lahars supports the hypothesis that eruptions that deposit fine ash in volcanic catchments can instigate major hydrogeomorphic responses even when volcanic disturbances are modest—an effect that can be masked by later eruption impacts.

  8. Mercury content in Hot Springs

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, R


    A method of determination of mercury in hot spring waters by flameless atomic absorption spectrophotometry is described. Further, the mercury content and the chemical behavior of the elementary mercury in hot springs are described. Sulfide and iodide ions interfered with the determination of mercury by the reduction-vapor phase technique. These interferences could, however, be minimized by the addition of potassium permanganate. Waters collected from 55 hot springs were found to contain up to 26.0 ppb mercury. High concentrations of mercury have been found in waters from Shimoburo Springs, Aomori (10.0 ppb), Osorezan Springs, Aomori (1.3 approximately 18.8 ppb), Gosyogake Springs, Akita (26.0 ppb), Manza Springs, Gunma (0.30 approximately 19.5 ppb) and Kusatu Springs, Gunma (1.70 approximately 4.50 ppb). These hot springs were acid waters containing a relatively high quantity of chloride or sulfate.

  9. Disturbance Impacts on Thermal Hot Spots and Hot Moments at the Peatland-Atmosphere Interface (United States)

    Leonard, R. M.; Kettridge, N.; Devito, K. J.; Petrone, R. M.; Mendoza, C. A.; Waddington, J. M.; Krause, S.


    Soil-surface temperature acts as a master variable driving nonlinear terrestrial ecohydrological, biogeochemical, and micrometeorological processes, inducing short-lived or spatially isolated extremes across heterogeneous landscape surfaces. However, subcanopy soil-surface temperatures have been, to date, characterized through isolated, spatially discrete measurements. Using spatially complex forested northern peatlands as an exemplar ecosystem, we explore the high-resolution spatiotemporal thermal behavior of this critical interface and its response to disturbances by using Fiber-Optic Distributed Temperature Sensing. Soil-surface thermal patterning was identified from 1.9 million temperature measurements under undisturbed, trees removed and vascular subcanopy removed conditions. Removing layers of the structurally diverse vegetation canopy not only increased mean temperatures but it shifted the spatial and temporal distribution, range, and longevity of thermal hot spots and hot moments. We argue that linking hot spots and/or hot moments with spatially variable ecosystem processes and feedbacks is key for predicting ecosystem function and resilience.


    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kurtis A.; Bierwagen, Michael [Department of Physics and Astrophysics, Texas A and M University-Commerce, P.O. Box 3011, Commerce, TX, 75429 (United States); Montgomery, M. H.; Winget, D. E.; Falcon, Ross E., E-mail: [Department of Astronomy, University of Texas, 1 University Station C1400, Austin, TX, 78712 (United States)


    Hot white dwarfs (WDs) with carbon-dominated atmospheres (hot DQs) are a cryptic class of WDs. In addition to their deficiency of hydrogen and helium, most of these stars are highly magnetic, and a large fraction vary in luminosity. This variability has been ascribed to nonradial pulsations, but increasing data call this explanation into question. We present studies of short-term variability in seven hot DQ WDs. Three (SDSS J1426+5752, SDSS J2200−0741, and SDSS J2348−0942) were known to be variable. Their photometric modulations are coherent over at least two years, and we find no evidence for variability at frequencies that are not harmonics. We present the first time-series photometry for three additional hot DQs (SDSS J0236−0734, SDSS J1402+3818, and SDSS J1615+4543); none are observed to vary, but the signal-to-noise is low. Finally, we present high speed photometry for SDSS J0005−1002, known to exhibit a 2.1-day photometric variation; we do not observe any short-term variability. Monoperiodicity is rare among pulsating WDs, so we contemplate whether the photometric variability is due to rotation rather than pulsations; similar hypotheses have been raised by other researchers. If the variability is due to rotation, then hot DQ WDs as a class contain many rapid rotators. Given the lack of companions to these stars, the origin of any fast rotation is unclear—both massive progenitor stars and double degenerate merger remnants are possibilities. We end with suggestions of future work that would best clarify the nature of these rare, intriguing objects.

  11. Mechanical shielded hot cell

    International Nuclear Information System (INIS)

    Higgy, H.R.; Abdel-Rassoul, A.A.


    A plan to erect a mechanical shielded hot cell in the process hall of the Radiochemical Laboratory at Inchas is described. The hot cell is designed for safe handling of spent fuel bundles, from the Inchas reactor, and for dismantling and cutting the fuel rods in preparation for subsequent treatment. The biological shielding allows for the safe handling of a total radioactivity level up to 10,000 MeV-Ci. The hot cell consists of an α-tight stainless-steel box, connected to a γ-shielded SAS, through an air-lock containing a movable carriage. The α-box is tightly connected with six dry-storage cavities for adequate storage of the spent fuel bundles. Both the α-box, with the dry-storage cavities, and the SAS are surrounded by 200-mm thick biological lead shielding. The α-box is equipped with two master-slave manipulators, a lead-glass window, a monorail crane and Padirac and Minirag systems. The SAS is equipped with a lead-glass window, tong manipulator, a shielded pit and a mechanism for the entry of the spent fuel bundle. The hot cell is served by adequate ventilation and monitoring systems. (author)

  12. Sanitary hot water; Eau chaude sanitaire

    Energy Technology Data Exchange (ETDEWEB)



    Cegibat, the information-recommendation agency of Gaz de France for building engineering professionals, has organized this conference meeting on sanitary hot water to present the solutions proposed by Gaz de France to meet its clients requirements in terms of water quality, comfort, energy conservation and respect of the environment: quantitative aspects of the hot water needs, qualitative aspects, presentation of the Dolce Vita offer for residential buildings, gas water heaters and boilers, combined solar-thermal/natural gas solutions, key-specifications of hot water distribution systems, testimony: implementation of a gas hot water reservoir and two accumulation boilers in an apartment building for young workers. (J.S.)

  13. OUT Success Stories: Solar Hot Water Technology

    International Nuclear Information System (INIS)

    Clyne, R.


    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building

  14. OUT Success Stories: Solar Hot Water Technology (United States)

    Clyne, R.


    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building.

  15. Investigation of hot air balloon fatalities. (United States)

    McConnell, T S; Smialek, J E; Capron, R G


    The rising popularity of the sport of hot air ballooning has been accompanied by several recent incidents, both in this country and other parts of the world, where mechanical defects and the improper operation of balloons have resulted in several fatalities. A study was conducted to identify the location and frequency of hot air ballooning accidents. Furthermore, the study attempted to identify those accidents that were the result of improper handling on the part of the balloon operators and those that were related to specific defects in the construction of the balloon. This paper presents a background of the sport of hot air ballooning, together with an analysis of the construction of a typical hot air balloon, pointing out the specific areas where defects may occur that could result in a potential fatal balloon crash. Specific attention is given to the two recent balloon crashes that occurred in Albuquerque, N.M., hot air balloon capital of the world, and that resulted in multiple fatalities.

  16. 40 CFR 68.85 - Hot work permit. (United States)


    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.85 Hot work permit. (a) The owner or operator shall issue a hot work permit for hot work operations conducted on or near a covered process. (b...

  17. Pre-eruptive conditions of dacitic magma erupted during the 21.7 ka Plinian event at Nevado de Toluca volcano, Central Mexico (United States)

    Arce, J. L.; Gardner, J. E.; Macías, J. L.


    The Nevado de Toluca volcano in Central Mexico has been active over the last ca. 42 ka, during which tens of km3 of pyroclastic material were erupted and two important Plinian-type eruptions occurred at ca. 21.7 ka (Lower Toluca Pumice: LTP) and ca. 10.5 ka (Upper Toluca Pumice: UTP). Samples from both the LTP and UTP contain plagioclase, amphibole, iron-titanium oxides, and minor anhedral biotite, set in a vesicular, rhyolitic, glassy matrix. In addition, UTP dacites contain orthopyroxene. Analysis of melt inclusions in plagioclase phenocrysts yields H2O contents of 2-3.5 wt.% for LTP and 1.3-3.6 wt.% for UTP samples. Ilmenite-ulvospinel geothermometry yields an average temperature of ~ 868 °C for the LTP magma (hotter than the UTP magma, ~ 842 °C; Arce et al., 2006), whereas amphibole-plagioclase geothermometry yields a temperature of 825-859 °C for the LTP magma. Water-saturated experiments using LTP dacite suggest that: (i) amphibole is stable above 100 MPa and below 900 °C; (ii) plagioclase crystallizes below 250-100 MPa at temperatures of 850-900 °C; and (iii) pyroxene is stable only below pressures of 200-100 MPa and temperatures of 825-900 °C. Comparison of natural and experimental data suggests that the LTP dacitic magma was stored at 150-200 MPa (5.8-7.7 km below the volcano summit). No differences in pressure found between 21.7 ka and 10.5 ka suggest that these two magmas were stored at similar depths. Orthopyroxene produced in lower temperature LTP experiments is compositionally different to those found in UTP natural samples, suggesting that they originated in two different magma batches. Whole-rock chemistry, petrographic features, and mineral compositions suggest that magma mixing was responsible for the generation of the dacitic Plinian LTP eruption.

  18. Lichen Persistence and Recovery in Response to Varied Volcanic Disturbances (United States)

    Nelson, P.; Wheeler, T. B.


    Volcanic eruptions produce many ecological disturbances that structure vegetation. While lichens are sensitive to disturbances, little is known about their responses to volcanic disturbances, except for colonization of lava. We examined lichen community responses through time to different disturbances produced by the May 1, 2008 eruption of Volcan Chaiten in south-central Chile. Pre-eruption vegetation near the volcano was old-growth Valdivian temperate rainforest dominated by closed-canopy Nothofagus sp... In 2012, we installed thirteen 1-acre plots across volcanic disturbance zones on which a time-constrained search was done for all macrolichen species, each of which was assigned an approximate log10 categorical abundance. We also installed a 0.2 m2 quadrat on two representative trees per plot for repeat photography of lichen cover. We remeasured at least one plot per disturbance zone in 2014 and re-photographed tree quadrats in 2013 and 2014. We then analyzed species composition and abundance differences among disturbance zones. In 2012, the blast (pyroclastic density flow), scorch (standing scorched forest at the edge of the blast) and deep tephra (>10 cm) zones had the lowest lichen species richness (5-13 species), followed by reference (unimpacted) and shallow (lichen species since 2012 while the light tephra and reference were essentially unchanged. Gravel rain, gravel rain + pumice and flooded forest plots all had about the same number of species in 2014 as 2012. Lichen colonization and growth in tree quadrats varied widely, from very little colonization in the blast to prolific colonization in the gravel rain + pumice zone. Lichen's varied responses to different volcanic disturbances were attributable to varying degrees of mortality and subsequent availability of substrate, quantity of light and removal of competitors. While sensitive to disturbance, lichens are apparently resilient to and can quickly recolonize after a variety of large, violent volcanic

  19. Kaguyak dome field and its Holocene caldera, Alaska Peninsula (United States)

    Fierstein, J.; Hildreth, W.


    Kaguyak Caldera lies in a remote corner of Katmai National Park, 375??km SW of Anchorage, Alaska. The 2.5-by-3-km caldera collapsed ~ 5.8 ?? 0.2??ka (14C age) during emplacement of a radial apron of poorly pumiceous crystal-rich dacitic pyroclastic flows (61-67% SiO2). Proximal pumice-fall deposits are thin and sparsely preserved, but an oxidized coignimbrite ash is found as far as the Valley of Ten Thousand Smokes, 80??km southwest. Postcaldera events include filling the 150-m-deep caldera lake, emplacement of two intracaldera domes (61.5-64.5% SiO2), and phreatic ejection of lakefloor sediments onto the caldera rim. CO2 and H2S bubble up through the lake, weakly but widely. Geochemical analyses (n = 148), including pre-and post-caldera lavas (53-74% SiO2), define one of the lowest-K arc suites in Alaska. The precaldera edifice was not a stratocone but was, instead, nine contiguous but discrete clusters of lava domes, themselves stacks of rhyolite to basalt exogenous lobes and flows. Four extracaldera clusters are mid-to-late Pleistocene, but the other five are younger than 60??ka, were truncated by the collapse, and now make up the steep inner walls. The climactic ignimbrite was preceded by ~ 200??years by radial emplacement of a 100-m-thick sheet of block-rich glassy lava breccia (62-65.5% SiO2). Filling the notches between the truncated dome clusters, the breccia now makes up three segments of the steep caldera wall, which beheads gullies incised into the breccia deposit prior to caldera formation. They were probably shed by a large lava dome extruding where the lake is today.

  20. Hot ductility of medium carbon steel with vanadium

    International Nuclear Information System (INIS)

    Lee, Chang-Hoon; Park, Jun-Young; Chung, JunHo; Park, Dae-Bum; Jang, Jin-Young; Huh, Sungyul; Ju Kim, Sung; Kang, Jun-Yun; Moon, Joonoh; Lee, Tae-Ho


    Hot ductility of medium carbon steel containing 0.52 wt% of carbon and 0.11 wt% of vanadium was investigated using a hot tensile test performed up to fracture. The hot ductility was evaluated by measuring the reduction of area of the fractured specimens, which were strained at a variety of test temperatures in a range of 600–1100 °C at a strain rate of 2×10"−"3/s. The hot ductility was excellent in a temperature range of 950–1100 °C, followed by a decrease of the hot ductility below 950 °C. The hot ductility continued to drop as the temperature was lowered to 600 °C. The loss of hot ductility in a temperature range of 800–950 °C, which is above the Ae_3 temperature, was due to V(C,N) precipitation at austenite grain boundaries. The further decline of hot ductility between 700 °C and 750 °C resulted from the transformation of ferrite films decorating austenite grain boundaries. The hot ductility continued to decrease at 650 °C or less, owing to ferrite films and the pearlite matrix, which is harder than ferrite. The pearlite was transformed from austenite due to relatively high carbon content.

  1. Theory of hot particle stability

    International Nuclear Information System (INIS)

    Berk, H.L.; Wong, H.V.; Tsang, K.T.


    The investigation of stabilization of hot particle drift reversed systems to low frequency modes has been extended to arbitrary hot beta, β/sub H/ for systems that have unfavorable field line curvature. We consider steep profile equilibria where the thickness of the pressure drop, Δ, is less than plasma radius, r/sub p/. The analysis describes layer modes which have mΔ/r/sub p/ 2/3. When robust stability conditions are fulfilled, the hot particles will have their axial bounce frequency less than their grad-B drift frequency. This allows for a low bounce frequency expansion to describe the axial dependence of the magnetic compressional response

  2. Ash turbidites from Southern Italy help understanding the parent eruptions and contributing to geodynamic evolution cadre of the Tyrrhenian sea (United States)

    Doronzo, Domenico Maria


    Tephra layers intercalated in sedimentary successions are very interesting since they represent some instants of geodynamic evolution in a sedimentation basin. Furthermore, they can constitute deposits of explosive eruptions whose distal behaviour can be useful for studying the volcanoes activity, especially when pyroclastic deposits in proximal areas are absent. In the Craco area (Matera, Italy), thick ash turbidites intercalated in marine clays deposits have been recently recognized, which interest is related to the considerable cropping out thickness (1 to 5 m), freshness of the material and absence of sedimentary component. Petrography, sedimentology and chemistry of the deposits have been characterized with the aim of defining genesis and deposition of the material. The deposits are essentially made up of ashy pyroclasts, dominated by fresh acidic to intermediate glass, mostly in the form of shards, pumice fragments and groundmass fragments with vitrophyric texture. Rare crystals include Pl, Opx, Cpx, Hbl and Bt. 40Ar/39Ar geochronology on the amphibole dated one level to 2.24 ± 0.06 Ma, indicating the Late Pliocene. The grain size (fine ash) and textural features of the deposits are typical of pyroclastic fall deposits related to explosive eruptions with consequent upward projection of the fragmented material through Plinian columms. The columns turned eastward because of stratospheric winds and the material fell in a marine environment. It deposited on the slope of Pliocene basins in the frontal sector of the Southern Apennine chain. Structural features are the following: fining-upward gradation of the deposits with cross- and convolute laminations at the base and fine-grained massive beds at the top. They suggest that the primary pyroclastic fall deposits were mobilized as volcaniclastic turbidity currents towards a deeper environment. Glass and crystal compositions were investigated by SEM/EDS analysis. Petrographycal and chemical compositions of the

  3. An ALARA-conscious hot particle control program

    International Nuclear Information System (INIS)

    Doolittle, W.W.; Bredvad, R.S.; Bevelacqua, J.J.


    In 1989 approximately twenty-five percent of the radiation dose received by the Point Beach Nuclear Plant (PBNP) Health Physics group was due to its hot particle control program. The Health Physics group initiated a review of the program with the objective of decreasing the dose expenditure for hot particle control while maintaining a high standard for hot particle detection and control. In this paper the methods and results of this evaluation are described. The components of the hot particle control program, rules of thumb, and radionuclide composition at PBNP are presented

  4. Probabilistic-numerical assessment of pyroclastic current hazard at Campi Flegrei and Naples city: Multi-VEI scenarios as a tool for "full-scale" risk management.

    Directory of Open Access Journals (Sweden)

    Giuseppe Mastrolorenzo

    Full Text Available The Campi Flegrei volcanic field (Italy poses very high risk to the highly urbanized Neapolitan area. Eruptive history was dominated by explosive activity producing pyroclastic currents (hereon PCs; acronym for Pyroclastic Currents ranging in scale from localized base surges to regional flows. Here we apply probabilistic numerical simulation approaches to produce PC hazard maps, based on a comprehensive spectrum of flow properties and vent locations. These maps are incorporated in a Geographic Information System (GIS and provide all probable Volcanic Explosivity Index (VEI scenarios from different source vents in the caldera, relevant for risk management planning. For each VEI scenario, we report the conditional probability for PCs (i.e., the probability for a given area to be affected by the passage of PCs in case of a PC-forming explosive event and related dynamic pressure. Model results indicate that PCs from VEI<4 events would be confined within the Campi Flegrei caldera, PC propagation being impeded by the northern and eastern caldera walls. Conversely, PCs from VEI 4-5 events could invade a wide area beyond the northern caldera rim, as well as part of the Naples metropolitan area to the east. A major controlling factor of PC dispersal is represented by the location of the vent area. PCs from the potentially largest eruption scenarios (analogous to the ~15 ka, VEI 6 Neapolitan Yellow Tuff or even the ~39 ka, VEI 7 Campanian Ignimbrite extreme event would affect a large part of the Campanian Plain to the north and the city of Naples to the east. Thus, in case of renewal of eruptive activity at Campi Flegrei, up to 3 million people will be potentially exposed to volcanic hazard, pointing out the urgency of an emergency plan. Considering the present level of uncertainty in forecasting the future eruption type, size and location (essentially based on statistical analysis of previous activity, we suggest that appropriate planning measures should

  5. 21 CFR 880.6085 - Hot/cold water bottle. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold water...

  6. 'Hot' particles in the atmosphere (Vilnius, 1986)

    International Nuclear Information System (INIS)

    Lujanas, V.; Shpirkauskaite, N.


    After the Chernobyl accident in the atmosphere above Vilnius the alpha-and beta- 'hot' particles were discovered. The amount of particles and their size were measured by the alpha-radiography. After the exposition of nuclear plates the 'auroras' of the beta hot particles were of the size 0.37-22.2 μm. The change in time of the beta- 'hot' particles amount in the ground level air from the 25th of April to the 9th of May, 1986 was given. The amount of this particles deposited in the adult man respiratory tract was calculated. The energy of the discovered 8 'hot' alpha-particles ranged from 4.2 to 6.6 MeV. All the samples in which alpha- 'hot' particles found were taken in anticyclone conditions. (author). 1 tab., 1 ref

  7. Ormen Lange hot tap - a world record

    Energy Technology Data Exchange (ETDEWEB)

    Apeland, Kjell Edvard


    For the last 10 years Statoil have been developing a new concept for performing subsea Hot Tap operations remotely controlled. The system was first used offshore in 2008 during a partly diver assisted operation, connecting the Tampen Link pipeline to the Statfjord Intrafield pipeline. In July 2009, the Hot Tap System successfully performed two remotely controlled Hot Taps, on a world record depth of 860 meters on the Ormen Lange field operated by Shell. The Hot Tap technology enables existing pipeline architecture to be modified, without interfering with the current production. Most of the technology is depth independent and the system is currently qualified to 1000 meter depth. Phase II of this project which involves development and construction of a retrofit Tee, thus enabling installation and welding of a Tee on an unprepared pipeline is well underway. This presentation will describe experiences from the development of the Remote Hot Tap system and give an overview of the offshore operations leading to the conclusion of the world's deepest Hot Taps. (Author)

  8. Simulation studies on stability of hot electron plasma

    International Nuclear Information System (INIS)

    Ohsawa, Yukiharu


    Stability of a hot electron plasma in an NBT(EBT)-like geometry is studied by using a 2-1/2 dimensional relativistic, electromagnetic particle code. For the low-frequency hot electron interchange mode, comparison of the simulation results with the analytical predictions of linear stability theory show fairly good agreement with the magnitude of the growth rates calculated without hot electron finite Larmor radius effects. Strong stabilizing effects by finite Larmor radius of the hot electrons are observed for short wavelength modes. As for the high-frequency hot electron interchange mode, there is a discrepancy between the simulation results and the theory. The high-frequency instability is not observed though a parameter regime is chosen in which the high-frequency hot electron interchange mode is theoretically predicted to grow. Strong cross-field diffusion in a poloidal direction of the hot electrons might explain the stability. Each particle has a magnetic drift velocity, and the speed of the magnetic drift is proportional to the kinetic energy of each particle. Hence, if the particles have high temperature, the spread of the magnetic drift velocity is large. This causes a strong cross-field diffusion of the hot electrons. In the simulation for this interchange mode, an enhanced temperature relaxation is observed between the hot and cold electrons although the theoretically predicted high frequency modes are stable. (Nogami, K.)

  9. Archaeal Nitrification in Hot Springs (United States)

    Richter, A.; Daims, H.; Reigstad, L.; Wanek, W.; Wagner, M.; Schleper, C.


    Biological nitrification, i.e. the aerobic conversion of ammonia to nitrate via nitrite, is a major component of the global nitrogen cycle. Until recently, it was thought that the ability to aerobically oxidize ammonia was confined to bacteria of the phylum Proteobacteria. However, it has recently been shown that Archaea of the phylum Crenarchaeota are also capable of ammonia oxidation. As many Crenarchaeota are thermophilic or hyperthermophilic, and at least some of them are capable of ammonia oxidation we speculated on the existence of (hyper)thermophilic ammonia-oxidizing archaea (AOA). Using PCR primers specifically targeting the archaeal ammonia monooxygenase (amoA) gene, we were indeed able to confirm the presence of such organisms in several hot springs in Reykjadalur, Iceland. These hot springs exhibited temperatures well above 80 °C and pH values ranging from 2.0 to 4.5. To proof that nitrification actually took place under these extreme conditions, we measured gross nitrification rates by the isotope pool dilution method; we added 15N-labelled nitrate to the mud and followed the dilution of the label by nitrate production from ammonium either in situ (incubation in the hot spring) or under controlled conditions in the laboratory (at 80 °C). The nitrification rates in the hot springs ranged from 0.79 to 2.22 mg nitrate-N per L of mud and day. Controls, in which microorganisms were killed before the incubations, demonstrated that the nitrification was of biological origin. Addition of ammonium increased the gross nitrification rate approximately 3-fold, indicating that the nitrification was ammonium limited under the conditions used. Collectively, our study provides evidence that (1) AOA are present in hot springs and (2) that they are actively nitrifying. These findings have major implications for our understanding of nitrogen cycling of hot environments.

  10. Coulomb explosion of “hot spot”

    Energy Technology Data Exchange (ETDEWEB)

    Oreshkin, V. I., E-mail: [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation); Tomsk Polytechnic University, Tomsk (Russian Federation); Oreshkin, E. V. [P. N. Lebedev Physical Institute, RAS, Moscow (Russian Federation); Chaikovsky, S. A. [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation); P. N. Lebedev Physical Institute, RAS, Moscow (Russian Federation); Institute of Electrophysics, UD, RAS, Ekaterinburg (Russian Federation); Artyomov, A. P. [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation)


    The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed, and the estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.

  11. Coulomb explosion of “hot spot”

    International Nuclear Information System (INIS)

    Oreshkin, V. I.; Oreshkin, E. V.; Chaikovsky, S. A.; Artyomov, A. P.


    The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed, and the estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.

  12. A study of pressureless microwave sintering, microwave-assisted hot press sintering and conventional hot pressing on properties of aluminium/alumina nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Abedinzadeh, Reza; Safavi, Seyed Mohsen; Karimzadeh, Fathallah [Isfahan University, Isfahan (Iran, Islamic Republic of)


    Bulk Al/4wt-%Al{sub 2}O{sub 3} nanocomposites were prepared by consolidating nanocomposite powders using pressureless microwave sintering, microwave-assisted hot press sintering and conventional hot pressing techniques. Microstructural observations revealed that the microwave-assisted hot press sintering at different sintering temperatures of 400.deg.C and 500.deg.C resulted in more densification and smaller grain size for Al/Al{sub 2}O{sub 3} nanocomposite as compared with the conventional hot pressing. Moreover, the application of pressure in microwave sintering process led to more densification and grain growth. Mechanical properties resulting from microhardness and nanoindentation tests were also compared between three-method processed samples. It was found that the microwave-assisted hot-pressed sample exhibited higher hardness and elastic modulus in comparison with microwave-sintered and conventional hot-pressed samples. The improvement in the mechanical properties can be ascribed to lower porosity of microwave-assisted hot-pressed sample.

  13. Lorenz curve and Gini coefficient reveal hot spots and hot moments for nitrous oxide emissions (United States)

    Identifying hot spots and hot moments of N2O emissions in the landscape is critical for monitoring and mitigating the emission of this powerful greenhouse gas. We propose a novel use of the Lorenz curve and Gini coefficient (G) to quantify the heterogeneous distribution of N2O emissions from a lands...

  14. Hot Flashes amd Night Sweats (PDQ) (United States)

    ... Professionals Questions to Ask about Your Treatment Research Hot Flashes and Night Sweats (PDQ®)–Patient Version Overview ... quality of life in many patients with cancer. Hot flashes and night sweats may be side effects ...

  15. Hot deformation behavior and hot working characteristic of Nickel-base electron beam weldments

    International Nuclear Information System (INIS)

    Ning, Yongquan; Yao, Zekun; Guo, Hongzhen; Fu, M.W.


    Highlights: • The Hot deformation behavior of electron beam (EB) Nickel-base weldments was investigated. • The constitutive equation represented by temperature, strain rate and true strain was developed. • Processing map approach was adopted to optimize the hot forging process of EB weldments. • True strain has a great effect on the efficiency of power dissipation (η). -- Abstract: The electron beam welding (EBW) of Nickel-base superalloys was conducted, and the cylindrical compression specimens were machined from the central part of the electron beam (EB) weldments. The hot deformation behavior of EB weldments was investigated at the temperature of 960–1140 °C and the strain rate of 0.001–1.0 s −1 . The apparent activation energy of deformation was calculated to be 400 kJ/mol, and the constitutive equation that describes the flow stress as a function of strain rate and deformation temperature was proposed for modeling of the hot deformation process of EB weldments. The processing map approach was adopted to investigate the deformation mechanisms during the hot plastic deformation and to optimize the processing parameters of EB weldments. It is found that the true strain has a significant effect on the efficiency of power dissipation (η). The η value in the safe processing domain (1140 °C, 1.0 s −1 ) increases from 0.32 to 0.55. In the unsafe processing domain (1080 °C, 0.001 s −1 ), however, the η value greatly decreases with the increase of strain. When the strain is 0.40, the efficiency of power dissipation becomes negative. The flow instability is predicted to occur since the instability parameter ξ(ε) becomes negative. The hot deformation of EB weldments can be carried out safely in the domain with the strain rate range of 0.1–1.0 s −1 and the temperature range of 960–1140 °C. When the height reduction is about 50%, the optimum processing condition is (T opi : 1140 °C, ε opi : 1.0 s −1 ) with the peak efficiency of 0

  16. Hot deformation behavior and hot working characteristic of Nickel-base electron beam weldments

    Energy Technology Data Exchange (ETDEWEB)

    Ning, Yongquan, E-mail: [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Yao, Zekun; Guo, Hongzhen [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Fu, M.W. [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)


    Highlights: • The Hot deformation behavior of electron beam (EB) Nickel-base weldments was investigated. • The constitutive equation represented by temperature, strain rate and true strain was developed. • Processing map approach was adopted to optimize the hot forging process of EB weldments. • True strain has a great effect on the efficiency of power dissipation (η). -- Abstract: The electron beam welding (EBW) of Nickel-base superalloys was conducted, and the cylindrical compression specimens were machined from the central part of the electron beam (EB) weldments. The hot deformation behavior of EB weldments was investigated at the temperature of 960–1140 °C and the strain rate of 0.001–1.0 s{sup −1}. The apparent activation energy of deformation was calculated to be 400 kJ/mol, and the constitutive equation that describes the flow stress as a function of strain rate and deformation temperature was proposed for modeling of the hot deformation process of EB weldments. The processing map approach was adopted to investigate the deformation mechanisms during the hot plastic deformation and to optimize the processing parameters of EB weldments. It is found that the true strain has a significant effect on the efficiency of power dissipation (η). The η value in the safe processing domain (1140 °C, 1.0 s{sup −1}) increases from 0.32 to 0.55. In the unsafe processing domain (1080 °C, 0.001 s{sup −1}), however, the η value greatly decreases with the increase of strain. When the strain is 0.40, the efficiency of power dissipation becomes negative. The flow instability is predicted to occur since the instability parameter ξ(ε) becomes negative. The hot deformation of EB weldments can be carried out safely in the domain with the strain rate range of 0.1–1.0 s{sup −1} and the temperature range of 960–1140 °C. When the height reduction is about 50%, the optimum processing condition is (T{sub opi}: 1140 °C, ε{sub opi}: 1.0 s{sup −1}) with

  17. Detecting hot spots at hazardous-waste sites

    International Nuclear Information System (INIS)

    Zirschky, J.; Gilbert, R.O.


    Evaluating the need for remedial cleanup at a waste site involves both finding the average contaminant concentration and identifying highly contaminated areas, or hot spots. A nomographic procedure to determine the sample configuration needed to locate a hot spot is presented. The technique can be used to develop a waste-site sampling plant - to determine either the grid spacing required to detect a hot spot at a given level of confidence, or the probability of finding a hot spot of a certain size, given a particular grid spacing. The method and computer program (ELIPGRID) were developed for locating geologic deposits, but the basic procedure can also be used to detect hot spots at chemical- or nuclear-waste disposal sites. Nomographs based on the original program are presented for three sampling-grid configurations - square, rectangular and triangular


    International Nuclear Information System (INIS)

    Mulchaey, John S.; Jeltema, Tesla E.


    We use Chandra and XMM-Newton to study the hot gas content in a sample of field early-type galaxies. We find that the L X -L K relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. The low hot gas content of field galaxies with L K ∼ * suggests that internal processes such as supernovae-driven winds or active galactic nucleus feedback expel hot gas from low-mass galaxies. Such mechanisms may be less effective in groups and clusters where the presence of an intragroup or intracluster medium can confine outflowing material. In addition, galaxies in groups and clusters may be able to accrete gas from the ambient medium. While there is a population of L K ∼ * galaxies in groups and clusters that retain hot gas halos, some galaxies in these rich environments, including brighter galaxies, are largely devoid of hot gas. In these cases, the hot gas halos have likely been removed via ram pressure stripping. This suggests a very complex interplay between the intragroup/intracluster medium and hot gas halos of galaxies in rich environments, with the ambient medium helping to confine or even enhance the halos in some cases and acting to remove gas in others. In contrast, the hot gas content of more isolated galaxies is largely a function of the mass of the galaxy, with more massive galaxies able to maintain their halos, while in lower mass systems the hot gas escapes in outflowing winds.

  19. The impacts of pyroclastic surges on buildings at the eruption of the Soufrière Hills volcano, Montserrat (United States)

    Baxter, Peter J.; Boyle, Robin; Cole, Paul; Neri, Augusto; Spence, Robin; Zuccaro, Giulio


    We investigated the impacts on buildings of three pyroclastic surges that struck three separate villages on 25 June, 21 September and 26 December, 1997, during the course of the andesitic dome building eruption of the Soufrière Hills Volcano, Montserrat, which began on 18 July, 1995. A detailed analysis of the building damage of the 26 December event was used to compare the findings on the flow and behaviour of dilute pyroclastic density currents (PDCs) with the classical reports of PDCs from historical eruptions of similar size. The main characteristics of the PDC, as inferred from the building damage, were the lateral loading and directionality of the current; the impacts corresponded to the dynamic pressure of the PDC, with a relatively slow rate of rise and without the peak overpressure or a shock front associated with explosive blast; and the entrainment of missiles and ground materials which greatly added to the destructiveness of the PDC. The high temperature of the ash, causing the rapid ignition of furniture and other combustibles, was a major cause of damage even where the dynamic pressure was low at the periphery of the current. The vulnerability of buildings lay in the openings, mainly windows, which allowed the current to enter the building envelope, and in the flammable contents, as well as the lack of resistance to the intense heat and dynamic pressure of some types of vernacular building construction, such as wooden chattel houses, rubble masonry walls and galvanised steel-sheet roofs. Marked variability in the level of damage due to dynamic pressure (in a range 1-5 kPa, or more) was evident throughout most of the impact area, except for the zone of total loss, and this was attributable to the effects of topography and sheltering, and projectiles, and probably localised variations in current velocity and density. A marked velocity gradient existed from the outer part to the central axis of the PDC, where buildings and vegetation were razed to the

  20. Effect of hot pressing additives on the leachability of hot pressed sodium hydrous titanium oxide

    International Nuclear Information System (INIS)

    Valentine, T.M.; Sambell, R.A.J.


    Sodium hydrous titanium oxide is an ion exchange resin which can be used for immobilizing medium level waste (MLW) liquors. When hot pressed, it undergoes conversion to a ceramic. Three low melting point materials (borax, bismuth trioxide, and a mixture of PbO/CuO) were added to the (Na)HTiO and the effect that each of these had on aiding densification was assessed. Hot pressing temperature, applied pressure, and percentage addition of hot pressing aid were varied. Percentage open porosity, flexural strength, and leachability were measured. There was a linear relationship between the percentage open porosity and the logarithm of the leach rate for a constant percentage addition of each additive

  1. Hot laboratory in Saclay. Equipment and radio-metallurgy technique of the hot lab in Saclay. Description of hot cell for handling of plutonium salts. Installation of an hot cell

    International Nuclear Information System (INIS)

    Bazire, R.; Blin, J.; Cherel, G.; Duvaux, Y.; Cherel, G.; Mustelier, J.P.; Bussy, P.; Gondal, G.; Bloch, J.; Faugeras, P.; Raggenbass, A.; Raggenbass, P.; Fufresne, J.


    Describes the conception and installation of the hot laboratory in Saclay (CEA, France). The construction ended in 1958. The main aim of this laboratory is to examine fuel rods of EL2 and EL3 as well as nuclear fuel studies. It is placed in between both reactors. In a first part, the functioning and specifications of the hot lab are given. The different hot cells are described with details of the ventilation and filtration system as well as the waste material and effluents disposal. The different safety measures are explained: description of the radiation protection, decontamination room and personnel monitoring. The remote handling equipment is composed of cutting and welding machine controlled with manipulators. Periscopes are used for sight control of the operation. In a second part, it describes the equipment of the hot lab. The unit for an accurate measurement of the density of irradiated uranium is equipped with an high precision balance and a thermostat. The equipment used for the working of irradiated uranium is described and the time length of each operation is given. There is also an installation for metallographic studies which is equipped with a manipulation bench for polishing and cleaning surfaces and a metallographic microscope. X-ray examination of uranium pellets will also be made and results will be compared with those of metallography. The last part describes the hot cells used for the manipulation of plutonium salts. The plutonium comes from the reprocessing plant and arrived as a nitric solution. Thus these cells are used to study the preparation of plutonium fluorides from nitric solution. The successive operations needed are explained: filtration, decontamination and extraction with TBP, purification on ion exchangers and finally formation of the plutonium fluorides. Particular attention has been given to the description of the specifications of the different gloveboxes and remote handling equipment used in the different reaction steps and

  2. Formation and decay of hot nuclei

    International Nuclear Information System (INIS)

    Tamain, B.


    The mechanisms involved in hot nuclei formation and decay and their eventual connexion with fundamental properties of nuclear matter are discussed, i.e. its equation of state is considered. After a brief review of the reactions in which hot nuclei can be formed, the variables which are used to describe them, the corresponding theoretical descriptions and their limits when extreme states are reached are discussed. Experimental evidences for hot nuclei formation are presented, with the corresponding decay properties used as signatures. (R.P.) 64 refs.; 25 figs.; 2 tabs

  3. Hot tea and tiny tots don't mix: A cross-sectional survey on hot beverage scalds. (United States)

    Burgess, J D; Kimble, R M; Watt, K A; Cameron, C M


    Hot beverage scalds are a leading cause of burns in young children. The aim of this study was to look at the circumstances surrounding these injuries in terms of setting, mechanism, supervision and first aid to inform a prevention campaign. A cross-sectional study was delivered via iPad to parents and caregivers presenting with a child aged 0-36 months with a hot beverage scald at a major paediatric burns centre. Of the 101 children aged 0-36 months that presented with a hot beverage scald over a 12-month period, 54 participants were included. The scald aetiology was as expected with the peak prevalence in children aged 6-24 months, pulling a cup of hot liquid down over themselves. The majority of injuries occurred in the child's home and were witnessed by the caregiver or parent. The supervising adult was often in close proximity when the scald occurred. Less than a third (28%) of participants received recommended first aid treatment at the scene, with an additional 18% receiving this treatment with three hours of the injury-usually at an emergency department. While the aetiology of these scalds were as expected, the low use of recommended burn first aid was of concern. Although supervision was present in almost all cases, with the parent/caregiver close-by, this proximity still permitted injury. Attentiveness and continuity of supervision, which can be difficult with competing parental demands, appear to play a more important role role; as do considerations of other safety mechanisms such as hazard reduction through keeping hot drinks out of reach and engineering factors such as improved cup design. By incorporating the findings from this study and other research into a hot beverage scald prevention campaign, we hope to see a change in knowledge and behaviour in parents and caregivers of young children, and ultimately a reduction in the incidence of hot beverage scalds. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  4. Hot cell verification facility update

    International Nuclear Information System (INIS)

    Titzler, P.A.; Moffett, S.D.; Lerch, R.E.


    The Hot Cell Verification Facility (HCVF) provides a prototypic hot cell mockup to check equipment for functional and remote operation, and provides actual hands-on training for operators. The facility arrangement is flexible and assists in solving potential problems in a nonradioactive environment. HCVF has been in operation for six years, and the facility is a part of the Hanford Engineering Development Laboratory

  5. Volcano Trial Case on GEP: Systematically processing EO data


    Baumann, Andreas Bruno Graziano


    Volcanoes can be found all over the world; on land and below water surface. Even nowadays not all volcanoes are known. About 600 erupted in geologically recent times and about 50-70 volcanoes are currently active. Volcanoes can cause earthquakes; throw out blasts and tephras; release (toxic) gases; lava can flow relatively slow down the slopes; mass movements like debris avalanches, and landslides can cause tsunamis; and fast and hot pyroclastic surge, flows, and lahars can travel fast down ...

  6. Physiologically assessed hot flashes and endothelial function among midlife women. (United States)

    Thurston, Rebecca C; Chang, Yuefang; Barinas-Mitchell, Emma; Jennings, J Richard; von Känel, Roland; Landsittel, Doug P; Matthews, Karen A


    Hot flashes are experienced by most midlife women. Emerging data indicate that they may be associated with endothelial dysfunction. No studies have tested whether hot flashes are associated with endothelial function using physiologic measures of hot flashes. We tested whether physiologically assessed hot flashes were associated with poorer endothelial function. We also considered whether age modified associations. Two hundred seventy-two nonsmoking women reporting either daily hot flashes or no hot flashes, aged 40 to 60 years, and free of clinical cardiovascular disease, underwent ambulatory physiologic hot flash and diary hot flash monitoring; a blood draw; and ultrasound measurement of brachial artery flow-mediated dilation to assess endothelial function. Associations between hot flashes and flow-mediated dilation were tested in linear regression models controlling for lumen diameter, demographics, cardiovascular disease risk factors, and estradiol. In multivariable models incorporating cardiovascular disease risk factors, significant interactions by age (P hot flashes (beta [standard error] = -2.07 [0.79], P = 0.01), and more frequent physiologic hot flashes (for each hot flash: beta [standard error] = -0.10 [0.05], P = 0.03, multivariable) were associated with lower flow-mediated dilation. Associations were not accounted for by estradiol. Associations were not observed among the older women (age 54-60 years) or for self-reported hot flash frequency, severity, or bother. Among the younger women, hot flashes explained more variance in flow-mediated dilation than standard cardiovascular disease risk factors or estradiol. Among younger midlife women, frequent hot flashes were associated with poorer endothelial function and may provide information about women's vascular status beyond cardiovascular disease risk factors and estradiol.

  7. Geographical distribution of hot flash frequencies: considering climatic influences. (United States)

    Sievert, Lynnette Leidy; Flanagan, Erin K


    Laboratory studies suggest that hot flashes are triggered by small elevations in core body temperature acting within a reduced thermoneutral zone, i.e., the temperature range in which a woman neither shivers nor sweats. In the present study, it was hypothesized that women in different populations develop climate-specific thermoneutral zones, and ultimately, population-specific frequencies of hot flashes at menopause. Correlations were predicted between hot flash frequencies and latitude, elevation, and annual temperatures. Data on hot flash frequencies were drawn from 54 studies. Pearson correlation analyses and simple linear regressions were applied, first using all studies, and second using a subset of studies that included participants only to age 60 (n = 36). Regressions were repeated with all studies, controlling for method of hot flash assessment. When analyses were restricted to studies that included women up to age 60, average temperature of the coldest month was a significant predictor of hot flash frequency (P hottest and coldest temperatures was also a significant predictor (P coldest month, difference between hottest and coldest temperatures, and mean annual temperature were significant predictors of hot flash frequency. Women reported fewer hot flashes in warmer temperatures, and more hot flashes with increasing seasonality. These results suggest that acclimatization to coldest temperatures or sensitivity to seasonality may explain part of the population variation in hot flash frequency.

  8. Multifragmentation of hot nuclei

    International Nuclear Information System (INIS)

    Tamain, B.


    It is difficult to deposit a large amount (∼ 1 Gev) of excitation energy into a nucleus. And if one wants to deposit large excitation energy values, the best way consists of shooting a given target nucleus with several nucleons, which can be achieved by using intermediate energy (10-100 MeV/nucleon) heavy ions. Such very excited objects were named hot nuclei. The study of hot nuclei has been undertaken only for 7 years because intermediate energy heavy ion facilities were not available before. The game is then to determine the decay properties of such nuclei, their limits of existence. Their study is connected with general properties of nuclear matter: namely its equation of state. Of special interest, is the onset of a new decay mechanism: multifragmentation, which is the non-sequential disassembly of a hot nucleus into several light nuclei (often called intermediate-mass fragments or IMF) or particles. This paper, shows how this mechanism can reflect fundamental properties of nuclear matter, but also how its experimental signature is difficult to establish. Multifragmentation has also been studied by using very energetic projectiles (protons and heavy ions) in the relativistic or ultra-relativistic region. The multifragmentation question of hot nuclei is far from being solved. One knows that IMF production increases when the excitation energy brought into a system is strongly increased, but very little is known about the mechanisms involved and a clear onset for multifragmentation is not established

  9. Surface-Plasmon-Driven Hot Electron Photochemistry. (United States)

    Zhang, Yuchao; He, Shuai; Guo, Wenxiao; Hu, Yue; Huang, Jiawei; Mulcahy, Justin R; Wei, Wei David


    Visible-light-driven photochemistry has continued to attract heightened interest due to its capacity to efficiently harvest solar energy and its potential to solve the global energy crisis. Plasmonic nanostructures boast broadly tunable optical properties coupled with catalytically active surfaces that offer a unique opportunity for solar photochemistry. Resonant optical excitation of surface plasmons produces energetic hot electrons that can be collected to facilitate chemical reactions. This review sums up recent theoretical and experimental approaches for understanding the underlying photophysical processes in hot electron generation and discusses various electron-transfer models on both plasmonic metal nanostructures and plasmonic metal/semiconductor heterostructures. Following that are highlights of recent examples of plasmon-driven hot electron photochemical reactions within the context of both cases. The review concludes with a discussion about the remaining challenges in the field and future opportunities for addressing the low reaction efficiencies in hot-electron-induced photochemistry.

  10. Tuning temperature and size of hot spots and hot-spot arrays. (United States)

    Saïdi, Elika; Babinet, Nicolas; Lalouat, Loïc; Lesueur, Jérôme; Aigouy, Lionel; Volz, Sébastian; Labéguerie-Egéa, Jessica; Mortier, Michel


    By using scanning thermal microscopy, it is shown that nanoscale constrictions in metallic microwires deposited on an oxidized silicon substrate can be tuned in terms of temperature and confinement size. High-resolution temperature maps indeed show that submicrometer hot spots and hot-spot arrays are obtained when the SiO(2) layer thickness decreases below 100 nm. When the SiO(2) thickness becomes larger, heat is less confined in the vicinity of the constrictions and laterally spreads all along the microwire. These results are in good agreement with numerical simulations, which provide dependences between silica-layer thickness and nanodot shape and temperature. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hot gas cleaning, a targeted project

    Energy Technology Data Exchange (ETDEWEB)

    Romey, I. [University of Essen, Essen (Germany)


    Advanced hot gas cleaning systems will play a key role in future integrated combined cycle technologies. IGCC demonstration plants in operation or under construction are at present equipped with conventional wet gas scrubbing and cleaning systems. Feasibility studies for those IGCC plants have shown that the total efficiency of the processes can be improved using hot gas cleaning systems. However, this technology has not been developed and tested at a technical scale. Six well-known European industrial companies and research centres jointly worked together since January 1996 on a Targeted Project `Hot Gas Cleaning` to investigate and develop new hot gas cleaning systems for advanced clean coal power generation processes. In addition project work on chemical analysis and modelling was carried out in universities in England and Germany. The latest main findings were presented at the workshop. The main project aims are summarised as follows: to increase efficiency of advanced power generation processes; to obtain a reduction of alkalis and environmental emissions e.g. SO{sub 2}, NO{sub x}, CO{sub 2} and dust; and to develop the design basis for future industrial plants based on long-term operation of laboratory, pilot and demo-plants. To cover a range of possible process routes for future hot gas cleaning systems the following research programme is under investigation: removal of trace elements by different commercial and self developed sorbents; gas separation by membranes; separation of gas turbine relevant pollutants by hot filter dust and; H{sub 2}S removal and gas dedusting at high temperatures. 13 figs.

  12. Hot-cell verification facility

    International Nuclear Information System (INIS)

    Eschenbaum, R.A.


    The Hot Cell Verification Facility (HCVF) was established as the test facility for the Fuels and Materials Examination Facility (FMEF) examination equipment. HCVF provides a prototypic hot cell environment to check the equipment for functional and remote operation. It also provides actual hands-on training for future FMEF Operators. In its two years of operation, HCVF has already provided data to make significant changes in items prior to final fabrication. It will also shorten the startup time in FMEF since the examination equipment will have been debugged and operated in HCVF

  13. Controls on magma permeability in the volcanic conduit during the climactic phase of the Kos Plateau Tuff eruption (Aegean Arc) (United States)

    Degruyter, W.; Bachmann, O.; Burgisser, A.


    X-ray computed microtomography (µCT) was applied to pumices from the largest Quaternary explosive eruption of the active South Aegean Arc (the Kos Plateau Tuff; KPT) in order to better understand magma permeability within volcanic conduits. Two different types of pumices (one with highly elongated bubbles, tube pumice; and the other with near spherical bubbles, frothy pumice) produced synchronously and with identical chemical composition were selected for µCT imaging to obtain porosity, tortuosity, bubble size and throat size distributions. Tortuosity drops on average from 2.2 in frothy pumice to 1.5 in tube pumice. Bubble size and throat size distributions provide estimates for mean bubble size (~93-98 μm) and mean throat size (~23-29 μm). Using a modified Kozeny-Carman equation, variations in porosity, tortuosity, and throat size observed in KPT pumices explain the spread found in laboratory measurements of the Darcian permeability. Measured difference in inertial permeability between tube and frothy pumices can also be partly explained by the same variables but require an additional parameter related to the internal roughness of the porous medium (friction factor f 0 ). Constitutive equations for both types of permeability allow the quantification of laminar and turbulent gas escape during ascent of rhyolitic magma in volcanic conduits.

  14. Hot Laboratories and Remote Handling

    International Nuclear Information System (INIS)

    Bart, G.; Blanc, J.Y.; Duwe, R.


    The European Working Group on ' Hot Laboratories and Remote Handling' is firmly established as the major contact forum for the nuclear R and D facilities at the European scale. The yearly plenary meetings intend to: - Exchange experience on analytical methods, their implementation in hot cells, the methodologies used and their application in nuclear research; - Share experience on common infrastructure exploitation matters such as remote handling techniques, safety features, QA-certification, waste handling; - Promote normalization and co-operation, e.g., by looking at mutual complementarities; - Prospect present and future demands from the nuclear industry and to draw strategic conclusions regarding further needs. The 41. plenary meeting was held in CEA Saclay from September 22 to 24, 2003 in the premises and with the technical support of the INSTN (National Institute for Nuclear Science and Technology). The Nuclear Energy Division of CEA sponsored it. The Saclay meeting was divided in three topical oral sessions covering: - Post irradiation examination: new analysis methods and methodologies, small specimen technology, programmes and results; - Hot laboratory infrastructure: decommissioning, refurbishment, waste, safety, nuclear transports; - Prospective research on materials for future applications: innovative fuels (Generation IV, HTR, transmutation, ADS), spallation source materials, and candidate materials for fusion reactor. A poster session was opened to transport companies and laboratory suppliers. The meeting addressed in three sessions the following items: Session 1 - Post Irradiation Examinations. Out of 12 papers (including 1 poster) 7 dealt with surface and solid state micro analysis, another one with an equally complex wet chemical instrumental analytical technique, while the other four papers (including the poster) presented new concepts for digital x-ray image analysis; Session 2 - Hot laboratory infrastructure (including waste theme) which was

  15. Characterisation study of radionuclides in Hot Cell Facility

    International Nuclear Information System (INIS)

    Ghare, P.T.; Rath, D.P.; Govalkar, Atul; Mukherjee, Govinda; AniIKumar, S.; Yadav, R.K.B.; Mallik, G.K.


    Examination of different types of experimental as well as power reactor irradiated fuels and validation of fuel modeling codes is carried out in general Hot cell facility. The Hot cell facility has six concrete shielded hot cells, capable of handling radioactivity varying from 3.7 TBQ to 3700 TBq gamma activity. The facility was augmented with two hot cells having designed capacity to handle radioactivity of 9250 TBQ of equivalent activity of 60 Co. The study of characterization of various radionuclides present inside the hot cell of PIE facility was taken up. This study will help in providing valuable inputs for various radiological safety parameters to keep personnel exposure to ALARA level as per the mandate of radiation safety program

  16. Kinetics of chemical reactions initiated by hot atoms

    International Nuclear Information System (INIS)

    Firsova, L.P.


    Modern ideas about kinetics of chemical reactions of hot atoms are generalized. The main points of the phenomenological theories (''kinetic theory'' of Wolfgang-Estrup hot reactions and the theory of ''reactions integral probability'' of Porter) are given. Physico-chemical models of elastic and non-elastic collisions are considered which are used in solving Boltzmann integro-differential equations and stochastic equations in the Porter theory. The principal formulas are given describing probabilities or yields of chemical reactions, initiated with hot atoms, depending on the distribution functions of hot particles with respect to energy. Briefly described are the techniques and the results of applying the phenomenological theories for interpretation of the experimental data obtained during nuclear reactions with hot atoms, photochemical investigations, etc. 96 references are given

  17. Energy saving type area hot water supply system using heat of hot waste water from the sludge center as hot source for hot water; New energy rokko airando CITY. Surajjisenta karano onhaisuinetsu wo kyuyuyo netsugen ni riyosuru sho energy gata chiiki onsui kyokyu system

    Energy Technology Data Exchange (ETDEWEB)



    Heat source of area hot water supply system in Rokko island City (man-made island) is heat of combustion at the sludge center (sludge incineration plant) in this island. Dehydrated sludge cakes (230ton/day) brought from seven sewage disposal plants in Kobe City is combusted (850degC) in the fluid bed hearth. Combustion gas washed in the scrubber, hot waste water after the washing give heat into heat transfer water in the first heat exchanger. Temperature being 64degC in summer and about 50degC in winter, this heat transfer water is sent into the second heat exchanger at every condominium building throughout the pipe line system circulating in the area. At each home, gas heater and hot water supply devices fitted, additional combustion is not necessary in summer but is used according to demand in other seasons. This hot water supply service has been carried out since 1988 and at present has been used by 3600 homes. Amount of supplying hot water being about 3000cu.m/day, saving is calculated roughly as 60% of gas for hot water supply. Fee for this system is 1500/yen/month uniformly for each home. 14 figs.

  18. X-ray hot plasma diagnostics

    International Nuclear Information System (INIS)

    Cojocaru, E.


    X-ray plasma emission study is powerful diagnostic tool of hot plasmas. In this review article the main techniques of X-ray plasma emission measurement are shortly presented: X-ray spectrometry using absorbent filters, crystal and grating spectrometers, imaging techniques using pinhole cameras, X-ray microscopes and Fresnel zone plate cameras, X-ray plasma emission calorimetry. Advances in these techniques with examples for different hot plasma devices are also presentes. (author)

  19. Hot pressing of B4C/SiC composites

    International Nuclear Information System (INIS)

    Sahin, F.C.; Turhan, E.; Yesilcubuk, S.A.; Addemir, O.


    B 4 C/SiC ceramic composites containing 10-20-30 vol % SiC were prepared by hot pressing method. The effect of SiC addition and hot pressing temperature on sintering behaviour and mechanical properties of hot pressed composites were investigated. Microstructures of hot pressed samples were examined by SEM technique. Three different temperatures (2100 deg. C, 2200 deg. C and 2250 deg. C) were used to optimize hot pressing temperature applying 100 MPa pressure under argon atmosphere during the sintering procedure. The highest relative density of 98.44 % was obtained by hot pressing at 2250 deg. C. However, bending strengths of B 4 C/SiC composite samples were lower than monolithic B 4 C in all experimental conditions. (authors)

  20. Parental use of the term "Hot Qi" to describe symptoms in their children in Hong Kong: a cross sectional survey "Hot Qi" in children

    Directory of Open Access Journals (Sweden)

    Chan Danny


    Full Text Available Abstract Background The Chinese term "Hot Qi" is often used by parents to describe symptoms in their children. The current study was carried out to estimate the prevalence of using the Chinese term "Hot Qi" to describe symptoms in children by their parents and the symptomatology of "Hot Qi". Method A cross sectional survey by face-to-face interview with a semi-structured questionnaire was carried out in a public hospital and a private clinic in Hong Kong. The parental use of the term "Hot Qi", the symptoms of "Hot Qi" and the remedies used for "Hot Qi" were asked. Results 1060 pairs of children and parents were interviewed. 903 (85.1% of parents claimed that they had employed the term "Hot Qi" to describe their children's symptoms. Age of children and place of birth of parents were the predictors of parents using the term "Hot Qi". Eye discharge (37.2%, sore throat (33.9%, halitosis(32.8%, constipation(31.0%, and irritable (21.2% were the top five symptoms of "Hot Qi" in children. The top five remedies for "Hot Qi" were the increased consumption of water (86.8%, fruit (72.5%, soup (70.5%, and the use of herbal beverages "five-flower- tea" (a combination of several flowers such as Chrysanthemum morifolii, Lonicera japonica, Bombax malabaricum, Sophora japonica, and Plumeria rubra (57.6% or selfheal fruit spike (Prunella vulgaris (42.4%. Conclusion "Hot Qi" is often used by Chinese parents to describe symptoms in their children in Hong Kong. Place of birth of parents and age of the children are main factors for parents to apply the term "Hot Qi" to describe symptoms of their children. The common symptoms of "Hot Qi" suggest infections or allergy.

  1. Flute-interchange stability in a hot electron plasma

    International Nuclear Information System (INIS)

    Dominguez, R.R.


    Several topics in the kinetic stability theory of flute-interchange modes in a hot electron plasma are discussed. The stability analysis of the hot-electron, curvature-driven flute-interchange mode, previously performed in a slab geometry, is extended to a cylindrical plasma. The cold electron concentration necessary for stability differs substantially from previous criteria. The inclusion of a finite temperature background plasma in the stability analysis results in an ion curvature-driven flute-interchange mode which may be stabilized by either hot-electron diamagnetic effects, hot-electron plasma density, or finite (ion) Larmor radius effects

  2. Fire preparedness measures in buildings with hot laboratories

    International Nuclear Information System (INIS)

    Oberlaender, B.C.


    Important hot laboratory safety issues are the general design/construction of the building with respect to fire, fire prevention, fire protection, administrative controls, and risk assessment. Within the network of the European Working Group Hot Laboratories and Remote Handling items concerning 'fire preparedness measures in hot laboratories' were screened and studied. Two questionnaires were sent to European hot laboratories; the first in November 2002 on 'fire preparedness measures, fire detection and fire suppression/extinguishing in lead shielded cells, concrete shielded cells' and the second in June 2003 on 'Fire preparedness measures in buildings with hot laboratories'. The questionnaires were filled in by a total of ten hot laboratories in seven European countries. On request of participants the answers were evaluated and 'anonymised' for presentation and discussion at the plenary meeting. The answers showed that many European hot laboratories are implementing improvements to their fire protection programmes to comply with more stringent requirements of the national authorities. The recommendations ('International guidelines for the fire protection of Nuclear Power Plants') given by the insurance pools are followed up with national variations. An ISO standard (ISO 17873) is in progress giving criteria for the design and the operation of ventilation systems as well as fire hazard management in nuclear installations others than reactors

  3. Jumping-droplet electronics hot-spot cooling (United States)

    Oh, Junho; Birbarah, Patrick; Foulkes, Thomas; Yin, Sabrina L.; Rentauskas, Michelle; Neely, Jason; Pilawa-Podgurski, Robert C. N.; Miljkovic, Nenad


    Demand for enhanced cooling technologies within various commercial and consumer applications has increased in recent decades due to electronic devices becoming more energy dense. This study demonstrates jumping-droplet based electric-field-enhanced (EFE) condensation as a potential method to achieve active hot spot cooling in electronic devices. To test the viability of EFE condensation, we developed an experimental setup to remove heat via droplet evaporation from single and multiple high power gallium nitride (GaN) transistors acting as local hot spots (4.6 mm × 2.6 mm). An externally powered circuit was developed to direct jumping droplets from a copper oxide (CuO) nanostructured superhydrophobic surface to the transistor hot spots by applying electric fields between the condensing surface and the transistor. Heat transfer measurements were performed in ambient air (22-25 °C air temperature, 20%-45% relative humidity) to determine the effect of gap spacing (2-4 mm), electric field (50-250 V/cm) and applied heat flux (demonstrated to 13 W/cm2). EFE condensation was shown to enhance the heat transfer from the local hot spot by ≈200% compared to cooling without jumping and by 20% compared to non-EFE jumping. Dynamic switching of the electric field for a two-GaN system reveals the potential for active cooling of mobile hot spots. The opportunity for further cooling enhancement by the removal of non-condensable gases promises hot spot heat dissipation rates approaching 120 W/cm2. This work provides a framework for the development of active jumping droplet based vapor chambers and heat pipes capable of spatial and temporal thermal dissipation control.

  4. Jumping-droplet electronics hot-spot cooling

    International Nuclear Information System (INIS)

    Oh, Junho; Birbarah, Patrick; Foulkes, Thomas; Yin, Sabrina L.; Rentauskas, Michelle


    Demand for enhanced cooling technologies within various commercial and consumer applications has increased in recent decades due to electronic devices becoming more energy dense. This study demonstrates jumping-droplet based electric-field-enhanced (EFE) condensation as a potential method to achieve active hot spot cooling in electronic devices. To test the viability of EFE condensation, we developed an experimental setup to remove heat via droplet evaporation from single and multiple high power gallium nitride (GaN) transistors acting as local hot spots (4.6 mm x 2.6 mm). An externally powered circuit was developed to direct jumping droplets from a copper oxide (CuO) nanostructured superhydrophobic surface to the transistor hot spots by applying electric fields between the condensing surface and the transistor. Heat transfer measurements were performed in ambient air (22-25°C air temperature, 20-45% relative humidity) to determine the effect of gap spacing (2-4 mm), electric field (50-250 V/cm), and heat flux (demonstrated to 13 W/cm"2). EFE condensation was shown to enhance the heat transfer from the local hot spot by ≈ 200% compared to cooling without jumping and by 20% compared to non-EFE jumping. Dynamic switching of the electric field for a two-GaN system reveals the potential for active cooling of mobile hot spots. The opportunity for further cooling enhancement by the removal of non-condensable gases promises hot spot heat dissipation rates approaching 120 W/cm"2. Finally, this work provides a framework for the development of active jumping droplet based vapor chambers and heat pipes capable of spatial and temporal thermal dissipation control.

  5. Hot Jupiters around M dwarfs

    Directory of Open Access Journals (Sweden)

    Murgas F.


    Full Text Available The WFCAM Transit Survey (WTS is a near-infrared transit survey running on the United Kingdom Infrared Telescope (UKIRT. We conduct Monte Carlo transit injection and detection simulations for short period (<10 day Jupiter-sized planets to characterize the sensitivity of the survey. We investigate the recovery rate as a function of period and magnitude in 2 hypothetical star-planet cases: M0–2 + hot Jupiter, M2–4 + hot Jupiter. We find that the WTS lightcurves are very sensitive to the presence of Jupiter-sized short-period transiting planets around M dwarfs. The non-detection of a hot-Jupiter around an M dwarf by the WFCAM Transit Survey allows us to place a firm upper limit of 1.9 per cent (at 95 per cent confidence on the planet occurrence rate.

  6. Hot-working behavior of cast Pr-Fe-B magnets

    International Nuclear Information System (INIS)

    Shimoda, T.; Akioka, K.; Kobayashi, O.; Yamagami, T.; Ohki, T.; Miyagawa, M.; Yuri, T.


    The hot-working behavior of cast Pr-Fe-B magnets is investigated. The hot-working is done both at a low strain rate (hot-pressing) and a high strain rate (hot-rolling). Magnetic alignment induced by the hot-working is found to be closely related to the macrostructure of the cast ingots and the direction of principal stress. The appropriate structure is a columnar structure. The c-axis of the Pr2Fe14B phase is lying in the plane perpendicular to the growth direction of the dendrites. The principal stress during working should be given perpendicular to the growth direction

  7. Modeling deflagration waves out of hot spots (United States)

    Partom, Yehuda


    It is widely accepted that shock initiation and detonation of heterogeneous explosives comes about by a two-step process known as ignition and growth. In the first step a shock sweeping through an explosive cell (control volume) creates hot spots that become ignition sites. In the second step, deflagration waves (or burn waves) propagate out of those hot spots and transform the reactant in the cell into reaction products. The macroscopic (or average) reaction rate of the reactant in the cell depends on the speed of those deflagration waves and on the average distance between neighboring hot spots. Here we simulate the propagation of deflagration waves out of hot spots on the mesoscale in axial symmetry using a 2D hydrocode, to which we add heat conduction and bulk reaction. The propagation speed of the deflagration waves may depend on both pressure and temperature. It depends on pressure for quasistatic loading near ambient temperature, and on temperature at high temperatures resulting from shock loading. From the simulation we obtain deflagration fronts emanating out of the hot spots. For 8 to 13 GPa shocks, the emanating fronts propagate as deflagration waves to consume the explosive between hot spots. For higher shock levels deflagration waves may interact with the sweeping shock to become detonation waves on the mesoscale. From the simulation results we extract average deflagration wave speeds.


    Directory of Open Access Journals (Sweden)



    Full Text Available In this study, I examine the characteristics of U.S. corporate borrowers (public debt, private placement, and syndicated loan firms in HOT versus COLD equity markets. My main objective is to see the characteristics of firms that choose debt financing even when the equity market is HOT. HOT equity markets are defined as the top twenty percent of the months in terms of the de-trended number of equity offerings. I find that the HOT equity market borrowers generally have higher market-to-book ratios compared to the COLD market borrowers. Also, in HOT equity markets, the public debt firms (i.e. the corporate bond issuers tend to have fewer tangible assets, the private placement firms tend to be smaller and highly levered, and the syndicated loan firms tend to be smaller, more profitable, and less levered compared to the COLD market firms. When I look at the number of transactions in each market, I find that when the equity market is active (i.e. HOT, the syndicated loan market is even more active. During these periods, the public debt market is also active (although not as much as the equity or the syndicated loan markets. When I look at the sizes of the transactions in each market, I find that the private placements tend to be significantly larger in HOT markets compared to COLD markets. I conclude that while the equity, the public debt, and the syndicated loan markets move together in terms of market activity, the equity market and the private placement markets move together in terms of the size of the transaction.

  9. The anatomy of a pyroclastic density current: the 10 July 2015 event at Volcán de Colima (Mexico) (United States)

    Capra, L.; Sulpizio, R.; Márquez-Ramirez, V. H.; Coviello, V.; Doronzo, D. M.; Arambula-Mendoza, R.; Cruz, S.


    Pyroclastic density currents (PDCs) represent one of the most dangerous phenomena occurring in explosive volcanic eruptions, and any advance in the physical understanding of their transport and sedimentation processes can contribute to improving their hazard assessment. The 10-11 July 2015 eruption at Volcán de Colima provided a unique opportunity to better understand the internal behaviour of PDCs based on seismic monitoring data. On 10 July 2015, the summit dome collapsed, producing concentrated PDCs that filled the main channel of the Montegrande ravine. A lahar monitoring station installed 6 km from the volcano summit recorded a PDC before being completely destroyed. Real-time data acquisition from a camcorder and a geophone that were part of the station, along with field observations and grain-size data of the pyroclastic deposits, are used here to interpret the internal flow structure and time-variant transport dynamics of low-volume, valley-confined concentrated PDCs. The PDC that reached the monitoring station moved at a velocity of 7 m/s and filled a 12-m-deep channel. The outcrops show massive, block-and-ash flow deposits with trains of coarse clasts in the middle and towards the top of the depositional units. The seismic record gathered with the geophone was analysed for the time window when the flow travelled past the sensor. The geophone record was also compared with the recordings of a broadband seismic station located nearby. Two main frequency ranges were recognised which could be correlated with the basal frictional forces exerted by the flow on the channel bed (10-20 Hz) and a collisional regime (20-40 Hz) interpreted to be associated with a clast segregation process (i.e. kinematic squeezing). This latter regime promoted the upward migration of large blocks, which subsequently deviated towards the margin of the flow where they interacted with the sidewall of the main channel. The energy calculated for both seismic components shows that the

  10. Pre-cometary ice composition from hot core chemistry. (United States)

    Tornow, Carmen; Kührt, Ekkehard; Motschmann, Uwe


    Pre-cometary ice located around star-forming regions contains molecules that are pre-biotic compounds or pre-biotic precursors. Molecular line surveys of hot cores provide information on the composition of the ice since it sublimates near these sites. We have combined a hydrostatic hot core model with a complex network of chemical reactions to calculate the time-dependent abundances of molecules, ions, and radicals. The model considers the interaction between the ice and gas phase. It is applied to the Orion hot core where high-mass star formation occurs, and to the solar-mass binary protostar system IRAS 16293-2422. Our calculations show that at the end of the hot core phase both star-forming sites produce the same prebiotic CN-bearing molecules. However, in the Orion hot core these molecules are formed in larger abundances. A comparison of the calculated values with the abundances derived from the observed line data requires a chemically unprocessed molecular cloud as the initial state of hot core evolution. Thus, it appears that these objects are formed at a much younger cloud stage than previously thought. This implies that the ice phase of the young clouds does not contain CN-bearing molecules in large abundances before the hot core has been formed. The pre-biotic molecules synthesized in hot cores cause a chemical enrichment in the gas phase and in the pre-cometary ice. This enrichment is thought to be an important extraterrestrial aspect of the formation of life on Earth and elsewhere.

  11. Hot chocolate effect

    International Nuclear Information System (INIS)

    Crawford, F.S.


    The ''hot chocolate effect'' was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one-quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the 10% accuracy of the experiments

  12. Hot Water Bathing Impairs Training Adaptation in Elite Teen Archers. (United States)

    Hung, Ta-Cheng; Liao, Yi-Hung; Tsai, Yung-Shen; Ferguson-Stegall, Lisa; Kuo, Chia-Hua; Chen, Chung-Yu


    Despite heat imposes considerable physiological stress to human body, hot water immersion remains as a popular relaxation modality for athletes. Here we examined the lingering effect of hot tub relaxation after training on performance-associated measures and dehydroepiandrosterone sulfate (DHEA-S) in junior archers. Ten national level archers, aged 16.6 ± 0.3 years (M = 8, F = 2), participated in a randomized counter-balanced crossover study after baseline measurements. In particular, half participants were assigned to the hot water immersion (HOT) group, whereas another halves were assigned to the untreated control (CON) group. Crossover trial was conducted following a 2-week washout period. During the HOT trial, participants immersed in hot water for 30 min at 40°C, 1 h after training, twice a week (every 3 days) for 2 weeks. Participants during CON trial sat at the same environment without hot water after training. Performance-associated measures and salivary DHEA-S were determined 3 days after the last HOT session. We found that the HOT intervention significantly decreased shooting performance (CON: -4%; HOT: -22%, P HOT: -16%, P HOT: -60%, P < 0.05) of archers, compared with untreated CON trial. No group differences were found in motor unit recruitment (root mean square electromyography, RMS EMG) of arm muscles during aiming, autonomic nervous activity (sympathetic and vagal powers of heart rate variability, HRV), and plasma cortisol levels after treatments. Our data suggest that physiological adaptation against heat exposure takes away the sources needed for normal training adaptation specific to shooting performance in archers.

  13. Hot spot manifestation in eclipsing dwarf nova HT Cassiopeiae


    Bakowska, K.; Olech, A.


    We report the detection of the hot spot in light curves of the eclipsing dwarf nova HT Cassiopeiae during its superoutburst in 2010 November. Analysis of eight reconstructed light curves of the hot spot eclipses showed directly that the brightness of the hot spot was changing significantly during the superoutburst. Thereby, detected hot spot manifestation in HT Cas is the newest observational evidence for the EMT model for dwarf novae.

  14. Ab initio study of hot electrons in GaAs


    Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B.; Louie, Steven G.


    Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation...

  15. Hot complaint intelligent classification based on text mining

    Directory of Open Access Journals (Sweden)

    XIA Haifeng


    Full Text Available The complaint recognizer system plays an important role in making sure the correct classification of the hot complaint,improving the service quantity of telecommunications industry.The customers’ complaint in telecommunications industry has its special particularity which should be done in limited time,which cause the error in classification of hot complaint.The paper presents a model of complaint hot intelligent classification based on text mining,which can classify the hot complaint in the correct level of the complaint navigation.The examples show that the model can be efficient to classify the text of the complaint.

  16. The timing of compositionally-zoned magma reservoirs and mafic 'priming' weeks before the 1912 Novarupta-Katmai rhyolite eruption (United States)

    Singer, Brad S.; Costa, Fidel; Herrin, Jason S.; Hildreth, Wes; Fierstein, Judith


    The June 6, 1912 eruption of more than 13 km3 of dense rock equivalent (DRE) magma at Novarupta vent, Alaska was the largest of the 20th century. It ejected >7 km3 of rhyolite, ~1.3 km3 of andesite and ~4.6 km3 of dacite. Early ideas about the origin of pyroclastic flows and magmatic differentiation (e.g., compositional zonation of reservoirs) were shaped by this eruption. Despite being well studied, the timing of events that led to the chemically and mineralogically zoned magma reservoir remain poorly known. Here we provide new insights using the textures and chemical compositions of plagioclase and orthopyroxene crystals and by reevaluating previous U-Th isotope data. Compositional zoning of the magma reservoir likely developed a few thousand years before the eruption by several additions of mafic magma below an extant silicic reservoir. Melt compositions calculated from Sr contents in plagioclase fill the compositional gap between 68 and 76% SiO2 in whole pumice clasts, consistent with uninterrupted crystal growth from a continuum of liquids. Thus, our findings support a general model in which large volumes of crystal-poor rhyolite are related to intermediate magmas through gradual separation of melt from crystal-rich mush. The rhyolite is incubated by, but not mixed with, episodic recharge pulses of mafic magma that interact thermochemically with the mush and intermediate magmas. Hot, Mg-, Ca-, and Al-rich mafic magma intruded into, and mixed with, deeper parts of the reservoir (andesite and dacite) multiple times. Modeling the relaxation of the Fe-Mg concentrations in orthopyroxene and Mg in plagioclase rims indicates that the final recharge event occurred just weeks prior to the eruption. Rapid addition of mass, volatiles, and heat from the recharge magma, perhaps aided by partial melting of cumulate mush below the andesite and dacite, pressurized the reservoir and likely propelled a ~10 km lateral dike that allowed the overlying rhyolite to reach the surface.

  17. Effects of hot-air and hybrid hot air-microwave drying on drying kinetics and textural quality of nectarine slices (United States)

    Miraei Ashtiani, Seyed-Hassan; Sturm, Barbara; Nasirahmadi, Abozar


    Drying and physicochemical characteristics of nectarine slices were investigated using hot-air and hybrid hot air-microwave drying methods under fixed air temperature and air speed (50 °C and 0.5 m/s, respectively). Microwave power levels for the combined hot air-microwave method were 80, 160, 240, and 320 W. Drying kinetics were analyzed and compared using six mathematical models. For both drying methods the model with the best fitness in explaining the drying behavior was the Midilli-Kucuk model. The coefficient of determination ( R 2), root mean square error (RMSE) and reduced chi square ( χ 2) for this model have been obtained greater than 0.999 and less than 0.006 and 0.0001 for hybrid hot air-microwave drying while those values for hot-air drying were more than 0.999 and less than 0.003 and 0.0001, respectively. Results showed that the hybrid method reduced the drying time considerably and produced products with higher quality. The range of effective moisture diffusivity ( D eff ) of hybrid and hot-air drying was between 8.15 × 10-8 and 2.83 × 10-7 m2/s and 1.27 × 10-8 m2/s, respectively. The total color difference (ΔE) has also been obtained from 36.68 to 44.27 for hybrid method; however this value for hot-air drying was found 49.64. Although reduced microwave power output led to a lower drying rate, it reduced changes in product parameters i.e. total color change, surface roughness, shrinkage and microstructural change and increased hardness and water uptake.

  18. Slow hot carrier cooling in cesium lead iodide perovskites (United States)

    Shen, Qing; Ripolles, Teresa S.; Even, Jacky; Ogomi, Yuhei; Nishinaka, Koji; Izuishi, Takuya; Nakazawa, Naoki; Zhang, Yaohong; Ding, Chao; Liu, Feng; Toyoda, Taro; Yoshino, Kenji; Minemoto, Takashi; Katayama, Kenji; Hayase, Shuzi


    Lead halide perovskites are attracting a great deal of interest for optoelectronic applications such as solar cells, LEDs, and lasers because of their unique properties. In solar cells, heat dissipation by hot carriers results in a major energy loss channel responsible for the Shockley-Queisser efficiency limit. Hot carrier solar cells offer the possibility to overcome this limit and achieve energy conversion efficiency as high as 66% by extracting hot carriers. Therefore, fundamental studies on hot carrier relaxation dynamics in lead halide perovskites are important. Here, we elucidated the hot carrier cooling dynamics in all-inorganic cesium lead iodide (CsPbI3) perovskite using transient absorption spectroscopy. We observe that the hot carrier cooling rate in CsPbI3 decreases as the fluence of the pump light increases and the cooling is as slow as a few 10 ps when the photoexcited carrier density is 7 × 1018 cm-3, which is attributed to phonon bottleneck for high photoexcited carrier densities. Our findings suggest that CsPbI3 has a potential for hot carrier solar cell applications.

  19. The rise and fall of a human recombination hot spot. (United States)

    Jeffreys, Alec J; Neumann, Rita


    Human meiotic crossovers mainly cluster into narrow hot spots that profoundly influence patterns of haplotype diversity and that may also affect genome instability and sequence evolution. Hot spots also seem to be ephemeral, but processes of hot-spot activation and their subsequent evolutionary dynamics remain unknown. We now analyze the life cycle of a recombination hot spot. Sperm typing revealed a polymorphic hot spot that was activated in cis by a single base change, providing evidence for a primary sequence determinant necessary, though not sufficient, to activate recombination. This activating mutation occurred roughly 70,000 y ago and has persisted to the present, most likely fortuitously through genetic drift despite its systematic elimination by biased gene conversion. Nonetheless, this self-destructive conversion will eventually lead to hot-spot extinction. These findings define a subclass of highly transient hot spots and highlight the importance of understanding hot-spot turnover and how it influences haplotype diversity.

  20. Depressurization test on hot gas duct

    International Nuclear Information System (INIS)

    Tanihira, Masanori; Kunitomi; Kazuhiko; Inagaki, Yoshiyuki; Miyamoto, Yoshiaki; Sato, Yutaka.


    To study the integrity of internal structures and the characteristics in a hot gas duct under the rapid depressurization accident, depressurization tests have been carried out using a test apparatus installed the hot gas duct with the same size and the same structures as that of the High Temperature Engineering Test Reactor (HTTR). The tests have been performed with three parameters: depressurization rate (0.14-3.08 MPa/s) determined by orifice diameter, area of the open space at the slide joint (11.9-2036 mm 2 ), and initial pressure (1.0-4.0 MPa) filled up in a pressure vessel, by using nitrogen gas and helium gas. The maximum pressure difference applied on the internal structures of the hot gas duct was 2.69 MPa on the liner tube and 0.45 MPa on the separating plate. After all tests were completed, the hot gas duct which was used in the tests was disassembled. Inspection revealed that there were no failure and no deformation on the internal structures such as separating plates, insulation layers, a liner tube and a pressure tube. (author)

  1. Experimental approach to Chernobyl hot particles

    International Nuclear Information System (INIS)

    Tcherkezian, V.; Shkinev, V.; Khitrov, L.; Kolesov, G.


    An experimental approach to the investigation of Chernobyl hot particles and some results are presented in this study. Hot particles (HP) were picked out from soil samples collected during the 1986-1990 radiogeochemical expeditions in the contaminated zone (within 30 km of the Nuclear Power Plant). A number of hot particles were studied to estimate their contribution to the total activity, investigate their surface morphology and determine the size distribution. Hot particles contribution to the total activity in the 30 km zone was found to be not less than 65%. Investigation of HP element composition (by neutron activation analysis and EPMA) and radionuclide composition (direct alpha- and gamma-spectrometry, including determination of Pu and Am in Hp) revealed certain peculiarities of HP, collected in the vicinity of the damaged Nuclear Power Plant. Some particles were shown to contain uranium and fission products in proportion to one another, correlating with those in the partially burnt fuel, which proves their 'fuel' origin. Another part of the HP samples has revealed element fractionation as well as the presence of some terrestrial components. (Author)

  2. Promethus Hot Leg Piping Concept

    International Nuclear Information System (INIS)

    AM Girbik; PA Dilorenzo


    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept

  3. 'Hot particle' intercomparison dosimetry

    International Nuclear Information System (INIS)

    Kaurin, D.G.L.; Baum, J.W.; Charles, M.W.; Darley, D.P.J.; Durham, J.S.; Scannell, M.J.; Soares, C.G.


    Dosimetry measurements of four 'hot particles' were made at different density thickness values using five different methods. The hot particles had maximum dimensions of 650 μm and maximum beta energies of 0.97, 046, 0.36, and 0.32 MeV. Absorbers were used to obtain the dose at different depths for each dosimeter. Measurements were made using exoelectron dosimeters, an extrapolation chamber, NE Extremity Tape Dosimeters (tm), Eberline RO-2 and RO-2A survey meters, and two sets of GafChromic (tm) dye film with each set read out at a different institution. From these results the dose was calculated averaged over 1 cm 2 of tissue at 18, 70, 125, and 400 μm depth. Comparisons of tissue-dose averaged over 1 cm 2 for 18, 70, and 125 μm depth based on interpolated measured values, were within 30% for the GafChromic (tm) dye film, extrapolation chamber, NE Extremity Tape Dosimeters (tm), and Eberline RO-2 and 2A (tm) survey meters except for the hot particle with 0.46 MeV maximum beta energy. The results for this source showed differences of up to 60%. The extrapolation chamber and NE Extremity Tape dosimeters under-responded for measurements at 400 μm by about a factor of 2 compared with the GafChromic dye films for two hot particles with maximum beta energy of 0.32 and 0.36 MeV which each emitted two 100% 1 MeV photons per disintegration. Tissue doses determined using exoelectron dosimeters were a factor of 2 to 5 less than those determined using other dosimeters, possibly due to failures of the equipment. (author)

  4. Menopausal Hot Flashes and Carotid Intima Media Thickness Among Midlife Women. (United States)

    Thurston, Rebecca C; Chang, Yuefang; Barinas-Mitchell, Emma; Jennings, J Richard; Landsittel, Doug P; Santoro, Nanette; von Känel, Roland; Matthews, Karen A


    There has been a longstanding interest in the role of menopause and its correlates in the development of cardiovascular disease (CVD) in women. Menopausal hot flashes are experienced by most midlife women; emerging data link hot flashes to CVD risk indicators. We tested whether hot flashes, measured via state-of-the-art physiologic methods, were associated with greater subclinical atherosclerosis as assessed by carotid ultrasound. We considered the role of CVD risk factors and estradiol concentrations in these associations. A total of 295 nonsmoking women free of clinical CVD underwent ambulatory physiologic hot flash assessments; a blood draw; and carotid ultrasound measurement of intima media thickness and plaque. Associations between hot flashes and subclinical atherosclerosis were tested in regression models controlling for CVD risk factors and estradiol. More frequent physiologic hot flashes were associated with higher carotid intima media thickness (for each additional hot flash: β [SE]=0.004 [0.001]; P=0.0001; reported hot flash: β [SE]=0.008 [0.002]; P=0.002, multivariable) and plaque (eg, for each additional hot flash, odds ratio [95% confidence interval] plaque index ≥2=1.07 [1.003-1.14]; P=0.04, relative to no plaque, multivariable] among women reporting daily hot flashes; associations were not accounted for by CVD risk factors or by estradiol. Among women reporting hot flashes, hot flashes accounted for more variance in intima media thickness than most CVD risk factors. Among women reporting daily hot flashes, frequent hot flashes may provide information about a woman's vascular status beyond standard CVD risk factors and estradiol. Frequent hot flashes may mark a vulnerable vascular phenotype among midlife women. © 2016 American Heart Association, Inc.

  5. The hot hand belief and framing effects. (United States)

    MacMahon, Clare; Köppen, Jörn; Raab, Markus


    Recent evidence of the hot hand in sport-where success breeds success in a positive recency of successful shots, for instance-indicates that this pattern does not actually exist. Yet the belief persists. We used 2 studies to explore the effects of framing on the hot hand belief in sport. We looked at the effect of sport experience and task on the perception of baseball pitch behavior as well as the hot hand belief and free-throw behavior in basketball. Study 1 asked participants to designate outcomes with different alternation rates as the result of baseball pitches or coin tosses. Study 2 examined basketball free-throw behavior and measured predicted success before each shot as well as general belief in the hot hand pattern. The results of Study 1 illustrate that experience and stimulus alternation rates influence the perception of chance in human performance tasks. Study 2 shows that physically performing an act and making judgments are related. Specifically, beliefs were related to overall performance, with more successful shooters showing greater belief in the hot hand and greater predicted success for upcoming shots. Both of these studies highlight that the hot hand belief is influenced by framing, which leads to instability and situational contingencies. We show the specific effects of framing using accumulated experience of the individual with the sport and knowledge of its structure and specific experience with sport actions (basketball shots) prior to judgments.


    International Nuclear Information System (INIS)

    Althaus, L. G.; Corsico, A. H.; Miller Bertolami, M. M.; Romero, A. D.; GarcIa-Berro, E.


    We present the first full evolutionary calculations aimed at exploring the origin of hot DQ white dwarfs. These calculations consistently cover the whole evolution from the born-again stage to the white dwarf cooling track. Our calculations provide strong support for the diffusive/convective mixing picture for the formation of hot DQs. We find that the hot DQ stage is a short-lived stage and that the range of effective temperatures where hot DQ stars are found can be accounted for by different masses of residual helium and/or different initial stellar masses. In the frame of this scenario, a correlation between the effective temperature and the surface carbon abundance in DQs should be expected, with the largest carbon abundances expected in the hottest DQs. From our calculations, we suggest that most of the hot DQs could be the cooler descendants of some PG 1159 stars characterized by He-rich envelopes markedly smaller than those predicted by the standard theory of stellar evolution. At least for one hot DQ, the high-gravity white dwarf SDSS J142625.70+575218.4, an evolutionary link between this star and the massive PG 1159 star H1504+65, is plausible.

  7. Introduction of hot cell facility in research center Rez - Poster

    International Nuclear Information System (INIS)

    Petrickova, A.; Srba, O.; Miklos, M.; Svoboda, P.


    This poster presents the hot cell facility which is being constructed as part of the SUSEN project at the Rez research center (Czech Republic). Within this project a new complex of 10 hot cells and one semi-hot cell will be built. There will be 8 gamma hot cells and 2 alpha hot cells. In each hot cell a hermetic, removable box made of stainless steel will home different type of devices. The hot cells and semi hot cell will be equipped with devices for processing samples (cutting, welding, drilling, machining) as well as equipment for testing (sample preparation area, stress testing machine, fatigue machine, electromechanical creep machine, high frequency resonance pulsator...) and equipment for studying material microstructure (nano-indenter with nano-scratch tester and scanning electron microscope). An autoclave with water loop, installed in a cell will allow mechanical testing in control environment of water, pressure and temperature. A scheme shows the equipment of each cell. This hot laboratory will be able to cover all the process to study radioactive materials: receiving the material, the preparation of the samples, mechanical testing and microstructure observation. Our hot cells will be close to the research nuclear reactor LVR-15 and new irradiation facility (high irradiation by cobalt source) is planned to be built within the SUSEN project

  8. An evaluation of the geothermal potential of the Tecuamburro Volcano area of Guatemala

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, G.; Duffield, W. (eds.)


    Radiometric ages indicate that the Tecuamburro Volcano and three adjacent lava domes grew during the last 38,300 years, and that a 360-m-wide phreatic crater, Laguna Ixpaco, was formed near the base of these domes about 2900 years ago. Laguna Ixpaco is located within the Chupadero crater, from which pyroxene pumice deposits were erupted 38,300 years ago. Thus, the likelihood is great for a partly molten or solid-but-still-hot near-surface intrusion beneath the area. Fumaroles and hot springs issue locally from the Tecuamburro volcanic complex and near Laguna Ixpaco. Analyses of gas and fluid samples from these and other nearby thermal manifestations yield chemical-geothermometer temperatures of about 150{degree} to 300{degree}C, with the highest temperatures at Ixpaco. The existence of a commercial-grade geothermal reservoir beneath the Ixpaco area seems likely. 84 refs., 70 figs., 12 tabs.

  9. Hot stamping advanced manufacturing technology of lightweight car body

    CERN Document Server

    Hu, Ping; He, Bin


    This book summarizes the advanced manufacturing technology of original innovations in hot stamping of lightweight car body. A detailed description of the technical system and basic knowledge of sheet metal forming is given, which helps readers quickly understand the relevant knowledge in the field. Emphasis has been placed on the independently developed hot stamping process and equipment, which help describe the theoretical and experimental research on key problems involving stress field, thermal field and phase transformation field in hot stamping process. Also, a description of the formability at elevated temperature and the numerical simulation algorithms for high strength steel hot stamping is given in combination with the experiments. Finally, the book presents some application cases of hot stamping technology such as the lightweight car body design using hot stamping components and gradient hardness components, and the cooling design of the stamping tool. This book is intended for researchers, engineers...

  10. Hot Weather Tips (United States)

    ... the person plenty of water and fruit or vegetable juice even if they say they’re not thirsty. No alcohol, coffee or tea. Seek medical help if you suspect dehydration. Light meals: Avoid hot, heavy meals and don’ ...

  11. Cause of Damage. Hot cracking; Schadensursache Heissrissigkeit

    Energy Technology Data Exchange (ETDEWEB)

    Wader, Therese [BENTELER Steel/Tube GmbH, Paderborn (Germany). Vorentwicklung Werkstoffe


    Under certain conditions, Nb-containing stainless steels are susceptible to hot cracking. Such conditions include low melting phases on the grain boundaries, a coarse-grained microstructure such as cast structures, microstructure orientations towards the main tensile direction and high processing temperatures. The case of damage was characterized using metallographic and microanalytical methods. In the laboratory, the critical temperature range for the formation of hot cracks could furthermore specifically be localized under mechanical stresses by means of a dilatometer aiming at clearly verifying the cause of the damage, namely ''hot cracks''.

  12. Hot Mix Asphalt Recycling: Practices and Principles


    Mohajeri, M.


    Hot mix asphalt recycling has become common practice all over the world since the 1970s because of the crisis in oil prices. In the Netherlands, hot recycling has advanced to such an extent that in most of the mixtures more than 50% of reclaimed asphalt (RA) is allowed. These mixtures with such a high RA content are produced in a batch plant to which a parallel drum is attached. In this drum RA is pre-heated to approximately 130°C. Since 2007 another hot mix recycling techniques became availa...

  13. Hot nuclei: high temperatures, high angular momenta

    International Nuclear Information System (INIS)

    Guerreau, D.


    A review is made of the present status concerning the production of hot nuclei above 5 MeV temperature, concentrating mainly on the possible experimental evidences for the attainment of a critical temperature, on the existence of dynamical limitations to the energy deposition and on the experimental signatures for the formation of hot spinning nuclei. The data strongly suggest a nuclear disassembly in collisions involving very heavy ions at moderate incident velocities. Furthermore, hot nuclei seem to be quite stable against rotation on a short time scale. (author) 26 refs.; 12 figs

  14. Hot water reticulation

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, S. K.


    Hot water reticulation (district heating) is an established method of energy supply within cities in many countries. It is based on the fact that heat can often be obtained cheaply in bulk, and that the resultant savings can, in suitable circumstances, justify the investment in a reticulation network of insulated pipes to distribute the heat to many consumers in the form of hot water or occasionally steam. The heat can be used by domestic, commercial, and industrial consumers for space heating and water heating, and by industries for process heat. The costs of supplying domestic consumers can be determined by considering an average residential area, but industrial and commercial consumers are so varied in their requirements that every proposal must be treated independently. Fixed costs, variable costs, total costs, and demand and resource constraints are discussed.

  15. Comparing Pyroclastic Density Current (PDC) deposits at Colima (Mexico) and Tungurahua (Ecuador) volcanoes (United States)

    Goldstein, Fabian; Varley, Nick; Bustillos, Jorge; Kueppers, Ulrich; Lavallee, Yan; Dingwell, Donald B.


    Sudden transitions from effusive to explosive eruptive behaviour have been observed at several volcanoes. As a result of explosive activity, pyroclastic density currents represent a major threat to life and infrastructure, mostly due to their unpredictability, mass, and velocity. Difficulties in direct observation force us to deduce crucial information from their deposits. Here, we present data from field work performed in 2009 on primary deposits from recent explosive episodes at Volcán de Colima (Mexico) and Tungurahua (Ecuador). Volcán de Colima, located 40km away from the Capital city Colima with 300,000 inhabitants, has been active since 1999. Activity has been primarily characterized by the slow effusion of lava dome with the daily occurrence of episodic gas (and sometimes ash) explosion events. During a period of peak activity in 2005, explosive eruptions repeatedly destroyed the dome and column collapse resulted in several PDCs that travelled down the W, S, and SE flanks. Tungurahua looms over the 20,000 inhabitants of the city of Baños, located 5km away, and is considered one of the most active volcanoes in Ecuador. The most recent eruptive cycle began in 1999 and climaxed in July and August of 2006 with the eruptions of several PDCs that traveled down the western flanks, controlled by the hydrological network. During two field campaigns, we collected an extensive data set of porosity and grain size distribution on PDCs at both volcanoes. The deposits have been mapped in detail and the porosity distribution of clasts across the surface of the deposits has been measured at more than 30 sites (> 3.000 samples). Our porosity distribution data (mean porosity values range between 17 and 24%) suggests an influence of run out distance and lateral position. Preliminary results of grain size analysis of ash and lapilli (structures such as dunes, grain size distribution, and the observed damage to vegetation help depict the progression of the flow and its

  16. Analysis of hot rolling and hot forging effects on mechanical properties and microstructure of ZrNbMoGe alloy

    International Nuclear Information System (INIS)

    AH Ismoyo; Parikin; Bandriyana


    Research on formation technique by a combined method of rolling and forging has been carried out in order to improve the mechanical properties of ZrNbMoGe alloy to be used as fuel cladding in NPP (Nuclear Power Plant) application. The effects of rolling and forging were analyzed several tests. The tests were conducted for zirconium alloy specimen with a composition of (in % wt.) 97% Zr, 0,5% Mo, 2% Nb and 0,5% Ge, where the specimen was melted with an arc-furnace. The hot rolling and forging were conducted at 900 °C and 950 °C respectively. Hardness test was carried out by using a microhardness testing machine, while microstructure examination and crystal structure analysis were conducted with an optical microscope and an X-ray diffractometer. The results show that the hardness of the alloy increase from 141.21 HV (starting material) to 210.47 HV (hot rolled material) and 365.75 HV (hot forged material). Texturing phenomenon is clearly figured on the microstructure due to hot rolling and forging process. Analysis by diffractogram also indicates that the hot rolling and forging process has influence on the crystal orientation of dominant preferred direction in the reflection plane of (10ī1), recorded from the rise of intensity counting from about 2500 to 3000. In summary, hot forging and rolling process can change the mechanical properties (hardness and texture) and microstructure of materials. (author)

  17. Hot spots on Tc-99m MAA perfusion lung scan

    International Nuclear Information System (INIS)

    Lim, Seok Tae; Sohn, Myung Hee


    A 61 year-old woman underwent perfusion and inhalation lung scan for the evaluation of pulmonary thromboembolism. Tc-99m MAA perfusion lung scan showed multiple round hot spots in both lung fields. Tc-99m DTPA aerosol inhalation lung scan and chest radiography taken at the same time showed normal findings. A repeated perfusion lung scan taken 24 hours later demonstrated no abnormalities. Hot spots on perfusion lung scan can be caused by microsphere clumping due to faulty injection technique by radioactive embolization from upper extremity thrombophlebitis after injection. Focal hot spots can signify zones of atelectasis, where the hot spots probably represent a failure of hypoxic vasoconstriction. Artifactual hot spots due to microsphere clumping usually appear to be round and in peripheral location, and the lesions due to a loss of hypoxic vasoconstriction usually appear to be hot uptakes having linear borders. Although these artifactual hot spots have been well-known, we rarely encounter them. This report presents a case with artifactual hot spots due to microsphere clumping on Tc-99m MAA perfusion lung scan

  18. Hot Jupiters Aren't As Lonely As We Thought (United States)

    Kohler, Susanna


    The Friends of Hot Jupiters (FOHJ) project is a systematic search for planetary- and stellar-mass companions in systems that have known hot Jupiters short-period, gas-giant planets. This survey has discovered that many more hot Jupiters may have companions than originally believed.Missing FriendsFOHJ was begun with the goal of better understanding the systems that host hot Jupiters, in order to settle several longstanding issues.The first problem was one of observational statistics. We know that roughly half of the Sun-like stars nearby are in binary systems, yet weve only discovered a handful of hot Jupiters around binaries. Are binary systems less likely to host hot Jupiters? Or have we just missed the binary companions in the hot-Jupiter-hosting systems weve seen so far?An additional issue relates to formation mechanisms. Hot Jupiters probably migrated inward from where they formed out beyond the ice lines in protoplanetary disks but how?This median-stacked image, obtained with adaptive optics, shows one of the newly-discovered stellar companions to a star hosting a hot Jupiter. The projected separation is ~180 AU. [Ngo et al. 2015]Observations reveal two populations of hot Jupiters: those with circular orbits aligned with their hosts spins, and those with eccentric, misaligned orbits. The former population support a migration model dominated by local planet-disk interactions, whereas the latter population suggest the hot Jupiters migrated through dynamical interactions with distant companions. A careful determination of the companion rate in hot-Jupiter-hosting systems could help establish the ability of these two models to explain the observed populations.Search for CompanionsThe FOHJ project began in 2012 and studied 51 systems hosting known, transiting hot Jupiters with roughly half on circular, aligned orbits and half on eccentric, misaligned orbits. The survey consisted of three different, complementary components:Study 1Lead author: Heather Knutson

  19. Interplay of hot electrons from localized and propagating plasmons. (United States)

    Hoang, Chung V; Hayashi, Koki; Ito, Yasuo; Gorai, Naoki; Allison, Giles; Shi, Xu; Sun, Quan; Cheng, Zhenzhou; Ueno, Kosei; Goda, Keisuke; Misawa, Hiroaki


    Plasmon-induced hot-electron generation has recently received considerable interest and has been studied to develop novel applications in optoelectronics, photovoltaics and green chemistry. Such hot electrons are typically generated from either localized plasmons in metal nanoparticles or propagating plasmons in patterned metal nanostructures. Here we simultaneously generate these heterogeneous plasmon-induced hot electrons and exploit their cooperative interplay in a single metal-semiconductor device to demonstrate, as an example, wavelength-controlled polarity-switchable photoconductivity. Specifically, the dual-plasmon device produces a net photocurrent whose polarity is determined by the balance in population and directionality between the hot electrons from localized and propagating plasmons. The current responsivity and polarity-switching wavelength of the device can be varied over the entire visible spectrum by tailoring the hot-electron interplay in various ways. This phenomenon may provide flexibility to manipulate the electrical output from light-matter interaction and offer opportunities for biosensors, long-distance communications, and photoconversion applications.Plasmon-induced hot electrons have potential applications spanning photodetection and photocatalysis. Here, Hoang et al. study the interplay between hot electrons generated by localized and propagating plasmons, and demonstrate wavelength-controlled polarity-switchable photoconductivity.

  20. The effect of cushion-ram pulsation on hot stamping (United States)

    Landgrebe, Dirk; Rautenstrauch, Anja; Kunke, Andreas; Polster, Stefan; Kriechenbauer, Sebastian; Mauermann, Reinhard


    Hot stamping is an important technology for manufacturing high-strength components. This technology offers the possibility to achieve significant weight reductions. In this study, cushion-ram pulsation (CRP), a new technology for hot stamping on servo-screw presses, was investigated and applied for hot stamping. Compared to a conventional process, the tests yielded a significantly higher drawing depth. In this paper, the CRP technology and the first test results with hot stamping were described in comparison to the conventional process.

  1. Properties of hot pressed MgB2/Ti tapes

    International Nuclear Information System (INIS)

    Kovac, P.; Husek, I.; Melisek, T.; Fedor, J.; Cambel, V.; Morawski, A.; Kario, A.


    Hot axial and hot isostatic pressing was applied for single-core MgB 2 /Ti tapes. Differences in transport current density, n-exponents and critical current anisotropy are discussed and related to the grain connectivity influenced by pressing. The magnetic Hall probe scanning measurements allowed observing the isolated regions for axially hot pressed sample attributed to the longitudinally oriented cracks introduced by pressing. The highest current densities were measured for the tape subjected to hot isostatic pressing due to improved connectivity.

  2. (Microbiological studies of small hot-bath-pools and hot-whirl-pools (author's transl))

    Energy Technology Data Exchange (ETDEWEB)

    Exner, M; Havenith, N


    Hot small bathing pools and hot whirl-pools have the following characteristics: small watervolume, thick squeeze of swimmers, high water temperature (37-40 degrees C) and small dimension of filters. By this, the quality of bathing-water is influenced detrimentally. To elaborate the hygienic problems, bathing-water samples were taken before, during and after the visiting-hours and were tested for facultative-pathogenic microorganisms. During this investigation E. coli was isolated in 25 degrees, Coliforms and Proteus species in 37.3%, P. aeruginosa in 36%, S. aureus in 26.3%, Enterococci in 42.3 %, Candida albicans in 3.6% and yeast totally in 8.3%.


    Directory of Open Access Journals (Sweden)

    Xiaotian Zhang


    Full Text Available AbstractSince the phase out of Halon extinguishers in the 1980s, hot aerosol fire suppression technology has gained much attention. Unlike traditional inert gas, foam, water mist and Halon fire suppression agents, hot aerosol fire extinguishing agents do not need to be driven out by pressurized gases and can extinguish class A, B, C, D and K fires at 30 to 200 g/m3. Generally, hot aerosol fire extinguishing technology has developed from a generation I oil tank suppression system to a generation III strontium salt based S-type system. S-type hot aerosol fire extinguishing technology greatly solves the corrosion problem of electrical devices and electronics compared to potassium salt based generation I & II hot aerosol fire extinguishing technology. As substitutes for Halon agents, the ODP and GWP values of hot fire extinguishing aerosols are nearly zero, but those fine aerosol particles can cause adverse health effects once inhaled by human. As for configurations of hot aerosol fire extinguishing devices, fixed or portable cylindrical canisters are the most common among generation II & III hot aerosol fire extinguishers across the world, while generation I hot aerosol fire suppression systems are integrated with the oil tank as a whole. Some countries like the U.S., Australia, Russia and China, etc. have already developed standards for manufacturing and quality control of hot aerosol fire extinguishing agents and norms for hot aerosol fire extinguishing system design under different fire protection scenarios. Coolants in hot aerosol fire suppression systems, which are responsible for reducing hot aerosol temperature to avoid secondary fire risk are reviewed for the first time. Cooling effects are generally achieved through vaporization and endothermic chemical decomposition of coolants. Finally, this review discussed areas applying generation I, II or III hot aerosol fire suppression technologies. The generation III hot aerosol fire extinguishing

  4. Hot-carrier effects on irradiated deep submicron NMOSFET

    International Nuclear Information System (INIS)

    Cui Jiangwei; Zheng Qiwen; Yu Xuefeng; Cong Zhongchao; Zhou Hang; Guo Qi; Wen Lin; Wei Ying; Ren Diyuan


    We investigate how γ exposure impacts the hot-carrier degradation in deep submicron NMOSFET with different technologies and device geometries for the first time. The results show that hot-carrier degradations on irradiated devices are greater than those without irradiation, especially for narrow channel device. The reason is attributed to charge traps in STI, which then induce different electric field and impact ionization rates during hot-carrier stress. (semiconductor devices)

  5. Refurbishment of an Analytical Laboratory Hot Cell Facility

    International Nuclear Information System (INIS)

    Rosenberg, K.; Henslee, S.P.; Michelbacher, J.A.; Coleman, R.M.


    An Analytical Laboratory Hot Cell (ALHC) Facility at Argonne National Laboratory-West (ANL-W) was in service for nearly thirty years. In order to comply with DOE regulations governing such facilities and meet ANL-W programmatic requirements, a major refurbishment effort was undertaken. All penetrations within the facility were sealed; the ventilation system was redesigned, upgraded and replaced; the manipulators were replaced; the hot cell windows were removed, refurbished, and reinstalled; all hot cell utilities were replaced; a lead-shielded glovebox housing an Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES) System was interfaced with the hot cells, and a new CO2 fire suppression system and other ALHC support equipment were installed

  6. 14 CFR 25.961 - Fuel system hot weather operation. (United States)


    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.961 Fuel system hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 25.961...

  7. Hot gas path component having near wall cooling features (United States)

    Miranda, Carlos Miguel; Kottilingam, Srikanth Chandrudu; Lacy, Benjamin Paul


    A method for providing micro-channels in a hot gas path component includes forming a first micro-channel in an exterior surface of a substrate of the hot gas path component. A second micro-channel is formed in the exterior surface of the hot gas path component such that it is separated from the first micro-channel by a surface gap having a first width. The method also includes disposing a braze sheet onto the exterior surface of the hot gas path component such that the braze sheet covers at least of portion of the first and second micro-channels, and heating the braze sheet to bond it to at least a portion of the exterior surface of the hot gas path component.

  8. Hot tearing susceptibility of binary Mg–Y alloy castings

    International Nuclear Information System (INIS)

    Wang, Zhi; Huang, Yuanding; Srinivasan, Amirthalingam; Liu, Zheng; Beckmann, Felix; Kainer, Karl Ulrich; Hort, Norbert


    Highlights: ► Quantitatively and qualitatively assessing hot tearing susceptibility for different alloys. ► Monitoring the hot tearing propagation process. ► Detecting the hot tearing initiation/onset temperature. ► Recording the stress and strain evolution during the casting solidification and the subsequent cooling. - Abstract: The influence of Y content on the hot tearing susceptibility (HTS) of binary Mg–Y alloys has been predicted using thermodynamic calculations based on Clyne and Davies model. The calculated results are compared with experimental results determined using a constrained rod casting (CRC) apparatus with a load cell and data acquisition system. Both thermodynamic calculations and experimental measurements indicate that the hot tearing susceptibility as a function of Y content follows the “λ” shape. The experimental results show that HTS first increases with increase in Y content, reaches the maximum at about 0.9 wt.%Y and then decreases with further increase the Y content. The maximum susceptibility observed in Mg–0.9 wt.%Y alloy is attributed to its coarsened columnar microstructure, large solidification range and small amount of eutectic at the time of hot tearing. The initiation of hot cracks is monitored during CRC experiments. It corresponds to a drop in load increment on the force curves. The critical solid fractions at which the hot cracks are initiated are in the range from 0.9 to 0.99. It is also found that it decreases with increasing the content of Y. The hot cracks propagate along the dendritic or grain boundaries through the interdendritic separation or tearing of interconnected dendrites. Some of the formed cracks are possible to be healed by the subsequent refilling of the remained liquids

  9. Remarks on theoretical hot-atom chemistry

    International Nuclear Information System (INIS)

    Inokuti, Mitio


    The publication of the 'Handbook of Hot Atom Chemistry', following the earlier volume 'Recent Trend and Application', was a major milestone in physical chemistry. Theoretical treatments of hot atom chemistry must address two classes of problems. The first class concerns the individual collisions of hot atoms with other atoms or molecules. The second class concerns the description of the consequences of the many collisions of hot atoms and their chemical environment. Most of the remarks pertain to the problems of the first class. The central issue is the adiabaticity of nuclear motions versus electronic motions. To be precise, any atomic core motion should be mentioned rather than pure nuclear motion, because tightly bound core electrons are largely irrelevant to the chemistry. When nuclear motions are sufficiently slow, or for other reasons that can be regarded as adiabatic, the collision problem is basically straightforward, therefore, interatomic and intermolecular forces can be assumed, and their consequences for nuclear motions are calculable in principle. In the case of non-adiabaticity being important, much more difficult problems arise, and it is briefly discussed, and the work by Phelps is cited. (K.I.)

  10. Hot pressing of B{sub 4}C/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, F.C.; Turhan, E.; Yesilcubuk, S.A.; Addemir, O. [Ystanbul Technical University, Faculty of Chemistry and Metallurgy, Materials and Metallurgical Engineering Dept., Maslak-Ystanbul (Turkey)


    B{sub 4}C/SiC ceramic composites containing 10-20-30 vol % SiC were prepared by hot pressing method. The effect of SiC addition and hot pressing temperature on sintering behaviour and mechanical properties of hot pressed composites were investigated. Microstructures of hot pressed samples were examined by SEM technique. Three different temperatures (2100 deg. C, 2200 deg. C and 2250 deg. C) were used to optimize hot pressing temperature applying 100 MPa pressure under argon atmosphere during the sintering procedure. The highest relative density of 98.44 % was obtained by hot pressing at 2250 deg. C. However, bending strengths of B{sub 4}C/SiC composite samples were lower than monolithic B{sub 4}C in all experimental conditions. (authors)

  11. "Hot Tub Rash" and "Swimmer's Ear" (Pseudomonas) (United States)

    Facts About “Hot Tub Rash” and “Swimmer’s Ear” (Pseudomonas) What is Pseudomonas and how can it affect me? Pseudomonas (sue-doh- ... a major cause of infections commonly known as “hot tub rash” and “swimmer’s ear.” This germ is ...

  12. Biofilm formation in a hot water system

    DEFF Research Database (Denmark)

    Bagh, L.K.; Albrechtsen, Hans-Jørgen; Arvin, Erik


    The biofilm formation rate was measured in situ in a hot water system in an apartment building by specially designed sampling equipment, and the net growth of the suspended bacteria was measured by incubation of water samples with the indigeneous bacteria. The biofilm formation rate reached......, in the sludge, or in the water from the distribution system was negligible. This indicated that bacterial growth took place on the inner surfaces in the hot water system and biofilm formation and detachment of bacteria could account for most of the suspended bacteria actually measured in hot water. Therefore...

  13. Performance characteristics of tunnel boring machine in basalt and pyroclastic rocks of Deccan traps – A case study

    Directory of Open Access Journals (Sweden)

    Prasnna Jain


    Full Text Available A 12.24 km long tunnel between Maroshi and Ruparel College is being excavated by tunnel boring machine (TBM to improve the water supply system of Greater Mumbai, India. In this paper, attempt has been made to establish the relationship between various litho-units of Deccan traps, stability of tunnel and TBM performances during the construction of 5.83 km long tunnel between Maroshi and Vakola. The Maroshi–Vakola tunnel passes under the Mumbai Airport and crosses both runways with an overburden cover of around 70 m. The tunneling work was carried out without disturbance to the ground. The rock types encountered during excavation are fine compacted basalt, porphyritic basalt, amygdaloidal basalt, pyroclastic rocks with layers of red boles and intertrappean beds consisting of various types of shales. Relations between rock mass properties, physico-mechanical properties, TBM specifications and the corresponding TBM performance were established. A number of support systems installed in the tunnel during excavation were also discussed. The aim of this paper is to establish, with appropriate accuracy, the nature of subsurface rock mass condition and to study how it will react to or behave during underground excavation by TBM. The experiences gained from this project will increase the ability to cope with unexpected ground conditions during tunneling using TBM.

  14. Instant hot noodles: do they need to burn? (United States)

    Wu, C; Tan, A L; Maze, D A E; Holland, A J A


    Scalds and contact burns in children may occur as the result of spillage of hot food and drinks, including instant hot noodles. This study sought to determine the frequency of noodle burns in children and investigate the thermal properties of instant hot noodles. Data on instant hot noodle burns in children were retrieved from the New South Wales Severe Burn Injury Database between 2005 and 2010. Five widely available brands of instant hot noodles, including three cup and two packet varieties, were prepared following the manufacturer's instructions. For each preparation the initial temperature after cooking was recorded, together with the time to cool to 50°C. 291 children sustained instant hot noodle burns over the 6 year study period, representing 5.4% of all children referred to our burns unit. Over a third received inadequate first aid. Cup noodles cooked with boiling water reached the highest temperature of over 80°C and took the longest time to cool to 50°C: on average 52.3 min. Cup noodles in smaller, narrower containers achieved higher post-cooking temperatures compared to noodles in wider, bowel shaped containers. Packet noodles cooked in a Microwave oven attained lower peak temperatures and shorter cooling times compared to cup noodles. Although relatively uncommon in children, instant hot noodle burns often received inadequate first aid. When cooked according to manufacturer's instructions, noodles generally exceeded temperatures sufficient to cause a burn. Consumers and parents need to be aware of the risks of burn when preparing these foods. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  15. The design of hot laboratories

    International Nuclear Information System (INIS)


    The need for specialized laboratories to handle radioactive substances of high activity has increased greatly due to the expansion of the nuclear power industry and the widespread use of radioisotopes in scientific research and technology. Such laboratories, which are called hot laboratories, are specially designed and equipped to handle radioactive materials of high activity, including plutonium and transplutonium elements. The handling of plutonium and transplutonium elements presents special radiation-protection and safety problems because of their high specific activity and high radiotoxicity. Therefore, the planning, design, construction and operation of hot laboratories must meet the stringent safety, containment, ventilation, shielding, criticality control and fire-protection requirements. The IAEA has published two manuals in its Safety Series, one on the safety aspects of design and equipment of hot laboratories (SS No.30) and the other on the safe handling of plutonium (SS No.39). The purpose of the symposium in Otaniemi was to collect information on recent developments in the safety features of hot laboratories and to review the present state of knowledge. A number of new developments have taken place as the result of growing sophistication in the philosophy of radiation protection as given in the ICRP recommendations (Report No.22) and in the Agency's basic safety standards (No.9). The topics discussed were safety features of planning and design, air cleaning, transfer and transport systems, criticality control, fire protection, radiological protection, waste management, administrative arrangements and operating experience

  16. New 40Ar/39Ar age progression for the Louisville hot spot trail and implications for inter-hot spot motion (United States)

    Koppers, Anthony A. P.; Gowen, Molly D.; Colwell, Lauren E.; Gee, Jeffrey S.; Lonsdale, Peter F.; Mahoney, John J.; Duncan, Robert A.


    In this study we present 42 new 40Ar/39Ar incremental heating age determinations that contribute to an updated age progression for the Louisville seamount trail. Louisville is the South Pacific counterpart to the Hawaiian-Emperor seamount trail, both trails representing intraplate volcanism over the same time interval (˜80 Ma to present) and being examples of primary hot spot lineaments. Our data provide evidence for an age-progressive trend from 71 to 21 Ma. Assuming fixed hot spots, this makes possible a direct comparison to the Hawaiian-Emperor age progression and the most recent absolute plate motion (APM) model (WK08G) of Wessel and Kroenke (2008). We observe that for the Louisville seamount trail the measured ages are systematically older relative to both the WK08G model predictions and Hawaiian seamount ages, with offsets ranging up to 6 Myr. Taking into account the uncertainty about the duration of eruption and magmatic succession at individual Louisville volcanoes, these age offsets should be considered minimum estimates, as our sampling probably tended to recover the youngest lava flows. These large deviations point to either a contribution of inter-hot spot motion between the Louisville and Hawaiian hot spots or to a more easterly location of the Louisville hot spot than the one inferred in the WK08G model. Both scenarios are investigated in this paper, whereby the more eastern hot spot location (52.0°S, 134.5°W versus 52.4°S, 137.2°W) reduces the average age offset, but still results in a relatively large maximum offset of 3.7 Myr. When comparing the new ages to the APM models (S04P, S04G) by Steinberger et al. (2004) that attempt to compensate for the motion of hot spots in the Pacific (Hawaii) or globally (Hawaii, Louisville, Reunion and Walvis), the measured and predicted ages are more in agreement, showing only a maximum offset of 2.3 Myr with respect to the S04G model. At face value these more advanced APM models, which consider both plate and

  17. Carbon-11 labelled phosgene new synthesis - medical interest

    International Nuclear Information System (INIS)

    Landais, P.


    This thesis describes a new synthesis of high specific radioactivity carbon-11 labelled phosgene. The latter is an important precursor for the labelling of radiopharmaceuticals used in Positron Emission Tomography. The synthesis is carried out in 10 minutes. First, the carbon-11 labelled methane ( 11 CH 4 ) is chlorinated into carbon tetrachloride on pumice impregnated with copper (II) chloride. A photochemical process had previously been studied but this reaction was strongly inhibited. Then the 11 C-carbon tetrachloride is oxidized into 11 C-phosgene on hot stainless. The 11 C-CGP 12177 has been labelled from this new 11 C-Phosgene synthesis for receptor studies which require high specific radioactivity [fr

  18. Cardiac autonomic function and hot flashes among perimenopausal and postmenopausal women. (United States)

    Gibson, Carolyn J; Mendes, Wendy Berry; Schembri, Michael; Grady, Deborah; Huang, Alison J


    Abnormalities in autonomic function are posited to play a pathophysiologic role in menopausal hot flashes. We examined relationships between resting cardiac autonomic activity and hot flashes in perimenopausal and postmenopausal women. Autonomic function was assessed at baseline and 12 weeks among perimenopausal and postmenopausal women (n = 121, mean age 53 years) in a randomized trial of slow-paced respiration for hot flashes. Pre-ejection period (PEP), a marker of sympathetic activation, was measured with impedance cardiography. Respiratory sinus arrhythmia (RSA), a marker of parasympathetic activation, was measured with electrocardiography. Participants self-reported hot flash frequency and severity in 7-day symptom diaries. Analysis of covariance models were used to relate autonomic function and hot flash frequency and severity at baseline, and to relate changes in autonomic function to changes in hot flash frequency and severity over 12 weeks, adjusting for age, body mass index, and intervention assignment. PEP was not associated with hot flash frequency or severity at baseline or over 12 weeks (P > 0.05 for all). In contrast, there was a trend toward greater frequency of moderate-to-severe hot flashes with higher RSA at baseline (β = 0.43, P = 0.06), and a positive association between change in RSA and change in frequency of moderate-to-severe hot flashes over 12 weeks (β = 0.63, P = 0.04). Among perimenopausal and postmenopausal women with hot flashes, variations in hot flash frequency and severity were not explained by variations in resting sympathetic activation. Greater parasympathetic activation was associated with more frequent moderate-to-severe hot flashes, which may reflect increased sensitivity to perceiving hot flashes.

  19. Solar Hot Water Heater (United States)


    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  20. Influence of calcium and silicon supplementation into Pleurotus ostreatus substrates on quality of fresh and canned mushrooms. (United States)

    Thongsook, T; Kongbangkerd, T


    Supplements of gypsum (calcium source), pumice (silicon source) and pumice sulfate (silicon and calcium source) into substrates for oyster mushrooms (Pleurotus ostreatus) were searched for their effects on production as well as qualities of fresh and canned mushrooms. The addition of pumice up to 30% had no effect on total yield, size distribution and cap diameters. The supplementation of gypsum at 10% decreased the total yield; and although gypsum at 5% did not affect total yield, the treatment increased the proportion of large-sized caps. High content (>10%) of pumice sulfate resulted in the lower yield. Calcium and silicon contents in the fruit bodies were not influenced by supplementations. The centrifugal drip loss values and solid content of fresh mushrooms, and the percentage of weight gained and firmness of canned mushrooms, cultivated in substrates supplemented with gypsum, pumice and pumice sulfate were significantly (p≤0.05) higher than those of the control. Scanning electron micrographs revealed the more compacted hyphae of mushroom stalks supplemented with silicon and/or calcium after heat treatment, compared to the control. Supplementation of P. ostreatus substrates with 20% pumice was the most practical treatment because it showed no effect on yield and the most cost-effective.

  1. 2018-04-29T21:07:23Z oai:ojs ...

    African Journals Online (AJOL)

    This paper assesses the properties of pumice materials on its particle sizes and the water absorption capacity. It also assesses the strengths of pumice blocks and wall units as compared with cement sand blocks and its walling units. The aim was to seek wider alternative choices of building materials. Samples of pumice ...

  2. High density high-TC ceramic superconductors by hot pressing

    International Nuclear Information System (INIS)

    Mak, S.; Chaklader, A.C.D.


    High density and high T C superconductor specimens, YBa 2 Cu 3 O x , have been produced by hot-pressing. The factors studied are the effect of hot pressing on the density, the oxygen stoichiometry, the crystal structure, and the critical temperature. Hot pressing followed by heat treatment increased the density of the specimen to 93%. The hot pressing itself did not significantly affect the oxygen content in the specimen, and although the crystal structure appeared to be orthorhombic, the specimens were not superconducting above liquid nitrogen temperature. The superconductivity was restored after head treatment in oxygen. The highest critical temperature (T C ) of the hot pressed pellets was 82K, which was slightly lower than the T C that could be obtained with the cold pressed/sintered pellets. (6 refs., 5 figs., tab.)

  3. Test methods for evaluating hot cracking: Review and perspective

    International Nuclear Information System (INIS)

    Goodwin, G.M.


    The phenomenon of hot cracking is described and discussed, and criteria for tests to assess hot cracking are elucidated. The historical development of hot cracking tests is traced from the 1930s to present, with categorization of tests into several types. It is noted that the number of tests developed continues to increase dramatically. The number of literature citations also increases with time, with few popular tests receiving a major share of interest. Predominant countries of origin of both tests and citations shift with time, and a few journals account for most of the published information. Reviews of hot cracking are reviewed, and it is predicted that modeling and other developing analytical techniques will contribute greatly to an increase in our understanding of hot cracking. 30 refs., 10 figs., 1 tab

  4. Heat losses through pipe connections in hot water stores

    DEFF Research Database (Denmark)

    Andersen, Elsa; Fan, Jianhua; Furbo, Simon


    The heat loss from pipe connections at the top of hot water storage tanks with and without a heat trap is investigated theoretically and compared to similar experimental investigations. Computational Fluid Dynamics (CFD) is used for the theoretical analysis. The investigations show that the heat...... loss from an ideally insulated pipe connected to the top of a hot water tank is mainly due to a natural convection flow in the pipe, that the heat loss coefficient of pipes connected to the top of a hot water tank is high, and that a heat trap can reduce the heat loss coefficient significantly. Further......, calculations show that the yearly thermal performance of solar domestic hot water systems is strongly reduced if the hot water tank has a thermal bridge located at the top of the tank....

  5. Fabrication and properties of hot pressed bismuth tungstate

    International Nuclear Information System (INIS)

    Streicher, W.L.


    Bi 2 WO 6 is a synthetic polar material that is a possible candidate for energy conversion and detection systems. Previous research on this material has been concerned with crystal growth and sintering characteristics of polycrystalline compacts. This study involves itself with the fabrication of polycrystalline compacts by hot pressing techniques. Densities approaching theoretical crystal density were achieved by hot pressing at 850 0 C for one hour with pressures exceeding 35 MPa. Before hot pressing, the sintering range was determined by high temperature dilatometry of unfired Bi 2 WO 6 ceramics. Hot pressed discs were characterized by scanning electron microscopy, differential scanning calorimetry, and x-ray diffraction. Electrical properties were determined by dc resistivity, capacitance, and conductance measurements, ac poling, dc poling, and current-voltage measurements

  6. Experimental optimization of temperature distribution in the hot-gas duct through the installation of internals in the hot-gas plenum of a high-temperature reactor

    International Nuclear Information System (INIS)

    Henssen, J.; Mauersberger, R.


    The flow conditions in the hot-gas plenum and in the adjacent hot-gas ducts and hot-gas pipes for the high-temperature reactor project PNP-1000 (nuclear process heat project for 1000 MW thermal output) have been examined experimentally. The experiments were performed in a closed loop in which the flow model to be analyzed, representing a 60deg sector of the core bottom of the PNP-1000 with connecting hot-gas piping and diverting arrangements, was installed. The model scale was approx. 1:5.6. The temperature and flow velocity distribution in the hot-gas duct was registered by means of 14 dual hot-wire flowmeters. Through structural changes and/or the installation of internals into the hot-gas plenum of the core bottom offering little flow resistance coolant gas temperature differentials produced in the core could be reduced to such an extent that a degree of mixture amounting to over 80% was achieved at the entrance of the connected heat exchanger systems. Thereby the desired goal of an adequate degree of mixture of the hot gas involving an acceptable pressure loss was reached. (orig.)

  7. The effects of Hot Pepper Extract and Capsaicin on Adipocyte Metabolism

    Directory of Open Access Journals (Sweden)

    Ching Sheng, Chu


    Full Text Available Objectives : The purpose of this study is to investigate the effects of hot pepper extract and capsaicin on the adipogenesis in 3T3-L1 cells, lipolysis in rat epididymal adipocytes and histological changes in porcine adipose tissue. Methods : Inhibiton of preadipocyte differentiation and/or stimulation of lipolysis play important roles in reducing obesity. 3T3-L1 preadipocytes were differentiated with adipogenic reagents by incubating for 3 days in the absence or presence of hot pepper extract or capsaicin ranging from 0.01 to 1㎎/㎖. The effects of hot pepper extract and capsaicin on adipogenesis were examined by measuring GPDH activity and by Oil Red O staining. Mature adipocytes from rat epididymal fat pad was incubated with hot pepper extract or capsaicin ranging from 0.01 to 1㎎/㎖ for 3 hrs. The effects of hot pepper extract and capsaicin on lipolysis were examined by measuring free glycerol released. Fat tissue from pig skin was injected with hot pepper extract or capsaicinCFP ranging from 0.1 to 10㎎/㎖ to examine the effects of hot pepper extract and capsaicin on histological changes under light microscopy. Results : The following results were obtained from present study on adipogenesis of preadipocytes, lipolysis of adipocytes and histological changes in fat tissue. 1. Hot pepper extract and capsaicin inhibited adipogenic differentiation at the concentration of 0.1 and 0.01㎎/㎖, respectively, indicating that capsaicin was more effective in inhibiting adipogenesis than hot pepper extract. 2. Hot pepper extract and capsaicin decreased the activity of glycerol-3-phosphate dehydrogenase(GPDH at the concentration of 0.1 and 0.01㎎/㎖, respectively, indicating that capsaicin was more effective in inhibiting adipogenic differentiation than hot pepper extract. 3. Hot pepper extract and capsaicin increased glycerol release at the concentration of 0.1㎎/㎖. There was no difference in lipolytic activity between hot pepper extract and


    Energy Technology Data Exchange (ETDEWEB)

    Richard Schultz; Jim C. P. Liou


    In VHTR, helium from the reactor vessel is conveyed to a power conversion unit through a hot duct. In a hypothesized Depressurized Conduction Cooldown event where a rupture of the hot duct occurs, pressure waves will be initiated and reverberate in the hot duct. A numerical model is developed to quantify the transients and the helium mass flux through the rupture for such events. The flow path of the helium forms a closed loop but only the hot duct is modeled in this study. The lower plum of the reactor vessel and the steam generator are treated as specified pressure and/or temperature boundary to the hot duct. The model is based on the conservation principles of mass, momentum and energy, and on the equations of state for helium. The numerical solution is based on the method of characteristics with specified time intervals with a predictor and corrector algorithm. The rupture sub-model gives reasonable results. Transients induced by ruptures with break area equaling 20%, 10%, and 5% of the duct cross-sectional area are described.

  9. Thermally-Driven Mantle Plumes Reconcile Hot-spot Observations (United States)

    Davies, D.; Davies, J.


    Hot-spots are anomalous regions of magmatism that cannot be directly associated with plate tectonic processes (e.g. Morgan, 1972). They are widely regarded as the surface expression of upwelling mantle plumes. Hot-spots exhibit variable life-spans, magmatic productivity and fixity (e.g. Ito and van Keken, 2007). This suggests that a wide-range of upwelling structures coexist within Earth's mantle, a view supported by geochemical and seismic evidence, but, thus far, not reproduced by numerical models. Here, results from a new, global, 3-D spherical, mantle convection model are presented, which better reconcile hot-spot observations, the key modification from previous models being increased convective vigor. Model upwellings show broad-ranging dynamics; some drift slowly, while others are more mobile, displaying variable life-spans, intensities and migration velocities. Such behavior is consistent with hot-spot observations, indicating that the mantle must be simulated at the correct vigor and in the appropriate geometry to reproduce Earth-like dynamics. Thermally-driven mantle plumes can explain the principal features of hot-spot volcanism on Earth.

  10. Tribological Behavior of Laser Textured Hot Stamping Dies

    Directory of Open Access Journals (Sweden)

    Andre Shihomatsu


    Full Text Available Hot stamping of high strength steels has been continuously developed in the automotive industry to improve mechanical properties and surface quality of stamped components. One of the main challenges faced by researchers and technicians is to improve stamping dies lifetime by reducing the wear caused by high pressures and temperatures present during the process. This paper analyzes the laser texturing of hot stamping dies and discusses how different surfaces textures influence the lubrication and wear mechanisms. To this purpose, experimental tests and numerical simulation were carried out to define the die region to be texturized and to characterize the textured surface topography before and after hot stamping tests with a 3D surface profilometer and scanning electron microscopy. Results showed that laser texturing influences the lubrication at the interface die-hot sheet and improves die lifetime. In this work, the best texture presented dimples with the highest diameter, depth, and spacing, with the surface topography and dimples morphology practically preserved after the hot stamping tests.

  11. A combined field and numerical approach to understanding dilute pyroclastic density current dynamics and hazard potential: Auckland Volcanic Field, New Zealand (United States)

    Brand, Brittany D.; Gravley, Darren M.; Clarke, Amanda B.; Lindsay, Jan M.; Bloomberg, Simon H.; Agustin-Flores, Javier; Németh, Károly


    The most dangerous and deadly hazards associated with phreatomagmatic eruptions in the Auckland Volcanic Field (AVF; Auckland, New Zealand) are those related to volcanic base surges - dilute, ground-hugging, particle laden currents with dynamic pressures capable of severe to complete structural damage. We use the well-exposed base surge deposits of the Maungataketake tuff ring (Manukau coast, Auckland), to reconstruct flow dynamics and destructive potential of base surges produced during the eruption. The initial base surge(s) snapped trees up to 0.5 m in diameter near their base as far as 0.7-0.9 km from the vent. Beyond this distance the trees were encapsulated and buried by the surge in growth position. Using the tree diameter and yield strength of the wood we calculate that dynamic pressures (Pdyn) in excess of 12-35 kPa are necessary to cause the observed damage. Next we develop a quantitative model for flow of and sedimentation from a radially-spreading, dilute pyroclastic density currents (PDCs) to determine the damage potential of the base surges produced during the early phases of the eruption and explore the implications of this potential on future eruptions in the region. We find that initial conditions with velocities on the order of 65 m s- 1, bulk density of 38 kg m- 3 and initial, near-vent current thicknesses of 60 m reproduce the field-based Pdyn estimates and runout distances. A sensitivity analysis revealed that lower initial bulk densities result in shorter run-out distances, more rapid deceleration of the current and lower dynamic pressures. Initial velocity does not have a strong influence on run-out distance, although higher initial velocity and slope slightly decrease runout distance due to higher rates of atmospheric entrainment. Using this model we determine that for base surges with runout distances of up to 4 km, complete destruction can be expected within 0.5 km from the vent, moderate destruction can be expected up to 2 km, but much

  12. Domestic hot water storage: Balancing thermal and sanitary performance

    International Nuclear Information System (INIS)

    Armstrong, P.; Ager, D.; Thompson, I.; McCulloch, M.


    Thermal stratification within hot water tanks maximises the availability of stored energy and facilitates optimal use of both conventional and renewable energy sources. However, stratified tanks are also associated with the proliferation of pathogenic bacteria, such as Legionella, due to the hospitable temperatures that arise during operation. Sanitary measures, aimed at homogenising the temperature distribution throughout the tank, have been proposed; such measures reduce the effective energy storage capability that is otherwise available. Here we quantify the conflict that arises between thermodynamic performance and bacterial sterilisation within 10 real world systems. Whilst perfect stratification enhances the recovery of hot water and reduces heat losses, water samples revealed significant bacterial growth attributable to stratification (P<0.01). Temperature measurements indicated that users were exposed to potentially unsanitary water as a result. De-stratifying a system to sterilise bacteria led to a 19% reduction in effective hot water storage capability. Increasing the tank size to compensate for this loss would lead to an 11% increase in energy consumed through standing heat losses. Policymakers, seeking to utilise hot water tanks as demand response assets, should consider monitoring and control systems that prevent exposures to unsanitary hot water. - Highlights: • Domestic hot water tanks are a potential demand side asset for power networks. • A preference for bacterial growth in stratified hot water tanks has been observed. • Temperatures in base of electric hot water tanks hospitable to Legionella. • Potential exposures to unsanitary water observed. • De-stratifying a tank to sterilise leads to reduced energy storage capability

  13. Magmatic evolution of Panama Canal volcanic rocks: A record of arc processes and tectonic change.

    Directory of Open Access Journals (Sweden)

    David W Farris

    Full Text Available Volcanic rocks along the Panama Canal present a world-class opportunity to examine the relationship between arc magmatism, tectonic forcing, wet and dry magmas, and volcanic structures. Major and trace element geochemistry of Canal volcanic rocks indicate a significant petrologic transition at 21-25 Ma. Oligocene Bas Obispo Fm. rocks have large negative Nb-Ta anomalies, low HREE, fluid mobile element enrichments, a THI of 0.88, and a H2Ocalc of >3 wt. %. In contrast, the Miocene Pedro Miguel and Late Basalt Fm. exhibit reduced Nb-Ta anomalies, flattened REE curves, depleted fluid mobile elements, a THI of 1.45, a H2Ocalc of <1 wt. %, and plot in mid-ocean ridge/back-arc basin fields. Geochemical modeling of Miocene rocks indicates 0.5-0.1 kbar crystallization depths of hot (1100-1190°C magmas in which most compositional diversity can be explained by fractional crystallization (F = 0.5. However, the most silicic lavas (Las Cascadas Fm. require an additional mechanism, and assimilation-fractional-crystallization can reproduce observed compositions at reasonable melt fractions. The Canal volcanic rocks, therefore, change from hydrous basaltic pyroclastic deposits typical of mantle-wedge-derived magmas, to hot, dry bi-modal magmatism at the Oligocene-Miocene boundary. We suggest the primary reason for the change is onset of arc perpendicular extension localized to central Panama. High-resolution mapping along the Panama Canal has revealed a sequence of inward dipping maar-diatreme pyroclastic pipes, large basaltic sills, and bedded silicic ignimbrites and tuff deposits. These volcanic bodies intrude into the sedimentary Canal Basin and are cut by normal and subsequently strike-slip faults. Such pyroclastic pipes and basaltic sills are most common in extensional arc and large igneous province environments. Overall, the change in volcanic edifice form and geochemistry are related to onset of arc perpendicular extension, and are consistent with the

  14. Magmatic evolution of Panama Canal volcanic rocks: A record of arc processes and tectonic change (United States)

    Cardona, Agustin; Montes, Camilo; Foster, David; Jaramillo, Carlos


    Volcanic rocks along the Panama Canal present a world-class opportunity to examine the relationship between arc magmatism, tectonic forcing, wet and dry magmas, and volcanic structures. Major and trace element geochemistry of Canal volcanic rocks indicate a significant petrologic transition at 21–25 Ma. Oligocene Bas Obispo Fm. rocks have large negative Nb-Ta anomalies, low HREE, fluid mobile element enrichments, a THI of 0.88, and a H2Ocalc of >3 wt. %. In contrast, the Miocene Pedro Miguel and Late Basalt Fm. exhibit reduced Nb-Ta anomalies, flattened REE curves, depleted fluid mobile elements, a THI of 1.45, a H2Ocalc of arc basin fields. Geochemical modeling of Miocene rocks indicates 0.5–0.1 kbar crystallization depths of hot (1100–1190°C) magmas in which most compositional diversity can be explained by fractional crystallization (F = 0.5). However, the most silicic lavas (Las Cascadas Fm.) require an additional mechanism, and assimilation-fractional-crystallization can reproduce observed compositions at reasonable melt fractions. The Canal volcanic rocks, therefore, change from hydrous basaltic pyroclastic deposits typical of mantle-wedge-derived magmas, to hot, dry bi-modal magmatism at the Oligocene-Miocene boundary. We suggest the primary reason for the change is onset of arc perpendicular extension localized to central Panama. High-resolution mapping along the Panama Canal has revealed a sequence of inward dipping maar-diatreme pyroclastic pipes, large basaltic sills, and bedded silicic ignimbrites and tuff deposits. These volcanic bodies intrude into the sedimentary Canal Basin and are cut by normal and subsequently strike-slip faults. Such pyroclastic pipes and basaltic sills are most common in extensional arc and large igneous province environments. Overall, the change in volcanic edifice form and geochemistry are related to onset of arc perpendicular extension, and are consistent with the idea that Panama arc crust fractured during collision

  15. Preliminary geothermal investigations at Manley Hot Springs, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    East, J.


    Manley Hot Springs is one of several hot springs which form a belt extending from the Seward Peninsula to east-central Alaska. All of the hot springs are low-temperature, water-dominated geothermal systems, having formed as the result of circulation of meteoric water along deepseated fractures near or within granitic intrusives. Shallow, thermally disturbed ground at Manley Hot Springs constitutes an area of 1.2 km by 0.6 km along the lower slopes of Bean Ridge on the north side of the Tanana Valley. This area includes 32 springs and seeps and one warm (29.1/sup 0/C) well. The hottest springs range in temperature from 61/sup 0/ to 47/sup 0/C and are presently utilized for space heating and irrigation. This study was designed to characterize the geothermal system present at Manley Hot Springs and delineate likely sites for geothermal drilling. Several surveys were conducted over a grid system which included shallow ground temperature, helium soil gas, mercury soil and resistivity surveys. In addition, a reconnaissance ground temperature survey and water chemistry sampling program was undertaken. The preliminary results, including some preliminary water chemistry, show that shallow hydrothermal activity can be delineated by many of the surveys. Three localities are targeted as likely geothermal well sites, and a model is proposed for the geothermal system at Manley Hot Springs.

  16. Modelling and simulations in hot deformation of steels

    International Nuclear Information System (INIS)

    Cabrera, J.M.


    Traditionally, hot forming has been employed to provide shape to metals. Nowadays, however, hot working not only produces the desired geometry, but also the mechanical characteristics required. An understanding of the thermomechanical behaviour of metals, and particularly steels, is essential in the simulation and control of the hot forming operations. Moreover, a right prediction of the final properties needs from accurate descriptions of the microstructural features occurring during the shaping step. For this purpose, the determination of constitutive equations describing the stress σ - strain ε relationships at a given strain rate ε, temperature T and initial microstructure, is a useful task. In this sense, computer simulations of hot working processes proportionate a benchmark to engineers and researchers and allow decreasing the cost of developing products and processes. With regard to the prediction of the final microstructure, the simulation of the hot plastic deformation usually gives unsatisfactory results. This is due to the inadequate constitutive equations employed by the conventional and commercial software available to describe the hot flow behaviour. There are scarce models which couple the typical hot working variables (temperature, strain and strain rate) with microstructural characteristics such as grain size. In this review work is presented how the latter limitation can be overcome by using physical-based constitutive equations, some of which have been partially developed by the present authors, where account of the interaction between microstructure and processing variables is taken. Moreover, a practical derivation of the latter expressions on an AISI-304 steel is presented. To conclude, some examples of industrial applications of the latter approach are also presented. Copyright (2002) AD-TECH - International Foundation for the Advancement of Technology Ltd

  17. History of hot flashes and aortic calcification among postmenopausal women. (United States)

    Thurston, Rebecca C; Kuller, Lewis H; Edmundowicz, Daniel; Matthews, Karen A


    Menopausal hot flashes are considered largely a quality-of-life issue. However, emerging research also links hot flashes to cardiovascular risk. In some investigations, this risk is particularly apparent among women using hormone therapy. The aim of this study was to determine whether a longer history of reported hot flashes over the study period was associated with greater aortic and coronary artery calcification. Interactions with hormone therapy use were examined in an exploratory fashion. Participants included 302 women participating in the Healthy Women Study, a longitudinal study of cardiovascular risk during perimenopause and postmenopause, which was initiated in 1983. Hot flashes (any/none) were assessed when women were 1, 2, 5, and 8 years postmenopausal. Electron beam tomography measures of coronary artery calcification and aortic calcification were completed in 1997-2004. Associations between the number of visits with report of hot flashes, divided by the number of visits attended, and aortic or coronary artery calcification (transformed) were examined in linear regression models. Interactions by hormone therapy use were evaluated. Among women using hormone therapy, a longer history of reported hot flashes was associated with increased aortic calcification, controlling for traditional cardiovascular risk factors (b = 2.87, SE = 1.21, P history of hot flashes and coronary artery calcification. Among postmenopausal women using hormone therapy, a longer history of reported hot flashes measured prospectively was associated with increased aortic calcification, controlling for traditional cardiovascular risk factors. Hot flashes may signal adverse cardiovascular changes among certain postmenopausal women.

  18. Hot-rolling metals in vacuum. Information circular

    International Nuclear Information System (INIS)

    Beall, R.A.; Worthington, R.B.; Blickensderfer, R.


    The process of hot-rolling metals, alloys, and composites in vacuum is studied. First, a comprehensive review of the literature is presented, including the advantages and disadvantages of using vacuum. Next, details of hot-rolling titanium, chromium, and molybdenum-iron bimetal are given. Finally, the design of new equipment is described

  19. Models of hot stellar systems

    International Nuclear Information System (INIS)

    Van Albada, T.S.


    Elliptical galaxies consist almost entirely of stars. Sites of recent star formation are rare, and most stars are believed to be several billion years old, perhaps as old as the Universe itself (--10/sup 10/ yrs). Stellar motions in ellipticals show a modest amount of circulation about the center of the system, but most support against the force of gravity is provided by random motions; for this reason ellipticals are called 'hot' stellar systems. Spiral galaxies usually also contain an appreciable amount of gas (--10%, mainly atomic hydrogen) and new stars are continually being formed out of this gas, especially in the spiral arms. In contrast to ellipticals, support against gravity in spiral galaxies comes almost entirely from rotation; random motions of the stars with respect to rotation are small. Consequently, spiral galaxies are called 'cold' stellar systems. Other than in hot systems, in cold systems the collective response of stars to variations in the force field is an essential part of the dynamics. The present overview is limited to mathematical models of hot systems. Computational methods are also discussed

  20. Top Soils Geochemical and Radioactivity Survey of Naples (Italy) Metropolitan. (United States)

    Somma, R.; De Vivo, B.; Cicchella, D.


    The metropolitan area of Naples due to intense human activities is an emblematic area affected by various environmental pollution of soils and waters in addition to hydrogeological volcanic, seismic and bradyseismic hazards. The geology of the area is prevailing represented by volcanics erupted, from the Upper Pleistocene to Recent by Mt. Somma-Vesuvius on the east and the Campi Flegrei fields on the west. The morphology of the metropolitan area of Naples city can be subdivided in flat areas, constituted by reworked pyroclastic terrains, and by hills originated by the overlapping of different welded pyroclastic flows (i.e.: Campanian Ignimbrite and Neapoletan Yellow Tuff) intercalated with pyroclastic deposits of different origins (i.e.: Campi Flegrei, Mt. Somma-Vesuvius, Ischia) and ages. In order to compile a multi-element baseline geochemical and radioactivity mapping of the metropolitan area of the Napoli we have sampled for this study, in situ top soil and imported filling material (mainly soil, volcanic ash, pumice and scoriae). The sampling and radioactivity survey has been carried out on about 200 sampling sites covering an area of about 150 Km2, with a grid of 0.5 x 0.5 km in the urbanised downtown and 1 km x 1 km in the sub urban areas. In each site has been determined a radioactivity by a Scintrex GRS-500 at different emission spectra as total radioactivity (> 0.08 MeV and > 0.40 MeV), 238U (at 1.76 MeV mostly from 214Bi), 232Th (at 2.6 MeV mostly from 208Tl) and 40K (at 1.46 MeV mostly for 40K). The range of values of in situ soils are as follow for the in situ soils (Total radioactivity: 1327- 360 and 114- 47; 238U: 2.6- 1.3; 40K: 8.1- 3.1; 232U: 0.5- 0.1). Analyses of major, metallic elements and pH of each soil sample are in progress, while Pb isotopes compositions, for a selected number of samples, will be determined to discriminate the natural (geogenic) from the anthropogenic components in the soils by versus the anthropogenetic origin. The data

  1. Siliceous Shrubs in Yellowstone's Hot Springs: Implications for Exobiological Investigations (United States)

    Guidry, S. A.; Chafetz, H. S.


    Potential relict hot springs have been identified on Mars and, using the Earth as an analog, Martian hot springs are postulated to be an optimal locality for recognizing preserved evidence of extraterrestrial life. Distinctive organic and inorganic biomarkers are necessary to recognize preserved evidence of life in terrestrial and extraterrestrial hot spring accumulations. Hot springs in Yellowstone National Park, Wyoming, U.S.A., contain a wealth of information about primitive microbial life and associated biosignatures that may be useful for future exobiological investigations. Numerous siliceous hot springs in Yellowstone contain abundant, centimeter-scale, spinose precipitates of opaline silica (opal-A). Although areally extensive in siliceous hot spring discharge channel facies, these spinose forms have largely escaped attention. These precipitates referred to as shrubs, consist of porous aggregates of spinose opaline silica that superficially resemble miniature woody plants, i.e., the term shrubs. Shrubs in carbonate precipitating systems have received considerable attention, and represent naturally occurring biotically induced precipitates. As such, shrubs have great potential as hot spring environmental indicators and, more importantly, proxies for pre-existing microbial life.

  2. Hot ductility behavior of near-alpha titanium alloy IMI834

    International Nuclear Information System (INIS)

    Ghavam, Mohammad Hadi; Morakabati, Maryam; Abbasi, Seyed Mahdi; Badri, Hassan


    The hot ductility of rolled IMI834 titanium alloy (Ti-5.3Al-2.9Sn-3.0Zr-0.65Nb-0.5Mo-0.2Si in wt%) has been studied by conducting tensile tests with a strain rate of 0.1 s -1 and temperature range of 750-1100 C to obtain the optimum hot working conditions. The alloy showed minimum hot ductility in the lower alpha-beta region in the temperature range 750-950 C. Further microstructural characterizations showed improvement in hot ductility by increasing temperature, which was attributed to reduction of volume fraction of high strength alpha phase. The best hot ductility was observed at 1000 C, i.e. in the upper alpha-beta region. The better hot ductility at higher temperature could be related to the increase in the volume fraction of beta phase and the occurrence of dynamic restoration phenomena. The second decline in hot ductility appeared at higher temperatures in the beta region and was attributed to the high stacking fault energy and self-diffusion of beta phase leading to limitation of dynamic recrystallization.


    International Nuclear Information System (INIS)

    Dawson, Rebekah I.; Murray-Clay, Ruth A.; Johnson, John Asher


    Gas giant planets orbiting within 0.1 AU of their host stars are unlikely to have formed in situ and are evidence for planetary migration. It is debated whether the typical hot Jupiter smoothly migrated inward from its formation location through the proto-planetary disk, or was perturbed by another body onto a highly eccentric orbit, which tidal dissipation subsequently shrank and circularized during close stellar passages. Socrates and collaborators predicted that the latter model should produce a population of super-eccentric proto-hot Jupiters readily observable by Kepler. We find a paucity of such planets in the Kepler sample, which is inconsistent with the theoretical prediction with 96.9% confidence. Observational effects are unlikely to explain this discrepancy. We find that the fraction of hot Jupiters with an orbital period P > 3 days produced by the star-planet Kozai mechanism does not exceed (at two-sigma) 44%. Our results may indicate that disk migration is the dominant channel for producing hot Jupiters with P > 3 days. Alternatively, the typical hot Jupiter may have been perturbed to a high eccentricity by interactions with a planetary rather than stellar companion, and began tidal circularization much interior to 1 AU after multiple scatterings. A final alternative is that early in the tidal circularization process at high eccentricities tidal circularization occurs much more rapidly than later in the process at low eccentricities, although this is contrary to current tidal theories

  4. Hot Surface Ignition of A Composite Fuel Droplet

    Directory of Open Access Journals (Sweden)

    Glushkov Dmitrii O.


    Full Text Available The present study examines the characteristics of conductive heating (up to ignition temperature of a composite fuel droplet based on coal, liquid petroleum products, and water. In this paper, we have established the difference between heat transfer from a heat source to a fuel droplet in case of conductive (hot surface and convective (hot gas heat supply. The Leidenfrost effect influences on heat transfer characteristics significantly due to the gas gap between a composite fuel droplet and a hot surface.

  5. What are Chinese talking about in hot weibos? (United States)

    Li, Yuan; Gao, Haoyu; Yang, Mingmin; Guan, Wanqiu; Ma, Haixin; Qian, Weining; Cao, Zhigang; Yang, Xiaoguang


    SinaWeibo is a Twitter-like social network service emerging in China recently. We analyzed the hot weibos (tweets), which exceed threshold of being reposted for 1000 times, from a data set of 650 million weibos during August 2009 and January 2012. We classified the hot weibos into eight categories, namely Entertainment & Fashion, Hot Social Events, Leisure & Mood, Life & Health, Seeking for Help, Sales Promotion, Fengshui & Fortune and Deleted weibos. There are several findings. Firstly, Leisure & Mood and Hot Social Events account for almost 65% of all the hot weibos. This may indicate a potential dual-structure of the current society of China: On the one hand, economy of the country as a whole is gaining sustaining growth, which enables people to enjoy a better life and spare more time on leisure and mood topics. On the other hand, there still exist considerable amount of serious social problems, such as government corruption and environmental pollution, which draw people's concern and worries all the time. Secondly, users' posting and reposting behaviors are associated with user profiles, namely: (1) Gender. Male users generate two thirds of hot weibos. (2) Verification status. Verified users contribute 46.5% of hot weibos, who comprise only 0.1% in SinaWeibo user population. Interestingly, 39.2% of the verified-user-generated weibos are written by SPA users (who generate weibos of a particular style, or in a consistent way, e.g. to say words of wisdom, 'chicken-soup-soul' like sentences, and jokes etc.). This complements the previous finding of Yu et al. (2012), implying that SinaWeibo is in an 'artificial inflation' not only on the reposting side but also on the posting side. Unfortunately, only 14.4% of the hot weibos are created by grassroots (not verified users). (3) Geographical location. Users from different areas of China show distinct posting and reposting behaviors, which partially reflect their indigenous cultures. Finally, homophily is also examined

  6. TWRS tank waste pretreatment process development hot test siting report

    International Nuclear Information System (INIS)

    Howden, G.F.; Banning, D.L.; Dodd, D.A.; Smith, D.A.; Stevens, P.F.; Hansen, R.I.; Reynolds, B.A.


    This report is the sixth in a series that have assessed the hot testing requirements for TWRS pretreatment process development and identified the hot testing support requirements. This report, based on the previous work, identifies specific hot test work packages, matches those packages to specific hot cell facilities, and provides recommendations of specific facilities to be employed for the pretreatment hot test work. Also identified are serious limitations in the tank waste sample retrieval and handling infrastructure. Recommendations are provided for staged development of 500 mL, 3 L, 25 L and 4000 L sample recovery systems and specific actions to provide those capabilities

  7. Children in Hot Cars Result in Fatal Consequences (United States)

    ... Health Tips » Holiday and Seasonal Children in Hot Cars Result in Fatal Consequences Emergency physicians are warning ... it bluntly, leaving your child in a hot car is like leaving your child in a lit ...

  8. Hot Blade Cuttings for the Building Industries

    DEFF Research Database (Denmark)

    Brander, David; Bærentzen, Jakob Andreas; Evgrafov, Anton


    . The project aims to reduce the amount of manual labour as well as production time by applying robots to cut expanded polystyrene (EPS) moulds for the concrete to form doubly curved surfaces. The scheme is based upon the so-called Hot Wire or Hot Blade technology where the surfaces are essentially swept out...

  9. Basics of Solar Heating & Hot Water Systems. (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  10. Getting into hot water Problematizing hot water service demand: The case of Old Cairo (United States)

    Culhane, Thomas Henry

    This dissertation analyzes hot water demand and service infrastructure in two neighboring but culturally distinct communities of the urban poor in the inner-city area of central Cairo. The communities are the Historic Islamic Cairo neighborhood of Darb Al Ahmar at the foot of Al-Azhar park, and the Zurayib neighborhood of Manshiyat Nasser where the Coptic Zabaleen Recyclers live. The study focuses on the demand side of the hot water issue and involves consideration of built-environment infrastructures providing piped water, electricity, bottled gas, sewage, and the support structures (wiring and plumbing) for consumer durables (appliances such as hot water heaters, stoves, refrigerators, air conditioners) as well as water pumps and water storage tanks. The study asks the questions "How do poor communities in Cairo value hot water" and "How do cost, infrastructure and cultural preferences affect which attributes of hot water service are most highly preferred?". To answer these questions household surveys based primarily on the World Bank LSMS modules were administered by professional survey teams from Darb Al Ahmar's Aga Khan Trust for Culture and the Zabaleen's local NGO "Spirit of Youth" in their adjacent conununities in and surrounding historic Cairo. In total 463 valid surveys were collected, (231 from Darb Al Ahmar, 232 from the Zabaleen). The surveys included a contingent valuation question to explore Willingness to Pay for improved hot water service; the surveys queried household assets as proxies for income. The dissertation's findings reveal that one quarter of the residents of Darb Al Ahmar and two-thirds of the residents of Manshiyet Nasser's Zabaleen lack conventional water heating service. Instead they employ various types of stoves and self-built contraptions to heat water, usually incurring considerable risk and opportunity costs. However the thesis explores the notion that this is rational "satisficing" behavior; despite the shortcomings of such self

  11. Exercise in Experimental Plastics Technology: Hot Embossing of Polymers with surface microstructure

    DEFF Research Database (Denmark)

    Eriksson, Torbjörn Gerhard; Rasmussen, Henrik Koblitz


    Hot Embossing of polymers with surface microstructure Polymer materials have proven to be good materials for manufacturing nano/ and microstructure. There are three major processing techniques: hot embossing, injection moulding and casting. Hot embossing provides several advantages such as relati......Hot Embossing of polymers with surface microstructure Polymer materials have proven to be good materials for manufacturing nano/ and microstructure. There are three major processing techniques: hot embossing, injection moulding and casting. Hot embossing provides several advantages...... such as relatively low cost for embossing tools, simple operation and high replication accuracy for small features. Two different plastic materials will be used to replicate surface microstructures by hot embossing. The hot embossing will be done in a hydraulic press where it is easy to control temperature...

  12. China's 'Hot Money' Problems

    National Research Council Canada - National Science Library

    Martin, Michael F; Morrison, Wayne M


    .... The recent large inflow of financial capital into China, commonly referred to as "hot money," has led some economists to warn that such flows may have a destabilizing effect on China's economy...

  13. Monopole transitions in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sujkowski, Z. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)


    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs.

  14. Monopole transitions in hot nuclei

    International Nuclear Information System (INIS)

    Sujkowski, Z.


    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs

  15. Hot atom chemistry of sulphur

    International Nuclear Information System (INIS)

    Todorovski, D. S.; Koleva, D. P.


    An attempt to cover all papers dealing with the hot atom chemistry of sulpphur is made. Publications which: a) only touch the problem, b) contain some data, indirectly connected with sulphur hot atom chemistry, c) deal with 35 S-production from a chloride matrix, are included as well. The author's name and literature source are given in the original language, transcribed, when it is necessary, in latine. A number of primery and secondary documents have been used including Chemical Abstracts, INIS Atomindex, the bibliographies of A. Siuda and J.-P. Adloff for 1973 - 77, etc. (authors)

  16. Construction of concrete hot cells

    International Nuclear Information System (INIS)


    The standard is to be applied to rooms (hot cells) which are enclosed by a concrete shield and in which radioactive material is handled by remote control. The rooms may be in facilities for experimental purposes (e.g. development of fuel elements and materials or of chemical processes) or in facilities for production purposes (e.g. reprocessing of nuclear fuel or treatment of radioactive wastes). The standard is to give a design hasis for concrete hot cells and their installations which is to be applied by designers, constructors, future users and competent authorities as well as independent experts. (orig.) [de

  17. Construction of concrete hot cells

    International Nuclear Information System (INIS)


    The standard is to be applied to rooms (hot cells) which are enclosed by a concrete shield and in which radioactive material is handled by remote control. The rooms may be in facilities for experimental purposes (e.g. development of fuel elements and materials or of chemical processes) or in facilities for production purposes (e.g. reprocessing of nuclear fuel or treatment of radioactive wastes). The standard is to give a design basis for concrete hot cells and their installations which is to be applied by designers, constructors, future users and competent authorities as well as independent experts. (orig.) [de

  18. The development of synthetic test procedure for hot cell equipment systems in IMEF

    International Nuclear Information System (INIS)

    Ahn, Sang Bok; Lee, Key Soon; Park, Dae Kyu; Hong, Kwon Pyo; Choo, Yong Sun


    Hot cell facility should be confirmed to operation safety through pre-commissioning test after construction. In this report, the detailed procedure of hot cell equipment are described. The contents are as follows: 1. Entrance equipment of hot cell 2. Specimen transportation equipment between hot cells 3. Waste discharge equipment in hot cell 4. Specimen loading equipment to hot cell 5. Interlinking equipment in hot cell. (author). 4 tabs

  19. Meteorology of Jupiter's Equatorial Hot Spots and Plumes from Cassini (United States)

    Choi, David Sanghun; Showman, Adam P.; Vasavada, Ashwin R.; Simon-Miller, Amy A.


    We present an updated analysis of Jupiter's equatorial meteorology from Cassini observations. For two months preceding the spacecraft's closest approach, the Imaging Science Subsystem (ISS) onboard regularly imaged the atmosphere. We created time-lapse movies from this period in order to analyze the dynamics of equatorial hot spots and their interactions with adjacent latitudes. Hot spots are relatively cloud-free regions that emit strongly at 5 lm; improved knowledge of these features is crucial for fully understanding Galileo probe measurements taken during its descent through one. Hot spots are quasistable, rectangular dark areas on visible-wavelength images, with defined eastern edges that sharply contrast with surrounding clouds, but diffuse western edges serving as nebulous boundaries with adjacent equatorial plumes. Hot spots exhibit significant variations in size and shape over timescales of days and weeks. Some of these changes correspond with passing vortex systems from adjacent latitudes interacting with hot spots. Strong anticyclonic gyres present to the south and southeast of the dark areas appear to circulate into hot spots. Impressive, bright white plumes occupy spaces in between hot spots. Compact cirrus-like 'scooter' clouds flow rapidly through the plumes before disappearing within the dark areas. These clouds travel at 150-200 m/s, much faster than the 100 m/s hot spot and plume drift speed. This raises the possibility that the scooter clouds may be more illustrative of the actual jet stream speed at these latitudes. Most previously published zonal wind profiles represent the drift speed of the hot spots at their latitude from pattern matching of the entire longitudinal image strip. If a downward branch of an equatorially-trapped Rossby wave controls the overall appearance of hot spots, however, the westward phase velocity of the wave leads to underestimates of the true jet stream speed.

  20. Equivalent circuit-level model of quantum cascade lasers with integrated hot-electron and hot-phonon effects (United States)

    Yousefvand, H. R.


    We report a study of the effects of hot-electron and hot-phonon dynamics on the output characteristics of quantum cascade lasers (QCLs) using an equivalent circuit-level model. The model is developed from the energy balance equation to adopt the electron temperature in the active region levels, the heat transfer equation to include the lattice temperature, the nonequilibrium phonon rate to account for the hot phonon dynamics and simplified two-level rate equations to incorporate the carrier and photon dynamics in the active region. This technique simplifies the description of the electron-phonon interaction in QCLs far from the equilibrium condition. Using the presented model, the steady and transient responses of the QCLs for a wide range of sink temperatures (80 to 320 K) are investigated and analysed. The model enables us to explain the operating characteristics found in QCLs. This predictive model is expected to be applicable to all QCL material systems operating in pulsed and cw regimes.

  1. Hot Mix Asphalt Recycling : Practices and Principles

    NARCIS (Netherlands)

    Mohajeri, M.


    Hot mix asphalt recycling has become common practice all over the world since the 1970s because of the crisis in oil prices. In the Netherlands, hot recycling has advanced to such an extent that in most of the mixtures more than 50% of reclaimed asphalt (RA) is allowed. These mixtures with such a

  2. KFC Server: interactive forecasting of protein interaction hot spots. (United States)

    Darnell, Steven J; LeGault, Laura; Mitchell, Julie C


    The KFC Server is a web-based implementation of the KFC (Knowledge-based FADE and Contacts) model-a machine learning approach for the prediction of binding hot spots, or the subset of residues that account for most of a protein interface's; binding free energy. The server facilitates the automated analysis of a user submitted protein-protein or protein-DNA interface and the visualization of its hot spot predictions. For each residue in the interface, the KFC Server characterizes its local structural environment, compares that environment to the environments of experimentally determined hot spots and predicts if the interface residue is a hot spot. After the computational analysis, the user can visualize the results using an interactive job viewer able to quickly highlight predicted hot spots and surrounding structural features within the protein structure. The KFC Server is accessible at

  3. Nuclear track radiography of 'hot' aerosol particles

    International Nuclear Information System (INIS)

    Boulyga, S.F.; Kievitskaja, A.I.; Kievets, M.K.; Lomonosova, E.M.; Zhuk, I.V.; Yaroshevich, O.I.; Perelygin, V.P.; Petrova, R.; Brandt, R.; Vater, P.


    Nuclear track radiography was applied to identify aerosol 'hot' particles which contain elements of nuclear fuel and fallout after Chernobyl NPP accident. For the determination of the content of transuranium elements in radioactive aerosols the measurement of the α-activity of 'hot' particles by SSNTD was used in this work, as well as radiography of fission fragments formed as a result of the reactions (n,f) and (γ,f) in the irradiation of aerosol filters by thermal neutrons and high energy gamma quanta. The technique allowed the sizes and alpha-activity of 'hot' particles to be determined without extracting them from the filter, as well as the determination of the uranium content and its enrichment by 235 U, 239 Pu and 241 Pu isotopes. Sensitivity of determination of alpha activity by fission method is 5x10 -6 Bq per particle. The software for the system of image analysis was created. It ensured the identification of track clusters on an optical image of the SSNTD surface obtained through a video camera and the determination of size and activity of 'hot' particles

  4. Geothermal energy and hot springs in Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Koga, T. (Hot Springs Therapeutics Research Institute, Kyushu, Univ., Japan)


    The hot springs in Ethiopia are concentrated in two areas: the North Afar depression and adjacent Red Sea shore, and a geothermal field 100 km from northeast to southwest in the central part of Ethiopia. The latter extends not only to the Great Rift Valley but also to the Aden Gulf. In the lake district in the central Great Rift Valley, there are a number of hot springs on the lake shore. These are along NE-SW fault lines, and the water is a sodium bicarbonate-type rich in HCO/sub 3/ and Na but low in C1 and Ca. In Dallol in the North Afar depression, CO/sub 2/-containing hot springs with high temperatures (110/sup 0/C) and a specific gravity of 1.4, were observed. In the South Afar depression, located in the northeastern part of the Rift Valley, there are many active volcanoes and hot springs between the lake district and the Danakil depression. The spring water is a sodium bicarbonate saline type. Nine graphs and maps are included.

  5. Hot ductility of a microalloyed steel in the intermediate temperature range

    International Nuclear Information System (INIS)

    Darsouni, A.; Bouzabata, B.; Montheillet, F.


    In this study hot ductility has been determined from tensile tests for two states of a microalloyed steel: after casting and after rolling processes. Hot deformations were carried out at speeds varying from 10 -4 s -1 to 10 -2 s -1 and temperatures from 750 C to 1100 C. Two heat treatments were chosen before hot deformation. A ferrite precipitation is observed at austenitic grain boundaries in the intercritical temperature range, causing intergranular embrittlement. Ductility trough is deeper in the as-cast samples due to the growth of large grain size. Also, precipitation makes the hot ductility curve wider and deeper around 900 C. The results show a decrease in hot ductility. Minimum values of hot ductility are determined for (ITC) treatment at 900 C and for (DTC) treatment at 800 C. For this second treatment another decrease in hot ductility was observed at 900 C. We can explain hot ductility losses by the presence of precipitates in the austenitic region and the presence of the two-phase structure in the intercritical region. (orig.)

  6. E-Learning to Improve Higher Order Thinking Skills (HOTS of Students

    Directory of Open Access Journals (Sweden)

    R. Poppy Yaniawati


    Full Text Available The role of technology integration on modern learning is essential to optimize the acceleration process in Higher Order Thinking Skills (HOTS. This research describes how to implement e-learning to improve HOTS of students and students’ attitude toward e-learning of mathematics, pre- learning students knowledge, duration of login in website, and correlation of variables with HOTS. There is a significant correlation between pre-learning knowledge and students’ HOTS, but there is no significant correlation between students’ HOTS and students’ attitude toward e-learning of mathematics. There is a significant correlation between login duration and students attitude toward e-learning of mathematics. No significant correlation is found between login duration and students’ HOTS.

  7. Children in Hot Cars Result in Fatal Consequences

    Medline Plus

    Full Text Available ... Health Tips » Holiday and Seasonal Children in Hot Cars Result in Fatal Consequences Emergency physicians are warning ... with leaving anyone, especially children in hot, unventilated vehicles during the summer. Children throughout the country die ...

  8. Children in Hot Cars Result in Fatal Consequences

    Medline Plus

    Full Text Available ... of Emergency Phycisians Toggle navigation Emergency 101 Is it an Emergency? Emergency Care or Urgent Care? When ... being left alone in a hot vehicle. “Putting it bluntly, leaving your child in a hot car ...

  9. Children in Hot Cars Result in Fatal Consequences

    Medline Plus

    Full Text Available ... Health Tips » Holiday and Seasonal Children in Hot Cars Result in Fatal Consequences Emergency physicians are warning ... it bluntly, leaving your child in a hot car is like leaving your child in a lit ...

  10. Children in Hot Cars Result in Fatal Consequences

    Medline Plus

    Full Text Available ... with leaving anyone, especially children in hot, unventilated vehicles during the summer. Children throughout the country die ... result of being left alone in a hot vehicle. “Putting it bluntly, leaving your child in a ...

  11. Children in Hot Cars Result in Fatal Consequences

    Medline Plus

    Full Text Available ... year as a direct result of being left alone in a hot vehicle. “Putting it bluntly, leaving ... from children. If you see a child left alone in a hot vehicle, call the police. If ...

  12. Utilizing hot electrons

    Energy Technology Data Exchange (ETDEWEB)

    Nozik, Arthur J.


    In current solar cells, any photon energy exceeding the semiconductor bandgap is lost before being collected, limiting the cell performance. Hot carrier solar cells could avoid these losses. Now, a detailed experimental study and analysis shows that this strategy could lead to an improvement of the photoconversion efficiency in practice.

  13. Effect of Soybeans on Hot Flashes in Postmenopausal Women

    Directory of Open Access Journals (Sweden)

    H Mozaffari-khosravi


    Full Text Available Introduction: Hot flashes are common and discomfortable signs of menopause that present with blazing sweatiness, sense of hotness, tachycardia and agitation. Hot flashes cause disturbances in daily activity and quality of night sleep. In spite of the effect of Hormone Replacement Therapy (HRT on hot flashes, nowadays, there are diverse opinions about HRT and the reason is that it has chronic complications. In addition, the acceptance of HRT by Iranian women is very low. Study of numerous texts has shown that isofliavone present in soybean is a phytoestrogen that could be effective in control of hot flashes. The purpose of the study is to examine the changes in time periods of hot flashes in response to consumption of 74 mg Isoflavone/day present in 60 grams soybeans in menopausal women. Methods: This study was a clinical trial with before and after design that included 31 postmenopausal women. The participants were assessed with respect to daily hot flashes at baseline and after one, two and three months of intervention. Participants consumed daily 60 grams soybeans for 3 months. Blood samples were taken at the start and end of intervention for determining levels of gonadotropins and estradiol. Data was analyzed by SPSS software. Results: There was a decrease in time period of hot flashes from baseline of 5.88±2.61 to 3.45±1.82 after one month, 2.73±1.57 after two months and 2.16±1.48 after three months of consumption of soybeans (P<0.001. There was decrease in levels of FSH, LH & estradiol after 3 months, but this decrease was not significant, except in the case of estradiol. Conclusion: In line with various studies proposing the use of soybeans in the form of concentrate, drink or capsule, this study suggests that consumption of soybeans (60 gr daily as snacks may be a safe and effective method for controlling hot flashes in postmenopausal women..

  14. Bacterial and archaeal diversities in Yunnan and Tibetan hot springs, China. (United States)

    Song, Zhao-Qi; Wang, Feng-Ping; Zhi, Xiao-Yang; Chen, Jin-Quan; Zhou, En-Min; Liang, Feng; Xiao, Xiang; Tang, Shu-Kun; Jiang, Hong-Chen; Zhang, Chuanlun L; Dong, Hailiang; Li, Wen-Jun


    Thousands of hot springs are located in the north-eastern part of the Yunnan-Tibet geothermal zone, which is one of the most active geothermal areas in the world. However, a comprehensive and detailed understanding of microbial diversity in these hot springs is still lacking. In this study, bacterial and archaeal diversities were investigated in 16 hot springs (pH 3.2-8.6; temperature 47-96°C) in Yunnan Province and Tibet, China by using a barcoded 16S rRNA gene-pyrosequencing approach. Aquificae, Proteobacteria, Firmicutes, Deinococcus-Thermus and Bacteroidetes comprised the large portion of the bacterial communities in acidic hot springs. Non-acidic hot springs harboured more and variable bacterial phyla than acidic springs. Desulfurococcales and unclassified Crenarchaeota were the dominated groups in archaeal populations from most of the non-acidic hot springs; whereas, the archaeal community structure in acidic hot springs was simpler and characterized by Sulfolobales and Thermoplasmata. The phylogenetic analyses showed that Aquificae and Crenarchaeota were predominant in the investigated springs and possessed many phylogenetic lineages that have never been detected in other hot springs in the world. Thus findings from this study significantly improve our understanding of microbial diversity in terrestrial hot springs. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. Solar Energy for Space Heating & Hot Water. (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet reviews the direct transfer of solar energy into heat, particularly for the purpose of providing space and hot water heating needs. Owners of buildings and homes are provided with a basic understanding of solar heating and hot water systems: what they are, how they perform, the energy savings possible, and the cost factors involved.…

  16. Archaeal diversity in Icelandic hot springs

    DEFF Research Database (Denmark)

    Kvist, Thomas; Ahring, Birgitte Kiær; Westermann, Peter


    Whole-cell density gradient extractions from three solfataras (pH 2.5) ranging in temperature from 81 to 90 degrees C and one neutral hot spring (81 degrees C, pH 7) from the thermal active area of Hveragerethi (Iceland) were analysed for genetic diversity and local geographical variation...... of Archaea by analysis of amplified 16S rRNA genes. In addition to the three solfataras and the neutral hot spring, 10 soil samples in transects of the soil adjacent to the solfataras were analysed using terminal restriction fragment length polymorphism (t-RFLP). The sequence data from the clone libraries...... enzymes AluI and BsuRI. The sequenced clones from this solfatara belonged to Sulfolobales, Thermoproteales or were most closest related to sequences from uncultured Archaea. Sequences related to group I.1b were not found in the neutral hot spring or the hyperthermophilic solfatara (90 degrees C)....

  17. Hot carrier degradation in semiconductor devices

    CERN Document Server


    This book provides readers with a variety of tools to address the challenges posed by hot carrier degradation, one of today’s most complicated reliability issues in semiconductor devices.  Coverage includes an explanation of carrier transport within devices and book-keeping of how they acquire energy (“become hot”), interaction of an ensemble of colder and hotter carriers with defect precursors, which eventually leads to the creation of a defect, and a description of how these defects interact with the device, degrading its performance. • Describes the intricacies of hot carrier degradation in modern semiconductor technologies; • Covers the entire hot carrier degradation phenomenon, including topics such as characterization, carrier transport, carrier-defect interaction, technological impact, circuit impact, etc.; • Enables detailed understanding of carrier transport, interaction of the carrier ensemble with the defect precursors, and an accurate assessment of how the newly created defects imp...

  18. Angular response of hot wire probes

    International Nuclear Information System (INIS)

    Di Mare, L; Jelly, T O; Day, I J


    A new equation for the convective heat loss from the sensor of a hot-wire probe is derived which accounts for both the potential and the viscous parts of the flow past the prongs. The convective heat loss from the sensor is related to the far-field velocity by an expression containing a term representing the potential flow around the prongs, and a term representing their viscous effect. This latter term is absent in the response equations available in the literature but is essential in representing some features of the observed response of miniature hot-wire probes. The response equation contains only four parameters but it can reproduce, with great accuracy, the behaviour of commonly used single-wire probes. The response equation simplifies the calibration the angular response of rotated slanted hot-wire probes: only standard King’s law parameters and a Reynolds-dependent drag coefficient need to be determined. (paper)

  19. Hot air balloon engine

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, Ian [Solartran Pty Ltd, 12 Lentara Street, Kenmore, Brisbane 4069 (Australia)


    This paper describes a solar powered reciprocating engine based on the use of a tethered hot air balloon fuelled by hot air from a glazed collector. The basic theory of the balloon engine is derived and used to predict the performance of engines in the 10 kW to 1 MW range. The engine can operate over several thousand metres altitude with thermal efficiencies higher than 5%. The engine thermal efficiency compares favorably with the efficiency of other engines, such as solar updraft towers, that also utilize the atmospheric temperature gradient but are limited by technical constraints to operate over a much lower altitude range. The increased efficiency allows the use of smaller area glazed collectors. Preliminary cost estimates suggest a lower $/W installation cost than equivalent power output tower engines. (author)

  20. The hot chocolate effect (United States)

    Crawford, Frank S.


    The ''hot chocolate effect'' was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one-quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the 10% accuracy of the experiments.



    近藤, 修平; 鉾井, 修一


    In order to the evaluate heat loss from hot water supply lines in a residential building, hot water demand in a house in Chiba prefecture was measured and analyzed. The following results were obtained. 1. The heat loss of the hot water supply line was about 132kJ for the shower and 110kJ for the bathtub in winter. Since the temperature difference between the inlet and outlet of the hot water supply line is small, the measured heat loss from the hot water supply line sometimes becomes negative...

  2. Primary and secondary fragmentation of crystal-bearing intermediate magma (United States)

    Jones, Thomas J.; McNamara, Keri; Eychenne, Julia; Rust, Alison C.; Cashman, Katharine V.; Scheu, Bettina; Edwards, Robyn


    Crystal-rich intermediate magmas are subjected to both primary and secondary fragmentation processes, each of which may produce texturally distinct tephra. Of particular interest for volcanic hazards is the extent to which each process contributes ash to volcanic plumes. One way to address this question is by fragmenting pyroclasts under controlled conditions. We fragmented pumice samples from Soufriere Hills Volcano (SHV), Montserrat, by three methods: rapid decompression in a shock tube-like apparatus, impact by a falling piston, and milling in a ball mill. Grain size distributions of the products reveal that all three mechanisms produce fractal breakage patterns, and that the fractal dimension increases from a minimum of 2.1 for decompression fragmentation (primary fragmentation) to a maximum of 2.7 by repeated impact (secondary fragmentation). To assess the details of the fragmentation process, we quantified the shape, texture and components of constituent ash particles. Ash shape analysis shows that the axial ratio increases during milling and that particle convexity increases with repeated impacts. We also quantify the extent to which the matrix is separated from the crystals, which shows that secondary processes efficiently remove adhering matrix from crystals, particularly during milling (abrasion). Furthermore, measurements of crystal size distributions before (using x-ray computed tomography) and after (by componentry of individual grain size classes) decompression-driven fragmentation show not only that crystals influence particular size fractions across the total grain size distribution, but also that free crystals are smaller in the fragmented material than in the original pumice clast. Taken together, our results confirm previous work showing both the control of initial texture on the primary fragmentation process and the contributions of secondary processes to ash formation. Critically, however, our extension of previous analyses to characterisation

  3. Hazard assessment of long-range tephra dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico). Inplications on civil aviation (United States)

    Bonasia, R.; Scaini, C.; Capra, L.; Nathenson, M.; Siebe, C.; Arana-Salinas, L.; Folch, A.


    Popocatépetl is one of the most active volcanoes in Mexico threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene-Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude. The current volcanic hazards map, reconstructed after the crisis occurred in 1994, considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra dispersal hazard, especially related to atmospheric dispersal, has been performed. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is strongly required. In this work we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels. Tephra dispersal modelling is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the 'Ochre Pumice' Plinian eruption (4965 14C yrBP). FALL3D model input eruptive parameters are constrained through an inversion method carried out with the semi-analytical HAZMAP model and are varied sampling them on the base of a Probability Density Function. We analyze the influence of seasonal variations on ash dispersal and estimate the average persistence of critical ash concentrations at relevant locations and airports. This study assesses the impact that a Plinian eruption similar to the Ochre Pumice eruption would have on the main airports of Mexico and adjacent areas. The hazard maps presented here

  4. Hot ion buildup and lifetime in LITE. Final report

    International Nuclear Information System (INIS)


    An experimental investigation of hot ion buildup and lifetime in a small scale mirror device (LITE) is described. Hot ions were produced by 27 kV neutral beam injection into laser produced LiH plasmas and H plasmas produced by a washer gun. Hot H ion (12 kV) densities of approx. = 10 12 cm -3 were produced with the LiH target plasmas and densities an order of magnitude lower were produced with the washer gun target plasmas. Hot ion dominant plasmas were not achieved in LITE. The experimental measurements and subsequent analysis using numerical models of the plasma buildup indicate that in small, unshielded mirror plasmas, careful control must be maintained over the transient background gas density in the vicinity of the plasma surface. The hot ion lifetime in LITE was set by the transient cold neutral background resulting from the washer gun of reflux from the target plasma striking the adjacent surfaces

  5. Upgrading of biomass by carbonization in hot compressed water

    Directory of Open Access Journals (Sweden)

    Wiwut Tanthapanichakoon


    Full Text Available Carbonization of biomass (corn cob in hot compressed water was performed using a small bomb reactor at temperature 300-350ºC and pressure 10-18 MPa for 30 min. Then, the solid product or biochar was subjected to various analyses in order to investigate the effects of the carbonization in hot compressed water on the characteristics of the biochar. It was found that the yield of biochar carbonized in hot compressed water at 350ºC and pressure of 10 MPa for 30 min was 44.7%, whereas the yield of biochar carbonized in nitrogen atmosphere at 350ºC is 36.4%. Based on the information obtained from the elemental analyses of the biochar, it was found that the oxygen functional groups in the corn cob were selectively decomposed during the carbonization in hot compressed water. The pyrolysis and combustion behaviors of the biochar were found to be affected significantly by the carbonization in hot compressed water.

  6. Experimental and numerical analyses of magnesium alloy hot workability

    Directory of Open Access Journals (Sweden)

    F. Abbassi


    Full Text Available Due to their hexagonal crystal structure, magnesium alloys have relatively low workability at room temperature. In this study, the hot workability behavior of cast-extruded AZ31B magnesium alloy is studied through hot compression testing, numerical modeling and microstructural analyses. Hot deformation tests are performed at temperatures of 250 °C to 400 °C under strain rates of 0.01 to 1.0 s−1. Transmission electron microscopy is used to reveal the presence of dynamic recrystallization (DRX, dynamic recovery (DRY, cracks and shear bands. To predict plastic instabilities during hot compression tests of AZ31B magnesium alloy, the authors use Johnson–Cook damage model in a 3D finite element simulation. The optimal hot workability of magnesium alloy is found at a temperature (T of 400 °C and strain rate (ε˙ of 0.01 s−1. Stability is found at a lower strain rate, and instability is found at a higher strain rate.

  7. Distribution of glycerol dialkyl glycerol tetraethers in Tibetan hot springs

    Directory of Open Access Journals (Sweden)

    Liu He


    Full Text Available Isoprenoidal glycerol dialkyl glycerol tetraethers (iGDGTs from the Gulu hot springs (23–83.6 °C, pH > 7 and Yangbajing hot springs (80–128 °C, pH > 7 were analyzed in order to investigate the distribution of archaeal lipids among different hot springs in Tibet. A soil sample from Gulu was incubated at different temperatures and analyzed for changes in iGDGTs to help evaluate whether surrounding soil may contribute to the iGDGTs in hot springs. The sources of bacterial GDGTs (bGDGTs in these hot springs were also investigated. The results revealed different profiles of iGDGTs between Gulu and Yangbajing hot springs. Core iGDGTs and polar iGDGTs also presented different patterns in each hot spring. The PCA analysis showed that the structure of polar iGDGTs can be explained by three factors and suggested multiple sources of these compounds. Bivariate correlation analysis showed significant positive correlations between polar and core bGDGTs, suggesting the in situ production of bGDGTs in the hot springs. Furthermore, in the soil incubation experiment, temperature had the most significant influence on concentration of bGDGTs rather than iGDGTs, and polar bGDGTs had greater variability than core bGDGTs with changing temperature. Our results indicated that soil input had little influence on the composition of GDGTs in Tibetan hot springs. On the other hand, ring index and TEX86 values were both positively correlated with incubation temperature, suggesting that the structure of archaeal lipids changed in response to varying temperature during incubation.

  8. Methodology and software to detect viral integration site hot-spots (United States)


    Background Modern gene therapy methods have limited control over where a therapeutic viral vector inserts into the host genome. Vector integration can activate local gene expression, which can cause cancer if the vector inserts near an oncogene. Viral integration hot-spots or 'common insertion sites' (CIS) are scrutinized to evaluate and predict patient safety. CIS are typically defined by a minimum density of insertions (such as 2-4 within a 30-100 kb region), which unfortunately depends on the total number of observed VIS. This is problematic for comparing hot-spot distributions across data sets and patients, where the VIS numbers may vary. Results We develop two new methods for defining hot-spots that are relatively independent of data set size. Both methods operate on distributions of VIS across consecutive 1 Mb 'bins' of the genome. The first method 'z-threshold' tallies the number of VIS per bin, converts these counts to z-scores, and applies a threshold to define high density bins. The second method 'BCP' applies a Bayesian change-point model to the z-scores to define hot-spots. The novel hot-spot methods are compared with a conventional CIS method using simulated data sets and data sets from five published human studies, including the X-linked ALD (adrenoleukodystrophy), CGD (chronic granulomatous disease) and SCID-X1 (X-linked severe combined immunodeficiency) trials. The BCP analysis of the human X-linked ALD data for two patients separately (774 and 1627 VIS) and combined (2401 VIS) resulted in 5-6 hot-spots covering 0.17-0.251% of the genome and containing 5.56-7.74% of the total VIS. In comparison, the CIS analysis resulted in 12-110 hot-spots covering 0.018-0.246% of the genome and containing 5.81-22.7% of the VIS, corresponding to a greater number of hot-spots as the data set size increased. Our hot-spot methods enable one to evaluate the extent of VIS clustering, and formally compare data sets in terms of hot-spot overlap. Finally, we show that the

  9. ESA uncovers Geminga's `hot spot' (United States)


    16 July 2004 Astronomers using ESA’s X-ray observatory XMM-Newton have detected a small, bright ‘hot spot’ on the surface of the neutron star called Geminga, 500 light-years away. The hot spot is the size of a football field and is caused by the same mechanism producing Geminga’s X-ray tails. This discovery identifies the missing link between the X-ray and gamma-ray emission from Geminga. hi-res Size hi-res: 1284 kb Credits: ESA, P. Caraveo (IASF, Milan) Geminga's hot spot This figure shows the effects of charged particles accelerated in the magnetosphere of Geminga. Panel (a) shows an image taken with the EPIC instrument on board the XMM-Newton observatory. The bright tails, made of particles kicked out by Geminga’s strong magnetic field, trail the neutron star as it moves about in space. Panel (b) shows how electrically charged particles interact with Geminga’s magnetic field. For example, if electrons (blue) are kicked out by the star, positrons (in red) hit the star’s magnetic poles like in an ‘own goal’. Panel (c) illustrates the size of Geminga’s magnetic field (blue) compared to that of the star itself at the centre (purple). The magnetic field is tilted with respect to Geminga’s rotation axis (red). Panel (d) shows the magnetic poles of Geminga, where charged particles hit the surface of the star, creating a two-million degrees hot spot, a region much hotter than the surroundings. As the star spins on its rotation axis, the hot spot comes into view and then disappears, causing the periodic colour change seen by XMM-Newton. An animated version of the entire sequence can be found at: Click here for animated GIF [low resolution, animated GIF, 5536 KB] Click here for AVI [high resolution, AVI with DIVX compression, 19128 KB] hi-res Size hi-res: 371 kb Credits: ESA, P. Caraveo (IASF, Milan) Geminga's hot spot, panel (a) Panel (a) shows an image taken with the EPIC instrument on board the XMM-Newton observatory. The bright tails, made of

  10. 75 FR 8036 - Monitor-Hot Creek Rangeland Project (United States)


    ... DEPARTMENT OF AGRICULTURE Forest Service Monitor-Hot Creek Rangeland Project AGENCY: Forest... Rangeland Project area. The analysis will determine if a change in management direction for livestock grazing is needed to move existing resource conditions within the Monitor-Hot Creek Rangeland Project area...

  11. The Hot ISM of Normal Galaxies (United States)

    Fabbiano, Giuseppina


    X-ray observations of galaxies have shown the presence of hot ISM and gaseous halos. The most spectacular examples am in early-type galaxies (E and S0), and in galaxies hosting intense starforming regions. This talk will review the observational evidence and highlight the outstanding issues in our understanding of this gaseous component, with emphasis on our present understanding of the chemical composition of these hot halos. It will address how Chandra, XMM, and future X-ray missions can address these studies.

  12. Hot cell design in the vitrification plant China

    International Nuclear Information System (INIS)

    Jiang Yubo; Wang Guangkai; Zhang Wei; Liang Runan; Dou Yuan


    In the area of reprocessing and radioactive waste management, gloveboxes and cells are a kind of non