WorldWideScience

Sample records for pulverized coal power

  1. Exergetic and environmental analysis of a pulverized coal power plant

    International Nuclear Information System (INIS)

    Restrepo, Álvaro; Miyake, Raphael; Kleveston, Fábio; Bazzo, Edson

    2012-01-01

    This paper presents the results of exergetic and environmental analysis of a typical pulverized coal power plant located in Brazil. The goal was to quantify both the exergy destruction and the environmental impact associated with a thermal power plant. The problem boundary consists of the entire coal delivery route, including mining and beneficiation, transport, pre-burning processes and the power plant. The used data were obtained mainly from field measurements taken in all system processes, from mining to the power plant. The study focused only on the operation period. Previous works have shown that the construction and decommissioning periods contribute less than 1% of the environmental impact. The exergetic analysis was based on the second law of thermodynamics while the environmental analysis was based on life cycle assessment (LCA) using SimaPro 7.2, focussing on the climate change and acidification impact categories. The CO 2 -eq emission was 1300 kg per MWh. The highest degree of environmental impact occurred during the combustion process. The exergetic and environmental analysis provides a tool to evaluate irreversibilities and the environmental impact, identifying the most significant stages and equipment of the entire power generation process. -- Highlights: ► Exergetic and environmental analysis of a typical Brazilian PC power plant. ► Environmental impact associated with the mining, transport and thermal power plant. ► Life cycle assessment used for environmental analysis. ► Acidification impact category evaluated using Eco-indicator 99. ► Climate change impact evaluation using (Global Warming Potential) GWP 100a.

  2. Relationship between Particle Size Distribution of Low-Rank Pulverized Coal and Power Plant Performance

    Directory of Open Access Journals (Sweden)

    Rajive Ganguli

    2012-01-01

    Full Text Available The impact of particle size distribution (PSD of pulverized, low rank high volatile content Alaska coal on combustion related power plant performance was studied in a series of field scale tests. Performance was gauged through efficiency (ratio of megawatt generated to energy consumed as coal, emissions (SO2, NOx, CO, and carbon content of ash (fly ash and bottom ash. The study revealed that the tested coal could be burned at a grind as coarse as 50% passing 76 microns, with no deleterious impact on power generation and emissions. The PSD’s tested in this study were in the range of 41 to 81 percent passing 76 microns. There was negligible correlation between PSD and the followings factors: efficiency, SO2, NOx, and CO. Additionally, two tests where stack mercury (Hg data was collected, did not demonstrate any real difference in Hg emissions with PSD. The results from the field tests positively impacts pulverized coal power plants that burn low rank high volatile content coals (such as Powder River Basin coal. These plants can potentially reduce in-plant load by grinding the coal less (without impacting plant performance on emissions and efficiency and thereby, increasing their marketability.

  3. Conceptual designs of pressurized fluidized bed and pulverized coal fired power plants

    International Nuclear Information System (INIS)

    Doss, H.S.; Bezella, W.A.; Hamm, J.R.; Pietruszkiewicz, J.

    1984-01-01

    This paper presents the major technical and economic characteristics of steam and air-cooled pressurized fluidized bed (PFB) power plant concepts, along with the characteristics of a pulverized coal fired power plant equipped with an adipic acid enhanced wet-limestone flue gas desulfurization system. Conceptual designs for the three plants were prepared to satisfy a set of common groundrules developed for the study. Grassroots plants, located on a generic plant site were assumed. The designs incorporate technologies projected to be commercial in the 1990 time frame. Power outputs, heat rates, and costs are presented

  4. Reconstruction of the aero-mixture channels of the pulverized coal plant of the 100MW power plant unit

    Directory of Open Access Journals (Sweden)

    Ivanovic Vladan B.

    2011-01-01

    Full Text Available After the last revitalization of thermal power block of 100 MW in TPP “Kostolac A”, made in the year 2004, during the operation of the plant, pulverized coal deposition often occurred in horizontal sections of the aero-mixture channels. Deposition phenomenon manifested itself in places ahead of spherical compensators in the direction of flow of pulverized coal to the burners, due to unfavorable configuration of these channels. Coal dust deposited in the channels dried and spontaneously combusted, causing numerous damage to channels and its isolation as well as the frequent stoppage of the operation for necessary interventions. The paper presents the original solution of reconstruction of aero-mixture channels which prevented deposition of coal dust and its eventual ignition. In this way the reliability of the mill plant is maximized and higher availability of boiler and block as a whole is achieved.

  5. Pulverized coal burner

    Science.gov (United States)

    Sivy, J.L.; Rodgers, L.W.; Koslosy, J.V.; LaRue, A.D.; Kaufman, K.C.; Sarv, H.

    1998-11-03

    A burner is described having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO{sub x} burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO{sub x} back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing. 8 figs.

  6. Pulverized coal devolatilization prediction

    International Nuclear Information System (INIS)

    Rojas, Andres F; Barraza, Juan M

    2008-01-01

    The aim of this study was to predict the two bituminous coals devolatilization at low rate of heating (50 Celsius degrade/min), with program FG-DVC (functional group Depolymerization. Vaporization and crosslinking), and to compare the devolatilization profiles predicted by program FG-DVC, which are obtained in the thermogravimetric analyzer. It was also study the volatile liberation at (10 4 k/s) in a drop-tube furnace. The tar, methane, carbon monoxide, and carbon dioxide, formation rate profiles, and the hydrogen, oxygen, nitrogen and sulphur, elemental distribution in the devolatilization products by FG-DVC program at low rate of heating was obtained; and the liberation volatile and R factor at high rate of heating was calculated. it was found that the program predicts the bituminous coals devolatilization at low rate heating, at high rate heating, a volatile liberation around 30% was obtained

  7. Deposit formation in a full-scale pulverized wood-fired power plant with and without coal fly ash addition

    DEFF Research Database (Denmark)

    Wu, Hao; Shafique Bashir, Muhammad; Jensen, Peter Arendt

    2013-01-01

    Ash transformation and deposition in a pulverized wood-fired power plant boiler of 800 MWth were studied with and without the addition of coal fly ash. The transient ash deposition behavior was investigated by using an advanced deposit probe system at two different boiler locations with flue gas...... at the low-temperature location showed a slow initial build-up and a stable mass of deposits after approximately 1-5 h. The deposits collected during pulverized wood combustion contained a considerable amount of K2SO4, KCl, and KOH/K2CO3. With the addition of coal fly ash (~4 times of the mass flow of wood...... ash) to the boiler, these alkali species were effectively removed both in the fly ash and in the deposits, and a more frequent shedding of the deposits was observed. The results imply that coal fly ash can be an effective additive to reduce ash deposition and corrosion problems in a pulverized wood...

  8. Classification of pulverized coal ash

    International Nuclear Information System (INIS)

    Van der Sloot, H.A.; Van der Hoek, E.E.; De Groot, G.J.; Comans, R.N.J.

    1992-09-01

    The leachability of fifty different pulverized coal ashes from utilities in the Netherlands, Federal Republic of Germany and Belgium has been studied. Five different ashes were analyzed according to the complete standard leaching test and the results were published earlier. The examination of a wide variety of ashes under a wide range of pH and Liquid to Solid ratio (LS) conditions creates the possibility of identifying systematic trends in fly ash leaching behaviour and to identify the mechanisms controlling release. 16 figs., 2 tabs., 3 app., 25 refs

  9. Water use at pulverized coal power plants with postcombustion carbon capture and storage.

    Science.gov (United States)

    Zhai, Haibo; Rubin, Edward S; Versteeg, Peter L

    2011-03-15

    Coal-fired power plants account for nearly 50% of U.S. electricity supply and about a third of U.S. emissions of CO(2), the major greenhouse gas (GHG) associated with global climate change. Thermal power plants also account for 39% of all freshwater withdrawals in the U.S. To reduce GHG emissions from coal-fired plants, postcombustion carbon capture and storage (CCS) systems are receiving considerable attention. Current commercial amine-based capture systems require water for cooling and other operations that add to power plant water requirements. This paper characterizes and quantifies water use at coal-burning power plants with and without CCS and investigates key parameters that influence water consumption. Analytical models are presented to quantify water use for major unit operations. Case study results show that, for power plants with conventional wet cooling towers, approximately 80% of total plant water withdrawals and 86% of plant water consumption is for cooling. The addition of an amine-based CCS system would approximately double the consumptive water use of the plant. Replacing wet towers with air-cooled condensers for dry cooling would reduce plant water use by about 80% (without CCS) to about 40% (with CCS). However, the cooling system capital cost would approximately triple, although costs are highly dependent on site-specific characteristics. The potential for water use reductions with CCS is explored via sensitivity analyses of plant efficiency and other key design parameters that affect water resource management for the electric power industry.

  10. Advanced pulverized-coal power plants: A U.S. export opportunity

    International Nuclear Information System (INIS)

    Ruth, L.A.; Ramezan, M.; Izsak, M.S.

    1995-01-01

    This paper provides an overview of Low Emission Boiler System (LEBS) power generation systems and its potential for generating power worldwide. Based on the fuel availability, power requirements, and environmental regulations, countries have been identified that need to build advanced, clean, efficient, and economical power generation, systems. It is predicted that ''more electrical generation capacity will be built over the next 25 years than was built in the previous century''. For example, China and India alone, with less than 10% of today's demand, plan to build what would amount to a quarter of the world's new capacity. For the near- to mid-term, the LEBS program of Combustion 2000 has the promise to fill some of the needs of the international coal-fired power generation market. The high efficiency of LEBS, coupled with the use of advanced, proven technologies and low emissions, make it a strong candidate for export to those areas whose need for additional power is greatest. LEBS is a highly advanced version of conventional coal-based power plants that have been utilized throughout the world for decades. LEBS employs proven technologies and doesn't require gasification and/or an unconventional combustion environment (e.g., fluidized bed). LEBS is viewed by the utility industry as technically acceptable and commercially feasible

  11. Pushing the pulverized coal envelope with LEBS

    Energy Technology Data Exchange (ETDEWEB)

    Regan, J.W.; Borio, R.W.; Palkes, M. [and others

    1995-11-01

    In response to challenges from technologies such as IGCC and PFBC, the ABB LEBS Team has proposed removing the barriers to very large advances in environmental and thermal performance of pulverized coal plants. Pulverized coal will continue to be the source of more than half of our electric generation well into the next century and we must develop low-risk low-cost advances that will compete with the claimed performance of other technologies. This paper describes near-term PC technologies for new and retrofit applications which will accomplish this.

  12. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for

  13. Characterization of bottom ashes from coal pulverized power plants to determine their potential use feasibility

    International Nuclear Information System (INIS)

    Menendez, E.; Alvaro, A. M.; Argiz, C.; Parra, J. L.; Moragues, A.

    2013-01-01

    The disposal of coal by products represents environmental and economical problems around the world. Therefore, the reuse and valorisation of this waste has become an important issue in the last decades. While high-value construction products containing fly ash were developed and its use is actually totally accepted as an addition to cement, the use of the bottom ash as supplementary cementitious material has not been allow. This paper examines the chemical and physical properties of fly ashes and bottom ashes from two different coal power plants in order to compare them and analyse the potential feasibility of bottom ash as cement replacement. The mechanical properties of cement mortars made with different percentages of both ashes were also study. The results obtained showed similar chemical composition of both kinds of ashes. The compressive strength values of mortars with 10 % and 25 % of cement replacement (at 28 days) were above the limits established in European standards and there were not significant differences between fly ash and bottom ash from both origins. (Author)

  14. Characteristics of carbonized sludge for co-combustion in pulverized coal power plants.

    Science.gov (United States)

    Park, Sang-Woo; Jang, Cheol-Hyeon

    2011-03-01

    Co-combustion of sewage sludge can destabilize its combustion profile due to high volatility, which results in unstable flame. We carried out fuel reforming for sewage sludge by way of carbonization at pyrolysis temperature of 300-500°C. Fuel characteristics of carbonized sludge at each temperature were analyzed. As carbonization temperature increased, fuel ratio increased, volatile content reduced, and atomic ratio relation of H/C and O/C was similar to that of lignite. The analysis result of FT-IR showed the decrease of aliphatic C-H bond and O-C bond in carbonization. In the analysis result of TG-DTG, the thermogravimetry reduction temperature of carbonized sludge (CS400) was proven to be higher than that of dried sludge, but lower than that of sub-bituminous coal. Hardgrove grindability index increased in proportion to fuel ratio increase, where the carbonized sludge value of 43-110 was similar or higher than the coal value of 49-63. As for ash deposits, slagging and fouling index were higher than that of coal. When carbonized sludge (CS400) and coal were co-combusted in 1-10% according to calorific value, slagging tendency was low in all conditions, and fouling tendency was medium or high according to the compositions of coal. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Characteristics of carbonized sludge for co-combustion in pulverized coal power plants

    International Nuclear Information System (INIS)

    Park, Sang-Woo; Jang, Cheol-Hyeon

    2011-01-01

    Co-combustion of sewage sludge can destabilize its combustion profile due to high volatility, which results in unstable flame. We carried out fuel reforming for sewage sludge by way of carbonization at pyrolysis temperature of 300-500 deg. C. Fuel characteristics of carbonized sludge at each temperature were analyzed. As carbonization temperature increased, fuel ratio increased, volatile content reduced, and atomic ratio relation of H/C and O/C was similar to that of lignite. The analysis result of FT-IR showed the decrease of aliphatic C-H bond and O-C bond in carbonization. In the analysis result of TG-DTG, the thermogravimetry reduction temperature of carbonized sludge (CS400) was proven to be higher than that of dried sludge, but lower than that of sub-bituminous coal. Hardgrove grindability index increased in proportion to fuel ratio increase, where the carbonized sludge value of 43-110 was similar or higher than the coal value of 49-63. As for ash deposits, slagging and fouling index were higher than that of coal. When carbonized sludge (CS400) and coal were co-combusted in 1-10% according to calorific value, slagging tendency was low in all conditions, and fouling tendency was medium or high according to the compositions of coal.

  16. Pulverized coal vs. circulating fluidized bed: An economic comparison

    International Nuclear Information System (INIS)

    Johns, R.F.

    1991-01-01

    As the power industry looks to the 1990s for expanded steam generation capacity, boiler owners will continue on their long-standing assignment to evaluate and select the best, lowest cost alternative to meet their energy needs. For coal-fired plants, this evaluation process includes pulverized coal-fired boilers (PC) and circulating fluidized bed boilers (CFB). The cost difference between these products is site specific and depends on several variables, including: Boiler size, pressure, and temperature; Operating variables, such as the cost for fuel, auxiliary power, SO 2 reagent, and ash disposal; Capital cost; and Financial variables, such as evaluation period and interest rate. This paper provides a technical and economic comparison between a pulverized coal-fired boiler and circulating fluidized bed boiler

  17. Coal Direct Chemical Looping Retrofit to Pulverized Coal Power Plants for In-Situ CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Liang; Li, Fanxing; Kim, Ray; Bayham, Samuel; McGiveron, Omar; Tong, Andrew; Connell, Daniel; Luo, Siwei; Sridhar, Deepak; Wang, Fei; Sun, Zhenchao; Fan, Liang-Shih

    2013-09-30

    A novel Coal Direct Chemical Looping (CDCL) system is proposed to effectively capture CO2 from existing PC power plants. The work during the past three years has led to an oxygen carrier particle with satisfactory performance. Moreover, successful laboratory, bench scale, and integrated demonstrations have been performed. The proposed project further advanced the novel CDCL technology to sub-pilot scale (25 kWth). To be more specific, the following objectives attained in the proposed project are: 1. to further improve the oxygen carrying capacity as well as the sulfur/ash tolerance of the current (working) particle; 2. to demonstrate continuous CDCL operations in an integrated mode with > 99% coal (bituminous, subbituminous, and lignite) conversion as well as the production of high temperature exhaust gas stream that is suitable for steam generation in existing PC boilers; 3. to identify, via demonstrations, the fate of sulfur and NOx; 4. to conduct thorough techno-economic analysis that validates the technical and economical attractiveness of the CDCL system. The objectives outlined above were achieved through collaborative efforts among all the participants. CONSOL Energy Inc. performed the techno-economic analysis of the CDCL process. Shell/CRI was able to perform feasibility and economic studies on the large scale particle synthesis and provide composite particles for the sub-pilot scale testing. The experience of B&W (with boilers) and Air Products (with handling gases) assisted the retrofit system design as well as the demonstration unit operations. The experience gained from the sub-pilot scale demonstration of the Syngas Chemical Looping (SCL) process at OSU was able to ensure the successful handling of the solids. Phase 1 focused on studies to improve the current particle to better suit the CDCL operations. The optimum operating conditions for the reducer reactor such as the temperature, char gasification enhancer type, and flow rate were identified. The

  18. Dispersion of pollutants, environmental externalities due to a pulverized coal power plant and their effect on the cost of electricity

    International Nuclear Information System (INIS)

    Czarnowska, Lucyna; Frangopoulos, Christos A.

    2012-01-01

    Energy conversion systems generate pollution that causes damages to the environment and the society. The objective of this work is to study the dispersion of pollutants and assess the environmental and social cost due to pollution from such a system. For this purpose, a pulverized coal power plant is selected. Using thermodynamic principles combined with empirical techniques, the quantities of pollutants emitted by the plant are estimated. Then, using the EcoSenseWeb software, which is based on the results of the ExternE project, the external environmental cost (externalities) of pollution is assessed. The plant is considered as located in four different cities in Poland and the externalities are calculated for each city separately. It is shown that the external environmental cost has a strong influence on the unit cost of electricity. In addition, the dispersion of pollutants is presented for the plant located in Olsztyn city. Furthermore, the plant is considered as located near the capitals of European countries and the environmental externalities are calculated for each city. The neighboring countries that are strongly affected by the plant in each particular city are identified. The sensitivity of the unit cost of electricity to certain important parameters is investigated. -- Highlights: ► The external cost of pollution has a significant impact on the cost of electricity. ► The results depend on the particular plant, location and level (local-global). ► Externalities make the installation of abatement equipment economical. ► The source location of emissions has a significant effect on the external cost. ► The transboundary pollution has a strong effect on the environmental cost.

  19. CFD analysis of the pulverized coal combustion processes in a 160 MWe tangentially-fired-boiler of a thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cristiano V. da; Beskow, Arthur B. [Universidade Regional Integrada do Alto Uruguai e das Misses (LABSIM/GEAPI/URI), Erechim, RS (Brazil). Dept. de Engenharia e Ciencia da Computacao. Grupo de Engenharia Aplicada a Processos Industriais], Emails: cristiano@uricer.edu.br, Arthur@uricer.edu.br; Indrusiak, Maria Luiza S. [Universidade do Vale do Rio dos Sinos (UNISINOS), Sao Leopoldo, RS (Brazil). Programa de Engenharia Mecanica], E-mail: sperbindrusiak@via-rs.net

    2010-10-15

    The strategic role of energy and the current concern with greenhouse effects, energetic and exegetic efficiency of fossil fuel combustion greatly enhance the importance of the studies of complex physical and chemical processes occurring inside boilers of thermal power plants. The state of the art in computational fluid dynamics and the availability of commercial codes encourage numeric studies of the combustion processes. In the present work the commercial software CFX Ansys Europe Ltd. was used to study the combustion of coal in a 160 MWe commercial thermal power plant with the objective of simulating the operational conditions and identifying factors of inefficiency. The behavior of the flow of air and pulverized coal through the burners was analyzed, and the three-dimensional flue gas flow through the combustion chamber and heat exchangers was reproduced in the numeric simulation. (author)

  20. Fluidized bed and pulverized coal combustion residues for secondary pavements

    International Nuclear Information System (INIS)

    Ghafoori, N.; Diawara, H.; Wang, L.

    2009-01-01

    The United States produced nearly 125 million tons of coal combustion products in 2006. These by-products include fly ash, flue gas desulphurization materials, bottom ash, boiler slag, and other power plant by-products. The expense associated with waste disposal, lack of disposal sites, and significant environmental damage linked with the disposal of coal combustion residues have encouraged innovative utilization strategies such as the fluidized bed combustion (FBC) unit. This paper presented the results of a laboratory investigation that examined the properties of composites developed with different proportions of pre-conditioned FBC spent bed, pulverized coal combustion fly ash, natural fine aggregate, and Portland cement. The purpose of the study was to examine the extent to which the by-product composites could replace currently used materials in secondary roads. The paper presented the research objectives and experimental programs, including matrix constituent and proportions; mixture proportions; and mixing, curing, sampling, and testing. The discussion of results centered around compressive strength and expansion by internal sulfate attack. It was concluded that with proper proportioning, by-products of pulverized and fluidized bed combustion promote binding of sand particles and provide adequate strength under various curing and moisture conditions 4 refs., 6 tabs.

  1. Review of coal-water fuel pulverization technology and atomization quality registration methods

    Directory of Open Access Journals (Sweden)

    Zenkov Andrey

    2017-01-01

    Full Text Available Possibilities of coal-water fuel application in industrial power engineering are considered and described. Two main problems and disadvantages of this fuel type are suggested. The paper presents information about liquid fuel atomization technologies and provides data on nozzle type for coal-water fuel pulverization. This article also mentions some of the existing technologies for coal-water slurry spraying quality determination.

  2. Large-eddy simulation of swirling pulverized-coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hu, L.Y.; Luo, Y.H. [Shanghai Jiaotong Univ. (China). School of Mechanical Engineering; Zhou, L.X.; Xu, C.S. [Tsinghua Univ., Beijing (China). Dept. of Engineering Mechanics

    2013-07-01

    A Eulerian-Lagrangian large-eddy simulation (LES) with a Smagorinsky-Lilly sub-grid scale stress model, presumed-PDF fast chemistry and EBU gas combustion models, particle devolatilization and particle combustion models are used to study the turbulence and flame structures of swirling pulverized-coal combustion. The LES statistical results are validated by the measurement results. The instantaneous LES results show that the coherent structures for pulverized coal combustion is stronger than that for swirling gas combustion. The particles are concentrated in the periphery of the coherent structures. The flame is located at the high vorticity and high particle concentration zone.

  3. Imulation of temperature field in swirl pulverized coal boiler

    Science.gov (United States)

    Lv, Wei; Wu, Weifeng; Chen, Chen; Chen, Weifeng; Qi, Guoli; Zhang, Songsong

    2018-02-01

    In order to achieve the goal of energy saving and emission reduction and energy efficient utilization, taking a 58MW swirl pulverized coal boiler as the research object, the three-dimensional model of the rotor is established. According to the principle of CFD, basic assumptions and boundary conditions are selected, the temperature field in the furnace of 6 kinds of working conditions is numerically solved, and the temperature distribution in the furnace is analyzed. The calculation results show that the temperature of the working condition 1 is in good agreement with the experimental data, and the error is less than 10%,the results provide a theoretical basis for the following calculation. Through the comparison of the results of the 6 conditions, it is found that the working condition 3 is the best operating condition of the pulverized coal boiler.

  4. Numerical simulation of altitude impact on pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Xiaohui; He, Boshu; Ling, Ling; Wang, Lei [Beijing Jiaotong Univ., Beijing (China). Inst. of Mechanical, Electronic and Control Engineering

    2013-07-01

    A drop-tube Furnace simulation model has been developed to investigate the pulverized coal combustion characteristics under different altitudes using the commercially available software Fluent. The altitude conditions of 0, 500, 1,000, 1,500 m have been discussed. The results included the fields of temperature, pressure, velocity, the coal burnout, CO burnout and NO emission in the tube furnace. The variation of these parameters with altitude has been analyzed. The coal combustion characteristics were affected by the altitude. The time and space for coal burnout should be increased with the rise of altitude. The valuable results could be referenced in the design of coal- fired furnaces for the high altitude areas.

  5. Possibilities of using pulverized non coking coals in ironmaking

    Energy Technology Data Exchange (ETDEWEB)

    Wijk, Olle; Mathiesen, Mihkel; Eketorp, Sven

    1977-08-01

    The use of pulverized coal in iron making suggests solutions to the mounting problems created by the increasing scarcity of coking coals, and other fossil fuels such as oil and natural gas. The unavailability of coke can be met with two principally different measures. Blast furnace coke rates can be decreased by substituting injected pulverized coal or other carbon containing fuels for part of the coke burden, and the coke itself may be substituted by formed coke. A more radical solution is to abandon the blast furnace process, and instead produce the raw iron in processes not requiring coke. Two such processes are discussed in the paper, the Inred process, developed by Boliden Kemi AB, Sweden, and the smelting reduction process by means of injection, currently being developed at the Royal Institute of Technology in Stockholm. Both processes have potential advantages over the coke oven/sintering plant/blast furnace-complex especially concerning energy requirements and structure, but also in economical terms. The injection process seems to present a further advantage in the possibility of gasifying coal in the process, thus yielding a synthesis gas for methanol production in addition to the raw iron.

  6. Formation of fine particles in co-combustion of coal and solid recovered fuel in a pulverized coal-fired power station

    DEFF Research Database (Denmark)

    Wu, Hao; Pedersen, Anne Juul; Glarborg, Peter

    2011-01-01

    showed an ultrafine mode centered at approximately 0.1 μm. Compared with coal combustion, co-combustion of coal and SRF increased the formation of submicron particles, especially ultrafine particles below 0.2 μm. The morphology of the particles indicated that supermicron particles were primarily formed...... by the melting of minerals. The ultrafine particles were generated through nucleation and coagulation of vaporized inorganic species, while for the particles in between supermicron and ultrafine particles, condensation of vaporized species or aggregation of nucleates on the existing spherical submicron particles...... appear to be an important formation mechanism. The elemental composition of the particles from coal combustion showed that S and Ca were significantly enriched in ultrafine particles and P was also enriched considerably. However, compared with supermicron particles, the contents of Al, Si and K were...

  7. Combustion of pulverized coal in counter-current flow

    Energy Technology Data Exchange (ETDEWEB)

    Timnat, Y M; Goldman, Y [Technion-Israel Inst. of Tech., Haifa (Israel). Faculty of Aerospace Engineering

    1991-01-01

    In this report we describe the results obtained with two prototypes of pulverized coal combustors operating in counter-current flow, one at atmospheric pressure, the other at higher pressure and compare them to the predictions of a theoretical-numerical model, we have developed. The first prototype treats a vertical configuration, eight times larger than the one treated before (Hazanov et al. 1985), while in the second a horizontal arrangement with a smaller volume is studied. Attention was focused on particle trajectories, burnout, angle of injection, ash separation by rotational motion, effects of initial particle size and temperature, impingement velocity and the effect of gravity. Main development activity was directed to achieving stable and reliable coal burning in the combustors.

  8. Propagation characteristics of pulverized coal and gas two-phase flow during an outburst.

    Science.gov (United States)

    Zhou, Aitao; Wang, Kai; Fan, Lingpeng; Tao, Bo

    2017-01-01

    Coal and gas outbursts are dynamic failures that can involve the ejection of thousands tons of pulverized coal, as well as considerable volumes of gas, into a limited working space within a short period. The two-phase flow of gas and pulverized coal that occurs during an outburst can lead to fatalities and destroy underground equipment. This article examines the interaction mechanism between pulverized coal and gas flow. Based on the role of gas expansion energy in the development stage of outbursts, a numerical simulation method is proposed for investigating the propagation characteristics of the two-phase flow. This simulation method was verified by a shock tube experiment involving pulverized coal and gas flow. The experimental and simulated results both demonstrate that the instantaneous ejection of pulverized coal and gas flow can form outburst shock waves. These are attenuated along the propagation direction, and the volume fraction of pulverized coal in the two-phase flow has significant influence on attenuation of the outburst shock wave. As a whole, pulverized coal flow has a negative impact on gas flow, which makes a great loss of large amounts of initial energy, blocking the propagation of gas flow. According to comparison of numerical results for different roadway types, the attenuation effect of T-type roadways is best. In the propagation of shock wave, reflection and diffraction of shock wave interact through the complex roadway types.

  9. Numerical simulation of pulverized coal combustion to reduce pollutants

    International Nuclear Information System (INIS)

    Mohammad Bagher Ayani; Behnam Rahmanian

    2010-01-01

    Full text: In this research, the numerical simulation of pollutant reduction and in a pulverized coal combustion at 2D combustion chamber have been studied. Finite volume method using structured grid arrangement was utilized for modeling the pulverized coal combustion. The pressure base algorithm and implicit solver has been employed to simulate non-premix combustion model. The air was diluted by some participative gaseous such as whose percentages varied from 0 % to 20 %. Participative gases and air were preheated by a high-temperature gas generator, and the preheated oxidizer temperature could achieve. The combustion simulation with the generalized finite rate chemistry model, referred to as the Magnussen model and the reacting flow with the mixture fraction PDF/ equilibrium chemistry model, referred to as the PDF model are studied. Quick scheme was adopted for the discretization of all convective terms of the advective transport equations. So, as a result of addition participative gases into oxidizer the rate of formation of pollutants as well as NO x suppressed. The addition only a few percent of halogen components can make some systems nonflammable. The effects of addition halogen components and non-reaction gaseous such as Helium and Argon are fuel dilution and its acts as catalysts in reducing the H atom concentration necessary for the chain branching reaction sequence. Moreover, they act like surface and they make the increment of surface ratio versus volume. Because of this, the number of radical conflicts and hence destruction them will be increase. Furthermore, the rate of formation of pollutants will be decreased if the halogen components and non-reaction gaseous injection will be increased. However, as a result of this research, in the case of injection in pulverized coal combustion the flame temperature is lower than Steam, Argon and Helium. So, the emission levels of carbon dioxide is significantly lower than other participative gases, but in this

  10. Novel fragmentation model for pulverized coal particles gasification in low temperature air thermal plasma

    Directory of Open Access Journals (Sweden)

    Jovanović Rastko D.

    2016-01-01

    Full Text Available New system for start-up and flame support based on coal gasification by low temperature air thermal plasma is planned to supplement current heavy oil system in Serbian thermal power plants in order to decrease air pollutions emission and operational costs. Locally introduced plasma thermal energy heats up and ignites entrained coal particles, thus starting chain process which releases heat energy from gasified coal particles inside burner channel. Important stages during particle combustion, such as particle devolatilisation and char combustion, are described with satisfying accuracy in existing commercial CFD codes that are extensively used as powerful tool for pulverized coal combustion and gasification modeling. However, during plasma coal gasification, high plasma temperature induces strong thermal stresses inside interacting coal particles. These stresses lead to “thermal shock” and extensive particle fragmentation during which coal particles with initial size of 50-100 m disintegrate into fragments of at most 5-10 m. This intensifies volatile release by a factor 3-4 and substantially accelerates the oxidation of combustible matter. Particle fragmentation, due to its small size and thus limited influence on combustion process is commonly neglected in modelling. The main focus of this work is to suggest novel approach to pulverized coal gasification under high temperature conditions and to implement it into commercial comprehensive code ANSYS FLUENT 14.0. Proposed model was validated against experimental data obtained in newly built pilot scale D.C plasma burner test facility. Newly developed model showed very good agreement with experimental results with relative error less than 10%, while the standard built-in gasification model had error up to 25%.

  11. EXPERIMENTS AND COMPUTATIONAL MODELING OF PULVERIZED-COAL IGNITION; FINAL

    International Nuclear Information System (INIS)

    Samuel Owusu-Ofori; John C. Chen

    1999-01-01

    Under typical conditions of pulverized-coal combustion, which is characterized by fine particles heated at very high rates, there is currently a lack of certainty regarding the ignition mechanism of bituminous and lower rank coals as well as the ignition rate of reaction. furthermore, there have been no previous studies aimed at examining these factors under various experimental conditions, such as particle size, oxygen concentration, and heating rate. Finally, there is a need to improve current mathematical models of ignition to realistically and accurately depict the particle-to-particle variations that exist within a coal sample. Such a model is needed to extract useful reaction parameters from ignition studies, and to interpret ignition data in a more meaningful way. The authors propose to examine fundamental aspects of coal ignition through (1) experiments to determine the ignition temperature of various coals by direct measurement, and (2) modeling of the ignition process to derive rate constants and to provide a more insightful interpretation of data from ignition experiments. The authors propose to use a novel laser-based ignition experiment to achieve their first objective. Laser-ignition experiments offer the distinct advantage of easy optical access to the particles because of the absence of a furnace or radiating walls, and thus permit direct observation and particle temperature measurement. The ignition temperature of different coals under various experimental conditions can therefore be easily determined by direct measurement using two-color pyrometry. The ignition rate-constants, when the ignition occurs heterogeneously, and the particle heating rates will both be determined from analyses based on these measurements

  12. How can we reduce carbon in ash in firing pulverized coal

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, W. (and others)

    1992-12-01

    The article discusses solutions to the problem of reducing carbon in ash in firing pulverized coal. Suggested solutions to the problem include: reviewing air flow through the mills; examining the pulverizers for coal fineness variations; investigating air distribution in the burners; review dual-firing equations; examining the burners for slag build up; checking coal fineness is appropriate to the boiler; increasing air flow; and checking instrumentation. 2 figs., 1 photo.

  13. Modeling and optimization of processes for clean and efficient pulverized coal combustion in utility boilers

    Directory of Open Access Journals (Sweden)

    Belošević Srđan V.

    2016-01-01

    Full Text Available Pulverized coal-fired power plants should provide higher efficiency of energy conversion, flexibility in terms of boiler loads and fuel characteristics and emission reduction of pollutants like nitrogen oxides. Modification of combustion process is a cost-effective technology for NOx control. For optimization of complex processes, such as turbulent reactive flow in coal-fired furnaces, mathematical modeling is regularly used. The NOx emission reduction by combustion modifications in the 350 MWe Kostolac B boiler furnace, tangentially fired by pulverized Serbian lignite, is investigated in the paper. Numerical experiments were done by an in-house developed three-dimensional differential comprehensive combustion code, with fuel- and thermal-NO formation/destruction reactions model. The code was developed to be easily used by engineering staff for process analysis in boiler units. A broad range of operating conditions was examined, such as fuel and preheated air distribution over the burners and tiers, operation mode of the burners, grinding fineness and quality of coal, boiler loads, cold air ingress, recirculation of flue gases, water-walls ash deposition and combined effect of different parameters. The predictions show that the NOx emission reduction of up to 30% can be achieved by a proper combustion organization in the case-study furnace, with the flame position control. Impact of combustion modifications on the boiler operation was evaluated by the boiler thermal calculations suggesting that the facility was to be controlled within narrow limits of operation parameters. Such a complex approach to pollutants control enables evaluating alternative solutions to achieve efficient and low emission operation of utility boiler units. [Projekat Ministarstva nauke Republike Srbije, br. TR-33018: Increase in energy and ecology efficiency of processes in pulverized coal-fired furnace and optimization of utility steam boiler air preheater by using in

  14. A Pulverized Coal-Fired Boiler Optimized for Oxyfuel Combustion Technology

    Directory of Open Access Journals (Sweden)

    Tomáš Dlouhý

    2012-01-01

    Full Text Available This paper presents the results of a study on modifying a pulverized coal-fired steam boiler in a 250 MWe power plant for oxygen combustion conditions. The entry point of the study is a boiler that was designed for standard air combustion. It has been proven that simply substituting air by oxygen as an oxidizer is not sufficient for maintaining a satisfactory operating mode, not even with flue gas recycling. Boiler design optimization aggregating modifications to the boiler’s dimensions, heating surfaces and recycled flue gas flow rate, and specification of a flue gas recycling extraction point is therefore necessary in order to achieve suitable conditions for oxygen combustion. Attention is given to reducing boiler leakage, to which external pre-combustion coal drying makes a major contribution. The optimization is carried out with regard to an overall power plant conception for which a decrease in efficiency due to CO2 separation is formulated.

  15. Alstom's Chemical Looping Combustion Prototype for CO2 Capture from Existing Pulverized Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Andrus, Jr., Herbert E. [Alstom Power Inc., Windsor, CT (United States); Chiu, John H. [Alstom Power Inc., Windsor, CT (United States); Edberg, Carl D. [Alstom Power Inc., Windsor, CT (United States); Thibeault, Paul R. [Alstom Power Inc., Windsor, CT (United States); Turek, David G. [Alstom Power Inc., Windsor, CT (United States)

    2012-09-30

    Alstom’s Limestone Chemical Looping (LCL™) process has the potential to capture CO2 from new and existing coal-fired power plants while maintaining high plant power generation efficiency. This new power plant concept is based on a hybrid combustion- gasification process utilizing high temperature chemical and thermal looping technology. This process could also be potentially configured as a hybrid combustion-gasification process producing a syngas or hydrogen for various applications while also producing a separate stream of CO2 for use or sequestration. The targets set for this technology is to capture over 90% of the total carbon in the coal at cost of electricity which is less than 20% greater than Conventional PC or CFB units. Previous work with bench scale test and a 65 kWt Process Development Unit Development (PDU) has validated the chemistry required for the chemical looping process and provided for the investigation of the solids transport mechanisms and design requirements. The objective of this project is to continue development of the combustion option of chemical looping (LCL-C™) by designing, building and testing a 3 MWt prototype facility. The prototype includes all of the equipment that is required to operate the chemical looping plant in a fully integrated manner with all major systems in service. Data from the design, construction, and testing will be used to characterize environmental performance, identify and address technical risks, reassess commercial plant economics, and develop design information for a demonstration plant planned to follow the proposed Prototype. A cold flow model of the prototype will be used to predict operating conditions for the prototype and help in operator training. Operation of the prototype will provide operator experience with this new technology and performance data of the LCL-C™ process, which will be applied to the commercial design and economics and plan for a future demonstration

  16. Detailed model for practical pulverized coal furnaces and gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Philips, S.D.; Smoot, L.D.

    1989-08-01

    The need to improve efficiency and reduce pollutant emissions commercial furnaces has prompted energy companies to search for optimized operating conditions and improved designs in their fossil-fuel burning facilities. Historically, companies have relied on the use of empirical correlations and pilot-plant data to make decisions about operating conditions and design changes. The high cost of collecting data makes obtaining large amounts of data infeasible. The main objective of the data book is to provide a single source of detailed three-dimensional combustion and combustion-related data suitable for comprehensive combustion model evaluation. Five tasks were identified as requirements to achieve the main objective. First, identify the types of data needed to evaluate comprehensive combustion models, and establish criteria for selecting the data. Second, identify and document available three-dimensional combustion data related to pulverized coal combustion. Third, collect and evaluate three-dimensional data cases, and select suitable cases based on selection criteria. Fourth, organize the data sets into an easy-to-use format. Fifth, evaluate and interpret the nature and quality of the data base. 39 refs., 15 figs., 14 tabs.

  17. Experimental and Numerical Investigation of Effect of Coal Rank on Burn-off Time in Pulverized Coal Combustion

    OpenAIRE

    Nozawa, Sohei; Wada, Nozomi; Matsushita, Yosuke; Yamamoto, Tsuyoshi; Omori, Motohira; Harada, Tatsuro

    2012-01-01

    Thermogravimetry (TG) for two different coal ranks, Loy Yang coal and Newlands coal, was carried out in an atmospheric air environment. Detailed parameters of the heterogeneous oxidation reaction for each coal rank were estimated by analyzing the TG results. Heat and mass transfer of a single pulverized coal particle that was heated at a constant temperature were numerically simulated. In this calculation, the decrease in the mass ratio caused by the oxidation reaction was considered. The num...

  18. Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) to Blast Furnaces

    International Nuclear Information System (INIS)

    Zhou, Chenn

    2008-01-01

    Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process

  19. Engineering and Economic Analysis of an Advanced Ultra-Supercritical Pulverized Coal Power Plant with and without Post-Combustion Carbon Capture Task 7. Design and Economic Studies

    Energy Technology Data Exchange (ETDEWEB)

    Booras, George [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Powers, J. [General Electric, Schenectady, NY (United States); Riley, C. [General Electric, Schenectady, NY (United States); Hendrix, H. [Hendrix Engineering Solutions, Inc., Calera, AL (United States)

    2015-09-01

    This report evaluates the economics and performance of two A-USC PC power plants; Case 1 is a conventionally configured A-USC PC power plant with superior emission controls, but without CO2 removal; and Case 2 adds a post-combustion carbon capture (PCC) system to the plant from Case 1, using the design and heat integration strategies from EPRI’s 2015 report, “Best Integrated Coal Plant.” The capture design basis for this case is “partial,” to meet EPA’s proposed New Source Performance Standard, which was initially proposed as 500 kg-CO2/MWh (gross) or 1100 lb-CO2/MWh (gross), but modified in August 2015 to 635 kg-CO2/MWh (gross) or 1400 lb-CO2/MWh (gross). This report draws upon the collective experience of consortium members, with EPRI and General Electric leading the study. General Electric provided the steam cycle analysis as well as v the steam turbine design and cost estimating. EPRI performed integrated plant performance analysis using EPRI’s PC Cost model.

  20. Quantitative characterization of pulverized coal and biomass–coal blends in pneumatic conveying pipelines using electrostatic sensor arrays and data fusion techniques

    International Nuclear Information System (INIS)

    Qian, Xiangchen; Wang, Chao; Yan, Yong; Shao, Jiaqing; Wang, Lijuan; Zhou, Hao

    2012-01-01

    Quantitative data about the dynamic behaviour of pulverized coal and biomass–coal blends in fuel injection pipelines allow power plant operators to detect variations in fuel supply and oscillations in the flow at an early stage, enable them to balance fuel distribution between fuel feeding pipes and ultimately to achieve higher combustion efficiency and lower greenhouse gas emissions. Electrostatic sensor arrays and data fusion algorithms are combined to provide a non-intrusive solution to the measurement of fuel particle velocity, relative solid concentration and flow stability under pneumatic conveying conditions. Electrostatic sensor arrays with circular and arc-shaped electrodes are integrated in the same sensing head to measure ‘averaged’ and ‘localized’ characteristics of pulverized fuel flow. Data fusion techniques are applied to optimize and integrate the results from the sensor arrays. Experimental tests were conducted on the horizontal section of a 150 mm bore pneumatic conveyor circulating pulverized coal and sawdust under various flow conditions. Test results suggest that pure coal particles travel faster and carry more electrostatic charge than biomass–coal blends. As more biomass particles are added to the flow, the overall velocity of the flow reduces, the electrostatic charge level on particles decreases and the flow becomes less stable compared to the pure coal flow. (paper)

  1. Quantitative characterization of pulverized coal and biomass-coal blends in pneumatic conveying pipelines using electrostatic sensor arrays and data fusion techniques

    Science.gov (United States)

    Qian, Xiangchen; Yan, Yong; Shao, Jiaqing; Wang, Lijuan; Zhou, Hao; Wang, Chao

    2012-08-01

    Quantitative data about the dynamic behaviour of pulverized coal and biomass-coal blends in fuel injection pipelines allow power plant operators to detect variations in fuel supply and oscillations in the flow at an early stage, enable them to balance fuel distribution between fuel feeding pipes and ultimately to achieve higher combustion efficiency and lower greenhouse gas emissions. Electrostatic sensor arrays and data fusion algorithms are combined to provide a non-intrusive solution to the measurement of fuel particle velocity, relative solid concentration and flow stability under pneumatic conveying conditions. Electrostatic sensor arrays with circular and arc-shaped electrodes are integrated in the same sensing head to measure ‘averaged’ and ‘localized’ characteristics of pulverized fuel flow. Data fusion techniques are applied to optimize and integrate the results from the sensor arrays. Experimental tests were conducted on the horizontal section of a 150 mm bore pneumatic conveyor circulating pulverized coal and sawdust under various flow conditions. Test results suggest that pure coal particles travel faster and carry more electrostatic charge than biomass-coal blends. As more biomass particles are added to the flow, the overall velocity of the flow reduces, the electrostatic charge level on particles decreases and the flow becomes less stable compared to the pure coal flow.

  2. The power of Indonesian coal

    Energy Technology Data Exchange (ETDEWEB)

    Rosiak, T. [Duke/Fluor Daniel (United States)

    2003-02-01

    The paper presents three Indonesian projects carried out by Duke/Fluor Daniel whose unique construction and operation have demonstrated the versatility and value of coal-fired power generation. These are: the construction of units 7 and 8 of the Paiton Private Power Project, a 1230 MW pulverised coal plant in Paiton, East Java; construction of a coal fired generation plant and transmission system to provide power for the expansion of a copper and gold mine on the island of Papua; and construction of four 28 MW pulverized coal units to provide 'heavy lifting' for a new mine at Batu Hijau on the island of Sumbawa. Coal was found to cost less than diesel for power generation. 2 photos.

  3. NO emission characteristics of superfine pulverized coal combustion in the O2/CO2 atmosphere

    International Nuclear Information System (INIS)

    Liu, Jiaxun; Gao, Shan; Jiang, Xiumin; Shen, Jun; Zhang, Hai

    2014-01-01

    Highlights: • Superfine pulverized coal combustion in O 2 /CO 2 atmosphere is a new promising technology. • NO emissions of superfine pulverized coal combustion in O 2 /CO 2 mixture were focused. • Coal particle sizes have significant effects on NO emissions in O 2 /CO 2 combustion. - Abstract: The combination of O 2 /CO 2 combustion and superfine pulverized coal combustion technology can make full use of their respective merits, and solve certain inherent disadvantages of each technology. The technology of superfine pulverized coal combustion in the O 2 /CO 2 atmosphere is easy and feasible to be retrofitted with few reconstructions on the existing devices. It will become a useful and promising method in the future. In this paper, a one-dimensional drop-tube furnace system was adopted to study the NO emission characteristics of superfine pulverized coal combustion in the O 2 /CO 2 atmosphere. The effects of coal particle size, coal quality, furnace temperature, stoichiometric ratio, etc. were analyzed. It is important to note that coal particle sizes have significant influence on NO emissions in the O 2 /CO 2 combustion. For the homogeneous NO reduction, smaller coal particles can inhibit the homogeneous NO formations under fuel-rich combustion conditions, while it becomes disadvantageous for fuel-lean combustion. However, under any conditions, heterogeneous reduction is always more significant for smaller coal particle sizes, which have smoother pore surfaces and simpler pore structures. The results from this fundamental research will provide technical support for better understanding and developing this new combustion process

  4. Advanced char burnout models for the simulation of pulverized coal fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    T. Severin; S. Wirtz; V. Scherer [Ruhr-University, Bochum (Germany). Institute of Energy Plant Technology (LEAT)

    2005-07-01

    The numerical simulation of coal combustion processes is widely used as an efficient means to predict burner or system behaviour. In this paper an approach to improve CFD simulations of pulverized coal fired boilers with advanced coal combustion models is presented. In simple coal combustion models, first order Arrhenius rate equations are used for devolatilization and char burnout. The accuracy of such simple models is sufficient for the basic aspects of heat release. The prediction of carbon-in-ash is one aspect of special interest in the simulation of pulverized coal fired boilers. To determine the carbon-in-ash levels in the fly ash of coal fired furnaces, the char burnout model has to be more detailed. It was tested, in how far changing operating conditions affect the carbon-in-ash prediction of the simulation. To run several test cases in a short time, a simplified cellnet model was applied. To use a cellnet model for simulations of pulverized coal fired boilers, it was coupled with a Lagrangian particle model, used in CFD simulations, too. 18 refs., 5 figs., 5 tabs.

  5. Impact of Coal Fly Ash Addition on Combustion Aerosols (PM2.5) from Full-Scale Suspension-Firing of Pulverized Wood

    DEFF Research Database (Denmark)

    Damø, Anne Juul; Wu, Hao; Frandsen, Flemming

    2014-01-01

    The formation of combustion aerosols was studied in an 800 MWth suspension-fired power plant boiler, during combustion of pulverized wood pellets with and without addition of coal fly ash as alkali capture additive. The aerosol particles were sampled and characterized by a low-pressure cascade im...

  6. Simulation of pulverized coal fired boiler: reaction chamber

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, C.P.; Lansarin, M.A.; Secchi, A.R.; Mendes, T.F. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Dept. de Engenharia Quimica. Grupo de Modelagem, Simulacao, Controle e Otimizacao de Processos)]. E-mail: {cperdomo, marla, arge, talita}@enq.ufrgs.br

    2005-06-15

    This work is part of a joint project to built a computational tool for power plant simulation, dealing specifically with the reaction chamber (place of the boiler where the fuel is burned). In order to describe the conversion of chemical energy to thermal energy, an one dimensional pseudo-homogeneous mathematical model, with variable physical properties, and based on mass and energy balances, was developed. The equations were implemented in the gPROMS simulator and the model parameters were estimated using the module gEST of this software, with experimental data from a large-scale coal-fired utility boiler and kinetic data from the open literature. The results showed that the model predicts the composition of the outlet combustion gas satisfactorily. (author)

  7. Experimental Research on the Impactive Dynamic Effect of Gas-Pulverized Coal of Coal and Gas Outburst

    Directory of Open Access Journals (Sweden)

    Haitao Sun

    2018-03-01

    Full Text Available Coal and gas outburst is one of the major serious natural disasters during underground coal, and the shock air flow produced by outburst has a huge threat on the mine safety. In order to study the two-phase flow of a mixture of pulverized coal and gas of a mixture of pulverized coal and gas migration properties and its shock effect during the process of coal and gas outburst, the coal samples of the outburst coal seam in Yuyang Coal Mine, Chongqing, China were selected as the experimental subjects. By using the self-developed coal and gas outburst simulation test device, we simulated the law of two-phase flow of a mixture of pulverized coal and gas in the roadway network where outburst happened. The results showed that the air in the roadway around the outburst port is disturbed by the shock wave, where the pressure and temperature are abruptly changed. For the initial gas pressure of 0.35 MPa, the air pressure in different locations of the roadway fluctuated and eventually remain stable, and the overpressure of the outburst shock wave was about 20~35 kPa. The overpressure in the main roadway and the distance from the outburst port showed a decreasing trend. The highest value of temperature in the roadway increased by 0.25 °C and the highest value of gas concentration reached 38.12% during the experiment. With the action of shock air flow, the pulverized coal transportation in the roadway could be roughly divided into three stages, which are the accelerated movement stage, decelerated movement stage and the particle settling stage respectively. Total of 180.7 kg pulverized coal of outburst in this experiment were erupted, and most of them were accumulated in the main roadway. Through the analysis of the law of outburst shock wave propagation, a shock wave propagation model considering gas desorption efficiency was established. The relationships of shock wave overpressure and outburst intensity, gas desorption rate, initial gas pressure, cross

  8. Chemical processes of coal for use in power plants. Part 1: Approximate analysis and associated indexes of pulverized coal; Procesos quimicos del carbon para su uso en centrales termoelectricas. Parte 1: Analisis aproximado e indices asociados del carbon pulverizado

    Energy Technology Data Exchange (ETDEWEB)

    Altamirano-Bedolla, J. A.; Manzanares-Papayanopoulos, E.; Herrera-Velarde, J. R. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: emp@iie.org.mx

    2010-11-15

    The usage of hydrocarbons, such as natural gas, oil products and coal, will be the main source of energy to the mankind for next generations. Therefore, the actual research and technological developments point out to employ with high efficiency those fuels. The main interests are to release most of the energy as possible and to guide the combustion reactions. It is well known that during the combustion process of coal, the chemical energy is converted to thermal energy, which it allows the steam production, and therefore to produce energy through an electric generator. The main interest of the work presented here is to study the behavior of the coal combustion processes in function of the approximate analysis and some associate indices of that analysis, to point out the optimization of the coal usage as main fuel in electrical power generation plants. [Spanish] El uso de hidrocarburos como son el gas natural, los derivados del petroleo y el carbon mineral, continuara siendo en las proximas decadas la principal fuente de energia de la humanidad. Por consiguiente, la investigacion cientifica y los desarrollos tecnologicos actualmente se enfocan en emplear de manera mas eficiente dichos combustibles, satisfaciendo entre otros factores, dos intereses principales: liberar la mayor cantidad de energia, reduciendo al minimo el material combustible no quemado, y direccionar las reacciones del proceso de combustion para minimizar la cantidad de productos no deseados resultantes de la reaccion. A traves de los procesos quimicos de combustion del carbon, se transforma la energia quimica a energia termica, lo que permite la produccion de vapor para a su vez impulsar una turbina la cual esta acoplada a un generador electrico. El objetivo del presente trabajo es el estudio del comportamiento de los procesos quimicos que se llevan a cabo durante las reacciones de combus-tion del carbon en funcion del analisis aproximado y de los indices asociados resultantes de dicho analisis; lo

  9. A Model for Nitrogen Chemistry in Oxy-Fuel Combustion of Pulverized Coal

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Hansen, Stine; Toftegaard, Maja Bøg

    2011-01-01

    , heating and devolatilization of particles, and gas–solid reactions. The model is validated by comparison with entrained flow reactor results from the present work and from the literature on pulverized coal combustion in O2/CO2 and air, covering the effects of fuel, mixing conditions, temperature......In this work, a model for the nitrogen chemistry in the oxy-fuel combustion of pulverized coal has been developed. The model is a chemical reaction engineering type of model with a detailed reaction mechanism for the gas-phase chemistry, together with a simplified description of the mixing of flows......, stoichiometry, and inlet NO level. In general, the model provides a satisfactory description of NO formation in air and oxy-fuel combustion of coal, but under some conditions, it underestimates the impact on NO of replacing N2 with CO2. According to the model, differences in the NO yield between the oxy...

  10. Transformations and affinities for sulfur of Chinese Shenmu coal ash in a pulverized coal-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J.; Zhou, J.H.; Liu, J.Z.; Cao, X.Y.; Cen, K.F. [Zhejiang University, Hangzhou (China)

    2009-07-01

    The self-desulfurization efficiency of Shenmu coal with a high initial Ca/S molar ratio of 2.02 was measured in a 1,025 t/h pulverized coal-fired boiler. It increases from 29% to 32% when the power capacity decreases from 100% to 70%. About 60% of the mineral matter and calcium element fed into the furnace is retained in the fly ash, while less than 10% is retained in the bottom ash. About 70% of the sulfur element fed into the furnace is emitted as SO{sub 2} in the flue gas, while less than 10% is retained in the fly ash and less than 1% is retained in the bottom ash. The mineralogical compositions of feed coal, fly ash, and bottom ash were obtained by X-ray diffraction analysis. It is found that the initial amorphous phase content is 91.17% and the initial CaCO{sub 3} phase content is 2.07% in Shenmu coal. The vitreous phase and sulfation product CaSO{sub 4} contents are, respectively, 70.47% and 3.36% in the fly ash obtained at full capacity, while the retained CaCO{sub 3} and CaO contents are, respectively, 4.73% and 2.15%. However, the vitreous phase content is only 25.68% and no CaSO{sub 4} is detected in the bottom ash obtained at full capacity. When the power capacity decreases from 100% to 70%, the vitreous phase content in fly ash decreases from 70.47% to 67.41% and that in bottom ash increases from 25.68% to 28.10%.

  11. Effect of multiphase radiation on coal combustion in a pulverized coal jet flame

    International Nuclear Information System (INIS)

    Wu, Bifen; Roy, Somesh P.; Zhao, Xinyu; Modest, Michael F.

    2017-01-01

    The accurate modeling of coal combustion requires detailed radiative heat transfer models for both gaseous combustion products and solid coal particles. A multiphase Monte Carlo ray tracing (MCRT) radiation solver is developed in this work to simulate a laboratory-scale pulverized coal flame. The MCRT solver considers radiative interactions between coal particles and three major combustion products (CO 2 , H 2 O, and CO). A line-by-line spectral database for the gas phase and a size-dependent nongray correlation for the solid phase are employed to account for the nongray effects. The flame structure is significantly altered by considering nongray radiation and the lift-off height of the flame increases by approximately 35%, compared to the simulation without radiation. Radiation is also found to affect the evolution of coal particles considerably as it takes over as the dominant mode of heat transfer for medium-to-large coal particles downstream of the flame. To investigate the respective effects of spectral models for the gas and solid phases, a Planck-mean-based gray gas model and a size-independent gray particle model are applied in a frozen-field analysis of a steady-state snapshot of the flame. The gray gas approximation considerably underestimates the radiative source terms for both the gas phase and the solid phase. The gray coal approximation also leads to under-prediction of the particle emission and absorption. However, the level of under-prediction is not as significant as that resulting from the employment of the gray gas model. Finally, the effect of the spectral property of ash on radiation is also investigated and found to be insignificant for the present target flame. - Highlights: • A Monte Carlo–based nongray radiation solver is developed to study effects of radiation. • Radiation alters the lift-off height, and the distribution of temperature andspecies for the target flame. • Radiation alters the heat transfer mechanism of medium

  12. Pulverized coal burnout in blast furnace simulated by a drop tube furnace

    Energy Technology Data Exchange (ETDEWEB)

    Du, Shan-Wen [Steel and Aluminum Research and Development Department, China Steel Corporation, Kaohsiung 812 (China); Chen, Wei-Hsin [Department of Greenergy, National University of Tainan, Tainan 700 (China); Lucas, John A. [School of Engineering of the University of Newcastle, Callaghan, NSW 2308 (Australia)

    2010-02-15

    Reactions of pulverized coal injection (PCI) in a blast furnace were simulated using a drop tube furnace (DTF) to investigate the burnout behavior of a number of coals and coal blends. For the coals with the fuel ratio ranging from 1.36 to 6.22, the experimental results indicated that the burnout increased with decreasing the fuel ratio, except for certain coals departing from the general trend. One of the coals with the fuel ratio of 6.22 has shown its merit in combustion, implying that the blending ratio of the coal in PCI operation can be raised for a higher coke replacement ratio. The experiments also suggested that increasing blast temperature was an efficient countermeasure for promoting the combustibility of the injected coals. Higher fuel burnout could be achieved when the particle size of coal was reduced from 60-100 to 100-200 mesh. However, once the size of the tested coals was in the range of 200 and 325 mesh, the burnout could not be improved further, resulting from the agglomeration of fine particles. Considering coal blend reactions, the blending ratio of coals in PCI may be adjusted by the individual coal burnout rather than by the fuel ratio. (author)

  13. Combustion characteristics and kinetic analysis of pulverized coal under different pressure grades

    Directory of Open Access Journals (Sweden)

    Qiwei ZUO

    2016-02-01

    Full Text Available By using thermo gravimetric balance, experimental research on combustion characteristics and dynamics parameters of the typical coal injection from some domestic steelworks are conducted with non-isothermal method. The combustion characteristic parameters of the sample pulverized coal such as ignition temperature, peak temperature at maximum weight loss rate, burnout temperature, general burn exponent(S, and maximum combustion rate are studied under pressure grades of 0.1, 1.1, 2.1, 3.1 and 4.1 MPa, the activation energy (E and pre-exponential factor in the combustion process are calculated. The results show that when the pressure increases from 0.1 to 4.1 MPa, ignition temperature decreases by 85.7 K at most, peak temperature at maximum weight loss rate decreases by 249.3 K at most, burnout temperature decreases by 375 K at most, maximum weight loss rate increases by 10 times, and S increases by 33.6 times at most. It is also shown that there exists a kinetic complementation between E and ln A from the view point of dynamics, and the critical pressure of pulverized coal reaction control requirement and combustion mode transform is 3.1 MPa for the pulverized coal.

  14. Pyrolysis of superfine pulverized coal. Part 3. Mechanisms of nitrogen-containing species formation

    International Nuclear Information System (INIS)

    Liu, Jiaxun; Jiang, Xiumin; Shen, Jun; Zhang, Hai

    2015-01-01

    Highlights: • NH 3 and NO formation mechanisms during superfine pulverized coal pyrolysis are investigated. • Influences of temperature, heating rate, particle size, atmosphere, and acid wash on the NH 3 and NO formation are analyzed. • Transformations of nitrogen-containing structures in coal/char during pyrolysis are recognized through XPS observation. • Relationships among nitrogen-containing gaseous species during pyrolysis are discussed. - Abstract: With more stringent regulations being implemented, elucidating the formation mechanisms of nitrogen-containing species during the initial pyrolysis step becomes important for developing new NO x control strategies. However, there is a lack of agreement on the origins of NO x precursors during coal pyrolysis, in spite of extensive investigations. Hence, it is important to achieve a more precise knowledge of the formation mechanisms of nitrogen-contain species during coal pyrolysis. In this paper, pyrolysis experiments of superfine pulverized coal were performed in a fixed bed at low heating rates. The influences of temperature, coal type, particle size and atmosphere on the NH 3 and NO evolution were discussed. There is a central theme to develop knowledge of the relationship between particle sizes and evolving behaviors of nitrogen-containing species. Furthermore, the catalytic role of inherent minerals in coal was proved to be effective on the partitioning of nitrogen during coal pyrolysis. In addition, the conversion pathways of heteroaromatic nitrogen structures in coal/char during pyrolysis were recognized through the X-ray photoelectron spectroscopy (XPS) analysis. Large quantities of pyridinic and quanternary nitrogen functionalities were formed during the thermal degradation. Finally, the relationships among the nitrogen-containing gaseous species during coal pyrolysis were discussed. In brief, a comprehensive picture of the volatile-nitrogen partitioning during coal pyrolysis is obtained in this

  15. Firing a sub-bituminous coal in pulverized coal boilers configured for bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    N. Spitz; R. Saveliev; M. Perelman; E. Korytni; B. Chudnovsky; A. Talanker; E. Bar-Ziv [Ben-Gurion University of the Negev, Beer-Sheva (Israel)

    2008-07-15

    It is important to adapt utility boilers to sub-bituminous coals to take advantage of their environmental benefits while limiting operation risks. We discuss the performance impact that Adaro, an Indonesian sub-bituminous coal with high moisture content, has on opposite-wall and tangentially-fired utility boilers which were designed for bituminous coals. Numerical simulations were made with GLACIER, a computational-fluid-dynamic code, to depict combustion behavior. The predictions were verified with full-scale test results. For analysis of the operational parameters for firing Adaro coal in both boilers, we used EXPERT system, an on-line supervision system developed by Israel Electric Corporation. It was concluded that firing Adaro coal, compared to a typical bituminous coal, lowers NOx and SO{sub 2} emissions, lowers LOI content and improves fouling behavior but can cause load limitation which impacts flexible operation. 21 refs., 7 figs., 3 tabs.

  16. Gasification in pulverized coal flames. Final report (Part I). Pulverized coal combustion and gasification in a cyclone reactor: experiment and model

    Energy Technology Data Exchange (ETDEWEB)

    Barnhart, J. S.; Laurendeau, N. M.

    1979-05-01

    A unified experimental and analytical study of pulverized coal combustion and low-BTU gasification in an atmospheric cyclone reactor was performed. Experimental results include several series of coal combustion tests and a coal gasification test carried out via fuel-rich combustion without steam addition. Reactor stability was excellent over a range of equivalence ratios from .67 to 2.4 and air flowrates from 60 to 220 lb/hr. Typical carbon efficiencies were 95% for air-rich and stoichiometric tests and 80% for gasification tests. The best gasification results were achieved at an equivalence ratio of 2.0, where the carbon, cold gas and hot gas efficiencies were 83, 45 and 75%, respectively. The corresponding product gas heating value was 70 BTU/scf. A macroscopic model of coal combustion in the cyclone has been developed. Fuel-rich gasification can also be modeled through a gas-phase equilibrium treatment. Fluid mechanics are modeled by a particle force balance and a series combination of a perfectly stirred reactor and a plug flow reactor. Kinetic treatments of coal pyrolysis, char oxidation and carbon monoxide oxidation are included. Gas composition and temperature are checked against equilibrium values. The model predicts carbon efficiency, gas composition and temperature and reactor heat loss; gasification parameters, such as cold and hot gas efficiency and make gas heating value, are calculated for fuel-rich conditions. Good agreement exists between experiment and theory for conditions of this investigation.

  17. LES and RANS modeling of pulverized coal combustion in swirl burner for air and oxy-combustion technologies

    International Nuclear Information System (INIS)

    Warzecha, Piotr; Boguslawski, Andrzej

    2014-01-01

    Combustion of pulverized coal in oxy-combustion technology is one of the effective ways to reduce the emission of greenhouse gases into the atmosphere. The process of transition from conventional combustion in air to the oxy-combustion technology, however, requires a thorough investigations of the phenomena occurring during the combustion process, that can be greatly supported by numerical modeling. The paper presents the results of numerical simulations of pulverized coal combustion process in swirl burner using RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) methods for turbulent flow. Numerical simulations have been performed for the oxyfuel test facility located at the Institute of Heat and Mass Transfer at RWTH Aachen University. Detailed analysis of the flow field inside the combustion chamber for cold flow and for the flow with combustion using different numerical methods for turbulent flows have been done. Comparison of the air and oxy-coal combustion process for pulverized coal shows significant differences in temperature, especially close to the burner exit. Additionally the influence of the combustion model on the results has been shown for oxy-combustion test case. - Highlights: • Oxy-coal combustion has been modeled for test facility operating at low oxygen ratio. • Coal combustion process has been modeled with simplified combustion models. • Comparison of oxy and air combustion process of pulverized coal has been done. • RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) results for pulverized coal combustion process have been compared

  18. Distribution of trace elements in selected pulverized coals as a function of particle size and density

    Science.gov (United States)

    Senior, C.L.; Zeng, T.; Che, J.; Ames, M.R.; Sarofim, A.F.; Olmez, I.; Huggins, Frank E.; Shah, N.; Huffman, G.P.; Kolker, A.; Mroczkowski, S.; Palmer, C.; Finkelman, R.

    2000-01-01

    Trace elements in coal have diverse modes of occurrence that will greatly influence their behavior in many coal utilization processes. Mode of occurrence is important in determining the partitioning during coal cleaning by conventional processes, the susceptibility to oxidation upon exposure to air, as well as the changes in physical properties upon heating. In this study, three complementary methods were used to determine the concentrations and chemical states of trace elements in pulverized samples of four US coals: Pittsburgh, Illinois No. 6, Elkhorn and Hazard, and Wyodak coals. Neutron Activation Analysis (NAA) was used to measure the absolute concentration of elements in the parent coals and in the size- and density-fractionated samples. Chemical leaching and X-ray absorption fine structure (XAFS) spectroscopy were used to provide information on the form of occurrence of an element in the parent coals. The composition differences between size-segregated coal samples of different density mainly reflect the large density difference between minerals, especially pyrite, and the organic portion of the coal. The heavy density fractions are therefore enriched in pyrite and the elements associated with pyrite, as also shown by the leaching and XAFS methods. Nearly all the As is associated with pyrite in the three bituminous coals studied. The sub-bituminous coal has a very low content of pyrite and arsenic; in this coal arsenic appears to be primarily organically associated. Selenium is mainly associated with pyrite in the bituminous coal samples. In two bituminous coal samples, zinc is mostly in the form of ZnS or associated with pyrite, whereas it appears to be associated with other minerals in the other two coals. Zinc is also the only trace element studied that is significantly more concentrated in the smaller (45 to 63 ??m) coal particles.

  19. Pyrolysis of superfine pulverized coal. Part 4. Evolution of functionalities in chars

    International Nuclear Information System (INIS)

    Liu, Jiaxun; Ma, Yang; Luo, Lei; Ma, Junfang; Zhang, Hai; Jiang, Xiumin

    2017-01-01

    Highlights: • A combination of XPS and NMR is adopted for analyzing char chemical structures during superfine pulverized coal pyrolysis. • The chemisorbed NO can be transformed into pyridine N with the favor of adjacent oxygenated groups in chars. • Particle size has significant influence on oxygen-containing configurations in chars. - Abstract: The properties of the coal-derived char play crucial roles in coal conversion reactions and the formation of air pollutants. The nascent char is highly reactive due to the existence of numerous free radicals, active sites, and organic functional groups on its surface. Here, we showed that a combination of nuclear magnetic resonance spectroscopy (NMR) and X-ray photoelectron spectroscopy (XPS) techniques is an effective and precise way to characterize the occurrence, distribution, and evolution of organic functionalities in coal chars. Using these methods, we explored detailed information about chemical features of superfine pulverized coal chars in different atmospheres, and we also discussed the influence of particle size on the evolutionary behavior of functionalities. Results indicate that, in both N_2 and CO_2 atmospheres, the content of C−O species increases with the reduction in char particle sizes. This increment facilitates the heterogeneous reduction of NOx on char surfaces. The chemisorbed NO is susceptible to being incorporated into chars, and being transformed into pyridine-type nitrogen with the favor of adjacent oxygen-containing groups. Moreover, the significant increment in oxygen-containing groups with the reduction of particle size is further confirmed through "1"3C NMR analysis. It was shown that there is an excellent correlation between estimates derived from XPS and NMR for oxygen configuration. The findings from this work provide some new insights into NOx reduction mechanisms and shed light on the practical application of superfine pulverized coal in the future.

  20. Examination of flame length for burning pulverized coal in laminar flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Dong; Kim, Gyu Bo; Chang, Young June; Song, Ju Hun; Jeon, Chung Hwan [Pusan National University, Busan (Korea, Republic of)

    2010-12-15

    Because there has been a recent increase in the use of low calorific coal compared to standard coal, it is crucial to control the char flame length governing the burning life-time of coal in a coal-fired utility boiler. The main objective of this study is to develop a simplified model that can theoretically predict the flame length for burning coal in a laboratory-scale entrained laminar flow reactor (LFR) system. The char burning behavior was experimentally observed when sub-bituminous pulverized coal was fed into the LFR under burning conditions similar to those in a real boiler: a heating rate of 1000 K/s, an oxygen molar fraction of 7.7 %, and reacting flue gas temperatures ranging from 1500 to 2000 K. By using the theoretical model developed in this study, the effect of particle size on the coal flame length was exclusively addressed. In this model, the effect of particle mass was eliminated to compare with the experimental result performed under a constant mass feeding of coal. Overall, the computed results for the coal flame length were in good agreement with the experimental data, particularly when the external oxygen diffusion effect was considered in the model

  1. Examination of flame length for burning pulverized coal in laminar flow reactor

    International Nuclear Information System (INIS)

    Kim, Jae Dong; Kim, Gyu Bo; Chang, Young June; Song, Ju Hun; Jeon, Chung Hwan

    2010-01-01

    Because there has been a recent increase in the use of low calorific coal compared to standard coal, it is crucial to control the char flame length governing the burning life-time of coal in a coal-fired utility boiler. The main objective of this study is to develop a simplified model that can theoretically predict the flame length for burning coal in a laboratory-scale entrained laminar flow reactor (LFR) system. The char burning behavior was experimentally observed when sub-bituminous pulverized coal was fed into the LFR under burning conditions similar to those in a real boiler: a heating rate of 1000 K/s, an oxygen molar fraction of 7.7 %, and reacting flue gas temperatures ranging from 1500 to 2000 K. By using the theoretical model developed in this study, the effect of particle size on the coal flame length was exclusively addressed. In this model, the effect of particle mass was eliminated to compare with the experimental result performed under a constant mass feeding of coal. Overall, the computed results for the coal flame length were in good agreement with the experimental data, particularly when the external oxygen diffusion effect was considered in the model

  2. Volatile release and particle formation characteristics of injected pulverized coal in blast furnaces

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Du, Shan-Wen; Yang, Tsung-Han

    2007-01-01

    Volatiles release and particle formation for two kinds of pulverized coals (a high volatile bituminous coal and a low volatile bituminous coal) in a drop tube furnace are investigated to account for the reactions of pulverized coal injected in blast furnaces. Two different sizes of feed particles are considered; one is 100-200 mesh and the other is 200-325 mesh. By evaluating the R-factor, the devolatilization extent of the larger feed particles is found to be relatively poor. However, the swelling behavior of individual or two agglomerated particles is pronounced, which is conducive to gasification of the chars in blast furnaces. In contrast, for the smaller feed particles, volatiles liberated from the coal particles can be improved in a significant way as a result of the amplified R-factor. This enhancement can facilitate the performance of gas phase combustion. Nevertheless, the residual char particles are characterized by agglomeration, implying that the reaction time of the char particles will be lengthened, thereby increasing the possibility of furnace instability. Double peak distributions in char particle size are observed in some cases. This possibly results from the interaction of the plastic state and the blowing effect at the particle surface. Considering the generation of tiny aerosols composed of soot particles and tar droplets, the results indicate that their production is highly sensitive to the volatile matter and elemental oxygen contained in the coal. Comparing the reactivity of the soot to that of the unburned char, the former is always lower than the latter. Consequently, the lower is the soot formation, the better is the blast furnace stability

  3. REDUCING THE INTENSITY OF TAKEAWAY PULVERIZED COAL BY USING SPECIAL SOLUTION

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2017-04-01

    Full Text Available Purpose. The article is aimed: 1 to develop the coal coating solution in open railway cars or to cover coal piles to minimize the coal dust losses; 2 creating a mathematical model of the process of the solution feeding to the surface of coal. Methodology. To solve this problem, it was developed a special solution containing cheap industrial wastes and semiproducts of chemical industries. It was conducted a physical experiment to assess the intensity of coal dust loss when using the developed solution. A mathematical model based on the use of the motion equations of the ideal fluid and mass transfer was developed. The developed numerical models are the basis of the application program package created for assessing the quality of processing the coal surface by special solution. Findings. The results of the conducted physical experiment to assess the magnitude of the coal dust loss on the model of the coal pile in the processing of its surface with a special solution and without processing are presented in the article. It is shown that the application of the proposed solution for surface processing of coal can significantly reduce the coal dust loss. This makes it possible to reduce the amount of economic losses and reduce the level of air dust pollution in work areas. The results of computational experiments carried out on the basis of the constructed numerical models are presented in the article. Originality. Authors proposed a new solution for the coal surface processing in order to minimize the removal of pulverized coal from the coal pile, which substantially reduces the coal losses. There were created numerical models to take into account the relevant factors influencing the solution dispersion process in the atmosphere from coal processing in gondola cars. Practical value. Solution, proposed in the article has a low price, because it can be created on the basis of industrial production wastes. Application of this solution can significantly

  4. Low NO{sub x} burner modifications to front-fired pulverized coal boilers

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, R G; Wagner, M

    1998-07-01

    Madison Gas and Electric Blount Street Station Units 8 and 9 are Babcock and Wilcox pulverized coal fired and natural gas fired boilers. These boilers were build in the late 1950's and early 1960's with each boiler rated at 425,000 lb./hr of steam producing 50 MW of electricity. The boilers are rated at 9,500 F at 1,350 psig. Each unit is equipped with one Ljungstroem air heater and two B and W EL pulverizers. These units burn subbituminous coal with higher heating value of 10,950 Btu/LB on an as-received basis. The nitrogen content is approximately 1.23% with 15% moisture. In order to comply with the new Clean Air Act Madison Gas and Electric needs to reduce NO{sub x} on these units to less than .5 LB/mmBtu. Baseline NO{sub x} emissions on these units range between .8--.9 lb./mmBtu. LOIs average approximately 8%. Madison Gas and Electric contracted with RJM Corporation to modify the existing burners to achieve this objective. These modifications consisted of adding patented circumferentially and radially staged flame stabilizers, modifying the coal pipe, and replacing the coal impeller with a circumferentially staged coal spreader. RJM Corporation utilized computational fluid dynamics modeling in order to design the equipment to modify these burners. The equipment was installed during the March 1997 outage and start-up and optimization was conducted in April 1997. Final performance results and economic data will be included in the final paper.

  5. Flat-flame burner studies of pulverized-coal combustion. Experimental results on char reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Peck, R.E.; Shi, L.

    1996-12-01

    Structure of laminar, premixed pulverized-coal flames in a 1-D reactor has been studied with emphasis on char reactivity. A 1.1-meter-long tube furnace accommodated high-temperature environments and long residence times for the laminar flames produced by a flat-flame, coal-dust burner. Experiments were conducted at different operating conditions (fuel type/size, fuel-air ratio). Measurements included solid sample composition, major gas species and hydrocarbon species concentrations, and gas- and particle-phase line-of-sight temperatures at different axial locations in flames. Degree of char burnout increased with coal volatiles content and decreased with coal particle size. Combustion in furnace was in oxidizer-deficient environment and higher burnout was achieved as the fuel-air ratio neared stoichiometric. For 0-45 {mu}m particles most of the fixed carbon mass loss occurred within 5 cm of the furnace inlet, and char reaction was slow downstream due to low oxidizer concentrations. Fixed carbon consumption of the 45-90 {mu}m particles generally was slower than for the small particles. About 40%-80% of the fixed carbon was oxidized in the furnace. Primary volatiles mass loss occurred within the first 4.5 cm, and more than 90% of the volatiles were consumed in the flames. The flames stabilized in the furnace produced less CH{sub 4} and H{sub 2} in the burnt gas than similar unconfined flames. NO concentrations were found to decrease along the furnace and to increase with decreasing fuel/air ratio. Temperature measurement results showed that gas-phase temperatures were higher than solid-phase temperatures. Temperatures generally decreased with decreasing volatiles content and increased as the equivalence ratio approached one. The results can be used to interpret thermochemical processes occurring in pulverized-coal combustion. (au) 15 refs.

  6. Determining the radiative properties of pulverized-coal particles from experiments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Menguec, M.P.

    1992-02-01

    A comprehensive coupled experimental-theoretical study has been performed to determine the effective radiative properties of pulverized-coal/char particles. The results obtained show that the ``effective`` scattering phase function of coal particles are highly forward scattering and show less sensitivity to the size than predicted from the Lorenz-Mie theory. The main reason for this is the presence of smaller size particles associated with each larger particle. Also, the coal/char particle clouds display more side scattering than predicted for the same size range spheres, indicating the irregular shape of the particles and fragmentation. In addition to these, it was observed that in the visible wavelength range the coal absorption is not gray, and slightly vary with the wavelength. These two experimental approaches followed in this study are unique in a sense that the physics of the problem are not approximated. The properties determined include all uncertainties related to the particle shape, size distribution, inhomogeneity and spectral complex index of refraction data. In order to obtain radiative property data over a wider wavelength spectrum, additional ex-situ experiments have been carried out using a Fourier Transform Infrared (FT-IR) Spectrometer. The spectral measurements were performed over the wavelength range of 2 to 22 {mu}m. These results were interpreted to obtain the ``effective`` efficiency factors of coal particles and the corresponding refractive index values. The results clearly show that the coal/char radiative properties display significant wavelength dependency in the infrared spectrum.

  7. A simple numerical model to estimate the effect of coal selection on pulverized fuel burnout

    Energy Technology Data Exchange (ETDEWEB)

    Sun, J.K.; Hurt, R.H.; Niksa, S.; Muzio, L.; Mehta, A.; Stallings, J. [Brown University, Providence, RI (USA). Division Engineering

    2003-06-01

    The amount of unburned carbon in ash is an important performance characteristic in commercial boilers fired with pulverized coal. Unburned carbon levels are known to be sensitive to fuel selection, and there is great interest in methods of estimating the burnout propensity of coals based on proximate and ultimate analysis - the only fuel properties readily available to utility practitioners. A simple numerical model is described that is specifically designed to estimate the effects of coal selection on burnout in a way that is useful for commercial coal screening. The model is based on a highly idealized description of the combustion chamber but employs detailed descriptions of the fundamental fuel transformations. The model is validated against data from laboratory and pilot-scale combustors burning a range of international coals, and then against data obtained from full-scale units during periods of coal switching. The validated model form is then used in a series of sensitivity studies to explore the role of various individual fuel properties that influence burnout.

  8. CFD modelling and analysis of pulverized coal injection in blast furnace: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yansong; Yu, Aibing [Laboratory for Simulation and Modelling of Particulate Systems, School of Materials Science and Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052 (Australia); Zulli, Paul [BlueScope Steel Research (BSR), P.O. Box 202, Port Kembla, NSW 2505 (Australia)

    2011-05-15

    In order to understand the complicated phenomena of pulverized coal injection (PCI) process in blast furnace (BF), several mathematical models have been developed by the UNSW and BSR cooperation. These models are featuring from coal combustion in a pilot-scale test rig, to coal combustion in a real BF, and then to coal/coke combustion in a real BF, respectively. This paper reviews these PCI models in aspects of model developments and model applicability. The model development is firstly discussed in terms of model formulation, their new features and geometry/regions considered. The model applicability is then discussed in terms of main findings followed by the model evaluation on their advantages and limitations. It is indicated that the three PCI models are all able to describe PCI operation qualitatively. The model of coal/coke combustion in a real BF is more reliable for simulating in-furnace phenomena of PCI operation qualitatively and quantitatively. Such model gives a more reliable burnout prediction over the raceway surface, which could better represent the amount of unburnt char entering the coke bed. These models are useful for understanding the flow-thermo-chemical behaviours and then optimising the PCI operation in practice. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. JV Task 106 - Feasibility of CO2 Capture Technologies for Existing North Dakota Lignite-Fired Pulverized Coal Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Jones; Brandon M. Pavlish; Melanie D. Jensen

    2007-05-01

    The goal of this project is to provide a technical review and evaluation of various carbon dioxide (CO{sub 2}) capture technologies, with a focus on the applicability to lignite-fired facilities within North Dakota. The motivation for the project came from the Lignite Energy Council's (LEC's) need to identify the feasibility of CO{sub 2} capture technologies for existing North Dakota lignite-fired, pulverized coal (pc) power plants. A literature review was completed to determine the commercially available technologies as well as to identify emerging CO{sub 2} capture technologies that are currently in the research or demonstration phase. The literature review revealed few commercially available technologies for a coal-fired power plant. CO{sub 2} separation and capture using amine scrubbing have been performed for several years in industry and could be applied to an existing pc-fired power plant. Other promising technologies do exist, but many are still in the research and demonstration phases. Oxyfuel combustion, a technology that has been used in industry for several years to increase boiler efficiency, is in the process of being tailored for CO{sub 2} separation and capture. These two technologies were chosen for evaluation for CO{sub 2} separation and capture from coal-fired power plants. Although oxyfuel combustion is still in the pilot-scale demonstration phase, it was chosen to be evaluated at LEC's request because it is one of the most promising emerging technologies. As part of the evaluation of the two chosen technologies, a conceptual design, a mass and energy balance, and an economic evaluation were completed.

  10. Coal char combustion under a CO{sub 2}-rich atmosphere: Implications for pulverized coal injection in a blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Borrego, A.G.; Casal, M.D. [Instituto Nacional del Carbon, CSIC. P.O. Box 73, 33080 Oviedo (Spain); Osorio, E.; Vilela, A.C.F. [Laboratorio de Siderurgia, DEMET/PPGEM - Universidade Federal do Rio Grande do Sul. P.O. Box 15021, 91501-970 Porto Alegre (Brazil)

    2008-11-15

    Pulverized coal injection (PCI) is employed in blast furnace tuyeres attempting to maximize the injection rate without increasing the amount of unburned char inside the stack of the blast furnace. When coal is injected with air through the injection lance, the resolidified char will burn in an atmosphere with a progressively lower oxygen content and higher CO{sub 2} concentration. In this study an experimental approach was followed to separate the combustion process into two distinct devolatilization and combustion steps. Initially coal was injected into a drop tube furnace (DTF) operating at 1300 C in an atmosphere with a low oxygen concentration to ensure the combustion of volatiles and prevent the formation of soot. Then the char was refired into the DTF at the same temperature under two different atmospheres O{sub 2}/N{sub 2} (typical combustion) and O{sub 2}/CO{sub 2} (oxy-combustion) with the same oxygen concentration. Coal injection was also performed under a higher oxygen concentration in atmospheres typical for both combustion and oxy-combustion. The fuels tested comprised a petroleum coke and coals currently used for PCI injection ranging from high volatile to low volatile bituminous rank. Thermogravimetric analyses and microscopy techniques were used to establish the reactivity and appearance of the chars. Overall similar burnouts were achieved with N{sub 2} and CO{sub 2} for similar oxygen concentrations and therefore no loss in burnout should be expected as a result of enrichment in CO{sub 2} in the blast furnace gas. The advantage of increasing the amount of oxygen in a reacting atmosphere during burnout was found to be greater, the higher the rank of the coal. (author)

  11. Life Cycle Assessment of Coal-fired Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Spath, P. L.; Mann, M. K.; Kerr, D. R.

    1999-09-01

    Coal has the largest share of utility power generation in the US, accounting for approximately 56% of all utility-produced electricity (US DOE, 1998). Therefore, understanding the environmental implications of producing electricity from coal is an important component of any plan to reduce total emissions and resource consumption. A life cycle assessment (LCA) on the production of electricity from coal was performed in order to examine the environmental aspects of current and future pulverized coal boiler systems. Three systems were examined: (1) a plant that represents the average emissions and efficiency of currently operating coal-fired power plants in the US (this tells us about the status quo), (2) a new coal-fired power plant that meets the New Source Performance Standards (NSPS), and (3) a highly advanced coal-fired power plant utilizing a low emission boiler system (LEBS).

  12. Effect of the Reburning Zone Stoichiometry on the Nox Concentration at the Three-Stage Combustion of Pulverized Coal

    Directory of Open Access Journals (Sweden)

    Chernetskaya Nelya

    2016-01-01

    Full Text Available Numerical study of heat and mass transfer taking into account the combustion of coal particles in the furnace at the three-stage combustion of pulverized coal was performed. Analysis of the reburning zone stoichiometry on the concentration of nitrogen oxides at the furnace outlet was made. The values of excess air in the primary and reburning combustion zones, providing for the concentration of nitrogen oxides at the furnace outlet is not more than 350 mg/m3 and unburned carbon not more than 1 % when burning coal with a high content of nitrogen were established.

  13. Physical and chemical characterization of 50 pulverized coal ashes with respect to partial cement replacement in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sloot, H A; Weijers, E G

    1986-04-01

    Physical and chemical characterization of 50 pulverized coal ashes from Dutch, Belgian and German installations has been carried out to identify the parameters that have to be kept under control, when pulverized coal ashes are to be used as partial cement replacement in concrete. For a good workability of fly ash/cement mortars the particle size and the carbon content are important. By performing a mortar flow test (Heagermann) upon delivery exterme ashes can be easily eliminated. The compressive strength is largely determined by the fineness of the ash (weight fraction below 20 micron). A direct effect of carbon content on strength development is not observed, but a reduction in mortar slow due to carbon leads to loss in strength, while the workability has to be adjusted. Size distribution measurement by optical methods is recommended as the relevant part of the ash size distribution cannot be properly assessed by sieve methods. The net contribution of fly ash to the compressive strength of a fly ash/cement (20/80) mortar exhibits a minimum at 14 days curing, which is common to all 50 ashes studied. Improvements in ash quality as obtained from pulverized-coal fired installations can be achieved by improvements in coal milling and optimizing ash collection. 6 figs., 4 tabs., 19 refs.

  14. Online X-ray Fluorescence (XRF) Analysis of Heavy Metals in Pulverized Coal on a Conveyor Belt.

    Science.gov (United States)

    Yan, Zhang; XinLei, Zhang; WenBao, Jia; Qing, Shan; YongSheng, Ling; DaQian, Hei; Da, Chen

    2016-02-01

    Heavy metals in haze episode will continue to threaten the quality of public health around the world. In order to decrease the emission of heavy metals produced from coal burning, an online X-ray fluorescence (XRF) analyzer system, consisting of an XRF analyzer with data acquisition software and a laser rangefinder, was developed to carry out the measurement of heavy metals in pulverized coal. The XRF analyzer was mounted on a sled, which can effectively smooth the surface of pulverized coal and reduce the impact of surface roughness during online measurement. The laser rangefinder was mounted over the sled for measuring the distance between a pulverized coal sample and the analyzer. Several heavy metals and other elements in pulverized coal were online measured by the XRF analyzer directly above a conveyor belt. The limits of detection for Hg, Pb, Cr, Ti, Fe, and Ca by the analyzer were 44 ± 2, 34 ± 2, 17 ± 3, 41 ± 4, 19 ± 3, and 65 ± 2 mg·kg(-1), respectively. The relative standard deviation (%RSD) for the elements mentioned was less than 7.74%. By comparison with the results by inductively-coupled plasma mass spectrometry (ICP-MS), relative deviation (%D) of the online XRF analyzer was less than 10% for Cr, Ti, and Ca, in the range of 0.8-24.26% for Fe, and greater than 20% for Hg and Pb. © The Author(s) 2016.

  15. Clean coal reference plants: Pulverized coal boiler with flue gas desulfurization. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Clean Coal Technology Demonstration Program (CCT) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of full-scale facilities. The goal of the program is to provide the U.S. energy marketplace with a number of advanced, more efficient, and environmentally responsive coal-using technologies. To achieve this goal, a multiphased effort consisting of five separate solicitations has been completed. The Morgantown Energy Technology Center (METC) has the responsibility for monitoring the CCT Projects within certain technology categories, which, in general, correspond to the center`s areas of technology development. Primarily the categories of METC CCT projects are: atmospheric fluid bed combustion, pressurized fluidized bed combustion, integrated gasification combined cycle, mild gasification, and industrial applications.

  16. Improved coal grinding and fuel flow control in thermal power plants

    DEFF Research Database (Denmark)

    Niemczyk, Piotr; Bendtsen, Jan Dimon

    2011-01-01

    A novel controller for coal circulation and pulverized coal flow in a coal mill is proposed. The design is based on optimal control theory for bilinear systems with additional integral action. The states are estimated from the grinding power consumption and the amount of coal accumulated in the m......A novel controller for coal circulation and pulverized coal flow in a coal mill is proposed. The design is based on optimal control theory for bilinear systems with additional integral action. The states are estimated from the grinding power consumption and the amount of coal accumulated...... as well as when parameter uncertainties and noise are present. The proposed controller lowers the grinding power consumption while in most cases exhibiting superior performance in comparison with the PID controller....

  17. Risk management of energy efficiency projects in the industry - sample plant for injecting pulverized coal into the blast furnaces

    OpenAIRE

    Jovanović Filip P.; Berić Ivana M.; Jovanović Petar M.; Jovanović Aca D.

    2016-01-01

    This paper analyses the applicability of well-known risk management methodologies in energy efficiency projects in the industry. The possibilities of application of the selected risk management methodology are demonstrated within the project of the plants for injecting pulverized coal into blast furnaces nos. 1 and 2, implemented by the company US STEEL SERBIA d.o.o. in Smederevo. The aim of the project was to increase energy efficiency through the reductio...

  18. Assessment of ecotoxicological risks of element leaching from pulverized coal ashes

    International Nuclear Information System (INIS)

    Jenner, H.A.

    1995-05-01

    The main objective of this study was to assess the effects on representative organisms, after exposure to pulverized fuel ashes (PFA) or leachates of PFA. The studies dealt primarily with toxic effects and focused on the impact of PFA on single species and groups of related species including their acute effects, bioconcentration and ultimate body burden. Emphasis was placed on reproductive effects in this study. Crawling behaviour of mussels was also studied to reflection to the physical differences of PFA from other substrates. A newly developed device was therefore used for valve movement monitoring. A phytomonitoring system with duckweed was developed for assessing effects on yield, using image processing. The results are presented in three parts according to the environmental compartments concerned i.e. marine, freshwater and terrestrial. In Part 1, marine studies with benthic invertebrates were carried out in model ecosystems with different compositions of PFA and Waddensea sediment. In Part 2, the freshwater studies were carried out in flow chambers using the painters mussel Unio pictorum. Besides behavioural studies with PFA specific research was carried out with selenium on body burden and effects on reproduction. Selenium is a prominent constituent of PFA. In Part 3 research is described on the monitoring of leachates of PFA with duckweed. A separate chapter deals with growth, mortality and accumulation in plants and worms exposed to coal gasification slag. figs., tabs., refs

  19. Processing woody debris biomass for co-milling with pulverized coal

    Science.gov (United States)

    Dana Mitchell; Bob Rummer

    2007-01-01

    The USDA, Forest Service, Forest Products Lab funds several grants each year for the purpose of studying woody biomass utilization. One selected project proposed removing small diameter stems and unmerchantable woody material from National Forest lands and delivering it to a coal-fired power plant in Alabama for energy conversion. The Alabama Power Company...

  20. Experimental investigation on NO{sub x} emission and carbon burnout from a radially biased pulverized coal whirl burner

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Shan; Hui, Shi' en; Zhou, Qulan; Xu, Tongmo; Hu, Hongli [State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Taisheng [Dongfang Boiler Group Co., Ltd., Zigong, Sichuan 643001 (China)

    2009-09-15

    Experiments have been performed on 1 MW pulverized coal (pc) furnace in order to investigate the characteristics of coal combustion and NO{sub x} emission from a new type of radially biased dual register whirl burner. The burner is characterized by a primary air pipe with a continuously changing cross-section and an impact ring. The mixture of pulverized coal and air inside the primary pipe is split into two streams, which are the outer pc rich annular jet and the inner pc lean annular jet respectively. Three Chinese coals, which are high rank bituminous coal, low rank bituminous coal and meager coal respectively, are used in the experiments. We examine the influences of various parameters such as the relative position of the over-fire air (OFA) nozzle, over-fire air ratio (19.1%), primary air ratio, inner secondary air ratio, outer secondary air ratio, inner secondary air swirling intensity, and outer secondary air swirling intensity on NO{sub x} formation and unburned carbon in fly ash. With the primary air ratio increasing from 13.4% to 23.4%, the value of the NO{sub x} emission of the SH coal decreases by 26.7% at first, and then increases by 21.7%. In contrast, the value of the carbon in fly ash (C{sub FA}) increases by 40.1% at first, and then decreases by 58.3%. According to the experimental results, the influence of each individual parameter on NO{sub x} formation and unburned carbon in fly ash agrees well with the existing literature. In this study, the influences of various combinations of these parameters are also examined, thus providing some reference for the design of the radial biased whirl burner, the configuration of the furnace and the distribution of the air. (author)

  1. Simulation of blast furnace operation during the substitution of coke and pulverized coal with granulated waste plastic

    Directory of Open Access Journals (Sweden)

    Kovačević Tihomir M.

    2014-01-01

    Full Text Available The possibility of using the waste plastic as reducing agent in blast furnace for obtaining pig iron is in focus for the past couple year. The simulation of blast furnace process in BFC software has been performed in order to analyze the coke and coals saving, CO2 emission and determining the economic benefits. Three different batches were made for comparative analysis, depending on the batch composition and input of batch components into the blast furnace: case 1 (C1, case 2 (C2 and case 3 (C3. The base case, C1 contains sinter (bulk material which is needed for obtaining 1 tone of pig iron, quartz which provides slag alkalinity and coke as reducing and energy agent. C2 has the same components as C1, but contains pulverized coal instead one part of coke and C3 contains granulated waste plastic instead coke in an approximately the same amount as pulverized coal. The substitution of coke with pulverized coal and waste plastic is 18.6 % and 25.2 %, respectively. The economic, productivity and ecologic aspects have been analyzed. The consumption of each tone of waste plastic in blast furnace saves 360 $, which is 18 times more than its price, bearing in mind that the market price of coke is 380 $/t % and waste plastic 20 $/t. Regarding the specific productivity, it decreases from 2.13 for C1 to 1.87 for C3. From an environmental aspect there are two main benefits: reduction of CO2 emission and impossibility of dioxin formation. The CO2 emission was 20.18, 19.46 and 17.21 for C1, C2 and C3, respectively.

  2. PROTOTYPE SCALE TESTING OF LIMB TECHNOLOGY FOR A PULVERIZED-COAL-FIRED BOILER

    Science.gov (United States)

    The report summarizes results of an evaluation of furnace sorbent injection (FSI) to control sulfur dioxide (SO2) emissions from coal-fired utility boilers. (NOTE: FSI of calcium-based sorbents has shown promise as a moderate SO2 removal technology.) The Electric Power Research I...

  3. DEVELOPMENT OF A NOVEL RADIATIVELY/CONDUCTIVELY STABILIZED BURNER FOR SIGNIFICANT REDUCTION OF NOx EMISSIONS AND FOR ADVANCING THE MODELING AND UNDERSTANDING OF PULVERIZED COAL COMBUSTION AND EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Noam Lior; Stuart W. Churchill

    2003-10-01

    The primary objective of the proposed study was the study and analysis of, and design recommendations for, a novel radiatively-conductively stabilized combustion (RCSC) process for pulverized coal, which, based on our prior studies with both fluid fuels and pulverized coal, holds a high promise to reduce NO{sub x} production significantly. We have primarily engaged in continuing and improving our process modeling and analysis, obtained a large amount of quantitative information about the effects of the major parameters on NO{sub x} production, conducted an extensive exergy analysis of the process, evaluated the practicalities of employing the Radiatively-Conductively Stabilized Combustor (RCSC) to large power and heat plants, and improved the experimental facility. Prior experimental work has proven the feasibility of the combustor, but slagging during coal combustion was observed and should be dealt with. The primary outcomes and conclusions from the study are: (1) we developed a model and computer program that represents the pulverized coal combustion in the RCSC, (2) the model predicts that NO{sub x} emissions can be reduced by a number of methods, detailed in the report. (3) the exergy analysis points out at least a couple of possible ways to improve the exergetic efficiency in this combustor: increasing the effectiveness of thermal feedback, and adjusting the combustor mixture exit location, (4) because of the low coal flow rates necessitated in this study to obtain complete combustion in the burner, the size of a burner operating under the considered conditions would have to be up to an order of magnitude, larger than comparable commercial burners, but different flow configurations of the RCSC can yield higher feed rates and smaller dimensions, and should be investigated. Related to this contract, eleven papers were published in journals and conference proceedings, and ten invited presentations were given at university and research institutions, as well as at

  4. Combustion behaviors and kinetics of sewage sludge blended with pulverized coal: With and without catalysts.

    Science.gov (United States)

    Wang, Zhiqiang; Hong, Chen; Xing, Yi; Li, Yifei; Feng, Lihui; Jia, Mengmeng

    2018-04-01

    The combustion behaviors of sewage sludge (SS), pulverized coal (PC), and their blends were studied using a thermogravimetric analyzer. The effect of the mass ratio of SS to PC on the co-combustion characteristics was analyzed. The experiments showed that the ignition performance of the blends improved significantly as the mass percentage of SS increased, but its combustion intensity decreased. The burnout temperature (T b ) and comprehensive combustibility index (S) of the blends were almost unchanged when the mass percentage of SS was less than 10%. However, a high mass percentage of SS (>10%) resulted in a great increase in T b and a notable decrease in S. Subsequently, the effects of different catalysts (CaO, CeO 2 , MnO 2 , and Fe 2 O 3 ) on the combustion characteristics and activation energy of the SS/PC blend were investigated. The four catalysts promoted the release and combustion of volatile matters in the blended fuels and shifted their combustion profiles to a low temperature. In addition, their peak separating tendencies were obvious at 350-550 C, resulting in high peak widths. All the catalysts improved combustion activity of the blended fuel and accelerated fixed carbon combustion, which decreased the ignition temperature and burnout temperature of the fuels. CeO 2 had the best catalytic effects in terms of the comprehensive combustion performance and activation energy, followed closely by Fe 2 O 3 . However, the rare-earth compounds are expensive to be applied in the catalytic combustion process of SS/PC blend at present. Based on both catalytic effects and economy, Fe 2 O 3 was potentially an optimal option for catalytic combustion among the tested catalysts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Power generation from chemically cleaned coals: do environmental benefits of firing cleaner coal outweigh environmental burden of cleaning?

    DEFF Research Database (Denmark)

    Ryberg, Morten W.; Owsianiak, Mikolaj; Laurent, Alexis

    2015-01-01

    Power generation from high-ash coals is a niche technology for power generation, but coal cleaning is deemed necessary to avoid problems associated with low combustion efficiencies and to minimize environmental burdens associated with emissions of pollutants originating from ash. Here, chemical...... beneficiation of coals using acid and alkali–acid leaching procedures is evaluated as a potential coal cleaning technology employing life cycle assessment (LCA). Taking into account the environmental benefits from firing cleaner coal in pulverized coal power plants and the environmental burden of the cleaning...... itself, it is demonstrated that for a wide range of cleaning procedures and types of coal, chemical cleaning generally performs worse than combustion of the raw coals and physical cleaning using dense medium separation. These findings apply for many relevant impact categories, including climate change...

  6. Observer-Based Fuel Control Using Oxygen Measurement. A study based on a first-principles model of a pulverized coal fired Benson Boiler

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Palle; Bendtsen, Jan Dimon; Mortensen, Jan Henrik; Just Nielsen, Rene; Soendergaard Pedersen, Tom [Aalborg Univ. (Denmark). Dept. of Control Engineering

    2005-01-01

    This report describes an attempt to improve the existing control of coal mills used at the Danish power plant Nordjyllandsvaerket Unit 3. The coal mills pulverize raw coal to a fine-grained powder, which is injected into the furnace of the power plant. In the furnace the coal is combusted, producing heat, which is used for steam production. With better control of the coal mills, the power plant can be controlled more efficiently during load changes, thus improving the overall availability and efficiency of the plant. One of the main difficulties from a control point of view is that the coal mills are not equipped with sensors that detect how much coal is injected into the furnace. During the project, a fairly detailed, non-linear differential equation model of the furnace and the steam circuit was constructed and validated against data obtained at the plant. It was observed that this model was able to capture most of the important dynamics found in the data. Based on this model, it is possible to extract linearized models in various operating points. The report discusses this approach and illustrates how the model can be linearized and reduced to a lower-order linear model that is valid in the vicinity of an operating point by removing states that have little influence on the overall response. A viable adaptive control strategy would then be to design controllers for each of these simplified linear models, i.e., the control loop that sets references to the coal mills and feedwater, and use the load as a separate input to the control. The control gains should then be scheduled according to the load. However, the variations and uncertainties in the coal mill are not addressed directly in this approach. Another control approach was taken in this project, where a Kalman filter based on measurements of air flow blown into the furnace and the oxygen concentration in the flue gas is designed to estimate the actual coal flow injected into the furnace. With this estimate

  7. Nitrogen oxide suppression by using a new design of pulverized-coal burners

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Cameron, S.D.; Grekhov, L.L. [All-Russian Thermal Engineering Institute, Moscow (Russian Federation)

    1996-07-01

    The results of testing a low-NO{sub x} swirl burner are presented. This burner was developed by Babcock Energy Ltd., for reducing nitrogen oxide emissions when burning Ekibastuz and Kuznetsk low-caking coals in power boilers. The tests conducted at a large plant of the BEL Technological Center showed that the new burner reduces NO{sub x} emissions by approximately two times. 6 refs., 6 figs., 1 tab.

  8. Pilot-Scale Demonstration of ALTA for NOx Control in Pulverized Coal-Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Fry; Devin Davis; Marc Cremer; Bradley Adams

    2008-04-30

    This report describes computational fluid dynamics (CFD) modeling and pilot-scale testing conducted to demonstrate the ability of the Advanced Layered Technology Approach (ALTA) to reduce NO{sub x} emissions in a pulverized coal (PC) boiler. Testing specifically focused on characterizing NO{sub x} behavior with deep burner staging combined with Rich Reagent Injection (RRI). Tests were performed in a 4 MBtu/hr pilot-scale furnace at the University of Utah. Reaction Engineering International (REI) led the project team which included the University of Utah and Combustion Components Associates (CCA). Deep burner staging and RRI, combined with selective non-catalytic reduction (SNCR), make up the Advanced Layered Technology Approach (ALTA) for NO{sub x} reduction. The application of ALTA in a PC environment requires homogenization and rapid reaction of post-burner combustion gases and has not been successfully demonstrated in the past. Operation of the existing low-NO{sub x} burner and design and operation of an application specific ALTA burner was guided by CFD modeling conducted by REI. Parametric pilot-scale testing proved the chemistry of RRI in a PC environment with a NOx reduction of 79% at long residence times and high baseline NOx rate. At representative particle residence times, typical operation of the dual-register low-NO{sub x} burner provided an environment that was unsuitable for NO{sub x} reduction by RRI, showing no NOx reduction. With RRI, the ALTA burner was able to produce NO{sub x} emissions 20% lower than the low-NO{sub x} burner, 76 ppmv vs. 94 ppmv, at a burner stoichiometric ratio (BSR) of 0.7 and a normalized stoichiometric ratio (NSR) of 2.0. CFD modeling was used to investigate the application of RRI for NO{sub x} control on a 180 MW{sub e} wall-fired, PC boiler. A NO{sub x} reduction of 37% from baseline (normal operation) was predicted using ALTA burners with RRI to produce a NO{sub x} emission rate of 0.185 lb/MBtu at the horizontal nose of

  9. Assessment of inhalation risk due to radioactivity released from coal-based thermal power plant

    International Nuclear Information System (INIS)

    Sahu, S.K.; Pandit, G.G.; Shukla, V.K.; Puranik, V.D.; Kushwaha, H.S.

    2006-01-01

    In India, the coal based thermal power plants have been the major source of power generation in the past and would continue for decades to come. As the coal contains naturally occurring primordial radionuclides the burning of pulverized coal to produce energy for generation of electricity in thermal power plants will result in the emission of a variety of natural radioactive elements into the environment in the vicinity of thermal power plants. In this paper we have used two different methods for characterization of uncertainty in inhalation risk to the general public around 10 Kms radius in the neighborhood of a coal-fired thermal power plant. (author)

  10. Effect of the parameters of a straight-through pulverized coal spray on formation of nitrogen oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1987-04-01

    Experiments were conducted on varying the parameters affecting intensity of the mixing process at the starting point of a pulverized coal spray. Investigations were carried out using Donetsk black coal in a BKZ-210-140FZhSh steam generator equipped with a tangential combustion chamber. The plant featured liquid slag removal and direct blow-in as well as a medium-speed model VSM-140 mill. Four experiments were conducted in which gas samples were taken from the combustion chamber and analyzed for RO/sub 2/ and O/sub 2/ as well as CO and H/sub 2/. A relationship between reducing gases at the starting point of the torch and the initial air feed factor was demonstrated. Experiments were conducted to determine a relationship between NO/sub x/ concentrations in exhaust gases and the initial air feed factor. 5 refs.

  11. Aspects on prediction of two-phase reacting flow in a swirl-stabilized pulverized coal flame

    Energy Technology Data Exchange (ETDEWEB)

    Wennerberg, D. (LSTM, Erlangen (Germany))

    1991-01-01

    Knowledge of NO{sub x} formation routes in a pulverized coal flame is essential for understanding the problematics. Coal-bound N is the dominated source of NO{sub x} in a pf flame. The so-called 'thermal' NO{sub x} plays a minor role, since the temperature level is lower in a pf flame than in a gas - or oilfired flame. The coalbound N is mainly released along with the volatiles in the coal as HCN. This release takes place in the central recirculation zone when the coal is first heated up. The continued reaction processes of the HCN take different paths, dependent on whether the burner near field zone is fuel-rich or fuel-lean: Under fuel-rich conditions: HCN {yields} CN {yields} N{sub 2}. Under fuel-lean conditions: HCN {yields} NH/NCO {yields} NO. This reaction scheme is strongly simplified in order to clarify the main influence of the aerodynamics on the NO{sub x} formation. Concentration of radicals O, OH, H are also important for the reaction routes as well as the residence time for the coal particles under respective conditions. The conditions for reactions are however determined largely by the aerodynamics of the near-field burner zone. (orig./GL).

  12. Burning characteristics and gaseous/solid emissions of blends of pulverized coal with waste tire-derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    Levendis, Y.A.; Atal, A.; Courtemanche, B.; Carlson, J.B. [Northeastern University, Boston, MA (United States). Dept. of Mechanical, Industrial and Manufacturing Engineering

    1998-10-01

    The combustion behaviour and the emissions from blends of a pulverized bituminous coal and ground waste automobile tires were investigated. Combustion took place under steady flow conditions, in an electrically-heated drop-tube furnace in air at a gas temperature of 1150{degree}C and a particle heating rate of approximate to 10{sup 5}{degree}C/s. Combustion observations were conducted with simultaneous pyrometry and cinematography. Interparticle flame interactions were visually observed in the near-stoichiometric and fuel-rich regions. Volatile flame interactions were apparent at a lower phi for tire crumb particles than for coal particles and became progressively more intense with increasing phi until at sufficiently high phi`s large group flames formed for tire particles. As particle flame interactions increased, average maximum temperatures in the flame decreased. Coal particles resisted the formation of group flames, even at high phi`s. Such observations correlated with the trends observed for the PAH emissions of the two fuels, those of tire crumb being much higher than those of coal Some stratification in the combustion of blends of particles of the two fuels was observed. This kept the PAH emissions lower levels than expected. NO{sub x} emissions from tires were much lower than those of coal, while those of the blends were close to the weighted average emissions. SO{sub 2} emissions from the blends were close to the weighted average emissions of the two fuels. Blending coal with tire reduced the CO{sub 2} emissions of coal but increased the CO emissions. Particulate emissions (soot and ash), measured in the range of 0.4 to 8{mu}m, increased with phi. Generally, tire produced more mass of submicron particulates than coal. Particulate emissions of blends of the two fuels were close to those expected based on weighted average of the two fuels.

  13. Revised users manual, Pulverized Coal Gasification or Combustion: 2-dimensional (87-PCGC-2): Final report, Volume 2. [87-PCGC-2

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.J.; Smoot, L.D.; Brewster, B.S.

    1987-12-01

    A two-dimensional, steady-state model for describing a variety of reactive and non-reactive flows, including pulverized coal combustion and gasification, is presented. Recent code revisions and additions are described. The model, referred to as 87-PCGC-2, is applicable to cylindrical axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using either a flux method or discrete ordinates method. The particle phase is modeled in a Lagrangian framework, such that mean paths of particle groups are followed. Several multi-step coal devolatilization schemes are included along with a heterogeneous reaction scheme that allows for both diffusion and chemical reaction. Major gas-phase reactions are modeled assuming local instantaneous equilibrium, and thus the reaction rates are limited by the turbulent rate mixing. A NO/sub x/ finite rate chemistry submodel is included which integrates chemical kinetics and the statistics of the turbulence. The gas phase is described by elliptic partial differential equations that are solved by an iterative line-by-line technique. Under-relaxation is used to achieve numerical stability. The generalized nature of the model allows for calculation of isothermal fluid mechanicsgaseous combustion, droplet combustion, particulate combustion and various mixtures of the above, including combustion of coal-water and coal-oil slurries. Both combustion and gasification environments are permissible. User information and theory are presented, along with sample problems. 106 refs.

  14. Online Monitoring System of Air Distribution in Pulverized Coal-Fired Boiler Based on Numerical Modeling

    Science.gov (United States)

    Żymełka, Piotr; Nabagło, Daniel; Janda, Tomasz; Madejski, Paweł

    2017-12-01

    Balanced distribution of air in coal-fired boiler is one of the most important factors in the combustion process and is strongly connected to the overall system efficiency. Reliable and continuous information about combustion airflow and fuel rate is essential for achieving optimal stoichiometric ratio as well as efficient and safe operation of a boiler. Imbalances in air distribution result in reduced boiler efficiency, increased gas pollutant emission and operating problems, such as corrosion, slagging or fouling. Monitoring of air flow trends in boiler is an effective method for further analysis and can help to appoint important dependences and start optimization actions. Accurate real-time monitoring of the air distribution in boiler can bring economical, environmental and operational benefits. The paper presents a novel concept for online monitoring system of air distribution in coal-fired boiler based on real-time numerical calculations. The proposed mathematical model allows for identification of mass flow rates of secondary air to individual burners and to overfire air (OFA) nozzles. Numerical models of air and flue gas system were developed using software for power plant simulation. The correctness of the developed model was verified and validated with the reference measurement values. The presented numerical model for real-time monitoring of air distribution is capable of giving continuous determination of the complete air flows based on available digital communication system (DCS) data.

  15. Online Monitoring System of Air Distribution in Pulverized Coal-Fired Boiler Based on Numerical Modeling

    Directory of Open Access Journals (Sweden)

    Żymełka Piotr

    2017-12-01

    Full Text Available Balanced distribution of air in coal-fired boiler is one of the most important factors in the combustion process and is strongly connected to the overall system efficiency. Reliable and continuous information about combustion airflow and fuel rate is essential for achieving optimal stoichiometric ratio as well as efficient and safe operation of a boiler. Imbalances in air distribution result in reduced boiler efficiency, increased gas pollutant emission and operating problems, such as corrosion, slagging or fouling. Monitoring of air flow trends in boiler is an effective method for further analysis and can help to appoint important dependences and start optimization actions. Accurate real-time monitoring of the air distribution in boiler can bring economical, environmental and operational benefits. The paper presents a novel concept for online monitoring system of air distribution in coal-fired boiler based on real-time numerical calculations. The proposed mathematical model allows for identification of mass flow rates of secondary air to individual burners and to overfire air (OFA nozzles. Numerical models of air and flue gas system were developed using software for power plant simulation. The correctness of the developed model was verified and validated with the reference measurement values. The presented numerical model for real-time monitoring of air distribution is capable of giving continuous determination of the complete air flows based on available digital communication system (DCS data.

  16. Pulverizing Portraits

    DEFF Research Database (Denmark)

    Elias, Camelia

    Pulverizing Portraits provides the first book-length study of contemporary American poet Lynn Emanuel. Emanuel's poetry is significant because it situates itself in relation to current debates about the state of poetry, creative writing in the academia, and the importance of drawing on interdisci......Pulverizing Portraits provides the first book-length study of contemporary American poet Lynn Emanuel. Emanuel's poetry is significant because it situates itself in relation to current debates about the state of poetry, creative writing in the academia, and the importance of drawing...... been increasingly concerned with poetry as a tool for cultural criticism which constantly redefines our poetic discourse. Elias traces the power of Emanuel's writing and looks at her subtleties in combining intrinsic and formal constraints in poetry with extrinsic and socio-historical methodologies...

  17. Numerical study of furnace process of a 600 MW pulverized coal boiler under low load with SNCR application

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Q.X.; Shi, Y.; Liu, H.; Yang, C.H.; Wu, S.H. [Harbin Institute of Technology, Harbin (China)

    2013-07-01

    Numerical simulation of flow, heat transfer, and combustion process in a 600MW pulverized coal boiler under low load is performed using Computational Fluid Dynamics (CFD) code Fluent. The distributions of temperature and species were obtained and their influences on Selective non-catalytic reduction (SNCR) were analyzed. The results indicate that the furnace temperature changed significantly as the operation load declines. The furnace space with proper temperature for SNCR reaction becomes lower with decreasing of operation load. As the load falls off, the available O{sub 2}concentration for SNCR reactions rises gently and the initial NOx concentration for SNCR reactions debases slightly. These variations can have some influence on the SNCR process. For the upper furnace where the temperature is suitable for SNCR reactions, the CO concentration is close to 0 under different load. Consequently, the SNCR process will not be affected by CO based on the calculation in this work.

  18. The application of RANS CFD for design of SNCR technology for a pulverized coal-fired boiler

    Directory of Open Access Journals (Sweden)

    Ruszak Monika

    2017-06-01

    Full Text Available The article describes the technology of NOx emission abatement by SNCR method. The scope of research included CDF simulations as well as design and construction of the pilot plant and tests of NOx reduction by urea in the plant located in industrial pulverized-coal fired boiler. The key step of research was to determine the appropriate temperature window for the SNCR process. The proposed solution of the location of injection lances in the combustion chamber enabled to achieve over a 30% reduction of NOx. It is possible to achieve higher effectiveness of the proposed SNCR technology and meet the required emission standards via providing prior reduction of NOx to the level of 350 mg/um3 using the primary methods.

  19. Prospects for advanced coal-fuelled fuel cell power plants

    International Nuclear Information System (INIS)

    Jansen, D.; Laag, P.C. van der; Oudhuis, A.B.J.; Ribberink, J.S.

    1994-01-01

    As part of ECN's in-house R and D programmes on clean energy conversion systems with high efficiencies and low emissions, system assessment studies have been carried out on coal gasification power plants integrated with high-temperature fuel cells (IGFC). The studies also included the potential to reduce CO 2 emissions, and to find possible ways for CO 2 extraction and sequestration. The development of this new type of clean coal technology for large-scale power generation is still far off. A significant market share is not envisaged before the year 2015. To assess the future market potential of coal-fuelled fuel cell power plants, the promise of this fuel cell technology was assessed against the performance and the development of current state-of-the-art large-scale power generation systems, namely the pulverized coal-fired power plants and the integrated coal gasification combined cycle (IGCC) power plants. With the anticipated progress in gas turbine and gas clean-up technology, coal-fuelled fuel cell power plants will have to face severe competition from advanced IGCC power plants, despite their higher efficiency. (orig.)

  20. Ignition and devolatilization of pulverized coals in lower oxygen content O{sub 2}/CO{sub 2} atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaohong; Li, Jing; Liu, Zhaohui; Yang, Ming; Wang, Dingbang; Zheng, Chuguang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    High speed camera is employed to capture the transient images of the burning particle in a flat-flame entrained flow reactor, some information of the burning particle, such as the optical intensity and the residence time, are obtained through analysis of transient images. The ignition and devolatilization behavior of different rank coals at 1,670, 1,770 and 1,940 K over a range of 2-30% O{sub 2} in both N{sub 2} and CO{sub 2} diluent gases are researched. The results indicate that the laws of ignition and devolatilization of pulverized coals in low oxygen O{sub 2}/CO{sub 2} atmosphere are consistent with the literature, which focus on the environments of high oxygen contents (10-30%) or lower temperate (900-1,500 K). With the gas temperature and oxygen content increased, the ignition delay time and devolatilization time for the lower oxygen content cases decreased for both N{sub 2} and CO{sub 2} atmosphere. With the use CO{sub 2} in place of N{sub 2} in low oxygen content, the ignition delay was retarded and the duration of devolatilization was increased. The effect of CO{sub 2} on coal particle ignition is explained by its higher molar specific heat. And the effect of CO{sub 2} on devolatilization results from its effect on the diffusion rates of volatile fuel and oxygen.

  1. Anatomy of an upgraded pulverized coal facility: Combustion modification through flue gas scrubbing

    Energy Technology Data Exchange (ETDEWEB)

    Watts, J.U. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center; Savichky, W.J.; O`Dea, D.T. [New York State Electric and Gas Corp., Binghamton, NY (United States)

    1997-12-31

    Regeneration is a biological term for formation or creating anew. In the case of Milliken station, a species of steam generation (Tangentus coali) regeneration refers to refitting critical systems with the latest technological advances to reduce emissions while maintaining or improving performance. The plant has undergone a series of operations which provided anatomical changes as well as a face lift. Each of the two units were place in suspended animation (outage) to allow these changes to be made. The paper describes the project which includes retrofitting combustion systems, pulverizers, boiler liners, scrubbers, and control room. This retrofit is meant to increase thermal efficiency while reducing the formation of nitrogen oxides.

  2. Assessing the Exergy Costs of a 332-MW Pulverized Coal-Fired Boiler

    Directory of Open Access Journals (Sweden)

    Victor H. Rangel-Hernandez

    2016-08-01

    Full Text Available In this paper, we analyze the exergy costs of a real large industrial boiler with the aim of improving efficiency. Specifically, the 350-MW front-fired, natural circulation, single reheat and balanced draft coal-fired boiler forms part of a 1050-MW conventional power plant located in Spain. We start with a diagram of the power plant, followed by a formulation of the exergy cost allocation problem to determine the exergy cost of the product of the boiler as a whole and the expenses of the individual components and energy streams. We also define a productive structure of the system. Furthermore, a proposal for including the exergy of radiation is provided in this study. Our results show that the unit exergy cost of the product of the boiler goes from 2.352 to 2.5, and that the maximum values are located in the ancillary electrical devices, such as induced-draft fans and coil heaters. Finally, radiation does not have an effect on the electricity cost, but affects at least 30% of the unit exergy cost of the boiler’s product.

  3. Combustion of wet pulverized coal in reactor flow; Combustao de particulas de carvao pulverizado contendo umidade em seu interior

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Valdeci Jose [Universidade do Planalto Catarinense (UNIPLAC), Lages, SC (Brazil). Dept. de Ciencias Exatas e Tecnologicas]. E-mail: vcosta@iscc.com.br; Krioukov, Viktor [Universidade Regional do Estado do Rio Grande do Sul (UNIJUI), Ijui, RS (Brazil). Programa de Pos-Graduacao em Modelagem Matematica]. E-mail: krioukov@main.unijui.tche.br; Maliska, Clovis Raimundo [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica]. E-mail: maliska@sinmec.ufsc.br

    2000-07-01

    In this work I propose a numeric study destined to the combustion of wet pulverized coal in reacting flow. The mathematical model is composed by equations for the concentration of the substances in the reacting flow, written based in the chemical kinetics and exponential form, conservation equations and devolatilization equations, combustion of the carbon and residues. The study detects fluctuation among the temperatures of the gas and of the particles. The inclusion of the humidity as constituent part of the volatile matter doesn't affect the performance of the model, however, its presence alters the temperature profiles and the gaseous composition. With the increase of the humidity in the coal have a slight reduction in the time of combustion of the particle, what agrees with experimental data. The model foresees an increment in the difference Tp-Tg and a smaller production of CO with the increase of the wetness rate. The volatile ones, in spite of they have its fraction relatively reduced with the wetness presence they are liberated more slowly with its increment, provoking change in the position of front flame. (author)

  4. Chemical forms of the fluorine and carbon in fly ashes recovered from electrostatic precipitators of pulverized coal-fired plants

    Energy Technology Data Exchange (ETDEWEB)

    Naoto Tsubouchi; Hidekazu Hayashi; Akiyuki Kawashima; Masahide Sato; Noboru Suzuki; Yasuo Ohtsuka [Tohoku University, Sendai (Japan). Institute of Multidisciplinary Research for Advanced Materials

    2011-01-15

    The functionalities of the fluorine and carbon present in fly ashes formed in pulverized coal combustion have been studied with X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD) techniques. The ash samples include 20-130 {mu}g/g-dry and 0.4-4.1 mass%-dry of fluorine and carbon elements, respectively, and these components are enriched at the outermost layer of the ash surface. The F consists of both inorganic and organic functionalities, and the proportion of the latter is as high as 84-98 mol%. The C has different types of surface oxygen species, such as carboxyl, lactone/acid anhydride and phenolic groups, and most of these groups decompose to CO{sub 2} or CO up to 700{sup o}C to yield carbon active sites. When the amount of the O-functional forms increases, the content of organic C-F forms tends to increase almost linearly. On the basis of the above results, it may be speculated as one possibility that the formation of covalent C-F bonds takes place mainly through secondary reactions between gaseous F-containing compounds (HF and/or F{sub 2}) in flue gas and carbon active sites produced below 700{sup o}C downstream of coal-fired boilers. 30 refs., 8 figs., 4 tabs.

  5. Influence of rank and macerals on the burnout behaviour of pulverized Indian coal

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Nandita; Biswas, S.; Sarkar, P.; Kumar, Manish; Mukherjee, A.; Choudhury, A. [Central Institute of Mining and Fuel Research, Digwadih Campus (Formerly Central Fuel Research Institute), P.O. FRI, Dhanbad-828 108, Jharkhand (India); Ghosal, Sujit; Mitra, Tandra [Jadavpur University, Kolkata-700 032, West Bengal (India)

    2008-04-03

    The combustion behaviour of coal is significantly influenced by its rank and maceral and microlithotype compositions. Different macerals, due to their distinct and unique physical properties and chemical makeup, have different burning characteristics. This paper deals with the burning behaviour of coals of Indian origin by thermo gravimetric analysis (TGA) and in drop tube furnace (DTF) with particular emphasis on the role of macerals and their associations. Four coals of different rank and petrographic makeup, along with their two density fractions, with enriched vitrinite and inertinites, respectively,were studied in both TGA and DTF. The burnout behaviour was estimated from the chemical analyses of the char samples collected from the DTF. The burning characteristics of one of the coals deviate from the trend expected with the variations of rank. The behaviour of the density fractions in DTF was found to be different from that observed in TGA analyses. An attempt has been made to correlate the burnout with the petrographic macerals and microlithotypes present in the coals. The morphology of the residual chars indicates the contributions of the inertinites towards the formation of cenospheres and network types of reactive chars. The superior burning behaviour of the higher density inertinite-rich fractions over the raw coals and also some vitrinite-rich fractions indicate the better reactivity of the inertinites towards combustion. (author)

  6. Numerical study on NO formation in a pulverized coal-fired furnace using oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Aiyue; Chen, Yuan; Sheng, Changdong [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    Computational fluid dynamics (CFD) approach was employed to numerically investigate NO formation in a 600 MW wall-fired pulverized coal-fired furnace retrofitted for oxy-coal combustion, aimed at the impacts of flue gas recycle ratio, O{sub 2} staging and recycled NO with the recycled flue gas (RFG) on NO formation and emission. An in-house CFD research code for conventional air combustion was developed and extended to simulate O{sub 2}/RFG combustion with specific considerations of the change of gas properties and its impact on coal particle combustion processes. The extended De Soete mechanisms including NO reburning mechanism were applied to describe transformations of fuel nitrogen. It was shown that CFD simulation represented the significant reduction of NO formation during O{sub 2}/RFG combustion compared to that during air combustion. The in-burner and particularly the in-furnace O{sub 2} staging were confirmed still to play very important roles in NO formation control. Changing the recycle ratio had significant impact on the combustion performance and consequently on NO formation and emission. With the combustion performance ensured, decreasing the flue gas recycle ratio or increasing the inlet O{sub 2} concentration of combustion gas led to reduction of NO formation and emission. Although NO formation and emission was found to increase with increasing the inlet NO concentration of combustion gas, CFD simulation indicated that {proportional_to}74% of the inlet NO was reduced in the furnace, consistent with the experimental data reported in the literature. This demonstrated the significant contribution of reburning mechanism to the reduction of the recycled NO in the furnace.

  7. Power Generation from Coal 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This report focuses mainly on developments to improve the performance of coal-based power generation technologies, which should be a priority -- particularly if carbon capture and storage takes longer to become established than currently projected. A close look is taken of the major ongoing developments in process technology, plant equipment, instrumentation and control. Coal is an important source of energy for the world, particularly for power generation. To meet the growth in demand for energy over the past decade, the contribution from coal has exceeded that of any other energy source. Additionally, coal has contributed almost half of total growth in electricity over the past decade. As a result, CO2 emissions from coal-fired power generation have increased markedly and continue to rise. More than 70% of CO2 emissions that arise from power generation are attributed to coal. To play its role in a sustainable energy future, its environmental footprint must be reduced; using coal more efficiently is an important first step. Beyond efficiency improvement, carbon capture and storage (CCS) must be deployed to make deep cuts in CO2 emissions. The need for energy and the economics of producing and supplying it to the end-user are central considerations in power plant construction and operation. Economic and regulatory conditions must be made consistent with the ambition to achieve higher efficiencies and lower emissions. In essence, clean coal technologies must be more widely deployed.

  8. Research on pyrolysis characteristics and kinetics of super fine and conventional pulverized coal

    International Nuclear Information System (INIS)

    Zhang Chaoqun; Jiang Xiumin; Wei Lihong; Wang Hui

    2007-01-01

    Based on isothermal thermogravimetric analysis (TGA) and kinetic equations, the optimization toolbox of MATLAB was applied to study the effects of particle size and heating rate on the pyrolysis characteristics and kinetics and to obtain the mechanism function and kinetic parameters of Yuanbaoshan coal at four different particle sizes and heating rates. The pyrolysis characteristics of the samples were analyzed using thermogravimetric (TG) curves and differential thermogravimetric (DTG) curves. The results show that the coal pyrolysis process is strongly affected by heating rate and particle size. As the heating rate increases, the temperature of volatile matter initiation increases, the total volatile matter evolved decreases and the DTG peak shifts toward higher temperature. As the particle size decreases, the temperature of volatile matter initiation of the coal sample decreases and the maximum rate of mass loss increases. In the pyrolysis of coal, the activation energies of the samples were found to increase with growing particle size and decreasing heating rate for both of the devolatilization temperature stages. In the lower temperature stage, the coal samples show a great difference in mechanism function at different particle sizes and heating rates

  9. SYSTEM OF PRECISE DOSING OF COAGULANT IN THE PULVERIZING AERATOR POWERED BY WIND USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Andrzej Osuch

    2017-06-01

    Full Text Available One of the methods used to support land restoration lakes is the method of pulverizing aeration. Use of aerators powered exclusively by wind improves the condition of reservoirs, while not compromising the environment. The pulverizing aeration process drive is windy on the water aeration zone near bottom, while removing harmful gases anaerobic metabolism. Aerators of this type due to the unique method of operation also enable dosing of inactivation coagulants with oxygenated water to the depths of the lake. Mileage coagulant dosing can be made dependent on the speed of the wind, which has an impact on the performance of his work, because with the increase of wind speed dispensing valve coagulants should be stronger open. One of the methods for assessing the state of lakes is to measure water transparency. The softer visibility, the most likely state of the water is better. Dosage of coagulant so you can make the transparency of the water. Similarly, with increasing transparency water dispensing valve should be more covered up. Control of the drain valve dispenser coagulant can be simultaneously dependent on two factors. The study was designed method of control drain valve dispenser coagulant using fuzzy inference.

  10. Assessment of ecotoxicological risks of element leaching from pulverized coal ashes

    NARCIS (Netherlands)

    Jenner, H.A.

    1995-01-01

    This thesis describes the consequences of the disposal of the combustion residues of coal, especially the uptake of elements from such residues and their effects on various organisms. The effects on benthic organisms in fresh and in seawater are considered in the first two parts. The third

  11. An artificial intelligence treatment of devolatilization for pulverized coal and biomass in co-fired flames

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, T.; Awais, M.M.; Lockwood, F.C. [Lahore University of Management & Science, Lahore (Pakistan)

    2003-02-01

    In most of the existing predictive procedures for devolatilization, combustion and emissions are modeled by a single-step, global chemical reaction, with the yield of volatile matter presumed to experience mixing-controlled combustion. Several more detailed multi-step coal devolatilization models have recently emerged. A common shortcoming of these models is that they require a large set of input data, involving kinetic parameters, gas precursor compositions, and additional parameters describing the coal's polymeric structure. The input data must be generated from an extensive series of experimental measurements for each coal of interest. Very significant computational expense and application restricted to coals, which have already been studied, are implied. All of these problems are exacerbated when coal blending or co-firing with renewable solid fuels, such as forest and agricultural waste, and sewage sludge, is considered. In this paper, a new approach based on neural networks is proposed; it is capable of handling a range of solid fuels. The model considers heating rate, fuel atomic ratios, and the temperature of the fuel particles to predict the volatiles released by the particles. The 'learning' properties of the model implicitly facilitate all the physical conditions, of devolatilization experiments, which were used during its training and validation phases. The neural-network model was implemented into an existing 3D CFD combustion code. The predictions for high- and low-NOx burners demonstrate improved prediction of in-flame data for reduced computational effort, one-fifth of that with the standard single-global-reaction devolatilization model. Its devolatilization predictions have also been compared with a detailed devolatilization model (FLASHCHAIN) and were found to be comparable.

  12. Weighted sum of gray gases model optimization for numerical investigations of processes inside pulverized coal-fired furnaces

    Science.gov (United States)

    Crnomarkovic, Nenad; Belosevic, Srdjan; Tomanovic, Ivan; Milicevic, Aleksandar

    2017-12-01

    The effects of the number of significant figures (NSF) in the interpolation polynomial coefficients (IPCs) of the weighted sum of gray gases model (WSGM) on results of numerical investigations and WSGM optimization were investigated. The investigation was conducted using numerical simulations of the processes inside a pulverized coal-fired furnace. The radiative properties of the gas phase were determined using the simple gray gas model (SG), two-term WSGM (W2), and three-term WSGM (W3). Ten sets of the IPCs with the same NSF were formed for every weighting coefficient in both W2 and W3. The average and maximal relative difference values of the flame temperatures, wall temperatures, and wall heat fluxes were determined. The investigation showed that the results of numerical investigations were affected by the NSF unless it exceeded certain value. The increase in the NSF did not necessarily lead to WSGM optimization. The combination of the NSF (CNSF) was the necessary requirement for WSGM optimization.

  13. Risk management of energy efficiency projects in the industry - sample plant for injecting pulverized coal into the blast furnaces

    Directory of Open Access Journals (Sweden)

    Jovanović Filip P.

    2016-01-01

    Full Text Available This paper analyses the applicability of well-known risk management methodologies in energy efficiency projects in the industry. The possibilities of application of the selected risk management methodology are demonstrated within the project of the plants for injecting pulverized coal into blast furnaces nos. 1 and 2, implemented by the company US STEEL SERBIA d.o.o. in Smederevo. The aim of the project was to increase energy efficiency through the reduction of the quantity of coke, whose production requires large amounts of energy, reduction of harmful exhaust emission and increase productivity of blast furnaces through the reduction of production costs. The project was complex and had high costs, so that it was necessary to predict risk events and plan responses to identified risks at an early stage of implementation, in the course of the project design, in order to minimise losses and implement the project in accordance with the defined time and cost limitations. [Projekat Ministarstva nauke Republike Srbije, br. 179081: Researching contemporary tendencies of strategic management using specialized management disciplines in function of competitiveness of Serbian economy

  14. The Technology of Nitrogen Oxide Emissions Reduction at Pulverized Coal Burning

    Directory of Open Access Journals (Sweden)

    Dunaevska, N.I.

    2016-11-01

    Full Text Available To assess the effectiveness of the influence of thermochemical preparation of anthracite on the formation of nitrogen oxides the three-dimensional numerical model of the TPP-210A boiler`s furnace for standard and modified burners was created. The calculation results are shown the decrease of NOx concentration across the height of the furnace and reduce of the unburnt coal for the modified burners in comparison with standard ones.

  15. Pulverized coal firing of aluminum melting furnaces. First annual technical progress report, May 1978-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    West, C.E.; Hines, J.E.; Stewart, D.L. Jr.; Yu, H.

    1979-10-01

    The ultimate objective of this program is the commercial demonstration of an efficient, environmentally acceptable coal firing process suitable for implementation on melting furnaces throughout the aluminum industry. To achieve this goal, the program has been divided into two phases. Phase I has begun with the design and construction of a 350 lb/h (coal) staged slagging cyclone combustor (SSCC) attached to a 7-ft dia aluminum melting ladle furnace. Process development will culminate with a 1000 pph prototype SSCC firing a 40,000 lb capacity open hearth melting furnace at the Alcoa Laboratories. Phase II implementation is currently planned for Alcoa's Lafayette, IN, Works, where two of the ingot plant's five open hearth melting furnaces will be converted to utilize coal. In addition to confirmation of data gathered in Phase I, the effect of extended production schedule operation on equipment and efficiencies will be determined. This work would begin in 1982 pursuant to technical and economic evaluation of the process development at that time. A major design subcontract for assistance in the design of the SSCC is 80% completed.

  16. Combustion of pulverized coal in vortex structures. Final report, October 1, 1993--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Gollahalli, S.R.; Butuk, N.

    1996-03-01

    The objectives of the project were: (i) to understand the effects of heating one of the streams on the characteristics of shear layers, (ii) to investigate the changes in the characteristics of large scale vortex structures in the shear layer caused by the introduction of inert solid particles in one of the feed streams; (iii) to understand the effects of pyrolyzing solids on the shear layer behavior; and (iv) to study the effects of combustion of particles and their pyrolysis products on the shear layer structure, heat release rate, and pollutant emission characteristics. An experimental facility for generating two-dimensional shear layers containing vortex structures has been designed and fabricated. The experimental facility is essentially a low speed wind tunnel designed to (i) provide two gas streams, initially with uniform velocity profiles and isotropic turbulence, mixing at the end of a splitter plate, (ii) introduce vorticity by passively perturbing one of the streams, (iii) allow heating of one of the streams to temperatures high enough to cause pyrolysis of coal particles, and (iv) provide a natural gas flame in one of the streams to result in ignition and burning of coal particles.

  17. The use of mechanically activated micronized coal in thermal power engineering

    Directory of Open Access Journals (Sweden)

    Burdukov Anatoliy P.

    2016-01-01

    Full Text Available Coal is one of the main energy resources and development of new promising technologies on its basis is certainly topical. This article discusses the use of new technology of gas and fuel oil replacement by mechanically activated micronized coal in power engineering: ignition and stabilization of pulverized coal flame combustion, as well as gasification of micronized coal in the flow. The new technology coal combustion with two stages of grinding is suggested. Optimization of the scheme of two-stage combustion is calculated. The first experimental data on the combustion process are obtained. The first demonstration tests on gas and heavy oil replacement by micronized coal during boiler ignition were carried out in the real power boiler with the capacity of 320 tons of steam per hour.

  18. Coal-fired power plants and the causes of high temperature corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Oakey, J E; Simms, N J [British Coal Corporation, Coal Technology Development Div., Cheltenham, Glos (United Kingdom); Tomkings, A B [ERA Technology Ltd., Leatherhead, Surrey (United Kingdom)

    1996-12-01

    The heat exchangers in all types of coal-fired power plant operate in aggressive, high temperature environments where high temperature corrosion can severely limit their service lives. The extent of this corrosion is governed by the combined effects of the operating conditions of the heat exchanger and the presence of corrosive species released from the coal during operation. This paper reviews the coal-related factors, such as ash deposition, which influence the operating environments of heat exchangers in three types of coal-fired power plant - conventional pulverized coal boilers, fluidized bed boilers and coal gasification systems. The effects on the performance of the materials used for these heat exchangers are then compared. (au) 35 refs.

  19. Numerical simulation of the gasification based biomass cofiring on a 600 MW pulverized coal boiler

    Energy Technology Data Exchange (ETDEWEB)

    Yang, R.; Dong, C.Q.; Yang, Y.P.; Zhang, J.J. [Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, Beijing (China); North China Electric Power Univ., Beijing (China). Key Laboratory of Security and Clean Energy Technology

    2008-07-01

    Biomass cofiring is the practice of supplementing a base fuel with biomass fuels such as wood waste, short rotation woody crops, short rotation herbaceous crops, alfalfa stems, various types of manure, landfill gas and wastewater treatment gas. The practice began in the 1980s and is becoming commonplace in Europe and the United States. The benefits include reduced carbon dioxide emissions and other airborne emissions such as nitrous oxides (NOx), sulphur dioxide and trace metals; potential for reduced fuel cost; and supporting economic development among wood products and agricultural industries in a given service area. However, technical challenges remain when biomass is directly cofired with coal. These include limited percentage of biomass for cofiring; fuel preparation, storage, and delivery; ash deposition and corrosion associated with the high alkali metal and chlorine content in biomass; fly ash utilization; and impacts on the selective catalytic reduction (SCR) system. This study involved a numerical simulation of cofiring coal and biomass gas in a 600 MWe tangential PC boiler using Fluent software. Combustion behaviour and pollutant formation in the conventional combustion and cofiring cases were compared. The study revealed that reduced NOx emissions can be achieved when producer gas is injected from the lowest layer burner. The nitrogen monoxide (NO) removal rate was between 56.64 and 70.37 per cent. In addition, slagging can be reduced because of the lower temperature. It was concluded that the convection heat transfer area should be increased or the proportion of biomass gas should be decreased to achieve higher boiler efficiency. 8 refs., 4 tabs., 8 figs.

  20. The effect of char structure on burnout during pulverized coal combustion at pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G.; Wu, H.; Benfell, K.E.; Lucas, J.A.; Wall, T.F.

    1999-07-01

    An Australian bituminous coal sample was burnt in a drop tube furnace (DTF) at 1 atm and a pressurized drop tube furnace (PDTF) at 15 atm. The char samples were collected at different burnout levels, and a scanning electron microscope was used to examine the structures of chars. A model was developed to predict the burnout of char particles with different structures. The model accounts for combustion of the thin-walled structure of cenospheric char and its fragmentation during burnout. The effect of pressure on reaction rate was also considered in the model. As a result, approximately 40% and 70% cenospheric char particles were observed in the char samples collected after coal pyrolysis in the DTF and PDTF respectively. A large number of fine particles (< 30 mm) were observed in the 1 atm char samples at burnout levels between 30% and 50%, which suggests that significant fragmentation occurred during early combustion. Ash particle size distributions show that a large number of small ash particles formed during burnout at high pressure. The time needed for 70% char burnout at 15 atm is approximately 1.6 times that at 1 atm under the same temperature and gas environment conditions, which is attributed to the different pressures as well as char structures. The overall reaction rate for cenospheric char was predicted to be approximately 2 times that of the dense chars, which is consistent with previous experimental results. The predicted char burnout including char structures agrees reasonably well with the experimental measurements that were obtained at 1 atm and 15 atm pressures.

  1. Power Generation from Coal 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Coal is the biggest single source of energy for electricity production and its share is growing. The efficiency of converting coal into electricity matters: more efficient power plants use less fuel and emit less climate-damaging carbon dioxide. This book explores how efficiency is measured and reported at coal-fired power plants. With many different methods used to express efficiency performance, it is often difficult to compare plants, even before accounting for any fixed constraints such as coal quality and cooling-water temperature. Practical guidelines are presented that allow the efficiency and emissions of any plant to be reported on a common basis and compared against best practice. A global database of plant performance is proposed that would allow under-performing plants to be identified for improvement. Armed with this information, policy makers would be in a better position to monitor and, if necessary, regulate how coal is used for power generation. The tools and techniques described will be of value to anyone with an interest in the more sustainable use of coal.

  2. Increasing coal-fired power generation efficiency to reduce electric cost and environmental emissions

    International Nuclear Information System (INIS)

    Torrens, I.M.; Stenzel, W.C.

    1997-01-01

    New generating capacity required globally between 1993 and 2010 is estimated to be around 1500 GW, of which some two-thirds will be outside the OECD, and some 40 % in the Asian non-OECD countries. Coal is likely to account for a substantial fraction of this new generation. Today's state-of-the-art supercritical coal-fired power plant has a conversion efficiency of some 42-45 %. The capital cost increase associated with the supercritical or ultra-supercritical pulverized coal power plant compared to a conventional subcritical plant is small to negligible. The increased efficiency associated with the supercritical plant leads to an actual reduction in the total cost of electricity generated in cents/kWh, relative to a conventional plant. Despite this, the power sector continues to build subcritical plants and has no near term plans to increase the efficiency of power plants in the projects it is developing. Advanced clean coal technologies such as integrated gasification combined cycle and pressurized fluidized bed combustion will be selected for independent power projects only in very specific circumstances. Advanced clean coal plants can be operated reliably and with superior performance, and specifically that their present estimated capital costs can be reduced substantially to a point where they are competitive with state-of-the-art pulverized coal technologies. (R.P.)

  3. Power generation costs. Coal - nuclear power

    International Nuclear Information System (INIS)

    1979-01-01

    This supplement volume contains 17 separate chapters investigating the parameters which determine power generation costs on the basis of coal and nuclear power and a comparison of these. A detailed calculation model is given. The complex nature of this type of cost comparison is shown by a review of selected parameter constellation for coal-fired and nuclear power plants. The most favourable method of power generation can only be determined if all parameters are viewed together. One quite important parameter is the load factor, or rather the hours of operation. (UA) 891 UA/UA 892 AMO [de

  4. Fundamental study of the pulverized coal char combustion in oxyfuel mode with drop tube furnace

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Takamasa; Takafuji, Makoto; Suda, Toshiyuki; Fujimori, Toshiro [Heat and Fluid Dynamics Department, Yokohama (Japan)

    2013-07-01

    The combustion characteristics of coal char particles in either O{sub 2}/N{sub 2} or O{sub 2}/CO{sub 2} conditions were experimentally investigated. Especially, the char burnout, the char particle temperature and the shrinkage of the char particles were discussed. A Drop Tube Furnace (DTF: whose wall temperature was set at 873, 923 and 973 K) was used as the experimental apparatus. The experimental results revealed that, in equivalent oxygen concentration, the char burnout and the char particle temperature were higher in O{sub 2}/N{sub 2} conditions than those in O{sub 2}/CO{sub 2} conditions. The shrinkage of the char particle did not show the large difference in either O{sub 2}/N{sub 2} or O{sub 2}/CO{sub 2} conditions. Up to 15% of char burnout, the char particle diameters were reduced gradually. Up to 80% of char burnout, the char particle diameters were not changed. This is supposed that the chemical reaction is mainly occurred not on the external surface but on the internal surface of the char particle. Over 80% of char burnout, sudden shrinkage could be seen. Finally, an empirical equation for the prediction of the char particle shrinkage was introduced. Further investigation is required in high operating temperature, where CO{sub 2} gasification may have a large influence on the char burnout.

  5. FUNDAMENTAL INVESTIGATION OF FUEL TRANSFORMATIONS IN PULVERIZED COAL COMBUSTION AND GASIFICATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Robert Hurt; Joseph Calo; Thomas H. Fletcher; Alan Sayre

    2005-04-29

    The goal of this project was to carry out the necessary experiments and analyses to extend current capabilities for modeling fuel transformations to the new conditions anticipated in next-generation coal-based, fuel-flexible combustion and gasification processes. This multi-organization, multi-investigator project has produced data, correlations, and submodels that extend present capabilities in pressure, temperature, and fuel type. The combined experimental and theoretical/computational results are documented in detail in Chapters 1-8 of this report, with Chapter 9 serving as a brief summary of the main conclusions. Chapters 1-3 deal with the effect of elevated pressure on devolatilization, char formation, and char properties. Chapters 4 and 5 deal with advanced combustion kinetic models needed to cover the extended ranges of pressure and temperature expected in next-generation furnaces. Chapter 6 deals with the extension of kinetic data to a variety of alternative solid fuels. Chapter 7 focuses on the kinetics of gasification (rather than combustion) at elevated pressure. Finally, Chapter 8 describes the integration, testing, and use of new fuel transformation submodels into a comprehensive CFD framework. Overall, the effects of elevated pressure, temperature, heating rate, and alternative fuel use are all complex and much more work could be further undertaken in this area. Nevertheless, the current project with its new data, correlations, and computer models provides a much improved basis for model-based design of next generation systems operating under these new conditions.

  6. Staged combustion - main method for suppressing nitrogen oxides in pulverized-coal fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R. (Vsesoyuznyi Teplotekhnicheskii Institut (USSR))

    1989-08-01

    Describes principles behind staged combustion, which is based on organizing furnace operations so that only part of the air from the fuel is taken into the furnace. The remaining air, which is needed for combustion, is fed as a tertiary blast jet into the intermediate flame zone. Following inflammation and combustion of the volatile matter, the oxygen concentration in the flame drops sharply causing a retardation of the oxidation reactions forming NO and an intensification of the reactions causing the nitrogen-containing radicals NH{sub i} and CN to be converted into N{sub 2}. When the reducing agents CO, H{sub 2} and CH{sub 4} are present in certain flame zones, even the nitrogen oxide is reduced to N{sub 2}. The NO concentrations in the flame are reduced until the jet of tertiary air is introduced. Discusses with reference to practice in the USA and Western Europe how to achieve maximum effect of this method for different types of boiler and presents the results of observations of the introduction of staged combustion to the BKZ-210-140 boiler burning Kuznetsk gassy coal. 5 refs.

  7. Utilization of brown coal in FRG power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1985-07-01

    FRG methods are studied for utilizing brown coal in view of the development of Kansk-Achinsk brown coal deposits. The use of brown coal in FRG power plants has increased from 15% in 1950- 1960 to 85% (total output) in 1982, providing 79.4 TWh of electrical energy. The remainder was used for briquetting, pulverization and breeze coke. In 1982 nearly 100 million tons of brown coal were burned by six large power stations (rated capacity 11,400 MW) to produce nearly 80 billion kWh of energy. Measures are discussed taken to reduce slagging and to remove excessive moisture content. Problems are analyzed associated with increased contamination of the atmosphere in areas with high population density (412/km/sup 2/) and cost of suppression is reviewed. According to available data, the cost of preventive measures taken by FRG, USA, Japan and the Netherlands is equal to 30% of the total cost of the energy. The most critical problem is suppression of sulfur dioxide, either by dry or wet scrubbers or by the addition of dry dolomite or lime to the furnace (75% of all SO/sub 2/ emissions in FRG comes from power stations). A method is described developed by RWE based on a series of distribution headers in the upper part of combustion chambers. At best, 70-80% reduction can be achieved. 14 references.

  8. Reducing NOx Emissions for a 600 MWe Down-Fired Pulverized-Coal Utility Boiler by Applying a Novel Combustion System.

    Science.gov (United States)

    Ma, Lun; Fang, Qingyan; Lv, Dangzhen; Zhang, Cheng; Chen, Yiping; Chen, Gang; Duan, Xuenong; Wang, Xihuan

    2015-11-03

    A novel combustion system was applied to a 600 MWe Foster Wheeler (FW) down-fired pulverized-coal utility boiler to solve high NOx emissions, without causing an obvious increase in the carbon content of fly ash. The unit included moving fuel-lean nozzles from the arches to the front/rear walls and rearranging staged air as well as introducing separated overfire air (SOFA). Numerical simulations were carried out under the original and novel combustion systems to evaluate the performance of combustion and NOx emissions in the furnace. The simulated results were found to be in good agreement with the in situ measurements. The novel combustion system enlarged the recirculation zones below the arches, thereby strengthening the combustion stability considerably. The coal/air downward penetration depth was markedly extended, and the pulverized-coal travel path in the lower furnace significantly increased, which contributed to the burnout degree. The introduction of SOFA resulted in a low-oxygen and strong-reducing atmosphere in the lower furnace region to reduce NOx emissions evidently. The industrial measurements showed that NOx emissions at full load decreased significantly by 50%, from 1501 mg/m3 (O2 at 6%) to 751 mg/m3 (O2 at 6%). The carbon content in the fly ash increased only slightly, from 4.13 to 4.30%.

  9. Numerical analysis of loads effect on combustion performance and NO{sub x} emissions of a 220 MW pulverized coal boiler

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun; Yang, Weihong; Blasiak, Wlodzimierz [Royal Institute of Technology (KTH), Stockholm (Sweden). Div. of Energy and Furnace Technology; Jankowski, Radoslaw; Kotecki, Michal; Szewczyk, Dariusz [Industrial Combustion Systems (ICS) Company, Poznan (Poland); Brzdekiewicz, Artur [Remak-Rozruch SA, Opole (Poland)

    2013-07-01

    This paper presents numerical study on the combustion performance and NO{sub x} emissions of a 220 MW pulverized coal boiler. Three different loads have been simulated with combusting coal, 200, 170 and 140 MW, respectively. In order to get as precise as possible numerical analysis results, two-step simulation method has been adopted in this work, namely, air supply system simulation and furnace simulation. After air supply system simulation, the results have been taken as the initial and boundary conditions for furnace simulation. The comparison between the measured values and predicted results from 200 MW case shows much better agreement. According to the simulation results, the adopted two-step simulation method is reasonable and suitable for predicting the characters of the flow and combustion process. It is concluded that the distributions of temperature, O{sub 2} and CO concentration inside furnace with different loads shows good similarly. The total NOx emissions decreased with the boiler load reducing, and fuel NO{sub x} has the same trend as total NO{sub x}, and fuel NO{sub x} account for about 66% in total NO{sub x} in all the three cases. More important, thermal NO{sub x} slowly decreased with the rise of boiler load. More detailed results presented in this paper enhance the understanding of combustion processes and complex flow patterns of front-wall pulverized coal boilers.

  10. Pulverized coal firing of aluminum melting furnaces. Quarterly technical progress report, October 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    West, C E

    1980-10-01

    Heaviest acitivity this quarter has been in the area of system design and specification and purchase of system components. Mechanical design is now complete. The design of electrical power, process control and data acquisition systems has begun. Combustor design meetings with General Electric Space Science Labs have resulted in an increasing awareness that analytical flow field modeling of the cyclonic combustor could not only enhance current understanding of the process but also broaden the future scope of implementation. A proposal to add specific additional modeling tasks was presented to the Department of Energy, and is included herein in Appendix B. Equipment procurement will continue and system construction will begin during the next quarter.

  11. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    International Nuclear Information System (INIS)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thien; Gengsheng Wei; Soyuz Priyadarsan

    2002-01-01

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure has economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO(sub x) pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising

  12. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thien; Gengsheng Wei; Soyuz Priyadarsan

    2002-01-15

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure has economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO{sub x} pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising

  13. Techno-Economic Analysis of a 600 MW Oxy-Enrich Pulverized Coal-Fired Boiler

    Directory of Open Access Journals (Sweden)

    Ming Lei

    2018-03-01

    Full Text Available Oxy-fuel combustion is one of the most promising methods for CO2 capture and storage (CCS but the operating costs—mainly due to the need for oxygen production—usually lead to an obvious decrease in power generation efficiency. An “oxy-enrich combustion” process was proposed in this study to improve the efficiency of the oxy-fuel combustion process. The oxidizer for oxy-enrich combustion was composed of pure oxygen, air and recycled flue gas. Thus, the CO2 concentration in the flue gas decreased to 30–40%. The PSA (pressure swing adsorption, which has been widely used for CO2 removal from the shifting gases of ammonia synthesis in China, was applied to capture CO2 during oxy-enrich combustion. The technological economics of oxy-enrich combustion with PSA was calculated and compared to that of oxy-fuel combustion. The results indicated that, compared with oxy-fuel combustion: (1 the oxy-enrich combustion has fewer capital and operating costs for the ASU (air separation unit and the recycle fan; (2 there were fewer changes in the components of the flue gas in a furnace for oxy-enrich combustion between dry and wet flue gas circulation; and (3 as the volume ratio of air and oxygen was 2 or 3, the economics of oxy-enrich combustion with PSA were more advantageous.

  14. Thermal coal utilization for the ESCAP region

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    A selection of papers is presented originating from talks to coal utilization workshops for the ASEAN region in 1981. The papers cover: planning aspects - economic and technical aspects of coal usage, long term planning for fuel coal needs, planning and coal selection for coal-fired power plants, coal availability and marketing, and economic aspects of coal usage in developing countries; combustion and plant - changing from coal to oil, principles and problems of coal combustion, use of indigenous and imported coals and their effects on plant design, coal pulverizing mills, ash and dust disposal, environmental aspects of coal combustion, industrial sized coal-fired boilers; transport and storage -ocean shipment, coal receival facilities and associated operations, shipping and rail transport, coal handling and transport, environmental issue in the transport and handling of coal, coal preparation and blending; testing and properties - coal types, characterization properties and classification; training power plant operators; the cement industry and coal, the Australian black coal industry.

  15. Exergetic analysis of a steam power plant using coal and rice straw in a co-firing process

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, Alvaro; Miyake, Raphael Guardini; Bazzo, Edson [Federal University of Santa Catarina (UFSC), Dept. of Mechanical Engineering, Florianopolis, SC (Brazil)], e-mails: arestrep@labcet.ufsc.br, miyake@labcet.ufsc.br, ebazzo@emc.ufsc.br; Bzuneck, Marcelo [Tractebel Energia S.A., Capivari de Baixo, SC (Brazil). U.O. Usina Termeletrica Jorge Lacerda C.], e-mail: marcelob@tractebelenergia.com.br

    2010-07-01

    This paper presents an exergetic analysis concerning an existing 50 M We steam power plant, which operates with pulverized coal from Santa Catarina- Brazil. In this power plant, a co-firing rice straw is proposed, replacing up to 10% of the pulverized coal in energy basis required for the boiler. Rice straw has been widely regarded as an important source for bio-ethanol, animal feedstock and organic chemicals. The use of rice straw as energy source for electricity generation in a co-firing process with low rank coal represents a new application as well as a new challenge to overcome. Considering both scenarios, the change in the second law efficiency, exergy destruction, influence of the auxiliary equipment and the greenhouse gases emissions such as CO{sub 2} and SO{sub 2} were considered for analysis. (author)

  16. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants

    International Nuclear Information System (INIS)

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-01-01

    The oil shale industry is the largest producer of NORM (Naturally Occurring Radioactive Material) waste in Estonia. Approximately 11–12 million tons of oil shale containing various amounts of natural radionuclides is burned annually in the Narva oil shale-fired power plants, which accounts for approximately 90% of Estonian electricity production. The radionuclide behavior characteristics change during the fuel combustion process, which redistributes the radionuclides between different ash fractions. Out of 24 operational boilers in the power plants, four use circulating fluidized bed (CFB) technology and twenty use pulverized fuel (PF) technology. Over the past decade, the PF boilers have been renovated, with the main objective to increase the efficiency of the filter systems. Between 2009 and 2012, electrostatic precipitators (ESP) in four PF energy blocks were replaced with novel integrated desulphurization technology (NID) for the efficient removal of fly ash and SO 2 from flue gases. Using gamma spectrometry, activity concentrations and enrichment factors for the 238 U ( 238 U, 226 Ra, 210 Pb) and 232 Th ( 232 Th, 228 Ra) family radionuclides as well as 40 K were measured and analyzed in different PF boiler ash fractions. The radionuclide activity concentrations in the ash samples increased from the furnace toward the back end of the flue gas duct. The highest values in different PF boiler ash fractions were in the last field of the ESP and in the NID ash, where radionuclide enrichment factors were up to 4.2 and 3.3, respectively. The acquired and analyzed data on radionuclide activity concentrations in different PF boiler ashes (operating with an ESP and a NID system) compared to CFB boiler ashes provides an indication that changes in the fuel (oil shale) composition and boiler working parameters, as well as technological enhancements in Estonian oil shale fired power plants, have had a combined effect on the distribution patterns of natural radionuclides in

  17. The influence of near burner region aerodynamics on the formation and emission of nitrogen oxides in a pulverized coal-fired furnace

    International Nuclear Information System (INIS)

    Abbas, T.; Costen, P.; Lockwood, F.C.

    1992-01-01

    This paper reports that detailed measurements have been performed for two distinct pulverized-coal-fired burners in a large-scale laboratory furnace. Comparative in-flame data are archived and include gas temperature, O 2 , CO concentration, and an inventory of stable fuel nitrogen species and solids (HCN, NH 3 , N 2 O, NO, nitrogen release, mass flux, and particle burnout). A significant decrease in the NO concentration in the near burner region and a substantial decrease in the furnace exit values are observed when the central tube from a single annular orifice burner jet (normally the location of a gas or oil burner for light-up purposes) is replaced with a single central orifice burner jet of same cross-sectional area. The latter burner exhibits the delayed combustion phenomena normally associated with a tangentially fired system. The particle burnout remains unaffected due to the longer particles' residence time in the all-important oxygen lean internal recirculation zone

  18. Influence of the gray gases number in the weighted sum of gray gases model on the radiative heat exchange calculation inside pulverized coal-fired furnaces

    Directory of Open Access Journals (Sweden)

    Crnomarković Nenad Đ.

    2016-01-01

    Full Text Available The influence of the number of gray gases in the weighted sum in the gray gases model on the calculation of the radiative heat transfer is discussed in the paper. A computer code which solved the set of equations of the mathematical model describing the reactive two-phase turbulent flow with radiative heat exchange and with thermal equilibrium between phases inside the pulverized coal-fired furnace was used. Gas-phase radiative properties were determined by the simple gray gas model and two combinations of the weighted sum of the gray gases models: one gray gas plus a clear gas and two gray gases plus a clear gas. Investigation was carried out for two values of the total extinction coefficient of the dispersed phase, for the clean furnace walls and furnace walls covered by an ash layer deposit, and for three levels of the approximation accuracy of the weighting coefficients. The influence of the number of gray gases was analyzed through the relative differences of the wall fluxes, wall temperatures, medium temperatures, and heat transfer rate through all furnace walls. The investigation showed that there were conditions of the numerical investigations for which the relative differences of the variables describing the radiative heat exchange decrease with the increase in the number of gray gases. The results of this investigation show that if the weighted sum of the gray gases model is used, the complexity of the computer code and calculation time can be reduced by optimizing the number of gray gases. [Projekat Ministarstva nauke Republike Srbije, br. TR-33018: Increase in energy and ecology efficiency of processes in pulverized coal-fired furnace and optimization of utility steam boiler air preheater by using in-house developed software tools

  19. Pilot plant development of a new catalytic process for improved electrostatic separation of fly-ash in coal fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Olivares del Valle, J.; Salvador Martinez, L.; Muniz Baum, B.; Cortes Galeano, V. [University of Seville, Seville (Spain). Chemical and Environmental Engineering Dept.

    1996-12-31

    A new catalytic process for flue gas conditioning in pulverized coal fired power plants is outlined. Vanadium and platinum catalysts specifically prepared on ceramic honeycomb monoliths to oxidize SO{sub 2} into SO{sub 3} have been tested and evaluated at pilot scale. 10 refs., 3 figs., 2 tabs.

  20. PASSIVE CONTROL OF PARTICLE DISPERSION IN A PARTICLE-LADEN CIRCULAR JET USING ELLIPTIC CO-ANNULAR FLOW: A MEANS FOR IMPROVING UTILIZATION AND EMISSION REDUCTIONS IN PULVERIZED COAL BURNER

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan R. Choudhuri

    2003-06-01

    A passive control technology utilizing elliptic co-flow to control the particle flinging and particle dispersion in a particle (coal)-laden flow was investigated using experimental and numerical techniques. Preferential concentration of particles occurs in particle-laden jets used in pulverized coal burner and causes uncontrollable NO{sub x} formation due to inhomogeneous local stoichiometry. This particular project was aimed at characterizing the near-field flow behavior of elliptic coaxial jets. The knowledge gained from the project will serve as the basis of further investigation on fluid-particle interactions in an asymmetric coaxial jet flow-field and thus is important to improve the design of pulverized coal burners where non-homogeneity of particle concentration causes increased NO{sub x} formation.

  1. MHD power station with coal gasification

    International Nuclear Information System (INIS)

    Brzozowski, W.S.; Dul, J.; Pudlik, W.

    1976-01-01

    A description is given of the proposed operating method of a MHD-power station including a complete coal gasification into lean gas with a simultaneous partial gas production for the use of outside consumers. A comparison with coal gasification methods actually being used and full capabilities of power stations heated with coal-derived gas shows distinct advantages resulting from applying the method of coal gasification with waste heat from MHD generators working within the boundaries of the thermal-electric power station. (author)

  2. Technical, environmental, and economic assessment of deploying advanced coal power technologies in the Chinese context

    International Nuclear Information System (INIS)

    Zhao Lifeng; Xiao Yunhan; Gallagher, Kelly Sims; Wang Bo; Xu Xiang

    2008-01-01

    The goal of this study is to evaluate the technical, environmental, and economic dimensions of deploying advanced coal-fired power technologies in China. In particular, we estimate the differences in capital cost and overall cost of electricity (COE) for a variety of advanced coal-power technologies based on the technological and economic levels in 2006 in China. This paper explores the economic gaps between Integrated Gasification Combined Cycle (IGCC) and other advanced coal power technologies, and compares 12 different power plant configurations using advanced coal power technologies. Super critical (SC) and ultra super critical (USC) pulverized coal (PC) power generation technologies coupled with pollution control technologies can meet the emission requirements. These technologies are highly efficient, technically mature, and cost-effective. From the point of view of efficiency, SC and USC units are good choices for power industry. The net plant efficiency for IGCC has reached 45%, and it has the best environmental performance overall. The cost of IGCC is much higher, however, than that of other power generation technologies, so the development of IGCC is slow throughout the world. Incentive policies are needed if IGCC is to be deployed in China

  3. Planning new coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Benesch, W.A. [STEAG encotec GmbH, Essen (Germany)

    2001-07-01

    When considering fossil energy sources, it can be seen that natural gas and oil will become much scarcer than coal. Therefore, one practical option is to investigate and further develop coal-based energy supplies for the future. However, the existing coal stocks must be used very sparingly. Consequently, the conversion efficiency of the chemically-bonded energy in power and heat needs to be improved. By these means, and also by modern environmental engineering, power can be generated from coal without harming the environment. (orig.)

  4. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when

  5. Coal-water slurries containing petrochemicals to solve problems of air pollution by coal thermal power stations and boiler plants: An introductory review.

    Science.gov (United States)

    Dmitrienko, Margarita A; Strizhak, Pavel A

    2018-02-01

    This introductory study presents the analysis of the environmental, economic and energy performance indicators of burning high-potential coal water slurries containing petrochemicals (CWSP) instead of coal, fuel oil, and natural gas at typical thermal power stations (TPS) and a boiler plant. We focus on the most hazardous anthropogenic emissions of coal power industry: sulfur and nitrogen oxides. The research findings show that these emissions may be several times lower if coal and oil processing wastes are mixed with water as compared to the combustion of traditional pulverized coal, even of high grades. The study focuses on wastes, such as filter cakes, oil sludge, waste industrial oils, heavy coal-tar products, resins, etc., that are produced and stored in abundance. Their deep conversion is very rare due to low economic benefit. Effective ways are necessary to recover such industrial wastes. We present the cost assessment of the changes to the heat and power generation technologies that are required from typical power plants for switching from coal, fuel oil and natural gas to CWSPs based on coal and oil processing wastes. The corresponding technological changes pay off after a short time, ranging from several months to several years. The most promising components for CWSP production have been identified, which provide payback within a year. Among these are filter cakes (coal processing wastes), which are produced as a ready-made coal-water slurry fuel (a mixture of flocculants, water, and fine coal dust). These fuels have the least impact on the environment in terms of the emissions of sulfur and nitrogen oxides as well as fly ash. An important conclusion of the study is that using CWSPs based on filter cakes is worthwhile both as the main fuel for thermal power stations and boiler plants and as starting fuel. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Radiation/turbulence interactions in pulverized-coal flames. Second year technical progress report, September 30, 1994--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Menguec, M.P.; McDonough, J.M.; Manickavsagam, S.; Mukerji, S.; Wang, D.; Ghosal, S.; Swabb, S.

    1995-12-31

    Our goal in this project is to investigate the interaction of radiation and turbulence in coalfired laboratory scale flames and attempt to determine the boundaries of the ``uncertainty domain`` in Figure 3 more rigorously. We have three distinct objectives: (1) To determine from experiments the effect of turbulent fluctuations on the devolatilization/pyrolysis of coal particles and soot yield, and to measure the change in the ``effective`` radiative properties of particulates due to turbulence interactions; (2) To perform local small-scale simulations to investigate the radiation-turbulence interactions in coal-fired flames starting from first principles; and (3) To develop a thorough and rigorous, but computationally practical, turbulence model for coal flames, starting from the experimental observations and small scale simulations.

  7. The rates of production of CO and CO2 from the combustion of pulverized coal particles in a shock tube

    NARCIS (Netherlands)

    Commissaris, F.A.C.M.; Banine, V.Y.; Roekaerts, D.J.E.M.; Veefkind, A.

    1998-01-01

    This work presents some results of experiments on coal combustion in a shock tube, as well as a time-dependent model of the boundary layer of a single, burning char particle under similar conditions. The partial pressure of O2 in a shock tube was varied between 0 and 10 bar, with gas temperatures

  8. Differential pulmonary inflammation and in vitro cytotoxicity of size-fractionated fly ash particles from pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    M. Ian Gilmour; Silvia O' Connor; Colin A.J. Dick; C. Andrew Miller; William P. Linak [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States). National Health and Environmental Effects Research Laboratory

    2004-03-01

    Exposure to airborne particulate matter (PM) has been associated with adverse health effects in humans. Pulmonary inflammatory responses were examined in CD1 mice after intratracheal instillation of 25 or 100 {mu}g of ultrafine ({lt}0.2 {mu}m), fine ({lt}2.5 {mu}m), and coarse ({gt}2.5 {mu}m) coal fly ash from a combusted Montana subbituminous coal, and of fine and coarse fractions from a combusted western Kentucky bituminous coal. After 18 hr, the lungs were lavaged and the bronchoalveolar fluid was assessed for cellular influx, biochemical markers, and pro-inflammatory cytokines. The responses were compared with saline and endotoxin as negative and positive controls, respectively. On an equal mass basis, the ultrafine particles from combusted Montana coal induced a higher degree of neutrophil inflammation and cytokine levels than did the fine or coarse PM. The western Kentucky fine PM caused a moderate degree of inflammation and protein levels in bronchoalveolar fluid that were higher than the Montana fine PM. Coarse PM did not produce any significant effects. In vitro experiments with rat alveolar macrophages showed that of the particles tested, only the Montana ultrafine displayed significant cytotoxicity. It is concluded that fly ash toxicity is inversely related with particle size and is associated with increased sulfur and trace element content. 42 refs., 5 figs., 3 tabs.

  9. Problems of coal-based power generation

    International Nuclear Information System (INIS)

    Noskievic, P.

    1996-01-01

    Current problems of and future trends in coal-based power generation are discussed. The present situation is as follows: coal, oil and gas contribute to world fossil fuel resources 75%, 14%, and 11%, respectively, and if the current trend will continue, will be depleted in 240, 50, and 60 years, respectively; the maximum resource estimates (including resources that have not yet been discovered) are 50% higher for oil and 100% higher for gas, for coal such estimates have not been made. While the world prices of coal are expected to remain virtually constant, the prices of gas will probably increase to be twice as high in 2010. Thus, the role of coal may be higher in the next century than it is now, provided that due attention is paid to improving the efficiency of coal-fired power plants and reducing their adverse environmental effects. A comparison of economic data for coal-fired and gas-fired power plants is as follows: Investment cost (USD/kW): 1400, 800; fixed running cost (USD/kW.y): 33.67, 9.0; variable running cost (USD/kWh): 0.30, 0.15; power use (kJ/kWh): 10.29, 7.91; annual availability (%): 70, 50; fuel price (USD/GJ): 1.00, 4.30; power price (USD/kWh): 4.28, 5.52. The investment cost for coal-fired plants covers new construction including flue gas purification. The integrated gasification combined cycle (IGCC) seems to be the future of coal-based power generation. The future problems to be addressed include ways to reduce air pollution, improving the efficiency of the gas-steam cycle, and improving the combustion process particularly with a view to reducing substantially its environmental impact. (P.A.). 4 figs., 4 tabs., 9 refs

  10. Coal gasification and the power production market

    International Nuclear Information System (INIS)

    Howington, K.; Flandermeyer, G.

    1995-01-01

    The US electric power production market is experiencing significant changes sparking interest in the current and future alternatives for power production. Coal gasification technology is being marketed to satisfy the needs of the volatile power production industry. Coal gasification is a promising power production process in which solid coal is burned to produce a synthesis gas (syn gas). The syn gas may be used to fuel combustion integrated into a facility producing electric power. Advantages of this technology include efficient power production, low flue gas emissions, flexible fuel utilization, broad capability for facility integration, useful process byproducts, and decreased waste disposal. The primary disadvantages are relatively high capital costs and lack of proven long-term operating experience. Developers of coal gasification intend to improve on these disadvantages and lop a strong position in the power generation market. This paper is a marketing analysis of the partial oxidation coal gasification processes emerging in the US in response to the market factors of the power production industry. A brief history of these processes is presented, including the results of recent projects exploring the feasibility of integrated gasification combined cycle (IGCC) as a power production alternative. The current power generation market factors are discussed, and the status of current projects is presented including projected performance

  11. Exploring evaluation to influence the quality of pulverized coal fly ash. Co-firing of biomass in a pulverized coal plant or mixing of biomass ashes with pulverized coal fly ash; Verkennende evaluatie kwaliteitsbeinvloeding poederkoolvliegas. Bijstoken van biomassa in een poederkoolcentrale of bijmenging van biomassa-assen met poederkoolvliegas

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sloot, H.A.; Cnubben, P.A.J.P [ECN Schoon Fossiel, Petten (Netherlands)

    2000-08-01

    In this literature survey the consequences of co-firing of biomass and mixing of biomass ash with coal fly ash on the coal fly ash quality is evaluated. Biomass ash considered in this context is produced by gasification, pyrolysis or combustion in a fluidized bed. The irregular shape of biomass ash obtained from gasification, pyrolysis or combustion has a negative influence on the water demand in concrete applications of the coal fly ash resulting from mixing biomass ash and coal fly ash. In case of co-firing, high concentrations of elements capable of lowering the ash melting point (e.g., Ca and Mg) may lead to more ash agglomeration. This leads to a less favourable particle size distribution of the coal fly ash, which has a negative impact on the water demand in cement bound applications. Gasification, pyrolysis and combustion may lead to significant unburnt carbon levels (>10%). The unburnt carbon generally absorbs water and thus has a negative influence on the water demand in cement-bound applications. The contribution of biomass ash to the composition of coal fly ash will not be significantly different, whether the biomass is co-fired or whether the biomass ash is mixed off-line with coal fly ash. The limit values for Cl, SO4 and soluble salts can form a limitation for the use of coal fly ash containing biomass for cement-bound applications. As side effects of biomass co-firing, the level of constituents such as Na, K, Ca and Mg may lead to slagging and fouling of the boiler. In addition, a higher emission of flue gas contaminants As, Hg, F, Cl and Br may be anticipated in case more contaminated biomass streams are applied. This may also lead to a higher contamination level of gypsum produced from flue gas cleaning residues. Relatively clean biomass streams (clean wood, cacao shells, etc.) will hardly lead to critical levels of elements from a leaching point of view. More contaminated streams, such as sewage sludge, used and preserved wood, petcoke and RDF

  12. Mercury emissions from polish pulverized coalfired boiler

    Directory of Open Access Journals (Sweden)

    Wichliński Michał

    2017-01-01

    Full Text Available The current paper presents the research results carried out at one of Polish power plants at a pulverized hard coal-fired 225 MW unit. The research was carried out at full load of the boiler (100% MCR and focused on analysis of mercury content in the input fuel and limestone sorbent for wet flue gas desulfurization (FGD system, as well as investigation of mercury content in the combustion products, i.e. fly ash, slag, FGD product (gypsum and FGD effluents (waste. Within the framework of the present study the concentration of mercury vapor in the exhaust gas was also investigated. The analysis was performed using Lumex RA-915+ spectrometer with an attachment (RP-91C. The measurements were carried out at three locations, i.e. before the electrostatic precipitator (ESP, downstream the ESP, and downstream the wet FGD plant. Design of the measurement system allowed to determine both forms of mercury in the flue gas (Hg0 and Hg2+ at all measurement locations.Based on the measurement results the balance of mercury for a pulverized coal (PC boiler was calculated and the amount of mercury was assessed both in the input solids (fuel and sorbent, as well as the gaseous and solids products (flue gas, slag, ash, gypsum and FGD waste.

  13. Scenario-Based Analysis on Water Resources Implication of Coal Power in Western China

    Directory of Open Access Journals (Sweden)

    Jiahai Yuan

    2014-10-01

    Full Text Available Currently, 58% of coal-fired power generation capacity is located in eastern China, where the demand for electricity is strong. Serious air pollution in China, in eastern regions in particular, has compelled the Chinese government to impose a ban on the new construction of pulverized coal power plants in eastern regions. Meanwhile, rapid economic growth is thirsty for electric power supply. As a response, China planned to build large-scale coal power bases in six western provinces, including Inner Mongolia, Shanxi, Shaanxi, Xinjiang, Ningxia and Gansu. In this paper, the water resource implication of the coal power base planning is addressed. We find that, in a business-as-usual (BAU scenario, water consumption for coal power generation in these six provinces will increase from 1130 million m3 in 2012 to 2085 million m3 in 2020, experiencing nearly a double growth. Such a surge will exert great pressure on water supply and lead to serious water crisis in these already water-starved regions. A strong implication is that the Chinese Government must add water resource constraint as a critical point in its overall sustainable development plan, in addition to energy supply and environment protection. An integrated energy-water resource plan with regionalized environmental carrying capacity as constraints should be developed to settle this puzzle. Several measures are proposed to cope with it, including downsizing coal power in western regions, raising the technical threshold of new coal power plants and implementing retrofitting to the inefficient cooling system, and reengineering the generation process to waterless or recycled means.

  14. Coal Calorific Value Prediction Based on Projection Pursuit Principle

    OpenAIRE

    QI Minfang; FU Zhongguang; JING Yuan

    2012-01-01

    The calorific value of coal is an important factor for the economic operation of coal-fired power plant. However, calorific value is tremendous difference between the different coal, and even if coal is from the same mine. Restricted by the coal market, most of coal fired power plants can not burn the designed-coal by now in China. The properties of coal as received are changing so frequently that pulverized coal firing is always with the unexpected condition. Therefore, the researches on the...

  15. Ash liberation from included minerals during combustion of pulverized coal: the relationship with char structure and burnout

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H.; Wall, T.; Liu, G.; Bryant, G. [University of Newcastle, Callaghan, NSW (Australia). CRC for Black Coal Utilization and Dept. of Chemical Engineering

    1999-12-01

    In this study, the float fraction ({lt} specific gravity of 2.0) of a size cut (63-90 {mu}m) bituminous coal was combusted in a drop tube furnace (DTF) at a gas temperature of 1300{degree}C under an atmosphere of air, to investigate the ash liberation at five coal burnoff levels (35.5%, 54.3%, 70.1%, 87.1% and 95.6%). The data indicated that char structure determines the ash liberation at different burnoff levels. Fragmentation of porous char was found to be the determinative mechanism for formation of fine ash during the early and middle stages of char combustion, while coalescence of included mineral matter determines the coarse ash formed in the later stages of combustion. The investigation confirmed that the char morphology and structure play a key role in determining char fragmentation, char burnout history, and the ash liberation during combustion. 35 refs., 5 figs., 2 tabs.

  16. Influence of Environmentally Friendly and High-Efficiency Composite Additives on Pulverized Coal Combustion in Cement Industry

    Directory of Open Access Journals (Sweden)

    Zhiyong Wang

    2016-01-01

    Full Text Available 4 kinds of chemical reagents and 3 kinds of industrial wastes were selected as burning additives for 2 kinds of coals in cement industry. The work focused on the replacement of partial chemical reagents by industrial wastes, which not only reduced the cost and took full advantage of industrial wastes, but also guaranteed the high combustion efficiency and removed the NOX and SO2 simultaneously. The experiments were carried out in DTF. The combustion residues were analyzed by SEM and XRD. The results showed that the burnout rate was increased after adding the additives; meanwhile, the NOX and SO2 release concentration were reduced, but the degree of action varied for different additives and coals. The substitute of chemical reagents by industrial wastes was very effective; overall, the cold-rolled iron oxide worked better than others; the particles surface was tougher and the peaks of crystalline phase were lower than raw coal, which indicated that the additives played good roles in combustion process.

  17. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-10-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  18. Computational fluid dynamics (CFD) analysis of the coal combustion in a boiler of a thermal power plant using different kinds of the manufactured coals

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cristiano Vitorino da; Lazzari, Luis Carlos; Ziemniczak, Aline; Beskow, Arthur Bortolin [Universidade Regional Integrada do Alto Uruguai e das Missoes (URI), Erechim, RS (Brazil)], E-mails: cristiano@uricer.edu.br, arthur@uricer.edu.br

    2010-07-01

    The state of the art in computational fluid dynamics and the availability of commercial codes encourage numerical studies of combustion processes. In the present work the commercial software CFX Ansys Europe Ltd. has been used to study the combustion of pulverized coal into the boiler of a thermal power plant. The objective of this work is to obtain new information for process optimization. Different kinds of manufactured coals were numerically tested in a thermal power plant installed at the southeast region of Brazil. The simulations were made using the actual burning conditions of the boiler. Results include the residence time of the fuel into the combustion chamber, temperature fields, flow fluid mechanics, heat transfer and pollutant formation, as well as the CO and NOx concentrations, aiming to determinate the best conditions to burn the investigated coals. The numerical investigation of the phenomena involved on the coal combustion processes are used to complete the experimental information obtained in operational tests. Considering the characteristics of different kinds of manufactured coals used, with this study is possible to achieve the most efficient boiler operation parameters, with decreasing costs of electricity production and reduction of environmentally harmful emissions. It was verified that the different kinds of manufactured coals demand different operation conditions, and the kind of manufactured coal used on the combustion process has a significant effect on the pollutant formation, mainly in rel action with ash concentration. (author)

  19. Co-combustion of pulverized coal and solid recovered fuel in an entrained flow reactor- General combustion and ash behavior

    DEFF Research Database (Denmark)

    Wu, Hao; Glarborg, Peter; Frandsen, Flemming

    2011-01-01

    .9 wt.%, 14.8 wt.% and 25 wt.%, respectively. The effect of additives was evaluated by maintaining the share of secondary fuel (mixture of SRF and additive) at 14.8 wt.%. The experimental results showed that the fuel burnout, NO and SO2 emission in co-combustion of coal and SRF were decreased...... with increasing share of SRF. The majority of the additives inhibited the burnout, except for NaCl which seemed to have a promoting effect. The impact of additives on NO emission was mostly insignificant, except for ammonium sulphate which greatly reduced the NO emission. For SO2 emission, it was found that all...

  20. Coal Moisture Estimation in Power Plant Mills

    DEFF Research Database (Denmark)

    Andersen, Palle; Bendtsen, Jan Dimon; Pedersen, Tom S.

    2009-01-01

    Knowledge of moisture content in raw coal feed to a power plant coal mill is of importance for efficient operation of the mill. The moisture is commonly measured approximately once a day using offline chemical analysis methods; however, it would be advantageous for the dynamic operation...... of the plant if an on-line estimate were available. In this paper we such propose an on-line estimator (an extended Kalman filter) that uses only existing measurements. The scheme is tested on actual coal mill data collected during a one-month operating period, and it is found that the daily measured moisture...

  1. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman

    2003-01-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  2. Massive use of pulverized fuel ash in concrete for the construction of a U.K. power station

    International Nuclear Information System (INIS)

    Davies, D.R.; Kitchener, J.N.

    1996-01-01

    This paper describes the incorporation and benefits of pulverized fuel ash (PFA) in nearly 620,000 m 2 of concrete used in the construction of the UK's first commercial pressurized light water nuclear reactor power station, Sizewell B, Suffolk. Overall nearly 100,000 t of PFA, 1,300 t of sintered fly ash lightweight aggregate, and nearly 137,000 t of Ordinary Portland Cement (OPC) were used in the works. Generally in the construction of the main power station buildings, structural concrete with a characteristic strength of 45 N/mm 2 was placed and included fly ash as 40% of the cementitious component. Also, concrete with fly ash as 50% of the cementitious component was placed as mass fill. The program of research is reported, including sulfate resistance, heat of hydration,elastic properties, alkali-silica reaction, and long-term strength test results. Test and field results are presented and discussed. Strict quality assurance procedures were enforced and statistical summaries are offered to give an insight into the quality of control exercised. Test work and long-term results are also outlined

  3. Geochemistry of coals, coal ashes and combustion wastes from coal-fired power stations

    International Nuclear Information System (INIS)

    Vassilev, S.V.; Vassileva, C.G.

    1997-01-01

    Contents, concentration trends, and modes of occurrence of 67 elements in coals, coal ashes, and combustion wastes at eleven Bulgarian thermoelectric power stations (TPS) were studied. A number of trace elements in coal and coal ash have concentrations greater than their respective worldwide average contents (Clarke values). Trace elements are concentrated mainly in the heavy accessory minerals and organic matter in coal. In decreasing order of significance, the trace elements in coal may occur as: element-organic compounds; impurities in the mineral matter; major components in the mineral matter; major and impurity components in the inorganic amorphous matter; and elements in the fluid constituent. A number of trace elements in the waste products, similar to coal ashes, exceed known Clarke contents. Trace elements are mainly enriched in non-magnetic, heavy and fine-grained fractions of fly ash. They are commonly present as impurities in the glass phases, and are included in the crystalline components. Their accessory crystalline phases, element-organic compounds, liquid and gas forms, are of subordinate importance. Some elements from the chalcophile, lithophile and siderophile groups may release into the atmosphere during coal burning. For others, the combustion process appears to be a powerful factor causing their relative enrichment in the fly ash and rarely in the bottom ash and slag. 65 refs., 1 fig., 11 tabs

  4. Evaluation of radionuclide contamination of soil, coal ash and zeolitic materials from Figueira thermoelectric power plant

    International Nuclear Information System (INIS)

    Fungaro, Denise Alves; Silva, Paulo Sergio Cardoso da; Campello, Felipe Arrelaro; Miranda, Caio da Silva; Izidoro, Juliana de Carvalho

    2017-01-01

    Neutron activation analysis and gamma-ray spectrometry was used to determine 238 U, 226 Ra, 228 Ra, 210 Pb, 232 Th and 40 K contents in feed pulverized coal, bottom ash, fly ash from cyclone and baghouse filters, zeolites synthesized from the ashes and two different soil samples. All the samples used in the study was collected at Figueira thermoelectric power plant, located in the city of Figueira, Paraná State, which coal presents a significant amount of uranium concentration. The natural radionuclide concentrations in pulverized coal were 4216 Bq kg -1 for 238 U, 180 Bq kg -1 for 226 Ra, 27 Bq kg -1 for 228 Ra, 28 Bq kg -1 for 232 Th and 192 Bq kg -1 for 40 K. The ashes fraction presented concentrations ranging from 683.5 to 1479 Bq kg -1 for 238 U, from 484 to 1086 Bq kg -1 for 226 Ra, from 291 to 1891 Bq kg -1 for 210 Pb, from 67 to 111 Bq kg -1 for 228 Ra, from 80 to 87 Bq -1 for 232 Th and from 489 to 718 Bq kg -1 for 40 K. Similar ranges were observed for zeolites. The activity concentration of 238 U was higher than worldwide average concentration for all samples. The concentration of the uranium series found in the ashes were lower than the values observed in similar studies carried out 10 years ago and under the limit adopted by the Brazilian guideline (CNEN-NN-4.01). Nevertheless, the concentrations of this specific area are higher than others coal mines and thermoelectric power plants in and out of Brazil, so it is advisable to evaluate the environmental impact of the installation. (author).

  5. Evaluation of radionuclide contamination of soil, coal ash and zeolitic materials from Figueira thermoelectric power plant

    Energy Technology Data Exchange (ETDEWEB)

    Fungaro, Denise Alves; Silva, Paulo Sergio Cardoso da; Campello, Felipe Arrelaro; Miranda, Caio da Silva; Izidoro, Juliana de Carvalho, E-mail: dfungaro@ipen.br, E-mail: pscsilva@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Neutron activation analysis and gamma-ray spectrometry was used to determine {sup 238}U, {sup 226}Ra, {sup 228}Ra, {sup 210}Pb, {sup 232}Th and {sup 40}K contents in feed pulverized coal, bottom ash, fly ash from cyclone and baghouse filters, zeolites synthesized from the ashes and two different soil samples. All the samples used in the study was collected at Figueira thermoelectric power plant, located in the city of Figueira, Paraná State, which coal presents a significant amount of uranium concentration. The natural radionuclide concentrations in pulverized coal were 4216 Bq kg{sup -1} for {sup 238}U, 180 Bq kg{sup -1} for {sup 226}Ra, 27 Bq kg{sup -1} for {sup 228}Ra, 28 Bq kg{sup -1} for {sup 232}Th and 192 Bq kg{sup -1} for {sup 40}K. The ashes fraction presented concentrations ranging from 683.5 to 1479 Bq kg{sup -1} for {sup 238}U, from 484 to 1086 Bq kg{sup -1} for {sup 226}Ra, from 291 to 1891 Bq kg{sup -1} for {sup 210}Pb, from 67 to 111 Bq kg{sup -1} for {sup 228}Ra, from 80 to 87 Bq{sup -1} for {sup 232}Th and from 489 to 718 Bq kg{sup -1} for {sup 40}K. Similar ranges were observed for zeolites. The activity concentration of {sup 238}U was higher than worldwide average concentration for all samples. The concentration of the uranium series found in the ashes were lower than the values observed in similar studies carried out 10 years ago and under the limit adopted by the Brazilian guideline (CNEN-NN-4.01). Nevertheless, the concentrations of this specific area are higher than others coal mines and thermoelectric power plants in and out of Brazil, so it is advisable to evaluate the environmental impact of the installation. (author).

  6. Chances of coal in European power industry

    Science.gov (United States)

    Łukaszczyk, Zygmunt; Badura, Henryk

    2017-11-01

    Poland's accession to the European Union has reduced the remnants of import barriers. Moreover, the consolidation and commercialization of the energy sector, the implementation of climate package elements and a whole host of other determinants have caused hard coal mining to begin functioning in a highly competitive market, and its negotiating position, as well as the possibility of survival, depends not only on the level of coal prices in international markets, but also on internal competition. This paper discusses the position of power coal on international markets and presents some current problems concerning the functioning of particular segments of the hard coal market in the European Union and Poland in terms of opportunities and threats that are a result of climate and energy policy.

  7. Industry perspectives on increasing the efficiency of coal-fired power generation

    Energy Technology Data Exchange (ETDEWEB)

    Torrens, I.M. [Shell Coal International, London (United Kingdom); Stenzel, W.C.

    1997-12-31

    Independent power producers will build a substantial fraction of expected new coal-fired power generation in developing countries over the coming decades. To reduce perceived risk and obtain financing for their projects, they are currently building and plan to continue to build subcritical coal-fired plants with generating efficiency below 40%. Up-to-date engineering assessment leads to the conclusion that supercritical generating technology, capable of efficiencies of up to 45%, can produce electricity at a lower total cost than conventional plants. If such plants were built in Asia over the coming decades, the savings in carbon dioxide emissions over their lifetime would be measured in billions of tons. IPPs perceive supercritical technology as riskier and higher cost than conventional technology. The truth needs to be confirmed by discussions with additional experienced power engineering companies. Better communication among the interested parties could help to overcome the IPP perception issue. Governments working together with industry might be able to identify creative financing arrangements which can encourage the use of more efficient pulverized clean coal technologies, while awaiting the commercialization of advanced clean coal technologies like gasification combined cycle and pressurized fluidized bed combustion.

  8. Mercury emission and speciation of coal-fired power plants in China

    Science.gov (United States)

    Wang, S. X.; Zhang, L.; Li, G. H.; Wu, Y.; Hao, J. M.; Pirrone, N.; Sprovieri, F.; Ancora, M. P.

    2010-02-01

    Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of Selective Catalytic Reduction (SCR), electrostatic precipitators (ESP), and flue gas desulfurization (FGD) using the Ontario Hydro Method (OHM). The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92-27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66-94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.

  9. Mercury emission and speciation of coal-fired power plants in China

    Directory of Open Access Journals (Sweden)

    S. X. Wang

    2010-02-01

    Full Text Available Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of Selective Catalytic Reduction (SCR, electrostatic precipitators (ESP, and flue gas desulfurization (FGD using the Ontario Hydro Method (OHM. The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92–27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66–94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.

  10. Coal pump

    Science.gov (United States)

    Bonin, John H.; Meyer, John W.; Daniel, Jr., Arnold D.

    1983-01-01

    A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

  11. Utilization of pulverized fuel ash in Malta

    International Nuclear Information System (INIS)

    Camilleri, Josette; Sammut, Michael; Montesin, Franco E.

    2006-01-01

    In Malta all of the waste produced is mixed and deposited at various sites around the island. None of these sites were purpose built, and all of the waste is above groundwater level. The landfills are not engineered and do not contain any measures to collect leachate and gases emanating from the disposal sites. Another waste, which is disposed of in landfills, is pulverized fuel ash (PFA), which is a by-product of coal combustion by the power station. This has been disposed of in landfill, because its use has been precluded due to the radioactivity of the ashes. The aim of this study was to analyze the chemical composition of the pulverized fuel ash and to attempt to utilize it as a cement replacement in normal concrete mixes in the construction industry. The levels of radiation emitted from the ashes were measured by gamma spectrometry. The results of this study revealed that although at early ages cement replacement by PFA resulted in a reduction in compressive strength (P = 0), when compared to the reference concrete at later ages the strengths measured on concrete cores were comparable to the reference concrete (P > 0.05). The utilization of PFA up to 20% cement replacement in concrete did not raise the radioactivity of the concrete. In conclusion, utilization of PFA in the construction industry would be a better way of disposing of the ashes rather than controlling the leachate and any radioactivity emitted by the landfilled ashes

  12. Coal-fired power materials - Part II

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, V.; Purgert, R.; Rawls, P. [Electric Power Research Institute, Palo Alto, CA (United States)

    2008-09-15

    Part 1 discussed some general consideration in selection of alloys for advanced ultra supercritical (USC) coal-fired power plant boilers. This second part covers results reported by the US project consortium, which has extensively evaluated the steamside oxidation, fireside corrosion, and fabricability of the alloys selected for USC plants. 3 figs.

  13. Danish Experiences with Deposit Probe Measurements in Grate and Pulverized Fuel Biomass Power Boilers

    DEFF Research Database (Denmark)

    Hansen, Stine Broholm; Jensen, Peter Arendt; Jappe Frandsen, Flemming

    2012-01-01

    Several measuring campaigns with focus on deposition behavior have been conducted at full-scale power plants firing biomass in Denmark. These campaigns have been reviewed in this work. The focus is the obtained experiences on deposit formation, shedding and chemistry. When comparing results from...

  14. Microfine coal firing results from a retrofit gas/oil-designed industrial boiler

    Energy Technology Data Exchange (ETDEWEB)

    Patel, R.; Borio, R.W.; Liljedahl, G. [Combustion Engineering, Inc., Windsor, CT (United States)] [and others

    1995-11-01

    Under US Department of Energy, Pittsburgh Energy Technology Center (PETC) support, the development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 at the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment.

  15. The world behind electricity from coal. The dubious origin of coal for Dutch coal-fired power plants

    International Nuclear Information System (INIS)

    2008-01-01

    Five energy companies in the Netherlands want to build additional coal-fired power plants: Essent and Nuon, the German company RWE and E.ON and the Belgian company Electrabel. Coal-fired power plants emit 70 percent more CO2 than gas-fired power plants. Especially because of the threat to the climate Greenpeace believes that no more coal-fired power plants should be built. In this publication Greenpeace explores the pollution, the working conditions and human rights with regard to the exploitation of coal. That has been elaborated for the three countries from which Dutch energy companies import coal: South Africa, Colombia and Indonesia. In addition to information about the origin of coal also insight is given into the coal market (stocks and use), the enormous coal transport and the world trade [nl

  16. The development of clean coal technology is the main way to control of atmospheric pollution in China

    Energy Technology Data Exchange (ETDEWEB)

    Wu Lixin; Xu Hong [Clean Coal Engineering & Research Center of Coal Industry (China)

    1999-11-01

    Atmospheric pollution in China and its causes are analysed. Power stations, industrial boilers and kilns and domestic coal combustion are the main pollution sources. Clean coal technologies are urgently needed. Main clean coal technologies which can improve the present situation of industrial coal combustion are coal cleaning, blending and briquetting; boiler retrofitting; advanced technologies to improve combustion efficiency and reduce pollution - fluidized bed combustion and pulverized coal desulfurization; and advanced desulfurization and dedusting technologies and equipment.

  17. Report on 1980 result of R and D under Sunshine Project. Development of solvent extraction liquefaction technology and demonstrative investigation on development of brown coal liquefaction technology (studies on high-temperature in-oil pulverization); 1980 nendo yozai chushutsu ekika gijutsu no kaihatsu / kattan ekika gijutsu kaihatsu jissho chosa seika hokokusho. Koon'yuchu funsai no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This paper explains the results of development of coal liquefaction technology under the Sunshine Project in fiscal 1980. As a part of the development of brown coal liquefaction technology, pulverization of the first-dehydration brown coal was technologically established, as were adjustment of slurry and equipment for the second-dehydration process. A 20kg/h high temperature in-oil pulverizer was designed, constructed and made ready for the studies. A high temperature mill was a wet type ball mill, 500mm{phi}(diameter) x 1,500 mm length and 2.2kw. Coal was fully pulverized even in a solvent such as creosote oil and anthracene oil freed from crystal, and was adjustable to a prescribed particle size distribution. The wet type slurry adjustment method offered prospects that solvent/coal slurry moisture could be controlled to a prescribed value. An analysis was made on the mill outlet gas and drain collection liquid at the time of high temperature in-oil pulverization, which provided knowledge of securing safety. An analysis was also made on the influence of the heating temperature rise of the mill on the strength, which provided basic data for examining the strength of the mill. Using brown coal as the raw material, slurry was prepared, which confirmed that the device had functions as planned. (NEDO)

  18. Aspects chimiques de la combustion du charbon pulvérisé. Première partie Chemical Aspects of the Combustion of Pulverized Coal. Part One

    Directory of Open Access Journals (Sweden)

    De Soete G. G.

    2006-11-01

    deux mécanismes totalement différents, par exemple entre le mécanisme d'ignition homogène et le mécanisme d'ignition hétérogène du charbon, avec des conséquences pratiques pour la stabilisation de la flamme industrielle ; autre exemple : la compétition entre les divers mécanismes homogènes de formation d'oxydes d'azote et les mécanismes hétérogènes de leur réduction sur des particules solides de coke, de suie et de cendre. Avec ces idées présentes comme un leitmotiv implicite, on passe en revue les grandes étapes de la flamme industrielle de charbon pulvérisé : la dévolatilisation rapide avec la formation progressive de volatils gazeux, de goudrons et de coke ; la transformation partielle des produits gazeux et liquides de pyrolyse en suies ainsi que leur oxydation en phase gazeuse ; la combustion hétérogène du coke ; l'ignition du charbon et sa dépendance par rapport à des processus critiques homogènes et (ou hétérogènes. Comme exemple typique d'un épiphénomènechimique, on suit la transformation des espèces azotées en NO et en N2, qui se greffe en contrepoint et à chaque pas sur tes différents thèmes successifs de cette symphonie de l'oxydation du charbon. En de nombreux points de cette évolution du charbon à travers la flamme, les connaissances de la chimie de com-bustion en phase gazeuse constituent un instrument utile d'interprétation (par exemple : pour l'oxydation des volatils, pour la discussion des modalités d'ignition. II n'en reste pas moins vrai que la plupart des problèmes chimiques hétérogènes sont bien spécifiques de la flamme de charbon ; leur traitement est rendu ardu à cause de la complexité, évolutive au cours de la combustion, du combustible solide lui-même. It is not easy to obtain a full picture of the multiple chemical phenomena which occur inside a pulverized coal flame. This bibliographie review attempts to give more than just a juxtaposition of data from the recent literature and risks making

  19. Influence of staged-air on airflow, combustion characteristics and NO(x) emissions of a down-fired pulverized-coal 300 MW(e) utility boiler with direct flow split burners.

    Science.gov (United States)

    Li, Zhengqi; Kuang, Min; Zhang, Jia; Han, Yunfeng; Zhu, Qunyi; Yang, Lianjie; Kong, Weiguang

    2010-02-01

    Cold airflow experiments were conducted to investigate the aerodynamic field in a small-scale furnace of a down-fired pulverized-coal 300 MW(e) utility boiler arranged with direct flow split burners enriched by cyclones. By increasing the staged-air ratio, a deflected flow field appeared in the lower furnace; larger staged-air ratios produced larger deflections. Industrial-sized experiments on a full-scale boiler were also performed at different staged-air damper openings with measurements taken of gas temperatures in the burner region and near the right-side wall, wall heat fluxes, and gas components (O(2), CO, and NO(x)) in the near-wall region. Combustion was unstable at staged-air damper openings below 30%. For openings of 30% and 40%, late ignition of the pulverized coal developed and large differences arose in gas temperatures and heat fluxes between the regions near the front and rear walls. In conjunction, carbon content in the fly ash was high and boiler efficiency was low with high NO(x) emission above 1200 mg/m(3) (at 6% O(2) dry). For fully open dampers, differences in gas temperatures and heat fluxes, carbon in fly ash and NO(x) emission decreased yielding an increase in boiler efficiency. The optimal setting is fully open staged-air dampers.

  20. Competitive economics: nuclear and coal power

    International Nuclear Information System (INIS)

    Hellman, R.

    1984-01-01

    Ignorance of the comparative economics and prematurity in adopting light water reactors characterize the nuclear industry, which has defied the laws of logic for learning. The absence of valid authoritative data to determine the economics of a newly ordered nuclear power plant is what leads to the methodological problems in making comparisons with coal. The author's solution adjusts the four most authoritative studies to reality: by the Atomic Energy Commission in 1975, a team of TRW and Mitre Corp. for ERDA in 1976, by the Nuclear Regulatory Commission in 1979, and by Exxon. The adjustments, which include original costs adjusted for lifetime; capital adjustments for sufflation, construction time, unit life, and capacity factor; fuel adjustments, and other adjustments involving management, replacement, maintenance, fuel prices, waste disposal, etc.) show that the total busbar cost per kWh from nuclear power units is 2.2 times that of coal. 7 references, 1 table

  1. ECONOMICS AND FEASIBILITY OF RANKINE CYCLE IMPROVEMENTS FOR COAL FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Richard E. Waryasz; Gregory N. Liljedahl

    2004-09-08

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL), American Electric Company (AEP) and Parsons Energy and Chemical Group to conduct a comprehensive study evaluating coal fired steam power plants, known as Rankine Cycles, equipped with three different combustion systems: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}). Five steam cycles utilizing a wide range of steam conditions were used with these combustion systems. The motivation for this study was to establish through engineering analysis, the most cost-effective performance potential available through improvement in the Rankine Cycle steam conditions and combustion systems while at the same time ensuring that the most stringent emission performance based on CURC (Coal Utilization Research Council) 2010 targets are met: > 98% sulfur removal; < 0.05 lbm/MM-Btu NO{sub x}; < 0.01 lbm/MM-Btu Particulate Matter; and > 90% Hg removal. The final report discusses the results of a coal fired steam power plant project, which is comprised of two parts. The main part of the study is the analysis of ten (10) Greenfield steam power plants employing three different coal combustion technologies: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}) integrated with five different steam cycles. The study explores the technical feasibility, thermal performance, environmental performance, and economic viability of ten power plants that could be deployed currently, in the near, intermediate, and long-term time frame. For the five steam cycles, main steam temperatures vary from 1,000 F to 1,292 F and pressures from 2,400 psi to 5,075 psi. Reheat steam temperatures vary from 1,000 F to 1,328 F. The number of feedwater heaters varies from 7 to 9 and the associated feedwater temperature varies from 500 F to 626 F. The main part of the

  2. Efficiency improvement of thermal coal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hourfar, D. [VEBA Kraftwerke Ruhr Ag, Gelsenkirchen (Germany)

    1996-12-31

    The discussion concerning an increase of the natural greenhouse effect by anthropogenic changes in the composition of the atmosphere has increased over the past years. The greenhouse effect has become an issue of worldwide debate. Carbon dioxide is the most serious emission of the greenhouse gases. Fossil-fired power plants have in the recent past been responsible for almost 30 % of the total CO{sub 2} emissions in Germany. Against this background the paper will describe the present development of CO{sub 2} emissions from power stations and present actual and future opportunities for CO{sub 2} reduction. The significance attached to hard coal as one of today`s prime sources of energy with the largest reserves worldwide, and, consequently, its importance for use in power generation, is certain to increase in the years to come. The further development of conventional power plant technology, therefore, is vital, and must be carried out on the basis of proven operational experience. The main incentive behind the development work completed so far has been, and continues to be, the achievement of cost reductions and environmental benefits in the generation of electricity by increasing plant efficiency, and this means that, in both the short and the long term, power plants with improved conventional technology will be used for environmentally acceptable coal-fired power generation.

  3. Fault Detection in Coal Mills used in Power Plants

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, Babak

    2006-01-01

    In order to achieve high performance and efficiency of coal-fired power plants, it is highly important to control the coal flow into the furnace in the power plant. This means suppression of disturbances and force the coal mill to deliver the required coal flow, as well as monitor the coal mill...... in order to detect faults in the coal mill when they emerge. This paper deals with the second objective. Based on a simple dynamic model of the energy balance a residual is formed for the coal mill. An optimal unknown input observer is designed to estimate this residual. The estimated residual is following...... tested on measured data of a fault in a coal mill, it can hereby be concluded that this residual is very useful for detecting faults in the coal mill....

  4. Modeling of integrated environmental control systems for coal-fired power plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to ``conventional`` technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  5. Modeling of integrated environmental control systems for coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to conventional'' technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  6. DRUCKFLAMM - Investigation on combustion and hot gas cleanup in pulverized coal combustion systems. Final report; DRUCKFLAMM - Untersuchungen zur Verbrennung und Heissgasreinigung bei der Druckkohlenstaubfeuerung. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Hein, K.R.G.; Benoehr, A.; Schuermann, H.; Stroehle, J.; Klaiber, C.; Kuhn, R.; Maier, J.; Schnell, U.; Unterberger, S.

    2001-07-01

    The ambitions of making energy supply more efficient and less polluting brought forth the development of coal based combined cycle power plants allowing considerable increases in net efficiencies. One of the regarded firing concepts for a coal based combined cycle power plant is represented by the pressurised pulverised coal combustion process which has the highest efficiency potential compared with the other coal based concepts. The fundamental purpose of the project was to gain firm knowledge concerning firing behaviour of coal in a pressurised pulverised coal combustion system. Detailed investigations were carried out in a pressurised entrained flow reactor taking into account fuel conversion and particle behaviour, pollutant formation and material behaviour under conditions of a pressurised pulverised coal firing. During the project's investigations several different measurement techniques were tested and partially also acquired (e.g. a two-colour-pyrometry system to measure simultaneous particle surface temperature and particle diameter of burning fuel particles). Calculation models under pressurised conditions for pressure vessel simulation and better scale-up were developed synchronously with the experimental investigations. The results gained using the pressurised entrained flow reactor show that many combustion mechanisms are influenced by increased pressure, for instance the fuel conversion is intensified and at the same time pollutant emissions decreased. The material investigations show that the ceramic materials used due to the very high combustion temperatures are very sensitive versus slagging and fast temperature changes, therefore further development requirements are needed to fully realise the high durability of ceramics in the pressurised furnace. Concerning the improvement of existing models for furnace simulation under pressurised conditions, a good resemblance can be observed when considering the actual measurement results from the test

  7. Economic and environmental aspects of coal preparation and the impact on coal use for power generation

    International Nuclear Information System (INIS)

    Lockhart, N.C.

    1995-01-01

    Australia is the world's largest coal exporter, and coal is the nation's largest export and dominant revenue earner. The future competitiveness of coal will be maintained through improved preparation of coal for traditional markets, by upgrading for new markets, and via coal utilization processes that are more efficient and environmentally acceptable. Australia is also a niche supplier of technologies and services with the potential to expand. This potential extends to the increasing vertical integration of coal supplies (whether Australian, indigenous or blended) with downstream utilization such as power generation. Technological advancement is a key element of industry strategy and coal preparation research and development, and clean coal technologies are critical aspects. This paper summarizes these issues, linking the economic and environmental aspects across the coal production and utilization chain. (author). 2 tabs., 1 fig., 6 refs

  8. Coal price prospects and availability of coal in the U.K. power generation market

    International Nuclear Information System (INIS)

    Parker, M.J.

    1983-02-01

    The availability and cost of National Coal Board coal is discussed with respect to the CEGB's economic case for Sizewell B nuclear power station. It is concluded that an investment which depended for its viability on an early or rapid escalation in international coal prices, or upon this escalation continuing indefinitely into the future, would not be sound. (U.K.)

  9. Co-combustion of gasified contaminated waste wood in a coal fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This project demonstrates the technical and economical feasibility of the producing and cofiring of product gas from demolition waste wood. For this purpose LCV product gas is generated in an atmospheric circulating fluidized bed (CFB) gasification plant, cooled and cleaned and transported to the boiler of a 600 MWe pulverized coal fired power plant. Gas cooling and cleaning takes place in a waste heat boiler and a multi stage wet gas cleaning train. Steam raised in the waste heat boiler is exported to the power plant. On an annual basis 70,000 tons of steam coal are substituted by 150,000 tons of contaminated demolition waste wood (50,000 tons oil equivalent), resulting in a net CO2 emission reduction of 170,000 tons per year, while concurrently generating 205 GWh of electrical power. The wood gasification plant was built by NV EPZ (now incorporated in Essent Energi BV) for Amergas BV, now a 100% subsidiary of Essent Energie BV. The gasification plant is located at the Amer Power Station of NV EPZ Production (now Essent Generation) at Geertruidenberg, The Netherlands. Demonstrating several important design features in wood gasification, the plant started hot service in the Spring of 2000, with first gasification accomplished in the Summer of 2000 and is currently being optimized. (au)

  10. Coal and nuclear power: Illinois' energy future

    International Nuclear Information System (INIS)

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations

  11. The future of integrated coal gasification combined cycle power plants

    International Nuclear Information System (INIS)

    Mueller, R.; Termuehlen, H.

    1991-01-01

    This paper examines the future of integrated coal gasification combined cycle (IGCC) power plants as affected by various technical, economical and environmental trends in power generation. The topics of the paper include a description of natural gas-fired combined cycle power plants, IGCC plants, coal gasifier concepts, integration of gasifiers into combined cycle power plants, efficiency, environmental impacts, co-products of IGCC power plants, economics of IGCC power plants, and a review of IGCC power plant projects

  12. Process simulation of co-firing torrefied biomass in a 220 MWe coal-fired power plant

    International Nuclear Information System (INIS)

    Li, Jun; Zhang, Xiaolei; Pawlak-Kruczek, Halina; Yang, Weihong; Kruczek, Pawel; Blasiak, Wlodzimierz

    2014-01-01

    Highlights: • The performances of torrefaction based co-firing power plant are simulated by using Aspen Plus. • Mass loss properties and released gaseous components have been studied during biomass torrefaction processes. • Mole fractions of CO 2 and CO account for 69–91% and 4–27% in total torrefied gases. • The electrical efficiency reduced when increasing either torrefaction temperature or substitution ratio of biomass. - Abstract: Torrefaction based co-firing in a pulverized coal boiler has been proposed for large percentage of biomass co-firing. A 220 MWe pulverized coal-power plant is simulated using Aspen Plus for full understanding the impacts of an additional torrefaction unit on the efficiency of the whole power plant, the studied process includes biomass drying, biomass torrefaction, mill systems, biomass/coal devolatilization and combustion, heat exchanges and power generation. Palm kernel shells (PKS) were torrefied at same residence time but 4 different temperatures, to prepare 4 torrefied biomasses with different degrees of torrefaction. During biomass torrefaction processes, the mass loss properties and released gaseous components have been studied. In addition, process simulations at varying torrefaction degrees and biomass co-firing ratios have been carried out to understand the properties of CO 2 emission and electricity efficiency in the studied torrefaction based co-firing power plant. According to the experimental results, the mole fractions of CO 2 and CO account for 69–91% and 4–27% in torrefied gases. The predicted results also showed that the electrical efficiency reduced when increasing either torrefaction temperature or substitution ratio of biomass. A deep torrefaction may not be recommended, because the power saved from biomass grinding is less than the heat consumed by the extra torrefaction process, depending on the heat sources

  13. Is There Any Future For Coal Power Plants In Europe?

    Directory of Open Access Journals (Sweden)

    A. V. Zimakov

    2017-01-01

    Full Text Available The article deals with the policies of EU countries towards coal power plants as well as practical steps taken by their governments. Coal power plants are widely considered to be environmentally harmful which confronts with environmental policies of the EU suggesting Europe-wide cuts of greenhouse gas emissions. Based on that assumption a number of EU countries such asBelgium,Austria,Portugal,Dania,Finland,SwedenandUKare striving to phase out coal power plants and achieved significant progress on this path replacing coal with other generation sources. On the other hand, other EU members are lagging behind as coal phase-out is not an urgent item of their political agenda. This situation is typical forIreland,Netherlands,Italy,Croatia,SloveniaandSlovakia. Domestic coal extracting industry can pose a significant hindering factor for a coal power plants phase-out and can effectively block the process. This is the case inBulgaria,Romania,Hungary,CzechRepublic,GreeceandPoland. ButGermany, which also has a well-developed coal industry, transforms its energy sector towards a green one cutting the share of coal in the generation mix. If this effort of the German government proves successful it will deliver a positive transformation model for other EU countries with a large share of coal in generation-mix due to domestic coal extraction industry. The analysis of the political and economic (both macro and micro processes leads to conclusion that there is no unity among EU member states in their approach towards coal fired power plants phase-out. This will allow for coal power plants to retain their market share in a short to medium term. But in the longer run one can expect a significant decrease of coal fired generation inEurope, even in the countries traditionally dependent on coal.

  14. Environmental impact assessment of coal power plants in operation

    OpenAIRE

    Bartan Ayfer; Kucukali Serhat; Ar Irfan

    2017-01-01

    Coal power plants constitute an important component of the energy mix in many countries. However, coal power plants can cause several environmental risks such as: climate change and biodiversity loss. In this study, a tool has been proposed to calculate the environmental impact of a coal-fired thermal power plant in operation by using multi-criteria scoring and fuzzy logic method. We take into account the following environmental parameters in our tool: CO, SO2, NOx, particulate matter, fly as...

  15. Coal

    International Nuclear Information System (INIS)

    Teissie, J.; Bourgogne, D. de; Bautin, F.

    2001-12-01

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  16. The economics of coal power generation in China

    International Nuclear Information System (INIS)

    Zhao, Changhong; Zhang, Weirong; Wang, Yang; Liu, Qilin; Guo, Jingsheng; Xiong, Minpeng; Yuan, Jiahai

    2017-01-01

    The Chinese government recently released the 13th FYP (five-year plan) power development plan and proposed a capacity installation target of 1100 GW for coal power. Considering the weak demand growth of coal power since 2014, continuous decline in the annual utilisation hour and the coming market competition, such a planning target is unwelcome and could further the economic deterioration of coal power. In this paper, we employ LCOE (levelised cost of electricity) and project evaluation models to conduct a nationwide survey on the economics of coal power. The economic analysis has clearly indicated that the recent boom of coal power investment in China, which is absurd in many perspectives, is largely the aftermath of uncompleted market reform in the power sector. However, the fundamentals of electricity demand and supply are changing at a speed beyond the imagination of power generators and have foreboded a gloomy prospect for coal power. Our study shows that by 2020, with several exceptions, in most provinces the internal rate of return for coal power will drop below the social average return rate or will even be negative. In this regard, the 13th FYP capacity planning target for coal power is economically untenable and requires radical revision. - Highlights: • Conduct a first-of-its-kind nationwide economic analysis for coal power in China. • Distorted price by improper regulation is the root of investment bubble since 2014. • Cost uplift and market competition foretell a gloomy prospect of coal power. • The 1100 GW capacity planning target for coal power should be abandoned.

  17. International technologies market for coal thermal power plants

    International Nuclear Information System (INIS)

    1998-01-01

    This paper reports a general framework of potential market of clean coal combustion technologies in thermal power plants, specially for commercialization and market penetration in developing countries [it

  18. Influence of high-energy impact on the physical and technical characteristics of coal fuels

    Science.gov (United States)

    Mal'tsev, L. I.; Belogurova, T. P.; Kravchenko, I. V.

    2017-08-01

    Currently, in the world's large-scale coal-fired power industry, the combustion of pulverized coal is the most widely spread technology of combusting the coals. In recent years, the micropulverization technology for preparation and combustion of the coal has been developed in this field. As applied to the small-scale power industry, the method of combusting the coal in the form of a coal-water slurry has been explored for years. Fine coal powders are produced and used in the pulverized-coal gasification. Therefore, the coal preparation methods that involve high-dispersion disintegration of coals attract the greatest interest. The article deals with the problems of high-energy impact on the coal during the preparation of pulverized-coal fuels and coal-water slurries, in particular, during the milling of the coal in ball drum mills and the subsequent regrinding in disintegrators or the cavitation treatment of the coal-water slurries. The investigations were conducted using samples of anthracite and lignite from Belovskii open-pit mine (Kuznetsk Basin). It is shown that both the disintegration and the cavitation treatment are efficient methods for controlling the fuel characteristics. Both methods allow increasing the degree of dispersion of the coal. The content of the small-sized particles reground by cavitation considerably exceeds the similar figure obtained using the disintegrator. The specific surface area of the coal is increased by both cavitation and disintegration with the cavitation treatment producing a considerably greater effect. Being subjected to the cavitation treatment, most coal particles assume the form of a split characterized by the thermodynamically nonequilibrium state. Under external action, in particular, of temperature, the morphological structure of such pulverized materials changes faster and, consequently, the combustion of the treated coal should occur more efficiently. The obtained results are explained from the physical point of view.

  19. Problem of formation of nitrogen oxides during coal combustion in power plant steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Kuvaev, Yu.V.

    1992-07-01

    Analyzes a study of physical and chemical processes of nitrogen oxide formation during coal combustion conducted at Stanford University (USA). Experimental installation, pulverized coal feeding as well as measuring techniques and equipment are described. Experiments were conducted with 55 micron particles of semibituminous coal. An equation for the percentage of coal carbon converted to gaseous products is given. Active formation of NO from nitrogen content in the fuel was observed when oxygen content was under 4%. Conversion of the fuel nitrogen to NO[sub x] in the 1,350-1,850 K temperature range did not depend on gas temperature but rather on oxygen content. 2 refs.

  20. Clean coal technology and advanced coal-based power plants

    International Nuclear Information System (INIS)

    Alpert, S.B.

    1991-01-01

    Clean Coal Technology is an arbitrary terminology that has gained increased use since the 1980s when the debate over acid raid issues intensified over emissions of sulfur dioxide and nitrogen oxides. In response to political discussions between Prime Minister Brian Mulroney of Canada and President Ronald Reagan in 1985, the US government initiated a demonstration program by the Department of Energy (DOE) on Clean Coal Technologies, which can be categorized as: 1. precombustion technologies wherein sulfur and nitrogen are removed before combustion, combustion technologies that prevent or lower emissions as coal is burned, and postcombustion technologies wherein flue gas from a boiler is treated to remove pollutants, usually transforming them into solids that are disposed of. The DOE Clean Coal Technology (CCT) program is being carried out with $2.5 billion of federal funds and additional private sector funds. By the end of 1989, 38 projects were under way or in negotiation. These projects were solicited in three rounds, known as Clean Coal I, II, and III, and two additional solicitations are planned by DOE. Worldwide about 100 clean coal demonstration projects are being carried out. This paper lists important requirements of demonstration plants based on experience with such plants. These requirements need to be met to allow a technology to proceed to commercial application with ordinary risk, and represent the principal reasons that a demonstration project is necessary when introducing new technology

  1. European coal technology applied by the Danish power companies

    Energy Technology Data Exchange (ETDEWEB)

    Frydenberg, B. [Elsamprojekt A/S, Fredericia (Denmark)

    1996-12-31

    The development of coal-fired power plants has shown remarkable improvements with regard to efficiency and cleaner technology, and as coal remains the most important fuel for electric power production, it is important to make use of this technological development to reduce CO{sub 2} emissions. Of the three available technologies: Integrated Coal Gasification and Combined Cycle, Fluid Bed Combustion and Pulverised Coal with Ultra Supercritical Steam Data, the technology chosen by I/S ELSAM is the PC-USC with power production efficiencies growing from 45% to 50%. 5 figs., 1 tab.

  2. Pilot plant development of a new catalytic process for improved electrostatic separation of fly ash in coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Olivares del Valle, J.; Martinez, L.S.; Baum, B.M.; Galeano, V.C. [Universidad de Sevilla (Spain)

    1995-12-31

    The design and operation of pulverized-coal-fired power plants (PCFPP) are usually regarded as fuel range in terms of sulphur and ash contents. These units may give severe environmental problems of fly ash emissions as a result of lower SO{sub 3} contents in the flue gas (FG) because the electrical resistivity of the solid particles is correspondingly lower, with consequent adverse effects on electrostatic precipitator (ESP) efficiency. More stringent air pollution laws cause many power companies to burn lower sulphur coal under boilers in plants that formerly burned higher S coal or ran with abnormal operational conditions (only remediable by shutdown and repairs). This presentation of the GASOX process is a contribution to the improvement of existing technology for flue gas conditioning (FGC), which is defined as a control system for (ESP) efficiency in PCFPP.

  3. Natural radioactivity level in coal and ash collected from Baoji coal-fired power plant

    International Nuclear Information System (INIS)

    Jia Xiaodan; Lu Xinwei

    2006-01-01

    Specific activities of natural radionuclides 226 Ra, 232 Th and 40 K were assessed in coal (3 samples), fly ash (17 samples) and bottom ash (6 samples) collected from Baoji coal-fired power plant. This paper analyzed the characteristics of 226 Ra, 232 Th and 40 K contents in bottom ash and fly ash, and studied the concentration factors of these radionuclides in ash in relation to those in coal. The level of natural radionuclides 226 Ra, 232 Th and 40 K of coal collected from Baoji coal-fired power plant are in the range of radionuclides contents of Chinese coal. The natural radioactivity level of fly ash collected from Baoji coal-fired power plant is close to Beijing and Shanghai coal-fired power plants. The paper farther assessed the possibility of fly ash of Baoji coal-fired power plant used as building materials according to the state standard. The results show that there are 29% samples exceeding the state limit when fly ash used as building materials. So the usage of fly ash in building material should be controlled. (authors)

  4. Achievement report for fiscal 1999 on project for supporting the formation of energy/environmental technology verification project. International joint verification research project (Verification project relative to ignition and NOx reduction using plasma sub-burner in pulverized coal-fired furnace); 1999 nendo plasma sabubana ni yoru bifuntan nenshoro ni okeru chakka oyobi NO{sub x} teigen gijutsu ni kansuru jissho project seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This project is executed through the cooperation of a Russian research institute, Akita Prefectural University, and the Ishikawajima-Harima Heavy Industries Co., Ltd. In the development of a plasma sub-burner and the basic research for its verification, a pulverized coal burning plasma sub-burner is designed and fabricated, a basic burning experiment is conducted for the plasma sub-burner, and plasma stabilization in a pulverized coal flow is simulated. In the verification study of the ignition by the plasma sub-burner in a pulverized coal-fired furnace, it is found that the newly-developed plasma sub-burner satisfies the prescribed operating conditions in the system and that the ignition of pulverized coal takes place across the air ratio range of 0.5-1.5 when pulverized coal is fed to the sub-burner. It is also found that NOx is reduced a great deal when a plasma operating on an orifice gas of air or nitrogen is generated in a gas which contains NOx. (NEDO)

  5. Radioactivity of coals and ash and slag wastes at coal-fired thermal power plants

    Science.gov (United States)

    Krylov, D. A.; Sidorova, G. P.

    2013-04-01

    This paper presents an analysis of published data on the content of radioactive nuclides in coals originating from various coal deposits, and in ash and slag wastes produced at coal-fired thermal power plants, as well as in fly ash emitted from thermal power plants into the atmosphere. Problems related to the use of coals with an elevated content of natural radionuclides (NRNs) and methods of their solution implemented at the Urtuyskoe coalfield are dealt with. Data on the analysis of Transbaikal coals for the NRN content, as well as weighted mean content of uranium and thorium in coals from the Siberian Region, are given. In order to reduce irradiation of plant personnel and the population of the areas where coal producers and coal-fired thermal power plants are located, it is necessary to organize very careful control of the NRN content in both coals and products of their combustion that are released into the environment. To solve the problem related to the control of radioactivity, the centralized approach and creation of a proper normative base are needed. Experience gained in developing the Urtuyskoe coalfield shows that it is possible to create an efficient system of coal quality control with respect to the radiation hygiene factor and provide protection of the environment and health of the population.

  6. Gas and coal competition in the EU Power Sector

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2014-06-01

    Despite its many assets, a confluence of factors - including flat electricity demand, rising use of renewable energy sources, falling wholesale electricity market prices, high gas prices relative to coal and low CO 2 prices - has eroded the competitiveness of natural gas in the EU power sector. The share of natural gas in the EU electricity mix has decreased from 23% in 2010 to 20.5% in 2012. By contrast, coal-fired power stations have been operating at high loads, increasing coal demand by the sector. This thorough analysis by CEDIGAZ of gas, coal and CO 2 dynamics in the context of rising renewables is indispensable to understand what is at stake in the EU power sector and how it will affect future European gas demand. Main findings of the report: - Coal is likely to retain its cost advantage into the coming decade: The relationship between coal, gas and CO 2 prices is a key determinant of the competition between gas and coal in the power sector and will remain the main driver of fuel switching. A supply glut on the international coal market (partly because of an inflow of US coal displaced by shale gas) has led to a sharp decline in coal prices while gas prices, still linked to oil prices to a significant degree, have increased by 42% since 2010. At the same time, CO 2 prices have collapsed, reinforcing coal competitiveness. Our analysis of future trends in coal, gas and CO 2 prices suggests that coal competitive advantage may well persist into the coming decade. - But coal renaissance may still be short-lived: Regulations on emissions of local pollutants, i.e. the Large Plant Combustion Directive (LCPD) and the Industrial Emissions Directive (IED) that will succeed it in 2016, will lead to the retirement of old, inefficient coal-fired power plants. Moreover, the rapid development of renewables, which so far had only impacted gas-fired power plants is starting to take its toll on hard coal plants' profitability. This trend is reinforced by regulation at EU or

  7. Kinetic extruder - a dry pulverized solid material pump

    Science.gov (United States)

    Meyer, J. W.; Bonin, J. H.; Daniel, A. D. Jr.

    1983-03-15

    Method and apparatus are shown for the continuous feeding of pulverized material to a high pressure container. A rotor is located within the high pressure container. The pulverized material is fed from a feed hopper through a stationary feed pipe to a vented spin-up chamber to a plurality of two-stage sprues mounted in the rotor. Control nozzles downstream from the sprues meter the flow of coal through the sprues. 19 figs.

  8. Advanced design nuclear power plants: Competitive, economical electricity. An analysis of the cost of electricity from coal, gas and nuclear power plants

    International Nuclear Information System (INIS)

    1992-06-01

    This report presents an updated analysis of the projected cost of electricity from new baseload power plants beginning operation around the year 2000. Included in the study are: (1) advanced-design, standardized nuclear power plants; (2) low emissions coal-fired power plants; (3) gasified coal-fired power plants; and (4) natural gas-fired power plants. This analysis shows that electricity from advanced-design, standardized nuclear power plants will be economically competitive with all other baseload electric generating system alternatives. This does not mean that any one source of electric power is always preferable to another. Rather, what this analysis indicates is that, as utilities and others begin planning for future baseload power plants, advanced-design nuclear plants should be considered an economically viable option to be included in their detailed studies of alternatives. Even with aggressive and successful conservation, efficiency and demand-side management programs, some new baseload electric supply will be needed during the 1990s and into the future. The baseload generating plants required in the 1990s are currently being designed and constructed. For those required shortly after 2000, the planning and alternatives assessment process must start now. It takes up to ten years to plan, design, license and construct a new coal-fired or nuclear fueled baseload electric generating plant and about six years for a natural gas-fired plant. This study indicates that for 600-megawatt blocks of capacity, advanced-design nuclear plants could supply electricity at an average of 4.5 cents per kilowatt-hour versus 4.8 cents per kilowatt-hour for an advanced pulverized-coal plant, 5.0 cents per kilowatt-hour for a gasified-coal combined cycle plant, and 4.3 cents per kilowatt-hour for a gas-fired combined cycle combustion turbine plant

  9. Beneficiation of power grade coals: its relevance to future coal use in India

    International Nuclear Information System (INIS)

    Sachdev, R.K.

    1992-01-01

    With consumption increasing from the current level of 220 mt. to over 600 mt. by the year 2010 A.D., coal will continue to enjoy a prime position in the overall energy scene in India. India being endowed with coal resources of high ash content, the major coal consuming industries have, by and large, adjusted the combustion techniques to suit the quality of coal available. However, wide fluctuations in the quality of coal supplies adversely affect their plant performance. With the coal deposits being localised in the eastern and central parts of peninsular India, the load on railway network in carrying coal to other parts of the country will continue to increase and this will emerge as a major constraint in managing the coal supply to the consuming centres located away from the coal fields. It is in this context, the author has discussed the need of setting up of coal cleaning facilities at the pit heads. The extent to which the transport network will be relieved of carrying avoidable muck in coal has been quantified along with the benefits that will accrue in the form of extra transport capacity, better power plant performance and reduced air pollution and solid waste at consumer end. (author). 5 refs., 6 tabs., 8 figs

  10. Radon in coal power plant areas

    International Nuclear Information System (INIS)

    Mauna, Traian; Mauna, Andriesica

    2006-01-01

    Radon, the radioactive colourless and inodorous noble gas, represents more than 55% of the natural average radioactivity. It is permanently released from the soil and majority of building materials, it builds up in the mine galleries, in dwelling houses and in other closed rooms. Radon gained increasingly in importance, particularly after 1990 when was doubtless identified as the second cause of lung cancer if a given concentration threshold is surpassed. This threshold is established differentially by each country as a function of the particular site and generally ranges between 150 Bq.m -3 and 600 Bq.m -3 . The telluric radon consists of two isotopes, 222 Rn, a daughter of radium descending from uranium, which induces 90% of the effects, and 220 Rn from thorium series which have too short a lifetime to count in the risk assessments of radon inhalation. The interest of the authorities and population for diminishing the radon effects was illustrated by specific studies which in USA were managed by the National Counsel of Research, the BEIR VI committee of which has issued a report concerning the lung cancer produced by radon and its descendants. Coal mining, the transport, processing, burning, slag and ash disposal are activities entailing radon release. The miners' dwellings are placed in areas with the high radon potential. The local building materials have a high content of radioactive elements from the uranium or thorium series so that radon can build up in the closed rooms of these buildings. Hence the social responsible authorities in the coal power industry zones should consider this aspect long time ignored in the Balkans macro zone so far. The radon issue must be differentially approached in different areas hence a zonal mapping of the radon emission should be first done. It is worth to underline that the gaseous radioactive emission from operational nuclear power plants amounts up to a few percents of the radon natural emissions what entails a

  11. Performance assessment of CO2 capture with calcination carbonation reaction process driven by coal and concentrated solar power

    International Nuclear Information System (INIS)

    Zhang, Xuelei; Liu, Yingguang

    2014-01-01

    Calcination carbonation reaction (CCR) process is regarded as a promising option for pulverized coal power plant to mitigate CO 2 emission. In this paper, concentrated solar power (CSP) substitutes for coal to supply part of the calcination energy in order to reduce the fossil fuel consumption associated with the calciner. A CCR process driven by coal and CSP is examined from the perspective of energy efficiency. This paper focuses on the parameters of heat recovery efficiency, CSP capacity, compression energy, air separation energy and recycled energy to determine the contribution of each to the overall energy penalty. In addition, the effects of heat recovery efficiency, CSP capacity, purge percentage and CO 2 capture efficiency on the co-driven case are analyzed through a sensitivity analysis. The results indicate that the thermal efficiency of integrating CCR co-driven process into an ultra-supercritical 1019 MW power plant is 35.37%, which means that the overall efficiency penalty is 9.63 percentage points. Moreover, the co-driven case reduces the fossil fuel consumption and the mass flow rate of fresh sorbent and circulation solids compared with coal-driven case. Increasing heat recovery efficiency and CSP efficiency can improve the co-driven case performance. - Highlights: • We examine a CCR process driven by coal and concentrated solar power simultaneously. • The contributors to the overall energy penalty are quantitatively identified. • Obvious coal-saving effect has been found in the co-driven system. • A sensitivity analysis is conducted to find the impact of key parameters

  12. Levels and patterns of polycyclic aromatic hydrocarbons in fly ash generated in Coal-fired power plant

    International Nuclear Information System (INIS)

    Ajmal, P.Y.; Sahu, S.K.; Pandit, G.G.; Shukla, V.K.; Puranik, V.D.

    2005-01-01

    The burning of pulverized coal to produce energy for generation of electricity in thermal power plants results in huge quantity of coal ash of varying properties. Because of the increase in electricity production, the amount of ash produced will increase proportionally. A large percentage of coal fly ash is comprised of relatively inert materials, such as silica and other trace and toxic elements. The coal ash also contain organic constituents of potential environmental concern. So far, very few studies on characterization of organic constituents in fly ash have been reported in the literature. In the present study, the fly ashes generated from the power stations are investigated regarding the distribution of 14 PAHs. The total amount of PAHs in the fly ash samples varied between 45.8 ng/g and 257.7 ng/g. Lower molecular weight (MW) PAHs, were found to be predominant in the fly ash samples. The concentration of Benzo(a)pyrene, which is the most potent carcinogenic PAH was found to vary between 0.8 ng/g to 6.3 ng/g with a mean concentration of 2.5 ng/g. (author)

  13. Study on the coal mixing ratio optimization for a power plant

    Science.gov (United States)

    Jin, Y. A.; Cheng, J. W.; Bai, Q.; Li, W. B.

    2017-12-01

    For coal-fired power plants, the application of blended coal combustion has been a great issue due to the shortage and rising prices of high-rank coal. This paper describes the optimization of blending methods between Xing'an lignite coal, Shaltala lignite coal, Ura lignite coal, and Inner Mongolia bituminous coal. The multi-objective decision-making method based on fuzzy mathematics was used to determine the optimal blending ratio to improve the power plant coal-fired economy.

  14. Future carbon regulations and current investments in alternative coal-fired power plant technologies

    International Nuclear Information System (INIS)

    Sekar, Ram C.; Parsons, John E.; Herzog, Howard J.; Jacoby, Henry D.

    2007-01-01

    We analyze how uncertain future US carbon regulations shape the current choice of the type of power plant to build. Our focus is on two coal-fired technologies, pulverized coal (PC) and integrated coal gasification combined cycle technology (IGCC). The PC technology is cheapest-assuming there is no need to control carbon emissions. The IGCC technology may be cheaper if carbon must be captured. Since power plants last many years and future regulations are uncertain, a US electric utility faces a standard decision under uncertainty. A company will confront the range of possible outcomes, assigning its best estimate of the probability of each scenario, averaging the results and determining the power plant technology with the lowest possible cost inclusive of expected future carbon related costs, whether those costs be in the form of emissions charges paid or capital expenditures for retrofitting to capture carbon. If the company assigns high probability to no regulation or to less stringent regulation of carbon, then it makes sense for it to build the PC plant. But if it assigns sufficient probability to scenarios with more stringent regulation, then the IGCC technology is warranted. We provide some useful benchmarks for possible future regulation and show how these relate back to the relative costs of the two technologies and the optimal technology choice. Few of the policy proposals widely referenced in the public discussion warrant the choice of the IGCC technology. Instead, the PC technology remains the least costly. However, recent carbon prices in the European Emissions Trading System are higher than these benchmarks. If it is any guide to possible future penalties for emissions in the US, then current investment in the IGCC technology is warranted. Of course, other factors need to be factored into the decision as well

  15. Release and sorption of alkali metals in coal fired combined cycle power systems; Freisetzung und Einbindung von Alkalimetallverbindungen in kohlebefeuerten Kombikraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Michael

    2009-07-01

    Coal fired combined cycle power systems will be a sufficient way to increase the efficiency of coal combustion. However, combined cycle power systems require a reliable hot gas cleanup. Especially alkali metals, such as sodium and potassium, can lead to hot corrosion of the gas turbine blading if they condensate as sulphates. The actual work deals with the release and sorption of alkali metals in coal fired combined cycle power systems. The influence of coal composition, temperature and pressure on the release of alkali species in coal combustion was investigated and the relevant release mechanisms identified. Alumosilicate sorbents have been found that reduce the alkali concentration in the hot flue gas of the Circulating Pressurized Fluidized Bed Combustion 2{sup nd} Generation (CPFBC 2{sup nd} Gen.) at 750 C to values sufficient for use in a gas turbine. Accordingly, alumosilicate sorbents working at 1400 C have been found for the Pressurized Pulverized Coal Combustion (PPCC). The sorption mechanisms have been identified. Thermodynamic calculations were performed to upscale the results of the laboratory experiments to conditions prevailing in power systems. According to these calculations, there is no risk of hot corrosion in both processes. Furthermore, thermodynamic calculations were performed to investigate the behaviour of alkali metals in an IGCC with integrated hot gas cleanup and H{sub 2} membrane for CO{sub 2} sequestration. (orig.)

  16. Relative radiation hazards of coal based and nuclear power plants

    International Nuclear Information System (INIS)

    Mishra, U.C.

    1983-04-01

    Coal, like most materials found in nature, contains trace quantities of naturally occurring radionuclides. However, low concentrations may become important if large quantities of coal are burnt in thermal power plants. Therefore a study was performed to determine the radioactivity in coal, in fly-ash and slag and assess the importance of radioactive emissions from thermal power plants. The results were compared to the radiological impact of nuclear power stations. Based on these data, theoretical estimates for the population living within 80km from power stations indicate that the collective dose commitments of coal-fired plants are one order of magnitude higher than those for BWR-type nuclear plants. Measurements taken in the vicinity of coal-fired plants were comparable to those for nuclear plants, i.e. within the range of variation of natural background radiation in India

  17. Status of Shanxi Province's power and coal reserves

    International Nuclear Information System (INIS)

    Wu, D.C.; Shang, J.Y.

    1995-01-01

    An introduction to Shanxi's coal reserve, production, transportation utilization, electric power generation and transmission capacities is presented with the intention of providing outsiders a clear understanding of Shanxi's coal and power industries. Quantitative sketches of Shanxi's role in China's energy resource production and power generation are included. The province of Shanxi invites investors to visit Shanxi to gain first-hand knowledge. The authors have also taken the liberty of providing the high points of Shanxi's indigenous sceneries and local customs. They believe that in the future, Shanxi's coal based power development will be one of the principal drivers of China's economic growth

  18. Radioactive commitment due to use of coal in power plants

    International Nuclear Information System (INIS)

    Fenger, J. and H. Flyger.

    1980-11-01

    A short review of the literature on release of radioactivity due to use of coal in power plants with the emphasis on the stack effluent and waste products. It is concluded that during normal operation coal fired power plants give a larger dose commitment than nuclear power plants, but both types have insignificant effects. The problem of waste management has never been studied in detail; ash deposit should probably be monitored. (Auth)

  19. Corrosion protection pays off for coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T.

    2006-11-15

    Zinc has long been used to hot-dip galvanise steel to deliver protection in harsh environments. Powder River Basin or eastern coal-fired plants benefit from using galvanized steel for conveyors, vibratory feeders, coal hoppers, chutes, etc. because maintenance costs are essentially eliminated. When life cycle costs for this process are compared to an alternative three-coal paint system for corrosion protection, the latter costs 5-10 times more than hot-dip galvanizing. An AEP Power Plant in San Juan, Puerto Rico and the McDuffie Coal Terminal in Mobile, AL, USA have both used hot-dip galvanized steel. 1 fig., 1 tab.

  20. Federal tax incentives affecting coal and nuclear power economics

    International Nuclear Information System (INIS)

    Chapman, D.

    1982-01-01

    This paper analyzes the effect of federal corporate income tax incentives on coal and nuclear power developments. It estimates (1) the magnitudes of tax incentives in relationship to utility costs, (2) the relative magnitude of benefits going to coal and nuclear facilities, and (3) the influence which the time paths of tax payments and after-tax net income have upon possible incentives for premature construction and excess capacity. Utility planners currently believe that nuclear power enjoys an after-tax competitive advantage over coal plants. Investigation of investment-related credits, deductions, and exclusions in the Internal Revenue Code shows that nuclear power enjoys a more favorable tax subsidy because of its greater capital intensity. In the absence of tax subsidies, no utility would prefer nuclear power to coal generation. Tax changes now under consideration could increase the tax benefits to both without disturbing the differential advantage held by nuclear power. 43 references, 2 figures, 4 tables

  1. Thermal Integration of CO{sub 2} Compression Processes with Coal-Fired Power Plants Equipped with Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy

    2012-06-29

    Coal-fired power plants, equipped either with oxycombustion or post-combustion CO{sub 2} capture, will require a CO{sub 2} compression system to increase the pressure of the CO{sub 2} to the level needed for sequestration. Most analyses show that CO{sub 2} compression will have a significant effect on parasitic load, will be a major capital cost, and will contribute significantly to reduced unit efficiency. This project used first principle engineering analyses and computer simulations to determine the effects of utilizing compressor waste heat to improve power plant efficiency and increase net power output of coal-fired power plants with carbon capture. This was done for units with post combustion solvent-based CO{sub 2} capture systems and for oxyfired power plants, firing bituminous, PRB and lignite coals. The thermal integration opportunities analyzed for oxycombustion capture are use of compressor waste heat to reheat recirculated flue gas, preheat boiler feedwater and predry high-moisture coals prior to pulverizing the coal. Among the thermal integration opportunities analyzed for post combustion capture systems are use of compressor waste heat and heat recovered from the stripper condenser to regenerate post-combustion CO{sub 2} capture solvent, preheat boiler feedwater and predry high-moisture coals. The overall conclusion from the oxyfuel simulations is that thermal integration of compressor heat has the potential to improve net unit heat rate by up to 8.4 percent, but the actual magnitude of the improvement will depend on the type of heat sink used and to a lesser extent, compressor design and coal rank. The simulations of a unit with a MEA post combustion capture system showed that thermal integration of either compressor heat or stripper condenser heat to preheat boiler feedwater would result in heat rate improvements from 1.20 percent to 4.19 percent. The MEA capture simulations further showed that partial drying of low rank coals, done in combination

  2. Comprehensive Report to Congress Clean Coal Technology Program: Clean power from integrated coal/ore reduction

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report describes a clean coal program in which an iron making technology is paired with combined cycle power generation to produce 3300 tons per day of hot metal and 195 MWe of electricity. The COREX technology consists of a metal-pyrolyzer connected to a reduction shaft, in which the reducing gas comes directly from coal pyrolysis. The offgas is utilized to fuel a combined cycle power plant.

  3. Dry pulverized solid material pump

    Science.gov (United States)

    Meyer, John W.; Bonin, John H.; Daniel, Jr., Arnold D.

    1984-07-31

    Apparatus is shown for substantially increasing the feed rate of pulverized material into a pressurized container. The apparatus includes a rotor that is mounted internal to the pressurized container. The pulverized material is fed into an annular chamber defined by the center of the rotor. A plurality of impellers are mounted within the annular chamber for imparting torque to the pulverized material.

  4. Natural radionuclides in coal and waste material originating from coal fired power plant

    International Nuclear Information System (INIS)

    Marovic, Gordana; Franic, Zdenko; Sencar, Jasminka; Petrinec, Branko; Bituh, Tomislav; Kovac, Jadranka

    2008-01-01

    This paper presents long-term investigations of natural radioactivity in coal, used for power production in the coal-fired power plant (CFPP) situated on the Adriatic coast, and resulting slag and ash. Activity concentrations of 40 K, 232 Th, 226 Ra and 238 U in used coal and resulting waste material have been measured for 25 years. As expected, it was demonstrated that the content of radionuclides in deposited bottom and filter ash material are closely related with radionuclide activity concentrations and mineral matter fraction in used coals. The external hazard index has been calculated and discussed for the slag and ash depository. During the first decade of operation of the CFPP has been used domestic coal produced in nearby area characterized by higher background radiation compared with the rest of Croatia. Therefore, the coal itself had relatively high 226 Ra and 238 U activity concentrations while potassium and thorium content was very low, 40 K activity concentrations being 2-9% and those of 232 Th 1-3% of total activity. As, in addition, the sulphur concentrations in coal were very high use of domestic coal was gradually abandoned till it was completely substituted by imported coal originated from various sources and of low natural radioactivity. Upon this, activity concentrations of uranium series radionuclides in deposited waste materials decreased significantly. Consequently, waste material i.e., slag and ash, generated in the last several years of coal fired power plant operation could be readily used in cement industry and as additive to other building materials, without any special restrictions according to the Croatian regulations dealing with building materials and European directives. (author)

  5. Environmental impacts of coal and nuclear power plants

    International Nuclear Information System (INIS)

    Carvalho, W.B.D. de; Souza, J.A.M. de

    1981-01-01

    The present work analyses the environmental impacts of coal and nuclear power plants. A comparison is made on a common basis considering the various activities involving the complete fuel cycle for both cases. (Author) [pt

  6. Coal-Fired Power Plant Heat Rate Reductions

    Science.gov (United States)

    View a report that identifies systems and equipment in coal-fired power plants where efficiency improvements can be realized, and provides estimates of the resulting net plant heat rate reductions and costs for implementation.

  7. Impact of co-combustion of petroleum coke and coal on fly ash quality: Case study of a Western Kentucky power plant

    International Nuclear Information System (INIS)

    Hower, James C.; Thomas, Gerald A.; Mardon, Sarah M.; Trimble, Alan S.

    2005-01-01

    Petroleum coke has been used as a supplement or replacement for coal in pulverized-fuel combustion. At a 444-MW western Kentucky power station, the combustion of nearly 60% petroleum coke with moderate- to high-sulfur Illinois Basin coal produces fly ash with nearly 50% uncombusted petroleum coke and large amounts of V and Ni when compared to fly ash from strictly pulverized coal burns. Partitioning of the V and Ni, known from other studies to be concentrated in petroleum coke, was noted. However, the distribution of V and Ni does not directly correspond to the amount of uncombusted petroleum coke in the fly ash. Vanadium and Ni are preferentially associated with the finer, higher surface area fly ash fractions captured at lower flue gas temperatures. The presence of uncombusted petroleum coke in the fly ash doubles the amount of ash to be disposed, makes the fly ash unmarketable because of the high C content, and would lead to higher than typical (compared to other fly ashes in the region) concentrations of V and Ni in the fly ash even if the petroleum coke C could be beneficiated from the fly ash. Further studies of co-combustion ashes are necessary in order to understand their behavior in disposal

  8. Carbon burnout of pulverised coal in power station furnaces

    Energy Technology Data Exchange (ETDEWEB)

    R.I. Backreedy; L.M. Fletcher; J.M. Jones; L. Ma; M. Pourkashanian; A. Williams; K. Johnson; D.J. Waldron; P. Stephenson [University of Leeds, Leeds (United Kingdom)

    2003-07-01

    The degree of carbon burnout in pulverised fuel fired power stations is important because it is linked with power plant efficiency and coal ash suitability for construction purposes. The use of computational methods to calculate carbon burnout in such systems has been aided by the increasing availability of fast computers and improvements in computational methodologies. Despite recent advances in fluid flow, coal devolatilisation and coal combustion models, the use of CFD methods for detailed design purposes or for the selection of commercial coals is still limited. In parallel, industrial engineering codes, which combine simplified thermal models with advanced coal combustion models, are still undergoing development since they provide economic advantages over detailed CFD analysis. Although the major coal combustion processes are well established, an understanding regarding the role of coal macerals and the influence of ash on the combustion process is still lacking. A successful coal model must be able to handle all the complexities of combustion, from the details of the burner geometry through to the formation of unburnt carbon as well as NOx. The development of such a model is described here.

  9. Oxy-fuel combustion of pulverized fuels

    DEFF Research Database (Denmark)

    Yin, Chungen; Yan, Jinyue

    2016-01-01

    Oxy-fuel combustion of pulverized fuels (PF), as a promising technology for CO2 capture from power plants, has gained a lot of concerns and also advanced considerable research, development and demonstration in the last past years worldwide. The use of CO2 or the mixture of CO2 and H2O vapor as th...

  10. Preventing performance drops of coal mills due to high moisture content

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Mataji, B.

    2007-01-01

    Coal mills pulverize and dry the coal dust before it is blown into the furnace in coal-fired power plants. The coal mills can only deliver the requested coal flow if certain conditions are fulfilled. These are normally considered as constraints on individual variables. However, combinations of more...... than one variable might cause problems even though these individually variables are in an acceptable region. This paper deals with such a problem. The combination of a high load of the power plant, a large load change and high moisture content in the coal, can force the coal mill into a state where...... coal is accumulated instead of being blown into the furnace. This paper suggests a simple method for preventing the accumulation of the coal in the mill, by limiting the requested coal flow considering the coal moisture content and the temperature outside the mill.  ...

  11. Automatic coal sampling for thermoelectric power plants. Some remarks on moisture

    Energy Technology Data Exchange (ETDEWEB)

    Tanzi, M.

    1983-06-01

    The following topics are discussed: coal sampling and reference standards; coal moisture and sampling; main technical data of the coal sampling station built for the EWEL power plant in Brindisi, Italy.

  12. Technologically enhanced natural radioactivity around the coal fired power plant

    International Nuclear Information System (INIS)

    Kovac, J.; Marovic, G.

    1997-01-01

    In some situations the exposure to natural radiation sources is enhanced as a result to technological developments. Burning of coal is one source of enhanced radiation exposure to naturally occurring elements, particularly radium, thorium and uranium. Most of the radioactive substances are concentrated in the ash and slag, which are heavy and drop to the bottom of a furnace. Lighter fly ash is carried up the chimney and into the atmosphere. The bottom ash and slag are usually deposited in a waste pile, from where some activity may leach into aquifers or be dispersed by wind.The main pathways through which the populations living around coal fired power plants are exposed to enhanced levels of natural radionuclides are inhalation and ingestion of the activity discharged into the Exosphere. For this reason, extensive investigations have been under way for several years in the coal fired power plant in Croatia, which uses an anthracite coal with a higher than usual uranium content. (authors)

  13. Return to coal at the Champagne Soise power station

    Energy Technology Data Exchange (ETDEWEB)

    Feger, M

    1981-03-01

    This power station, which comprises two 250 MW units, which came on stream in 1961 and 1965, burned coal until 1970 and fuel oil until 1977 when it was decided to revert to coal. The author describes the work and modifications carried out for this purpose: internal changes to the boilers and burners, to the coal handling and crushing arrangements and overhauling of the de-dusters and auxiliary circuits. Gives details of the organization and planning of the work involved, plus costs and distribution of expenditure. Gives the operating results and concludes that the reconversion costs were paid off within the year. (In French)

  14. Power generation from lignite coal in Bulgaria - problems and solutions

    International Nuclear Information System (INIS)

    Batov, S.; Gadjanov, P.; Panchev, T.

    1997-01-01

    The bulk of lignite coal produced in Bulgaria is used as fuel for the thermal power plants (TPP) built in Maritsa East coal field. A small part of it goes to production of briquettes and to fuel the auxiliary power plants of industrial enterprises. The total installed capacity of the power plants in the region of Maritsa East is 2490 MW, and the electric power generated by them is about 30% of the total power generated in the country. It should be noted that these power plants were subjected to a number of rehabilitations aiming to improve their technical and economic parameters. Irrespective of that, however, solution has still to be sought to a number of problems related to utilisation of the low-grade lignite coal for power generation. On the whole, they can be divided in the following groups: Those related to lignite coal mining can be referred to the first group. Lignite coal is mined in comparatively complicated mining and geological conditions characterized mainly by earth creep and deformation. The second group of problems is related to coal quality control. It is a fact of major significance that the quality indices of coal keep changing all the time in uneven steps without any definite laws to govern it. That creates hard problems in the process of coal transportation, crushing and combustion. The next group of problems concerns operation and upgrading of the power generation equipment. That applies especially to the existing boilers which bum low-grade fuel in order to improve their operation in terms of higher thermal efficiency, controllability, reliability, improved environmental indices, etc. An increasingly high importance is attached to environmental impact problems incident to lignite coal utilisation. Abatement of sulphur oxide emissions and dust pollution is a problem solution of which cannot wait. The possibilities for partial solution of the environmental problems through increasing the thermal efficiency of facilities at the thermal Power

  15. Particulate behavior in a controlled-profile pulverized coal-fired reactor: A study of coupled turbulent particle dispersion and thermal radiation transport. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, M.; Webb, B.W.

    1996-06-01

    To aid in the evaluation and development of advanced coal-combustion models, comprehensive experimental data sets are needed containing information on both the condensed and gas phases. To address this need a series of test were initiated on a 300 kW laboratory-scale, coal-fired reactor at a single test condition using several types of instrumentation. Data collected on the reactor during the course of the test includes: gas, particle, and wall temperature profiles; radiant, total, and convective heat fluxes to the walls; particle size and velocity profiles; transmission measurements; and gas species concentrations. Solid sampling was also performed to determine carbon and total burnout. Along with the extensive experimental measurements, the particle dispersion and radiation submodels in the ACERC comprehensive 2D code were studied in detail and compared to past experimental measurements taken in the CPR. In addition to the presentation and discussion of the experimental data set, a detailed description of the measurement techniques used in collecting the data, including a discussion of the error associated with each type of measurement, is given.

  16. Overview of current and future - clean coal technologies

    International Nuclear Information System (INIS)

    Darthenay, A.

    1995-01-01

    A new generation of advanced coal technology, environmentally cleaner and in many cases more efficient, has been developed: flue gas treatment of pulverized coal combustion, circulating fluidized bed (CFB), integrated gasification with combined cycle (IGCC) and pressurized fluidized bed combustion (PFBC). These techniques are described, giving a balance of their references and of the steps which are still to be got over in order to have industrial processes applicable to large size power plants. 4 tabs

  17. Ways to Improve Russian Coal-Fired Power Plants

    International Nuclear Information System (INIS)

    Tumanovskii, A. G.; Olkhovsky, G. G.

    2015-01-01

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas. Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed

  18. Ways to Improve Russian Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Tumanovskii, A. G., E-mail: vti@vti.ru; Olkhovsky, G. G. [JSC “All-Russia Thermal Engineering Institute,” (Russian Federation)

    2015-07-15

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas. Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed.

  19. Brayton Point coal conversion project (NEPCO)

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, W.F. Jr.

    1982-05-01

    The New England Power Company (NEPCO) recently converted Brayton Point Power Station Units 1, 2, and 3 from oil to coal. The coal conversion project is the largest coal conversion project in the nation to date. Stone and Webster Engineering Corporation (SWEC) was hired as the engineer/constructor for the project. Units 1 and 2 are 250-MW Combustion Engineering boilers, and Unit 3 is a 650-MW Babcock and Wilcox boiler. All three units were originally designed to burn pulverized coal but were converted to oil during the years of low oil prices. Studies performed by NEPCO and SWEC indicated that the areas discussed in the following paragraphs required upgrading before the units could efficiently burn coal and meet Federal and State environmental requirements. All units have been converted and are operating. This paper discusses design modifications required to burn coal, startup, and initial operating problems, and solutions.

  20. Effect of air ingress on the energy performance of coal fired thermal power plants

    International Nuclear Information System (INIS)

    Siddhartha Bhatt, M.

    2007-01-01

    Ingress of air in boilers leads to drops in energy efficiency. This paper presents the effects of air ingress in the combustion zone, post-combustion zone and air pre-heater (APH) on the energy efficiency and loading capacity of a coal fired thermal power plant operating on fuel with high ash (35-45%). The optimal O 2 in the flue gas for a pulverized coal fired system is 3.5% (corresponding to 20% excess air). The operating values are in the range of 4.2-6.0% in membrane type boilers and up to 10% in refractory type boilers (after sustained periods of operation). The leakage rate of boilers (up to the entrance of the APH) is designed at 0.2% while the average operating values are 7.25% for membrane type enclosures and 33.61% for refractory enclosures. The leakage rate of the APH is designed at 5.0% while the operating values range from 13.66% to 20.13% for rotary and tubular APHs. When the O 2 in the combustion zone varies from 3.5% to 8.0%, efficiency drops of 2.0% points are experienced in the boiler and turbine separately, and the gross overall efficiency drop is ∼3.0% points. The units do not experience any capacity drop up to an O 2 in the flue gas of 6.0% before the APH. At an O 2 in the flue gas (before APH) of 7.2%, a mild limitation on the unit capacity of around 2-3% is experienced. When O 2 in the flue gas (before APH) reaches a level of 9.0%, 20% capacity drop of the unit is experienced due to which the plant load cannot be raised higher than 80%. Beyond the level of 9.0% (rare occurrence), the unit is quite difficult to operate and has to be taken off for overhaul

  1. Coal, an alternative to nuclear power in Europe's energy future

    International Nuclear Information System (INIS)

    Paillard, Christophe-Alexandre

    2012-01-01

    The impending demise of nuclear power in several European countries and the projected strong increase in world energy requirements are placing coal in the forefront again. From being the primary energy source in the 19. century, coal is making a quite remarkable come-back in the 21. century with the advent of 'clean coal' and with its dominance in the energy mix of rapidly emerging countries such as China. New mines should open in Europe. In France, the last mine closed in 2004, but there is potential for new ones in the centre of France in areas such as Auvergne and Bourgogne, as well as Midi Pyrenees. These could create new jobs and reduce France's energy dependency. Far from the topical scenes of the past described in books such as Germinal, with its tips and misery, coal is again a promising energy source, with potential to satisfy a rising share of Europe's energy demand. (author)

  2. Coal mining in the power industry of the Federal Republic of Germany in 2016

    International Nuclear Information System (INIS)

    2017-11-01

    The contribution under consideration reports on the coal mining in the Federal Republic of Germany in the year 2016. Statistical data are presented for the power market and coal market, hard coal mining as well as the brown coal mining. These data consider the energy consumption in Germany, power production, iron and steel production, utilization, re-cultivation and employees.

  3. Coal mining in the power industry of the Federal Republic of Germany in 2015

    International Nuclear Information System (INIS)

    2016-11-01

    The contribution under consideration reports on the coal mining in the Federal Republic of Germany in the year 2015. Statistical data are presented for the power market and coal market, hard coal mining as well as the brown coal mining. These data consider the energy consumption in Germany, power production, iron and steel production, utilization, re-cultivation and employees.

  4. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Science.gov (United States)

    2010-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As of...

  5. Environmental procedures for thermoelectric power plants by national mineral coal

    International Nuclear Information System (INIS)

    Serra, M.T.F.; Verney Gothe, C.A. de; Silva Ramos, R. da

    1990-01-01

    This paper presents the environmental impacts decursive of utilization of South-Brazilian mineral coal to generation of electric energy. This environmental impacts and alternatives of attenuating measures are presented and evaluated, containing the totality of productive cycle: mining, processing, transport, stock piling and use in thermoelectric power plants. Environmental procedures are systematized for first time, in order to be observed in whole expansion of coal thermoelectric generator park. The conception of power plants and site studies of their useful lives are also included. (C.M.). 19 figs, 24 tabs

  6. The Charfuel coal refining process

    International Nuclear Information System (INIS)

    Meyer, L.G.

    1991-01-01

    The patented Charfuel coal refining process employs fluidized hydrocracking to produce char and liquid products from virtually all types of volatile-containing coals, including low rank coal and lignite. It is not gasification or liquefaction which require the addition of expensive oxygen or hydrogen or the use of extreme heat or pressure. It is not the German pyrolysis process that merely 'cooks' the coal, producing coke and tar-like liquids. Rather, the Charfuel coal refining process involves thermal hydrocracking which results in the rearrangement of hydrogen within the coal molecule to produce a slate of co-products. In the Charfuel process, pulverized coal is rapidly heated in a reducing atmosphere in the presence of internally generated process hydrogen. This hydrogen rearrangement allows refinement of various ranks of coals to produce a pipeline transportable, slurry-type, environmentally clean boiler fuel and a slate of value-added traditional fuel and chemical feedstock co-products. Using coal and oxygen as the only feedstocks, the Charfuel hydrocracking technology economically removes much of the fuel nitrogen, sulfur, and potential air toxics (such as chlorine, mercury, beryllium, etc.) from the coal, resulting in a high heating value, clean burning fuel which can increase power plant efficiency while reducing operating costs. The paper describes the process, its thermal efficiency, its use in power plants, its pipeline transport, co-products, environmental and energy benefits, and economics

  7. Nuclear power aspects in an oil and coal producing country

    International Nuclear Information System (INIS)

    Iljas, J.; Subki, I.

    1977-01-01

    In the near future the Government of Indonesia will face a crucial problem, when it has to decide which kinds of energy resources would be reasonably feasible to replace the oil which is currently being used in the country as the main source of energy supply. A description is given of the presently known energy reserves and its potential in the Indonesian Archipelago and specifically on the island of Java. These resources comprise, next to oil, a significant amount of bituminous coal, natural gas, and some hydro and geothermal power. Previous indications of the existence of radioactive minerals have been confirmed lately. The possible use of solar and wind energy on the eastern Indonesian islands is being discussed. A number of studies and opinions expressed at national scientific meetings on the topic of energy have suggested the use of coal and nuclear power as the most economical resources to replace oil as of the beginning of the eighties. A number of constraints, for both coal and nuclear power, are being discussed. They mostly touch the technical, economical, financial and political aspects. A comparison study is made of coal versus nuclear power under the present local conditions. The prospects of nuclear power are reviewed, including the initial steps leading thereto, which have already been taken. In this connection the role of a domestic nuclear industry is being discussed, and also the accelerating effect it may have in the distant future on the growth of electricity from nuclear energy

  8. Waste generation comparison: Coal-fired versus nuclear power plants

    International Nuclear Information System (INIS)

    LaGuardia, T.S.

    1998-01-01

    Low-level radioactive waste generation and disposal attract a great deal of attention whenever the nuclear industry is scrutinized by concerned parties, be it the media, the public, or political interests. It is therefore important to the nuclear industry that this issue be put into perspective relative to other current forms of energy production. Most of the country's fossil-fueled power comes from coal-fired plants, with oil and gas as other fuel sources. Most of the generated waste also comes from coal plants. This paper, therefore, compares waste quantities generated by a typical (1150-MW(electric)) pressurized water reactor (PWR) to that of a comparably sized coal-fired power plant

  9. FY 1990 report on the results of the development of the entrained bed coal gasification power plant. Part 1. Element study; 1990 nendo seika hokokusho. Funryusho sekitan gaska hatsuden plant kaihatsu - Sono 1. Yoso kenkyu hen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    For the purpose of establishing the technology of the integrated coal gasification combined cycle power generation, element study was made for a pilot plant of 200t/d entrained bed coal gasification power generation, and the FY 1990 results were summarized. In the study by the gasification test on 2t/d furnace, gasification test was conducted for the OM coal newly selected as a coal proposed for the expansion of coal kind. As a result, the pulverized coal/char of OM coal have almost good handling property and showed favorable gasification performance. In the study of large gas turbine combustor for demonstrative machine, with the aim of developing a combustor that makes stable combustion also in the low load region possible, fabrication of the accessory equipment of combustor (choke mechanism, measuring use duct and heat insulating plate) was made for the actual-pressure/actual-size combustion test. In the study by simulation of the total system of combined cycle power generation, etc., the following were conducted: verification of characteristics of the integrated control (state of the ordinary operation, state of the mock load control, etc.), load dump simulation (state of the bleed cooperation, state of the bleed separation (state of the air booster operation, etc.)), etc. (NEDO)

  10. Total chain dynamical assessment with an integrated model of a Post Combustion Capture Plant at a Pulverized Coal Plant and CO2 downstream infrastructure

    NARCIS (Netherlands)

    Kler, R.C.F. de; Haar, A.M. van de

    2013-01-01

    The application of Post Combustion Capture has a significant advantage for mitigating the anthropogenic greenhouse gases in our atmosphere, in comparison to other capture technologies, since it is a so called “End of the Pipe” retrofit and therefore potentially applicable to existing power plants.

  11. The economics of coal and nuclear power plants

    International Nuclear Information System (INIS)

    Prior, M.J.

    1978-01-01

    This paper is largely based on a comparison of electrical generating costs from coal-fired power plants and thermal nuclear reactors. Following an introductory section, the subject is considered under the following headings: methodology; cost basis (capital costs, fuel costs, plant factors); generating costs; the fast breeder reactor -general issues; the economics of fast breeder reactors; conclusions and questions. (U.K.)

  12. Coal fired power plant fireside problems

    International Nuclear Information System (INIS)

    Mayer, P.; Manolescu, A.V.

    1984-01-01

    This paper describes the recent experience with fireside problems in coal fired subcritical boilers at Ontario Hydro*, and is concerned with boiler tube wastage. Problems with other components such as burners, air pre-heaters and ''back-end'' ductwork are not discussed. In most utilities, boiler tube failures account for a sizable portion of the total forced outages (typically about25%) as well as a very large part of the maintenance outages. The failures shown under the external deterioration category are of interest because they indicate the proportion of problems caused by the tube metal wastage processes initiated on the fireside of the boilers. Fireside problems remain an important cause of boiler tube failures year after year in spite of concentrated efforts to mitigate them

  13. Coal-fired high performance power generating system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  14. Gas and coal competition in the EU power sector

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2014-01-01

    According to a new report by CEDIGAZ, the International Centre for Natural Gas Information, gas has lost its attractiveness against coal in the EU power sector. Its demand by the sector decreased by one third during the past three years and its prospects are very weak in this decade. The Association warns that un-profitability of combined cycle gas turbines (CCGTs) and the retirement of old coal plants due to stringent air regulation may lead to the closure of one third of the current fleet and poses a serious security of supply issue that has to be addressed urgently

  15. Energy economics of nuclear and coal fired power plant

    International Nuclear Information System (INIS)

    Lee, Kee Won; Cho, Joo Hyun; Kim, Sung Rae; Choi, Hae Yoon

    1995-01-01

    The upturn of Korean nuclear power program can be considered to have started in early 70's while future plants for the construction of new nuclear power plants virtually came to a halt in United States. It is projected that power plant systems from combination of nuclear and coal fired types might shift to all coal fired type, considering the current trend of construction on the new plants in the United States. However, with the depletion of natural resources, it is desirable to understand the utilization of two competitive utility technologies in terms of of invested energy. Presented in this paper is a comparison between two systems, nuclear power plant and coal fired steam power plant in terms of energy investment. The method of comparison is Net Energy Analysis (NEA). In doing so, Input-Output Analysis (IOA) among industries and commodities is done. Using these information, net energy ratios are calculated and compared. NEA is conducted for power plants in U.S. because the availability of necessary data are limited in Korea. Although NEA does not offer conclusive solution, this method can work as a screening process in decision making. When considering energy systems, results from such analysis can be used as a general guideline. 2 figs., 12 tabs., 5 refs. (Author)

  16. Coal use expansion ahead for Pacific Rim power plants (Part 1)

    International Nuclear Information System (INIS)

    Mahr, D.

    1991-01-01

    The growing importance of coal to Pacific Rim countries and their plans to greatly expand coal use in power generation are discussed. Coal acquisition and costs are considered. Cost, much of it freight, often dictates the selection of a coal source. 7 refs., 2 figs., 3 tabs

  17. Report on Seminar on Clean Coal Technology '93; Clean coal technology kokusai seminar hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    The program of the above clean coal technology (CCT) event is composed of 1) Coal energy be friendly toward the earth, 2) Research on CCT in America (study of coal structure under electron microscope), and 3) Research on CCT in Australia (high intensity combustion of ultrafine coal particles in a clean way). Remarks under item 1) are mentioned below. As for SO{sub 2} emissions base unit, Japan's is 1 at its coal-fired thermal power station while that of America is 7.8. As for the level of SO{sub 2}/NOx reduction attributable to coal utilization technologies, it rises in the order of flue gas desulfurizer-aided pulverized coal combustion, normal pressure fluidized bed combustion, pressurized fluidized bed combustion, integrated coal gasification combined cycle power generation, and integrated coal gasification combined cycle power generation/fuel cell. As for the level of CO2 reduction attributable to power generation efficiency improvement, provided that Japan's average power generation efficiency is 39% and if China's efficiency which is now 28% is improved to be similar to that of Japan, there will be a 40% reduction in CO2 emissions. Under item 2) which involves America's CCT program, reference is made to efforts at eliminating unnecessary part from the catalytic process and at reducing surplus air, to the export of CCT technology, and so forth. Under item 3), it is stated that coal cleaning may govern reaction efficiency in a process of burning coal particles for gasification. (NEDO)

  18. Co-firing Bosnian coals with woody biomass: Experimental studies on a laboratory-scale furnace and 110 MWe power unit

    Directory of Open Access Journals (Sweden)

    Smajevic Izet

    2012-01-01

    Full Text Available This paper presents the findings of research into cofiring two Bosnian cola types, brown coal and lignite, with woody biomass, in this case spruce sawdust. The aim of the research was to find the optimal blend of coal and sawdust that may be substituted for 100% coal in large coal-fired power stations in Bosnia and Herzegovina. Two groups of experimental tests were performed in this study: laboratory testing of co-firing and trial runs on a large-scale plant based on the laboratory research results. A laboratory experiment was carried out in an electrically heated and entrained pulverized-fuel flow furnace. Coal-sawdust blends of 93:7% by weight and 80:20% by weight were tested. Co-firing trials were conducted over a range of the following process variables: process temperature, excess air ratio and air distribution. Neither of the two coal-sawdust blends used produced any significant ash-related problems provided the blend volume was 7% by weight sawdust and the process temperature did not exceed 1250ºC. It was observed that in addition to the nitrogen content in the co-fired blend, the volatile content and particle size distribution of the mixture also influenced the level of NOx emissions. The brown coal-sawdust blend generated a further reduction of SO2 due to the higher sulphur capture rate than for coal alone. Based on and following the laboratory research findings, a trial run was carried out in a large-scale utility - the Kakanj power station, Unit 5 (110 MWe, using two mixtures; one in which 5%/wt and one in which 7%/wt of brown coal was replaced with sawdust. Compared to a reference firing process with 100% coal, these co-firing trials produced a more intensive redistribution of the alkaline components in the slag in the melting chamber, with a consequential beneficial effect on the deposition of ash on the superheater surfaces of the boiler. The outcome of the tests confirms the feasibility of using 7%wt of sawdust in combination

  19. Radiation turbulence interactions in pulverized coal flames: Chaotic map models of soot fluctuations in turbulent diffusion flames. Quarterly report, October 1995--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    McDonough, J.M.; Menguc, M.P.; Mukerji, S.; Swabb, S.; Manickavasagam, S.; Ghosal, S.

    1995-12-31

    In this paper, we introduce a methodology to characterize soot volume fraction fluctuations in turbulent diffusion flames via chaotic maps. The approach is based on the hypothesis that the fluctuations of properties in turbulent flames is deterministic in nature, rather than statistical. Out objective is to develop models to mimic these fluctuations. The models will be used eventually in comprehensive algorithms to study the true physics of turbulent flames and the interaction of turbulence with radiation. To this extent, we measured the time series of soot scattering coefficient in an ethylene diffusion flame from light scattering experiments. Following this, corresponding power spectra and delay maps were calculated. It was shown that if the data were averaged, the characteristics of the fluctuations were almost completely washed out. The psds from experiments were successfully modeled using a series of logistic maps.

  20. Natural radioactivity around the coal-fired power plant

    International Nuclear Information System (INIS)

    Kovac, J.; Bajlo, M.

    1996-01-01

    By far the greatest part of the radiation received by the worlds population comes from natural sources, in some situations the exposure to natural radiation sources is enhanced as a result of technological developments. Burning of coal is one source of enhanced radiation exposure to naturally occurring elements, particularly radium, thorium and uranium. Extensive investigations have been performed in the coal-fired power plant (CFPP) Plomin in Croatia, using an anthracite coal with a higher than usual uranium content and normal thorium content. A network of TL dosimeters (TLD), working levels (WL) measurements, air pollution monitoring and monitoring of waste pile were organized. Some of the measurements have been repeated, and the results have shown decreased contamination. (author)

  1. Beyond coal: power, public health and the environment

    International Nuclear Information System (INIS)

    Perrotta, K.

    2002-11-01

    The emphasis of this report was placed on the electricity sector in Ontario, examining its impact on air quality, human health and the environment. The huge changes taking place in this sector of activity, such as opening the market to competition in May 2002, presents risks and opportunities that need to be explored. The establishment of a proper regulatory framework could encourage the development of alternative energy sources, cogeneration and energy efficiency measures. Greenhouse gas emissions have an impact on global climate change, and coal-fired plants in Ontario were responsible for 20 per cent of greenhouse gas emissions in 2001. Approximately 23 per cent of sulphur dioxide and 14 per cent of nitrogen oxides released in the atmosphere in the province in 2001 were generated by coal-fired power plants. These substances cause smog which contributes to almost 1,900 premature deaths each year. A serious environmental problem is acid rain, and the author indicated that Ontario's coal-fired power plants were responsible for approximately 23 per cent of the sulphur dioxide and 14 per cent of the nitrogen oxides. Mercury contamination of the aquatic food chain has negative effects on the health of humans, especially children whose mothers ate fish during pregnancy. Emissions of mercury by Ontario's electricity sector have increased, and 23 per cent of mercury emissions in the province originate from coal-fired power plants. Adequate policies and regulations must be developed to encourage energy efficiency, promote renewable technologies, and phase out the use of coal-fired power plants. Various recommendations for both the federal and provincial governments to implement were also included. 108 refs., 5 tabs., 8 figs

  2. Estimation of environmental external costs between coal fired power plant and nuclear power plant

    International Nuclear Information System (INIS)

    Moon, G. H.; Kim, S. S.

    2000-01-01

    First of all, this study evaluated the impacts on the health and the environment of air pollutants emitted from coal power plant and nuclear power pant, two major electric power generating options in Korea. Then, the environmental external costs of those two options were estimated by transforming the health and environment impact into monetary values. To do this, AIRPACTS and Impacts of Atmospheric Release model developed by IAEA were used. The environmental external cost of Samcheonpo coal power plant was estimated about 25 times as much as that of Younggwang nuclear power plant. This result implies that nuclear power plant is a clean technology compared with coal power plant. This study suggests that the external cost should be reflected in the electric system expansion plan in order to allocate energy resources efficiently and to reduce economic impact stemming from the environmental regulation emerged recently on a global level

  3. γ-ray activity in bituminous, subbituminous and lignite coals

    International Nuclear Information System (INIS)

    Barber, D.E.; Giorgio, H.R.

    1977-01-01

    Specimens of three different types of coal from four different geographical locations (Montana, North Dakota, Illinois and Pennsylvania) were examined by γ-ray spectrometry. Some samples were ashed in a muffle furnace. Other samples included pulverized coal, slag and fly ash from an electric power generating station. Activity from the 232 Th and 238 U series was present in all samples. Activity varied widely depending upon the source of the coal. The results indicate a need for additional examination of activity in coal to: (1) establish more precisely the relative environmental impact of coal-fired power stations compared with nuclear ones, (2) indicate the degree of sophistication required in environmental surveillance programs involving areas where both nuclear and coal-fired power stations are operational, and (3) determine the occupational exposure risks in mining operations. (author)

  4. Clean Coal Power at Toms Creek

    International Nuclear Information System (INIS)

    Schmid, M.R.

    1993-01-01

    On October 20, 1992 the US Department of Energy (DOE), through the Morgantown Energy Technology Center, entered into Cooperative Agreement DE-FC-21-93MC92444 with TAMCO Power Partners to implement the Toms Creek Integrated Gasification Combined - Cycle Demonstration Project. The process design is proceeding as scheduled, and a draft Environmental Information Volume has been produced. The overall project schedule, however, may have to be adjusted when the Power Sales Agreement has been finalized

  5. Environmental impact assessment of coal power plants in operation

    Directory of Open Access Journals (Sweden)

    Bartan Ayfer

    2017-01-01

    Full Text Available Coal power plants constitute an important component of the energy mix in many countries. However, coal power plants can cause several environmental risks such as: climate change and biodiversity loss. In this study, a tool has been proposed to calculate the environmental impact of a coal-fired thermal power plant in operation by using multi-criteria scoring and fuzzy logic method. We take into account the following environmental parameters in our tool: CO, SO2, NOx, particulate matter, fly ash, bottom ash, the cooling water intake impact on aquatic biota, and the thermal pollution. In the proposed tool, the boundaries of the fuzzy logic membership functions were established taking into account the threshold values of the environmental parameters which were defined in the environmental legislation. Scoring of these environmental parameters were done with the statistical analysis of the environmental monitoring data of the power plant and by using the documented evidences that were obtained during the site visits. The proposed method estimates each environmental impact factor level separately and then aggregates them by calculating the Environmental Impact Score (EIS. The proposed method uses environmental monitoring data and documented evidence instead of using simulation models. The proposed method has been applied to the 4 coal-fired power plants that have been operation in Turkey. The Environmental Impact Score was obtained for each power plant and their environmental performances were compared. It is expected that those environmental impact assessments will contribute to the decision-making process for environmental investments to those plants. The main advantage of the proposed method is its flexibility and ease of use.

  6. Environmental impact assessment of coal power plants in operation

    Science.gov (United States)

    Bartan, Ayfer; Kucukali, Serhat; Ar, Irfan

    2017-11-01

    Coal power plants constitute an important component of the energy mix in many countries. However, coal power plants can cause several environmental risks such as: climate change and biodiversity loss. In this study, a tool has been proposed to calculate the environmental impact of a coal-fired thermal power plant in operation by using multi-criteria scoring and fuzzy logic method. We take into account the following environmental parameters in our tool: CO, SO2, NOx, particulate matter, fly ash, bottom ash, the cooling water intake impact on aquatic biota, and the thermal pollution. In the proposed tool, the boundaries of the fuzzy logic membership functions were established taking into account the threshold values of the environmental parameters which were defined in the environmental legislation. Scoring of these environmental parameters were done with the statistical analysis of the environmental monitoring data of the power plant and by using the documented evidences that were obtained during the site visits. The proposed method estimates each environmental impact factor level separately and then aggregates them by calculating the Environmental Impact Score (EIS). The proposed method uses environmental monitoring data and documented evidence instead of using simulation models. The proposed method has been applied to the 4 coal-fired power plants that have been operation in Turkey. The Environmental Impact Score was obtained for each power plant and their environmental performances were compared. It is expected that those environmental impact assessments will contribute to the decision-making process for environmental investments to those plants. The main advantage of the proposed method is its flexibility and ease of use.

  7. Combined compressed air storage-low BTU coal gasification power plant

    Science.gov (United States)

    Kartsounes, George T.; Sather, Norman F.

    1979-01-01

    An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

  8. Nuclear power more profitable than coal if funded with low cost capital: A South-African case study

    International Nuclear Information System (INIS)

    Serfontein, Dawid E.

    2014-01-01

    This study summarizes and expands on economic simulation results from the author’s reviews of the South-African Government’s Draft Integrated Energy Plan (IEP) and Integrated Resource Plan Update 2013 (IRP Update). The Levellized Cost of Electricity (LCOE), as a function of the pre-tax Weighted Average Cost of Capital (WACC%) and the pre-tax % rate of return and the pre-tax nominal profit per unit power sold (R/kWh), as a function of the electricity selling price, are compared for a new Generation III nuclear plant and a new pulverized coal plant with Flue Gas Desulphurization (FGD), built in South Africa. All monetary amounts are expressed in constant real 2012 South African Rand (R), i.e. inflation has been removed. An exchange rate of R8.01/$ was assumed. Since the key economic features of HTRs and Generation III water-cooled nuclear plants are similar, e.g. high initial capital cost followed by low fuel and other variable costs and long plant lives, these results for Generation III nuclear plants are also applicable to HTRs. The results show that the LCOE for nuclear increases sharply with the pre-tax WACC%. For low WACC percentages, nuclear power is much cheaper than coal and vice versa. However the pre-tax nominal profit per unit nuclear power sold (R/kWh) greatly outperforms coal for all values of the electricity selling price, even if the nuclear overnight cost increases to the much maligned $7,000/kW-installed. Especially impressive is the result that nuclear already breaks even at R 0.30/kWh while coal will run at a loss until the price is increased to R 0.68/kWh. This result, that nuclear produces the most profitable power of all readily available sources in South Africa, implies the following power plant construction strategy: Supply the minimum expected new base-load with nuclear plants, augmented by peaking plants, such as hydro and gas turbine in order to balance the constant base-load power supply with the varying demand during different times

  9. Potential flue gas impurities in carbon dioxide streams separated from coal-fired power plants.

    Science.gov (United States)

    Lee, Joo-Youp; Keener, Tim C; Yang, Y Jeffery

    2009-06-01

    For geological sequestration of carbon dioxide (CO2) separated from pulverized coal combustion flue gas, it is necessary to adequately evaluate the potential impacts of flue gas impurities on groundwater aquifers in the case of the CO2 leakage from its storage sites. This study estimated the flue gas impurities to be included in the CO2 stream separated from a CO2 control unit for a different combination of air pollution control devices and different flue gas compositions. Specifically, the levels of acid gases and mercury vapor were estimated for the monoethanolamine (MEA)-based absorption process on the basis of published performance parameters of existing systems. Among the flue gas constituents considered, sulfur dioxide (SO2) is known to have the most adverse impact on MEA absorption. When a flue gas contains 3000 parts per million by volume (ppmv) SO2 and a wet flue gas desulfurization system achieves its 95% removal, approximately 2400 parts per million by weight (ppmw) SO2 could be included in the separated CO2 stream. In addition, the estimated concentration level was reduced to as low as 135 ppmw for the SO2 of less than 10 ppmv in the flue gas entering the MEA unit. Furthermore, heat-stable salt formation could further reduce the SO2 concentration below 40 ppmw in the separated CO2 stream. In this study, it is realized that the formation rates of heat-stable salts in MEA solution are not readily available in the literature and are critical to estimating the levels and compositions of flue gas impurities in sequestered CO2 streams. In addition to SO2, mercury, and other impurities in separated CO2 streams could vary depending on pollutant removal at the power plants and impose potential impacts on groundwater. Such a variation and related process control in the upstream management of carbon separation have implications for groundwater protection at carbon sequestration sites and warrant necessary considerations in overall sequestration planning

  10. Engineering development of coal-fired high-performance power systems

    International Nuclear Information System (INIS)

    1998-01-01

    A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolyzation process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2, which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, Al. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. During this quarter, initial char combustion tests were performed at the CETF using a Foster Wheeler commercial burner. These preliminary tests were encouraging and will be used to support the development of an innovative char burner for the HIPPS

  11. Competitive economics: Nuclear and coal power

    International Nuclear Information System (INIS)

    Hellman, R.

    1984-01-01

    An extraordinary aspect of nuclear power is the fact that until 1974 no competent and authoritative study of its economics had been published, in or out of government. Yet well over $100 billion of orders have been given. Another extraordinary characteristic of the industry is prematurity. Light water reactors operate at about half the temperatures, a fourth the steam pressures and half the turbine speeds of fossil fuel units. They therefore must move 3.5 times the cubic feet of steam per hour to get the same power output, and this requires piping, valves, pumps, boilers, etc. which are so much bigger as to create serious technological problems of manufacture, installation, operation and maintenance. Instead of following normal sequences of test and proof, the industry rushed massive orders prematurely -- and this for a technology with enormous problems of radioactivity and economic unknowns

  12. Using plasma-fuel systems at Eurasian coal-fired thermal power stations

    Science.gov (United States)

    Karpenko, E. I.; Karpenko, Yu. E.; Messerle, V. E.; Ustimenko, A. B.

    2009-06-01

    The development of plasma technology for igniting solid fuels at coal-fired thermal power stations in Russia, Kazakhstan, China, and other Eurasian countries is briefly reviewed. Basic layouts and technical and economic characteristics of plasma-fuel systems installed in different coal-fired boiles are considered together with some results from using these systems at coal-fired thermal power stations.

  13. The Increase of Power Efficiency of Underground Coal Mining by the Forecasting of Electric Power Consumption

    Science.gov (United States)

    Efremenko, Vladimir; Belyaevsky, Roman; Skrebneva, Evgeniya

    2017-11-01

    In article the analysis of electric power consumption and problems of power saving on coal mines are considered. Nowadays the share of conditionally constant costs of electric power for providing safe working conditions underground on coal mines is big. Therefore, the power efficiency of underground coal mining depends on electric power expense of the main technological processes and size of conditionally constant costs. The important direction of increase of power efficiency of coal mining is forecasting of a power consumption and monitoring of electric power expense. One of the main approaches to reducing of electric power costs is increase in accuracy of the enterprise demand in the wholesale electric power market. It is offered to use artificial neural networks to forecasting of day-ahead power consumption with hourly breakdown. At the same time use of neural and indistinct (hybrid) systems on the principles of fuzzy logic, neural networks and genetic algorithms is more preferable. This model allows to do exact short-term forecasts at a small array of input data. A set of the input parameters characterizing mining-and-geological and technological features of the enterprise is offered.

  14. A newer concept of setting up coal refineries in coal utilising industries through environmentally sound clean coal technology of organosuper refining of coals

    International Nuclear Information System (INIS)

    Sharma, D.K.

    1994-01-01

    In order to reduce the losses of premium organic matter of coal and its immense potential energy which is present in the form of stronger interatomic and intramolecular bonding energies, a newer and convenient technique of recovering the premium organic matter from low grade coals by organosuper-refining technique which operates under ambient pressure conditions has been developed. The residual coal obtained can be used as environmentally clean fuel or as a feedstock for the industries based on carbonization and gasification. It is suggested that a beginning be made by setting up coal refineries in coal utilizing industries on the basis of the presently developed new technology of organosuper-refining of coals to recover premium grade organic chemical feed stocks from coals before utilizing coal by techniques such as bubble bed or recirculatory fluidized bed or pulverized coal combustion in thermal power stations, carbonization in steel plants or other carbonization units, gasification in fertilizer industries or in integrated coal gasification combined cycle power generation. Thus, coal refineries may produce value added aromatic chemical feed stocks, formed coke or coke manufacturing; and carbon fillers for polymers. (author). 100 refs., 1 fig

  15. Assessing coal burnout

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, A. [Pacific Power, Sydney, NSW (Australia)

    1999-11-01

    Recent research has allowed a quantitative description of the basic process of burnout for pulverized coals to be made. The Cooperative Research Centre for Black Coal Utilization has built on this work to develop a coal combustion model which will allow plant engineers and coal company representatives to assess their coals for combustion performance. The paper describes the model and its validation and outlines how it is run. 2 figs.

  16. Environmental impact assessment of coal fired thermal power stations

    International Nuclear Information System (INIS)

    Nambi, K.S.V.; Sadasivan, S.; Negi, B.S.; Meenakshy, V.

    1992-01-01

    Coal fly ash samples collected from various thermal power plants and one lignite ash sample were analysed for various elements such as As, Ca, Ce, Co, Cr, Cu, Eu, Fe, Hf, K, La, Lu, Mn, Na, Ni, Pb, Rb, Se, Si, Sb, Sc, Sm, Sr, Ti, V, Yb and Zn using energy dispersive X-ray fluorescence and instrumental neutron activation analysis methods. The two-step maximum leachability test was also performed on all fly ash samples. 13 refs, 9 tabs

  17. Dustfall design of open coal yard in the power plant-a case study on the closed reconstruction project of coal storage yard in shengli power plant

    Science.gov (United States)

    Wang, Kunpeng; Ji, Weidong; Zhang, Feifei; Yu, Wei; Zheng, Runqing

    2018-02-01

    This thesis, based on the closed reconstruction project of the coal storage yard of Shengli Power Plant which is affiliated to Sinopec Shengli Petroleum Administration, first makes an analysis on the significance of current dustfall reconstruction of open coal yard, then summarizes the methods widely adopted in the dustfall of large-scale open coal storage yard of current thermal power plant as well as their advantages and disadvantages, and finally focuses on this project, aiming at providing some reference and assistance to the future closed reconstruction project of open coal storage yard in thermal power plant.

  18. Means and apparatus for throttling a dry pulverized solid material pump

    Science.gov (United States)

    Meyer, J. W.; Daniel, Jr, A. D.; Bonin, J. H.

    1982-12-07

    Method and apparatus are shown for control of continuous feeding of pulverized material to a high pressure container. A rotor is located within the high pressure container. The pulverized material is fed from a feed hopper through a stationary feed pipe to a vented spin-up zone chamber to a plurality of sprues mounted in the rotor. Control of the pressure within control nozzles downstream from the sprues adjusts the flow rate of coal through the sprues. 9 figs.

  19. Environmental impacts of nuclear and coal-fired power plants

    International Nuclear Information System (INIS)

    Horyna, J.; Horynova, H.

    1984-01-01

    The current situation in the development of nuclear power in the world and in Czechoslovakia is briefly outlined and the possibilities are discussed of alternative energy resources. The environmental impact is described of conventional power plants firing coal; sulphur and nitrogen oxides are mentioned and their environmental impacts shown. Their quantities and the quantities of other gaseous, liquid and soid wastes produced by coal power plants are given. Annual estimates are presented of radioactive material emissions; trace amount emissions of toxic metals and their ecological risks are shown. Concern over the increasing concentration of CO 2 in the atmosphere is voiced. For nuclear power plants, the amount of radionuclides in stack emission and of those released into water flows is tabulated. Their effect on the aqueous ecosystem is characterized as is thermal pollution of water flows and the environmental impact of cooling towers. Other factors are also mentioned, such as the increased industrial land use, the effect of high voltage transmission lines and aesthetic effects. The conclusion is arrived at that the construction of nuclear power plants will eliminate the adverse environmental impact of emissions while the other impacts of the two types of power plants are comparable. (A.K.)

  20. Fossil fuel-fired power generation. Case studies of recently constructed coal- and gas-fired plants

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, C. [IEA Clean Coal Centre, London (United Kingdom)

    2007-10-23

    To meet future energy demand growth and replace older or inefficient units, a large number of fossil fuel-fired plants will be required to be built worldwide in the next decade. Yet CO{sub 2} emissions from fossil-fired power generation are a major contributor to climate change. As a result, new plants must be designed and operated at highest efficiency both to reduce CO{sub 2} emissions and to facilitate deployment of CO{sub 2} capture and storage in the future. The series of case studies in this report, which respond to a request to the IEA from the G8 Summit in July 2005, were conducted to illustrate what efficiency is achieved now in modern plants in different parts of the world using different grades of fossil fuels. The plants were selected from different geographical areas, because local factors influence attainable efficiency. The case studies include pulverized coal combustion (PCC) with both subcritical and supercritical (very high pressure and temperature) steam turbine cycles, a review of current and future applications of coal-fuelled integrated gasification combined cycle plants (IGCC), and a case study of a natural gas fired combined cycle plant to facilitate comparisons. The results of these analyses show that the technologies for high efficiency (low CO{sub 2} emission) and very low conventional pollutant emissions (particulates, SO{sub 2}, NOx) from fossil fuel-fired power generation are available now through PCC, IGCC or NGCC at commercially acceptable cost. This report contains comprehensive technical and indicative cost information for modern fossil fuel-fired plants that was previously unavailable. It serves as a valuable sourcebook for policy makers and technical decision makers contemplating decisions to build new fossil fuel-fired power generation plants.

  1. Innovation avenues for coal derived power essential for the future

    Energy Technology Data Exchange (ETDEWEB)

    Berkley, Mark; Cruz, Elizabet; Vatanakul, Maytinee; Hynes, Rory; Stickler, Alexander

    2010-09-15

    Current political climates are culminating in the conflict between economic development and environmental regulation -- Climate Change. Developed nations are driven by and dependent upon the cheap, abundant power of coal. Today, developing nations wish to duplicate this historical pathway, yet are subject to global scrutiny. The politico-economic conflict between nations may be alleviated by innovative technologies delivering power and improved environmental considerations. The long-term economic trend has been upward and thus targeting expanding and converting existing economies to utilize innovative technologies is fundamental to addressing the balance between socio-economic and environmental interests.

  2. Natural radionuclides near a coal-fired power station

    Energy Technology Data Exchange (ETDEWEB)

    Smith-Briggs, J L

    1984-06-15

    An experiment was carried out to measure the specific activity of Pb-210 and Po-210 in livers from cattle that had grazed in a field near Didcot coal-fired power station. Livers from cattle in the Cotswold region were measured for comparison. The specific activities of Pb-210 and Po-210 in soil and grass samples from both areas were also measured at 3-monthly intervals over a year. No statistically significant increases were observed in the Pb-210 and Po-210 levels in liver, soil or grass samples which could be attributed to the operation of the power station.

  3. Improvements in electric power supply in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Minovskii, Yu.P.; Nabokov, Eh.P.; Savel' ev, G.P.

    1985-01-01

    Reviews measures taken by major coal producing countries to increase output levels. Discusses research carried out into advance design of equipment in FRG, UK, USA and France and proposes establishment of central automatic control of electric power supply system in Soviet mines, improvement in underground power supply equipment, increase in reliability, stabilization of standby capacity in low voltage circuits, maintenance-free electrical equipment, and efficient spare part storage in underground workings. States that introduction of the proposed system (details are given) will ensure that Soviet mines will eventually reach the development level of foreign mines. 2 refs.

  4. Ash Deposition Trials at Three Power Stations in Denmark

    DEFF Research Database (Denmark)

    Laursen, Karin; Frandsen, Flemming; Larsen, Ole Hede

    1998-01-01

    Six full-scale trials were conducted at three power stations in Denmark: Ensted, Funen, and Vendsyssel power stations. During these trials, pulverized coal, bottom ash, fly ash, and deposits from cooled probes were sampled and analyzed with various techniques. On the basis of SEM analyses...

  5. Increasing flexibility of coal power plant by control system modifications

    Directory of Open Access Journals (Sweden)

    Marušić Ante

    2016-01-01

    Full Text Available Expanding implementation of intermittent renewable energy sources has already started to change the role of thermal power plants in energy systems across Europe. Traditionally base load plants are now forced to operate as peaking plants. A familiar transition in upcoming years is expected in Croatia and coal power plant operators are preparing accordingly. To evaluate cycling capabilities and control system operation for flexible operation of selected 210 MW coal plant, series of tests with different load gradients were performed and results were thoroughly analyzed. Two possible “bottlenecks” are identified, thermal stress in superheater header, and achievable ramping rate considering operational limitations of coal feeders, firing system and evaporator dynamics. Several unexpected readings were observed, usually caused by malfunctioning sensors and equipment, resulting in unexpected oscillations of superheated steam temperature. Based on superheater geometry and experimental data, maximal steam temperature gradient during ramping was evaluated. Since thermal stress was well inside the safety margins, the simulation model of the whole boiler was used to evaluate achievable ramping on electric side.

  6. Coal conversion process by the United Power Plants of Westphalia

    Energy Technology Data Exchange (ETDEWEB)

    1974-08-01

    The coal conversion process used by the United Power Plants of Westphalia and its possible applications are described. In this process, the crushed and predried coal is degassed and partly gasified in a gas generator, during which time the sulfur present in the coal is converted into hydrogen sulfide, which together with the carbon dioxide is subsequently washed out and possibly utilized or marketed. The residual coke together with the ashes and tar is then sent to the melting chamber of the steam generator where the ashes are removed. After desulfurization, the purified gas is fed into an external circuit and/or to a gas turbine for electricity generation. The raw gas from the gas generator can be directly used as fuel in a conventional power plant. The calorific value of the purified gas varies from 3200 to 3500 kcal/cu m. The purified gas can be used as reducing agent, heating gas, as raw material for various chemical processes, or be conveyed via pipelines to remote areas for electricity generation. The conversion process has the advantages of increased economy of electricity generation with desulfurization, of additional gas generation, and, in long-term prospects, of the use of the waste heat from high-temperature nuclear reactors for this process.

  7. Bioremediation for coal-fired power stations using macroalgae.

    Science.gov (United States)

    Roberts, David A; Paul, Nicholas A; Bird, Michael I; de Nys, Rocky

    2015-04-15

    Macroalgae are a productive resource that can be cultured in metal-contaminated waste water for bioremediation but there have been no demonstrations of this biotechnology integrated with industry. Coal-fired power production is a water-limited industry that requires novel approaches to waste water treatment and recycling. In this study, a freshwater macroalga (genus Oedogonium) was cultivated in contaminated ash water amended with flue gas (containing 20% CO₂) at an Australian coal-fired power station. The continuous process of macroalgal growth and intracellular metal sequestration reduced the concentrations of all metals in the treated ash water. Predictive modelling shows that the power station could feasibly achieve zero discharge of most regulated metals (Al, As, Cd, Cr, Cu, Ni, and Zn) in waste water by using the ash water dam for bioremediation with algal cultivation ponds rather than storage of ash water. Slow pyrolysis of the cultivated algae immobilised the accumulated metals in a recalcitrant C-rich biochar. While the algal biochar had higher total metal concentrations than the algae feedstock, the biochar had very low concentrations of leachable metals and therefore has potential for use as an ameliorant for low-fertility soils. This study demonstrates a bioremediation technology at a large scale for a water-limited industry that could be implemented at new or existing power stations, or during the decommissioning of older power stations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Coal resources of the eastern regions of Russia for power plants of the Asian super ring

    Science.gov (United States)

    Sokolov, Aleksander; Takaishvili, Liudmila

    2018-01-01

    The eastern regions of Russia have a substantial potential for expansion of steaming coal production. The majority of coal deposits in the eastern regions are located close enough to the objects of the Asian super ring. The large coal reserves make it possible to consider it as a reliable fuel source for power plants for a long-term horizon. The coal reserves suitable for using at power plants of the Asian super ring are estimated in the paper by subject of the federation of the eastern regions for operating and new coal producers. The coal deposits of the eastern regions that are promising for the construction of power plants of the Asian super ring are presented. The paper describes both the coal deposits of the eastern regions that are considered in the projects for power plant construction and included in the program documents and the coal deposits that are not included in the program documents. The coal reserves of these deposits and the possible volumes of its production are estimated. The key qualitative coal characteristics of the deposits: heating value, and ash, sulfur, moisture content are presented. The mining-geological and hydrological conditions for deposit development are briefly characterized. The coals of the eastern regions are showed to contain valuable accompanying elements. It is noted that the creation of industrial clusters on the basis of the coal deposits is the most effective from the standpoints of the economy and ecology. The favorable and restraining factors in development of the described coal deposits are estimated.

  9. The Mesaba Energy Project: Clean Coal Power Initiative, Round 2

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Richard; Gray, Gordon; Evans, Robert

    2014-07-31

    The Mesaba Energy Project is a nominal 600 MW integrated gasification combine cycle power project located in Northeastern Minnesota. It was selected to receive financial assistance pursuant to code of federal regulations (?CFR?) 10 CFR 600 through a competitive solicitation under Round 2 of the Department of Energy?s Clean Coal Power Initiative, which had two stated goals: (1) to demonstrate advanced coal-based technologies that can be commercialized at electric utility scale, and (2) to accelerate the likelihood of deploying demonstrated technologies for widespread commercial use in the electric power sector. The Project was selected in 2004 to receive a total of $36 million. The DOE portion that was equally cost shared in Budget Period 1 amounted to about $22.5 million. Budget Period 1 activities focused on the Project Definition Phase and included: project development, preliminary engineering, environmental permitting, regulatory approvals and financing to reach financial close and start of construction. The Project is based on ConocoPhillips? E-Gas? Technology and is designed to be fuel flexible with the ability to process sub-bituminous coal, a blend of sub-bituminous coal and petroleum coke and Illinois # 6 bituminous coal. Major objectives include the establishment of a reference plant design for Integrated Gasification Combined Cycle (?IGCC?) technology featuring advanced full slurry quench, multiple train gasification, integration of the air separation unit, and the demonstration of 90% operational availability and improved thermal efficiency relative to previous demonstration projects. In addition, the Project would demonstrate substantial environmental benefits, as compared with conventional technology, through dramatically lower emissions of sulfur dioxide, nitrogen oxides, volatile organic compounds, carbon monoxide, particulate matter and mercury. Major milestones achieved in support of fulfilling the above goals include obtaining Site, High Voltage

  10. Coal seam has boom - powering North Queensland industrial growth

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-01

    Reduced operating costs, lower greenhouse gas emissions and security of supply are being cited by North Queensland industry leaders as the reasons for investing more than A$550 million to expand operations and convert to coal seam gas as their preferred fuel source. The article, by Enertrade, reports that just a few months after commissioning its North Queensland Gas Pipeline to transport coal seam gas from Moranbah to Townsville, Enertrade has signed contracts that will see combined cycle gas-fired baseload electricity generated in Townsville and the Queensland Nickel Refinery, and Xstrata Copper Refinery switch from liquid fuels to gas. The development has been driven by state government policy that 13% of Queensland's electricity be sourced from gas-fired power generation from 1 January 2005. Further information is available from Enertrade on Tel +617 3331 9929. 2 photos.

  11. Technology Efficiency Study on Nuclear Power and Coal Power in Guangdong Province Based on DEA

    International Nuclear Information System (INIS)

    Yinong Li; Dong Wang

    2006-01-01

    Guangdong Province has taken the lead in embarking on nuclear power development to resolve its dire lack of primary resources. With the deepening of the on-going structural reform in the electric power sector in China, the market competition scheme is putting electricity generation enterprises under severe strain. Consequently, it is incumbent upon the nuclear power producers to steadily upgrade management, enhance technical capabilities, reduce cost and improve efficiency. At present, gradual application of such efficiency evaluation methodology has already commenced in some sectors in China including the electric power industry. The purpose of this paper is to use the Data Envelopment Analysis (DEA), which is a cutting-edge approach in the efficiency evaluation field - to study the technological efficiency between nuclear power and coal power in Guangdong Province. The DEA results demonstrate that, as far as Guangdong Province is concerned, the technological efficiency of nuclear power is higher than that of coal power in terms of Technological Efficiency (TE), Pure Technology Efficiency (PTE) and Scale Efficiency (SE). The reason is that nuclear power technology is advanced with a much higher equipment availability factor. Under the same scale, the generation output of nuclear power is far higher than that of equivalent coal power generation. With the environmental protection and sustainable development requirements taken into full account, nuclear power constitutes a clean, safe and highly-efficient energy form which should be extensively harnessed in Guangdong Province to fuel its future continuing economic growth. (authors)

  12. Coal-fired power plant: airborne routine discharges

    International Nuclear Information System (INIS)

    Zeevaert, T.

    2005-01-01

    The radiological impact from non-nuclear industries is a growing matter of concern to stake holders and regulators. It has been demonstrated that atmospheric discharges from coal-fired power plants can lead to higher dose-impacts to critical groups of the population than nuclear power plants. In Belgium, in the frame of an agreement between electricity producers and national authorities, measures were taken in conventional power plants to restrict airborne discharges of SO 2 , NO x and suspended particles. In the 500 MWe coal-fired power plant of Langerlo, a flue gas purification system was installed, consisting of a denitrification unit and a desulphurization unit, next to the electrostatic dust filter units. These measures have also an important effect on the radioactive atmospheric discharges. The objective of this study was to assess the radiological impact of the airborne releases of the power plant under normal working conditions and in particular the influence of the installation of the flue gas purification system. As a first step, we measured the natural radioactivity content of the coal and the radium content of the fly ash . The quantities of the other radioelements discharged through the chimney, were estimated, assuming the same behaviour as radium, except for the more volatile lead and polonium, which will condense preferably on finer ash particles, against which the electro filters are less effective. (A concentration factor of 4 has been adopted). The radon, present in the coal, is assumed to be discharged completely through the chimney. The atmospheric transport, dispersion and deposition of the discharged radionuclides were modelled, applying the bi-Gaussian plume model IFDM. For the calculations, we used hourly averages of the meteorological observations at Mol over the year 1991. The transfers of the radionuclides from air and soil to the biospheric media, exposing man, were calculated with our biosphere model and the radiological impact to the

  13. ENGINEERING FEASIBILITY AND ECONOMICS OF CO2 SEQUESTRATION/USE ON AN EXISTING COAL-FIRED POWER PLANT: A LITERATURE REVIEW

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Bozzuto; Nsakala ya Nsakala

    2000-01-31

    The overall objective of this study is to evaluate the technical feasibility and the economics of alternate CO{sub 2} capture and sequestration/use technologies for retrofitting an existing pulverized coal-fired power plant. To accomplish this objective three alternative CO{sub 2} capture and sequestration systems will be evaluated to identify their impact on an existing boiler, associated boiler auxiliary components, overall plant operation and performance and power plant cost, including the cost of electricity. The three retrofit technologies that will be evaluated are as follows: (1) Coal combustion in air, followed by CO{sub 2} separation from flue gas with Kerr-McGee/ABB Lummus Global's commercial MEA-based absorption/stripping process. (2) Coal combustion in an O{sub 2}/CO{sub 2} environment with CO{sub 2} recycle. (3) Coal combustion in air with oxygen removal and CO{sub 2} captured by tertiary amines In support of this objective and execution of the evaluation of the three retrofit technologies a literature survey was conducted. It is presented in an ''annotated'' form, consistent with the following five sections: (1) Coal Combustion in O{sub 2}/CO{sub 2} Media; (2) Oxygen Separation Technologies; (3) Post Combustion CO{sub 2} Separation Technologies; (4) Potential Utilization of CO{sub 2}; and (5) CO{sub 2} Sequestration. The objective of the literature search was to determine if the three retrofit technologies proposed for this project continue to be sound choices. Additionally, a review of the literature would afford the opportunity to determine if other researchers have made significant progress in developing similar process technologies and, in that context, to revisit the current state-of-the-art. Results from this literature survey are summarized in the report.

  14. Coal and nuclear power: Illinois' energy future

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  15. Coal combustion technology in China

    International Nuclear Information System (INIS)

    Huang, Z.X.

    1994-01-01

    Coal is the most important energy source in China, the environmental pollution problem derived from coal burning is rather serious in China. The present author discusses coal burning technologies both in boilers and industrial furnaces and their relations with environmental protection problems in China. The technological situations of Circulating Fluidized Bed Coal Combustor, Pulverized Coal Combustor with Aerodynamic Flame Holder and Coal Water Slurry Combustion have been discussed here as some of the interesting problems in China only. (author). 3 refs

  16. Environmental impacts of coal mine and thermal power plant to the surroundings of Barapukuria, Dinajpur, Bangladesh.

    Science.gov (United States)

    Hossain, Md Nazir; Paul, Shitangsu Kumar; Hasan, Md Muyeed

    2015-04-01

    The study was carried out to analyse the environmental impacts of coal mine and coal-based thermal power plant to the surrounding environment of Barapukuria, Dinajpur. The analyses of coal, water, soil and fly ash were carried out using standard sample testing methods. This study found that coal mining industry and coal-based thermal power plant have brought some environmental and socio-economic challenges to the adjacent areas such as soil, water and air pollution, subsidence of agricultural land and livelihood insecurity of inhabitants. The pH values, heavy metal, organic carbon and exchangeable cations of coal water treated in the farmland soil suggest that coal mining deteriorated the surrounding water and soil quality. The SO4(2-) concentration in water samples was beyond the range of World Health Organisation standard. Some physico-chemical properties such as pH, conductivity, moisture content, bulk density, unburned carbon content, specific gravity, water holding capacity, liquid and plastic limit were investigated on coal fly ash of Barapukuria thermal power plant. Air quality data provided by the Barapukuria Coal Mining Company Limited were contradictory with the result of interview with the miners and local inhabitants. However, coal potentially contributes to the development of economy of Bangladesh but coal mining deteriorates the environment by polluting air, water and soil. In general, this study includes comprehensive baseline data for decision makers to evaluate the feasibility of coal power industry at Barapukuria and the coalmine itself.

  17. Radiological hazard from coal-fired power plants in Poland

    International Nuclear Information System (INIS)

    Nowina-Konopka, M.

    1991-01-01

    The radiobiological hazard of Polish population due to coal combustion for electric power production was assessed. Activity concentrations of the elementary radionuclides in coal and all kinds of ashes were measured. The ATMO computer program was applied to calculate the annual increase of the activity concentration in the air and of the annual increase of activity falling on the ground. Exposition by inhalation, oral ingestion and external irradiation was taken into account. The assessed value of irradiation was taken into account. The assessed value of individual effective dose equivalent commitments for the critical group is 0.1 mSv, i.e. 4% of the total dose rate from natural radiation. The collective effective dose equivalent commitments received of all sources by an inhabitant of Poland as a consequence of annual coal combustion in Polish CPP is 367 manSv/a (i.e. 47 manSv per GWa), i.e. 0.4% of the dose from natural radiation. (author). 11 refs, 3 figs, 8 tabs

  18. Impacts of TMDLs on coal-fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Environmental Science Division

    2010-04-30

    The Clean Water Act (CWA) includes as one of its goals restoration and maintenance of the chemical, physical, and biological integrity of the Nation's waters. The CWA established various programs to accomplish that goal. Among the programs is a requirement for states to establish water quality standards that will allow protection of the designated uses assigned to each water body. Once those standards are set, state agencies must sample the water bodies to determine if water quality requirements are being met. For those water bodies that are not achieving the desired water quality, the state agencies are expected to develop total maximum daily loads (TMDLs) that outline the maximum amount of each pollutant that can be discharged to the water body and still maintain acceptable water quality. The total load is then allocated to the existing point and nonpoint sources, with some allocation held in reserve as a margin of safety. Many states have already developed and implemented TMDLs for individual water bodies or regional areas. New and revised TMDLs are anticipated, however, as federal and state regulators continue their examination of water quality across the United States and the need for new or revised standards. This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements its overall research effort by evaluating water issues that could impact power plants. One of the program missions of the DOE's NETL is to develop innovative environmental control technologies that will enable full use of the Nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. Some of the parameters for which TMDLs are being developed are components in discharges

  19. Development of a high-performance, coal-fired power generating system with a pyrolysis gas and char-fired high-temperature furnace

    International Nuclear Information System (INIS)

    Shenker, J.

    1995-01-01

    A high-performance power system (HIPPS) is being developed. This system is a coal-fired, combined-cycle plant that will have an efficiency of at least 47 percent, based on the higher heating value of the fuel. The original emissions goal of the project was for NOx and SOx to each be below 0.15 lb/MMBtu. In the Phase 2 RFP this emissions goal was reduced to 0.06 lb/MMBtu. The ultimate goal of HIPPS is to have an all-coal-fueled system, but initial versions of the system are allowed up to 35 percent heat input from natural gas. Foster Wheeler Development Corporation is currently leading a team effort with AlliedSignal, Bechtel, Foster Wheeler Energy Corporation, Research-Cottrell, TRW and Westinghouse. Previous work on the project was also done by General Electric. The HIPPS plant will use a high-Temperature Advanced Furnace (HITAF) to achieve combined-cycle operation with coal as the primary fuel. The HITAF is an atmospheric-pressure, pulverized-fuel-fired boiler/air heater. The HITAF is used to heat air for the gas turbine and also to transfer heat to the steam cycle. its design and functions are very similar to conventional PC boilers. Some important differences, however, arise from the requirements of the combined cycle operation

  20. Development of a high-performance, coal-fired power generating system with a pyrolysis gas and char-fired high-temperature furnace

    Energy Technology Data Exchange (ETDEWEB)

    Shenker, J.

    1995-11-01

    A high-performance power system (HIPPS) is being developed. This system is a coal-fired, combined-cycle plant that will have an efficiency of at least 47 percent, based on the higher heating value of the fuel. The original emissions goal of the project was for NOx and SOx to each be below 0.15 lb/MMBtu. In the Phase 2 RFP this emissions goal was reduced to 0.06 lb/MMBtu. The ultimate goal of HIPPS is to have an all-coal-fueled system, but initial versions of the system are allowed up to 35 percent heat input from natural gas. Foster Wheeler Development Corporation is currently leading a team effort with AlliedSignal, Bechtel, Foster Wheeler Energy Corporation, Research-Cottrell, TRW and Westinghouse. Previous work on the project was also done by General Electric. The HIPPS plant will use a high-Temperature Advanced Furnace (HITAF) to achieve combined-cycle operation with coal as the primary fuel. The HITAF is an atmospheric-pressure, pulverized-fuel-fired boiler/air heater. The HITAF is used to heat air for the gas turbine and also to transfer heat to the steam cycle. its design and functions are very similar to conventional PC boilers. Some important differences, however, arise from the requirements of the combined cycle operation.

  1. The clean coal technologies for lignitic coal power generation in Pakistan

    International Nuclear Information System (INIS)

    Mir, S.; Raza, Z.; Aziz-ur-Rehman, A.

    1995-01-01

    Pakistan contains huge reserves of lignitic coals. These are high sulphur, high ash coals. In spite of this unfortunate situation, the heavy demand for energy production, requires the development utilization of these indigenous coal reserves to enhance energy production. The central of the environmental pollution caused by the combustion of these coals has been a major hindrance in their utilization. Recently a substantial reduction in coal combustion emissions have been achieved through the development of clean coal technologies. Pakistan through the transfer and adaptation of the advanced clean coal technologies can utilize incurring the high sulphur coals for energy production without incurring the environmental effects that the developed countries have experienced in the past. The author discusses the recently developed clean coal utilization technologies, their applications economies and feasibility of utilization with specific reference to Pakistan''s coal. (author)

  2. Coal-fired high performance power generating system

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of > 47% thermal efficiency; NO[sub x] SO [sub x] and Particulates < 25% NSPS; Cost of electricity 10% lower; coal > 65% of heat input and all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW[sub e] combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. Most of this report discusses the details of work on these components, and the R D Plan for future work. The discussion of the combustor designs illustrates how detailed modeling can be an effective tool to estimate NO[sub x] production, minimum burnout lengths, combustion temperatures and even particulate impact on the combustor walls. When our model is applied to the long flame concept it indicates that fuel bound nitrogen will limit the range of coals that can use this approach. For high nitrogen coals a rapid mixing, rich-lean, deep staging combustor will be necessary. The air heater design has evolved into two segments: a convective heat exchanger downstream of the combustion process; a radiant panel heat exchanger, located in the combustor walls; The relative amount of heat transferred either radiatively or convectively will depend on the combustor type and the ash properties.

  3. The coal fired power plant of Vado Ligure

    International Nuclear Information System (INIS)

    Ferrara, V.

    1987-01-01

    The problem of radiological impact from radioactive effluents released by the forecast new coal-fired power plant of Vado Ligure, is examinated. Using health physic metodologies of evaluation, the highest levels of dose equivalents to the population are computed. Taken into account the possible errors due to conservative models adopted, it is concluded that the induced radiological risks are to be considered negligible, both referring to the actual natural radiological levels in the environment, and considering the maximum permissible levels stated in international raccomandations

  4. Power technology complex for production of motor fuel from brown coals with power supply from NPPs

    International Nuclear Information System (INIS)

    Troyanov, M.F.; Poplavskij, V.M.; Sidorov, G.I.; Bondarenko, A.V.; Chebeskov, A.N.; Chushkin, V.N.; Karabash, A.A.; Krichko, A.A.; Maloletnev, A.S.

    1998-01-01

    With the present-day challenge of efficient use of low-grade coals and current restructuring of coal industry in the Russian Federation, it is urgent to organise the motor fuel production by the synthesis from low grade coals and heavy petroleum residues. With this objective in view, the Institute of Physics and Power Engineering of RF Minatom and Combustible Resources Institute of RF Mintopenergo proposed a project of a standard nuclear power technology complex for synthetic liquid fuel (SLF) production using fast neutron reactors for power supply. The proposed project has two main objectives: (1) Engineering and economical optimization of the nuclear power supply for SLF production; and (2) Engineering and economical optimization of the SLF production by hydrogenisation of brown coals and heavy petroleum residues with a complex development of advanced coal chemistry. As a first approach, a scheme is proposed with the use of existing reactor cooling equipment, in particular, steam generators of BN-600, limiting the effect on safety of reactor facility operation at minimum in case of deviations and abnormalities in the operation of technological complex. The possibility to exclude additional requirements to the equipment for nuclear facility cooling was also taken into account. It was proposed to use an intermediate steam-water circuit between the secondary circuit sodium and the coolant to heat the technological equipment. The only change required for the BN-600 equipment will be the replacement of sections of intermediate steam superheaters at the section of main steam superheaters. The economic aspects of synthetic motor fuel production proposed by the joint project depend on the evaluation of integral balances: thermal power engineering, chemical technology, the development of advanced large scale coal chemistry of high profitability; utilisation of ash and precious microelements in waste-free technology; production of valuable isotopes; radical solution of

  5. Low Cost, High Capacity Regenerable Sorbent for Carbon Dioxide Capture from Existing Coal-fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gokhan [TDA Research, Inc., Wheat Ridge, CO (United States); Jayaraman, Ambalavanan [TDA Research, Inc., Wheat Ridge, CO (United States); Dietz, Steven [TDA Research, Inc., Wheat Ridge, CO (United States)

    2016-03-03

    In this project TDA Research, Inc (TDA) has developed a new post combustion carbon capture technology based on a vacuum swing adsorption system that uses a steam purge and demonstrated its technical feasibility and economic viability in laboratory-scale tests and tests in actual coal derived flue gas. TDA uses an advanced physical adsorbent to selectively remove CO2 from the flue gas. The sorbent exhibits a much higher affinity for CO2 than N2, H2O or O2, enabling effective CO2 separation from the flue gas. We also carried out a detailed process design and analysis of the new system as part of both sub-critical and super-critical pulverized coal fired power plants. The new technology uses a low cost, high capacity adsorbent that selectively removes CO2 in the presence of moisture at the flue gas temperature without a need for significant cooling of the flue gas or moisture removal. The sorbent is based on a TDA proprietary mesoporous carbon that consists of surface functionalized groups that remove CO2 via physical adsorption. The high surface area and favorable porosity of the sorbent also provides a unique platform to introduce additional functionality, such as active groups to remove trace metals (e.g., Hg, As). In collaboration with the Advanced Power and Energy Program of the University of California, Irvine (UCI), TDA developed system simulation models using Aspen PlusTM simulation software to assess the economic viability of TDA’s VSA-based post-combustion carbon capture technology. The levelized cost of electricity including the TS&M costs for CO2 is calculated as $116.71/MWh and $113.76/MWh for TDA system integrated with sub-critical and super-critical pulverized coal fired power plants; much lower than the $153.03/MWhand $147.44/MWh calculated for the corresponding amine based systems. The cost of CO2 captured for TDA’s VSA based system is $38

  6. Power stations in Poland running on brown coal-development up to now and anticipated

    International Nuclear Information System (INIS)

    Twardy, L.; Zawadzki, M.

    1994-01-01

    Polish power plants fueled by lignite are shortly described. They generate almost 40% of electric power which is 32% cheaper than the power from plants fueled by black coal (taking into account generation unit cost). The program of modernization and reconstruction of brown coal sector is presented and its development is discussed. 1 tab

  7. Natural radionuclides from the coal in atmospheric environment of the coal fired power plants

    International Nuclear Information System (INIS)

    Antic, D.; Kostic-Soskic, M.; Milovanovic, S.; Telenta, B.

    1995-01-01

    The inhalation radiation exposure of the public in the vicinity of the selected coal fired power plants near from Belgrade (30-50 km) has been studied, using a set of data for natural radionuclides from the analysed power plants. A generalised model for analysis of radiological impact of an energy source, that includes the two-dimensional version of the cloud model, has been used for simulation of the transport of radionuclides released to the atmosphere. The inhalation dose rates for an adult are assessed and analysed during fast changeable meteorological conditions. A set of realistic meteorological conditions (wind, radiosonde sounding temperature, pressure, and humidity data) has been used for the numerical simulations. (author)

  8. Coal sector model: Source data on coal for the energy and power evaluation program (ENPEP)

    Energy Technology Data Exchange (ETDEWEB)

    Suwala, W [Mineral and Energy Economy Research Centre, Polish Academy of Sciences, Cracow (Poland)

    1997-09-01

    Coal is the major primary energy source in Poland and this circumstances requires that the data on coal supply for use in energy planning models should be prepared properly. Economic sectors` development depends on many factors which are usually considered in energy planning models. Thus, data on the development of such sectors as coal mining should be consistent with the economic assumptions made in the energy planning model. Otherwise, coal data could bias the results of the energy planning model. The coal mining and coal distribution models which have been developed at the Polish Academy of Sciences could provide proper coal data of use in ENPEP and other energy planning models. The coal mining model optimizes the most important decisions related to coal productions, such as coal mines development, retirement of non-profitable mines, and construction of new mines. The model uses basic data forecasts of coal mine costs and coal production. Other factors such as demand for coal, world coal prices, etc., are parameters which constitute constraints and requirements for the coal mining development. The output of the model is the amount of coal produced and supply curves for different coal types. Such data are necessary for the coal distribution model and could also be used by ENPEP. This paper describes the model, its structure and how the results of the model could serve as coal-related data for ENPEP. Improvement of some input data forms of the BALANCE module of ENPEP are also suggested in order to facilitate data preparation. (author). 7 figs.

  9. Coal sector model: Source data on coal for the energy and power evaluation program (ENPEP)

    International Nuclear Information System (INIS)

    Suwala, W.

    1997-01-01

    Coal is the major primary energy source in Poland and this circumstances requires that the data on coal supply for use in energy planning models should be prepared properly. Economic sectors' development depends on many factors which are usually considered in energy planning models. Thus, data on the development of such sectors as coal mining should be consistent with the economic assumptions made in the energy planning model. Otherwise, coal data could bias the results of the energy planning model. The coal mining and coal distribution models which have been developed at the Polish Academy of Sciences could provide proper coal data of use in ENPEP and other energy planning models. The coal mining model optimizes the most important decisions related to coal productions, such as coal mines development, retirement of non-profitable mines, and construction of new mines. The model uses basic data forecasts of coal mine costs and coal production. Other factors such as demand for coal, world coal prices, etc., are parameters which constitute constraints and requirements for the coal mining development. The output of the model is the amount of coal produced and supply curves for different coal types. Such data are necessary for the coal distribution model and could also be used by ENPEP. This paper describes the model, its structure and how the results of the model could serve as coal-related data for ENPEP. Improvement of some input data forms of the BALANCE module of ENPEP are also suggested in order to facilitate data preparation. (author). 7 figs

  10. Radiation exposure potential from coal-fired power plants in Romania

    International Nuclear Information System (INIS)

    Botezatu, E.; Grecea, C.; Botezatu, G.; Capitanu, O.; Peic, T.; Sandor, G.

    1996-01-01

    In the investigated power plants they burn brown coal, lignite and/or mixture of different kinds of coal: brown coal, lignite, pit coal, pitch coal, bituminous coal. The activity concentrations measured in the coal samples varied over two orders of magnitude. The natural radionuclide concentrations in fly ash are significantly higher than the corresponding Concentrations in the coal. The normalized discharged activities for the investigated power plants are much higher than those estimated in the UNSCEAR 1988 Report for typical old and modern plants. Firstly, accounting for this is the low ash retention efficiency of the particulate control devices of power stations, especially for the older ones, and secondly, the high ash content of the coal: 26-60%. The low quality of coal leads to the higher coal consumption; thus the combustion of up to 20.109 Kg of coal is required to produce 1 Gwa of electrical energy. As a result, the activities of radon-222 and of radon-220 released per Gwa have been assessed at 25 to 770 GBq. (author)

  11. Uranium content of coal ashes from Southern Brazil coal fueled power stations, by the fission track registration technique

    International Nuclear Information System (INIS)

    Morales, R.K.

    1981-01-01

    The feasibility of the application of the fission track registration technique for the determination of uranium in coal ashes was shown. The wet method was employed using as detector the Makrofol KG=10 μm, manufactured by Bayer. The coal ashes were originated from coal-fueled power stations localized in Southern Brazil. The results obtained ranged from 10 to 27 mg U/kg. Since the total error variation was from 18,4% to 23,8%, the method used was considered excellent. The determination of the uranium content in coal ashes is of considerable interest in environmental control in power stations, in their vicinity and wherever these ashes are used or stored. The technique used is the work proved to be very appropriate for the purpose aimed at. (Author) [pt

  12. Development of I and C system for the coal feeder of coal firing plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Teak Soo; Park, Chan Ho [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1996-12-31

    KECC(Kepco Coal Feeder Control System) receives coal weight, conveyor speed and boiler demand signals. It controls coal flow by generating speed signal of feeder which conveys coal in hopper to pulverizer, displaying measured coal quantity and providing local auto and manual manipulator (author). 33 figs.

  13. High pressure axial flow fans for modern coal power stations

    Energy Technology Data Exchange (ETDEWEB)

    Cyrus, Vaclav [AHT Energetika s.r.o., Praha (Czech Republic); Koci, Petr [ZVVZ Milevsko a.s. (Czech Republic)

    2008-07-01

    Brown coal fired power stations, located in Northern Bohemia, have mostly older boiler blocks with an output of 110 and 200 MWe. Flue gases are cleaned by the desulphurization plants installed between 1993 and 1997. Usually, each boiler block has two air fans and one to three flue gas fans. Flue gas fans operate in severe conditions; fan blades should be resistant to the flue gases containing sulphur and acid drops with the operating temperature at 170 C to 190 C. Additionally, flue gas also often contains ash particles. Currently, some boiler blocks are gradually being refurbished. New blocks with an electrical power output of 600 to 700 MWe are at the design stage. Submitted paper shows our design study of one stage axial flow fan for the new blocks. Results from the new aerodynamic research of the axial flow stages were used in the fan design. (orig.)

  14. Coal Power Systems strategic multi-year program plans; TOPICAL

    International Nuclear Information System (INIS)

    None

    2001-01-01

    The Department of Energy's (DOE) Office of Fossil Energy (FE), through the Coal and Power Systems (C and PS) program, funds research to advance the scientific knowledge needed to provide new and improved energy technologies; to eliminate any detrimental environmental effects of energy production and use; and to maintain US leadership in promoting the effective use of US power technologies on an international scale. Further, the C and PS program facilitates the effective deployment of these technologies to maximize their benefits to the Nation. The following Strategic Plan describes how the C and PS program intends to meet the challenges of the National Energy Strategy to: (1) enhance American's energy security; (2) improve the environmental acceptability of energy production and use; (3) increase the competitiveness and reliability of US energy systems; and (4) ensure a robust US energy future. It is a plan based on the consensus of experts and managers from FE's program offices and the National Energy Technology Laboratory (NETL)

  15. Radionuclide emissions from a coal-fired power plant

    International Nuclear Information System (INIS)

    Amin, Y.M.; Uddin Khandaker, Mayeen; Shyen, A.K.S.; Mahat, R.H.; Nor, R.M.; Bradley, D.A.

    2013-01-01

    Current study concerns measurement of radioactivity levels in areas surrounding a 2420 MW thermal power plant fueled predominantly by bituminous coal. The concentrations of 226 Ra, 232 Th and 40 K in onsite bottom-ash were found to be 139 Bq/kg, 108 Bq/kg and 291 Bq/kg, respectively, the levels for these radiolnuclides in soil decreasing with distance from the power plant. At the plant perimeter the respective radionuclide concentrations were 87 Bq/kg, 74 Bq/kg and 297 Bq/kg. In a nearby town, the corresponding concentrations were 104 Bq/kg, 52 Bq/kg and 358 Bq/kg, suggestive of use of TENORM affected soils. The mean radium equivalent activities (Ra eq ) in soil and ash sample in the town were 205 Bq/kg and 316 Bq/kg, respectively. The Kapar plant ash/slag appears to contain a higher level of TENORM than the world average. The degree of contamination is much higher inside the town where slag has been mixed with topsoil as landfill or as simple domestic waste. For the prevailing levels of exposure and a worst case senario, the predicted committed effective dose due to ingestion and inhalation for intake durations of 1- and 30 years would be 4.2 μSv and 220 μSv, respectively. - Highlights: • Detailed studies on naturally occuring radionuclide emissions due to a 2420 MW coal-fired power plant in Malaysia. • Assessment of radiation exposures to the public around the power plant due to an intake of the radionuclides. • The Kapar plant ash/slag appears to contain a higher level of TENORM than the world average. • The degree of contamination is much higher inside the town where slag has been mixed with topsoil as landfill or as simple domestic waste

  16. Steam Turbine Materials for Ultrasupercritical Coal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, R.; Hawk, J.; Schwant, R.; Saha, D.; Totemeier, T.; Goodstine, S.; McNally, M.; Allen, D. B.; Purgert, Robert

    2009-06-30

    The Ultrasupercritical (USC) Steam Turbine Materials Development Program is sponsored and funded by the U.S. Department of Energy and the Ohio Coal Development Office, through grants to Energy Industries of Ohio (EIO), a non-profit organization contracted to manage and direct the project. The program is co-funded by the General Electric Company, Alstom Power, Siemens Power Generation (formerly Siemens Westinghouse), and the Electric Power Research Institute, each organization having subcontracted with EIO and contributing teams of personnel to perform the requisite research. The program is focused on identifying, evaluating, and qualifying advanced alloys for utilization in coal-fired power plants that need to withstand steam turbine operating conditions up to 760°C (1400°F) and 35 MPa (5000 psi). For these conditions, components exposed to the highest temperatures and stresses will need to be constructed from nickel-based alloys with higher elevated temperature strength than the highchromium ferritic steels currently used in today's high-temperature steam turbines. In addition to the strength requirements, these alloys must also be weldable and resistant to environmental effects such as steam oxidation and solid particle erosion. In the present project, candidate materials with the required creep strength at desired temperatures have been identified. Coatings that can resist oxidation and solid particle erosion have also been identified. The ability to perform dissimilar welds between nickel base alloys and ferritic steels have been demonstrated, and the properties of the welds have been evaluated. Results of this three-year study that was completed in 2009 are described in this final report. Additional work is being planned and will commence in 2009. The specific objectives of the future studies will include conducting more detailed evaluations of the weld-ability, mechanical properties and repair-ability of the selected candidate alloys for rotors

  17. Estimation of Moisture Content in Coal in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, B.

    the moisture content of the coal is proposed based on a simple dynamic energy model of a coal mill, which pulverizes and dries the coal before it is burned in the boiler. An optimal unknown input observer is designed to estimate the moisture content based on an energy balance model. The designed moisture...

  18. Estimation of Moisture Content in Coal in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, Babak

    2006-01-01

    the moisture content of the coal is proposed based on a simple dynamic energy model of a coal mill, which pulverizes and dries the coal before it is burned in the boiler. An optimal unknown input observer is designed to estimate the moisture content based on an energy balance model. The designed moisture...

  19. Protective and control relays as coal-mine power-supply ACS subsystem

    Science.gov (United States)

    Kostin, V. N.; Minakova, T. E.

    2017-10-01

    The paper presents instantaneous selective short-circuit protection for the cabling of the underground part of a coal mine and central control algorithms as a Coal-Mine Power-Supply ACS Subsystem. In order to improve the reliability of electricity supply and reduce the mining equipment down-time, a dual channel relay protection and central control system is proposed as a subsystem of the coal-mine power-supply automated control system (PS ACS).

  20. Approach to reducing the effect of bone—coal power station on radiation environment

    Institute of Scientific and Technical Information of China (English)

    NIShi-Ying; GUPei-Long; 等

    2002-01-01

    The effect of two bone-coal power stations(6MWe) on environment was investigated within the scope of the dose contribution caused by various radionucildes in different ways.It is found that the best measures to reduce the effect of bone-coal power station on radiation environment include to select a fine boiler system and a comprehensive utilization of the bone-coal cinder(BCC),soot and ash in the catchers.

  1. Approach to reducing the effect of bone-coal power station on radiation environment

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effect of two bone-coal power stations (6 MWe) on environment wasinvestigated within the scope of the dose contribution caused by various radionucildes in different ways. It is found that the best measures to reduce the effect of bone-coal power station on radiation environment include to select a fine boiler system and a comprehensive utilization of the bone-coal cinder (BCC), soot and ash in the catchers.

  2. Development of life cycle water-demand coefficients for coal-based power generation technologies

    International Nuclear Information System (INIS)

    Ali, Babkir; Kumar, Amit

    2015-01-01

    Highlights: • We develop water consumption and withdrawals coefficients for coal power generation. • We develop life cycle water footprints for 36 coal-based electricity generation pathways. • Different coal power generation technologies were assessed. • Sensitivity analysis of plant performance and coal transportation on water demand. - Abstract: This paper aims to develop benchmark coefficients for water consumption and water withdrawals over the full life cycle of coal-based power generation. This study considered not only all of the unit operations involved in the full electricity generation life cycle but also compared different coal-based power generating technologies. Overall this study develops the life cycle water footprint for 36 different coal-based electricity generation pathways. Power generation pathways involving new technologies of integrated gasification combined cycle (IGCC) or ultra supercritical technology with coal transportation by conventional means and using dry cooling systems have the least complete life cycle water-demand coefficients of about 1 L/kW h. Sensitivity analysis is conducted to study the impact of power plant performance and coal transportation on the water demand coefficients. The consumption coefficient over life cycle of ultra supercritical or IGCC power plants are 0.12 L/kW h higher when conventional transportation of coal is replaced by coal-log pipeline. Similarly, if the conventional transportation of coal is replaced by its transportation in the form of a slurry through a pipeline, the consumption coefficient of a subcritical power plant increases by 0.52 L/kW h

  3. Relative population exposures from coal-fired and nuclear power plants in India

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, T.V.; Lalit, B.Y.; Mishra, U.C.

    1987-01-01

    Coal combustion for electric power generation results in dispersal of fly ash, and hence an additional radiation dose to the population living in the neighbourhood of the coal-fired power plants due to natural radioactivity present in coal. The radiation hazards of coal based and nuclear power plants operating in India are given. The dose commitments to the population living within an 88.5 km radius of the thermal and nuclear power plants in India have been computed using the method outlined in an ORNL report. The estimated dose rates for these two types of power plant were compared. The present study shows that the radiation dose from coal-fired and nuclear power plants are comparable.

  4. Water Extraction from Coal-Fired Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or

  5. LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, T.M.; BOWERMAN, B.; ADAMS, J.; LIPFERT, D.D.; MORRIS, S.M.; BANDO, A.; ET AL.

    2004-03-30

    A thorough quantitative understanding of the processes of mercury emissions, deposition, and translocation through the food chain is currently not available. Complex atmospheric chemistry and dispersion models are required to predict concentration and deposition contributions, and aquatic process models are required to predict effects on fish. There are uncertainties in all of these predictions. Therefore, the most reliable method of understanding impacts of coal-fired power plants on Hg deposition is from empirical data. A review of the literature on mercury deposition around sources including coal-fired power plants found studies covering local mercury concentrations in soil, vegetation, and animals (fish and cows (Lopez et al. 2003)). There is strong evidence of enhanced local deposition within 3 km of the chlor-alkali plants, with elevated soil concentrations and estimated deposition rates of 10 times background. For coal-fired power plants, the data show that atmospheric deposition of Hg may be slightly enhanced. On the scale of a few km, modeling suggests that wet deposition may be increased by a factor of two or three over background. The measured data suggest lower increases of 15% or less. The effects of coal-fired plants seem to be less than 10% of total deposition on a national scale, based on emissions and global modeling. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (1) local soil concentration Hg increments of 30%-60%, (2) sediment increments of 18-30%, (3) wet deposition increments of 11-12%, and (4) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg(0) in power plant plumes and the role of water chemistry in the relationship between Hg

  6. Water vulnerabilities for existing coal-fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.; Kuiper, J.; Environmental Science Division

    2010-08-19

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their cooling systems and related characteristics, provides information to help focus future research and development (R&D) efforts to help ensure that coal-fired generation demands are met in a cost-effective manner that supports sustainable water use. This study identified coal-fired power plants that are considered vulnerable to water demand and supply issues by using a geographical information system (GIS) that facilitated the analysis of plant-specific data for more than 500 plants in the NETL's Coal Power Plant Database (CPPDB) (NETL 2007a) simultaneously with 18 indicators of water demand and supply. Two types of demand indicators were

  7. Study of the Radiological Impact of the Coal Fired Power Plants on the Environment. The As Pontes coal-fired Power Plant

    International Nuclear Information System (INIS)

    Cancio, D.; Robles, B.; Mora, J. C.

    2009-01-01

    As part of the Study carried out to determine the radiological impact of the four main Spanish coal-fired power plants, the Study on the As Pontes Coal-Fired Coal Power Plant was finalized. In the Report containing the study are included every measurement performed, as well as the modelling and evaluations carried out in order to assess the radiological impact. The general conclusion obtained is that under a radiological point of view, the impact of this installation on the public and the environment is very small. Also the radiological impact on the workers of the installation was assessed, obtaining too very small increases over the natural background. (Author) 61 refs.

  8. Cost-Effectiveness of Emission Reduction for the Indonesian Coal-Fired Power Plants

    NARCIS (Netherlands)

    Handayani, Kamia; Krozer, Yoram

    2014-01-01

    This paper presents the result of research on the cost-effectiveness of emission reduction in the selected coal-fired power plants (CFPPs) in Indonesia. The background of this research is the trend of more stringent environmental regulation regarding air emission from coal-fired power plants (CFPPs)

  9. Coal-fired magnetohydrodynamic (MHD) electric power generation

    International Nuclear Information System (INIS)

    Sens, P.F.

    1992-01-01

    Since 1986 Directorate-General XII 'Science, Research and Development' of the Commission of the European Communities has kept a watching brief on the development of coal-fired magnetohydrodynamic (MHD) electric power generation from the 'solid fuels' section of its non-nuclear energy R and D programme. It established, in 1987, the Faraday Working Group (FWG) to assess the development status of coal-fired MHD and to evaluate its potential contribution to the future electricity production in the Community. The FWG expressed as its opinion, at the end of 1987, that in sufficient data were available to justify a final answer to the question about MHD's potential contribution to future electricity production and recommended that studies be undertaken in three areas; (i) the lifetime of the generator, (ii) cost and performance of direct air preheating, (iii) cost and efficiency of seed recovery/reprocessing. These studies were contracted and results were presented in the extended FWG meeting on 15 November 1990, for an audience of about 70 people. The present volume contains the proceedings of this meeting. The introduction describes the reasons for establishing the FWG, its activities and the content of its extended meeting followed by the summary of the discussions and the concluding remarks of this meeting. The main part of the volume consists of the text either of the oral presentations during the meeting or of the final reports resulting from the studies under contract

  10. Alternatives to coal and candles: wind power in China

    International Nuclear Information System (INIS)

    Lew, Debra J.

    2000-01-01

    China is in a unique position to be able to exploit her vast wind resources to satisfy both the rapidly growing energy demand which fuels her economy as well as needs of approximately 72 million people who live in rural areas and have no access to conventional electricity services. China, mainly through the efforts of the Inner Mongolia Autonomous Region, has already successfully disseminated over 150,000 small-scale wind electric generators which power households in rural areas, through a well-coordinated combination of local research and development, technology transfer, industry support, end-user incentives, and an infrastructure for information dissemination and technical training. In this paper, we review China's utilisation of wind energy and discuss how it can be increased for both rural electrification and the rapidly growing power sector. We find that novel approaches in technical implementation of wind power use may help to better meet China's needs. Use of hybrid systems may help to provide higher quality, more reliable power for rural households and villages than is currently provided through wind-only systems. Grid-connected wind power, which currently is more costly and less reliable than coal power, can become cost-competitive and more reliable through local, mass production of wind turbines combined with storage systems. We examine governmental support, through policy, infrastructure development and financial incentives, that have fostered the successes of dissemination of small-scale wind turbines and also the support, or lack thereof, that has hindered commercial development of large-scale wind power, We find that a better policy and regulatory framework is the most important measure that China can take to increase the use of this indigenous, clean resource. (Author)

  11. Overview of environmental assessment for China nuclear power industry and coal-fired power industry

    International Nuclear Information System (INIS)

    Zhang Shaodong; Pan Ziqiang; Zhang Yongxing

    1994-01-01

    A quantitative environmental assessment method and the corresponding computer code are introduced. By the consideration of all fuel cycle steps, it given that the public health risk of China nuclear power industry is 5.2 x 10 -1 man/(GW·a) the public health risk is 2.5 man/(GW·a), and the total health risk is 3.0 man/(GW·a). After the health risk calculation for coal mining, transport, burning up and ash disposal, it gives that the public health risk of China coal-fired power industry is 3.6 man/(GW·a), the occupational health risk is 50 man/(GW·a), and the total is 54 man/(GW·). Accordingly, the conclusion that China nuclear power industry is one with high safety and cleanness is derived at the end

  12. Comparative analysis of print media coverage of nuclear power and coal issues

    International Nuclear Information System (INIS)

    Nealey, S.M.; Rankin, W.L.; Montano, D.E.

    1978-10-01

    Nuclear power has been a more important topic than has coal for the print media, and has received somewhat different treatment. Compared to the number of coal articles, almost twice as many nuclear power articles were printed from 1972 through 1976. Also, while the number of nuclear power articles increased somewhat steadily from 1972 through 1976, the number of coal articles peaked in 1974 and has decreased since. The newspapers sampled gave more prominence to nuclear articles in terms of article type and article location. Also, nuclear articles were more often issue-oriented compared to coal articles. Coal articles were most often about coal mining, labor force concerns, and regulations controls. Nuclear power articles, on the other hand, were mostly about reactor operation. The main issues discussed in the coal articles pertained most to political decisions affecting coal use, to strikes, and to health and safety. The main nuclear issues pertained to economics, to health and safety, and to political decisions. Newspapers handled nuclear power articles in a more polarized manner compared to coal articles which were handled in a more neutral manner. Magazine articles were significantly more antinuclear than anticoal. Some qualifications about these conclusions are included

  13. Radiological effects of Yatagan coal-fired power plant

    International Nuclear Information System (INIS)

    Barlas, F.; Buke, T.

    2004-01-01

    Radiation dose calculations and also limit radiation dose calculations have been carried out by the code CAP88-PC around the Yatagan coal-fired power plant environment by using the result of previous studies about maximum measured gross alpha activity in the flying ash samples as radioactive sources. A modified Gaussian plume equation is used to estimate the average dispersion of radionuclides released from up to six emitting sources. The sources maybe either elevated stacks or uniform area sources. Assessments are done for a circular grid of distances and directions for a radius up to 80 kilometers, 16 wind sectors and 20 mesh distances around the facility in calculations. The limit doses obtained from the calculations and their radiological effects have been interpreted. Finally the effects of various radionuclides have been carried out and their results have been compared with each other. (author)

  14. Upgrading and efficiency improvement in coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    Improving the efficiencies of the large number of older coal-fired power plants operating around the world would give major savings in CO2 emissions together with significant other benefits. This report begins with a summary of the ways efficiency can become degraded and of the means available to combat the decrease in performance. These include improvements to operating and maintenance practices and more major techniques that are available, including boiler and turbine retrofits. There is also an update on fuel drying developments as a route to higher efficiency in plants firing high moisture lignites. The largest chapter of the report contains a number of descriptions of case study improvement projects, to illustrate measures that have been applied, benefits that have been achieved and identify best practices, which are summarised. Major national and international upgrading programmes are described.

  15. Coal geopolitics

    International Nuclear Information System (INIS)

    Giraud, P.N.; Suissa, A.; Coiffard, J.; Cretin, D.

    1991-01-01

    This book divided into seven chapters, describes coal economic cycle. Chapter one: coals definition; the principle characteristics and properties (origin, calorific power, international classification...) Chapter two: the international coal cycle: coal mining, exploration, coal reserves estimation, coal handling coal industry and environmental impacts. Chapter three: the world coal reserves. Chapter four: the consumptions, productions and trade. Chapter five: the international coal market (exporting mining companies; importing companies; distributors and spot market operators) chapter six: the international coal trade chapter seven: the coal price formation. 234 refs.; 94 figs. and tabs [fr

  16. A STUDY ON THE GRINDABILITY OF SERBIAN COALS

    Directory of Open Access Journals (Sweden)

    Dragoslava D Stojiljković

    2011-01-01

    Full Text Available Thermal power plants in the Republic of Serbia are making considerable efforts and even more considerable investments, not only to maintain electricity production at maximum design levels, but even to additionally increase the power output of existing generating units. Capacities of mills used in pulverized coal preparation are identified as one of the main constraints to achieving maximum mill plant capacity, while coal grindability is seen as one of the factors that directly affect capacities of the coal mills utilized in thermal power plants. The paper presents results of experimental investigation conducted for the purpose of determining Hardgrove grindability index of coal. The investigation was conducted in accordance with ISO 5074 and included analysis of approximately 70 coal samples taken from the open pit mine of Kolubara coal basin. Research results obtained indicate that coal rich in mineral matter and thus, of lower heating value is characterized by higher grindability index. Therefore, analyses presented in the paper suggest that characteristics of solid fuels analyzed in the research investigation conducted are such that the use coals less rich in mineral matter i. e. coals characterized by lower grindability index will cause coal mills to operate at reduced capacity. This fact should be taken into account when considering a potential for electricity production increase.

  17. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 1. Mercury.

    Science.gov (United States)

    Zhao, Shilin; Duan, Yufeng; Chen, Lei; Li, Yaning; Yao, Ting; Liu, Shuai; Liu, Meng; Lu, Jianhong

    2017-10-01

    Hazardous trace elements (HTEs), especially mercury, emitted from coal-fired power plants had caused widespread concern worldwide. Field test on mercury emissions at three different loads (100%, 85%, 68% output) using different types of coal was conducted in a 350 MW pulverized coal combustion power plant equipped with selective catalytic reduction (SCR), electrostatic precipitator and fabric filter (ESP + FF), and wet flue gas desulfurization (WFGD). The Ontario Hydro Method was used for simultaneous flue gas mercury sampling for mercury at the inlet and outlet of each of the air pollutant control device (APCD). Results showed that mercury mass balance rates of the system or each APCD were in the range of 70%-130%. Mercury was mainly distributed in the flue gas, followed by ESP + FF ash, WFGD wastewater, and slag. Oxidized mercury (Hg 2+ ) was the main form of mercury form in the flue gas emitted to the atmosphere, which accounted for 57.64%-61.87% of total mercury. SCR was favorable for elemental mercury (Hg 0 ) removal, with oxidation efficiency of 50.13%-67.68%. ESP + FF had high particle-bound mercury (Hg p ) capture efficiency, at 99.95%-99.97%. Overall removal efficiency of mercury by the existing APCDs was 58.78%-73.32%. Addition of halogens or oxidants for Hg 0 conversion, and inhibitors for Hg 0 re-emission, plus the installation of a wet electrostatic precipitator (WESP) was a good way to improve the overall removal efficiency of mercury in the power plants. Mercury emission factor determined in this study was from 0.92 to 1.17 g/10 12 J. Mercury concentration in the emitted flue gas was much less than the regulatory limit of 30 μg/m 3 . Contamination of mercury in desulfurization wastewater should be given enough focus. Copyright © 2017. Published by Elsevier Ltd.

  18. Natural radionuclides near a coal-fired power station

    International Nuclear Information System (INIS)

    Smith-Briggs, J.L.

    1984-01-01

    A previous assessment of the radiological consequences of the emission of natural radionuclides from coal-fired power stations had indicated that 210 Pb was the main contributor to the maximum individual dose. This dose arose from the consumption of foodstuffs particularly cattle liver contaminated by deposited fly ash. Uncertainty surrounded some of the factors used in the assessment, and a limited environmental monitoring programme was recommended to improve it. An experiment has been performed to measure the specific activities of 210 Pb and 210 Po in livers from cattle that had grazed in a field near Didcot power station. Livers from cattle in the Cotswold region have been measured for comparison. The specific activities of 210 Pb and 210 Po in soil and grass samples from both areas have also been measured at three-monthly intervals over a year. No statistically significant increases were observed in the 210 Pb and 210 Po levels in liver, soil or grass samples which could be attributed to the operation of the power station. Transfer coefficients for 210 Pb from forage to liver were about two orders of magnitude less than that used in the original assessment, and the transfer coefficients for 210 Po about a factor a two less. (orig.)

  19. REAL TIME PULVERISED COAL FLOW SOFT SENSOR FOR THERMAL POWER PLANTS USING EVOLUTIONARY COMPUTATION TECHNIQUES

    Directory of Open Access Journals (Sweden)

    B. Raja Singh

    2015-01-01

    Full Text Available Pulverised coal preparation system (Coal mills is the heart of coal-fired power plants. The complex nature of a milling process, together with the complex interactions between coal quality and mill conditions, would lead to immense difficulties for obtaining an effective mathematical model of the milling process. In this paper, vertical spindle coal mills (bowl mill that are widely used in coal-fired power plants, is considered for the model development and its pulverised fuel flow rate is computed using the model. For the steady state coal mill model development, plant measurements such as air-flow rate, differential pressure across mill etc., are considered as inputs/outputs. The mathematical model is derived from analysis of energy, heat and mass balances. An Evolutionary computation technique is adopted to identify the unknown model parameters using on-line plant data. Validation results indicate that this model is accurate enough to represent the whole process of steady state coal mill dynamics. This coal mill model is being implemented on-line in a 210 MW thermal power plant and the results obtained are compared with plant data. The model is found accurate and robust that will work better in power plants for system monitoring. Therefore, the model can be used for online monitoring, fault detection, and control to improve the efficiency of combustion.

  20. Gas to Coal Competition in the U.S. Power Sector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    With the newfound availability of natural gas due to the shale gas revolution in the United States, cheap gas now threatens coal’s longstanding position as the least costly fuel for generating electricity. But other factors besides cost come into play when deciding to switch from coal to gas. Electricity and gas transmission grid constraints, regulatory and contractual issues, as well as other factors determine the relative share of coal and gas in power generation. This paper analyzes competition between coal and gas for generating power in the United States and the factors explaining this dynamic. It also projects coal-to-gas switching in power generation for 18 states representing 75% of the surplus gas potential in the United States up to 2017, taking into consideration the impact of environmental legislation on retirement of coal-fired power plants.

  1. Economic comparison of clean coal generating technologies with natural gas-combined cycle systems

    International Nuclear Information System (INIS)

    Sebesta, J.J.; Hoskins, W.W.

    1990-01-01

    This paper reports that there are four combustion technologies upon which U.S. electric utilities are expected to rely for the majority of their future power generating needs. These technologies are pulverized coal- fired combustion (PC); coal-fired fluidized bed combustion (AFBC); coal gasification, combined cycle systems (CGCC); and natural gas-fired combined cycle systems (NGCC). The engineering and economic parameters which affect the choice of a technology include capital costs, operating and maintenance costs, fuel costs, construction schedule, process risk, environmental and site impacts, fuel efficiency and flexibility, plant availability, capacity factors, timing of startup, and the importance of utility economic and financial factors

  2. The prospects for hard coal as a fuel for the Polish power sector

    International Nuclear Information System (INIS)

    Kaminski, Jacek; KudeLko, Mariusz

    2010-01-01

    This paper presents the prospects for the development of the Polish hard coal sector from the perspective of the power sector. The most important issues determining the mid- and long-term future for domestic coal production are: (1) the development of the economy, hence the demand for electricity, (2) regulations (mostly environmental) affecting the power sector, (3) the competitiveness of coal-based technologies, and (4) the costs of domestic coal production. Since the range of issues and relations being considered is very broad, a specific method needs to be employed for the quantitative analysis. The tool applied in this study is the partial equilibrium model POWER-POL, in which both the coal and the power sectors are incorporated. The model focuses on energy-economy-environmental issues without capturing detailed macroeconomic links. The model was run under six scenario assumptions. The results show that the domestic coal sector should maintain its position as a key supplier of primary energy for the Polish power sector. However, the environmental regulations to which the domestic power sector has to conform will decrease the share of coal in the fuel-mix. Since the investment processes in this sector are usually long-term, the effects of changes will be noticeable from 2015 onwards. - Research highlights: →Application of the partial equilibrium model POWER-POL for a quantitative analysis. →Coal will maintain its dominant position in the Polish heat and electricity production fuel-mix at least up to 2020. →Attractiveness of domestic hard coal supplies will depend on the environmental regulations (mostly on the EU level) and development in the world coal market. →The first nuclear power plant will be put into operation in 2020.

  3. Development of an inexact optimization model for coupled coal and power management in North China

    International Nuclear Information System (INIS)

    Liu, Y.; Huang, G.H.; Cai, Y.P.; Cheng, G.H.; Niu, Y.T.; An, K.

    2009-01-01

    In this study, an inexact coupled coal and power management (ICCPM) model was developed for planning coupled coal and power management systems through integrating chance-constrained programming (CCP), interval linear programming (ILP) and mixed integer linear programming (MILP) techniques. The ICCPM model can effectively handle uncertainties presented in terms of probability density functions and intervals. It can also facilitate dynamic analysis of capacity expansions, facility installation and coal inventory planning within a multi-period and multi-option context. Complexities in coupled coal and power management systems can be systematically reflected in this model, thus applicability of the modeling process would be highly enhanced. The developed ICCPM model was applied to a case of long-term coupled coal and power management systems planning in north China. Interval solutions associated with different risk levels of constraint violations have been obtained, which can be used for generating decision alternatives and helping identify desired policies. The generated results can also provide desired solutions for coal and power generation, capacity initiation and expansion, and coal blending with a minimized system cost, a maximized system reliability and a maximized coal transportation security. Tradeoffs between system costs and constraint-violation risks can also be tackled.

  4. Life cycle assessment of solar aided coal-fired power system with and without heat storage

    International Nuclear Information System (INIS)

    Zhai, Rongrong; Li, Chao; Chen, Ying; Yang, Yongping; Patchigolla, Kumar; Oakey, John E.

    2016-01-01

    Highlights: • The comprehensive performances of three kinds of different systems were compared through LCA. • The comprehensive results of all systems were evaluated by grey relation theory. • The effects of life span, coal price, and solar collector field cost, among other factors, on the results were explored. - Abstract: Pollutant emissions from coal-fired power system have been receiving increasing attention over the past few years. Integration of solar thermal energy can greatly reduce pollutant emissions from these power stations. The performances of coal-fired power system (S1), solar aided coal-fired power system with thermal storage (S2), and solar aided coal-fired power system without thermal storage (S3) with three capacities of each kind of system (i.e., nine subsystems) were analyzed over the entire life span. The pollutant emissions and primary energy consumptions (PECs) of S1, S2, and S3 were estimated using life cycle assessment (LCA). The evaluation value of global warming potential (GWP), acidification potential (AP), respiratory effects potential (REP) and PEC were obtained based on the LCA results. Furthermore, the system investments were estimated, and grey relation theory was used to evaluate the performance of the three types of systems comprehensively. Finally, in order to find the effect of some main factors on the solar aided coal-fired power system (SACFPS), uncertainty analysis has been carried out. The LCA results show that the pollutant emissions and PEC mainly take place in the fuel processing and operation stages for all three system types, and S2 performs the best among the three systems based on the grey relation analysis results. And the uncertainty analysis shows that with longer life span, the power system have better performance; with higher coal price, the power system will have worse performance; with lower solar collector field cost, the solar aided coal-fired power system will be more profitable than the base

  5. Waterberg coal characteristics and SO2 minimum emissions standards in South African power plants.

    Science.gov (United States)

    Makgato, Stanford S; Chirwa, Evans M Nkhalambayausi

    2017-10-01

    Key characteristics of coal samples from the supply stock to the newly commissioned South African National Power Utility's (Eskom's) Medupi Power Station - which receives its supply coal from the Waterberg coalfield in Lephalale (Limpopo Province, South Africa) - were evaluated. Conventional coal characterisation such as proximate and ultimate analysis as well as determination of sulphur forms in coal samples were carried out following the ASTM and ISO standards. Coal was classified as medium sulphur coal when the sulphur content was detected in the range 1.15-1.49 wt.% with pyritic sulphur (≥0.51 wt.%) and organic sulphur (≥0.49 wt.%) accounted for the bulk of the total sulphur in coal. Maceral analyses of coal showed that vitrinite was the dominant maceral (up to 51.8 vol.%), whereas inertinite, liptinite, reactive semifusinite and visible minerals occurred in proportions of 22.6 vol.%, 2.9 vol.%, 5.3 vol.% and 17.5 vol.%, respectively. Theoretical calculations were developed and used to predict the resultant SO 2 emissions from the combustion of the Waterberg coal in a typical power plant. The sulphur content requirements to comply with the minimum emissions standards of 3500 mg/Nm 3 and 500 mg/Nm 3 were found to be ≤1.37 wt.% and ≤0.20 wt.%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. On gas and particle radiation in pulverized fuel combustion furnaces

    DEFF Research Database (Denmark)

    Yin, Chungen

    2015-01-01

    Radiation is the principal mode of heat transfer in a combustor. This paper presents a refined weighted sum of gray gases model for computational fluid dynamics modelling of conventional air-fuel combustion, which has greater accuracy and completeness than the existing gaseous radiative property...... models. This paper also presents new conversion-dependent models for particle emissivity and scattering factor, instead of various constant values in literature. The impacts of the refined or new models are demonstrated via computational fluid dynamics simulation of a pulverized coal-fired utility boiler...

  7. Nighttime NOx Chemistry in Coal-Fired Power Plant Plumes

    Science.gov (United States)

    Fibiger, D. L.; McDuffie, E. E.; Dube, W. P.; Veres, P. R.; Lopez-Hilfiker, F.; Lee, B. H.; Green, J. R.; Fiddler, M. N.; Ebben, C. J.; Sparks, T.; Weinheimer, A. J.; Montzka, D.; Campos, T. L.; Cohen, R. C.; Bililign, S.; Holloway, J. S.; Thornton, J. A.; Brown, S. S.

    2015-12-01

    Nitrogen oxides (NOx = NO + NO2) play a key role in atmospheric chemistry. During the day, they catalyze ozone (O3) production, while at night they can react to form nitric acid (HNO3) and nitryl chloride (ClNO2) and remove O3 from the atmosphere. These processes are well studied in the summer, but winter measurements are more limited. Coal-fired power plants are a major source of NOx to the atmosphere, making up approximately 30% of emissions in the US (epa.gov). NOx emissions can vary seasonally, as well as plant-to-plant, with important impacts on the details of the plume chemistry. In particular, due to inefficient plume dispersion, nighttime NOx emissions from power plants are held in concentrated plumes, where rates of mixing with ambient O3 have a strong influence on plume evolution. We will show results from the aircraft-based WINTER campaign over the northeastern United States, where several nighttime intercepts of power plant plumes were made. Several of these intercepts show complete O3 titration, which can have a large influence on NOx lifetime, and thus O3 production, in the plume. When power plant NO emissions exceed background O3 levels, O3 is completely consumed converting NO to NO2. In the presence of O3, NO2 will be oxidized to NO3, which will then react with NO2 to form N2O5, which can then form HNO3 and/or ClNO2 and, ultimately, remove NOx from the atmosphere or provide next-day oxidant sources. If there is no O3 present, however, no further chemistry can occur and NO and NO2 will be transported until mixing with sufficient O3 for higher oxidation products. Modeling results of plume development and mixing, which can tell us more about this transport, will also be presented.

  8. Secure energy supply without coal and nuclear power?

    International Nuclear Information System (INIS)

    Clement, W.

    2008-01-01

    The future of energy policy and energy supply is determined by the rising global demand for every kind of energy. Europe is being confronted with an ever growing dependence on imported oil and gas. We thus fall victim to the volatile ups and downs of oil and gas prices on the world markets. These risks to industry, and thus to jobs, are simply underrated, even ignored, in this country. Challenges of this kind require strategic solutions instead of case-by-case decisions which, in addition, more often than not are based on emotion rather than facts. Finding strategic solutions means that we must use all our scientific, technological and industrial potentials to achieve our ambitious goals in climate policy. We must use energy as intelligently as possible, i.e., we must develop and, above all, use CO 2 -free coal-fired power plants, safe nuclear power, renewable energy sources, and take measures to ensure a highly efficient management of energy. Only those four-pronged approach will enable us to ensure optimally competition, continuity of supply, and protection of the environment and the climate. Those who negate or ignore this interrelation are bound to fail in economic and ecological reality. (orig.)

  9. Coal Power Systems strategic multi-year program plans

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-02-01

    The Department of Energy's (DOE) Office of Fossil Energy (FE), through the Coal and Power Systems (C and PS) program, funds research to advance the scientific knowledge needed to provide new and improved energy technologies; to eliminate any detrimental environmental effects of energy production and use; and to maintain US leadership in promoting the effective use of US power technologies on an international scale. Further, the C and PS program facilitates the effective deployment of these technologies to maximize their benefits to the Nation. The following Strategic Plan describes how the C and PS program intends to meet the challenges of the National Energy Strategy to: (1) enhance American's energy security; (2) improve the environmental acceptability of energy production and use; (3) increase the competitiveness and reliability of US energy systems; and (4) ensure a robust US energy future. It is a plan based on the consensus of experts and managers from FE's program offices and the National Energy Technology Laboratory (NETL).

  10. Selection of powered roof support for weak coal roof

    Energy Technology Data Exchange (ETDEWEB)

    Ramayya, M.S.V.; Sudhakar, L. [Singareni Collieries Co. Ltd., Kothagudem (India)

    2002-04-01

    Singareni Collieries Company Ltd (SCCL) introduced mechanised longwall mining in 1983. The first few faces were worked with conventional and immediate forward supports (IFS), with capacities in the range of 360 to 450 t. These under capacity supports increased from abutment loads and there was breakage of roof in front of the supports which resulted in closure of powered roof supports, followed by face cavities. The cavities were more frequent and were difficult to negotiate especially in case of IFS supports. Subsequently, support capacity was increased at Padmavati Khani (PVK) mine and at GDK.10a and GKD.9LFP Inclines where the roof is composed of weak, coal, shale and clay. Problems related to failure of hydraulics/legs etc., which are repairable have occurred; though the problems are not totally eliminated, there was definite improvement in strata control with these higher capacity supports. Monitoring of supports was conducted all through the working of longwall panels. The data generated while working these longwall faces were analysed to study the suitability of other types of powered roof supports, namely 2 legged shield supports/4 legged supports for improved strata control. The analysis and practical experiences suggest that in weak, coaly, shale and clay roofs 2 legged shield supports offer better roof control. 4 refs., 4 figs.

  11. Life cycle assessment of coal-fired power plants and sensitivity analysis of CO2 emissions from power generation side

    Science.gov (United States)

    Yin, Libao; Liao, Yanfen; Zhou, Lianjie; Wang, Zhao; Ma, Xiaoqian

    2017-05-01

    The life cycle assessment and environmental impacts of a 1000MW coal-fired power plant were carried out in this paper. The results showed that the operation energy consumption and pollutant emission of the power plant are the highest in all sub-process, which accounts for 93.93% of the total energy consumption and 92.20% of the total emission. Compared to other pollutant emissions from the coal-fired power plant, CO2 reached up to 99.28%. Therefore, the control of CO2 emission from the coal-fired power plants was very important. Based on the BP neural network, the amount of CO2 emission from the generation side of coal-fired power plants was calculated via carbon balance method. The results showed that unit capacity, coal quality and unit operation load had great influence on the CO2 emission from coal-fired power plants in Guangdong Province. The use of high volatile and high heat value of coal also can reduce the CO2 emissions. What’s more, under higher operation load condition, the CO2 emissions of 1 kWh electric energy was less.

  12. The economics of coal-fired power plants

    International Nuclear Information System (INIS)

    2008-10-01

    Coal-fired plants are the most polluting way to produce electricity due to their high CO2 emissions. But are they a good choice from an economic point of view? According to Greenpeace the answer is no: the price of coal is rising, construction costs are increasing and CO2 emissions will be priced. Nevertheless, E.On is developing plans for a new coal-fired plant at the Maasvlakte with the support of the Dutch government. [mk] [nl

  13. Coal conversion and the HTR - basic elements of novel power supply concepts

    International Nuclear Information System (INIS)

    Buerger, F.H.

    1985-01-01

    A meeting under this title was held in Dortmund on 16 to 19 September, 1985, jointly by the VGB Technische Vereinigung der Grosskraftwerksbetreiber e.V., Essen, and the Vereinigte Elektrizitaetswerke Westfalen AG (VEW), Dortmund. The meeting was held in two sections: 'Gersteinwerk power plant - the combination unit K and the KUV coal conversion system' and '7th International conference on HTR technology'. Three technologies were discussed that will have a significant role on the future energy market, i.e., the HTR reactor line (first applied in the Hamm-Uentrop THTR reactor), the new generation of coal-fired power plants with combined gas/steam turbines, and the coal gasification technology. All three systems will make more efficient and less-polluting use of domestic coal by using HTR process heat, by converting coal to widen its range of applications, and by providing more efficient combination units for power plants. (orig./UA) [de

  14. Hydrogen Fuel as Ecological Contribution to Operation of the Existing Coal-Fired Thermal Power Plants

    International Nuclear Information System (INIS)

    Cosic, D.

    2009-01-01

    The analysis is carried out of the application of a new hydrogen based alternative fuel as ecological contribution of the coal thermal power plants operation. Given the fact that coal thermal power plants are seen as the largest producers, not only of CO 2 , but of all others harmful gases, the idea is initiated to use the new alternative fuel as an additive to the coal which would result in much better performance of the coal power plants from an ecological point of view. It is possible to use such a fuel in relation of 10-30% of former coal use. The positive influence of such an application is much bigger than relative used quantity. This lecture has a goal to incite potential investors to create conditions for industrial testing of the new fuel. It will be very interesting to animate investors for large-scale production of the new fuel, too.(author).

  15. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further

  16. Proceedings of the advanced coal-fired power systems `95 review meeting, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, H.M.; Mollot, D.J.; Venkataraman, V.K.

    1995-06-01

    This document contains papers presented at The advanced Coal-Fired Power Systems 1995 Review Meeting. Research was described in the areas of: integrated gasification combined cycle technology; pressurized fluidized-bed combustion; externally fired combined cycles; a summary stauts of clean coal technologies; advanced turbine systems and hot gas cleanup. Individual projects were processed separately for the United States Department of Energy databases.

  17. Hazards from radioactivity of fly ash of Greek coal power plants (CPP)

    International Nuclear Information System (INIS)

    Papastefanou, C.; Charalambous, S.

    1980-01-01

    Fly ash and fine dispersion releases from coal combustion in Greek coal power plants were studied. Concentrations in the fly ash up to 20 pCi/g and 10 pCi/g were measured for 238 U and 226 Ra respectively (not in secular equilibrium). Risk from the fly ash derives from its escape in particulate form or fine dispersion and from its use as a substitute for cement in concrete. The new data indicate that coal power plants discharge relatively larger quantities of radioactive material into the atmosphere than nuclear power plants of comparable size, during normal operation. (H.K.)

  18. Future CO2 emissions and electricity generation from proposed coal-fired power plants in India

    Science.gov (United States)

    Fofrich, R.; Shearer, C.; Davis, S. J.

    2017-12-01

    India represents a critical unknown in global projections of future CO2 emissions due to its growing population, industrializing economy, and large coal reserves. In this study, we assess existing and proposed construction of coal-fired power plants in India and evaluate their implications for future energy production and emissions in the country. In 2016, India had 369 coal-fired power plants under development totaling 243 gigawatts (GW) of generating capacity. These coal-fired power plants would increase India's coal-fired generating capacity by 123% and would exceed India's projected electricity demand. Therefore, India's current proposals for new coal-fired power plants would be forced to retire early or operate at very low capacity factors and/or would prevent India from meeting its goal of producing at least 40% of its power from renewable sources by 2030. In addition, future emissions from proposed coal-fired power plants would exceed India's climate commitment to reduce its 2005 emissions intensity 33% - 35% by 2030.

  19. Greenhouse gas emission factor for coal power chain in China and the comparison with nuclear power chain

    International Nuclear Information System (INIS)

    Ma Zhonghai; Pan Ziqiang; He Huimin

    1999-01-01

    The Greenhouse Gas Emission for coal power chain in China is analyzed in detail and comprehensively by using the Life Cycle Analysis method. The Greenhouse Gas Emission Factors (GGEF) in each link and for the total power chain are calculated. The total GGEF for coal power chain is 1302.3 gCO 2 /kWh, about 40 times more than that for nuclear power chain. And consequently greenhouse effect could not be aggravated further by nuclear power. The energy strategy for nuclear power development is one of reality ways to retard the greenhouse effect, put resources into rational use and protect environment

  20. Natural Radionuclides in Slag/Ash Pile from Coal-Fired Power Plant Plomin

    International Nuclear Information System (INIS)

    Barisic, D.; Lulic, S.; Marovic, G.; Sencar, J.

    2001-01-01

    Full text: The coal slag/ash pile contains about one million tons of different (bottom ash, filter ash, gypsum) waste material deposited in vicinity of Plomin coal-fired power plant. Activities of 40 K, 228 Ra, 226 Ra and 238 U in materials deposited on slag/ash pile as well as in used coals were occasionally measured during past more than two and half decades of Plomin coal-fired plant operation. The radionuclides content in deposited bottom and filter ash material are related with radionuclide activities and mineral matter fraction in coals used. Up to the middle of nineties, the majority of coal used was anthracite from Istrian local mines. In that period, deposited waste material was characterised with relatively high 226 Ra and 238 U activities while potassium and thorium content was very low. When Istrian coal has been completely substituted with imported coal, uranium series radionuclide concentrations in deposited waste materials decreased significantly. Meanwhile, potassium and thorium activities in slag/ash pile material increased. It seems that slag/ash pile material generated in the last several years of Plomin coal-fired power plant operation could be generally used in cement industry without any special restriction. (author)

  1. Fuel prices, emission standards, and generation costs for coal vs natural gas power plants.

    Science.gov (United States)

    Pratson, Lincoln F; Haerer, Drew; Patiño-Echeverri, Dalia

    2013-05-07

    Low natural gas prices and stricter, federal emission regulations are promoting a shift away from coal power plants and toward natural gas plants as the lowest-cost means of generating electricity in the United States. By estimating the cost of electricity generation (COE) for 304 coal and 358 natural gas plants, we show that the economic viability of 9% of current coal capacity is challenged by low natural gas prices, while another 56% would be challenged by the stricter emission regulations. Under the current regulations, coal plants would again become the dominant least-cost generation option should the ratio of average natural gas to coal prices (NG2CP) rise to 1.8 (it was 1.42 in February 2012). If the more stringent emission standards are enforced, however, natural gas plants would remain cost competitive with a majority of coal plants for NG2CPs up to 4.3.

  2. CEZ utility's coal-fired power plants: towards a higher environmental friendliness

    International Nuclear Information System (INIS)

    Kindl, V.; Spilkova, T.; Vanousek, I.; Stehlik, J.

    1996-01-01

    Environmental efforts of the major Czech utility, CEZ a.s., are aimed at reducing air pollution arising from electricity and heat generating facilities. There are 3 main kinds of activity in this respect: phasing out of coal fired power plants; technological provisions to reduce emissions of particulate matter, sulfur dioxide, and nitrogen oxides from those coal fired units that are to remain in operation after 1998; and completion of the Temelin nuclear power plant. In 1995, emissions of particulate matter, sulfur dioxide, nitrogen oxides, and carbon monoxide from CEZ's coal fired power plants were 19%, 79%, 59%, and 60%, respectively, with respect to the situation in 1992. The break-down of electricity generation by CEZ facilities (in GWh) was as follows in 1995: hydroelectric power plants 1673, nuclear power plants 12230, coal fired power plants without desulfurization equipment 30181, and coal fired power plants with desulfurization equipment 2277. Provisions implemented to improve the environmental friendliness of the individual CEZ's coal fired power plants are described in detail. (P.A.). 5 tabs., 1 fig

  3. Economic Decision-Making for Coal Power Flexibility Retrofitting and Compensation in China

    Directory of Open Access Journals (Sweden)

    Chunning Na

    2018-01-01

    Full Text Available In China, in order to integrate more renewable energy into the power grid, coal power flexibility retrofitting is imperative. This paper elaborates a generic method for estimating the flexibility potential from the rapid ramp rate and peak shaving operation using nonlinear programming, and defines three flexibility elastic coefficients to quantify the retrofitted targets. The optimized range of the retrofitted targets determined by the flexibility elastic coefficients have a reference significance on coal power flexibility retrofitting. Then, in order to enable economic decisions for coal power flexibility retrofitting, we address a profit maximizing issue regarding optimization decisions for coal power flexibility retrofitting under an assumption of perfect competition, further analyzing the characteristic roots of marginal cost equal to marginal revenue. The rationality of current compensation standards for peak shaving in China can also be judged in the analysis. The case study results show that economic decision-making depends on the compensation standard and the peak shaving depth and time. At a certain peak shaving depth and time, with rational compensation standard power plants are willing to carry out coal power flexibility retrofitting. The current compensation standard in Northeast China is high enough to carry out coal power flexibility retrofitting. These research conclusions have theoretical significance for China’s peak shaving compensation standards formulation.

  4. Evaluation criteria for enhanced solar–coal hybrid power plant performance

    International Nuclear Information System (INIS)

    Zhao, Yawen; Hong, Hui; Jin, Hongguang

    2014-01-01

    Attention has been directed toward hybridizing solar energy with fossil power plants since the 1990s to improve reliability and efficiency. Appropriate evaluation criteria were important in the design and optimization of solar–fossil hybrid systems. Two new criteria to evaluate the improved thermodynamic performances in a solar hybrid power plant were developed in this study. Correlations determined the main factors influencing the improved thermodynamic performances. The proposed criteria can be used to effectively integrate solar–coal hybridization systems. Typical 100 MW–1000 MW coal-fired power plants hybridized with solar heat at approximately 300 °C, which was used to preheat the feed water before entering the boiler, were evaluated using the criteria. The integration principle of solar–coal hybrid systems was also determined. The proposed evaluation criteria may be simple and reasonable for solar–coal hybrid systems with multi-energy input, thus directing system performance enhancement. - Highlights: • New criteria to evaluate the solar hybrid power plant were developed. • Typical solar–coal hybrid power plants were evaluated using the criteria. • The integration principle of solar–coal hybrid systems was determined. • The benefits of the solar–coal hybrid system are enhanced at lower solar radiation

  5. Environmental characteristics of clean coal technologies

    International Nuclear Information System (INIS)

    Bossart, S.J.

    1992-01-01

    The Department of Energy's (DOE) Clean Coal Technology (CCT) Program is aimed at demonstrating the commercial readiness of advanced coal-based technologies. A major goal of the CCT program is to introduce into the US energy marketplace those coal-based power generation technologies that have superior economic and environmental performance over the current suite of commercial coal-based power generation technologies. The commercialization of CCTs will provide the electric utility industry with technology options for replacing aging power plants and meeting future growth in electricity demand. This paper discusses the environmental advantages of two CCTs used for electric power generation: pressurized fluidized-bed combustion (PFBC) and integrated gasification combined-cycle (IGCC). These CCTs are suitable for repowering existing power plants or for grassroots construction. Due to their high efficiency and advanced environmental control systems, they emit less sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), particulate matter, and carbon dioxide (CO 2 ) than a state-of-the-art, pulverized coal power plant with flue gas desulfurization (PC/FGD)

  6. Main characteristics of the radioactive enrichment in ashes produced in coal-fired power stations

    International Nuclear Information System (INIS)

    Baeza, Antonio; Corbacho, Jose A.; Cancio, David; Robles, Beatriz; Mora, Juan C.

    2008-01-01

    Under contract with the Spain's 'Nuclear Safety Council', a study is being conducted of the nation's largest nominal output coal-fired power stations. Its purpose is to assess the radiological impact on workers and local populations due to this source of NORM activity. One of the aspects of particular interest is the study of the radioactive enrichment in the combustion wastes relative to the different coals used as fuel (usually local bituminous coal or lignite, or imported coal). These wastes consist of fly ash (mostly fine particles collected in electrostatic precipitators), and bottom ash (larger in size, and collected wet or dry in hoppers below the boilers). In general terms, the enrichment factors measured were between 2 and 18 for the radionuclides 40 K, 226 Ra, 232 Th, and 210 Po. The magnitude of this enrichment factor depended mainly on the ash content of each coal, and hence on the type of coal used as fuel and the specific operation cycle in the different power stations. For the radionuclides 40 K, 226 Ra, and 232 Th, the enrichment was relatively similar in value in the fly and bottom ashes produced by the different types of coal used in the power stations studied. For 210 Po, however, as was expected, the enrichment was much greater in the fly ash than in the bottom ash for each coal analyzed. (author)

  7. 5. annual clean coal technology conference: powering the next millennium. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increase demands can be met by utilizing coal in technologies that achieve environmental goals while keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal Technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains technical papers on: advanced coal process systems; advanced industrial systems; advanced cleanup systems; and advanced power generation systems. In addition, there are poster session abstracts. Selected papers from this proceedings have been processed for inclusion in the Energy Science and Technology database.

  8. Environmental external effects for wind power and coal

    Energy Technology Data Exchange (ETDEWEB)

    Schleisner, L; Meyer, H J; Morthorst, P E [Risoe National Lab., Roskilde (Denmark). Systems Analysis Dept.

    1996-12-31

    This article summarises some of the results achieved in a project carried out in Denmark with the purpose to assess the environmental damages and the external costs in the production of energy. The project has especially handled renewable energy versus energy based on fossil fuels. The project has been a collaboration between the Technical University of Denmark and Riso National Laboratory. The research institutions have considered different energy production technologies in the project. The energy production technologies that have been considered by Risoe National Laboratory and will be reported and compared in this article are the following: (1) Wind power, (2) A coal-fired condensing plant. In the project the environmental damages are thus compared, and externalities in the production of energy using renewable energy and fossil fuels are identified, estimated and monetized. The following result applies in general to the applied technologies. Only the environmental externalities have been assessed in the project. Social and economical externalities, e.g. related to changes in employment or depletion of resources, are not included in the project. The cost concept is based on marginal damage cost, in principle taking as starting point the level of pollution that exists today. The methodology, which has been used in order to find and monetize the environmental externalities, consists of the different processes like Identification, quantification, Dose-response and Valuation

  9. Environmental external effects for wind power and coal

    Energy Technology Data Exchange (ETDEWEB)

    Schleisner, L.; Meyer, H.J.; Morthorst, P.E. [Risoe National Lab., Roskilde (Denmark). Systems Analysis Dept.

    1995-12-31

    This article summarises some of the results achieved in a project carried out in Denmark with the purpose to assess the environmental damages and the external costs in the production of energy. The project has especially handled renewable energy versus energy based on fossil fuels. The project has been a collaboration between the Technical University of Denmark and Riso National Laboratory. The research institutions have considered different energy production technologies in the project. The energy production technologies that have been considered by Risoe National Laboratory and will be reported and compared in this article are the following: (1) Wind power, (2) A coal-fired condensing plant. In the project the environmental damages are thus compared, and externalities in the production of energy using renewable energy and fossil fuels are identified, estimated and monetized. The following result applies in general to the applied technologies. Only the environmental externalities have been assessed in the project. Social and economical externalities, e.g. related to changes in employment or depletion of resources, are not included in the project. The cost concept is based on marginal damage cost, in principle taking as starting point the level of pollution that exists today. The methodology, which has been used in order to find and monetize the environmental externalities, consists of the different processes like Identification, quantification, Dose-response and Valuation

  10. Study on the radiological Impact of Coal Fired Power Plants

    International Nuclear Information System (INIS)

    Cancio, D.; Robles, B.; Mora, J. C.; Baeza, A.; Corbacho, J. A.; Vasco, J.; Guillen, J.

    2008-01-01

    The study is part of the goal set forth in Title VII of the European Basic Safety Standards and the Spanish regulations on radiation protection related to work activities that may involve a significant increase in exposure of workers and the public to natural radiation. Coal contains small quantities of radionuclides in the series of uranium, thorium and potassium which in the industrial process can lead to radiological exposure. This work presents the measurements and evaluations conducted in one of the power plants object of study: The Unidad Termica de Produccion de Litoral in the Almeria Province. The maximum dose assessed for workers are in the order of 0.14 mSv per year and in the order of 0.05 mSv per year for the public in the realistic scenarios considered. These values are well below the 1mSv per year reference levels, recommended in Europe to have some interest from the radiation protection point of view. (Author) 52 refs

  11. Environmental external effects for wind power and coal

    International Nuclear Information System (INIS)

    Schleisner, L.; Meyer, H.J.; Morthorst, P.E.

    1995-01-01

    This article summarises some of the results achieved in a project carried out in Denmark with the purpose to assess the environmental damages and the external costs in the production of energy. The project has especially handled renewable energy versus energy based on fossil fuels. The project has been a collaboration between the Technical University of Denmark and Riso National Laboratory. The research institutions have considered different energy production technologies in the project. The energy production technologies that have been considered by Risoe National Laboratory and will be reported and compared in this article are the following: (1) Wind power, (2) A coal-fired condensing plant. In the project the environmental damages are thus compared, and externalities in the production of energy using renewable energy and fossil fuels are identified, estimated and monetized. The following result applies in general to the applied technologies. Only the environmental externalities have been assessed in the project. Social and economical externalities, e.g. related to changes in employment or depletion of resources, are not included in the project. The cost concept is based on marginal damage cost, in principle taking as starting point the level of pollution that exists today. The methodology, which has been used in order to find and monetize the environmental externalities, consists of the different processes like Identification, quantification, Dose-response and Valuation

  12. Failure analysis of boiler tubes in lakhra coal power plant

    International Nuclear Information System (INIS)

    Shah, A.; Baluch, M.M.; Ali, A.

    2010-01-01

    Present work deals with the failure analysis of a boiler tube in Lakhra fluidized bed combustion power station. Initially, visual inspection technique was adopted to analyse the fractured surface. Detailed microstructural investigations of the busted boiler tube were carried out using light optical microscope and scanning electron microscope. The hardness tests were also performed. A 50 percent decrease in hardness of intact portion of the tube material and from area adjacent to failure was measured, which was found to be in good agreement with the wall thicknesses measured of the busted boiler tube i.e. 4 mm and 2 mm from unaffected portion and ruptured area respectively. It was concluded that the major cause of failure of boiler tube is erosion of material which occurs due the coal particles strike at the surface of the tube material. Since the temperature of boiler is not maintained uniformly. The variations in boiler temperature can also affect the material and could be another reason for the failure of the tube. (author)

  13. Fiscal 2001 achievement report. Development of coal gas production technology for fuel cells - Research using pilot test facility - for public release (Test result report - 2/3); 2001 nendo seika hokokusho (Kokai you). Nenryo denchi you sekitan gas seizo gijutsu kaihatsu - Pilot shiken setsubi ni yoru kenkyu (Shiken kekka hokokusho 2/3)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    For the development of a coal gasification furnace optimum for fuel cells, a pilot test facility was constructed, and the results of tests and inspections conducted therefor are put together. They include an individual test of the receiving pit hopper vibrator, individual test of the pulverized coal related rotary valve, individual test of the pretreatment compressed air fan, individual test of the coal pulverizer lubricating device, individual test of the coal pulverizer pressure device, individual test of the coal pulverizer, individual test of the coal pulverizer motor, individual test of the coal feeder, individual test of the pulverized coal bunker exhaust fan, individual test of the pulverized coal bunker exhaust fan motor, test of capacity for pulverized coal, individual test of the pulverized coal conveyer blower, test of the sequence of the same, test of pulverizer inert clearing, individual test of the pretreatment condensed water pump in the coal pretreatment device, test of airborne conveyance in the same, verification test of inter-hopper transfer in the same, test of coal pulverization in the same, test operation of the raw material air/low pressure nitrogen compressor in the air separation facility, test operation of the raw material air freezer in the same, and a test operation of the MS adsorber/MS regeneration electric heater. (NEDO)

  14. Emission of CO2 Gas and Radioactive Pollutant from Coal Fired Power Plant

    International Nuclear Information System (INIS)

    Ida, N.Finahari; Djati-HS; Heni-Susiati

    2006-01-01

    Energy utilization for power plant in Indonesia is still depending on burning fossil fuel such as coal, oil and gaseous fuel. The direct burning of coal produces CO 2 gas that can cause air pollution, and radioactive pollutant that can increase natural radioactive dosage. Natural radionuclide contained in coal is in the form of kalium, uranium, thorium and their decay products. The amount of CO 2 gas emission produced by coal fired power plant can be reduced by equipping the plant with waste-gas treatment facility. At this facility, CO 2 gas is reacted with calcium hydroxide producing calcium carbonate. Calcium carbonate then can be used as basic material in food, pharmaceutical and construction industries. The alternative method to reduce impact of air pollution is by replacing coal fuel with nuclear fuel or new and renewable fuel. (author)

  15. Boiler materials for ultra supercritical coal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Purgert, Robert [Energy Industries of Ohio, Independence, OH (United States); Shingledecker, John [Electric Power Research Inst., Palo Alto, CA (United States); Pschirer, James [Alstom Power Inc., Windsor, CT (Untied States); Ganta, Reddy [Alstom Power Inc., Windsor, CT (Untied States); Weitzel, Paul [The Babcock & Wilcox Company, Baberton, OH (United States); Sarver, Jeff [The Babcock & Wilcox Company, Baberton, OH (United States); Vitalis, Brian [Riley Power Inc., Worchester, WA (United States); Gagliano, Michael [Foster Wheeler North America Corp., Hampton, NJ (United States); Stanko, Greg [Foster Wheeler North America Corp., Hampton, NJ (United States); Tortorelli, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-29

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have undertaken a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions up to 760°C (1400°F) and 35 MPa (5000 psi). A limiting factor to achieving these higher temperatures and pressures for future A-USC plants are the materials of construction. The goal of this project is to assess/develop materials technology to build and operate an A-USC boiler capable of delivering steam with conditions up to 760°C (1400°F)/35 MPa (5000 psi). The project has successfully met this goal through a focused long-term public-private consortium partnership. The project was based on an R&D plan developed by the Electric Power Research Institute (EPRI) and an industry consortium that supplemented the recommendations of several DOE workshops on the subject of advanced materials. In view of the variety of skills and expertise required for the successful completion of the proposed work, a consortium led by the Energy Industries of Ohio (EIO) with cost-sharing participation of all the major domestic boiler manufacturers, ALSTOM Power (Alstom), Babcock and Wilcox Power Generation Group, Inc. (B&W), Foster Wheeler (FW), and Riley Power, Inc. (Riley), technical management by EPRI and research conducted by Oak Ridge National Laboratory (ORNL) has been developed. The project has clearly identified and tested materials that can withstand 760°C (1400°F) steam conditions and can also make a 700°C (1300°F) plant more economically attractive. In this project, the maximum temperature capabilities of these and other available high-temperature alloys have been assessed to provide a basis for

  16. Coal-Fired Power Plants, Region 9, 2011, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — Approximate locations of active coal-fired power plants located in US EPA's Region 9. Emission counts from the 2005 National Emissions Inventory (NEI) are included...

  17. Nuclear and coal-fired power plant capital costs 1978 -June 1981

    International Nuclear Information System (INIS)

    Harbour, R.T.

    1981-07-01

    This bibliography covers 16 papers dealing with the economics of power generation - mainly comparisons between the capital costs of nuclear and coal fired plants. Some of the papers additionally discuss fuel, operating and maintenance costs, and performance. (U.K.)

  18. CO2 reduction potential of future coal gasification based power generation technologies

    International Nuclear Information System (INIS)

    Jansen, D.; Oudhuis, A.B.J.; Van Veen, H.M.

    1992-03-01

    Assessment studies are carried out on coal gasification power plants integrated with gas turbines (IGCC) or molten carbonate fuel cells (MCFC) without and with CO 2 -removal. System elements include coal gasification, high-temperature gas-cleaning, molten carbonate fuel cells or gas turbines, CO shift, membrane separation, CO 2 recovery and a bottoming cycle. Various system configurations are evaluated on the basis of thermodynamic computations. The energy balances of the various system configurations clearly indicate that integrated coal gasification MCFC power plants (IGMCFC) with CO 2 removal have high efficiencies (42-47% LHV) compared to IGCC power plants with CO 2 -removal (33-38% LHV) and that the CO 2 -removal is simplified due to the specific properties of the molten carbonate fuel cells. IGMCFC is therefore an option with future prospective in the light of clean coal technologies for power generation with high energy efficiencies and low emissions. 2 figs., 3 tabs., 10 refs

  19. An experimental and mathematical modeling study comparing the reactivity and burnout of pulverized coal in air (O{sub 2}/N{sub 2}) and oxyfuel (O{sub 2}/CO{sub 2}) environments

    Energy Technology Data Exchange (ETDEWEB)

    Liza Elliott; Yinghui Liu; Bart Buhre; Jennifer Martin; Raj Gupta; Terry Wall [University of Newcastle, Callaghan, NSW (Australia). Cooperative Research Centre for Coal in Sustainable Development, Chemical Engineering

    2005-07-01

    Carbon dioxide in flue gas from conventional combustion processes is present as a dilute gas. CO{sub 2} capture is more easily achieved from a concentrated CO{sub 2} stream, which can be achieved by firing fuels with oxygen to obtain a sequestration ready gas stream, called oxy-fuel combustion. In this technology, the oxygen stream is usually diluted by recycled flue gas (RFG), so that the coal burns in an environment which is primarily O{sub 2}/CO{sub 2}. A size cut of a number of pulverised coals were devolatalised in N{sub 2} and CO{sub 2}. These sized coals were also combusted in a drop-tube furnace in an O{sub 2}/N{sub 2} environment simulating air combustion, and O{sub 2}/CO{sub 2} simulating oxyfuel combustion, with varying O{sub 2} levels from 3 to 30% v/v. Measurements of the extent of devolatilisation and coal burnout were completed. The detailed data provided for one coal indicated that the devolatilisation process in the O{sub 2}/CO{sub 2} environments is influenced by char gasification, and the char reaction rates are fitted better by a fractional order rate than first order in oxygen. Combustion rates in the oxyfuel environment were slightly higher. Estimates of the burnout for furnaces retrofitted from air to oxyfuel indicate that a better burnout can be expected. These trends were common for all coals. 14 refs., 4 figs., 5 tabs.

  20. Radioactivity of combustion residues from coal-fired power stations

    International Nuclear Information System (INIS)

    Vom Berg, W.; Puch, K.H.

    1996-01-01

    Each year in Germany, about 18 mill. t of combustion residues are produced from the combustion of bituminous coal and lignite. They are utilized to a great extent in the construction industry and in mining. During the combustion of coal, the radio-nuclides remain predominantly in the ash. The radionuclide concentration in lignite ash is within the range of that in natural soil. The combustion residues of bituminous coal contain radio-nuclides of a similar order of magnitude as also can occur in natural rock. The utilization of combustion residues in construction materials makes a negligible contribution to radiation exposure through retention in buildings. (orig.) [de

  1. Pulverized straw combustion in a low-NOx multifuel burner

    DEFF Research Database (Denmark)

    Mandø, Matthias; Rosendahl, Lasse; Yin, Chungen

    2010-01-01

    A CFD simulation of pulverized coal and straw combustion using a commercial multifuel burner have been undertaken to examine the difference in combustion characteristics. Focus has also been directed to development of the modeling technique to deal with larger non-spherical straw particles...... and to determine the relative importance of different modeling choices for straw combustion. Investigated modeling choices encompass the particle size and shape distribution, the modification of particle motion and heating due to the departure from the spherical ideal, the devolatilization rate of straw......, the influence of inlet boundary conditions and the effect of particles on the carrier phase turbulence. It is concluded that straw combustion is associated with a significantly longer flame and smaller recirculation zones compared to coal combustion for the present air flow specifications. The particle size...

  2. Coal utilization technologies in the production of electric energy; Technologie wykorzystania wegla do produkcji energii elektrycznej

    Energy Technology Data Exchange (ETDEWEB)

    Golec, T.; Rakowski, J. [Power Institute, Warsaw (Poland)

    2004-07-01

    The paper presents an assessment of the various technologies for power generation from coal and discusses the development prospects for each. The technologies are: pulverized fuel fired boilers for supercritical steam parameters; atmospheric fluidized bed boilers; pressurised fluidized-bed combustion boilers; gas and steam units integrated with gasification of solid fuels; and co-firing of solid fuels. It addresses, briefly, CO{sub 2} reduction technologies. 26 refs., 3 figs., 8 tabs.

  3. Technical report on NEDO-conducted Western US steam coal (for power generation and boiler) survey

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    The New Energy and Industrial Technology Development Organization (NEDO) conducted studies covering Wyoming, Utah, Colorado, New Mexico, and North Dakota, all in the West. Illinois and Gulf-Texas are also included. The bituminous coal of Utah and Colorado is given the highest priority as coal to be exported to Japan. It is feared, however, that the price of the bituminous coal from these areas may soar if demand increases. As for sub-bituminous coal, its price is far more stable because its reserves are basically limitless. The sub-bituminous coal, however, is not expected to be imported to Japan in the very near future because it is low in calorific power and fails to meet the conditions prerequisite to Japan's boiler fuel. Illinois can receive large orders but its coal contains more sulfur than the Western coal and a longer distance has to be covered for its transportation. As for transportation to the West Cost, freight cars are available and the port capacity can be enlarged dependent on the magnitude of demand for coal. Loading a deep draft bulk ship off shore with coarse coal slurry by pipeline is an attractive scheme. (NEDO)

  4. Technical report on NEDO-conducted Western US steam coal (for power generation and boiler) survey

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    The New Energy and Industrial Technology Development Organization (NEDO) conducted studies covering Wyoming, Utah, Colorado, New Mexico, and North Dakota, all in the West. Illinois and Gulf-Texas are also included. The bituminous coal of Utah and Colorado is given the highest priority as coal to be exported to Japan. It is feared, however, that the price of the bituminous coal from these areas may soar if demand increases. As for sub-bituminous coal, its price is far more stable because its reserves are basically limitless. The sub-bituminous coal, however, is not expected to be imported to Japan in the very near future because it is low in calorific power and fails to meet the conditions prerequisite to Japan's boiler fuel. Illinois can receive large orders but its coal contains more sulfur than the Western coal and a longer distance has to be covered for its transportation. As for transportation to the West Cost, freight cars are available and the port capacity can be enlarged dependent on the magnitude of demand for coal. Loading a deep draft bulk ship off shore with coarse coal slurry by pipeline is an attractive scheme. (NEDO)

  5. International coal and the future of nuclear power in the UK

    International Nuclear Information System (INIS)

    Parker, M.J.

    1987-01-01

    The future international price of coal is a central issue in the economic comparison of coal-fired and nuclear power stations. However, this is very difficult to estimate as prices are uncertain and subject to wide margins of error. Recent trends are discussed. The increase in the seaborne steam coal trade is one trend. Although only about 5% of steam coal is traded, this is mainly in the Far East and in Western Europe. It is steam coal prices which are relevant in considering nuclear economies. The structure of the international steam coal market is explained. An assessment of future prices of steam coal considers both demand and supply. The delivered cost of steam coal to N.W. Europe in 1986 is shown - the main suppliers being Australia, Colombia, South Africa and the USA. China and Poland are also exporters of steam coal. Currently, there is an over-supply which is keeping the price low. However, as demand increases prices are likely to rise in the 1990s but with upper limits depending on the total volume of trade. Thirteen graphs or maps illustrate the figures on which the discussion and conclusions are based. (UK)

  6. Chiyoda Thoroughbred CT-121 clean coal project at Georgia Power`s Plant Yates

    Energy Technology Data Exchange (ETDEWEB)

    Burford, D.P. [Southern Company Services, Inc., Birmingham, AL (United States)

    1997-12-31

    The Chiyoda Thoroughbred CT-121 flue gas desulfurization (FGD) process at Georgia Power`s Plant Yates completed a two year demonstration of its capabilities in late 1994 under both high- and low-particulate loading conditions. This $43 million demonstration was co-funded by Southern Company, the Electric Power Research Institute and the DOE under the auspices of the US Department of Energy`s Round II Innovative Clean Coal Technology (ICCT) program. The focus of the Yates Project was to demonstrate several cost-saving modifications to Chiyoda`s already efficient CT-121 process. These modifications included: the extensive use of fiberglass reinforced plastics (FRP) in the construction of the scrubber vessel and other associated vessels, the elimination of flue gas reheat through the use of an FRP wet chimney, and reliable operation without a spare absorber module. This paper focuses on the testing results from the last trimester of the second phase of testing (high-ash loading). Specifically, operation under elevated ash loading conditions, the effects of low- and high-sulfur coal, air toxics verification testing results and unexpected improvements in byproduct gypsum quality are discussed.

  7. Power-generating process of obtaining gas-energy carrier and reducer from coal

    International Nuclear Information System (INIS)

    Tleugabulov, S.; Duncheva, E.; Zubkevich, M.

    1999-01-01

    The manufacture of power-generating gas has the important economic value for Kazakhstan having large territory, raw and fuel resources especially power coal and clean coal wastes. The technology of reception of gas-energy carrier and reducer from power coal is developed. The basic product of technological process is heated reducing gas. Reducing potential of the gas is characterized by a volumetric share of components (CO+H 2 )-RC in relation to volume of whole mix of gases received with gasification of coal. The value of parameter RC is regulated by a degree of enrichment of air by oxygen r 0 , and the temperature - by the charge of a parity of endothermic reaction in the chamber of gas regeneration. The dependence of the gas structure and temperature on the degree of enrichment of air by oxygen is shown and the circuit of the gas generator is given. (author)

  8. Environmental protection in coal utilization and its problems at Sultan Salahuddin Abdul Aziz Power Station, Kapar

    Energy Technology Data Exchange (ETDEWEB)

    Bock, L.C. (Tenaga Nasional Berhad (Malaysia). Research and Development Dept.)

    1990-11-01

    Efforts to prevent and minimise pollution as well as to enhance the quality of the environment around the new coal-fired Sultan Salanuddin Power Station are described. Malaysian environmental regulations are mentioned and pollution-reducing elements designed into the power plant are listed. A Public Participation Forum was held to inform the public of the planned power station and the environmental considerations. An Environmental Audit was conducted which compared the measured impacts of the operational station with the predicted expectations. On-going air quality and wastewater discharge monitoring procedures are outlined. Measures to control coal dust and spontaneous combustion of coal, and methods used to dispose of coal ash are described. 3 figs.

  9. Developing an international consortium to build an 800 MW coal fired power plant in Indonesia

    International Nuclear Information System (INIS)

    Jones, R.H.; Hashima, T.

    1990-01-01

    This paper describes the cooperative construction of a fossil-fueled power plant in Indonesia. The topics discussed in the paper include energy use and the market for electric power, fuel resources, history of business activities, the role of joint resources and government business policy, and preparing for bidding an 800MW coal-fired power plant

  10. Investigation of coal dust explosion hazard at the Nikola Tesla-A thermal power station

    Energy Technology Data Exchange (ETDEWEB)

    Golubovic, D

    1987-10-01

    Reports on investigations into coal dust explosion hazards in working places with high coal dust exposure, done in the Tesla-A thermal power station by Mining Institute of Belgrade specialists. Settled and floating coal dust concentrations were monitored for six months and samples analyzed for explosibility under lab conditions. Samples from transport and preparation facilities and the power station boiler house were taken. The entire plant was divided into 4 zones, depending on intensity of dust settlement and ventilation system. Coal dust generation varied from 0.3-65 g/min. Daily dust settlement ranged between 40 and 300 g/m/sup 2/. Total quantity of accumulated coal dust in the power plant ranged from 0.8-650 kg/day; 250 g/m/sup 3/ of coal dust may cause an explosion. Thus, a dangerous amount of coal dust, depending on work-site, will settle in 3.3.-21.8 days. Disturbance of settled dust may create explodable clouds. Details of measurements taken and data evaluation are included. 4 refs.

  11. Upgraded Coal Interest Group -- A vision for coal-based power in 1999 and beyond

    International Nuclear Information System (INIS)

    Hughes, E.; Battista, J.; Stopek, D.; Akers, D.

    1999-01-01

    The US is at a critical junction. Global competition is now a reality for a large number of US businesses and, ultimately, almost all US businesses will compete to one degree or another in the global marketplace. Under these circumstances, maintaining and improving the standard of living of US citizens requires a plentiful supply of low-cost electric energy to reduce the cost of providing goods and services both in the US an abroad. At the same time, segments of the public demand increased environmental restrictions on the utility industry. If the electric utility industry is to successfully respond to the goals of reducing electricity costs, maintaining reliability, and reducing emissions, fuels technology research is critical. For coal-fired units, fuel cost typically represents from 60--70% of operating costs. Reducing fuel cost, reduces operating costs. This can provide revenue that could be used to finance emissions control systems or advanced type of boilers resulting from post-combustion research. At the same time, improving coal quality reduces emissions from existing boilers without the need for substantial capital investment by the utility. If quality improvements can be accomplished with little or no increase in fuel costs, an immediate improvement in emissions can be achieved without an increase in electricity costs. All of this is directly dependent on continued and expanded levels of research on coal with the cooperation and partnership between government and industry. The paper describes enhanced fuel technologies (use of waste coal, coal water slurries, biomass/composite fuels, improved dewatering technologies, precombustion control of HAPs, dry cleaning technologies, and international coal characterization) and enhanced emission control technologies

  12. Efficiency analysis of a hard-coal-fired supercritical power plant with a four-end high-temperature membrane for air separation

    International Nuclear Information System (INIS)

    Kotowicz, Janusz; Michalski, Sebastian

    2014-01-01

    The supercritical power plant analyzed in this paper consists of the following elements: a steam turbine, a hard-coal-fired oxy-type pulverized fuel boiler, an air separation unit with a four-end-type high-temperature membrane and a carbon dioxide capture unit. The electrical power of the steam turbine is 600 MW, the live steam thermodynamic parameters are 650°C/30 MPa, and the reheated steam parameters are 670°C/6 MPa. First of all the net efficiency was calculated as functions of the oxygen recovery rate. The net efficiency was lower than the reference efficiency by 9–10.5 pp, and a series of actions were thus proposed to reduce the loss of net efficiency. A change in the boiler structure produced an increase in the boiler efficiency of 2.5–2.74 pp. The range of the optimal air compressor pressure ratio (19–23) due to the net efficiency was also determined. The integration of all installations with the steam turbine produced an increase in the gross electric power by up to 50.5 MW. This operation enabled the replacement of the steam regenerative heat exchangers with gas–water heat exchangers. As a result of these alterations, the net efficiency of the analyzed power plant was improved to 5.5 pp less than the reference efficiency. - Highlights: • Analysis of a power plant with a “four-end” HTM for oxygen production was made. • Reorganization of the flue gas recirculation increased the boiler efficiency. • Optimization of the air compressor pressure ratio decreased the auxiliary power. • Replacement of the regenerative heat exchangers increased the gross electric power. • Comparison of the net efficiency of the analyzed and reference plants were made

  13. UNEP Demonstrations of Mercury Emission Reduction at Two Coal-fired Power Plants in Russia

    Directory of Open Access Journals (Sweden)

    Jozewicz W.

    2013-04-01

    Full Text Available The United Nations Environment Programme (UNEP partnership area “Mercury releases from coal combustion” (The UNEP Coal Partnership has initiated demonstrations of mercury air emission reduction at two coal-fired power plants in Russia. The first project has modified the wet particulate matter (PM scrubber installed in Toliatti thermal plant to allow for addition of chemical reagents (oxidants into the closedloop liquid spray system. The addition of oxidant resulted in significant improvement of mercury capture from 20% total mercury removal (without the additive up to 60% removal (with the additive. It demonstrates the effectiveness of sorbent injection technologies in conjunction with an electrostatic precipitator (ESP. ESPs are installed at 60%, while wet PM scrubbers are installed at 30% of total coal-fired capacity in Russia. Thus, the two UNEP Coal Partnership projects address the majority of PM emission control configurations occurring in Russia.

  14. Mineralogical, Microstructural and Thermal Characterization of Coal Fly Ash Produced from Kazakhstani Power Plants

    Science.gov (United States)

    Tauanov, Z.; Abylgazina, L.; Spitas, C.; Itskos, G.; Inglezakis, V.

    2017-09-01

    Coal fly ash (CFA) is a waste by-product of coal combustion. Kazakhstan has vast coal deposits and is major consumer of coal and hence produces huge amounts of CFA annually. The government aims to recycle and effectively utilize this waste by-product. Thus, a detailed study of the physical and chemical properties of material is required as the data available in literature is either outdated or not applicable for recently produced CFA samples. The full mineralogical, microstructural and thermal characterization of three types of coal fly ash (CFA) produced in two large Kazakhstani power plants is reported in this work. The properties of CFAs were compared between samples as well as with published values.

  15. Analysis of radionuclides in airborne effluents from coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Rosner, G.; Chatterjee, B.; Hoetzl, H.; Winkler, R.

    1982-01-01

    In order to assess the level of radioactivity emitted by coal-fired power plants in detail, specific activities of several radionuclides have been measured in samples from a coal-fired and a brown coal-fired plant in the Federal Republic of Germany. Samples measured included coal, brown coal, bottom ash, collected fly ash from the various electrostatic precipitator stages and sieve fractions of collected fly ash as well as samples of escaping fly ash taken from the exhaust stream, all taken simultaneously on three operating days. Nuclides measured were U-238, U-234, Th-232, Th-230, Th-228, Ra-226, Pb-210, Po-210 and K-40. Methods applied included (i) direct gamma spectrometry, (ii) radiochemical separation with subsequent alpha spectrometry and (iii) direct alpha spectrometry. Methods are described and discussed. Finally, annual emission rates of airborne radionuclides are calculated for both plants.

  16. Analysis of radionuclides in airborne effluents from coal-fired power plants

    International Nuclear Information System (INIS)

    Rosner, G.; Chatterjee, B.; Hoetzl, H.; Winkler, R.

    1982-01-01

    In order to assess the level of radioactivity emitted by coal-fired power plants in detail, specific activities of several radionuclides have been measured in samples from a coal-fired and a brown coal-fired plant in the Federal Republic of Germany. Samples measured included coal, brown coal, bottom ash, collected fly ash from the various electrostatic precipitator stages and sieve fractions of collected fly ash as well as samples of escaping fly ash taken from the exhaust stream, all taken simultaneously on three operating days. Nuclides measured were U-238, U-234, Th-232, Th-230, Th-228, Ra-226, Pb-210, Po-210 and K-40. Methods applied included (i) direct gamma spectrometry, (ii) radiochemical separation with subsequent alpha spectrometry and (iii) direct alpha spectrometry. Methods are described and discussed. Finally, annual emission rates of airborne radionuclides are calculated for both plants. (orig.)

  17. Subsequent flue gas desulfurization of coal-fired power plant units

    International Nuclear Information System (INIS)

    Willibal, U.; Braun, Gy.

    1998-01-01

    The presently operating coal-fired power plant in Hungary do not satisfy the pollution criteria prescribed by the European Union norms. The main polluting agent is the sulfur dioxide emitted by some of the power plants in Hungary in quantities over the limit standards. The power plant units that are in good operating state could be made competitive by using subsequent desulfurization measures. Various flue gas desulfurization technologies are presented through examples that can be applied to existing coal-fired power plants. (R.P.)

  18. Determination of the stagnation point in pulverized coal swirl flames by detailed analysis of laser velocity measurements; Staupunktbestimmung in Kohlenstaub-Drallflammen mittels detaillierter Analyse von LDA-Daten

    Energy Technology Data Exchange (ETDEWEB)

    Ohliger, A.; Stadler, H.; Foerster, M.; Kneer, R. [RWTH Aachen University (Germany). Lehrstuhl fuer Waerme- und Stoffuebertragung

    2009-07-01

    When Laser Doppler Anemometry (LDA) is used for experimental investigation of flow fields in pulverised coal flames, the measured coal particle velocities are usually averaged in order to determine the gas velocity. This paper shows that this approach can lead to a misinterpretation of the data. In the burner vicinity of the investigated flame, where high accelerations in the gas phase occur, a discrepancy appears between the measured velocity distribution and the expected normal distribution. Thus, a detailed analysis of the measured particle data is conducted and compared to conventional averaging. The difference can be attributed to large particles from the inner recirculation zone of the flame, which do not follow the gas flow properly. (orig.)

  19. Investigation of air gasification of micronized coal, mechanically activated using the plasma control of the process

    Directory of Open Access Journals (Sweden)

    Butakov Evgenii

    2017-01-01

    Full Text Available Combination of the processes of coal combustion and gasification into a single technology of mechano-chemical and plasma-chemical activation is of a considerable scientific and technological interest. Enhancement of coal reactivity at their grinding with mechanical activation is associated with an increase in the reaction rate of carbon material, and at plasma-chemical effect, the main is an increase in reactivity of the oxidizing agent caused by the high plasma temperatures of atomic oxygen. The process of gasification was studied on the 1-MW setup with tangential scroll supply of pulverized coal-air mixture and cylindrical reaction chamber. Coal ground by the standard boiler mill is fed to the disintegrator, then, it is sent to the scroll inlet of the burner-reactor with the transport air. Pulverized coal is ignited by the plasmatron of 10-kW power. In experiments on air gasification of micronized coal, carried out at the temperature in the reaction chamber of 1000-1200°C and air excess α = 0.3-1, the data on CO concentration of 11% and H2 concentration of up to 6% were obtained. Air and air-steam gasification of mechanically-activated micronized coals with plasma control was calculated using SigmaFlow software package.

  20. Investigation of air gasification of micronized coal, mechanically activated using the plasma control of the process

    Science.gov (United States)

    Butakov, Evgenii; Burdukov, Anatoly; Chernetskiy, Mikhail; Kuznetsov, Victor

    2017-10-01

    Combination of the processes of coal combustion and gasification into a single technology of mechano-chemical and plasma-chemical activation is of a considerable scientific and technological interest. Enhancement of coal reactivity at their grinding with mechanical activation is associated with an increase in the reaction rate of carbon material, and at plasma-chemical effect, the main is an increase in reactivity of the oxidizing agent caused by the high plasma temperatures of atomic oxygen. The process of gasification was studied on the 1-MW setup with tangential scroll supply of pulverized coal-air mixture and cylindrical reaction chamber. Coal ground by the standard boiler mill is fed to the disintegrator, then, it is sent to the scroll inlet of the burner-reactor with the transport air. Pulverized coal is ignited by the plasmatron of 10-kW power. In experiments on air gasification of micronized coal, carried out at the temperature in the reaction chamber of 1000-1200°C and air excess α = 0.3-1, the data on CO concentration of 11% and H2 concentration of up to 6% were obtained. Air and air-steam gasification of mechanically-activated micronized coals with plasma control was calculated using SigmaFlow software package.

  1. Technology Roadmap: High-Efficiency, Low-Emissions Coal-Fired Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Coal is the largest source of power globally and, given its wide availability and relatively low cost, it is likely to remain so for the foreseeable future. The High-Efficiency, Low-Emissions Coal-Fired Power Generation Roadmap describes the steps necessary to adopt and further develop technologies to improve the efficiency of the global fleet of coal. To generate the same amount of electricity, a more efficient coal-fired unit will burn less fuel, emit less carbon, release less local air pollutants, consume less water and have a smaller footprint. High-efficiency, low emissions (HELE) technologies in operation already reach a thermal efficiency of 45%, and technologies in development promise even higher values. This compares with a global average efficiency for today’s fleet of coal-fired plants of 33%, where three-quarters of operating units use less efficient technologies and more than half is over 25 years old. A successful outcome to ongoing RD&D could see units with efficiencies approaching 50% or even higher demonstrated within the next decade. Generation from older, less efficient technology must gradually be phased out. Technologies exist to make coal-fired power generation much more effective and cleaner burning. Of course, while increased efficiency has a major role to play in reducing emissions, particularly over the next 10 years, carbon capture and storage (CCS) will be essential in the longer term to make the deep cuts in carbon emissions required for a low-carbon future. Combined with CCS, HELE technologies can cut CO2 emissions from coal-fired power generation plants by as much as 90%, to less than 100 grams per kilowatt-hour. HELE technologies will be an influential factor in the deployment of CCS. For the same power output, a higher efficiency coal plant will require less CO2 to be captured; this means a smaller, less costly capture plant; lower operating costs; and less CO2 to be transported and stored.

  2. Characterization of coal blends for effective utilization in thermal power plants

    International Nuclear Information System (INIS)

    Santhosh Raaj, S.; Arumugam, S.; Muthukrishnan, M.; Krishnamoorthy, S.; Anantharaman, N.

    2016-01-01

    Highlights: • This work will assist utilities to decide on the choice of coals for blending. • Conventional and advanced analytical techniques were used for characterization. • Fuel ratio, burnout profile, ash chemistry and carbon burnout are key factors. • Basic properties were additive while carbon burnout was non additive for the blends. - Abstract: This paper deals with the characterization of coal blends using various conventional and advanced analytical techniques. There has been an increasing trend in utilizing imported coals for power generation in India and utilities are resorting to blended coal firing for various reasons, both financially as well as technically. Characterization studies were carried out on 2 combinations of Indian and imported coal blends. Conventional characterization such as proximate and ultimate analysis and determination of calorific value were carried out for the raw coals and blends as per ASTM standards. Following this thermal and mineral analysis of the samples were carried out using thermo gravimetric analyzer (TGA), X-ray fluorescence spectrometer (XRF) and computer controlled scanning electron microscope (CCSEM). Combustion experiments were also conducted using drop tube furnace (DTF) to determine the burnout of the raw coals and blends. The selection of technically suitable coal combination for blending, based on these characterization studies, has been detailed.

  3. Partitioning of selected trace elements in coal combustion products from two coal-burning power plants in the United States

    Science.gov (United States)

    Swanson, Sharon M.; Engle, Mark A.; Ruppert, Leslie F.; Affolter, Ronald H.; Jones, Kevin B.

    2013-01-01

    Samples of feed coal (FC), bottom ash (BA), economizer fly ash (EFA), and fly ash (FA) were collected from power plants in the Central Appalachian basin and Colorado Plateau to determine the partitioning of As, Cr, Hg, Pb, and Se in coal combustion products (CCPs). The Appalachian plant burns a high-sulfur (about 3.9 wt.%) bituminous coal from the Upper Pennsylvanian Pittsburgh coal bed and operates with electrostatic precipitators (ESPs), with flue gas temperatures of about 163 °C in the ESPs. At this plant, As, Pb, Hg, and Se have the greatest median concentrations in FA samples, compared to BA and EFA. A mass balance (not including the FGD process) suggests that the following percentages of trace elements are captured in FA: As (48%), Cr (58%), Pb (54%), Se (20%), and Hg (2%). The relatively high temperatures of the flue gas in the ESPs and low amounts of unburned C in FA (0.5% loss-on-ignition for FA) may have led to the low amount of Hg captured in FA. The Colorado Plateau plant burns a blend of three low-S (about 0.74 wt.%) bituminous coals from the Upper Cretaceous Fruitland Formation and operates with fabric filters (FFs). Flue gas temperatures in the baghouses are about 104 °C. The elements As, Cr, Pb, Hg, and Se have the greatest median concentrations in the fine-grained fly ash product (FAP) produced by cyclone separators, compared to the other CCPs at this plant. The median concentration of Hg in FA (0.0983 ppm) at the Colorado Plateau plant is significantly higher than that for the Appalachian plant (0.0315 ppm); this higher concentration is related to the efficiency of FFs in Hg capture, the relatively low temperatures of flue gas in the baghouses (particularly in downstream compartments), and the amount of unburned C in FA (0.29% loss-on-ignition for FA).

  4. Coal mining, social injustice and health: a universal conflict of power and priorities.

    Science.gov (United States)

    Morrice, Emily; Colagiuri, Ruth

    2013-01-01

    Given the current insatiable demand for coal to build and fuel the world's burgeoning cities the debate about mining-related social, environmental and health injustices remains eminently salient. Furthermore, the core issues appear universally consistent. This paper combines the theoretical base for defining these injustices with reports in the international health literature about the impact of coal mining on local communities. It explores and analyses mechanisms of coal mining related injustice, conflicting priorities and power asymmetries between political and industry interests versus inhabitants of mining communities, and asks what would be required for considerations of health to take precedence over wealth. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Income risk of EU coal-fired power plants after Kyoto

    International Nuclear Information System (INIS)

    Abadie, Luis M.; Chamorro, Jose M.

    2009-01-01

    Coal-fired power plants enjoy a significant advantage relative to gas plants in terms of cheaper fuel cost. This advantage may erode (or turn into disadvantage) depending on CO 2 emission allowance price. Financial risks are further reinforced when the price of electricity is determined by natural gas-fired plants' marginal costs. We aim to empirically assess the risks in EU coal plants' margins up to the year 2020. Parameter values are derived from actual market data. Monte Carlo simulation allows compute the expected value and risk profile of coal plants' earnings. Future allowance prices may spell significant risks on utilities' balance sheets. (author)

  6. Indonesian government's policy on the use of domestic coal for electric power generation with special reference to private power

    International Nuclear Information System (INIS)

    Arismunandar, A.

    1991-01-01

    This paper reports that Indonesia is amply endowed with all types of primary energy resources including: (1) conventional resources such as oil, gas and coal; (2) renewable resources such as water, geothermal and bioenergy; (3) new resources such as solar and wind. This wealth of primary energy resources and in particular the abundance of oil lead to excessive reliance on fuel oil and diesel fuel and to a much lesser degree on hydroelectric power. In the early 1980s the Government initiated a program of diversifying primary energy resources used for power generation. In this diversification program the use of coal was given a high priority. The Government has established that base-loaded coal fired power plants meet the least cost system expansion objectives. Therefore, significant additional coal fired capacity will be installed to meet the growing demand within the Java-Bali grid in particular and in other off-Java areas as well. In the Java-Bali grid 400 and 600 MW unit sizes will be used since these units offer the lowest cost per kW installed. The installed capacity within the grid facilitates the operation of these large units without jeopardizing the stability of the entire system. Off-Java smaller units, of 25 to 65 MW capacity will be used due to the relatively small size of the system within which these units will operate. Prime off-Java target areas for the installation of new coal-fired units are Sumatra and Kalimantan, two coal producing islands

  7. Complex analysis of hazards to the man and natural environment due to electricity production in nuclear and coal power plants

    International Nuclear Information System (INIS)

    Strupczewski, A.

    1990-01-01

    The report presents a complex analysis of hazards connected with electrical energy production in nuclear power plants and coal power plants, starting with fuel mining, through power plant construction, operation, possible accidents and decommissioning to long term global effects. The comparison is based on contemporary, proven technologies of coal fired power plants and nuclear power plants with pressurized water reactors. The hazards to environment and man due to nuclear power are shown to be much smaller than those due to coal power cycle. The health benefits due to electrical power availability are shown to be much larger than the health losses due to its production. (author). 71 refs, 17 figs, 12 tabs

  8. Hinkley Point 'C' power station public enquiry: proof of evidence on coal fired power station sites

    Energy Technology Data Exchange (ETDEWEB)

    Fothergill, S.; Witt, S.

    1988-11-01

    The Coalfield Communities Campaign (CCC) has argued that if a new base-load power station is required it should be coal-fired rather than nuclear, and that it should use UK coal. Proposals for new power stations at both Hinkley Point and at Fawley have encountered very considerable local and regional opposition, and this is increasingly likely to be the case at many other sites especially in Southern England. In contrast the CCC has sought to demonstrate that its member authorities would generally welcome the development of new coal-fired capacity on appropriate sites within their areas. In particular, this proof establishes that there is a prima facie case for considering three sites - Thorpe Marsh, Hams Hall and Uskmouth - as potential locations for a new large coal-fired power station as an alternative to Hinkley Point C. The relevant local authorities have expressed their willingness to co-operate in more detailed planning or technical investigations to secure a coal-fired power station on these sites. The CCC considers this to be a major and unprecedented offer to the CEGB and its successor bodies, which could greatly speed the development of new power staion capacity and be of considerable economic and social benefit to coalfield communities.

  9. Formation of the gaseous phase of impurity elements from coal combustion at a thermal power plant

    International Nuclear Information System (INIS)

    Kizil'shtein, L.Ya.; Levchenko, S.V.; Peretyakt'ko, A.G.

    1991-01-01

    Data are reported on the distribution of impurity elements in their principal carriers: organic matter, iron sulfides, and clays. Tests with high-temperature combustion of coals and argillites indicate that elements associated with clay minerals largely remain in ash and slag. They do not pass to the gas phase - a factor to be considered in assessment of environmental impact from thermal power plants and specification of toxic concentration levels of impurity elements in coal

  10. International cooperation and technology transfer for coal and power development in ASEAN

    Energy Technology Data Exchange (ETDEWEB)

    Husin, Z.A. (Tenaga Nasional Berhad (Malaysia))

    1991-12-01

    Coal resources in the ASEAN region are being developed to meet the forecast rise in electricity demand of 9% per year to 2000. From a virtual non-existence in the early 1980s, it is hoped that coal will provide up to 37% of increased power plant capacity. Close cooperation with industrialised countries outside the region are necessary to help overcome the pressures being put on available energy and financial resources, technological knowledge, and the environment. 13 refs., 5 figs.

  11. Preventing Control Constraint Violations by Use of Energy Balances for a Class of Coupled Systems: Applied to a Power Plant

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2007-01-01

    recomputes the reference values to the system such that control signal constraint violations are avoided. The new reference values are found using an energy balance of the system. The scheme is intended to handle rarely occurring constraint violations, so the only concern is that the system should be stable...... and not to optimize performance during all conditions. The scheme is applied to an example with a coal mill pulverizing coal for a power plant.  ...

  12. Elemental composition of coal fly ash: Malta coal power station in the Mpumalanga province in South Africa case study using nuclear and related analytical techniques

    International Nuclear Information System (INIS)

    Eze, Ch.P.; Fatoba, O.; Madzivire, G.; Petrik, L.F.; Ostrovnaya, T.M.; Frontas'eva, M.V.; Nechaev, A.N.

    2013-01-01

    Epithermal neutron activation analysis along with ICP-OES, LA ICP-MS, and XRF were used to determine the elemental composition of coal fly ash from the Malta coal power station in the Mpumalanga province of South Africa. A total of 54 major, trace and rare-earth elements were obtained by the four analytical techniques. The results were compared and the discrepancies discussed to show the merits and drawbacks of each of the techniques. It was shown that the elemental content of this particular coal fly ash is of the same order as the NIST standard reference material Coal Fly Ash 1633b

  13. Start-Up and Operation of the Pressurized-Pulverized-Coal Gasification Unit%贵州开阳粉煤加压气化装置开车及运行总结

    Institute of Scientific and Technical Information of China (English)

    吴艳军; 杨金

    2014-01-01

    Based on the 500 kt/a ammonia plant actual operation in our company ,describe the pressurized‐dry‐pulverized‐coal gasification unit process , start‐up , shut‐dow n and operation , the common problems and solutions are also described .%结合贵州开阳化工有限公司500 kt/a合成氨项目的实际情况,介绍干煤粉加压气化装置的工艺流程、开停车及运行状况,并阐述系统运行常见问题及其处理。

  14. Comparison of environmental impact of waste disposal from fusion, fission and coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Frey, Bruno [Fichtner GmbH und Co. KG, Stuttgart (Germany)

    2011-08-15

    The radiotoxic hazard of waste from fusion power plants has been compared with that of fission power and radioactive trace elements in coal ash within some research programs such as SEAFP and SEIF. Within another program, in 2005 a Power Plant Conceptual Study (PPCS) has been finalized investigating 4 fusion power plant models A to D. In this paper, the radiotoxicity of model B is compared with a fission power plant, concentrating on the production of wastes. The hazard of the respective masses of enriched uranium before use in a fission power plant and coal ash of a power plant generating the same amount of electricity are used as benchmarks. It is evident that the development of ingestion and inhalation hazard of the PPCS model B is different from the results of earlier studies because of different assumptions on material impurities and other constraints. An important aspect is the presence of actinides in fusion power plant waste. (orig.)

  15. Greenhouse gas emission factor development for coal-fired power plants in Korea

    International Nuclear Information System (INIS)

    Jeon, Eui-Chan; Myeong, Soojeong; Sa, Jae-Whan; Kim, Jinsu; Jeong, Jae-Hak

    2010-01-01

    Accurate estimation of greenhouse gas emissions is essential for developing an appropriate strategy to mitigate global warming. This study examined the characteristics of greenhouse gas emission from power plants, a major greenhouse gas source in Korea. The power plants examined use bituminous coal, anthracite, and sub-bituminous coal as fuel. The CO 2 concentration from power plants was measured using GC-FID with methanizer. The amount of carbon, hydrogen, and calorific values in the input fuel was measured using an elemental analyzer and calorimeter. For fuel analysis, CO 2 emission factors for anthracite, bituminous coal, and sub-bituminous coal were 108.9, 88.4, and 97.9 Mg/kJ, respectively. The emission factors developed in this study were compared with those for IPCC. The results showed that CO 2 emission was 10.8% higher for anthracite, 5.5% lower for bituminous coal, and 1.9% higher for sub-bituminous coal than the IPCC figures.

  16. Future CO2 emissions and electricity generation from proposed coal-fired power plants in India

    Science.gov (United States)

    Shearer, Christine; Fofrich, Robert; Davis, Steven J.

    2017-04-01

    With its growing population, industrializing economy, and large coal reserves, India represents a critical unknown in global projections of future CO2 emissions. Here, we assess proposed construction of coal-fired power plants in India and evaluate their implications for future emissions and energy production in the country. As of mid-2016, 243 gigawatts (GW) of coal-fired generating capacity are under development in India, including 65 GW under construction and an additional 178 GW proposed. These under-development plants would increase the coal capacity of India's power sector by 123% and, when combined with the country's goal to produce at least 40% of its power from non-fossil sources by 2030, exceed the country's projected future electricity demand. The current proposals for new coal-fired plants could therefore either "strand" fossil energy assets (i.e., force them to retire early or else operate at very low capacity factors) and/or ensure that the goal is not met by "locking-out" new, low-carbon energy infrastructure. Similarly, future emissions from the proposed coal plants would also exceed the country's climate commitment to reduce its 2005 emissions intensity 33% to 35% by 2030, which—when combined with the commitments of all other countries—is itself not yet ambitious enough to meet the international goal of holding warming well below 2°C relative to the pre-industrial era.

  17. Heavy metal atmospheric emissions from coal-fired power plants - Assessment and uncertainties

    International Nuclear Information System (INIS)

    Lecuyer, I.; Ungar, A.; Peter, H.; Karl, U.

    2004-01-01

    Power generation using fossil fuel combustion (coal and fuel-oil) participates, with other sectors, to heavy metal atmospheric emissions. The dispersion of these hazardous pollutants throughout the environment is more and more regulated. In order to assess the annual flows emitted from EDF coal-fired power plants, a computerized tool has been developed, based on the methodology defined by IFARE/DFIU in 1997. The heavy metal partition factors within the plant unit are determined according to the type of unit and the coal characteristics. Heavy metals output flows, and especially those emitted with flue gas at the stack, are then deduced from the actual coal consumption and chemical composition. A first inventory of heavy metal emissions from EDF coal-fired power plants has been achieved for year 2001. Values are accurate (± 40 %) for nonvolatile elements (Cr, Cu, Co, Mn, Ni, V) and for PM 10 and PM 2.5 (particulate matter below 10 μm and 2.5 μm). The uncertainty is higher (± 80 %) for volatile elements (As, Pb, Zn). Excess indicative values are given for elements which are both volatile and at low concentrations in coal (Hg, Se, Cd). (author)

  18. The role of IGCC technology in power generation using low-rank coal

    Energy Technology Data Exchange (ETDEWEB)

    Juangjandee, Pipat

    2010-09-15

    Based on basic test results on the gasification rate of Mae Moh lignite coal. It was found that an IDGCC power plant is the most suitable for Mae Moh lignite. In conclusion, the future of an IDGCC power plant using low-rank coal in Mae Moh mine would hinge on the strictness of future air pollution control regulations including green-house gas emission and the constraint of Thailand's foreign currency reserves needed to import fuels, in addition to economic consideration. If and when it is necessary to overcome these obstacles, IGCC is one variable alternative power generation must consider.

  19. Comparison of electricity production costs of nuclear and coal-fired power plants

    International Nuclear Information System (INIS)

    Peltzer, M.

    1980-01-01

    Electricity production costs of nuclear and coal-fired power plants their structure and future development are calculated and compared. Assumed beginning of operation is in the mid-1980. The technical and economical data are based on a nuclear power unit of 1 300 MW and on a coal-fired twin plant of 2 x 750 MW. The study describes and discusses the calculational method and the results. The costs for the electricity generation show an economic advantage for nuclear power. A sensitivity analysis shows that these results are valid also for changed input parameters. (orig.) [de

  20. Cost structure of coal- and nuclear-fired electric power plants

    International Nuclear Information System (INIS)

    Helmuth, J.A.

    1981-01-01

    This dissertation investigates the cost structure of coal and nuclear electric power generation. The emphasis of the paper is to empirically estimate the direct costs of generating base-load electric power at the plant level. Empirically, the paper first investigates the relative comparative costs of nuclear and coal power generation, based on historical operating data. Consideration of the learning curve and other dynamic elements is incorporated in the analysis. The second empirical thrust is to inestigate economies of scale for both technologies. The results from the empirical studies give an indication as to the future and present cost viability of each technology. Implications toward energy policy are discussed

  1. Radiological impact from airborne routine discharges of Coal-Fired power plant

    International Nuclear Information System (INIS)

    Norasalwa Zakaria; Rohyiza Baan; Kathiravale, Sivapalan

    2010-01-01

    Radioactivity exists everywhere in nature. We are exposed to intense and continuous natural radiation coming from the sun, cosmic radiation, telluric radiation and even to the internal radiation of our own body. The fly ash emitted from burning coal for electricity by a power plant carries into the surrounding environment 100 times more radiation than a nuclear power plant producing the same amount of energy. This paper presents the information of studies on the radiological impact from airborne routine discharge of coal-fired power plants. (author)

  2. Regulator of Dust and Coal Burner of Power Boilers

    Directory of Open Access Journals (Sweden)

    W. Wujcik

    2004-01-01

    Full Text Available The papers considers problems concerning introduction of neutron regulator into engineering practice. The regulator makes it possible to regulate CO, N0^ and O2 values with the purpose to optimize ejections into environment. The paper contains scheme of automation control of cyclone dust and coal burner with the help of a neutron regulator.

  3. Mercury emissions from South Africa’s coal-fired power stations

    Directory of Open Access Journals (Sweden)

    Belinda L. Garnham

    2016-12-01

    Full Text Available Mercury is a persistent and toxic substance that can be bio-accumulated in the food chain. Natural and anthropogenic sources contribute to the mercury emitted in the atmosphere. Eskom’s coal-fired power stations in South Africa contributed just under 93% of the total electricity produced in 2015 (Eskom 2016. Trace amounts of mercury can be found in coal, mostly combined with sulphur, and can be released into the atmosphere upon combustion. Coal-fired electricity generation plants are the highest contributors to mercury emissions in South Africa. A major factor affecting the amount of mercury emitted into the atmosphere is the type and efficiency of emission abatement equipment at a power station. Eskom employs particulate emission control technology at all its coal-fired power stations, and new power stations will also have sulphur dioxide abatement technology. A co-beneficial reduction of mercury emissions exists as a result of emission control technology. The amount of mercury emitted from each of Eskom’s coal-fired power stations is calculated, based on the amount of coal burnt and the mercury content in the coal. Emission Reduction Factors (ERF’s from two sources are taken into consideration to reflect the co-benefit received from the emission control technologies at the stations. Between 17 and 23 tons of mercury is calculated to have been emitted from Eskom’s coal-fired power stations in 2015. On completion of Eskom’s emission reduction plan, which includes fabric filter plant retrofits at two and a half stations and a flue gas desulphurisation retrofit at one power station, total mercury emissions from the fleet will potentially be reduced by 6-13% by 2026 relative to the baseline. Mercury emission reduction is perhaps currently not the most pressing air quality problem in South Africa. While the focus should then be on reducing emissions of other pollutants which have a greater impact on human health, mercury emission reduction

  4. Techno-economic assessments of oxy-fuel technology for South African coal-fired power stations

    CSIR Research Space (South Africa)

    Oboirien, BO

    2014-03-01

    Full Text Available at the technical and economic viability of oxy-fuel technology for CO(sub2) capture for South African coal-fired power stations. This study presents a techno-economic analysis for six coal fired power stations in South Africa. Each of these power stations has a...

  5. Wood and coal cofiring in Alaska—operational considerations and combustion gas effects for a grate-fired power plant

    Science.gov (United States)

    David Nicholls; Zackery Wright; Daisy. Huang

    2018-01-01

    Coal is the primary fuel source for electrical power generation in interior Alaska, with more than 600,000 tons burned annually at five different power plants. Woody biomass could be used as part of this fuel mix, offering potential environmental and economic benefits. In this research, debarked chips were cofired with locally mined coal at the Aurora Power Plant...

  6. Pollution control technologies applied to coal-fired power plant operation

    Directory of Open Access Journals (Sweden)

    Maciej Rozpondek

    2009-09-01

    Full Text Available Burning of fossil fuels is the major source of energy in today's global economy with over one-third of the world's powergeneration derived from coal combustion. Although coal has been a reliable, abundant, and relatively inexpensive fuel source for mostof the 20th century, its future in electric power generation is under increasing pressure as environmental regulations become morestringent worldwide. Current pollution control technologies for combustion exhaust gas generally treat the release of regulatedpollutants: sulfur dioxide, nitrogen oxides and particulate matter as three separate problems instead of as parts of one problem. Newand improved technologies have greatly reduced the emissions produced per ton of burning coal. The term “Clean Coal CombustionTechnology” applies generically to a range of technologies designed to greatly reduce the emissions from coal-fired power plants.The wet methods of desulfurization at present are the widest applied technology in professional energetics. This method is economicand gives good final results but a future for clean technologies is the biomass. Power from biomass is a proven commercial optionof the electricity generation in the World. An increasing number of power marketers are starting to offer environmentally friendlyelectricity, including biomass power, in response to the consumer demand and regulatory requirements.

  7. Evaluation methods of solar contribution in solar aided coal-fired power generation system

    International Nuclear Information System (INIS)

    Zhu, Yong; Zhai, Rongrong; Zhao, Miaomiao; Yang, Yongping; Yan, Qin

    2015-01-01

    Highlights: • Five methods for evaluating solar contribution are analyzed. • Method based on the second law of thermodynamics and thermal economics is more suitable for SACPGS. • Providing reliable reference for the formulation of feed-in tariff policies in China. - Abstract: Solar aided coal-fired power plants utilize solar thermal energy to couple with coal-fired power plants of various types by adopting characteristics of different thermal needs of plants. In this way, the costly thermal storage system and power generating system will become unnecessary, meanwhile the intermittent and unsteady nature of power generation can be avoided. In addition, large-scale utilization of solar thermal power and energy saving can be achieved. With the ever-deepening analyses of solar aided coal-fired power plants, the contribution evaluating system of solar thermal power is worth further exploration. In this paper, five common evaluation methods of solar contribution are analyzed, and solar aided coal-fired power plants of 1000 MW, 600 MW and 330 MW are studied with these five methods in a comparative manner. Therefore, this study can serve as a theoretical reference for future research of evaluation methods and subsidies for new energy

  8. CHARACTERIZATION AND MODELING OF THE FORMS OF MERCURY FROM COAL-FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Dennis L. Laudal

    2001-08-01

    The 1990 Clean Air Act Amendments (CAAAs) required the U.S. Environmental Protection Agency (EPA) to determine whether the presence of mercury in the stack emissions from fossil fuel-fired electric utility power plants poses an unacceptable public health risk. EPA's conclusions and recommendations were presented in the Mercury Study Report to Congress (1) and the Utility Air Toxics Report to Congress (1). The first report addressed both the human health and environmental effects of anthropogenic mercury emissions, while the second addressed the risk to public health posed by the emission of mercury and other hazardous air pollutants from steam-electric generating units. Given the current state of the art, these reports did not state that mercury controls on coal-fired electric power stations would be required. However, they did indicate that EPA views mercury as a potential threat to human health. In fact, in December 2000, the EPA issued an intent to regulate for mercury from coal-fired boilers. However, it is clear that additional research needs to be done in order to develop economical and effective mercury control strategies. To accomplish this objective, it is necessary to understand mercury behavior in coal-fired power plants. The markedly different chemical and physical properties of the different mercury forms generated during coal combustion appear to impact the effectiveness of various mercury control strategies. The original Characterization and Modeling of the Forms of Mercury from Coal-Fired Power Plants project had two tasks. The first was to collect enough data such that mercury speciation could be predicted based on relatively simple inputs such as coal analyses and plant configuration. The second was to field-validate the Ontario Hydro mercury speciation method (at the time, it had only been validated at the pilot-scale level). However, after sampling at two power plants (the Ontario Hydro method was validated at one of them), the EPA issued

  9. 5. annual clean coal technology conference: powering the next millennium. Vol.1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increased demands can be met by utilizing coal in technologies that achieve environmental goals while keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains papers presented at the plenary session and panel sessions on; international markets for clean coal technologies (CCTs); role of CCTs in the evolving domestic electricity market; environmental issues affecting CCT deployment; and CCT deployment from today into the next millennium. In addition papers presented at the closing plenary session on powering the next millennium--CCT answers the challenge are included. Selected papers have been processed for inclusion in the Energy Science and Technology database.

  10. Understanding coal quality and its relationship to power plant performance and costs

    Energy Technology Data Exchange (ETDEWEB)

    Jennison, K.D.; Stallard, G.S. [Black & Veatch International, Overland Park, KS (United States)

    1995-12-01

    The availability of reliable, reasonably priced energy is a necessary cornerstone for established and emerging economies. In addition to addressing coal quality issues strictly at a plant level, it is now prudent to consider long-term performance and economics of particular fuel sources to be selected in the light of system economics and reliability. In order to evaluate coal quality issues in a more comprehensive manner, it is important to develop both an approach and a set of tools which can support the various phases of the planning/analysis processes. The processes must consider the following: (1) Cost/availability of other potential coal supplies, including {open_quotes}raw{close_quotes} domestic sources, {open_quotes}cleaned {close_quotes} domestic sources, and other internationally marketed coals. (2) Power plant performance issues as function of plant design and fuel properties. (3) System expansion plans, candidate technologies, and associated capital and operating costs. (4) Projected load demand, for system and for individual units within the system. (5) Legislative issues such as environmental pressures, power purchase agreements, etc. which could alter the solution. (6) Economics of potential plans/strategies based on overall cost-effectiveness of the utility system, not just individual units. (7) Anticipated unit configuration, including addition of environmental control equipment or other repowering options. The Coal Quality Impact Model (CQIM{trademark}) is a PC-based computer program capable of predicting coal-related cost and performance impacts at electric power generating sites. The CQIM was developed for EPRI by Black & Veatch and represents over a decade of effort geared toward developing an extensible state-of-the-art coal quality assessment tool. This paper will introduce CQIM, its capabilities, and its application to Eastern European coal quality assessment needs.

  11. Coal-Powered Electric Generating Unit Efficiency and Reliability Dialogue: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Emmanuel [Energetics, Inc., Columbia, MD (United States)

    2018-02-01

    Coal continues to play a critical role in powering the Nation’s electricity generation, especially for baseload power plants. With aging coal generation assets facing decreased performance due to the state of the equipment, and with challenges exacerbated by the current market pressures on the coal sector, there are opportunities to advance early-stage technologies that can retrofit or replace equipment components. These changes will eventually result in significant improvements in plant performance once further developed and deployed by industry. Research and development in areas such as materials, fluid dynamics, fuel properties and preparation characteristics, and a new generation of plant controls can lead to new components and systems that can help improve the efficiency and reliability of coal-fired power plants significantly, allowing these assets to continue to provide baseload power. Coal stockpiles at electricity generation plants are typically large enough to provide 30 to 60 days of power prior to resupply—significantly enhancing the stability and reliability of the U.S. electricity sector. Falling prices for non-dispatchable renewable energy and mounting environmental regulations, among other factors, have stimulated efforts to improve the efficiency of these coal-fired electric generating units (EGUs). In addition, increased reliance on natural gas and non-dispatchable energy sources has spurred efforts to further increase the reliability of coal EGUs. The Coal Powered EGU Efficiency and Reliability Dialogue brought together stakeholders from across the coal EGU industry to discuss methods for improvement. Participants at the event reviewed performance-enhancing innovations in coal EGUs, discussed the potential for data-driven management practices to increase efficiency and reliability, investigated the impacts of regulatory compliance on coal EGU performance, and discussed upcoming challenges for the coal industry. This report documents the key

  12. Control strategies of atmospheric mercury emissions from coal-fired power plants in China.

    Science.gov (United States)

    Tian, Hezhong; Wang, Yan; Cheng, Ke; Qu, Yiping; Hao, Jiming; Xue, Zhigang; Chai, Fahe

    2012-05-01

    Atmospheric mercury (Hg) emission from coal is one of the primary sources of anthropogenic discharge and pollution. China is one of the few countries in the world whose coal consumption constitutes about 70% of total primary energy, and over half of coals are burned directly for electricity generation. Atmospheric emissions of Hg and its speciation from coal-fired power plants are of great concern owing to their negative impacts on regional human health and ecosystem risks, as well as long-distance transport. In this paper, recent trends of atmospheric Hg emissions and its species split from coal-fired power plants in China during the period of 2000-2007 are evaluated, by integrating each plant's coal consumption and emission factors, which are classified by different subcategories of boilers, particulate matter (PM) and sulfur dioxide (SO2) control devices. Our results show that the total Hg emissions from coal-fired power plants have begun to decrease from the peak value of 139.19 t in 2005 to 134.55 t in 2007, though coal consumption growing steadily from 1213.8 to 1532.4 Mt, which can be mainly attributed to the co-benefit Hg reduction by electrostatic precipitators/fabric filters (ESPs/FFs) and wet flue gas desulfurization (WFGD), especially the sharp growth in installation of WFGD both in the new and existing power plants since 2005. In the coming 12th five-year-plan, more and more plants will be mandated to install De-NO(x) (nitrogen oxides) systems (mainly selective catalytic reduction [SCR] and selective noncatalytic reduction [SNCR]) for minimizing NO(x) emission, thus the specific Hg emission rate per ton of coal will decline further owing to the much higher co-benefit removal efficiency by the combination of SCR + ESPs/FFs + WFGD systems. Consequently, SCR + ESPs/FFs + WFGD configuration will be the main path to abate Hg discharge from coal-fired power plants in China in the near future. However advanced specific Hg removal technologies are necessary

  13. The prospective of coal power in China: Will it reach a plateau in the coming decade?

    International Nuclear Information System (INIS)

    Yuan, Jiahai; Lei, Qi; Xiong, Minpeng; Guo, Jingsheng; Hu, Zheng

    2016-01-01

    Coal power holds the king position in China's generation mix and has resulted in ever-increasing ecological and environmental issues; hence, the development of the electric power sector is confronted with a series of new challenges. China has recently adopted a new economic principle of the “new economic normal,” which has a large effect on the projection electricity demand and power generation planning through 2020. This paper measures electricity demand based upon China's social and economic structure. The 2020 roadmap presents China's developing targets for allocating energy resources to meet new demands, and the 2030 roadmap is compiled based upon an ambitious expansion of clean energy sources. Results show that electricity demand is expected to reach 7500 TWh in 2020 and 9730 TWh in 2030. Coal power is expected to reach its peak in 2020 at around 970 GW, and will then enter a plateau, even with a pathway of active electricity substitution in place. - Highlights: • Conduct electricity demand scenario analysis for China during 2015–2030. • Outline China's power generation planning roadmaps for 2020 and 2030. • Analyze coal power prospective in China under “new economic normal”. • Coal power is expected to reach its peak at around 970 GW by 2020 in China.

  14. Techno-economic Assessment of Coal to SNG Power Plant in Kalimantan

    Directory of Open Access Journals (Sweden)

    Riezqa Andika

    2016-09-01

    Full Text Available As the most abundant and widely distributed fossil fuel, coal has become a key component of energy sources in worldwide. However, air pollutants from coal power plants contribute carbon dioxide emissions. Therefore, understanding how to taking care coal in industrial point of view is important. This paper focused on the feasibility study, including process design and simulation, of a coal to SNG power plant in Kalimantan in order to fulfill its electricity demand. In 2019, it is estimated that Kalimantan will need 2446 MW of electricity and it reaches 2518 MW in 2024. This study allows a thorough evaluation both in technology and commercial point of view. The data for the model is gathered through literature survey from government institution reports and academic papers. Aspen HYSYS is used for modelling the power plant consists of two blocks which are SNG production block and power block. The economic evaluation is vary depends on the pay-back period, capital and operational cost which are coal price, and electricity cost. The results of this study can be used as support tool for energy development plan as well as policy-making in Indonesia.

  15. Competition between coal and gas for large scale power generation

    International Nuclear Information System (INIS)

    Howieson, B.

    1997-01-01

    The relative competitiveness of coal- and gas-fired generation will be affected by distinctive country and market factors as well as site specific considerations, regarding such factors as environment, market structure and economics (such as fuel and plant costs). National and international politics have an impact on all three factors and any decision on the development of generation plant must take into account both current and future political climates. An analysis suggests that, at the present time, upgrading existing coal stations is attractive compared with new combined cycle gas turbines (CCGTs). However, this conclusion is highly dependent on the site specific nature of existing plant and the anticipated future environmental regime. Increased environmental pressure, particularly in the area of CO 2 emissions, would result in CCGTs being the first choice plant option. (R.P.)

  16. Instrumental neutron activation analysis of coal and its combustion residues from a power plant

    International Nuclear Information System (INIS)

    Lim, J.M.; Jeong, J.H.; Lee, J.H.

    2013-01-01

    A growing demand of electrical energy derived from coal combustion led to a significant increase of coal ash as residues. Approximately 70 % of the fly ashes are recycled, while most of the bottom ashes have been land-filled in the ash pond in Korea. In this work, to evaluate the potential impacts of the residues from a coal power plant on the environment, its inorganic elemental components were determined by INAA and PGAA. Coal ash samples were collected from the biggest power plant complex in Korea. These samples were analyzed by using the NAA facilities in the HANARO research reactor of the Korea Atomic Energy Research Institute. A total of 31 elements were analyzed in the samples, and certified reference materials were used for the analytical quality control. The enrichment status of a given metal in fuel coal and ashes was investigated by its concentration ratio. In order to assess the impact of the coal combustion residues on ecosystem, their concentrations determined for each respective type of the samples were compared to both reference data and nearby beach sand samples. (author)

  17. Recent advances in prediction of emission of hazardous air pollutants from coal-fired power plants

    International Nuclear Information System (INIS)

    Senior, C.L.; Helble, J.J.; Sarofim, A.F.

    2000-01-01

    Coal-fired power plants are a primary source of mercury discharge into the atmosphere along with fine particulates containing arsenic, selenium, cadmium, and other hazardous air pollutants. Information regarding the speciation of these toxic metals is necessary to accurately predict their atmospheric transport and fate in the environment. New predictive tools have been developed to allow utilities to better estimate the emissions of toxic metals from coal-fired power plants. These prediction equations are based on fundamental physics and chemistry and can be applied to a wide variety of fuel types and combustion conditions. The models have significantly improved the ability to predict the emissions of air toxic metals in fine particulate and gas-phase mercury. In this study, the models were successfully tested using measured mercury speciation and mass balance information collected from coal-fired power plants

  18. Utilization of underground coal gasification to provide electric power and emerging nations

    International Nuclear Information System (INIS)

    Boysen, J.E.; Beaver, F.W.; Schmit, C.R.; Daly, D.J.; Groenewold, G.H.

    1992-01-01

    Underground coal gasification (UCG) is a process conceived over a hundred years ago and used successfully, since the 1940s, to generate low-Btu gas for electric power production. The process is applicable to many coal resources that cannot, for a variety of reasons, be economically produced. While UCG cannot compete economically with conventional oil gas, and coal reserves, emerging nations requiring electric power for development of an industrial infrastructure may provide the niche market that is necessary for the commercial development of UCG. Recent UCG field testing, conducted in the United States, demonstrated that UCG could be successfully conducted without adverse environmental impact. This testing also resulted in increased understanding of the interactions between the UCG process and the local hydrogeological environment. With this knowledge, the probability of successful commercial UCG development can be increased by selecting a UCG site with hydrogeologically and economically favorable properties. And approach for commercial UCG development for producing electric power in emerging nations is presented

  19. Life cycle energy use and GHG emission assessment of coal-based SNG and power cogeneration technology in China

    International Nuclear Information System (INIS)

    Li, Sheng; Gao, Lin; Jin, Hongguang

    2016-01-01

    Highlights: • Life cycle energy use and GHG emissions are assessed for SNG and power cogeneration. • A model based on a Chinese domestic database is developed for evaluation. • Cogeneration shows lower GHG emissions than coal-power pathway. • Cogeneration has lower life cycle energy use than supercritical coal-power pathway. • Cogeneration is a good option to implement China’s clean coal technologies. - Abstract: Life cycle energy use and GHG emissions are assessed for coal-based synthetic natural gas (SNG) and power cogeneration/polygenereation (PG) technology and its competitive alternatives. Four main SNG applications are considered, including electricity generation, steam production, SNG vehicle and battery electric vehicle (BEV). Analyses show that if SNG is produced from a single product plant, the lower limits of its life cycle energy use and GHG emissions can be comparable to the average levels of coal-power and coal-BEV pathways, but are still higher than supercritical and ultra supercritical (USC) coal-power and coal-BEV pathways. If SNG is coproduced from a PG plant, when it is used for power generation, steam production, and driving BEV car, the life cycle energy uses for PG based pathways are typically lower than supercritical coal-power pathways, but are still 1.6–2.4% higher than USC coal-power pathways, and the average life cycle GHG emissions are lower than those of all coal-power pathways including USC units. If SNG is used to drive vehicle car, the life cycle energy use and GHG emissions of PG-SNGV-power pathway are both much higher than all combined coal-BEV and coal-power pathways, due to much higher energy consumption in a SNG driven car than in a BEV car. The coal-based SNG and power cogeneration technology shows comparable or better energy and environmental performances when compared to other coal-based alternatives, and is a good option to implement China’s clean coal technologies.

  20. Coal mining in the power industry of the Federal Republic of Germany in 2010; Der Kohlenbergbau in der Energiewirtschaft der Bundesrepublik Deutschland im Jahre 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    The contribution under consideration reports on the coal mining in the Federal Republic of Germany in the year 2010. Statistical data are presented for the power market and coal market, brown coal mining as well as the hard coal mining. These data consider the energy consumption in Germany, power production, iron and steel production, utilization, re-cultivation and employees.

  1. Coal mining in the power industry of the Federal Republic of Germany in 2013; Der Kohlenbergbau in der Energiewirtschaft der Bundesrepublik Deutschland im Jahre 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-11-15

    The contribution under consideration reports on the coal mining in the Federal Republic of Germany in the year 2013. Statistical data are presented for the power market and coal market, hard coal mining as well as the brown coal mining. These data consider the energy consumption in Germany, power production, iron and steel production, utilization, re-cultivation and employees.

  2. Coal mining in the power industry of the Federal Republic of Germany in 2014; Der Kohlenbergbau in der Energiewirtschaft der Bundesrepublik Deutschland im Jahre 2014

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-11-15

    The contribution under consideration reports on the coal mining in the Federal Republic of Germany in the year 2014. Statistical data are presented for the power market and coal market, hard coal mining as well as the brown coal mining. These data consider the energy consumption in Germany, power production, iron and steel production, utilization, re-cultivation and employees.

  3. Coal mining in the power industry of the Federal Republic of Germany in 2016; Der Kohlenbergbau in der Energiewirtschaft der Bundesrepublik Deutschland im Jahre 2016

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-11-15

    The contribution under consideration reports on the coal mining in the Federal Republic of Germany in the year 2016. Statistical data are presented for the power market and coal market, hard coal mining as well as the brown coal mining. These data consider the energy consumption in Germany, power production, iron and steel production, utilization, re-cultivation and employees.

  4. Coal mining in the power industry of the Federal Republic of Germany in 2015; Der Kohlenbergbau in der Energiewirtschaft der Bundesrepublik Deutschland im Jahre 2015

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-11-15

    The contribution under consideration reports on the coal mining in the Federal Republic of Germany in the year 2015. Statistical data are presented for the power market and coal market, hard coal mining as well as the brown coal mining. These data consider the energy consumption in Germany, power production, iron and steel production, utilization, re-cultivation and employees.

  5. 6th Conference on Coal Utilization Technology; Dai 6 kai sekitan riyo gijutsu kaigi koenshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The paper compiled the papers presented in the 6th Conference on Coal Utilization Technology held in September 1996. With relation to the fluidized bed boiler, reported were Field operation test of Wakamatsu PFBC combined cycle power plant and Development of pressurized internally circulating fluidized bed combustion technology. Regarding the coal reformation, Development of advanced coal cleaning process, Coal preparation and coal cleaning in the dry process, etc. Concerning the combustion technology, Study of the O2/CO2 combustion technology, Development of pressurized coal partial combustor, etc. About the CWM, Development of low rank coals upgrading and their CWM producing technology, Technique of CWM distribution system, etc. Relating to the coal ash, Engineering characteristics of the improved soil by deep mixing method using coal ash, Employment of fluidized bed ash as a basecourse material, On-site verification trials using fly ash for reclamation behind bulkheads, Water permeabilities of pulverized fuel ash, Separation of unburned carbon from coal fly ash through froth flotation, Practical use technology of coal ash (POZ-O-TEC), etc

  6. Externalities of biomass based electricity production compared to power generation from coal in the Netherlands

    International Nuclear Information System (INIS)

    Faaij, A.; Meuleman, B.

    1997-12-01

    Externalities of electricity production from biomass and coal are investigated and compared for the Dutch context. Effects on economic activity and employment are investigated by means of Input/Output and multiplier tables. Valuations of damage from emissions to air are based on generic data from other studies. In addition, external costs are estimated for nitrogen leaching and for the use of agrochemicals for energy crop production. The average private costs for biomass and coal based power generation are projected to be 68 and 38 mECU/kWh respectively in the year 2005. It is assumed that biomass production takes place on fallow land. Coal mining is excluded from the analysis. If the quantified external damages and benefits are included the cost range for bio-electricity is 53-70 mECU/kWh and 45-72 mECU/kWh for coal. Indirect economic effects (increment of Gross Domestic Product) and the difference in CO2 emissions are the most important distinguishing factors between coal and biomass in economic terms. Damage costs of other emissions to air (NOx, SO2, dust and CO) are of the same order of magnitude for both coal and biomass (coal mining excluded). In this analysis environmental impacts of energy farming are compared mainly to fallow land focused on the use of fertilizers and agrochemicals. The related damage costs appear to be low but should be considered as a preliminary estimate only. The quantitative outcomes should not be considered as the external costs of the two fuel cycles studied. Many impacts have not been valued and large uncertainties persist e.g. with respect to the costs of climate change and numerous dose response relations. More detailed analysis is required with respect to macro-economic impacts. The results serve as a first indication, but the outcomes plead for the support of bio-electricity production and/or taxation of coal based power generation. 88 refs

  7. Nano-mineralogical investigation of coal and fly ashes from coal-based captive power plant (India): An introduction of occupational health hazards

    International Nuclear Information System (INIS)

    Oliveira, Marcos L.S.; Marostega, Fabiane; Taffarel, Silvio R.; Saikia, Binoy K.; Waanders, Frans B.; DaBoit, Kátia; Baruah, Bimala P.

    2014-01-01

    Coal derived nano-particles has been received much concern recently around the world for their adverse effects on human health and the environment during their utilization. In this investigation the mineral matter present in some industrially important Indian coals and their ash samples are addressed. Coal and fly ash samples from the coal-based captive power plant in Meghalaya (India) were collected for different characterization and nano-mineralogy studies. An integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/(Energy Dispersive Spectroscopy) EDS/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS analysis, and Mössbauer spectroscopy were used to know their extent of risks to the human health when present in coal and fly ash. The study has revealed that the coals contain mainly clay minerals, whilst glass fragments, spinel, quartz, and other minerals in lesser quantities were found to be present in the coal fly ash. Fly ash carbons were present as chars. Indian coal fly ash also found to contain nanominerals and ultrafine particles. The coal-fired power plants are observed to be the largest anthropogenic source of Hg emitted to the atmosphere and expected to increase its production in near future years. The Multi Walled Carbon Nano-Tubes (MWCNTs) are detected in our fly ashes, which contains residual carbonaceous matter responsible for the Hg capture/encapsulation. This detailed investigation on the inter-relationship between the minerals present in the samples and their ash components will also be useful for fulfilling the clean coal technology principles. - Highlights: • We research changes in the level of ultrafine and nanoparticles about coal–ash quality. • Increasing dates will increase human health quality in this Indian coal area. • Welfare effects depend on ex-ante or ex-post assumptions about

  8. Imported mineral coal: competitiveness for electric power generation in northeast of Brazil

    International Nuclear Information System (INIS)

    Codeceira Neto, A.; Ribeiro Filho, A.P.R.; Silva, S.P.R. da

    1993-01-01

    With the hydroelectric potential exhaustion of northeast and with the increase of costs to the use of hydroelectric uses available in Brazil, the thermoelectric generation will be able to become a competitive solution to attend the market of electric power. This work has as purpose describe the options of imported coal use to Brazilian northeast its technological aspects, the environmental question, and the preliminary studies of localization and the costs associated on implantation of coal thermoelectric power plants. 7 refs, 3 figs, 6 tabs

  9. The Japanese and Italian power station markets: prospects for steam coal

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S D

    1989-02-01

    The world market for steam coal seems likely to fall far short of the expectations of 1980. Two markets which appeared to offer considerable scope for expansion, the Italian and Japanese power station markets, are examined and the factors behind their disappointing performance analysed. The reasons behind the lack of investments in new power stations differ. Difficulties in obtaining sites and financial problems are most important in Italy, whilst environmental restrictions and the attractions of competing technologies dominate in Japan. It is concluded that these factors will not weaken significantly in the next decade and coal's prospects in these two markets are correspondingly restricted. 20 refs., 20 tabs.

  10. Balance of natural radionuclides in the brown coal based power generation and harmlessness of the residues and side product utilization

    International Nuclear Information System (INIS)

    Schulz, Hartmut; Kunze, Christian; Hummrich, Holger

    2017-01-01

    During brown coal combustion a partial enrichment of natural radionuclides occurs in different residues. Residues and side product from brown coal based power generation are used in different ways, for example filter ashes and gypsum from flue gas desulfurization facilities are used in the construction materials fabrication and slags for road construction. Detailed measurement and accounting of radionuclides in the mass throughputs in coal combustion power plants have shown that the utilized gypsum and filter ashes are harmless in radiologic aspects.

  11. Investigations on the enrichment behaviour of toxic heavy metals in the mass flows of a coal power station

    International Nuclear Information System (INIS)

    Biehusen, U.

    1980-01-01

    In the present work solid sample material from a coal power plant has been analyzed, and by means of establishing a mass balance and calculating enrichment factors the question of how the heavy-metals having entered the power plant via the coal are distributed over the individual mass flows leaving the plant has been explained. Radioactive substances that get into the plant with the uranium and thorium contained in the coal have been considered in the same way. (orig./EF) [de

  12. Externality costs of the coal-fuel cycle: The case of Kusile Power Station

    Directory of Open Access Journals (Sweden)

    Nonophile P. Nkambule

    2017-09-01

    Full Text Available Coal-based electricity is an integral part of daily life in South Africa and globally. However, the use of coal for electricity generation carries a heavy cost for social and ecological systems that goes far beyond the price we pay for electricity. We developed a model based on a system dynamics approach for understanding the measurable and quantifiable coal-fuel cycle burdens and externality costs, over the lifespan of a supercritical coal-fired power station that is fitted with a flue-gas desulfurisation device (i.e. Kusile Power Station. The total coal-fuel cycle externality cost on both the environment and humans over Kusile's lifespan was estimated at ZAR1 449.9 billion to ZAR3 279 billion or 91c/kWh to 205c/kWh sent out (baseline: ZAR2 172.7 billion or 136c/kWh. Accounting for the life-cycle burdens and damages of coal-derived electricity conservatively, doubles to quadruples the price of electricity, making renewable energy sources such as wind and solar attractive alternatives. Significance: The use of coal for electricity generation carries a heavy cost for social and ecological systems that goes far beyond the price we pay for electricity. The estimation of social costs is particularly important to the electric sector because of non-differentiation of electricity prices produced from a variety of sources with potentially very dissimilar environmental and human health costs. Because all electricity generation technologies are associated with undesirable side effects in their fuelcycle and lifespan, comprehensive comparative analyses of life-cycle costs of all power generation technologies is indispensable to guide the development of future energy policies in South Africa.

  13. Char characterization and DTF assays as tools to predict burnout of coal blends in power plants

    Energy Technology Data Exchange (ETDEWEB)

    C. Ulloa; A.G. Borrego; S. Helle; A.L. Gordon; X. Garcia [Universidad de Concepcion, Concepcion (Chile). Departamento de Ingenieria Quimica

    2005-02-01

    The aim of this study is to predict efficiency deviations in the combustion of coal blends in power plants. Combustion of blends, as compared to its single coals, shows that for some blends the behavior is non-additive in nature. Samples of coal feed and fly ashes from combustion of blends at two power plants, plus chars of the parent coals generated in a drop-tube furnace (DTF) at temperatures and heating rates similar to those found in the industrial boilers were used. Intrinsic kinetic parameters, burning profiles and petrographic characteristics of these chars correlated well with the burnout in power plants and DTF experiments. The blend combustion in a DTF reproduces both positive and negative burnout deviations from the expected weighted average. These burnout deviations have been previously attributed to parallel or parallel-series pathways of competition for oxygen. No deviations were found for blends of low rank coals of similar characteristics yielding chars close in morphology, optical texture and reactivity. Negative deviations were found for blends of coals differing moderately in rank and were interpreted as associated with long periods of competition. In this case, fly-ashes were enriched in material derived from the least reactive char, but also unburnt material attributed to the most reactive char was identified. Improved burnout compared to the weighted average was observed for blends of coals very different in rank, and interpreted as the result of a short interaction period, followed by a period where the less reactive char burns under conditions that are more favorable to its combustion. In this case, only unburned material from the least reactive char was identified in the fly-ashes. 20 refs., 9 figs., 5 tabs.

  14. Research program for an environmentally-friendly coal utilization system in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Feasibility studies are conducted on the introduction of an environmentally-friendly coal utilization system into the Filipino electric power industry, cement industry, and domestic fuel sector. The studies cover the current status of economy and energy in that country, supply and demand of coal, environmental protection and Government's policy, study of the above-said system relative to its application to the fields of electric power industry, cement industry, and domestic fuel sector, and a study about the effective utilization of Filipino domestic coal by the use of the system. Imported coal is used in the electric power industry because of its cost and quality. It is learned after research, however, that domestic coal will be able to compete against imported coal when some technologies are resorted to, such as those pertinent to denitrification in the furnace, novel low-NOx burner, coal pulverization, and combustion diagnosis. As for the treatment of flue gas, it is concluded that the simplified wet lime/gypsum process will be suitable. It is inferred that the CWM (coal-water mixture) process technology will be effective for the utilization of domestic low-grade coal. (NEDO)

  15. Research program for an environmentally-friendly coal utilization system in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Feasibility studies are conducted on the introduction of an environmentally-friendly coal utilization system into the Filipino electric power industry, cement industry, and domestic fuel sector. The studies cover the current status of economy and energy in that country, supply and demand of coal, environmental protection and Government's policy, study of the above-said system relative to its application to the fields of electric power industry, cement industry, and domestic fuel sector, and a study about the effective utilization of Filipino domestic coal by the use of the system. Imported coal is used in the electric power industry because of its cost and quality. It is learned after research, however, that domestic coal will be able to compete against imported coal when some technologies are resorted to, such as those pertinent to denitrification in the furnace, novel low-NOx burner, coal pulverization, and combustion diagnosis. As for the treatment of flue gas, it is concluded that the simplified wet lime/gypsum process will be suitable. It is inferred that the CWM (coal-water mixture) process technology will be effective for the utilization of domestic low-grade coal. (NEDO)

  16. Small, modular, low-cost coal-fired power plants for the international market

    Energy Technology Data Exchange (ETDEWEB)

    Zauderer, B.; Frain, B.; Borck, B. [Coal Tech Corp., Merion Station, PA (United States); Baldwin, A.L. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center

    1997-12-31

    This paper presents recent operating results of Coal Tech`s second generation, air cooled, slagging coal combustor, and its application to power plants in the 1 to 20 MW range. This 20 MMBtu/hour combustor was installed in a new demonstration plant in Philadelphia, PA in 1995. It contains the combustion components of a 1 MWe coal fired power plant, a 17,500 lb/hour steam boiler, coal storage and feed components, and stack gas cleanup components. The plant`s design incorporates improvements resulting from 2,000 hours of testing between 1987 and 1993 on a first generation, commercial scale, air cooled combustor of equal thermal rating. Since operations began in early 1996, a total of 51 days of testing have been successfully completed. Major results include durability of the combustor`s refractory wall, excellent combustion with high ash concentration in the fuel, removal of 95% to 100% of the slag in the combustor, very little ash deposition in the boiler, major reduction of in-plant parasitic power, and simplified power system control through the use of modular designs of sub-systems and computer control. Rapid fuel switching between oil, gas, and coal and turndown of up to a factor of three was accomplished. All these features have been incorporated in advanced coal fired plant designs in the 1 to 20 MWe range. Incremental capital costs are only $100 to $200/kW higher than comparable rated gas or oil fired steam generating systems. Most of its components and subsystems can be factory assembled for very rapid field installation. The low capital, low operating costs, fuel flexibility, and compatibility with very high ash fuels, make this power system very attractive in regions of the world having domestic supplies of these fuels.

  17. New coal

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    Specially dedicated to coal, this edition comprises a series of articles of general interest dealing with the position of the French coalmining industry (interview with M.P. Gardent), the coal market in France, the work of CERCHAR, etc. New techniques, in-situ gasification of deep coal, gasification of coal by nuclear methods, the conversion of coal into petrol, the Emile Huchet power plant of Houilleres du Bassin de Lorraine, etc., are dealt with.

  18. Dynamics of clean coal-fired power generation development in China

    International Nuclear Information System (INIS)

    Yue, Li

    2012-01-01

    Coal-fired power technology will play an important role over a long period in China. Clean coal-fired power technology is essential for the global GHG emission reduction. Recently, advanced supercritical (SC)/ultra-supercritical (USC) technology has made remarkable progress in China and greatly contributed to energy saving and emission reduction. This study analyzes the dynamics of SC/USC development in China from an integrated perspective. The result indicates that, besides the internal demand, the effective implementation of domestic public policy and technology transfer contributed greatly to the development of SC/USC technology in China. In future low carbon scenario, SC/USC coal-fired power technology might still be the most important power generation technology in China until 2040, and will have a significant application prospect in other developing countries. The analysis makes a very useful introduction for other advanced energy technology development, including a renewable energy technology, in China and other developing countries. - Highlights: ► The US/USC technology is the key clean coal-fired power technology in current China. ► The domestic policy and technology transfer largely contributed to their development. ► This makes a useful introduction for the development of renewable energy in China.

  19. The exergy underground coal gasification technology for power generation and chemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Blinderman, M.S. [Ergo Exergy Technologies Inc., Montreal, PQ (Canada)

    2006-07-01

    Underground coal gasification (UCG) is a gasification process carried out in non-mined coal seams using injection and production wells drilled from the surface, converting coal in situ into a product gas usable for chemical processes and power generation. The UCG process developed, refined and practised by Ergo Exergy Technologies is called the Exergy UCG Technology or {epsilon}UCG{trademark} technology. This paper describes the technology and its applications. The {epsilon}UCG technology is being applied in numerous power generation and chemical projects worldwide, some of which are described. These include power projects in South Africa, India, Pakistan and Canada, as well as chemical projects in Australia and Canada. A number of {epsilon}UCG{trademark} based industrial projects are now at a feasibility usage in India, New Zealand, USA and Europe. An {epsilon}UCG{trademark} IGCC power plant will generate electricity at a much lower cost than existing fossil fuel power plants. CO{sub 2} emissions of the plant can be reduced to a level 55% less than those of a supercritical coal-fired plant and 25% less than the emissions of NG CC. 10 refs., 8 figs.

  20. Local deposition of mercury in topsoils around coal-fired power plants: is it always true?

    Science.gov (United States)

    Rodriguez Martin, José Antonio; Nanos, Nikos; Grigoratos, Theodoros; Carbonell, Gregoria; Samara, Constantini

    2014-09-01

    Mercury (Hg) is a toxic element that is emitted to the atmosphere through human activities, mainly fossil fuel combustion. Hg accumulations in soil are associated with atmospheric deposition, while coal-burning power plants remain the most important source of anthropogenic mercury emissions. In this study, we analyzed the Hg concentration in the topsoil of the Kozani-Ptolemais basin where four coal-fired power plants (4,065 MW) run to provide 50 % of electricity in Greece. The study aimed to investigate the extent of soil contamination by Hg using geostatistical techniques to evaluate the presumed Hg enrichment around the four power plants. Hg variability in agricultural soils was evaluated using 276 soil samples from 92 locations covering an area of 1,000 km(2). We were surprised to find a low Hg content in soil (range 1-59 μg kg(-1)) and 50 % of samples with a concentration lower than 6 μg kg(-1). The influence of mercury emissions from the four coal-fired power plants on soil was poor or virtually nil. We associate this effect with low Hg contents in the coal (1.5-24.5 μg kg(-1)) used in the combustion of these power plants (one of the most Hg-poor in the world). Despite anthropic activity in the area, we conclude that Hg content in the agricultural soils of the Kozani-Ptolemais basin is present in low concentrations.

  1. Update of progress for Phase II of B&W`s advanced coal-fired low-emission boiler system

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, D.K. [Babcock & Wilcox, Barberton, OH (United States); Madden, D.A.; Rodgers, L.W. [Babcock & Wilcox, Alliance, OH (United States)] [and others

    1995-11-01

    Over the past five years, advances in emission control techniques at reduced costs and auxiliary power requirements coupled with significant improvements in steam turbine and cycle design have significantly altered the governing criteria by which advanced technologies have been compared. With these advances, it is clear that pulverized coal technology will continue to be competitive in both cost and performance with other advanced technologies such as Integrated Gasification Combined Cycle (IGCC) or first generation Pressurized Fluidized Bed Combustion (PFBC) technologies for at least the next decade. In the early 1990`s it appeared that if IGCC and PFBC could achieve costs comparable to conventional pulverized coal plants, their significantly reduced NO{sub x} and SO{sub 2} emissions would make them more attractive. A comparison of current emission control capabilities shows that all three technologies can already achieve similarly low emissions levels.

  2. Heavy metals in Parmelia sulcata collected in the neighborhood of a coal-fired power station

    International Nuclear Information System (INIS)

    Freitas, M.C.

    1994-01-01

    The epiphytic lichen Parmelia sulcata was collected in the neighborhood of a Portuguese coal-fired power station (Sines coal power station) as monitor for heavy metal air pollution. A study of the metal contents variability along 1991 and 1992 was performed. The heavy metals Ag, As, Br, Co, Cr, Fe, Hg, Sb, Se, and Zn were determined by k0-based instrumental neutron activation analysis. The concentrations found in 1991 and 1992 show an accumulating process of Co and Fe (approximately 5%/mo) and of Cr and Sb (approximately 7%/mo). Low accumulation is observed for Ag, Se, and Zn (approximately 2%/mo), and no concentration variation is observed for As, Br, and Hg. It is concluded that the metal accumulation observed is the result of the nearby ash and coal deposits

  3. Fiscal 1996 survey report on the environmentally friendly type coal utilization system feasibility study. Feasibility study of the environmentally friendly type coal utilization system in the Philippines; Kankyo chowagata sekitan riyo system kanosei chosa. Philippines ni okeru kankyo chowagata sekitan riyo system kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Grasping the present situation of coal utilization technology in the Philippines, the paper proposed a feasibility study of introduction of the environmentally friendly type coal utilization system which seems to be needed in the future. (1) Introduction of the environmentally friendly type coal utilization system in the electric power generation sector: there are only four full-scale running coal thermal power plants in the Philippines. In the future, several coal thermal plants are planned to be constructed by 2005, but for the new installation, it is desirable to adopt fluidized bed boilers with wide application to coal kinds. In case of 0.3-1.0 million MW class plants, it is planned to adopt high grade import coals, and it will be natural to fire pulverized coal. For the processing of flue gas, it is a must to install desulfurization facilities and smoke/soot removal devices. (2) Utilization/development of domestic low grade coals: at the mine-mouth generating plant, it is necessary to investigate the economically minable amount of coal, confirm productivity, survey coal quality, etc., and select boiler. As to coal briquetting technology, it is necessary to examine coal quality for tests and make a thorough study of what technology is most suitable. 50 figs., 78 tabs.

  4. Commerical electric power cost studies. Capital cost addendum multi-unit coal and nuclear stations

    International Nuclear Information System (INIS)

    1977-09-01

    This report is the culmination of a study performed to develop designs and associated capital cost estimates for multi-unit nuclear and coal commercial electric power stations, and to determine the distribution of these costs among the individual units. This report addresses six different types of 2400 MWe (nominal) multi-unit stations as follows: Two Unit PWR Station-1139 MWe Each, Two Unit BWR Station-1190 MWe Each, Two Unit High Sulfur Coal-Fired Station-1232 MWe Each, Two Unit Low Sulfur Coal-Fired Station-1243 MWe Each, Three Unit High Sulfur Coal-Fired Station-794 MWe Each, Three Unit Low Sulfur Coal-Fired Station-801 MWe Each. Recent capital cost studies performed for ERDA/NRC of single unit nuclear and coal stations are used as the basis for developing the designs and costs of the multi-unit stations. This report includes the major study groundrules, a summary of single and multi-unit stations total base cost estimates, details of cost estimates at the three digit account level and plot plan drawings for each multi-unit station identified

  5. Solar power. [comparison of costs to wind, nuclear, coal, oil and gas

    Science.gov (United States)

    Walton, A. L.; Hall, Darwin C.

    1990-01-01

    This paper describes categories of solar technologies and identifies those that are economic. It compares the private costs of power from solar, wind, nuclear, coal, oil, and gas generators. In the southern United States, the private costs of building and generating electricity from new solar and wind power plants are less than the private cost of electricity from a new nuclear power plant. Solar power is more valuable than nuclear power since all solar power is available during peak and midpeak periods. Half of the power from nuclear generators is off-peak power and therefore is less valuable. Reliability is important in determining the value of wind and nuclear power. Damage from air pollution, when factored into the cost of power from fossil fuels, alters the cost comparison in favor of solar and wind power. Some policies are more effective at encouraging alternative energy technologies that pollute less and improve national security.

  6. Committed CO2 Emissions of China's Coal-fired Power Plants

    Science.gov (United States)

    Suqin, J.

    2016-12-01

    The extent of global warming is determined by the cumulative effects of CO2 in the atmosphere. Coal-fired power plants, the largest anthropogenic source of CO2 emissions, produce large amount of CO2 emissions during their lifetimes of operation (committed emissions), which thus influence the future carbon emission space under specific targets on mitigating climate change (e.g., the 2 degree warming limit relative to pre-industrial levels). Comprehensive understanding of committed CO2 emissions for coal-fired power generators is urgently needed in mitigating global climate change, especially in China, the largest global CO2emitter. We calculated China's committed CO2 emissions from coal-fired power generators installed during 1993-2013 and evaluated their impact on future emission spaces at the provincial level, by using local specific data on the newly installed capacities. The committed CO2 emissions are calculated as the product of the annual coal consumption from newly installed capacities, emission factors (CO2emissions per unit crude coal consumption) and expected lifetimes. The sensitivities about generators lifetimes and the drivers on provincial committed emissions are also analyzed. Our results show that these relatively recently installed coal-fired power generators will lead to 106 Gt of CO2 emissions over the course of their lifetimes, which is more than three times the global CO2 emissions from fossil fuels in 2010. More than 80% (85 Gt) of their total committed CO2 will be emitted after 2013, which are referred to as the remaining emissions. Due to the uncertainties of generators lifetime, these remaining emissions would increase by 45 Gt if the lifetimes of China's coal-fired power generators were prolonged by 15 years. Furthermore, the remaining emissions are very different among various provinces owing to local developments and policy disparities. Provinces with large amounts of secondary industry and abundant coal reserves have higher committed

  7. Coal and carbon dioxide reduction: What does it mean for our power production future?

    International Nuclear Information System (INIS)

    Weinstein, R.E.

    1994-01-01

    Carbon dioxide (CO 2 ) is not a pollutant. It is a limiting nutrient, like water and oxygen, necessary for life to exist on earth. It helps retain heat from the sun keeping the earth comfortably warm. Though scientifically controversial, some segments of the public are nonetheless concerned that increasing amounts of carbon dioxide (and other gases) emitted by mankind's activity may contribute to what they perceive as mankind-induced global warming trend, the so-called open-quotes greenhouse effect.close quotes The 1992 Earth Summit in Rio De Janeiro addressed this, and in response, the U.S. signed agreements to roll back its greenhouse gas emissions to 1990 levels. Carbon dioxide is of concern as a greenhouse gas because of the quantity produced by the combustion of fossil fuels. Because coal is mostly carbon, when burned, it produces more carbon dioxide per Btu of energy released of any of the common fossil fuels. With 54 percent of our electricity generated by coal, capping carbon dioxide emissions without disrupting the economy will be no mean feat for the United States. The U.S. also relies on its huge reserves for its energy independence, so altering policies that affect coal use must be carefully assessed. A growing population and economy demand more energy. One can use other fuels than coal: natural gas releases only 56 percent the carbon dioxide coal does, and nuclear energy produces none. One can also employ higher efficiency coal plants to reduce the amount of carbon dioxide produced for a given power output. The highest efficiency coal units projected are magnetohydrodynamics (MHD) plants the focus of this conference which are projected to produce electricity at 60 percent energy efficiency, extraordinary by today's standards. Does this mean that the Rio de Janeiro agreement then encourages the earlier introduction of MHD and other emerging high efficiency coal technologies?

  8. Exergetic and Parametric Study of a Solar Aided Coal-Fired Power Plant

    Directory of Open Access Journals (Sweden)

    Eric Hu

    2013-03-01

    Full Text Available A solar-aided coal-fired power plant realizes the integration of a fossil fuel (coal or gas and clean energy (solar. In this paper, a conventional 600 MW coal-fired power plant and a 600 MW solar-aided coal-fired power plant have been taken as the study case to understand the merits of solar-aided power generation (SAPG technology. The plants in the case study have been analyzed by using the First and Second Laws of Thermodynamics principles. The solar irradiation and load ratio have been considered in the analysis. We conclude that if the solar irradiation was 925 W/m2 and load ratio of the SAPG plant was 100%, the exergy efficiency would be 44.54% and the energy efficiency of the plant (46.35%. It was found that in the SAPG plant the largest exergy loss was from the boiler, which accounted for about 76.74% of the total loss. When the load ratio of the unit remains at 100%, and the solar irradiation varies from 500 W/m2 to 1,100 W/m2, the coal savings would be in the range of 8.6 g/kWh to 15.8 g/kWh. If the solar irradiation were kept at 925 W/m2 while the load ratio of the plant changed from 30% to 100%, the coal savings could be in the range of 11.99 g/kWh to 13.75 g/kWh.

  9. Radiological impact assessment of coal and nuclear base power plants in India

    International Nuclear Information System (INIS)

    Ramachandran, T.V.

    2007-01-01

    Environmental problems concerned with the use of coal as a fuel in thermal power plants (TPS) is due to the production of fly ash. Coal contains tracers of primordial radionuclide and its burning is one of the sources of technologically enhanced exposure from natural radionuclides. When it is burnt in TPSs, the fly ash, emitted through the stack is enriched in radionuclide and so combustion of coal on a large scale for thermal power generation assumes importance. Many of these TPSs are located in thickly populated areas. Radioactivity content of the coal from the coalfields of eastern parts of the country is found to be higher than that of other coalfields. In India coal combustion accounts nearly 73% of the total installed capacity for power generation. A sample study was carried out by this center on coal and fly ash samples collected from more than 35 TPS spread all over the country with a total installed capacity of 10000 MW(e), for their-radioactivity content. Radiation doses to the population residing within 90 km radius of each TPS have been computed. Besides another set of 15 TPSs were studied for thermal pollution emission and trace element concentration. Operation of these TPSs has resulted in effective dose commitments from doses to bones, lungs and thyroid of 200 man-Sv.y -1 and from doses to the whole body, of 70 man-Sv.y -1 . Dose commitments to the population living within 90 km radius of the TPSs and NPPs in India have been computed and have been compared. Attempt is made to assess the inhalation dose from the radioactivity released from a typical 500 MW(e) TPS and its impact related to chemical pollutants. Impact in terms of Environmental Quality Index (EQI) due to conventional pollutions have been computed and compared with those due to the nuclear power plants (NPPs). Paper gives the summary of the study. (author)

  10. 21st century energy solutions. Coal and Power Systems FY2001 program briefing

    International Nuclear Information System (INIS)

    None

    2001-01-01

    The continued strength of American's economy depends on the availability of affordable energy, which has long been provided by the Nations rich supplies of fossil fuels. Forecasts indicate that fossil fuels will continue to meet much of the demand for economical electricity and transportation fuels for decades to come. It is projected that natural gas, oil, and coal will supply nearly 90% of US energy in 2020, with coal fueling around 50% of the electricity. It is essential to develop ways to achieve the objectives for a cleaner environment while using these low-cost, high-value fuels. A national commitment to improved technologies-for use in the US and abroad-is the solution. The Coal and Power Systems program is responding to this commitment by offering energy solutions to advance the clean, efficient, and affordable use of the Nations abundant fossil fuel resources. These solutions include: (1) Vision 21-A multi-product, pollution-free energy plant-producing electricity, fuels, and/or industry heat-could extract 80% or more of the energy value of coal and 85% or more of the energy value of natural gas; (2) Central Power Systems-Breakthrough turbines and revolutionary new gasification technologies that burn less coal and gas to obtain energy, while reducing emissions; (3) Distributed Generation-Fuel cell technology providing highly efficient, clean modular power; (4) Fuels-The coproduction of coal-derived transportation fuels and power from gasification-based technology; (5) Carbon Sequestration-Capturing greenhouse gases from the exhaust gases of combustion or other sources, or from the atmosphere itself, and storing them for centuries or recycling them into useful products; and (6) Advanced Research-Going beyond conventional thinking in the areas of computational science, biotechnology, and advanced materials

  11. Update on the modernization of 200 MW hard coal power plants in Poland

    International Nuclear Information System (INIS)

    Szabo, T.E.; Kopec, M.

    1993-01-01

    In June 1990, the Coalition of 200 MW, Hard Coal, Polish Power Plants representing an installed base of 10,240 MW, including 45 units of 200 MW, signed an agreement with the Westinghouse Electric Corporation, Power Generation Business Unit, based in Orlando, Florida, to cooperate on developing a modernization program for the 200 MW units. Program funding was obtained with The United States Trade Development Program (TDP) providing approximately 2/3 of the cost, and the balance provided by Westinghouse. On March 5, 1992, the Polish-American (51% Westinghouse, 49% Seven (7) Hard Coal Power Plants), Joint Venture Company, MODELPOL, Ltd. (Polish acronym for 'MODernizacja ELektrowni POLskich' or Modernization of Polish Power Plants) was established with the goal to implement not only technically but financially the recommendations of the Modernization Study. The mission given MODELPOL, Ltd. by their Polish-American Shareholders was to: develop the specific modernization programs for each hard coal power plant; assist in identifying and obtaining the financial resources required for implementation; and provide technological preventative maintenance services to improve unit availability. Within these aims was the target to reduce SO 2 , and particulate emissions. The first program is taking place at the Laziska Power Plant, followed by Rybnik. Further projects are in the planning stages. Finance is a constant problem, this should be eased by the restructuring of the power industry. Future programmes include connection to the European Community Power Grid. 5 figs

  12. Comparative health risk assessment of nuclear power and coal power in China

    International Nuclear Information System (INIS)

    Ren Tianshan; Li Yunxing; Fang Dong; Li Hong

    1998-01-01

    The public health risk of ionising radiation released from the coal-fired energy chain, 20 deaths (GW a) -1 , is about 18 times that of the nuclear energy chain, 1.1 deaths (GW a) -1 , in China. The main contributors to the fatality risk for the former are the public dose caused by the use of coal ash and the occupational exposure caused by radon and its progeny in coal mines. The total health risk (but excluding low probability/high consequence accidents) of the coal-fired energy chain, 57.1 deaths (GW a) -1 , is about 12 times of that of the nuclear energy chain, 4.6 deaths (GW a) -1 . The health risk of coal-fired energy chain could be significantly reduced if technique and management were improved. Even then the risk of the coal-fired energy chain is about 4.4 times that of the nuclear energy chain. (author)

  13. Qualitative analysis of coal combusted in boilers of the thermal power plants in Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Đurić Slavko N.

    2012-01-01

    Full Text Available In this paper we have looked into the qualitative analysis of coals in Bosnia and Herzegovina (B-H. The analysis includes the following characteristics: moisture (W, ash (A, combustible matter (Vg and lower heating value (Hd. From the statistic parameters we have determined: absolute range (R, arithmetic mean (X, standard deviation (S and variations coefficient (Cv. It has been shown that the coal characteristics (W, A, Vg, Hd have normal distribution. The analysis show that there are considerable deviations of ash characteristics: moisture (36.23%, ash (34.21%, combustible matter (16.15% and lower heating value (25.16% from the mean value which is shown by the variations coefficient (Cv. Large oscilations of mass portions: W, A, Vg and Hd around the mean value can adversely influence the function of a boiler plant and an electric filter plant in thermal power plants in B-H in which the mentioned types of coal burn. Large ash oscilations (34.21% around the mean value point out to the inability of application of dry procedures of desulphurisation of smoke gasses (FGD due to the additional quantity of ash. It has been shown that the characteristics of Bosnian types of coal do not deviate a lot from the characteristics of coal in the surrounding countries (coals of Serbia and Monte Negro. The results can be used in analysis of coal combustion in thermal power plants, optimisation of electrical-filtre, reduction of SO2 in smoke gas and other practical problems.

  14. Appropriate feed-in tariff of solar–coal hybrid power plant for China’s Inner Mongolia Region

    International Nuclear Information System (INIS)

    Zhao, Yawen; Hong, Hui; Jin, Hongguang

    2016-01-01

    Highlights: • The potential for the first 10 MWe level solar–coal hybrid power plant is estimated. • Economic feasibility analysis is performed based on the discounted cash flow model. • The appropriate feed-in tariff prices of different scenarios are provided. • The results provide suggestions for the development of solar–coal hybrid technology. - Abstract: Middle-temperature solar heat can be used to preheat feed water before it enters the boiler in a coal-fired power plant. Previous studies have shown that this approach can improve the performance of coal-fired power plants. The present study estimates the first solar–coal hybrid power plant in the Inner Mongolia Region. It will have a potential net solar power output of 10 MW on the basis of the operating data of a traditional 200 MW coal-fired power plant. Economic feasibility analysis is then performed on the solar–coal hybrid power plant. The appropriate feed-in tariff prices are provided on the basis of different financing scenarios, solar field cost, collector area size, and other conditions. The results obtained in this study are expected to provide suggestions for the further development of solar–coal hybrid technology.

  15. Partitioning behaviour of natural radionuclides during combustion of coal in thermal power plants

    International Nuclear Information System (INIS)

    Sahu, S.K.; Tiwari, M.; Bhangare, R.C.; Ajmal, P.Y.; Pandit, G.G.

    2014-01-01

    All fossil fuels contain low levels of naturally occurring radioactive substances. The environmental impact of radionuclide-containing waste products from coal combustion is an important issue. These radionuclides vaporize in the hot portions of the coal combustor and then return to the solid phase in cooler downstream zones. Indian coal used in power plants generally has high ash yield (35-45%) and is of low quality. In the burning process of coal, minerals undergo thermal decomposition, fusion, disintegration, and agglomeration. A major portion of elements in the boiler enter into slag or bottom ash, and the rest of the inorganic materials find their way into the flue gas, in fly ash or vapor. Fly and bottom ash are significant sources of exposure to these radionuclides. In the present study, coal and ash samples collected from six thermal power stations were analyzed to determine their natural radioactivity content and the partitioning behavior of these radionuclides was carried out by tracing their activities in fly and bottom ashes. The partitioning of radionuclides is strongly dependent on the size of associated ash particle. Polonium-210 was mostly associated with the finest fraction and showed large variation with particle size whereas 232 Th showed least dependence on the particle size. The high activities of all radionuclides in fly ashes than that of bottom ashes thus may be due to strong affinity of the nuclides towards the finer particle fractions. All the radionuclide distribution favored small particle sizes

  16. ANN-GA based optimization of a high ash coal-fired supercritical power plant

    International Nuclear Information System (INIS)

    Suresh, M.V.J.J.; Reddy, K.S.; Kolar, Ajit Kumar

    2011-01-01

    Highlights: → Neuro-genetic power plant optimization is found to be an efficient methodology. → Advantage of neuro-genetic algorithm is the possibility of on-line optimization. → Exergy loss in combustor indicates the effect of coal composition on efficiency. -- Abstract: The efficiency of coal-fired power plant depends on various operating parameters such as main steam/reheat steam pressures and temperatures, turbine extraction pressures, and excess air ratio for a given fuel. However, simultaneous optimization of all these operating parameters to achieve the maximum plant efficiency is a challenging task. This study deals with the coupled ANN and GA based (neuro-genetic) optimization of a high ash coal-fired supercritical power plant in Indian climatic condition to determine the maximum possible plant efficiency. The power plant simulation data obtained from a flow-sheet program, 'Cycle-Tempo' is used to train the artificial neural network (ANN) to predict the energy input through fuel (coal). The optimum set of various operating parameters that result in the minimum energy input to the power plant is then determined by coupling the trained ANN model as a fitness function with the genetic algorithm (GA). A unit size of 800 MWe currently under development in India is considered to carry out the thermodynamic analysis based on energy and exergy. Apart from optimizing the design parameters, the developed model can also be used for on-line optimization when quick response is required. Furthermore, the effect of various coals on the thermodynamic performance of the optimized power plant is also determined.

  17. Hazardous air pollutants emission from coal and oil-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Deepak Pudasainee; Jeong-Hun Kim; Sang-Hyeob Lee; Ju-Myon Park; Ha-Na Jang; Geum-Ju Song; Yong-Chil Seo [Yonsei University, Wonju (Republic of Korea). Department of Environmental Engineering

    2010-03-15

    Hazardous air pollutants (HAPs) emission characteristics from coal (anthracite, bituminous) and oil-fired power plants were studied in order to control pollutants by formulating US maximum achievable control technology (MACT)-like regulation in Korea. Sampling and analysis were carried out according to either Korean standard test method or US EPA method. Relatively lower levels of NOx and SOx were emitted from plants burning bituminous than the anthracite coal. Less dust was emitted from oil-fired power plants. Mercury, lead, and chromium were dominant in coal-fired power plants, following which, nickel and chromium were emitted from oil-fired power plants. The major volatile organic compounds (VOCs) emitted from coal-fired plants were 1,2-dichloroethane, benzene, carbon tetrachloride, chloroform, trichloro-ethylene. The emission of mercury and other heavy metals in flue gas was attributed to fuel types, operating conditions, residence time in the control devices and the type of air pollution control devices. After emission tests in the field and on analysis of the continuous emission monitoring data collected from facilities under operation and consideration of other various factors, management guidelines will be suggested with special reference to US MACT-like regulation.

  18. Proceedings of the advanced coal-fired power systems `95 review meeting, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, H.M.; Mollot, D.J.; Venkataraman, V.K.

    1995-06-01

    This report contains papers which were presented at the advanced coal-fired power sytems review meeting. This is volume II. Topics include: hot gas filter issues, hazardous air pollutants, sorbent development, and separation technologies. Individual papers were processed separately for the United States Department of Energy databases.

  19. Occupational exposures during routine activities in coal-fueled power plants

    Energy Technology Data Exchange (ETDEWEB)

    Mona J. Bird; David L. MacIntosh; Phillip L. Williams [University of Georgia, Athens, GA (United States). Dept. of Environmental Health Science

    2004-06-15

    Limited information is available on occupational exposures during routine, nonoutage work activities in coal-fueled power plants. This study evaluated occupational exposures to the principal contaminants in the facilities, including respirable dust (coal dust), arsenic, noise, asbestos, and heat stress. The data were collected over a 3-month period, during the summer of 2001, in 5 representative power plants of a large southeastern power-generating company. From 4 of the 5 facilities, 392 air samples and 302 noise samples were collected with approximately 50 respirable coal dust, 32 arsenic, 15 asbestos, and 70 noise samples from each of the 4 plants. One of the previously surveyed facilities was also evaluated for heat stress, and 1 additional coal-fueled power plant was surveyed for a total of 20 personal heat stress samples. Of the nearly 400 air samples collected, only 1 exceeded the allowable occupational exposure value. For the noise samples, 55 were equal to or greater than the Occupational Safety and Health Administration (OSHA) 8-hour hearing conservation program level of 85 dBA, and 12 were equal to or greater than the OSHA 8-hour permissible exposure level of 90 dBA. The data concluded that some work sites were above the heat stress ceiling values recommended by the National Institute for Occupational Safety and Health (NIOSH). Four of the 20 employees personally monitored exceeded the recommended limits for heart rate or body core temperature.

  20. Environmental radioactivity and radiation exposure by radioactive emissions of coal-fired power plants

    International Nuclear Information System (INIS)

    Jacobi, W.

    1981-03-01

    On the basis of measurements of the radioactive emissions of a 300 MW coal-fired power plant and of a 600 MW lignite-fired power plant the expected activity increase in air and soil in the environment of both plants is estimated and compared with the normal, natural activity level. Due to these emissions it results for the point of maximum immission a committed effective dose equivalent per GW x a of about 0.2 mrem = 0.002 mSv for the coal-fired plant and of about 0.04 mrem = 0.0004 mSv for the lignite-fired plant. This dose is caused to nearly equal parts by inhalation, ingestion and external γ-radiation. The normalized effective dose equivalent in the environment of the modern coal-fired power plant is in the same order of magnitude like that of a modern pressurized water reactor. The total, collective effective dose equivalent commitment by the annual radioactive emissions of coal-fired power plants in the F.R.Germany is estimated to 2000-6000 Man x rem = 20-60 Man x Sv. This corresponds to a mean per caput-dose in the population of the F.R.Germany of about 0.03-0.1 mrem = 0.0003-0.001 mSv; this is about 0.02-0.06% of the mean normal natural radiation exposure of the population. (orig.) [de

  1. Transport of the radionuclides and doses for some coal fired power plants

    International Nuclear Information System (INIS)

    Antic, D.; Telenta, B.; Sokcic-Kostic, M.

    1994-01-01

    The radiation exposure of the public in the vicinity of the selected coal fired power plants near from Belgrade has been studied. The contents of natural radionuclides according to experimental data have been used and dose rates from inhalation have been calculated using a two dimensional version of the cloud model. (author)

  2. CPICOR{trademark}: Clean power from integrated coal-ore reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wintrell, R.; Miller, R.N.; Harbison, E.J.; LeFevre, M.O.; England, K.S.

    1997-12-31

    The US steel industry, in order to maintain its basic iron production, is thus moving to lower coke requirements and to the cokeless or direct production of iron. The US Department of Energy (DOE), in its Clean Coal Technology programs, has encouraged the move to new coal-based technology. The steel industry, in its search for alternative direct iron processes, has been limited to a single process, COREX{reg_sign}. The COREX{reg_sign} process, though offering commercial and environmental acceptance, produces a copious volume of offgas which must be effectively utilized to ensure an economical process. This volume, which normally exceeds the internal needs of a single steel company, offers a highly acceptable fuel for power generation. The utility companies seeking to offset future natural gas cost increases are interested in this clean fuel. The COREX{reg_sign} smelting process, when integrated with a combined cycle power generation facility (CCPG) and a cryogenic air separation unit (ASU), is an outstanding example of a new generation of environmentally compatible and highly energy efficient Clean Coal Technologies. This combination of highly integrated electric power and hot metal coproduction, has been designated CPICOR{trademark}, Clean Power from Integrated Coal/Ore Reduction.

  3. Environmental impact of coal industry and thermal power plants in India.

    Science.gov (United States)

    Mishra, U C

    2004-01-01

    Coal is the only natural resource and fossil fuel available in abundance in India. Consequently, it is used widely as a thermal energy source and also as fuel for thermal power plants producing electricity. India has about 90,000 MW installed capacity for electricity generation, of which more than 70% is produced by coal-based thermal power plants. Hydro-electricity contributes about 25%, and the remaining is mostly from nuclear power plants (NPPs).