WorldWideScience

Sample records for pulverized coal flames

  1. Effect of multiphase radiation on coal combustion in a pulverized coal jet flame

    Science.gov (United States)

    Wu, Bifen; Roy, Somesh P.; Zhao, Xinyu; Modest, Michael F.

    2017-08-01

    The accurate modeling of coal combustion requires detailed radiative heat transfer models for both gaseous combustion products and solid coal particles. A multiphase Monte Carlo ray tracing (MCRT) radiation solver is developed in this work to simulate a laboratory-scale pulverized coal flame. The MCRT solver considers radiative interactions between coal particles and three major combustion products (CO2, H2O, and CO). A line-by-line spectral database for the gas phase and a size-dependent nongray correlation for the solid phase are employed to account for the nongray effects. The flame structure is significantly altered by considering nongray radiation and the lift-off height of the flame increases by approximately 35%, compared to the simulation without radiation. Radiation is also found to affect the evolution of coal particles considerably as it takes over as the dominant mode of heat transfer for medium-to-large coal particles downstream of the flame. To investigate the respective effects of spectral models for the gas and solid phases, a Planck-mean-based gray gas model and a size-independent gray particle model are applied in a frozen-field analysis of a steady-state snapshot of the flame. The gray gas approximation considerably underestimates the radiative source terms for both the gas phase and the solid phase. The gray coal approximation also leads to under-prediction of the particle emission and absorption. However, the level of under-prediction is not as significant as that resulting from the employment of the gray gas model. Finally, the effect of the spectral property of ash on radiation is also investigated and found to be insignificant for the present target flame.

  2. On-line tracking of pulverized coal and biomass fuels through flame spectrum analysis

    Institute of Scientific and Technical Information of China (English)

    迟天阳; 张宏建

    2007-01-01

    This paper presents a new approach to the on-line tracking of pulverized coal and biomass fuels through flame spectrum analysis. A flame detector containing four photodiodes is used to derive multiple signals covering a wide spectrum of the flame from visible, near-infrared and mid-infrared spectral bands as well as a part of far-infrared band. Different features are extracted in time and frequency domains to identify the dynamic "fingerprints" of the flame. Fuzzy logic inference techniques are employed to combine typical features together and infer the type of fuel being burnt. Four types of pulverized coal and five types of biomass are burnt on a laboratory-scale combustion test rig. Results obtained demonstrate that this approach is capable of tracking the type of fuel under steady combustion conditions.

  3. Flat-flame burner studies of pulverized-coal combustion. Experimental results on char reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Peck, R.E.; Shi, L.

    1996-12-01

    Structure of laminar, premixed pulverized-coal flames in a 1-D reactor has been studied with emphasis on char reactivity. A 1.1-meter-long tube furnace accommodated high-temperature environments and long residence times for the laminar flames produced by a flat-flame, coal-dust burner. Experiments were conducted at different operating conditions (fuel type/size, fuel-air ratio). Measurements included solid sample composition, major gas species and hydrocarbon species concentrations, and gas- and particle-phase line-of-sight temperatures at different axial locations in flames. Degree of char burnout increased with coal volatiles content and decreased with coal particle size. Combustion in furnace was in oxidizer-deficient environment and higher burnout was achieved as the fuel-air ratio neared stoichiometric. For 0-45 {mu}m particles most of the fixed carbon mass loss occurred within 5 cm of the furnace inlet, and char reaction was slow downstream due to low oxidizer concentrations. Fixed carbon consumption of the 45-90 {mu}m particles generally was slower than for the small particles. About 40%-80% of the fixed carbon was oxidized in the furnace. Primary volatiles mass loss occurred within the first 4.5 cm, and more than 90% of the volatiles were consumed in the flames. The flames stabilized in the furnace produced less CH{sub 4} and H{sub 2} in the burnt gas than similar unconfined flames. NO concentrations were found to decrease along the furnace and to increase with decreasing fuel/air ratio. Temperature measurement results showed that gas-phase temperatures were higher than solid-phase temperatures. Temperatures generally decreased with decreasing volatiles content and increased as the equivalence ratio approached one. The results can be used to interpret thermochemical processes occurring in pulverized-coal combustion. (au) 15 refs.

  4. Comparative study of semi-industrial-scale flames of pulverized coals and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ballester, J.; Barroso, J.; Cerecedo, L.M.; Ichaso, R. [University of Zaragoza, Zaragoza (Spain)

    2005-05-01

    Three p.f. flames have been studied in a semi-industrial furnace, using different fuels: a bituminous coal, a lignite, and a biomass (oak sawdust). The operating conditions were exactly the same for the two coals, and very similar to those for the biornass flame. The objective was to evaluate the impact of differences in fuel composition on flame characteristics, through measurement of the spatial distribution of the main parameters: temperature and concentrations of O{sub 2}, CO, NOx, unburnt hydrocarbons, and N{sub 2}O. The higher volatiles content in the lignite leads to higher temperatures and more intense combustion than the bituminous coal. Nevertheless, as might be expected, more marked differences are observed between the flames from the biomass and coals. The much higher volatiles content of the wood results in a more intense flame close to the burner, as indicated by visual observations and by concentrations of unburnt gases (CO and unburnt hydrocarbons) in that zone. It is remarkable that the combustion zone extends further for the biomass; while unburnt species were very low for the coals at an axial distance of 1 m, high values were detected for the pulverized oak. The measurements suggest that two stages can be distinguished in the biomass flame: a zone of intense combustion close to the burner, followed by a second region where the large biomass particles gradually devolatilize and are consumed.

  5. Combustion characteristics of pulverized coal and air/gas premixed flame in a double swirl combustor

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, M.M. [Ain Shams University, Cairo (Egypt). Faculty of Education

    2009-07-01

    An experimental work was performed to investigate the co-firing of pulverized coal and premixed gas/air streams in a double swirl combustor. The results showed that the NOx emissions are affected by the relative rates of thermal NOx formation and destruction via the pyrolysis of the fuel-N species in high temperature fuel-rich zones. Various burner designs were tested in order to vary the temperature history and the residence time across both coal and gas flames inside the furnace. It was found that by injecting the coal with a gas/air mixture as a combined central jet surrounded by a swirled air stream, a double flame envelope develops with high temperature fuel-rich conditions in between the two reaction zones such that the pyrolysis reactions to N{sub 2} are accelerated. A further reduction in the minimum NOx emissions, as well as in the minimum CO concentrations, was reported for the case where the coal particles are fed with the gas/air mixture in the region between the two swirled air streams. On the other hand, allocating the gas/air mixture around the swirled air-coal combustion zone provides an earlier contact with air and retards the NOx reduction mechanism in such a way that the elevated temperatures around the coal particles allow higher overall NOx emissions. The downstream impingement of opposing air jets was found more efficient than the impinging of particle non-laden premixed flames for effective NOx reduction. In both cases, there is an upstream flow from the stagnation region to the coal primary combustion region, but with the case of air impingement, the hot fuel-rich zone develops earlier. The optimum configuration was found by impinging all jets of air and coal-gas/air mixtures that pronounced minimum NOx and CO concentrations of 310 and 480ppm, respectively.

  6. Sulfur release from Ohio coals and sorbent kinetics in pulverized coal flames. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Essenhigh, R. [Ohio State Univ., Columbus, OH (United States). Robinson Lab.

    1992-08-01

    In this report we describe the results of investigations into the structure of combustion and sulfur release profiles from coal burning in One-Dimensional P.C. flames using a furnace of unique design for the measurements. Selected measurements were also-carried out in a special high-intensity furnace also of unique design. The formal project work started in late Fall 1989, with unfunded preliminary work in the months prior to that. The process of limestone injection into the flame to control sulfur oxides emissions is a long-standing concept that has been given particular formulation in the LIMB process, and studies of such systems provide bases for commercial system economics. Problems with LIMB and related systems indicated need for better understanding of, jointly, the sulfur release from the coal and the sorbent behavior by the limestone. The investigations as reported in Vol. 1 of this Report used 14 different coals under a range of different initial and operating conditions, and the resulting measurements have provided a database of major proportions, as tabulated in the attached Volumes 2, 3, 4, 5, 6, and 7 of this report. This database consists of sets of measurements totalling about 45,000 entries for all independent and dependent parameters involved. The independent parameters included: coal type (analysis), firing rate, stoichiometry (fuel/air ratio), and sorbent content of the

  7. Gasification in pulverized coal flames. First annual progress report, July 1975--June 1976

    Energy Technology Data Exchange (ETDEWEB)

    Lenzer, R. C.; George, P. E.; Thomas, J. F.; Laurendeau, N. M.

    1976-07-01

    This project concerns the production of power and synthesis gas from pulverized coal via suspension gasification. Swirling flow in both concentric jet and cyclone gasifiers will separate oxidation and reduction zones. Gasifier performance will be correlated with internally measured temperature and concentration profiles. A literature review of vortex and cyclone reactors is complete. Preliminary reviews of confined jet reactors and pulverized coal reaction models have also been completed. A simple equilibrium model for power gas production is in agreement with literature correlations. Cold gas efficiency is not a suitable performance parameter for combined cycle operation. The coal handling facility, equipped with crusher, pulverizer and sieve shaker, is in working order. Test cell flow and electrical systems have been designed, and most of the equipment has been received. Construction of the cyclone gasifier has begun. A preliminary design for the gas sampling system, which will utilize a UTI Q-30C mass spectrometer, has been developed.

  8. Flame radiant image numeralization for pulverized coal combustion in BF raceway

    Institute of Scientific and Technical Information of China (English)

    WEN Liang-ying; OU Yang-qi; BAI Chen-guang; WANG Hua

    2005-01-01

    In order to establish correlativity between pulverized coal combustion in a blast furnace raceway and its radiant image, we investigated the relationships between two dimensional radiant images and three dimensional radiant energy in a blast furnace raceway, focusing on the correlativity of the numerical simulation of combustion processes with the connection of radiant images information and space temperature distribution. We calculated the uneven radiate characteristic parameterby taking radiant images as a kind of radiative boundary for numerical simulation of combustion processes, and put forward a method to examine three-dimensional temperatures distribution in blast furnace raceway by radiant image processing. The numeral temperature fields matching the real combustion can be got by the numeric image processing technique.

  9. The Mechanisms of Flame Stabilization and Low NOx Emission in an Eccentric Jet Pulverized Coal Combustor

    Institute of Scientific and Technical Information of China (English)

    SunWenchao; SunYezhu; 等

    1992-01-01

    The mechanisms of flame stabilization and low NOx emission features of an accentric jet pulverzed coal combustor were studied through numerical modelling and experimental investigation.The results show that the formation of the unique flowfield structure is closely related to the interaction among combustor configuration.the primary jet and the control Jet.and that certain rules should be follwed in orber to obtain the optimum condition for flame stabilization.The distributions of temperature and concentration of NO,O2,CO and CO2 inside the combustor were experimentally measured.The effects of strustural and operational parameters on combustion and NO formation were studied.It was found that reduction of primary air,suitable use of control jet and reasonable uptilt angle of the primary jet all contributed to the reduction of NOx at the combustor exit.A new hypothesis,that reasonable separation of oxygen and fuel within the fuel-rich zone is beneficial to further reduction of NOx emission,is given,The study showed that good compatibility existed between the capability of flame stabilization and low NOX emission for this type of combustor.

  10. Gasification in pulverized coal flames. Final report (Part I). Pulverized coal combustion and gasification in a cyclone reactor: experiment and model

    Energy Technology Data Exchange (ETDEWEB)

    Barnhart, J. S.; Laurendeau, N. M.

    1979-05-01

    A unified experimental and analytical study of pulverized coal combustion and low-BTU gasification in an atmospheric cyclone reactor was performed. Experimental results include several series of coal combustion tests and a coal gasification test carried out via fuel-rich combustion without steam addition. Reactor stability was excellent over a range of equivalence ratios from .67 to 2.4 and air flowrates from 60 to 220 lb/hr. Typical carbon efficiencies were 95% for air-rich and stoichiometric tests and 80% for gasification tests. The best gasification results were achieved at an equivalence ratio of 2.0, where the carbon, cold gas and hot gas efficiencies were 83, 45 and 75%, respectively. The corresponding product gas heating value was 70 BTU/scf. A macroscopic model of coal combustion in the cyclone has been developed. Fuel-rich gasification can also be modeled through a gas-phase equilibrium treatment. Fluid mechanics are modeled by a particle force balance and a series combination of a perfectly stirred reactor and a plug flow reactor. Kinetic treatments of coal pyrolysis, char oxidation and carbon monoxide oxidation are included. Gas composition and temperature are checked against equilibrium values. The model predicts carbon efficiency, gas composition and temperature and reactor heat loss; gasification parameters, such as cold and hot gas efficiency and make gas heating value, are calculated for fuel-rich conditions. Good agreement exists between experiment and theory for conditions of this investigation.

  11. Gasification in pulverized coal flames. Second quarterly progress report, October--December 1975. [Contains literature survey on vortex gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Lenzer, R. C.; George, P. E.; Laurendeau, N. M.

    1976-01-01

    This project is concerned with the production of power and synthesis gases from pulverized coal via suspension gasification. A literature review concerning the vortex type gasifier has been completed and a survey concerning the confined jet gasifier is underway. Preliminary design of the vortex gasifier is nearing completion. Test cell and coal handling facilities are in the final stages of design and coal handling equipment has been received. A mass spectrometer has been ordered and a preliminary survey of high-temperature probes is complete.

  12. Enhancement of pulverized coal combustion by plasma technology

    Energy Technology Data Exchange (ETDEWEB)

    Gorokhovski, M.A.; Jankoski, Z.; Lockwood, F.C.; Karpenko, E.I.; Messerle, V.E.; Ustimenko, A.B. [University of Rouen, Rouen (France)

    2007-07-01

    Plasma-assisted pulverized coal combustion is a promising technology for thermal power plants (TPP). This article reports one- and three- dimensional numerical simulations, as well as laboratory and industrial measurements of coal combustion using a plasma-fuel system (PFS). The chemical kinetic and fluid mechanics involved in this technology are analysed. The results show that a PFS, can be used to promote early ignition and enhanced stabilization of a pulverized coal flame. It is shown that this technology, in addition to enhancing the combustion efficiency of the flame, reduces harmful emissions from power coals of all ranks (brown, bituminous, anthracite and their mixtures). Data summarising the experience of 27 pulverized coal boilers in 16 thermal power plants in several countries (Russia, Kazakhstan, Korea, Ukraine, Slovakia, Mongolia and China), embracing steam productivities from 75 to 670 tons per hour (TPH), are presented. Finally, the practical computation of the characteristics of the PFS, as function of coal properties, is discussed.

  13. Coal char fragmentation during pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.L.

    1995-07-01

    A series of investigations of coal and char fragmentation during pulverized coal combustion is reported for a suite of coals ranging in rank from lignite to low-volatile (lv) bituminous coal under combustion conditions similar to those found in commercial-scale boilers. Experimental measurements are described that utilize identical particle sizing characteristics to determine initial and final size distributions. Mechanistic interpretation of the data suggest that coal fragmentation is an insignificant event and that char fragmentation is controlled by char structure. Chars forming cenospheres fragment more extensively than solid chars. Among the chars that fragment, large particles produce more fine material than small particles. In all cases, coal and char fragmentation are seen to be sufficiently minor as to be relatively insignificant factors influencing fly ash size distribution, particle loading, and char burnout.

  14. Suppression of fine ash formation in pulverized coal flames. Final technical report, September 30, 1992--January 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kramlich, J.C.; Chenevert, B.; Park, Jungsung; Hoffman, D.A.; Butcher, E.K.

    1996-07-19

    Coal ash, and particularly fine fly ash, remain one of the principal practical and environmental problems in coal-based power generation. In particular, submicron aerosols are identified with direct inhalation risk. Submicron ash is thought to arise from mineral vaporization during char combustion, followed by nucleation, condensation and coagulation to yield an aerosol. While aerosols are predominantly made out of volatile alkali minerals, they also can include refractory oxides that are chemically reduced to more volatile forms within the char particle and vaporized. Most of the ash of size greater than 1 {mu}m is generated by agglomeration of mineral as the char particle bums out. These two principal mechanisms are thought to account for most of the ash generated in coal combustion. Previous research has shown that various forms of coal treatment can influence the yields of fine ash from combustion. The research reported here investigates various forms of treatment, including physical coal cleaning, aerodynamic sizing, degree of grinding, and combinations of these on both aerosol yields and on yields of fine residual ash (1-4 {mu}m). The work also includes results from the combustion of artificial chars that include individual mineral elements. This research shows that these various forms of coal treatment can significantly change ash characteristics. While none of the treatments affected the bulk of the residual ash size distribution significantly, the yield of the ash aerosol mode (d<0.5 {mu}m) and fine residual ash mode (1-4 {mu}m) are changed by the treatments.

  15. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for

  16. Pushing the pulverized coal envelope with LEBS

    Energy Technology Data Exchange (ETDEWEB)

    Regan, J.W.; Borio, R.W.; Palkes, M. [and others

    1995-11-01

    In response to challenges from technologies such as IGCC and PFBC, the ABB LEBS Team has proposed removing the barriers to very large advances in environmental and thermal performance of pulverized coal plants. Pulverized coal will continue to be the source of more than half of our electric generation well into the next century and we must develop low-risk low-cost advances that will compete with the claimed performance of other technologies. This paper describes near-term PC technologies for new and retrofit applications which will accomplish this.

  17. Impact of nongray multiphase radiation in pulverized coal combustion

    Science.gov (United States)

    Roy, Somesh; Wu, Bifen; Modest, Michael; Zhao, Xinyu

    2016-11-01

    Detailed modeling of radiation is important for accurate modeling of pulverized coal combustion. Because of high temperature and optical properties, radiative heat transfer from coal particles is often more dominant than convective heat transfer. In this work a multiphase photon Monte Carlo radiation solver is used to investigate and to quantify the effect of nongray radiation in a laboratory-scale pulverized coal flame. The nongray radiative properties of carrier phase (gas) is modeled using HITEMP database. Three major species - CO, CO2, and H2O - are treated as participating gases. Two optical models are used to evaluate radiative properties of coal particles: a formulation based on the large particle limit and a size-dependent correlation. Effect of scattering due to coal particle is also investigated using both isotropic scattering and anisotropic scattering using a Henyey-Greenstein function. Lastly, since the optical properties of ash is very different from that of coal, the effect of ash content on the radiative properties of coal particle is examined. This work used Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number ACI-1053575.

  18. Plasma-fuel systems for environment and economy indexes of pulverized coal incineration and gasification improvement

    Energy Technology Data Exchange (ETDEWEB)

    E. Karpenko; V. Messerle; A. Ustimenko [United Power System of Russia, Gusinoozersk (Russian Federation). Branch Centre of Plasma-Power Technologies of Russian J.S.Co.

    2003-07-01

    Coal is one of the main energy resources. To improve efficiency of coal incineration new plasma-energy technologies are developing. Steam-productivity 75t/h 670t/h boilers were tested for their starting up by plasma ignition of pulverized coal and flame stabilization. Laboratory (coal consumption to 20kg/h) and pilot (coal consumption 300kg/h and 32000kg/h) plasma gasification experiments are given. Plasma air and steam gasification of coal with its mineral mass utilization is studied. 8 refs., 10 figs., 4 tabs.

  19. Stabilization of pulverized coal combustion by plasma assist

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, M.; Maruta, K.; Takeda, K.; Solonenko, O.P.; Sakashita, M.; Nakamura, M. [Akita Prefectural University, Akita (Japan). Faculty of System Science & Technology

    2002-03-01

    Ignition and stabilization of pulverized coal combustion by plasma assist is investigated with a 10 kW plasma torch for three different kinds of coal, such as high, medium and low volatile matter coals. Not only high volatile matter coal but also low quality coal can be successfully burned with plasma assist. Research for volatile component of coal shows that a higher temperature field is necessary to extract the volatile matter from inferior coal, while their compositions are almost the same.

  20. NOx control in large-scale power plant boilers through superfine pulverized coal technology

    Institute of Scientific and Technical Information of China (English)

    Jie YIN; Jianxing REN; Dunsong WEI

    2008-01-01

    Superfine pulverized coal technology can effectively reduce NOx emission in coal-fired power plant boilers. It can also economize the cost of the power plant and improve the use of the ash in the flue gas. Superfine pulverized coal technology, which will be widely used in China, includes common superfine pulverized coal technology and superfine pulverized coal reburning technology. The use of superfine pulver-ized coal instead of common coal in large-scale power plants will not only reduce more than 30% of NOx emission but also improve the thermal efficiency of the boiler.

  1. Experimental study on ignition characteristics of pulverized coal under high-temperature oxygen condition

    Science.gov (United States)

    Liu, G. W.; Liu, Y. H.; Dong, P.

    2016-08-01

    The high-temperature oxygen ignition technology of pulverized coal, which can replace the oil gun and achieve oil-free pulverized coal ignition by mixing the high- temperature oxygen and the pulverized coal stream directly, was proposed and a relevant ignition experimental system was built. The ignition characteristics of pulverized coal under high-temperature oxygen condition were investigated: the ignition process was described and analyzed, the influence of relevant parameters on the pulverized coal stream ignition were obtained and analyzed. The results showed: when the oxygen heating temperature is over 750 °C, the pulverized coal stream could be ignited successfully by high-temperature oxygen; increasing the pulverized coal concentration, primary air temperature and oxygen volume flow rate or decreasing the primary air velocity is helpful for the ignition and combustion of the pulverized coal stream.

  2. A new approach to study fast pyrolysis of pulverized coal

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Yao, J.; Lin, W. [Chinese Academy of Sciences, Institute of Chemical Metallurgy Fast Reactions Laboratory, Beijing, BJ (China)

    2002-07-01

    An experimental study of the effects of varying bed temperature and coal particle size on the fast pyrolysis of pulverized coal in a downer reactor is described. A Datong bituminous coal (particle size 0.5 and 0.34 mm) was studied at temperatures ranging from 592{sup o} C to 720{sup o} C. The experiments were conducted in a batch apparatus. An on-line gas analyzer was used to measure carbon dioxide release curves. The experimental data were used to develop a pyrolysis model that quantifies the fast heating of fine coal particles. 14 refs., 4 figs., 2 tabs.

  3. Determination of the stagnation point in pulverized coal swirl flames by detailed analysis of laser velocity measurements; Staupunktbestimmung in Kohlenstaub-Drallflammen mittels detaillierter Analyse von LDA-Daten

    Energy Technology Data Exchange (ETDEWEB)

    Ohliger, A.; Stadler, H.; Foerster, M.; Kneer, R. [RWTH Aachen University (Germany). Lehrstuhl fuer Waerme- und Stoffuebertragung

    2009-07-01

    When Laser Doppler Anemometry (LDA) is used for experimental investigation of flow fields in pulverised coal flames, the measured coal particle velocities are usually averaged in order to determine the gas velocity. This paper shows that this approach can lead to a misinterpretation of the data. In the burner vicinity of the investigated flame, where high accelerations in the gas phase occur, a discrepancy appears between the measured velocity distribution and the expected normal distribution. Thus, a detailed analysis of the measured particle data is conducted and compared to conventional averaging. The difference can be attributed to large particles from the inner recirculation zone of the flame, which do not follow the gas flow properly. (orig.)

  4. NITRIC OXIDE FORMATION DURING PULVERIZED COAL COMBUSTION

    Science.gov (United States)

    Data on the overall conversion of coal-nitrogen to NOx were obtained at 1250 K and 1750 K for a residence time of one second. The conversion of coal-nitrogen to NOx decreased monotonically with increasing fuel/oxygen equivalence ratio and decreased slightly with increasing temper...

  5. Practice of promoting pulverized coal injection rate at no.4 blast furnace of China Steel Corporation

    Energy Technology Data Exchange (ETDEWEB)

    Liang, N.W.; Chang, C.T [China Steel Corp., Kaohsiung, Taiwan (China)

    2008-07-01

    In 2006, the China Steel Corporation (CSC) upgraded the injection system of its no.4 blast furnace to increase the pulverized coal (PC) rate which averaged 136 to 143 kg/thm. This paper described the scheduled shutdown of the furnace in May 2007 in order to modify it from a dilute phase injection system to a dense phase system using the technology of the Kuettner Company. Through proper burden distribution and operational parameter adjustments, the pulverized coal (PC) rate was increased to 178 kg/thm by November 2007, corresponding to a 65 t/hr injection rate with a productivity of 2.58 t/m{sup 3}/d. This paper described the challenges encountered following commissioning as well as the strategies of process control. The main differences between the existing and new injection system were that nitrogen was used to substitute compressed air as the conveying gas and the coal to gas ratio was increased from about 10 to 30 kg/kg. As a result, the transport method and the operation pressure had to be reassessed. This paper described the coal blend injection; screening facility for coal preparation; location of the distributor; and coal accumulation in the coal flow meter. The blast furnace adjustments included burden thickness control; burden distribution adjustment; improvement of raw material quality; and theoretical flame temperature adjustment. The upgrade project has proven to be very successful and has improved the competitiveness of CSC blast furnace no.4 significantly. Plans to upgrade the no.2 and no.3 blast furnaces are underway. Once completed, the operating cost and coke consumption of the blast furnaces will be reduced considerably. The modification to dense phase conveying system has shown that coal with high Hardgrove Index requires a higher driving force in the pneumatic dense phase transport and that coal mill equipped with a rotating classifier is recommended along with screens at the upstream of the feed tank. 3 refs., 6 tabs., 9 figs.

  6. Modeling of Pulverized Coal Combustion in Cement Rotary Kiln

    OpenAIRE

    2006-01-01

    In this paper, based on analysis of the chemical and physical processes of clinker formation, a heat flux function was introduced to take account of the thermal effect of clinker formation. Combining the models of gas-solid flow, heat and mass transfer, and pulverized coal combustion, a set of mathematical models for a full-scale cement rotary kiln were established. In terms of commercial CFD code (FLUENT), the distributions of gas velocity, gas temperature, and gas components in a cement rot...

  7. Pulverized coal and substitute fuels for the cement manufacturing industry

    Energy Technology Data Exchange (ETDEWEB)

    Dobrowsky, F.

    1981-01-01

    This paper comprises an article of general technical interest on coal and its use in the cement industry, plus the scope for using substitute fuels. Discusses coal properties and preparation (crushing). Describes the heating systems of the cement ovens: burners, combustion and parameters governing flame-length. Looks at operation problems connected with heating of the coal: caking, fusing, clinker quality and behaviour of the refractory bricks. Also discusses substitute fuels: type of fuel, scope for utilisation and requisite precautions. 32 refs.

  8. Temperature, velocity and species profile measurements for reburning in a pulverized, entrained flow, coal combustor

    Energy Technology Data Exchange (ETDEWEB)

    Tree, D.R.

    1999-03-01

    Nitrogen oxide emissions from pulverized coal combustion have been and will continue to be a regulated pollutant for electric utility boilers burning pulverized coal. Full scale combustion models can help in the design of new boilers and boiler retrofits which meet emissions standards, but these models require validation before they can be used with confidence. The objective of this work was to obtain detailed combustion measurements of pulverized coal flames which implement two NO reduction strategies, namely reburning and advanced reburning, to provide data for model validation. The data were also compared to an existing comprehensive pulverized coal combustion model with a reduced mechanism for NO reduction under reburning and advanced reburning conditions. The data were obtained in a 0.2 MW, cylindrical, down-fired, variable swirl, pulverized coal reactor. The reactor had a diameter of 0.76 m and a length of 2.4 m with access ports along the axial length. A Wyodak, sub-bituminous coal was used in all of the measurements. The burner had a centrally located primary fuel and air tube surrounded by heated and variably swirled secondary air. Species of NO, NO{sub x}, CO, CO{sub 2} and O{sub 2} were measured continuously. Aqueous sampling was used to measure HCN and NH{sub 3} at specific reactor locations. Samples were drawn from the reactor using water quenched suction probes. Velocity measurements were obtained using two component laser doppler anemometry in back-scatter mode. Temperature measurements were obtained using a shielded suction pyrometer. A series of six or more radial measurements at six or more axial locations within the reactor provided a map of species, temperature, and velocity measurements. In total, seven reactor maps were obtained. Three maps were obtained at baseline conditions of 0, 0.5 and 1.5 swirl and 10% excess air. Two maps were obtained under reburning conditions of 0.78 stoichiometric ratio and 1.5 swirl and 0.9 stoichiometric ratio and

  9. Effect of Particle Size Distribution on Wall Heat Flux in Pulverized-Coal Furnaces and Boilers

    Science.gov (United States)

    Lu, Jun

    A mathematical model of combustion and heat transfer within a cylindrical enclosure firing pulverized coal has been developed and tested against two sets of measured data (one is 1993 WSU/DECO Pilot test data, the other one is the International Flame Research Foundation 1964 Test (Beer, 1964)) and one independent code FURN3D from the Argonne National Laboratory (Ahluwalia and IM, 1992). The model called PILC assumes that the system is a sequence of many well-stirred reactors. A char burnout model combining diffusion to the particle surface, pore diffusion, and surface reaction is employed for predicting the char reaction, heat release, and evolution of char. The ash formation model included relates the ash particle size distribution to the particle size distribution of pulverized coal. The optical constants of char and ash particles are calculated from dispersion relations derived from reflectivity, transmissivity and extinction measurements. The Mie theory is applied to determine the extinction and scattering coefficients. The radiation heat transfer is modeled using the virtual zone method, which leads to a set of simultaneous nonlinear algebraic equations for the temperature field within the furnace and on its walls. This enables the heat fluxes to be evaluated. In comparisons with the experimental data and one independent code, the model is successful in predicting gas temperature, wall temperature, and wall radiative flux. When the coal with greater fineness is burnt, the particle size of pulverized coal has a consistent influence on combustion performance: the temperature peak was higher and nearer to burner, the radiation flux to combustor wall increased, and also the absorption and scattering coefficients of the combustion products increased. The effect of coal particle size distribution on absorption and scattering coefficients and wall heat flux is significant. But there is only a small effect on gas temperature and fuel fraction burned; it is speculated

  10. Novel fragmentation model for pulverized coal particles gasification in low temperature air thermal plasma

    Directory of Open Access Journals (Sweden)

    Jovanović Rastko D.

    2016-01-01

    Full Text Available New system for start-up and flame support based on coal gasification by low temperature air thermal plasma is planned to supplement current heavy oil system in Serbian thermal power plants in order to decrease air pollutions emission and operational costs. Locally introduced plasma thermal energy heats up and ignites entrained coal particles, thus starting chain process which releases heat energy from gasified coal particles inside burner channel. Important stages during particle combustion, such as particle devolatilisation and char combustion, are described with satisfying accuracy in existing commercial CFD codes that are extensively used as powerful tool for pulverized coal combustion and gasification modeling. However, during plasma coal gasification, high plasma temperature induces strong thermal stresses inside interacting coal particles. These stresses lead to “thermal shock” and extensive particle fragmentation during which coal particles with initial size of 50-100 m disintegrate into fragments of at most 5-10 m. This intensifies volatile release by a factor 3-4 and substantially accelerates the oxidation of combustible matter. Particle fragmentation, due to its small size and thus limited influence on combustion process is commonly neglected in modelling. The main focus of this work is to suggest novel approach to pulverized coal gasification under high temperature conditions and to implement it into commercial comprehensive code ANSYS FLUENT 14.0. Proposed model was validated against experimental data obtained in newly built pilot scale D.C plasma burner test facility. Newly developed model showed very good agreement with experimental results with relative error less than 10%, while the standard built-in gasification model had error up to 25%.

  11. Modeling and optimization of processes for clean and efficient pulverized coal combustion in utility boilers

    Directory of Open Access Journals (Sweden)

    Belošević Srđan V.

    2016-01-01

    Full Text Available Pulverized coal-fired power plants should provide higher efficiency of energy conversion, flexibility in terms of boiler loads and fuel characteristics and emission reduction of pollutants like nitrogen oxides. Modification of combustion process is a cost-effective technology for NOx control. For optimization of complex processes, such as turbulent reactive flow in coal-fired furnaces, mathematical modeling is regularly used. The NOx emission reduction by combustion modifications in the 350 MWe Kostolac B boiler furnace, tangentially fired by pulverized Serbian lignite, is investigated in the paper. Numerical experiments were done by an in-house developed three-dimensional differential comprehensive combustion code, with fuel- and thermal-NO formation/destruction reactions model. The code was developed to be easily used by engineering staff for process analysis in boiler units. A broad range of operating conditions was examined, such as fuel and preheated air distribution over the burners and tiers, operation mode of the burners, grinding fineness and quality of coal, boiler loads, cold air ingress, recirculation of flue gases, water-walls ash deposition and combined effect of different parameters. The predictions show that the NOx emission reduction of up to 30% can be achieved by a proper combustion organization in the case-study furnace, with the flame position control. Impact of combustion modifications on the boiler operation was evaluated by the boiler thermal calculations suggesting that the facility was to be controlled within narrow limits of operation parameters. Such a complex approach to pollutants control enables evaluating alternative solutions to achieve efficient and low emission operation of utility boiler units. [Projekat Ministarstva nauke Republike Srbije, br. TR-33018: Increase in energy and ecology efficiency of processes in pulverized coal-fired furnace and optimization of utility steam boiler air preheater by using in

  12. Cofiring coal-water slurry fuel with pulverized coal as a NOx reduction strategy

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Miller, S.F.; Morrison, J.L.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States)

    1997-12-31

    A low solids, low viscosity coal-water slurry fuel (CWSF) was formulated and produced from impounded bituminous coal fines and burned in a utility-scale boiler to investigate NOx emissions reduction during the cofiring of CWSF with pulverized coal. Tests were conducted at the Pennsylvania Electric Company (Penelec) Seward Station, located near Seward, Pennsylvania in a Babcock and Wilcox (B and W), front-wall fired, pulverized coal boiler (34 MWe). Two B and W pulverizers feed coal to six burners (two burner levels each containing three low-NOx burners). Approximately 20% of the thermal input was provided by CWSF, the balance by pulverized coal. There was a significant reduction of NOx emissions when cofiring CWSF and pulverized coal as compared to firing 100% pulverized coal. The level of reduction was dependent upon the cofiring configuration (i.e., cofiring in the upper three, lower three, or all six burners), with NOx emissions being reduced by as much as 26.5%. The reduction in NOx emissions was not due to the tempering effect of the water in the CWSF, because a greater reduction in NOx occurred when cofiring CWSF than when injecting the same quantity of water at the same boiler firing rate. This paper discusses the tests in detail and the proposed reburn mechanism for the NOx reduction. In addition, combustion test results from the front-wall fired unit at the Seward Station will be compared to CWSF cofire tests that have been conducted at cyclone-fired units at Tennessee Valley Authority`s (TVA) Paradise Station (704 MWe), Drakesboro, Kentucky and Southern Illinois Power Cooperative`s (SIPC) Marion, Illinois Station (33 MWe).

  13. Pulverized-coal-firing small-size boiler for coal-cartridge system

    Energy Technology Data Exchange (ETDEWEB)

    1986-12-01

    Kawasaki Heavy Industries, Ltd. supplied a test boiler plant to the Iwakuni Experimental Station of the Coal Cartridge System (CCS) Promotion Association in September 1985; this was the first pulverized-coal-fired small industrial boiler in Japan. Tests will be performed for two years, until fiscal 1987, at the CCS Iwakuni Experimental Station to establish a method of coal-firing with a performance comparable to heavy oil firing. The boiler plant has been operating satisfactorily.

  14. Experimental study on the angle of repose of pulverized coal

    Institute of Scientific and Technical Information of China (English)

    Wei Wang; Jiansheng Zhang; Shi Yang; Hai Zhang; Hairui Yang; Guangxi Yue

    2010-01-01

    An experimental study on the angle of repose(AoR)of pulverized coal with different particle sizes and different moisture contents(MC)was conducted.Three different measurement methods,free-base piling,fixed-base piling and sliding,were used.The data were analyzed by one-way and two-way analysis of variance.The results showed that the AoRs of pulverized coal with particle sizes smaller than 150 μm were in the range of 30-50°.The characterization of the flowability of pulverized coal was some cohesiveness or true cohesiveness.The increase of MC will increase AoR and thus decrease the flowability of the powder.However,the particle size effect is bifurcated.Below a critical size,the decrease of particle size decreases the flowability; while above the critical size,the decrease of particle size increases the flowability.It was found that the value of the critical size strongly depends on the powder density.Moreover,the AoR dependence on particle size could be linked with the Geldart's particle classification.The critical size at the turning point is on the boundary between Group A and Group B in Geldart's classification diagram.Based on the experimental results,there is no significant cross interaction between particle size and MC.The AoRs measured by free-base method and fixed-base method are close,but both remarkably smaller than that measured by the sliding method.

  15. Study on the NOx release rule along the boiler during pulverized coal combustion

    Institute of Scientific and Technical Information of China (English)

    JIN Jing; ZHANG Zhongxiao; LI Ruiyang

    2007-01-01

    Numerical simulation and experimental study on NOx release along the boiler during pulverized coal combustion have been conducted.With the increase of temperature the NOx emission increased and the peak value of NOx release moved forward.But when the temperature increased to a certain degree,NOx emission began to reduce.NOx emission increased with the increase of nitrogen content of coal.The peak value of NOx release moved backwards with the increase of coal rank.NOx emission increased obviously with the increase of stoichiometric ratio.There existed a critical average diameter of the pulverized coal (de).If d≤dc,NOx emission reduced with the decrease of pulverized coal size.If d>de,NOx emission reduced with the increase of the pulverized coal size.The results showed that the simulation results are in agreement with the experimental results for concentration distribution of NOx along the axis of the furnace.

  16. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy

    2005-10-01

    Low rank fuels such as subbituminous coals and lignites contain significant amounts of moisture compared to higher rank coals. Typically, the moisture content of subbituminous coals ranges from 15 to 30 percent, while that for lignites is between 25 and 40 percent, where both are expressed on a wet coal basis. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit. High fuel moisture results in fuel handling problems, and it affects heat rate, mass rate (tonnage) of emissions, and the consumption of water needed for evaporative cooling. This project deals with lignite and subbituminous coal-fired pulverized coal power plants, which are cooled by evaporative cooling towers. In particular, the project involves use of power plant waste heat to partially dry the coal before it is fed to the pulverizers. Done in a proper way, coal drying will reduce cooling tower makeup water requirements and also provide heat rate and emissions benefits. The technology addressed in this project makes use of the hot circulating cooling water leaving the condenser to heat the air used for drying the coal (Figure 1). The temperature of the circulating water leaving the condenser is usually about 49 C (120 F), and this can be used to produce an air stream at approximately 43 C (110 F). Figure 2 shows a variation of this approach, in which coal drying would be accomplished by both warm air, passing through the dryer, and a flow of hot circulating cooling water, passing through a heat exchanger located in the dryer. Higher temperature drying can be accomplished if hot flue gas from the boiler or extracted steam from the turbine cycle is used to supplement the thermal energy obtained from the circulating cooling water. Various options such as these are being examined in this investigation. This is the eleventh Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits

  17. Liquefaction behavior of finely pulverized coal. Chobifunsaitan no ekika hanno kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Y.; Kamo, T.; Miki, K.; Yamamoto, Y. (National Institute for Resources and Environment, Tsukuba (Japan))

    1992-11-05

    The reaction process of coal liquefaction which uses ultrafine pulverized coal having a particle diameter of several micrometers was investigated in order to improve the catalytic efficiency between coal and catalyst. Two kinds of samples were prepared by crushing Taiheiyo-coal into less than 100-mesh by usual technique and further pulverizing the crushed coal to several [mu]m. When iron oxide catalyst, sulfur and tetralin solvent were used, pulverizing does not bring a significant improvement in conversion rate and the yield of liquefaction oil capable of being distillated. This is considered to be due to the coagulation between fine particles before or during reaction, suggesting the importance of selecting reaction conditions etc. In the case of pulverized coal, hydrogen consumption is high and hydrogenation of heavy fractions such as SRC proceeds. When liquefaction-oil circulating solvent and red mud-sulfur-based catalyst were used, gas yield was low in pulverized coal, but no significant improvement was not shown in oil yield of liquefaction oil. The conversion rate and SRC yield were somewhat high in the case of pulverized coal. 3 figs., 2 tabs.

  18. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy; Harun Bilirgen; Ursla Levy; John Sale; Nenad Sarunac

    2006-01-01

    This is the twelfth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report and results are shown for a drying system utilizing a combination of waste heat from the condenser and thermal energy extracted from boiler flue gas.

  19. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy; Harun Bilirgen; Ursla Levy; John Sale; Nenad Sarunac

    2006-01-01

    This is the twelfth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report and results are shown for a drying system utilizing a combination of waste heat from the condenser and thermal energy extracted from boiler flue gas.

  20. Ash formation under pressurized pulverized coal combustion conditions

    Science.gov (United States)

    Davila Latorre, Aura Cecilia

    Coal combustion is a source of inorganic particulate matter (ash), which can deposit in boilers and also be emitted into the atmosphere becoming part of ambient fine particulate matter (PM 2.5). In order to decrease coal combustion emissions per unit of power produced, higher efficiency systems have been proposed, including systems operating at elevated pressures. These new operating conditions will affect pollutant formation mechanisms, particularly those associated with the conversion of mineral matter to ash. Ash particle formation mechanisms are particularly sensitive to changes in pressure as they are related to the structure of coal char particles at early stages of combustion. To assess the importance of pressure on ash particle formation, pyrolyzed chars and ash particles from pressurized pulverized combustion of two bituminous and one subbituminous U.S. coals at operating pressures up to 30 atm were studied. Pressure changes the distribution of char particle types, changing the spatial distribution of the minerals during the combustion process and therefore affecting particle formation mechanisms. Chars were examined by Scanning Electron Microscopy (SEM) and classified into two different types (cenospheric and solid) depending on porosity and wall thickness. A correlation for estimating the amount of these cenospheric char particles was then proposed for bituminous coals based on the operating conditions and coal maceral analysis. The ash particle size distribution of the coals combusted at different operating pressures was measured using Computer Controlled Scanning Electron Microscopy (CCSEM). The results of the char characterization and ash particle size distribution measurements were then incorporated into an ash particle formation algorithm that was proposed and implemented. The model predicts ash particle size and composition distributions at elevated pressures under conditions of complete char burnout. Ash predictions were calculated by first

  1. A kinetic model of carbon burnout in pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, R.; Jian-Kuan Sun; Lunden, M. [Brown University, Providence, RI (United States). Division of Engineering

    1998-04-01

    The degree of carbon burnout is an important operating characteristic of full-scale suspension-fired coal combustion systems affecting boiler efficiency, electrostatic precipitator operation and the value of fly ash as a saleable product. Prediction of carbon loss requires special char combustion kinetics valid through the very high conversions targeted in industry (typically {gt} 99.5%), and valid for a wide-range of particle temperature histories occurring in full-scale furnaces. The paper presents high-temperature kinetic data for five coal chars in the form of time-resolved burning profiles that include the late stages of combustion. It then describes the development and validation of the Carbon Burnout Kinetic Model (CBK), a coal-general kinetics package that is specifically designed to predict the total extent of carbon burnout and ultimate fly ash carbon content for prescribed temperature/oxygen histories typical of pulverized coal combustion systems. The model combines the single-film treatment of cha oxidation with quantitative descriptions of thermal annealing, statistical kinetics, statistical densities, and ash inhibition in the late stages of combustion. In agreement with experimental observations, the CBK model predicts (1) low reactivities for unburned carbon residues extracted from commercial ash samples, (2) reactivity loss in the late stages of laboratory combustion, (3) the observed sensitivity of char reactivity to high-temperature heat treatment on second and subsecond time scales, and (4) the global reaction inhibition by mineral matter in the late stages of combustion observed in single-particle imaging studies. The model ascribes these various char deactivation phenomena to the combined effects of thermal annealing, ash inhibition, and the preferential consumption of more reactive particles (statistical kinetics), the relative contributions of which vary greatly with combustion conditions. 39 refs., 4 figs., 4 tabs., 1 app.

  2. Nitric oxide formation mechanisms, and their computation in pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Flour, I.; Dal Secco, S.

    1995-10-01

    This report consists of a review of several articles on nitric oxide emissions from coal-fired furnace. Three mechanisms have been identified, depending on the initial nitrogen sources and the composition of specific flame regions: - thermal-NO, formed from molecular nitrogen in the combustion products region at high temperature, - prompt-NO, formed from molecular nitrogen in the oxidation zone, - fuel-NO, formed from the fuel-bound nitrogen, partly during the coal pyrolysis (homogeneous reactions) and partly through reactions on the surface of the particle. In the combustion of pulverized coal, the fuel-NO mechanism accounts for the main source of nitric oxide formed. Detailed schemes of those reactions - when available - are too much complex to be used in tri-dimensional computation of pollutant emissions in furnaces of practical interest. According to the literature, reduced schemes seem to have been applied most frequently. The reaction schemes for the fuel-NO and the prompt-NO are based on the results of De Soete. For the homogeneous reactions, the intermediate species formed is assumed to be mainly HCN, leading to both formation and reduction reactions for NO, depending on the flame region. The formation of nitric oxide from the char-bound nitrogen, through heterogeneous reactions on the surface on the particle, is modelled by assuming the char-bound nitrogen to be released as HCN, with a rate proportional to char combustion. The released char nitrogen then reacts through the same path as the HCN released during pyrolysis. In the thermal-NO mechanism, nitric oxide is formed from molecular nitrogen, through the extended Zeldovich mechanism. This scheme contains radical species (O, N), which concentrations are assumed to be determined from the stationary condition or the equilibrium assumption. However, in spite of the use of reduced schemes for NO formation, the modelling of the important effect of the turbulent fluctuations has to be taken into account.

  3. Simulation of low-temperature plasma interaction with pulverized coal for incineration improvement

    Energy Technology Data Exchange (ETDEWEB)

    A. Askarova; E. Karpenko; V. Messerle; A. Ustimenko [Al-Farabi Kazakh National University, Almaty (Kazakhstan). Department of Physics

    2003-07-01

    Plasma activation promotes more effective and environmental friendly low-grade coals incineration. The work presents numerical modeling results of plasma ignition, gasification and thermochemical preparation of a pulverized coal for incineration at power boilers. Thermodynamic code TERRA allows calculating products compound of plasma activated pulverized coal depended on temperature, pressure and plasma source power. Considering plasma source kinetic code PLASMA-COAL gives initial data for 3D-modeling of power boilers furnaces by FLOREAN code. 5 refs., 13 figs., 5 tabs.

  4. Pretreatment of biomass by torrefaction and carbonization for coal blend used in pulverized coal injection.

    Science.gov (United States)

    Du, Shan-Wen; Chen, Wei-Hsin; Lucas, John A

    2014-06-01

    To evaluate the utility potential of pretreated biomass in blast furnaces, the fuel properties, including fuel ratio, ignition temperature, and burnout, of bamboo, oil palm, rice husk, sugarcane bagasse, and Madagascar almond undergoing torrefaction and carbonization in a rotary furnace are analyzed and compared to those of a high-volatile coal and a low-volatile one used in pulverized coal injection (PCI). The energy densities of bamboo and Madagascar almond are improved drastically from carbonization, whereas the increase in the calorific value of rice husk from the pretreatment is not obvious. Intensifying pretreatment extent significantly increases the fuel ratio and ignition temperature of biomass, but decreases burnout. The fuel properties of pretreated biomass materials are superior to those of the low-volatile coal. For biomass torrefied at 300°C or carbonized at temperatures below 500°C, the pretreated biomass can be blended with coals for PCI.

  5. Pulverized coal torch combustion in a furnace with plasma-coal system

    Science.gov (United States)

    Messerle, V. E.; Ustimenko, A. B.; Askarova, A. S.; Nagibin, A. O.

    2010-09-01

    Combustion of a pulverized coal torch has been numerically simulated on the basis of the equations of multicomponent turbulent two-phase flows. The results of three-dimensional simulation of conventional and plasma activated coal combustion in a furnace are presented. Computer code Cinar ICE was verified at coal combustion in the experimental furnace with thermal power of 3 MW that was equipped with plasma-fuel system. Operation of the furnace has been studied at the conventional combustion mode and with plasma activation of coal combustion. Influence of plasma activation of combustion on thermotechnical characteristics of the torch and decrease of carbon loss and nitrogen oxides concentration at the furnace outlet has been revealed.

  6. Detailed model for practical pulverized coal furnaces and gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Philips, S.D.; Smoot, L.D.

    1989-08-01

    The need to improve efficiency and reduce pollutant emissions commercial furnaces has prompted energy companies to search for optimized operating conditions and improved designs in their fossil-fuel burning facilities. Historically, companies have relied on the use of empirical correlations and pilot-plant data to make decisions about operating conditions and design changes. The high cost of collecting data makes obtaining large amounts of data infeasible. The main objective of the data book is to provide a single source of detailed three-dimensional combustion and combustion-related data suitable for comprehensive combustion model evaluation. Five tasks were identified as requirements to achieve the main objective. First, identify the types of data needed to evaluate comprehensive combustion models, and establish criteria for selecting the data. Second, identify and document available three-dimensional combustion data related to pulverized coal combustion. Third, collect and evaluate three-dimensional data cases, and select suitable cases based on selection criteria. Fourth, organize the data sets into an easy-to-use format. Fifth, evaluate and interpret the nature and quality of the data base. 39 refs., 15 figs., 14 tabs.

  7. Small scale experiment on the plasma assisted thermal chemical preparation and combustion of pulverized coal

    Energy Technology Data Exchange (ETDEWEB)

    Masaya, Sugimoto; Koichi, Takeda [Akita Prefectural University (Japan); Solonenko, O.P. [Institute of Theoretical and Applied Mechanics, Novosibirsk (Russian Federation); Sakashita, M.; Nakamura, M. [Japan Technical Information Service, Tokyo (Japan)

    2001-07-01

    Ignition and stable combustion of pulverized coal with Nitrogen and Air plasmas are investigated experimentally for some different types of coal. The experimental results show that air plasma has strong effect for ignition and stabilization of coal combustion. In addition, suppression of NO{sub x} production could be possible even in air plasma. It is possible to ignite and burn stably for the inferior coal that contains volatile matter in the ratio of only 10% of dry total mass. (authors)

  8. A Model for Nitrogen Chemistry in Oxy-Fuel Combustion of Pulverized Coal

    OpenAIRE

    Hashemi, Hamid; Hansen, Stine; Toftegaard, Maja Bøg; Pedersen, Kim Hougaard; Jensen, Anker Degn; Dam-Johansen, Kim; Glarborg, Peter

    2011-01-01

    In this work, a model for the nitrogen chemistry in the oxy-fuel combustion of pulverized coal has been developed. The model is a chemical reaction engineering type of model with a detailed reaction mechanism for the gas-phase chemistry, together with a simplified description of the mixing of flows, heating and devolatilization of particles, and gas–solid reactions. The model is validated by comparison with entrained flow reactor results from the present work and from the literature on pulver...

  9. New computer program plots coal particle size to monitor pulverizer performance

    Energy Technology Data Exchange (ETDEWEB)

    Tartar, A.M. (Univ. of Missouri, St. Louis, MO (United States)); Mueller, W.K. (Union Electric Co., St. Louis, MO (United States)); Marrero, T.R.

    1994-11-01

    Maintaining proper coal particle size and distribution is one of many considerations in achieving efficient combustion performance. Improper pulverizer operation and maintenance can result in an excessive percentage of either coarse coal particles, which tends to increase the amount of unburned carbon in the ash, or fine coal particles, which can limit the throughput of the pulverizer and, if too fine, can affect coal burning rates and residence time in boilers. Traditionally, coal particle size plotting and distribution have been done by hand and required special graphing paper formulated using the Rosin and Rammler equation. Now there is an alternative. This article describes a computerized procedure for plotting the fineness of coal particles after the milling process developed by engineers at Union Electric Co., St. Louis, Mo., and the University of Missouri, Columbia. Known as an ANTAR-UE, this procedure is being used by the Betterment Engineering group at Union Electric to plot mill fineness data.

  10. High gradient magnetic beneficiation of dry pulverized coal via upwardly directed recirculating fluidization

    Science.gov (United States)

    Eissenberg, David M.; Liu, Yin-An

    1980-01-01

    This invention relates to an improved device and method for the high gradient magnetic beneficiation of dry pulverized coal, for the purpose of removing sulfur and ash from the coal whereby the product is a dry environmentally acceptable, low-sulfur fuel. The process involves upwardly directed recirculating air fluidization of selectively sized powdered coal in a separator having sections of increasing diameters in the direction of air flow, with magnetic field and flow rates chosen for optimum separations depending upon particulate size.

  11. Numerical study of co-firing pulverized coal and biomass inside a cement calciner.

    Science.gov (United States)

    Mikulčić, Hrvoje; von Berg, Eberhard; Vujanović, Milan; Duić, Neven

    2014-07-01

    The use of waste wood biomass as fuel is increasingly gaining significance in the cement industry. The combustion of biomass and particularly co-firing of biomass and coal in existing pulverized-fuel burners still faces significant challenges. One possibility for the ex ante control and investigation of the co-firing process are computational fluid dynamics (CFD) simulations. The purpose of this paper is to present a numerical analysis of co-firing pulverized coal and biomass in a cement calciner. Numerical models of pulverized coal and biomass combustion were developed and implemented into a commercial CFD code FIRE, which was then used for the analysis. Three-dimensional geometry of a real industrial cement calciner was used for the analysis. Three different co-firing cases were analysed. The results obtained from this study can be used for assessing different co-firing cases, and for improving the understanding of the co-firing process inside the calculated calciner.

  12. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Edward K. Levy; Nenad Sarunac; Harun Bilirgen; Hugo Caram

    2006-03-01

    U.S. low rank coals contain relatively large amounts of moisture, with the moisture content of subbituminous coals typically ranging from 15 to 30 percent and that for lignites from 25 and 40 percent. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit, for it can result in fuel handling problems and it affects heat rate, stack emissions and maintenance costs. Theoretical analyses and coal test burns performed at a lignite fired power plant show that by reducing the fuel moisture, it is possible to improve boiler performance and unit heat rate, reduce emissions and reduce water consumption by the evaporative cooling tower. The economic viability of the approach and the actual impact of the drying system on water consumption, unit heat rate and stack emissions will depend critically on the design and operating conditions of the drying system. The present project evaluated the low temperature drying of high moisture coals using power plant waste heat to provide the energy required for drying. Coal drying studies were performed in a laboratory scale fluidized bed dryer to gather data and develop models on drying kinetics. In addition, analyses were carried out to determine the relative costs and performance impacts (in terms of heat rate, cooling tower water consumption and emissions) of drying along with the development of optimized drying system designs and recommended operating conditions.

  13. Modeling of pulverized coal combustion stabilization by means of plasma torches

    Energy Technology Data Exchange (ETDEWEB)

    Miroslav Sijercic; Srdjan Belosevic; Predrag Stefanovic [VINCA Institute of Nuclear Science, Belgrade (Serbia and Montenegro)

    2005-07-01

    Application of plasma-system for pulverized coal ignition and combustion stabilization in utility boiler furnaces promises to achieve certain savings compared to the use of heavy oil burners. Plasma torches are built in air-coal dust mixture ducts between coal mills and burners. Characteristics of processes in the ducts with plasma-system for pulverized coal combustion stabilization are analyzed in the paper, with respect to the modeling and numerical simulation of mass, momentum and heat transfer in two-phase turbulent gas particle flow. The simulations have been performed for three different geometries of the air-coal dust mixture ducts with plasma torches, for TENT A1 utility boiler and pulverized lignite Kolubara-Field 'D'. Selected results of numerical simulation of processes are presented. The plasma-system thermal effect is discussed regarding corresponding savings of liquid fuel. The results of numerical simulations have been analyzed with respect to the processes in the duct and especially with respect to the influence of the duct shape to a temperature field at the out let cross section, as a basis for the duct geometry optimization. It has been emphasized that numerical simulation of processes can be applied in analysis and optimization of pulverized coal ignition and combustion stabilization and enables efficient and cost-effective scaling-up procedure from laboratory to industrial level. 22 refs., 4 figs.

  14. Cold Gas-particle Flows in a New Swirl Pulverized-coal Burner by PDPA Measurement

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new type of swirl burner has been developed to stabilize pulverized-coal combustion by burning different types of coal at different loads and to reduce NOx formation during combustion. The burner uses a device to concentrate the coal powder in the primary-air tube that divides the primary coal-air into two streams with different pulverized-coal concentrations. This paper reports the measurement of gas-particle flows at the exit of the different swirl burners using a 3-D Phase Doppler Particle Anemometer (PDPA). The effect of different geometrical configurations on the two-phase flow field is studied. The results that give the two-phase flow fields and particle concentrations show the superiority of the new swirl burner.

  15. Large eddy simulations of coal jet flame ignition using the direct quadrature method of moments

    Science.gov (United States)

    Pedel, Julien

    The Direct Quadrature Method of Moments (DQMOM) was implemented in the Large Eddy Simulation (LES) tool ARCHES to model coal particles. LES coupled with DQMOM was first applied to nonreacting particle-laden turbulent jets. Simulation results were compared to experimental data and accurately modeled a wide range of particle behaviors, such as particle jet waviness, spreading, break up, particle clustering and segregation, in different configurations. Simulations also accurately predicted the mean axial velocity along the centerline for both the gas phase and the solid phase, thus demonstrating the validity of the approach to model particles in turbulent flows. LES was then applied to the prediction of pulverized coal flame ignition. The stability of an oxy-coal flame as a function of changing primary gas composition (CO2 and O2) was first investigated. Flame stability was measured using optical measurements of the flame standoff distance in a 40 kW pilot facility. Large Eddy Simulations (LES) of the facility provided valuable insight into the experimentally observed data and the importance of factors such as heterogeneous reactions, radiation or wall temperature. The effects of three parameters on the flame stand-off distance were studied and simulation predictions were compared to experimental data using the data collaboration method. An additional validation study of the ARCHES LES tool was then performed on an air-fired pulverized coal jet flame ignited by a preheated gas flow. The simulation results were compared qualitatively and quantitatively to experimental observations for different inlet stoichiometric ratios. LES simulations were able to capture the various combustion regimes observed during flame ignition and to accurately model the flame stand-off distance sensitivity to the stoichiometric ratio. Gas temperature and coal burnout predictions were also examined and showed good agreement with experimental data. Overall, this research shows that high

  16. Joule II - Programme. Clean coal technology R & D. 2nd phase. Volume III. Atmospheric combustion of pulverized coal and coal based blends for power generation

    Energy Technology Data Exchange (ETDEWEB)

    Hein, K.R.G.; Minchener, A.J.; Pruschek, R.; Roberts, P.A. [eds.

    1998-12-31

    Topics covered in this Joule II clean coal technology publication include: coal preparation and blending; cocombustion of coal with biomass and wastes; flame modelling; NO{sub x} abatement by combustion control and staging; coal quality and NO{sub x} emissions; coal combustion properties; and fluidized bed combustion of coal. All papers have been abstracted separately.

  17. Advanced char burnout models for the simulation of pulverized coal fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    T. Severin; S. Wirtz; V. Scherer [Ruhr-University, Bochum (Germany). Institute of Energy Plant Technology (LEAT)

    2005-07-01

    The numerical simulation of coal combustion processes is widely used as an efficient means to predict burner or system behaviour. In this paper an approach to improve CFD simulations of pulverized coal fired boilers with advanced coal combustion models is presented. In simple coal combustion models, first order Arrhenius rate equations are used for devolatilization and char burnout. The accuracy of such simple models is sufficient for the basic aspects of heat release. The prediction of carbon-in-ash is one aspect of special interest in the simulation of pulverized coal fired boilers. To determine the carbon-in-ash levels in the fly ash of coal fired furnaces, the char burnout model has to be more detailed. It was tested, in how far changing operating conditions affect the carbon-in-ash prediction of the simulation. To run several test cases in a short time, a simplified cellnet model was applied. To use a cellnet model for simulations of pulverized coal fired boilers, it was coupled with a Lagrangian particle model, used in CFD simulations, too. 18 refs., 5 figs., 5 tabs.

  18. A novel model for cost performance evaluation of pulverized coal injected into blast furnace based on effective calorific value

    Institute of Scientific and Technical Information of China (English)

    徐润生; 张建良; 左海滨; 李克江; 宋腾飞; 邵久刚

    2015-01-01

    The combustion process of pulverized coal injected into blast furnace involves a lot of physical and chemical reactions. Based on the combustion behaviors of pulverized coal, the conception of coal effective calorific value representing the actual thermal energy provided for blast furnace was proposed. A cost performance evaluation model of coal injection was built up for the optimal selection of various kinds of coal based on effective calorific value. The model contains two indicators: coal effective calorific value which has eight sub-indicators and coal injection cost which includes four sub-indicators. In addition, the calculation principle and application of cost performance evaluation model in a Chinese large-scale iron and steel company were comprehensively introduced. The evaluation results finally confirm that this novel model is of great significance to the optimal selection of blast furnace pulverized coal.

  19. Investigation on Pulverized Coal Combustion Behavior by Non-Isothermic Integral Thermogravimetry Method

    Institute of Scientific and Technical Information of China (English)

    QI Cheng-lin; ZHANG Jian-liang; LIN Xiang-hai; LIU Qin-yuan; WANG Xiao-liu

    2011-01-01

    The combustion process of pulverized coal was investigated by non-isothermic integral thermogravimetry. The thermogravimetry curves were fitted by the Coats-Redferm approximation function, and kinetic parameters and characteristic temperatures were obtained. The optimal mixing ratio and particle size can be ascertained. The characteristic temperature of pulverized coal can be obtained from the thermogravimetry curve, and the combustion of coal can be divided into homogeneous and heterogeneous combustion according to the differential thermal analysis curve. The activation energy of a single type of coal ranking from low to high is as follows: bituminous coal, meager-lean coal, and anthracite. In the first mixing method, with more low-price meager-lean coal B replacing high price anthracite A, the activation energy slightly decreases; with more bituminous coal replacing meager-lean coal, total tendency makes a declining of activation. In the later mixing method, with an increase in particle size, a declining activation energy can be seen in total tendency.

  20. Pulverized coal injection in blast furnaces at ArcelorMittal Tubarao (AMT)

    Energy Technology Data Exchange (ETDEWEB)

    Klein, C.A.; Fujihara, F.K.; Defendi, G.A.; Tauffer Barros, R.J. [ArcelorMittal Tubarao, Serra (Brazil). Ironmaking Dept.

    2008-07-01

    The main factors that influence the performance of coal injected into blast furnaces include coal properties, combustion conditions and the equipment used in the plants for grinding, transportation and injection of coal. This paper focused on coal properties and the main operational control changes in the no.1 blast furnace at ArcelorMittal Tubarao. The furnace was modified from an all coke operation to a pulverized coal injection (pci) operation in order to ensure high productivity, low fuel consumption and longer service life. ArcelorMittal Tubarao has developed a coal buying model based on energy balance and the chemical analysis of ash. In the energy balance, the ratio between the heat supplied by carbon combustion and the heat consumed by the cracking of water and volatiles results in the potential rate of coke replacement by coal. 5 refs., 1 tab., 10 figs.

  1. Pulverized coal burnout in blast furnace simulated by a drop tube furnace

    Energy Technology Data Exchange (ETDEWEB)

    Du, Shan-Wen [Steel and Aluminum Research and Development Department, China Steel Corporation, Kaohsiung 812 (China); Chen, Wei-Hsin [Department of Greenergy, National University of Tainan, Tainan 700 (China); Lucas, John A. [School of Engineering of the University of Newcastle, Callaghan, NSW 2308 (Australia)

    2010-02-15

    Reactions of pulverized coal injection (PCI) in a blast furnace were simulated using a drop tube furnace (DTF) to investigate the burnout behavior of a number of coals and coal blends. For the coals with the fuel ratio ranging from 1.36 to 6.22, the experimental results indicated that the burnout increased with decreasing the fuel ratio, except for certain coals departing from the general trend. One of the coals with the fuel ratio of 6.22 has shown its merit in combustion, implying that the blending ratio of the coal in PCI operation can be raised for a higher coke replacement ratio. The experiments also suggested that increasing blast temperature was an efficient countermeasure for promoting the combustibility of the injected coals. Higher fuel burnout could be achieved when the particle size of coal was reduced from 60-100 to 100-200 mesh. However, once the size of the tested coals was in the range of 200 and 325 mesh, the burnout could not be improved further, resulting from the agglomeration of fine particles. Considering coal blend reactions, the blending ratio of coals in PCI may be adjusted by the individual coal burnout rather than by the fuel ratio. (author)

  2. Impact of petrographic properties on the burning behavior of pulverized coal using a drop tube furnace

    Energy Technology Data Exchange (ETDEWEB)

    S. Biswas; N. Choudhury; S. Ghosal; T. Mitra; A. Mukherjee; S.G. Sahu; M. Kumar [Jadavpur University, Dhanbad (India). Central Fuel Research Institute]. sb_cfri@yahoo.co.in

    2007-12-15

    The combustion behavior of three Indian coals of different rank with wide variation in ash content and maceral compositions were studied using a drop tube furnace (DTF). Each coal was pulverized into a specific size (80% below 200 mesh) and fed into the DTF separately. The DTF runs were carried out under identical conditions for all of the coals. The carbon burnout was found out from the chemical analyses of the feed coals and the char samples collected from different ports of the DTF. Char morphology analyses was carried on the burnout residues of the top port. The top port results show better burnout of the lower rank coals which however was not observed in the last port. An attempt has been made to account for this variation in terms of rank and petrographic parameters of the respective coals. 20 refs., 1 fig., 6 tabs.

  3. The Influencing Factors and Countermeasures for Self-ignition of Pulverized Coal Warehouse in Pulverized Coal Milling System%中间储仓式制粉系统粉仓自燃影响因素及对策

    Institute of Scientific and Technical Information of China (English)

    金帆; 李善涛

    2012-01-01

    针对中国石化上海石油化工股份有限公司热电部410 t/h煤粉炉在停炉抢修期间中间储仓式的粉仓内温度急剧上升、煤粉自燃的现象,分析了引起煤粉自燃的影响因素。根据实际情况,提出了煤粉自燃的防治措施和预防粉仓温度升高的方法。%Regarding the quick rising of temperature in the middle-warehouse pulverized coal house and self-ignition of pulverized coal in 410 t/a pulverized coal furnace during shutdown and emergency repairing period,the influencing factors causing self-ignition of pulverized coal were analyzed.Based on the practical situation,the preventions for self-ignition of pulverized coal and methods for preventing temperature in pulverized coal house from rising were raised.

  4. Relationship between Particle Size Distribution of Low-Rank Pulverized Coal and Power Plant Performance

    Directory of Open Access Journals (Sweden)

    Rajive Ganguli

    2012-01-01

    Full Text Available The impact of particle size distribution (PSD of pulverized, low rank high volatile content Alaska coal on combustion related power plant performance was studied in a series of field scale tests. Performance was gauged through efficiency (ratio of megawatt generated to energy consumed as coal, emissions (SO2, NOx, CO, and carbon content of ash (fly ash and bottom ash. The study revealed that the tested coal could be burned at a grind as coarse as 50% passing 76 microns, with no deleterious impact on power generation and emissions. The PSD’s tested in this study were in the range of 41 to 81 percent passing 76 microns. There was negligible correlation between PSD and the followings factors: efficiency, SO2, NOx, and CO. Additionally, two tests where stack mercury (Hg data was collected, did not demonstrate any real difference in Hg emissions with PSD. The results from the field tests positively impacts pulverized coal power plants that burn low rank high volatile content coals (such as Powder River Basin coal. These plants can potentially reduce in-plant load by grinding the coal less (without impacting plant performance on emissions and efficiency and thereby, increasing their marketability.

  5. Application of the NOx Reaction Model for Development of Low-NOx Combustion Technology for Pulverized Coals by Using the Gas Phase Stoichiometric Ratio Index

    Directory of Open Access Journals (Sweden)

    Kenji Yamamoto

    2011-03-01

    Full Text Available We previously proposed the gas phase stoichiometric ratio (SRgas as an index to evaluate NOx concentration in fuel-rich flames. The SRgas index was defined as the amount of fuel required for stoichiometric combustion/amount of gasified fuel, where the amount of gasified fuel was the amount of fuel which had been released to the gas phase by pyrolysis, oxidation and gasification reactions. In the present study we found that SRgas was a good index to consider the gas phase reaction mechanism in fuel-rich pulverized coal flames. When SRgas < 1.0, NOx concentration was strongly influenced by the SRgas value. NOx concentration was also calculated by using a reaction model. The model was verified for various coals, particle diameters, reaction times, and initial oxygen concentrations. The most important reactions were gas phase NOx reduction reactions by hydrocarbons. The hydrocarbon concentration was estimated based on SRgas. We also investigated the ratio as an index to develop a new low-NOx combustion technology for pulverized coals. We examined the relation between local SRgas distribution in the fuel-rich region in the low-NOx flame and NOx emissions at the furnace exit, by varying burner structures. The relationship between local SRgas value and local NOx concentration was also examined. When a low-NOx type burner was used, the value of SRgas in the flame was readily decreased. When the local SRgas value was the same, it was difficult to influence the local NOx concentration by changing the burner structure. For staged combustion, the most important item was to design the burner structure and arrangement so that SRgas could be lowered as much as possible just before mixing with staged air.

  6. Energy Analysis of a Biomass Co-firing Based Pulverized Coal Power Generation System

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2012-03-01

    Full Text Available The results are reported of an energy analysis of a biomass/coal co-firing based power generation system, carried out to investigate the impacts of biomass co-firing on system performance. The power generation system is a typical pulverized coal-fired steam cycle unit, in which four biomass fuels (rice husk, pine sawdust, chicken litter, and refuse derived fuel and two coals (bituminous coal and lignite are considered. Key system performance parameters are evaluated for various fuel combinations and co-firing ratios, using a system model and numerical simulation. The results indicate that plant energy efficiency decreases with increase of biomass proportion in the fuel mixture, and that the extent of the decrease depends on specific properties of the coal and biomass types.

  7. Adapter for converting an oil burner head for burning of pulverized coal

    Energy Technology Data Exchange (ETDEWEB)

    Musil, J.E.

    1988-03-29

    This patent describes a burner head means forming a primary air passage in the burner head including a portion of generally circular configuration in cross-section having openings uniformally circularly disposed about its periphery, and a manifold effective to envelope the primary air passage means. The manifold has inlet means for connection to a source of pulverized coal and air, internal coal and air passages downstream of the inlet effective to divide incoming coal and air into a plurality of discrete streams thereof, and a manifold coal and air outlet opening from each coal and air passage. The manifold outlet openings each are in communication with a duct means having an outlet discharging into one of the openings about the periphery of the primary air passage means.

  8. Trace element emissions when firing pulverized coal in a pilot-scale combustion facility

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.F.; Wincek, R.T.; Miller, B.G.; Scaroni, A.W.

    1998-07-01

    Strategies are being developed at Penn State to produce ultralow emissions when firing coal-based fuels, i.e., micronized coal and coal-water slurry fuel (CWSF), in industrial boilers. The work is being conducted on the bench, pilot, and demonstration scale, and the emissions being addressed are SO{sub 2}, NO{sub x}, fine particulate matter (PM{sub 10} and PM{sub 2.5}), and air toxics (trace elements and volatile organic compounds). Technical issues related to trace element emissions that are to be addressed include: (1) the effectiveness of coal cleaning; (2) the effect of fuel form (CWSF and pulverized coal); (3) partitioning between the solid and vapor phases; (4) the effect of boiler size; (5) penetration through particulate control devices; (6) the effect of sootblowing; and (7) mercury speciation. This paper discusses the results of preliminary work to determine trace element emissions when firing a raw and cleaned pulverized coal in a pilot-scale combustor. A companion paper, which follows in the proceedings, gives the results of polynuclear aromatic hydrocarbon (PAH) emissions testing in the pilot-scale combustor and in a small industrial boiler. Results from fine particulate testing is found elsewhere in the proceedings.

  9. Fundamentals of the physical-chemistry of pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lahaye, J.; Prado, G. (eds.)

    1987-01-01

    A total of 20 papers were presented at the conference in seven sessions the major headings of which are: devolatilization, heterogeneous combustion, pollutants in coal combustion, optical diagnostics and transfer to the modelling.

  10. Novel fragmentation model for pulverized coal particles gasification in low temperature air thermal plasma

    OpenAIRE

    Jovanović Rastko D.; Cvetinović Dejan B.; Stefanović Predrag Lj.; Škobalj Predrag D.; Marković Zoran J.

    2016-01-01

    New system for start-up and flame support based on coal gasification by low temperature air thermal plasma is planned to supplement current heavy oil system in Serbian thermal power plants in order to decrease air pollutions emission and operational costs. Locally introduced plasma thermal energy heats up and ignites entrained coal particles, thus starting chain process which releases heat energy from gasified coal particles inside burner channel. Important...

  11. Distribution of trace elements in selected pulverized coals as a function of particle size and density

    Science.gov (United States)

    Senior, C.L.; Zeng, T.; Che, J.; Ames, M.R.; Sarofim, A.F.; Olmez, I.; Huggins, Frank E.; Shah, N.; Huffman, G.P.; Kolker, A.; Mroczkowski, S.; Palmer, C.; Finkelman, R.

    2000-01-01

    Trace elements in coal have diverse modes of occurrence that will greatly influence their behavior in many coal utilization processes. Mode of occurrence is important in determining the partitioning during coal cleaning by conventional processes, the susceptibility to oxidation upon exposure to air, as well as the changes in physical properties upon heating. In this study, three complementary methods were used to determine the concentrations and chemical states of trace elements in pulverized samples of four US coals: Pittsburgh, Illinois No. 6, Elkhorn and Hazard, and Wyodak coals. Neutron Activation Analysis (NAA) was used to measure the absolute concentration of elements in the parent coals and in the size- and density-fractionated samples. Chemical leaching and X-ray absorption fine structure (XAFS) spectroscopy were used to provide information on the form of occurrence of an element in the parent coals. The composition differences between size-segregated coal samples of different density mainly reflect the large density difference between minerals, especially pyrite, and the organic portion of the coal. The heavy density fractions are therefore enriched in pyrite and the elements associated with pyrite, as also shown by the leaching and XAFS methods. Nearly all the As is associated with pyrite in the three bituminous coals studied. The sub-bituminous coal has a very low content of pyrite and arsenic; in this coal arsenic appears to be primarily organically associated. Selenium is mainly associated with pyrite in the bituminous coal samples. In two bituminous coal samples, zinc is mostly in the form of ZnS or associated with pyrite, whereas it appears to be associated with other minerals in the other two coals. Zinc is also the only trace element studied that is significantly more concentrated in the smaller (45 to 63 ??m) coal particles.

  12. Development and numerical/experimental characterization of a lab-scale flat flame reactor allowing the analysis of pulverized solid fuel devolatilization and oxidation at high heating rates

    Science.gov (United States)

    Lemaire, R.; Menanteau, S.

    2016-01-01

    This paper deals with the thorough characterization of a new experimental test bench designed to study the devolatilization and oxidation of pulverized fuel particles in a wide range of operating conditions. This lab-scale facility is composed of a fuel feeding system, the functioning of which has been optimized by computational fluid dynamics. It allows delivering a constant and time-independent mass flow rate of fuel particles which are pneumatically transported to the central injector of a hybrid McKenna burner using a carrier gas stream that can be inert or oxidant depending on the targeted application. A premixed propane/air laminar flat flame stabilized on the porous part of the burner is used to generate the hot gases insuring the heating of the central coal/carrier-gas jet with a thermal gradient similar to those found in industrial combustors (>105 K/s). In the present work, results issued from numerical simulations performed a priori to characterize the velocity and temperature fields in the reaction chamber have been analyzed and confronted with experimental measurements carried out by coupling particle image velocimetry, thermocouple and two-color pyrometry measurements so as to validate the order of magnitude of the heating rate delivered by such a new test bench. Finally, the main features of the flat flame reactor we developed have been discussed with respect to those of another laboratory-scale system designed to study coal devolatilization at a high heating rate.

  13. Development and numerical/experimental characterization of a lab-scale flat flame reactor allowing the analysis of pulverized solid fuel devolatilization and oxidation at high heating rates

    Energy Technology Data Exchange (ETDEWEB)

    Lemaire, R., E-mail: romain.lemaire@mines-douai.fr; Menanteau, S. [Mines Douai, EI, F-59508 Douai (France)

    2016-01-15

    This paper deals with the thorough characterization of a new experimental test bench designed to study the devolatilization and oxidation of pulverized fuel particles in a wide range of operating conditions. This lab-scale facility is composed of a fuel feeding system, the functioning of which has been optimized by computational fluid dynamics. It allows delivering a constant and time-independent mass flow rate of fuel particles which are pneumatically transported to the central injector of a hybrid McKenna burner using a carrier gas stream that can be inert or oxidant depending on the targeted application. A premixed propane/air laminar flat flame stabilized on the porous part of the burner is used to generate the hot gases insuring the heating of the central coal/carrier-gas jet with a thermal gradient similar to those found in industrial combustors (>10{sup 5} K/s). In the present work, results issued from numerical simulations performed a priori to characterize the velocity and temperature fields in the reaction chamber have been analyzed and confronted with experimental measurements carried out by coupling particle image velocimetry, thermocouple and two-color pyrometry measurements so as to validate the order of magnitude of the heating rate delivered by such a new test bench. Finally, the main features of the flat flame reactor we developed have been discussed with respect to those of another laboratory-scale system designed to study coal devolatilization at a high heating rate.

  14. 低挥发分煤粉燃烧新技术发展与应用%Development and application of low volatile pulverized coal combustion technique

    Institute of Scientific and Technical Information of China (English)

    周建明

    2011-01-01

    Introduce the development and application of low volatile pulverized coal combustion technique. The representative burners and framework of boilers were demonstrated and the key techniques, including strengthening hot gas back flow,keeping adopting pulverized coal concentration,and extending length of flame,were also analyzed and these techniques can help pulverized coal ignite quickly and keep stable ignition. The suitable combustion system should be strictly chosen for low volatilization pulverized coal, such as tangentially firing, opposed firing, W-shape flame, and CUF firing and so on. Meanwhile, being the superior stability in anthracite combustion to tangential firing and opposed firing,W-shape boilers are mainly used. Having the strongpoint of stable combustion, high combustion efficiency, stepped firing in recirculation and low NO, emission, the high-temperature combustion technique for low volatilization coal will have wide application foreground.%介绍了国内外低挥发分煤粉燃烧技术及发展.对具有代表性的燃烧器及炉膛结构进行简要分析,说明热回流、煤粉浓缩、延长火焰长度等关键技术在实现低挥发分难燃煤粉快速着火、稳定燃烧中的应用.指出尽管燃烧器在应用中取得一定的效果,但仍然存在一些问题,因而对于低挥发分煤种还需要同时选择合理的燃烧方式,如切向燃烧、对冲燃烧、W型火焰燃烧及CUF火焰燃烧等技术.其中,W型火焰燃烧方式对难燃无烟煤的燃烧稳定性优于四角和对冲燃烧方式,是目前主要采用的燃烧结构.高温空气燃烧技术对低挥发分煤具有火焰稳定、热效率高、再循环分级燃烧,低NOx排放等优点,将成为更有前景的燃烧技术.

  15. Combustion of wet pulverized coal in reactor flow; Combustao de particulas de carvao pulverizado contendo umidade em seu interior

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Valdeci Jose [Universidade do Planalto Catarinense (UNIPLAC), Lages, SC (Brazil). Dept. de Ciencias Exatas e Tecnologicas]. E-mail: vcosta@iscc.com.br; Krioukov, Viktor [Universidade Regional do Estado do Rio Grande do Sul (UNIJUI), Ijui, RS (Brazil). Programa de Pos-Graduacao em Modelagem Matematica]. E-mail: krioukov@main.unijui.tche.br; Maliska, Clovis Raimundo [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica]. E-mail: maliska@sinmec.ufsc.br

    2000-07-01

    In this work I propose a numeric study destined to the combustion of wet pulverized coal in reacting flow. The mathematical model is composed by equations for the concentration of the substances in the reacting flow, written based in the chemical kinetics and exponential form, conservation equations and devolatilization equations, combustion of the carbon and residues. The study detects fluctuation among the temperatures of the gas and of the particles. The inclusion of the humidity as constituent part of the volatile matter doesn't affect the performance of the model, however, its presence alters the temperature profiles and the gaseous composition. With the increase of the humidity in the coal have a slight reduction in the time of combustion of the particle, what agrees with experimental data. The model foresees an increment in the difference Tp-Tg and a smaller production of CO with the increase of the wetness rate. The volatile ones, in spite of they have its fraction relatively reduced with the wetness presence they are liberated more slowly with its increment, provoking change in the position of front flame. (author)

  16. DETERMINATION OF GRANULOMETRIC COMPOSITION OF PULVERIZED COAL BY AUTOMATED SYSTEM

    Directory of Open Access Journals (Sweden)

    A. S. Chernenko

    2015-01-01

    Full Text Available The method of granulometric composition determination of dry powders by a shadow method in the automated system of determination of quantitative structure is described. The granulometric analysis of coal-dust fuel particles is carried out. Comparison with results of digital microscopy allowed to establish a variety of used method advantages.

  17. CFD prediction of physical field for multi-air channel pulverized coal burner in rotary kiln

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A 3-D numerical simulation with CFX software on physical field of multi-air channel coal burner in rotary kiln was carried out. The effects of various operational and structural parameters on flame feature and temperature distribution were investigated. A thermal measurement was conducted on a rotary kiln (4.5 m in diameter, 90 m in length) with four-air channel coal burner to determine the boundary conditions and to verify the simulation results.The calculation result shows that the distribution of velocity near burner exit is saddle-like; recirculation zones near nozzle and wall are useful for mixture primary air with coal and high temperature fume. A little central airflow can avoid coal backing up and cool nozzle. Adjusting the ratio of internal airflow to outer airflow is an effective and major means to regulate flame and temperature distribution in sintering region. Large whirlcone angle can intensify disturbution range at flame root to accelerate ignition and mixture. Large coal size can reduce high temperature region and result in coal combusting insufficiently. Too much combustion air will lengthen flame and increase heat loss.

  18. The past, present and future of pulverized coal injection at ThyssenKrupp Steel AG

    Energy Technology Data Exchange (ETDEWEB)

    Peters, M.; Korthas, B.; Schmole, P. [ThyssenKrupp Steel AG., Duisburg (Germany). Hot Metal Production-Metallurgy Division

    2008-07-01

    Coal injection has been used to optimize blast furnace operation at the ThyssenKrupp Steel (TKS) plants in Germany for over 25 years. The main TKS plants are located at Duisburg on the Rhine river with optimum logistical conditions for raw materials and finished products. This presentation described the long history of blast furnace operation at TKS and the optimization of the combustion process in the raceway. The key factors for controlling coal combustion were coal properties; lance design; partial pressure of oxygen in the raceway; amount of nitrogen for the pneumatic coal transport; and additives to the coal. When changing over from the all-coke to the pulverized coal (PC)-coke mode of operation, the main attention was directed to blast velocity and burden distribution. Initially, 2 injection systems were developed in 1982 for a blast furnace pilot facility in Hamborn where coal was injected through 3 tuyeres of the blast furnace. The experience gained at the pilot facility was used for other production facilities. They were evaluated in terms of plant wear, pneumatic conveying characteristics, and behaviour of the system when using different types of coal. In 1987, the Schwelgern blast furnace was equipped with the dense flow system and the blast furnace in Ruhrort was equipped with an entrained flow system and metering valves. In February 1991, blast furnace no. 9 in Hamborn was equipped with the dense flow for all 28 tuyeres and is designed for an injection rate of 250 kg/THM. 21 figs.

  19. Analysis of Pulverized Coal by Laser-Induced Breakdown Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been used to detect atomic species in various environments. The quantitative analysis (C, H, O, N and S) of representative coal samples are being carried out with LIBS, and the effects of particle size are analyzed.A powerful pulse Nd:YAG laser is focused on the coal sample at atmosphere pressure, and the emission spectra from laser-induced plasmas are measured by time-resolved spectroscopy, and the intensity of analyzed spectral lines is obtained through observing the laser plasma with a delay time of 0.4μs. The experimental results show that the slope of calibration curve is nearly 1 when the concentration of the analyzed element is relatively low, and the slope of curve is nearly 0.5 when the concentration of C is higher than other elements. In addition, using the calibration-free model without self-absorption effect, the results show that the decreasing of particle size leads to an increase of the plasma temperature.

  20. 煤质变化对Shell粉煤气化工艺的影响%THE EFFECT OF COAL QUALITY CHANGE ON SHELL PULVERIZED-COAL GASIFICATION PROCESS

    Institute of Scientific and Technical Information of China (English)

    吴国祥

    2011-01-01

    The Shell pulverized-coal gasification process is introduced,the specific requirement for coal quality by Shell pulverized-coal gasification process summarized,several factors related to coal quality and the effect of the changes of these factors on Shell pulverized-coal gasification plant highlighted and the preventive measures based on the effects concluded.%介绍Shell粉煤气化工艺流程,总结Shell粉煤气化工艺对煤质的具体要求,阐述与煤质相关的几方面因素及这些因素的变化对Shell粉煤气化装置的影响,并根据这些影响得出相应的预防措施。

  1. Chemical and toxicological characterization of organic constituents in fluidized-bed and pulverized coal combustion: a topical report

    Energy Technology Data Exchange (ETDEWEB)

    Chess, E.K.; Later, D.W.; Wilson, B.W.; Harris, W.R.; Remsen, J.F.

    1984-04-01

    Coal combustion fly ash from both conventional pulverized coal combustion (PCC) and fluidized-bed combustion (FBC) have been characterized as to their organic constituents and microbial mutagenic activity. The PCC fly ash was collected from a commercial utility generating plant using a low sulfur coal. The FBC fly ash was from a bench-scale developmental unit at the Grand Forks Energy Technology Center. Bulk samples of each fly ash were extracted using benzene/methanol and further separated using high performance liquid chromatography (HPLC). Subfractions from the HPLC separation were analyzed by gas chromatography using both element-specific nitrogen-phosphorus detectors and flame ionization detectors. Microbial mutagenicity assay results indicated that the crude organic extracts were mutagenic, and that both the specific activity and the overall activity of the PCC material was greater than that of the FBC material. Comparison of results from assays using S. typhimurium, TA1538NR indicated that nitrated polycyclic aromatic compounds (PAC) were responsible for much of the mutagenic activity of the PCC material. Similar results were obtained for assays of the FBC organic extract with standard and nitroreductase-deficient strains of S. typhimurium, TA100 and TA1538. Mutagenically active HPLC fractions were analyzed using high resolution gas chromatography (HRGC) and GC mass spectrometry (GC/MS), as well as probe inlet low and high resolutions MS. The discovery and identification of nitrated, oxygenated PAC are important because the presence of both nitro and/or keto functionalities on certain PAC has been shown to confer or enhance mutagenic activity.

  2. Effects of pulverized coal fly-ash addition as a wet-end filler in papermaking

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, A.S.K. [SLIET, Longowal (India). Dept. of Chemical Technology

    2008-09-15

    This experimental study is based on the innovative idea of using pulverized coal fly ash as a wet-end filler in papermaking. This is the first evaluation of the possible use of fly ash in the paper industry. Coal-based thermal power plants throughout the world are generating fly ash as a solid waste product. The constituents of fly ash can be used effectively in papermaking. Fly ash has a wide variation in particle size, which ranges from a few micrometers to one hundred micrometers. Fly ash acts as an inert material in acidic, neutral, and alkaline papermaking processes. Its physical properties such as bulk density (800-980 kg/m{sup 3}), porosity (45%-57%), and surface area (0.138-2.3076 m{sup 2}/g) make it suitable for use as a paper filler. Fly ash obtained from thermal power plants using pulverized coal was fractionated by a vibratory-sieve stack. The fine fraction with a particle size below 38 micrometers was used to study its effect on the important mechanical-strength and optical properties of paper. The effects of fly-ash addition on these properties were compared with those of kaolin clay. Paper opacity was found to be much higher with fly ash as a filler, whereas brightness decreased as the filler percentage increased Mechanical strength properties of the paper samples with fly ash as filler were superior to those with kaolin clay.

  3. Formation of NOx precursors during Chinese pulverized coal pyrolysis in an arc plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Wei-ren Bao; Jin-cao Zhang; Fan Li; Li-ping Chang [Taiyuan University of Technology, Taiyuan (China). Key Laboratory of Coal Science and Technology

    2007-08-15

    The formation of NOx precursors (HCN and NH{sub 3}) from the pyrolysis of several Chinese pulverized coals in an arc plasma jet was investigated through both thermodynamic analysis of the C-H-O-N system and experiments. Results of thermodynamic analysis show that the dominant N-containing gaseous species is HCN together with a small amount of ammonia above the temperature of 2000 K. The increase of H content advances the formation of HCN and NH{sub 3}, but the yields of HCN and NH{sub 3} are decreased with a high concentration of O in the system. These results are accordant with the experimental data. The increasing of input power promotes the formation of HCN and NH{sub 3} from coal pyrolysis in an arc plasma jet. Tar-N is not formed during the process. The yield of HCN changes insignificantly with the changing of the residence time of coal particles in the reactor, but that of NH{sub 3} decreases as residence times increase because of the relative instability at high temperature. Adsorption and gasification of CO{sub 2} on the coal surface also can restrain the formation of HCN and NH{sub 3} compare to the results in an Ar plasma jet. Yields of HCN and NH{sub 3} are sensitive to the coal feeding rate, indicating that NOx precursors could interact with the nascent char to form other N-containing species. The formation of HCN and NH{sub 3} during coal pyrolysis in a H{sub 2}/Ar plasma jet are not dependent on coal rank. The N-containing gaseous species is released faster than others in the volatiles during coal pyrolysis in an arc plasma jet, and the final nitrogen content in the char is lower than that in the parent coal, which it is independent of coal type. 16 refs., 9 figs., 1 tab.

  4. A simple numerical model to estimate the effect of coal selection on pulverized fuel burnout

    Energy Technology Data Exchange (ETDEWEB)

    Sun, J.K.; Hurt, R.H.; Niksa, S.; Muzio, L.; Mehta, A.; Stallings, J. [Brown University, Providence, RI (USA). Division Engineering

    2003-06-01

    The amount of unburned carbon in ash is an important performance characteristic in commercial boilers fired with pulverized coal. Unburned carbon levels are known to be sensitive to fuel selection, and there is great interest in methods of estimating the burnout propensity of coals based on proximate and ultimate analysis - the only fuel properties readily available to utility practitioners. A simple numerical model is described that is specifically designed to estimate the effects of coal selection on burnout in a way that is useful for commercial coal screening. The model is based on a highly idealized description of the combustion chamber but employs detailed descriptions of the fundamental fuel transformations. The model is validated against data from laboratory and pilot-scale combustors burning a range of international coals, and then against data obtained from full-scale units during periods of coal switching. The validated model form is then used in a series of sensitivity studies to explore the role of various individual fuel properties that influence burnout.

  5. A Pulverized Coal-Fired Boiler Optimized for Oxyfuel Combustion Technology

    Directory of Open Access Journals (Sweden)

    Tomáš Dlouhý

    2012-01-01

    Full Text Available This paper presents the results of a study on modifying a pulverized coal-fired steam boiler in a 250 MWe power plant for oxygen combustion conditions. The entry point of the study is a boiler that was designed for standard air combustion. It has been proven that simply substituting air by oxygen as an oxidizer is not sufficient for maintaining a satisfactory operating mode, not even with flue gas recycling. Boiler design optimization aggregating modifications to the boiler’s dimensions, heating surfaces and recycled flue gas flow rate, and specification of a flue gas recycling extraction point is therefore necessary in order to achieve suitable conditions for oxygen combustion. Attention is given to reducing boiler leakage, to which external pre-combustion coal drying makes a major contribution. The optimization is carried out with regard to an overall power plant conception for which a decrease in efficiency due to CO2 separation is formulated.

  6. Influence of constricted air distribution on NOx emissions in pulverized coal combustion boiler

    Institute of Scientific and Technical Information of China (English)

    WEI Feng(魏风); ZHANG Jun-ying(张军营); TANG Bi-guang(唐必光); ZHENG Chu-guang(郑楚光)

    2003-01-01

    This paper reports a field testing of full scale PCC (Pulverized Coal Combustion) boiler study into the influence of constricted air distribution on NOx emissions at unit 3 (125 MW power units, 420 t/h boiler) of Guixi power station, Jiangxi and puts forward the methods to decrease NOx emissions and the principle of boiler operation and regulation through analyzing NOx emissions state under real running condition. Based on boiler constricted air distribution, the experiment mainly tested the influence of primary air, excessive air, boiler load and milling sets (tertiary air) on NOx emissions and found its influence characteristics. A degraded bituminous coal is simply adopted to avoid the test results from other factors.

  7. Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) into the Blast Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Chenn Zhou

    2008-10-15

    Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.

  8. A numerical study of pulverized coal ignition by means of plasma torches in air-coal dust mixture ducts of utility boiler furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Belosevic, S.; Sijercic, M.; Stefanovic, P. [Institute for Nuclear Science Vinca, Belgrade (Serbia)

    2008-04-15

    Paper presents selected results of numerical simulation of processes in air-coal dust mixture duct of pulverized coal utility boiler furnace with plasma-system for pulverized coal ignition and combustion stabilization. Application of the system in utility boiler furnaces promises to achieve important savings compared with the use of heavy oil burners. Plasma torches are built in air-coal dust mixture ducts between coal mills and burners. Calculations have been performed for one of rectangular air-coal dust mixture ducts with two opposite plasma torches, used in 210 MWe utility boiler firing pulverized Serbian lignite. The simulations are based on a three-dimensional mathematical model of mass, momentum and heat transfer in reacting turbulent gas-particle flow, specially developed for the purpose. Characteristics of processes in the duct are analyzed in the paper, with respect to the numerical results. The plasma-system thermal effect is discussed as well, regarding corresponding savings of liquid fuel. It has been emphasized that numerical simulation of the processes can be applied in optimization of pulverized coal ignition and combustion stabilization and enables efficient and cost-effective scaling-up procedure from laboratory to industrial scale.

  9. Partitioning behavior of trace elements during pilot-scale combustion of pulverized coal and coal-water slurry fuel

    Science.gov (United States)

    Nodelman; Pisupati; Miller; Scaroni

    2000-05-29

    Release pathways for inorganic hazardous air pollutants (IHAPs) from a pilot-scale, down-fired combustor (DFC) when firing pulverized coal (PC) and coal-water slurry fuel (CWSF) were identified and quantified to demonstrate the effect of fuel form on IHAP partitioning, enrichment and emissions. The baghouse capturing efficiency for each element was calculated to determine the effectiveness of IHAP emission control. Most of the IHAPs were enriched in the fly ash and depleted in the bottom ash. Mercury was found to be enriched in the flue gas, and preferentially emitted in the vapor phase. When firing CWSF, more IHAPs were partitioned in the bottom ash than when firing PC. Significant reduction of Hg emissions during CWSF combustion was also observed.

  10. Reconstruction of the aero-mixture channels of the pulverized coal plant of the 100MW power plant unit

    Directory of Open Access Journals (Sweden)

    Ivanovic Vladan B.

    2011-01-01

    Full Text Available After the last revitalization of thermal power block of 100 MW in TPP “Kostolac A”, made in the year 2004, during the operation of the plant, pulverized coal deposition often occurred in horizontal sections of the aero-mixture channels. Deposition phenomenon manifested itself in places ahead of spherical compensators in the direction of flow of pulverized coal to the burners, due to unfavorable configuration of these channels. Coal dust deposited in the channels dried and spontaneously combusted, causing numerous damage to channels and its isolation as well as the frequent stoppage of the operation for necessary interventions. The paper presents the original solution of reconstruction of aero-mixture channels which prevented deposition of coal dust and its eventual ignition. In this way the reliability of the mill plant is maximized and higher availability of boiler and block as a whole is achieved.

  11. CFD simulation and experimental validation of co-combustion of chicken litter and MBM with pulverized coal in a flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Heikkinen, J.M.; Venneker, B.C.H.; di Nola, G.; de Jong, W.; Spliethoff, H. [Energy Technology section, Delft University of Technology, Leeghwaterstraat 44, NL-2628 CA Delft (Netherlands)

    2008-09-15

    The influence of co-combustion of solid biomass fuels with pulverized coal on burnout and CO emissions was studied using a flow reactor. The thermal input on a fuel feeding basis of the test rig was approximately 7 kW. Accompanied with the measurements, a reactor model using the CFD code AIOLOS was set up and first applied for two pure coal flames (with and without air staging). Reasonable agreement between measurements and simulations was found. An exception was the prediction of the CO concentration under sub-stoichiometric conditions (primary zone). As model input for the volatile matter release, the HTVM (high temperature volatile matter as defined by IFRF [IFRF, www.handbook.ifrf.net/handbook/glossary.html. ]) was used. Furthermore, a relatively slow CO oxidation rate obtained from the literature and the ERE (Extended Resistance Equation) model for char combustion were selected. Furthermore, the model was used for simulating co-firing of coal with chicken litter (CL) and meat and bone meal (MBM). The conditions applied are relevant for future co-firing practice with high thermal shares of secondary fuels (larger than 20%). The major flue gas concentrations were quite well described, however, CO emission predictions were only qualitatively following the measured trends when O{sub 2} is available and severely under-predicted under substoichiometric conditions. However, on an engineering level of accuracy, and concerning burnout, this work shows that co-combustion of the fuels can reasonably well be described with coal combustion sub-models. (author)

  12. Formation of fine particles in co-combustion of coal and solid recovered fuel in a pulverized coal-fired power station

    DEFF Research Database (Denmark)

    Wu, Hao; Pedersen, Anne Juul; Glarborg, Peter

    2011-01-01

    Fine particles formed from combustion of a bituminous coal and co-combustion of coal with 7 th% (thermal percentage) solid recovered fuel (SRF) in a pulverized coal-fired power plant were sampled and characterized in this study. The particles from dedicated coal combustion and co-combustion both...... appear to be an important formation mechanism. The elemental composition of the particles from coal combustion showed that S and Ca were significantly enriched in ultrafine particles and P was also enriched considerably. However, compared with supermicron particles, the contents of Al, Si and K were...

  13. Experimental and modeling study of the effect of CH(4) and pulverized coal on selective non-catalytic reduction process.

    Science.gov (United States)

    Zhang, Yanwen; Cai, Ningsheng; Yang, Jingbiao; Xu, Bo

    2008-10-01

    The reduction of nitric oxide using ammonia combined with methane and pulverized coal additives has been studied in a drop tube furnace reactor. Simulated flue gas with 1000 ppm NO(x) and 3.4% excess oxygen was generated by cylinder gas. Experiments were performed in the temperature range of 700-1200 degrees C to investigate the effects of additives on the DeNO(x) performance. Subsequently, a kinetic mechanism was modified and validated based on experimental results, and a computational kinetic modeling with CHEMKIN was conducted to analyze the secondary pollutants. For both methane and pulverized coal additives, the temperature window is shifted towards lower temperatures. The appropriate reaction temperature is shifted to about 900 and 800 degrees C, respectively with 1000 ppm methane and 0.051 g min(-1) pulverized lignite coal. The addition of methane and pulverized coal widens the temperature window towards lower temperature suggesting a low temperature application of the process. Furthermore, selective non-catalytic reduction (SNCR) reaction rate is accelerated evidently with additives and the residence time to complete the reaction is shortened distinctly. NO(x) reduction efficiency with 80% is achieved in about 0.3s without additive at 1000 degrees C. However, it is achieved in only about 0.2s with 100 ppm methane as additive, and only 0.07 and 0.05s are needed respectively for the cases of 500 and 1000 ppm methane. The modified kinetic modeling agrees well with the experimental results and reveals additional information about the process. Investigation on the byproducts where NO(2) and N(2)O were analyzed by modeling and the others were investigated by experimental means indicates that emissions would not increase with methane and pulverized coal additions in SNCR process and the efficacious temperature range of SNCR reaction is widened approximately with 100 degrees C.

  14. Low-cost Evaporator Protection Method against Corrosion in a Pulverized Coal Fired Boiler

    Directory of Open Access Journals (Sweden)

    Arkadiusz Krzysztof Dyjakon

    2010-07-01

    Full Text Available Corrosion processes appearing on the watertubes in a combustion chamber of pulverized coal-fired boilers require permanent control and service. Subject to the power plant strategy, different anti-corrosion protection methods can be applied. Technical-economical analysis has been performed to evaluate and support the decisions on maintenance and operation services. The paper presents and discusses results of the application of an air protection system in boiler OP-230 in view of anti-corrosion measures. It is indicated that a low-cost protection method of watertubes (evaporator against corrosion can be efficient and lead to financial savings in comparison to the standard procedure of replacement of watertube panels.

  15. Renewable wood fuel: Fuel feed system for a pulverized coal boiler. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report evaluates a pilot test program conducted by New York State Gas & Electric Corporation to evaluate the feasibility of co-firing a pulverized coal plant with renewable wood fuels. The goal was to establish that such a co-firing system can reduce air emissions while maintaining good operational procedures and cost controls. The test fuel feed system employed at Greenidge Station`s Boiler 6 was shown to be effective in feeding wood products. Emission results were promising and an economic analysis indicates that it will be beneficial to pursue further refinements to the equipment and systems. The report recommends further evaluation of the generation and emission impacts using woods of varied moisture contents and at varied Btu input rates to determine if a drying system would be a cost-effective option.

  16. Trace element emissions when firing pulverized coal in a pilot-scale combustion facility

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.F.; Wincek, R.T.; Miller, B.G.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States)

    1998-04-01

    Title Ed of the Clean Air Act Amendments of 1990 designates 189 hazardous air pollutants (HAPs). Fourteen of the 189 substances identified are: antimony (Sb), beryllium (Be), chlorine (0), cobalt (Co), manganese (Mn), nickel (Ni), selenium (Se), fluorine (F), arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and phosphorous (P). Eleven of these elements have been detected in the flue gas of pulverized coal-fired utility boilers. Currently there are no regulations that limit the emissions of these elements during coal combustion in utility- or industrial-scale boilers. Given the growing body of risk assessment data on these elements and their impact on the environment and human health, it is possible that regulations on emission levels for certain elements will be imposed. A knowledge of the occurrence of trace elements in coal and their behavior during combustion is essential to predict emissions and to develop control technologies for remediation. The partitioning of trace elements during combustion can be traced to their volatility within the system. For purposes of this paper, the classification of trace elements summarized by Clarke and Sloss will be used: Group I elements, i.e., elements that are not easily volatilized and form larger bottom ash and fly ash particles; Group H elements, i.e., elements that are partially or completely volatilization followed by condensation as small particles or on the surface of small particles; and Group III elements, i.e., elements that are readily volatilized and usually remain in the gas phase system.

  17. Three Dimensional Modeling of Pulverized Coal combustion in a 600MW Corner Fired Boiler

    Institute of Scientific and Technical Information of China (English)

    SandroDal-Secco

    2000-01-01

    The three-dimensional code ESTET developed at the LNH has been used to predict the reactive flow in a 600 W coal fired boiler,Assuming a no-slip condition between the gas and the coal,the equations for a gas-particle mixture can e written.The pulverized coal particle size distribution is represented by a discrete number of particle size groups determined by the measured fineness distrbution.The combustion models taking into account the pyrolysis of the particle and the heterogeneous combustion of char have been validated using intensive measurements performed on the 600MW utility boiler.Heat fluxes were measured along the walls of the furnace and satisfactory agreement between computation and measurements has been achieved in terms of maximum flux location and heat flux intensity.Local measurements of velocities using LDV probe.gas temperature and gas species concentrations were performed in the vicinity of one burner and compared with the computed variables.Again we have observed a good agreement between the computations and the measurements in terms of jet penetration,temperature distribution.oxygen concentration and ash content.

  18. Occurrence and volatility of several trace elements in pulverized coal boiler

    Institute of Scientific and Technical Information of China (English)

    HUANG Ya-ji; JIN Bao-sheng; ZHONG Zhao-ping; XIAO Rui; TANG Zhi-yong; REN Hui-feng

    2004-01-01

    The contents of eight trace elements(Mn, Cr, Pb, As, Se, Zn, Cd, Hg) in raw coal, bottom ash and flyash were measured in a 220 t/h pulverized coal boiler. Factors affecting distribution of trace elements wereinvestigated, including fly ash diameter, furnace temperature, oxygen content and trace elements' characters. Onecoefficient of Meij was also improved to more directly show element enrichment in combustion products. Theseelements may be classified into three groups according to their distribution: Group 1: Hg, which is very volatile.Group 2: Pb, Zn, Cd, which are partially volatile. Group 3: Mn, which is hardly volatile. Se may be locatedbetween groups 1 and 2. Cr has properties of both group 1 and 3. In addition, the smaller diameter of fly ash, themore relative enrichment of trace elements( except Mn). The fly ash showed different adsorption mechanisms oftrace elements and the volatilization of trace elements rises with furnace temperature. Relative enrichments of traceelements(except Mn and Cr) in fly ash are larger than that in bottom ash. Low oxygen content can not alwaysimprove the volatilization of trace elements. Pb is easier to form chloride than Cd during coal combustion. Traceelements should be classified in accordance with factors.

  19. Effect of the Reburning Zone Stoichiometry on the Nox Concentration at the Three-Stage Combustion of Pulverized Coal

    Directory of Open Access Journals (Sweden)

    Chernetskaya Nelya

    2016-01-01

    Full Text Available Numerical study of heat and mass transfer taking into account the combustion of coal particles in the furnace at the three-stage combustion of pulverized coal was performed. Analysis of the reburning zone stoichiometry on the concentration of nitrogen oxides at the furnace outlet was made. The values of excess air in the primary and reburning combustion zones, providing for the concentration of nitrogen oxides at the furnace outlet is not more than 350 mg/m3 and unburned carbon not more than 1 % when burning coal with a high content of nitrogen were established.

  20. Numerical simulation of the influence of stationary louver and coal particle size on distribution of pulverized coal to the feed ducts of a power plant burner

    Directory of Open Access Journals (Sweden)

    Živković Goran

    2009-01-01

    Full Text Available One of the key requirements related to successful utilization of plasma technology as an oil-free backup system for coal ignition and combustion stabilization in power plant boilers is provision of properly regulated pulverized coal distribution to the feed ducts leading the fuel mixture to a burner. Proper regulation of coal distribution is deemed essential for achieving an adequate pulverized coal concentration in the zone where thermal plasma is being introduced. The said can be efficiently achieved by installation of stationary louver in the coal-air mixing duct ahead of the feed ducts of a burner. The paper addresses numerical simulation of a two-phase flow of air-pulverized coal mixture in the mixing ducts, analyzing the effects of particle size distribution on pulverized coal distribution to the burner feed ducts. Numerical simulation was performed using the FLUENT 6.3 commercial code and related poly-dispersed flow module, based on the PSI-CELL approach. Numerical experiments have been performed assuming a mono-dispersed solid phase with particle diameter ranging from 45 mm to 1200 mm. Distance between the louver blades and the resulting effect on the flow profile was analyzed as well. Results obtained indicate that the size of coal particles considerably influence the overall solid phase distribution. While fine particles, with diameters at the lower end of the above specified range, almost fully follow the streamlines of the continuous phase, coarser particles, which hit the louver blades, deflect towards the thermal plasma zone. In this manner, a desired phase concentration in the considered zone can be reached. For the said reason, installation of stationary louver have been deemed a very efficient way to induce phase separation, primarily due to more pronounced impact of the installed louver on discrete phase flow then the impact on the flow of the continuous phase.

  1. Plasma system for start-up of pulverized fuel-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Dyjakon, A.K. [Wroclaw Univ. of Technology, Wroclaw (Poland). Inst. of Power Engineering and Fluid Mechanics

    2009-07-01

    Pulverized coal combustion requires preliminary heating of the combustion chamber. Conventional heavy oil start-up systems are used during the boiler kindling, resulting in pollution, additional maintenance and high cost. This paper described the advantages of a plasma start-up system for the ignition and stabilization of a pulverized coal flame in coal-fired steam boiler. In a plasma start-up system, the heat source for ignition and stabilization of the pulverized coal combustion is a plasma at a temperature of 5,000 to 10,000 degrees C. The plasma interaction involves rapid heating of coal particles and thermal decomposition of the organic compounds resulting in fast release of the volatile matter and destruction of particles below 5 {mu}m. It also involves thermal dissociation of gaseous products with radical generation and gas ionization. The highly reactive mixture that is produced promotes flame propagation in the presence of oxygen. A continuous plasma discharge in a pulverized burner stabilizes the dust flame. This paper described the advantages associated with the use of a plasma start-up system, such as the possibility of limiting pollutant emissions to the atmosphere. It also presented laboratory study results on the influence of the fuels such as lignite, bituminous coal, wood and carbonaceous shale and their properties on the operational range of the plasma assisted pulverized coal burner. 13 refs., 2 tabs., 7 figs.

  2. An investigation on polycyclic aromatic hydrocarbon emissions from pulverized coal combustion systems

    Science.gov (United States)

    Pisupati; Wasco; Scaroni

    2000-05-29

    Results from a series of tests conducted to study the emission of polynuclear or polycyclic aromatic hydrocarbons (PAHs) from bench-scale and small industrial, water-tube boiler are discussed. A Middle Kittanning, and Upper Freeport seam coals were used in the study. Samples were extracted from the reactor outlet and from the inlet and outlet sides of the research boiler's (RB) baghouse using EPA promulgated methods.Only acenaphthene and fluoranthene were detected in down-fired combustor (DFC) samples. In addition to these two, naphthalene was detected in the RB samples. Emission factors ranged from 80 to 320 &mgr;g/kg of fuel fired. Although there were minor trends in the emissions' data, given the reproducibility limits for PAH compounds, no significant differences were found in the emissions with respect to the fuel type or form (pulverized coal (PC) vs. coal-water slurry fuel (CWSF), and raw vs. cleaned coal) and firing conditions (high and low excess air). The PAH emissions showed a decrease with increase in the firing rate.A bench-scale drop-tube reactor (DTR) was used to study the effects of temperature and residence time on PAH formation. The results revealed near constant PAH concentrations in the solid-phase samples, while the PAH concentrations in the vapor-phase samples increased as a function of temperature. At a temperature of around 1300 degrees C, the rate of PAH formation was exceeded by the rate of PAH oxidation, and PAH concentrations in the vapor phase began to decrease.

  3. FUNDAMENTAL INVESTIGATION OF FUEL TRANSFORMATIONS IN PULVERIZED COAL COMBUSTION AND GASIFICATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Robert Hurt; Joseph Calo; Thomas Fletcher; Alan Sayre

    2004-01-01

    The goal of this project is to carry out the necessary experiments and analyses to extend leading submodels of coal transformations to the new conditions anticipated in next-generation energy technologies. During the first two projects years, significant progress was made on most of the tasks, as described in detail in the two previous annual reports. In the current third annual report, we report in detail on the BYU task on the properties and intrinsic reactivities of chars prepared at high-pressure. A flat-flame burner was used in a high pressure laminar flow facility to conduct high temperature, high heating rate coal pyrolysis experiments. Heating rates were approximately 10{sup 5} K/s, which is higher than in conventional drop tube experiments. Char samples from a Pitt No.8 coal and lignite were collected at 1300 C at 1, 6, 10, and 15 atm. Swelling ratios of the lignite were less than 1.0, and only about 1.3 for the Pitt No.8 coal. All coals showed slight increases in swelling behavior as pressure increased. The swelling behavior observed for the Pitt No.8 coal at each pressure was lower than reported in high pressure drop tube experiments, indicating the effect of heating rate on particle swelling. This heating rate effect was similar to that observed previously at atmospheric pressure. SEM photos revealed that bituminous coal has large physical structure transformations, with popped bubbles due to the high heating rate. TGA char oxidation reactivities were measured at the same total pressure as the char preparation pressure. The general trend was that the TGA reactivity on a gram per gram available basis decreased for both Pitt No.8 and Knife River lignite coal chars with increasing char formation pressure. The Pitt No.8 char intrinsic activation energy and oxygen reaction order remained relatively constant with increasing pressure. This new data provides some of the only information available on the morphology, structure, and reactivity of chars prepared in

  4. Inquiry into Safety Problems in Production of Shell Pulverized Coal Gasifier%Shell粉煤气化生产中安全问题的探讨

    Institute of Scientific and Technical Information of China (English)

    于英慧

    2011-01-01

    详细介绍了Shell粉煤气化工艺生产过程中常见的安全异常情况.探讨并提出了Shell粉煤气化工艺不同工段的安全措施.%Details are given of common abnormal conditions in safety during Shell pulverized coal gasification. An inquiry is made and safety measures are proposed for the various sections of the Shell pulverized coal gasification process.

  5. Experimental study on cement clinker co-generation in pulverized coal combustion boilers of power plants.

    Science.gov (United States)

    Wang, Wenlong; Luo, Zhongyang; Shi, Zhenglun; Cen, Kefa

    2006-06-01

    The idea to co-generate cement clinker in pulverized coal combustion (PCC) boilers of power plants is introduced and discussed. An experimental study and theoretical analysis showed this idea to be feasible and promising. By adding quick lime as well as other mineralizers to the coal and grinding the mixture before combustion, sulfoaluminate cement clinker with a high content of silicate (SCCHS) could be generated. The main mineral phases in SCCHS are 2CaO x SiO2 (dicalcium-silicate), 3CaO x 3Al2O3 x CaSO4 (calcium-sulfoaluminate) and 2CaO x A12O3 SiO2 (gehlenite). Performance tests showed that the SCCHS met the requirements for utilization in common construction. Based on this idea, zero solid waste generation from PCC would be realized. Furthermore, thermal power production and cement production could be combined, and this would have a significant effect on both environmental protection and natural resource saving.

  6. Effective identification of the three particle modes generated during pulverized coal combustion

    Institute of Scientific and Technical Information of China (English)

    YU DunXi; XU MingHou; YAO Hong; LIU XiaoWei; ZHOU Ke

    2008-01-01

    Based on the mass fraction size distribution of aluminum (AI), an improved method for effectively identifying the modes of particulate matter from pulverized coal combustion is proposed in this study. It is found that the particle size distributions of coal-derived particulate matter actually have three modes, rather than just mere two. The ultrafine mode is mainly generated through the vaporization and condensation processes. The coarse mode is primarily formed by the coalescence of molten minerals, while the newly-found central mode is attributed to the heterogeneous condensation or adsorption of vaporized species on fine residual ash particles. The detailed investigation of the mass fraction size distribution of sulfur (S) further demonstrates the rationality and effectiveness of the mass fraction size distribution of the AI in identifying three particle modes. The results show that not only can the number of particle modes be identified in the mass fraction size distributions of the AI but also can their size boundaries be more accurately defined. This method provides new insights in elucidating particle formation mechanisms and their physico-chemical characteristics.

  7. Low—NOx Combustion and Experimental Investigation in a ROtary Type Pulverized Coal Classifier

    Institute of Scientific and Technical Information of China (English)

    WenjunKong; ShangmoCheng; 等

    1995-01-01

    In order to improve the combustion conditions,maximize the carbon burnout for low-NOx firing systems and meet the requirements for ignition and flame stabilization as low volatile and low quality coal are burned in boilers,finer pulverzed coal should be used .Hence.it is of great practical importance to study the rotary type classifier for the MPS type medium-speed mill.In this pper,we first review the low-NOx combustion technology,then some model tests of rotating classifier are completed.The results show that the classifier performances are very satisfactory,with the fineness of the finished produce being R90f<10%,Rules for designing and controlling rotating classifier are also developed in this paper.

  8. Effect of CO2 gasification reaction on oxycombustion of pulverized coal char.

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Alejandro (Universidad Nacional de Colombia, Medellin, Colombia); Hecht, Ethan S.; Shaddix, Christopher R.; Haynes, Brian S. (University of Sydney, New South Wales, Australia)

    2010-07-01

    For oxy-combustion with flue gas recirculation, as is commonly employed, it is recognized that elevated CO{sub 2} levels affect radiant transport, the heat capacity of the gas, and other gas transport properties. A topic of widespread speculation has concerned the effect of the CO{sub 2} gasification reaction with coal char on the char burning rate. To give clarity to the likely impact of this reaction on the oxy-fuel combustion of pulverized coal char, the Surface Kinetics in Porous Particles (SKIPPY) code was employed for a range of potential CO{sub 2} reaction rates for a high-volatile bituminous coal char particle (130 {micro}m diameter) reacting in several O{sub 2} concentration environments. The effects of boundary layer chemistry are also examined in this analysis. Under oxygen-enriched conditions, boundary layer reactions (converting CO to CO{sub 2}, with concomitant heat release) are shown to increase the char particle temperature and burning rate, while decreasing the O{sub 2} concentration at the particle surface. The CO{sub 2} gasification reaction acts to reduce the char particle temperature (because of the reaction endothermicity) and thereby reduces the rate of char oxidation. Interestingly, the presence of the CO{sub 2} gasification reaction increases the char conversion rate for combustion at low O{sub 2} concentrations, but decreases char conversion for combustion at high O{sub 2} concentrations. These calculations give new insight into the complexity of the effects from the CO{sub 2} gasification reaction and should help improve the understanding of experimentally measured oxy-fuel char combustion and burnout trends in the literature.

  9. Numerical study of Pavlovskiy coal pulverized combustion in the furnace of BKZ-210-140 steam boiler

    Science.gov (United States)

    Zavorin, A. S.; Gil, A. V.; Khaustov, P. S.; Tabakaev, R. B.; Buslov, D. A.

    2014-10-01

    In this paper pulverized combustion of insufficiently investigated low-grade Pavlovskiy coal is simulated using the modern engineering software FIRE 3D. The object of study is a widespread in Russia BKZ-210-140 steam boiler. The results of computer simulation are represented with average temperatures in horizontal sections and oxygen concentration. Curves are plotted for three steam generating capacity loads of the boiler: 100%, 70% and 50%.

  10. Two-stage numerical simulation for temperature profile in furnace of tangentially fired pulverized coal boiler

    Institute of Scientific and Technical Information of China (English)

    ZHOU Nai-jun; XU Qiong-hui; ZHOU Ping

    2005-01-01

    Considering the fact that the temperature distribution in furnace of a tangential fired pulverized coal boiler is difficult to be measured and monitored, two-stage numerical simulation method was put forward. First, multi-field coupling simulation in typical work conditions was carried out off-line with the software CFX-4.3, and then the expression of temperature profile varying with operating parameter was obtained. According to real-time operating parameters, the temperature at arbitrary point of the furnace can be calculated by using this expression. Thus the temperature profile can be shown on-line and monitoring for combustion state in the furnace is realized. The simul-ation model was checked by the parameters measured in an operating boiler, DG130-9.8/540. The maximum of relative error is less than 12% and the absolute error is less than 120 ℃, which shows that the proposed two-stage simulation method is reliable and able to satisfy the requirement of industrial application.

  11. Investigation of swirling flow mixing for application in an MHD pulverized coal combustor using isothermal modeling

    Energy Technology Data Exchange (ETDEWEB)

    Power, W. H.

    1980-05-01

    The purpose of this study was to investigate combustor reactant mixing with swirling oxidizer flow. The combustor configuration that was considered was designed to simulate a 4 lbm/sec mas flow pulverized coal combustor being tested in The University of Tennessee Space Institute MHD Facility. A one-fourth dimensionally scaled combustor model was developed for isothermal flow testing. A comparison was made of cold flow tests using 3 swirler designs with a base case oxidizer injector design of perforated plated which demonstrated acceptable performance in the 4 lbm/sec MHD combustor. The three swirlers that were evaluated were designed to allow a wide range of swirl intensity to be investigated. The design criterion of the swirler was the swirl number which has been related to swirler geometry. The results of the study showed that the swirlers that were tested fell short of the mixing characteristics displayed with the perforated plate base case oxidizer injector. Test data obtained with the cold flow model established that the actual swirl numbers of two of the swirlers were much lower than the design swirl numbers. Recirculation zones were defined for all configurations that were tested, and a comparison of velocity profiles was made for the configurations.

  12. Experimental investigation on NO{sub x} emission and carbon burnout from a radially biased pulverized coal whirl burner

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Shan; Hui, Shi' en; Zhou, Qulan; Xu, Tongmo; Hu, Hongli [State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Taisheng [Dongfang Boiler Group Co., Ltd., Zigong, Sichuan 643001 (China)

    2009-09-15

    Experiments have been performed on 1 MW pulverized coal (pc) furnace in order to investigate the characteristics of coal combustion and NO{sub x} emission from a new type of radially biased dual register whirl burner. The burner is characterized by a primary air pipe with a continuously changing cross-section and an impact ring. The mixture of pulverized coal and air inside the primary pipe is split into two streams, which are the outer pc rich annular jet and the inner pc lean annular jet respectively. Three Chinese coals, which are high rank bituminous coal, low rank bituminous coal and meager coal respectively, are used in the experiments. We examine the influences of various parameters such as the relative position of the over-fire air (OFA) nozzle, over-fire air ratio (19.1%), primary air ratio, inner secondary air ratio, outer secondary air ratio, inner secondary air swirling intensity, and outer secondary air swirling intensity on NO{sub x} formation and unburned carbon in fly ash. With the primary air ratio increasing from 13.4% to 23.4%, the value of the NO{sub x} emission of the SH coal decreases by 26.7% at first, and then increases by 21.7%. In contrast, the value of the carbon in fly ash (C{sub FA}) increases by 40.1% at first, and then decreases by 58.3%. According to the experimental results, the influence of each individual parameter on NO{sub x} formation and unburned carbon in fly ash agrees well with the existing literature. In this study, the influences of various combinations of these parameters are also examined, thus providing some reference for the design of the radial biased whirl burner, the configuration of the furnace and the distribution of the air. (author)

  13. Luminous Flame Temperature Distribution Measurement Using the Emission Method

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Flame temperature distribution is one of the most important characteristic parameters in combustion research. The emission method is a good way to measure the luminous flame temperature field. The maximum entropy method is introduced to the temperature distribution measurement of a luminous flame using the emission method. A simplified mathematical model was derived by combining the thermal radiation theory, reconstruction algorithm and maximum entropy method. Suitable parameters were selected in the computing process. Good experimental results were obtained with pulverized coal flames.

  14. Numerical modelling of lighting process in pulverized-coal burner of a boiler unit by the low-temperature plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Miloshevich, H.; Rychkov, A.D. [Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation). Inst. of Occupational Technologies

    1999-07-01

    The authors numerically modelled the process of aeromixture ignition in a pulverized-coal burner by a central axysymmetric jet of air that is heated in an electrical are plasma generator up to about 5000 K. The aim was to investigate the process of coal particle ignition in the flow and establish the conditions under which the independent combustion of pulverized coal mixture occurs. The results obtained showed the important role of radiation heat transfer in initiating the combustion process of solid fuel particles. 8 refs., 5 figs.

  15. Economic Analysis for Rebuilding of an Aged Pulverized Coal-Fired Boiler with a New Boiler in an Aged Thermal Power Plant

    Directory of Open Access Journals (Sweden)

    Burhanettin Cetin

    2013-01-01

    Full Text Available Fossil-fired thermal power plants (TPP produce a significant part of electricity in the world. Because of the aging TPPs and so their equipment (especially boiler, thermal power plants also produce less power than their installed capacities, and there has been power loss in time. This situation affects the supply and demand balance of countries. For this reason, aging equipments such as pulverized coal-fired boiler (PCB must be renewed and power loss must be recovered, instead of building new TPPs. In this study, economic analysis of rebuilding an aged pulverized coal-fired boiler with a new pulverized coal-fired boiler including flue gas desulfurization (FGD unit and a circulating fluidized bed boiler (FBB are investigated in an existing old TPP. Emission costs are also added to model, and the developed model is applied to a 200 MWe pulverized coal-fired thermal power plant in Turkey. As a result, the payback period and the net present value are calculated for different technical and economic parameters such as power loss, load factor, electricity price, discount rate, and escalation rate by using the annual value method. The outcomes of this study show that rebuilding of a pulverized coal-fired boiler with a new one is amortized itself in a very short time.

  16. Combustion of pulverized coal in vortex structures. Final report, October 1, 1993--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Gollahalli, S.R.; Butuk, N.

    1996-03-01

    The objectives of the project were: (i) to understand the effects of heating one of the streams on the characteristics of shear layers, (ii) to investigate the changes in the characteristics of large scale vortex structures in the shear layer caused by the introduction of inert solid particles in one of the feed streams; (iii) to understand the effects of pyrolyzing solids on the shear layer behavior; and (iv) to study the effects of combustion of particles and their pyrolysis products on the shear layer structure, heat release rate, and pollutant emission characteristics. An experimental facility for generating two-dimensional shear layers containing vortex structures has been designed and fabricated. The experimental facility is essentially a low speed wind tunnel designed to (i) provide two gas streams, initially with uniform velocity profiles and isotropic turbulence, mixing at the end of a splitter plate, (ii) introduce vorticity by passively perturbing one of the streams, (iii) allow heating of one of the streams to temperatures high enough to cause pyrolysis of coal particles, and (iv) provide a natural gas flame in one of the streams to result in ignition and burning of coal particles.

  17. Mercury speciation and its emissions from a 220 MW pulverized coal-fired boiler power plant in flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.H.; Zhuo, Y.Q.; Duan, Y.F.; Chen, L.; Yang, L.G.; Zhang, L.A.; Jiang, Y.M.; Xu, X.C. [Southeast University, Nanjing (China). Thermoenergy Engineering Research Institute

    2007-07-15

    Distributions of mercury speciation of Hg{sup 0}, Hg{sup 2+} and Hg{sup P} in flue gas and fly ash were sampled by using the Ontario Hydro Method in a 220 MW pulverized coal-fired boiler power plant in China. The mercury speciation was varied greatly when flue gas going through the electrostatic precipitator (ESP). The mercury adsorbed on fly ashes was found strongly dependent on unburnt carbon content in fly ash and slightly on the particle sizes, which implies that the physical and chemical features of some elemental substances enriched to fly ash surface also have a non-ignored effect on the mercury adsorption. The concentration of chlorine in coal, oxygen and NOx in flue gas has a positive correlation with the formation of the oxidized mercury, but the sulfur in coal has a positive influence on the formation of elemental mercury.

  18. COMPUTATIONAL MODELING AND EXPERIMENTAL STUDIES ON NOx REDUCTION UNDER PULVERIZED COAL COMBUSTION CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Subha K. Kumpaty; Kannikeswaran Subramanian; Victor P. Nokku; Tyrus L. Hodges; Adel Hassouneh; Ansumana Darboe; Sravan K. Kumpati

    1998-06-01

    In this work, both computer simulation and experimental studies were conducted to investigate several strategies for NO{sub x} reduction under pulverized coal combustion conditions with an aim to meet the stringent environmental standards for NO{sub x} control. Both computer predictions and reburning experiments yielded favorable results in terms of NO{sub x} control by reburning with a combination of methane and acetylene as well as non-selective catalytic reduction of NO{sub x} with ammonia following reburning with methane. The greatest reduction was achieved at the reburning stoichiometric ratio of 0.9; the reduction was very significant, as clearly shown in Chapters III and V. Both the experimental and computational results favored mixing gases: methane and acetylene (90% and 10% respectively) and methane and ammonia (98% and 2%) in order to get optimum reduction levels which can not be achieved by individual gases at any amounts. Also, the above gaseous compositions as reburning fuels seemed to have a larger window of stoichiometric ratio (SR2 < 0.9) as opposed to just methane (SR2=0.9) so as to reduce and keep NO{sub x} at low ppm levels. From the various computational runs, it has been observed that although there are several pathways that contribute to NO{sub x} reduction, the key pathway is NO {r_arrow} HCN {r_arrow} NH{sub 3} {r_arrow} N{sub 2} + H{sub 2}. With the trends established in this work, it is possible to scale the experimental results to real time industrial applications using computational calculations.

  19. Pulverized coal injection on the blast furnaces at U.S. Steel Kosice, S.R.O.

    Energy Technology Data Exchange (ETDEWEB)

    Baran, P.; McCoy, M.; Szalona, T. [United States Steel Corp., Kosice (Slovakia)

    2008-07-01

    United States Steel Corporation at Kosice built a new modern PCI facility that meets environmental criteria and provides a replacement for financially demanding metallurgical coke with a less expensive pulverized coal. The pulverized coal injection (PCI) technology was applied to blast furnaces no. 2 and 3 in 1993 and has resulted in the following improvements: production has increased an average of 400 to 500 tons/day; pig iron production economics have improved not only because of replacing the metallurgical coke with PCI, but also due to a decrease in the total fuel rate for producing 1 ton of hot metal; blast furnace gas utilization increased with ETA CO values around 48 per cent; and the blast furnace operation is more stable by regular burden descend. The most distinguished change has been in the way raw materials are charged to the furnaces. This paper outlined the coal quality requirements for PCI and presented a basic technological description of PCI preparation. The operational experience of the 2 blast furnaces were presented for the period of 2000 to 2007. Recommendations for PCI rate increase were also presented. It was concluded that using PCI technology in blast furnace no. 1 may bring the greatest economic efficiency for United Steel Corporation at Kosice. 4 refs., 2 tabs., 8 figs.

  20. CFD investigation on the flow and combustion in a 300 MWe tangentially fired pulverized-coal furnace

    Science.gov (United States)

    Khaldi, Nawel; Chouari, Yoldoss; Mhiri, Hatem; Bournot, Philippe

    2016-09-01

    The characteristics of the flow, combustion and temperature in a 300 MWe tangentially fired pulverized-coal furnace are numerically studied using computational fluid dynamics. The mathematical model is based on a Eulerian description for the continuum phase and a Lagrangian description for coal particles. The combustion reaction scheme was modeled using eddy dissipation concept. The application of a proper turbulence model is mandatory to generate accurate predictions of flow and heat transfer during combustion. The current work presents a comparative study to identify the suitable turbulence model for tangentially fired furnace problem. Three turbulence models including the standard k-ɛ model, the RNG k-ɛ model and the Reynolds Stress model, RSM are examined. The predictions are compared with the published experimental data of Zheng et al. (Proc Combust Inst 29: 811-818, 2002). The RNG k-ɛ model proves to be the most suitable turbulence model, offering a satisfactory prediction of the velocity, temperature and species fields. The detailed results presented in this paper may enhance the understanding of complex flow patterns and combustion processes in tangentially fired pulverized-coal furnaces.

  1. 运行参数对粉煤流化床(PC-FB)燃烧效率的影响%The Effect of Operation Parameters on the Combustion Efficiency of a Pulverized-coal Fluidized Bed

    Institute of Scientific and Technical Information of China (English)

    陈鸿伟; 金保升; 徐益谦

    2001-01-01

    With the help of a pulverized-coal fluidized bed (PC-FB) test rig with 0.3 MW heat input test data were obtained of the PC-FB combustion efficiency under various operation parameters. A detailed discussion and study was conducted focusing on the mechanism of influence of these operation parameters on PC-FB combustion efficiency. The study results indicate that the combustion efficiency of the PC-FB can be as high as 98% - 99%, comparable with that of a pulverized-coal furnace. The authors also pointed out for the first time in the present study that under a certain set of conditions it is possible to realize a low-temperature high-efficiency combustion of the pulverized-coal. These conditions include, among others, a rational matching of the following items: combustion temperature, particle residence time, flame turbulence and in-furnace oxygen concentration and particle concentration%在一座0.3 MW热输入的PC-FBC试验台上进行了试验研究,获得了不同操作参数下PC-FB燃烧效率的试验数据,详细讨论了这些参数对PC-FB燃烧效率的影响规律。研究结果表明,粉煤流化床的燃烧效率最高达98%~99%,可与煤粉炉相媲美。本试验研究亦首次提出,只要燃烧温度、颗粒停留时间、火焰湍流度(3T)及炉内氧浓度、颗粒浓度(2C)合理匹配,就能够实现煤粉的低温高效燃烧。

  2. 煤粉燃烧过程的数值模拟%Numerical simulation of pulverized-coal combustion

    Institute of Scientific and Technical Information of China (English)

    张宏博; 秦国彤; 纪任山; 王乃继

    2009-01-01

    The comparative study between CFD numerical results of pulverized coal combustion process and the experimental data is becoming an important measure for validating mathematical models and direct engineering practice. The CFD commercial software, FLUENT, was used to simulate the pulverized coal flow and combustion. Mixture-Fraction/PDF model was used to simulate turbulent combustion; P-1 radiation model was used for simulating radiation heat transfer; the Langrange/Euler's method was used for dealing with momentum, mass and energy exchange between the solid and the gas phase; the two-competing rates model for devolatilization and the kinitics/diffusion limited combustion model for simulating surface combustion of pulverized coal particles. The result of simulation is consistent with the data from actual combustion process. The simulation results show the rules of the volatile releasing and combustion processing of coke, which could provide important references to improve the combustion of the pulverized coal.%采用计算流体动力学软件对煤粉实际燃烧过程进行数值计算并结合其热态试验数据进行对比分析,已成为验证数学模型和指导工程实践的一种重要研究手段,应用商业软件FLUENT对煤粉燃烧及流场进行了数值模拟分析,采用混合分数/概率密度函数法模拟湍流燃烧,用P-1辐射模型开展辐射传热模拟,利用拉格朗日/欧拉法处理气固两相间的动量、质量和能量交换,对挥发份的析出采用双速率竞争模型,采用动力/扩散反应速率模型模拟煤粉颗粒的表面燃烧,并对模拟结果进行分析与对比,计算结果与实际燃烧过程有较好的一致性,数值模拟计算结果揭示了挥发分释放与焦炭燃烧的过程,为改善和优化煤粉的燃烧提供了重要的参考依据.

  3. Ignition and Combustion of Pulverized Coal and Biomass under Different Oxy-fuel O2/N2 and O2/CO2 Environments

    Science.gov (United States)

    Khatami Firoozabadi, Seyed Reza

    This work studied the ignition and combustion of burning pulverized coals and biomasses particles under either conventional combustion in air or oxy-fuel combustion conditions. Oxy-fuel combustion is a 'clean-coal' process that takes place in O2/CO2 environments, which are achieved by removing nitrogen from the intake gases and recirculating large amounts of flue gases to the boiler. Removal of nitrogen from the combustion gases generates a high CO2-content, sequestration-ready gas at the boiler effluent. Flue gas recirculation moderates the high temperatures caused by the elevated oxygen partial pressure in the boiler. In this study, combustion of the fuels took place in a laboratory laminar-flow drop-tube furnace (DTF), electrically-heated to 1400 K, in environments containing various mole fractions of oxygen in either nitrogen or carbon-dioxide background gases. The experiments were conducted at two different gas conditions inside the furnace: (a) quiescent gas condition (i.e., no flow or inactive flow) and, (b) an active gas flow condition in both the injector and furnace. Eight coals from different ranks (anthracite, semi-snthracite, three bituminous, subbituminous and two lignites) and four biomasses from different sources were utilized in this work to study the ignition and combustion characteristics of solid fuels in O2/N2 or O2/CO2 environments. The main objective is to study the effect of replacing background N2 with CO2, increasing O2 mole fraction and fuel type and rank on a number of qualitative and quantitative parameters such as ignition/combustion mode, ignition temperature, ignition delay time, combustion temperatures, burnout times and envelope flame soot volume fractions. Regarding ignition, in the quiescent gas condition, bituminous and sub-bituminous coal particles experienced homogeneous ignition in both O2/N 2 and O2/CO2 atmospheres, while in the active gas flow condition, heterogeneous ignition was evident in O2/CO 2. Anthracite, semi

  4. 工业煤粉锅炉控制系统的开发及应用%Development and application of industrial pulverized coal boiler control system

    Institute of Scientific and Technical Information of China (English)

    麻林

    2014-01-01

    With the promotion of energy saving and environmental protection, improve the industrial boiler thermal efficiency is one of the most important parts, small and medium-sized industrial pulverized coal boiler is developed in recent years is more efficient coal-fired industrial boilers, the boiler of 200μm pulverized coal combustion stability has a very high demand, while new auxiliary unit. According to the characteristics of the pulverized coal boiler, developed a set of pulverized coal boiler con-trol system. The characteristics of the control system mainly includes additional storage, powder, powder supply control, combus-tion control and diagnosis of combustion control, to ensure the safe, stable, efficient pulverized coal boiler operation.%随着近几年节能环保的提倡,提高工业锅炉热效率是其中重要的部分,中小型工业煤粉锅炉是近几年出现的较为高效的燃煤工业锅炉,该锅炉对200目煤粉的稳定燃烧有很高的要求,同时新增辅机配套单元。针对工业煤粉锅炉的特点,开发了一套工业煤粉锅炉控制系统。该控制系统特点主要有:储粉、供粉控制、煤粉燃烧控制和燃烧诊断控制,从而保障了工业煤粉锅炉安全、稳定、高效的运行。

  5. Powder Leakage Cause Analysis and Control Measures of Double Cyclone Pulverized Coal Burner%双旋风煤粉燃烧器漏粉原因分析和控制措施

    Institute of Scientific and Technical Information of China (English)

    王勇; 蒋治其

    2015-01-01

    "W"type flame boiler burner is pulverized coal burner. Because of the large number and big size of the devices, the design layout is compact and there are many flange connections between devices. In order to ensure installation quality and operation safety of the burner, this article analyzes the causes and introduces the control measures of burner powder leakage from the aspect of installation.%“W”型火焰锅炉燃烧器为旋风煤粉燃烧器,因其设备多、设备尺寸较大,因而设计布置紧凑、设备间法兰连接较多。为保证燃烧器安装质量以及运行安全,本文从安装角度出发对燃烧器漏粉进行了原因分析和控制措施。

  6. Impact of Coal Fly Ash Addition on Combustion Aerosols (PM2.5) from Full-Scale Suspension-Firing of Pulverized Wood

    DEFF Research Database (Denmark)

    Damø, Anne Juul; Wu, Hao; Frandsen, Flemming

    2014-01-01

    The formation of combustion aerosols was studied in an 800 MWth suspension-fired power plant boiler, during combustion of pulverized wood pellets with and without addition of coal fly ash as alkali capture additive. The aerosol particles were sampled and characterized by a low-pressure cascade...

  7. Revised users manual, Pulverized Coal Gasification or Combustion: 2-dimensional (87-PCGC-2): Final report, Volume 2. [87-PCGC-2

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.J.; Smoot, L.D.; Brewster, B.S.

    1987-12-01

    A two-dimensional, steady-state model for describing a variety of reactive and non-reactive flows, including pulverized coal combustion and gasification, is presented. Recent code revisions and additions are described. The model, referred to as 87-PCGC-2, is applicable to cylindrical axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using either a flux method or discrete ordinates method. The particle phase is modeled in a Lagrangian framework, such that mean paths of particle groups are followed. Several multi-step coal devolatilization schemes are included along with a heterogeneous reaction scheme that allows for both diffusion and chemical reaction. Major gas-phase reactions are modeled assuming local instantaneous equilibrium, and thus the reaction rates are limited by the turbulent rate mixing. A NO/sub x/ finite rate chemistry submodel is included which integrates chemical kinetics and the statistics of the turbulence. The gas phase is described by elliptic partial differential equations that are solved by an iterative line-by-line technique. Under-relaxation is used to achieve numerical stability. The generalized nature of the model allows for calculation of isothermal fluid mechanicsgaseous combustion, droplet combustion, particulate combustion and various mixtures of the above, including combustion of coal-water and coal-oil slurries. Both combustion and gasification environments are permissible. User information and theory are presented, along with sample problems. 106 refs.

  8. Comparative Techno-economic assessment of biomass and coal with CCS technologies in a pulverized combustion power plant in the United Kingdom

    OpenAIRE

    Al-Qayim, K.; Nimmo, W.; Pourkashanian, M

    2015-01-01

    The technical performance and cost effectiveness of white wood pellets (WWP) combustion in comparison to three types of coal namely U.S., Russian and Colombian coals are investigated in this study. Post-combustion capture and storage (CCS) namely with amine FG+, and oxy-fuel with carbon capture and storage (oxy-fuel) are applied to a 650 MW pulverized combustion (PC) plant. The impacts of the Renewable Obligation Certificate (ROC) and carbon price (CP) policy in accelerating the CCS deploymen...

  9. Pulverized Coal Fired Burner Using Coflow Jets with Velocity Difference in Revolving Kiln of Cement%回转水泥窑同向速差射流煤粉燃烧器

    Institute of Scientific and Technical Information of China (English)

    张拥军

    2000-01-01

    利用多股气体同向流动,人为控制气流的喷射速度,造成一定的速度差,借助射流的强烈的引射作用,使高温烟气回流至一次风、粉混合气流中,使一次风、粉提前加热、着火,从而强化了煤粉的燃烧,并保证了所需火焰的形状,解决了在回转水泥窑中大比例掺烧无烟煤的技术难题。%Using velocity difference among the multiple coflow jets and the strong entraiment effect of high speed jets,the high temperature flue will be recirculated to the exit of pulverized coal stream and mixed with the steam.The coal will be heated and ignited in advance,and thus the coal combustion will be intensified. Meanwhile the flame configuration can be ensured by using the present burner.Therefore the combustion of large amounts of anthrecite added to the bituminous coal is solved.

  10. FUNDAMENTAL INVESTIGATION OF FUEL TRANSFORMATIONS IN PULVERIZED COAL COMBUSTION AND GASIFICATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Robert Hurt; Joseph Calo; Thomas Fletcher; Alan Sayre

    2003-01-01

    The goal of this project is to carry out the necessary experiments and analyses to extend leading submodels of coal transformations to the new conditions anticipated in next-generation energy technologies. During the first project quarter, a technical kick-off meeting was held on the Brown campus involving PIs from Brown (Hurt, Calo), BYU (Fletcher), and B&W (Sayre, Burge). Following this first meeting the current version of CBK (Version 8) was transferred to B&W McDermott and the HP-CBK code developed by BYU was transferred to Brown to help guide the code development in this project. Also during the first project year, progress was reviewed at an all-hands meeting was held at Brigham Young University in August, 2001. The meeting was attended by PIs Fletcher, Hurt, Calo, and Sayre, and also by affiliated investigators Steven Burge from McDermott and Prof. William Hecker from BYU. During the first project year, significant progress was made on several fronts, as described in detail in the previous annual report. In the current second annual report, we report on progress made on two important project tasks. At Brown University: (1) Char combustion reactivities at 500 C in air were determined for a diverse set of solid fuels and organic model compound chars. These varied over 4 orders of magnitude for the chars prepared at 700 C, and over 3 orders of magnitude for the chars prepared at 1000 C. The resultant reactivities correlate poorly with organic elemental composition and with char surface area. (2) Specially-acquired model materials with minute amounts of inorganic matter exhibit low reactivities that fall in a narrow band as a function of wt-% carbon. Reactivities in this sample subset correlate reasonably well with total char surface area. (3) A hybrid chemical/statistical model was developed which explains most of the observed reactivity variation based on four variables: the amounts of nano-dispersed K, nanodispersed (Ca+Mg), elemental carbon (wt-% daf), and

  11. The application of RANS CFD for design of SNCR technology for a pulverized coal-fired boiler

    Directory of Open Access Journals (Sweden)

    Ruszak Monika

    2017-06-01

    Full Text Available The article describes the technology of NOx emission abatement by SNCR method. The scope of research included CDF simulations as well as design and construction of the pilot plant and tests of NOx reduction by urea in the plant located in industrial pulverized-coal fired boiler. The key step of research was to determine the appropriate temperature window for the SNCR process. The proposed solution of the location of injection lances in the combustion chamber enabled to achieve over a 30% reduction of NOx. It is possible to achieve higher effectiveness of the proposed SNCR technology and meet the required emission standards via providing prior reduction of NOx to the level of 350 mg/um3 using the primary methods.

  12. Application of BCS technology in pulverized coal furnace%BCS技术在煤粉炉上的应用

    Institute of Scientific and Technical Information of China (English)

    高瑞峰; 于现军

    2015-01-01

    BCS是应用于燃烧过程的通用优化控制技术,已成功应用于链条炉、 CFB锅炉、高炉热风炉、轧钢加热炉等多种炉型。在此基础上, BCS首次在某热电厂3台65 t/h煤粉炉上得到应用,并取得了良好的运行效果。%BCS is a sort of general optimization control technology for combustion process, which has been successfully applied to CFB boiler , chain boiler, hot stove for blast furnace, and reheating fur-nace for rolling etc.The optimization control system based on BCS was first put into use for 3 ×65t/h pulverized coal boiler and gets good results.

  13. A New Agro/Forestry Residues Co-Firing Model in a Large Pulverized Coal Furnace: Technical and Economic Assessments

    Directory of Open Access Journals (Sweden)

    Shien Hui

    2013-08-01

    Full Text Available Based on the existing biomass co-firing technologies and the known innate drawbacks of dedicated biomass firing, including slagging, corrosion and the dependence on fuel, a new model of agro/forestry residue pellets/shreds and coal co-fired in a large Pulverized Coal (PC furnace was proposed, and the corresponding technical and economic assessments were performed by co-firing testing in a 300 MW PC furnace and discounted cash flow technique. The developed model is more dependent on injection co-firing and combined with co-milling co-firing. Co-firing not only reduces CO2 emission, but also does not significantly affect the fly ash use in cement industry, construction industry and agriculture. Moreover, economic assessments show that in comparison with dedicated firing in grate furnace, agro/forestry residues and coal co-firing in a large PC furnace is highly economic. Otherwise, when the co-firing ratio was below 5 wt%, the boiler co-firing efficiency was 0.05%–0.31% higher than that of dedicated PC combustion, and boiler efficiencies were about 0.2% higher with agro/forestry residues co-firing in the bottom and top burner systems than that in a middle burner system.

  14. Pulverized coal injection at BF N5 during campaign extension period : ArcelorMittal South Africa, Newcastle Works

    Energy Technology Data Exchange (ETDEWEB)

    Scholtz, V. [ArcelorMittal South Africa, Newcastle, KwaZulu-Natal (South Africa)

    2008-07-01

    Blast furnace no. 5 at ArcelorMittal South Africa's Newcastle facility was constructed in 1976 and designed to produce 5000 thm/day, with a hearth diameter of 10.14 m and a working volume of 2017 m{sup 3}. In April 2005, it began using pulverized coal (PC) following a planned maintenance shutdown. Initially, the PC was injected at a rate of 70 kg/thm, but within 5 months, the PC injection (PCI) rate was increased to 160 kg/thm. This was achieved with good replacement ratios, despite a burden that consisted of 40 per cent lump ore. However, the success was brief because of the high rate of unprepared burden, inadequate raw material quality and an aging hearth. The coke rate was therefore increased to reduce hearth wear while maintaining decent hot metal production, resulting in a lower than expected PCI rate of 100 kg/thm. The injection coal rate of 160 kg/thm will be targeted again once the hearth is replaced. Very few changes had been made in the PCI blend in the past because of the low-cost local supply of high volatile, medium ash coals. However, a new coal mine that opened in Newcastle in July 2007 made it possible to partially replace the coal in use. This paper described the operating parameters for the campaign extension period, which required a less than standard injection practice to reduce the amount of production outages. The hearth and stave conditions during the campaign extension were found to be the major barriers to injecting high PCI rates. It was concluded that it is important to re-evaluate the raw material cost for all the fuels used on a regular basis, since the costs to produce coke for higher injection rates could outweigh the advantages at the blast furnace. 3 refs., 1 tabs., 3 figs.

  15. The applicability analysis of burning Indonesian coal in small efficient pulverized coal fired boiler%小型高效煤粉锅炉燃用印尼煤的适用性分析

    Institute of Scientific and Technical Information of China (English)

    王忠会; 马文静; 李会强; 马维唯

    2015-01-01

    结合高效煤粉锅炉的工艺流程、技术特点及印尼煤的煤质分析,探讨了小型高效煤粉锅炉燃用印尼煤的适用性分析。由小型工业煤粉锅炉燃用印尼煤的实际运行结果可知,可选择适合小型煤粉锅炉燃用的印尼煤燃料,以确保锅炉的正常运行。%The applicability analysis of burning Indonesian coal in small efficient pulverized coal fired boiler was done combined with efficient pulverized coal fired boiler process flow,technical features and coal quality analysis of the Indonesian coal.The practical operating results of small efficient pulverized coal fired boiler burning Indonesian coal showed that choosing the suitable Indonesian coal could ensure the normal operation of the boiler.

  16. Anatomy of an upgraded pulverized coal facility: Combustion modification through flue gas scrubbing

    Energy Technology Data Exchange (ETDEWEB)

    Watts, J.U. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center; Savichky, W.J.; O`Dea, D.T. [New York State Electric and Gas Corp., Binghamton, NY (United States)

    1997-12-31

    Regeneration is a biological term for formation or creating anew. In the case of Milliken station, a species of steam generation (Tangentus coali) regeneration refers to refitting critical systems with the latest technological advances to reduce emissions while maintaining or improving performance. The plant has undergone a series of operations which provided anatomical changes as well as a face lift. Each of the two units were place in suspended animation (outage) to allow these changes to be made. The paper describes the project which includes retrofitting combustion systems, pulverizers, boiler liners, scrubbers, and control room. This retrofit is meant to increase thermal efficiency while reducing the formation of nitrogen oxides.

  17. Assessment of pulverized-coal-fired combustion performance: Final report for the period September 1980--September 1983

    Energy Technology Data Exchange (ETDEWEB)

    Richter, W.F.; Clark, W.; Pohl, J.H.; Payne, R.

    1987-06-01

    The purpose of this program was to evaluate an engineering analysis procedure which could be used to assess the impact on thermal performance of converting gas and oil fired equipment to coal. The program consisted of four major tasks: (1) Engineering Analysis. The objective was to evaluate currently available models which could be used to predict combustor performance and to define a procedure which could be used to assess the impact of a coal firing in a boiler or furnace; (2) Reactor Studies. The purpose was to evaluate, under controlled conditions, the radiative properties of fly ash clouds; (3) Pilot Scale Experiments. This involved a combustion trial with gas and coals which were burned at 0.7 /times/ 10/sup 6/ Btu/hr in a pilot-scale combustor. The purpose was to verify and supplement the results of the small-scale reactor studies on the radiant properties of coal flames at larger scale; (4) Reporting. Engineering analysis procedures were used to identify those fuels related properties which had a major impact on the thermal performance of furnaces. The major result of the study is that thermal performance of coal-fired furnaces is dominated by the formation of fly ash deposits on the heat transfer surfaces. The key parameters which influence thermal performance are: thickness, thermal conductivity, and surface emissivity or absorptivity. 105 refs., 170 figs., 29 tabs.

  18. Reducing the cost of post combustion capture technology for pulverized coal power plants by flexible operation

    NARCIS (Netherlands)

    Kler, R.C.F. de; Verbaan, M.; Goetheer, E.L.V.

    2013-01-01

    Currently the low carbon prices, low Spreads and regulatory uncertainties hampers the business cases for coal-fired power plants with post-combustion capture (PCC) in Europe. Improvement of the business case of coal-fired power plants with post combustion capture requires a different approach in

  19. Reducing the cost of Post Combustion Capture technology for Pulverized Coal Power Plants by flexible operation

    NARCIS (Netherlands)

    De Kler, R.C.F.; Verbaan, M.; Goetheer, E.L.V.

    2013-01-01

    Currently the low carbon prices, low Spreads and regulatory uncertainties hampers the business cases for coal-fired power plants with post-combustion capture (PCC) in Europe. Improvement of the business case of coal-fired power plants with post combustion capture requires a different approach in

  20. Reducing the cost of Post Combustion Capture technology for Pulverized Coal Power Plants by flexible operation

    NARCIS (Netherlands)

    De Kler, R.C.F.; Verbaan, M.; Goetheer, E.L.V.

    2013-01-01

    Currently the low carbon prices, low Spreads and regulatory uncertainties hampers the business cases for coal-fired power plants with post-combustion capture (PCC) in Europe. Improvement of the business case of coal-fired power plants with post combustion capture requires a different approach in ter

  1. Experiments and computational modeling of pulverized-coal ignition. Semiannual report, Apr 1, 1998--Sep 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    John C. Chen; Samuel Owusu-Ofori

    1998-10-31

    Under typical conditions of pulverized-coal combustion, which is characterized by fine particles heated at very high rates, there is currently a lack of certainty regarding the ignition mechanism of bituminous and lower rank coals. It is unclear whether ignition occurs first at the particle-oxygen interface (heterogeneous ignition) or if it occurs in the gas phase due to ignition of the devolatilization products (homogeneous ignition). Furthermore, there have been no previous studies aimed at determining the dependence of the ignition mechanism on variations in experimental conditions, such as particle size, oxygen concentration, and heating rate. Finally, there is a need to improve current mathematical models of ignition to realistically and accurately depict the particle-to-particle variations that exist within a coal sample. Such a model is needed to extract useful reaction parameters from ignition studies, and to interpret ignition data in a more meaningful way. The authors propose to examine fundamental aspects of coal ignition through (1) experiments to determine the ignition mechanism of various coals by direct observation, and (2) modeling of the ignition process to derive rate constants and to provide a more insightful interpretation of data from ignition experiments. They propose to use a novel laser-based ignition experiment to achieve their objectives. The heating source will be a pulsed, carbon dioxide laser in which both the pulse energy and pulse duration are independently variable, allowing for a wide range of heating rates and particle temperatures--both of which are decoupled from each other and from the particle size. This level of control over the experimental conditions is truly novel in ignition and combustion experiments. Laser-ignition experiments also offer the distinct advantage of easy optical access to the particles because of the absence of a furnace or radiating walls, and thus permit direct observation and particle temperature

  2. Discussion on Improvement of Chain-grate Boiler to Pulverized Coal Boiler%某链条锅炉改造为煤粉锅炉的探讨

    Institute of Scientific and Technical Information of China (English)

    刘新龙; 王惠云; 杨林; 王鹏南

    2016-01-01

    对链条锅炉改造为煤粉锅炉做了系统的介绍。对改造中所涉及的各系统和设备进行了一定的分析,并证明链条炉改造为煤粉炉是可行的,其配套的烟气处理技术是有效的。%The improvement of the chain-grate boiler to pulverized coal boiler is systematically introduced. Based on the analysis of the related systems and equipments, it's proven that it's feasible to improve the chain-grate boiler to pulverized coal boiler and the corresponding flue gas treatment technology is efficient.

  3. 论路用混凝土掺合料——粉煤灰%Road Mixes the Material with the Concretes Pulverized Coal Ash

    Institute of Scientific and Technical Information of China (English)

    李吉平

    2009-01-01

    This paper introduced the road mixes the material pulverized coal ash with the concretes the characteristic, technical performance, to pulverized coal ash quality requirement, standard, choice, design requirements and isometric substitution law and excess substitution method com-putation principle.%文章介绍了路用混凝土掺合料粉煤灰的特点、技术性能、对粉煤灰的质量要求、标准、选择,以及设计要求和配制混凝土时取代水泥的等量取代法和超量取代法的计算原理.

  4. Modelling of pulverized coal boilers: review and validation of on-line simulation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Diez, L.I.; Cortes, C.; Campo, A. [University of Zaragoza, Zaragoza (Spain). Centro de Investigacion de Recursos y Consumos Energeticos (CIRCE)

    2005-07-01

    Thermal modelling of large pulverized fuel utility boilers has reached a very remarkable development, through the application of CFD techniques and other advanced mathematical methods. However, due to the computational requirements, on-line monitoring and simulation tools still rely on lumped models and semiempirical approaches, which are often strongly simplified and not well connected with sound theoretical basis. This paper reviews on-line modelling techniques, aiming at the improvement of their capabilities, by means of the revision and modification of conventional lumped models and the integration of off-line CFD predictions. The paper illustrates the coherence of monitoring calculations as well as the validation of the on-line thermal simulator, starting from real operation data from a case-study unit. The outcome is that it is possible to significantly improve the accuracy of on-line calculations provided by conventional models, taking into account the singularities of large combustion systems and coupling offline CFD predictions for selected scenarios.

  5. Technological Analysis on Choren High-Pressure Pulverized Coal Gasification Process%科林高压干粉煤气化工艺技术分析

    Institute of Scientific and Technical Information of China (English)

    赵小倩; 胡长胜

    2011-01-01

    The process and features of Choren high-pressure pulveried coal gasification are presented. Operability of the gasification technology is analysed. And the operation data as compared with the other two coal gasification processes, i.e. pulverized coal gasification process with waste heat boiler and coal-water slurry pressure gasification process, using in China are described briefly. Choren high-pressure pulverized coal gasification process is featured with simple in equipment structure, wider applicability of coal variety, lower consumption and high localization of equipment.%介绍了科林高压干粉煤气化的工艺流程、工艺特点.对该气化技术的可操作性进行了分析,并与国内应用的2种煤气化工艺(干粉煤废锅气化工艺和水煤浆加压气化工艺)数据进行了简单对比.科林高压干粉煤气化工艺具有设备结构简单、煤种适用性更宽、消耗低和设备国产化程度高的特点.

  6. JV Task 106 - Feasibility of CO2 Capture Technologies for Existing North Dakota Lignite-Fired Pulverized Coal Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Jones; Brandon M. Pavlish; Melanie D. Jensen

    2007-05-01

    The goal of this project is to provide a technical review and evaluation of various carbon dioxide (CO{sub 2}) capture technologies, with a focus on the applicability to lignite-fired facilities within North Dakota. The motivation for the project came from the Lignite Energy Council's (LEC's) need to identify the feasibility of CO{sub 2} capture technologies for existing North Dakota lignite-fired, pulverized coal (pc) power plants. A literature review was completed to determine the commercially available technologies as well as to identify emerging CO{sub 2} capture technologies that are currently in the research or demonstration phase. The literature review revealed few commercially available technologies for a coal-fired power plant. CO{sub 2} separation and capture using amine scrubbing have been performed for several years in industry and could be applied to an existing pc-fired power plant. Other promising technologies do exist, but many are still in the research and demonstration phases. Oxyfuel combustion, a technology that has been used in industry for several years to increase boiler efficiency, is in the process of being tailored for CO{sub 2} separation and capture. These two technologies were chosen for evaluation for CO{sub 2} separation and capture from coal-fired power plants. Although oxyfuel combustion is still in the pilot-scale demonstration phase, it was chosen to be evaluated at LEC's request because it is one of the most promising emerging technologies. As part of the evaluation of the two chosen technologies, a conceptual design, a mass and energy balance, and an economic evaluation were completed.

  7. Investigation of the flow, combustion, heat-transfer and emissions from a 609MW utility tangentially fired pulverized-coal boiler

    DEFF Research Database (Denmark)

    Yin, Chungen; Caillat, Sébastien; Harion, Jean-Luc.;

    2002-01-01

    A numerical approach is given to investigate the performance of a 609 MW tangentially fired pulverized-coal boiler, with emphasis on formation mechanism of gas flow deviation and uneven wall temperature in crossover pass and on NOx emission. To achieve this purpose and obtain a reliable solution...... are reliable. These conclusions can be used to guide the design and operation of boilers of similar types....

  8. Influence of rank and macerals on the burnout behaviour of pulverized Indian coal

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Nandita; Biswas, S.; Sarkar, P.; Kumar, Manish; Mukherjee, A.; Choudhury, A. [Central Institute of Mining and Fuel Research, Digwadih Campus (Formerly Central Fuel Research Institute), P.O. FRI, Dhanbad-828 108, Jharkhand (India); Ghosal, Sujit; Mitra, Tandra [Jadavpur University, Kolkata-700 032, West Bengal (India)

    2008-04-03

    The combustion behaviour of coal is significantly influenced by its rank and maceral and microlithotype compositions. Different macerals, due to their distinct and unique physical properties and chemical makeup, have different burning characteristics. This paper deals with the burning behaviour of coals of Indian origin by thermo gravimetric analysis (TGA) and in drop tube furnace (DTF) with particular emphasis on the role of macerals and their associations. Four coals of different rank and petrographic makeup, along with their two density fractions, with enriched vitrinite and inertinites, respectively,were studied in both TGA and DTF. The burnout behaviour was estimated from the chemical analyses of the char samples collected from the DTF. The burning characteristics of one of the coals deviate from the trend expected with the variations of rank. The behaviour of the density fractions in DTF was found to be different from that observed in TGA analyses. An attempt has been made to correlate the burnout with the petrographic macerals and microlithotypes present in the coals. The morphology of the residual chars indicates the contributions of the inertinites towards the formation of cenospheres and network types of reactive chars. The superior burning behaviour of the higher density inertinite-rich fractions over the raw coals and also some vitrinite-rich fractions indicate the better reactivity of the inertinites towards combustion. (author)

  9. Aspects chimiques de la combustion du charbon pulvérisé. Première partie Chemical Aspects of the Combustion of Pulverized Coal. Part One

    Directory of Open Access Journals (Sweden)

    De Soete G. G.

    2006-11-01

    deux mécanismes totalement différents, par exemple entre le mécanisme d'ignition homogène et le mécanisme d'ignition hétérogène du charbon, avec des conséquences pratiques pour la stabilisation de la flamme industrielle ; autre exemple : la compétition entre les divers mécanismes homogènes de formation d'oxydes d'azote et les mécanismes hétérogènes de leur réduction sur des particules solides de coke, de suie et de cendre. Avec ces idées présentes comme un leitmotiv implicite, on passe en revue les grandes étapes de la flamme industrielle de charbon pulvérisé : la dévolatilisation rapide avec la formation progressive de volatils gazeux, de goudrons et de coke ; la transformation partielle des produits gazeux et liquides de pyrolyse en suies ainsi que leur oxydation en phase gazeuse ; la combustion hétérogène du coke ; l'ignition du charbon et sa dépendance par rapport à des processus critiques homogènes et (ou hétérogènes. Comme exemple typique d'un épiphénomènechimique, on suit la transformation des espèces azotées en NO et en N2, qui se greffe en contrepoint et à chaque pas sur tes différents thèmes successifs de cette symphonie de l'oxydation du charbon. En de nombreux points de cette évolution du charbon à travers la flamme, les connaissances de la chimie de com-bustion en phase gazeuse constituent un instrument utile d'interprétation (par exemple : pour l'oxydation des volatils, pour la discussion des modalités d'ignition. II n'en reste pas moins vrai que la plupart des problèmes chimiques hétérogènes sont bien spécifiques de la flamme de charbon ; leur traitement est rendu ardu à cause de la complexité, évolutive au cours de la combustion, du combustible solide lui-même. It is not easy to obtain a full picture of the multiple chemical phenomena which occur inside a pulverized coal flame. This bibliographie review attempts to give more than just a juxtaposition of data from the recent literature and risks making

  10. Clean coal reference plants: Pulverized encoal PDF fired boiler. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The Clean Coal Technology Demonstration Program (CCT) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of full-scale facilities. The goal of the program is to provide the U.S. energy marketplace with a number of advanced, more efficient, and environmentally responsive coal-using technologies. To achieve this goal, a multiphased effort consisting of five separate solicitations has been completed. The Morgantown Energy Technology Center (METC) has the responsibility for monitoring the CCT Projects within certain technology categories, which, in general, correspond to the center`s areas of technology development. Primarily the categories of METC CCT projects are: atmospheric fluid bed combustion, pressurized fluidized bed combustion, integrated gasification combined cycle, mild gasification, and industrial applications. This report describes the plant design.

  11. 配煤技术在Shell粉煤气化中的应用及优化%THE APPLICATION AND OPTIMIZATION OF COAL BLENDING IN SHELL PULVERIZED-COAL GASIFICATION PROCESS

    Institute of Scientific and Technical Information of China (English)

    吴国祥

    2012-01-01

    The requirement for coal property on Shell pulverized-coal gasification process is simply introduced and the definition and theoretical foundation of Coal blending technology are described.The main reasons for coal blending measure to Shell coal gasification plant are analyzed and concrete procedures of coal blending technology and corresponding cases are discussed in detail and the optimized measures for coal blending are resulted in.%介绍Shell粉煤气化工艺对煤质的要求,阐述配煤技术的定义及理论依据,分析Shell气化采用配煤措施的主要原因,详细论述配煤技术的具体实施步骤及相应案例,得出优化配煤的措施。

  12. The advanced super critical 700{sup o}C pulverized coal-fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kjaer, S.; Klauke, F.; Vanstone, R.; Zeijseink, A.; Weissinger, G.; Kristensen, P.; Meier, J.; Blum, R.; Wieghardt, K. [Tech-Wise A/S, Fredericia (Denmark)

    2001-07-01

    This paper presents the efforts of a large European group of manufacturers, utilities and institutes co-operating in a phased long-term project named 'Advanced 700{sup o}C PF Power Plant'. The first phase started in 1998 based on a grant from the Commission's Thermie programme under the 4th Framework programme. The overall objective of the project is to ensure a role for coal in Europe also in future. The project's targets renewedpublic and political acceptance of coal by improving efficiency and economy of well-proven, super critical pulverised coal-fired technology. Net efficiencies of more than 50% will be reached through development of a super critical steam cycle operating at maximum steam temperatures in the range of 700{sup o}C. Principal efforts are based on development of creep resistant - and expensive - nickel-based materials named super-alloys for the hottest areas of the water/steam cycle. Three benchmarks for theinvestigations have been set up: (i) the net efficiency of the demonstration plant from the present state of the art performance of 44% will be boosted into the range of 50-51% for a plant located inland with a cooling tower and 53-54% for the best seawater-cooled versions. (ii) reductions of investment cost of PF power plant by revising the overall architecture of the plant. (iii) Co-firing of up to 20% biomass with coal. The Advanced 700{sup o}C PF power plant project (or AD700) will improve the competitiveness of coal-fired power generation and give a major reduction of CO{sub 2} from coal-fired power plants in the range of 15% from the best PF power plants presently and up to 40% from older plants. 11 figs., 2 tabs.

  13. EFFECT OF HEATING RATE ON THE THERMODYNAMIC PROPERTIES OF PULVERIZED COAL

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan Sampath

    2000-01-01

    This final technical report describes work performed under DOE Grant No. DE-FG22-96PC96224 during the period September 24, 1996 to September 23, 1999 which covers the entire performance period of the project. During this period, modification, alignment, and calibration of the measurement system, measurement of devolatilization time-scales for single coal particles subjected to a range of heating rates and temperature data at these time-scales, and analysis of the temperature data to understand the effect of heating rates on coal thermal properties were carried out. A new thermodynamic model was developed to predict the heat transfer behavior for single coal particles using one approach based on the analogy for thermal property of polymers. Results of this model suggest that bituminous coal particles behave like polymers during rapid heating on the order of 10{sup 4}-10{sup 5} K/s. At these heating rates during the early stages of heating, the vibrational part of the heat capacity of the coal molecules appears to be still frozen but during the transition from heat-up to devolatilization, the heat capacity appears to attain a sudden jump in its value as in the case of polymers. There are a few data available in the coal literature for low heating rate experiments (10{sup 2}-10{sup 3} K/s) conducted by UTRC, our industrial partner, in this project. These data were obtained for a longer heating duration on the order of several seconds as opposed to the 10 milliseconds heating time of the single particle experiments discussed above. The polymer analogy model was modified to include longer heating time on the order of several seconds to test these data. However, the model failed to predict these low heating rate data. It should be noted that UTRC's work showed reasonably good agreement with Merrick model heat capacity predictions at these low heating rates, but at higher heating rates UTRC observed that coal thermal response was heat flux dependent. It is concluded

  14. Risk management of energy efficiency projects in the industry - sample plant for injecting pulverized coal into the blast furnaces

    Directory of Open Access Journals (Sweden)

    Jovanović Filip P.

    2016-01-01

    Full Text Available This paper analyses the applicability of well-known risk management methodologies in energy efficiency projects in the industry. The possibilities of application of the selected risk management methodology are demonstrated within the project of the plants for injecting pulverized coal into blast furnaces nos. 1 and 2, implemented by the company US STEEL SERBIA d.o.o. in Smederevo. The aim of the project was to increase energy efficiency through the reduction of the quantity of coke, whose production requires large amounts of energy, reduction of harmful exhaust emission and increase productivity of blast furnaces through the reduction of production costs. The project was complex and had high costs, so that it was necessary to predict risk events and plan responses to identified risks at an early stage of implementation, in the course of the project design, in order to minimise losses and implement the project in accordance with the defined time and cost limitations. [Projekat Ministarstva nauke Republike Srbije, br. 179081: Researching contemporary tendencies of strategic management using specialized management disciplines in function of competitiveness of Serbian economy

  15. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer.

    Science.gov (United States)

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-01

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na(2)SiO(3)) and 10M sodium hydroxide (NaOH) solutions at mass ratio of Na(2)SiO(3)/NaOH of 1.5 and curing temperature of 65 degrees C for 48h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  16. The effects of unburned carbon on radiative heat transfer in a pilot pulverized coal furnace -- Numerical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhaohui; Xing Huawei; Zhou Yingbiao; Zheng Chuguang [National Lab. of Coal Combustion, Wuhan (China)

    1997-12-31

    This paper investigates the possible effect of residue char on the radiative heat transfer in a pilot furnace. Firstly, a program is constructed to incorporate radiative properties of particles in solving the radiative heat transfer, based on a computer code for predicting turbulent gas-solid flow and combustion. The radiative properties of single unburnt char are modeled by coated sphere model of Mie theory, while the local Planck average radiative properties of particle could be obtained by a scheme based on Lagrangian approach with particle turbulent dispersion, and the radiative heat transfer is solved by Discrete Transfer method. Then, comparisons are made among predicted results for a pilot-scale pulverized coal furnace by several particulate radiative properties models. It shows even for the pilot-scale furnace, the effect of particle concentration is more important than that of distinguishing between particles of char and ash. The residue carbon in ash has a tendency to enhance the radiative heat transfer for this case. The optimized burn-off rate to separate ash from char is near 0.65.

  17. PROTOTYPE SCALE TESTING OF LIMB TECHNOLOGY FOR A PULVERIZED-COAL-FIRED BOILER

    Science.gov (United States)

    The report summarizes results of an evaluation of furnace sorbent injection (FSI) to control sulfur dioxide (SO2) emissions from coal-fired utility boilers. (NOTE: FSI of calcium-based sorbents has shown promise as a moderate SO2 removal technology.) The Electric Power Research I...

  18. Assessment of ecotoxicological risks of element leaching from pulverized coal ashes

    NARCIS (Netherlands)

    Jenner, H.A.

    1995-01-01

    This thesis describes the consequences of the disposal of the combustion residues of coal, especially the uptake of elements from such residues and their effects on various organisms. The effects on benthic organisms in fresh and in seawater are considered in the first two parts. The third

  19. Measurement method and experimental research on flame emissivity in Coal-fired furnaces

    Institute of Scientific and Technical Information of China (English)

    YANG Chao; LOU Chun; JIANG Zhi-wei; ZHOU Huai-chun

    2007-01-01

    The combustion condition in coal-fired furnaces of the large power station boiler is very complex and the flame emissivity is one of the important combustion parameters.A measurement method of the flame emissivity based on the blackbody furnace calibration of CCD(Charge Coupled Device)cameras and the color image processing techniques of computer was introduced.The experimentaI research on the flame emissivity in a 200 MW boiler furnace and a 300 MW boiler furnace was conducted respectively through the several CCD cameras installed at different height in furnace.The measurement results show:the flame emissivity increases with the increase of the unit load.the flame emissivity of the burner areas in furnace is the highest and the flame emissivity decrease with the increase of height of furnace above the burners area.

  20. Coal selection for NO{sub x} reduction in pulverized fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Gibbins, J.R.; Lockwood, F.C.; Man, C.K.; Williamson, J.; Hesselman, G.J.; Downer, B.M.; Skorupska, N.M. [Imperial College of Science, Technology and Medicine, London (United Kingdom)

    1995-12-31

    A major factor affecting a coal`s performance in air-staged low-NO{sub x} burners is the amount of nitrogen remaining in the char after devolatilisation. Current standard proximate devolatilisation tests do not apply realistic heating conditions for PF combustion, but a recently-developed high-temperature wire-mesh reactor now allows relatively simple captive-sample measurements at heating rates of 10{sup 4} K/s. Char nitrogen data is reported for devolatilisation temperatures from 400{degree}C to 1800{degree}C, including values for a range of UK and world-traded coals for which NO{sub x} measurements from three full-scale low-NO{sub x} utility plants and/or a pilot combustor are available. The most general correlation between char nitrogen and combustion NO{sub x} is observed for a peak preparation temperature of 1800{degree}C with 0.15 s (or 2 s) hold time or 1600{degree}C with 2 s hold, conditions which give the maximum release of nitrogen from the char. 18 refs., 8 figs.

  1. Pulverized coal firing of aluminum melting furnaces. First annual technical progress report, May 1978-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    West, C.E.; Hines, J.E.; Stewart, D.L. Jr.; Yu, H.

    1979-10-01

    The ultimate objective of this program is the commercial demonstration of an efficient, environmentally acceptable coal firing process suitable for implementation on melting furnaces throughout the aluminum industry. To achieve this goal, the program has been divided into two phases. Phase I has begun with the design and construction of a 350 lb/h (coal) staged slagging cyclone combustor (SSCC) attached to a 7-ft dia aluminum melting ladle furnace. Process development will culminate with a 1000 pph prototype SSCC firing a 40,000 lb capacity open hearth melting furnace at the Alcoa Laboratories. Phase II implementation is currently planned for Alcoa's Lafayette, IN, Works, where two of the ingot plant's five open hearth melting furnaces will be converted to utilize coal. In addition to confirmation of data gathered in Phase I, the effect of extended production schedule operation on equipment and efficiencies will be determined. This work would begin in 1982 pursuant to technical and economic evaluation of the process development at that time. A major design subcontract for assistance in the design of the SSCC is 80% completed.

  2. Physicochemical properties and potential health effects of nanoparticles from pulverized coal combustion

    Institute of Scientific and Technical Information of China (English)

    YU DunXi; XU MingHou; YAO Hong; LIU XiaoWei; ZHOU Ke; WEN Chang; LI Lin

    2009-01-01

    Nanoparticles are thought to induce more severe health impacts than larger particles. The nanoparti-cles from coal-fired boilers are classified into three size fractions with a 13-stage low pressure impactor. Their physicochemical properties are characterized by the high-resolution field emission scanning electron microscope and X-ray fluorescence spectrometer (XRF). The results show that coal-derived nanoparticles mainly consist of individual primary particles of 20-150 nm and their aggregates. Inor-ganic nanoparticles primarily contain ash-forming elements and their aggregates have a dense struc-ture. Organic nanoparticles are dominated by the element carbon and their aggregates have a loose structure. Nanoparticles from the same boiler have a similar composition and are primarily composed of sulfur, refractory elements and alkali/alkaline elements. Some transition and heavy metals are also detected. For different boilers, greater differences are observed in the production of the nanoparticles and their composition, possibly due to the use of low-NOx burners. Coal-derived nanoparticles have a small size, large specific surface area and complicated chemical composition, and thus are potentially more harmful to human health.

  3. Assessment against Experiments of Devolatilization and Char Burnout Models for the Simulation of an Aerodynamically Staged Swirled Low-NOx Pulverized Coal Burner

    Directory of Open Access Journals (Sweden)

    Marco Torresi

    2017-01-01

    Full Text Available In the next few years, even though there will be a continuous growth of renewables and a loss of the share of fossil fuel, energy production will still be strongly dependent on fossil fuels. It is expected that coal will continue to play an important role as a primary energy source in the next few decades due to its lower cost and higher availability with respect to other fossil fuels. However, in order to improve the sustainability of energy production from fossil fuels, in terms of pollutant emissions and energy efficiency, the development of advanced investigation tools is crucial. In particular, computational fluid dynamics (CFD simulations are needed in order to support the design process of low emission burners. Even if in the literature several combustion models can be found, the assessment of their performance against detailed experimental measurements on full-scale pulverized coal burners is lacking. In this paper, the numerical simulation of a full-scale low-NO x , aerodynamically-staged, pulverized coal burner for electric utilities tested in the 48 MW th plant at the Combustion Environment Research Centre (CCA - Centro Combustione e Ambiente of Ansaldo Caldaie S.p.A. in Gioia del Colle (Italy is presented. In particular, this paper is focused on both devolatilization and char burnout models. The parameters of each model have been set according to the coal characteristics without any tuning based on the experimental data. Thanks to a detailed description of the complex geometry of the actual industrial burner and, in particular, of the pulverized coal inlet distribution (considering the entire primary air duct, in order to avoid any unrealistic assumption, a correct selection of both devolatilization and char burnout models and a selection of suited parameters for the NO x modeling, accurate results have been obtained in terms of NO x formation. Since the model parameters have been evaluated a priori, the numerical approach proposed

  4. HT-L与Shell及Texaco粉煤气化技术的比较%Technological Comparison of HT-L with Shell and Texaco Pulverized Coal Gasification Processes

    Institute of Scientific and Technical Information of China (English)

    吴胜军

    2011-01-01

    介绍了HT-L粉煤气化技术的工艺特点,并从比氧耗、有效气成分、煤气化效率、能耗等方面与Shell 及Texaco粉煤气化技术进行了分析比较.结果表明:HT-L粉煤气化技术具有高效节能、煤种适用范围广、气化效率高、能耗低、建设和运行成本低、工艺成熟可靠并具有自主知识产权的优点,具有广阔的发展前景.%Process features are described of the HT-L pulverized coal gasification technology, and an analytical comparison is done with the Shell and Texaco pulverized coal gasification technology in terms of specific oxygen consumption, active gas constituent, coal gasification efficiency, and energy consumption. The results show that the HT-L technology has the advantages of highly efficient energy saving, wide scope of application to various coal types, high gasification efficiency, low energy consumption, low construction and operation cost, mature and reliable technology, and possession of independent intellectual property, and so it brings about broad prospects for development.

  5. Selection of Special Valves in Pulverized Coal Gasiifcation Industry%粉煤气化特殊阀门选型

    Institute of Scientific and Technical Information of China (English)

    张赫

    2016-01-01

    China is a country of ‘lean oil, less gas, rich in coal’, therewith the technology of coal gasification is an important means to realize the clean and efficient use of coal. Moreover the technology of pressured pulverized coal gasification recognized as a mature technology in the industry possess advantages of large production capacity and high gasification efficiency. However, the erosion of special valve from abrasion by particles of process fluid can be serious, which will cause the short service cycle and huge economic losses. This paper is based on the successful experience in the similar domestic plants among these years, summarize the application of variety of special valves in the industry, put forward suggestions of instrument selection, and provide the reference for the engineering of similar projects in the future.%我国是一个“贫油、少气、富煤”的国家,煤气化技术是实现煤炭清洁高效利用的重要手段。粉煤加压气化技术是目前业内认可较为成熟的技术,具有生产能力大、气化效率高的特点。然而由于其工艺介质的特点,其中所应用的特殊阀门磨损严重,使用周期短,导致装置频繁停车,造成了巨大的经济损失。本文根据近些年国内粉煤气化的成功运行经验,对其中多种特殊应用的阀门使用进行了总结探讨,提出建议的仪表选型,为同类项目的仪表设计工作提供参考依据。

  6. Pulverized fuel-oxygen burner

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Curtis; Patterson, Brad; Perdue, Jayson

    2017-09-05

    A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a solid fuel conduit arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes generally tangentially through a first set of oxygen-injection holes formed in the solid fuel conduit and off-tangentially from a second set of oxygen-injection holes formed in the solid fuel conduit and then mixes with fluidized, pulverized, solid fuel passing through the solid fuel conduit to create an oxygen-fuel mixture in a downstream portion of the solid fuel conduit. This mixture is discharged into a flame chamber and ignited in the flame chamber to produce a flame.

  7. Inhibition Effect of Phosphorus Flame Retardants on the Fire Disasters Induced by Spontaneous Combustion of Coal

    Directory of Open Access Journals (Sweden)

    Yibo Tang

    2017-01-01

    Full Text Available Coal spontaneous combustion (CSC generally induces fire disasters in underground mines, thus causing serious casualties, environmental pollution, and property loss around the world. By using six P-containing additives to process three typical coal samples, this study investigated the variations of the self-ignition characteristics of the coal samples before and after treatment. The analysis was performed by combining thermogravimetric analysis/differential scanning calorimetry (TG/DSC Fourier transform infrared spectrometer (FTIR and low temperature oxidation. Experimental results showed that P-containing inhibitors could effectively restrain the heat emitted in the combustion of coal samples and therefore the ignition temperature of the coal samples was delayed at varying degrees. The combustion rate of the coal samples was reduced as well. At the temperatures ranging from 50°C to 150°C, the activation energy of the coal samples after the treatment was found to increase, which indicated that the coal samples were more difficult to be oxidized. After being treated with phosphorus flame retardants (PFRs, the content of several active groups represented by the C-O structure in the three coal samples was proved to be obviously changed. This suggested that PFRs could significantly inhibit the content of CO generated by the low temperature oxidation of coal, and the flame-retardant efficiency grew with the increasing temperature. At 200°C, the maximal inhibition efficiency reached approximately 85%.

  8. Characterization of bottom ashes from coal pulverized power plants to determine their potential use feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Menendez, E.; Alvaro, A. M.; Argiz, C.; Parra, J. L.; Moragues, A.

    2013-07-01

    The disposal of coal by products represents environmental and economical problems around the world. Therefore, the reuse and valorisation of this waste has become an important issue in the last decades. While high-value construction products containing fly ash were developed and its use is actually totally accepted as an addition to cement, the use of the bottom ash as supplementary cementitious material has not been allow. This paper examines the chemical and physical properties of fly ashes and bottom ashes from two different coal power plants in order to compare them and analyse the potential feasibility of bottom ash as cement replacement. The mechanical properties of cement mortars made with different percentages of both ashes were also study. The results obtained showed similar chemical composition of both kinds of ashes. The compressive strength values of mortars with 10 % and 25 % of cement replacement (at 28 days) were above the limits established in European standards and there were not significant differences between fly ash and bottom ash from both origins. (Author)

  9. Duquesne Light Company`s modifications for nitric oxide RACT compliance on a 200 MW face fired pulverized coal unit

    Energy Technology Data Exchange (ETDEWEB)

    Breen, B.P.; Bionda, J.P.; Gabrielson, J.E. [Energy Systems Associates, Pittsburgh, PA (United States); Hallo, A.; Gretz, G.F. [Duquesne Light Co., Pittsburgh, PA (United States)

    1996-12-31

    This paper discusses the results of a research test program conducted on Duquesne Light Company`s Elrama Unit 4. The program was designed to determine the viability of achieving compliance with the recently enacted PA DER Reasonably Available Control Technology (RACT) regulations. These regulations stipulate presumptive RACT requirements for wall fired boilers which include the installation and operation of low NO{sub x} burners with separated overfire air. Duquesne Light Company contracted Energy Systems Associates (ESA) to aide in the design and testing of a novel low NO{sub x} burner design and separated overfire air system. A three-dimensional computational furnace model was developed by ESA of the Elrama Unit 4 furnace, and a two-dimensional fluid dynamics model was developed of the coal burner. By modifying the coal burners, it has been possible to reduce the nitric oxide emissions by 30% on Unit 4, with minimal impact of the unburned carbon in the ash. The burner modifications create fuel rich streams which are surrounded by air rich zones in the primary flame region, thus staging combustion at the burner. Additional nitric oxide reductions are realized when the combustion is further staged by use of the separated overfire air system.

  10. Measurement and Modeling of Particle Radiation in Coal Flames

    DEFF Research Database (Denmark)

    Bäckström, Daniel; Johansson, Robert; Andersson, Klas Jerker

    2014-01-01

    This work aims at developing a methodology that can provide information of in-flame particle radiation in industrial-scale flames. The method is based on a combination of experimental and modeling work. The experiments have been performed in the high-temperature zone of a 77 kWth swirling lignite...... properties. The in-flame particle radiation was measured with a Fourier transform infrared (FTIR) spectrometer connected to a water-cooled probe via fiber optics. In the cross-section of the flame investigated, the particles were found to be the dominating source of radiation. Apart from giving information...

  11. The effect of char structure on burnout during pulverized coal combustion at pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G.; Wu, H.; Benfell, K.E.; Lucas, J.A.; Wall, T.F.

    1999-07-01

    An Australian bituminous coal sample was burnt in a drop tube furnace (DTF) at 1 atm and a pressurized drop tube furnace (PDTF) at 15 atm. The char samples were collected at different burnout levels, and a scanning electron microscope was used to examine the structures of chars. A model was developed to predict the burnout of char particles with different structures. The model accounts for combustion of the thin-walled structure of cenospheric char and its fragmentation during burnout. The effect of pressure on reaction rate was also considered in the model. As a result, approximately 40% and 70% cenospheric char particles were observed in the char samples collected after coal pyrolysis in the DTF and PDTF respectively. A large number of fine particles (< 30 mm) were observed in the 1 atm char samples at burnout levels between 30% and 50%, which suggests that significant fragmentation occurred during early combustion. Ash particle size distributions show that a large number of small ash particles formed during burnout at high pressure. The time needed for 70% char burnout at 15 atm is approximately 1.6 times that at 1 atm under the same temperature and gas environment conditions, which is attributed to the different pressures as well as char structures. The overall reaction rate for cenospheric char was predicted to be approximately 2 times that of the dense chars, which is consistent with previous experimental results. The predicted char burnout including char structures agrees reasonably well with the experimental measurements that were obtained at 1 atm and 15 atm pressures.

  12. Numerical simulation of excess-enthalpy combustion flame propagation of coal mine methane in ceramic foam

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the assumption of a local non-equilibrium of heat transfer between a solid matrix and gas,a mathematic model of coal mine methane combustion in a porous medium was established,as well the solid-gas boundary conditions.We simulated numerically the flame propagation characteristics.The results show that the flame velocity in ceramic foam is higher than that of free laminar flows;the maximum flame velocity depends on the combined effects of a radiation extinction coefficient and convection heat transf...

  13. Soot, organics, and ultrafine ash from air- and oxy-fired coal combustion

    Science.gov (United States)

    This paper/presentation is concerned with determining the effects of oxy-combustion of coal on the composition of the ultrafine fly ash. To this end, a 10 W externally heated entrained flow furnace was modified to allow the combustion of pulverized coal in flames under practicall...

  14. Soot, organics and ultrafine ash from air- and oxy-fired coal combustion

    Science.gov (United States)

    This paper is concerned with determining the effects of oxy-combustion of coal on the composition of the ultrafine fly ash. To this end, a 10 W externally heated entrained flow furnace was modified to allow the combustion of pulverized coal in flames under practically relevant s...

  15. Comparative analysis of the influence of turbulence models on the description of the nitrogen oxides formation during the combustion of swirling pulverized coal flow

    Science.gov (United States)

    Kuznetsov, V.; Chernetskaya, N.; Chernetskiy, M.

    2016-10-01

    The paper presents the results of numerical research on the influence of the two- parametric k-ε, and k-ω SST turbulence models as well as Reynolds stress model (RSM) on the description of the nitrogen oxides formation during the combustion of pulverized coal in swirling flow. For the numerical simulation of turbulent flow of an incompressible liquid, we used the Reynolds equation taking into account the interfacial interactions. To solve the equation of thermal radiation transfer, the P1 approximation of spherical harmonics method was employed. The optical properties of gases were described based on the sum of gray gases model. To describe the motion of coal particles we used the method of Lagrange multipliers. Burning of coke residue was considered based on diffusion - kinetic approximation. Comparative analysis has shown that the choice of turbulence model has a significant impact on the root mean square (RMS) values of the velocity and temperature pulsation components. This leads to significant differences in the calculation of the nitrogen oxides formation process during the combustion of pulverized coal.

  16. Technical notes for the conceptual design for an atmospheric fluidized-bed direct combustion power generating plant. [Comparison of AFB plant and pulverized coal plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    The first part of this report presents a comparison of the conceptual designs of a large (570 MW(e)) pulverized coal (PC) steam generator equipped with a wet limestone flue gas desulfurization (FGD) system and two equivalent sized atmospheric fluidized bed (AFB) steam generators including balance of plants for electric-power generation. The reader is cautioned that this portion of the report compares a zero generation AFB technology to pulverized coal technology which has been operationally and economically optimized for the past half-century. This comparison is intended to be indicative of whether further development of the AFB concept as a viable alternative to the PC/FGD concept for electric-power generation is merited. In the second part, the load-following capability of a once-through subcritical atmospheric fluidized bed boiler is analyzed. Digital computer simulation predictions of the plant's response to open loop step changes in firing rate, feedwater flow, governor valve, unit load demand, etc, are made. The predicted response of throttle pressure, steam temperature, unit load, etc, are compared to the response of a conventional coal-fired, once-through, subcritical unit. The load-following capability is assessed through this qualitative comparison. Additional model response predictions are also presented for which no test data are presently available.

  17. Numerical analysis of loads effect on combustion performance and NO{sub x} emissions of a 220 MW pulverized coal boiler

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun; Yang, Weihong; Blasiak, Wlodzimierz [Royal Institute of Technology (KTH), Stockholm (Sweden). Div. of Energy and Furnace Technology; Jankowski, Radoslaw; Kotecki, Michal; Szewczyk, Dariusz [Industrial Combustion Systems (ICS) Company, Poznan (Poland); Brzdekiewicz, Artur [Remak-Rozruch SA, Opole (Poland)

    2013-07-01

    This paper presents numerical study on the combustion performance and NO{sub x} emissions of a 220 MW pulverized coal boiler. Three different loads have been simulated with combusting coal, 200, 170 and 140 MW, respectively. In order to get as precise as possible numerical analysis results, two-step simulation method has been adopted in this work, namely, air supply system simulation and furnace simulation. After air supply system simulation, the results have been taken as the initial and boundary conditions for furnace simulation. The comparison between the measured values and predicted results from 200 MW case shows much better agreement. According to the simulation results, the adopted two-step simulation method is reasonable and suitable for predicting the characters of the flow and combustion process. It is concluded that the distributions of temperature, O{sub 2} and CO concentration inside furnace with different loads shows good similarly. The total NOx emissions decreased with the boiler load reducing, and fuel NO{sub x} has the same trend as total NO{sub x}, and fuel NO{sub x} account for about 66% in total NO{sub x} in all the three cases. More important, thermal NO{sub x} slowly decreased with the rise of boiler load. More detailed results presented in this paper enhance the understanding of combustion processes and complex flow patterns of front-wall pulverized coal boilers.

  18. Coal Direct Chemical Looping Retrofit to Pulverized Coal Power Plants for In-Situ CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Liang; Li, Fanxing; Kim, Ray; Bayham, Samuel; McGiveron, Omar; Tong, Andrew; Connell, Daniel; Luo, Siwei; Sridhar, Deepak; Wang, Fei; Sun, Zhenchao; Fan, Liang-Shih

    2013-09-30

    A novel Coal Direct Chemical Looping (CDCL) system is proposed to effectively capture CO2 from existing PC power plants. The work during the past three years has led to an oxygen carrier particle with satisfactory performance. Moreover, successful laboratory, bench scale, and integrated demonstrations have been performed. The proposed project further advanced the novel CDCL technology to sub-pilot scale (25 kWth). To be more specific, the following objectives attained in the proposed project are: 1. to further improve the oxygen carrying capacity as well as the sulfur/ash tolerance of the current (working) particle; 2. to demonstrate continuous CDCL operations in an integrated mode with > 99% coal (bituminous, subbituminous, and lignite) conversion as well as the production of high temperature exhaust gas stream that is suitable for steam generation in existing PC boilers; 3. to identify, via demonstrations, the fate of sulfur and NOx; 4. to conduct thorough techno-economic analysis that validates the technical and economical attractiveness of the CDCL system. The objectives outlined above were achieved through collaborative efforts among all the participants. CONSOL Energy Inc. performed the techno-economic analysis of the CDCL process. Shell/CRI was able to perform feasibility and economic studies on the large scale particle synthesis and provide composite particles for the sub-pilot scale testing. The experience of B&W (with boilers) and Air Products (with handling gases) assisted the retrofit system design as well as the demonstration unit operations. The experience gained from the sub-pilot scale demonstration of the Syngas Chemical Looping (SCL) process at OSU was able to ensure the successful handling of the solids. Phase 1 focused on studies to improve the current particle to better suit the CDCL operations. The optimum operating conditions for the reducer reactor such as the temperature, char gasification enhancer type, and flow rate were identified. The

  19. Fundamental study of the pulverized coal char combustion in oxyfuel mode with drop tube furnace

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Takamasa; Takafuji, Makoto; Suda, Toshiyuki; Fujimori, Toshiro [Heat and Fluid Dynamics Department, Yokohama (Japan)

    2013-07-01

    The combustion characteristics of coal char particles in either O{sub 2}/N{sub 2} or O{sub 2}/CO{sub 2} conditions were experimentally investigated. Especially, the char burnout, the char particle temperature and the shrinkage of the char particles were discussed. A Drop Tube Furnace (DTF: whose wall temperature was set at 873, 923 and 973 K) was used as the experimental apparatus. The experimental results revealed that, in equivalent oxygen concentration, the char burnout and the char particle temperature were higher in O{sub 2}/N{sub 2} conditions than those in O{sub 2}/CO{sub 2} conditions. The shrinkage of the char particle did not show the large difference in either O{sub 2}/N{sub 2} or O{sub 2}/CO{sub 2} conditions. Up to 15% of char burnout, the char particle diameters were reduced gradually. Up to 80% of char burnout, the char particle diameters were not changed. This is supposed that the chemical reaction is mainly occurred not on the external surface but on the internal surface of the char particle. Over 80% of char burnout, sudden shrinkage could be seen. Finally, an empirical equation for the prediction of the char particle shrinkage was introduced. Further investigation is required in high operating temperature, where CO{sub 2} gasification may have a large influence on the char burnout.

  20. FUNDAMENTAL INVESTIGATION OF FUEL TRANSFORMATIONS IN PULVERIZED COAL COMBUSTION AND GASIFICATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Robert Hurt; Joseph Calo; Thomas H. Fletcher; Alan Sayre

    2005-04-29

    The goal of this project was to carry out the necessary experiments and analyses to extend current capabilities for modeling fuel transformations to the new conditions anticipated in next-generation coal-based, fuel-flexible combustion and gasification processes. This multi-organization, multi-investigator project has produced data, correlations, and submodels that extend present capabilities in pressure, temperature, and fuel type. The combined experimental and theoretical/computational results are documented in detail in Chapters 1-8 of this report, with Chapter 9 serving as a brief summary of the main conclusions. Chapters 1-3 deal with the effect of elevated pressure on devolatilization, char formation, and char properties. Chapters 4 and 5 deal with advanced combustion kinetic models needed to cover the extended ranges of pressure and temperature expected in next-generation furnaces. Chapter 6 deals with the extension of kinetic data to a variety of alternative solid fuels. Chapter 7 focuses on the kinetics of gasification (rather than combustion) at elevated pressure. Finally, Chapter 8 describes the integration, testing, and use of new fuel transformation submodels into a comprehensive CFD framework. Overall, the effects of elevated pressure, temperature, heating rate, and alternative fuel use are all complex and much more work could be further undertaken in this area. Nevertheless, the current project with its new data, correlations, and computer models provides a much improved basis for model-based design of next generation systems operating under these new conditions.

  1. Investigation of Fly Ash and Activated Carbon Obtained from Pulverized Coal Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Edward K. Levy; Christopher Kiely; Zheng Yao

    2006-08-31

    One of the techniques for Hg capture in coal-fired boilers involves injection of activated carbon (AC) into the boiler downstream of the air preheater. Hg is adsorbed onto the AC particles and fly ash, which are then both removed in an electrostatic precipitator or baghouse. This project addressed the issues of Hg on activated carbon and on fly ash from a materials re-use point of view. It also addressed the possible connection between SCR reactors, fly ash properties and Hg capture. The project has determined the feasibility of separating AC from fly ash in a fluidized bed and of regenerating the separated AC by heating the AC to elevated temperatures in a fluidized bed. The temperatures needed to drive off the Hg from the ash in a fluidized bed have also been determined. Finally, samples of fly ash from power plants with SCR reactors for NO{sub x} control have been analyzed in an effort to determine the effects of SCR on the ash.

  2. Assessing the Exergy Costs of a 332-MW Pulverized Coal-Fired Boiler

    Directory of Open Access Journals (Sweden)

    Victor H. Rangel-Hernandez

    2016-08-01

    Full Text Available In this paper, we analyze the exergy costs of a real large industrial boiler with the aim of improving efficiency. Specifically, the 350-MW front-fired, natural circulation, single reheat and balanced draft coal-fired boiler forms part of a 1050-MW conventional power plant located in Spain. We start with a diagram of the power plant, followed by a formulation of the exergy cost allocation problem to determine the exergy cost of the product of the boiler as a whole and the expenses of the individual components and energy streams. We also define a productive structure of the system. Furthermore, a proposal for including the exergy of radiation is provided in this study. Our results show that the unit exergy cost of the product of the boiler goes from 2.352 to 2.5, and that the maximum values are located in the ancillary electrical devices, such as induced-draft fans and coil heaters. Finally, radiation does not have an effect on the electricity cost, but affects at least 30% of the unit exergy cost of the boiler’s product.

  3. Prediction of Excess Air Factor in Automatic Feed Coal Burners by Processing of Flame Images

    Science.gov (United States)

    Talu, Muhammed Fatih; Onat, Cem; Daskin, Mahmut

    2017-05-01

    In this study, the relationship between the visual information gathered from the flame images and the excess air factor λ in coal burners is investigated. In conventional coal burners the excess air factor λ. can be obtained using very expensive air measurement instruments. The proposed method to predict λ for a specific time in the coal burners consists of three distinct and consecutive stages; a) online flame images acquisition using a CCD camera, b) extraction meaningful information (flame intensity and brightness)from flame images, and c) learning these information (image features) with ANNs and estimate λ. Six different feature extraction methods have been used: CDF of Blue Channel, Co-Occurrence Matrix, L ∞-Frobenius Norms, Radiant Energy Signal (RES), PCA and Wavelet. When compared prediction results, it has seen that the use of co-occurrence matrix with ANNs has the best performance (RMSE = 0.07) in terms of accuracy. The results show that the proposed predicting system using flame images can be preferred instead of using expensive devices to measure excess air factor in during combustion.

  4. Study of flame combustion of off-design binary coal blends in steam boilers

    Science.gov (United States)

    Kapustyanskii, A. A.

    2017-07-01

    Changes in the structure of the fuel consumption by the thermal power stations of Ukraine caused by failure in supplying anthracite from the Donets Basin are analyzed and the major tasks of maintaining the functioning of the coal industry are formulated. The possibility of using, in the near future, the flame combustion of off-design solid fuels in the power boilers of the thermal power plants and combined heat and power plants is studied. The article presents results of expert tests of the TPP-210A and TP-15 boilers under flame combustion of mixtures of anthracites, lean coal, and the coal from the RSA in various combinations. When combusting, such mixtures have higher values of the combustibles yield and the ash fusibility temperature. The existence of the synergetic effect in the flame combustion of binary coal blends with different degrees of metamorphism is discussed. A number of top-priority measures have been worked out that allow for switching over the boilers designed to be fired with anthracite to using blends of coals of different ranks. Zoned thermal analysis of the TP-15 boiler furnace was performed for numerical investigation of the temperature distribution between the furnace chamber zones and exploration of the possibility of the liquid slag disposal and the temperature conditions for realization of this process. A positive result was achieved by combusting anthracite culm (AC), the coal from the RSA, and their mixtures with lean coal within the entire range of the working loads of the boilers in question. The problems of normalization of the liquid slag flow were also successfully solved without closing the slag notch. The results obtained by balance experiments suggest that the characteristics of the flame combustion of a binary blend, i.e., the temperature conditions in the furnace, the support flame values, and the degree of the fuel burnout, are similar to the characteristics of the flame of the coal with a higher reactive capacity, which

  5. DEVELOPMENT OF A NOVEL RADIATIVELY/CONDUCTIVELY STABILIZED BURNER FOR SIGNIFICANT REDUCTION OF NOx EMISSIONS AND FOR ADVANCING THE MODELING AND UNDERSTANDING OF PULVERIZED COAL COMBUSTION AND EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Noam Lior; Stuart W. Churchill

    2003-10-01

    The primary objective of the proposed study was the study and analysis of, and design recommendations for, a novel radiatively-conductively stabilized combustion (RCSC) process for pulverized coal, which, based on our prior studies with both fluid fuels and pulverized coal, holds a high promise to reduce NO{sub x} production significantly. We have primarily engaged in continuing and improving our process modeling and analysis, obtained a large amount of quantitative information about the effects of the major parameters on NO{sub x} production, conducted an extensive exergy analysis of the process, evaluated the practicalities of employing the Radiatively-Conductively Stabilized Combustor (RCSC) to large power and heat plants, and improved the experimental facility. Prior experimental work has proven the feasibility of the combustor, but slagging during coal combustion was observed and should be dealt with. The primary outcomes and conclusions from the study are: (1) we developed a model and computer program that represents the pulverized coal combustion in the RCSC, (2) the model predicts that NO{sub x} emissions can be reduced by a number of methods, detailed in the report. (3) the exergy analysis points out at least a couple of possible ways to improve the exergetic efficiency in this combustor: increasing the effectiveness of thermal feedback, and adjusting the combustor mixture exit location, (4) because of the low coal flow rates necessitated in this study to obtain complete combustion in the burner, the size of a burner operating under the considered conditions would have to be up to an order of magnitude, larger than comparable commercial burners, but different flow configurations of the RCSC can yield higher feed rates and smaller dimensions, and should be investigated. Related to this contract, eleven papers were published in journals and conference proceedings, and ten invited presentations were given at university and research institutions, as well as at

  6. CFD analysis of the pulverized coal combustion processes in a 160 MWe tangentially-fired-boiler of a thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cristiano V. da; Beskow, Arthur B. [Universidade Regional Integrada do Alto Uruguai e das Misses (LABSIM/GEAPI/URI), Erechim, RS (Brazil). Dept. de Engenharia e Ciencia da Computacao. Grupo de Engenharia Aplicada a Processos Industriais], Emails: cristiano@uricer.edu.br, Arthur@uricer.edu.br; Indrusiak, Maria Luiza S. [Universidade do Vale do Rio dos Sinos (UNISINOS), Sao Leopoldo, RS (Brazil). Programa de Engenharia Mecanica], E-mail: sperbindrusiak@via-rs.net

    2010-10-15

    The strategic role of energy and the current concern with greenhouse effects, energetic and exegetic efficiency of fossil fuel combustion greatly enhance the importance of the studies of complex physical and chemical processes occurring inside boilers of thermal power plants. The state of the art in computational fluid dynamics and the availability of commercial codes encourage numeric studies of the combustion processes. In the present work the commercial software CFX Ansys Europe Ltd. was used to study the combustion of coal in a 160 MWe commercial thermal power plant with the objective of simulating the operational conditions and identifying factors of inefficiency. The behavior of the flow of air and pulverized coal through the burners was analyzed, and the three-dimensional flue gas flow through the combustion chamber and heat exchangers was reproduced in the numeric simulation. (author)

  7. Industrial Experimental Study and Application of Plasma Pulverized Coal Ignition Burner%等离子煤粉点火燃烧器工业性试验研究及应用

    Institute of Scientific and Technical Information of China (English)

    崔凤誉; 张玉周

    2001-01-01

    This paper systematically explains the content and method of industrial experiment in plasma pulverized coal ignition burner analyzes the experiment results,and puts forward the two-parameter concentration of pulverized coal and fuel ratio combustion regulation-control of plasma pulverized coal ignition burner.On the basis of the industrial experiment,Shandong Yantai Coal-fired Power Plant has realized successfully the boiler ignition without oil aid by using plasma pulverized coal ignition burner for the first time.%阐释等离子煤粉点火燃烧器工业试验的内容及方法,并对其试验结果进行分析。提出等离子煤粉点火燃烧器燃烧调整的双参数煤粉浓度、燃功比控制法。在对等离子煤粉点火燃烧器工业试验基础上,2000年2月15日,山东烟台发电厂利用等离子煤粉点火燃烧器首次实现了机组无油点火。

  8. Combustion and NOx emission characteristics with respect to staged-air damper opening in a 600 MWe down-fired pulverized-coal furnace under deep-air-staging conditions.

    Science.gov (United States)

    Kuang, Min; Li, Zhengqi; Wang, Zhihua; Jing, Xinjing; Liu, Chunlong; Zhu, Qunyi; Ling, Zhongqian

    2014-01-01

    Deep-air-staging combustion conditions, widely used in tangential-fired and wall-arranged furnaces to significantly reduce NOx emissions, are premature up to now in down-fired furnaces that are designed especially for industry firing low-volatile coals such as anthracite and lean coal. To uncover combustion and NOx emission characteristics under deep-air-staging conditions within a newly operated 600 MWe down-fired furnace and simultaneously understand the staged-air effect on the furnace performance, full-load industrial-size measurements taken of gas temperatures and species concentrations in the furnace, CO and NOx emissions in flue gas, and carbon in fly ash were performed at various staged-air damper openings of 10%, 20%, 30%, and 50%. Increasing the staged-air damper opening, gas temperatures along the flame travel (before the flame penetrating the staged-air zone) increased initially but then decreased, while those in the staged-air zone and the upper part of the hopper continuously decreased and increased, respectively. On opening the staged-air damper to further deepen the air-staging conditions, O2 content initially decreased but then increased in both two near-wall regions affected by secondary air and staged air, respectively, whereas CO content in both two regions initially increased but then decreased. In contrast to the conventional understanding about the effects of deep-air-staging conditions, here increasing the staged-air damper opening to deepen the air-staging conditions essentially decreased the exhaust gas temperature and carbon in fly ash and simultaneously increased both NOx emissions and boiler efficiency. In light of apparently low NOx emissions and high carbon in fly ash (i.e., 696-878 mg/m(3) at 6% O2 and 9.81-13.05%, respectively) developing in the down-fired furnace under the present deep-air-staging conditions, further adjustments such as enlarging the staged-air declination angle to prolong pulverized-coal residence times in the

  9. [An investigation of the formation of] polycyclic aromatic hydrocarbon (PAH) emissions when firing pulverized coal in a bench-scale drop tube reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pisupati, S.V.; Wasco, R.S.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States). Combustion Lab.

    1998-12-31

    The Clean Air Act Amendments (CAAA) of 1990 contain provisions which will set standards for the allowable emissions of 188 analytes designated as hazardous air pollutants (HAPs). This list of HAPs was used to establish an initial list of source categories for which EPA would be required to establish technology-based emission standards, which would result in regulated sources sharply reducing routine emissions of toxic air pollutants. Polycyclic organic matter (POM) has also been referred to as polynuclear or polycyclic aromatic compounds (PACs). Nine major categories of POM have been defined by EPA. The study of organic compounds from coal combustion is complex and the results obtained so far are inconclusive with respect to emission factors. The most common organic compounds in the flue gas of coal-fired power plants are polycyclic aromatic hydrocarbons (PAHs). Furthermore, EPA has specified 16 PAH compounds as priority pollutants. These are naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene, benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, benzo[ghi]perylene, and dibenz[ah]anthracene. Penn State`s Combustion Laboratory is equipped to collect and analyze the HAPs in the flue gas from fossil fuels combustion. The overall objective of this study was to examine the effect of unit temperature on PAH emissions. A Modified Method 5 sampling train was used to isokinetically collect samples at desired locations in flue gas streams. The collected sample can be separated into solid, condensed liquid and gaseous phases. The PAHs of interest are extracted from the collected sample, concentrated, then separated and quantified by gas chromatography/mass spectrometry (GC/MS). This study was conducted using a bench-scale drop-tube reactor (DTR). The fuel selected for this study was a Middle Kittanning seam coal pulverized to 80% passing US Standard 200 mesh (commonly

  10. Mathematical modelling of flue gas tempered flames produced from pulverised coal fired with oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Breussin, A.; Weber, R.; Kamp, W.L. van de

    1997-10-01

    The combustion of pulverised coal in conventional utility boilers contributes significantly to global CO{sub 2} emissions. Because atmospheric air is used as the combustion medium, the exhaust gases of conventional pulverised coal fired utility boilers contain approximately 15 % CO{sub 2}. This relatively low concentration makes separating and recovering CO{sub 2} a very energy-intensive process. This process can be simplified if N{sub 2} is eliminated from the comburent before combustion by firing the pulverised coal with pure oxygen. However, this concept will result in very high flames temperatures. Flue gas recirculation can be used to moderate the flame temperature, whilst generating a flue gas with a CO{sub 2} concentration of 95 %. In this presentation, both experimental and modelling work will be described. The former deals with identifying the issues related to the combustion of pulverised coal in simulated turbine exhaust gas, particularly with respect to stability, burnout and pollutant emissions. The second part of this presentation describes mathematical modelling of type 2 as well as type 1 swirling pulverised coal flames. Future work will concentrate on high CO{sub 2} levels environments. (orig.)

  11. 邯钢高炉喷吹煤粉的快速热解机制%Flash Pyrolysis of Pulverized Injection Coal at Hansteel

    Institute of Scientific and Technical Information of China (English)

    刘然; 高永亮; 王杏娟; 吕庆; 杜林森; 王竹民

    2012-01-01

    Aimed at increasing pulverized coal injection at Handan Steel,the pyrolysis of coal in raceway was simulated.The coal of CL and DW were selected and the decomposition rate was calculated by plasma pyrolysis.Gas products were analyzed by gas chromatography and morphology of residues were observed by scanning electron microscopy(SEM).The results show that CL and DW decomposition rate is 43.10% and 52.04% respectively and gas products of coal after plasma pyrolysis,which are different from general pyrolysis,consist of CO,H2,CH4,C2H2 and small content of C2H4,etc.Pyrolysis product has changed evidently,particle size become smaller.The vesicular structure occurs in coal grains when DW is added in the sample,which makes the specific surface area of coal grain increase.The solid carbon combustion ratio in tuyeres can be enhanced,which will provide the theoretical basis for pulverized coal combustion rate.%为了提高邯钢高炉喷吹煤比,模拟煤粉在高炉内的热解。以邯钢喷吹用长治煤(以下简称CL)和大湾煤(以下简称DW)为原料,采用等离子体进行快速热解,计算反应后煤粉的分解率,利用气相色谱仪对气体产物进行分析以及用扫描电镜(SEM)观察反应产物的形貌特征。试验结果表明,CL和DW的分解率分别为43.10%和52.04%,气相产物主要为CO、H2、CH4、C2H2及少量C2H4等气体,热解产物的粒径减小,形貌发生明显变化。在CL煤的基础上配加不同比例的DW后,煤粉颗粒出现了孔状结构,因此可以提高炉内风口回旋区固定碳颗粒的燃烧率,为提高煤粉燃烧率提供理论依据。

  12. Deposit formation in a full-scale pulverized wood-fired power plant with and without coal fly ash addition

    DEFF Research Database (Denmark)

    Wu, Hao; Shafique Bashir, Muhammad; Jensen, Peter Arendt

    2013-01-01

    temperatures of ~1300oC and ~800oC, respectively. It was found that during pulverized wood combustion, the deposit formation at the hightemperature location was characterized by a slow and continuous growth of deposits followed by the shedding of a large layer of deposits, while the deposit formation...

  13. Observer-Based Fuel Control Using Oxygen Measurement. A study based on a first-principles model of a pulverized coal fired Benson Boiler

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Palle; Bendtsen, Jan Dimon; Mortensen, Jan Henrik; Just Nielsen, Rene; Soendergaard Pedersen, Tom [Aalborg Univ. (Denmark). Dept. of Control Engineering

    2005-01-01

    This report describes an attempt to improve the existing control of coal mills used at the Danish power plant Nordjyllandsvaerket Unit 3. The coal mills pulverize raw coal to a fine-grained powder, which is injected into the furnace of the power plant. In the furnace the coal is combusted, producing heat, which is used for steam production. With better control of the coal mills, the power plant can be controlled more efficiently during load changes, thus improving the overall availability and efficiency of the plant. One of the main difficulties from a control point of view is that the coal mills are not equipped with sensors that detect how much coal is injected into the furnace. During the project, a fairly detailed, non-linear differential equation model of the furnace and the steam circuit was constructed and validated against data obtained at the plant. It was observed that this model was able to capture most of the important dynamics found in the data. Based on this model, it is possible to extract linearized models in various operating points. The report discusses this approach and illustrates how the model can be linearized and reduced to a lower-order linear model that is valid in the vicinity of an operating point by removing states that have little influence on the overall response. A viable adaptive control strategy would then be to design controllers for each of these simplified linear models, i.e., the control loop that sets references to the coal mills and feedwater, and use the load as a separate input to the control. The control gains should then be scheduled according to the load. However, the variations and uncertainties in the coal mill are not addressed directly in this approach. Another control approach was taken in this project, where a Kalman filter based on measurements of air flow blown into the furnace and the oxygen concentration in the flue gas is designed to estimate the actual coal flow injected into the furnace. With this estimate

  14. Towards a better understanding of biomass suspension co-firing impacts via investigating a coal flame and a biomass flame in a swirl-stabilized burner flow reactor under same conditions

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2012-01-01

    This paper investigates the combustion characteristics of firing pure coal and firing pure wheat straw in a 150 kW swirl-stabilized burner flow reactor under nearly same conditions. The results indicate very different combustion characteristics between the coal flame and straw flame. In the straw...... flame, the straw particles are little affected by the swirling secondary air jet and travel in a nearly straight line through the oxygenlean core zones. In the coal flame, most of the coal particles are strongly affected by the secondary air jet and swirled into the oxygen-rich outer radius, which also...

  15. Oxy-coal Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, J. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Lighty, J. [Univ. of Utah, Salt Lake City, UT (United States); Ring, T. [Univ. of Utah, Salt Lake City, UT (United States); Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Thornock, J. [Univ. of Utah, Salt Lake City, UT (United States); Y Jia, W. Morris [Univ. of Utah, Salt Lake City, UT (United States); Pedel, J. [Univ. of Utah, Salt Lake City, UT (United States); Rezeai, D. [Univ. of Utah, Salt Lake City, UT (United States); Wang, L. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, J. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-06

    The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol.

  16. Modeling of pulverized coal combustion processes in a vortex furnace of improved design. Part 2: Combustion of brown coal from the Kansk-Achinsk Basin in a vortex furnace

    Science.gov (United States)

    Krasinsky, D. V.; Salomatov, V. V.; Anufriev, I. S.; Sharypov, O. V.; Shadrin, E. Yu.; Anikin, Yu. A.

    2015-03-01

    This paper continues with the description of study results for an improved-design steam boiler vortex furnace, for the full-scale configuration of which the numerical modeling of a three-dimensional turbulent two-phase reacting flow has been performed with allowance for all the principal heat and mass transfer processes in the torch combustion of pulverized Berezovsk brown coal from the Kansk-Achinsk Basin. The detailed distributions of velocity, temperature, concentration, and heat flux fields in different cross sections of the improved vortex furnace have been obtained. The principal thermoengineering and environmental characteristics of this furnace are given.

  17. Principles of Selecting Type of Direct Flow Pulverized Coal Burner before Retrofit%直流煤粉燃烧器改造前的选型原则

    Institute of Scientific and Technical Information of China (English)

    李凤瑞

    2001-01-01

    针对锅炉燃烧器改造问题,提出在燃烧器改造前如何根据锅炉实际情况选择合适燃烧器类型的5项选型原则,包括煤种匹配原则、炉型匹配原则、工作业绩及创新性原则、经济性及安装检修方便性原则、运行自适应原则。对电厂煤粉燃烧器的改造有一定参考作用。%Which structure type of burner should be adopted for various utilities pulverized coal-fired boilers﹖ This paper puts forward five principles of selecting burner's type being of directive significance for the power plant that is going to retrofit burners.

  18. Influence of the gray gases number in the weighted sum of gray gases model on the radiative heat exchange calculation inside pulverized coal-fired furnaces

    Directory of Open Access Journals (Sweden)

    Crnomarković Nenad Đ.

    2016-01-01

    Full Text Available The influence of the number of gray gases in the weighted sum in the gray gases model on the calculation of the radiative heat transfer is discussed in the paper. A computer code which solved the set of equations of the mathematical model describing the reactive two-phase turbulent flow with radiative heat exchange and with thermal equilibrium between phases inside the pulverized coal-fired furnace was used. Gas-phase radiative properties were determined by the simple gray gas model and two combinations of the weighted sum of the gray gases models: one gray gas plus a clear gas and two gray gases plus a clear gas. Investigation was carried out for two values of the total extinction coefficient of the dispersed phase, for the clean furnace walls and furnace walls covered by an ash layer deposit, and for three levels of the approximation accuracy of the weighting coefficients. The influence of the number of gray gases was analyzed through the relative differences of the wall fluxes, wall temperatures, medium temperatures, and heat transfer rate through all furnace walls. The investigation showed that there were conditions of the numerical investigations for which the relative differences of the variables describing the radiative heat exchange decrease with the increase in the number of gray gases. The results of this investigation show that if the weighted sum of the gray gases model is used, the complexity of the computer code and calculation time can be reduced by optimizing the number of gray gases. [Projekat Ministarstva nauke Republike Srbije, br. TR-33018: Increase in energy and ecology efficiency of processes in pulverized coal-fired furnace and optimization of utility steam boiler air preheater by using in-house developed software tools

  19. PASSIVE CONTROL OF PARTICLE DISPERSION IN A PARTICLE-LADEN CIRCULAR JET USING ELLIPTIC CO-ANNULAR FLOW: A MEANS FOR IMPROVING UTILIZATION AND EMISSION REDUCTIONS IN PULVERIZED COAL BURNER

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan R. Choudhuri

    2003-06-01

    A passive control technology utilizing elliptic co-flow to control the particle flinging and particle dispersion in a particle (coal)-laden flow was investigated using experimental and numerical techniques. Preferential concentration of particles occurs in particle-laden jets used in pulverized coal burner and causes uncontrollable NO{sub x} formation due to inhomogeneous local stoichiometry. This particular project was aimed at characterizing the near-field flow behavior of elliptic coaxial jets. The knowledge gained from the project will serve as the basis of further investigation on fluid-particle interactions in an asymmetric coaxial jet flow-field and thus is important to improve the design of pulverized coal burners where non-homogeneity of particle concentration causes increased NO{sub x} formation.

  20. Application and Operational Maintenance Experience of Plasma Pulverized Coal Ignition Combustion Technology%等离子煤粉点火燃烧技术的应用及运维经验

    Institute of Scientific and Technical Information of China (English)

    刘俊臻

    2012-01-01

    介绍了交流等离子煤粉点火系统的工作原理、点火燃烧器功能、点火燃烧机理以及在上海吴泾热电厂2台1125t/h锅炉上的应用情况。总结了等离子煤粉点火装置和稳燃系统的安装、调试与日常运维经验。实践表明,等离子煤粉点火技术是一种节能、环保、快速升负荷的技术。锅炉点火燃油零消耗,既提高了煤粉燃烧的经济性,又减少了燃煤电厂的烟尘排放;既改善了厂区周边环境,又降低了生产成本。交流等离子煤粉点火系统的应用,可以获得较好的经济及社会效益。%The essay introduces operational principle of alternating plasma pulverized coal ignition system, the function of ignition burner, mechanization of ignition combustion and the application of plasma pulverized coal ignition combustion technology on two 1 125 t/h boilers in Shanghai Wujing Thermal Power Plant. It also makes a summary of installation, debugging and routine operational maintenance experience for plasma pulverized coal ignition device and stabilized combustion system. The practice proves that plasma pulverized coal ignition technology is a new technology with conservation of energy, environmental protection and quick power increasing. With ignition fuel oil zero consumption, it not only raises economical efficiency of pulverized coal burning, but also reduces smoke dust discharging in coal fired power plant, and improves power plant's surroundings as well as lowers the production cost effectively. The application of alternating plasma pulverized coal ignition system brings better economic and social benefits.

  1. Techniques to determine ignition, flame stability and burnout of blended coals in p.f. power station boilers

    Energy Technology Data Exchange (ETDEWEB)

    Su, S.; Pohl, J.H.; Holcombe, D.; Hart, J.A. [University of Queensland, Brisbane, Qld. (Australia). Dept. of Chemical Engineering

    2001-07-01

    The blending of coals has become popular to improve the performance of coals, to meet specifications of power plants and to reduce the cost of coals. This article reviews the results and provides new information on ignition, flame stability, and carbon burnout studies of blended coals. The reviewed studies were conducted in laboratory-, pilot-, and full-scale facilities. The new information was taken in pilot-scale studies. The results generally show that blending a high-volatile coal with a low-volatile coal or anthracite can improve the ignition, flame stability and burnout of the blends. This paper discusses two general methods to predict the performance of blended coals: (1) experiment; and (2) indices. Laboratory- and pilot-scale tests, at least, provide a relative ranking of the combustion performance of coal/blends in power station boilers. Several indices, volatile matter content, heating value and a maceral index, can be used to predict the relative ranking of ignitability and flame stability of coals and blends. The maceral index, fuel ratio, and vitrinite reflectance can also be used to predict the absolute carbon burnout of coal and blends within limits. 59 refs., 20 figs., 4 tabs.

  2. Numerical study on the impact of varying operation conditions on NOx emissions of large-scale pulverized coal-fired utility boiler

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yue-yun [Jiangsu Institute of Economic and Trade Technology, Nanjing (China); Gao, Xiao-tao [Jiangsu Electric Power Test and Research CO., LTD, Nanjing (China); Zhang, Ming-yao [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    For complying with the increasingly strengthened regulation on NOx emission from coal fired power plant, newly built large-scale pulverized coal-fired utility boilers are all installed with low-NOx combustion systems to low NOx emissions. Understanding the characteristics of the system is essential for fully utilizing the system without affecting the combustion performance. In the present work, computational fluid dynamics (CFD) approach was applied to simulate the combustion and NOx formation processes in the furnace of 1,000 MW ultra- supercritical boiler equipped with an advanced low-NOx combustion system so as to study the impacts of varying the operation conditions on its NOx emission as well as combustion characteristics. The combustion system is the Mitsubishi Advanced Combustion Technology system consisting of six levels corner-fired pollution minimum (PM) coal burners and additional air to achieve air staging combustion. With the help of CFD simulation, the distributions of the combustion temperature and CO, O{sub 2} and NO concentrations were calculated and analyzed. The main influential operation parameters studied include coal type, additional air flow rate, excess air level and mill groups in service. The CFD simulations indicated that the main reasons of the low NOx emission from this boiler are on two aspects: rationally organizing the combustion process to achieve relatively uniform temperature distribution and reducing combustion environment in the main combustion zone, and combining the utilizations of the large amount of additional air to achieve deep air stage and the low excess air level as well as PM burners. It was also found that varying the operational parameters had considerable effects on the performance of the combustion system.

  3. Analysis of the Common Faults of Coal Pulverizing System of Thermal Power Plant%火力电厂制粉系统常见故障分析

    Institute of Scientific and Technical Information of China (English)

    李炀文; 张超; 刘学伟

    2014-01-01

    Mill is the coal drying and grinding into qualified coal fineness to the boiler burner, the boiler to meet the load de-mand of machinery. ZGM-123G type coal pulverizer is a kind of medium speed coal mill of type system, its advantages of sim-ple, compact layout, power consumption is low, the disadvantage is the requirement to control boiler operation, such as milling system fault is a direct threat to the normal operation of the boiler. Abnormal phenomenon it is necessary to often happen on mill-ing system in the production process and the reason to make the summary, and put forward the accident processing method.%磨煤机是将原煤经干燥和碾磨后制成细度合格的煤粉送到锅炉燃烧器,以满足锅炉负荷的需求的机械。ZGM-123G型磨煤机是一种中速辊盘式磨煤机,其优点系统简单,布置紧凑,运行电耗也较低,缺点是对锅炉运行操作控制要求高,如制粉系统中出现故障就直接威胁到锅炉的正常运行。因此有必要对生产过程中制粉系统常发生的异常现象及原因做出总结,并针对性提出事故处理方法。

  4. Two-in-one fuel combining sugar cane with low rank coal and its CO₂ reduction effects in pulverized-coal power plants.

    Science.gov (United States)

    Lee, Dong-Wook; Bae, Jong-Soo; Lee, Young-Joo; Park, Se-Joon; Hong, Jai-Chang; Lee, Byoung-Hwa; Jeon, Chung-Hwan; Choi, Young-Chan

    2013-02-05

    Coal-fired power plants are facing to two major independent problems, namely, the burden to reduce CO(2) emission to comply with renewable portfolio standard (RPS) and cap-and-trade system, and the need to use low-rank coal due to the instability of high-rank coal supply. To address such unresolved issues, integrated gasification combined cycle (IGCC) with carbon capture and storage (CCS) has been suggested, and low rank coal has been upgraded by high-pressure and high-temperature processes. However, IGCC incurs huge construction costs, and the coal upgrading processes require fossil-fuel-derived additives and harsh operation condition. Here, we first show a hybrid coal that can solve these two problems simultaneously while using existing power plants. Hybrid coal is defined as a two-in-one fuel combining low rank coal with a sugar cane-derived bioliquid, such as molasses and sugar cane juice, by bioliquid diffusion into coal intrapores and precarbonization of the bioliquid. Unlike the simple blend of biomass and coal showing dual combustion behavior, hybrid coal provided a single coal combustion pattern. If hybrid coal (biomass/coal ratio = 28 wt %) is used as a fuel for 500 MW power generation, the net CO(2) emission is 21.2-33.1% and 12.5-25.7% lower than those for low rank coal and designed coal, and the required coal supply can be reduced by 33% compared with low rank coal. Considering high oil prices and time required before a stable renewable energy supply can be established, hybrid coal could be recognized as an innovative low-carbon-emission energy technology that can bridge the gulf between fossil fuels and renewable energy, because various water-soluble biomass could be used as an additive for hybrid coal through proper modification of preparation conditions.

  5. The effect of fuel stream mixing on the performance of pulverised coal flames

    Energy Technology Data Exchange (ETDEWEB)

    Lockwood, F.C.; Diedrichsen, J.; Kandamby, N.; Costen, P.; Abbas, T. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Mechanical Engineering Dept.

    1998-12-31

    A programme of research, integrating experimental investigations undertaken in a large laboratory scale furnace with the development of mathematical modelling techniques has been performed in order to determine the effect of fuel and air stream mixing on the performance of atmospheric pulverised coal combustion, with reference to utility fired boilers. Several mixing configurations have been investigated, namely, the mixing of the fuel streams prior to injection (static blending), within the flame (dynamic blending) and in the combustion zone (reburn). During the blending exercise, in collaboration with International Combustion Limited, Derby, two world-traded coals (a Rand variety of coal from South Africa and Shamrock from the USA) have been premixed prior to being fired. A set of comparative data for flame performance and NO{sub x} emissions for identical blend ratios has been established for both in the large scale laboratory rated at 150 kW in London and at 38 MW scale in the combustion test rig at ICL, Derby. The blending exercise was continued through dynamic blending experiments in which two independent coal feeders and conduits have been incorporated into the existing system so that the initial mixing of the two fuels takes place at the burner exit. Using the same blending ratios as in the static blending trials, an assessment has been made of the effect of injection location of each of the fuels to determine the conditions which result in the lowest NO{sub x} levels while maintaining the broadest flame stability limits. 11 refs., 18 figs., 8 tabs.

  6. The effect of scaling on the performance of coal flames

    Energy Technology Data Exchange (ETDEWEB)

    Lymberopoulos, N. [CINAR sa, Athens (Greece)

    1998-12-31

    In large process industries such as utility boilers used for the generation of steam to produce electricity, cement kilns, glass tanks etc. the collection of experimental data is often difficult, time consuming and expensive. Operators are reluctant to interfere with the running of a process in order to undertake the parametric exercises necessary to provide the information necessary to establish performance trends. The information that may be gathered, is not necessarily universal, applying only to the unit on which it was recorded, while the constancy of the various parameters may be suspect. One alternative is the use of scale versions of the prototype in which the physical reactions are well replicated. Such small scale units can provide total, immediate and accurate control over the inlet parameters and are easily accessible in regard to obtaining the necessary information such as gas species concentrations, temperatures and combustion efficiency data throughout the flame and the furnace. These units are also invaluable in the derivation and subsequent appraisal of novel techniques. The art is how small scale observations can be interpreted in the large scale. This is where mathematical modelling techniques are employed. What changes have to be accommodated in the model as the scale is increased? In particular what changes occur in the prediction of combustion performance of a 150 kW furnace and a 35 MW one and what justifiable modifications can be made to accommodate these nuances so that predictions at full scale can be made with added confidence. This was studied. 12 refs., 9 figs., 4 tabs.

  7. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when

  8. Kinetic analysis of single-particle pulverized coal during high-gradient magnetic separation%高梯度磁选中单颗粒微粉煤的动力学分析

    Institute of Scientific and Technical Information of China (English)

    刘鹏; 焦红光

    2012-01-01

    为了建立气固流态化磁选过程中颗粒群的相互作用模型,优化了高梯度磁选设备工作参数,在单颗粒微粉煤比磁化率一定的条件下,通过对高梯度磁选中单颗粒球形微粉煤的动力学分析,建立了气固流态化分选过程中的单颗粒煤粉运动的动态数学模型;进而探索出聚磁介质当量直径的临界模型,并分析了单颗粒微粉煤被捕集到聚磁介质上时相对气体流速的运动速度。%To establish the model of granule group interaction during gas-solid fluidization magnetic separa- tion, the paper optimized the operation parameters of the high-gradient magnetic separation equipment. On thecondition of keeping the specific magnetic susceptibility constant, through kinetic analysis of the spherical sin- gle-particle pulverized coal during high-gradient magnetic separation, a dynamic mathematical model of single- particle pulverized coal during gas-solid fluidization magnetic separation was established. And then the critical model of the equivalent diameter of the magnetic medium was achieved. Finally the relative gas flow velocity of single-particle pulverized coal was analyzed when single-particle pulverized coal was trapped onto the mag- netic medium.

  9. An examination of heat rate improvements due to waste heat integration in an oxycombustion pulverized coal power plant

    Science.gov (United States)

    Charles, Joshua M.

    Oxyfuel, or oxycombustion, technology has been proposed as one carbon capture technology for coal-fired power plants. An oxycombustion plant would fire coal in an oxidizer consisting primarily of CO2, oxygen, and water vapor. Flue gas with high CO2 concentrations is produced and can be compressed for sequestration. Since this compression generates large amounts of heat, it was theorized that this heat could be utilized elsewhere in the plant. Process models of the oxycombustion boiler, steam cycle, and compressors were created in ASPEN Plus and Excel to test this hypothesis. Using these models, heat from compression stages was integrated to the flue gas recirculation heater, feedwater heaters, and to a fluidized bed coal dryer. All possible combinations of these heat sinks were examined, with improvements in coal flow rate, Qcoal, net power, and unit heat rate being noted. These improvements would help offset the large efficiency impacts inherent to oxycombustion technology.

  10. Application of Fourier-transform infrared (FT-ir) spectroscopy to in-situ studies of coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ottesen, D K; Thorne, L R

    1982-04-01

    The feasibility of using Fourier-transform infrared (FT-ir) spectroscopy for in situ measurement of gas phase species concentrations and temperature during coal combustion is examined. This technique is evaluated in terms of its potential ability to monitor several important chemical and physical processes which occur in pulverized coal combustion. FT-ir absorption measurements of highly sooting, gaseous hydrocarbon/air flames are presented to demonstrate the fundamental usefulness of the technique for in situ detection of gas phase temperatures and species concentrations in high temperature combustion environments containing coal, char, mineral matter and soot particles. Preliminary results for coal/gaseous fuel/air flames are given.

  11. Optimization Renovation of Low NOx Combustion in Pulverized Coal Fired Boiler of Thermal Power Plant%电厂煤粉锅炉的低氮燃烧优化改造

    Institute of Scientific and Technical Information of China (English)

    常志国

    2012-01-01

    The mechanism for generation of NOx in the combustion process of pulverized coal fired boiler was introduced. Connecting with renovation of pulverized coal fired boiler, the principle of reducing NOx discharge through air classification combustion was introduced, and the experimental result was analyzed and discussed. After air classification combustion renovation, the discharge of NOx from pulverized coal fired boiler decreased substantially, and the main performance indexes of boiler were improved, which achieved good economic profit and environmental protection effects.%阐述了在煤粉锅炉燃烧过程中氮氧化物(NOx)的产生机理和影响因素,结合煤粉锅炉改造,介绍了采用空气分级燃烧降低NOx排放的原理,并对试验结果进行了分析和讨论。实施空气分级燃烧改造后,煤粉锅炉的NOx排放量大幅减少,锅炉的主要性能参数指标得到提升,取得了良好的经济效益和环保效果。

  12. Distribution and Fate of Mercury in Pulverized Bituminous Coal-Fired Power Plants in Coal Energy-Dominant Huainan City, China.

    Science.gov (United States)

    Chen, Bingyu; Liu, Guijian; Sun, Ruoyu

    2016-05-01

    A better understanding on the partitioning behavior of mercury (Hg) during coal combustion in large-scale coal-fired power plants is fundamental for drafting Hg-emission control regulations. Two large coal-fired utility boilers, equipped with electrostatic precipitators (ESPs) and a wet flue gas desulfurization (WFGD) system, respectively, in coal energy-dominant Huainan City, China, were selected to investigate the distribution and fate of Hg during coal combustion. In three sampling campaigns, we found that Hg in bottom ash was severely depleted with a relative enrichment (RE) index coal. We estimated that Hg emissions in all Huainan coal-fired power plants varied from 1.8 Mg in 2003 to 7.3 Mg in 2010.

  13. Silicon production using long flaming coal and improvement of its quality indicators

    Directory of Open Access Journals (Sweden)

    A. D. Mekhtiev

    2014-10-01

    Full Text Available The object of this study is to explore possibility of metallothermic producing of crystalline silicon using various types of carbon reducing agents as a reducing agent. The experience of existing enterprises shows that one of the best carbon reducing agents qualifying silicon electric melting technology is charcoal. On the other hand, charcoal has a number of disadvantages, such as its scarcity, high cost and low mechanical strength. Experimental melts has shown the principal possibility of producing the crystalline silicon that meets the requirements of quartz standard using low ash special coke and long-flame coal as reducing agents.

  14. Effects of moisture release and radiation properties in pulverized fuel combustion: A CFD modelling study

    DEFF Research Database (Denmark)

    Yin, Chungen

    2016-01-01

    Pulverized fuels (PF) prepared and fired in utility boilers always contain some moisture. For some fuels with high moisture contents (e.g., brown coals), the share of the evaporation enthalpy is quite significant compared to the heat released during combustion, which often needs to be reclaimed.......g., oxy-fuel or air–fuel), account for the variations in CO2 and H2O concentrations in a flame, and include the impacts of other participating gases (e.g., CO and hydrocarbons) needs to be derived for combustion CFD community....

  15. A chemical engineering model for predicting NO emissions and burnout from pulverised coal flames

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, L.S.; Glarborg, P.; Dam-Johansen, K.; Hepburn, P.W.; Hesselmann, G. [Technical University of Denmark, Lyngby (Denmark). Dept. of Chemical Engineering

    1998-07-01

    This work is concerned with the applicability of modelling swirling pulverised coal flames with ideal chemical reactors. The objectives were to predict the emissions of NO and CO, and the burnout of char. The fluid dynamics were simplified by use of a system of ideal chemical reactors. The near burner zone was modelled as a well-stirred reactor, the jet expansion as a plug flow reactor, the external recirculation zone as a well-stirred reactor, and the down stream zone as a number of well-stirred reactors in series. A reduced model of a detailed reaction mechanism was applied to model gas phase chemistry and a novel model was developed for soot oxidation. A population balance was used to keep track of size and density changes for the char combustion. Individual particle temperatures were calculated for each size fraction. The model includes only one burner specific calibration parameter which is related to the mixing of air and fuel. The model was validated against experimental results from a 160 kH{sub th} pulverised coal burner. For single staged combustion at varying stoichiometries, for two stage combustion, and for different coals good agreement between model and experiment was obtained for NO emissions and carbon in ash. This work also indicates that the interaction between the homogeneous gas phase chemistry and the heterogeneous chemistry (soot and char), due to recombination of radicals on the surfaces, is of importance for the nitrogen chemistry in coal flames, especially for ammonia formation. 84 refs., 31 figs., 7 tabs.

  16. An improvement method of pulverized coal caking problem and its application%一种有效改善煤粉结块问题的方法及其应用

    Institute of Scientific and Technical Information of China (English)

    汪林杰; 贾明生

    2013-01-01

    In accordance with the common phenomenon of coal caking in pulverized coal bunker, analyzed the factors of the factors of pulverized coal caking and put forward an effective solution to the problem of coal caking. In combination with the practical problem encountered in engineering practice, double - layer bunker made by ourselves can preheat the inside of the bunker and preserve the heat of it by means of roots blower , thus solving the problem of coal caking successfully.%针对煤粉仓普遍存在的结块搭桥的现象,分析了造成煤粉结块的主要因素,提出了一种有效改善煤粉结块问题的方法.结合工程实践中遇到的实际问题,自制研究了双层罐结构,并充分利用罗茨风机排气对双层罐内筒进行预热和保温,成功解决了粉仓结块的问题.

  17. 合同能源管理在煤粉工业锅炉岛市场化中的应用%Energy performance contracting in marketization of industrial pulverized coal boiler

    Institute of Scientific and Technical Information of China (English)

    纪任山

    2014-01-01

    为探索煤粉工业锅炉岛的合理经营模式,介绍了合同能源管理( EPC)的基本理论,并以案例从节能效果、其他实际应用效果(减员效果、节能减排效果)、项目经济性及节能效益、风险分析与控制等各方面分析了EPC模式在高效煤粉锅炉中的具体应用和EPC模式为高效煤粉锅炉带来的市场优势。结果表明,EPC模式是适合高效煤粉锅炉市场化推广的有效模式,也为其他高科技节能产品的商业化、产业化提供了成功的案例。组建合同能源管理联盟,为项目参与各方的发展提供良好的交流平台,也是未来的趋势。%In order to explore the reasonable management mode of pulverized coal fired industrial boiler island, introduce the profiles of in-dustrial boilers and the new technology system of pulverized coal industrial boilers island and the basic theory of energy performance con-tracting(EPC).At the same time,the energy saving effects,other practical application effects,economic projects,risk analysis and control of contract in pulverized coal fired boiler in the specific application and EPC model bring to the market advantages of efficient pulverized coal fired boiler were analyzed by cases.The results show that the EPC model is suitable,effective mode for the popularization of efficient pulverized coal boiler,which provides a successful case for the commercialized and industrialized of other high-tech energy-saving prod-ucts.Building an energy performance contracting alliances,which provides a good exchange platform for the development of the parties in-volved in a project,and it is the future trend.

  18. 小型常压煤粉仓惰性气体保护系统设计及应用%Design and Application of Inert Gas Protection System to Small-Scale Atmospheric Pressure Pulverized Coal Bunker

    Institute of Scientific and Technical Information of China (English)

    徐尧; 王乃继; 肖翠微

    2012-01-01

    According to the fuel safety storage requirements of the pulverized coal-fired industrial boiler, in order to solve the coal spon- taneous combustion problems caused by CO content and the temperature increased in the coal bunker, with the related national standards and overseas design handbook, the design calculation method and system control plan of the inert gas protection system was provided for the small-scale atmospheric pressure pulverized coal bunker. According to the two coal bunkers with volume of 40 m^3 , an inert gas pro- tection system of the small-scale atmospheric pressure pulverized coal bunker was designed. When the CO content in the pulverized coal bunker reached at 1 200×10^-6 or the temperature at the any location of the bunker was over 70 ℃, the inert gas protection system would have a protection to the coal bunker with the automatic start, manual start or mechanical emergency start. The project cases were applied to verify the inert gas protection system. The result showed that when the storage value of the protective gas CO2 would be 355 kg, the low pressure CO2 inerting system applied to the protection of the pulverized coal bunker could remarkably reduce the risks of the pulverized coal spontaneous combustion.%为解决煤粉仓CO浓度或温度增高导致的自燃问题,根据煤粉工业锅炉系统燃料安全储存需求,参照相关国家标准和国外设计手册,提出了小型常压煤粉仓惰性气体保护系统设计计算方法和系统控制方案。针对2台容积40m^3的煤粉仓设计了小型常压煤粉仓惰性气体保护系统,当检测到煤粉仓内CO体积分数达1200×10^-6或任意一处温度高于70℃时,系统可通过自动启动、手动启动、机械应急启动3种方式对煤粉仓保护,结合工程实例对该系统予以验证。结果表明:采用低压CO2惰化系统对煤粉仓实施保护,当保护气体CO2的储存量为355kg,可明显降低煤粉自燃的风险。

  19. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thien; Gengsheng Wei; Soyuz Priyadarsan

    2002-01-15

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure has economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO{sub x} pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising

  20. 航天炉粉煤贮罐过滤器堵煤原因分析及对策%Analysis of Causes for Coal Blocking in Filter of Pulverized Coal Storage Bunker of Hangtian Gasifier and Countermeasures

    Institute of Scientific and Technical Information of China (English)

    童维风; 郭兴建; 黄保才

    2012-01-01

    在航天炉从试车投产至稳定运行期间,多次出现粉煤贮罐过滤器锥部堵煤现象.经过逐一排查分析,发现是由于氮气吹扫管线风量较大、防雨罩结构不合理、贮罐内外温差较大导致粉煤贮罐过滤器锥部的堵煤.采取了有效的预防和整改措施后,解决了堵煤问题,保证了煤粉加压输送系统的长周期稳定运行.%In the period of the Hangtian gasifier from test run and commissioning up to stable running, coal blocks up the cone part of the filter in the bunker several times. After examination and analysis one by one it is found that the volume of nitrogen gas sweeping the pipeline is too large, the structure of the rain-proof cover is irrational, and the temperature difference between the inside and outside of the bunker is great, thus leading to coal blocking in the cone part of the filter in the bunker. Efficient prevention and rectification and reform measures are taken, the blocking is eliminated, thus guaranteeing the stable an long period operation of the pulverized coal conveyer.

  1. COMPARISON OF PARTICLE SIZE DISTRIBUTIONS AND ELEMENTAL PARTITIONING FROM THE COMBUSTION OF PULVERIZED COAL AND RESIDUAL FUEL OIL

    Science.gov (United States)

    The paper gives results of experimental efforts in which three coals and a residual fuel oil were combusted in three different systems simulating process and utility boilers. Particloe size distributions (PSDs) were determined using atmospheric and low-pressure impaction, electr...

  2. Plasma-supported coal combustion in boiler furnace

    Energy Technology Data Exchange (ETDEWEB)

    Askarova, A.S.; Karpenko, E.I.; Lavrishcheva, Y.I.; Messerle, V.E.; Ustimenko, A.B. [Kazakh National University, Alma Ata (Kazakhstan). Dept. of Physics

    2007-12-15

    Plasma activation promotes more effective and environmentally friendly low-rank coal combustion. This paper presents Plasma Fuel Systems that increase the burning efficiency of coal. The systems were tested for fuel oil-free start-up of coal-fired boilers and stabilization of a pulverized-coal flame in power-generating boilers equipped with different types of burners, and burning all types of power-generating coal. Also, numerical modeling results of a plasma thermochemical preparation of pulverized coal for ignition and combustion in the furnace of a utility boiler are discussed in this paper. Two kinetic mathematical models were used in the investigation of the processes of air/fuel mixture plasma activation: ignition and combustion. A I-D kinetic code PLASMA-COAL calculates the concentrations of species, temperatures, and velocities of the treated coal/air mixture in a burner incorporating a plasma source. The I-D simulation results are initial data for the 3-D-modeling of power boiler furnaces by the code FLOREAN. A comprehensive image of plasma-activated coal combustion processes in a furnace of a pulverized-coal-fired boiler was obtained. The advantages of the plasma technology are clearly demonstrated.

  3. Ash liberation from included minerals during combustion of pulverized coal: the relationship with char structure and burnout

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H.; Wall, T.; Liu, G.; Bryant, G. [University of Newcastle, Callaghan, NSW (Australia). CRC for Black Coal Utilization and Dept. of Chemical Engineering

    1999-12-01

    In this study, the float fraction ({lt} specific gravity of 2.0) of a size cut (63-90 {mu}m) bituminous coal was combusted in a drop tube furnace (DTF) at a gas temperature of 1300{degree}C under an atmosphere of air, to investigate the ash liberation at five coal burnoff levels (35.5%, 54.3%, 70.1%, 87.1% and 95.6%). The data indicated that char structure determines the ash liberation at different burnoff levels. Fragmentation of porous char was found to be the determinative mechanism for formation of fine ash during the early and middle stages of char combustion, while coalescence of included mineral matter determines the coarse ash formed in the later stages of combustion. The investigation confirmed that the char morphology and structure play a key role in determining char fragmentation, char burnout history, and the ash liberation during combustion. 35 refs., 5 figs., 2 tabs.

  4. Influence of Environmentally Friendly and High-Efficiency Composite Additives on Pulverized Coal Combustion in Cement Industry

    OpenAIRE

    2016-01-01

    4 kinds of chemical reagents and 3 kinds of industrial wastes were selected as burning additives for 2 kinds of coals in cement industry. The work focused on the replacement of partial chemical reagents by industrial wastes, which not only reduced the cost and took full advantage of industrial wastes, but also guaranteed the high combustion efficiency and removed the NOX and SO2 simultaneously. The experiments were carried out in DTF. The combustion residues were analyzed by SEM and XRD. The ...

  5. Influence of Environmentally Friendly and High-Efficiency Composite Additives on Pulverized Coal Combustion in Cement Industry

    Directory of Open Access Journals (Sweden)

    Zhiyong Wang

    2016-01-01

    Full Text Available 4 kinds of chemical reagents and 3 kinds of industrial wastes were selected as burning additives for 2 kinds of coals in cement industry. The work focused on the replacement of partial chemical reagents by industrial wastes, which not only reduced the cost and took full advantage of industrial wastes, but also guaranteed the high combustion efficiency and removed the NOX and SO2 simultaneously. The experiments were carried out in DTF. The combustion residues were analyzed by SEM and XRD. The results showed that the burnout rate was increased after adding the additives; meanwhile, the NOX and SO2 release concentration were reduced, but the degree of action varied for different additives and coals. The substitute of chemical reagents by industrial wastes was very effective; overall, the cold-rolled iron oxide worked better than others; the particles surface was tougher and the peaks of crystalline phase were lower than raw coal, which indicated that the additives played good roles in combustion process.

  6. Feasibility of semi coke combustion in industrial pulverized coal boiler%煤粉工业锅炉燃烧兰炭试验研究

    Institute of Scientific and Technical Information of China (English)

    牛芳

    2015-01-01

    In order to burn semi coke in industrial pulverized coal boiler,taking the semi coke produced by Shaanxi Coal and Chemical In-dustry Group as research object,the pulverized coal combustion test in industrial boiler was conducted. The ignition,stable combustion and after-combustion were investigated. The corresponding reform measures were provided. The results showed that,the unique double-cone structure of the combustor and the mode of dense phase combustion provided favorable conditions for the ignition and stable combustion of semi coke. The blue coke could be ignited and burned stably when the excess air coefficient was 1. 2 and the proportion of primary air,sec-ondary air and tertiary air was 0. 11,0. 47,0. 42,the combustor was preheated for 3 minutes and the semi coke burned with oil for 4 mi-nutes. During combustion,the temperature in the back of furnace remained 550 ℃,while the temperature in the middle was over 800 ℃. In order to lower burning point,improve temperature in the fire area and make semi coke full combustion,the structure and size of combus-tor was adjusted,the preheating time was prolonged.%为提高兰炭在煤粉工业锅炉上的燃烧效率,以陕西煤业化工集团生产的兰炭为原料,进行煤粉工业锅炉燃烧试验,分析了兰炭着火、稳燃、燃烬情况;针对兰炭燃烧过程中存在的问题提出解决方案。结果表明:高效煤粉工业锅炉双锥燃烧器的独特结构和浓相燃烧的方式,为兰炭的着火和稳燃提供了良好条件。在过量空气系数1.2,一、二、三次风比例分别为0.11、0.47、0.42,预热时间3 min,伴燃时间4 min的条件下,实现了兰炭粉的着火和自维持稳定燃烧,燃烧期间后部温度保持在550℃,炉膛中部温度大于800℃。针对兰炭燃烧存在燃烧器内燃点靠后、着火区域温度低和兰炭燃烧不完全等问题,提出可通过调整燃烧室的结构和尺寸,使燃烧器蓄热能力增强,

  7. Investigation on Collection Performances of Plasma Signal for Pulverized Particle Coal Flow in Different Optical Collection%不同收光方式下煤粉流的等离子体信号探测

    Institute of Scientific and Technical Information of China (English)

    陈世和; 陆继东; 钟子铭; 潘凤萍; 潘刚; 张曦; 姚顺春; 罗嘉; 李军

    2013-01-01

    In order to reduce the adverse impact of the inhomogeneous of pulverized coal components, different optical path systems were set up and used to research the collection performances of plasma of pulverized coal by laser-induced breakdown spectroscopy. The coal samples, Shenmuhun, was chosen for experiment. The detected count and stability of special lines of coal in different optical collection were investigated on the self-built two-phase particle flow experiment bench, which was used to produce stable pulverized coal stream. The analysis results show that in the steadily repeat measurements, the counts of the lines collected by backside are weaker because of the intermediate perforated mirror, while the stability of the lines collected by side are worse because of the position change of plasma along the laser beam, the spatial inhomogeneity of plasma and the blocking effect of pulverized coal.%针对煤粉流组分分布的不均匀性,研究不同收光方式对煤粉流的激光诱导等离子体的光谱信号收集效果的影响.选用电厂常用燃煤神木混为实验对象,利用自行搭建的气固两相流实验台架产生稳定煤粉流,对比同向收光方式和侧向收光方式下煤的特征谱线信号探测的强度和稳定性.研究结果表明,相同实验条件下,中间穿孔反射镜使同向收光方式下探测的光谱信号强度较弱,而等离子体信号源位置沿激光束轴线的变化、等离子体信号本身沿空间分布的不均匀性及煤粉流的阻挡作用使侧向收光方式下探测的光谱信号稳定性较弱.

  8. Monitoring the species of arsenic, chromium and nickel in milled coal, bottom ash and fly ash from a pulverized coal-fired power plant in western Canada.

    Science.gov (United States)

    Goodarzi, F; Huggins, F E

    2001-02-01

    The concentration of As, Cr and Ni and their speciation (As3+;5+, Cr3+;6+ and Ni0;2+) in milled coal, bottom ash and ash collected by electrostatic precipitator (ESP) from a coal fired-power plant in western Canada were determined using HGAAS, ICP-AES and XANES. The chemical fractionation of these elements was also determined by a sequential leaching procedure, using deionized water, NH4OAC and HCI as extracting agents. The leachate was analyzed by ICP-AES. Arsenic in the milled coal is mostly associated with organic matter, and 67% of this arsenic is removed by ammonium acetate. This element is totally removed from milled coal after extraction with HCI. Arsenic occurs in both the As3+ and the As5+ oxidation states in the milled coal, while virtually all (>90%) of the arsenic in bottom ash and fly ash appears to be in the less toxic arsenate (As5+) form. Both Ni and Cr in the milled coal are extracted by HCI, indicating that water can mobilize Ni and Cr in an acidic environment. The chromium is leached by water from fly ash as a result of the high pH of the water, which is induced during the leaching. Ammonium acetate removes Ni from bottom ash through an ion exchange process. Chromium in milled coal is present entirely as Cr3+, which is an essential human trace nutrient. The Cr speciation in bottom ash is a more accentuated version of the milled coal and consists mostly of the Cr3+ species. Chromium in fly ash is mostly Cr3+, with significant contamination by stainless-steel from the installation itself.

  9. Co-combustion of pulverized coal and solid recovered fuel in an entrained flow reactor- General combustion and ash behavior

    DEFF Research Database (Denmark)

    Wu, Hao; Glarborg, Peter; Frandsen, Flemming

    2011-01-01

    .9 wt.%, 14.8 wt.% and 25 wt.%, respectively. The effect of additives was evaluated by maintaining the share of secondary fuel (mixture of SRF and additive) at 14.8 wt.%. The experimental results showed that the fuel burnout, NO and SO2 emission in co-combustion of coal and SRF were decreased...... with increasing share of SRF. The majority of the additives inhibited the burnout, except for NaCl which seemed to have a promoting effect. The impact of additives on NO emission was mostly insignificant, except for ammonium sulphate which greatly reduced the NO emission. For SO2 emission, it was found that all...

  10. Pulverized Coal Fired Boiler Water Wall Welding Method Exploration%煤粉锅炉水冷壁的焊接方法探究

    Institute of Scientific and Technical Information of China (English)

    李波涛; 江一平; 霍雅洁

    2016-01-01

    During tube header and tube bundle welding of pulverized coal fired boiler water wall tube, sometimes due to improper handling can cause severe wave tube deformation, individual fins seal defects such as cracks. In addition, because of the limitation of space position during welding, the operation is very difficult. In order to ensure the welding quality of tube header and tube bundle, reduce welding defects, more easily to conduct welding operation, a new welding way was designed. And the site-welding experiment for this welding way was carried out. The test results of welding sample showed that this welding method can obtain good effect, and once qualified rate reached 95%.%在煤粉锅炉水冷壁管屏的管集箱和管排焊接时,有时由于处理不当会造成管屏产生波浪变形,个别鳍片出现密封裂纹等缺陷.另外,由于焊接时空间位置的限制,操作相当困难.为了保证管集箱和管排的焊接质量,减少焊接缺陷,更方便地进行焊接操作,设计了一种新型焊接方法,并进行了现场焊接试验.对焊接试样的检测结果表明,该焊接方法可以取得较好的焊接效果,检测一次合格率达到95%.

  11. 太阳能在煤粉锅炉上的应用%Application of Solar Energy in Pulverized Coal Boiler

    Institute of Scientific and Technical Information of China (English)

    王春华; 李梦浩; 徐乐乐; 刘小秋; 韩长明; 梁源

    2012-01-01

    Through conducting numerical simulation on the combustion and heat transfer process of the boiler, under the conditions of the different temperature the temperature distribution and volume fraction distribution of the pollutant in the combustion chamber were predicted. The results show that when the furnace temperature met the production requirement if the secondary and tertiary air is preheated to a high - temperature, the total amount of air and coal are both reduced. Meanwhile, the amount of the pollutants could be reduced to achieve the purpose of energy - saving and emissions - reduction. As the increasing air temperature, the furnace temperature at the same section is more uniformity, thus the water wall tube would be heated uniformly, which is helpful for water cycle stability in boiler. Therefore, combustion technology of high temperature and low oxygen could be used in the pulverized coal boiler. To reach high - temperature air, a solar air - heater should be installed on boilers tail to utilize solar energy to assist the flue gas waste heat to heat the secondary and tertiary air to 873 K above.%通过对煤粉锅炉炉膛内的燃烧、传热过程进行数值计算研究,预测了不同空气温度下炉膛内的温度分布和污染物体积分数分布.结果表明,在达到工业生产要求的炉内温度时,二、三次风使用高温空气,可降低总空气量和煤粉消耗量,同时还可减少污染物的生成量,达到节能减排的目的;随着空气温度的升高,炉膛内同一截面的温度更加趋于均匀,这样水冷壁各管吸热均匀,有利于锅炉水循环的稳定性,有利于煤粉锅炉应用高温低氧燃烧技术.为了实现空气高温,可在锅炉尾部增设太阳能空气加热器,利用太阳能辅助烟气余热将二、三次风加热到873 K以上.

  12. Emission of volatile organic compounds from domestic coal stove with the actual alternation of flaming and smoldering combustion processes.

    Science.gov (United States)

    Liu, Chengtang; Zhang, Chenglong; Mu, Yujing; Liu, Junfeng; Zhang, Yuanyuan

    2017-02-01

    Volatile organic compounds (VOCs) emissions from the chimney of a prevailing domestic stove fuelled with raw bituminous coal were measured under flaming and smoldering combustion processes in a farmer's house. The results indicated that the concentrations of VOCs quickly increased after the coal loading and achieved their peak values in a few minutes. The peak concentrations of the VOCs under the smoldering combustion process were significantly higher than those under the flaming combustion process. Alkanes accounted for the largest proportion (43.05%) under the smoldering combustion, followed by aromatics (28.86%), alkenes (21.91%), carbonyls (5.81%) and acetylene (0.37%). The emission factors of the total VOCs under the smoldering combustion processes (5402.9 ± 2031.8 mg kg(-1)) were nearly one order of magnitude greater than those under the flaming combustion processes (559.2 ± 385.9 mg kg(-1)). Based on the VOCs emission factors obtained in this study and the regional domestic coal consumption, the total VOCs emissions from domestic coal stoves was roughly estimated to be 1.25 × 10(8) kg a(-1) in the Beijing-Tianjin-Hebei region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Co-combustion of pulverized coal and solid recovered fuel in an entrained flow reactor - General combustion and ash behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Hao Wu; Peter Glarborg; Flemming Jappe Frandsen; Kim Dam-Johansen; Peter Arendt Jensen; Bo Sander [Technical University of Denmark, Lyngby (Denmark). Department of Chemical and Biochemical Engineering

    2011-05-15

    Co-combustion of a bituminous coal and a solid recovered fuel (SRF) was carried out in an entrained flow reactor, and the influence of additives such as NaCl, PVC, ammonium sulphate, and kaolinite was investigated. The experiments were carried out with SRF shares of 7.9 wt.%, 14.8 wt.% and 25 wt.%, respectively. The effect of additives was evaluated by maintaining the share of secondary fuel (mixture of SRF and additive) at 14.8 wt.%. The results showed that fuel burnout, NO and SO{sub 2} emission decreased with increasing share of SRF. The majority of the additives inhibited the burnout, except for NaCl which seemed to have a promoting effect. The impact of additives on NO emission was mostly insignificant, except for ammonium sulphate which greatly reduced NO emission. For SO{sub 2}, it was found that all of the additives increased the S-retention in ash. Analysis of the bulk composition of fly ash from different experiments indicated that the majority of S and Cl in the fuels were released to gas phase during combustion, whereas the K and Na in the fuels were mainly retained in ash in water insoluble form such as aluminosilicates or silicates. The addition of NaCl, PVC, and ammonium sulphate generally promoted the vaporization of Na and K, resulting in increased formation of water soluble alkalis such as alkali chlorides or sulphates. The vaporization degree of Na and K was found to be correlated during the experiments, suggesting an interaction between the vaporization of Na and K during combustion. By collecting deposits on an air-cooled probe, it was found that the ash deposition propensity in co-combustion decreased with increasing share of SRF. The addition of NaCl and PVC significantly increased the ash deposition propensity, whereas the addition of ammonium sulphate or kaolinite showed a slight reducing effect. 46 refs., 13 figs., 2 tabs.

  14. 干法粉煤加压气化技术的开发现状和应用前景%Development Situation and Application Prospects of Pressure Dry Pulverized Coal Gasification Technology

    Institute of Scientific and Technical Information of China (English)

    门长贵

    2000-01-01

    干法粉煤加压气化是一种高效低污染的先进煤气化方法。本文简要介绍了干法粉煤加压气化的工艺原理、技术特点及开发现状,并指出了这种煤气化工艺技术在联合循环发电和煤化工等领域内的应用前景。%Pressure dry pulverized coal gasification is an advanced coal gasification technology for high efficiency and low pollution. This article mainly presents its processprinciple, technology characteristics and development situa-tion, as well as application prospects in the fields of IGCCand chemical industry.

  15. Influence of staged-air on airflow, combustion characteristics and NO(x) emissions of a down-fired pulverized-coal 300 MW(e) utility boiler with direct flow split burners.

    Science.gov (United States)

    Li, Zhengqi; Kuang, Min; Zhang, Jia; Han, Yunfeng; Zhu, Qunyi; Yang, Lianjie; Kong, Weiguang

    2010-02-01

    Cold airflow experiments were conducted to investigate the aerodynamic field in a small-scale furnace of a down-fired pulverized-coal 300 MW(e) utility boiler arranged with direct flow split burners enriched by cyclones. By increasing the staged-air ratio, a deflected flow field appeared in the lower furnace; larger staged-air ratios produced larger deflections. Industrial-sized experiments on a full-scale boiler were also performed at different staged-air damper openings with measurements taken of gas temperatures in the burner region and near the right-side wall, wall heat fluxes, and gas components (O(2), CO, and NO(x)) in the near-wall region. Combustion was unstable at staged-air damper openings below 30%. For openings of 30% and 40%, late ignition of the pulverized coal developed and large differences arose in gas temperatures and heat fluxes between the regions near the front and rear walls. In conjunction, carbon content in the fly ash was high and boiler efficiency was low with high NO(x) emission above 1200 mg/m(3) (at 6% O(2) dry). For fully open dampers, differences in gas temperatures and heat fluxes, carbon in fly ash and NO(x) emission decreased yielding an increase in boiler efficiency. The optimal setting is fully open staged-air dampers.

  16. Numerical Simulation of Combustion Characteristics of a 300 MW Blast Furnace Gas/Pulverized Coal Combined Combustion Boiler%300MW煤粉/高炉煤气混燃锅炉燃烧特性数值模拟

    Institute of Scientific and Technical Information of China (English)

    王春波; 魏建国; 盛金贵; 李艳奇

    2012-01-01

    Blast furnace gas(BFG) produced from steel mill is a low heat value fuel,which combined with pulverized coal to combust in boiler is one of effective ways.However,the combustion characteristics would be changed greatly when compared with only pulverized coal combustion.For example,superheaters and reheaters are easy to excess rated temperatures and carbon content in fly ash will become higher,etc.All these problems lead to its limited application today.Take a 300MW BFG/pulverized coal boiler for example,the combustion characteristics were simulated by means of two mixture fractions way.The pure coal condition and three BFG ratio: 10%,20% and 30% conditions were investigated.It shows the temperature level in boiler is lowered obviously when BFG was mixed into boiler.For example,the maximal temperature is lowered about 81K when BFG ratio is 10% for a boiler section.Also,the temperature becomes lower with the BFG ratio.When BFG was mixed into boiler the flue gases volume would be increased.So,the actual stay time for pulverized coal in boiler will be shortened and it is more difficulty for coal to combust completely.Aslo,it is helpfully for control NO emission when BFG was mixed into boiler.%钢厂高炉煤气是一种低热值燃料,它和煤粉在炉内掺烧是其一种有效的利用途径。但煤粉掺烧高炉煤气后燃烧特性与纯煤粉燃烧有很大不同,掺烧过程中易发生过/再热器超温、飞灰含碳量过高等问题,导致其在大型锅炉上的应用很少。针对某钢厂300MW四角切圆煤粉/高炉煤气混燃锅炉,使用二混合分数法对其燃烧特性进行数值模拟。对比研究了纯燃煤工况和高炉煤气掺烧量分别为10%、20%、30%的工况,发现掺烧高炉煤气时炉内温度水平有明显下降(如,掺烧10%高炉煤气时截面最高温度降低81K),且随着掺烧量的增加而加剧,但下降的趋势变缓。掺烧高炉煤气后产生烟气量增多,炉膛出口烟速有明显增加,

  17. Influence of Process Parameters on Coal Combustion Performance

    DEFF Research Database (Denmark)

    Lans, Robert Pieter Van Der

    The objective of this study is to improve the understanding of nitrogen oxide formation and carbon burnout during the combustion of pulverized coal, and to contribute to addressing the potential of chemical engineering models for the prediction of furnace temperatures, NO emissions and the amount...... of carbon in ash. To this purpose, the effect of coal quality on NO and burnout has been investigated experimentally, a radiation heat balance has been developed based on simple chemical engineering methodology, and a mixing study has been conducted in order to describe the near burner macro mixing in terms...... with self-sustaining flames, while extensions are made to full scale boilers and furnace modeling. Since coal combustion and flame aerodynamics are reviewed elsewhere, these phenomena are only treated briefly. The influence of coal type and process conditions on NO formation and carbon burnout has been...

  18. 恩德粉煤气化装置空喷塔改造工艺计算%Process Calculation of Reformation for Empty Spray Tower in Ende Pulverized Coal Gasification Plant

    Institute of Scientific and Technical Information of China (English)

    姜天夫

    2012-01-01

    Author has introduced the technical reformation scheme for the empty scrubber in Ende pulverized coal gasification plant and its process de- sign calculation principle ; the running effect indicates after reformation that the outlet temperature of water can be reduced from 60℃to 48℃, the con- tinuously running time of the empty scrubber is increased from less than 60 days to 100 days.%介绍了恩德粉煤气化装置空心洗涤塔的技术改造方案及其工艺设计计算过程;改造后的运行效果表明,出水温度由60℃降低到48℃,空心洗涤塔连续运行时间由不到60天增加到100天。

  19. Effect of tertiary air speed on combustion efficiency of pulverized coal burners%三次风速对煤粉燃烧器燃烧效率的影响

    Institute of Scientific and Technical Information of China (English)

    张文学; 郭彩; 武建新

    2015-01-01

    In order to study the influence of tertiary alr speed on burning efficiency of LB2000 type asphalt mixing station pulverized coal burners,a mathematical model was established.By using the Fluent software and the standard k-εmodel,numerical simulation on pulverized coal combustion in the burner was carried out.With different tertiary alr speeds,the temperature field,component concentration field,burning rate distribution field and particle traj ectory in the buerner were studied.According to the evaluation standard of combustion efficiency,the optimal tertiary alr speed should be from 40 m/s to 50 m/s.%为了研究三次风速对LB2000型沥青搅拌站煤粉燃烧器燃烧效率的影响,建立煤粉燃烧器数学模型,应用Fluent软件,采用标准k-ε模型对煤粉燃烧器中的煤粉燃烧进行模拟.在不同三次风风速下,对沥青搅拌站煤粉燃烧器的温度场、组分浓度场、燃尽率分布场和颗粒轨迹进行了分析.根据燃烧效率评价标准,得出了最佳三次风风速为40~50 m/s.

  20. Achievement report for fiscal 1999 on project for supporting the formation of energy/environmental technology verification project. International joint verification research project (Verification project relative to ignition and NOx reduction using plasma sub-burner in pulverized coal-fired furnace); 1999 nendo plasma sabubana ni yoru bifuntan nenshoro ni okeru chakka oyobi NO{sub x} teigen gijutsu ni kansuru jissho project seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This project is executed through the cooperation of a Russian research institute, Akita Prefectural University, and the Ishikawajima-Harima Heavy Industries Co., Ltd. In the development of a plasma sub-burner and the basic research for its verification, a pulverized coal burning plasma sub-burner is designed and fabricated, a basic burning experiment is conducted for the plasma sub-burner, and plasma stabilization in a pulverized coal flow is simulated. In the verification study of the ignition by the plasma sub-burner in a pulverized coal-fired furnace, it is found that the newly-developed plasma sub-burner satisfies the prescribed operating conditions in the system and that the ignition of pulverized coal takes place across the air ratio range of 0.5-1.5 when pulverized coal is fed to the sub-burner. It is also found that NOx is reduced a great deal when a plasma operating on an orifice gas of air or nitrogen is generated in a gas which contains NOx. (NEDO)

  1. Fluidized coal combustion

    Science.gov (United States)

    Moynihan, P. I.; Young, D. L.

    1979-01-01

    Fluidized-bed coal combustion process, in which pulverized coal and limestone are burned in presence of forced air, may lead to efficient, reliable boilers with low sulfur dioxide and nitrogen dioxide emissions.

  2. 煤粉与生石灰预混对烧结烟气排放的影响%Research on effect of premixing pulverized coal and lime on sintering flue gas emission

    Institute of Scientific and Technical Information of China (English)

    侯恩俭; 何志军; 王常秋

    2015-01-01

    通过烧结杯试验,研究了煤粉与生石灰预混对烧结过程烟气中SO2和NOx 排放的影响,总结了SO2和NOx 在烧结过程中的排放规律。在预混煤粉占煤粉总量85%,预混生石灰占生石灰总量30%的条件下,可以有效降低烧结烟气SO2和NOx 的排放,而且可以获得较好的烧结指标。%The effect of premixing pulverized coal and lime on SO2 and NOx emission in sintering was studied by sintering cup test, and the emission rules of SO2 and NOx were summarized.When premix-ing 85%coal and 30%lime, the SO2 and NOx emission in sintering flue gas can be reduced effectively and ideal sintering indicators were got.

  3. Thermodynamic Characteristics and Economic Analysis of a BFG/Pulverized Coal Mixed Combustion Boiler%300MW高炉煤气与煤粉混燃锅炉热力特性及经济性分析

    Institute of Scientific and Technical Information of China (English)

    王春波; 魏建国; 黄江城

    2012-01-01

    针对高炉煤气与煤粉混燃易发生过(再)热器超温、飞灰含碳量高等问题,对某300MW机组四角切圆高炉煤气/煤粉混燃锅炉进行了热力特性计算,并对掺烧高炉煤气后机组的经济性进行了分析.结果表明:掺烧高炉煤气后炉内温度降低,烟气量增加,辐射吸热量减少而对流吸热量增加,炉膛出口烟温及其后受热面区域的烟温升高,排烟温度升高,锅炉效率降低;掺烧高炉煤气后厂用电率有所升高,但发电煤耗降低,使发电成本降低.%To solve the problems occurring in a 300 MW tangential blast furnace gas (BFG)/pulverized coal blended combustion boiler, such as overheating of its superheater/reheater and high carbon content in the fly ash, etc. , thermodynamic calculations and an economic analysis were carried out. Results show that af- ter the fuel coal is blended with BFG, the in-furnace temperature drops, the exhaust gas volume rises, the absorption of radiation heat reduces, the absorption of convection heat increases, the gas temperatures at and after furnace outlet rise, the exhaust gas temperature increases and the boiler efficiency decreases; af- ter mixing with BFG, the house power consumption rises, but the coal consumption for power generation reduces, which helps to reduce the power generating cost.

  4. The use of mechanically activated micronized coal in thermal power engineering

    Directory of Open Access Journals (Sweden)

    Burdukov Anatoliy P.

    2016-01-01

    Full Text Available Coal is one of the main energy resources and development of new promising technologies on its basis is certainly topical. This article discusses the use of new technology of gas and fuel oil replacement by mechanically activated micronized coal in power engineering: ignition and stabilization of pulverized coal flame combustion, as well as gasification of micronized coal in the flow. The new technology coal combustion with two stages of grinding is suggested. Optimization of the scheme of two-stage combustion is calculated. The first experimental data on the combustion process are obtained. The first demonstration tests on gas and heavy oil replacement by micronized coal during boiler ignition were carried out in the real power boiler with the capacity of 320 tons of steam per hour.

  5. Design and implementation of remote monitoring software for pulverized coal parameters in power station boiler%电站锅炉煤粉参数远程监控系统的软件设计与实现

    Institute of Scientific and Technical Information of China (English)

    胡昌镁; 何渊; 杨斌; 蔡小舒

    2015-01-01

    Online monitoring of pulverized coal in boiler provides the importance reference for optimal control of power station boiler.In order to realize the remote monitoring of particle size,concentration,and velocity of pulverized coal,the upper-computer software of data acquisition system was designed by using modular program design method.This software could realize the system configuration,real-time curve and histogram displaying, data storage,and so on.Each data acquisition and processing channel with 1 MHz sampling frequency was achieved by using multi-thread technology and automatic allocation simultaneously.The capability of real-time communication with the Distributed Control System (DCS)based on the Modbus communication protocol was achieved.The practical runs shown high stability and reliability of this software.And it could meet the demands of operation and optimizing control of boiler well.%电站锅炉煤粉颗粒参数在线监控对于锅炉优化控制有着重要的参考作用。为了实现煤粉管道内颗粒的细度、浓度、速度的实时监控,通过模块化的程序设计方案,设计了数据采集系统的上位机软件。该软件通过自定义控件实现了系统组态、实时曲线与柱状图数据显示、保存等功能。同时利用多线程和通道自动分配方法实现了单通道采样频率达1 MHz 的数据快速采集与处理,并基于 Modbus 通讯协议实现了与 DCS (Distributed Control System)的即时通讯。在电站长时间投入运行的结果表明,该系统具有良好的稳定性与可靠性,各项功能均满足锅炉运行与优化控制要求。

  6. Modeling and full-scale tests of vortex plasma-fuel systems for igniting high-ash power plant coal

    Science.gov (United States)

    Messerle, V. E.; Ustimenko, A. B.; Karpenko, Yu. E.; Chernetskiy, M. Yu.; Dekterev, A. A.; Filimonov, S. A.

    2015-06-01

    The processes of supplying pulverized-coal fuel into a boiler equipped with plasma-fuel systems and its combustion in the furnace of this boiler are investigated. The results obtained from 3D modeling of conventional coal combustion processes and its firing with plasma-assisted activation of combustion in the furnace space are presented. The plasma-fuel system with air mixture supplied through a scroll is numerically investigated. The dependence of the swirled air mixture flow trajectory in the vortex plasma-fuel system on the scroll rotation angle is revealed, and the optimal rotation angle at which stable plasma-assisted ignition of pulverized coal flame is achieved is determined.

  7. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Caner Yurteri

    2001-08-20

    The proposed research is directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This fundamental research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow furnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The furnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NO{sub x} burner geometry's.

  8. 300 MW机组磨煤机总风门优化控制的应用研究%Research on the Application of Optimization Control in Total Air Damper of Coal Pulverizers in 300 MW Power Generation Unit

    Institute of Scientific and Technical Information of China (English)

    姜烈伟

    2013-01-01

    通过分析总风门控制回路及其执行机构的现场环境,找到了造成韶关电厂300 MW机组磨煤机总风门故障的原因.针对故障原因,提出了解决气缸内活塞在全开位置不固定的方案.该方案重新设计了控制原理图,完善了行程开关检测方式.实际运行证明,该方案能够满足机组负荷需求,保证了锅炉安全运行,达到了节能降耗的目的.%Through analyzing the site environment of the control loop and its actuator, the causes of the malfunctions of the total air damper of coal pulverizers in 300 MW power generating unit of Shaoguan power plant are found. In accordance with the causes of malfunctions, the strategy for solving the problem of unfixed fully open position of piston in air cylinder is proposed. The control principle of the strategy has been redesigned, the detection pattern of the travel switch is improved. The practical operation verifies that the correctness of the design scheme meets the load demand of the unit, ensures the safety operation of boiler, and reaches the goal of energy conservation.

  9. The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBTU/hour oil fired boiler to pulverized coal

    Energy Technology Data Exchange (ETDEWEB)

    Zauderer, B.; Fleming, E.S.

    1991-08-30

    This work contains to the final report of the demonstration of an advanced cyclone coal combustor. Titles include: Chronological Description of the Clean Coal Project Tests,'' Statistical Analysis of Operating Data for the Coal Tech Combustor,'' Photographic History of the Project,'' Results of Slag Analysis by PA DER Module 1 Procedure,'' Properties of the Coals Limestone Used in the Test Effort,'' Results of the Solid Waste Sampling Performed on the Coal Tech Combustor by an Independent Contractor During the February 1990 Tests.'' (VC)

  10. Advances in control of PM{sub 2.5} and PM{sub 2.5} precursors generated by the combustion of pulverized coal

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C.A.; Srivastava, R.K.; Sedman, C.B. [US Environmental Protection Agency, Triangle Park, NC (United States). Office of Research and Development

    2002-07-01

    Particulate matter smaller than 2.5 {mu}m in aerodynamic diameter (PM{sub 2.5}) from coal-fired boilers is composed of directly emitted (primary) particles and particles formed from precursors (secondary particles). Technologies to reduce emissions of precursors to secondary PM{sub 2.5} emitted by coal-fired utility plants include wet and dry flue gas desulphurization (FGD). Limestone forced oxidation (LSFO) systems are the predominant wet FGD technology in use, and lime spray dryers (LSDs) represent the predominant dry FGD systems. A predictive model indicates that LSD systems have low annualized costs than LSFO systems for coals with less than 2% sulphur and for plants smaller than 300 MWe. Control technologies for primary PM{sub 2.5} include hybrid systems such as the combined hybrid particulate control system and an electrostatically enhanced fabric filter (ESFF) system. The ESFF can provide improved PM{sub 2.5} collection and lower fan power requirements compared to a conventional pulse-jet baghouse. There is a brief discussion of potential multi-pollutant control of mercury. 29 refs., 5 figs., 3 tabs.

  11. Numerical Simulation on Dune Flow in Pressurized Dense Phase Pneumatic Conveying of Pulverized Coal in Horizontal Pipe%水平管加压密相煤粉气力输送沙丘流的数值模拟

    Institute of Scientific and Technical Information of China (English)

    蒲文灏; 赵长遂

    2011-01-01

    对Johnson等提出的摩擦正应力模型和Syamlal等提出的摩擦剪切黏度模型进行了修正,并将其与颗粒动理学理论相结合,建立了可以描述加压密相气力输送的气固湍流流动状况的三维多相流模型.该模型充分考虑了颗粒间碰撞和摩擦力作用,以及气相和颗粒团湍流脉动之间的相互作用.采用该模型对加压密相气力输送水平管沙丘流流动特性进行了三维数值模拟,并预测了单个沙丘和连续沙丘的形成及运动状况.结果表明:随着表观气速的增加,煤粉颗粒浓度减小,压降梯度呈现先减小后增大的趋势;在横截面上,煤粉颗粒分布呈现上窄下宽的趋势,且煤粉颗粒在管道底部沉积,并呈现月牙形状.模拟结果与试验结果吻合较好.%Modifications were made for the frictional normal stresses model proposed by Johnson et al. and the frictional shear viscosity model proposed by Syamlal et al. Combining the modified model with the kinetic theory for granular flow, a 3-D multi-phase flow model was built up for gas-solid turbulent flow in pressurized dense phase pneumatic conveying. The model sufficiently took account of the collision and friction action among particles, and the interaction among gas phase and turbulent fluctuation of particles.The model was used to carry out the 3-D numerical simulation for the dune flow characteristics in pressurized dense phase pneumatic conveying in a horizontal pipe. The formation and motion process of the single dune and the continuous dunes were predicted. Results show that with the increase of apparent gas velocity, the concentration of pulverized coal decreases, and the pressure drop gradient decreases at first and then increases. On the cross section, the distribution of pulverized coal appears to be narrow on the upper part and broad on the lower part. Besides, there are coal particles deposited on the bottom of the pipe to form the dune. The simulated results agree well

  12. DRUCKFLAMM - Investigation on combustion and hot gas cleanup in pulverized coal combustion systems. Final report; DRUCKFLAMM - Untersuchungen zur Verbrennung und Heissgasreinigung bei der Druckkohlenstaubfeuerung. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Hein, K.R.G.; Benoehr, A.; Schuermann, H.; Stroehle, J.; Klaiber, C.; Kuhn, R.; Maier, J.; Schnell, U.; Unterberger, S.

    2001-07-01

    The ambitions of making energy supply more efficient and less polluting brought forth the development of coal based combined cycle power plants allowing considerable increases in net efficiencies. One of the regarded firing concepts for a coal based combined cycle power plant is represented by the pressurised pulverised coal combustion process which has the highest efficiency potential compared with the other coal based concepts. The fundamental purpose of the project was to gain firm knowledge concerning firing behaviour of coal in a pressurised pulverised coal combustion system. Detailed investigations were carried out in a pressurised entrained flow reactor taking into account fuel conversion and particle behaviour, pollutant formation and material behaviour under conditions of a pressurised pulverised coal firing. During the project's investigations several different measurement techniques were tested and partially also acquired (e.g. a two-colour-pyrometry system to measure simultaneous particle surface temperature and particle diameter of burning fuel particles). Calculation models under pressurised conditions for pressure vessel simulation and better scale-up were developed synchronously with the experimental investigations. The results gained using the pressurised entrained flow reactor show that many combustion mechanisms are influenced by increased pressure, for instance the fuel conversion is intensified and at the same time pollutant emissions decreased. The material investigations show that the ceramic materials used due to the very high combustion temperatures are very sensitive versus slagging and fast temperature changes, therefore further development requirements are needed to fully realise the high durability of ceramics in the pressurised furnace. Concerning the improvement of existing models for furnace simulation under pressurised conditions, a good resemblance can be observed when considering the actual measurement results from the test

  13. Numerical Simulation of Oxy-coal Combustion for a Swirl Burner with EDC Model

    Institute of Scientific and Technical Information of China (English)

    崔凯; 刘冰; 吴玉新; 杨海瑞; 吕俊复; 张海

    2014-01-01

    The characteristics of oxy-coal combustion for a swirl burner with a specially designed preheating chamber are studied numerically. In order to increase the accuracy in the prediction of flame temperature and igni-tion position, eddy dissipation concept (EDC) model with a skeletal chemical reaction mechanism was adopted to describe the combustion of volatile matter. Simulation was conducted under six oxidant stream conditions with dif-ferent O2/N2/CO2 molar ratios:21/79/0, 30/70/0, 50/50/0, 21/0/79, 30/0/70 and 50/0/50. Results showed that O2 en-richment in the primary oxidant stream is in favor of combustion stabilization, acceleration of ignition and increase of maximum flame temperature, while the full substitution of N2 by CO2 in the oxidant stream delays ignition and decreases the maximum flame temperature. However, the overall flow field and flame shapes in these cases are very similar at the same flow rate of the primary oxidant stream. Combustion characteristics of the air-coal is similar to that of the oxy-coal with 30%O2 and 70%CO2 in the oxidant stream, indicating that the rear condition is suitable for retrofitting an air-coal fired boiler to an oxy-coal one. The swirl burner with a specially designed preheating chamber can increase flame temperature, accelerate ignition and enhance burning intensity of pulverized coal under oxy-coal combustion. Also, qualitative experimental validation indicated the burner can reduce the overall NOx emission under certain O2 enrichment and oxy-coal combustion conditions against the air-coal combustion.

  14. Studying flame combustion of coal-water slurries in the furnaces of power-generating boilers

    Science.gov (United States)

    Osintsev, K. V.

    2012-06-01

    Matters concerned with organizing combustion of different types of coal-water slurries in coalfired boilers at thermal power stations are considered. Recommendations for improving the economic and environmental indicators and for achieving more reliable operation of furnace devices and boiler as a whole are given.

  15. Environmentally and economically efficient utilization of coal processing waste.

    Science.gov (United States)

    Dmitrienko, Margarita A; Strizhak, Pavel A

    2017-11-15

    High concentrations of hazardous anthropogenic emissions (sulfur, nitrogen and carbon oxides) from solid fuel combustion in coal burning plants cause environmental problems that have been especially pressing over the last 20-30 years. A promising solution to these problems is a switch from conventional pulverized coal combustion to coal-water slurry fuel. In this paper, we pay special attention to the environmental indicators characterizing the combustion of different coal ranks (gas, flame, coking, low-caking, and nonbaking coals) and coal-water slurry fuels based on the coal processing waste - filter cakes. There have been no consistent data so far on the acceptable intervals for the anthropogenic emissions of sulfur (SOx), nitrogen (NOx) and carbon (CO, CO2) oxides. Using a specialized combustion chamber and gas analyzing system, we have measured the concentrations of typical coal and filter-cake-based CWS combustion products. We have also calculated the typical combustion heat of the fuels under study and measured the ratio between environmental and energy attributes. The research findings show that the use of filter cakes in the form of CWS is even better than coals in terms of environment and economy. Wide utilization of filter cakes solves many environmental problems: the areas of contaminated sites shrink, anthropogenic emissions decrease, and there is no need to develop new coal mines anymore. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Experimental study on operation optimization of the gas/pulverized coal blended combustion boiler%钢厂煤气混烧锅炉运行优化的试验研究

    Institute of Scientific and Technical Information of China (English)

    易正明; 肖慧; 杜炳旭

    2014-01-01

    An experiment was carried out of the adjustment of blast furnace gas (BFG) and coke oven gas (COG) for blended combustion in a gas/pulverized coal blended combustion boiler and analysis was made of the effect of BFG-COG blended combustion on exhaust gas temperature ,fly ash carbon content and superheated steam temperature of the boiler .On this basis ,the boiler operation was opti-mized .The results show that when BFG blending ratio is 30% and COG blending ratio is 40% ,the thermal efficiency of the boiler reaches 80 .9% .This not only guarantees a high thermal efficiency but also achieves a greater proportion blending combustion of BFG ,offering a solution to the problem of excessive BFG and proving to be more economic .%对某钢厂煤气混烧锅炉进行高炉煤气和焦炉煤气掺烧调整试验,分析掺烧对锅炉排烟温度、飞灰含碳量和过热蒸汽温度等的影响,并对锅炉运行进行了优化。结果表明,当高炉煤气掺烧热值比为30%且焦炉煤气掺烧热值比为40%时,锅炉热效率达到80.9%,这样既保证了锅炉较高的热效率,又实现了高炉煤气的较大比例掺烧,解决了其大量过剩问题,具有较好的经济性。

  17. Alstom's Chemical Looping Combustion Prototype for CO2 Capture from Existing Pulverized Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Andrus, Jr., Herbert E. [Alstom Power Inc., Windsor, CT (United States); Chiu, John H. [Alstom Power Inc., Windsor, CT (United States); Edberg, Carl D. [Alstom Power Inc., Windsor, CT (United States); Thibeault, Paul R. [Alstom Power Inc., Windsor, CT (United States); Turek, David G. [Alstom Power Inc., Windsor, CT (United States)

    2012-09-30

    Alstom’s Limestone Chemical Looping (LCL™) process has the potential to capture CO2 from new and existing coal-fired power plants while maintaining high plant power generation efficiency. This new power plant concept is based on a hybrid combustion- gasification process utilizing high temperature chemical and thermal looping technology. This process could also be potentially configured as a hybrid combustion-gasification process producing a syngas or hydrogen for various applications while also producing a separate stream of CO2 for use or sequestration. The targets set for this technology is to capture over 90% of the total carbon in the coal at cost of electricity which is less than 20% greater than Conventional PC or CFB units. Previous work with bench scale test and a 65 kWt Process Development Unit Development (PDU) has validated the chemistry required for the chemical looping process and provided for the investigation of the solids transport mechanisms and design requirements. The objective of this project is to continue development of the combustion option of chemical looping (LCL-C™) by designing, building and testing a 3 MWt prototype facility. The prototype includes all of the equipment that is required to operate the chemical looping plant in a fully integrated manner with all major systems in service. Data from the design, construction, and testing will be used to characterize environmental performance, identify and address technical risks, reassess commercial plant economics, and develop design information for a demonstration plant planned to follow the proposed Prototype. A cold flow model of the prototype will be used to predict operating conditions for the prototype and help in operator training. Operation of the prototype will provide operator experience with this new technology and performance data of the LCL-C™ process, which will be applied to the commercial design and economics and plan for a future demonstration

  18. Alstom's Chemical Looping Combustion Prototype for CO{sub 2} Capture from Existing Pulverized Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Andrus, Herbert; Chiu, John; Edberg, Carl; Thibeault, Paul; Turek, David

    2012-09-30

    Alstom’s Limestone Chemical Looping (LCL™) process has the potential to capture CO{sub 2} from new and existing coal-fired power plants while maintaining high plant power generation efficiency. This new power plant concept is based on a hybrid combustion- gasification process utilizing high temperature chemical and thermal looping technology. This process could also be potentially configured as a hybrid combustion-gasification process producing a syngas or hydrogen for various applications while also producing a separate stream of CO{sub 2} for use or sequestration. The targets set for this technology is to capture over 90% of the total carbon in the coal at cost of electricity which is less than 20% greater than Conventional PC or CFB units. Previous work with bench scale test and a 65 kWt Process Development Unit Development (PDU) has validated the chemistry required for the chemical looping process and provided for the investigation of the solids transport mechanisms and design requirements. The objective of this project is to continue development of the combustion option of chemical looping (LCL-C™) by designing, building and testing a 3 MWt prototype facility. The prototype includes all of the equipment that is required to operate the chemical looping plant in a fully integrated manner with all major systems in service. Data from the design, construction, and testing will be used to characterize environmental performance, identify and address technical risks, reassess commercial plant economics, and develop design information for a demonstration plant planned to follow the proposed Prototype. A cold flow model of the prototype will be used to predict operating conditions for the prototype and help in operator training. Operation of the prototype will provide operator experience with this new technology and performance data of the LCL-C™ process, which will be applied to the commercial design and economics and plan for a future demonstration plant.

  19. Engineering and Economic Analysis of an Advanced Ultra-Supercritical Pulverized Coal Power Plant with and without Post-Combustion Carbon Capture Task 7. Design and Economic Studies

    Energy Technology Data Exchange (ETDEWEB)

    Booras, George [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Powers, J. [General Electric, Schenectady, NY (United States); Riley, C. [General Electric, Schenectady, NY (United States); Hendrix, H. [Hendrix Engineering Solutions, Inc., Calera, AL (United States)

    2015-09-01

    This report evaluates the economics and performance of two A-USC PC power plants; Case 1 is a conventionally configured A-USC PC power plant with superior emission controls, but without CO2 removal; and Case 2 adds a post-combustion carbon capture (PCC) system to the plant from Case 1, using the design and heat integration strategies from EPRI’s 2015 report, “Best Integrated Coal Plant.” The capture design basis for this case is “partial,” to meet EPA’s proposed New Source Performance Standard, which was initially proposed as 500 kg-CO2/MWh (gross) or 1100 lb-CO2/MWh (gross), but modified in August 2015 to 635 kg-CO2/MWh (gross) or 1400 lb-CO2/MWh (gross). This report draws upon the collective experience of consortium members, with EPRI and General Electric leading the study. General Electric provided the steam cycle analysis as well as v the steam turbine design and cost estimating. EPRI performed integrated plant performance analysis using EPRI’s PC Cost model.

  20. Assessing coal burnout

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, A. [Pacific Power, Sydney, NSW (Australia)

    1999-11-01

    Recent research has allowed a quantitative description of the basic process of burnout for pulverized coals to be made. The Cooperative Research Centre for Black Coal Utilization has built on this work to develop a coal combustion model which will allow plant engineers and coal company representatives to assess their coals for combustion performance. The paper describes the model and its validation and outlines how it is run. 2 figs.

  1. 弯管和文丘里管组合燃烧器的颗粒分布特性%The Distribution of Pulverized Coal Concentration Inside the Composite Structures Burner of Elbow and Venturi Tube

    Institute of Scientific and Technical Information of China (English)

    康张阳; 杨茉; 杨大海; 陈赛科; 严祯荣; 罗晓明; 高子瑜

    2011-01-01

    This paper investigates a new rich-lean pulverized coal burner combined elbow and Venturi tube.The gas-solid two-phase flow inside elbow,Venturi tube and this new structure are simulated numerically.The Euler-Lagrange method and Dispersed Phase Model(DPM) are adopted in the studies of gas-solid two-phase flow.The Detached-eddy-simulation(DES) approach is involved in the calculation of turbulence dispersion of gas phase.The Discrete random walk model(DRW) is used in the turbulence of solid phase.The results show that,for the particles of 10μm,the effect of rich-lean separation of three types of structure is unobvious.For the particles with a diameter larger than 50μm,this new structure burner can achieve rich-lean separation.In addition,the area of high concentration does not adhere to the wall.%本文给出一种弯管和文丘里管组合结构的新型浓淡煤粉燃烧器,并分别对弯管、文丘里管和这种弯管和文丘里管组合结构燃烧器内的气固两相流动进行了数值模拟。采用Euler-Lagrange方法和离散相模型(DPM)研究气固两相流动,气相湍流采用分离涡(DES)模拟方法,固相湍流采用离散随机游动(DRW)模型。结果表明,这三种结构对10μm的小颗粒分离作用都不好,而对于大于50μm的颗粒来说,弯管和文丘里管的组合结构不仅可以实现浓淡分离,而且高浓度区域不贴壁。

  2. 燃煤锅炉集成太阳能热发电系统经济性分析%Economic Analysis of the Solar Thermal Power Generation System Integrated With a Pulverized Coal Fired Boiler

    Institute of Scientific and Technical Information of China (English)

    赵军; 杨昆

    2012-01-01

    考虑到系统物质流和能量流的匹配,拟定了2种太阳能与燃煤锅炉集成方案:省煤器前方案和省煤器后方案.基于槽式集热器的热力性能与锅炉的变工况理论建立分析模型.以LS-2槽式集热器与某600 MW亚临界锅炉为例,对2种方案进行模拟,总结了太阳能热与锅炉集成时热经济性变化规律,并据此分析2种方案的经济性,结果表明锅炉集成太阳能发电成本低于单纯太阳能热发电方式(solar energy generating systems,SEGS)成本,考虑碳减排效益后,发电成本将进一步降低;省煤器前方案的太阳能发电成本低于省煤器后方案;锅炉集成太阳能发电成本受设计辐射强度、系统寿命、煤价与碳价、集热器成本的影响.%Two layout schemes, the arrangement before and after economizer, were proposed for the pulverized boiler integrated with solar energy from parabolic trough collectors considering material flows matching energy flows. Based on the thermal performance of parabolic trough collectors and the variant condition computation of boiler, the performance analysis models of two integration arrangements were built. Taking 600 MW subcritical boiler and the LS-2 trough collectors for example, the performance of both schemes were investigated and compared. The thermal economic rules for both integration arrangements were summarized in accordance with the simulation results. The economic analysis of the both integration arrangements show that the solar LEC of both schemes is lower than that of solar energy generating systems (SEGS), and while CO2 avoidance is included, the solar LEC is much lower and that the solar LEC of the arrangement before economizer is lower than that of the arrangement after economizer. The solar LEC of both integration arrangements is influenced by the direct solar irradiance, the economic life of the integration systems, coal and CO2 price, the cost of the trough collector.

  3. Chemical processes of coal for use in power plants. Part 1: Approximate analysis and associated indexes of pulverized coal; Procesos quimicos del carbon para su uso en centrales termoelectricas. Parte 1: Analisis aproximado e indices asociados del carbon pulverizado

    Energy Technology Data Exchange (ETDEWEB)

    Altamirano-Bedolla, J. A.; Manzanares-Papayanopoulos, E.; Herrera-Velarde, J. R. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: emp@iie.org.mx

    2010-11-15

    The usage of hydrocarbons, such as natural gas, oil products and coal, will be the main source of energy to the mankind for next generations. Therefore, the actual research and technological developments point out to employ with high efficiency those fuels. The main interests are to release most of the energy as possible and to guide the combustion reactions. It is well known that during the combustion process of coal, the chemical energy is converted to thermal energy, which it allows the steam production, and therefore to produce energy through an electric generator. The main interest of the work presented here is to study the behavior of the coal combustion processes in function of the approximate analysis and some associate indices of that analysis, to point out the optimization of the coal usage as main fuel in electrical power generation plants. [Spanish] El uso de hidrocarburos como son el gas natural, los derivados del petroleo y el carbon mineral, continuara siendo en las proximas decadas la principal fuente de energia de la humanidad. Por consiguiente, la investigacion cientifica y los desarrollos tecnologicos actualmente se enfocan en emplear de manera mas eficiente dichos combustibles, satisfaciendo entre otros factores, dos intereses principales: liberar la mayor cantidad de energia, reduciendo al minimo el material combustible no quemado, y direccionar las reacciones del proceso de combustion para minimizar la cantidad de productos no deseados resultantes de la reaccion. A traves de los procesos quimicos de combustion del carbon, se transforma la energia quimica a energia termica, lo que permite la produccion de vapor para a su vez impulsar una turbina la cual esta acoplada a un generador electrico. El objetivo del presente trabajo es el estudio del comportamiento de los procesos quimicos que se llevan a cabo durante las reacciones de combus-tion del carbon en funcion del analisis aproximado y de los indices asociados resultantes de dicho analisis; lo

  4. Investigations of coal ignition in a short-range flame burner using optical measuring systems; Untersuchungen zur Kohlezuendung am Flachflammenbrenner unter Verwendung optischer Messtechnik

    Energy Technology Data Exchange (ETDEWEB)

    Hackert, G.; Kremer, H.; Wirtz, S. [Bochum Univ. (Germany). Lehrstuhl fuer Energieanlagentechnik

    1999-09-01

    The short-range flame burner and the KOALA reactor of DMT are experimental facilities for realistic simulation of coal conversion processes at high temperatures and pressures in atmospheric conditions. The TOSCA system enable measurements of temperatures, sizes, shapes and velocities of the fuel particles, which serve as a basis for a three-dimensional simulation model of coal combustion. In the future, further parameter studies will deepen the present knowledge of coal dust combustion under pressure and enable optimisation of the numerical models for simulation of industrial-scale systems for coal dust combustion under pressure. [Deutsch] Mit dem Flachflammenbrenner und dem KOALA-Reaktor der DMT stehen Versuchsapparaturen zur Verfuegung, mit deren Hilfe die Kohleumwandlungsprozesse bei hohen Temperaturen unter Druck und unter atmosphaerischen Bedingungen realistisch wiedergegeben werden. Das TOSCA-System erlaubt dabei die Bestimmung von Temperaturen, Groessen, Formen und Geschwindigkeiten der Brennstoffpartikel. Diese Daten liefern die Grundlage fuer die Erstellung eines dreidimensionalen Simulationsmodells zur Modellierung der Kohleverbrennung. In Zukunft werden weitere Parameterstudien das Verstaendnis der Kohlenstaubdruckverbrennung vertiefen und ein Optimierung der numerischen Modelle ermoeglichen, so dass die Simulation grosstechnischer Kohlenstaubdruckverbrennungsanlagen realisiert werden kann. (orig.)

  5. Observer-based Coal Mill Control using Oxygen Measurements

    DEFF Research Database (Denmark)

    Andersen, Palle; Bendtsen, Jan Dimon; S., Tom;

    2006-01-01

    This paper proposes a novel approach to coal flow estimation in pulverized coal mills, which utilizes measurements of oxygen content in the flue gas. Pulverized coal mills are typically not equipped with sensors that detect the amount of coal injected into the furnace. This makes control of the c......This paper proposes a novel approach to coal flow estimation in pulverized coal mills, which utilizes measurements of oxygen content in the flue gas. Pulverized coal mills are typically not equipped with sensors that detect the amount of coal injected into the furnace. This makes control...... into the furnace and oxygen concentration in the flue gas is designed to estimate the actual coal flow injected into the furnace. With this estimate, it becomes possible to close an inner loop around the coal mill itself, thus giving a better disturbance rejection capability. The approach is validated against...

  6. Engineering and organizational solutions for improvement of engineering and economic characteristics of the TPE-216 boilers equipped with MV-3300/800/490 pulverizing fans

    Science.gov (United States)

    Kirillov, M. V.; Safronov, P. G.

    2014-07-01

    Efficiency of coal-fired boilers is determined in many respects by optimal operation of the coal-pulverizing plants that are increasingly frequently equipped with pulverizing fans. By an example of retrofitted MV-3300/800/490 pulverizing fans, the effects of different factors on the performance and economic efficiency of the coal-pulverizing plants are analyzed. The experience gained in retrofitting MV-3300/800/490 pulverizing fans by introducing the three-crusher operation mode of a TPE-216 boiler employing the internal recirculation and a blading device in the classifier was also studied. Optimization of the boiler's operation mode was made when switching over from the four-crusher to the three-crusher mode, which considerably improved the engineering and economic characteristics.

  7. Numerical Simulation of Flow Regime in Dense-Phase Pneumatic Conveying with Different Pulverized Coal Particle Sizes%煤粉粒径对密相气力输送流型影响的数值模拟

    Institute of Scientific and Technical Information of China (English)

    彭小敏; 朱立平; 袁竹林

    2012-01-01

    The key problems of current numerical simulation of dense-phase pneumatic conveying were analyzed in this paper. To solve these problems, a new mathematical model for describing the contact force between particles was proposed, and the dense-phase gas-solid two-phase flow (even when the particles packed) could be simulated by the new model. Based on discrete particle modle (DEM), the new model used the solid phase volume concentration and the characteristics of particle motion to describe the contact force between particles to make sure that the new model can not only simulate dilute phase flow like dispersed flow regime but also dense gas-solid two-phase flow (even when the particles packed). The new model was used to numerically study the flow behaviors of dense phase pneumatic conveying at high pressure. The typical flow regimes, such as slug flow and dune flow which agreed well with experimental results, were obtained, and with the increase of particle size, the flow regime of pulverized coal in dense-phase pneumatic conveying changed into dune flow from sedimentation flow and then changed into slug flow from dune flow. The mean slug length decreased while the average solid concentration in horizontal pipe increased with the increase of particle size.%针对目前密相气力输送数值模拟过程中所存在的关键问题,提出了一种描述固相内部相互作用对颗粒运动影响的数学模型,采用该模型能够对稠密气固两相流动(乃至颗粒发生大量沉积的情况)进行数值模拟.新模型在离散颗粒模型的基础上,通过描述颗粒所在局部空间的固相浓度及颗粒群运动特征所建立,使其既能够模拟悬浮流动的稀相颗粒运动,又能模拟管内出现堆积情况的密相气固两相流.利用所建立的数学模型对高压密相煤粉气力输送的颗粒流动过程进行了数值模拟.模拟结果显示,随着颗粒粒径增大,粉体密相气力输送流型从沉积层流变化为沙丘

  8. Estimation of Moisture Content in Coal in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, Babak

    2006-01-01

    the moisture content of the coal is proposed based on a simple dynamic energy model of a coal mill, which pulverizes and dries the coal before it is burned in the boiler. An optimal unknown input observer is designed to estimate the moisture content based on an energy balance model. The designed moisture...

  9. Estimation of Moisture Content in Coal in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, B.

    the moisture content of the coal is proposed based on a simple dynamic energy model of a coal mill, which pulverizes and dries the coal before it is burned in the boiler. An optimal unknown input observer is designed to estimate the moisture content based on an energy balance model. The designed moisture...

  10. Optimization of the process of plasma ignition of coal

    Energy Technology Data Exchange (ETDEWEB)

    Peregudov, V.S. [Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2009-04-15

    Results are given of experimental and theoretical investigations of plasma ignition of coal as a result of its thermochemical preparation in application to the processes of firing up a boiler and stabilizing the flame combustion. The experimental test bed with a commercial-scale burner is used for determining the conditions of plasma ignition of low-reactivity high-ash anthracite depending on the concentration of coal in the air mixture and velocity of the latter. The calculations produce an equation (important from the standpoint of practical applications) for determining the energy expenditure for plasma ignition of coal depending on the basic process parameters. The tests reveal the difficulties arising in firing up a boiler with direct delivery of pulverized coal from the mill to furnace. A scheme is suggested, which enables one to reduce the energy expenditure for ignition of coal and improve the reliability of the process of firing up such a boiler. Results are given of calculation of plasma thermochemical preparation of coal under conditions of lower concentration of oxygen in the air mixture.

  11. Flame investigations of coal and biomass combustion with a 35 MW DS {sup registered} burner and modification for indirect firing

    Energy Technology Data Exchange (ETDEWEB)

    Weirich, Tanja; Leisse, Alfons; Niesbach, Juergen; Kuhr, Christian; Koczorowski, Hans-Joachim [Hitachi Power Europe GmbH, Duisburg (Germany)

    2010-07-01

    Based on experimental flame investigations the capability of a DS {sup registered} burner to operate in a wide load range with different fuels was verified. A DS {sup registered} burner with a thermal capacity of 35 MW was installed in a combustion test facility in order to perform in-flame ash sampling and detailed measurements of temperatures, flue gas species as well as convective and radioactive heat fluxes. Moreover the DS {sup registered} burner was modified to DS {sup registered} T burner for the use of dense phase fuel conveying for indirect firing systems including the oxyfuel process. (orig.)

  12. High temperature erosion wear of flame and plasma-sprayed nickel-chromium coatings under simulated coal-fired boiler atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, V.H.; Varela, J.B.; Menendez, A.C.; Martinez, S.P. [Universidad de Oviedo, Gijon (Spain). Departamento Energia

    2001-02-01

    Erosive high temperature wear of heat exchanger tubes and other structural materials in coal-fired boilers are recognised as being the main cause of downtime at power generation plants. This study concerns the behaviour of plasma and flame sprayed modified nickel-chromium alloy (with small aluminium and titanium additions) subjected to the action of simulated post-combustion gases from a coal-fired boiler combustor. The study first evaluates the effects of thermal exposure at high temperature on the adherence between the substrate (austenitic stainless steel) and coatings. Then, the oxidation rates of these coatings in atmospheres with 3-3.5% of free oxygen at 500 and 800{degree}C (773 and 1073 K) were evaluated. The low velocity corrosion-erosion behaviour produced by the impact of fly ashes in the gas stream at high temperatures (773 and 1073 K) was also evaluated under impact angles of 30 and 90{degree}C. Finally, the eroded surfaces were analysed using scanning electron microscopy to characterise the ash embedment phenomena and the operating erosive micromechanisms. 24 refs., 13 figs., 9 tabs.

  13. 30 CFR 14.20 - Flame resistance.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Flame resistance. 14.20 Section 14.20 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF... § 14.20 Flame resistance. Conveyor belts for use in underground coal mines must be flame-resistant...

  14. Experimental and numerical investigation of flame characteristics during swirl burner operation under conventional and oxy-fuel conditions

    Directory of Open Access Journals (Sweden)

    Jovanović Rastko D.

    2017-01-01

    Full Text Available Oxy-fuel coal combustion, together with carbon capture and storage or utilization, is a set of technologies allowing to burn coal without emitting globe warming CO2. As it is expected that oxy-fuel combustion may be used for a retrofit of existing boilers, development of a novel oxy-burners is very important step. It is expected that these burners will be able to sustain stable flame in oxy-fuel conditions, but also, for start-up and emergency reasons, in conventional, air conditions. The most cost effective way of achieving dual-mode boilers is to introduce dual-mode burners. Numerical simulations allow investigation of new designs and technologies at a relatively low cost, but for the results to be trustworthy they need to be validated. This paper proposes a workflow for design, modeling, and validation of dual-mode burners by combining experimental investigation and numerical simulations. Experiments are performed with semi-industrial scale burners in 0.5 MWt test facility for flame investigation. Novel CFD model based on ANSYS FLUENT solver, with special consideration of coal combustion process, especially regarding devolatilization, ignition, gaseous and surface reactions, NOx formation, and radiation was suggested. The main model feature is its ability to simulate pulverized coal combustion under different combusting atmospheres, and thus is suitable for both air and oxy-fuel combustion simulations. Using the proposed methodology two designs of pulverized coal burners have been investigated both experimentally and numerically giving consistent results. The improved burner design proved to be a more flexible device, achieving stable ignition and combustion during both combustion regimes: conventional in air and oxy-fuel in a mixture of O2 and CO2 (representing dry recycled flue gas with high CO2 content. The proposed framework is expected to be of use for further improvement of multi-mode pulverized fuel swirl burners but can be also used

  15. The Unit Thermal Efifciency Inlfuence for Cold Wind Quantitative Change of Pulverized Coal Perparation System of Supercritical Pressure Boiler%超临界锅炉制粉系统冷风量变化对机组热效率的影响

    Institute of Scientific and Technical Information of China (English)

    彭建良; 翟培强

    2015-01-01

    针对我国超临界锅炉实际热效率难以达到设计要求的问题,本文以一台1900t/h超临界锅炉为例,量化分析了制粉系统冷风量变化对排烟温度及锅炉效率的影响,得到不同冷风量与煤耗的关系,提出了提高锅炉运行效率的有益建议。%For the actual supercritical boiler thermal efifciency in our country, it is dififcult to meet the design requirements of the problem, based on a 1900t/h supercritical boiler as an example, the quantitative analysis of the coal pulverizing system cold wind quantity changes on exhaust temperature and boiler efifciency, the inlfuence of different amount of cold air and the relationship between the coal consumption, improve the boiler efifciency is good suggestion are put forward.

  16. Reactivity to CO{sub 2} of chars prepared in O{sub 2}/N{sub 2} and O{sub 2}/CO{sub 2} mixtures for pulverized coal injection (PCI) in blast furnace in relation to char petrographic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Pohlmann, Juliana G.; Osorio, Eduardo; Vilela, Antonio C.F. [Iron and Steelmaking Laboratory, UFRGS, Porto Alegre (Brazil); Borrego, Angeles G. [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)

    2010-12-01

    Pulverized coal injection (PCI) is employed in blast furnace tuyeres in order to increase the injection rate without increasing the amount of unburned char inside the stack. When coal is injected with air in the region of tuyeres, the resolidified char will burn in an atmosphere with progressively lower oxygen content and higher CO{sub 2} concentration. In this study, an experimental approach comprising refiring has been followed to separate the combustion process into two distinct devolatilization and combustion steps. A drop tube furnace (DTF) operating at 1300 C in an atmosphere with low oxygen concentration was used to simulate devolatilization and then the char was refired into DTF at the same temperature under two different atmospheres O{sub 2}/N{sub 2} (typical combustion) and O{sub 2}/CO{sub 2} (oxy-combustion) with the same oxygen concentration. Coal injection was also performed under a higher oxygen concentration in both typical combustion and oxy-combustion atmospheres. The fuels tested comprised a petroleum coke and coals ranging in rank from high to low volatile bituminous, currently used for PCI injection. Specific surface areas, reactivity to CO{sub 2} and char petrography have been used to chars characterization. The morphology and appearance of the chars generated under oxy-fuel (O{sub 2}/CO{sub 2}) and conventional combustion (O{sub 2}/N{sub 2}) conditions with similar amount of oxygen were similar for each parent coal. Vitrinite-rich particles generated cenospheres with anisotropic optical texture increasing in size with increasing coal rank, whereas inertinite yielded a variety of morphologies and optical textures. The apparent reactivity to CO{sub 2} measured at high temperature (1000 C) tended to increase with burnout reflecting the operation under a regime controlled by internal diffusion in which surface area also increased. This may have a significant effect in the reactivity to CO{sub 2} of the chars inside the stack of the blast furnace

  17. MICROWAVE CO-PYROLYSIS STUDY ON LONG FLAME COAL AND COKING COAL%微波场中长焰煤与焦煤共热解实验研究

    Institute of Scientific and Technical Information of China (English)

    宋永辉; 苏婷; 兰新哲; 裴建军

    2011-01-01

    The microwave co-pyrolysis of Wangjiagou (WJG) long flame coal and coking coal (JM) were carried out in this study to know about the changes of yield and composition of coal pyrolysis product with the different ratio of two raw coals. The results showed that under microwave pyrolysis conditions, the tar yield was gradually reduced with the proportion of JM coal increases, while the ash content and sulfur content of solid coke increased, and the SEM pictures showed the area of porous surface in the solid structure of coke was bigger, the porous borders became increasingly clear. The content of CO2, CO, CH4, and CnHm were gradually increased with the pyrolysis time before 3 min then started to decreased. With the JM mixing ratio increase, the CO2, CO levels have diminished, but the change of CH4 and CHm content was not obvious before 3 min, while increased in the 3 min-15 min interval.%对王家沟(WJG)长焰煤和焦煤(JM)两种原料煤进行了微波共热解实验研究,考察了两种煤配比不同时热解产物的收率及成分变化.结果表明,微波热解条件下,随着混煤中JM比例的增大,焦油收率在逐渐减少,而固体焦的灰分含量与硫含量逐渐增加.SEM照片也表明,固体焦表面的微孔结构越来越多,微孔的边界越来越清晰.煤气中CO2,CO,CH4和CnHm含量在3 min以前随热解时间的延长均逐渐增加,随后逐步减少.随着混煤中JM配比的增大,热解煤气中CO2和CO含量逐渐减少,但CH4和CnHm含量在3 min以前变化不是很明显,在3 min~15 min区间逐渐增加.

  18. Optimize to pulverizing system control method for the Indonesian high moisture lignite coal%针对印尼高水分褐煤的制粉系统优化控制方法

    Institute of Scientific and Technical Information of China (English)

    程学安

    2012-01-01

      This paper introduces the main problem of the lignite pulverizing system of large power stations, the use of actual production experience in Indonesia, for high-moisture lignite explosive the drying capacity demand large, the optimal control method. Domestic medium-speed mill boilers fueled with high moisture lignite certain reference.%  该文介绍了现有燃用褐煤的大型电站的制粉系统出现的主要问题,并利用在印尼实际的生产经验,针对高水分褐煤易爆炸,干燥出力需求大等特点,提出了相应的优化控制方法。对国内中速磨锅炉燃用高水分褐煤有一定的借鉴作用。

  19. “W”火焰锅炉燃烧系统改造在300MW机组的应用%Application of W - type flame boilers combustion system reform in 300MW unit

    Institute of Scientific and Technical Information of China (English)

    段泽洋

    2012-01-01

    W- shape flame boilers is one of suitable for anthracite combustion way,which are already extensively adopted by our country. Separated double cyclone pulverized coal burners is the largest. Combined the basic knowledge of combustion theory with practice experiences summarization,W- type flame boilers combustion system reform are analyzed and actually discussed.%结合燃烧理论的基础知识和现场改造工作的实践经验总结,对“W”型火焰锅炉燃烧系统的改造进行分析和实际探讨,这对于提高锅炉效率有一定的现实意义。

  20. An experimental and mathematical modeling study comparing the reactivity and burnout of pulverized coal in air (O{sub 2}/N{sub 2}) and oxyfuel (O{sub 2}/CO{sub 2}) environments

    Energy Technology Data Exchange (ETDEWEB)

    Liza Elliott; Yinghui Liu; Bart Buhre; Jennifer Martin; Raj Gupta; Terry Wall [University of Newcastle, Callaghan, NSW (Australia). Cooperative Research Centre for Coal in Sustainable Development, Chemical Engineering

    2005-07-01

    Carbon dioxide in flue gas from conventional combustion processes is present as a dilute gas. CO{sub 2} capture is more easily achieved from a concentrated CO{sub 2} stream, which can be achieved by firing fuels with oxygen to obtain a sequestration ready gas stream, called oxy-fuel combustion. In this technology, the oxygen stream is usually diluted by recycled flue gas (RFG), so that the coal burns in an environment which is primarily O{sub 2}/CO{sub 2}. A size cut of a number of pulverised coals were devolatalised in N{sub 2} and CO{sub 2}. These sized coals were also combusted in a drop-tube furnace in an O{sub 2}/N{sub 2} environment simulating air combustion, and O{sub 2}/CO{sub 2} simulating oxyfuel combustion, with varying O{sub 2} levels from 3 to 30% v/v. Measurements of the extent of devolatilisation and coal burnout were completed. The detailed data provided for one coal indicated that the devolatilisation process in the O{sub 2}/CO{sub 2} environments is influenced by char gasification, and the char reaction rates are fitted better by a fractional order rate than first order in oxygen. Combustion rates in the oxyfuel environment were slightly higher. Estimates of the burnout for furnaces retrofitted from air to oxyfuel indicate that a better burnout can be expected. These trends were common for all coals. 14 refs., 4 figs., 5 tabs.

  1. Modification of the Pulverized Coal Flow Control System in SNCG GSP Gasifier%神华宁煤GSP气化炉煤粉流量控制系统改造

    Institute of Scientific and Technical Information of China (English)

    张冰; 葛涛

    2012-01-01

    Inherent advantages and disadvantages of the pressurized entrained flow coal gasification process and the pressurized fixed bed coal gasification process is introduced. By analyzing the utilization rate of the high temperature sensible heat from the gas gained from the pressurized entrained flow coal gasification process and the comparison of the features between two different pressurized gasification processes the paper concluded that the pressurized fixed bed coal gasification is a more advantageous process in producing SNG.%神华宁煤集团煤基烯烃项目采用GSP干煤粉加压气化技术.针对该技术在开车中出现的问题,进行了大量改造,其中最核心的是借鉴其他干煤粉气化技术进行的煤粉进料系统的改造,由西门子的压差控制进料改为流量控制,彻底改变了西门子进料系统的控制方式.

  2. 基于流体力学的工业煤粉锅炉配风控制策略%Application of Control Strategy Based on the Fluid Mechanics Principle to the Air Distribution Control of Industry Pulverized Coal Fired Boiler

    Institute of Scientific and Technical Information of China (English)

    麻林

    2014-01-01

    the control strategy is the core of control system, the control strategy can directly influence the in⁃dustrial equipment in operation safety, stable and efficient. The control system is mostly through the feed⁃back signal as a control strategy decision, and the lag of feedback signal, often causes the device to run shocks to adjust time is too long, and even lead to equipment downtime or safety accident. Based on small and medium-sized industrial pulverized coal boiler air distribution control as an example, the application of the air distribution control strategy based on fluid mechanics principle as the foundation, and combining with the feedback signal, effectively reduce boiler shocks to adjust time, make the boiler as soon as possible into the steady combustion state, effectively improve the boiler's safety and stability, further improve the automa⁃tion of industrial coal the boiler level control.%文章以中小型工业煤粉锅炉的配风控制为例,应用了以流体力学原理为基础的配风控制策略,同时结合反馈信号,有效减少锅炉震荡调整时间,使锅炉尽快进入稳定燃烧状态,有效地提高了锅炉的安全性和稳定性,进一步提高工业煤粉锅炉的自动化控制水平。

  3. Feasibility investigation and combustion enhancement of a new burner functioning with pulverized solid olive waste

    Directory of Open Access Journals (Sweden)

    Bounaouara H., Sautet J.C., Ben Ticha H., Mhimid A.

    2014-01-01

    Full Text Available This article describes an experimental study on solid olive residue (olive cake combustion in form of pulverized jet. This is a contribution to the valorization of olive residue as a source of renewable energy available in the majority of mediterranean countries. A sample of olive cake from Tunisian origin is prepared for the experiment; this sample is crushed, dried and sifted in order to obtain the desired particles form. A new burner made up of a coaxial cylindrical tube is especially designed and fabricated. In order to start the combustion of olive cake and maintain the main flame, two types of pilot flame were used: a central premixed flame of methane/oxygen and an annular diffusion flame of methane. This paper shows the conditions for an efficient olive cake burner operation in free air. The effects of particle size and pilot flame position have been discussed. The olive cake combustion is possible only with particles at a size below 200 μm. Moreover, the combustion maintained by the annular pilot flame ensures better burning conditions than the central pilot flame. Finally, the inserted preheating system has improved the olive cake combustion.

  4. Combustion development of an industrial scale burner, with particular reference to coal blends and co-firing coal with natural gas and sawdust

    Energy Technology Data Exchange (ETDEWEB)

    Allen, G. [International Combustion Limited, Derby (United Kingdom). Rolls Royce Industrial Power Group

    1998-12-31

    Described herein are the results of pulverised coal combustion experiments performed on a 35 MWth low NO{sub x} burner installed in International Combustion`s large scale combustion test facility. In-flame and furnace exit combustion/emissions species and temperature measurements were taken during firing trials with: different coal blends; a coal-wood dust fuel blend; coal and natural gas `In-Burner` co-firing. The NO{sub x} and unburned carbon in ash results generated from the coal blend tests were shown to correlate well against fuel ratio. The gas co-firing results confirmed low momentum gas injection along the burner axis as optimum. This reduced NO{sub x} by 16% whilst unburned carbon in ash fell from 3 to 1.5%. Larger NO{sub x} reductions were anticipated by virtue of activating an `In-Burner` gas reburn de-NO{sub x} process. A 1/2th scale isothermal low NO{sub x} burner model was used to characterise pulverized coal particle (PF) dynamics in the near burner region. Laser sheet velocimetry and laser doppler anemometry measurements indicated that the larger PF particles follow a straight trajectory and penetrate the burner internal recirculation zone. Conversely, the smaller PF particles are drawn radially outwards into the shear layer between the burner PA and SA flow streams to initiate combustion. A CFD model of this burner was validated against the experimental data. This exercise highlighted the importance of specifying accurate CFD model inlet boundary conditions, adopting fine grids, and selecting appropriate turbulence models. This mathematical model was subsequently used to derive new flame stabiliser concepts, which were tested on a full size burner. 9 refs., 27 figs., 8 tabs.

  5. 生物基阻燃聚酯多元醇聚氨酯硬泡在煤矿中的应用%Application of Biological Basis Flame Retardant Polyester Polyol for Rigid Polyurethane Foams in Coal Mine

    Institute of Scientific and Technical Information of China (English)

    蔡彬超

    2014-01-01

    Using the biological basis flame retardant polyester polyols substitute for oil based polyether polyols for rigid polyurethane foam. The substitute amount of biological basis polyester polyol in total polyesther polyol and the effect of flame retardant in the coal mine were researched. The results showed that the polyurethane foam had high compressive strength, good dimensional stability, low thermal conductivity and perfect flame retardant effect when the mass fraction of biological basis polyester polyols was 40% ~50% in total polyether. The foam index aco⁃orded with the People�s Republic of China Coal Industry Standard MT⁃113—1995 . The product safely use in coal mine was guaranteed.%用生物基阻燃聚酯多元醇替代石油基聚醚多元醇添加于聚氨酯硬泡组合聚醚中,研究了该生物基阻燃聚酯多元醇的替代量,以及在煤矿中阻燃效果。结果表明,生物基聚酯多元醇可替代部分石油基聚醚多元醇使用,当生物基聚酯多元醇在总聚醚多元醇体系中占40%~50%时,聚氨酯泡沫的压缩强度高、尺寸稳定性良好、导热系数低且阻燃效果理想,达到中华人民共和国煤炭行业MT⁃113—1995标准,保证了煤矿安全使用。

  6. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Stefano Orsino

    2005-03-30

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical

  7. Coal pyrolysis to acetylene using dc hydrogen plasma torch: effects of system variables on acetylene concentration

    Energy Technology Data Exchange (ETDEWEB)

    Chen Longwei; Meng Yuedong; Shen Jie; Shu Xingsheng; Fang Shidong [Laboratory of Applied Low-temperature Plasma Physics, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 (China); Xiong Xinyang, E-mail: lwchen@ipp.ac.c [Xinjiang Tianye Group, Xinjiang, 832000 (China)

    2009-03-07

    In order to unveil the inner mechanisms that determine acetylene concentration, experimental studies on the effect of several parameters such as plasma torch power, hydrogen flux and coal flux were carried out from coal pyrolysis in a dc plasma torch. Xinjiang long flame coals including volatile constituents at a level of about 42% were used in the experiment. Under the following experimental conditions, namely plasma torch power, hydrogen flow rate and pulverized coal feed speed of 2.12 MW, 32 kg h{sup -1} and 900 kg h{sup -1}, respectively, acetylene volume concentration of about 9.4% was achieved. The experimental results indicate that parameters such as plasma torch power and coal flux play important roles in the formation of acetylene. Acetylene concentration increases inconspicuously with hydrogen flux. A chemical thermodynamic equilibrium model using the free energy method is introduced in this paper to numerically simulate each experimental condition. The numerical results are qualitatively consistent with the experimental results. Two parameters, i.e. the gas temperature and the ratio of hydrogen/carbon, are considered to be the dominant and independent factors that determine acetylene concentration.

  8. Coal pyrolysis to acetylene using dc hydrogen plasma torch: effects of system variables on acetylene concentration

    Science.gov (United States)

    Chen, Longwei; Meng, Yuedong; Shen, Jie; Shu, Xingsheng; Fang, Shidong; Xiong, Xinyang

    2009-03-01

    In order to unveil the inner mechanisms that determine acetylene concentration, experimental studies on the effect of several parameters such as plasma torch power, hydrogen flux and coal flux were carried out from coal pyrolysis in a dc plasma torch. Xinjiang long flame coals including volatile constituents at a level of about 42% were used in the experiment. Under the following experimental conditions, namely plasma torch power, hydrogen flow rate and pulverized coal feed speed of 2.12 MW, 32 kg h-1 and 900 kg h-1, respectively, acetylene volume concentration of about 9.4% was achieved. The experimental results indicate that parameters such as plasma torch power and coal flux play important roles in the formation of acetylene. Acetylene concentration increases inconspicuously with hydrogen flux. A chemical thermodynamic equilibrium model using the free energy method is introduced in this paper to numerically simulate each experimental condition. The numerical results are qualitatively consistent with the experimental results. Two parameters, i.e. the gas temperature and the ratio of hydrogen/carbon, are considered to be the dominant and independent factors that determine acetylene concentration.

  9. Discussion on the important role of flame stabilizer in rotary kiln pulverized coal burner%浅析回转窑煤粉燃烧器火焰稳定器的重要作用

    Institute of Scientific and Technical Information of China (English)

    江旭昌

    2014-01-01

    通过对各种火焰稳定器的理论分析和实践结果,阐明了它们的性能和重要作用.一个优良的火焰稳定器不仅可使火焰更加稳定、风煤混合更加充分均匀,提高燃烧效率和喷燃管以及火砖的使用寿命;而且通过调节还可以改变火焰形状和强度,满足回转窑工况变化的要求.文章指出,对火焰稳定器设计得是否合理,是鉴别回转窑旋流式四风道煤粉燃烧器真品和赝品的一个重要标志.

  10. 30 CFR 75.600-1 - Approved cables; flame resistance.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approved cables; flame resistance. 75.600-1 Section 75.600-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... cables; flame resistance. Cables shall be accepted or approved by MSHA as flame resistant....

  11. 30 CFR 75.600 - Trailing cables; flame resistance.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables; flame resistance. 75.600 Section 75.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... cables; flame resistance. Trailing cables used in coal mines shall meet the requirements established...

  12. Soot, organics, and ultrafine ash from air- and oxy-fired coal combustion

    KAUST Repository

    Andersen, Myrrha E.

    2016-10-19

    Pulverized bituminous coal was burned in a 10. W externally heated entrained flow furnace under air-combustion and three oxy-combustion inlet oxygen conditions (28, 32, and 36%). Experiments were designed to produce flames with practically relevant stoichiometric ratios (SR. =1.2-1.4) and constant residence times (2.3. s). Size-classified fly ash samples were collected, and measurements focused on the soot, elemental carbon (EC), and organic carbon (OC) composition of the total and ultrafine (<0.6. μm) fly ash. Results indicate that although the total fly ash carbon, as measured by loss on ignition, was always acceptably low (<2%) with all three oxy-combustion conditions lower than air-combustion, the ultrafine fly ash for both air-fired and oxy-fired combustion conditions consists primarily of carbonaceous material (50-95%). Carbonaceous components on particles <0.6. μm measured by a thermal optical method showed that large fractions (52-93%) consisted of OC rather than EC, as expected. This observation was supported by thermogravimetric analysis indicating that for the air, 28% oxy, and 32% oxy conditions, 14-71% of this material may be OC volatilizing between 100. C and 550. C with the remaining 29-86% being EC/soot. However, for the 36% oxy condition, OC may comprise over 90% of the ultrafine carbon with a much smaller EC/soot contribution. These data were interpreted by considering the effects of oxy-combustion on flame attachment, ignition delay, and soot oxidation of a bituminous coal, and the effects of these processes on OC and EC emissions. Flame aerodynamics and inlet oxidant composition may influence emissions of organic hazardous air pollutants (HAPs) from a bituminous coal. During oxy-coal combustion, judicious control of inlet oxygen concentration and placement may be used to minimize organic HAP and soot emissions.

  13. Clean coal technologies market potential

    Energy Technology Data Exchange (ETDEWEB)

    Drazga, B. (ed.)

    2007-01-30

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  14. Classification of Infrared Monitor Images of Coal Using an Feature Texture Statistics and Improved BP Network

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    It is very important to accurately recognize and locate pulverized and block coal seen in a coal mine's infrared image monitoring system.Infrared monitor images of pulverized and block coal were sampled in the roadway of a coal mine.Texture statistics from the grey level dependence matrix were selected as the criterion for classification.The distributions of the texture statistics were calculated and analysed.A normalizing function was added to the front end of the BP network with one hidden layer.An additional classification layer is joined behind the linear layer.The recognition of pulverized from block coal images was tested using the improved BP network.The results of the experiment show that texture variables from the grey level dependence matrix can act as recognizable features of the image.The innovative improved BP network can then recognize the pulverized and block coal images.

  15. Coal pyrolysis to acetylene using DC hydrogen plasma torch: effects of system variables on acetylene concentration - article no. 055505

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.W.; Meng, Y.D.; Shen, J.; Shu, X.S.; Fang, S.D.; Xiong, X.Y. [Chinese Academy of Sciences, Hefei (China). Inst. of Plasma Physics

    2009-03-15

    In order to unveil the inner mechanisms that determine acetylene concentration, experimental studies on the effect of several parameters such as plasma torch power, hydrogen flux and coal flux were carried out from coal pyrolysis in a DC plasma torch. Xinjiang long flame coals including volatile constituents at a level of about 42% were used in the experiment. Under the following experimental conditions, namely plasma torch power, hydrogen flow rate and pulverized coal feed speed of 2.12 MW, 32 kg h{sup -1} and 900 kg h{sup -1}, respectively, acetylene volume concentration of about 9.4% was achieved. The experimental results indicate that parameters such as plasma torch power and coal flux play important roles in the formation of acetylene. Acetylene concentration increases inconspicuously with hydrogen flux. A chemical thermodynamic equilibrium model using the free energy method is introduced in this paper to numerically simulate each experimental condition. The numerical results are qualitatively consistent with the experimental results. Two parameters, i.e. the gas temperature and the ratio of hydrogen/carbon, are considered to be the dominant and independent factors that determine acetylene concentration.

  16. Effect of Oxygen Enrichment in Propane Laminar Diffusion Flames under Microgravity and Earth Gravity Conditions

    Science.gov (United States)

    Bhatia, Pramod; Singh, Ravinder

    2017-01-01

    Diffusion flames are the most common type of flame which we see in our daily life such as candle flame and match-stick flame. Also, they are the most used flames in practical combustion system such as industrial burner (coal fired, gas fired or oil fired), diesel engines, gas turbines, and solid fuel rockets. In the present study, steady-state global chemistry calculations for 24 different flames were performed using an axisymmetric computational fluid dynamics code (UNICORN). Computation involved simulations of inverse and normal diffusion flames of propane in earth and microgravity condition with varying oxidizer compositions (21, 30, 50, 100 % O2, by mole, in N2). 2 cases were compared with the experimental result for validating the computational model. These flames were stabilized on a 5.5 mm diameter burner with 10 mm of burner length. The effect of oxygen enrichment and variation in gravity (earth gravity and microgravity) on shape and size of diffusion flames, flame temperature, flame velocity have been studied from the computational result obtained. Oxygen enrichment resulted in significant increase in flame temperature for both types of diffusion flames. Also, oxygen enrichment and gravity variation have significant effect on the flame configuration of normal diffusion flames in comparison with inverse diffusion flames. Microgravity normal diffusion flames are spherical in shape and much wider in comparison to earth gravity normal diffusion flames. In inverse diffusion flames, microgravity flames were wider than earth gravity flames. However, microgravity inverse flames were not spherical in shape.

  17. Effect of Oxygen Enrichment in Propane Laminar Diffusion Flames under Microgravity and Earth Gravity Conditions

    Science.gov (United States)

    Bhatia, Pramod; Singh, Ravinder

    2017-06-01

    Diffusion flames are the most common type of flame which we see in our daily life such as candle flame and match-stick flame. Also, they are the most used flames in practical combustion system such as industrial burner (coal fired, gas fired or oil fired), diesel engines, gas turbines, and solid fuel rockets. In the present study, steady-state global chemistry calculations for 24 different flames were performed using an axisymmetric computational fluid dynamics code (UNICORN). Computation involved simulations of inverse and normal diffusion flames of propane in earth and microgravity condition with varying oxidizer compositions (21, 30, 50, 100 % O2, by mole, in N2). 2 cases were compared with the experimental result for validating the computational model. These flames were stabilized on a 5.5 mm diameter burner with 10 mm of burner length. The effect of oxygen enrichment and variation in gravity (earth gravity and microgravity) on shape and size of diffusion flames, flame temperature, flame velocity have been studied from the computational result obtained. Oxygen enrichment resulted in significant increase in flame temperature for both types of diffusion flames. Also, oxygen enrichment and gravity variation have significant effect on the flame configuration of normal diffusion flames in comparison with inverse diffusion flames. Microgravity normal diffusion flames are spherical in shape and much wider in comparison to earth gravity normal diffusion flames. In inverse diffusion flames, microgravity flames were wider than earth gravity flames. However, microgravity inverse flames were not spherical in shape.

  18. Recent Advances in Flame Tomographyt

    Institute of Scientific and Technical Information of China (English)

    闫勇; 邱天; 卢钢; M.M.Hossain; G.Gilabert; 刘石

    2012-01-01

    To reduce greenhouse gas emissions from fossil fuel fired power plants,a range of new combustion technologies are being developed or refined,including oxy-fuel combustion,co-firing biomass with coal and fluidized bed combustion.Flame characteristics under such combustion conditions are expected to be different from those in normal air fired combustion processes.Quantified flame characteristics such as temperature distribution,oscillation frequency,and ignition volume play an important part in the optimized design and operation of the environmentally friendly power generation systems.However,it is challenging to obtain such flame characteristics particularly through a three-dimensional and non-intrusive means.Various tomography methods have been proposed to visualize and characterize flames,including passive optical tomography,laser based tomography,and electrical tomography.This paper identifies the challenges in flame tomography and reviews existing techniques for the quantitative characterization of flames.Future trends in flame tomography for industrial applications are discussed.

  19. Pulverized glass as an alternative filter medium

    Energy Technology Data Exchange (ETDEWEB)

    Piccirillo, J.B.; Letterman, R.D.

    1998-07-01

    A significant amount of low-value, recycled glass is stockpiled at recycling facilities or landfilled. This study was conducted to investigate the use of pulverized recycled glass as a filter medium in slow sand filtration. The glass was pulverized using a flail mill-type pulverizer. The size distribution of the pulverizer output was adjusted by sieving to meet the grain size requirements of the Ten States Standards and the USEPA for filter media were compared to a fourth unit containing silica sand media. The filter influent was spiked with clay, coliform group bacteria and the cysts and oocyst of Giardia lamblia and Cryptosporidium parvum. Over an 8 month period of continuous operation, the performance of the glass sand filter media was as good as or better than the silica sand, with removals of 56% to 96% for turbidity; 99.78% to 100.0% for coliform bacteria; 99.995% to 99.997% for giardia cysts; and 99.92% to 99.97% for cryptosporidium oocysts. According to a cost-benefit analysis, converting waste glass into filter media may be economically advantageous for recycling facilities.

  20. Reactivity of brazilian coal, charcoal, imported coal and blends aiming to their injection into blast furnaces

    Directory of Open Access Journals (Sweden)

    Janaína Gonçalves Maria da Silva Machado

    2010-09-01

    Full Text Available For about 10 years the steel industry in Brazil has used pulverized coal injection (PCI technology in the blast furnaces based on imported coals. In order to decrease the dependence on imported coals, Brazilian coal, which has limited use due to high ash content, was suggested to be mixed with imported coal and charcoal. The aim was to examine the reactivity of the samples. The charcoal use in the steel industry contributes to the CO2 emission reduction, since it represents a renewable source of energy. The reactivity of the coals, charcoal and mixtures was evaluated through simultaneous thermal analyses. Results of this study are presented and discussed.

  1. Burnout of pulverized biomass particles in large scale boiler - Single particle model approach

    Energy Technology Data Exchange (ETDEWEB)

    Saastamoinen, Jaakko; Aho, Martti; Moilanen, Antero [VTT Technical Research Centre of Finland, Box 1603, 40101 Jyvaeskylae (Finland); Soerensen, Lasse Holst [ReaTech/ReAddit, Frederiksborgsveij 399, Niels Bohr, DK-4000 Roskilde (Denmark); Clausen, Soennik [Risoe National Laboratory, DK-4000 Roskilde (Denmark); Berg, Mogens [ENERGI E2 A/S, A.C. Meyers Vaenge 9, DK-2450 Copenhagen SV (Denmark)

    2010-05-15

    Burning of coal and biomass particles are studied and compared by measurements in an entrained flow reactor and by modelling. The results are applied to study the burning of pulverized biomass in a large scale utility boiler originally planned for coal. A simplified single particle approach, where the particle combustion model is coupled with one-dimensional equation of motion of the particle, is applied for the calculation of the burnout in the boiler. The particle size of biomass can be much larger than that of coal to reach complete burnout due to lower density and greater reactivity. The burner location and the trajectories of the particles might be optimised to maximise the residence time and burnout. (author)

  2. Joule II - Programme. Clean coal technology R & D. 2nd phase. Volume III. Novel approaches in advanced combustion (pressurized systems)

    Energy Technology Data Exchange (ETDEWEB)

    Hein, K.R.G.; Minchener, A.J.; Pruschek, R.; Roberts, P.A. [eds.

    1998-12-31

    A total of 22 papers are presented in this report on topics including advanced reburning; pulverized coal combustion systems; fluidized bed combustion; pressurizing combustion; fuel particle characterisation; coal and biomass cocombustion; gasification of coal and biomass; and particle pyrolysis. All papers have been abstracted separately for the IEA Coal Research CD-ROM and website.

  3. Flame Length

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Flame length was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The tool...

  4. ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH-PERFORMANCE POWER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    ) Pulverized Coal Feed System; and (3) Limestone Feed System The flue gas recycle system is added to simulate the performance of a commercial char burner fired with gas turbine exhaust. Since synthetically made char will be used for the tests at the CETF, the limestone injection system was added to produce a char more representative of that from an actual pyrolyzer. The pulverized coal system is included to provide a supplemental support fuel if a stable flame can not be maintained with char firing only.

  5. Improved coal grinding and fuel flow control in thermal power plants

    DEFF Research Database (Denmark)

    Niemczyk, Piotr; Bendtsen, Jan Dimon

    2011-01-01

    A novel controller for coal circulation and pulverized coal flow in a coal mill is proposed. The design is based on optimal control theory for bilinear systems with additional integral action. The states are estimated from the grinding power consumption and the amount of coal accumulated...... in the mill by employing a special variant of a Luenberger observer. The controller uses the rotating classifier to improve the dynamical performance of the overall system. The proposed controller is compared with a PID-type controller with available pulverized coal flow measurements under nominal conditions...

  6. Detailed model for practical pulverized coal furnaces and gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.J.; Smoot, L.D.

    1989-08-01

    This study has been supported by a consortium of nine industrial and governmental sponsors. Work was initiated on May 1, 1985 and completed August 31, 1989. The central objective of this work was to develop, evaluate and apply a practical combustion model for utility boilers, industrial furnaces and gasifiers. Key accomplishments have included: Development of an advanced first-generation, computer model for combustion in three dimensional furnaces; development of a new first generation fouling and slagging submodel; detailed evaluation of an existing NO{sub x} submodel; development and evaluation of an improved radiation submodel; preparation and distribution of a three-volume final report: (a) Volume 1: General Technical Report; (b) Volume 2: PCGC-3 User's Manual; (c) Volume 3: Data Book for Evaluation of Three-Dimensional Combustion Models; and organization of a user's workshop on the three-dimensional code. The furnace computer model developed under this study requires further development before it can be applied generally to all applications; however, it can be used now by specialists for many specific applications, including non-combusting systems and combusting geseous systems. A new combustion center was organized and work was initiated to continue the important research effort initiated by this study. 212 refs., 72 figs., 38 tabs.

  7. Detailed model for practical pulverized coal furnaces and gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.J.; Smoot, L.D.

    1989-08-01

    This study has been supported by a consortium of nine industrial and governmental sponsors. Work was initiated on May 1, 1985 and completed August 31, 1989. The central objective of this work was to develop, evaluate and apply a practical combustion model for utility boilers, industrial furnaces and gasifiers. Key accomplishments have included: Development of an advanced first-generation, computer model for combustion in three dimensional furnaces; development of a new first generation fouling and slagging submodel; detailed evaluation of an existing NO{sub x} submodel; development and evaluation of an improved radiation submodel; preparation and distribution of a three-volume final report: (a) Volume 1: General Technical Report; (b) Volume 2: PCGC-3 User's Manual; (c) Volume 3: Data Book for Evaluation of Three-Dimensional Combustion Models; and organization of a user's workshop on the three-dimensional code. The furnace computer model developed under this study requires further development before it can be applied generally to all applications; however, it can be used now by specialists for many specific applications, including non-combusting systems and combusting geseous systems. A new combustion center was organized and work was initiated to continue the important research effort initiated by this study. 212 refs., 72 figs., 38 tabs.

  8. Soot, organics, and ultrafine ash from air- and oxy-fired coal combustion

    Data.gov (United States)

    U.S. Environmental Protection Agency — Pulverized bituminous coal was burned in a 10W externally heated entrained flow furnace under air-combustion and three oxy-combustion inlet oxygen conditions (28,...

  9. Preventing performance drops of coal mills due to high moisture content

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Mataji, B.

    2007-01-01

    Coal mills pulverize and dry the coal dust before it is blown into the furnace in coal-fired power plants. The coal mills can only deliver the requested coal flow if certain conditions are fulfilled. These are normally considered as constraints on individual variables. However, combinations of more...... coal is accumulated instead of being blown into the furnace. This paper suggests a simple method for preventing the accumulation of the coal in the mill, by limiting the requested coal flow considering the coal moisture content and the temperature outside the mill.  ...

  10. Role of coal water mixture in utility coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Bhagat, N.; Butcher, T.

    1984-05-01

    To indicate the role of coal water mixtures (CWM) in utility coal conversions, the pertinent technical, economic, environmental, and regulatory factors involved in CWM conversion are reviewed. CWM technology provides an attractive option for utility companies to convert to coal. There appear to be no major technical problems in CWM production and use that cannot be overcome. Environmental considerations, however, play an important role in utilities' decisions to convert to coal. In general, coal conversions would be seriously impeded if the installation of flue gas desulfurization units cannot be avoided, as it now can because of the DOE program, and they are also inhibited by present uncertainties regarding impending acid rain regulations. Preliminary estimates of the economics of conversion seem attractive; however, site-specific evaluation is needed to justify conversion in a given situation. Although conversion to pulverized coal appears competitive with that to CWM, some non-economic factors tend to favor CWM over PC.

  11. Microfine coal firing results from a retrofit gas/oil-designed industrial boiler

    Energy Technology Data Exchange (ETDEWEB)

    Patel, R.; Borio, R.W.; Liljedahl, G. [Combustion Engineering, Inc., Windsor, CT (United States)] [and others

    1995-11-01

    Under US Department of Energy, Pittsburgh Energy Technology Center (PETC) support, the development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 at the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment.

  12. Nano-pulverization of poorly water soluble compounds with low melting points by a rotation/revolution pulverizer.

    Science.gov (United States)

    Yuminoki, K; Takeda, M; Kitamura, K; Numata, S; Kimura, K; Takatsuka, T; Hashimoto, N

    2012-08-01

    We report a method for pulverizing poorly water soluble compounds with low melting points to nanoparticles without producing an amorphous phase using a rotation/revolution pulverizer. Fenofibrate, flurbiprofen, and probucol were used as crystalline model compounds. They were suspended in a methylcellulose aqueous solution and pulverized with zirconia balls by the rotation/revolution pulverizer. Beeswax, an amorphous compound, was also examined to investigate whether nano-pulverization of a compound with a low melting point was possible. Beeswax was suspended in ethyl alcohol cooled with liquid nitrogen and pulverized with zirconia balls by the rotation/revolution pulverizer. By optimizing the pulverization parameters, nanoparticles (D50 revolution speed of 1000 rpm and a rotation/revolution ratio of 1.0 when the vessel was 0 degrees C. Amorphous fenofibrate and flurbiprofen were not detected by differential scanning calorimetry or powder X-ray diffraction, whereas small amounts of amorphous probucol were detected. Beeswax was pulverized to nanoparticles (D50 = 0.14 microm) with ethyl alcohol cooled with liquid nitrogen. Fine nanoparticles of these poorly water soluble compounds with low melting points were obtained by controlling the rotation/revolution speed and reducing the vessel temperature.

  13. 30 CFR 77.1102 - Warning signs; smoking and open flame.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Warning signs; smoking and open flame. 77.1102... COAL MINES Fire Protection § 77.1102 Warning signs; smoking and open flame. Signs warning against smoking and open flames shall be posted so they can be readily seen in areas or places where fire...

  14. 30 CFR 75.1106 - Welding, cutting, or soldering with arc or flame underground.

    Science.gov (United States)

    2010-07-01

    ... flame underground. 75.1106 Section 75.1106 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106 Welding, cutting, or soldering with arc or flame underground. All welding, cutting, or...

  15. Influence of high-energy impact on the physical and technical characteristics of coal fuels

    Science.gov (United States)

    Mal'tsev, L. I.; Belogurova, T. P.; Kravchenko, I. V.

    2017-08-01

    Currently, in the world's large-scale coal-fired power industry, the combustion of pulverized coal is the most widely spread technology of combusting the coals. In recent years, the micropulverization technology for preparation and combustion of the coal has been developed in this field. As applied to the small-scale power industry, the method of combusting the coal in the form of a coal-water slurry has been explored for years. Fine coal powders are produced and used in the pulverized-coal gasification. Therefore, the coal preparation methods that involve high-dispersion disintegration of coals attract the greatest interest. The article deals with the problems of high-energy impact on the coal during the preparation of pulverized-coal fuels and coal-water slurries, in particular, during the milling of the coal in ball drum mills and the subsequent regrinding in disintegrators or the cavitation treatment of the coal-water slurries. The investigations were conducted using samples of anthracite and lignite from Belovskii open-pit mine (Kuznetsk Basin). It is shown that both the disintegration and the cavitation treatment are efficient methods for controlling the fuel characteristics. Both methods allow increasing the degree of dispersion of the coal. The content of the small-sized particles reground by cavitation considerably exceeds the similar figure obtained using the disintegrator. The specific surface area of the coal is increased by both cavitation and disintegration with the cavitation treatment producing a considerably greater effect. Being subjected to the cavitation treatment, most coal particles assume the form of a split characterized by the thermodynamically nonequilibrium state. Under external action, in particular, of temperature, the morphological structure of such pulverized materials changes faster and, consequently, the combustion of the treated coal should occur more efficiently. The obtained results are explained from the physical point of view.

  16. Applying Nonlinear Signal Analysis Technologies to Flame Scanner Signals to Improve Staging of Cyclone Boilers for NOx control

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, T. J. [Babcock and Wilcox Company, The; Bailey, R. T. [Babcock and Wilcox Company, The; Fuller, T. A. [Babcock and Wilcox Company, The; FINNEY, Charles E A [ORNL; Daw, C Stuart [ORNL; Stallings, J. [Electric Power Research Institute (EPRI); Himes, R. [Electric Power Research Institute (EPRI); Bermke, R. [Alliant Energy

    2006-08-01

    Cyclone{trademark} boiler owners continue to drive down NO{sub x} emissions by increasingly sophisticated staging and air distribution schemes. For example, Alliant Energy has employed RMT's SmartBurn{reg_sign} technology, and Ameren UE has pioneered neural nets to reduce emissions. Over the last 11 years under sponsorship of EPRI, the team of ORNL and B&W has developed pulverized coal burner diagnostic technology by applying nonlinear signal analysis techniques to flame scanner signals. The team has extended the technology to cyclones to facilitate deeper staging of the cyclones to reduce NO{sub x} emissions. Development projects were conducted at the Alliant Energy Edgewater Units 3 and 4, and Ameren UE Sioux Unit 1. Nonlinear analysis statistics were correlated to upsets in cyclone operation resulting from poor air distribution in the burner and barrel. The team demonstrated that the lighter and main flame scanners can be used to independently guide adjustments to the burner and barrel.

  17. Combustion characteristics of semicokes derived from pyrolysis of low rank bituminous coal

    Institute of Scientific and Technical Information of China (English)

    Qian Wei; Xie Qiang; Huang Yuyi; Dang Jiatao; Sun Kaidi; Yang Qian; Wang Jincao

    2012-01-01

    Various semicokes were obtained from medium-low temperature pyrolysis of Dongrong long flame coal.The proximate analysis,calorific value and Hardgrove grindability index (HGI) of semicokes were determined,and the ignition temperature,burnout temperature,ignition index,burnout index,burnout ratio,combustion characteristic index of semicokes were measured and analyzed using thermogravimetry analysis (TGA).The effects of pyrolysis temperature,heating rate,and pyrolysis time on yield,composition and calorific value of long flame coal derived semicokes were investigated,especially the influence of pyrolysis temperature on combustion characteristics and grindability of the semicokes was studied combined with X-ray diffraction (XRD) analysis of semicokes.The results show that the volatile content,ash content and calorific value of semicokes pyrolyzed at all process parameters studied meet the technical specifications of the pulverized coal-fired furnaces (PCFF) referring to China Standards GB/T 7562-1998.The pyrolysis temperature is the most influential factor among pyrolysis process parameters.As pyrolysis temperature increases,the yield,ignition index,combustion reactivity and burnout index of semicokes show a decreasing tend,but the ash content increases.In the range of 400 and 450 ℃,the grindability of semicokes is rational,especially the grindability of semicokes pyrolyzed at 450 ℃ is suitable.Except for the decrease of volatile content and increase of ash content,the decrease of combustion performance of semicokes pyrolyzed at higher temperature should be attributed to the improvement of the degree of structural ordering and the increase of aromaticity and average crystallite size of char.It is concluded that the semicokes pyrolyzed at the temperature of 450 ℃ is the proper fuel for PCFF.

  18. Flames in vortices & tulip-flame inversion

    Science.gov (United States)

    Dold, J. W.

    This article summarises two areas of research regarding the propagation of flames in flows which involve significant fluid-dynamical motion [1]-[3]. The major difference between the two is that in the first study the fluid motion is present before the arrival of any flame and remains unaffected by the flame [1, 2] while, in the second study it is the flame that is responsible for all of the fluid dynamical effects [3]. It is currently very difficult to study flame-motion in which the medium is both highly disturbed before the arrival of a flame and is further influenced by the passage of the flame.

  19. Effect of dosage of expandable graphite, dimethyl methylphosphonate, triethanolamine, and isocyanate on fluidity, mechanical, and flame retardant properties of polyurethane materials in coal reinforcement

    Institute of Scientific and Technical Information of China (English)

    Hu Xiangming; Wang Deming; Cheng Weimin

    2016-01-01

    In this study, orthogonal experiments were conducted to investigate the influence of expandable graphite (EG), dimethyl methylphosphonate (DMMP), triethanolamine (TEA), and isocyanate content on the com-pressive and bonding strengths, oxygen index, and fluidity of rigid polyurethane foam (RPUF). The results revealed that EG significantly increased the oxygen index of RPUF, enlarged the diameter of foam cells, and decreased the cell-closed content in foam;thus, leading to a pressure drop in RPUF. However, exces-sive EG was capable of reducing the fluidity of polyurethane slurry. TEA exhibited significant influence on the compressive strength of RPUF, which dropped initially, and then increased. DMMP had a remarkable effect on the flame retardant property and compressive strength of RPUF. Compressive strength of RPUF initially displayed an increase followed by a decrease with increasing dosage of DMMP, and achieved the maximum value at DMMP dosage of 4%. DMMP could effectively reduce the diameter of RPUF cells lead-ing to an increase in the percentage of close area in foam. DMMP displayed the flame-retardation effects mainly in the gas phase leading to a significant enhancement in the oxygen index of RPUF. Moreover, the compressive strength and bonding strength of RPUF decrease significantly with the increase of isocyanate content due to the increased blowing efficiency by the CO2. The oxygen index and flowing length of foam increased with the increase in isocyanate dosage.

  20. Semi-wet selective pulverizing system: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Ito, K.; Hirayama, Y.

    1975-05-01

    The operation of the semi-wet selective pulverizing system for recovering materials from municipal waste is described. In this system both pulverization and classification of materials is accomplished in one machine. This process can be used to recover paper, plastics, metals, and compostable materials. (LCL)

  1. 12th international conference on coal science. Coal - contributing to sustainable world development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The theme of the conference was: coal - contributing to sustainable world. Papers dealt with combustion, coal cleaning, surface analysis, coal sustainability and research, metallurgical coke, structural studies, ash utilization, SEM analysis, liquefaction, pulverized coal injection, power plant emissions, analytical techniques, gasification, thermal analysis, weathering, self-heating and dust explosion, low rank coal gasification, geochemistry and trace elements, petrographic studies, CO{sub 2} mitigation, low rank coal pyrolysis, gas sorption, pyrolysis, synthesis gas, low rank coal drying, biomass pyrolysis, gas cleaning, underground gasification, activated carbon, pyrolysis and char reactivity, gasification model studies, agglomerated and slurry fuels, co-pyrolysis, and tar products and effluents. The poster papers are also included. The papers have been abstracted separately on the IEA Clean Coal Centre Coal Abstracts database.

  2. Impacts and implementation of fuel moisture release and radiation properties in modelling of pulverized fuel combustion processes

    DEFF Research Database (Denmark)

    Yin, Chungen

    2015-01-01

    Pulverized fuels (PF) prepared and fired in utility boilers usually contain a certain amount of moisture, either free moisture or chemically bound moisture. In PF furnaces, radiation which is the principal mode of heat transfer consists of contribution from both gas and particle phase. This paper...... presents different methods for fuel moisture release and new models for gas and particle radiative properties, and demonstrates their implementation, importance and impacts in PF combustion modelling via a comprehensive CFD study of a pulverized coal-fired utility boiler. To conclude, it is recommended...... to add the free moisture into the primary air stream while lump the moisture retained in the feed after the mills with volatiles in PF combustion modelling. For gas and particle radiation in PF boilers, it is found that particle radiation largely overwhelms gas radiation due to high particle loading...

  3. Combustion and economics of coal slurry fuels: a look at coal-fuel oil slurries

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, T.; Matsuoka, H.

    1984-01-01

    With the aim of reducing dependence on petroleum, research has been going ahead into the development of various alternative fuels. Of these, coal slurry fuels are regarded as being first in line for commercialization. The authors discuss the combustion of coal-oil fuels. The combustion of fuel oil, pulverized coal and coal-water slurry is also examined. In each case, combustion properties and associated problems are discussed. Finally, the economics of these fuels are examined and trends in research and development surveyed. 23 references.

  4. Measurement and Control of Coal Pipe Temperature of Coal Mills of PF Boiler

    Directory of Open Access Journals (Sweden)

    Karunamoy Chatterjee

    2016-08-01

    Full Text Available Power plant boiler had no arrangement of measure the coal pipe temperature in a continuous basis, though it is an important parameter for any coal fired large boiler. As pulverized coal flows through the long coal-pipe by the help of flow of hot air as a carrier, coal pipe temperature is only the measurement of the coal flow through the pipe to boiler. Low temperature indicates improper flow of pulverized coal through the pipe. So due to no continuous measurement of these parameters we can’t know about the flow profile of coal through pulveriser outlet pipes. Sometimes the pipe got choked and we were not aware of that for a long time. That caused our equipment loss i.e. we had to stop the pulveriser for a long time for de-choking the large size coal pipe. And indirectly it caused loss of power generation and also affected the economical figure of our power house. So to overcome that kind of losses we have to measure the coal pipe temperature in regular basis.

  5. 回转水泥窑燃烧段混煤燃烧数值研究%Numerical Simulation on Combustion of Ble nded Coal in the Burning Region of Revolving Cement Kiln

    Institute of Scientific and Technical Information of China (English)

    侯凌云; 张拥军; 傅维标

    2001-01-01

    For the blended coal composed of 70% anthracite and 30% bitumite,thi s paper si mulates the combustion processes inside the revolving cement kiln with a pulveri zed coal fired burner using a jet with velocity difference.A multiflui d mo del is used for two-phase turbulent flow.and a reaction and general model is u sed for combustio n processes of coal.The results show that the burner used in the revolving cemen t kiln can intensify combustion,furthermore,both the present burner and central high speed jet can restrain the expansion of pulverized coal and make flame not reach the slagging layer of the kiln.%对有反应湍流气粒两相流动采用双流体模型,对 煤粉燃烧过程采 用通用模型,首次针对70%无烟煤+30%烟煤的混煤燃料,将回转水泥窑筒体配有速差射 流煤粉燃烧器的燃烧过程进行了数值研究。结果表明,回转水泥窑中采用该型燃烧器能强化 燃烧,同时使煤粉的扩散受到约束,从而保证了火焰不致烧到窑皮。

  6. Experimental study on pollution emission from combustion of blended coals

    Energy Technology Data Exchange (ETDEWEB)

    Li Yonghua; Chen Hongwei; Zhen Zhi; Liu Jizhen; Feng Zhaoxing; Dong Jianxun [North China Electric Power University, Baoding (China)

    2003-07-01

    The pollution brought by NOx and SOx produced by coal combustion is getting recognition by each country in the world. This paper adopts an experimental method, selects four kinds of lignite and three kinds of soft coal that are mainly used by some power plant and reports a study of the pollution emission characteristics of component and blended coals. The test rig is introduced from Canada with a capacity of 640 MJ/h with a complete milling system and flue gas online analysis system. The study focuses on the influence of oxygen concentration, pulverized coal fineness and pulverized coal nitrogen content on the pollution emission. The study is useful for achieving clean combustion in large power plants. 5 refs., 4 figs., 7 tabs.

  7. Experiment study on the propagation laws of gas and coal dust explosion in coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Rong-jun Si; Run-zhi Li; Lei Wang; Zi-ke Wu [China Coal Research Institute, Chongqing (China). Chongqing Research Institute

    2009-09-15

    An experiment of gas and coal dust explosion propagation in a single laneway was carried out in a large experimental roadway that is nearly the same with actual environment and geometry conditions. In the experiment, the time when the gas and coal dust explosion flame reaches test points has a logarithmic function relation with the test point distances. The explosion flame propagation velocity rises rapidly in the foreside of the coal dust segment and then decreases. The length of the flame area is about 2 times that of the original coal dust accumulation area. Shock wave pressure comes down to the rock bottom in the coal dust segment, then reaches a maximum peak rapidly and decreases. The theoretical basis of the research and assemble of across or explosion is supplied by the experiment conclusion. Compared with gas explosion, the force and destruction degree of a gas and coal dust explosion is much larger. 3 refs., 6 figs., 3 tabs.

  8. Experiment study on the propagation laws of gas and coal dust explosion in coal mine

    Institute of Scientific and Technical Information of China (English)

    SI Rong-jun; LI Run-zhi; WANG Lei; WU Zi-ke

    2009-01-01

    The experiment of gas and coal dust explosion propagation in a single laneway was carried out in a large experimental roadway that is nearly the same with actual envi-ronment and geometry conditions. In the experiment, the time when the gas and coal dust explosion flame reaches test points has a logarithmic function relation with the test point distances. The explosion flame propagation velocity rises rapidly in the foreside of the coal dust segment and comes down after that. The length of the flame area is about 2 times that of the original coal dust accumulation area. Shock wave pressure comes down to the rock bottom in the coal dust segment, then reaches the maximum peak rapidly and comes down. The theoretical basis of the research and assemble of across or explosion is sup-plied by the experiment conclusion. Compared with gas explosion, the force and destruc-tion degree of gas and coal dust explosion is much larger.

  9. An update on blast furnace granular coal injection

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D.G. [Bethlehem Steel Corp., Burns Harbor, IN (United States); Strayer, T.J.; Bouman, R.W. [Bethlehem Steel Corp., PA (United States)

    1997-12-31

    A blast furnace coal injection system has been constructed and is being used on the furnace at the Burns Harbor Division of Bethlehem Steel. The injection system was designed to deliver both granular (coarse) and pulverized (fine) coal. Construction was completed on schedule in early 1995. Coal injection rates on the two Burns Harbor furnaces were increased throughout 1995 and was over 200 lbs/ton on C furnace in September. The injection rate on C furnace reached 270 lbs/ton by mid-1996. A comparison of high volatile and low volatile coals as injectants shows that low volatile coal replaces more coke and results in a better blast furnace operation. The replacement ratio with low volatile coal is 0.96 lbs coke per pound of coal. A major conclusion of the work to date is that granular coal injection performs very well in large blast furnaces. Future testing will include a processed sub-bituminous coal, a high ash coal and a direct comparison of granular versus pulverized coal injection.

  10. CFD simulation of coal and straw co-firing

    DEFF Research Database (Denmark)

    Junker, Helle; Hvid, Søren L.; Larsen, Ejvind;

    This paper presents the results of a major R&D program with the objective to develop CFD based tools to assess the impact of biomass co-firing in suspension fired pulverized coal power plants. The models have been developed through a series of Danish research projects with the overall objective t...

  11. Low NOx nozzle tip for a pulverized solid fuel furnace

    Science.gov (United States)

    Donais, Richard E; Hellewell, Todd D; Lewis, Robert D; Richards, Galen H; Towle, David P

    2014-04-22

    A nozzle tip [100] for a pulverized solid fuel pipe nozzle [200] of a pulverized solid fuel-fired furnace includes: a primary air shroud [120] having an inlet [102] and an outlet [104], wherein the inlet [102] receives a fuel flow [230]; and a flow splitter [180] disposed within the primary air shroud [120], wherein the flow splitter disperses particles in the fuel flow [230] to the outlet [104] to provide a fuel flow jet which reduces NOx in the pulverized solid fuel-fired furnace. In alternative embodiments, the flow splitter [180] may be wedge shaped and extend partially or entirely across the outlet [104]. In another alternative embodiment, flow splitter [180] may be moved forward toward the inlet [102] to create a recessed design.

  12. ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH-PERFORMANCE POWER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-02-01

    transfer system including all pressure vessels and major piping components. Experimental testing at the Combustion and Environmental Test Facility continued during this quarter. Performance of the char burner, as benchmarked by flame stability and low NOx, has been exceptional. The burner was operated successfully both without natural gas and supplemental pulverized coal.

  13. Evaluation of dense-phase ultrafine coal (DUC) as a fuel alternative for oil- and gas-designed boilers and heaters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1986-12-01

    Utility and industrial firms currently using oil- and gas-fired boilers have an interest in substitution of coal for oil and gas as the primary boiler fuel. This interest stems from coal`s two main advantages over oil and gas-lower cost and security of supply. Recent efforts in the area of coal conversion have been directed to converting oil- and gas- fired boilers which were originally designed for coal-firing or were designed with some coal-firing capability. Boilers designed exclusively for oil- or gas-firing have not been considered viable candidates for coal conversion because they generally require a significant capacity derating and extensive and costly modifications. As a result, conversion of boilers in this class to coal-firing has generally been considered unattractive. Renewed interest in the prospects for converting boilers designed exclusively for oil- and gas-firing to coal firing has centered around the concept of using ``ultra fine`` coal as opposed to ``conventional grind`` pulverized coal. The main distinction being the finer particle size to which the former is ground. This fuel type may have characteristics which ameliorate many of the boiler problems normally associated with pulverized coal-firing. The overall concept for ultrafine coal utilization is based on a regional large preparation plant with distribution of a ready to fire fuel directly to many small users. This differs from normal practice in which final coal sizing is performed in pulverizers at the user`s site.

  14. The Nano Pulverization of Traditional Chinese Medicine Liuwei Dihuang

    Institute of Scientific and Technical Information of China (English)

    MA Peiyan; FU Zhengyi; SU Yanli; MA Jingjing

    2006-01-01

    The crude drug of Liuwei Dihuang was pulverized to nano particles to improve its bioavailability. The appropriate technique parameters were studied. Paeonol, typical marker of Liuwei Dihuang, was extracted with organic solvent in ultrasonic and its content was determined by HPLC. The appropriate techniques parameters are as follows: rotating speed control 1200 r/min, grinding time control 50min and mass percent concentration control 3.8%. The experimental results show that the average particle diameter is 161.9 nm and the great majority of the plant cell wall is broken into pieces after nano pulverization. The extraction efficiency of paeonol is increased by 23.5%.

  15. Comparison of Charging Characteristics of Polymerized and Pulverized Toners

    Institute of Scientific and Technical Information of China (English)

    Yasushi Hoshino; Tsunenori Nakanishi; Ye Zhou; Hidetaka Ishihara

    2004-01-01

    Toner charge is very important in electrophotographic printing process. Although many studies on toner charging mechanism have been carried out, the mechanism is very complex and the understanding of toner charging characteristics is not yet sufficient. Toner charge distribution is measured by E-SPART (electrical single particle aerodynamic relaxation time) analyzer, which can measure the size and charge of toner. The measured toners are polymerized and pulverized type. Charging is carried out as follows: the toner is mixed with the carrier and the mixture is bottled into the roller, and mixed by rotating the roller. Toner charge dependences on toner wt% are compared between polymerized and pulverized toner.

  16. Americas coal conference. Conference documentation and information

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Ten papers are presented with the following titles: the impact of mergers in the North American coal industry (R. McCormick); mine developments and port options for Colombian producers (M. InesCastro); mine operations and port options for the Guaare Basin (J. Albornoz); the impact of the Asian crisis and currency changes on the European steam market (D. Rousseau and M. Walters). Aceralia's experience with pulverized coal injection (A. Garcia); Barranguilla's coke plant, an investment opportunity (H. Celedon and E. Thiers); the impact of greenhouse gas controls on European coal markets (P. Horrocks); over the counter (OTC) coal trading in the US - is the South American market next? (S. Doyle); developing the role for rail in Colombia's coal exports (L. Diego); and prospects for US imports (D. Edwards and F. Hill). Most of the papers consist of a printout of the overheads/viewgraphs.

  17. Coal combustion aerothermochemistry research. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Witte, A.B.; Gat, N.; Denison, M.R.; Cohen, L.M.

    1980-12-15

    On the basis of extensive aerothermochemistry analyses, laboratory investigations, and combustor tests, significant headway has been made toward improving the understanding of combustion phenomena and scaling of high swirl pulverized coal combustors. A special attempt has been made to address the gap between scientific data available on combustion and hardware design and scaling needs. Both experimental and theoretical investigations were conducted to improve the predictive capability of combustor scaling laws. The scaling laws derived apply to volume and wall burning of pulverized coal in a slagging high-swirl combustor. They incorporate the findings of this investigation as follows: laser pyrolysis of coal at 10/sup 6/ K/sec and 2500K; effect of coal particle shape on aerodynamic drag and combustion; effect of swirl on heat transfer; coal burnout and slag capture for 20 MW/sub T/ combustor tests for fine and coarse coals; burning particle trajectories and slag capture; particle size and aerodynamic size; volatilization extent and burnout fraction; and preheat level. As a result of this work, the following has been gained: an increased understanding of basic burning mechanisms in high-swirl combustors and an improved model for predicting combustor performance which is intended to impact hardware design and scaling in the near term.

  18. 30 CFR 77.1112 - Welding, cutting, or soldering with arc or flame; safeguards.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, or soldering with arc or... WORK AREAS OF UNDERGROUND COAL MINES Fire Protection § 77.1112 Welding, cutting, or soldering with arc or flame; safeguards. (a) When welding, cutting, or soldering with arc or flame near...

  19. Flame structure of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.

    2014-07-01

    This paper presents high speed images of OH-PLIF at 10. kHz simultaneously with 2D PIV (particle image velocimetry) measurements collected along the entire length of an inverse diffusion flame with circumferentially arranged methane fuel jets. For a fixed fuel flow rate, the central air jet Re was varied, leading to four air to fuel velocity ratios, namely Vr = 20.7, 29, 37.4 and 49.8. A double flame structure could be observed composed of a lower fuel entrainment region and an upper mixing and intense combustion region. The entrainment region was enveloped by an early OH layer, and then merged through a very thin OH neck to an annular OH layer located at the shear layer of the air jet. The two branches of this annular OH layer broaden as they moved downstream and eventfully merged together. Three types of events were observed common to all flames: breaks, closures and growing kernels. In upstream regions of the flames, the breaks were counterbalanced by flame closures. These breaks in OH signal were found to occur at locations where locally high velocity flows were impinging on the flame. As the Vr increased to 37.4, the OH layers became discontinuous over the downstream region of the flame, and these regions of low or no OH moved upstream. With further increases in Vr, these OH pockets act as flame kernels, growing as they moved downstream, and became the main mechanism for flame re-ignition. Along the flame length, the direction of the two dimensional principle compressive strain rate axis exhibited a preferred orientation of approximately 45° with respect to the flow direction. Moreover, the OH zones were associated with elongated regions of high vorticity. © 2013 Elsevier Inc.

  20. Ash fusion temperatures and their association with the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.K.; Wall, T.F.; Gupta, R.P. [Cooperative Research Centre for Black Coal Utilisation, Newcastle, NSW (Australia); Creelman, R.A. [Creelman (R.A.) and Associates, Sydney, NSW (Australia)

    1997-04-01

    Ash deposition on furnace walls in PF (pulverized fuel) furnaces is called slagging when it occurs in the high temperature areas of furnaces directly exposed to flame radiation and fouling in other regions such as tubes in the convection section of the boiler. There are well documented shortcomings of certain approaches relating to their uncertainties as predictive tools for plant performance such as poor repeatability and re-producibility of ash fusion measurements. The nature of physical and chemical changes occurring during melting of coal ash has been investigated in the current study to provide an alternative procedure to the ash fusion test. Shrinkage measurements are frequently used in metallurgy and ceramic science to study the physical properties of materials at high temperatures. The output of this experiment provides three to four `peaks` (maximum rate of shrinkage with temperature) of different intensity and at different temperatures which are related to melting characteristics of the sample. It was concluded that shrinkage extents exceeding 50 percent indicated that the effect of the ash particle size is of secondary importance compared to ash chemistry in determining shrinkage levels, with fine particles giving rapid shrinkage events 10 degrees C lower in temperature. (author). 7 figs., refs.

  1. Influence of wheat kernel physical properties on the pulverizing process.

    Science.gov (United States)

    Dziki, Dariusz; Cacak-Pietrzak, Grażyna; Miś, Antoni; Jończyk, Krzysztof; Gawlik-Dziki, Urszula

    2014-10-01

    The physical properties of wheat kernel were determined and related to pulverizing performance by correlation analysis. Nineteen samples of wheat cultivars about similar level of protein content (11.2-12.8 % w.b.) and obtained from organic farming system were used for analysis. The kernel (moisture content 10 % w.b.) was pulverized by using the laboratory hammer mill equipped with round holes 1.0 mm screen. The specific grinding energy ranged from 120 kJkg(-1) to 159 kJkg(-1). On the basis of data obtained many of significant correlations (p kernel physical properties and pulverizing process of wheat kernel, especially wheat kernel hardness index (obtained on the basis of Single Kernel Characterization System) and vitreousness significantly and positively correlated with the grinding energy indices and the mass fraction of coarse particles (> 0.5 mm). Among the kernel mechanical properties determined on the basis of uniaxial compression test only the rapture force was correlated with the impact grinding results. The results showed also positive and significant relationships between kernel ash content and grinding energy requirements. On the basis of wheat physical properties the multiple linear regression was proposed for predicting the average particle size of pulverized kernel.

  2. The effect of pulverization on the albedo of lunar rocks

    NARCIS (Netherlands)

    Minnaert, Marcel Gilles Jozef

    1969-01-01

    Measures of the albedo under full-moon conditions have been made on two samples of very dark rocks, pulverized and sieved so as to obtain powders of different grain size. Below a size of 0.05 mm the albedo suddenly increases, obviously because the individual grains become transparent. By a rough cal

  3. PROJECT OF COAGULANT DISPENSER IN PULVERIZATION AERATOR WITH WIND DRIVE

    Directory of Open Access Journals (Sweden)

    Ewa Osuch

    2017-09-01

    Full Text Available Lakes are one of most important freshwater ecosystems, playing significant role in functioning of nature and human economy. Swarzędzkie Lake is good example of ecosystem, which in last half-century was exposed to the influence of strong anthropopressure. Direct inflow of sewage with large number of biogens coming to the lake with water of inflows caused distinct disturbance of its functioning. In autumn 2011 restoration begined on Swarzędzkie Lake for reduction of lake trophy and improvement of water quality. For achieving better and quicker effect, simultaneously combination of some methods was applied, among others method of oxygenation of over-bottom water with help of pulverization aerator and method of precise inactivation of phosphorus in water depths. Characterization and analysis of improved coagulant dispenser applying active substance only during work of pulverization aerator is the aim of this thesis. Principle of dispenser work, its structure and location in pulverization aerator were explained. It was stated, that introduction to water a factor initiating process of phosphorus inactivation causes significant reduction of mineral phosphorus in water and size of coagulant dose correlates with intensity of work of pulverization aerator with wind drive.

  4. The effect of pulverization on the albedo of lunar rocks

    NARCIS (Netherlands)

    Minnaert, Marcel Gilles Jozef

    Measures of the albedo under full-moon conditions have been made on two samples of very dark rocks, pulverized and sieved so as to obtain powders of different grain size. Below a size of 0.05 mm the albedo suddenly increases, obviously because the individual grains become transparent. By a rough

  5. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO{sub x} in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO{sub x} emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames--particularly under low NO{sub x} conditions. A CO/H{sub 2}/O{sub 2}/N{sub 2} flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state {sup 13}C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  6. Candle flames in microgravity

    Science.gov (United States)

    Dietrich, D. L.; Ross, H. D.; Tien, J. S.

    1995-01-01

    The candle flame in both normal and microgravity is non-propagating. In microgravity, however, the candle flame is also non-convective where (excepting Stefan flow) pure diffusion is the only transport mode. It also shares many characteristics with another classical problem, that of isolated droplet combustion. Given their qualitatively similar flame shapes and the required heat feedback to condensed-phase fuels, the gas-phase flow and temperature fields should be relatively similar for a droplet and a candle in reduced gravity. Unless the droplet diameter is maintained somehow through non-intrusive replenishment of fuel, the quasi-steady burning characteristics of a droplet can be maintained for only a few seconds. In contrast, the candle flame in microgravity may achieve a nearly steady state over a much longer time and is therefore ideal for examining a number of combustion-related phenomena. In this paper, we examine candle flame behavior in both short-duration and long-duration, quiescent, microgravity environments. Interest in this type of flame, especially 'candle flames in weightlessness', is demonstrated by very frequent public inquiries. The question is usually posed as 'will a candle flame burn in zero gravity', or, 'will a candle burn indefinitely (or steadily) in zero gravity in a large volume of quiescent air'. Intuitive speculation suggests to some that, in the absence of buoyancy, the accumulation of products in the vicinity of the flame will cause flame extinction. The classical theory for droplet combustion with its spherically-shaped diffusion flame, however, shows that steady combustion is possible in the absence of buoyancy if the chemical kinetics are fast enough. Previous experimental studies of candle flames in reduced and microgravity environments showed the flame could survive for at least 5 seconds, but did not reach a steady state in the available test time.

  7. Coal Calorific Value Prediction Based on Projection Pursuit Principle

    Directory of Open Access Journals (Sweden)

    QI Minfang

    2012-10-01

    Full Text Available The calorific value of coal is an important factor for the economic operation of coal-fired power plant. However, calorific value is tremendous difference between the different coal, and even if coal is from the same mine. Restricted by the coal market, most of coal fired power plants can not burn the designed-coal by now in China. The properties of coal as received are changing so frequently that pulverized coal firing is always with the unexpected condition. Therefore, the researches on the prediction of calorific value of coal have a profound significance for the economic operation of power plants. Aiming at the problem of uncertainty of coal calorific value, establish a soft measurement model for calorific value of coal based on projection pursuit principle combined with genetic algorithm to optimize parameters, and support vector machine algorithm. It is shown by an example that the model has a stronger objectivity, effective and feasible for avoiding the disadvantage of the artificially decided weights of feature indexes. The model could provide a good guidance for the calculation of the coal calorific value and optimization operation of coal-fired power plants.  

  8. Flame Holder System

    Science.gov (United States)

    Haskin, Henry H. (Inventor); Vasquez, Peter (Inventor)

    2013-01-01

    A flame holder system includes a modified torch body and a ceramic flame holder. Catch pin(s) are coupled to and extend radially out from the torch body. The ceramic flame holder has groove(s) formed in its inner wall that correspond in number and positioning to the catch pin(s). Each groove starts at one end of the flame holder and can be shaped to define at least two 90.degree.turns. Each groove is sized to receive one catch pin therein when the flame holder is fitted over the end of the torch body. The flame holder is then manipulated until the catch pin(s) butt up against the end of the groove(s).

  9. EVALUATION OF BIOMSS AND COAL SLURRIES AS FUEL-LEAN REBURN FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Vijay K. Sethi

    2006-11-06

    Breen Energy Solutions (BES) and Western Research Institute (WRI) tested biomass and coal slurries and other carbonaceous substances such as fuel oil/water emulsions as NO{sub x} reburn fuel in the combustion test facility (CTF). The overall goal of the project was to determine the NO{sub x} reduction potential of various biomass and coal reburn fuels, and to identify the optimum conditions for NO{sub x} control. Specific objectives were to inject biomass, biosolids, coal, biomass/coal, and biosolids/coal slurries into the upper furnace of CTF and determine the resulting NO{sub x} reductions and CO emissions, to identify optimum injection rates and injection locations for these reburn fuels, and to install a reaction zone stabilizer device in CTF and determine its effectiveness in reducing CO and further reducing NO{sub x}. Combustion tests achieved 40% to 60% NO{sub x} reductions with 10% to 20% reburn fuel heat input. The project has demonstrated the technical feasibility of in-situ gasification of slurries including pulverized coal and 75% pulverized coal/25% biosolids by weight, and the ability to utilize the gasification products as NO{sub x} reburn fuel. This work also demonstrated that pulverized coal/water slurries can be successfully gasified and used as reburn fuels, and there is no need for use of micronized coal. Very good burnout of the pulverized coal slurry was demonstrated in this work. Similarly, the project has demonstrated the technical feasibility of in-situ gasification of oil/water emulsion and the ability to utilize the associated gasification products as NO{sub x} reburn fuel.

  10. Chemistry and flow in industrial diffusion flames. Chemie und Stroemung bei technischen Diffusionsflammen

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    A total of nine papers were presented at the seminar. The papers have the following titles: laminar flamelet models for describing the combustion characteristics of pre-mixed and non-mixed turbulent flames; testing chemical-kinetic models by laser-optical measurement of concentration paths in flames; the simulation of turbulent CO-air and CH/sub 4/-air diffusion flames in consideration of complex reaction mechanisms; measurement and computer results from turbulent swirling flows; heat transfer by gas and soot formation in turbulent flames; reaction sequences in pulverised-coal flames; mathematical model formation of pulverised-coal combustion in large-scale combustion plants; calculating flows in practical burner and combustion-chamber configurations and groundwork for describing gas radiation in gas-turbine combustion chambers. Three of the papers have been abstracted separately.

  11. Coal combustion science. Quarterly progress report, April 1993--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. [ed.

    1994-05-01

    This document is a quarterly status report of the Coal Combustion Science Project that is being conducted at the Combustion Research Facility, Sandia National Laboratories. The information reported is for Apr-Jun 1993. The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the PETC Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. The objective of the kinetics and mechanisms of pulverized coal char combustion task is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. Work is being done in four areas: kinetics of heterogeneous fuel particle populations; char combustion kinetics at high carbon conversion; the role of particle structure and the char formation process in combustion and; unification of the Sandia char combustion data base. This data base on the high temperature reactivities of chars from strategic US coals will permit identification of important fuel-specific trends and development of predictive capabilities for advanced coal combustion systems. The objective of the fate of inorganic material during coal combustion task is the establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of inorganic material during coal combustion as a function of coal type, particle size and temperature, the initial forms and distribution of inorganic species in the unreacted coal, and the local gas temperature and composition. In addition, optical diagnostic capabilities are being developed for in situ, real-time detection of inorganic vapor species and surface species during ash deposition. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  12. Life cycle assessment analysis of supercritical coal power units

    Science.gov (United States)

    Ziębik, Andrzej; Hoinka, Krzysztof; Liszka, Marcin

    2010-09-01

    This paper presents the Life Cycle Assessment (LCA) analysis concerning the selected options of supercritical coal power units. The investigation covers a pulverized power unit without a CCS (Carbon Capture and Storage) installation, a pulverized unit with a "post-combustion" installation (MEA type) and a pulverized power unit working in the "oxy-combustion" mode. For each variant the net electric power amounts to 600 MW. The energy component of the LCA analysis has been determined. It describes the depletion of non-renewable natural resources. The energy component is determined by the coefficient of cumulative energy consumption in the life cycle. For the calculation of the ecological component of the LCA analysis the cumulative CO2 emission has been applied. At present it is the basic emission factor for the LCA analysis of power plants. The work also presents the sensitivity analysis of calculated energy and ecological factors.

  13. Dynamic fracturing by successive coseismic loadings leads to pulverization in active fault zones

    Science.gov (United States)

    Aben, F. M.; Doan, M.-L.; Mitchell, T. M.; Toussaint, R.; Reuschlé, T.; Fondriest, M.; Gratier, J.-P.; Renard, F.

    2016-04-01

    Previous studies show that pulverized rocks observed along large faults can be created by single high-strain rate loadings in the laboratory, provided that the strain rate is higher than a certain pulverization threshold. Such loadings are analogous to large seismic events. In reality, pulverized rocks have been subject to numerous seismic events rather than one single event. Therefore, the effect of successive "milder" high-strain rate loadings on the pulverization threshold is investigated by applying loading conditions below the initial pulverization threshold. Single and successive loading experiments were performed on quartz-monzonite using a Split Hopkinson Pressure Bar apparatus. Damage-dependent petrophysical properties and elastic moduli were monitored by applying incremental strains. Furthermore, it is shown that the pulverization threshold can be reduced by successive "milder" dynamic loadings from strain rates of ~180 s-1 to ~90 s-1. To do so, it is imperative that the rock experiences dynamic fracturing during the successive loadings prior to pulverization. Combined with loading conditions during an earthquake rupture event, the following generalized fault damage zone structure perpendicular to the fault will develop: furthest from the fault plane, there is a stationary outer boundary that bounds a zone of dynamically fractured rocks. Closer to the fault, a pulverization boundary delimits a band of pulverized rock. Consecutive seismic events will cause progressive broadening of the band of pulverized rocks, eventually creating a wider damage zone observed in mature faults.

  14. Measurement and modeling of advanced coal conversion processes, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [and others

    1993-06-01

    A two dimensional, steady-state model for describing a variety of reactive and nonreactive flows, including pulverized coal combustion and gasification, is presented. The model, referred to as 93-PCGC-2 is applicable to cylindrical, axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using a discrete ordinates method. The particle phase is modeled in a lagrangian framework, such that mean paths of particle groups are followed. A new coal-general devolatilization submodel (FG-DVC) with coal swelling and char reactivity submodels has been added.

  15. The behaviour of coal blends in power station boilers

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, W.R.; Horne, P.A.; McGhee, B.F.; Gibson, J.R. [Mitsui Babcock Energy Ltd., Renfrew (United Kingdom)

    1998-12-31

    The milling characteristics of coal blends were studied to provide quantitative information which allows the calculation of the Hardgrove Index (HGI) values of coal blends from those of the constituent coals; to provide data on the power requirement to produce a given mill output fineness, and abrasion rates of mill components when milling coal blends, relative to the behaviour of the constituent coals; to investigate the combustion behaviour of coal blends in pulverized fuel-fired systems by carrying out testwork in a semi-industrial combustion test facility, and to assess the deposition characteristics and the potential for utilization of the ashes produced by the combustion of coal blends. It was found that both the HGI and the Abrasion Index values of coals are additive properties. There were linear correlations between the slope of the Rosin-Rammler plot of the Mini-mill product size distribution and both the blend compositions and the HGI values of the coals and coal blends. Investigations showed that the fusion behaviour of the coal ash blends is rather complex, and that the characteristic ash fusion temperature are not additive in a simple way. A number of correlations were found between the ash fusion temperatures of the coals and coal ash blends. 1 ref., 45 figs., 10 tabs., 1 app.

  16. On gas and particle radiation in pulverized fuel combustion furnaces

    DEFF Research Database (Denmark)

    Yin, Chungen

    2015-01-01

    Radiation is the principal mode of heat transfer in a combustor. This paper presents a refined weighted sum of gray gases model for computational fluid dynamics modelling of conventional air-fuel combustion, which has greater accuracy and completeness than the existing gaseous radiative property....... Although the refined gaseous radiative property model shows great advantages in gaseous fuel combustion modelling, its impacts are largely compromised in pulverized solid fuel combustion, in which particle-radiation interaction plays the dominant role in radiation heat transfer due to high particle loading....... Use of conversion-dependent particle emissivity and scattering factor will not only change the particle heating and reaction history, but also alter the radiation intensity and thus temperature profiles in the furnace. For radiation modelling in pulverized fuel combustion, the priority needs...

  17. Flame image monitoring and analysis in combustion management

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, D. [CEZ, a.s. Elektrarna Detmarovice, Detmarovice (Czech Republic); Huttunen, A.J.; Nihtinen, J.J. [Imatran Voima Oy, IVO Technology Centre, Vantaa (Finland)

    1997-12-31

    When NO{sub x} emissions are reduced with new low-NO{sub x} burners and infurnace modifications in old pulverised fuel boilers, many changes in the firing conditions may occur. Depending on coal quality and the original furnace design, low-NO{sub x} burners, overtire air, low-excess-air firing and other primary modifications in various combinations may cause flame instability, increased slagging, increased minimum load and other difficulties in controlling the burning process. To find and solve these problems quicker, a new type of burner management system for pulverised fuel and oil-fired boilers was developed by Imatran Voima Oy. The DIMAC combustion management system monitors and analyses individually each burner or burner level. There are special software for wall and corner fired boilers. The DIMAC system is comprised of two functional subsystems: flame monitoring and flame analysis. The DIMAC enables the power plant operators to minimise NO{sub x} emissions and optimise the burning efficiency with varying coal qualities and boiler loads at the same time so that slagging, unburnt carbon in fly ash and flame stability stay in acceptable limits. It also guarantees that burners operate in good safety conditions in each burner level. The DIMAC system monitors perpendicularly each individual burner and evaluates flame parameters. Real-time flame monitoring and analysis allows the operator to directly see the effect of changing fuel distribution on flame pattern and flame stability. Based on data from the DIMAC references the system can improve boiler efficiency by 0.2 - 0.5 per cent unit as a result of more efficient control of the burning process. At the same time, the NO{sub x} formation can be reduced by 10 - 20 % 2 refs.

  18. Development of automobile brake lining using pulverized cow hooves

    Directory of Open Access Journals (Sweden)

    Katsina C. BALA

    2016-06-01

    Full Text Available Asbestos has been used for so long as automobile brake lining material because of its good physical and chemical properties. However, due to the health hazard associated with its handling, it has lost favour and several alternative materials are being increasingly used. Asbestos-free brake lining was developed in this work using pulverized cow hooves along with epoxy resin, barium sulphate, graphite and aluminium oxide. This was with a view to exploiting the characteristics of cow hooves, which are largely discarded as waste materials to replace asbestos which has been found to be carcinogenic. Samples of brake linings were produced using compressive moulding in which the physical and mechanical properties of the samples were studied. The results obtained showed that proper bonding was achieved as the percentage by weight of epoxy resin increased and percentage by weight of pulverized cow hooves decreased. The hardness, compressive strength, coefficient of friction, water and oil absorption, relative density and wear rate of the brake linings were determined and compared with existing brake lining properties. The result indicates that pulverized cow hooves can be used as brake lining material for automobiles.

  19. Quality criteria for blast-furnace injection coals

    Energy Technology Data Exchange (ETDEWEB)

    Lherbier, L.W.Jr.; Serrano, E.J. [United States Steel Corp., Munhall, PA (United States). Research and Technology Center

    2008-07-01

    This paper reviewed the history of coal injection at United States Steel Corporation. Currently, pulverized coal (PC) is injected on 10 blast furnaces at the company's facilities at 5 different plants in the United States, Canada and Slovakia. Although low-volatile bituminous coal was used extensively at several sites in the past, all the furnaces now inject high-volatile bituminous coal. The choice of coal injection depends on cost, physical and chemical properties an intended application. Any type of coal can be used for low injection levels. As injection rates increase however, the choice of coal or coal blends depend on more complex characteristics such as combustibility, char reactivity and flow characteristics. Although low-volatile, higher rank bituminous coals usually provide higher coke replacement ratios, they can be more difficult to convey and burn. In contrast, high-volatile, lower rank coals are typically more reactive and easier to convey, but offer lower coke replacement ratios and could even contribute to furnace instability. This paper presented lessons learned with various types of injection coal. It also reviewed existing and emerging standards for choosing injection coals. The parameters that must be considered when choosing from a set of coals include moisture and hardness; carbon and hydrogen content; oxygen content; impurities; coal value; coal rank; conveying properties; reactivity; and coal type and injection rate. Coals with less ash, sulphur and alkali are usually preferred. For ironmaking, coals ranging in rank from anthracite to high-volatile bituminous coal are suitable for low to moderate injection rates. 14 refs., 7 figs.

  20. Ignition et oxydation des particules de combustible solide pulvérisé Ignition and Oxidation of Pulverized Solid Fuel

    Directory of Open Access Journals (Sweden)

    De Soete G. G.

    2006-11-01

    élais d'ignition ont été déterminés pour un grand nombre de combustibles solides de rang inférieur et supérieur (charbons, cokes, asphaltènes, suies, bois, graphite. L'étude de la vitesse expérimentale de la combustion hétérogène, notamment l'étude de la température apparente d'activation, et sa dépendance par rapport à la taille des particules et à la concentration d'oxygène, montre que, dans les conditions des essais, cette combustion est contrôlée par la désorption du CO et se déroule principalement en régime cinético-diffusionnel mixte. L'étude de la dépendance des délais d'ignition par rapport à la température, la taille des particules et la pression partielle d'oxygène, suggère que, pendant ces délais, les réactions se déroulent en régime cinétique pur et que le produit des réactions de désorption est principalement le CO. The heated-grid method is used to investigate the competition between (1 the devolatilization and subsequent oxidation of pyrolysis products and (2 the ignition of the solid matrix and its rapid combustion. A comparison between the instant of ignition and the start of pyrolysis is used to determine the range in which ignition of a pyrolyzable solid fuel of the whole coal ignitiontype (i. e. when ignition occurs before pyrolysis becomes measurable occurs as a function of temperature, particle size and oxygen concentration. The results suggest that this type of ignition might occur, as a general rule, under conditions involving pulverized solid fuels in industrial flames. In the case of whole coalignition, the rate of combustion of the solid matrix is inhibited during the period following ignition. This inhibition is due partly to the difficulty oxygen has of spreading through the pores during the discharge of pyrolysis products and partly to preferential oxygen consumption during the oxidation of pyrolysis products, mainly when this oxidation develops in the form of flames. t is only when pyrolysis ends that

  1. Power generation from chemically cleaned coals: do environmental benefits of firing cleaner coal outweigh environmental burden of cleaning?

    DEFF Research Database (Denmark)

    Ryberg, Morten W.; Owsianiak, Mikolaj; Laurent, Alexis;

    2015-01-01

    Power generation from high-ash coals is a niche technology for power generation, but coal cleaning is deemed necessary to avoid problems associated with low combustion efficiencies and to minimize environmental burdens associated with emissions of pollutants originating from ash. Here, chemical...... beneficiation of coals using acid and alkali–acid leaching procedures is evaluated as a potential coal cleaning technology employing life cycle assessment (LCA). Taking into account the environmental benefits from firing cleaner coal in pulverized coal power plants and the environmental burden of the cleaning....... Chemical cleaning can be optimized with regard to electricity, heat and methanol use for the hydrothermal washing step, and could have environmental impact comparable to that of physical cleaning if the overall resource intensiveness of chemical cleaning is reduced by a factor 5 to 10, depending...

  2. Hi-tech Flame

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Modern science plays a crucial role in lighting the Olympic flame on the world’s highest mountain when the world saw live telecasts of the Olympic flame burning onthe top of Mount Qomolangma(Mount Everest) at 9:17 on the morning of May 8, few realized the years of work and high level of technology that had

  3. Modeling on the Effect of Coal Loads on Kinetic Energy of Balls for Ball Mills

    Directory of Open Access Journals (Sweden)

    Yan Bai

    2015-07-01

    Full Text Available This paper presents a solution for the detection and control of coal loads that is more accurate and convenient than those currently used. To date, no research has addressed the use of a grinding medium as the controlled parameter. To improve the accuracy of the coal load detection based on the kinetic energy of balls in a tubular ball mill, a Discrete Element Method (DEM model for ball kinematics based on coal loads is proposed. The operating process for a ball mill and the ball motion, as influenced by the coal quality and the coal load, was analyzed carefully. The relationship between the operating efficiency of a coal pulverizing system, coal loads, and the balls’ kinetic energy was obtained. Origin and Matlab were utilized to draw the variation of parameters with increasing coal loads in the projectile and cascading motion states. The parameters include the balls’ real-time kinetic energy, the friction energy consumption, and the mill’s total work. Meanwhile, a method of balanced adjacent degree and a physical experiment were proposed to verify the considerable effect of the balls’ kinetic energy on coal loads. The model and experiment results indicate that a coal load control method based on the balls’ kinetic energy is therefore feasible for the optimized operation of a coal pulverizing system.

  4. Flexibility of a 300 MW Arch Firing Boiler Burning Low Quality Coals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Experimental investigations on the flexibility of a 300 MW Arch Firing (AF) coal-fired boiler when burning low quality coals is reported.Measurements of gas temperature and species concentration and char sampling using a water-cooled suction pyrometer were carried out along the furnace elevation.The carbon content and the size distributions of the char samples were obtained.The char morphology was examined using a field emission scanning electron microscope (FESEM).The char sampling was performed on this type of boiler for the first time.The results indicate that the flexibility of this boiler burning low quality coals under a moderate boiler load is better than its flexibility under a high boiler load.Because of the insufficient capacity of the coal pulverizers used, in case of low coal quality the pulverized coal fineness will drastically decrease under high boiler loads.This causes an increase in the loss due to incomplete mechanical and chemical combustion.This is the main cause of a low burnout degree of the pulverized coal and the decrease of the flexibility of this AF boiler under a high boiler load.

  5. Coal Combustion Science. Quarterly progress report, October--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. [ed.; Baxter, L.L.; Davis, K.A.; Hurt, R.H.; Yang, N.Y.C.

    1996-02-01

    The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: Task 1--Kinetics and mechanisms of pulverized coal char combustion; and Task 2--deposit growth and property development in coal-fired furnaces. The objective of task 1 is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. Work is being done in four areas: (a) kinetics of heterogeneous fuel particle populations; (b) char combustion kinetics at high carbon conversion; (c) the role of particle structure and the char formation process in combustion and; (d) unification of the Sandia char combustion data base. The objectives of Task 2 are to provide a self-consistent database of simultaneously measured, time-resolved, ash deposit properties in well-controlled and well-defined environments and to provide analytical expressions that relate deposit composition and structure to deposit properties of immediate relevance to PETC`s Combustion 2000 program. The task include the development and use of diagnostics to monitor, in situ and in real time, deposit properties, including information on both the structure and composition of the deposits.

  6. Low-Rank Coal Grinding Performance Versus Power Plant Performance

    Energy Technology Data Exchange (ETDEWEB)

    Rajive Ganguli; Sukumar Bandopadhyay

    2008-12-31

    The intent of this project was to demonstrate that Alaskan low-rank coal, which is high in volatile content, need not be ground as fine as bituminous coal (typically low in volatile content) for optimum combustion in power plants. The grind or particle size distribution (PSD), which is quantified by percentage of pulverized coal passing 74 microns (200 mesh), affects the pulverizer throughput in power plants. The finer the grind, the lower the throughput. For a power plant to maintain combustion levels, throughput needs to be high. The problem of particle size is compounded for Alaskan coal since it has a low Hardgrove grindability index (HGI); that is, it is difficult to grind. If the thesis of this project is demonstrated, then Alaskan coal need not be ground to the industry standard, thereby alleviating somewhat the low HGI issue (and, hopefully, furthering the salability of Alaskan coal). This project studied the relationship between PSD and power plant efficiency, emissions, and mill power consumption for low-rank high-volatile-content Alaskan coal. The emissions studied were CO, CO{sub 2}, NO{sub x}, SO{sub 2}, and Hg (only two tests). The tested PSD range was 42 to 81 percent passing 76 microns. Within the tested range, there was very little correlation between PSD and power plant efficiency, CO, NO{sub x}, and SO{sub 2}. Hg emissions were very low and, therefore, did not allow comparison between grind sizes. Mill power consumption was lower for coarser grinds.

  7. Unsteady Flame Embedding

    KAUST Repository

    El-Asrag, Hossam A.

    2011-01-01

    Direct simulation of all the length and time scales relevant to practical combustion processes is computationally prohibitive. When combustion processes are driven by reaction and transport phenomena occurring at the unresolved scales of a numerical simulation, one must introduce a dynamic subgrid model that accounts for the multiscale nature of the problem using information available on a resolvable grid. Here, we discuss a model that captures unsteady flow-flame interactions- including extinction, re-ignition, and history effects-via embedded simulations at the subgrid level. The model efficiently accounts for subgrid flame structure and incorporates detailed chemistry and transport, allowing more accurate prediction of the stretch effect and the heat release. In this chapter we first review the work done in the past thirty years to develop the flame embedding concept. Next we present a formulation for the same concept that is compatible with Large Eddy Simulation in the flamelet regimes. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames, similar to the flamelet approach. However, a set of elemental one-dimensional flames is used to describe the turbulent flame structure directly at the subgrid level. The calculations employ a one-dimensional unsteady flame model that incorporates unsteady strain rate, curvature, and mixture boundary conditions imposed by the resolved scales. The model is used for closure of the subgrid terms in the context of large eddy simulation. Direct numerical simulation (DNS) data from a flame-vortex interaction problem is used for comparison. © Springer Science+Business Media B.V. 2011.

  8. Two-Nozzle Flame Spray Pyrolysis (FSP) Synthesis of CoMo/Al2O3 Hydrotreating Catalysts

    DEFF Research Database (Denmark)

    Høj, Martin; Pham, David K.; Brorson, Michael

    2013-01-01

    Two-nozzle frame spray analysis (FSP) synthesis of CoMo/Al2O3 where Co and Al are sprayed in separate flames was applied to minimize the formation of CoAl2O4 observed in one-nozzle flame spray pyrolysis (FSP) synthesis and the materials were characterized by N2-adsorption (BET), X-ray diffraction...

  9. STUDY ON DOUBLE-CHANNEL CYCLONE-TYPE PULVERIZED COAL BURNER WITH INNER-POSITIONED FLAME-STABILIZING BODY AND ITS APPLICATION ON 410 t/h BOILER%加内置稳焰体的双通道旋流煤粉燃烧器研究及其在410 t/h锅炉上的应用

    Institute of Scientific and Technical Information of China (English)

    熊立红; 唐必光; 顾昌; 顾山; 高茂; 刘玲; 蔡建国

    2001-01-01

    The combustion-stabilizing mechanism of the title burner has been analyzed.The results of test,measurement and study of cold-state simulation have been given.Based on the results of study,the cyclone-type burner of boiler No 3 in Huozhou Power Plant,Shanxi province,has been retrofitted.The results of commercial experiments show,this kind of burner has better fire-stabilizing capability.%分析了加内置稳焰体的双通道旋流煤粉燃烧器的稳燃机理,给出了冷态模拟试验测量及研究结果,根据研究结果对山西霍州电厂3号炉的旋流燃烧器进行了改造。工业试验结果表明,该燃烧器具有较好的稳燃性能。

  10. Thermal analysis evaluation of the reactivity of coal mixtures for injection in the blast furnace

    Directory of Open Access Journals (Sweden)

    Maria de Lourdes Ilha Gomes

    2006-03-01

    Full Text Available Pulverized Coal Injection (PCI is an important standard technology replacing coke partially by pulverized coal into the blast furnace that allows a significant reduction of hot metal costs and environmental impact, contributing to a decrease of coke requirements for ironmaking. Coals typically used in this process in Brazil are, at current time, exclusively imported from many countries, although economic important coal-measures occur in the southern part of the country. The Brazilian coals have a low rank, higher contents of inert components, proportioning nocoking properties and an expected high reactivity. Due to these caractheristics, these coals could be used for injection in the blast furnaces in order to decrease the dependency on high cost imported coals. The efficiency in the combustion and the coal reactivity are considered important parameters in the blast furnace, since a larger amount of char (unburned coal causes severe problems to the furnace operation. The aim of the present work is to compare the reactivity of a south Brazilian coal, obtained from Faxinal mine, with two imported coals and the blends of the Brazilian coal with the imported ones. The reactivity of these coals and their blends were evaluated in a thermogravimetric analyzer. In the experiments, various mass ratios of Faxinal coal and the imported coals were used to compose the blends. The gasification reaction with pure CO2 was conducted under isothermal conditions at 1050 °C and atmospheric pressure. The experimental results show the greater reactivity of the Faxinal coal. The additive behavior was confirmed. The blends with a composition of up to 50% Faxinal coal have parameters according to the usual limits used for PCI.

  11. Preparation of Intumescent Flame Retardant Polypropylene composite through Solid State Mechanochemical Method

    Institute of Scientific and Technical Information of China (English)

    CHEN Ying-hong; WANG Qi

    2004-01-01

    Polypropylene (PP), with characteristics of good mechanical properties, good resistance to water and low cost, has been widely used in many fields such as building, transport, furniture and electrical industries. However, a fateful drawback of polypropylene is its high flammability,restricting its wider applications. Addition of flame retardants is an effective way to improve its flame retardancy. An effective halogen-free flame retardant system used is the mixture of melamine, ammounium phosphate and pentaerythritol (intumescent flame retardant). But how to enhance the dispersion of this mixture in polypropylene matrix is a big problem. A self-made mechanochemical reactor, pan type milling equipment, can exert strong shear and squeeze forces,and has good mixing function. As a result, a uniform dispersion of flame retardants in the polymer matrix can be expectably obtained by using this equipment.In this paper, flame-retarded Polypropylene (PP) composites with intumescent flame retardant (IFR) were prepared via solid state mechanochemical method (pan-mill) and conventional method (twin-roll masticator) respectively. Particle diameter analysis, melt flow index (MFI), differential scanning calorimetry (DSC) and scanning electronic microscopy (SEM) were used to characterize these composites, and the mechanical properties and flame retardancy were also determined. The experimental results showed that the blend of PP and IFR were effectively pulverized from 3~4 mm to less than 300i m under the strong shear forces of pan-mill. With increasing the milling cycles, the MFI value of IFR/PP blend decreased first and then increased. The mechanical properties and flame retardancy of IFR/PP blends prepared by solid state mechanochemical method were proved to be better than those prepared by conventional method because of the dispersing function of pan-mill.Also it was found that IFRs were the nucleating agent for PP and the crystallinity of PP increased first and then

  12. CHAR CRYSTALLINE TRANSFORMATIONS DURING COAL COMBUSTION AND THEIR IMPLICATIONS FOR CARBON BURNOUT

    Energy Technology Data Exchange (ETDEWEB)

    ROBERT H. HURT

    1998-09-08

    Recent work at Sandia National Laboratories, Imperial College, and the U.K. utility PowerGen, has identified an important mechanism believed to have a large influence on unburned carbon levels from pulverized coal-fired boilers. That mechanism is char carbon crystalline rearrangements on subsecond times scales at temperatures of 1800 - 2500 K, which lead to char deactivation in the flame zones of furnaces. The so-called thermal annealing of carbons is a well known phenomenon, but its key role in carbon burnout has only recently been appreciated, and there is a lack of quantitative data in this time/temperature range. In addition, a new fundamental tool has recently become available to study crystalline transformations, namely high resolution transmission electron microscopy (HRTEM) fringe imaging, which provides a wealth of information on the nature and degree of crystallinity in carbon materials such as coal chars. Motivated by these new developments, this University Coal Research project has been initiated with the following two goals:  to determine transient, high-temperature, thermal deactivation kinetics as a function of parent coal and temperature history.  to characterize the effect of this thermal treatment on carbon crystalline structure through high-resolution transmission electron microscopy and specialized, quantitative image analysis. Work is currently underway on the following three tasks: Task 1 Experimental technique development. The goal of this task is to develop and demonstrate an apparatus and procedure for measuring transient, high-temperature, thermal deactivation of coal chars. While peak gas temperatures in boilers are often in the range 1800 - 2000 K, peak particle temperatures can be much higher due to high rates of heat release at the particle surface due to exothermic carbon oxidation. The prototype transient heat treatment apparatus is based on an inert-gas purged graphite-rod sample holder that is subjected to rapid Joule heating to

  13. Particle-based characterisation of pulverised coals and chars for carbon burnout studies

    Energy Technology Data Exchange (ETDEWEB)

    Gibbins, J.R.; Seitz, M.H.; Kennedy, S.M.; Beeley, T.J.; Riley, G.S. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Mechanical Engineering Department

    1999-07-01

    The study of individual particle properties, as opposed to averaged behaviour of differing particles, was carried out for the combustion of coals and chars using optical microscopy and digital image processing. Chars from entrained flow reactors and corresponding pulverized fuel samples were characterized to examine possible char particle origins for real heterogeneous particles. 7 refs., 5 figs., 1 tab.

  14. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

    2001-09-04

    It is well understood that the stability of axial diffusion flames is dependent on the mixing behavior of the fuel and combustion air streams. Combustion aerodynamic texts typically describe flame stability and transitions from laminar diffusion flames to fully developed turbulent flames as a function of increasing jet velocity. Turbulent diffusion flame stability is greatly influenced by recirculation eddies that transport hot combustion gases back to the burner nozzle. This recirculation enhances mixing and heats the incoming gas streams. Models describing these recirculation eddies utilize conservation of momentum and mass assumptions. Increasing the mass flow rate of either fuel or combustion air increases both the jet velocity and momentum for a fixed burner configuration. Thus, differentiating between gas velocity and momentum is important when evaluating flame stability under various operating conditions. The research efforts described herein are part of an ongoing project directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners. Experimental studies include both cold-and hot-flow evaluations of the following parameters: primary and secondary inlet air velocity, coal concentration in the primary air, coal particle size distribution and flame holder geometry. Hot-flow experiments will also evaluate the effect of wall temperature on burner performance.

  15. Effect of coal slurry on the corrosion of coal-mine equipment

    Institute of Scientific and Technical Information of China (English)

    Zhang Qi; Xie Jingxuan; Zhao Wei; Bai Shasha; Zhong Shiteng; Chu Zhenfeng

    2011-01-01

    The corrosion of coal mine equipment immersed in coal slurry is addressed.The corrosion of low carbon steel samples immersed in coal slurries of different concentrations (80,130,and 180g/L) prepared from coals of different rank (long-flame coal,meager lean coal,and anthracite) and different granularity (0.25-0.5 mm,0.074-0.25 mm,and less than 0.074 mm particle size) was studied by the electrochemical method of polarization curve measurement,controlled potential sweeping,and continuous scanning.The results show that the corrosion rate in an anthracite slurry,where the coal has high coalification,is far greater than corrosion in a long-flame or a meager lean coal slurry.Furthermore the corrosion current,polarization current,and corrosion rate of low carbon steel become larger,and the polarizability becomes smaller,as the coal particle size decreases.The same trend is seen as the concentration of the coal slurry increases.

  16. Analysis of Chemical Reaction Kinetics Behavior of Nitrogen Oxide During Air-staged Combustion in Pulverized Boiler

    Directory of Open Access Journals (Sweden)

    Jun-Xia Zhang

    2016-03-01

    Full Text Available Because the air-staged combustion technology is one of the key technologies with low investment running costs and high emission reduction efficiency for the pulverized boiler, it is important to reveal the chemical reaction kinetics mechanism for developing various technologies of nitrogen oxide reduction emissions. At the present work, a three-dimensional mesh model of the large-scale four corner tangentially fired boiler furnace is established with the GAMBIT pre-processing of the FLUENT software. The partial turbulent premixed and diffusion flame was simulated for the air-staged combustion processing. Parameters distributions for the air-staged and no the air-staged were obtained, including in-furnace flow field, temperature field and nitrogen oxide concentration field. The results show that the air-staged has more regular velocity field, higher velocity of flue gas, higher turbulence intensity and more uniform temperature of flue gas. In addition, a lower negative pressure zone and lower O2 concentration zone is formed in the main combustion zone, which is conducive to the NO of fuel type reduced to N2, enhanced the effect of NOx reduction. Copyright © 2016 BCREC GROUP. All rights reserved Received: 5th November 2015; Revised: 14th January 2016; Accepted: 16th January 2016  How to Cite: Zhang, J.X., Zhang, J.F. (2016. Analysis of Chemical Reaction Kinetics Behavior of Nitrogen Oxide During Air-staged Combustion in Pulverized Boiler. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 100-108. (doi:10.9767/bcrec.11.1.431.100-108 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.431.100-108

  17. Amphiphilic semi-interpenetrating polymer networks using pulverized rubber

    Science.gov (United States)

    Shahidi, Nima

    Scrap rubber materials provide a significant challenge to either reuse or safe disposal. Every year, millions of tires are discarded to landfills in the United States, consuming a staggering amount of land space, creating a high risk for large fires, breeding mosquitoes that spread diseases, and wasting the planet's natural resources. This situation cannot be sustained. The challenge of reusing scrap rubber materials is mainly due to the crosslinked structure of vulcanized rubber that prevent them from melting and further processing for reuse. The most feasible recycling approach is believed to be a process in which the vulcanized rubber is first pulverized into a fine powder and then incorporated into new products. The production of fine rubber particles is generally accomplished through the use of a cryogenic process that is costly. Therefore, development of a cost effective technology that utilizes a large quantity of the scrap rubber materials to produce high value added materials is an essential element in maintaining a sustainable solution to rubber recycling. In this research, a cost effective pulverization process, solid state shear extrusion (SSSE), was modified and used for continuous pulverization of the rubber into fine particles. In the modified SSSE process, pulverization takes place at high compressive shear forces and a controlled temperature. Furthermore, an innovative particle modification process was developed to enhance the chemical structure and surface properties of the rubber particles for manufacturing of high value added products. Modification of rubber particles was accomplished through the polymerization of a hydrophilic monomer mixture within the intermolecular structure of the hydrophobic rubber particles. The resulting composite particles are considered as amphiphilic particulate phase semi-interpenetrating polymer networks (PPSIPNs). The modified rubber particles are water dispersible and suitable for use in a variety of aqueous media

  18. Laboratory-scale coal and char characterisation studies

    Energy Technology Data Exchange (ETDEWEB)

    Geli, J.; Milani, A.; Damiani, R.; Ferrari, M. [Centro Sviluppo Materiali S.p.A., Roma (Italy)

    1998-12-31

    A laboratory scale study on nine coals, aimed at correlating coal properties (basically determined by rank and maceral composition) with char morphotextural features and combustion behaviour, was carried out. Proximate, ultimate, technological and petrographic analyses on coals were effectuated, and a standard laboratory test, developed at CSM, was carried out in order to determine coal combustion efficiency (EC). The tested coals are resulted single coals and more or less complex blends. Chars were produced by coal pyrolysis in a Drop Tube Furnace (DTF) under nitrogen flow at 1600{degree}C and submitted to a chemical and technological characterization; besides, the morphotextures of char particles were investigated by a polarized optical microscope POM) and classified. Char combustion was carried out in air flow by DTF, too, at 1600{degree}C and the residual combustion particles were submitted to ultimate and petrographic analyses. Finally three coals of the studied series were pyrolysed and their chars burnt by DTF at 1200{degree}C in order to determine the influence of temperature on combustion properties. Results allowed to individuate the main characteristics of coals and chars with resect to the combustion behaviour, and the relationships among them; therefore they provide an evaluation rule for coal selection and a basis of a method for `building` the best blends for pulverized coal boiler. 18 refs., 6 figs., 22 tabs.

  19. Igniting the Paralympic Flame

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Deaf-mute Jiang Xintian lights a small cauldron in the hands of wheelchairbound fencer Jin Jing at the Paralympic Flame Lighting Ceremony in Beijing’s symbolic Temple of Heaven on August 28. For nine days until September 6, when the 13th Paralympics opens in Beijing, a total of 850 torchbearers would relay the Paralympic flame along two routes through 11 Chinese provinces,

  20. A FUEL-RICH PRECOMBUSTOR. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS - VOLUME IV. ALTERNATE CON- CEPTS FOR SOX, NOX, AND PARTICULATE EMISSIONS CONTROL FROM

    Science.gov (United States)

    The report gives results a study of the use of precombustors for the simultaneous control of S02, NOx, and ash emissions from coal combustion. In Phase 1, exploratory testing was conducted on a small pilot scale--293 kW (million Btu/hr)-pulverized-coal-fired precombustor to ident...

  1. A comparative overview of coal-water slurry fuels produced from waste coal fines for utility-scale co-firing applications

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, J.L.; Miller, B.G.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1997-07-01

    The recovery and utilization of coal fines, both impounded and in cleaning plant effluent streams, have received close attention from both coal producers and coal-fixed utilities during the last few years. Many coal producers view impounded fines as an environmental liability and the discarded fines in plant effluent streams as contributing to a loss in Btu recovery. In addition, the rejected coal fines increase the quantity and cost of refuse disposal. The handleability of fine coal has always been a problem. Dewatering cleaned fine coal is costly. Excessive fugitive dust emissions are commonly associated with handling dry fine coal. Wet fine coal sticks to conveyor belts, blocks fuel chutes, and may limit pulverizer capacity. The preparation of coal water slurry fuel (CWSF) from wet coal fines alleviates the necessity of drying while at the same time eliminates the flow problems that wet fine coal poses to the end user. Furthermore, the utilization of CWSF as an opportunity fuel converts coal fines into a revenue source rather than a liability. Several utilities are evaluating the co-firing of low solids, low viscosity CWSF with their normal coal feedstock in an effort to lower fuel cost and/or as a NO{sub x} reduction technique. The utilization of this opportunity fuel is being driven by a changing electric industry in which utilities continually strive to reduce plant emissions while simultaneously reducing their operating costs to become more competitive as the generation side of the industry prepares for deregulation.

  2. Environmental control implications of generating electric power from coal. 1977 technology status report. Appendix A, Part 1. Coal preparation and cleaning assessment study

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    This report evaluates the state of the art and effectiveness of physical coal cleaning as a potential strategy for controlling SO/sub x/ emissions in coal fired power generation. Coal properties which are significantly altered by physical coal cleaning were determined. The effects of the changes in properties as they relate to pulverized coal firing, fluidized bed combustion and low Btu gasification for combined cycle powered generation were studied. Available coal washability data were integrated by computer with U.S. coal reserve data. Approximately 18% of the demonstrated coal reserve were matched with washability data. Integrated data appear in the Appendix. Current coal preparation practices were reviewed. Future trends were determined. Five process flow sheets representing increasing levels of cleaning sophistication were prepared. The clean product from each flow sheet will meet U.S. EPA New Source Performance Standards. Capital and operating costs for each case were estimated. Environmental control technology and environmental impact associated with current coal preparation and cleaning operations were assessed. Physical coal cleaning is widely practiced today. Where applicable it represents the least expensive method of coal sulfur reduction. Developmental physical and chemical coal cleaning processes were studied. The chemical methods have the advantage of being able to remove both pyritic sulfur and organic sulfur present in the coal matrix. Further R and D efforts will be required before commercialization of these processes.

  3. Feasibility of Pulverized Oyster Shell as a Cementing Material

    Directory of Open Access Journals (Sweden)

    Chou-Fu Liang

    2013-01-01

    Full Text Available This research intends to study the cementing potential of pulverized oyster shell, rich in calcium, when mixed with fly ash and soil. Cylindrical compacted soil and cubic lime specimens with different proportions of the shells and fly ash are made to study the strength variance. Soil, which is classified as CL in the USCS system, commercialized pulverized oyster shell, F-type fly ash, and lime are mixed in different weight percentages. Five sample groups are made to study the compressive strength of soil and lime specimens, respectively. The lime cubes are made with 0.45 W/B ratio and the cylindrical soils are compacted under the standard Procter compaction process with 20% moisture content. The results show that increment of shell quantity result to lower strength on both the soil and lime specimens. In a 56-day curing, the compressive strength of the lime cubes containing fly ash increases evidently while those carrying the shell get little progress in strength. The soil specimens containing fly ash gradually gain strength as curing proceeds. It suggests that mixtures of the shell and fly ash do not process any Pozzolanic reaction nor help to raise the unconfined strength of the compacted soil through the curing.

  4. Coal preparation and coal cleaning in the dry process; Kanshiki sentaku to coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Z.; Morikawa, M.; Fujii, Y. [Okayama University, Okayama (Japan). Faculty of Engineering

    1996-09-01

    Because the wet process has a problem such as waste water treatment, coal cleaning in the dry process was discussed. When a fluidized bed (using glass beads and calcium carbonate) is utilized instead of the heavy liquid, the fluidized bed will have apparent density as the liquid does, whereas the relative relationship therewith determines whether a substance having been put into the fluidized bed will float or sink. This is utilized for coals. In addition, two powder constituents of A and B may be wanted to be separated using the fluidized extraction process (similar to the liquid-liquid extraction process). In such a case, a fluidized bed in which both constituents are mixed is added with a third constituent C (which will not mix with A, but mix well with B), where the constituents are separated into A and (B + C), and the (B + C) constituent is separated further by using a sieve. If coal has the coal content mixed with ash content and pulverized, it turns into particle groups which have distributions in grain size and density. Groups having higher density may contain more ash, and those having lower density less ash. In addition, the ash content depends also on the grain size. The ash content may be classified by using simultaneously wind classification (for density and grain size) and a sieve (for grain size). This inference may be expanded to consideration of constructing a multi-stage fluidized bed classification tower. 12 figs., 5 tabs.

  5. Real Time Flame Monitoring of Gasifier and Injectors

    Energy Technology Data Exchange (ETDEWEB)

    Zelepouga, Serguei; Saveliev, Alexei

    2011-12-31

    This project is a multistage effort with the final goal to develop a practical and reliable nonintrusive gasifier injector monitor to assess burner wear and need for replacement. The project team included the National Energy Technology Laboratory (NETL), Gas Technology Institute (GTI), North Carolina State University, and ConocoPhillips. This report presents the results of the sensor development and testing initially at GTI combustion laboratory with natural gas flames, then at the Canada Energy Technology Center (CANMET), Canada in the atmospheric coal combustor as well as in the pilot scale pressurized entrained flow gasifier, and finally the sensor capabilities were demonstrated at the Pratt and Whitney Rocketdyne (PWR) Gasifier and the Wabash River Repowering plant located in West Terre Haute, IN. The initial tests demonstrated that GTI gasifier sensor technology was capable of detecting shape and rich/lean properties of natural gas air/oxygen enriched air flames. The following testing at the Vertical Combustor Research Facility (VCRF) was a logical transition step from the atmospheric natural gas flames to pressurized coal gasification environment. The results of testing with atmospheric coal flames showed that light emitted by excited OH* and CH* radicals in coal/air flames can be detected and quantified. The maximum emission intensities of OH*, CH*, and black body (char combustion) occur at different axial positions along the flame length. Therefore, the excitation rates of CH* and OH* are distinct at different stages of coal combustion and can be utilized to identify and characterize processes which occur during coal combustion such as devolatilization, char heating and burning. To accomplish the goals set for Tasks 4 and 5, GTI utilized the CANMET Pressurized Entrained Flow Gasifier (PEFG). The testing parameters of the PEFG were selected to simulate optimum gasifier operation as well as gasifier conditions normally resulting from improper operation or

  6. Release of inorganic material during coal devolatilization. Milestone report

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.L.

    1995-07-01

    Experimental results presented in this paper indicate that coal devolatilization products convectively remove a fraction of the nonvolatile components of inorganic material atomically dispersed in the coal matrix. Results from three facilities burning six different coals illustrate this mechanism of ash transformation and release from coal particles. Titanium is chosen to illustrate this type of mass release from coal particles on the basis of its low volatility and mode of occurrence in the coal. During moderate rates of devolatilization (10{sup 4} K/s heating rate), no significant loss of titanium is noted. At more rapid rates of heating/devolatilization (10{sup 5} K/s) a consistent but minor (3-4 %) loss of titanium is noted. During rapid devolatilization (5xl0{sup 5} K/s and higher), significant (10-20 %) amounts of titanium leave the coal. The loss of titanium monitored in coals ranging in rank from subbituminous to high-volatile bituminous coals and under conditions typical of pulverized-coal combustion. The amount of titanium lost during devolatilization exhibits a complex rank dependence. These results imply that other atomically dispersed material (alkali and alkaline earth elements) may undergo similar mechanisms of transformation and release.

  7. Catalytic activity of pyrite for coal liquefaction reaction; Tennen pyrite no shokubai seino ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, K.; Kozu, M.; Okada, T.; Kobayashi, M. [Nippon Coal Oil Co. Ltd., Tokyo (Japan)

    1996-10-28

    Since natural pyrite is easy to obtain and cheap as coal liquefaction catalyst, it is to be used for the 150 t/d scale NEDOL process bituminous coal liquefaction pilot plant. NEDO and NCOL have investigated the improvement of catalytic activity of pulverized natural pyrite for enhancing performance and economy of the NEDOL process. In this study, coal liquefaction tests were conducted using natural pyrite catalyst pulverized by dry-type bowl mill under nitrogen atmosphere. Mechanism of catalytic reaction of the natural pyrite was discussed from relations between properties of the catalyst and liquefaction product. The natural pyrite provided an activity to transfer gaseous hydrogen into the liquefaction product. It was considered that pulverized pyrite promotes the hydrogenation reaction of asphaltene because pulverization increases its contact rate with reactant and the amount of active points on its surface. It was inferred that catalytic activity of pyrite is affected greatly by the chemical state of Fe and S on its surface. 3 refs., 4 figs., 1 tab.

  8. Recovery bituminous coal fines: a discussion on the production of coal-water slurry fuels and its relationship to fine coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, J.L.; Scaroni, A.W.; Battista, J.J. [Pennsylvania State University, University Park, PA (United States)

    1998-12-31

    The recovery of bituminous coal fines from slurry impoundments and fine coal cleaning circuits has received considerable attention over the last decade from both coal suppliers and coal-fired utilities. Several coal-fired utilities are presently determining whether a low-solids, low viscosity coal-water slurry fuel (CWSF) produced from fine coal can be co-fired with their normal coal feedstock in order to lower their fuel cost and reduce their NO{sub x} emissions. One of the most visible CWSF demonstration programs in the United States is being conducted by GPU Generating, Inc. (GPU Genco). GPU Genco has conducted intermittent demonstration co-fire testing at their 218 MWe-Seward Station since 1993. These tests successfully demonstrate that a low-solids CWSF can be co-fired with pulverized coal in wall-and tangentially-fired boilers. The majority of the CWSF tested at Seward has been prepared from impounded coal fines cleaned via froth flotation and, on a more limited basis, a CWSF prepared from coal fines concentrated from a screen-bowl centrifuge effluent. The production of alow-solids CWSF from wet, fine coal provides an alternative to dewatering. This paper summarizes several fine coal recovery and utilization programs conducted by Pennsylvania State University (Penn State) and GPU Genco during the last five years. These programs range from performing bench-to-pilot-scale cleanability and pilot-scale combustion testing to full-scale utility demonstration tests. All of these successful programs have a common thread of integrating and addressing the issues of fine coal characterization, cleaning handling, and the combustion performance of the CWSF. 8 refs., 1 fig., 1 tab.

  9. ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH-PERFORMANCE POWER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    nozzles for separate injection of char, coal, and limestone. Burner performance will be rated according to three criteria, carbon conversion efficiency, NOx generation, and flame stability. If initial testing in the arch configuration proves successful, further tests will be performed in the wall-fired arrangement. A complete set of process and instrumentation drawings (P/ID's) were completed for the Combustion and Environmental Test Facility (CETF) this quarter. These drawings established an ISA approved instrument tagging structure, and provided a coherent database for the development of a data acquisition system. The data acquisition system polls tag information (value, range, engineering units, etc.) from the distributed control system (DCS) highway, and provides a platform for data reduction. The quadrupole mass spectrometer, used during the pyrolyzer tests performed at the pilot plant in Livingston, N.J., has been redesigned for use at the CETF. The mass spectrometer is designed to provide on-line gas analysis by identifying all of the chemical components within the secondary air line, the flue gas recycle line, and the furnace exit ducting. The construction effort at the CETF continued this quarter with the completion of the char storage system, reheat burner, flue gas recycle piping, and the pulverized coal feed system.

  10. Organic coal-water fuel: Problems and advances (Review)

    Science.gov (United States)

    Glushkov, D. O.; Strizhak, P. A.; Chernetskii, M. Yu.

    2016-10-01

    The study results of ignition of organic coal-water fuel (OCWF) compositions were considered. The main problems associated with investigation of these processes were identified. Historical perspectives of the development of coal-water composite fuel technologies in Russia and worldwide are presented. The advantages of the OCWF use as a power-plant fuel in comparison with the common coal-water fuels (CWF) were emphasized. The factors (component ratio, grinding degree of solid (coal) component, limiting temperature of oxidizer, properties of liquid and solid components, procedure and time of suspension preparation, etc.) affecting inertia and stability of the ignition processes of suspensions based on the products of coaland oil processing (coals of various types and metamorphism degree, filter cakes, waste motor, transformer, and turbine oils, water-oil emulsions, fuel-oil, etc.) were analyzed. The promising directions for the development of modern notions on the OCWF ignition processes were determined. The main reasons limiting active application of the OCWF in power generation were identified. Characteristics of ignition and combustion of coal-water and organic coal-water slurry fuels were compared. The effect of water in the composite coal fuels on the energy characteristics of their ignition and combustion, as well as ecological features of these processes, were elucidated. The current problems associated with pulverization of composite coal fuels in power plants, as well as the effect of characteristics of the pulverization process on the combustion parameters of fuel, were considered. The problems hindering the development of models of ignition and combustion of OCWF were analyzed. It was established that the main one was the lack of reliable experimental data on the processes of heating, evaporation, ignition, and combustion of OCWF droplets. It was concluded that the use of high-speed video recording systems and low-inertia sensors of temperature and gas

  11. An assessment of acid wash and bioleaching pre-treating options to remove mercury from coal

    Energy Technology Data Exchange (ETDEWEB)

    Laura C. Dronen; April E. Moore; Evguenii I. Kozliak; Wayne S. Seames [University of North Dakota, Grand Forks, ND (USA). Department of Chemical Engineering

    2004-01-01

    The United States Environmental Protection Agency is expected to begin regulating the release of vapor-phase mercury from coal-fired power plants in the year 2007. Chemical pre-treatment methods were investigated for mercury removal effectiveness from pulverized low-sulfur North Dakota lignite coal. More limited results were obtained for a pulverized high-sulfur Blacksville bituminous coal. A two-step acid wash treatment showed removal rates of 60 90%, compared to one-step treatments with concentrated HCl, which yielded removals of 30 38%. Removal effectiveness is similar for first step solvents of water, pH 5.0 acid, or pH 2.0 acid followed by concentrated HCl as the second step solvent, and is independent of first step incubation time. Neither of two bacterial strains, Thiobacillus ferrooxidans and T. thiooxidans, was found effective for mercury removal. 23 refs., 5 tabs.

  12. Comparative analysis for performance of brown coal combustion in a vortex furnace with improved design

    Science.gov (United States)

    Krasinsky, D. V.

    2016-09-01

    Comparative study of 3D numerical simulation of fluid flow and coal-firing processes was applied for flame combustion of Kansk-Achinsk brown coal in a vortex furnace of improved design with bottom injection of secondary air. The analysis of engineering performance of this furnace was carried out for several operational modes as a function of coal grinding fineness and coal input rate. The preferable operational regime for furnace was found.

  13. Flaming on YouTube

    NARCIS (Netherlands)

    Moor, Peter J.; Heuvelman, A.; Verleur, R.

    2010-01-01

    In this explorative study, flaming on YouTube was studied using surveys of YouTube users. Flaming is defined as displaying hostility by insulting, swearing or using otherwise offensive language. Three general conclusions were drawn. First, although many users said that they themselves do not flame,

  14. Flaming on YouTube

    NARCIS (Netherlands)

    Moor, Peter J.; Heuvelman, Ard; Verleur, Ria

    2010-01-01

    In this explorative study, flaming on YouTube was studied using surveys of YouTube users. Flaming is defined as displaying hostility by insulting, swearing or using otherwise offensive language. Three general conclusions were drawn. First, although many users said that they themselves do not flame,

  15. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Bradley Adams; Andrew Fry; Constance Senior; Hong Shim; Huafeng Wang; Jost Wendt; Christopher Shaddix

    2009-06-30

    This report summarizes Year 1 results of a research program designed to use multi-scale experimental studies and fundamental theoretical models to characterize and predict the impacts of retrofit of existing coal-fired utility boilers for oxy-combustion. Through the course of Year 1 activities, great progress was made toward understanding the issues associated with oxy-combustion retrofit of coal-fired boilers. All four Year 1 milestones and objectives have been, or will be, completed on schedule and within budget. Progress in the four milestone areas may be summarized as follows: • University of Utah has performed size segregated ash composition measurements in the Oxy-Fuel Combustor (OFC). These experiments indicate that oxy-combustion retrofit may impact ash aerosol mineral matter composition. Both flame temperature and flue gas composition have been observed to influence the concentration of calcium, magnesium and iron in the fine particulate. This could in turn impact boiler fouling and slagging. • Sandia National Labs has shown that char oxidation rate is dependent on particle size (for sizes between 60 and 100 microns) by performing fundamental simulations of reacting char particles. These predictions will be verified by making time-resolved optical measurements of char particle temperature, velocity and size in bench-scale experiments before the end of Year 1. • REI and Siemens have completed the design of an oxy-research burner that will be mounted on University of Utah’s pilot-scale furnace, the L1500. This burner will accommodate a wide range of O2, FGR and mixing strategies under conditions relevant for utility boiler operation. Through CFD modeling of the different burner designs, it was determined that the key factor influencing flame stabilization location is particle heat-up rate. The new oxy-research burner and associated equipment is scheduled for delivery before the end of Year 1. • REI has completed a literature survey of slagging and

  16. Coal damage mechanism in the developing process of coal and gas outburst

    Institute of Scientific and Technical Information of China (English)

    JIN Hong-wei; HU Qian-ting; LIANG Yun-pei

    2009-01-01

    Based on the damage analysis of elliptical aperture, the mechanism of coal dam-age in the developing process of coal and gas outburst was researched. The results show that the damage to coal by gas is mainly caused by the concentrated tensile stress appearing near the endpoint of the pores. Fractures in coal, gas pressure, ground stress and the tensile strength of the coal matrix are the major controlling factors of this kind of damage. When the ground stress releases abruptly and the gas pressure is high, tensile failure will occur around the endpoint of the small pores due to gas pressure, and the coal may be broken up like pow-der; this is called pulverization. Otherwise, when the gas pressure is low, the tensile stress can only occur around the endpoint of the large pores and fractures due to gas pressure, the frac-tures in coal extend and link together, the fracture extension direction is statistically perpen-dicular to the direction of the minor principal stress. This kind of damage is shown as the strati-fied spall around the outburst hole.

  17. The aerodynamics of the near field of pressurised pulverized fuel combustors

    Energy Technology Data Exchange (ETDEWEB)

    Bergeles, G.; Anagnostopoulos, J.; Papadakis, G.; Mouzakis, F.; Voyages, C. [National Technical University of Athens, Athens (Greece). Lab. for Aerodynamics, Dept. of Mechanical Engineering

    1998-12-31

    This research aims at improving knowledge of an effective design of pressurized pulverized fuel combustors (PPFC). Problems investigated are slag, cleaning efficiency, near burner aerodynamics and effects of pressure on combustion characteristics and on NO concentration levels. The Coal Combustion Algorithm (CO. C.A.-3D code) was the basis for the numerical work performed. Several new models were developed and incorporated into the basic code; a model for the calculation of slag formation, thickness and flow inside a PPFC, three different techniques for domain decomposition by the use of locally refined, staggered or collocated grids; an improved NO postprocessor to account for elevated pressure and turbulence effects. A new version of the final code was developed to obtain solutions in 3-D, cylindrical co-ordinates. All the above models were validated using available experimental data. The slag model predictions were in agreement with the practical evidence. The advantages and disadvantages of each of the domain decomposition techniques were assessed. The best proposed technique was found to combine simplicity, increased accuracy of the predictions in complex flow regions, and significantly reduced computer memory and storage requirements. The use of cylindrical co-ordinates for calculations inside cylindrical-type combustion chambers was found to achieve a more stable convergence of the algorithm and a considerable reduction of numerical diffusion. The proposed modifications of a basic NO formation model produced very encouraging predictions in a wide range of combustion conditions examined (various pressures, temperatures and oxygen concentrations). The numerical work performed provides a engineering tool to improve the physical understanding of the effects of pressurization on the performance and efficiency of combustor design. 33 refs., 25 figs., 2 tabs.

  18. Flame Stretch Analysis in Diffusion Flames with Inert Gas

    Institute of Scientific and Technical Information of China (English)

    Ay Su; Ying-Chieh Liu

    2001-01-01

    Experimental investigations of impinging flame with fuel mixed with non-reaction gas were conducted.According to the observations of combustion test and temperature measurement, the non-reaction gas might dilute the local concentration of fuel in the diffusion process. The shape of the flame was symmetrical due to the flame stretch force. Results show that the conical flame might be de-structured by the addition of inert gas in pure methane fuel. The impinging flame became shorter and bluer as nitrogen was added to the fuel. The conditions of N2/CH4 equal to 1/2 and 1/1 show a wider plane in the YZ plane. The effect of inert gas overcomes the flame stretch and destroys the symmetrical column flame as well as the cold flow. Nitrogen addition also enhances the diffusion rate and combustion efficiency.

  19. Propagation Limits of High Pressure Cool Flames

    Science.gov (United States)

    Ju, Yiguang

    2016-11-01

    The flame speeds and propagation limits of premixed cool flames at elevated pressures with radiative heat loss are numerically modelled using dimethyl ether mixtures. The primary focus is paid on the effects of pressure, mixture dilution, flame size, and heat loss on cool flame propagation. The results showed that cool flames exist on both fuel lean and fuel rich sides and thus dramatically extend the lean and rich flammability limits. There exist three different flame regimes, hot flame, cool flame, and double flame. A new flame flammability diagram including both cool flames and hot flames is obtained at elevated pressure. The results show that pressure significantly changes cool flame propagation. It is found that the increases of pressure affects the propagation speeds of lean and rich cool flames differently due to the negative temperature coefficient effect. On the lean side, the increase of pressure accelerates the cool flame chemistry and shifts the transition limit of cool flame to hot flame to lower equivalence ratio. At lower pressure, there is an extinction transition from hot flame to cool flame. However, there exists a critical pressure above which the cool flame to hot flame transition limit merges with the lean flammability limit of the hot flame, resulting in a direct transition from hot flame to cool flame. On the other hand, the increase of dilution reduces the heat release of hot flame and promotes cool flame formation. Moreover, it is shown that a smaller flame size and a higher heat loss also extend the cool flame transition limit and promote cool flame formation.

  20. Ash transformation during co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn;

    2007-01-01

    Co-firing straw with coal in pulverized fuel boilers can cause problems related to fly ash utilization, deposit formation, corrosion and SCR catalyst deactivation due to the high contents of Cl and K in the ash. To investigate the interaction between coal and straw ash and the effect of coal...... quality on fly ash and deposit properties, straw was co-fired with three kinds of coal in an entrained flow reactor. The compositions of the produced ashes were compared to the available literature data to find suitable scaling parameters that can be used to predict the composition of ash from straw...... importantly, by reaction with Al and Si in the fly ash. About 70-80% K in the fly ash appears as alumina silicates while the remainder K is mainly present as sulphate. Lignite/straw co-firing produces fly ash with relatively high Cl content. This is probably because of the high content of calcium...

  1. Applications of coatings in coal-fired energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.

    1992-03-01

    Corrosion and erosion of metallic structural materials at elevated temperatures in complex multicomponent gas environments that include particulates are potential problems in many fossil energy systems, especially those using coal as a feedstock. The use of appropriate corrosion-resistant coatings on metallic components offers an avenue to minimize material degradation and extend component life. The purpose of this paper is to review the current status of coating performance in environments typical of pulverized-coal-fired boilers, coal gasification, fluidized-bed combustion, and gas turbines. The paper discusses the complexity of environments in different systems and the coating requirements for acceptable performance. Examples illustrate the morphology and corrosion/erosion performance of coating/structural alloy combinations exposed in some of these systems. La addition, future research and development needs are discussed for coating applications in several coal-fired systems.

  2. Compilation of Sandia coal char combustion data and kinetic analyses

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R.E.; Hurt, R.H.; Baxter, L.L.; Hardesty, D.R.

    1992-06-01

    An experimental project was undertaken to characterize the physical and chemical processes that govern the combustion of pulverized coal chars. The experimental endeavor establishes a database on the reactivities of coal chars as a function of coal type, particle size, particle temperature, gas temperature, and gas and composition. The project also provides a better understanding of the mechanism of char oxidation, and yields quantitative information on the release rates of nitrogen- and sulfur-containing species during char combustion. An accurate predictive engineering model of the overall char combustion process under technologically relevant conditions in a primary product of this experimental effort. This document summarizes the experimental effort, the approach used to analyze the data, and individual compilations of data and kinetic analyses for each of the parent coals investigates.

  3. The release of iron during coal combustion. Milestone report

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.L. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility

    1995-06-01

    Iron plays an important role in the formation of both fly ash and deposits in many pulverized-coal-fired boilers. Several authors indicate that iron content is a significant indicator of the slagging propensity of a majority of US bituminous coals, in particular eastern bituminous coals. The pyritic iron content of these coals is shown to be a particularly relevant consideration. A series of investigations of iron release during combustion is reported for a suite of coals ranging in rank from lignite to low-volatile bituminous coal under combustion conditions ranging from oxidizing to inert. Experimental measurements are described in which, under selected conditions, major fractions of the iron in the coal are released within a 25 ms period immediately following coal devolatilization. Mechanistic interpretation of the data suggest that the iron is released as a consequence of oxygen attack on porous pyrrhotite particles. Experimental testing of the proposed mechanism reveals that the release is dependent on the presence of both pyrite in the raw coal and oxygen in the gas phase, that slow preoxidation (weathering) of the pyrite significantly inhibits the iron release, and that iron loss increases as oxygen penetration of the particle increases. Each observation is consistent with the postulated mechanism.

  4. "Magic Eraser" Flame Tests

    Science.gov (United States)

    Landis, Arthur M.; Davies, Malonne I.; Landis, Linda

    2009-01-01

    Cleaning erasers are used to support methanol-fueled flame tests. This safe demonstration technique requires only small quantities of materials, provides clean colors for up to 45 seconds, and can be used in the classroom or the auditorium. (Contains 1 note.)

  5. A study of oxy-coal combustion with steam addition and biomass blending by thermogravimetric analysis

    OpenAIRE

    Gil Matellanes, María Victoria; Riaza Benito, Juan; Álvarez González, Lucía; Pevida García, Covadonga; Pis Martínez, José Juan; Rubiera González, Fernando

    2011-01-01

    The thermal characteristics of pulverized coal have been studied under oxy-fuel combustion conditions using non-isothermal thermogravimetric analysis (TG). The atmospheres used were 21%O2/79%N2, 21%O2/79%CO2, 30%O2/70%O2, and 35%O2/65%CO2. Coal blends of coal with 10 and 20% of biomass were also studied under these atmospheres. The addition of 10 and 20% of steam was evaluated for the oxy-fuel combustion atmospheres with 21 and 30% of O2 in order to study the effect of the wet recirculation o...

  6. Comparisons between oxy-fuel combustion and IGCC technologies in China coal- energy industry

    OpenAIRE

    Zhao, Xue; Clemente Jul, María del Carmen

    2010-01-01

    A comparison between oxy-fuel combustion plants and IGCC plants has been carried out. Oxy-fuel combustion performs better for the retrofit of exist pulverized coal plants after the evaluation of efficiency, retrofit cost and O&M cost. China is currently and will depending on coal for its energy for a long time. Plenty of PC plants are used in existing power plants due to its lower coal consumption. One way to reduce CO2 emission with CCS is to equip existing power plants with appliance...

  7. Coal liquefaction in an inorganic-organic medium. [DOE patent application

    Science.gov (United States)

    Vermeulen, T.; Grens, E.A. II; Holten, R.R.

    Improved process for liquefaction of coal by contacting pulverized coal in an inorganic-organic medium solvent system containing a ZnCl/sub 2/ catalyst, a polar solvent with the structure RX where X is one of the elements O, N, S, or P, and R is hydrogen or a lower hydrocarbon radical; the solvent system can contain a hydrogen donor solvent (and must when RX is water) which is immiscible in the ZnCl/sub 2/ and is a hydroaromatic hydrocarbon selected from tetralin, dihydrophenanthrene, dihydroanthracene or a hydrogenated coal derived hydroaromatic hydrocarbon distillate fraction.

  8. Assessment of ecotoxicological risks of element leaching from pulvarized coal ashes.

    OpenAIRE

    1995-01-01

    This thesis describes the consequences of the disposal of the combustion residues of coal, especially the uptake of elements from such residues and their effects on various organisms. The effects on benthic organisms in fresh and in seawater are considered in the first two parts. The third part looks at the uptake of elements from coal residues and their effect on the growth of plants and worms.The central theme is the combustion residue known as pulverized fuel ash (PFA), or 'flyash'. Coal i...

  9. Analysis of coal dust combustion and gasification in the cyclone furnace

    Directory of Open Access Journals (Sweden)

    Zarzycki Robert

    2017-01-01

    Full Text Available This study presents the design and operation of the cyclone furnace fuelled with coal dust. The main function of the furnace is coal dust gasification. The combustible gases that mainly contain CO can be used to feed a pulverized coal-fired boiler. The results of numerical calculations presented in the study demonstrated that cyclone furnace can operate over a wide range of fuel flow rates: from the conditions of coal dust combustion, which ensure maintaining the cyclone furnace in a state of hot reserve to the conditions of coal dust gasification, which allow for production of CO. Gasification process helps control temperature under conditions of elevated oxygen concentration. The results allow for the use of the furnace to improve flexibility and coal dust operation through the reduction in its technological minimum.

  10. Modelling of coal combustion enhanced through plasma-fuel systems in full-scale boilers

    Energy Technology Data Exchange (ETDEWEB)

    A.S. Askarova; Z. Jankoski; E.I. Karpenko; E.I. Lavrischeva; F.C. Lockwood; V.E. Messerle; A.B. Ustimenko [al-Farabi Kazakh National University, Almaty (Kazakhstan). Department of Physics

    2005-07-01

    Plasma activation promotes more effective and environmental friendly low-rank coal combustion. This work presents numerical modelling results of plasma thermochemical preparation of pulverized coal for ignition and combustion in the furnace of a utility boiler. Two kinetic mathematical models were used in the investigation of the processes of air-fuel mixture plasma activation, ignition and combustion. A 1D kinetic code, PLASMA-COAL, calculates the concentrations of species, temperatures and velocities of treated coal-air mixtures in a burner incorporating a plasma source. It gives initial data for 3D-modeling of power boilers furnaces by the code FLOREAN. A comprehensive image of plasma activated coal combustion processes in a furnace of pulverised coal fired boiler was obtained. The advantages of the plasma technology are clearly demonstrated. 15 refs., 6 figs., 4 tabs.

  11. Coal-fired power plants and the causes of high temperature corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Oakey, J.E.; Simms, N.J. [British Coal Corporation, Coal Technology Development Div., Cheltenham, Glos (United Kingdom); Tomkings, A.B. [ERA Technology Ltd., Leatherhead, Surrey (United Kingdom)

    1996-12-01

    The heat exchangers in all types of coal-fired power plant operate in aggressive, high temperature environments where high temperature corrosion can severely limit their service lives. The extent of this corrosion is governed by the combined effects of the operating conditions of the heat exchanger and the presence of corrosive species released from the coal during operation. This paper reviews the coal-related factors, such as ash deposition, which influence the operating environments of heat exchangers in three types of coal-fired power plant - conventional pulverized coal boilers, fluidized bed boilers and coal gasification systems. The effects on the performance of the materials used for these heat exchangers are then compared. (au) 35 refs.

  12. Application of rubber anti-aging agents in preventing coal spontaneous combustion

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.; Zhang, R.; Yang, Y.; Yang, H.; Fan, X.

    1999-07-01

    Based on the mechanism of rubber aging and action of anti-aging agents in preventing rubber aging, the free radical chain reaction mechanism of the oxidation of coal was discussed and compound stopping agents were introduced in the paper. The rubber anti-aging agents of aromatic amine are selected for the stopping agent of preventing coal spontaneous combustion. The stopping action of these anti-aging agents and common inorganic salt stopping agents for long flame coal in Gengcun Colliery, Yima city, Henan province in China is researched. The anti-aging agents for the long flame coal have the prominent efficiency and fine stopping action in later period, and inorganic stopping agents containing magnesium chloride salt for the long flame coal have the prominent efficiency in early period, but the compound stopping agents that are composed of the rubber anti-aging agents and magnesium chloride have longer life.

  13. Radiant Image Simulation of Pulverized Coal Combustion in Blast Furnace Raceway

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The relationship between two-dimensional radiant image and three-dimensional radiant energy in blast furnace raceway was studied by numerical simulation of combustion process. Taking radiant image as radiant boundary for numerical simulation of combustion process, the uneven radiation parameter can be calculated. A method to examine three-dimensional temperature distribution in blast furnace raceway was put forward by radiant image processing. The numeral temperature field matching the real combustion can be obtained by proposed numeric image processing technique.

  14. Pyrite thermochemistry, ash agglomeration, and char fragmentation during pulverized coal combustion. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Akan-Etuk, A.; Diaz, R.; Niksa, S.

    1991-10-01

    The objective of the present work is to introduce an experimental program that will eventually lead to time-resolved iron ash composition over the technological operating domain. The preceding literature survey suggests two important stipulations on any such experimental program. The first stipulation is that good control must be established over the operating conditions, to accurately quantify their effects. The other is that data must be obtained rapidly, to thoroughly cover the important operating domain. This work presents a series of studies that has characterized the desulfurization of pyrite during the early stages of combustion. An experimental system was established and used to monitor the effects of oxygen, temperature, and residence time on the evolution of condensed phase products of the combustion of pure pyrite. (VC)

  15. Pyrite thermochemistry, ash agglomeration, and char fragmentation during pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Akan-Etuk, A.; Diaz, R.; Niksa, S.

    1991-10-01

    The objective of the present work is to introduce an experimental program that will eventually lead to time-resolved iron ash composition over the technological operating domain. The preceding literature survey suggests two important stipulations on any such experimental program. The first stipulation is that good control must be established over the operating conditions, to accurately quantify their effects. The other is that data must be obtained rapidly, to thoroughly cover the important operating domain. This work presents a series of studies that has characterized the desulfurization of pyrite during the early stages of combustion. An experimental system was established and used to monitor the effects of oxygen, temperature, and residence time on the evolution of condensed phase products of the combustion of pure pyrite. (VC)

  16. A Model for Nitrogen Chemistry in Oxy-Fuel Combustion of Pulverized Coal

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Hansen, Stine; Toftegaard, Maja Bøg

    2011-01-01

    involving both char and soot. Here, the tar yield of the volatiles is mainly converted to soot and H2, limiting the concentration of hydrocarbons and thereby the importance of gas-phase removal of NO. Our work emphasizes the need for accurate descriptions of mixing, volatile composition (fate of tar...

  17. Comparison of efficacy of pulverization and sterile paper point techniques for sampling root canals.

    Science.gov (United States)

    Tran, Kenny T; Torabinejad, Mahmoud; Shabahang, Shahrokh; Retamozo, Bonnie; Aprecio, Raydolfo M; Chen, Jung-Wei

    2013-08-01

    The purpose of this study was to compare the efficacy of the pulverization and sterile paper point techniques for sampling root canals using 5.25% NaOCl/17% EDTA and 1.3% NaOCl/MTAD (Dentsply, Tulsa, OK) as irrigation regimens. Single-canal extracted human teeth were decoronated and infected with Enterococcus faecalis. Roots were randomly assigned to 2 irrigation regimens: group A with 5.25% NaOCl/17% EDTA (n = 30) and group B with 1.3% NaOCl/MTAD (n = 30). After chemomechanical debridement, bacterial samplings were taken using sterile paper points and pulverized powder of the apical 5 mm root ends. The sterile paper point technique did not show growth in any samples. The pulverization technique showed growth in 24 of the 60 samples. The Fisher exact test showed significant differences between sampling techniques (P technique showed no difference between irrigation regimens. However, 17 of the 30 roots in group A and 7 of the 30 roots in group B resulted in growth as detected by pulverization technique. Data showed a significant difference between irrigation regimens (P = .03) in pulverization technique. The pulverization technique was more efficacious in detecting viable bacteria. Furthermore, this technique showed that 1.3% NaOCl/MTAD regimen was more effective in disinfecting root canals. Published by Elsevier Inc.

  18. Influence of Coal Quality on Combustion Performance

    DEFF Research Database (Denmark)

    Lans, Robert Pieter Van Der; Glarborg, Peter; Dam-Johansen, Kim

    1998-01-01

    Three coals have been fired in a tangentially and an opposed fired full scale power plant (about 400 MWe) and in a pilot scale test rig (160 kWt) in order to investigate the influence of coal quality on nitrogen oxide (NO) formation and unburned carbon in relation to furnace design. In-flame and ......Three coals have been fired in a tangentially and an opposed fired full scale power plant (about 400 MWe) and in a pilot scale test rig (160 kWt) in order to investigate the influence of coal quality on nitrogen oxide (NO) formation and unburned carbon in relation to furnace design. In......-flame and furnace gas temperatures have been measured, and substantial differences in temperature between the coals were observed in the full scale furnaces. Identical trends in NO emission as a function of coal type were obtained for the three furnaces. The emissions correlated well with the high temperature...... volatile yield obtained from heated wire mesh analysis. Under air staging conditions the pilot scale test rig was able to reproduce quantitatively the amount of NO from the tangentially fired plant, which operates with over fire air. This is probably due to the relatively small influence of the near burner...

  19. Investigation of influence of coal properties on dense-phase pneumatic conveying at high pressure

    Institute of Scientific and Technical Information of China (English)

    Cai Liang; Xiaoxu Xie; Pan Xu; Xiaoping Chen; Changsui Zhao; Xin Wu

    2012-01-01

    Experiments of dense-phase pneumatic conveying of pulverized coal using nitrogen were carried out in a test facility at pressures of up to 3.7 MPa to study the effects of coal type,particle size and moisture content on flow characteristics.The Jenike shear test and scanning electron microscopy (SEM) were employed to provide a better understanding of effects of the material properties on flow characteristics.Two kinds of pulverized coals,Yanzhou and Datong,with similar particle size,moisture content and density,were used in the test.Pressure drop increases with increasing the particle size at similar solid-gas ratio,superficial velocity and pressure in the receiving hopper,and pressure drops through different test sections decrease firstly and then rise with increasing the conveying velocity for the same particle size,mass flow rate and pressure in the receiving hopper.The flowability of pulverized coal decreases with increasing the moisture content in the range from 3.24% to 8.18%.Unconfined yield strength (UYS) increases and flow function (FF) decreases with increasing the moisture content.Results of the shearing tests are consistent with the results of the conveying study.Pressure drops through different test sections are discussed and analyzed.

  20. Transformations of inorganic coal constituents in combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Helble, J.J. (ed.); Srinivasachar, S.; Wilemski, G.; Boni, A.A. (PSI Technology Co., Andover, MA (United States)); Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M. (Massachusetts Inst. of Tech., Cambridge, MA (United States)); Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L. (Arizona Univ., Tucson, AZ (United States)); Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A. (Kentucky Univ., Lexingt

    1992-11-01

    The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon the size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles What determines their composition Whether or not particles deposit How combustion conditions, including reactor size, affect these processes remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.

  1. Flame Retardant Epoxy Resins

    Science.gov (United States)

    Thompson, C. M.; Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Lyon, R. E.

    2004-01-01

    As part of a program to develop fire resistant exterior composite structures for future subsonic commercial aircraft, flame retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured epoxies were characterized by thermogravimetric analysis, propane torch test, elemental analysis and microscale combustion calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness of plaques of several cured formulations was determined on single-edge notched bend specimens. The chemistry and properties of these new epoxy formulations are discussed.

  2. Antimony: a flame fighter

    Science.gov (United States)

    Wintzer, Niki E.; Guberman, David E.

    2015-01-01

    Antimony is a brittle, silvery-white semimetal that conducts heat poorly. The chemical compound antimony trioxide (Sb2O3) is widely used in plastics, rubbers, paints, and textiles, including industrial safety suits and some children’s clothing, to make them resistant to the spread of flames. Also, sodium antimonate (NaSbO3) is used during manufacturing of high-quality glass, which is found in cellular phones.

  3. Vibrated fluidized bed air classification of moist raw coal

    Institute of Scientific and Technical Information of China (English)

    杨国华; 赵跃民; 陈清如

    2002-01-01

    Vibrated fluidized bed air classification is completely different from traditional screening in principle. It extracts fine coal from moist raw coal by entrainment of an ascending airflow in a vibrated fluidized bed. Pilot tests showed that air classification efficiencies varied from 74.85% to 93.84% at cut-size 6, 4, 3, 2, 1, and 0.5 mm when free moisture of coal is in the range of 1.7% to 9.5%, and ash contents of fine coal products were 2%~3% lower than those of the same size fractions in feed, and 4%~10% lower than those of feeds for most cases because of the density differences between coal and waste, which is beneficial to producing lower ash fine coal from raw coal as fuel of blast furnaces or pulverized coal firing boilers. A commercial unit of 100 t/h has been in smooth operation, and several 300~400 t/h units are in plan or construction.

  4. Influence of Process Parameters on Coal Combustion Performance

    DEFF Research Database (Denmark)

    Lans, Robert Pieter Van Der

    The objective of this study is to improve the understanding of nitrogen oxide formation and carbon burnout during the combustion of pulverized coal, and to contribute to addressing the potential of chemical engineering models for the prediction of furnace temperatures, NO emissions and the amount...... study has been performed in order to initiate an investigation of the potential of chemical engineering models to predict NO from pulverized fuel burners. The success of chemical engineering modeling is strongly connected to the simplification of the flow pattern into a reactor configuration...... and swirl number on the flow pattern in the near burner zone of the laboratory furnace-model were studied. Experimentally obtained residence time distributions have been used to derive a chemical reaction engineering model for the mixing process. The model is based on a combination of plug flow reactors...

  5. Physicochemical characterization of pulverized phyllite rocks to geopolymer resin synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Melo, L.G.A. [Instituto Militar de Enegenharia (IME), Rio de Janeiro, RJ (Brazil); Pires, E.F.C. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Pereira, R.A.; Silva, F.J. [Instituto Federal de Educacao, Ciencia e Tecnologia do Rio de Raneiro (IFRJ), RJ (Brazil)

    2016-07-01

    Full text: Geopolymeric materials have common properties considered unique, such as: early-high compressive strength, durability, high chemical resistance to acids and sulfates attacks, ability to immobilize toxic and radioactive compounds, low porosity, low permeability, and resistance to high temperatures. Together with its environmental benefits, such as low energy consumption and low carbon dioxide emissions during production, these inorganic polymers are strategic materials for sustainable development and a good alternative to Portland cement. The main objective for introducing alternative materials is to lower the associated costs of its industrial process. Thus, the use of phyllite as the geopolymer precursor, is encouraged by its abundance, low cost, and the fact that it already is applied to the ceramic industries as kaolin substitute. This paper presents a physical characterization using TEM, SEM, XRD and XRF techniques of two pulverized phyllite rocks used as geopolymer precursors for refractory applications. It was found that both phyllite rocks studied have a high quartz content of approximately 50% that can be explored as 'filler' function in the microstructure, which stabilizes residual tensions after curing. Kaolinite and muscovite minerals are present up to 40% and are responsible for the high strengths in the geopolymer resins, as determined by compressive strength tests. (author)

  6. Experimental study on preheated combustion of pulverized semi-coke

    Science.gov (United States)

    Yao, Yao; Zhu, Jianguo; Lu, Qinggang; Zhou, Zuxu

    2015-06-01

    In a test rig, pulverized semi-coke was preheated to 850oC in a circulating fluidized bed (CFB) and then combusted at 1100oC in a down-fired combustor (DFC). Experiments were conducted to reveal the effects of three secondary air nozzle cases (co-axial jet, top circular jet and wall circular jet) on the NO emission. The results show that the optimized secondary air nozzle can reduce NO emission. O2 concentration profile is the major factor affecting NO generation and emission, which is led by the secondary air nozzle. The lower O2 concentration led to the generation of lower initial NO. The NO emission at the exit of the DFC was reduced from 189 to 92 mg/m3 (@ 6% O2) with the decrease of initial generation. The peak of NO at 100 mm below the nozzle should be attributed to the oxidization of NH3 in the syngas, rather than the oxidization of fuel-N in the char. The low and well-distributed O2 concentration contributes to the reduction of initial NO, which helps to reduce the NO emission. The combustion efficiencies of the cases of the co-axial jet, the top circular jet, and the wall circular jet are 97.88%, 98.94% and 98.74%, respectively.

  7. Dynamics of unconfined spherical flames

    CERN Document Server

    Leblanc, Louis; Dennis, Kadeem; Zhe,; Liang,; Radulescu, Matei I

    2012-01-01

    Using the soap bubble technique, we visualize the dynamics of unconfined hydrogen-air flames using high speed schlieren video. We show that for sufficiently weak mixtures, i.e., low flame speeds, buoyancy effects become important. Flame balls of a critical dimension begin to rise. The experiments are found in very good agreement with the scaling laws proposed by Zingale and Dursi. We report the results in a fluid dynamics video.

  8. Exergetic analysis of a steam power plant using coal and rice straw in a co-firing process

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, Alvaro; Miyake, Raphael Guardini; Bazzo, Edson [Federal University of Santa Catarina (UFSC), Dept. of Mechanical Engineering, Florianopolis, SC (Brazil)], e-mails: arestrep@labcet.ufsc.br, miyake@labcet.ufsc.br, ebazzo@emc.ufsc.br; Bzuneck, Marcelo [Tractebel Energia S.A., Capivari de Baixo, SC (Brazil). U.O. Usina Termeletrica Jorge Lacerda C.], e-mail: marcelob@tractebelenergia.com.br

    2010-07-01

    This paper presents an exergetic analysis concerning an existing 50 M We steam power plant, which operates with pulverized coal from Santa Catarina- Brazil. In this power plant, a co-firing rice straw is proposed, replacing up to 10% of the pulverized coal in energy basis required for the boiler. Rice straw has been widely regarded as an important source for bio-ethanol, animal feedstock and organic chemicals. The use of rice straw as energy source for electricity generation in a co-firing process with low rank coal represents a new application as well as a new challenge to overcome. Considering both scenarios, the change in the second law efficiency, exergy destruction, influence of the auxiliary equipment and the greenhouse gases emissions such as CO{sub 2} and SO{sub 2} were considered for analysis. (author)

  9. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further

  10. Mercury speciation in pulverized fuel co-combustion and gasification

    NARCIS (Netherlands)

    Sable, S.P.

    2007-01-01

    Coal based power generation is a significant source of mercury emissions to the atmosphere and this has attracted huge attention in the past decade. Recently, the concerns regarding global warming and need for new energy resources introduced the concept of cofiring of biomass and waste as secondary

  11. Mercury speciation in pulverized fuel co-combustion and gasification

    NARCIS (Netherlands)

    Sable, S.P.

    2007-01-01

    Coal based power generation is a significant source of mercury emissions to the atmosphere and this has attracted huge attention in the past decade. Recently, the concerns regarding global warming and need for new energy resources introduced the concept of cofiring of biomass and waste as secondary

  12. Pilot plant development of a new catalytic process for improved electrostatic separation of fly-ash in coal fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Olivares del Valle, J.; Salvador Martinez, L.; Muniz Baum, B.; Cortes Galeano, V. [University of Seville, Seville (Spain). Chemical and Environmental Engineering Dept.

    1996-12-31

    A new catalytic process for flue gas conditioning in pulverized coal fired power plants is outlined. Vanadium and platinum catalysts specifically prepared on ceramic honeycomb monoliths to oxidize SO{sub 2} into SO{sub 3} have been tested and evaluated at pilot scale. 10 refs., 3 figs., 2 tabs.

  13. Coal combustion science: Task 1, Coal char combustion: Task 2, Fate of mineral matter. Quarterly progress report, July--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. [ed.; Hurt, R.H.; Davis, K.A.; Baxter, L.L.

    1994-07-01

    Progress reports are presented for the following tasks: (1) kinetics and mechanisms of pulverized coal char combustion and (2) fate of inorganic material during coal combustion. The objective of Task 1 is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. In Sandia`s Coal Combustion Laboratory (CCL), optical techniques are used to obtain high-resolution images of individual burning coal char particles and to measure, in situ, their temperatures, sizes, and velocities. Detailed models of combustion transport processes are then used to determine kinetic parameters describing the combustion behavior as a function of coal type and combustion environment. Partially reacted char particles are also sampled and characterized with advanced materials diagnostics to understand the critical physical and chemical transformations that influence reaction rates and burnout times. The ultimate goal of the task is the establishment of a data base of the high temperature reactivities of chars from strategic US coals, from which important trends may be identified and predictive capabilities developed. The overall objectives for task 2 are: (1) to complete experimental and theoretical investigation of ash release mechanisms; (2) to complete experimental work on char fragmentation; (3) to establish the extent of coal (as opposed to char) fragmentation as a function of coal type and particle size; (4) to develop diagnostic capabilities for in situ, real-time, qualitative indications of surface species composition during ash deposition, with work continuing into FY94; (5) to develop diagnostic capabilities for in situ, real-time qualitative detection of inorganic vapor concentrations; and (6) to conduct a literature survey on the current state of understanding of ash deposition, with work continuing into FY94.

  14. COAL PARTICLE FLOW PATTERNS FOR O2 ENRICHED, LOW NOx BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer L. Sinclair

    2001-09-30

    Over the past year, the hot flow studies have focused on the validation of a novel 2M near-flame combustion furnace. The 2M furnace was specifically designed to investigate burner aerodynamics and flame stability phenomena. Key accomplishments include completion of coal & oxygen mass balance calculations and derivation of emission conversion equations, upgrade of furnace equipment and flame safety systems, shakedown testing and partial completion of a parametric flame stability study. These activities are described in detail below along with a description of the 2M furnace and support systems.

  15. 6th Conference on Coal Utilization Technology; Dai 6 kai sekitan riyo gijutsu kaigi koenshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The paper compiled the papers presented in the 6th Conference on Coal Utilization Technology held in September 1996. With relation to the fluidized bed boiler, reported were Field operation test of Wakamatsu PFBC combined cycle power plant and Development of pressurized internally circulating fluidized bed combustion technology. Regarding the coal reformation, Development of advanced coal cleaning process, Coal preparation and coal cleaning in the dry process, etc. Concerning the combustion technology, Study of the O2/CO2 combustion technology, Development of pressurized coal partial combustor, etc. About the CWM, Development of low rank coals upgrading and their CWM producing technology, Technique of CWM distribution system, etc. Relating to the coal ash, Engineering characteristics of the improved soil by deep mixing method using coal ash, Employment of fluidized bed ash as a basecourse material, On-site verification trials using fly ash for reclamation behind bulkheads, Water permeabilities of pulverized fuel ash, Separation of unburned carbon from coal fly ash through froth flotation, Practical use technology of coal ash (POZ-O-TEC), etc

  16. Change in surface characteristics of coal in upgrading of low-rank coals; Teihin`itan kaishitsu process ni okeru sekitan hyomen seijo no henka

    Energy Technology Data Exchange (ETDEWEB)

    Oki, A.; Xie, X.; Nakajima, T.; Maeda, S. [Kagoshima University, Kagoshima (Japan). Faculty of Engineering

    1996-10-28

    With an objective to learn mechanisms in low-rank coal reformation processes, change of properties on coal surface was discussed. Difficulty in handling low-rank coal is attributed to large intrinsic water content. Since it contains highly volatile components, it has a danger of spontaneous ignition. The hot water drying (HWD) method was used for reformation. Coal which has been dry-pulverized to a grain size of 1 mm or smaller was mixed with water to make slurry, heated in an autoclave, cooled, filtered, and dried in vacuum. The HWD applied to Loy Yang and Yallourn coals resulted in rapid rise in pressure starting from about 250{degree}C. Water content (ANA value) absorbed into the coal has decreased largely, with the surface made hydrophobic effectively due to high temperature and pressure. Hydroxyl group and carbonyl group contents in the coal have decreased largely with rising reformation treatment temperature (according to FT-IR measurement). Specific surface area of the original coal of the Loy Yang coal was 138 m{sup 2}/g, while it has decreased largely to 73 m{sup 2}/g when the reformation temperature was raised to 350{degree}C. This is because of volatile components dissolving from the coal as tar and blocking the surface pores. 2 refs., 4 figs.

  17. From old oil to clean coal: transforming Torrevaldaliga Nord

    Energy Technology Data Exchange (ETDEWEB)

    Arrighi, L.; Bracaloni, N. [ENEL, Rome (Italy)

    2003-11-01

    Right from the outset, ENEL decided to adopt advanced clean coal technology in its conversion plans for the 4x660 MWe oil fired Torrevaldaliga Nord power plant on the Italian coast, 80 km west of Rome. The new units will have the same gross capacity as the old ones, but efficiency will increase more than 10%, rising from 40% to 44.7% - mainly through the adoption of pulverized coal supercritical boilers with high superheater and reheater temperatures (600/610{sup o}C). Roughly 5000 MWe of old gas and oil fired generating capacity will be converted to coal and orimulsion, and another 5000 MWe of capacity to combined cycle. 2 photos.

  18. Effects of bluff-body burner and coal particle size on NOx emissions and burnout

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, L.S.; Cheng, J.F.; Zeng, H.C. [Huazhong University of Science and Technology, Wuhan (China). National Coal Combustion Lab.

    1999-12-01

    Investigations on air staging have been carried out using various coals with different degrees of fineness and a variety of burners with a 92.9 kw h{sup -1} tunnel furnace burning pulverized coal. It has been observed that using the bluff-body burner can reduce both the unburned carbon in fly ash and NOx emissions in the case of air staging. The experimental results show that air-staging combustion has a more remarkable effect on NOx reduction for higher-volatile coal than for lower-volatile coal. The results also show that there is a strong influence of coal particle size on NOx emissions and unburned carbon in the fly ash in the case of air staging. 13 refs., 12 figs., 2 tabs.

  19. Blast furnace granular coal injection at Bethlehem Steel's Burns Harbor Plant

    Energy Technology Data Exchange (ETDEWEB)

    D. Gregory Hill; Leo I.E. Makovsky; Thomas A. Sarkus; Howard G. McIlvried [Bethlehem Steel Corporation, Chesterton, IN (USA)

    2004-03-01

    The paper discusses the demonstration of the British Steel/CPC-Macawber Blast Furnace Granular Coal Injection (BFGCI) technology that was installed on the blast furnaces at Bethlehem Steel's Burns Harbor Plant in Indiana as a highly successful Clean Coal Technology project, cofunded by the U.S. Department of Energy. In the BFGCI process, granular coal (10%-30% through a 200-mesh screen) is injected into a blast furnace as a fuel supplement to decrease coke requirements, thus reducing costs. Tests run to determine the effect of process variables on furnace operations showed that granular coal works as well as pulverized coal and is easier to handle and cheaper to produce because of reduced grinding costs.

  20. Solid Propellant Flame Spectroscopy

    Science.gov (United States)

    1988-08-01

    400 jm to reach the maximum flame temperature, a distance that can be reduced by replacing the HTPB binder with a polyester or CMDB binder. The...the dark zone for propellants similar to HIX2 is 2-2.5 mm at 1.8 MPa (18 atm, 265 psia) (Ref. 22,187). In contrast, the dark zone for HMX CMDB ...propellants eliminates the dark zone is not surprising, since TMETN is a nitrate ester as was the double-base matrix of Kubota’s HMX CMDB propellant. A

  1. Burnout synergic or inhibiting effects in combustion assays of coal/sawdust blends

    Energy Technology Data Exchange (ETDEWEB)

    Ximena Garcia; Ximena Matus; Claudia Ulloa; Alfredo L. Gordon [University of Concepcion, Concepcion (Chile). Dept. of Chemical Engineering

    2007-07-01

    Characterization of chars and charcoal and combustion assays of coal/ pine sawdust blends were carried on to evaluate the burnout, under conditions similar to those found in pulverized coal combustion. A drop tube furnace (DTF) was used to generate chars from three coals of different rank (Bitsch, a lignite; Lemington, a bituminous HV coal; and LD, a semianthracite) and charcoal from sawdust (S). Burning profiles, as well as morphological and optical characterization of these chars were obtained and discussed. Pulverized samples of pure constituents and sawdust/coal blends (5, 10 and 20%wt of S) were burned in the DTF reactor. Samples of combustion residues were collected for characterization. Depending on blend composition and the rank of the coal being blended, positive and negative deviations with respect to the expected weighted average value of the burnout were measured. This behavior is related both, to the duration of the step by which simultaneous burning of char and charcoal take place, and to the sawdust content in the blend. The optical analysis of combustion residues supports this conclusion. 7 refs., 6 figs., 3 tabs.

  2. Summary report: Trace substance emissions from a coal-fired gasification plant

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.; Wetherold, B.; Maxwell, D.

    1996-10-16

    The U.S. Department of Energy (DOE), the Electric Power Research Institute (EPRI), and Louisiana Gasification Technology Inc. (LGTI) sponsored field sampling and analyses to characterize emissions of trace substances from LGTI`s integrated gasification combined cycle (IGCC) power plant at Plaquemine, Louisiana. The results indicate that emissions from the LGTI facility were quite low, often in the ppb levels, and comparable to a well-controlled pulverized coal-fired power plant.

  3. Capturing CO2 from Coal-Fired Power Plants: Challenges for a Comprehensive Strategy

    Science.gov (United States)

    2008-08-15

    Pre-Combustion CO2 Capture . . . . . . . . . . . . 7 Figure 3. Status of Global IGCC Projects... IGCC is an electric generating technology in which pulverized coal is not burned directly but mixed with oxygen and water in a high-pressure gasifier to...combustion capture of CO2 is the use of Integrated Gasification Combined-cycle ( IGCC ) technology to generate electricity.19 There are currently four

  4. Dynamics and structure of stretched flames

    Energy Technology Data Exchange (ETDEWEB)

    Law, C.K. [Princeton Univ., NJ (United States)

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  5. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20141574 Chen Hao(Exploration and Development Research Institute,Daqing Oilfield Company,Daqing 163712,China)High-Resolution Sequences and Coal Accumulating Laws in Nantun Formation of Huhe Lake Sag(Petroleum Geology&Oilfield Development in Daqing,ISSN1000-3754,CN23-1286/TQ,32(4),2013,p.15-19,5 illus.,15 refs.)Key words:coal accumulation regularity,coal

  6. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091159 Gao Yan(No.3 Prospecting Team of Anhui Bureau of Coal Geology,Suzhou 234000,China) Effect of Depositional Environment of Coal-Bearing Stratum on Major Coal Seams in Suntan Coalmine,Anhui Province(Geology of Anhui,ISSN 1005- 6157,CN34-1111/P,18(2),2008,p.114 -117,5 illus.,1 ref.,with English abstract)

  7. Integrated coal preparation and CWF processing plant: Conceptual design and costing

    Energy Technology Data Exchange (ETDEWEB)

    McHale, E.T.; Paul, A.D.; Bartis, J.T. (Science Applications International Corp., McLean, VA (United States)); Korkmaz, M. (Roberts and Schaefer Co., Salt Lake City, UT (United States))

    1992-12-01

    At the request of the US Department of Energy (DOE), Pittsburgh Energy Technology Center, a study was conducted to provide DOE with a reliable, documented estimate of the cost of producing coal-water fuel (CWF). The approach to the project was to specify a plant capacity and location, identify and analyze a suitable coal, and develop a conceptual design for an integrated coal preparation and CWF processing plant. Using this information, a definitive costing study was then conducted, on the basis of which an economic and sensitivity analysis was performed utilizing a financial evaluation model to determine a price for CWF in 1992. The design output of the integrated plant is 200 tons of coal (dry basis) per hour. Operating at a capacity factor of 83 percent, the baseline design yields approximately 1.5 million tons per year of coal on a dry basis. This is approximately equivalent to the fuel required to continuously generate 500 MW of electric power. The CWF produced by the plant is intended as a replacement for heavy oil or gas in electric utility and large industrial boilers. The particle size distribution, particularly the top size, and the ash content of the coal in the CWF are specified at significantly lower levels than is commonly found in typical pulverized coal grinds. The particle top size is 125 microns (vs typically 300m[mu] for pulverized coal) and the coal ash content is 3.8 percent. The lower top size is intended to promote complete carbon burnout at less derating in boilers that are not designed for coal firing. The reduced mineral matter content will produce ash of very fine particle size during combustion, which leads to less impaction and reduced fouling of tubes in convective passages.

  8. Integrated coal preparation and CWF processing plant: Conceptual design and costing. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    McHale, E.T.; Paul, A.D.; Bartis, J.T. [Science Applications International Corp., McLean, VA (United States); Korkmaz, M. [Roberts and Schaefer Co., Salt Lake City, UT (United States)

    1992-12-01

    At the request of the US Department of Energy (DOE), Pittsburgh Energy Technology Center, a study was conducted to provide DOE with a reliable, documented estimate of the cost of producing coal-water fuel (CWF). The approach to the project was to specify a plant capacity and location, identify and analyze a suitable coal, and develop a conceptual design for an integrated coal preparation and CWF processing plant. Using this information, a definitive costing study was then conducted, on the basis of which an economic and sensitivity analysis was performed utilizing a financial evaluation model to determine a price for CWF in 1992. The design output of the integrated plant is 200 tons of coal (dry basis) per hour. Operating at a capacity factor of 83 percent, the baseline design yields approximately 1.5 million tons per year of coal on a dry basis. This is approximately equivalent to the fuel required to continuously generate 500 MW of electric power. The CWF produced by the plant is intended as a replacement for heavy oil or gas in electric utility and large industrial boilers. The particle size distribution, particularly the top size, and the ash content of the coal in the CWF are specified at significantly lower levels than is commonly found in typical pulverized coal grinds. The particle top size is 125 microns (vs typically 300m{mu} for pulverized coal) and the coal ash content is 3.8 percent. The lower top size is intended to promote complete carbon burnout at less derating in boilers that are not designed for coal firing. The reduced mineral matter content will produce ash of very fine particle size during combustion, which leads to less impaction and reduced fouling of tubes in convective passages.

  9. Fluidized bed coal combustion reactor

    Science.gov (United States)

    Moynihan, P. I.; Young, D. L. (Inventor)

    1981-01-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.

  10. Subwoofer and nanotube butterfly acoustic flame extinction

    Science.gov (United States)

    Aliev, Ali E.; Mayo, Nathanael K.; Baughman, Ray H.; Mills, Brent T.; Habtour, Ed

    2017-07-01

    Nonchemical flame control using acoustic waves from a subwoofer and a lightweight carbon nanotube thermoacoustic projector was demonstrated. The intent was to manipulate flame intensity, direction and propagation. The mechanisms of flame suppression using low frequency acoustic waves were discussed. Laminar flame control and extinction were achieved using a thermoacoustic ‘butterfly’ projector based on freestanding carbon nanotube sheets.

  11. Influence of process parameters on coal combustion performance. Review, experiments and engineering modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lans, R.P. van der

    1997-04-01

    The objective of this study is to improve the understanding of nitrogen oxide formation and carbon burnout during the combustion of pulverized coal, and to contribute to addressing the potential of chemical engineering models for the prediction of furnace temperatures, NO emissions and the amount of carbon in ash. To this purpose, the effect of coal quality on NO and burnout has been investigated experimentally, a radiation heat balance has been developed based on a simple chemical engineering methodology, and a mixing study has been conducted in order to describe the near burner macro mixing in terms of a reactor configuration. The influence of coal type and process conditions on NO formation and carbon burnout has been investigated experimentally in a 400 MW{sub e} corner fired boiler with over fire air, a 350 MW{sub e} opposed fired boiler, and in a 160 kW{sub t} pilot scale test rig. Three different coals were fired in each of the furnaces as part of the activities in group 3 of the European Union JOULE 2 Extension project `Atmospheric Pressure Combustion of Pulverized Coal and Coal Based Blends for Power Generation`. On the pilot scale test both single stage and air staged tests were performed. A simple, one-dimensional combustion and radiation heat transfer model has been developed for the furnace of full scale boilers. The model has been applied to the two boilers mentioned above, and is validated against measured temperatures and carbon in ash concentrations. A mixing study has been performed in order to initiate an investigation of the potential of chemical engineering models to predict NO from pulverized fuel burners. (EG) 11 refs.

  12. Turbulence in laminar premixed V-flames

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Xiaoqian(张孝谦); LEI; Yu(雷宇); WANG; Baorui(王宝瑞); WANG; Yue(王岳); WEI; Minggang(韦明罡)

    2003-01-01

    Strong velocity fluctuations had been found in the laminar premixed V-flames. These velocity fluctuations are closely related to the chemical reaction. But the effects of the upstream combustible mixture velocity on the velocity fluctuations inside the flame are quite weak. The probability distribution function (PDF) of the velocity in the centre region of the flame appears "flat top" shaped. By analyzing the experiment results the flame-flow interactions are found to affect the flame not only at large scale in the flow field but also at small scale inside the flame. These effects will give rise to flame generated small scale turbulences.

  13. IR sensor for monitoring of burner flame; IR sensor foer oevervakning av braennarflamma

    Energy Technology Data Exchange (ETDEWEB)

    Svanberg, Marcus; Funkquist, Jonas; Clausen, Soennik; Wetterstroem, Jonas

    2007-12-15

    To obtain a smooth operation of the coal-fired power plants many power plant managers have installed online mass flow measurement of coal to all burners. This signal is used to monitor the coal mass flow to the individual burner and match it with appropriate amount of air and also to monitor the distribution of coal between the burners. The online mass flow measurement system is very expensive (approximately 150 kEUR for ten burners) and is not beneficial for smaller plants. The accuracy of the measurement and the sample frequency are also questionable. The idea in this project has been to evaluate a cheaper system that can present the same information and may also provide better accuracy and faster sample frequency. The infrared sensor is a cheap narrow banded light emission sensor that can be placed in a water cooed probe. The sensor was directed at the burner flame and the emitted light was monitored. Through calibration the mass flow of coal can be presented. Two measurement campaigns were performed. Both campaigns were carried out in Nordjyllandsverket in Denmark even though the second campaign was planned to be in Uppsala. Due to severe problems in the Uppsala plant the campaign was moved to Nordjyllandsverket. The pre-requisites for the test plant were that online measurement of coal flow was installed. In Nordjyllandsverket 4 out of 16 burners have the mass flow measurement installed. Risoe Laboratories has vast experiences in the IR technology and they provided the IR sensing equipment. One IR sensor was placed in the flame guard position just behind the flame directed towards the ignition zone. A second sensor was placed at the boiler wall directed towards the flame. The boiler wall position did not give any results and the location was not used during the second campaign. The flame-guard-positioned-sensor- signal was thoroughly evaluated and the results show that there is a clear correlation between the coal mass flow and the IR sensor signal. Tests were

  14. Premixed flame propagation in vertical tubes

    CERN Document Server

    Kazakov, Kirill A

    2015-01-01

    Analytical treatment of premixed flame propagation in vertical tubes with smooth walls is given. Using the on-shell flame description, equations describing quasi-steady flame with a small but finite front thickness are obtained and solved numerically. It is found that near the limits of inflammability, solutions describing upward flame propagation come in pairs having close propagation speeds, and that the effect of gravity is to reverse the burnt gas velocity profile generated by the flame. On the basis of these results, a theory of partial flame propagation driven by the gravitational field is developed. A complete explanation is given of the intricate observed behavior of limit flames, including dependence of the inflammability range on the size of the combustion domain, the large distances of partial flame propagation, and the progression of flame extinction. The role of the finite front-thickness effects is discussed in detail. Also, various mechanisms governing flame acceleration in smooth tubes are ide...

  15. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20131668 Chang Huizhen(Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process,CUMT,Ministry of Edu-cation,School of Resource and Earth Science,China University of Mining and Technology,Xuzhou 221008,China);Qin Yong Differences in of Pore Structure of Coals and Their Impact on the Permeability of Coals from the

  16. Geochemistry of ultra-fine and nano-compounds in coal gasification ashes: a synoptic view.

    Science.gov (United States)

    Kronbauer, Marcio A; Izquierdo, Maria; Dai, Shifeng; Waanders, Frans B; Wagner, Nicola J; Mastalerz, Maria; Hower, James C; Oliveira, Marcos L S; Taffarel, Silvio R; Bizani, Delmar; Silva, Luis F O

    2013-07-01

    The nano-mineralogy, petrology, and chemistry of coal gasification products have not been studied as extensively as the products of the more widely used pulverized-coal combustion. The solid residues from the gasification of a low- to medium-sulfur, inertinite-rich, volatile A bituminous coal, and a high sulfur, vitrinite-rich, volatile C bituminous coal were investigated. Multifaceted chemical characterization by XRD, Raman spectroscopy, petrology, FE-SEM/EDS, and HR-TEM/SEAD/FFT/EDS provided an in-depth understanding of coal gasification ash-forming processes. The petrology of the residues generally reflected the rank and maceral composition of the feed coals, with the higher rank, high-inertinite coal having anisotropic carbons and inertinite in the residue, and the lower rank coal-derived residue containing isotropic carbons. The feed coal chemistry determines the mineralogy of the non-glass, non-carbon portions of the residues, with the proportions of CaCO₃ versus Al₂O₃ determining the tendency towards the neoformation of anorthite versus mullite, respectively. Electron beam studies showed the presence of a number of potentially hazardous elements in nanoparticles. Some of the neoformed ultra-fine/nano-minerals found in the coal ashes are the same as those commonly associated with oxidation/transformation of sulfides and sulfates.

  17. Transformations of inorganic coal constituents in combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Helble, J.J. (ed.); Srinivasachar, S.; Wilemski, G.; Boni, A.A. (PSI Technology Co., Andover, MA (United States)); Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M. (Massachusetts Inst. of Tech., Cambridge, MA (United States)); Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L. (Arizona Univ., Tucson, AZ (United States)); Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A. (Kentucky Univ., Lexingt

    1992-11-01

    Results from an experimental investigation of the mechanisms governing the ash aerosol size segregated composition resulting from the combustion of pulverized coal in a laboratory scale down-flow combustor are described. The results of modeling activities used to interpret the results of the experiments conducted under his subtask are also described in this section. Although results from the entire program are included, Phase II studies which emphasized: (1) alkali behavior, including a study of the interrelationship between potassium vaporization and sodium vaporization; and (2) iron behavior, including an examination of the extent of iron-aluminosilicate interactions, are highlighted. Idealized combustion determination of ash particle formation and surface stickiness are also described.

  18. Electrical Aspects of Impinging Flames

    Science.gov (United States)

    Chien, Yu-Chien

    This dissertation examines the use of electric fields as one mechanism for controlling combustion as flames are partially extinguished when impinging on nearby surfaces. Electrical aspects of flames, specifically, the production of chemi-ions in hydrocarbon flames and the use of convective flows driven by these ions, have been investigated in a wide range of applications in prior work but despite this fairly comprehensive effort to study electrical aspects of combustion, relatively little research has focused on electrical phenomena near flame extinguishment, nor for flames near impingement surfaces. Electrical impinging flames have complex properties under global influences of ion-driven winds and flow field disturbances from the impingement surface. Challenges of measurements when an electric field is applied in the system have limited an understanding of changes to the flame behavior and species concentrations caused by the field. This research initially characterizes the ability of high voltage power supplies to respond on sufficiently short time scales to permit real time electrical flame actuation. The study then characterizes the influence of an electric field on the impinging flame shape, ion current and flow field of the thermal plume associated with the flame. The more significant further examinations can be separated into two parts: 1) the potential for using electric fields to control the release of carbon monoxide (CO) from surface-impinging flames, and 2) an investigation of controlling electrically the heat transfer to a plate on which the flame impinges. Carbon monoxide (CO) results from the incomplete oxidation of hydrocarbon fuels and, while CO can be desirable in some syngas processes, it is usually a dangerous emission from forest fires, gas heaters, gas stoves, or furnaces where insufficient oxygen in the core reaction does not fully oxidize the fuel to carbon dioxide and water. Determining how carbon monoxide is released and how heat transfer

  19. Measures on stabilizing the coal feeding system of rotary kiln and improving the accuracy of the feeding system%稳定回转窑喂煤系统提高喂煤精度的途径

    Institute of Scientific and Technical Information of China (English)

    史德深; 冯文毓

    2001-01-01

    从煤粉特性、煤粉仓结构、喂料及输送设备的性能等方面分析了影响回转窑喂煤系统喂煤精度的主要因素及存在的主要问题,在此基础上提出稳定喂煤系统,提高喂煤精度的途径。%Main factors and the existing problems of affecting the accuracy of the coal feeding system for rotary kiln were analyzed in terms of the properties of pulverized coal, structure of the pulverized coal storage bin, and the performance of the feeding and conveying equipment.Measures on stabilizing the coal feeding system and improving the accuracy of the feeding system were thus raised based on the above-mentioned analysis.

  20. Effect of Water Invasion on Outburst Predictive Index of Low Rank Coals in Dalong Mine.

    Science.gov (United States)

    Jiang, Jingyu; Cheng, Yuanping; Mou, Junhui; Jin, Kan; Cui, Jie

    2015-01-01

    To improve the coal permeability and outburst prevention, coal seam water injection and a series of outburst prevention measures were tested in outburst coal mines. These methods have become important technologies used for coal and gas outburst prevention and control by increasing the external moisture of coal or decreasing the stress of coal seam and changing the coal pore structure and gas desorption speed. In addition, techniques have had a significant impact on the gas extraction and outburst prevention indicators of coal seams. Globally, low rank coals reservoirs account for nearly half of hidden coal reserves and the most obvious feature of low rank coal is the high natural moisture content. Moisture will restrain the gas desorption and will affect the gas extraction and accuracy of the outburst prediction of coals. To study the influence of injected water on methane desorption dynamic characteristics and the outburst predictive index of coal, coal samples were collected from the Dalong Mine. The methane adsorption/desorption test was conducted on coal samples under conditions of different injected water contents. Selective analysis assessed the variations of the gas desorption quantities and the outburst prediction index (coal cutting desorption index). Adsorption tests indicated that the Langmuir volume of the Dalong coal sample is ~40.26 m3/t, indicating a strong gas adsorption ability. With the increase of injected water content, the gas desorption amount of the coal samples decreased under the same pressure and temperature. Higher moisture content lowered the accumulation desorption quantity after 120 minutes. The gas desorption volumes and moisture content conformed to a logarithmic relationship. After moisture correction, we obtained the long-flame coal outburst prediction (cutting desorption) index critical value. This value can provide a theoretical basis for outburst prediction and prevention of low rank coal mines and similar occurrence conditions

  1. Effect of Water Invasion on Outburst Predictive Index of Low Rank Coals in Dalong Mine.

    Directory of Open Access Journals (Sweden)

    Jingyu Jiang

    Full Text Available To improve the coal permeability and outburst prevention, coal seam water injection and a series of outburst prevention measures were tested in outburst coal mines. These methods have become important technologies used for coal and gas outburst prevention and control by increasing the external moisture of coal or decreasing the stress of coal seam and changing the coal pore structure and gas desorption speed. In addition, techniques have had a significant impact on the gas extraction and outburst prevention indicators of coal seams. Globally, low rank coals reservoirs account for nearly half of hidden coal reserves and the most obvious feature of low rank coal is the high natural moisture content. Moisture will restrain the gas desorption and will affect the gas extraction and accuracy of the outburst prediction of coals. To study the influence of injected water on methane desorption dynamic characteristics and the outburst predictive index of coal, coal samples were collected from the Dalong Mine. The methane adsorption/desorption test was conducted on coal samples under conditions of different injected water contents. Selective analysis assessed the variations of the gas desorption quantities and the outburst prediction index (coal cutting desorption index. Adsorption tests indicated that the Langmuir volume of the Dalong coal sample is ~40.26 m3/t, indicating a strong gas adsorption ability. With the increase of injected water content, the gas desorption amount of the coal samples decreased under the same pressure and temperature. Higher moisture content lowered the accumulation desorption quantity after 120 minutes. The gas desorption volumes and moisture content conformed to a logarithmic relationship. After moisture correction, we obtained the long-flame coal outburst prediction (cutting desorption index critical value. This value can provide a theoretical basis for outburst prediction and prevention of low rank coal mines and similar

  2. Coal blend combustion: fusibility ranking from mineral matter composition

    Energy Technology Data Exchange (ETDEWEB)

    C. Goni; S. Helle; X. Garcia; A. Gordon; R. Parra; U. Kelm; R. Jimenez; G. Alfaro [Universidad de Concepcion, Concepcion (Chile). Departamento de Ingenieria Metalurgica, Instituto de Geologia Economica Aplicada (GEA)

    2003-10-01

    Although coal blends are increasingly utilized at power plants, ash slagging propensity is a non-additive property of the pure coals and hence difficult to predict. Coal ash tendency to slag is related to its bulk chemistry and ash fusion temperatures, and the present study aims to compare the results obtained from thermodynamic simulation with characterization of samples obtained as outcomes of plant-based coal-blend combustion trials at three utilities located in the Centre and North of Chile. Pulverized coal and plant residues samples from five families of binary blends tested in an experimental program were characterized for chemistry, mineralogy and maceral composition. The slagging was evaluated by determination of fusion curves using the MTDATA software and NPLOX3 database for the main coal ash oxides. The ranking obtained was approximately the same as obtained from carbon in the fly ashes and from plant residues observations. The thermodynamic modeling was a valid option to predict the fusibility during the combustion of blends. 16 refs., 7 figs., 1 tab.

  3. Plasma Torch for Plasma Ignition and Combustion of Coal

    Science.gov (United States)

    Ustimenko, Alexandr; Messerle, Vladimir

    2015-09-01

    Plasma-fuel systems (PFS) have been developed to improve coal combustion efficiency. PFS is a pulverized coal burner equipped with arc plasma torch producing high temperature air stream of 4000 - 6000 K. Plasma activation of coal at the PFS increases the coal reactivity and provides more effective ignition and ecologically friendly incineration of low-rank coal. The main and crucial element of PFS is plasma torch. Simplicity and reliability of the industrial arc plasma torches using cylindrical copper cathode and air as plasma forming gas predestined their application at heat and power engineering for plasma aided coal combustion. Life time of these plasma torches electrodes is critical and usually limited to 200 hours. Considered in this report direct current arc plasma torch has the cathode life significantly exceeded 1000 hours. To ensure the electrodes long life the process of hydrocarbon gas dissociation in the electric arc discharge is used. In accordance to this method atoms and ions of carbon from near-electrode plasma deposit on the active surface of the electrodes and form electrode carbon condensate which operates as ``actual'' electrode. Complex physicochemical investigation showed that deposit consists of nanocarbon material.

  4. Air/water oxydesulfurization of coal: laboratory investigation

    Energy Technology Data Exchange (ETDEWEB)

    Warzinski, R. P.; Friedman, S.; Ruether, J. A.; LaCount, R. B.

    1980-08-01

    Air/water oxidative desulfurization has been demonstrated in autoclave experiments at the Pittsburgh Energy Technology Center for various coals representative of the major US coal basins. This experimentation has shown that the reaction proceeds effectively for pulverized coals at temperatures of 150 to 200/sup 0/C with air at a total system pressure of 500 to 1500 psig. Above 200/sup 0/C, the loss of coal and product heating value increases due to oxidative consumption of carbon and hydrogen. The pyritic sulfur solubilization reactions are typically complete (95 percent removal) within 15 to 40 minutes at temperature; however, significant apparent organic sulfur removal requires residence times of up to 60 minutes at the higher temperatures. The principal products of the reaction are sulfuric acid, which can be neutralized with limestone, and iron oxide. Under certain conditions, especially for high pyritic sulfur coals, the precipitation of sulfur-containing compounds from the products of the pyrite reaction may cause anomalous variations in the sulfur form data. The influence of various parameters on the efficiency of sulfur removal from coal by air/water oxydesulfurization has been studied.

  5. Prospects for advanced coal-fuelled fuel cell power plants

    Science.gov (United States)

    Jansen, D.; Vanderlaag, P. C.; Oudhuis, A. B. J.; Ribberink, J. S.

    1994-04-01

    As part of ECN's in-house R&D programs on clean energy conversion systems with high efficiencies and low emissions, system assessment studies have been carried out on coal gasification power plants integrated with high-temperature fuel cells (IGFC). The studies also included the potential to reduce CO2 emissions, and to find possible ways for CO2 extraction and sequestration. The development of this new type of clean coal technology for large-scale power generation is still far off. A significant market share is not envisaged before the year 2015. To assess the future market potential of coal-fueled fuel cell power plants, the promise of this fuel cell technology was assessed against the performance and the development of current state-of-the-art large-scale power generation systems, namely the pulverized coal-fired power plants and the integrated coal gasification combined cycle (IGCC) power plants. With the anticipated progress in gas turbine and gas clean-up technology, coal-fueled fuel cell power plants will have to face severe competition from advanced IGCC power plants, despite their higher efficiency.

  6. Anatomic composition of plant tissues of highly metamorphosed coals

    Energy Technology Data Exchange (ETDEWEB)

    Kizil' shtein, L.Ya.; Shpitsgluz, A.L.

    1985-09-01

    Method is described to improve microscopic study of highly metamorphosed coals (anthracite). Study of such coals with aid of reflected polarized light is enhanced by means of ionic etching of surface of slides that enables observation not only of structures of basic microcomponents but also of finest structural details of individual cells by reflected non-polarized light. Figures illustrate results of studying many samples by ionic etching (bombing a polished surface in a vacuum with ions and pulverizing material of microcomponents to reveal heterogeneity of crystal chemistry of surface) which reveals great variety of structures of plant tissues and their component cells. Pictures of 35 slides depict gelified coal-forming plants of Donbass and central Ural coal fields; fusainized coal-forming plants of Donetsk, Gorlovsk and Tungus basins; organs of Donbass plants; structure of cells and organs of plants of Donbass. Method of ionic etching opens new perspectives for studying anatomy and histology in area of classical paleobotany by making available a large number of samples of plant material and components of highly metamorphosed coals compared with the rare samples obtained by using the polarized light method. 14 references.

  7. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20111053 Chen Jian(School of Earth and Environment,Anhui University of Science and Technology,Huainan 232001,China);Liu Wenzhong Organic Affinity of Trace Elements in Coal from No.10 Coal-Bed at Western Huagou,Guoyang(Coal Geology & Exploration,ISSN1001-1986,CN61-1155/P,38(4),2010,p.16-20,24,3 illus.,3 tables,19 refs.)Key words:coal,minor elements,Anhui Province In order to study the organic affinity of trace elements in coal from No.10 coal-bed at western Huagou,Guoyang,10 borehole samples were collected at exploration area of Huaibei mining area.The contents of 12 kinds of trace elements were determined by the inductively coupled plasma mass spectrometry(ICP-MS),the total organic carbon(TOC)of coal was determined by LECO carbon and sulfur analyzer,and the organic affinity of trace elements were deduced from the correlations between contents and TOCs.The results showed that the contents of V,Cr,Co,Ni,Mo,Cd,Sb,Pb and Zn were lower than

  8. Role of flame generated flow in the formation of tulip flame

    Energy Technology Data Exchange (ETDEWEB)

    Jeung, I.S.; Cho, K.K.; Jeong, K.S.

    1989-01-01

    The role of flame generated flow during the laminar 'tulip' flame formation in a long rectangular combustion vessel was examined by laser Doppler velocimeter measurement, high speed schlieren photographic flame visualization, and combustion vessel pressure measurement. Results of these investigations showed the transition of convex-shaped flame to concave-shaped tulip flame and interactions between the flame shape and flame generated flow in a confined geometry, and gave physical understanding of flow field formation of tulip flame. 15 references.

  9. Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling

    DEFF Research Database (Denmark)

    Yin, Chungen; Yan, Jinyue

    2016-01-01

    Oxy-fuel combustion of pulverized fuels (PF), as a promising technology for CO2 capture from power plants, has gained a lot of concerns and also advanced considerable research, development and demonstration in the last past years worldwide. The use of CO2 or the mixture of CO2 and H2O vapor as th...

  10. Taste acceptability of pulverized brand-name and generic drugs containing amlodipine or candesartan.

    Science.gov (United States)

    Uestuener, Peter; Ferrarini, Alessandra; Santi, Maristella; Mardegan, Chiara; Bianchetti, Mario G; Simonetti, Giacomo D; Milani, Gregorio P; Lava, Sebastiano A G

    2014-07-01

    Trials with pulverized brand-name antihypertensive drugs suggest that, from the perspective of taste acceptability, crushed candesartan, chlortalidon, hydrochlorothiazide, lercanidipine and lisinopril should be preferred to pulverized amlodipine, atenolol, bisoprolol, enalapril, irbesartan, losartan, ramipril, telmisartan and valsartan. Brand-name antihypertensive drugs and the corresponding generic medicines have never been compared with respect to their taste acceptability. We therefore investigated among healthy health care workers the taste acceptability of a pulverized 1 mg-test dose of the brand-name and two generics containing either the dihydropyridine calcium-channel blocker amlodipine (Norvasc(®), Amlodipin-Mepha(®) and Amlodipin Pfizer(®)) or the angiotensin receptor antagonist candesartan (Atacand(®), Cansartan-Mepha(®) and Pemzek(®)). For this purpose, a smiley-face scale depicting four degrees of pleasure was used. Between November and December 2013, the taste test was performed among 19 nurses (15 female and 4 male subjects) and 12 physicians (5 female and 7 male subjects) aged between 25 and 49 years. Pulverized brand-names and generics containing either amlodipine or candesartan did not differ with respect to their taste acceptability.

  11. Evaluation of gas emissions from coal stockpile

    Energy Technology Data Exchange (ETDEWEB)

    Kozinc, J.; Zupancic-Kralj, L.; Zapusek, A. [University of Ljubljana, Ljubljana (Slovenia). Faculty of Chemistry & Chemical Technology

    2004-05-01

    Gas emissions of carbon dioxide, methane, dimethylsulfide, carbon monoxide and oxygen from a coal stockpile in Velenje were determined. Gases from the coal stockpile were collected in Alltech Standard sampling bags and then analysed using a capillary gas chromatograph and electrochemical sensors. A flame ionisation detector equipped with a Zr/Ni catalytic reactor was used for the determination of methane and carbon dioxide. Dimethylsulfide was detected with a flame photometric detector, and the concentrations of carbon monoxide and oxygen were determined by use of electrochemical sensors. The results showed that the main influence on gas emissions is related to the ambient temperature. Emissions of carbon dioxide during summer 2001 (average temperature during sampling period was 24{sup o}C) were approximately 30-times higher than during winter 2002 (average temperature during sampling period was -2{sup o}C) and were also influenced by the oxygen concentration. Carbon dioxide is mainly formed by oxidation of coal. Methane and dimethylsulfide are desorbed from coal, and are present in higher concentrations in stockpile emissions when stockpiles are renewed. The dimethylsulfide concentration, in contrast to laboratory experiments in stockpile emissions, falls immediately due to photo-degradation.

  12. New concepts for coal-fired power stations; A comparison of efficiency, economy, enviroment and operational aspects. Neue Konzepte fuer kohlebefeuerte Kraftwerke; Vergleich von Wirkungsgrad, Wirtschaftlichkeit, Umwelt- und Betriebsaspekten

    Energy Technology Data Exchange (ETDEWEB)

    Kjaer, S. (Elsamprojekt A/S, Fredericia (Denmark)); Koetzier, H. (N.V. KEMA, Arnheim (Netherlands)); Liere, J. van (N.V. KEMA, Arnheim (Netherlands)); Rasmussen, I. (Midtkraft Power Co., Aarhus (Denmark))

    1994-07-01

    Pulverized fuel-fired steam power plant employed today will, up to the end of this century, be further developed, from supercritical units to super-super-critical units with double reheat. Gas turbines will permit a new basis for the improvement of heat consumption of coal-fired units in the next century. Combined cycle processes with integrated coal gasification and some with charged fluidized bed combustion stand at the threshold of economic realization. (orig.)

  13. Experimental investigation of syngas flame stability using a multi-tube fuel injector in a high pressure combustor

    Science.gov (United States)

    Maldonado, Sergio Elzar

    Over 92% of the coal consumed by power plants is used to generate electricity in the United States (U.S.). The U.S. has the world's largest recoverable reserves of coal, it is estimated that reserves of coal will last more than 200 years based in current production and demand levels. Integrated Gasification Combined Cycle (IGCC) power plants aim to reduce the amount of pollutants by gasifying coal and producing synthesis gas. Synthesis gas, also known as syngas, is a product of coal gasification and can be used in gas turbines for energy production. Syngas is primarily a mixture of hydrogen and carbon monoxide and is produced by gasifying a solid fuel feedstock such as coal or biomass. The objective of the thesis is to create a flame stability map by performing various experiments using high-content hydrogen fuels with varying compositions of hydrogen representing different coal feedstocks. The experiments shown in this thesis were performed using the High-Pressure Combustion facility in the Center for Space Exploration Technology Research (CSETR) at the University of Texas at El Paso (UTEP). The combustor was fitted with a novel Multi-Tube fuel Injector (MTI) designed to improve flame stability. This thesis presents the results of testing of syngas fuels with compositions of 20, 30, and 40% hydrogen concentrations in mixtures with carbon monoxide. Tests were completed for lean conditions ranging from equivalence ratios between 0.6 and 0.9. The experimental results showed that at an equivalence ratio of 0.6, a stable flame was not achieved for any of the fuel mixtures tested. It was also observed that the stability region of the syngas flame increased as equivalence ratio and the hydrogen concentration in syngas fuel increases with the 40% hydrogen-carbon monoxide mixture demonstrating the greatest stability region. Design improvements to the MTI are also discussed as part of the future work on this topic.

  14. Thermally induced structural changes in coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Flagan, R.C.; Gavalas, G.R.

    1992-01-01

    The effects of the temperature-time history during coal devolitization and oxidation on the physical properties and the reactivity of resulting char were studied experimentally for temperatures and residence times typical of pulverized combustion. Experiments were also carried out at somewhat lower temperatures and correspondingly longer residence times. An electrically heated laminar flow reactor was used to generate char and measure the rates of oxidation at gas temperatures about 1600K. Partially oxidized chars were extracted and characterized by gas adsorption and mercury porosimetry, optical and scanning electron microscopy, and oxidation in a thermogravimetric analysis system (TGA). A different series of experiments was conducted using a quadrople electrodynamic balance. Single particles were suspended electrodynamically and heated by an infrared laser in an inert or oxygen-containing atmosphere. During the laser heating, measurements were taken of particle mass, size/shape, and temperature.

  15. Update of progress for Phase II of B&W`s advanced coal-fired low-emission boiler system

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, D.K. [Babcock & Wilcox, Barberton, OH (United States); Madden, D.A.; Rodgers, L.W. [Babcock & Wilcox, Alliance, OH (United States)] [and others

    1995-11-01

    Over the past five years, advances in emission control techniques at reduced costs and auxiliary power requirements coupled with significant improvements in steam turbine and cycle design have significantly altered the governing criteria by which advanced technologies have been compared. With these advances, it is clear that pulverized coal technology will continue to be competitive in both cost and performance with other advanced technologies such as Integrated Gasification Combined Cycle (IGCC) or first generation Pressurized Fluidized Bed Combustion (PFBC) technologies for at least the next decade. In the early 1990`s it appeared that if IGCC and PFBC could achieve costs comparable to conventional pulverized coal plants, their significantly reduced NO{sub x} and SO{sub 2} emissions would make them more attractive. A comparison of current emission control capabilities shows that all three technologies can already achieve similarly low emissions levels.

  16. Measurement and simulation of swirling coal combustion

    Institute of Scientific and Technical Information of China (English)

    Liyuan Hu; Lixing Zhou; Yonghao Luo; Caisong Xu

    2013-01-01

    Particle image velocimetry (PIV),thermocouples and flue gas analyzer are used to study swirling coal combustion and NO formation under different secondary-air ratios.Eulerian-Lagrangian large-eddy simulation (LES) using the Smagorinsky-Lilly sub-grid scale stress model,presumed-PDF fast chemistry and eddy-break-up (EBU) gas combustion models,particle devolatilization and particle combustion models,are simultaneously used to simulate swirling coal combustion.Statistical LES results are validated by measurement results.Instantaneous LES results show that the coherent structures for swirling coal combustion are stronger than those for swirling gas combustion.Particles are shown to concentrate along the periphery of the coherent structures.Combustion flame is located in the high vorticity and high particle concentration zones.Measurement shows that secondary-air ratios have little effect on final NO formation at the exit of the combustor.

  17. Briquetting of coal fines and sawdust. Part 1: binder and briquetting-parameters evaluations

    Energy Technology Data Exchange (ETDEWEB)

    D. Taulbee; D.P. Patil; Rick Q. Honaker; B.K. Parekh [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    2009-01-15

    Various technical and economic aspects relating to the briquetting of fine coal with sawdust have been evaluated with the results for two segments of that study presented here: binder and briquetting-parameter evaluations. Approximately 50 potential binder formulations were subjected to a series of screening evaluations to identify three formulations that were the most cost effective for briquetting fine coal with sawdust. Two of the binders, guar gum and wheat starch, were selected as most suitable for the pulverized coal market while the third formulation, lignosulfonate/lime, was targeted for the stoker market. Following binder selection, a number of briquetting parameters including binder and sawdust concentration, sawdust type, briquetting pressure and dwell time, coal and sawdust particle size, clay content, moisture content, and cure temperature and cure time were evaluated. Briquetting pressure and dwell time have the least impact while binder and sawdust concentrations, sawdust type, and curing conditions exerted the greatest influence on briquette quality. 7 refs.

  18. Field test corrosion experiences when co-firing straw and coal: 10 year status within Elsam

    DEFF Research Database (Denmark)

    Frandsen, Rasmus Berg; Montgomery, Melanie; Larsen, Ole Hede

    2007-01-01

    to 575 degrees C and for the flue gas from 1025 to 1300 degrees C. All these test tubes have been removed during the last three years at one year intervals for corrosion studies. The corrosion studies performed on all investigated tubes included measurements of the corrosion attack, light optical...... sulphate on superheater tubes resulting in increased corrosion rates. From field experimental results this paper show, that by co-firing straw with coal, corrosion rates can be brought down to an acceptable level. This paper firstly deals with the results from a demonstration program co-firing coal...... and straw at the 150 MW pulverized coal fired boiler Studstrup unit 1. Two exposure series lasting 3000 hours each were performed for co-firing 10 and 20% of straw (% energy basis) with coal. Using built in test tubes in the hot end of the actual superheaters and air/water cooled corrosion probes...

  19. Combustion and NOx Emission Behavior of Chinese Coals

    Institute of Scientific and Technical Information of China (English)

    CHENHonggang; XIEKechang

    2002-01-01

    Seven Chinese coals ranking from anthracite to sub-bituminous from the Shanxi province were selected for study to forecast the combustion and NOx emission behavior.Three UK,one Indonesia and one South Africa coal was included in the study for reference.A flat flame-turbulent jet apparatus was employed to assess flame stability,ignition performance and NOx emission behavior for the initial stage of devolatilization and combustion. This apparatus can simulate particle heating rates,maximum temperatures and the influence of the turbulent fluid interactionson the fate of volatiles.To simulate processes occurring over longer residence time, additional devolatilization experiments were performed in a drop tube furnace.Char reactivity was studied through thermogravimetric analysis.Finally,fouling propensity was studied with the aid of a purpose-built laboratory combustor that enabled the characteristics of the ash deposit to be assessed empirically.The results show that Chinese coals do not appear to possess unusual features in respect of NOx formation,flame stability and ignition,char burnout and ash slagging.The range of coals available in China appears sufficiently broad that suits all requirements.In particular,Shenfu coal,with its initial fast devolatilization and nitrogen release rates and its low initial nitrogen content and high char reactivity,will perform well when fired in industrial boilers as far as NOx emission,flame stability and combustion efficiency are concerned.Pingshuo coal exhibits high char reactivity and an attractive slagging performance suggesting that this fuel represents a good compromise between NOx emission and overall plant efficiency.

  20. British coal

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, M.

    2009-03-15

    The paper describes a visit to UK's Daw Mill in north Warwickshire to find out about a planned expansion of the coal mine. Daw Mill, 10 km west of Coventry is the UK's largest underground coal mine. The coal is extracted by an Eckhoff Sl500 coal shearer that traverses the coalface. Overarching the shearer is a series of electro-hydraulically operated powered roof supports (PRS) over the roof and coalface that are advanced forward after each pass of the shearer. The void behind the PRS is then allowed to collapse. The coalface is currently 295 m long, but there are plans to extend the replacement coalface to 357 m. Under the shearer is an armored face conveyor (AFC) that receives and transports the coal along the coalface and deposits it onto the beam stage loader, which sits at 90{sup o} to the AFC. The coal is turned by a deflector plough on the AFC headframe and is transferred to the belt conveyor to begin its journey out of the mine. Last year two significant records were broken at Daw Mill - the fastest million tonnes achieved and the European record for a single face of 3.2 Mt. The 300s area of the mine has already been mapped out and development teams are constructing roadways to facilitate more mining. To maintain annual production in excess of three million tonnes will require at least 5,000 m of roadways to access the coal, and install equipment. These investments are supported by proven reserves. Seismic surveys and borehole drilling has shown approximately 20 Mt of extractable coal in the 300s area which extends over 15 km{sup 2}. These panels will be the next to be mined in a sequence that extends to 2014. 2 photos.

  1. Mechanistic aspects of ionic reactions in flames

    DEFF Research Database (Denmark)

    Egsgaard, H.; Carlsen, L.

    1993-01-01

    Some fundamentals of the ion chemistry of flames are summarized. Mechanistic aspects of ionic reactions in flames have been studied using a VG PlasmaQuad, the ICP-system being substituted by a simple quartz burner. Simple hydrocarbon flames as well as sulfur-containing flames have been investigated....... The simple hydrocarbon flames are dominated by a series of hydrocarbonic ions and, to a minor extent, protonated oxo-compounds. The introduction of sulfur to the flames leads to significant changes in the ion composition, as sulfur-containing species become dominant. The ability of the technique to study...

  2. Coal mining: coal in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Arguelles Martinez, A.; Lugue Cabal, V.

    1984-01-01

    The Survey of Spanish Coal Resources published by the Centre for Energy Studies in 1979 is without doubt the most serious and full study on this subject. The coal boom of the last few years and the important role it will play in the future, as well as the wealth of new information which has come to light in the research carried out in Spanish coalfields by both the public and private sector, prompted the General Mine Management of the Ministry of Industry and Energy to commission IGME to review and update the previous Survey of Spanish Coal Resources of November 1981.

  3. Fossil Energy Program. Progress report for November 1979. [35 Wt % Illinois No. 6 coal with Wilsonville recycle solvent

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This report - the sixty-fourth of a series - is a compendium of monthly progress reports for the ORNL research and development programs that are in support of the increased utilization of coal and other fossil fuel alternatives to oil and gas as sources of clean energy. The projects reported this month include those for coal conversion development, materials engineering, a coal equipment test program, an atmospheric fluid bed combustor for cogeneration, engineering studies and technical support, process and program analysis, environmental assessment studies, magnetic beneficiation of dry pulverized coal, technical support to the TVA fluid bed combustion program, coal cogeneration/district heating plant assessment, chemical research and development, and technical support to major liquefaction projects.

  4. Blended coals for improved coal water slurries

    Institute of Scientific and Technical Information of China (English)

    GU Tian-ye; WU Guo-guang; LI Qi-hui; SUN Zhi-qiang; ZENG Fang; WANG Guang-you; MENG Xian-liang

    2008-01-01

    Three coal samples of different ranks were used to study the effect of coal blending on the preparation of Coal Water Slurry (CWS). The results show that by taking advantage of two kinds of coal, the coal concentration in slurry made from hard-to-pulp coal can be effectively improved and increased by 3%-5% generally. DLT coal (DaLiuTa coal mine) is very poor in slurryability and the stability and rheology of the resulting slurry are not very good. When the amount of easily slurried coal is more than 30%, all properties of the CWS improve and the CWS meets the requirements for use as fuel. Coalification, porosity, surface oxygenic functional groups, zeta potential and grindability have a great effect on the performance of blended coal CWS. This leads to some differences in performance between the slurry made from a single coal and slurry made from blended coal.

  5. Research on flame retardation of wool fibers

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Ichiro; Ametani, Kazuo; Sawai, Takeshi (Tokyo Metropolitan Isotope Research Center (Japan))

    1990-01-01

    Flame retardant, vinyl phosphonate oligomer, was uniformly impregnated in wool fibers, and by irradiating low energy electron beam or cobalt-60 gamma ray, the flame retardation of fabrics was attempted, as the results, the following knowledges were obtained. At the rate of sticking of flame retardant lower than that in cotton fabrics, sufficient flame retarding property can be given. The flame retarding property withstands 30 times of washing. The lowering of strength due to the processing hardly arose. For the flame retardation, gamma-ray was more effective than electron beam. Since the accidents of burning clothes have occurred frequently, their flame retardation has been demanded. So far the flame retardation of cotton fabrics has been advanced, but this time the research on the flame retardation of wool fabrics was carried out by the same method. The experimental method is explained. As for the performance of the processed fabrics, the rate of sticking of the flame retardant, the efficiency of utilization, the flame retarding property, the endurance in washing and the tensile and tearing strength were examined. As the oxygen index was higher, the flame retarding property was higher, and in the case of the index being more than 27, the flame retarding property is sufficient, that is, the rate of sticking of 6% in serge and 5% in muslin. (K.I.).

  6. Investigating by EPR the reaction processes of intermediate products from the thermodestruction of binary mixtures of coals

    Energy Technology Data Exchange (ETDEWEB)

    Ikonomopulo, V.P.

    1983-03-01

    Binary mixtures of long-flame, gas-bituminous, coking, lean-caking, and lean coals are used to study the processes for the interaction of intermediate products of the thermodestruction of coals. The value and sign of the paramagnetic effect which occurs during simultaneous heating of coals in a binary mixture are determined by the relative position of each coal on the metamorphic scale. The possible role of plastification and reaction of the two coals in the formation of an ordered paramagnetic structure are demonstrated. 4 references.

  7. Studying the specific features pertinent to combustion of chars obtained from coals having different degrees of metamorphism and biomass chars

    Science.gov (United States)

    Bestsennyi, I. V.; Shchudlo, T. S.; Dunaevskaya, N. I.; Topal, A. I.

    2013-12-01

    Better conditions for igniting low-reaction coal (anthracite) can be obtained, higher fuel burnout ratio can be achieved, and the problem of shortage of a certain grade of coal can be solved by firing coal mixtures and by combusting coal jointly with solid biomass in coal-fired boilers. Results from studying the synergetic effect that had been revealed previously during the combustion of coal mixtures in flames are presented. A similar effect was also obtained during joint combustion of coal and wood in a flame. The kinetics pertinent to combustion of char mixtures obtained from coals characterized by different degrees of metamorphism and the kinetics pertinent to combustion of wood chars were studied on the RSK-1D laboratory setup. It was found from the experiments that the combustion rate of char mixtures obtained from coals having close degrees of metamorphism is equal to the value determined as a weighted mean rate with respect to the content of carbon. The combustion rate of char mixtures obtained from coals having essentially different degrees of metamorphism is close to the combustion rate of more reactive coal initially in the process and to the combustion rate of less reactive coal at the end of the process. A dependence of the specific burnout rate of carbon contained in the char of two wood fractions on reciprocal temperature in the range 663—833 K is obtained. The combustion mode of an experimental sample is determined together with the reaction rate constant and activation energy.

  8. Role of the outer-edge flame on flame extinction in nitrogen-diluted non-premixed counterflow flames with finite burner diameters

    KAUST Repository

    Chung, Yong Ho

    2013-03-01

    This study of nitrogen-diluted non-premixed counterflow flames with finite burner diameters investigates the important role of the outer-edge flame on flame extinction through experimental and numerical analyses. It explores flame stability diagrams mapping the flame extinction response of nitrogen-diluted non-premixed counterflow flames to varying global strain rates in terms of burner diameter, burner gap, and velocity ratio. A critical nitrogen mole fraction exists beyond which the flame cannot be sustained; the critical nitrogen mole fraction versus global strain rate curves have C-shapes for various burner diameters, burner gaps, and velocity ratios. At sufficiently high strain-rate flames, these curves collapse into one curve; therefore, the flames follow the one-dimensional flame response of a typical diffusion flame. Low strain-rate flames are significantly affected by radial conductive heat loss, and therefore flame length. Three flame extinction modes are identified: flame extinction through shrinkage of the outer-edge flame with or without oscillations at the outer-edge flame prior to the extinction, and flame extinction through a flame hole at the flame center. The extinction modes are significantly affected by the behavior of the outer-edge flame. Detailed explanations are provided based on the measured flame-surface temperature and numerical evaluation of the fractional contribution of each term in the energy equation. Radial conductive heat loss at the flame edge to ambience is the main mechanism of extinction through shrinkage of the outer-edge flame in low strain-rate flames. Reduction of the burner diameter can extend the flame extinction mode by shrinking the outer-edge flame in higher strain-rate flames. © 2012 Elsevier Ltd. All rights reserved.

  9. Lock hopper values for coal gasification plant service

    Science.gov (United States)

    Schoeneweis, E. F.

    1977-01-01

    Although the operating principle of the lock hopper system is extremely simple, valve applications involving this service for coal gasification plants are likewise extremely difficult. The difficulties center on the requirement of handling highly erosive pulverized coal or char (either in dry or slurry form) combined with the requirement of providing tight sealing against high-pressure (possibly very hot) gas. Operating pressures and temperatures in these applications typically range up to 1600 psi (110bar) and 600F (316C), with certain process requirements going even higher. In addition, and of primary concern, is the need for reliable operation over long service periods with the provision for practical and economical maintenance. Currently available data indicate the requirement for something in the order of 20,000 to 30,000 open-close cycles per year and a desire to operate at least that long without valve failure.

  10. Enhancement of turbulent flame speed of V-shaped flames in fractal-grid-generated turbulence

    NARCIS (Netherlands)

    Verbeek, A.A.; Willems, P.A.; Stoffels, G.G.M.; Geurts, B.J.; Meer, van der T.H.

    2016-01-01

    A variety of fractal grids is used to investigate how fractal-grid-generated turbulence affects the turbulent flame speed for premixed flames. The grids are placed inside a rectangular duct and a V-shaped flame is stabilized downstream of the duct, using a metal wire. This flame is characterized usi

  11. 33 CFR 154.822 - Detonation arresters, flame arresters, and flame screens.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Detonation arresters, flame arresters, and flame screens. 154.822 Section 154.822 Navigation and Navigable Waters COAST GUARD... BULK Vapor Control Systems § 154.822 Detonation arresters, flame arresters, and flame screens. (a)...

  12. Asymptotic analysis of outwardly propagating spherical flames

    Institute of Scientific and Technical Information of China (English)

    Yun-Chao Wu; Zheng Chen

    2012-01-01

    Asymptotic analysis is conducted for outwardly propagating spherical flames with large activation energy.The spherical flame structure consists of the preheat zone,reaction zone,and equilibrium zone.Analytical solutions are separately obtained in these three zones and then asymptotically matched.In the asymptotic analysis,we derive a correlation describing the spherical flame temperature and propagation speed changing with the flame radius.This correlation is compared with previous results derived in the limit of infinite value of activation energy.Based on this correlation,the properties of spherical flame propagation are investigated and the effects of Lewis number on spherical flame propagation speed and extinction stretch rate are assessed.Moreover,the accuracy and performance of different models used in the spherical flame method are examined.It is found that in order to get accurate laminar flame speed and Markstein length,non-linear models should be used.

  13. Flame Retardants Used in Flexible Polyurethane Foam

    Science.gov (United States)

    The partnership project on flame retardants in furniture seeks to update the health and environmental profiles of flame-retardant chemicals that meet fire safety standards for upholstered consumer products with polyurethane foam

  14. Determination of reactivity parameters of model carbons, cokes and flame-chars

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst; Gjernes, Erik; Jessen, Thomas

    1996-01-01

    Reactivity profiles are defined and measured with thermogravimetry for a dense metallurgical Longyear coke, a polymer-derived porous active carbon, Carboxen 1000, and three flame-chars, Illinois #6, Pittsburgh #8 and New Mexico Blue #1. For each sample it is found that the reactivity profile can ...... reactivity measure is used to rank fuels w