WorldWideScience

Sample records for pulverized coal combustion

  1. Coal char fragmentation during pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.L.

    1995-07-01

    A series of investigations of coal and char fragmentation during pulverized coal combustion is reported for a suite of coals ranging in rank from lignite to low-volatile (lv) bituminous coal under combustion conditions similar to those found in commercial-scale boilers. Experimental measurements are described that utilize identical particle sizing characteristics to determine initial and final size distributions. Mechanistic interpretation of the data suggest that coal fragmentation is an insignificant event and that char fragmentation is controlled by char structure. Chars forming cenospheres fragment more extensively than solid chars. Among the chars that fragment, large particles produce more fine material than small particles. In all cases, coal and char fragmentation are seen to be sufficiently minor as to be relatively insignificant factors influencing fly ash size distribution, particle loading, and char burnout.

  2. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for

  3. Stabilization of pulverized coal combustion by plasma assist

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, M.; Maruta, K.; Takeda, K.; Solonenko, O.P.; Sakashita, M.; Nakamura, M. [Akita Prefectural University, Akita (Japan). Faculty of System Science & Technology

    2002-03-01

    Ignition and stabilization of pulverized coal combustion by plasma assist is investigated with a 10 kW plasma torch for three different kinds of coal, such as high, medium and low volatile matter coals. Not only high volatile matter coal but also low quality coal can be successfully burned with plasma assist. Research for volatile component of coal shows that a higher temperature field is necessary to extract the volatile matter from inferior coal, while their compositions are almost the same.

  4. Enhancement of pulverized coal combustion by plasma technology

    Energy Technology Data Exchange (ETDEWEB)

    Gorokhovski, M.A.; Jankoski, Z.; Lockwood, F.C.; Karpenko, E.I.; Messerle, V.E.; Ustimenko, A.B. [University of Rouen, Rouen (France)

    2007-07-01

    Plasma-assisted pulverized coal combustion is a promising technology for thermal power plants (TPP). This article reports one- and three- dimensional numerical simulations, as well as laboratory and industrial measurements of coal combustion using a plasma-fuel system (PFS). The chemical kinetic and fluid mechanics involved in this technology are analysed. The results show that a PFS, can be used to promote early ignition and enhanced stabilization of a pulverized coal flame. It is shown that this technology, in addition to enhancing the combustion efficiency of the flame, reduces harmful emissions from power coals of all ranks (brown, bituminous, anthracite and their mixtures). Data summarising the experience of 27 pulverized coal boilers in 16 thermal power plants in several countries (Russia, Kazakhstan, Korea, Ukraine, Slovakia, Mongolia and China), embracing steam productivities from 75 to 670 tons per hour (TPH), are presented. Finally, the practical computation of the characteristics of the PFS, as function of coal properties, is discussed.

  5. Modeling of Pulverized Coal Combustion in Cement Rotary Kiln

    OpenAIRE

    2006-01-01

    In this paper, based on analysis of the chemical and physical processes of clinker formation, a heat flux function was introduced to take account of the thermal effect of clinker formation. Combining the models of gas-solid flow, heat and mass transfer, and pulverized coal combustion, a set of mathematical models for a full-scale cement rotary kiln were established. In terms of commercial CFD code (FLUENT), the distributions of gas velocity, gas temperature, and gas components in a cement rot...

  6. Impact of nongray multiphase radiation in pulverized coal combustion

    Science.gov (United States)

    Roy, Somesh; Wu, Bifen; Modest, Michael; Zhao, Xinyu

    2016-11-01

    Detailed modeling of radiation is important for accurate modeling of pulverized coal combustion. Because of high temperature and optical properties, radiative heat transfer from coal particles is often more dominant than convective heat transfer. In this work a multiphase photon Monte Carlo radiation solver is used to investigate and to quantify the effect of nongray radiation in a laboratory-scale pulverized coal flame. The nongray radiative properties of carrier phase (gas) is modeled using HITEMP database. Three major species - CO, CO2, and H2O - are treated as participating gases. Two optical models are used to evaluate radiative properties of coal particles: a formulation based on the large particle limit and a size-dependent correlation. Effect of scattering due to coal particle is also investigated using both isotropic scattering and anisotropic scattering using a Henyey-Greenstein function. Lastly, since the optical properties of ash is very different from that of coal, the effect of ash content on the radiative properties of coal particle is examined. This work used Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number ACI-1053575.

  7. NITRIC OXIDE FORMATION DURING PULVERIZED COAL COMBUSTION

    Science.gov (United States)

    Data on the overall conversion of coal-nitrogen to NOx were obtained at 1250 K and 1750 K for a residence time of one second. The conversion of coal-nitrogen to NOx decreased monotonically with increasing fuel/oxygen equivalence ratio and decreased slightly with increasing temper...

  8. A kinetic model of carbon burnout in pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, R.; Jian-Kuan Sun; Lunden, M. [Brown University, Providence, RI (United States). Division of Engineering

    1998-04-01

    The degree of carbon burnout is an important operating characteristic of full-scale suspension-fired coal combustion systems affecting boiler efficiency, electrostatic precipitator operation and the value of fly ash as a saleable product. Prediction of carbon loss requires special char combustion kinetics valid through the very high conversions targeted in industry (typically {gt} 99.5%), and valid for a wide-range of particle temperature histories occurring in full-scale furnaces. The paper presents high-temperature kinetic data for five coal chars in the form of time-resolved burning profiles that include the late stages of combustion. It then describes the development and validation of the Carbon Burnout Kinetic Model (CBK), a coal-general kinetics package that is specifically designed to predict the total extent of carbon burnout and ultimate fly ash carbon content for prescribed temperature/oxygen histories typical of pulverized coal combustion systems. The model combines the single-film treatment of cha oxidation with quantitative descriptions of thermal annealing, statistical kinetics, statistical densities, and ash inhibition in the late stages of combustion. In agreement with experimental observations, the CBK model predicts (1) low reactivities for unburned carbon residues extracted from commercial ash samples, (2) reactivity loss in the late stages of laboratory combustion, (3) the observed sensitivity of char reactivity to high-temperature heat treatment on second and subsecond time scales, and (4) the global reaction inhibition by mineral matter in the late stages of combustion observed in single-particle imaging studies. The model ascribes these various char deactivation phenomena to the combined effects of thermal annealing, ash inhibition, and the preferential consumption of more reactive particles (statistical kinetics), the relative contributions of which vary greatly with combustion conditions. 39 refs., 4 figs., 4 tabs., 1 app.

  9. Ash formation under pressurized pulverized coal combustion conditions

    Science.gov (United States)

    Davila Latorre, Aura Cecilia

    Coal combustion is a source of inorganic particulate matter (ash), which can deposit in boilers and also be emitted into the atmosphere becoming part of ambient fine particulate matter (PM 2.5). In order to decrease coal combustion emissions per unit of power produced, higher efficiency systems have been proposed, including systems operating at elevated pressures. These new operating conditions will affect pollutant formation mechanisms, particularly those associated with the conversion of mineral matter to ash. Ash particle formation mechanisms are particularly sensitive to changes in pressure as they are related to the structure of coal char particles at early stages of combustion. To assess the importance of pressure on ash particle formation, pyrolyzed chars and ash particles from pressurized pulverized combustion of two bituminous and one subbituminous U.S. coals at operating pressures up to 30 atm were studied. Pressure changes the distribution of char particle types, changing the spatial distribution of the minerals during the combustion process and therefore affecting particle formation mechanisms. Chars were examined by Scanning Electron Microscopy (SEM) and classified into two different types (cenospheric and solid) depending on porosity and wall thickness. A correlation for estimating the amount of these cenospheric char particles was then proposed for bituminous coals based on the operating conditions and coal maceral analysis. The ash particle size distribution of the coals combusted at different operating pressures was measured using Computer Controlled Scanning Electron Microscopy (CCSEM). The results of the char characterization and ash particle size distribution measurements were then incorporated into an ash particle formation algorithm that was proposed and implemented. The model predicts ash particle size and composition distributions at elevated pressures under conditions of complete char burnout. Ash predictions were calculated by first

  10. Pulverized coal torch combustion in a furnace with plasma-coal system

    Science.gov (United States)

    Messerle, V. E.; Ustimenko, A. B.; Askarova, A. S.; Nagibin, A. O.

    2010-09-01

    Combustion of a pulverized coal torch has been numerically simulated on the basis of the equations of multicomponent turbulent two-phase flows. The results of three-dimensional simulation of conventional and plasma activated coal combustion in a furnace are presented. Computer code Cinar ICE was verified at coal combustion in the experimental furnace with thermal power of 3 MW that was equipped with plasma-fuel system. Operation of the furnace has been studied at the conventional combustion mode and with plasma activation of coal combustion. Influence of plasma activation of combustion on thermotechnical characteristics of the torch and decrease of carbon loss and nitrogen oxides concentration at the furnace outlet has been revealed.

  11. Small scale experiment on the plasma assisted thermal chemical preparation and combustion of pulverized coal

    Energy Technology Data Exchange (ETDEWEB)

    Masaya, Sugimoto; Koichi, Takeda [Akita Prefectural University (Japan); Solonenko, O.P. [Institute of Theoretical and Applied Mechanics, Novosibirsk (Russian Federation); Sakashita, M.; Nakamura, M. [Japan Technical Information Service, Tokyo (Japan)

    2001-07-01

    Ignition and stable combustion of pulverized coal with Nitrogen and Air plasmas are investigated experimentally for some different types of coal. The experimental results show that air plasma has strong effect for ignition and stabilization of coal combustion. In addition, suppression of NO{sub x} production could be possible even in air plasma. It is possible to ignite and burn stably for the inferior coal that contains volatile matter in the ratio of only 10% of dry total mass. (authors)

  12. Fundamentals of the physical-chemistry of pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lahaye, J.; Prado, G. (eds.)

    1987-01-01

    A total of 20 papers were presented at the conference in seven sessions the major headings of which are: devolatilization, heterogeneous combustion, pollutants in coal combustion, optical diagnostics and transfer to the modelling.

  13. Study on the NOx release rule along the boiler during pulverized coal combustion

    Institute of Scientific and Technical Information of China (English)

    JIN Jing; ZHANG Zhongxiao; LI Ruiyang

    2007-01-01

    Numerical simulation and experimental study on NOx release along the boiler during pulverized coal combustion have been conducted.With the increase of temperature the NOx emission increased and the peak value of NOx release moved forward.But when the temperature increased to a certain degree,NOx emission began to reduce.NOx emission increased with the increase of nitrogen content of coal.The peak value of NOx release moved backwards with the increase of coal rank.NOx emission increased obviously with the increase of stoichiometric ratio.There existed a critical average diameter of the pulverized coal (de).If d≤dc,NOx emission reduced with the decrease of pulverized coal size.If d>de,NOx emission reduced with the increase of the pulverized coal size.The results showed that the simulation results are in agreement with the experimental results for concentration distribution of NOx along the axis of the furnace.

  14. A Model for Nitrogen Chemistry in Oxy-Fuel Combustion of Pulverized Coal

    OpenAIRE

    Hashemi, Hamid; Hansen, Stine; Toftegaard, Maja Bøg; Pedersen, Kim Hougaard; Jensen, Anker Degn; Dam-Johansen, Kim; Glarborg, Peter

    2011-01-01

    In this work, a model for the nitrogen chemistry in the oxy-fuel combustion of pulverized coal has been developed. The model is a chemical reaction engineering type of model with a detailed reaction mechanism for the gas-phase chemistry, together with a simplified description of the mixing of flows, heating and devolatilization of particles, and gas–solid reactions. The model is validated by comparison with entrained flow reactor results from the present work and from the literature on pulver...

  15. Modeling of pulverized coal combustion stabilization by means of plasma torches

    Energy Technology Data Exchange (ETDEWEB)

    Miroslav Sijercic; Srdjan Belosevic; Predrag Stefanovic [VINCA Institute of Nuclear Science, Belgrade (Serbia and Montenegro)

    2005-07-01

    Application of plasma-system for pulverized coal ignition and combustion stabilization in utility boiler furnaces promises to achieve certain savings compared to the use of heavy oil burners. Plasma torches are built in air-coal dust mixture ducts between coal mills and burners. Characteristics of processes in the ducts with plasma-system for pulverized coal combustion stabilization are analyzed in the paper, with respect to the modeling and numerical simulation of mass, momentum and heat transfer in two-phase turbulent gas particle flow. The simulations have been performed for three different geometries of the air-coal dust mixture ducts with plasma torches, for TENT A1 utility boiler and pulverized lignite Kolubara-Field 'D'. Selected results of numerical simulation of processes are presented. The plasma-system thermal effect is discussed regarding corresponding savings of liquid fuel. The results of numerical simulations have been analyzed with respect to the processes in the duct and especially with respect to the influence of the duct shape to a temperature field at the out let cross section, as a basis for the duct geometry optimization. It has been emphasized that numerical simulation of processes can be applied in analysis and optimization of pulverized coal ignition and combustion stabilization and enables efficient and cost-effective scaling-up procedure from laboratory to industrial level. 22 refs., 4 figs.

  16. Effect of multiphase radiation on coal combustion in a pulverized coal jet flame

    Science.gov (United States)

    Wu, Bifen; Roy, Somesh P.; Zhao, Xinyu; Modest, Michael F.

    2017-08-01

    The accurate modeling of coal combustion requires detailed radiative heat transfer models for both gaseous combustion products and solid coal particles. A multiphase Monte Carlo ray tracing (MCRT) radiation solver is developed in this work to simulate a laboratory-scale pulverized coal flame. The MCRT solver considers radiative interactions between coal particles and three major combustion products (CO2, H2O, and CO). A line-by-line spectral database for the gas phase and a size-dependent nongray correlation for the solid phase are employed to account for the nongray effects. The flame structure is significantly altered by considering nongray radiation and the lift-off height of the flame increases by approximately 35%, compared to the simulation without radiation. Radiation is also found to affect the evolution of coal particles considerably as it takes over as the dominant mode of heat transfer for medium-to-large coal particles downstream of the flame. To investigate the respective effects of spectral models for the gas and solid phases, a Planck-mean-based gray gas model and a size-independent gray particle model are applied in a frozen-field analysis of a steady-state snapshot of the flame. The gray gas approximation considerably underestimates the radiative source terms for both the gas phase and the solid phase. The gray coal approximation also leads to under-prediction of the particle emission and absorption. However, the level of under-prediction is not as significant as that resulting from the employment of the gray gas model. Finally, the effect of the spectral property of ash on radiation is also investigated and found to be insignificant for the present target flame.

  17. Investigation on Pulverized Coal Combustion Behavior by Non-Isothermic Integral Thermogravimetry Method

    Institute of Scientific and Technical Information of China (English)

    QI Cheng-lin; ZHANG Jian-liang; LIN Xiang-hai; LIU Qin-yuan; WANG Xiao-liu

    2011-01-01

    The combustion process of pulverized coal was investigated by non-isothermic integral thermogravimetry. The thermogravimetry curves were fitted by the Coats-Redferm approximation function, and kinetic parameters and characteristic temperatures were obtained. The optimal mixing ratio and particle size can be ascertained. The characteristic temperature of pulverized coal can be obtained from the thermogravimetry curve, and the combustion of coal can be divided into homogeneous and heterogeneous combustion according to the differential thermal analysis curve. The activation energy of a single type of coal ranking from low to high is as follows: bituminous coal, meager-lean coal, and anthracite. In the first mixing method, with more low-price meager-lean coal B replacing high price anthracite A, the activation energy slightly decreases; with more bituminous coal replacing meager-lean coal, total tendency makes a declining of activation. In the later mixing method, with an increase in particle size, a declining activation energy can be seen in total tendency.

  18. A Pulverized Coal-Fired Boiler Optimized for Oxyfuel Combustion Technology

    Directory of Open Access Journals (Sweden)

    Tomáš Dlouhý

    2012-01-01

    Full Text Available This paper presents the results of a study on modifying a pulverized coal-fired steam boiler in a 250 MWe power plant for oxygen combustion conditions. The entry point of the study is a boiler that was designed for standard air combustion. It has been proven that simply substituting air by oxygen as an oxidizer is not sufficient for maintaining a satisfactory operating mode, not even with flue gas recycling. Boiler design optimization aggregating modifications to the boiler’s dimensions, heating surfaces and recycled flue gas flow rate, and specification of a flue gas recycling extraction point is therefore necessary in order to achieve suitable conditions for oxygen combustion. Attention is given to reducing boiler leakage, to which external pre-combustion coal drying makes a major contribution. The optimization is carried out with regard to an overall power plant conception for which a decrease in efficiency due to CO2 separation is formulated.

  19. Modeling and optimization of processes for clean and efficient pulverized coal combustion in utility boilers

    Directory of Open Access Journals (Sweden)

    Belošević Srđan V.

    2016-01-01

    Full Text Available Pulverized coal-fired power plants should provide higher efficiency of energy conversion, flexibility in terms of boiler loads and fuel characteristics and emission reduction of pollutants like nitrogen oxides. Modification of combustion process is a cost-effective technology for NOx control. For optimization of complex processes, such as turbulent reactive flow in coal-fired furnaces, mathematical modeling is regularly used. The NOx emission reduction by combustion modifications in the 350 MWe Kostolac B boiler furnace, tangentially fired by pulverized Serbian lignite, is investigated in the paper. Numerical experiments were done by an in-house developed three-dimensional differential comprehensive combustion code, with fuel- and thermal-NO formation/destruction reactions model. The code was developed to be easily used by engineering staff for process analysis in boiler units. A broad range of operating conditions was examined, such as fuel and preheated air distribution over the burners and tiers, operation mode of the burners, grinding fineness and quality of coal, boiler loads, cold air ingress, recirculation of flue gases, water-walls ash deposition and combined effect of different parameters. The predictions show that the NOx emission reduction of up to 30% can be achieved by a proper combustion organization in the case-study furnace, with the flame position control. Impact of combustion modifications on the boiler operation was evaluated by the boiler thermal calculations suggesting that the facility was to be controlled within narrow limits of operation parameters. Such a complex approach to pollutants control enables evaluating alternative solutions to achieve efficient and low emission operation of utility boiler units. [Projekat Ministarstva nauke Republike Srbije, br. TR-33018: Increase in energy and ecology efficiency of processes in pulverized coal-fired furnace and optimization of utility steam boiler air preheater by using in

  20. Flame radiant image numeralization for pulverized coal combustion in BF raceway

    Institute of Scientific and Technical Information of China (English)

    WEN Liang-ying; OU Yang-qi; BAI Chen-guang; WANG Hua

    2005-01-01

    In order to establish correlativity between pulverized coal combustion in a blast furnace raceway and its radiant image, we investigated the relationships between two dimensional radiant images and three dimensional radiant energy in a blast furnace raceway, focusing on the correlativity of the numerical simulation of combustion processes with the connection of radiant images information and space temperature distribution. We calculated the uneven radiate characteristic parameterby taking radiant images as a kind of radiative boundary for numerical simulation of combustion processes, and put forward a method to examine three-dimensional temperatures distribution in blast furnace raceway by radiant image processing. The numeral temperature fields matching the real combustion can be got by the numeric image processing technique.

  1. Formation of fine particles in co-combustion of coal and solid recovered fuel in a pulverized coal-fired power station

    DEFF Research Database (Denmark)

    Wu, Hao; Pedersen, Anne Juul; Glarborg, Peter

    2011-01-01

    Fine particles formed from combustion of a bituminous coal and co-combustion of coal with 7 th% (thermal percentage) solid recovered fuel (SRF) in a pulverized coal-fired power plant were sampled and characterized in this study. The particles from dedicated coal combustion and co-combustion both...... appear to be an important formation mechanism. The elemental composition of the particles from coal combustion showed that S and Ca were significantly enriched in ultrafine particles and P was also enriched considerably. However, compared with supermicron particles, the contents of Al, Si and K were...

  2. Gasification in pulverized coal flames. Final report (Part I). Pulverized coal combustion and gasification in a cyclone reactor: experiment and model

    Energy Technology Data Exchange (ETDEWEB)

    Barnhart, J. S.; Laurendeau, N. M.

    1979-05-01

    A unified experimental and analytical study of pulverized coal combustion and low-BTU gasification in an atmospheric cyclone reactor was performed. Experimental results include several series of coal combustion tests and a coal gasification test carried out via fuel-rich combustion without steam addition. Reactor stability was excellent over a range of equivalence ratios from .67 to 2.4 and air flowrates from 60 to 220 lb/hr. Typical carbon efficiencies were 95% for air-rich and stoichiometric tests and 80% for gasification tests. The best gasification results were achieved at an equivalence ratio of 2.0, where the carbon, cold gas and hot gas efficiencies were 83, 45 and 75%, respectively. The corresponding product gas heating value was 70 BTU/scf. A macroscopic model of coal combustion in the cyclone has been developed. Fuel-rich gasification can also be modeled through a gas-phase equilibrium treatment. Fluid mechanics are modeled by a particle force balance and a series combination of a perfectly stirred reactor and a plug flow reactor. Kinetic treatments of coal pyrolysis, char oxidation and carbon monoxide oxidation are included. Gas composition and temperature are checked against equilibrium values. The model predicts carbon efficiency, gas composition and temperature and reactor heat loss; gasification parameters, such as cold and hot gas efficiency and make gas heating value, are calculated for fuel-rich conditions. Good agreement exists between experiment and theory for conditions of this investigation.

  3. Flat-flame burner studies of pulverized-coal combustion. Experimental results on char reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Peck, R.E.; Shi, L.

    1996-12-01

    Structure of laminar, premixed pulverized-coal flames in a 1-D reactor has been studied with emphasis on char reactivity. A 1.1-meter-long tube furnace accommodated high-temperature environments and long residence times for the laminar flames produced by a flat-flame, coal-dust burner. Experiments were conducted at different operating conditions (fuel type/size, fuel-air ratio). Measurements included solid sample composition, major gas species and hydrocarbon species concentrations, and gas- and particle-phase line-of-sight temperatures at different axial locations in flames. Degree of char burnout increased with coal volatiles content and decreased with coal particle size. Combustion in furnace was in oxidizer-deficient environment and higher burnout was achieved as the fuel-air ratio neared stoichiometric. For 0-45 {mu}m particles most of the fixed carbon mass loss occurred within 5 cm of the furnace inlet, and char reaction was slow downstream due to low oxidizer concentrations. Fixed carbon consumption of the 45-90 {mu}m particles generally was slower than for the small particles. About 40%-80% of the fixed carbon was oxidized in the furnace. Primary volatiles mass loss occurred within the first 4.5 cm, and more than 90% of the volatiles were consumed in the flames. The flames stabilized in the furnace produced less CH{sub 4} and H{sub 2} in the burnt gas than similar unconfined flames. NO concentrations were found to decrease along the furnace and to increase with decreasing fuel/air ratio. Temperature measurement results showed that gas-phase temperatures were higher than solid-phase temperatures. Temperatures generally decreased with decreasing volatiles content and increased as the equivalence ratio approached one. The results can be used to interpret thermochemical processes occurring in pulverized-coal combustion. (au) 15 refs.

  4. Influence of constricted air distribution on NOx emissions in pulverized coal combustion boiler

    Institute of Scientific and Technical Information of China (English)

    WEI Feng(魏风); ZHANG Jun-ying(张军营); TANG Bi-guang(唐必光); ZHENG Chu-guang(郑楚光)

    2003-01-01

    This paper reports a field testing of full scale PCC (Pulverized Coal Combustion) boiler study into the influence of constricted air distribution on NOx emissions at unit 3 (125 MW power units, 420 t/h boiler) of Guixi power station, Jiangxi and puts forward the methods to decrease NOx emissions and the principle of boiler operation and regulation through analyzing NOx emissions state under real running condition. Based on boiler constricted air distribution, the experiment mainly tested the influence of primary air, excessive air, boiler load and milling sets (tertiary air) on NOx emissions and found its influence characteristics. A degraded bituminous coal is simply adopted to avoid the test results from other factors.

  5. Effect of the Reburning Zone Stoichiometry on the Nox Concentration at the Three-Stage Combustion of Pulverized Coal

    Directory of Open Access Journals (Sweden)

    Chernetskaya Nelya

    2016-01-01

    Full Text Available Numerical study of heat and mass transfer taking into account the combustion of coal particles in the furnace at the three-stage combustion of pulverized coal was performed. Analysis of the reburning zone stoichiometry on the concentration of nitrogen oxides at the furnace outlet was made. The values of excess air in the primary and reburning combustion zones, providing for the concentration of nitrogen oxides at the furnace outlet is not more than 350 mg/m3 and unburned carbon not more than 1 % when burning coal with a high content of nitrogen were established.

  6. Trace element emissions when firing pulverized coal in a pilot-scale combustion facility

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.F.; Wincek, R.T.; Miller, B.G.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States)

    1998-04-01

    Title Ed of the Clean Air Act Amendments of 1990 designates 189 hazardous air pollutants (HAPs). Fourteen of the 189 substances identified are: antimony (Sb), beryllium (Be), chlorine (0), cobalt (Co), manganese (Mn), nickel (Ni), selenium (Se), fluorine (F), arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and phosphorous (P). Eleven of these elements have been detected in the flue gas of pulverized coal-fired utility boilers. Currently there are no regulations that limit the emissions of these elements during coal combustion in utility- or industrial-scale boilers. Given the growing body of risk assessment data on these elements and their impact on the environment and human health, it is possible that regulations on emission levels for certain elements will be imposed. A knowledge of the occurrence of trace elements in coal and their behavior during combustion is essential to predict emissions and to develop control technologies for remediation. The partitioning of trace elements during combustion can be traced to their volatility within the system. For purposes of this paper, the classification of trace elements summarized by Clarke and Sloss will be used: Group I elements, i.e., elements that are not easily volatilized and form larger bottom ash and fly ash particles; Group H elements, i.e., elements that are partially or completely volatilization followed by condensation as small particles or on the surface of small particles; and Group III elements, i.e., elements that are readily volatilized and usually remain in the gas phase system.

  7. Combustion characteristics of pulverized coal and air/gas premixed flame in a double swirl combustor

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, M.M. [Ain Shams University, Cairo (Egypt). Faculty of Education

    2009-07-01

    An experimental work was performed to investigate the co-firing of pulverized coal and premixed gas/air streams in a double swirl combustor. The results showed that the NOx emissions are affected by the relative rates of thermal NOx formation and destruction via the pyrolysis of the fuel-N species in high temperature fuel-rich zones. Various burner designs were tested in order to vary the temperature history and the residence time across both coal and gas flames inside the furnace. It was found that by injecting the coal with a gas/air mixture as a combined central jet surrounded by a swirled air stream, a double flame envelope develops with high temperature fuel-rich conditions in between the two reaction zones such that the pyrolysis reactions to N{sub 2} are accelerated. A further reduction in the minimum NOx emissions, as well as in the minimum CO concentrations, was reported for the case where the coal particles are fed with the gas/air mixture in the region between the two swirled air streams. On the other hand, allocating the gas/air mixture around the swirled air-coal combustion zone provides an earlier contact with air and retards the NOx reduction mechanism in such a way that the elevated temperatures around the coal particles allow higher overall NOx emissions. The downstream impingement of opposing air jets was found more efficient than the impinging of particle non-laden premixed flames for effective NOx reduction. In both cases, there is an upstream flow from the stagnation region to the coal primary combustion region, but with the case of air impingement, the hot fuel-rich zone develops earlier. The optimum configuration was found by impinging all jets of air and coal-gas/air mixtures that pronounced minimum NOx and CO concentrations of 310 and 480ppm, respectively.

  8. Three Dimensional Modeling of Pulverized Coal combustion in a 600MW Corner Fired Boiler

    Institute of Scientific and Technical Information of China (English)

    SandroDal-Secco

    2000-01-01

    The three-dimensional code ESTET developed at the LNH has been used to predict the reactive flow in a 600 W coal fired boiler,Assuming a no-slip condition between the gas and the coal,the equations for a gas-particle mixture can e written.The pulverized coal particle size distribution is represented by a discrete number of particle size groups determined by the measured fineness distrbution.The combustion models taking into account the pyrolysis of the particle and the heterogeneous combustion of char have been validated using intensive measurements performed on the 600MW utility boiler.Heat fluxes were measured along the walls of the furnace and satisfactory agreement between computation and measurements has been achieved in terms of maximum flux location and heat flux intensity.Local measurements of velocities using LDV probe.gas temperature and gas species concentrations were performed in the vicinity of one burner and compared with the computed variables.Again we have observed a good agreement between the computations and the measurements in terms of jet penetration,temperature distribution.oxygen concentration and ash content.

  9. Experimental study on cement clinker co-generation in pulverized coal combustion boilers of power plants.

    Science.gov (United States)

    Wang, Wenlong; Luo, Zhongyang; Shi, Zhenglun; Cen, Kefa

    2006-06-01

    The idea to co-generate cement clinker in pulverized coal combustion (PCC) boilers of power plants is introduced and discussed. An experimental study and theoretical analysis showed this idea to be feasible and promising. By adding quick lime as well as other mineralizers to the coal and grinding the mixture before combustion, sulfoaluminate cement clinker with a high content of silicate (SCCHS) could be generated. The main mineral phases in SCCHS are 2CaO x SiO2 (dicalcium-silicate), 3CaO x 3Al2O3 x CaSO4 (calcium-sulfoaluminate) and 2CaO x A12O3 SiO2 (gehlenite). Performance tests showed that the SCCHS met the requirements for utilization in common construction. Based on this idea, zero solid waste generation from PCC would be realized. Furthermore, thermal power production and cement production could be combined, and this would have a significant effect on both environmental protection and natural resource saving.

  10. Nitric oxide formation mechanisms, and their computation in pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Flour, I.; Dal Secco, S.

    1995-10-01

    This report consists of a review of several articles on nitric oxide emissions from coal-fired furnace. Three mechanisms have been identified, depending on the initial nitrogen sources and the composition of specific flame regions: - thermal-NO, formed from molecular nitrogen in the combustion products region at high temperature, - prompt-NO, formed from molecular nitrogen in the oxidation zone, - fuel-NO, formed from the fuel-bound nitrogen, partly during the coal pyrolysis (homogeneous reactions) and partly through reactions on the surface of the particle. In the combustion of pulverized coal, the fuel-NO mechanism accounts for the main source of nitric oxide formed. Detailed schemes of those reactions - when available - are too much complex to be used in tri-dimensional computation of pollutant emissions in furnaces of practical interest. According to the literature, reduced schemes seem to have been applied most frequently. The reaction schemes for the fuel-NO and the prompt-NO are based on the results of De Soete. For the homogeneous reactions, the intermediate species formed is assumed to be mainly HCN, leading to both formation and reduction reactions for NO, depending on the flame region. The formation of nitric oxide from the char-bound nitrogen, through heterogeneous reactions on the surface on the particle, is modelled by assuming the char-bound nitrogen to be released as HCN, with a rate proportional to char combustion. The released char nitrogen then reacts through the same path as the HCN released during pyrolysis. In the thermal-NO mechanism, nitric oxide is formed from molecular nitrogen, through the extended Zeldovich mechanism. This scheme contains radical species (O, N), which concentrations are assumed to be determined from the stationary condition or the equilibrium assumption. However, in spite of the use of reduced schemes for NO formation, the modelling of the important effect of the turbulent fluctuations has to be taken into account.

  11. Partitioning behavior of trace elements during pilot-scale combustion of pulverized coal and coal-water slurry fuel

    Science.gov (United States)

    Nodelman; Pisupati; Miller; Scaroni

    2000-05-29

    Release pathways for inorganic hazardous air pollutants (IHAPs) from a pilot-scale, down-fired combustor (DFC) when firing pulverized coal (PC) and coal-water slurry fuel (CWSF) were identified and quantified to demonstrate the effect of fuel form on IHAP partitioning, enrichment and emissions. The baghouse capturing efficiency for each element was calculated to determine the effectiveness of IHAP emission control. Most of the IHAPs were enriched in the fly ash and depleted in the bottom ash. Mercury was found to be enriched in the flue gas, and preferentially emitted in the vapor phase. When firing CWSF, more IHAPs were partitioned in the bottom ash than when firing PC. Significant reduction of Hg emissions during CWSF combustion was also observed.

  12. Effective identification of the three particle modes generated during pulverized coal combustion

    Institute of Scientific and Technical Information of China (English)

    YU DunXi; XU MingHou; YAO Hong; LIU XiaoWei; ZHOU Ke

    2008-01-01

    Based on the mass fraction size distribution of aluminum (AI), an improved method for effectively identifying the modes of particulate matter from pulverized coal combustion is proposed in this study. It is found that the particle size distributions of coal-derived particulate matter actually have three modes, rather than just mere two. The ultrafine mode is mainly generated through the vaporization and condensation processes. The coarse mode is primarily formed by the coalescence of molten minerals, while the newly-found central mode is attributed to the heterogeneous condensation or adsorption of vaporized species on fine residual ash particles. The detailed investigation of the mass fraction size distribution of sulfur (S) further demonstrates the rationality and effectiveness of the mass fraction size distribution of the AI in identifying three particle modes. The results show that not only can the number of particle modes be identified in the mass fraction size distributions of the AI but also can their size boundaries be more accurately defined. This method provides new insights in elucidating particle formation mechanisms and their physico-chemical characteristics.

  13. Numerical study of Pavlovskiy coal pulverized combustion in the furnace of BKZ-210-140 steam boiler

    Science.gov (United States)

    Zavorin, A. S.; Gil, A. V.; Khaustov, P. S.; Tabakaev, R. B.; Buslov, D. A.

    2014-10-01

    In this paper pulverized combustion of insufficiently investigated low-grade Pavlovskiy coal is simulated using the modern engineering software FIRE 3D. The object of study is a widespread in Russia BKZ-210-140 steam boiler. The results of computer simulation are represented with average temperatures in horizontal sections and oxygen concentration. Curves are plotted for three steam generating capacity loads of the boiler: 100%, 70% and 50%.

  14. CFD investigation on the flow and combustion in a 300 MWe tangentially fired pulverized-coal furnace

    Science.gov (United States)

    Khaldi, Nawel; Chouari, Yoldoss; Mhiri, Hatem; Bournot, Philippe

    2016-09-01

    The characteristics of the flow, combustion and temperature in a 300 MWe tangentially fired pulverized-coal furnace are numerically studied using computational fluid dynamics. The mathematical model is based on a Eulerian description for the continuum phase and a Lagrangian description for coal particles. The combustion reaction scheme was modeled using eddy dissipation concept. The application of a proper turbulence model is mandatory to generate accurate predictions of flow and heat transfer during combustion. The current work presents a comparative study to identify the suitable turbulence model for tangentially fired furnace problem. Three turbulence models including the standard k-ɛ model, the RNG k-ɛ model and the Reynolds Stress model, RSM are examined. The predictions are compared with the published experimental data of Zheng et al. (Proc Combust Inst 29: 811-818, 2002). The RNG k-ɛ model proves to be the most suitable turbulence model, offering a satisfactory prediction of the velocity, temperature and species fields. The detailed results presented in this paper may enhance the understanding of complex flow patterns and combustion processes in tangentially fired pulverized-coal furnaces.

  15. 煤粉燃烧过程的数值模拟%Numerical simulation of pulverized-coal combustion

    Institute of Scientific and Technical Information of China (English)

    张宏博; 秦国彤; 纪任山; 王乃继

    2009-01-01

    The comparative study between CFD numerical results of pulverized coal combustion process and the experimental data is becoming an important measure for validating mathematical models and direct engineering practice. The CFD commercial software, FLUENT, was used to simulate the pulverized coal flow and combustion. Mixture-Fraction/PDF model was used to simulate turbulent combustion; P-1 radiation model was used for simulating radiation heat transfer; the Langrange/Euler's method was used for dealing with momentum, mass and energy exchange between the solid and the gas phase; the two-competing rates model for devolatilization and the kinitics/diffusion limited combustion model for simulating surface combustion of pulverized coal particles. The result of simulation is consistent with the data from actual combustion process. The simulation results show the rules of the volatile releasing and combustion processing of coke, which could provide important references to improve the combustion of the pulverized coal.%采用计算流体动力学软件对煤粉实际燃烧过程进行数值计算并结合其热态试验数据进行对比分析,已成为验证数学模型和指导工程实践的一种重要研究手段,应用商业软件FLUENT对煤粉燃烧及流场进行了数值模拟分析,采用混合分数/概率密度函数法模拟湍流燃烧,用P-1辐射模型开展辐射传热模拟,利用拉格朗日/欧拉法处理气固两相间的动量、质量和能量交换,对挥发份的析出采用双速率竞争模型,采用动力/扩散反应速率模型模拟煤粉颗粒的表面燃烧,并对模拟结果进行分析与对比,计算结果与实际燃烧过程有较好的一致性,数值模拟计算结果揭示了挥发分释放与焦炭燃烧的过程,为改善和优化煤粉的燃烧提供了重要的参考依据.

  16. Revised users manual, Pulverized Coal Gasification or Combustion: 2-dimensional (87-PCGC-2): Final report, Volume 2. [87-PCGC-2

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.J.; Smoot, L.D.; Brewster, B.S.

    1987-12-01

    A two-dimensional, steady-state model for describing a variety of reactive and non-reactive flows, including pulverized coal combustion and gasification, is presented. Recent code revisions and additions are described. The model, referred to as 87-PCGC-2, is applicable to cylindrical axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using either a flux method or discrete ordinates method. The particle phase is modeled in a Lagrangian framework, such that mean paths of particle groups are followed. Several multi-step coal devolatilization schemes are included along with a heterogeneous reaction scheme that allows for both diffusion and chemical reaction. Major gas-phase reactions are modeled assuming local instantaneous equilibrium, and thus the reaction rates are limited by the turbulent rate mixing. A NO/sub x/ finite rate chemistry submodel is included which integrates chemical kinetics and the statistics of the turbulence. The gas phase is described by elliptic partial differential equations that are solved by an iterative line-by-line technique. Under-relaxation is used to achieve numerical stability. The generalized nature of the model allows for calculation of isothermal fluid mechanicsgaseous combustion, droplet combustion, particulate combustion and various mixtures of the above, including combustion of coal-water and coal-oil slurries. Both combustion and gasification environments are permissible. User information and theory are presented, along with sample problems. 106 refs.

  17. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer.

    Science.gov (United States)

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-01

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na(2)SiO(3)) and 10M sodium hydroxide (NaOH) solutions at mass ratio of Na(2)SiO(3)/NaOH of 1.5 and curing temperature of 65 degrees C for 48h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  18. Reducing the cost of post combustion capture technology for pulverized coal power plants by flexible operation

    NARCIS (Netherlands)

    Kler, R.C.F. de; Verbaan, M.; Goetheer, E.L.V.

    2013-01-01

    Currently the low carbon prices, low Spreads and regulatory uncertainties hampers the business cases for coal-fired power plants with post-combustion capture (PCC) in Europe. Improvement of the business case of coal-fired power plants with post combustion capture requires a different approach in

  19. Reducing the cost of Post Combustion Capture technology for Pulverized Coal Power Plants by flexible operation

    NARCIS (Netherlands)

    De Kler, R.C.F.; Verbaan, M.; Goetheer, E.L.V.

    2013-01-01

    Currently the low carbon prices, low Spreads and regulatory uncertainties hampers the business cases for coal-fired power plants with post-combustion capture (PCC) in Europe. Improvement of the business case of coal-fired power plants with post combustion capture requires a different approach in

  20. Reducing the cost of Post Combustion Capture technology for Pulverized Coal Power Plants by flexible operation

    NARCIS (Netherlands)

    De Kler, R.C.F.; Verbaan, M.; Goetheer, E.L.V.

    2013-01-01

    Currently the low carbon prices, low Spreads and regulatory uncertainties hampers the business cases for coal-fired power plants with post-combustion capture (PCC) in Europe. Improvement of the business case of coal-fired power plants with post combustion capture requires a different approach in ter

  1. Comparative Techno-economic assessment of biomass and coal with CCS technologies in a pulverized combustion power plant in the United Kingdom

    OpenAIRE

    Al-Qayim, K.; Nimmo, W.; Pourkashanian, M

    2015-01-01

    The technical performance and cost effectiveness of white wood pellets (WWP) combustion in comparison to three types of coal namely U.S., Russian and Colombian coals are investigated in this study. Post-combustion capture and storage (CCS) namely with amine FG+, and oxy-fuel with carbon capture and storage (oxy-fuel) are applied to a 650 MW pulverized combustion (PC) plant. The impacts of the Renewable Obligation Certificate (ROC) and carbon price (CP) policy in accelerating the CCS deploymen...

  2. Trace element emissions when firing pulverized coal in a pilot-scale combustion facility

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.F.; Wincek, R.T.; Miller, B.G.; Scaroni, A.W.

    1998-07-01

    Strategies are being developed at Penn State to produce ultralow emissions when firing coal-based fuels, i.e., micronized coal and coal-water slurry fuel (CWSF), in industrial boilers. The work is being conducted on the bench, pilot, and demonstration scale, and the emissions being addressed are SO{sub 2}, NO{sub x}, fine particulate matter (PM{sub 10} and PM{sub 2.5}), and air toxics (trace elements and volatile organic compounds). Technical issues related to trace element emissions that are to be addressed include: (1) the effectiveness of coal cleaning; (2) the effect of fuel form (CWSF and pulverized coal); (3) partitioning between the solid and vapor phases; (4) the effect of boiler size; (5) penetration through particulate control devices; (6) the effect of sootblowing; and (7) mercury speciation. This paper discusses the results of preliminary work to determine trace element emissions when firing a raw and cleaned pulverized coal in a pilot-scale combustor. A companion paper, which follows in the proceedings, gives the results of polynuclear aromatic hydrocarbon (PAH) emissions testing in the pilot-scale combustor and in a small industrial boiler. Results from fine particulate testing is found elsewhere in the proceedings.

  3. COMPUTATIONAL MODELING AND EXPERIMENTAL STUDIES ON NOx REDUCTION UNDER PULVERIZED COAL COMBUSTION CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Subha K. Kumpaty; Kannikeswaran Subramanian; Victor P. Nokku; Tyrus L. Hodges; Adel Hassouneh; Ansumana Darboe; Sravan K. Kumpati

    1998-06-01

    In this work, both computer simulation and experimental studies were conducted to investigate several strategies for NO{sub x} reduction under pulverized coal combustion conditions with an aim to meet the stringent environmental standards for NO{sub x} control. Both computer predictions and reburning experiments yielded favorable results in terms of NO{sub x} control by reburning with a combination of methane and acetylene as well as non-selective catalytic reduction of NO{sub x} with ammonia following reburning with methane. The greatest reduction was achieved at the reburning stoichiometric ratio of 0.9; the reduction was very significant, as clearly shown in Chapters III and V. Both the experimental and computational results favored mixing gases: methane and acetylene (90% and 10% respectively) and methane and ammonia (98% and 2%) in order to get optimum reduction levels which can not be achieved by individual gases at any amounts. Also, the above gaseous compositions as reburning fuels seemed to have a larger window of stoichiometric ratio (SR2 < 0.9) as opposed to just methane (SR2=0.9) so as to reduce and keep NO{sub x} at low ppm levels. From the various computational runs, it has been observed that although there are several pathways that contribute to NO{sub x} reduction, the key pathway is NO {r_arrow} HCN {r_arrow} NH{sub 3} {r_arrow} N{sub 2} + H{sub 2}. With the trends established in this work, it is possible to scale the experimental results to real time industrial applications using computational calculations.

  4. Fluidized coal combustion

    Science.gov (United States)

    Moynihan, P. I.; Young, D. L.

    1979-01-01

    Fluidized-bed coal combustion process, in which pulverized coal and limestone are burned in presence of forced air, may lead to efficient, reliable boilers with low sulfur dioxide and nitrogen dioxide emissions.

  5. Impact of Coal Fly Ash Addition on Combustion Aerosols (PM2.5) from Full-Scale Suspension-Firing of Pulverized Wood

    DEFF Research Database (Denmark)

    Damø, Anne Juul; Wu, Hao; Frandsen, Flemming

    2014-01-01

    The formation of combustion aerosols was studied in an 800 MWth suspension-fired power plant boiler, during combustion of pulverized wood pellets with and without addition of coal fly ash as alkali capture additive. The aerosol particles were sampled and characterized by a low-pressure cascade...

  6. Anatomy of an upgraded pulverized coal facility: Combustion modification through flue gas scrubbing

    Energy Technology Data Exchange (ETDEWEB)

    Watts, J.U. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center; Savichky, W.J.; O`Dea, D.T. [New York State Electric and Gas Corp., Binghamton, NY (United States)

    1997-12-31

    Regeneration is a biological term for formation or creating anew. In the case of Milliken station, a species of steam generation (Tangentus coali) regeneration refers to refitting critical systems with the latest technological advances to reduce emissions while maintaining or improving performance. The plant has undergone a series of operations which provided anatomical changes as well as a face lift. Each of the two units were place in suspended animation (outage) to allow these changes to be made. The paper describes the project which includes retrofitting combustion systems, pulverizers, boiler liners, scrubbers, and control room. This retrofit is meant to increase thermal efficiency while reducing the formation of nitrogen oxides.

  7. Joule II - Programme. Clean coal technology R & D. 2nd phase. Volume III. Atmospheric combustion of pulverized coal and coal based blends for power generation

    Energy Technology Data Exchange (ETDEWEB)

    Hein, K.R.G.; Minchener, A.J.; Pruschek, R.; Roberts, P.A. [eds.

    1998-12-31

    Topics covered in this Joule II clean coal technology publication include: coal preparation and blending; cocombustion of coal with biomass and wastes; flame modelling; NO{sub x} abatement by combustion control and staging; coal quality and NO{sub x} emissions; coal combustion properties; and fluidized bed combustion of coal. All papers have been abstracted separately.

  8. Combustion of wet pulverized coal in reactor flow; Combustao de particulas de carvao pulverizado contendo umidade em seu interior

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Valdeci Jose [Universidade do Planalto Catarinense (UNIPLAC), Lages, SC (Brazil). Dept. de Ciencias Exatas e Tecnologicas]. E-mail: vcosta@iscc.com.br; Krioukov, Viktor [Universidade Regional do Estado do Rio Grande do Sul (UNIJUI), Ijui, RS (Brazil). Programa de Pos-Graduacao em Modelagem Matematica]. E-mail: krioukov@main.unijui.tche.br; Maliska, Clovis Raimundo [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica]. E-mail: maliska@sinmec.ufsc.br

    2000-07-01

    In this work I propose a numeric study destined to the combustion of wet pulverized coal in reacting flow. The mathematical model is composed by equations for the concentration of the substances in the reacting flow, written based in the chemical kinetics and exponential form, conservation equations and devolatilization equations, combustion of the carbon and residues. The study detects fluctuation among the temperatures of the gas and of the particles. The inclusion of the humidity as constituent part of the volatile matter doesn't affect the performance of the model, however, its presence alters the temperature profiles and the gaseous composition. With the increase of the humidity in the coal have a slight reduction in the time of combustion of the particle, what agrees with experimental data. The model foresees an increment in the difference Tp-Tg and a smaller production of CO with the increase of the wetness rate. The volatile ones, in spite of they have its fraction relatively reduced with the wetness presence they are liberated more slowly with its increment, provoking change in the position of front flame. (author)

  9. An investigation on polycyclic aromatic hydrocarbon emissions from pulverized coal combustion systems

    Science.gov (United States)

    Pisupati; Wasco; Scaroni

    2000-05-29

    Results from a series of tests conducted to study the emission of polynuclear or polycyclic aromatic hydrocarbons (PAHs) from bench-scale and small industrial, water-tube boiler are discussed. A Middle Kittanning, and Upper Freeport seam coals were used in the study. Samples were extracted from the reactor outlet and from the inlet and outlet sides of the research boiler's (RB) baghouse using EPA promulgated methods.Only acenaphthene and fluoranthene were detected in down-fired combustor (DFC) samples. In addition to these two, naphthalene was detected in the RB samples. Emission factors ranged from 80 to 320 &mgr;g/kg of fuel fired. Although there were minor trends in the emissions' data, given the reproducibility limits for PAH compounds, no significant differences were found in the emissions with respect to the fuel type or form (pulverized coal (PC) vs. coal-water slurry fuel (CWSF), and raw vs. cleaned coal) and firing conditions (high and low excess air). The PAH emissions showed a decrease with increase in the firing rate.A bench-scale drop-tube reactor (DTR) was used to study the effects of temperature and residence time on PAH formation. The results revealed near constant PAH concentrations in the solid-phase samples, while the PAH concentrations in the vapor-phase samples increased as a function of temperature. At a temperature of around 1300 degrees C, the rate of PAH formation was exceeded by the rate of PAH oxidation, and PAH concentrations in the vapor phase began to decrease.

  10. Low—NOx Combustion and Experimental Investigation in a ROtary Type Pulverized Coal Classifier

    Institute of Scientific and Technical Information of China (English)

    WenjunKong; ShangmoCheng; 等

    1995-01-01

    In order to improve the combustion conditions,maximize the carbon burnout for low-NOx firing systems and meet the requirements for ignition and flame stabilization as low volatile and low quality coal are burned in boilers,finer pulverzed coal should be used .Hence.it is of great practical importance to study the rotary type classifier for the MPS type medium-speed mill.In this pper,we first review the low-NOx combustion technology,then some model tests of rotating classifier are completed.The results show that the classifier performances are very satisfactory,with the fineness of the finished produce being R90f<10%,Rules for designing and controlling rotating classifier are also developed in this paper.

  11. Coal selection for NO{sub x} reduction in pulverized fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Gibbins, J.R.; Lockwood, F.C.; Man, C.K.; Williamson, J.; Hesselman, G.J.; Downer, B.M.; Skorupska, N.M. [Imperial College of Science, Technology and Medicine, London (United Kingdom)

    1995-12-31

    A major factor affecting a coal`s performance in air-staged low-NO{sub x} burners is the amount of nitrogen remaining in the char after devolatilisation. Current standard proximate devolatilisation tests do not apply realistic heating conditions for PF combustion, but a recently-developed high-temperature wire-mesh reactor now allows relatively simple captive-sample measurements at heating rates of 10{sup 4} K/s. Char nitrogen data is reported for devolatilisation temperatures from 400{degree}C to 1800{degree}C, including values for a range of UK and world-traded coals for which NO{sub x} measurements from three full-scale low-NO{sub x} utility plants and/or a pilot combustor are available. The most general correlation between char nitrogen and combustion NO{sub x} is observed for a peak preparation temperature of 1800{degree}C with 0.15 s (or 2 s) hold time or 1600{degree}C with 2 s hold, conditions which give the maximum release of nitrogen from the char. 18 refs., 8 figs.

  12. Chemical and toxicological characterization of organic constituents in fluidized-bed and pulverized coal combustion: a topical report

    Energy Technology Data Exchange (ETDEWEB)

    Chess, E.K.; Later, D.W.; Wilson, B.W.; Harris, W.R.; Remsen, J.F.

    1984-04-01

    Coal combustion fly ash from both conventional pulverized coal combustion (PCC) and fluidized-bed combustion (FBC) have been characterized as to their organic constituents and microbial mutagenic activity. The PCC fly ash was collected from a commercial utility generating plant using a low sulfur coal. The FBC fly ash was from a bench-scale developmental unit at the Grand Forks Energy Technology Center. Bulk samples of each fly ash were extracted using benzene/methanol and further separated using high performance liquid chromatography (HPLC). Subfractions from the HPLC separation were analyzed by gas chromatography using both element-specific nitrogen-phosphorus detectors and flame ionization detectors. Microbial mutagenicity assay results indicated that the crude organic extracts were mutagenic, and that both the specific activity and the overall activity of the PCC material was greater than that of the FBC material. Comparison of results from assays using S. typhimurium, TA1538NR indicated that nitrated polycyclic aromatic compounds (PAC) were responsible for much of the mutagenic activity of the PCC material. Similar results were obtained for assays of the FBC organic extract with standard and nitroreductase-deficient strains of S. typhimurium, TA100 and TA1538. Mutagenically active HPLC fractions were analyzed using high resolution gas chromatography (HRGC) and GC mass spectrometry (GC/MS), as well as probe inlet low and high resolutions MS. The discovery and identification of nitrated, oxygenated PAC are important because the presence of both nitro and/or keto functionalities on certain PAC has been shown to confer or enhance mutagenic activity.

  13. FUNDAMENTAL INVESTIGATION OF FUEL TRANSFORMATIONS IN PULVERIZED COAL COMBUSTION AND GASIFICATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Robert Hurt; Joseph Calo; Thomas H. Fletcher; Alan Sayre

    2005-04-29

    The goal of this project was to carry out the necessary experiments and analyses to extend current capabilities for modeling fuel transformations to the new conditions anticipated in next-generation coal-based, fuel-flexible combustion and gasification processes. This multi-organization, multi-investigator project has produced data, correlations, and submodels that extend present capabilities in pressure, temperature, and fuel type. The combined experimental and theoretical/computational results are documented in detail in Chapters 1-8 of this report, with Chapter 9 serving as a brief summary of the main conclusions. Chapters 1-3 deal with the effect of elevated pressure on devolatilization, char formation, and char properties. Chapters 4 and 5 deal with advanced combustion kinetic models needed to cover the extended ranges of pressure and temperature expected in next-generation furnaces. Chapter 6 deals with the extension of kinetic data to a variety of alternative solid fuels. Chapter 7 focuses on the kinetics of gasification (rather than combustion) at elevated pressure. Finally, Chapter 8 describes the integration, testing, and use of new fuel transformation submodels into a comprehensive CFD framework. Overall, the effects of elevated pressure, temperature, heating rate, and alternative fuel use are all complex and much more work could be further undertaken in this area. Nevertheless, the current project with its new data, correlations, and computer models provides a much improved basis for model-based design of next generation systems operating under these new conditions.

  14. The effect of char structure on burnout during pulverized coal combustion at pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G.; Wu, H.; Benfell, K.E.; Lucas, J.A.; Wall, T.F.

    1999-07-01

    An Australian bituminous coal sample was burnt in a drop tube furnace (DTF) at 1 atm and a pressurized drop tube furnace (PDTF) at 15 atm. The char samples were collected at different burnout levels, and a scanning electron microscope was used to examine the structures of chars. A model was developed to predict the burnout of char particles with different structures. The model accounts for combustion of the thin-walled structure of cenospheric char and its fragmentation during burnout. The effect of pressure on reaction rate was also considered in the model. As a result, approximately 40% and 70% cenospheric char particles were observed in the char samples collected after coal pyrolysis in the DTF and PDTF respectively. A large number of fine particles (< 30 mm) were observed in the 1 atm char samples at burnout levels between 30% and 50%, which suggests that significant fragmentation occurred during early combustion. Ash particle size distributions show that a large number of small ash particles formed during burnout at high pressure. The time needed for 70% char burnout at 15 atm is approximately 1.6 times that at 1 atm under the same temperature and gas environment conditions, which is attributed to the different pressures as well as char structures. The overall reaction rate for cenospheric char was predicted to be approximately 2 times that of the dense chars, which is consistent with previous experimental results. The predicted char burnout including char structures agrees reasonably well with the experimental measurements that were obtained at 1 atm and 15 atm pressures.

  15. Combustion of pulverized coal in vortex structures. Final report, October 1, 1993--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Gollahalli, S.R.; Butuk, N.

    1996-03-01

    The objectives of the project were: (i) to understand the effects of heating one of the streams on the characteristics of shear layers, (ii) to investigate the changes in the characteristics of large scale vortex structures in the shear layer caused by the introduction of inert solid particles in one of the feed streams; (iii) to understand the effects of pyrolyzing solids on the shear layer behavior; and (iv) to study the effects of combustion of particles and their pyrolysis products on the shear layer structure, heat release rate, and pollutant emission characteristics. An experimental facility for generating two-dimensional shear layers containing vortex structures has been designed and fabricated. The experimental facility is essentially a low speed wind tunnel designed to (i) provide two gas streams, initially with uniform velocity profiles and isotropic turbulence, mixing at the end of a splitter plate, (ii) introduce vorticity by passively perturbing one of the streams, (iii) allow heating of one of the streams to temperatures high enough to cause pyrolysis of coal particles, and (iv) provide a natural gas flame in one of the streams to result in ignition and burning of coal particles.

  16. Fundamental study of the pulverized coal char combustion in oxyfuel mode with drop tube furnace

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Takamasa; Takafuji, Makoto; Suda, Toshiyuki; Fujimori, Toshiro [Heat and Fluid Dynamics Department, Yokohama (Japan)

    2013-07-01

    The combustion characteristics of coal char particles in either O{sub 2}/N{sub 2} or O{sub 2}/CO{sub 2} conditions were experimentally investigated. Especially, the char burnout, the char particle temperature and the shrinkage of the char particles were discussed. A Drop Tube Furnace (DTF: whose wall temperature was set at 873, 923 and 973 K) was used as the experimental apparatus. The experimental results revealed that, in equivalent oxygen concentration, the char burnout and the char particle temperature were higher in O{sub 2}/N{sub 2} conditions than those in O{sub 2}/CO{sub 2} conditions. The shrinkage of the char particle did not show the large difference in either O{sub 2}/N{sub 2} or O{sub 2}/CO{sub 2} conditions. Up to 15% of char burnout, the char particle diameters were reduced gradually. Up to 80% of char burnout, the char particle diameters were not changed. This is supposed that the chemical reaction is mainly occurred not on the external surface but on the internal surface of the char particle. Over 80% of char burnout, sudden shrinkage could be seen. Finally, an empirical equation for the prediction of the char particle shrinkage was introduced. Further investigation is required in high operating temperature, where CO{sub 2} gasification may have a large influence on the char burnout.

  17. CFD analysis of the pulverized coal combustion processes in a 160 MWe tangentially-fired-boiler of a thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cristiano V. da; Beskow, Arthur B. [Universidade Regional Integrada do Alto Uruguai e das Misses (LABSIM/GEAPI/URI), Erechim, RS (Brazil). Dept. de Engenharia e Ciencia da Computacao. Grupo de Engenharia Aplicada a Processos Industriais], Emails: cristiano@uricer.edu.br, Arthur@uricer.edu.br; Indrusiak, Maria Luiza S. [Universidade do Vale do Rio dos Sinos (UNISINOS), Sao Leopoldo, RS (Brazil). Programa de Engenharia Mecanica], E-mail: sperbindrusiak@via-rs.net

    2010-10-15

    The strategic role of energy and the current concern with greenhouse effects, energetic and exegetic efficiency of fossil fuel combustion greatly enhance the importance of the studies of complex physical and chemical processes occurring inside boilers of thermal power plants. The state of the art in computational fluid dynamics and the availability of commercial codes encourage numeric studies of the combustion processes. In the present work the commercial software CFX Ansys Europe Ltd. was used to study the combustion of coal in a 160 MWe commercial thermal power plant with the objective of simulating the operational conditions and identifying factors of inefficiency. The behavior of the flow of air and pulverized coal through the burners was analyzed, and the three-dimensional flue gas flow through the combustion chamber and heat exchangers was reproduced in the numeric simulation. (author)

  18. Co-combustion of pulverized coal and solid recovered fuel in an entrained flow reactor- General combustion and ash behavior

    DEFF Research Database (Denmark)

    Wu, Hao; Glarborg, Peter; Frandsen, Flemming

    2011-01-01

    .9 wt.%, 14.8 wt.% and 25 wt.%, respectively. The effect of additives was evaluated by maintaining the share of secondary fuel (mixture of SRF and additive) at 14.8 wt.%. The experimental results showed that the fuel burnout, NO and SO2 emission in co-combustion of coal and SRF were decreased...... with increasing share of SRF. The majority of the additives inhibited the burnout, except for NaCl which seemed to have a promoting effect. The impact of additives on NO emission was mostly insignificant, except for ammonium sulphate which greatly reduced the NO emission. For SO2 emission, it was found that all...

  19. Numerical analysis of loads effect on combustion performance and NO{sub x} emissions of a 220 MW pulverized coal boiler

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun; Yang, Weihong; Blasiak, Wlodzimierz [Royal Institute of Technology (KTH), Stockholm (Sweden). Div. of Energy and Furnace Technology; Jankowski, Radoslaw; Kotecki, Michal; Szewczyk, Dariusz [Industrial Combustion Systems (ICS) Company, Poznan (Poland); Brzdekiewicz, Artur [Remak-Rozruch SA, Opole (Poland)

    2013-07-01

    This paper presents numerical study on the combustion performance and NO{sub x} emissions of a 220 MW pulverized coal boiler. Three different loads have been simulated with combusting coal, 200, 170 and 140 MW, respectively. In order to get as precise as possible numerical analysis results, two-step simulation method has been adopted in this work, namely, air supply system simulation and furnace simulation. After air supply system simulation, the results have been taken as the initial and boundary conditions for furnace simulation. The comparison between the measured values and predicted results from 200 MW case shows much better agreement. According to the simulation results, the adopted two-step simulation method is reasonable and suitable for predicting the characters of the flow and combustion process. It is concluded that the distributions of temperature, O{sub 2} and CO concentration inside furnace with different loads shows good similarly. The total NOx emissions decreased with the boiler load reducing, and fuel NO{sub x} has the same trend as total NO{sub x}, and fuel NO{sub x} account for about 66% in total NO{sub x} in all the three cases. More important, thermal NO{sub x} slowly decreased with the rise of boiler load. More detailed results presented in this paper enhance the understanding of combustion processes and complex flow patterns of front-wall pulverized coal boilers.

  20. 低挥发分煤粉燃烧新技术发展与应用%Development and application of low volatile pulverized coal combustion technique

    Institute of Scientific and Technical Information of China (English)

    周建明

    2011-01-01

    Introduce the development and application of low volatile pulverized coal combustion technique. The representative burners and framework of boilers were demonstrated and the key techniques, including strengthening hot gas back flow,keeping adopting pulverized coal concentration,and extending length of flame,were also analyzed and these techniques can help pulverized coal ignite quickly and keep stable ignition. The suitable combustion system should be strictly chosen for low volatilization pulverized coal, such as tangentially firing, opposed firing, W-shape flame, and CUF firing and so on. Meanwhile, being the superior stability in anthracite combustion to tangential firing and opposed firing,W-shape boilers are mainly used. Having the strongpoint of stable combustion, high combustion efficiency, stepped firing in recirculation and low NO, emission, the high-temperature combustion technique for low volatilization coal will have wide application foreground.%介绍了国内外低挥发分煤粉燃烧技术及发展.对具有代表性的燃烧器及炉膛结构进行简要分析,说明热回流、煤粉浓缩、延长火焰长度等关键技术在实现低挥发分难燃煤粉快速着火、稳定燃烧中的应用.指出尽管燃烧器在应用中取得一定的效果,但仍然存在一些问题,因而对于低挥发分煤种还需要同时选择合理的燃烧方式,如切向燃烧、对冲燃烧、W型火焰燃烧及CUF火焰燃烧等技术.其中,W型火焰燃烧方式对难燃无烟煤的燃烧稳定性优于四角和对冲燃烧方式,是目前主要采用的燃烧结构.高温空气燃烧技术对低挥发分煤具有火焰稳定、热效率高、再循环分级燃烧,低NOx排放等优点,将成为更有前景的燃烧技术.

  1. Co-combustion of pulverized coal and solid recovered fuel in an entrained flow reactor - General combustion and ash behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Hao Wu; Peter Glarborg; Flemming Jappe Frandsen; Kim Dam-Johansen; Peter Arendt Jensen; Bo Sander [Technical University of Denmark, Lyngby (Denmark). Department of Chemical and Biochemical Engineering

    2011-05-15

    Co-combustion of a bituminous coal and a solid recovered fuel (SRF) was carried out in an entrained flow reactor, and the influence of additives such as NaCl, PVC, ammonium sulphate, and kaolinite was investigated. The experiments were carried out with SRF shares of 7.9 wt.%, 14.8 wt.% and 25 wt.%, respectively. The effect of additives was evaluated by maintaining the share of secondary fuel (mixture of SRF and additive) at 14.8 wt.%. The results showed that fuel burnout, NO and SO{sub 2} emission decreased with increasing share of SRF. The majority of the additives inhibited the burnout, except for NaCl which seemed to have a promoting effect. The impact of additives on NO emission was mostly insignificant, except for ammonium sulphate which greatly reduced NO emission. For SO{sub 2}, it was found that all of the additives increased the S-retention in ash. Analysis of the bulk composition of fly ash from different experiments indicated that the majority of S and Cl in the fuels were released to gas phase during combustion, whereas the K and Na in the fuels were mainly retained in ash in water insoluble form such as aluminosilicates or silicates. The addition of NaCl, PVC, and ammonium sulphate generally promoted the vaporization of Na and K, resulting in increased formation of water soluble alkalis such as alkali chlorides or sulphates. The vaporization degree of Na and K was found to be correlated during the experiments, suggesting an interaction between the vaporization of Na and K during combustion. By collecting deposits on an air-cooled probe, it was found that the ash deposition propensity in co-combustion decreased with increasing share of SRF. The addition of NaCl and PVC significantly increased the ash deposition propensity, whereas the addition of ammonium sulphate or kaolinite showed a slight reducing effect. 46 refs., 13 figs., 2 tabs.

  2. Radiant Image Simulation of Pulverized Coal Combustion in Blast Furnace Raceway

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The relationship between two-dimensional radiant image and three-dimensional radiant energy in blast furnace raceway was studied by numerical simulation of combustion process. Taking radiant image as radiant boundary for numerical simulation of combustion process, the uneven radiation parameter can be calculated. A method to examine three-dimensional temperature distribution in blast furnace raceway was put forward by radiant image processing. The numeral temperature field matching the real combustion can be obtained by proposed numeric image processing technique.

  3. Experimental study on ignition characteristics of pulverized coal under high-temperature oxygen condition

    Science.gov (United States)

    Liu, G. W.; Liu, Y. H.; Dong, P.

    2016-08-01

    The high-temperature oxygen ignition technology of pulverized coal, which can replace the oil gun and achieve oil-free pulverized coal ignition by mixing the high- temperature oxygen and the pulverized coal stream directly, was proposed and a relevant ignition experimental system was built. The ignition characteristics of pulverized coal under high-temperature oxygen condition were investigated: the ignition process was described and analyzed, the influence of relevant parameters on the pulverized coal stream ignition were obtained and analyzed. The results showed: when the oxygen heating temperature is over 750 °C, the pulverized coal stream could be ignited successfully by high-temperature oxygen; increasing the pulverized coal concentration, primary air temperature and oxygen volume flow rate or decreasing the primary air velocity is helpful for the ignition and combustion of the pulverized coal stream.

  4. FUNDAMENTAL INVESTIGATION OF FUEL TRANSFORMATIONS IN PULVERIZED COAL COMBUSTION AND GASIFICATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Robert Hurt; Joseph Calo; Thomas Fletcher; Alan Sayre

    2003-01-01

    The goal of this project is to carry out the necessary experiments and analyses to extend leading submodels of coal transformations to the new conditions anticipated in next-generation energy technologies. During the first project quarter, a technical kick-off meeting was held on the Brown campus involving PIs from Brown (Hurt, Calo), BYU (Fletcher), and B&W (Sayre, Burge). Following this first meeting the current version of CBK (Version 8) was transferred to B&W McDermott and the HP-CBK code developed by BYU was transferred to Brown to help guide the code development in this project. Also during the first project year, progress was reviewed at an all-hands meeting was held at Brigham Young University in August, 2001. The meeting was attended by PIs Fletcher, Hurt, Calo, and Sayre, and also by affiliated investigators Steven Burge from McDermott and Prof. William Hecker from BYU. During the first project year, significant progress was made on several fronts, as described in detail in the previous annual report. In the current second annual report, we report on progress made on two important project tasks. At Brown University: (1) Char combustion reactivities at 500 C in air were determined for a diverse set of solid fuels and organic model compound chars. These varied over 4 orders of magnitude for the chars prepared at 700 C, and over 3 orders of magnitude for the chars prepared at 1000 C. The resultant reactivities correlate poorly with organic elemental composition and with char surface area. (2) Specially-acquired model materials with minute amounts of inorganic matter exhibit low reactivities that fall in a narrow band as a function of wt-% carbon. Reactivities in this sample subset correlate reasonably well with total char surface area. (3) A hybrid chemical/statistical model was developed which explains most of the observed reactivity variation based on four variables: the amounts of nano-dispersed K, nanodispersed (Ca+Mg), elemental carbon (wt-% daf), and

  5. FUNDAMENTAL INVESTIGATION OF FUEL TRANSFORMATIONS IN PULVERIZED COAL COMBUSTION AND GASIFICATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Robert Hurt; Joseph Calo; Thomas Fletcher; Alan Sayre

    2004-01-01

    The goal of this project is to carry out the necessary experiments and analyses to extend leading submodels of coal transformations to the new conditions anticipated in next-generation energy technologies. During the first two projects years, significant progress was made on most of the tasks, as described in detail in the two previous annual reports. In the current third annual report, we report in detail on the BYU task on the properties and intrinsic reactivities of chars prepared at high-pressure. A flat-flame burner was used in a high pressure laminar flow facility to conduct high temperature, high heating rate coal pyrolysis experiments. Heating rates were approximately 10{sup 5} K/s, which is higher than in conventional drop tube experiments. Char samples from a Pitt No.8 coal and lignite were collected at 1300 C at 1, 6, 10, and 15 atm. Swelling ratios of the lignite were less than 1.0, and only about 1.3 for the Pitt No.8 coal. All coals showed slight increases in swelling behavior as pressure increased. The swelling behavior observed for the Pitt No.8 coal at each pressure was lower than reported in high pressure drop tube experiments, indicating the effect of heating rate on particle swelling. This heating rate effect was similar to that observed previously at atmospheric pressure. SEM photos revealed that bituminous coal has large physical structure transformations, with popped bubbles due to the high heating rate. TGA char oxidation reactivities were measured at the same total pressure as the char preparation pressure. The general trend was that the TGA reactivity on a gram per gram available basis decreased for both Pitt No.8 and Knife River lignite coal chars with increasing char formation pressure. The Pitt No.8 char intrinsic activation energy and oxygen reaction order remained relatively constant with increasing pressure. This new data provides some of the only information available on the morphology, structure, and reactivity of chars prepared in

  6. Modeling of pulverized coal combustion processes in a vortex furnace of improved design. Part 2: Combustion of brown coal from the Kansk-Achinsk Basin in a vortex furnace

    Science.gov (United States)

    Krasinsky, D. V.; Salomatov, V. V.; Anufriev, I. S.; Sharypov, O. V.; Shadrin, E. Yu.; Anikin, Yu. A.

    2015-03-01

    This paper continues with the description of study results for an improved-design steam boiler vortex furnace, for the full-scale configuration of which the numerical modeling of a three-dimensional turbulent two-phase reacting flow has been performed with allowance for all the principal heat and mass transfer processes in the torch combustion of pulverized Berezovsk brown coal from the Kansk-Achinsk Basin. The detailed distributions of velocity, temperature, concentration, and heat flux fields in different cross sections of the improved vortex furnace have been obtained. The principal thermoengineering and environmental characteristics of this furnace are given.

  7. Pyrite thermochemistry, ash agglomeration, and char fragmentation during pulverized coal combustion. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Akan-Etuk, A.; Diaz, R.; Niksa, S.

    1991-10-01

    The objective of the present work is to introduce an experimental program that will eventually lead to time-resolved iron ash composition over the technological operating domain. The preceding literature survey suggests two important stipulations on any such experimental program. The first stipulation is that good control must be established over the operating conditions, to accurately quantify their effects. The other is that data must be obtained rapidly, to thoroughly cover the important operating domain. This work presents a series of studies that has characterized the desulfurization of pyrite during the early stages of combustion. An experimental system was established and used to monitor the effects of oxygen, temperature, and residence time on the evolution of condensed phase products of the combustion of pure pyrite. (VC)

  8. Pyrite thermochemistry, ash agglomeration, and char fragmentation during pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Akan-Etuk, A.; Diaz, R.; Niksa, S.

    1991-10-01

    The objective of the present work is to introduce an experimental program that will eventually lead to time-resolved iron ash composition over the technological operating domain. The preceding literature survey suggests two important stipulations on any such experimental program. The first stipulation is that good control must be established over the operating conditions, to accurately quantify their effects. The other is that data must be obtained rapidly, to thoroughly cover the important operating domain. This work presents a series of studies that has characterized the desulfurization of pyrite during the early stages of combustion. An experimental system was established and used to monitor the effects of oxygen, temperature, and residence time on the evolution of condensed phase products of the combustion of pure pyrite. (VC)

  9. Physicochemical properties and potential health effects of nanoparticles from pulverized coal combustion

    Institute of Scientific and Technical Information of China (English)

    YU DunXi; XU MingHou; YAO Hong; LIU XiaoWei; ZHOU Ke; WEN Chang; LI Lin

    2009-01-01

    Nanoparticles are thought to induce more severe health impacts than larger particles. The nanoparti-cles from coal-fired boilers are classified into three size fractions with a 13-stage low pressure impactor. Their physicochemical properties are characterized by the high-resolution field emission scanning electron microscope and X-ray fluorescence spectrometer (XRF). The results show that coal-derived nanoparticles mainly consist of individual primary particles of 20-150 nm and their aggregates. Inor-ganic nanoparticles primarily contain ash-forming elements and their aggregates have a dense struc-ture. Organic nanoparticles are dominated by the element carbon and their aggregates have a loose structure. Nanoparticles from the same boiler have a similar composition and are primarily composed of sulfur, refractory elements and alkali/alkaline elements. Some transition and heavy metals are also detected. For different boilers, greater differences are observed in the production of the nanoparticles and their composition, possibly due to the use of low-NOx burners. Coal-derived nanoparticles have a small size, large specific surface area and complicated chemical composition, and thus are potentially more harmful to human health.

  10. Comparative analysis of the influence of turbulence models on the description of the nitrogen oxides formation during the combustion of swirling pulverized coal flow

    Science.gov (United States)

    Kuznetsov, V.; Chernetskaya, N.; Chernetskiy, M.

    2016-10-01

    The paper presents the results of numerical research on the influence of the two- parametric k-ε, and k-ω SST turbulence models as well as Reynolds stress model (RSM) on the description of the nitrogen oxides formation during the combustion of pulverized coal in swirling flow. For the numerical simulation of turbulent flow of an incompressible liquid, we used the Reynolds equation taking into account the interfacial interactions. To solve the equation of thermal radiation transfer, the P1 approximation of spherical harmonics method was employed. The optical properties of gases were described based on the sum of gray gases model. To describe the motion of coal particles we used the method of Lagrange multipliers. Burning of coke residue was considered based on diffusion - kinetic approximation. Comparative analysis has shown that the choice of turbulence model has a significant impact on the root mean square (RMS) values of the velocity and temperature pulsation components. This leads to significant differences in the calculation of the nitrogen oxides formation process during the combustion of pulverized coal.

  11. CFD simulation and experimental validation of co-combustion of chicken litter and MBM with pulverized coal in a flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Heikkinen, J.M.; Venneker, B.C.H.; di Nola, G.; de Jong, W.; Spliethoff, H. [Energy Technology section, Delft University of Technology, Leeghwaterstraat 44, NL-2628 CA Delft (Netherlands)

    2008-09-15

    The influence of co-combustion of solid biomass fuels with pulverized coal on burnout and CO emissions was studied using a flow reactor. The thermal input on a fuel feeding basis of the test rig was approximately 7 kW. Accompanied with the measurements, a reactor model using the CFD code AIOLOS was set up and first applied for two pure coal flames (with and without air staging). Reasonable agreement between measurements and simulations was found. An exception was the prediction of the CO concentration under sub-stoichiometric conditions (primary zone). As model input for the volatile matter release, the HTVM (high temperature volatile matter as defined by IFRF [IFRF, www.handbook.ifrf.net/handbook/glossary.html. ]) was used. Furthermore, a relatively slow CO oxidation rate obtained from the literature and the ERE (Extended Resistance Equation) model for char combustion were selected. Furthermore, the model was used for simulating co-firing of coal with chicken litter (CL) and meat and bone meal (MBM). The conditions applied are relevant for future co-firing practice with high thermal shares of secondary fuels (larger than 20%). The major flue gas concentrations were quite well described, however, CO emission predictions were only qualitatively following the measured trends when O{sub 2} is available and severely under-predicted under substoichiometric conditions. However, on an engineering level of accuracy, and concerning burnout, this work shows that co-combustion of the fuels can reasonably well be described with coal combustion sub-models. (author)

  12. DEVELOPMENT OF A NOVEL RADIATIVELY/CONDUCTIVELY STABILIZED BURNER FOR SIGNIFICANT REDUCTION OF NOx EMISSIONS AND FOR ADVANCING THE MODELING AND UNDERSTANDING OF PULVERIZED COAL COMBUSTION AND EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Noam Lior; Stuart W. Churchill

    2003-10-01

    The primary objective of the proposed study was the study and analysis of, and design recommendations for, a novel radiatively-conductively stabilized combustion (RCSC) process for pulverized coal, which, based on our prior studies with both fluid fuels and pulverized coal, holds a high promise to reduce NO{sub x} production significantly. We have primarily engaged in continuing and improving our process modeling and analysis, obtained a large amount of quantitative information about the effects of the major parameters on NO{sub x} production, conducted an extensive exergy analysis of the process, evaluated the practicalities of employing the Radiatively-Conductively Stabilized Combustor (RCSC) to large power and heat plants, and improved the experimental facility. Prior experimental work has proven the feasibility of the combustor, but slagging during coal combustion was observed and should be dealt with. The primary outcomes and conclusions from the study are: (1) we developed a model and computer program that represents the pulverized coal combustion in the RCSC, (2) the model predicts that NO{sub x} emissions can be reduced by a number of methods, detailed in the report. (3) the exergy analysis points out at least a couple of possible ways to improve the exergetic efficiency in this combustor: increasing the effectiveness of thermal feedback, and adjusting the combustor mixture exit location, (4) because of the low coal flow rates necessitated in this study to obtain complete combustion in the burner, the size of a burner operating under the considered conditions would have to be up to an order of magnitude, larger than comparable commercial burners, but different flow configurations of the RCSC can yield higher feed rates and smaller dimensions, and should be investigated. Related to this contract, eleven papers were published in journals and conference proceedings, and ten invited presentations were given at university and research institutions, as well as at

  13. Ash liberation from included minerals during combustion of pulverized coal: the relationship with char structure and burnout

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H.; Wall, T.; Liu, G.; Bryant, G. [University of Newcastle, Callaghan, NSW (Australia). CRC for Black Coal Utilization and Dept. of Chemical Engineering

    1999-12-01

    In this study, the float fraction ({lt} specific gravity of 2.0) of a size cut (63-90 {mu}m) bituminous coal was combusted in a drop tube furnace (DTF) at a gas temperature of 1300{degree}C under an atmosphere of air, to investigate the ash liberation at five coal burnoff levels (35.5%, 54.3%, 70.1%, 87.1% and 95.6%). The data indicated that char structure determines the ash liberation at different burnoff levels. Fragmentation of porous char was found to be the determinative mechanism for formation of fine ash during the early and middle stages of char combustion, while coalescence of included mineral matter determines the coarse ash formed in the later stages of combustion. The investigation confirmed that the char morphology and structure play a key role in determining char fragmentation, char burnout history, and the ash liberation during combustion. 35 refs., 5 figs., 2 tabs.

  14. Application of the NOx Reaction Model for Development of Low-NOx Combustion Technology for Pulverized Coals by Using the Gas Phase Stoichiometric Ratio Index

    Directory of Open Access Journals (Sweden)

    Kenji Yamamoto

    2011-03-01

    Full Text Available We previously proposed the gas phase stoichiometric ratio (SRgas as an index to evaluate NOx concentration in fuel-rich flames. The SRgas index was defined as the amount of fuel required for stoichiometric combustion/amount of gasified fuel, where the amount of gasified fuel was the amount of fuel which had been released to the gas phase by pyrolysis, oxidation and gasification reactions. In the present study we found that SRgas was a good index to consider the gas phase reaction mechanism in fuel-rich pulverized coal flames. When SRgas < 1.0, NOx concentration was strongly influenced by the SRgas value. NOx concentration was also calculated by using a reaction model. The model was verified for various coals, particle diameters, reaction times, and initial oxygen concentrations. The most important reactions were gas phase NOx reduction reactions by hydrocarbons. The hydrocarbon concentration was estimated based on SRgas. We also investigated the ratio as an index to develop a new low-NOx combustion technology for pulverized coals. We examined the relation between local SRgas distribution in the fuel-rich region in the low-NOx flame and NOx emissions at the furnace exit, by varying burner structures. The relationship between local SRgas value and local NOx concentration was also examined. When a low-NOx type burner was used, the value of SRgas in the flame was readily decreased. When the local SRgas value was the same, it was difficult to influence the local NOx concentration by changing the burner structure. For staged combustion, the most important item was to design the burner structure and arrangement so that SRgas could be lowered as much as possible just before mixing with staged air.

  15. Influence of Environmentally Friendly and High-Efficiency Composite Additives on Pulverized Coal Combustion in Cement Industry

    OpenAIRE

    2016-01-01

    4 kinds of chemical reagents and 3 kinds of industrial wastes were selected as burning additives for 2 kinds of coals in cement industry. The work focused on the replacement of partial chemical reagents by industrial wastes, which not only reduced the cost and took full advantage of industrial wastes, but also guaranteed the high combustion efficiency and removed the NOX and SO2 simultaneously. The experiments were carried out in DTF. The combustion residues were analyzed by SEM and XRD. The ...

  16. COMPARISON OF PARTICLE SIZE DISTRIBUTIONS AND ELEMENTAL PARTITIONING FROM THE COMBUSTION OF PULVERIZED COAL AND RESIDUAL FUEL OIL

    Science.gov (United States)

    The paper gives results of experimental efforts in which three coals and a residual fuel oil were combusted in three different systems simulating process and utility boilers. Particloe size distributions (PSDs) were determined using atmospheric and low-pressure impaction, electr...

  17. Aspects chimiques de la combustion du charbon pulvérisé. Première partie Chemical Aspects of the Combustion of Pulverized Coal. Part One

    Directory of Open Access Journals (Sweden)

    De Soete G. G.

    2006-11-01

    deux mécanismes totalement différents, par exemple entre le mécanisme d'ignition homogène et le mécanisme d'ignition hétérogène du charbon, avec des conséquences pratiques pour la stabilisation de la flamme industrielle ; autre exemple : la compétition entre les divers mécanismes homogènes de formation d'oxydes d'azote et les mécanismes hétérogènes de leur réduction sur des particules solides de coke, de suie et de cendre. Avec ces idées présentes comme un leitmotiv implicite, on passe en revue les grandes étapes de la flamme industrielle de charbon pulvérisé : la dévolatilisation rapide avec la formation progressive de volatils gazeux, de goudrons et de coke ; la transformation partielle des produits gazeux et liquides de pyrolyse en suies ainsi que leur oxydation en phase gazeuse ; la combustion hétérogène du coke ; l'ignition du charbon et sa dépendance par rapport à des processus critiques homogènes et (ou hétérogènes. Comme exemple typique d'un épiphénomènechimique, on suit la transformation des espèces azotées en NO et en N2, qui se greffe en contrepoint et à chaque pas sur tes différents thèmes successifs de cette symphonie de l'oxydation du charbon. En de nombreux points de cette évolution du charbon à travers la flamme, les connaissances de la chimie de com-bustion en phase gazeuse constituent un instrument utile d'interprétation (par exemple : pour l'oxydation des volatils, pour la discussion des modalités d'ignition. II n'en reste pas moins vrai que la plupart des problèmes chimiques hétérogènes sont bien spécifiques de la flamme de charbon ; leur traitement est rendu ardu à cause de la complexité, évolutive au cours de la combustion, du combustible solide lui-même. It is not easy to obtain a full picture of the multiple chemical phenomena which occur inside a pulverized coal flame. This bibliographie review attempts to give more than just a juxtaposition of data from the recent literature and risks making

  18. Influence of Environmentally Friendly and High-Efficiency Composite Additives on Pulverized Coal Combustion in Cement Industry

    Directory of Open Access Journals (Sweden)

    Zhiyong Wang

    2016-01-01

    Full Text Available 4 kinds of chemical reagents and 3 kinds of industrial wastes were selected as burning additives for 2 kinds of coals in cement industry. The work focused on the replacement of partial chemical reagents by industrial wastes, which not only reduced the cost and took full advantage of industrial wastes, but also guaranteed the high combustion efficiency and removed the NOX and SO2 simultaneously. The experiments were carried out in DTF. The combustion residues were analyzed by SEM and XRD. The results showed that the burnout rate was increased after adding the additives; meanwhile, the NOX and SO2 release concentration were reduced, but the degree of action varied for different additives and coals. The substitute of chemical reagents by industrial wastes was very effective; overall, the cold-rolled iron oxide worked better than others; the particles surface was tougher and the peaks of crystalline phase were lower than raw coal, which indicated that the additives played good roles in combustion process.

  19. Assessment of pulverized-coal-fired combustion performance: Final report for the period September 1980--September 1983

    Energy Technology Data Exchange (ETDEWEB)

    Richter, W.F.; Clark, W.; Pohl, J.H.; Payne, R.

    1987-06-01

    The purpose of this program was to evaluate an engineering analysis procedure which could be used to assess the impact on thermal performance of converting gas and oil fired equipment to coal. The program consisted of four major tasks: (1) Engineering Analysis. The objective was to evaluate currently available models which could be used to predict combustor performance and to define a procedure which could be used to assess the impact of a coal firing in a boiler or furnace; (2) Reactor Studies. The purpose was to evaluate, under controlled conditions, the radiative properties of fly ash clouds; (3) Pilot Scale Experiments. This involved a combustion trial with gas and coals which were burned at 0.7 /times/ 10/sup 6/ Btu/hr in a pilot-scale combustor. The purpose was to verify and supplement the results of the small-scale reactor studies on the radiant properties of coal flames at larger scale; (4) Reporting. Engineering analysis procedures were used to identify those fuels related properties which had a major impact on the thermal performance of furnaces. The major result of the study is that thermal performance of coal-fired furnaces is dominated by the formation of fly ash deposits on the heat transfer surfaces. The key parameters which influence thermal performance are: thickness, thermal conductivity, and surface emissivity or absorptivity. 105 refs., 170 figs., 29 tabs.

  20. Ignition and Combustion of Pulverized Coal and Biomass under Different Oxy-fuel O2/N2 and O2/CO2 Environments

    Science.gov (United States)

    Khatami Firoozabadi, Seyed Reza

    This work studied the ignition and combustion of burning pulverized coals and biomasses particles under either conventional combustion in air or oxy-fuel combustion conditions. Oxy-fuel combustion is a 'clean-coal' process that takes place in O2/CO2 environments, which are achieved by removing nitrogen from the intake gases and recirculating large amounts of flue gases to the boiler. Removal of nitrogen from the combustion gases generates a high CO2-content, sequestration-ready gas at the boiler effluent. Flue gas recirculation moderates the high temperatures caused by the elevated oxygen partial pressure in the boiler. In this study, combustion of the fuels took place in a laboratory laminar-flow drop-tube furnace (DTF), electrically-heated to 1400 K, in environments containing various mole fractions of oxygen in either nitrogen or carbon-dioxide background gases. The experiments were conducted at two different gas conditions inside the furnace: (a) quiescent gas condition (i.e., no flow or inactive flow) and, (b) an active gas flow condition in both the injector and furnace. Eight coals from different ranks (anthracite, semi-snthracite, three bituminous, subbituminous and two lignites) and four biomasses from different sources were utilized in this work to study the ignition and combustion characteristics of solid fuels in O2/N2 or O2/CO2 environments. The main objective is to study the effect of replacing background N2 with CO2, increasing O2 mole fraction and fuel type and rank on a number of qualitative and quantitative parameters such as ignition/combustion mode, ignition temperature, ignition delay time, combustion temperatures, burnout times and envelope flame soot volume fractions. Regarding ignition, in the quiescent gas condition, bituminous and sub-bituminous coal particles experienced homogeneous ignition in both O2/N 2 and O2/CO2 atmospheres, while in the active gas flow condition, heterogeneous ignition was evident in O2/CO 2. Anthracite, semi

  1. Feasibility of semi coke combustion in industrial pulverized coal boiler%煤粉工业锅炉燃烧兰炭试验研究

    Institute of Scientific and Technical Information of China (English)

    牛芳

    2015-01-01

    In order to burn semi coke in industrial pulverized coal boiler,taking the semi coke produced by Shaanxi Coal and Chemical In-dustry Group as research object,the pulverized coal combustion test in industrial boiler was conducted. The ignition,stable combustion and after-combustion were investigated. The corresponding reform measures were provided. The results showed that,the unique double-cone structure of the combustor and the mode of dense phase combustion provided favorable conditions for the ignition and stable combustion of semi coke. The blue coke could be ignited and burned stably when the excess air coefficient was 1. 2 and the proportion of primary air,sec-ondary air and tertiary air was 0. 11,0. 47,0. 42,the combustor was preheated for 3 minutes and the semi coke burned with oil for 4 mi-nutes. During combustion,the temperature in the back of furnace remained 550 ℃,while the temperature in the middle was over 800 ℃. In order to lower burning point,improve temperature in the fire area and make semi coke full combustion,the structure and size of combus-tor was adjusted,the preheating time was prolonged.%为提高兰炭在煤粉工业锅炉上的燃烧效率,以陕西煤业化工集团生产的兰炭为原料,进行煤粉工业锅炉燃烧试验,分析了兰炭着火、稳燃、燃烬情况;针对兰炭燃烧过程中存在的问题提出解决方案。结果表明:高效煤粉工业锅炉双锥燃烧器的独特结构和浓相燃烧的方式,为兰炭的着火和稳燃提供了良好条件。在过量空气系数1.2,一、二、三次风比例分别为0.11、0.47、0.42,预热时间3 min,伴燃时间4 min的条件下,实现了兰炭粉的着火和自维持稳定燃烧,燃烧期间后部温度保持在550℃,炉膛中部温度大于800℃。针对兰炭燃烧存在燃烧器内燃点靠后、着火区域温度低和兰炭燃烧不完全等问题,提出可通过调整燃烧室的结构和尺寸,使燃烧器蓄热能力增强,

  2. Application and Operational Maintenance Experience of Plasma Pulverized Coal Ignition Combustion Technology%等离子煤粉点火燃烧技术的应用及运维经验

    Institute of Scientific and Technical Information of China (English)

    刘俊臻

    2012-01-01

    介绍了交流等离子煤粉点火系统的工作原理、点火燃烧器功能、点火燃烧机理以及在上海吴泾热电厂2台1125t/h锅炉上的应用情况。总结了等离子煤粉点火装置和稳燃系统的安装、调试与日常运维经验。实践表明,等离子煤粉点火技术是一种节能、环保、快速升负荷的技术。锅炉点火燃油零消耗,既提高了煤粉燃烧的经济性,又减少了燃煤电厂的烟尘排放;既改善了厂区周边环境,又降低了生产成本。交流等离子煤粉点火系统的应用,可以获得较好的经济及社会效益。%The essay introduces operational principle of alternating plasma pulverized coal ignition system, the function of ignition burner, mechanization of ignition combustion and the application of plasma pulverized coal ignition combustion technology on two 1 125 t/h boilers in Shanghai Wujing Thermal Power Plant. It also makes a summary of installation, debugging and routine operational maintenance experience for plasma pulverized coal ignition device and stabilized combustion system. The practice proves that plasma pulverized coal ignition technology is a new technology with conservation of energy, environmental protection and quick power increasing. With ignition fuel oil zero consumption, it not only raises economical efficiency of pulverized coal burning, but also reduces smoke dust discharging in coal fired power plant, and improves power plant's surroundings as well as lowers the production cost effectively. The application of alternating plasma pulverized coal ignition system brings better economic and social benefits.

  3. Optimization Renovation of Low NOx Combustion in Pulverized Coal Fired Boiler of Thermal Power Plant%电厂煤粉锅炉的低氮燃烧优化改造

    Institute of Scientific and Technical Information of China (English)

    常志国

    2012-01-01

    The mechanism for generation of NOx in the combustion process of pulverized coal fired boiler was introduced. Connecting with renovation of pulverized coal fired boiler, the principle of reducing NOx discharge through air classification combustion was introduced, and the experimental result was analyzed and discussed. After air classification combustion renovation, the discharge of NOx from pulverized coal fired boiler decreased substantially, and the main performance indexes of boiler were improved, which achieved good economic profit and environmental protection effects.%阐述了在煤粉锅炉燃烧过程中氮氧化物(NOx)的产生机理和影响因素,结合煤粉锅炉改造,介绍了采用空气分级燃烧降低NOx排放的原理,并对试验结果进行了分析和讨论。实施空气分级燃烧改造后,煤粉锅炉的NOx排放量大幅减少,锅炉的主要性能参数指标得到提升,取得了良好的经济效益和环保效果。

  4. Numerical Simulation of Combustion Characteristics of a 300 MW Blast Furnace Gas/Pulverized Coal Combined Combustion Boiler%300MW煤粉/高炉煤气混燃锅炉燃烧特性数值模拟

    Institute of Scientific and Technical Information of China (English)

    王春波; 魏建国; 盛金贵; 李艳奇

    2012-01-01

    Blast furnace gas(BFG) produced from steel mill is a low heat value fuel,which combined with pulverized coal to combust in boiler is one of effective ways.However,the combustion characteristics would be changed greatly when compared with only pulverized coal combustion.For example,superheaters and reheaters are easy to excess rated temperatures and carbon content in fly ash will become higher,etc.All these problems lead to its limited application today.Take a 300MW BFG/pulverized coal boiler for example,the combustion characteristics were simulated by means of two mixture fractions way.The pure coal condition and three BFG ratio: 10%,20% and 30% conditions were investigated.It shows the temperature level in boiler is lowered obviously when BFG was mixed into boiler.For example,the maximal temperature is lowered about 81K when BFG ratio is 10% for a boiler section.Also,the temperature becomes lower with the BFG ratio.When BFG was mixed into boiler the flue gases volume would be increased.So,the actual stay time for pulverized coal in boiler will be shortened and it is more difficulty for coal to combust completely.Aslo,it is helpfully for control NO emission when BFG was mixed into boiler.%钢厂高炉煤气是一种低热值燃料,它和煤粉在炉内掺烧是其一种有效的利用途径。但煤粉掺烧高炉煤气后燃烧特性与纯煤粉燃烧有很大不同,掺烧过程中易发生过/再热器超温、飞灰含碳量过高等问题,导致其在大型锅炉上的应用很少。针对某钢厂300MW四角切圆煤粉/高炉煤气混燃锅炉,使用二混合分数法对其燃烧特性进行数值模拟。对比研究了纯燃煤工况和高炉煤气掺烧量分别为10%、20%、30%的工况,发现掺烧高炉煤气时炉内温度水平有明显下降(如,掺烧10%高炉煤气时截面最高温度降低81K),且随着掺烧量的增加而加剧,但下降的趋势变缓。掺烧高炉煤气后产生烟气量增多,炉膛出口烟速有明显增加,

  5. Pushing the pulverized coal envelope with LEBS

    Energy Technology Data Exchange (ETDEWEB)

    Regan, J.W.; Borio, R.W.; Palkes, M. [and others

    1995-11-01

    In response to challenges from technologies such as IGCC and PFBC, the ABB LEBS Team has proposed removing the barriers to very large advances in environmental and thermal performance of pulverized coal plants. Pulverized coal will continue to be the source of more than half of our electric generation well into the next century and we must develop low-risk low-cost advances that will compete with the claimed performance of other technologies. This paper describes near-term PC technologies for new and retrofit applications which will accomplish this.

  6. Oxy-coal Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, J. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Lighty, J. [Univ. of Utah, Salt Lake City, UT (United States); Ring, T. [Univ. of Utah, Salt Lake City, UT (United States); Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Thornock, J. [Univ. of Utah, Salt Lake City, UT (United States); Y Jia, W. Morris [Univ. of Utah, Salt Lake City, UT (United States); Pedel, J. [Univ. of Utah, Salt Lake City, UT (United States); Rezeai, D. [Univ. of Utah, Salt Lake City, UT (United States); Wang, L. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, J. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-06

    The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol.

  7. 运行参数对粉煤流化床(PC-FB)燃烧效率的影响%The Effect of Operation Parameters on the Combustion Efficiency of a Pulverized-coal Fluidized Bed

    Institute of Scientific and Technical Information of China (English)

    陈鸿伟; 金保升; 徐益谦

    2001-01-01

    With the help of a pulverized-coal fluidized bed (PC-FB) test rig with 0.3 MW heat input test data were obtained of the PC-FB combustion efficiency under various operation parameters. A detailed discussion and study was conducted focusing on the mechanism of influence of these operation parameters on PC-FB combustion efficiency. The study results indicate that the combustion efficiency of the PC-FB can be as high as 98% - 99%, comparable with that of a pulverized-coal furnace. The authors also pointed out for the first time in the present study that under a certain set of conditions it is possible to realize a low-temperature high-efficiency combustion of the pulverized-coal. These conditions include, among others, a rational matching of the following items: combustion temperature, particle residence time, flame turbulence and in-furnace oxygen concentration and particle concentration%在一座0.3 MW热输入的PC-FBC试验台上进行了试验研究,获得了不同操作参数下PC-FB燃烧效率的试验数据,详细讨论了这些参数对PC-FB燃烧效率的影响规律。研究结果表明,粉煤流化床的燃烧效率最高达98%~99%,可与煤粉炉相媲美。本试验研究亦首次提出,只要燃烧温度、颗粒停留时间、火焰湍流度(3T)及炉内氧浓度、颗粒浓度(2C)合理匹配,就能够实现煤粉的低温高效燃烧。

  8. DRUCKFLAMM - Investigation on combustion and hot gas cleanup in pulverized coal combustion systems. Final report; DRUCKFLAMM - Untersuchungen zur Verbrennung und Heissgasreinigung bei der Druckkohlenstaubfeuerung. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Hein, K.R.G.; Benoehr, A.; Schuermann, H.; Stroehle, J.; Klaiber, C.; Kuhn, R.; Maier, J.; Schnell, U.; Unterberger, S.

    2001-07-01

    The ambitions of making energy supply more efficient and less polluting brought forth the development of coal based combined cycle power plants allowing considerable increases in net efficiencies. One of the regarded firing concepts for a coal based combined cycle power plant is represented by the pressurised pulverised coal combustion process which has the highest efficiency potential compared with the other coal based concepts. The fundamental purpose of the project was to gain firm knowledge concerning firing behaviour of coal in a pressurised pulverised coal combustion system. Detailed investigations were carried out in a pressurised entrained flow reactor taking into account fuel conversion and particle behaviour, pollutant formation and material behaviour under conditions of a pressurised pulverised coal firing. During the project's investigations several different measurement techniques were tested and partially also acquired (e.g. a two-colour-pyrometry system to measure simultaneous particle surface temperature and particle diameter of burning fuel particles). Calculation models under pressurised conditions for pressure vessel simulation and better scale-up were developed synchronously with the experimental investigations. The results gained using the pressurised entrained flow reactor show that many combustion mechanisms are influenced by increased pressure, for instance the fuel conversion is intensified and at the same time pollutant emissions decreased. The material investigations show that the ceramic materials used due to the very high combustion temperatures are very sensitive versus slagging and fast temperature changes, therefore further development requirements are needed to fully realise the high durability of ceramics in the pressurised furnace. Concerning the improvement of existing models for furnace simulation under pressurised conditions, a good resemblance can be observed when considering the actual measurement results from the test

  9. Investigation of the flow, combustion, heat-transfer and emissions from a 609MW utility tangentially fired pulverized-coal boiler

    DEFF Research Database (Denmark)

    Yin, Chungen; Caillat, Sébastien; Harion, Jean-Luc.;

    2002-01-01

    A numerical approach is given to investigate the performance of a 609 MW tangentially fired pulverized-coal boiler, with emphasis on formation mechanism of gas flow deviation and uneven wall temperature in crossover pass and on NOx emission. To achieve this purpose and obtain a reliable solution...... are reliable. These conclusions can be used to guide the design and operation of boilers of similar types....

  10. Cofiring coal-water slurry fuel with pulverized coal as a NOx reduction strategy

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Miller, S.F.; Morrison, J.L.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States)

    1997-12-31

    A low solids, low viscosity coal-water slurry fuel (CWSF) was formulated and produced from impounded bituminous coal fines and burned in a utility-scale boiler to investigate NOx emissions reduction during the cofiring of CWSF with pulverized coal. Tests were conducted at the Pennsylvania Electric Company (Penelec) Seward Station, located near Seward, Pennsylvania in a Babcock and Wilcox (B and W), front-wall fired, pulverized coal boiler (34 MWe). Two B and W pulverizers feed coal to six burners (two burner levels each containing three low-NOx burners). Approximately 20% of the thermal input was provided by CWSF, the balance by pulverized coal. There was a significant reduction of NOx emissions when cofiring CWSF and pulverized coal as compared to firing 100% pulverized coal. The level of reduction was dependent upon the cofiring configuration (i.e., cofiring in the upper three, lower three, or all six burners), with NOx emissions being reduced by as much as 26.5%. The reduction in NOx emissions was not due to the tempering effect of the water in the CWSF, because a greater reduction in NOx occurred when cofiring CWSF than when injecting the same quantity of water at the same boiler firing rate. This paper discusses the tests in detail and the proposed reburn mechanism for the NOx reduction. In addition, combustion test results from the front-wall fired unit at the Seward Station will be compared to CWSF cofire tests that have been conducted at cyclone-fired units at Tennessee Valley Authority`s (TVA) Paradise Station (704 MWe), Drakesboro, Kentucky and Southern Illinois Power Cooperative`s (SIPC) Marion, Illinois Station (33 MWe).

  11. Technical notes for the conceptual design for an atmospheric fluidized-bed direct combustion power generating plant. [Comparison of AFB plant and pulverized coal plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    The first part of this report presents a comparison of the conceptual designs of a large (570 MW(e)) pulverized coal (PC) steam generator equipped with a wet limestone flue gas desulfurization (FGD) system and two equivalent sized atmospheric fluidized bed (AFB) steam generators including balance of plants for electric-power generation. The reader is cautioned that this portion of the report compares a zero generation AFB technology to pulverized coal technology which has been operationally and economically optimized for the past half-century. This comparison is intended to be indicative of whether further development of the AFB concept as a viable alternative to the PC/FGD concept for electric-power generation is merited. In the second part, the load-following capability of a once-through subcritical atmospheric fluidized bed boiler is analyzed. Digital computer simulation predictions of the plant's response to open loop step changes in firing rate, feedwater flow, governor valve, unit load demand, etc, are made. The predicted response of throttle pressure, steam temperature, unit load, etc, are compared to the response of a conventional coal-fired, once-through, subcritical unit. The load-following capability is assessed through this qualitative comparison. Additional model response predictions are also presented for which no test data are presently available.

  12. A novel model for cost performance evaluation of pulverized coal injected into blast furnace based on effective calorific value

    Institute of Scientific and Technical Information of China (English)

    徐润生; 张建良; 左海滨; 李克江; 宋腾飞; 邵久刚

    2015-01-01

    The combustion process of pulverized coal injected into blast furnace involves a lot of physical and chemical reactions. Based on the combustion behaviors of pulverized coal, the conception of coal effective calorific value representing the actual thermal energy provided for blast furnace was proposed. A cost performance evaluation model of coal injection was built up for the optimal selection of various kinds of coal based on effective calorific value. The model contains two indicators: coal effective calorific value which has eight sub-indicators and coal injection cost which includes four sub-indicators. In addition, the calculation principle and application of cost performance evaluation model in a Chinese large-scale iron and steel company were comprehensively introduced. The evaluation results finally confirm that this novel model is of great significance to the optimal selection of blast furnace pulverized coal.

  13. Numerical study of co-firing pulverized coal and biomass inside a cement calciner.

    Science.gov (United States)

    Mikulčić, Hrvoje; von Berg, Eberhard; Vujanović, Milan; Duić, Neven

    2014-07-01

    The use of waste wood biomass as fuel is increasingly gaining significance in the cement industry. The combustion of biomass and particularly co-firing of biomass and coal in existing pulverized-fuel burners still faces significant challenges. One possibility for the ex ante control and investigation of the co-firing process are computational fluid dynamics (CFD) simulations. The purpose of this paper is to present a numerical analysis of co-firing pulverized coal and biomass in a cement calciner. Numerical models of pulverized coal and biomass combustion were developed and implemented into a commercial CFD code FIRE, which was then used for the analysis. Three-dimensional geometry of a real industrial cement calciner was used for the analysis. Three different co-firing cases were analysed. The results obtained from this study can be used for assessing different co-firing cases, and for improving the understanding of the co-firing process inside the calculated calciner.

  14. Detailed model for practical pulverized coal furnaces and gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Philips, S.D.; Smoot, L.D.

    1989-08-01

    The need to improve efficiency and reduce pollutant emissions commercial furnaces has prompted energy companies to search for optimized operating conditions and improved designs in their fossil-fuel burning facilities. Historically, companies have relied on the use of empirical correlations and pilot-plant data to make decisions about operating conditions and design changes. The high cost of collecting data makes obtaining large amounts of data infeasible. The main objective of the data book is to provide a single source of detailed three-dimensional combustion and combustion-related data suitable for comprehensive combustion model evaluation. Five tasks were identified as requirements to achieve the main objective. First, identify the types of data needed to evaluate comprehensive combustion models, and establish criteria for selecting the data. Second, identify and document available three-dimensional combustion data related to pulverized coal combustion. Third, collect and evaluate three-dimensional data cases, and select suitable cases based on selection criteria. Fourth, organize the data sets into an easy-to-use format. Fifth, evaluate and interpret the nature and quality of the data base. 39 refs., 15 figs., 14 tabs.

  15. Cold Gas-particle Flows in a New Swirl Pulverized-coal Burner by PDPA Measurement

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new type of swirl burner has been developed to stabilize pulverized-coal combustion by burning different types of coal at different loads and to reduce NOx formation during combustion. The burner uses a device to concentrate the coal powder in the primary-air tube that divides the primary coal-air into two streams with different pulverized-coal concentrations. This paper reports the measurement of gas-particle flows at the exit of the different swirl burners using a 3-D Phase Doppler Particle Anemometer (PDPA). The effect of different geometrical configurations on the two-phase flow field is studied. The results that give the two-phase flow fields and particle concentrations show the superiority of the new swirl burner.

  16. Influence of staged-air on airflow, combustion characteristics and NO(x) emissions of a down-fired pulverized-coal 300 MW(e) utility boiler with direct flow split burners.

    Science.gov (United States)

    Li, Zhengqi; Kuang, Min; Zhang, Jia; Han, Yunfeng; Zhu, Qunyi; Yang, Lianjie; Kong, Weiguang

    2010-02-01

    Cold airflow experiments were conducted to investigate the aerodynamic field in a small-scale furnace of a down-fired pulverized-coal 300 MW(e) utility boiler arranged with direct flow split burners enriched by cyclones. By increasing the staged-air ratio, a deflected flow field appeared in the lower furnace; larger staged-air ratios produced larger deflections. Industrial-sized experiments on a full-scale boiler were also performed at different staged-air damper openings with measurements taken of gas temperatures in the burner region and near the right-side wall, wall heat fluxes, and gas components (O(2), CO, and NO(x)) in the near-wall region. Combustion was unstable at staged-air damper openings below 30%. For openings of 30% and 40%, late ignition of the pulverized coal developed and large differences arose in gas temperatures and heat fluxes between the regions near the front and rear walls. In conjunction, carbon content in the fly ash was high and boiler efficiency was low with high NO(x) emission above 1200 mg/m(3) (at 6% O(2) dry). For fully open dampers, differences in gas temperatures and heat fluxes, carbon in fly ash and NO(x) emission decreased yielding an increase in boiler efficiency. The optimal setting is fully open staged-air dampers.

  17. Coal combustion products

    Science.gov (United States)

    Kalyoncu, R.S.; Olson, D.W.

    2001-01-01

    Coal-burning powerplants, which supply more than half of U.S. electricity, also generate coal combustion products, which can be both a resource and a disposal problem. The U.S. Geological Survey collaborates with the American Coal Ash Association in preparing its annual report on coal combustion products. This Fact Sheet answers questions about present and potential uses of coal combustion products.

  18. Aspects chimiques de la combustion du charbon pulvérisé. Première partie Chemical Aspects of the Combustion of Pulverized Coal. Part One

    OpenAIRE

    De Soete G. G.

    2006-01-01

    II n'est pas facile de parvenir à une vue complète des multiples phénomènes chimiques dont la flamme de charbon pulvérisé est le siège. La présente étude bibliographique s'efforce de donner plus qu'une juxtaposition des données de la littérature récente, en risquant une tentative de présentation cohérente des mécanismes chimiques clés qui s'affrontent dans cette combustion. Ces mécanismes font intervenir des réactions en phase gazeuse relativement rapides (combustion des produits gazeux de py...

  19. New computer program plots coal particle size to monitor pulverizer performance

    Energy Technology Data Exchange (ETDEWEB)

    Tartar, A.M. (Univ. of Missouri, St. Louis, MO (United States)); Mueller, W.K. (Union Electric Co., St. Louis, MO (United States)); Marrero, T.R.

    1994-11-01

    Maintaining proper coal particle size and distribution is one of many considerations in achieving efficient combustion performance. Improper pulverizer operation and maintenance can result in an excessive percentage of either coarse coal particles, which tends to increase the amount of unburned carbon in the ash, or fine coal particles, which can limit the throughput of the pulverizer and, if too fine, can affect coal burning rates and residence time in boilers. Traditionally, coal particle size plotting and distribution have been done by hand and required special graphing paper formulated using the Rosin and Rammler equation. Now there is an alternative. This article describes a computerized procedure for plotting the fineness of coal particles after the milling process developed by engineers at Union Electric Co., St. Louis, Mo., and the University of Missouri, Columbia. Known as an ANTAR-UE, this procedure is being used by the Betterment Engineering group at Union Electric to plot mill fineness data.

  20. Advanced char burnout models for the simulation of pulverized coal fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    T. Severin; S. Wirtz; V. Scherer [Ruhr-University, Bochum (Germany). Institute of Energy Plant Technology (LEAT)

    2005-07-01

    The numerical simulation of coal combustion processes is widely used as an efficient means to predict burner or system behaviour. In this paper an approach to improve CFD simulations of pulverized coal fired boilers with advanced coal combustion models is presented. In simple coal combustion models, first order Arrhenius rate equations are used for devolatilization and char burnout. The accuracy of such simple models is sufficient for the basic aspects of heat release. The prediction of carbon-in-ash is one aspect of special interest in the simulation of pulverized coal fired boilers. To determine the carbon-in-ash levels in the fly ash of coal fired furnaces, the char burnout model has to be more detailed. It was tested, in how far changing operating conditions affect the carbon-in-ash prediction of the simulation. To run several test cases in a short time, a simplified cellnet model was applied. To use a cellnet model for simulations of pulverized coal fired boilers, it was coupled with a Lagrangian particle model, used in CFD simulations, too. 18 refs., 5 figs., 5 tabs.

  1. Effect of tertiary air speed on combustion efficiency of pulverized coal burners%三次风速对煤粉燃烧器燃烧效率的影响

    Institute of Scientific and Technical Information of China (English)

    张文学; 郭彩; 武建新

    2015-01-01

    In order to study the influence of tertiary alr speed on burning efficiency of LB2000 type asphalt mixing station pulverized coal burners,a mathematical model was established.By using the Fluent software and the standard k-εmodel,numerical simulation on pulverized coal combustion in the burner was carried out.With different tertiary alr speeds,the temperature field,component concentration field,burning rate distribution field and particle traj ectory in the buerner were studied.According to the evaluation standard of combustion efficiency,the optimal tertiary alr speed should be from 40 m/s to 50 m/s.%为了研究三次风速对LB2000型沥青搅拌站煤粉燃烧器燃烧效率的影响,建立煤粉燃烧器数学模型,应用Fluent软件,采用标准k-ε模型对煤粉燃烧器中的煤粉燃烧进行模拟.在不同三次风风速下,对沥青搅拌站煤粉燃烧器的温度场、组分浓度场、燃尽率分布场和颗粒轨迹进行了分析.根据燃烧效率评价标准,得出了最佳三次风风速为40~50 m/s.

  2. Coal Combustion Science

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

    1991-08-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

  3. NOx control in large-scale power plant boilers through superfine pulverized coal technology

    Institute of Scientific and Technical Information of China (English)

    Jie YIN; Jianxing REN; Dunsong WEI

    2008-01-01

    Superfine pulverized coal technology can effectively reduce NOx emission in coal-fired power plant boilers. It can also economize the cost of the power plant and improve the use of the ash in the flue gas. Superfine pulverized coal technology, which will be widely used in China, includes common superfine pulverized coal technology and superfine pulverized coal reburning technology. The use of superfine pulver-ized coal instead of common coal in large-scale power plants will not only reduce more than 30% of NOx emission but also improve the thermal efficiency of the boiler.

  4. Pulverized coal injection in blast furnaces at ArcelorMittal Tubarao (AMT)

    Energy Technology Data Exchange (ETDEWEB)

    Klein, C.A.; Fujihara, F.K.; Defendi, G.A.; Tauffer Barros, R.J. [ArcelorMittal Tubarao, Serra (Brazil). Ironmaking Dept.

    2008-07-01

    The main factors that influence the performance of coal injected into blast furnaces include coal properties, combustion conditions and the equipment used in the plants for grinding, transportation and injection of coal. This paper focused on coal properties and the main operational control changes in the no.1 blast furnace at ArcelorMittal Tubarao. The furnace was modified from an all coke operation to a pulverized coal injection (pci) operation in order to ensure high productivity, low fuel consumption and longer service life. ArcelorMittal Tubarao has developed a coal buying model based on energy balance and the chemical analysis of ash. In the energy balance, the ratio between the heat supplied by carbon combustion and the heat consumed by the cracking of water and volatiles results in the potential rate of coke replacement by coal. 5 refs., 1 tab., 10 figs.

  5. TENORM: Coal Combustion Residuals

    Science.gov (United States)

    Burning coal in boilers to create steam for power generation and industrial applications produces a number of combustion residuals. Naturally radioactive materials that were in the coal mostly end up in fly ash, bottom ash and boiler slag.

  6. Alstom's Chemical Looping Combustion Prototype for CO2 Capture from Existing Pulverized Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Andrus, Jr., Herbert E. [Alstom Power Inc., Windsor, CT (United States); Chiu, John H. [Alstom Power Inc., Windsor, CT (United States); Edberg, Carl D. [Alstom Power Inc., Windsor, CT (United States); Thibeault, Paul R. [Alstom Power Inc., Windsor, CT (United States); Turek, David G. [Alstom Power Inc., Windsor, CT (United States)

    2012-09-30

    Alstom’s Limestone Chemical Looping (LCL™) process has the potential to capture CO2 from new and existing coal-fired power plants while maintaining high plant power generation efficiency. This new power plant concept is based on a hybrid combustion- gasification process utilizing high temperature chemical and thermal looping technology. This process could also be potentially configured as a hybrid combustion-gasification process producing a syngas or hydrogen for various applications while also producing a separate stream of CO2 for use or sequestration. The targets set for this technology is to capture over 90% of the total carbon in the coal at cost of electricity which is less than 20% greater than Conventional PC or CFB units. Previous work with bench scale test and a 65 kWt Process Development Unit Development (PDU) has validated the chemistry required for the chemical looping process and provided for the investigation of the solids transport mechanisms and design requirements. The objective of this project is to continue development of the combustion option of chemical looping (LCL-C™) by designing, building and testing a 3 MWt prototype facility. The prototype includes all of the equipment that is required to operate the chemical looping plant in a fully integrated manner with all major systems in service. Data from the design, construction, and testing will be used to characterize environmental performance, identify and address technical risks, reassess commercial plant economics, and develop design information for a demonstration plant planned to follow the proposed Prototype. A cold flow model of the prototype will be used to predict operating conditions for the prototype and help in operator training. Operation of the prototype will provide operator experience with this new technology and performance data of the LCL-C™ process, which will be applied to the commercial design and economics and plan for a future demonstration

  7. Alstom's Chemical Looping Combustion Prototype for CO{sub 2} Capture from Existing Pulverized Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Andrus, Herbert; Chiu, John; Edberg, Carl; Thibeault, Paul; Turek, David

    2012-09-30

    Alstom’s Limestone Chemical Looping (LCL™) process has the potential to capture CO{sub 2} from new and existing coal-fired power plants while maintaining high plant power generation efficiency. This new power plant concept is based on a hybrid combustion- gasification process utilizing high temperature chemical and thermal looping technology. This process could also be potentially configured as a hybrid combustion-gasification process producing a syngas or hydrogen for various applications while also producing a separate stream of CO{sub 2} for use or sequestration. The targets set for this technology is to capture over 90% of the total carbon in the coal at cost of electricity which is less than 20% greater than Conventional PC or CFB units. Previous work with bench scale test and a 65 kWt Process Development Unit Development (PDU) has validated the chemistry required for the chemical looping process and provided for the investigation of the solids transport mechanisms and design requirements. The objective of this project is to continue development of the combustion option of chemical looping (LCL-C™) by designing, building and testing a 3 MWt prototype facility. The prototype includes all of the equipment that is required to operate the chemical looping plant in a fully integrated manner with all major systems in service. Data from the design, construction, and testing will be used to characterize environmental performance, identify and address technical risks, reassess commercial plant economics, and develop design information for a demonstration plant planned to follow the proposed Prototype. A cold flow model of the prototype will be used to predict operating conditions for the prototype and help in operator training. Operation of the prototype will provide operator experience with this new technology and performance data of the LCL-C™ process, which will be applied to the commercial design and economics and plan for a future demonstration plant.

  8. Soot, organics, and ultrafine ash from air- and oxy-fired coal combustion

    Data.gov (United States)

    U.S. Environmental Protection Agency — Pulverized bituminous coal was burned in a 10W externally heated entrained flow furnace under air-combustion and three oxy-combustion inlet oxygen conditions (28,...

  9. On gas and particle radiation in pulverized fuel combustion furnaces

    DEFF Research Database (Denmark)

    Yin, Chungen

    2015-01-01

    Radiation is the principal mode of heat transfer in a combustor. This paper presents a refined weighted sum of gray gases model for computational fluid dynamics modelling of conventional air-fuel combustion, which has greater accuracy and completeness than the existing gaseous radiative property....... Although the refined gaseous radiative property model shows great advantages in gaseous fuel combustion modelling, its impacts are largely compromised in pulverized solid fuel combustion, in which particle-radiation interaction plays the dominant role in radiation heat transfer due to high particle loading....... Use of conversion-dependent particle emissivity and scattering factor will not only change the particle heating and reaction history, but also alter the radiation intensity and thus temperature profiles in the furnace. For radiation modelling in pulverized fuel combustion, the priority needs...

  10. Experimental study on operation optimization of the gas/pulverized coal blended combustion boiler%钢厂煤气混烧锅炉运行优化的试验研究

    Institute of Scientific and Technical Information of China (English)

    易正明; 肖慧; 杜炳旭

    2014-01-01

    An experiment was carried out of the adjustment of blast furnace gas (BFG) and coke oven gas (COG) for blended combustion in a gas/pulverized coal blended combustion boiler and analysis was made of the effect of BFG-COG blended combustion on exhaust gas temperature ,fly ash carbon content and superheated steam temperature of the boiler .On this basis ,the boiler operation was opti-mized .The results show that when BFG blending ratio is 30% and COG blending ratio is 40% ,the thermal efficiency of the boiler reaches 80 .9% .This not only guarantees a high thermal efficiency but also achieves a greater proportion blending combustion of BFG ,offering a solution to the problem of excessive BFG and proving to be more economic .%对某钢厂煤气混烧锅炉进行高炉煤气和焦炉煤气掺烧调整试验,分析掺烧对锅炉排烟温度、飞灰含碳量和过热蒸汽温度等的影响,并对锅炉运行进行了优化。结果表明,当高炉煤气掺烧热值比为30%且焦炉煤气掺烧热值比为40%时,锅炉热效率达到80.9%,这样既保证了锅炉较高的热效率,又实现了高炉煤气的较大比例掺烧,解决了其大量过剩问题,具有较好的经济性。

  11. On-line tracking of pulverized coal and biomass fuels through flame spectrum analysis

    Institute of Scientific and Technical Information of China (English)

    迟天阳; 张宏建

    2007-01-01

    This paper presents a new approach to the on-line tracking of pulverized coal and biomass fuels through flame spectrum analysis. A flame detector containing four photodiodes is used to derive multiple signals covering a wide spectrum of the flame from visible, near-infrared and mid-infrared spectral bands as well as a part of far-infrared band. Different features are extracted in time and frequency domains to identify the dynamic "fingerprints" of the flame. Fuzzy logic inference techniques are employed to combine typical features together and infer the type of fuel being burnt. Four types of pulverized coal and five types of biomass are burnt on a laboratory-scale combustion test rig. Results obtained demonstrate that this approach is capable of tracking the type of fuel under steady combustion conditions.

  12. Pulverized coal burnout in blast furnace simulated by a drop tube furnace

    Energy Technology Data Exchange (ETDEWEB)

    Du, Shan-Wen [Steel and Aluminum Research and Development Department, China Steel Corporation, Kaohsiung 812 (China); Chen, Wei-Hsin [Department of Greenergy, National University of Tainan, Tainan 700 (China); Lucas, John A. [School of Engineering of the University of Newcastle, Callaghan, NSW 2308 (Australia)

    2010-02-15

    Reactions of pulverized coal injection (PCI) in a blast furnace were simulated using a drop tube furnace (DTF) to investigate the burnout behavior of a number of coals and coal blends. For the coals with the fuel ratio ranging from 1.36 to 6.22, the experimental results indicated that the burnout increased with decreasing the fuel ratio, except for certain coals departing from the general trend. One of the coals with the fuel ratio of 6.22 has shown its merit in combustion, implying that the blending ratio of the coal in PCI operation can be raised for a higher coke replacement ratio. The experiments also suggested that increasing blast temperature was an efficient countermeasure for promoting the combustibility of the injected coals. Higher fuel burnout could be achieved when the particle size of coal was reduced from 60-100 to 100-200 mesh. However, once the size of the tested coals was in the range of 200 and 325 mesh, the burnout could not be improved further, resulting from the agglomeration of fine particles. Considering coal blend reactions, the blending ratio of coals in PCI may be adjusted by the individual coal burnout rather than by the fuel ratio. (author)

  13. Effects of moisture release and radiation properties in pulverized fuel combustion: A CFD modelling study

    DEFF Research Database (Denmark)

    Yin, Chungen

    2016-01-01

    Pulverized fuels (PF) prepared and fired in utility boilers always contain some moisture. For some fuels with high moisture contents (e.g., brown coals), the share of the evaporation enthalpy is quite significant compared to the heat released during combustion, which often needs to be reclaimed.......g., oxy-fuel or air–fuel), account for the variations in CO2 and H2O concentrations in a flame, and include the impacts of other participating gases (e.g., CO and hydrocarbons) needs to be derived for combustion CFD community....

  14. Thermodynamic Characteristics and Economic Analysis of a BFG/Pulverized Coal Mixed Combustion Boiler%300MW高炉煤气与煤粉混燃锅炉热力特性及经济性分析

    Institute of Scientific and Technical Information of China (English)

    王春波; 魏建国; 黄江城

    2012-01-01

    针对高炉煤气与煤粉混燃易发生过(再)热器超温、飞灰含碳量高等问题,对某300MW机组四角切圆高炉煤气/煤粉混燃锅炉进行了热力特性计算,并对掺烧高炉煤气后机组的经济性进行了分析.结果表明:掺烧高炉煤气后炉内温度降低,烟气量增加,辐射吸热量减少而对流吸热量增加,炉膛出口烟温及其后受热面区域的烟温升高,排烟温度升高,锅炉效率降低;掺烧高炉煤气后厂用电率有所升高,但发电煤耗降低,使发电成本降低.%To solve the problems occurring in a 300 MW tangential blast furnace gas (BFG)/pulverized coal blended combustion boiler, such as overheating of its superheater/reheater and high carbon content in the fly ash, etc. , thermodynamic calculations and an economic analysis were carried out. Results show that af- ter the fuel coal is blended with BFG, the in-furnace temperature drops, the exhaust gas volume rises, the absorption of radiation heat reduces, the absorption of convection heat increases, the gas temperatures at and after furnace outlet rise, the exhaust gas temperature increases and the boiler efficiency decreases; af- ter mixing with BFG, the house power consumption rises, but the coal consumption for power generation reduces, which helps to reduce the power generating cost.

  15. Combustion and NOx emission characteristics with respect to staged-air damper opening in a 600 MWe down-fired pulverized-coal furnace under deep-air-staging conditions.

    Science.gov (United States)

    Kuang, Min; Li, Zhengqi; Wang, Zhihua; Jing, Xinjing; Liu, Chunlong; Zhu, Qunyi; Ling, Zhongqian

    2014-01-01

    Deep-air-staging combustion conditions, widely used in tangential-fired and wall-arranged furnaces to significantly reduce NOx emissions, are premature up to now in down-fired furnaces that are designed especially for industry firing low-volatile coals such as anthracite and lean coal. To uncover combustion and NOx emission characteristics under deep-air-staging conditions within a newly operated 600 MWe down-fired furnace and simultaneously understand the staged-air effect on the furnace performance, full-load industrial-size measurements taken of gas temperatures and species concentrations in the furnace, CO and NOx emissions in flue gas, and carbon in fly ash were performed at various staged-air damper openings of 10%, 20%, 30%, and 50%. Increasing the staged-air damper opening, gas temperatures along the flame travel (before the flame penetrating the staged-air zone) increased initially but then decreased, while those in the staged-air zone and the upper part of the hopper continuously decreased and increased, respectively. On opening the staged-air damper to further deepen the air-staging conditions, O2 content initially decreased but then increased in both two near-wall regions affected by secondary air and staged air, respectively, whereas CO content in both two regions initially increased but then decreased. In contrast to the conventional understanding about the effects of deep-air-staging conditions, here increasing the staged-air damper opening to deepen the air-staging conditions essentially decreased the exhaust gas temperature and carbon in fly ash and simultaneously increased both NOx emissions and boiler efficiency. In light of apparently low NOx emissions and high carbon in fly ash (i.e., 696-878 mg/m(3) at 6% O2 and 9.81-13.05%, respectively) developing in the down-fired furnace under the present deep-air-staging conditions, further adjustments such as enlarging the staged-air declination angle to prolong pulverized-coal residence times in the

  16. Novel fragmentation model for pulverized coal particles gasification in low temperature air thermal plasma

    Directory of Open Access Journals (Sweden)

    Jovanović Rastko D.

    2016-01-01

    Full Text Available New system for start-up and flame support based on coal gasification by low temperature air thermal plasma is planned to supplement current heavy oil system in Serbian thermal power plants in order to decrease air pollutions emission and operational costs. Locally introduced plasma thermal energy heats up and ignites entrained coal particles, thus starting chain process which releases heat energy from gasified coal particles inside burner channel. Important stages during particle combustion, such as particle devolatilisation and char combustion, are described with satisfying accuracy in existing commercial CFD codes that are extensively used as powerful tool for pulverized coal combustion and gasification modeling. However, during plasma coal gasification, high plasma temperature induces strong thermal stresses inside interacting coal particles. These stresses lead to “thermal shock” and extensive particle fragmentation during which coal particles with initial size of 50-100 m disintegrate into fragments of at most 5-10 m. This intensifies volatile release by a factor 3-4 and substantially accelerates the oxidation of combustible matter. Particle fragmentation, due to its small size and thus limited influence on combustion process is commonly neglected in modelling. The main focus of this work is to suggest novel approach to pulverized coal gasification under high temperature conditions and to implement it into commercial comprehensive code ANSYS FLUENT 14.0. Proposed model was validated against experimental data obtained in newly built pilot scale D.C plasma burner test facility. Newly developed model showed very good agreement with experimental results with relative error less than 10%, while the standard built-in gasification model had error up to 25%.

  17. Coal combustion aerothermochemistry research. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Witte, A.B.; Gat, N.; Denison, M.R.; Cohen, L.M.

    1980-12-15

    On the basis of extensive aerothermochemistry analyses, laboratory investigations, and combustor tests, significant headway has been made toward improving the understanding of combustion phenomena and scaling of high swirl pulverized coal combustors. A special attempt has been made to address the gap between scientific data available on combustion and hardware design and scaling needs. Both experimental and theoretical investigations were conducted to improve the predictive capability of combustor scaling laws. The scaling laws derived apply to volume and wall burning of pulverized coal in a slagging high-swirl combustor. They incorporate the findings of this investigation as follows: laser pyrolysis of coal at 10/sup 6/ K/sec and 2500K; effect of coal particle shape on aerodynamic drag and combustion; effect of swirl on heat transfer; coal burnout and slag capture for 20 MW/sub T/ combustor tests for fine and coarse coals; burning particle trajectories and slag capture; particle size and aerodynamic size; volatilization extent and burnout fraction; and preheat level. As a result of this work, the following has been gained: an increased understanding of basic burning mechanisms in high-swirl combustors and an improved model for predicting combustor performance which is intended to impact hardware design and scaling in the near term.

  18. Joule II - Programme. Clean coal technology R & D. 2nd phase. Volume III. Novel approaches in advanced combustion (pressurized systems)

    Energy Technology Data Exchange (ETDEWEB)

    Hein, K.R.G.; Minchener, A.J.; Pruschek, R.; Roberts, P.A. [eds.

    1998-12-31

    A total of 22 papers are presented in this report on topics including advanced reburning; pulverized coal combustion systems; fluidized bed combustion; pressurizing combustion; fuel particle characterisation; coal and biomass cocombustion; gasification of coal and biomass; and particle pyrolysis. All papers have been abstracted separately for the IEA Coal Research CD-ROM and website.

  19. Engineering and Economic Analysis of an Advanced Ultra-Supercritical Pulverized Coal Power Plant with and without Post-Combustion Carbon Capture Task 7. Design and Economic Studies

    Energy Technology Data Exchange (ETDEWEB)

    Booras, George [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Powers, J. [General Electric, Schenectady, NY (United States); Riley, C. [General Electric, Schenectady, NY (United States); Hendrix, H. [Hendrix Engineering Solutions, Inc., Calera, AL (United States)

    2015-09-01

    This report evaluates the economics and performance of two A-USC PC power plants; Case 1 is a conventionally configured A-USC PC power plant with superior emission controls, but without CO2 removal; and Case 2 adds a post-combustion carbon capture (PCC) system to the plant from Case 1, using the design and heat integration strategies from EPRI’s 2015 report, “Best Integrated Coal Plant.” The capture design basis for this case is “partial,” to meet EPA’s proposed New Source Performance Standard, which was initially proposed as 500 kg-CO2/MWh (gross) or 1100 lb-CO2/MWh (gross), but modified in August 2015 to 635 kg-CO2/MWh (gross) or 1400 lb-CO2/MWh (gross). This report draws upon the collective experience of consortium members, with EPRI and General Electric leading the study. General Electric provided the steam cycle analysis as well as v the steam turbine design and cost estimating. EPRI performed integrated plant performance analysis using EPRI’s PC Cost model.

  20. Coal combustion science. Quarterly progress report, April 1993--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. [ed.

    1994-05-01

    This document is a quarterly status report of the Coal Combustion Science Project that is being conducted at the Combustion Research Facility, Sandia National Laboratories. The information reported is for Apr-Jun 1993. The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the PETC Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. The objective of the kinetics and mechanisms of pulverized coal char combustion task is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. Work is being done in four areas: kinetics of heterogeneous fuel particle populations; char combustion kinetics at high carbon conversion; the role of particle structure and the char formation process in combustion and; unification of the Sandia char combustion data base. This data base on the high temperature reactivities of chars from strategic US coals will permit identification of important fuel-specific trends and development of predictive capabilities for advanced coal combustion systems. The objective of the fate of inorganic material during coal combustion task is the establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of inorganic material during coal combustion as a function of coal type, particle size and temperature, the initial forms and distribution of inorganic species in the unreacted coal, and the local gas temperature and composition. In addition, optical diagnostic capabilities are being developed for in situ, real-time detection of inorganic vapor species and surface species during ash deposition. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  1. Impact of petrographic properties on the burning behavior of pulverized coal using a drop tube furnace

    Energy Technology Data Exchange (ETDEWEB)

    S. Biswas; N. Choudhury; S. Ghosal; T. Mitra; A. Mukherjee; S.G. Sahu; M. Kumar [Jadavpur University, Dhanbad (India). Central Fuel Research Institute]. sb_cfri@yahoo.co.in

    2007-12-15

    The combustion behavior of three Indian coals of different rank with wide variation in ash content and maceral compositions were studied using a drop tube furnace (DTF). Each coal was pulverized into a specific size (80% below 200 mesh) and fed into the DTF separately. The DTF runs were carried out under identical conditions for all of the coals. The carbon burnout was found out from the chemical analyses of the feed coals and the char samples collected from different ports of the DTF. Char morphology analyses was carried on the burnout residues of the top port. The top port results show better burnout of the lower rank coals which however was not observed in the last port. An attempt has been made to account for this variation in terms of rank and petrographic parameters of the respective coals. 20 refs., 1 fig., 6 tabs.

  2. Plasma-supported coal combustion in boiler furnace

    Energy Technology Data Exchange (ETDEWEB)

    Askarova, A.S.; Karpenko, E.I.; Lavrishcheva, Y.I.; Messerle, V.E.; Ustimenko, A.B. [Kazakh National University, Alma Ata (Kazakhstan). Dept. of Physics

    2007-12-15

    Plasma activation promotes more effective and environmentally friendly low-rank coal combustion. This paper presents Plasma Fuel Systems that increase the burning efficiency of coal. The systems were tested for fuel oil-free start-up of coal-fired boilers and stabilization of a pulverized-coal flame in power-generating boilers equipped with different types of burners, and burning all types of power-generating coal. Also, numerical modeling results of a plasma thermochemical preparation of pulverized coal for ignition and combustion in the furnace of a utility boiler are discussed in this paper. Two kinetic mathematical models were used in the investigation of the processes of air/fuel mixture plasma activation: ignition and combustion. A I-D kinetic code PLASMA-COAL calculates the concentrations of species, temperatures, and velocities of the treated coal/air mixture in a burner incorporating a plasma source. The I-D simulation results are initial data for the 3-D-modeling of power boiler furnaces by the code FLOREAN. A comprehensive image of plasma-activated coal combustion processes in a furnace of a pulverized-coal-fired boiler was obtained. The advantages of the plasma technology are clearly demonstrated.

  3. A new approach to study fast pyrolysis of pulverized coal

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Yao, J.; Lin, W. [Chinese Academy of Sciences, Institute of Chemical Metallurgy Fast Reactions Laboratory, Beijing, BJ (China)

    2002-07-01

    An experimental study of the effects of varying bed temperature and coal particle size on the fast pyrolysis of pulverized coal in a downer reactor is described. A Datong bituminous coal (particle size 0.5 and 0.34 mm) was studied at temperatures ranging from 592{sup o} C to 720{sup o} C. The experiments were conducted in a batch apparatus. An on-line gas analyzer was used to measure carbon dioxide release curves. The experimental data were used to develop a pyrolysis model that quantifies the fast heating of fine coal particles. 14 refs., 4 figs., 2 tabs.

  4. Temperature, velocity and species profile measurements for reburning in a pulverized, entrained flow, coal combustor

    Energy Technology Data Exchange (ETDEWEB)

    Tree, D.R.

    1999-03-01

    Nitrogen oxide emissions from pulverized coal combustion have been and will continue to be a regulated pollutant for electric utility boilers burning pulverized coal. Full scale combustion models can help in the design of new boilers and boiler retrofits which meet emissions standards, but these models require validation before they can be used with confidence. The objective of this work was to obtain detailed combustion measurements of pulverized coal flames which implement two NO reduction strategies, namely reburning and advanced reburning, to provide data for model validation. The data were also compared to an existing comprehensive pulverized coal combustion model with a reduced mechanism for NO reduction under reburning and advanced reburning conditions. The data were obtained in a 0.2 MW, cylindrical, down-fired, variable swirl, pulverized coal reactor. The reactor had a diameter of 0.76 m and a length of 2.4 m with access ports along the axial length. A Wyodak, sub-bituminous coal was used in all of the measurements. The burner had a centrally located primary fuel and air tube surrounded by heated and variably swirled secondary air. Species of NO, NO{sub x}, CO, CO{sub 2} and O{sub 2} were measured continuously. Aqueous sampling was used to measure HCN and NH{sub 3} at specific reactor locations. Samples were drawn from the reactor using water quenched suction probes. Velocity measurements were obtained using two component laser doppler anemometry in back-scatter mode. Temperature measurements were obtained using a shielded suction pyrometer. A series of six or more radial measurements at six or more axial locations within the reactor provided a map of species, temperature, and velocity measurements. In total, seven reactor maps were obtained. Three maps were obtained at baseline conditions of 0, 0.5 and 1.5 swirl and 10% excess air. Two maps were obtained under reburning conditions of 0.78 stoichiometric ratio and 1.5 swirl and 0.9 stoichiometric ratio and

  5. Coal Combustion Science. Quarterly progress report, October--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. [ed.; Baxter, L.L.; Davis, K.A.; Hurt, R.H.; Yang, N.Y.C.

    1996-02-01

    The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: Task 1--Kinetics and mechanisms of pulverized coal char combustion; and Task 2--deposit growth and property development in coal-fired furnaces. The objective of task 1 is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. Work is being done in four areas: (a) kinetics of heterogeneous fuel particle populations; (b) char combustion kinetics at high carbon conversion; (c) the role of particle structure and the char formation process in combustion and; (d) unification of the Sandia char combustion data base. The objectives of Task 2 are to provide a self-consistent database of simultaneously measured, time-resolved, ash deposit properties in well-controlled and well-defined environments and to provide analytical expressions that relate deposit composition and structure to deposit properties of immediate relevance to PETC`s Combustion 2000 program. The task include the development and use of diagnostics to monitor, in situ and in real time, deposit properties, including information on both the structure and composition of the deposits.

  6. Effect of Particle Size Distribution on Wall Heat Flux in Pulverized-Coal Furnaces and Boilers

    Science.gov (United States)

    Lu, Jun

    A mathematical model of combustion and heat transfer within a cylindrical enclosure firing pulverized coal has been developed and tested against two sets of measured data (one is 1993 WSU/DECO Pilot test data, the other one is the International Flame Research Foundation 1964 Test (Beer, 1964)) and one independent code FURN3D from the Argonne National Laboratory (Ahluwalia and IM, 1992). The model called PILC assumes that the system is a sequence of many well-stirred reactors. A char burnout model combining diffusion to the particle surface, pore diffusion, and surface reaction is employed for predicting the char reaction, heat release, and evolution of char. The ash formation model included relates the ash particle size distribution to the particle size distribution of pulverized coal. The optical constants of char and ash particles are calculated from dispersion relations derived from reflectivity, transmissivity and extinction measurements. The Mie theory is applied to determine the extinction and scattering coefficients. The radiation heat transfer is modeled using the virtual zone method, which leads to a set of simultaneous nonlinear algebraic equations for the temperature field within the furnace and on its walls. This enables the heat fluxes to be evaluated. In comparisons with the experimental data and one independent code, the model is successful in predicting gas temperature, wall temperature, and wall radiative flux. When the coal with greater fineness is burnt, the particle size of pulverized coal has a consistent influence on combustion performance: the temperature peak was higher and nearer to burner, the radiation flux to combustor wall increased, and also the absorption and scattering coefficients of the combustion products increased. The effect of coal particle size distribution on absorption and scattering coefficients and wall heat flux is significant. But there is only a small effect on gas temperature and fuel fraction burned; it is speculated

  7. Relationship between Particle Size Distribution of Low-Rank Pulverized Coal and Power Plant Performance

    Directory of Open Access Journals (Sweden)

    Rajive Ganguli

    2012-01-01

    Full Text Available The impact of particle size distribution (PSD of pulverized, low rank high volatile content Alaska coal on combustion related power plant performance was studied in a series of field scale tests. Performance was gauged through efficiency (ratio of megawatt generated to energy consumed as coal, emissions (SO2, NOx, CO, and carbon content of ash (fly ash and bottom ash. The study revealed that the tested coal could be burned at a grind as coarse as 50% passing 76 microns, with no deleterious impact on power generation and emissions. The PSD’s tested in this study were in the range of 41 to 81 percent passing 76 microns. There was negligible correlation between PSD and the followings factors: efficiency, SO2, NOx, and CO. Additionally, two tests where stack mercury (Hg data was collected, did not demonstrate any real difference in Hg emissions with PSD. The results from the field tests positively impacts pulverized coal power plants that burn low rank high volatile content coals (such as Powder River Basin coal. These plants can potentially reduce in-plant load by grinding the coal less (without impacting plant performance on emissions and efficiency and thereby, increasing their marketability.

  8. A numerical study of pulverized coal ignition by means of plasma torches in air-coal dust mixture ducts of utility boiler furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Belosevic, S.; Sijercic, M.; Stefanovic, P. [Institute for Nuclear Science Vinca, Belgrade (Serbia)

    2008-04-15

    Paper presents selected results of numerical simulation of processes in air-coal dust mixture duct of pulverized coal utility boiler furnace with plasma-system for pulverized coal ignition and combustion stabilization. Application of the system in utility boiler furnaces promises to achieve important savings compared with the use of heavy oil burners. Plasma torches are built in air-coal dust mixture ducts between coal mills and burners. Calculations have been performed for one of rectangular air-coal dust mixture ducts with two opposite plasma torches, used in 210 MWe utility boiler firing pulverized Serbian lignite. The simulations are based on a three-dimensional mathematical model of mass, momentum and heat transfer in reacting turbulent gas-particle flow, specially developed for the purpose. Characteristics of processes in the duct are analyzed in the paper, with respect to the numerical results. The plasma-system thermal effect is discussed as well, regarding corresponding savings of liquid fuel. It has been emphasized that numerical simulation of the processes can be applied in optimization of pulverized coal ignition and combustion stabilization and enables efficient and cost-effective scaling-up procedure from laboratory to industrial scale.

  9. CFD analysis of the pulverized coal combustion processes in a 160 MWe tangentially-fired-boiler of a thermal power plant

    OpenAIRE

    Silva,Cristiano V. da; Indrusiak,Maria Luiza S; Beskow,Arthur B

    2010-01-01

    The strategic role of energy and the current concern with greenhouse effects, energetic and exergetic efficiency of fossil fuel combustion greatly enhance the importance of the studies of complex physical and chemical processes occurring inside boilers of thermalpower plants. The state of the art in computational fluid dynamics and the availability of commercial codes encourage numeric studies of the combustion processes. In the presentwork the commercial software CFX © Ansys Europe Ltd. was ...

  10. Combustion and economics of coal slurry fuels: a look at coal-fuel oil slurries

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, T.; Matsuoka, H.

    1984-01-01

    With the aim of reducing dependence on petroleum, research has been going ahead into the development of various alternative fuels. Of these, coal slurry fuels are regarded as being first in line for commercialization. The authors discuss the combustion of coal-oil fuels. The combustion of fuel oil, pulverized coal and coal-water slurry is also examined. In each case, combustion properties and associated problems are discussed. Finally, the economics of these fuels are examined and trends in research and development surveyed. 23 references.

  11. Numerical modelling of lighting process in pulverized-coal burner of a boiler unit by the low-temperature plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Miloshevich, H.; Rychkov, A.D. [Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation). Inst. of Occupational Technologies

    1999-07-01

    The authors numerically modelled the process of aeromixture ignition in a pulverized-coal burner by a central axysymmetric jet of air that is heated in an electrical are plasma generator up to about 5000 K. The aim was to investigate the process of coal particle ignition in the flow and establish the conditions under which the independent combustion of pulverized coal mixture occurs. The results obtained showed the important role of radiation heat transfer in initiating the combustion process of solid fuel particles. 8 refs., 5 figs.

  12. The past, present and future of pulverized coal injection at ThyssenKrupp Steel AG

    Energy Technology Data Exchange (ETDEWEB)

    Peters, M.; Korthas, B.; Schmole, P. [ThyssenKrupp Steel AG., Duisburg (Germany). Hot Metal Production-Metallurgy Division

    2008-07-01

    Coal injection has been used to optimize blast furnace operation at the ThyssenKrupp Steel (TKS) plants in Germany for over 25 years. The main TKS plants are located at Duisburg on the Rhine river with optimum logistical conditions for raw materials and finished products. This presentation described the long history of blast furnace operation at TKS and the optimization of the combustion process in the raceway. The key factors for controlling coal combustion were coal properties; lance design; partial pressure of oxygen in the raceway; amount of nitrogen for the pneumatic coal transport; and additives to the coal. When changing over from the all-coke to the pulverized coal (PC)-coke mode of operation, the main attention was directed to blast velocity and burden distribution. Initially, 2 injection systems were developed in 1982 for a blast furnace pilot facility in Hamborn where coal was injected through 3 tuyeres of the blast furnace. The experience gained at the pilot facility was used for other production facilities. They were evaluated in terms of plant wear, pneumatic conveying characteristics, and behaviour of the system when using different types of coal. In 1987, the Schwelgern blast furnace was equipped with the dense flow system and the blast furnace in Ruhrort was equipped with an entrained flow system and metering valves. In February 1991, blast furnace no. 9 in Hamborn was equipped with the dense flow for all 28 tuyeres and is designed for an injection rate of 250 kg/THM. 21 figs.

  13. Experimental study on pollution emission from combustion of blended coals

    Energy Technology Data Exchange (ETDEWEB)

    Li Yonghua; Chen Hongwei; Zhen Zhi; Liu Jizhen; Feng Zhaoxing; Dong Jianxun [North China Electric Power University, Baoding (China)

    2003-07-01

    The pollution brought by NOx and SOx produced by coal combustion is getting recognition by each country in the world. This paper adopts an experimental method, selects four kinds of lignite and three kinds of soft coal that are mainly used by some power plant and reports a study of the pollution emission characteristics of component and blended coals. The test rig is introduced from Canada with a capacity of 640 MJ/h with a complete milling system and flue gas online analysis system. The study focuses on the influence of oxygen concentration, pulverized coal fineness and pulverized coal nitrogen content on the pollution emission. The study is useful for achieving clean combustion in large power plants. 5 refs., 4 figs., 7 tabs.

  14. Advances in control of PM{sub 2.5} and PM{sub 2.5} precursors generated by the combustion of pulverized coal

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C.A.; Srivastava, R.K.; Sedman, C.B. [US Environmental Protection Agency, Triangle Park, NC (United States). Office of Research and Development

    2002-07-01

    Particulate matter smaller than 2.5 {mu}m in aerodynamic diameter (PM{sub 2.5}) from coal-fired boilers is composed of directly emitted (primary) particles and particles formed from precursors (secondary particles). Technologies to reduce emissions of precursors to secondary PM{sub 2.5} emitted by coal-fired utility plants include wet and dry flue gas desulphurization (FGD). Limestone forced oxidation (LSFO) systems are the predominant wet FGD technology in use, and lime spray dryers (LSDs) represent the predominant dry FGD systems. A predictive model indicates that LSD systems have low annualized costs than LSFO systems for coals with less than 2% sulphur and for plants smaller than 300 MWe. Control technologies for primary PM{sub 2.5} include hybrid systems such as the combined hybrid particulate control system and an electrostatically enhanced fabric filter (ESFF) system. The ESFF can provide improved PM{sub 2.5} collection and lower fan power requirements compared to a conventional pulse-jet baghouse. There is a brief discussion of potential multi-pollutant control of mercury. 29 refs., 5 figs., 3 tabs.

  15. Coal combustion research

    Energy Technology Data Exchange (ETDEWEB)

    Daw, C.S.

    1996-06-01

    This section describes research and development related to coal combustion being performed for the Fossil Energy Program under the direction of the Morgantown Energy Technology Center. The key activity involves the application of chaos theory for the diagnosis and control of fossil energy processes.

  16. Soot, organics, and ultrafine ash from air- and oxy-fired coal combustion

    Science.gov (United States)

    This paper/presentation is concerned with determining the effects of oxy-combustion of coal on the composition of the ultrafine fly ash. To this end, a 10 W externally heated entrained flow furnace was modified to allow the combustion of pulverized coal in flames under practicall...

  17. Soot, organics and ultrafine ash from air- and oxy-fired coal combustion

    Science.gov (United States)

    This paper is concerned with determining the effects of oxy-combustion of coal on the composition of the ultrafine fly ash. To this end, a 10 W externally heated entrained flow furnace was modified to allow the combustion of pulverized coal in flames under practically relevant s...

  18. Reconstruction of the aero-mixture channels of the pulverized coal plant of the 100MW power plant unit

    Directory of Open Access Journals (Sweden)

    Ivanovic Vladan B.

    2011-01-01

    Full Text Available After the last revitalization of thermal power block of 100 MW in TPP “Kostolac A”, made in the year 2004, during the operation of the plant, pulverized coal deposition often occurred in horizontal sections of the aero-mixture channels. Deposition phenomenon manifested itself in places ahead of spherical compensators in the direction of flow of pulverized coal to the burners, due to unfavorable configuration of these channels. Coal dust deposited in the channels dried and spontaneously combusted, causing numerous damage to channels and its isolation as well as the frequent stoppage of the operation for necessary interventions. The paper presents the original solution of reconstruction of aero-mixture channels which prevented deposition of coal dust and its eventual ignition. In this way the reliability of the mill plant is maximized and higher availability of boiler and block as a whole is achieved.

  19. Comparative study of semi-industrial-scale flames of pulverized coals and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ballester, J.; Barroso, J.; Cerecedo, L.M.; Ichaso, R. [University of Zaragoza, Zaragoza (Spain)

    2005-05-01

    Three p.f. flames have been studied in a semi-industrial furnace, using different fuels: a bituminous coal, a lignite, and a biomass (oak sawdust). The operating conditions were exactly the same for the two coals, and very similar to those for the biornass flame. The objective was to evaluate the impact of differences in fuel composition on flame characteristics, through measurement of the spatial distribution of the main parameters: temperature and concentrations of O{sub 2}, CO, NOx, unburnt hydrocarbons, and N{sub 2}O. The higher volatiles content in the lignite leads to higher temperatures and more intense combustion than the bituminous coal. Nevertheless, as might be expected, more marked differences are observed between the flames from the biomass and coals. The much higher volatiles content of the wood results in a more intense flame close to the burner, as indicated by visual observations and by concentrations of unburnt gases (CO and unburnt hydrocarbons) in that zone. It is remarkable that the combustion zone extends further for the biomass; while unburnt species were very low for the coals at an axial distance of 1 m, high values were detected for the pulverized oak. The measurements suggest that two stages can be distinguished in the biomass flame: a zone of intense combustion close to the burner, followed by a second region where the large biomass particles gradually devolatilize and are consumed.

  20. Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling

    DEFF Research Database (Denmark)

    Yin, Chungen; Yan, Jinyue

    2016-01-01

    Oxy-fuel combustion of pulverized fuels (PF), as a promising technology for CO2 capture from power plants, has gained a lot of concerns and also advanced considerable research, development and demonstration in the last past years worldwide. The use of CO2 or the mixture of CO2 and H2O vapor as th...

  1. Pulverized coal and substitute fuels for the cement manufacturing industry

    Energy Technology Data Exchange (ETDEWEB)

    Dobrowsky, F.

    1981-01-01

    This paper comprises an article of general technical interest on coal and its use in the cement industry, plus the scope for using substitute fuels. Discusses coal properties and preparation (crushing). Describes the heating systems of the cement ovens: burners, combustion and parameters governing flame-length. Looks at operation problems connected with heating of the coal: caking, fusing, clinker quality and behaviour of the refractory bricks. Also discusses substitute fuels: type of fuel, scope for utilisation and requisite precautions. 32 refs.

  2. Pulverized-coal-firing small-size boiler for coal-cartridge system

    Energy Technology Data Exchange (ETDEWEB)

    1986-12-01

    Kawasaki Heavy Industries, Ltd. supplied a test boiler plant to the Iwakuni Experimental Station of the Coal Cartridge System (CCS) Promotion Association in September 1985; this was the first pulverized-coal-fired small industrial boiler in Japan. Tests will be performed for two years, until fiscal 1987, at the CCS Iwakuni Experimental Station to establish a method of coal-firing with a performance comparable to heavy oil firing. The boiler plant has been operating satisfactorily.

  3. Experimental study on the angle of repose of pulverized coal

    Institute of Scientific and Technical Information of China (English)

    Wei Wang; Jiansheng Zhang; Shi Yang; Hai Zhang; Hairui Yang; Guangxi Yue

    2010-01-01

    An experimental study on the angle of repose(AoR)of pulverized coal with different particle sizes and different moisture contents(MC)was conducted.Three different measurement methods,free-base piling,fixed-base piling and sliding,were used.The data were analyzed by one-way and two-way analysis of variance.The results showed that the AoRs of pulverized coal with particle sizes smaller than 150 μm were in the range of 30-50°.The characterization of the flowability of pulverized coal was some cohesiveness or true cohesiveness.The increase of MC will increase AoR and thus decrease the flowability of the powder.However,the particle size effect is bifurcated.Below a critical size,the decrease of particle size decreases the flowability; while above the critical size,the decrease of particle size increases the flowability.It was found that the value of the critical size strongly depends on the powder density.Moreover,the AoR dependence on particle size could be linked with the Geldart's particle classification.The critical size at the turning point is on the boundary between Group A and Group B in Geldart's classification diagram.Based on the experimental results,there is no significant cross interaction between particle size and MC.The AoRs measured by free-base method and fixed-base method are close,but both remarkably smaller than that measured by the sliding method.

  4. Impacts and implementation of fuel moisture release and radiation properties in modelling of pulverized fuel combustion processes

    DEFF Research Database (Denmark)

    Yin, Chungen

    2015-01-01

    Pulverized fuels (PF) prepared and fired in utility boilers usually contain a certain amount of moisture, either free moisture or chemically bound moisture. In PF furnaces, radiation which is the principal mode of heat transfer consists of contribution from both gas and particle phase. This paper...... presents different methods for fuel moisture release and new models for gas and particle radiative properties, and demonstrates their implementation, importance and impacts in PF combustion modelling via a comprehensive CFD study of a pulverized coal-fired utility boiler. To conclude, it is recommended...... to add the free moisture into the primary air stream while lump the moisture retained in the feed after the mills with volatiles in PF combustion modelling. For gas and particle radiation in PF boilers, it is found that particle radiation largely overwhelms gas radiation due to high particle loading...

  5. A simple numerical model to estimate the effect of coal selection on pulverized fuel burnout

    Energy Technology Data Exchange (ETDEWEB)

    Sun, J.K.; Hurt, R.H.; Niksa, S.; Muzio, L.; Mehta, A.; Stallings, J. [Brown University, Providence, RI (USA). Division Engineering

    2003-06-01

    The amount of unburned carbon in ash is an important performance characteristic in commercial boilers fired with pulverized coal. Unburned carbon levels are known to be sensitive to fuel selection, and there is great interest in methods of estimating the burnout propensity of coals based on proximate and ultimate analysis - the only fuel properties readily available to utility practitioners. A simple numerical model is described that is specifically designed to estimate the effects of coal selection on burnout in a way that is useful for commercial coal screening. The model is based on a highly idealized description of the combustion chamber but employs detailed descriptions of the fundamental fuel transformations. The model is validated against data from laboratory and pilot-scale combustors burning a range of international coals, and then against data obtained from full-scale units during periods of coal switching. The validated model form is then used in a series of sensitivity studies to explore the role of various individual fuel properties that influence burnout.

  6. Experimental study on preheated combustion of pulverized semi-coke

    Science.gov (United States)

    Yao, Yao; Zhu, Jianguo; Lu, Qinggang; Zhou, Zuxu

    2015-06-01

    In a test rig, pulverized semi-coke was preheated to 850oC in a circulating fluidized bed (CFB) and then combusted at 1100oC in a down-fired combustor (DFC). Experiments were conducted to reveal the effects of three secondary air nozzle cases (co-axial jet, top circular jet and wall circular jet) on the NO emission. The results show that the optimized secondary air nozzle can reduce NO emission. O2 concentration profile is the major factor affecting NO generation and emission, which is led by the secondary air nozzle. The lower O2 concentration led to the generation of lower initial NO. The NO emission at the exit of the DFC was reduced from 189 to 92 mg/m3 (@ 6% O2) with the decrease of initial generation. The peak of NO at 100 mm below the nozzle should be attributed to the oxidization of NH3 in the syngas, rather than the oxidization of fuel-N in the char. The low and well-distributed O2 concentration contributes to the reduction of initial NO, which helps to reduce the NO emission. The combustion efficiencies of the cases of the co-axial jet, the top circular jet, and the wall circular jet are 97.88%, 98.94% and 98.74%, respectively.

  7. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy

    2005-10-01

    Low rank fuels such as subbituminous coals and lignites contain significant amounts of moisture compared to higher rank coals. Typically, the moisture content of subbituminous coals ranges from 15 to 30 percent, while that for lignites is between 25 and 40 percent, where both are expressed on a wet coal basis. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit. High fuel moisture results in fuel handling problems, and it affects heat rate, mass rate (tonnage) of emissions, and the consumption of water needed for evaporative cooling. This project deals with lignite and subbituminous coal-fired pulverized coal power plants, which are cooled by evaporative cooling towers. In particular, the project involves use of power plant waste heat to partially dry the coal before it is fed to the pulverizers. Done in a proper way, coal drying will reduce cooling tower makeup water requirements and also provide heat rate and emissions benefits. The technology addressed in this project makes use of the hot circulating cooling water leaving the condenser to heat the air used for drying the coal (Figure 1). The temperature of the circulating water leaving the condenser is usually about 49 C (120 F), and this can be used to produce an air stream at approximately 43 C (110 F). Figure 2 shows a variation of this approach, in which coal drying would be accomplished by both warm air, passing through the dryer, and a flow of hot circulating cooling water, passing through a heat exchanger located in the dryer. Higher temperature drying can be accomplished if hot flue gas from the boiler or extracted steam from the turbine cycle is used to supplement the thermal energy obtained from the circulating cooling water. Various options such as these are being examined in this investigation. This is the eleventh Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits

  8. Compilation of Sandia coal char combustion data and kinetic analyses

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R.E.; Hurt, R.H.; Baxter, L.L.; Hardesty, D.R.

    1992-06-01

    An experimental project was undertaken to characterize the physical and chemical processes that govern the combustion of pulverized coal chars. The experimental endeavor establishes a database on the reactivities of coal chars as a function of coal type, particle size, particle temperature, gas temperature, and gas and composition. The project also provides a better understanding of the mechanism of char oxidation, and yields quantitative information on the release rates of nitrogen- and sulfur-containing species during char combustion. An accurate predictive engineering model of the overall char combustion process under technologically relevant conditions in a primary product of this experimental effort. This document summarizes the experimental effort, the approach used to analyze the data, and individual compilations of data and kinetic analyses for each of the parent coals investigates.

  9. Numerical simulation of the influence of stationary louver and coal particle size on distribution of pulverized coal to the feed ducts of a power plant burner

    Directory of Open Access Journals (Sweden)

    Živković Goran

    2009-01-01

    Full Text Available One of the key requirements related to successful utilization of plasma technology as an oil-free backup system for coal ignition and combustion stabilization in power plant boilers is provision of properly regulated pulverized coal distribution to the feed ducts leading the fuel mixture to a burner. Proper regulation of coal distribution is deemed essential for achieving an adequate pulverized coal concentration in the zone where thermal plasma is being introduced. The said can be efficiently achieved by installation of stationary louver in the coal-air mixing duct ahead of the feed ducts of a burner. The paper addresses numerical simulation of a two-phase flow of air-pulverized coal mixture in the mixing ducts, analyzing the effects of particle size distribution on pulverized coal distribution to the burner feed ducts. Numerical simulation was performed using the FLUENT 6.3 commercial code and related poly-dispersed flow module, based on the PSI-CELL approach. Numerical experiments have been performed assuming a mono-dispersed solid phase with particle diameter ranging from 45 mm to 1200 mm. Distance between the louver blades and the resulting effect on the flow profile was analyzed as well. Results obtained indicate that the size of coal particles considerably influence the overall solid phase distribution. While fine particles, with diameters at the lower end of the above specified range, almost fully follow the streamlines of the continuous phase, coarser particles, which hit the louver blades, deflect towards the thermal plasma zone. In this manner, a desired phase concentration in the considered zone can be reached. For the said reason, installation of stationary louver have been deemed a very efficient way to induce phase separation, primarily due to more pronounced impact of the installed louver on discrete phase flow then the impact on the flow of the continuous phase.

  10. Effect of CO2 gasification reaction on oxycombustion of pulverized coal char.

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Alejandro (Universidad Nacional de Colombia, Medellin, Colombia); Hecht, Ethan S.; Shaddix, Christopher R.; Haynes, Brian S. (University of Sydney, New South Wales, Australia)

    2010-07-01

    For oxy-combustion with flue gas recirculation, as is commonly employed, it is recognized that elevated CO{sub 2} levels affect radiant transport, the heat capacity of the gas, and other gas transport properties. A topic of widespread speculation has concerned the effect of the CO{sub 2} gasification reaction with coal char on the char burning rate. To give clarity to the likely impact of this reaction on the oxy-fuel combustion of pulverized coal char, the Surface Kinetics in Porous Particles (SKIPPY) code was employed for a range of potential CO{sub 2} reaction rates for a high-volatile bituminous coal char particle (130 {micro}m diameter) reacting in several O{sub 2} concentration environments. The effects of boundary layer chemistry are also examined in this analysis. Under oxygen-enriched conditions, boundary layer reactions (converting CO to CO{sub 2}, with concomitant heat release) are shown to increase the char particle temperature and burning rate, while decreasing the O{sub 2} concentration at the particle surface. The CO{sub 2} gasification reaction acts to reduce the char particle temperature (because of the reaction endothermicity) and thereby reduces the rate of char oxidation. Interestingly, the presence of the CO{sub 2} gasification reaction increases the char conversion rate for combustion at low O{sub 2} concentrations, but decreases char conversion for combustion at high O{sub 2} concentrations. These calculations give new insight into the complexity of the effects from the CO{sub 2} gasification reaction and should help improve the understanding of experimentally measured oxy-fuel char combustion and burnout trends in the literature.

  11. Liquefaction behavior of finely pulverized coal. Chobifunsaitan no ekika hanno kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Y.; Kamo, T.; Miki, K.; Yamamoto, Y. (National Institute for Resources and Environment, Tsukuba (Japan))

    1992-11-05

    The reaction process of coal liquefaction which uses ultrafine pulverized coal having a particle diameter of several micrometers was investigated in order to improve the catalytic efficiency between coal and catalyst. Two kinds of samples were prepared by crushing Taiheiyo-coal into less than 100-mesh by usual technique and further pulverizing the crushed coal to several [mu]m. When iron oxide catalyst, sulfur and tetralin solvent were used, pulverizing does not bring a significant improvement in conversion rate and the yield of liquefaction oil capable of being distillated. This is considered to be due to the coagulation between fine particles before or during reaction, suggesting the importance of selecting reaction conditions etc. In the case of pulverized coal, hydrogen consumption is high and hydrogenation of heavy fractions such as SRC proceeds. When liquefaction-oil circulating solvent and red mud-sulfur-based catalyst were used, gas yield was low in pulverized coal, but no significant improvement was not shown in oil yield of liquefaction oil. The conversion rate and SRC yield were somewhat high in the case of pulverized coal. 3 figs., 2 tabs.

  12. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy; Harun Bilirgen; Ursla Levy; John Sale; Nenad Sarunac

    2006-01-01

    This is the twelfth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report and results are shown for a drying system utilizing a combination of waste heat from the condenser and thermal energy extracted from boiler flue gas.

  13. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy; Harun Bilirgen; Ursla Levy; John Sale; Nenad Sarunac

    2006-01-01

    This is the twelfth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report and results are shown for a drying system utilizing a combination of waste heat from the condenser and thermal energy extracted from boiler flue gas.

  14. Occurrence and volatility of several trace elements in pulverized coal boiler

    Institute of Scientific and Technical Information of China (English)

    HUANG Ya-ji; JIN Bao-sheng; ZHONG Zhao-ping; XIAO Rui; TANG Zhi-yong; REN Hui-feng

    2004-01-01

    The contents of eight trace elements(Mn, Cr, Pb, As, Se, Zn, Cd, Hg) in raw coal, bottom ash and flyash were measured in a 220 t/h pulverized coal boiler. Factors affecting distribution of trace elements wereinvestigated, including fly ash diameter, furnace temperature, oxygen content and trace elements' characters. Onecoefficient of Meij was also improved to more directly show element enrichment in combustion products. Theseelements may be classified into three groups according to their distribution: Group 1: Hg, which is very volatile.Group 2: Pb, Zn, Cd, which are partially volatile. Group 3: Mn, which is hardly volatile. Se may be locatedbetween groups 1 and 2. Cr has properties of both group 1 and 3. In addition, the smaller diameter of fly ash, themore relative enrichment of trace elements( except Mn). The fly ash showed different adsorption mechanisms oftrace elements and the volatilization of trace elements rises with furnace temperature. Relative enrichments of traceelements(except Mn and Cr) in fly ash are larger than that in bottom ash. Low oxygen content can not alwaysimprove the volatilization of trace elements. Pb is easier to form chloride than Cd during coal combustion. Traceelements should be classified in accordance with factors.

  15. Low-cost Evaporator Protection Method against Corrosion in a Pulverized Coal Fired Boiler

    Directory of Open Access Journals (Sweden)

    Arkadiusz Krzysztof Dyjakon

    2010-07-01

    Full Text Available Corrosion processes appearing on the watertubes in a combustion chamber of pulverized coal-fired boilers require permanent control and service. Subject to the power plant strategy, different anti-corrosion protection methods can be applied. Technical-economical analysis has been performed to evaluate and support the decisions on maintenance and operation services. The paper presents and discusses results of the application of an air protection system in boiler OP-230 in view of anti-corrosion measures. It is indicated that a low-cost protection method of watertubes (evaporator against corrosion can be efficient and lead to financial savings in comparison to the standard procedure of replacement of watertube panels.

  16. 工业煤粉锅炉控制系统的开发及应用%Development and application of industrial pulverized coal boiler control system

    Institute of Scientific and Technical Information of China (English)

    麻林

    2014-01-01

    With the promotion of energy saving and environmental protection, improve the industrial boiler thermal efficiency is one of the most important parts, small and medium-sized industrial pulverized coal boiler is developed in recent years is more efficient coal-fired industrial boilers, the boiler of 200μm pulverized coal combustion stability has a very high demand, while new auxiliary unit. According to the characteristics of the pulverized coal boiler, developed a set of pulverized coal boiler con-trol system. The characteristics of the control system mainly includes additional storage, powder, powder supply control, combus-tion control and diagnosis of combustion control, to ensure the safe, stable, efficient pulverized coal boiler operation.%随着近几年节能环保的提倡,提高工业锅炉热效率是其中重要的部分,中小型工业煤粉锅炉是近几年出现的较为高效的燃煤工业锅炉,该锅炉对200目煤粉的稳定燃烧有很高的要求,同时新增辅机配套单元。针对工业煤粉锅炉的特点,开发了一套工业煤粉锅炉控制系统。该控制系统特点主要有:储粉、供粉控制、煤粉燃烧控制和燃烧诊断控制,从而保障了工业煤粉锅炉安全、稳定、高效的运行。

  17. Thermally induced structural changes in coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Flagan, R.C.; Gavalas, G.R.

    1992-01-01

    The effects of the temperature-time history during coal devolitization and oxidation on the physical properties and the reactivity of resulting char were studied experimentally for temperatures and residence times typical of pulverized combustion. Experiments were also carried out at somewhat lower temperatures and correspondingly longer residence times. An electrically heated laminar flow reactor was used to generate char and measure the rates of oxidation at gas temperatures about 1600K. Partially oxidized chars were extracted and characterized by gas adsorption and mercury porosimetry, optical and scanning electron microscopy, and oxidation in a thermogravimetric analysis system (TGA). A different series of experiments was conducted using a quadrople electrodynamic balance. Single particles were suspended electrodynamically and heated by an infrared laser in an inert or oxygen-containing atmosphere. During the laser heating, measurements were taken of particle mass, size/shape, and temperature.

  18. Simulation of low-temperature plasma interaction with pulverized coal for incineration improvement

    Energy Technology Data Exchange (ETDEWEB)

    A. Askarova; E. Karpenko; V. Messerle; A. Ustimenko [Al-Farabi Kazakh National University, Almaty (Kazakhstan). Department of Physics

    2003-07-01

    Plasma activation promotes more effective and environmental friendly low-grade coals incineration. The work presents numerical modeling results of plasma ignition, gasification and thermochemical preparation of a pulverized coal for incineration at power boilers. Thermodynamic code TERRA allows calculating products compound of plasma activated pulverized coal depended on temperature, pressure and plasma source power. Considering plasma source kinetic code PLASMA-COAL gives initial data for 3D-modeling of power boilers furnaces by FLOREAN code. 5 refs., 13 figs., 5 tabs.

  19. Influence of Process Parameters on Coal Combustion Performance

    DEFF Research Database (Denmark)

    Lans, Robert Pieter Van Der

    The objective of this study is to improve the understanding of nitrogen oxide formation and carbon burnout during the combustion of pulverized coal, and to contribute to addressing the potential of chemical engineering models for the prediction of furnace temperatures, NO emissions and the amount...... of carbon in ash. To this purpose, the effect of coal quality on NO and burnout has been investigated experimentally, a radiation heat balance has been developed based on simple chemical engineering methodology, and a mixing study has been conducted in order to describe the near burner macro mixing in terms...... with self-sustaining flames, while extensions are made to full scale boilers and furnace modeling. Since coal combustion and flame aerodynamics are reviewed elsewhere, these phenomena are only treated briefly. The influence of coal type and process conditions on NO formation and carbon burnout has been...

  20. Pretreatment of biomass by torrefaction and carbonization for coal blend used in pulverized coal injection.

    Science.gov (United States)

    Du, Shan-Wen; Chen, Wei-Hsin; Lucas, John A

    2014-06-01

    To evaluate the utility potential of pretreated biomass in blast furnaces, the fuel properties, including fuel ratio, ignition temperature, and burnout, of bamboo, oil palm, rice husk, sugarcane bagasse, and Madagascar almond undergoing torrefaction and carbonization in a rotary furnace are analyzed and compared to those of a high-volatile coal and a low-volatile one used in pulverized coal injection (PCI). The energy densities of bamboo and Madagascar almond are improved drastically from carbonization, whereas the increase in the calorific value of rice husk from the pretreatment is not obvious. Intensifying pretreatment extent significantly increases the fuel ratio and ignition temperature of biomass, but decreases burnout. The fuel properties of pretreated biomass materials are superior to those of the low-volatile coal. For biomass torrefied at 300°C or carbonized at temperatures below 500°C, the pretreated biomass can be blended with coals for PCI.

  1. Transformations of inorganic coal constituents in combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Helble, J.J. (ed.); Srinivasachar, S.; Wilemski, G.; Boni, A.A. (PSI Technology Co., Andover, MA (United States)); Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M. (Massachusetts Inst. of Tech., Cambridge, MA (United States)); Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L. (Arizona Univ., Tucson, AZ (United States)); Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A. (Kentucky Univ., Lexingt

    1992-11-01

    Results from an experimental investigation of the mechanisms governing the ash aerosol size segregated composition resulting from the combustion of pulverized coal in a laboratory scale down-flow combustor are described. The results of modeling activities used to interpret the results of the experiments conducted under his subtask are also described in this section. Although results from the entire program are included, Phase II studies which emphasized: (1) alkali behavior, including a study of the interrelationship between potassium vaporization and sodium vaporization; and (2) iron behavior, including an examination of the extent of iron-aluminosilicate interactions, are highlighted. Idealized combustion determination of ash particle formation and surface stickiness are also described.

  2. Development of a pilot-scale furnace for the study of pulverized coal and coal-water mixtures combustion process; Desenvolvimento de uma fornalha piloto para o estudo da combustao de carvao pulverizado e de misturas carvao agua

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, P.C.C. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenharia Termica; Antonini, G.; Francois, O.; Hazi, M. [Universite de Technologie de Compiegne, 60 (France)

    1989-12-31

    This practical paper describes the installation and operation of a pilot-scale combustion facility, designed to operate with either solids, or liquids and/or gaseous fuels in the range of 30 and 150 kW. This paper also presents the thermal analysis involved and the inherent operational difficulties. From the real data and results obtained, suggestions are made to minimize the problems. (author). 7 refs., 6 figs.

  3. Essais préliminaires de combustion d'asphaltes par la technique du charbon pulvérisé Preliminary Tests of Asphalt Combustion by the Pulverized Coal Technique

    Directory of Open Access Journals (Sweden)

    Flament G.

    2006-11-01

    Full Text Available Les possibilités offertes par le procédé de désasphaltage étudié à L'Institut Français du Pétrole (IFP sont rapidement exposées. On montre en particulier que les asphaltes recueillis grâce à ce procédé ont des propriétés physiques telles, qu'il est possible de s'en servir comme combustible et donc de les valoriser sur le plan énergétique. The possibilities offered by the deasphalting process researched by Institut Français du Pétrole (IFP are briefly described. It is shown in particular that the types of asphalts gathered by means of this process have physical properties enabling them to be used as a fuel so that they can be upgraded from the energy standpoint.

  4. Essais préliminaires de combustion d'asphaltes par la technique du charbon pulvérisé Preliminary Tests of Asphalt Combustion by the Pulverized Coal Technique

    OpenAIRE

    Flament G.; Mauss F.

    2006-01-01

    Les possibilités offertes par le procédé de désasphaltage étudié à L'Institut Français du Pétrole (IFP) sont rapidement exposées. On montre en particulier que les asphaltes recueillis grâce à ce procédé ont des propriétés physiques telles, qu'il est possible de s'en servir comme combustible et donc de les valoriser sur le plan énergétique. The possibilities offered by the deasphalting process researched by Institut Français du Pétrole (IFP) are briefly described. It is shown in particular ...

  5. Transformations of inorganic coal constituents in combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Helble, J.J. (ed.); Srinivasachar, S.; Wilemski, G.; Boni, A.A. (PSI Technology Co., Andover, MA (United States)); Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M. (Massachusetts Inst. of Tech., Cambridge, MA (United States)); Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L. (Arizona Univ., Tucson, AZ (United States)); Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A. (Kentucky Univ., Lexingt

    1992-11-01

    The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon the size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles What determines their composition Whether or not particles deposit How combustion conditions, including reactor size, affect these processes remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.

  6. The release of iron during coal combustion. Milestone report

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.L. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility

    1995-06-01

    Iron plays an important role in the formation of both fly ash and deposits in many pulverized-coal-fired boilers. Several authors indicate that iron content is a significant indicator of the slagging propensity of a majority of US bituminous coals, in particular eastern bituminous coals. The pyritic iron content of these coals is shown to be a particularly relevant consideration. A series of investigations of iron release during combustion is reported for a suite of coals ranging in rank from lignite to low-volatile bituminous coal under combustion conditions ranging from oxidizing to inert. Experimental measurements are described in which, under selected conditions, major fractions of the iron in the coal are released within a 25 ms period immediately following coal devolatilization. Mechanistic interpretation of the data suggest that the iron is released as a consequence of oxygen attack on porous pyrrhotite particles. Experimental testing of the proposed mechanism reveals that the release is dependent on the presence of both pyrite in the raw coal and oxygen in the gas phase, that slow preoxidation (weathering) of the pyrite significantly inhibits the iron release, and that iron loss increases as oxygen penetration of the particle increases. Each observation is consistent with the postulated mechanism.

  7. Experimental investigation on NO{sub x} emission and carbon burnout from a radially biased pulverized coal whirl burner

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Shan; Hui, Shi' en; Zhou, Qulan; Xu, Tongmo; Hu, Hongli [State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Taisheng [Dongfang Boiler Group Co., Ltd., Zigong, Sichuan 643001 (China)

    2009-09-15

    Experiments have been performed on 1 MW pulverized coal (pc) furnace in order to investigate the characteristics of coal combustion and NO{sub x} emission from a new type of radially biased dual register whirl burner. The burner is characterized by a primary air pipe with a continuously changing cross-section and an impact ring. The mixture of pulverized coal and air inside the primary pipe is split into two streams, which are the outer pc rich annular jet and the inner pc lean annular jet respectively. Three Chinese coals, which are high rank bituminous coal, low rank bituminous coal and meager coal respectively, are used in the experiments. We examine the influences of various parameters such as the relative position of the over-fire air (OFA) nozzle, over-fire air ratio (19.1%), primary air ratio, inner secondary air ratio, outer secondary air ratio, inner secondary air swirling intensity, and outer secondary air swirling intensity on NO{sub x} formation and unburned carbon in fly ash. With the primary air ratio increasing from 13.4% to 23.4%, the value of the NO{sub x} emission of the SH coal decreases by 26.7% at first, and then increases by 21.7%. In contrast, the value of the carbon in fly ash (C{sub FA}) increases by 40.1% at first, and then decreases by 58.3%. According to the experimental results, the influence of each individual parameter on NO{sub x} formation and unburned carbon in fly ash agrees well with the existing literature. In this study, the influences of various combinations of these parameters are also examined, thus providing some reference for the design of the radial biased whirl burner, the configuration of the furnace and the distribution of the air. (author)

  8. Plasma-fuel systems for environment and economy indexes of pulverized coal incineration and gasification improvement

    Energy Technology Data Exchange (ETDEWEB)

    E. Karpenko; V. Messerle; A. Ustimenko [United Power System of Russia, Gusinoozersk (Russian Federation). Branch Centre of Plasma-Power Technologies of Russian J.S.Co.

    2003-07-01

    Coal is one of the main energy resources. To improve efficiency of coal incineration new plasma-energy technologies are developing. Steam-productivity 75t/h 670t/h boilers were tested for their starting up by plasma ignition of pulverized coal and flame stabilization. Laboratory (coal consumption to 20kg/h) and pilot (coal consumption 300kg/h and 32000kg/h) plasma gasification experiments are given. Plasma air and steam gasification of coal with its mineral mass utilization is studied. 8 refs., 10 figs., 4 tabs.

  9. Basic theory research of coal spontaneous combustion

    Institute of Scientific and Technical Information of China (English)

    WANG Ji-ren; SUN Yan-qiu; ZHAO Qing-fu; DENG Cun-bao; DENG Han-zhong

    2008-01-01

    Discussed latest research results of basic theory research of coal spontaneous combustion in detail, with quantum chemical theory and method and experiment systematically studied chemical structure of coal molecule, adsorption mechanism of coal surface to oxygen molecule and chemical reaction mechanism and process of spontaneous combustion of organic macromolecule and low molecular weight compound in coal from microcosmic view, and established complete theoretical system of the mechanism of coal spontaneous combustion.

  10. High gradient magnetic beneficiation of dry pulverized coal via upwardly directed recirculating fluidization

    Science.gov (United States)

    Eissenberg, David M.; Liu, Yin-An

    1980-01-01

    This invention relates to an improved device and method for the high gradient magnetic beneficiation of dry pulverized coal, for the purpose of removing sulfur and ash from the coal whereby the product is a dry environmentally acceptable, low-sulfur fuel. The process involves upwardly directed recirculating air fluidization of selectively sized powdered coal in a separator having sections of increasing diameters in the direction of air flow, with magnetic field and flow rates chosen for optimum separations depending upon particulate size.

  11. Gasification in pulverized coal flames. First annual progress report, July 1975--June 1976

    Energy Technology Data Exchange (ETDEWEB)

    Lenzer, R. C.; George, P. E.; Thomas, J. F.; Laurendeau, N. M.

    1976-07-01

    This project concerns the production of power and synthesis gas from pulverized coal via suspension gasification. Swirling flow in both concentric jet and cyclone gasifiers will separate oxidation and reduction zones. Gasifier performance will be correlated with internally measured temperature and concentration profiles. A literature review of vortex and cyclone reactors is complete. Preliminary reviews of confined jet reactors and pulverized coal reaction models have also been completed. A simple equilibrium model for power gas production is in agreement with literature correlations. Cold gas efficiency is not a suitable performance parameter for combined cycle operation. The coal handling facility, equipped with crusher, pulverizer and sieve shaker, is in working order. Test cell flow and electrical systems have been designed, and most of the equipment has been received. Construction of the cyclone gasifier has begun. A preliminary design for the gas sampling system, which will utilize a UTI Q-30C mass spectrometer, has been developed.

  12. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Edward K. Levy; Nenad Sarunac; Harun Bilirgen; Hugo Caram

    2006-03-01

    U.S. low rank coals contain relatively large amounts of moisture, with the moisture content of subbituminous coals typically ranging from 15 to 30 percent and that for lignites from 25 and 40 percent. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit, for it can result in fuel handling problems and it affects heat rate, stack emissions and maintenance costs. Theoretical analyses and coal test burns performed at a lignite fired power plant show that by reducing the fuel moisture, it is possible to improve boiler performance and unit heat rate, reduce emissions and reduce water consumption by the evaporative cooling tower. The economic viability of the approach and the actual impact of the drying system on water consumption, unit heat rate and stack emissions will depend critically on the design and operating conditions of the drying system. The present project evaluated the low temperature drying of high moisture coals using power plant waste heat to provide the energy required for drying. Coal drying studies were performed in a laboratory scale fluidized bed dryer to gather data and develop models on drying kinetics. In addition, analyses were carried out to determine the relative costs and performance impacts (in terms of heat rate, cooling tower water consumption and emissions) of drying along with the development of optimized drying system designs and recommended operating conditions.

  13. Oxy Coal Combustion at the US EPA

    Science.gov (United States)

    Oxygen enriched coal (oxy-coal) combustion is a developing, and potentially a strategically key technology intended to accommodate direct CO2 recovery and sequestration. Oxy-coal combustion is also intended for retrofit application to existing power plants. During oxy-coal comb...

  14. Modelling of coal combustion enhanced through plasma-fuel systems in full-scale boilers

    Energy Technology Data Exchange (ETDEWEB)

    A.S. Askarova; Z. Jankoski; E.I. Karpenko; E.I. Lavrischeva; F.C. Lockwood; V.E. Messerle; A.B. Ustimenko [al-Farabi Kazakh National University, Almaty (Kazakhstan). Department of Physics

    2005-07-01

    Plasma activation promotes more effective and environmental friendly low-rank coal combustion. This work presents numerical modelling results of plasma thermochemical preparation of pulverized coal for ignition and combustion in the furnace of a utility boiler. Two kinetic mathematical models were used in the investigation of the processes of air-fuel mixture plasma activation, ignition and combustion. A 1D kinetic code, PLASMA-COAL, calculates the concentrations of species, temperatures and velocities of treated coal-air mixtures in a burner incorporating a plasma source. It gives initial data for 3D-modeling of power boilers furnaces by the code FLOREAN. A comprehensive image of plasma activated coal combustion processes in a furnace of pulverised coal fired boiler was obtained. The advantages of the plasma technology are clearly demonstrated. 15 refs., 6 figs., 4 tabs.

  15. Nitrogen release during coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.L.; Mitchell, R.E.; Fletcher, T.H.; Hurt, R.H.

    1995-02-01

    Experiments in entrained flow reactors at combustion temperatures are performed to resolve the rank dependence of nitrogen release on an elemental basis for a suite of 15 U.S. coals ranging from lignite to low-volatile bituminous. Data were obtained as a function of particle conversion, with overall mass loss up to 99% on a dry, ash-free basis. Nitrogen release rates are presented relative to both carbon loss and overall mass loss. During devolatilization, fractional nitrogen release from low-rank coals is much slower than fractional mass release and noticeably slower than fractional carbon release. As coal rank increases, fractional nitrogen release rate relative to that of carbon and mass increases, with fractional nitrogen release rates exceeding fractional mass and fractional carbon release rates during devolatilization for high-rank (low-volatile bituminous) coals. At the onset of combustion, nitrogen release rates increase significantly. For all coals investigated, cumulative fractional nitrogen loss rates relative to those of mass and carbon passes through a maximum during the earliest stages of oxidation. The mechanism for generating this maximum is postulated to involve nascent thermal rupture of nitrogen-containing compounds and possible preferential oxidation of nitrogen sites. During later stages of oxidation, the cumulative fractional loss of nitrogen approaches that of carbon for all coals. Changes in the relative release rates of nitrogen compared to those of both overall mass and carbon during all stages of combustion are attributed to a combination of the chemical structure of coals, temperature histories during combustion, and char chemistry.

  16. Coal combustion science: Task 1, Coal char combustion: Task 2, Fate of mineral matter. Quarterly progress report, July--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. [ed.; Hurt, R.H.; Davis, K.A.; Baxter, L.L.

    1994-07-01

    Progress reports are presented for the following tasks: (1) kinetics and mechanisms of pulverized coal char combustion and (2) fate of inorganic material during coal combustion. The objective of Task 1 is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. In Sandia`s Coal Combustion Laboratory (CCL), optical techniques are used to obtain high-resolution images of individual burning coal char particles and to measure, in situ, their temperatures, sizes, and velocities. Detailed models of combustion transport processes are then used to determine kinetic parameters describing the combustion behavior as a function of coal type and combustion environment. Partially reacted char particles are also sampled and characterized with advanced materials diagnostics to understand the critical physical and chemical transformations that influence reaction rates and burnout times. The ultimate goal of the task is the establishment of a data base of the high temperature reactivities of chars from strategic US coals, from which important trends may be identified and predictive capabilities developed. The overall objectives for task 2 are: (1) to complete experimental and theoretical investigation of ash release mechanisms; (2) to complete experimental work on char fragmentation; (3) to establish the extent of coal (as opposed to char) fragmentation as a function of coal type and particle size; (4) to develop diagnostic capabilities for in situ, real-time, qualitative indications of surface species composition during ash deposition, with work continuing into FY94; (5) to develop diagnostic capabilities for in situ, real-time qualitative detection of inorganic vapor concentrations; and (6) to conduct a literature survey on the current state of understanding of ash deposition, with work continuing into FY94.

  17. Influence of Process Parameters on Coal Combustion Performance

    DEFF Research Database (Denmark)

    Lans, Robert Pieter Van Der

    The objective of this study is to improve the understanding of nitrogen oxide formation and carbon burnout during the combustion of pulverized coal, and to contribute to addressing the potential of chemical engineering models for the prediction of furnace temperatures, NO emissions and the amount...... study has been performed in order to initiate an investigation of the potential of chemical engineering models to predict NO from pulverized fuel burners. The success of chemical engineering modeling is strongly connected to the simplification of the flow pattern into a reactor configuration...... and swirl number on the flow pattern in the near burner zone of the laboratory furnace-model were studied. Experimentally obtained residence time distributions have been used to derive a chemical reaction engineering model for the mixing process. The model is based on a combination of plug flow reactors...

  18. TOXIC SUBSTANCES FROM COAL COMBUSTION

    Energy Technology Data Exchange (ETDEWEB)

    A KOLKER; AF SAROFIM; CL SENIOR; FE HUGGINS; GP HUFFMAN; I OLMEZ; J LIGHTY; JOL WENDT; JOSEPH J HELBLE; MR AMES; N YAP; R FINKELMAN; T PANAGIOTOU; W SEAMES

    1998-12-08

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, the Lignite Research Council, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NO combustion systems, and new power generation x plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from 1 July 1998 through 30 September 1998. During this period distribution of all three Phase II coals was completed. Standard analyses for the whole coal samples were also completed. Mössbauer analysis of all project coals and fractions received to date has been completed in order to obtain details of the iron mineralogy. The analyses of arsenic XAFS data for two of the project coals and for some high arsenic coals have been completed. Duplicate splits of the Ohio 5,6,7 and North Dakota lignite samples were taken through all four steps of the selective leaching procedure. Leaching analysis of the Wyodak coal has recently commenced. Preparation of polished coal/epoxy pellets for probe/SEM studies is underway. Some exploratory mercury LIII XAFS work was

  19. Pyrolysis and Combustion of Pulverized Wheat Straw in a Pressurized Entrained Flow Reactor

    DEFF Research Database (Denmark)

    Fjellerup, Jan Søren; Gjernes, Erik; Hansen, Lars Kresten

    1996-01-01

    Within the past decade, there has been an interest for pressurized combustion and gasification of solid fuels in power plants due to the potential for high efficiency. The utilization of new types of solid fuels for pressurized combustion and gasification depends on char yield and char reactivity...... at relevant conditions. The pressurized entrained now reactor designed at Rise is introduced. Pyrolysis and combustion at 10 and 20 bar pressure have been studied using pulverized wheat straw. Samples of partly reacted particles are collected, and the conversion is calculated using the ash tracer technique...

  20. Mineralogy of clean coal combustion by-products

    Institute of Scientific and Technical Information of China (English)

    Ligang Wang; Changhe Chen; Kruse H. Kolker

    2004-01-01

    Coal combustion technologies are changing in order to bum coal more cleanly. Many "clean combustion" and postcombustion technologies are developed to remove SO2 and NOx gases, particulate matter during combustion, or from the flue gases leaving the furnace. This paper focuses on three types of fly ash (flue gas desulfurization (FGD) residuals, atmospheric fluidized bed combustion (AFBC) residuals and sorbent duct injection (SDI) residuals) which produced by "the clean combustion" and postcombustion technologies. The residuals formed by FGD are PCFA (pulverized coal fly ash) grains entrained with reacted and unreacted sorbent and have lower bulk densities than PCFA grains because it contains higher concentrations of calcium and sulfur, and lower concentrations of silicon, aluminum and iron than PCFAs. AFBC residuals consist of spent bed which is a heterogeneous mixture of coarse-grained bed material and irregularly shaped, unfused, spherical PCFAs. The main crystalline phases in AFBC residuals are anhydrite (reacted sorbent), quartz and lime (unreacted sobent), calcite, hematite, periclase, magnetite and feldspars.The residuals produced by SDI contained 65%-70% PCFA with the larger sizes material being irregularly shaped, fused or roughedged. The reaction products of sorbent (portlandite and lime) included calcium sulfate (anhydrite) and calcium sulfate. The chemical properties of these residuals are similar to those of high calcium PCFAs because of the high alkalinity and high pH of these residuals.

  1. A study of oxy-coal combustion with steam addition and biomass blending by thermogravimetric analysis

    OpenAIRE

    Gil Matellanes, María Victoria; Riaza Benito, Juan; Álvarez González, Lucía; Pevida García, Covadonga; Pis Martínez, José Juan; Rubiera González, Fernando

    2011-01-01

    The thermal characteristics of pulverized coal have been studied under oxy-fuel combustion conditions using non-isothermal thermogravimetric analysis (TG). The atmospheres used were 21%O2/79%N2, 21%O2/79%CO2, 30%O2/70%O2, and 35%O2/65%CO2. Coal blends of coal with 10 and 20% of biomass were also studied under these atmospheres. The addition of 10 and 20% of steam was evaluated for the oxy-fuel combustion atmospheres with 21 and 30% of O2 in order to study the effect of the wet recirculation o...

  2. Comparisons between oxy-fuel combustion and IGCC technologies in China coal- energy industry

    OpenAIRE

    Zhao, Xue; Clemente Jul, María del Carmen

    2010-01-01

    A comparison between oxy-fuel combustion plants and IGCC plants has been carried out. Oxy-fuel combustion performs better for the retrofit of exist pulverized coal plants after the evaluation of efficiency, retrofit cost and O&M cost. China is currently and will depending on coal for its energy for a long time. Plenty of PC plants are used in existing power plants due to its lower coal consumption. One way to reduce CO2 emission with CCS is to equip existing power plants with appliance...

  3. Application of Fourier-transform infrared (FT-ir) spectroscopy to in-situ studies of coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ottesen, D K; Thorne, L R

    1982-04-01

    The feasibility of using Fourier-transform infrared (FT-ir) spectroscopy for in situ measurement of gas phase species concentrations and temperature during coal combustion is examined. This technique is evaluated in terms of its potential ability to monitor several important chemical and physical processes which occur in pulverized coal combustion. FT-ir absorption measurements of highly sooting, gaseous hydrocarbon/air flames are presented to demonstrate the fundamental usefulness of the technique for in situ detection of gas phase temperatures and species concentrations in high temperature combustion environments containing coal, char, mineral matter and soot particles. Preliminary results for coal/gaseous fuel/air flames are given.

  4. Two-stage numerical simulation for temperature profile in furnace of tangentially fired pulverized coal boiler

    Institute of Scientific and Technical Information of China (English)

    ZHOU Nai-jun; XU Qiong-hui; ZHOU Ping

    2005-01-01

    Considering the fact that the temperature distribution in furnace of a tangential fired pulverized coal boiler is difficult to be measured and monitored, two-stage numerical simulation method was put forward. First, multi-field coupling simulation in typical work conditions was carried out off-line with the software CFX-4.3, and then the expression of temperature profile varying with operating parameter was obtained. According to real-time operating parameters, the temperature at arbitrary point of the furnace can be calculated by using this expression. Thus the temperature profile can be shown on-line and monitoring for combustion state in the furnace is realized. The simul-ation model was checked by the parameters measured in an operating boiler, DG130-9.8/540. The maximum of relative error is less than 12% and the absolute error is less than 120 ℃, which shows that the proposed two-stage simulation method is reliable and able to satisfy the requirement of industrial application.

  5. Relationship Between Coal Powder and Its Combustibility

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Coal's volatile component,ash and fixed carbon content have different functions in different stages of a combustion process, but the traditional coal classification can precisely show its combustion property.In this experiment coal's evaluation indexes (ignition index Di),(burn off index Df) were used to qualitatively show the ignition property and combustion ending property of coal samples.Meanwhile,considering actual heating circumstances in calciner (in cement plants),this thesis established the relationship among the ignition index,burn off index and coal's industrial analysis value, which makes it possible for the user to predict the quality of coal before using it and is very valuable in practice.

  6. Fluidized bed coal combustion reactor

    Science.gov (United States)

    Moynihan, P. I.; Young, D. L. (Inventor)

    1981-01-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.

  7. Coal blend combustion: fusibility ranking from mineral matter composition

    Energy Technology Data Exchange (ETDEWEB)

    C. Goni; S. Helle; X. Garcia; A. Gordon; R. Parra; U. Kelm; R. Jimenez; G. Alfaro [Universidad de Concepcion, Concepcion (Chile). Departamento de Ingenieria Metalurgica, Instituto de Geologia Economica Aplicada (GEA)

    2003-10-01

    Although coal blends are increasingly utilized at power plants, ash slagging propensity is a non-additive property of the pure coals and hence difficult to predict. Coal ash tendency to slag is related to its bulk chemistry and ash fusion temperatures, and the present study aims to compare the results obtained from thermodynamic simulation with characterization of samples obtained as outcomes of plant-based coal-blend combustion trials at three utilities located in the Centre and North of Chile. Pulverized coal and plant residues samples from five families of binary blends tested in an experimental program were characterized for chemistry, mineralogy and maceral composition. The slagging was evaluated by determination of fusion curves using the MTDATA software and NPLOX3 database for the main coal ash oxides. The ranking obtained was approximately the same as obtained from carbon in the fly ashes and from plant residues observations. The thermodynamic modeling was a valid option to predict the fusibility during the combustion of blends. 16 refs., 7 figs., 1 tab.

  8. Plasma Torch for Plasma Ignition and Combustion of Coal

    Science.gov (United States)

    Ustimenko, Alexandr; Messerle, Vladimir

    2015-09-01

    Plasma-fuel systems (PFS) have been developed to improve coal combustion efficiency. PFS is a pulverized coal burner equipped with arc plasma torch producing high temperature air stream of 4000 - 6000 K. Plasma activation of coal at the PFS increases the coal reactivity and provides more effective ignition and ecologically friendly incineration of low-rank coal. The main and crucial element of PFS is plasma torch. Simplicity and reliability of the industrial arc plasma torches using cylindrical copper cathode and air as plasma forming gas predestined their application at heat and power engineering for plasma aided coal combustion. Life time of these plasma torches electrodes is critical and usually limited to 200 hours. Considered in this report direct current arc plasma torch has the cathode life significantly exceeded 1000 hours. To ensure the electrodes long life the process of hydrocarbon gas dissociation in the electric arc discharge is used. In accordance to this method atoms and ions of carbon from near-electrode plasma deposit on the active surface of the electrodes and form electrode carbon condensate which operates as ``actual'' electrode. Complex physicochemical investigation showed that deposit consists of nanocarbon material.

  9. Numerical study on the impact of varying operation conditions on NOx emissions of large-scale pulverized coal-fired utility boiler

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yue-yun [Jiangsu Institute of Economic and Trade Technology, Nanjing (China); Gao, Xiao-tao [Jiangsu Electric Power Test and Research CO., LTD, Nanjing (China); Zhang, Ming-yao [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    For complying with the increasingly strengthened regulation on NOx emission from coal fired power plant, newly built large-scale pulverized coal-fired utility boilers are all installed with low-NOx combustion systems to low NOx emissions. Understanding the characteristics of the system is essential for fully utilizing the system without affecting the combustion performance. In the present work, computational fluid dynamics (CFD) approach was applied to simulate the combustion and NOx formation processes in the furnace of 1,000 MW ultra- supercritical boiler equipped with an advanced low-NOx combustion system so as to study the impacts of varying the operation conditions on its NOx emission as well as combustion characteristics. The combustion system is the Mitsubishi Advanced Combustion Technology system consisting of six levels corner-fired pollution minimum (PM) coal burners and additional air to achieve air staging combustion. With the help of CFD simulation, the distributions of the combustion temperature and CO, O{sub 2} and NO concentrations were calculated and analyzed. The main influential operation parameters studied include coal type, additional air flow rate, excess air level and mill groups in service. The CFD simulations indicated that the main reasons of the low NOx emission from this boiler are on two aspects: rationally organizing the combustion process to achieve relatively uniform temperature distribution and reducing combustion environment in the main combustion zone, and combining the utilizations of the large amount of additional air to achieve deep air stage and the low excess air level as well as PM burners. It was also found that varying the operational parameters had considerable effects on the performance of the combustion system.

  10. Microwave plasma combustion of coal

    Energy Technology Data Exchange (ETDEWEB)

    P.M. Kanilo; V.I. Kazantsev; N.I. Rasyuk; K. Schuenemann; D.M. Vavriv [Institute of Machine Building Problems of the National Academy of Sciences of Ukraine, Kharkov (Ukraine)

    2003-01-01

    Microwave plasma is studied as an alternative to oil or gas fuel for ignition and stabilisation of burning of lean coal. The study is performed on an experimental set-up, which includes a burner with a microwave plasma generator, coal and air supply systems, and measurement equipment. Power and thermochemical characteristics of the coal-plasma interaction have been measured and analysed. The obtained results indicate an essential intensification of ignition and combustion processes in the microwave burner compared to those in conventional burners. In particular, it has been demonstrated that the microwave energy consumption is only about 10% of the required expenditure of oil or gas, measured in heat equivalent. A design of an industrial microwave-plasma burner is proposed. Prospects of such burner for applications at industrial boilers of power plants are discussed. 6 refs., 4 figs., 2 tabs.

  11. TOXIC SUBSTANCES FROM COAL COMBUSTION A COMPREHENSIVE ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    A KOLKER; AF SAROFIM; CA PALMER; FE HUGGINS; GP HUFFMAN; J LIGHTY; JJ HELBLE; JOL WENDT; MR AMES; N YAP; R FINKELMAN; R. MAMANI-PACO; SJ MROCZKOWSKY; T PANAGIOTOU; W SEAMES

    1999-01-28

    The technical objectives of this project are: (a) To identify the effect of the mode-of-occurrence of toxic elements in coal on the partitioning of these elements among vapor, submicron fume, and fly ash during the combustion of pulverized coal, (b) To identify the mechanisms governing the post-vaporization interaction of toxic elements and major minerals or unburnt char, (c) To determine the effect of combustion environment (i.e., fuel rich or fuel lean) on the partitioning of trace elements among vapor, submicron fume, and fly ash during the combustion of pulverized coal, (d) To model the partitioning of toxic elements among various chemical species in the vapor phase and between the vapor phase and complex aluminosilicate melts, (e) To develop the new Toxics Partitioning Engineering Model (ToPEM), applicable to all combustion conditions including new fuels and coal blends, low-NO{sub x} combustion systems, and new power generation plants. A description of the work plan for accomplishing these objectives is presented in Section 2.1 of this report. The work discussed in this report covers the reporting period from 1 October 1998 to 31 December 1998. During this quarter, basic coal testing at USGS was completed. Total sulfur contents range from 0.43 wt-% in the Wyodak to 2.68 wt-% in the Ohio sample. In the North Dakota and Ohio samples, about half of the total sulfur is pyritic and half is organic. The North Dakota sample also contains a minor amount of sulfate, consistent with the presence of barite in this sample. In the Wyodak sample, the majority of the sulfur is organic. Preliminary mineralogy of the three Phase II coals was determined by SEM/EDX. The Ohio coal contains all of the five most common major phases: quartz, illitic clay, kaolinitic clay, pyrite and calcite. Based on this preliminary work, the North Dakota sample appears to lack both kaolinite and calcite, and the Wyodak sample appears to lack calcite. Subsequent SEM work will attempt to reconfirm

  12. Mercury speciation in pulverized fuel co-combustion and gasification

    NARCIS (Netherlands)

    Sable, S.P.

    2007-01-01

    Coal based power generation is a significant source of mercury emissions to the atmosphere and this has attracted huge attention in the past decade. Recently, the concerns regarding global warming and need for new energy resources introduced the concept of cofiring of biomass and waste as secondary

  13. Mercury speciation in pulverized fuel co-combustion and gasification

    NARCIS (Netherlands)

    Sable, S.P.

    2007-01-01

    Coal based power generation is a significant source of mercury emissions to the atmosphere and this has attracted huge attention in the past decade. Recently, the concerns regarding global warming and need for new energy resources introduced the concept of cofiring of biomass and waste as secondary

  14. Pulverized straw combustion in a low-NOx multifuel burner

    DEFF Research Database (Denmark)

    Mandø, Matthias; Rosendahl, Lasse; Yin, Chungen

    2010-01-01

    and to determine the relative importance of different modeling choices for straw combustion. Investigated modeling choices encompass the particle size and shape distribution, the modification of particle motion and heating due to the departure from the spherical ideal, the devolatilization rate of straw...

  15. Study of mechanically activated coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Anatolij P. Burdukov; Vitalij A. Popov; Valentin A. Faleev [Institute of Thermophysics, Novosibirsk (Russian Federation)

    2009-07-01

    Combustion and air gasification of mechanically activated micro-ground coals in the flux have been studied. Influence of mechanically activated methods of coal grinding on their chemical activity at combustion and gasification has been determined. Intense mechanical activation of coals increases their chemical activity that enables development of new highly boosted processing methods for coals with various levels of metamorphism. 10 refs., 14 figs., 1 tab.

  16. The Influencing Factors and Countermeasures for Self-ignition of Pulverized Coal Warehouse in Pulverized Coal Milling System%中间储仓式制粉系统粉仓自燃影响因素及对策

    Institute of Scientific and Technical Information of China (English)

    金帆; 李善涛

    2012-01-01

    针对中国石化上海石油化工股份有限公司热电部410 t/h煤粉炉在停炉抢修期间中间储仓式的粉仓内温度急剧上升、煤粉自燃的现象,分析了引起煤粉自燃的影响因素。根据实际情况,提出了煤粉自燃的防治措施和预防粉仓温度升高的方法。%Regarding the quick rising of temperature in the middle-warehouse pulverized coal house and self-ignition of pulverized coal in 410 t/a pulverized coal furnace during shutdown and emergency repairing period,the influencing factors causing self-ignition of pulverized coal were analyzed.Based on the practical situation,the preventions for self-ignition of pulverized coal and methods for preventing temperature in pulverized coal house from rising were raised.

  17. The application of RANS CFD for design of SNCR technology for a pulverized coal-fired boiler

    Directory of Open Access Journals (Sweden)

    Ruszak Monika

    2017-06-01

    Full Text Available The article describes the technology of NOx emission abatement by SNCR method. The scope of research included CDF simulations as well as design and construction of the pilot plant and tests of NOx reduction by urea in the plant located in industrial pulverized-coal fired boiler. The key step of research was to determine the appropriate temperature window for the SNCR process. The proposed solution of the location of injection lances in the combustion chamber enabled to achieve over a 30% reduction of NOx. It is possible to achieve higher effectiveness of the proposed SNCR technology and meet the required emission standards via providing prior reduction of NOx to the level of 350 mg/um3 using the primary methods.

  18. Application of BCS technology in pulverized coal furnace%BCS技术在煤粉炉上的应用

    Institute of Scientific and Technical Information of China (English)

    高瑞峰; 于现军

    2015-01-01

    BCS是应用于燃烧过程的通用优化控制技术,已成功应用于链条炉、 CFB锅炉、高炉热风炉、轧钢加热炉等多种炉型。在此基础上, BCS首次在某热电厂3台65 t/h煤粉炉上得到应用,并取得了良好的运行效果。%BCS is a sort of general optimization control technology for combustion process, which has been successfully applied to CFB boiler , chain boiler, hot stove for blast furnace, and reheating fur-nace for rolling etc.The optimization control system based on BCS was first put into use for 3 ×65t/h pulverized coal boiler and gets good results.

  19. TOXIC SUBSTANCES FROM COAL COMBUSTION-A COMPREHENSIVE ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    C.L. Senior; F. Huggins; G.P. Huffman; N. Shah; N. Yap; J.O.L. Wendt; W. Seames; M.R. Ames; A.F. Sarofim; S. Swenson; J.S. Lighty; A. Kolker; R. Finkelman; C.A. Palmer; S.J. Mroczkowski; J.J. Helble; R. Mamani-Paco; R. Sterling; G. Dunham; S. Miller

    2001-06-30

    UU focused on the behavior of trace metals in the combustion zone by studying vaporization from single coal particles. The coals were burned at 1700 K under a series of fuel-rich and oxygen-rich conditions. The data collected in this study will be applied to a model that accounts for the full equilibrium between carbon monoxide and carbon dioxide. The model also considers many other reactions taking place in the combustion zone, and involves the diffusion of gases into the particle and combustion products away from the particle. A comprehensive study has been conducted at UA to investigate the post-combustion partitioning of trace elements during large-scale combustion of pulverized coal combustion. For many coals, there are three distinct particle regions developed by three separate mechanisms: (1) a submicron fume, (2) a micron-sized fragmentation region, and (3) a bulk (>3 {micro}m) fly ash region. The controlling partitioning mechanisms for trace elements may be different in each of the three particle regions. A substantial majority of semi-volatile trace elements (e.g., As, Se, Sb, Cd, Zn, Pb) volatilize during combustion. The most common partitioning mechanism for semi-volatile elements is reaction with active fly ash surface sites. Experiments conducted under this program at UC focused on measuring mercury oxidation under cooling rates representative of the convective section of a coal-fired boiler to determine the extent of homogeneous mercury oxidation under these conditions. In fixed bed studies at EERC, five different test series were planned to evaluate the effects of temperature, mercury concentration, mercury species, stoichiometric ratio of combustion air, and ash source. Ash samples generated at UA and collected from full-scale power plants were evaluated. Extensive work was carried out at UK during this program to develop new methods for identification of mercury species in fly ash and sorbents. We demonstrated the usefulness of XAFS spectroscopy for

  20. TOXIC SUBSTANCES FROM COAL COMBUSTION-A COMPREHENSIVE ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    C.L. Senior; F. Huggins; G.P. Huffman; N. Shah; N. Yap; J.O.L. Wendt; W. Seames; M.R. Ames; A.F. Sarofim; S. Swenson; J.S. Lighty; A. Kolker; R. Finkelman; C.A. Palmer; S.J. Mroczkowski; J.J. Helble; R. Mamani-Paco; R. Sterling; G. Dunham; S. Miller

    2001-06-30

    UU focused on the behavior of trace metals in the combustion zone by studying vaporization from single coal particles. The coals were burned at 1700 K under a series of fuel-rich and oxygen-rich conditions. The data collected in this study will be applied to a model that accounts for the full equilibrium between carbon monoxide and carbon dioxide. The model also considers many other reactions taking place in the combustion zone, and involves the diffusion of gases into the particle and combustion products away from the particle. A comprehensive study has been conducted at UA to investigate the post-combustion partitioning of trace elements during large-scale combustion of pulverized coal combustion. For many coals, there are three distinct particle regions developed by three separate mechanisms: (1) a submicron fume, (2) a micron-sized fragmentation region, and (3) a bulk (>3 {micro}m) fly ash region. The controlling partitioning mechanisms for trace elements may be different in each of the three particle regions. A substantial majority of semi-volatile trace elements (e.g., As, Se, Sb, Cd, Zn, Pb) volatilize during combustion. The most common partitioning mechanism for semi-volatile elements is reaction with active fly ash surface sites. Experiments conducted under this program at UC focused on measuring mercury oxidation under cooling rates representative of the convective section of a coal-fired boiler to determine the extent of homogeneous mercury oxidation under these conditions. In fixed bed studies at EERC, five different test series were planned to evaluate the effects of temperature, mercury concentration, mercury species, stoichiometric ratio of combustion air, and ash source. Ash samples generated at UA and collected from full-scale power plants were evaluated. Extensive work was carried out at UK during this program to develop new methods for identification of mercury species in fly ash and sorbents. We demonstrated the usefulness of XAFS spectroscopy for

  1. Analysis of coal dust combustion and gasification in the cyclone furnace

    Directory of Open Access Journals (Sweden)

    Zarzycki Robert

    2017-01-01

    Full Text Available This study presents the design and operation of the cyclone furnace fuelled with coal dust. The main function of the furnace is coal dust gasification. The combustible gases that mainly contain CO can be used to feed a pulverized coal-fired boiler. The results of numerical calculations presented in the study demonstrated that cyclone furnace can operate over a wide range of fuel flow rates: from the conditions of coal dust combustion, which ensure maintaining the cyclone furnace in a state of hot reserve to the conditions of coal dust gasification, which allow for production of CO. Gasification process helps control temperature under conditions of elevated oxygen concentration. The results allow for the use of the furnace to improve flexibility and coal dust operation through the reduction in its technological minimum.

  2. Burnout synergic or inhibiting effects in combustion assays of coal/sawdust blends

    Energy Technology Data Exchange (ETDEWEB)

    Ximena Garcia; Ximena Matus; Claudia Ulloa; Alfredo L. Gordon [University of Concepcion, Concepcion (Chile). Dept. of Chemical Engineering

    2007-07-01

    Characterization of chars and charcoal and combustion assays of coal/ pine sawdust blends were carried on to evaluate the burnout, under conditions similar to those found in pulverized coal combustion. A drop tube furnace (DTF) was used to generate chars from three coals of different rank (Bitsch, a lignite; Lemington, a bituminous HV coal; and LD, a semianthracite) and charcoal from sawdust (S). Burning profiles, as well as morphological and optical characterization of these chars were obtained and discussed. Pulverized samples of pure constituents and sawdust/coal blends (5, 10 and 20%wt of S) were burned in the DTF reactor. Samples of combustion residues were collected for characterization. Depending on blend composition and the rank of the coal being blended, positive and negative deviations with respect to the expected weighted average value of the burnout were measured. This behavior is related both, to the duration of the step by which simultaneous burning of char and charcoal take place, and to the sawdust content in the blend. The optical analysis of combustion residues supports this conclusion. 7 refs., 6 figs., 3 tabs.

  3. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 17, April--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Nsakala, N.Y.

    1993-08-01

    Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. During the third quarter of 1993, the following technical progress was made: Completed modeling calculations of coal mineral matter transformations, deposition behavior, and heat transfer impacts of six test fuels; and ran pilot-scale tests of Upper Freeport feed coal, microagglomerate product, and mulled product.

  4. Energy Analysis of a Biomass Co-firing Based Pulverized Coal Power Generation System

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2012-03-01

    Full Text Available The results are reported of an energy analysis of a biomass/coal co-firing based power generation system, carried out to investigate the impacts of biomass co-firing on system performance. The power generation system is a typical pulverized coal-fired steam cycle unit, in which four biomass fuels (rice husk, pine sawdust, chicken litter, and refuse derived fuel and two coals (bituminous coal and lignite are considered. Key system performance parameters are evaluated for various fuel combinations and co-firing ratios, using a system model and numerical simulation. The results indicate that plant energy efficiency decreases with increase of biomass proportion in the fuel mixture, and that the extent of the decrease depends on specific properties of the coal and biomass types.

  5. Adapter for converting an oil burner head for burning of pulverized coal

    Energy Technology Data Exchange (ETDEWEB)

    Musil, J.E.

    1988-03-29

    This patent describes a burner head means forming a primary air passage in the burner head including a portion of generally circular configuration in cross-section having openings uniformally circularly disposed about its periphery, and a manifold effective to envelope the primary air passage means. The manifold has inlet means for connection to a source of pulverized coal and air, internal coal and air passages downstream of the inlet effective to divide incoming coal and air into a plurality of discrete streams thereof, and a manifold coal and air outlet opening from each coal and air passage. The manifold outlet openings each are in communication with a duct means having an outlet discharging into one of the openings about the periphery of the primary air passage means.

  6. Distribution of trace elements in selected pulverized coals as a function of particle size and density

    Science.gov (United States)

    Senior, C.L.; Zeng, T.; Che, J.; Ames, M.R.; Sarofim, A.F.; Olmez, I.; Huggins, Frank E.; Shah, N.; Huffman, G.P.; Kolker, A.; Mroczkowski, S.; Palmer, C.; Finkelman, R.

    2000-01-01

    Trace elements in coal have diverse modes of occurrence that will greatly influence their behavior in many coal utilization processes. Mode of occurrence is important in determining the partitioning during coal cleaning by conventional processes, the susceptibility to oxidation upon exposure to air, as well as the changes in physical properties upon heating. In this study, three complementary methods were used to determine the concentrations and chemical states of trace elements in pulverized samples of four US coals: Pittsburgh, Illinois No. 6, Elkhorn and Hazard, and Wyodak coals. Neutron Activation Analysis (NAA) was used to measure the absolute concentration of elements in the parent coals and in the size- and density-fractionated samples. Chemical leaching and X-ray absorption fine structure (XAFS) spectroscopy were used to provide information on the form of occurrence of an element in the parent coals. The composition differences between size-segregated coal samples of different density mainly reflect the large density difference between minerals, especially pyrite, and the organic portion of the coal. The heavy density fractions are therefore enriched in pyrite and the elements associated with pyrite, as also shown by the leaching and XAFS methods. Nearly all the As is associated with pyrite in the three bituminous coals studied. The sub-bituminous coal has a very low content of pyrite and arsenic; in this coal arsenic appears to be primarily organically associated. Selenium is mainly associated with pyrite in the bituminous coal samples. In two bituminous coal samples, zinc is mostly in the form of ZnS or associated with pyrite, whereas it appears to be associated with other minerals in the other two coals. Zinc is also the only trace element studied that is significantly more concentrated in the smaller (45 to 63 ??m) coal particles.

  7. Detailed model for practical pulverized coal furnaces and gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.J.; Smoot, L.D.

    1989-08-01

    This study has been supported by a consortium of nine industrial and governmental sponsors. Work was initiated on May 1, 1985 and completed August 31, 1989. The central objective of this work was to develop, evaluate and apply a practical combustion model for utility boilers, industrial furnaces and gasifiers. Key accomplishments have included: Development of an advanced first-generation, computer model for combustion in three dimensional furnaces; development of a new first generation fouling and slagging submodel; detailed evaluation of an existing NO{sub x} submodel; development and evaluation of an improved radiation submodel; preparation and distribution of a three-volume final report: (a) Volume 1: General Technical Report; (b) Volume 2: PCGC-3 User's Manual; (c) Volume 3: Data Book for Evaluation of Three-Dimensional Combustion Models; and organization of a user's workshop on the three-dimensional code. The furnace computer model developed under this study requires further development before it can be applied generally to all applications; however, it can be used now by specialists for many specific applications, including non-combusting systems and combusting geseous systems. A new combustion center was organized and work was initiated to continue the important research effort initiated by this study. 212 refs., 72 figs., 38 tabs.

  8. Detailed model for practical pulverized coal furnaces and gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.J.; Smoot, L.D.

    1989-08-01

    This study has been supported by a consortium of nine industrial and governmental sponsors. Work was initiated on May 1, 1985 and completed August 31, 1989. The central objective of this work was to develop, evaluate and apply a practical combustion model for utility boilers, industrial furnaces and gasifiers. Key accomplishments have included: Development of an advanced first-generation, computer model for combustion in three dimensional furnaces; development of a new first generation fouling and slagging submodel; detailed evaluation of an existing NO{sub x} submodel; development and evaluation of an improved radiation submodel; preparation and distribution of a three-volume final report: (a) Volume 1: General Technical Report; (b) Volume 2: PCGC-3 User's Manual; (c) Volume 3: Data Book for Evaluation of Three-Dimensional Combustion Models; and organization of a user's workshop on the three-dimensional code. The furnace computer model developed under this study requires further development before it can be applied generally to all applications; however, it can be used now by specialists for many specific applications, including non-combusting systems and combusting geseous systems. A new combustion center was organized and work was initiated to continue the important research effort initiated by this study. 212 refs., 72 figs., 38 tabs.

  9. Study on combustion characteristics of blended coals

    Energy Technology Data Exchange (ETDEWEB)

    Li Yonghua; Wang Chunbo; Chen Hongwei [North China Electric Power University, Baoding (China)

    2007-02-15

    Power plants in China have to burn blended coal instead of one specific coal for a variety of reasons. So it is of great necessity to investigate the combustion of blended coals. Using a test rig with a capacity of 640 MJ/h with an absolute milling system and flue gas online analysis system, characteristics such as burnout, slag, and pollution of some blended coals were investigated. The ratio of coke and slag as a method of distinguishing coal slagging characteristic was introduced. The results show that the blending of coal has some effect on NOx but there is no obvious rule. SOx emission can be reduced by blending low sulfur coal.

  10. Measurement and simulation of swirling coal combustion

    Institute of Scientific and Technical Information of China (English)

    Liyuan Hu; Lixing Zhou; Yonghao Luo; Caisong Xu

    2013-01-01

    Particle image velocimetry (PIV),thermocouples and flue gas analyzer are used to study swirling coal combustion and NO formation under different secondary-air ratios.Eulerian-Lagrangian large-eddy simulation (LES) using the Smagorinsky-Lilly sub-grid scale stress model,presumed-PDF fast chemistry and eddy-break-up (EBU) gas combustion models,particle devolatilization and particle combustion models,are simultaneously used to simulate swirling coal combustion.Statistical LES results are validated by measurement results.Instantaneous LES results show that the coherent structures for swirling coal combustion are stronger than those for swirling gas combustion.Particles are shown to concentrate along the periphery of the coherent structures.Combustion flame is located in the high vorticity and high particle concentration zones.Measurement shows that secondary-air ratios have little effect on final NO formation at the exit of the combustor.

  11. Recycling of coal combustion wastes.

    Science.gov (United States)

    Oz, Derya; Koca, Sabina; Koca, Huseyin

    2009-05-01

    The separation of unburned carbon from coal-fired power plant bottom ashes was conducted in order to increase the possibility of the recycling of coal combustion wastes. A two-stage flotation technique was used for this study. In the rougher flotation experiments the amounts of collector, dispersant and frother, pulp density, pH, particle size distribution, flotation time and flotation temperature were tested as variables. After rougher flotation experiments, at optimum conditions, the carbon content of the concentrate increased from 13.85 to 51.54% at a carbon recovery of 54.54%. Under the same conditions, the carbon content was reduced to 4.54% at a weight yield of over 80% in the tailings fraction. This fraction meets the industrial specifications and can be utilized as a cement additive. After the cleaner flotation experiment the carbon content of the product was enhanced to 64.81% with a 52.16% carbon recovery. This fraction can be blended back into the coal feed to the power plant boilers.

  12. Practice of promoting pulverized coal injection rate at no.4 blast furnace of China Steel Corporation

    Energy Technology Data Exchange (ETDEWEB)

    Liang, N.W.; Chang, C.T [China Steel Corp., Kaohsiung, Taiwan (China)

    2008-07-01

    In 2006, the China Steel Corporation (CSC) upgraded the injection system of its no.4 blast furnace to increase the pulverized coal (PC) rate which averaged 136 to 143 kg/thm. This paper described the scheduled shutdown of the furnace in May 2007 in order to modify it from a dilute phase injection system to a dense phase system using the technology of the Kuettner Company. Through proper burden distribution and operational parameter adjustments, the pulverized coal (PC) rate was increased to 178 kg/thm by November 2007, corresponding to a 65 t/hr injection rate with a productivity of 2.58 t/m{sup 3}/d. This paper described the challenges encountered following commissioning as well as the strategies of process control. The main differences between the existing and new injection system were that nitrogen was used to substitute compressed air as the conveying gas and the coal to gas ratio was increased from about 10 to 30 kg/kg. As a result, the transport method and the operation pressure had to be reassessed. This paper described the coal blend injection; screening facility for coal preparation; location of the distributor; and coal accumulation in the coal flow meter. The blast furnace adjustments included burden thickness control; burden distribution adjustment; improvement of raw material quality; and theoretical flame temperature adjustment. The upgrade project has proven to be very successful and has improved the competitiveness of CSC blast furnace no.4 significantly. Plans to upgrade the no.2 and no.3 blast furnaces are underway. Once completed, the operating cost and coke consumption of the blast furnaces will be reduced considerably. The modification to dense phase conveying system has shown that coal with high Hardgrove Index requires a higher driving force in the pneumatic dense phase transport and that coal mill equipped with a rotating classifier is recommended along with screens at the upstream of the feed tank. 3 refs., 6 tabs., 9 figs.

  13. A New Agro/Forestry Residues Co-Firing Model in a Large Pulverized Coal Furnace: Technical and Economic Assessments

    Directory of Open Access Journals (Sweden)

    Shien Hui

    2013-08-01

    Full Text Available Based on the existing biomass co-firing technologies and the known innate drawbacks of dedicated biomass firing, including slagging, corrosion and the dependence on fuel, a new model of agro/forestry residue pellets/shreds and coal co-fired in a large Pulverized Coal (PC furnace was proposed, and the corresponding technical and economic assessments were performed by co-firing testing in a 300 MW PC furnace and discounted cash flow technique. The developed model is more dependent on injection co-firing and combined with co-milling co-firing. Co-firing not only reduces CO2 emission, but also does not significantly affect the fly ash use in cement industry, construction industry and agriculture. Moreover, economic assessments show that in comparison with dedicated firing in grate furnace, agro/forestry residues and coal co-firing in a large PC furnace is highly economic. Otherwise, when the co-firing ratio was below 5 wt%, the boiler co-firing efficiency was 0.05%–0.31% higher than that of dedicated PC combustion, and boiler efficiencies were about 0.2% higher with agro/forestry residues co-firing in the bottom and top burner systems than that in a middle burner system.

  14. Sulfur release from Ohio coals and sorbent kinetics in pulverized coal flames. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Essenhigh, R. [Ohio State Univ., Columbus, OH (United States). Robinson Lab.

    1992-08-01

    In this report we describe the results of investigations into the structure of combustion and sulfur release profiles from coal burning in One-Dimensional P.C. flames using a furnace of unique design for the measurements. Selected measurements were also-carried out in a special high-intensity furnace also of unique design. The formal project work started in late Fall 1989, with unfunded preliminary work in the months prior to that. The process of limestone injection into the flame to control sulfur oxides emissions is a long-standing concept that has been given particular formulation in the LIMB process, and studies of such systems provide bases for commercial system economics. Problems with LIMB and related systems indicated need for better understanding of, jointly, the sulfur release from the coal and the sorbent behavior by the limestone. The investigations as reported in Vol. 1 of this Report used 14 different coals under a range of different initial and operating conditions, and the resulting measurements have provided a database of major proportions, as tabulated in the attached Volumes 2, 3, 4, 5, 6, and 7 of this report. This database consists of sets of measurements totalling about 45,000 entries for all independent and dependent parameters involved. The independent parameters included: coal type (analysis), firing rate, stoichiometry (fuel/air ratio), and sorbent content of the

  15. DETERMINATION OF GRANULOMETRIC COMPOSITION OF PULVERIZED COAL BY AUTOMATED SYSTEM

    Directory of Open Access Journals (Sweden)

    A. S. Chernenko

    2015-01-01

    Full Text Available The method of granulometric composition determination of dry powders by a shadow method in the automated system of determination of quantitative structure is described. The granulometric analysis of coal-dust fuel particles is carried out. Comparison with results of digital microscopy allowed to establish a variety of used method advantages.

  16. Coal Combustion Science quarterly progress report, April--June 1990

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. (ed.); Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

    1990-11-01

    This document provides a quarterly status report of the Coal Combustion Science Program that is being conducted at the Combustion, Research Facility, Sandia National Laboratories, Livermore, California. Coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 56 refs., 25 figs., 13 tabs.

  17. SPONTANEOUS COAL COMBUSTION; MECHANISMS AND PREDICTION.

    Science.gov (United States)

    Herring, James R.; Rich, Fredrick J.

    1983-01-01

    Spontaneous ignition and combustion of coal is a major problem to the coal mining, shipping, and use industries; unintentional combustion causes loss of the resource as well as jeopardy to life and property. The hazard to life is especially acute in the case of underground coal mine fires that start by spontaneous ignition. It is the intention of this research to examine previously suggested causes of spontaneous ignition, to consider new evidence, and to suggest an experimental approach to determine which of these suggested causes is relevant to western U. S. coal. This discussion focuses only on causes and mechanism of spontaneous ignition.

  18. Industrial Experimental Study and Application of Plasma Pulverized Coal Ignition Burner%等离子煤粉点火燃烧器工业性试验研究及应用

    Institute of Scientific and Technical Information of China (English)

    崔凤誉; 张玉周

    2001-01-01

    This paper systematically explains the content and method of industrial experiment in plasma pulverized coal ignition burner analyzes the experiment results,and puts forward the two-parameter concentration of pulverized coal and fuel ratio combustion regulation-control of plasma pulverized coal ignition burner.On the basis of the industrial experiment,Shandong Yantai Coal-fired Power Plant has realized successfully the boiler ignition without oil aid by using plasma pulverized coal ignition burner for the first time.%阐释等离子煤粉点火燃烧器工业试验的内容及方法,并对其试验结果进行分析。提出等离子煤粉点火燃烧器燃烧调整的双参数煤粉浓度、燃功比控制法。在对等离子煤粉点火燃烧器工业试验基础上,2000年2月15日,山东烟台发电厂利用等离子煤粉点火燃烧器首次实现了机组无油点火。

  19. Assessment against Experiments of Devolatilization and Char Burnout Models for the Simulation of an Aerodynamically Staged Swirled Low-NOx Pulverized Coal Burner

    Directory of Open Access Journals (Sweden)

    Marco Torresi

    2017-01-01

    Full Text Available In the next few years, even though there will be a continuous growth of renewables and a loss of the share of fossil fuel, energy production will still be strongly dependent on fossil fuels. It is expected that coal will continue to play an important role as a primary energy source in the next few decades due to its lower cost and higher availability with respect to other fossil fuels. However, in order to improve the sustainability of energy production from fossil fuels, in terms of pollutant emissions and energy efficiency, the development of advanced investigation tools is crucial. In particular, computational fluid dynamics (CFD simulations are needed in order to support the design process of low emission burners. Even if in the literature several combustion models can be found, the assessment of their performance against detailed experimental measurements on full-scale pulverized coal burners is lacking. In this paper, the numerical simulation of a full-scale low-NO x , aerodynamically-staged, pulverized coal burner for electric utilities tested in the 48 MW th plant at the Combustion Environment Research Centre (CCA - Centro Combustione e Ambiente of Ansaldo Caldaie S.p.A. in Gioia del Colle (Italy is presented. In particular, this paper is focused on both devolatilization and char burnout models. The parameters of each model have been set according to the coal characteristics without any tuning based on the experimental data. Thanks to a detailed description of the complex geometry of the actual industrial burner and, in particular, of the pulverized coal inlet distribution (considering the entire primary air duct, in order to avoid any unrealistic assumption, a correct selection of both devolatilization and char burnout models and a selection of suited parameters for the NO x modeling, accurate results have been obtained in terms of NO x formation. Since the model parameters have been evaluated a priori, the numerical approach proposed

  20. Feasibility investigation and combustion enhancement of a new burner functioning with pulverized solid olive waste

    Directory of Open Access Journals (Sweden)

    Bounaouara H., Sautet J.C., Ben Ticha H., Mhimid A.

    2014-01-01

    Full Text Available This article describes an experimental study on solid olive residue (olive cake combustion in form of pulverized jet. This is a contribution to the valorization of olive residue as a source of renewable energy available in the majority of mediterranean countries. A sample of olive cake from Tunisian origin is prepared for the experiment; this sample is crushed, dried and sifted in order to obtain the desired particles form. A new burner made up of a coaxial cylindrical tube is especially designed and fabricated. In order to start the combustion of olive cake and maintain the main flame, two types of pilot flame were used: a central premixed flame of methane/oxygen and an annular diffusion flame of methane. This paper shows the conditions for an efficient olive cake burner operation in free air. The effects of particle size and pilot flame position have been discussed. The olive cake combustion is possible only with particles at a size below 200 μm. Moreover, the combustion maintained by the annular pilot flame ensures better burning conditions than the central pilot flame. Finally, the inserted preheating system has improved the olive cake combustion.

  1. Analysis of Pulverized Coal by Laser-Induced Breakdown Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been used to detect atomic species in various environments. The quantitative analysis (C, H, O, N and S) of representative coal samples are being carried out with LIBS, and the effects of particle size are analyzed.A powerful pulse Nd:YAG laser is focused on the coal sample at atmosphere pressure, and the emission spectra from laser-induced plasmas are measured by time-resolved spectroscopy, and the intensity of analyzed spectral lines is obtained through observing the laser plasma with a delay time of 0.4μs. The experimental results show that the slope of calibration curve is nearly 1 when the concentration of the analyzed element is relatively low, and the slope of curve is nearly 0.5 when the concentration of C is higher than other elements. In addition, using the calibration-free model without self-absorption effect, the results show that the decreasing of particle size leads to an increase of the plasma temperature.

  2. Combustion of Coal/Oil/Water Slurries

    Science.gov (United States)

    Kushida, R. O.

    1982-01-01

    Proposed test setup would measure combustion performance of new fuels by rapidly heating a droplet of coal/oil/water mixture and recording resulting explosion. Such mixtures are being considered as petroleum substitutes in oil-fired furnaces.

  3. JV Task 106 - Feasibility of CO2 Capture Technologies for Existing North Dakota Lignite-Fired Pulverized Coal Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Jones; Brandon M. Pavlish; Melanie D. Jensen

    2007-05-01

    The goal of this project is to provide a technical review and evaluation of various carbon dioxide (CO{sub 2}) capture technologies, with a focus on the applicability to lignite-fired facilities within North Dakota. The motivation for the project came from the Lignite Energy Council's (LEC's) need to identify the feasibility of CO{sub 2} capture technologies for existing North Dakota lignite-fired, pulverized coal (pc) power plants. A literature review was completed to determine the commercially available technologies as well as to identify emerging CO{sub 2} capture technologies that are currently in the research or demonstration phase. The literature review revealed few commercially available technologies for a coal-fired power plant. CO{sub 2} separation and capture using amine scrubbing have been performed for several years in industry and could be applied to an existing pc-fired power plant. Other promising technologies do exist, but many are still in the research and demonstration phases. Oxyfuel combustion, a technology that has been used in industry for several years to increase boiler efficiency, is in the process of being tailored for CO{sub 2} separation and capture. These two technologies were chosen for evaluation for CO{sub 2} separation and capture from coal-fired power plants. Although oxyfuel combustion is still in the pilot-scale demonstration phase, it was chosen to be evaluated at LEC's request because it is one of the most promising emerging technologies. As part of the evaluation of the two chosen technologies, a conceptual design, a mass and energy balance, and an economic evaluation were completed.

  4. 煤质变化对Shell粉煤气化工艺的影响%THE EFFECT OF COAL QUALITY CHANGE ON SHELL PULVERIZED-COAL GASIFICATION PROCESS

    Institute of Scientific and Technical Information of China (English)

    吴国祥

    2011-01-01

    The Shell pulverized-coal gasification process is introduced,the specific requirement for coal quality by Shell pulverized-coal gasification process summarized,several factors related to coal quality and the effect of the changes of these factors on Shell pulverized-coal gasification plant highlighted and the preventive measures based on the effects concluded.%介绍Shell粉煤气化工艺流程,总结Shell粉煤气化工艺对煤质的具体要求,阐述与煤质相关的几方面因素及这些因素的变化对Shell粉煤气化装置的影响,并根据这些影响得出相应的预防措施。

  5. Slagging characteristics of molten coal ash on silicon-aluminum combustion liners of boiler

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to study the slagging characteristics of boiler combustion liners during pulverized coal stream combustion,the slag samples on the surface of combustion liner were investigated by X-ray diffractometry,scan electron microscopy and energy dispersive X-ray analysis,and the transformation characteristics of the compositions and crystal phases were studied.The results show that the size of slag granules decreases as the slagging temperature increases;the crystallinity of coal ash I reduces to about 48.6% when the temperature is increased up to 1 350 ℃,and that of the coal ash Ⅱ reduces to about 65% when the temperature is increased up to 1 500 ℃;the encroachment of molten coal ash to the combustion liner is strengthened.At the same time,the diffusion and the segregation of the compositions in combustion liners have selectivity,which is in favor of enhancing the content of crystal phases,weakening the conglutination among molten slag compositions and combustion liner,and avoiding yielding big clinkers.But the diffusion of the compositions in combustion liners increases the porosity and decreases the mechanical intensity of combustion liner,and makes the slag encroachment to the liner become more serious.

  6. Thermally induced structural changes in coal combustion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Flagan, R.C.; Gavalas, G.R.

    1992-01-01

    The effects of the temperature-time history during coal devolitization and oxidation on the physical properties and the reactivity of resulting char were studied experimentally for temperatures and residence times typical of pulverized combustion. Experiments were also carried out at somewhat lower temperatures and correspondingly longer residence times. An electrically heated laminar flow reactor was used to generate char and measure the rates of oxidation at gas temperatures about 1600K. Partially oxidized chars were extracted and characterized by gas adsorption and mercury porosimetry, optical and scanning electron microscopy, and oxidation in a thermogravimetric analysis system (TGA). A different series of experiments was conducted using a quadrople electrodynamic balance. Single particles were suspended electrodynamically and heated by an infrared laser in an inert or oxygen-containing atmosphere. During the laser heating, measurements were taken of particle mass, size/shape, and temperature.

  7. Effects of pulverized coal fly-ash addition as a wet-end filler in papermaking

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, A.S.K. [SLIET, Longowal (India). Dept. of Chemical Technology

    2008-09-15

    This experimental study is based on the innovative idea of using pulverized coal fly ash as a wet-end filler in papermaking. This is the first evaluation of the possible use of fly ash in the paper industry. Coal-based thermal power plants throughout the world are generating fly ash as a solid waste product. The constituents of fly ash can be used effectively in papermaking. Fly ash has a wide variation in particle size, which ranges from a few micrometers to one hundred micrometers. Fly ash acts as an inert material in acidic, neutral, and alkaline papermaking processes. Its physical properties such as bulk density (800-980 kg/m{sup 3}), porosity (45%-57%), and surface area (0.138-2.3076 m{sup 2}/g) make it suitable for use as a paper filler. Fly ash obtained from thermal power plants using pulverized coal was fractionated by a vibratory-sieve stack. The fine fraction with a particle size below 38 micrometers was used to study its effect on the important mechanical-strength and optical properties of paper. The effects of fly-ash addition on these properties were compared with those of kaolin clay. Paper opacity was found to be much higher with fly ash as a filler, whereas brightness decreased as the filler percentage increased Mechanical strength properties of the paper samples with fly ash as filler were superior to those with kaolin clay.

  8. [An investigation of the formation of] polycyclic aromatic hydrocarbon (PAH) emissions when firing pulverized coal in a bench-scale drop tube reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pisupati, S.V.; Wasco, R.S.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States). Combustion Lab.

    1998-12-31

    The Clean Air Act Amendments (CAAA) of 1990 contain provisions which will set standards for the allowable emissions of 188 analytes designated as hazardous air pollutants (HAPs). This list of HAPs was used to establish an initial list of source categories for which EPA would be required to establish technology-based emission standards, which would result in regulated sources sharply reducing routine emissions of toxic air pollutants. Polycyclic organic matter (POM) has also been referred to as polynuclear or polycyclic aromatic compounds (PACs). Nine major categories of POM have been defined by EPA. The study of organic compounds from coal combustion is complex and the results obtained so far are inconclusive with respect to emission factors. The most common organic compounds in the flue gas of coal-fired power plants are polycyclic aromatic hydrocarbons (PAHs). Furthermore, EPA has specified 16 PAH compounds as priority pollutants. These are naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene, benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, benzo[ghi]perylene, and dibenz[ah]anthracene. Penn State`s Combustion Laboratory is equipped to collect and analyze the HAPs in the flue gas from fossil fuels combustion. The overall objective of this study was to examine the effect of unit temperature on PAH emissions. A Modified Method 5 sampling train was used to isokinetically collect samples at desired locations in flue gas streams. The collected sample can be separated into solid, condensed liquid and gaseous phases. The PAHs of interest are extracted from the collected sample, concentrated, then separated and quantified by gas chromatography/mass spectrometry (GC/MS). This study was conducted using a bench-scale drop-tube reactor (DTR). The fuel selected for this study was a Middle Kittanning seam coal pulverized to 80% passing US Standard 200 mesh (commonly

  9. Experiments and computational modeling of pulverized-coal ignition. Semiannual report, Apr 1, 1998--Sep 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    John C. Chen; Samuel Owusu-Ofori

    1998-10-31

    Under typical conditions of pulverized-coal combustion, which is characterized by fine particles heated at very high rates, there is currently a lack of certainty regarding the ignition mechanism of bituminous and lower rank coals. It is unclear whether ignition occurs first at the particle-oxygen interface (heterogeneous ignition) or if it occurs in the gas phase due to ignition of the devolatilization products (homogeneous ignition). Furthermore, there have been no previous studies aimed at determining the dependence of the ignition mechanism on variations in experimental conditions, such as particle size, oxygen concentration, and heating rate. Finally, there is a need to improve current mathematical models of ignition to realistically and accurately depict the particle-to-particle variations that exist within a coal sample. Such a model is needed to extract useful reaction parameters from ignition studies, and to interpret ignition data in a more meaningful way. The authors propose to examine fundamental aspects of coal ignition through (1) experiments to determine the ignition mechanism of various coals by direct observation, and (2) modeling of the ignition process to derive rate constants and to provide a more insightful interpretation of data from ignition experiments. They propose to use a novel laser-based ignition experiment to achieve their objectives. The heating source will be a pulsed, carbon dioxide laser in which both the pulse energy and pulse duration are independently variable, allowing for a wide range of heating rates and particle temperatures--both of which are decoupled from each other and from the particle size. This level of control over the experimental conditions is truly novel in ignition and combustion experiments. Laser-ignition experiments also offer the distinct advantage of easy optical access to the particles because of the absence of a furnace or radiating walls, and thus permit direct observation and particle temperature

  10. Coal slurry combustion and technology. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Volume II contains papers presented at the following sessions of the Coal Slurry Combustion and Technology Symposium: (1) bench-scale testing; (2) pilot testing; (3) combustion; and (4) rheology and characterization. Thirty-three papers have been processed for inclusion in the Energy Data Base. (ATT)

  11. Coal Combustion Products Extension Program

    Energy Technology Data Exchange (ETDEWEB)

    Tarunjit S. Butalia; William E. Wolfe

    2006-01-11

    This final project report presents the activities and accomplishments of the ''Coal Combustion Products Extension Program'' conducted at The Ohio State University from August 1, 2000 to June 30, 2005 to advance the beneficial uses of coal combustion products (CCPs) in highway and construction, mine reclamation, agricultural, and manufacturing sectors. The objective of this technology transfer/research program at The Ohio State University was to promote the increased use of Ohio CCPs (fly ash, FGD material, bottom ash, and boiler slag) in applications that are technically sound, environmentally benign, and commercially competitive. The project objective was accomplished by housing the CCP Extension Program within The Ohio State University College of Engineering with support from the university Extension Service and The Ohio State University Research Foundation. Dr. Tarunjit S. Butalia, an internationally reputed CCP expert and registered professional engineer, was the program coordinator. The program coordinator acted as liaison among CCP stakeholders in the state, produced information sheets, provided expertise in the field to those who desired it, sponsored and co-sponsored seminars, meetings, and speaking at these events, and generally worked to promote knowledge about the productive and proper application of CCPs as useful raw materials. The major accomplishments of the program were: (1) Increase in FGD material utilization rate from 8% in 1997 to more than 20% in 2005, and an increase in overall CCP utilization rate of 21% in 1997 to just under 30% in 2005 for the State of Ohio. (2) Recognition as a ''voice of trust'' among Ohio and national CCP stakeholders (particularly regulatory agencies). (3) Establishment of a national and international reputation, especially for the use of FGD materials and fly ash in construction applications. It is recommended that to increase Ohio's CCP utilization rate from 30% in 2005 to

  12. Formation of NOx precursors during Chinese pulverized coal pyrolysis in an arc plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Wei-ren Bao; Jin-cao Zhang; Fan Li; Li-ping Chang [Taiyuan University of Technology, Taiyuan (China). Key Laboratory of Coal Science and Technology

    2007-08-15

    The formation of NOx precursors (HCN and NH{sub 3}) from the pyrolysis of several Chinese pulverized coals in an arc plasma jet was investigated through both thermodynamic analysis of the C-H-O-N system and experiments. Results of thermodynamic analysis show that the dominant N-containing gaseous species is HCN together with a small amount of ammonia above the temperature of 2000 K. The increase of H content advances the formation of HCN and NH{sub 3}, but the yields of HCN and NH{sub 3} are decreased with a high concentration of O in the system. These results are accordant with the experimental data. The increasing of input power promotes the formation of HCN and NH{sub 3} from coal pyrolysis in an arc plasma jet. Tar-N is not formed during the process. The yield of HCN changes insignificantly with the changing of the residence time of coal particles in the reactor, but that of NH{sub 3} decreases as residence times increase because of the relative instability at high temperature. Adsorption and gasification of CO{sub 2} on the coal surface also can restrain the formation of HCN and NH{sub 3} compare to the results in an Ar plasma jet. Yields of HCN and NH{sub 3} are sensitive to the coal feeding rate, indicating that NOx precursors could interact with the nascent char to form other N-containing species. The formation of HCN and NH{sub 3} during coal pyrolysis in a H{sub 2}/Ar plasma jet are not dependent on coal rank. The N-containing gaseous species is released faster than others in the volatiles during coal pyrolysis in an arc plasma jet, and the final nitrogen content in the char is lower than that in the parent coal, which it is independent of coal type. 16 refs., 9 figs., 1 tab.

  13. Influence of process parameters on coal combustion performance. Review, experiments and engineering modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lans, R.P. van der

    1997-04-01

    The objective of this study is to improve the understanding of nitrogen oxide formation and carbon burnout during the combustion of pulverized coal, and to contribute to addressing the potential of chemical engineering models for the prediction of furnace temperatures, NO emissions and the amount of carbon in ash. To this purpose, the effect of coal quality on NO and burnout has been investigated experimentally, a radiation heat balance has been developed based on a simple chemical engineering methodology, and a mixing study has been conducted in order to describe the near burner macro mixing in terms of a reactor configuration. The influence of coal type and process conditions on NO formation and carbon burnout has been investigated experimentally in a 400 MW{sub e} corner fired boiler with over fire air, a 350 MW{sub e} opposed fired boiler, and in a 160 kW{sub t} pilot scale test rig. Three different coals were fired in each of the furnaces as part of the activities in group 3 of the European Union JOULE 2 Extension project `Atmospheric Pressure Combustion of Pulverized Coal and Coal Based Blends for Power Generation`. On the pilot scale test both single stage and air staged tests were performed. A simple, one-dimensional combustion and radiation heat transfer model has been developed for the furnace of full scale boilers. The model has been applied to the two boilers mentioned above, and is validated against measured temperatures and carbon in ash concentrations. A mixing study has been performed in order to initiate an investigation of the potential of chemical engineering models to predict NO from pulverized fuel burners. (EG) 11 refs.

  14. Numerical Simulation of Oxy-coal Combustion for a Swirl Burner with EDC Model

    Institute of Scientific and Technical Information of China (English)

    崔凯; 刘冰; 吴玉新; 杨海瑞; 吕俊复; 张海

    2014-01-01

    The characteristics of oxy-coal combustion for a swirl burner with a specially designed preheating chamber are studied numerically. In order to increase the accuracy in the prediction of flame temperature and igni-tion position, eddy dissipation concept (EDC) model with a skeletal chemical reaction mechanism was adopted to describe the combustion of volatile matter. Simulation was conducted under six oxidant stream conditions with dif-ferent O2/N2/CO2 molar ratios:21/79/0, 30/70/0, 50/50/0, 21/0/79, 30/0/70 and 50/0/50. Results showed that O2 en-richment in the primary oxidant stream is in favor of combustion stabilization, acceleration of ignition and increase of maximum flame temperature, while the full substitution of N2 by CO2 in the oxidant stream delays ignition and decreases the maximum flame temperature. However, the overall flow field and flame shapes in these cases are very similar at the same flow rate of the primary oxidant stream. Combustion characteristics of the air-coal is similar to that of the oxy-coal with 30%O2 and 70%CO2 in the oxidant stream, indicating that the rear condition is suitable for retrofitting an air-coal fired boiler to an oxy-coal one. The swirl burner with a specially designed preheating chamber can increase flame temperature, accelerate ignition and enhance burning intensity of pulverized coal under oxy-coal combustion. Also, qualitative experimental validation indicated the burner can reduce the overall NOx emission under certain O2 enrichment and oxy-coal combustion conditions against the air-coal combustion.

  15. Transformations of inorganic coal constituents in combustion systems. Volume 2, Sections 6 and 7: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Helble, J.J. [ed.; Srinivasachar, S.; Wilemski, G.; Boni, A.A. [PSI Technology Co., Andover, MA (United States); Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L. [Arizona Univ., Tucson, AZ (United States); Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A. [Kentucky Univ., Lexington, KY (United States)

    1992-11-01

    Results from an experimental investigation of the mechanisms governing the ash aerosol size segregated composition resulting from the combustion of pulverized coal in a laboratory scale down-flow combustor are described. The results of modeling activities used to interpret the results of the experiments conducted under his subtask are also described in this section. Although results from the entire program are included, Phase II studies which emphasized: (1) alkali behavior, including a study of the interrelationship between potassium vaporization and sodium vaporization; and (2) iron behavior, including an examination of the extent of iron-aluminosilicate interactions, are highlighted. Idealized combustion determination of ash particle formation and surface stickiness are also described.

  16. STUDY ON MAJOR FACTORS INFLUENCING SPONTANEOUS COMBUSTION OF COAL

    Institute of Scientific and Technical Information of China (English)

    Deng Jun; Xu Jingcai; Zhang Xinghai

    2000-01-01

    This paper theoretically analyzes major factors influencing spontaneous combustion of coal, such as molecule structure of coal, porosity, temperature, concentration of oxygen, coal thickness, velocity of face advance, and so on; and probes into how they affect the process of spontaneous combustion of coal, which is of momentous significance to predict or control self-ignition of coal.

  17. JV Task 108 - Circulating Fluidized-Bed Combustion and Combustion Testing of Turkish Tufanbeyli Coal

    Energy Technology Data Exchange (ETDEWEB)

    Douglas Hajicek; Jay Gunderson; Ann Henderson; Stephen Sollom; Joshua Stanislowski

    2007-08-15

    Two combustion tests were performed at the Energy & Environmental Research Center (EERC) using Tufanbeyli coal from Turkey. The tests were performed in a circulating fluidized-bed combustor (CFBC) and a pulverized coal-fired furnace, referred to as the combustion test facility (CTF). One of the goals of the project was to determine the type of furnace best suited to this coal. The coal is high in moisture, ash, and sulfur and has a low heating value. Both the moisture and the sulfur proved problematic for the CTF tests. The fuel had to be dried to less than 37% moisture before it could be pulverized and further dried to about 25% moisture to allow more uniform feeding into the combustor. During some tests, water was injected into the furnace to simulate the level of flue gas moisture had the fuel been fed without drying. A spray dryer was used downstream of the baghouse to remove sufficient sulfur to meet the EERC emission standards permitted by the North Dakota Department of Health. In addition to a test matrix varying excess air, burner swirl, and load, two longer-term tests were performed to evaluate the fouling potential of the coal at two different temperatures. At the lower temperature (1051 C), very little ash was deposited on the probes, but deposition did occur on the walls upstream of the probe bank, forcing an early end to the test after 2 hours and 40 minutes of testing. At the higher temperature (1116 C), ash deposition on the probes was significant, resulting in termination of the test after only 40 minutes. The same coal was burned in the CFBC, but because the CFBC uses a larger size of material, it was able to feed this coal at a higher moisture content (average of 40.1%) compared to the CTF (ranging from 24.2% to 26.9%). Sulfur control was achieved with the addition of limestone to the bed, although the high calcium-to-sulfur rate required to reduce SO{sub 2} emissions resulted in heat loss (through limestone calcination) and additional ash

  18. Transformations of inorganic coal constituents in combustion systems. Volume 1, sections 1--5: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Helble, J.J. [ed.; Srinivasachar, S.; Wilemski, G.; Boni, A.A. [PSI Technology Co., Andover, MA (United States); Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L. [Arizona Univ., Tucson, AZ (United States); Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A. [Kentucky Univ., Lexington, KY (United States)

    1992-11-01

    The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon the size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles? What determines their composition? Whether or not particles deposit? How combustion conditions, including reactor size, affect these processes? remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.

  19. Health impacts of domestic coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Finkelman, R.B.

    1999-07-01

    The US Environmental Protection Agency (EPA) has concluded that, with the possible exception of mercury, there is no compelling evidence to indicate that emissions from coal-burning electric utility generators cause human health problems. The absence of detectable health problems is in part due to the fact that the coals burned in the US generally contain low to modest concentrations of potentially toxic trace elements and that many coal-burning utilities employ sophisticated pollution control systems that efficiently reduce the emissions of hazardous elements. This is not so in many developing countries, especially in homes where coal is used for heating and cooking. Domestic use of coal can present serious human health problems because the coals are generally mined locally with little regard to their composition and the coals are commonly burned in poorly vented or unvented stoves directly exposing residents to the emissions. In China alone several hundred million people commonly burn raw coal in unvented stoves that permeate their homes with high levels of toxic metals and organic compounds. At least 3,000 people in Guizhou Province in southwest China are suffering from severe arsenic poisoning. The primary source of the arsenic appears to be consumption of chili peppers dried over fires fueled with high-arsenic coal. Coal's in the region contain up to 35,000 ppm arsenic. Chili peppers dried over these high-arsenic coal fires absorb 500 ppm arsenic on average. More than 10 million people in Guizhou Province and surrounding areas suffer from dental and skeletal fluorosis. The excess fluorine is due to eating corn dried over burning briquettes made from high-fluorine coals and high-fluoring clay binders. Polycyclic aromatic hydrocarbons formed during coal combustion are believed to cause or contribute to the high incidence of esophageal and lung cancers in parts of China. Domestic coal combustion has also caused selenium poisoning and possibly mercury

  20. Study on combustion characteristics of blended coals

    Institute of Scientific and Technical Information of China (English)

    LI Yonghua; WANG Chunbo; CHEN Hongwei

    2007-01-01

    Power plants in China have to burn blended coal instead of one specific coal for a variety of reasons.So it is of great necessity to investigate the combustion of blended coals.Using a test rig with a capacity of 640 MJ/h with an absolute milling system and flue gas online analysis system,characteristics such as burnout,slag,and pollution of some blended coals were investigated.The ratio of coke and slag as a method of distinguishing coal slagging characteristic was introduced.The results show that the blending of coal has some effect on NOx but there is no obvious rule.SOx emission can be reduced by blending low sulfur coal.

  1. Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) into the Blast Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Chenn Zhou

    2008-10-15

    Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.

  2. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 8, January--March 1991

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Nsakala, N.Y.

    1991-07-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. During the third quarter of 1991, the following technical progress was made: Calculated the kinetic characteristics of chars from the combustion of spherical oil agglomeration beneficiated products; continued drop tube devolatilization tests of the spherical oil agglomeration beneficiated products; continued analyses of the data and samples from the CE pilot-scale tests of nine fuels; and started writing a summary topical report to include all results on the nine fuels tested.

  3. Deposit formation in a full-scale pulverized wood-fired power plant with and without coal fly ash addition

    DEFF Research Database (Denmark)

    Wu, Hao; Shafique Bashir, Muhammad; Jensen, Peter Arendt

    2013-01-01

    temperatures of ~1300oC and ~800oC, respectively. It was found that during pulverized wood combustion, the deposit formation at the hightemperature location was characterized by a slow and continuous growth of deposits followed by the shedding of a large layer of deposits, while the deposit formation...

  4. Coal Combustion Science quarterly progress report, January--March 1993. Task 1, Coal char combustion: Task 2,, Fate of mineral matter

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. [ed.; Hurt, R.H.; Baxter, L.L.

    1994-02-01

    The objective of this work is to obtain insights into the mechanisms of combustion, fragmentation, and final burnout, and to use the insights to aid in the interpretation of the quantitative data generated in Subtasks 1 and 2. The initial image sequences for Illinois No. 6 coal confirm the presence of an early near-extinction process (discussed in previous reports) and the asymptotic nature of the carbon burnout process. The technique also provided important new insights into the processes of particle fragmentation and reagglomeration at high burnout. During this quarter, chemical fractionation tests on coals pulverized to different sizes were completed. These data will help us to asses the accuracy of the fuels characterizations for the purpose of interpreting inorganic release during coal devolatilization. Chemical fractionation tests on mineral species are proceeding for the same purposes, but these are not yet completed.

  5. The effects of unburned carbon on radiative heat transfer in a pilot pulverized coal furnace -- Numerical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhaohui; Xing Huawei; Zhou Yingbiao; Zheng Chuguang [National Lab. of Coal Combustion, Wuhan (China)

    1997-12-31

    This paper investigates the possible effect of residue char on the radiative heat transfer in a pilot furnace. Firstly, a program is constructed to incorporate radiative properties of particles in solving the radiative heat transfer, based on a computer code for predicting turbulent gas-solid flow and combustion. The radiative properties of single unburnt char are modeled by coated sphere model of Mie theory, while the local Planck average radiative properties of particle could be obtained by a scheme based on Lagrangian approach with particle turbulent dispersion, and the radiative heat transfer is solved by Discrete Transfer method. Then, comparisons are made among predicted results for a pilot-scale pulverized coal furnace by several particulate radiative properties models. It shows even for the pilot-scale furnace, the effect of particle concentration is more important than that of distinguishing between particles of char and ash. The residue carbon in ash has a tendency to enhance the radiative heat transfer for this case. The optimized burn-off rate to separate ash from char is near 0.65.

  6. Assessment of ecotoxicological risks of element leaching from pulverized coal ashes

    NARCIS (Netherlands)

    Jenner, H.A.

    1995-01-01

    This thesis describes the consequences of the disposal of the combustion residues of coal, especially the uptake of elements from such residues and their effects on various organisms. The effects on benthic organisms in fresh and in seawater are considered in the first two parts. The third

  7. Experimental and modeling study of the effect of CH(4) and pulverized coal on selective non-catalytic reduction process.

    Science.gov (United States)

    Zhang, Yanwen; Cai, Ningsheng; Yang, Jingbiao; Xu, Bo

    2008-10-01

    The reduction of nitric oxide using ammonia combined with methane and pulverized coal additives has been studied in a drop tube furnace reactor. Simulated flue gas with 1000 ppm NO(x) and 3.4% excess oxygen was generated by cylinder gas. Experiments were performed in the temperature range of 700-1200 degrees C to investigate the effects of additives on the DeNO(x) performance. Subsequently, a kinetic mechanism was modified and validated based on experimental results, and a computational kinetic modeling with CHEMKIN was conducted to analyze the secondary pollutants. For both methane and pulverized coal additives, the temperature window is shifted towards lower temperatures. The appropriate reaction temperature is shifted to about 900 and 800 degrees C, respectively with 1000 ppm methane and 0.051 g min(-1) pulverized lignite coal. The addition of methane and pulverized coal widens the temperature window towards lower temperature suggesting a low temperature application of the process. Furthermore, selective non-catalytic reduction (SNCR) reaction rate is accelerated evidently with additives and the residence time to complete the reaction is shortened distinctly. NO(x) reduction efficiency with 80% is achieved in about 0.3s without additive at 1000 degrees C. However, it is achieved in only about 0.2s with 100 ppm methane as additive, and only 0.07 and 0.05s are needed respectively for the cases of 500 and 1000 ppm methane. The modified kinetic modeling agrees well with the experimental results and reveals additional information about the process. Investigation on the byproducts where NO(2) and N(2)O were analyzed by modeling and the others were investigated by experimental means indicates that emissions would not increase with methane and pulverized coal additions in SNCR process and the efficacious temperature range of SNCR reaction is widened approximately with 100 degrees C.

  8. Clean coal reference plants: Pulverized encoal PDF fired boiler. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The Clean Coal Technology Demonstration Program (CCT) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of full-scale facilities. The goal of the program is to provide the U.S. energy marketplace with a number of advanced, more efficient, and environmentally responsive coal-using technologies. To achieve this goal, a multiphased effort consisting of five separate solicitations has been completed. The Morgantown Energy Technology Center (METC) has the responsibility for monitoring the CCT Projects within certain technology categories, which, in general, correspond to the center`s areas of technology development. Primarily the categories of METC CCT projects are: atmospheric fluid bed combustion, pressurized fluidized bed combustion, integrated gasification combined cycle, mild gasification, and industrial applications. This report describes the plant design.

  9. Combustion char morphology related to combustion temperature and coal petrography

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, P.; Petersen, H.I.; Thomsen, E. [Geological Survey of Denmark, Copenhagen (Denmark)

    1996-07-01

    Chars produced from different reactors were found to lack consistency of morphological charactersitics. Therefore, the morphology of chars sampled from various laboratory-scale reactors operating at temperatures from 800 to {gt} 1400{degree}C, together with chars collected directly in the flame zone in a full-scale pulverised fuel combustion experiment, was examined. A coal and coal blend dominated by vitrinite-rich microlithotypes together with four coals dominated by inertinite-rich microlithotypes were used to produce the combustion chars. Char samples produced at temperatures above {approximately} 1300{degree}C have a morphotype composition very similar to the composition of the full-scale char samples, whereas the morphotype compositions of those produced at {approximately} 1550{degree}C or lower are significantly different. Correlation between coal petrography and char morphology and determination of char reactivity should thus be attempted only using chars produced at temperatures comparable with those for the intended use of the coal. A clear distinction between the high-temperature char samples (burnout 50-60wt% daf) emerges which is related mainly to the parent coal petrography and probably secondarily to the rank. Vitrite, clarite and vitrinertie V may be correlated with the porous tenuisphere and crassisphere morphotypes, whereas inertite, durite, vitrinertite I, duroclarite and charodurite may be correlated with the crassinetwork-mixed-network-mixed morphotype group. 29 refs., 7 figs., 7 tabs.

  10. COAL COMBUSTION EFFICIENCY IN CFB BOILER

    Institute of Scientific and Technical Information of China (English)

    Hairui Yang; Guangxi Yue

    2005-01-01

    The carbon content in the fly ash from most Chinese circulating fluidized bed (CFB) boilers is much higher than expected, thus directly influencing the combustion efficiency. In the present paper, carbon burnout was investigated both in field tests and laboratory experiments. The effect of coal property, operation condition, gas-solid mixing, char deactivation,residence time and cyclone performance are analyzed seriatim based on large amount of experimental results.A coal index is proposed to describe the coal rank, defined by the ratio of the volatile content to the coal heat value, is a useful parameter to analyze the char burnout. The carbon content in the fly ash depends on the coal rank strongly. CFB boilers burning anthracite, which has low coal index, usually have high carbon content in the fly ash. On the contrary, the CFB boilers burning brown coal, which has high coal index, normally have low carbon content.Poor gas-solid mixing in the furnace is another important reason of the higher carbon content in the fly ash. Increasing the velocity and rigidity of the secondary air could extend the penetration depth and induce more oxygen into the furnace center. Better gas solid mixing will decrease the lean oxygen core area and increase char combustion efficiency.The fine char particles could be divided into two groups according to their reactivity. One group is "fresh" char particles with high reactivity and certain amount of volatile content. The other group of char particles has experienced sufficient combustion time both in the furnace and in the cyclone, with nearly no volatile. These "old" chars in the fly ash will be deactivated during combustion of large coal particles and have very low carbon reactivity. The generated fine inert char particles by attrition of large coal particles could not easily burn out even with the fly ash recirculation. The fraction of large coal particles in coal feed should be reduced during fuel preparation process.The cyclone

  11. Measurement of O2 in the Combustion Chamber of Apulverized Coal Boiler

    Directory of Open Access Journals (Sweden)

    Břetislav Janeba

    2012-01-01

    Full Text Available Operational measurements of the O2 concentration in the combustion chamber of a pulverized coal boiler are not yet common practice. Operators are generally satisfied with measuring the O2 concentration in the second pass of the boiler, usually behind the economizer, where a flue gas sample is extracted for analysis in a classical analyzer. A disadvantage of this approach is that there is a very weak relation between the measured value and the condition in specific locations in the fireplace, e.g. the function of the individual burners and the combustion process as a whole. A new extractionline was developed for measuring the O2 concentration in the combustion chamber. A planar lambda probe is used in this approach. The extraction line is designed to get outputs that can be used directly for diagnosis or management of the combustion in the boiler.

  12. Influence of rank and macerals on the burnout behaviour of pulverized Indian coal

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Nandita; Biswas, S.; Sarkar, P.; Kumar, Manish; Mukherjee, A.; Choudhury, A. [Central Institute of Mining and Fuel Research, Digwadih Campus (Formerly Central Fuel Research Institute), P.O. FRI, Dhanbad-828 108, Jharkhand (India); Ghosal, Sujit; Mitra, Tandra [Jadavpur University, Kolkata-700 032, West Bengal (India)

    2008-04-03

    The combustion behaviour of coal is significantly influenced by its rank and maceral and microlithotype compositions. Different macerals, due to their distinct and unique physical properties and chemical makeup, have different burning characteristics. This paper deals with the burning behaviour of coals of Indian origin by thermo gravimetric analysis (TGA) and in drop tube furnace (DTF) with particular emphasis on the role of macerals and their associations. Four coals of different rank and petrographic makeup, along with their two density fractions, with enriched vitrinite and inertinites, respectively,were studied in both TGA and DTF. The burnout behaviour was estimated from the chemical analyses of the char samples collected from the DTF. The burning characteristics of one of the coals deviate from the trend expected with the variations of rank. The behaviour of the density fractions in DTF was found to be different from that observed in TGA analyses. An attempt has been made to correlate the burnout with the petrographic macerals and microlithotypes present in the coals. The morphology of the residual chars indicates the contributions of the inertinites towards the formation of cenospheres and network types of reactive chars. The superior burning behaviour of the higher density inertinite-rich fractions over the raw coals and also some vitrinite-rich fractions indicate the better reactivity of the inertinites towards combustion. (author)

  13. CFD prediction of physical field for multi-air channel pulverized coal burner in rotary kiln

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A 3-D numerical simulation with CFX software on physical field of multi-air channel coal burner in rotary kiln was carried out. The effects of various operational and structural parameters on flame feature and temperature distribution were investigated. A thermal measurement was conducted on a rotary kiln (4.5 m in diameter, 90 m in length) with four-air channel coal burner to determine the boundary conditions and to verify the simulation results.The calculation result shows that the distribution of velocity near burner exit is saddle-like; recirculation zones near nozzle and wall are useful for mixture primary air with coal and high temperature fume. A little central airflow can avoid coal backing up and cool nozzle. Adjusting the ratio of internal airflow to outer airflow is an effective and major means to regulate flame and temperature distribution in sintering region. Large whirlcone angle can intensify disturbution range at flame root to accelerate ignition and mixture. Large coal size can reduce high temperature region and result in coal combusting insufficiently. Too much combustion air will lengthen flame and increase heat loss.

  14. Temperature Trends in Coal Char Combustion under Oxy-fuel Conditions for the Determination of Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Samira [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hecht, Ethan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    Oxy-fuel combustion technology with carbon capture and storage could significantly reduce global CO2 emissions, a greenhouse gas. Implementation can be aided by computational fluid dynamics (CFD) simulations, which require an accurate understanding of coal particle kinetics as they go through combustion in a range of environments. To understand the kinetics of pulverized coal char combustion, a heated flow reactor was operated under a wide range of experimental conditions. We varied the environment for combustion by modifying the diluent gas, oxygen concentration, gas flow rate, and temperature of the reactor/reacting gases. Measurements of reacting particle temperatures were made for a sub-bituminous and bituminous coal char, in environments with CO2 or N2 as the diluent gas, with 12, 24, and 36 vol-% oxygen concentration, at 50, 80, 100, and 200 standard liters per minute flowing through the reactor, reactor temperatures of 1200, 1400 K, at pressures slightly above atmospheric. The data shows consistent increasing particle temperature with increased oxygen concentration, reactor temperature and higher particle temperatures for N2 diluent than CO2. We also see the effects of CO2 gasification when different ranks of coal are used, and how the reduction in the temperature due to the CO2 diluent is greater for the coal char that has higher reactivity. Quantitative measurements for temperature are not yet complete due to ongoing calibration of detection systems.

  15. Renewable wood fuel: Fuel feed system for a pulverized coal boiler. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report evaluates a pilot test program conducted by New York State Gas & Electric Corporation to evaluate the feasibility of co-firing a pulverized coal plant with renewable wood fuels. The goal was to establish that such a co-firing system can reduce air emissions while maintaining good operational procedures and cost controls. The test fuel feed system employed at Greenidge Station`s Boiler 6 was shown to be effective in feeding wood products. Emission results were promising and an economic analysis indicates that it will be beneficial to pursue further refinements to the equipment and systems. The report recommends further evaluation of the generation and emission impacts using woods of varied moisture contents and at varied Btu input rates to determine if a drying system would be a cost-effective option.

  16. Modelling of pulverized coal boilers: review and validation of on-line simulation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Diez, L.I.; Cortes, C.; Campo, A. [University of Zaragoza, Zaragoza (Spain). Centro de Investigacion de Recursos y Consumos Energeticos (CIRCE)

    2005-07-01

    Thermal modelling of large pulverized fuel utility boilers has reached a very remarkable development, through the application of CFD techniques and other advanced mathematical methods. However, due to the computational requirements, on-line monitoring and simulation tools still rely on lumped models and semiempirical approaches, which are often strongly simplified and not well connected with sound theoretical basis. This paper reviews on-line modelling techniques, aiming at the improvement of their capabilities, by means of the revision and modification of conventional lumped models and the integration of off-line CFD predictions. The paper illustrates the coherence of monitoring calculations as well as the validation of the on-line thermal simulator, starting from real operation data from a case-study unit. The outcome is that it is possible to significantly improve the accuracy of on-line calculations provided by conventional models, taking into account the singularities of large combustion systems and coupling offline CFD predictions for selected scenarios.

  17. Ignition et oxydation des particules de combustible solide pulvérisé Ignition and Oxidation of Pulverized Solid Fuel

    Directory of Open Access Journals (Sweden)

    De Soete G. G.

    2006-11-01

    élais d'ignition ont été déterminés pour un grand nombre de combustibles solides de rang inférieur et supérieur (charbons, cokes, asphaltènes, suies, bois, graphite. L'étude de la vitesse expérimentale de la combustion hétérogène, notamment l'étude de la température apparente d'activation, et sa dépendance par rapport à la taille des particules et à la concentration d'oxygène, montre que, dans les conditions des essais, cette combustion est contrôlée par la désorption du CO et se déroule principalement en régime cinético-diffusionnel mixte. L'étude de la dépendance des délais d'ignition par rapport à la température, la taille des particules et la pression partielle d'oxygène, suggère que, pendant ces délais, les réactions se déroulent en régime cinétique pur et que le produit des réactions de désorption est principalement le CO. The heated-grid method is used to investigate the competition between (1 the devolatilization and subsequent oxidation of pyrolysis products and (2 the ignition of the solid matrix and its rapid combustion. A comparison between the instant of ignition and the start of pyrolysis is used to determine the range in which ignition of a pyrolyzable solid fuel of the whole coal ignitiontype (i. e. when ignition occurs before pyrolysis becomes measurable occurs as a function of temperature, particle size and oxygen concentration. The results suggest that this type of ignition might occur, as a general rule, under conditions involving pulverized solid fuels in industrial flames. In the case of whole coalignition, the rate of combustion of the solid matrix is inhibited during the period following ignition. This inhibition is due partly to the difficulty oxygen has of spreading through the pores during the discharge of pyrolysis products and partly to preferential oxygen consumption during the oxidation of pyrolysis products, mainly when this oxidation develops in the form of flames. t is only when pyrolysis ends that

  18. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 15, October--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Nsakala, N.Y.

    1993-03-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. During the third quarter of 1992, the following technical progress was made: Continued analyses of drop tube furnace samples to determine devolatilization kinetics; re-analyzed the samples from the pilot-scale ash deposition tests of the first nine feed coals and BCFs using a modified CCSEM technique; updated the topical summary report; and prepared for upcoming tests of new BCFs being produced.

  19. Combustion Characteristics of Polyethylene and Coal Powder at High Temperature

    Institute of Scientific and Technical Information of China (English)

    LONG Shi-gang; CAO Feng; WANG Si-wei; SUN Liu-heng; PANG Jian-ming; SUN Yu-ping

    2008-01-01

    To study the combustion characteristics of the polyethylene (PE) particle and coal powder at blast temperature of the blast furnace, the contents of CO and CO2 of off-gas during the combustion of PE particle and coal powder at the 1 200 ℃ and 1 250 ℃ were measured using carbon monoxide and carbon dioxide infrared analyzer, and then the corresponding combustion ratio was calculated. The results showed that when the temperature is high, the combustion speed of PE and coal powder is high and the corresponding combustion ratio is high. Whereas, the combustion speed and ratio of PE are much higher than those of coal powder.

  20. 邯钢高炉喷吹煤粉的快速热解机制%Flash Pyrolysis of Pulverized Injection Coal at Hansteel

    Institute of Scientific and Technical Information of China (English)

    刘然; 高永亮; 王杏娟; 吕庆; 杜林森; 王竹民

    2012-01-01

    Aimed at increasing pulverized coal injection at Handan Steel,the pyrolysis of coal in raceway was simulated.The coal of CL and DW were selected and the decomposition rate was calculated by plasma pyrolysis.Gas products were analyzed by gas chromatography and morphology of residues were observed by scanning electron microscopy(SEM).The results show that CL and DW decomposition rate is 43.10% and 52.04% respectively and gas products of coal after plasma pyrolysis,which are different from general pyrolysis,consist of CO,H2,CH4,C2H2 and small content of C2H4,etc.Pyrolysis product has changed evidently,particle size become smaller.The vesicular structure occurs in coal grains when DW is added in the sample,which makes the specific surface area of coal grain increase.The solid carbon combustion ratio in tuyeres can be enhanced,which will provide the theoretical basis for pulverized coal combustion rate.%为了提高邯钢高炉喷吹煤比,模拟煤粉在高炉内的热解。以邯钢喷吹用长治煤(以下简称CL)和大湾煤(以下简称DW)为原料,采用等离子体进行快速热解,计算反应后煤粉的分解率,利用气相色谱仪对气体产物进行分析以及用扫描电镜(SEM)观察反应产物的形貌特征。试验结果表明,CL和DW的分解率分别为43.10%和52.04%,气相产物主要为CO、H2、CH4、C2H2及少量C2H4等气体,热解产物的粒径减小,形貌发生明显变化。在CL煤的基础上配加不同比例的DW后,煤粉颗粒出现了孔状结构,因此可以提高炉内风口回旋区固定碳颗粒的燃烧率,为提高煤粉燃烧率提供理论依据。

  1. Development and testing of commercial-scale, coal-fired combustion systems: Phase III. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Based on studies that indicated a large potential for significantly increased coal-firing in the commercial sector, the U.S. Department of Energy`s Pittsburgh Energy Technology Center (PETC) sponsored a multi-phase development effort for advanced coal combustion systems. This Final Report presents the results of the last phase (Phase III) of a project for the development of an advanced coal-fired system for the commercial sector of the economy. The project performance goals for the system included dual-fuel capability (i.e., coal as primary fuel and natural gas as secondary fuel), combustion efficiency exceeding 99 percent, thermal efficiency greater than 80 percent, turndown of at least 3:1, dust-free and semi-automatic dry ash removal, fully automatic start-up with system purge and ignition verification, emissions performance exceeding New Source Performance Standards (NSPS) and approaching those produced by oil-fired, Commercial-sized units, and reliability, safety, operability, maintainability, and service life comparable to oil-fired units. The program also involved a site demonstration at a large facility owned by Striegel Supply Company, a portion of which was leased to MTCI. The site, mostly warehouse space, was completely unheated and the advanced coal-fired combustion system was designed and sized to heat this space. Three different coals were used in the project, one low and one high sulfur pulverized Pittsburgh No. 8 coal, and a micronized low volatile, bituminous coal. The sorbents used were Pfizer dolomitic limestone and an Anvil lime. More than 100 hours of screening test`s were performed to characterize the system. The parameters examined included coal firing rate, excess air level, ash recycle rate, coal type, dolomitic limestone feed rate, and steam injection rate. These tests indicated that some additional modifications for coal burning in the system were required.

  2. Development and testing of commercial-scale, coal-fired combustion systems: Phase III. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Based on studies that indicated a large potential for significantly increased coal-firing in the commercial sector, the U.S. Department of Energy`s Pittsburgh Energy Technology Center (PETC) sponsored a multi-phase development effort for advanced coal combustion systems. This Final Report presents the results of the last phase (Phase III) of a project for the development of an advanced coal-fired system for the commercial sector of the economy. The project performance goals for the system included dual-fuel capability (i.e., coal as primary fuel and natural gas as secondary fuel), combustion efficiency exceeding 99 percent, thermal efficiency greater than 80 percent, turndown of at least 3:1, dust-free and semi-automatic dry ash removal, fully automatic start-up with system purge and ignition verification, emissions performance exceeding New Source Performance Standards (NSPS) and approaching those produced by oil-fired, Commercial-sized units, and reliability, safety, operability, maintainability, and service life comparable to oil-fired units. The program also involved a site demonstration at a large facility owned by Striegel Supply Company, a portion of which was leased to MTCI. The site, mostly warehouse space, was completely unheated and the advanced coal-fired combustion system was designed and sized to heat this space. Three different coals were used in the project, one low and one high sulfur pulverized Pittsburgh No. 8 coal, and a micronized low volatile, bituminous coal. The sorbents used were Pfizer dolomitic limestone and an Anvil lime. More than 100 hours of screening test`s were performed to characterize the system. The parameters examined included coal firing rate, excess air level, ash recycle rate, coal type, dolomitic limestone feed rate, and steam injection rate. These tests indicated that some additional modifications for coal burning in the system were required.

  3. Assessing coal burnout

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, A. [Pacific Power, Sydney, NSW (Australia)

    1999-11-01

    Recent research has allowed a quantitative description of the basic process of burnout for pulverized coals to be made. The Cooperative Research Centre for Black Coal Utilization has built on this work to develop a coal combustion model which will allow plant engineers and coal company representatives to assess their coals for combustion performance. The paper describes the model and its validation and outlines how it is run. 2 figs.

  4. Computational fluid dynamics (CFD) analysis of the coal combustion in a boiler of a thermal power plant using different kinds of the manufactured coals

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cristiano Vitorino da; Lazzari, Luis Carlos; Ziemniczak, Aline; Beskow, Arthur Bortolin [Universidade Regional Integrada do Alto Uruguai e das Missoes (URI), Erechim, RS (Brazil)], E-mails: cristiano@uricer.edu.br, arthur@uricer.edu.br

    2010-07-01

    The state of the art in computational fluid dynamics and the availability of commercial codes encourage numerical studies of combustion processes. In the present work the commercial software CFX Ansys Europe Ltd. has been used to study the combustion of pulverized coal into the boiler of a thermal power plant. The objective of this work is to obtain new information for process optimization. Different kinds of manufactured coals were numerically tested in a thermal power plant installed at the southeast region of Brazil. The simulations were made using the actual burning conditions of the boiler. Results include the residence time of the fuel into the combustion chamber, temperature fields, flow fluid mechanics, heat transfer and pollutant formation, as well as the CO and NOx concentrations, aiming to determinate the best conditions to burn the investigated coals. The numerical investigation of the phenomena involved on the coal combustion processes are used to complete the experimental information obtained in operational tests. Considering the characteristics of different kinds of manufactured coals used, with this study is possible to achieve the most efficient boiler operation parameters, with decreasing costs of electricity production and reduction of environmentally harmful emissions. It was verified that the different kinds of manufactured coals demand different operation conditions, and the kind of manufactured coal used on the combustion process has a significant effect on the pollutant formation, mainly in rel action with ash concentration. (author)

  5. Gasification in pulverized coal flames. Second quarterly progress report, October--December 1975. [Contains literature survey on vortex gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Lenzer, R. C.; George, P. E.; Laurendeau, N. M.

    1976-01-01

    This project is concerned with the production of power and synthesis gases from pulverized coal via suspension gasification. A literature review concerning the vortex type gasifier has been completed and a survey concerning the confined jet gasifier is underway. Preliminary design of the vortex gasifier is nearing completion. Test cell and coal handling facilities are in the final stages of design and coal handling equipment has been received. A mass spectrometer has been ordered and a preliminary survey of high-temperature probes is complete.

  6. Combustion enhancing additives for coal firing

    Energy Technology Data Exchange (ETDEWEB)

    Katherine Le Manquais; Colin Snape; Ian McRobbie; Jim Barker [University of Nottingham, Nottingham (United Kingdom). School of Chemical, Environmental and Mining Engineering (SChEME)

    2007-07-01

    For pulverised fuel (pf) combustion, the level of unburnt carbon in fly ash is now considerably more problematic worldwide than a decade ago, because of the introduction of low NOx burners and the increased level of high inertinite in internationally traded coals. Thus, there is a major opportunity to develop an effective additive to improve carbon burnout and obviate the need for post-treatment of fly ash, which endeavours to meet specifications for filler/building materials applications and thereby avoid landfill. A robust comparison of the reactivity of different coals and their corresponding chars is necessary, in order to estimate the effects of such an additive on pf combustion. Coal chars have been generated on a laboratory scale using thermal gravimetric analysis (TGA) and on a larger scale using a drop tube furnace (DTF), which is more representative of the rapid heating rates and mixing achieved on pf combustion. The TGA results indicate that chars have varying levels of reactivity, dependent on the parent coal properties. When physically mixed with a propriety metal additive, the degree of enhancement to the reactivity of these chars also appeared reliant on the parent coal characteristics. Additionally it was demonstrated that DTF chars, whilst showing similar reactivity trends, are less reactive than the equivalent coal chars produced by the TGA. However, when mixed with the metal additive the DTF chars show a significantly greater improvement in reactivity than their analogous TGA chars, indicating the additive may have the greatest impact on the most unreactive carbon in the coal. 42 refs., 6 figs., 1 tab.

  7. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt

    2002-08-15

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). Tradeoffs between CO2 control, NOx control, and inorganic fine particle and toxic metal emissions will be determined. Previous research has yielded data on trace metal partitioning for MSS by itself, with natural gas assist, for coal plus MSS combustion together, and for coal alone. We have re-evaluated the inhalation health effects of ash aerosol from combustion of MSS both by itself and also together with coal. We have concluded that ash from the co-combustion of MSS and coal is very much worse from an inhalation health point of view, than ash from either MSS by itself or coal by itself. The reason is that ZnO is not the ''bad actor'' as had been suspected before, but the culprit is, rather, sulfated Zn. The MSS supplies the Zn and the coal supplies the sulfur, and so it is the combination of coal and MSS that makes that process environmentally bad. If MSS is to be burned, it should be burned without coal, in the absence of sulfur.

  8. Inquiry into Safety Problems in Production of Shell Pulverized Coal Gasifier%Shell粉煤气化生产中安全问题的探讨

    Institute of Scientific and Technical Information of China (English)

    于英慧

    2011-01-01

    详细介绍了Shell粉煤气化工艺生产过程中常见的安全异常情况.探讨并提出了Shell粉煤气化工艺不同工段的安全措施.%Details are given of common abnormal conditions in safety during Shell pulverized coal gasification. An inquiry is made and safety measures are proposed for the various sections of the Shell pulverized coal gasification process.

  9. FINE PARTICAL AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt; Wayne S. Seames; Art Fernandez

    2003-09-21

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and pulverized coal. The objective was to determine potential tradeoffs between CO{sub 2} mitigation through using a CO{sub 2} neutral fuel, such as municipal sewage sludge, and the emergence of other potential problems such as the emission of toxic fly ash particles. The work led to new insight into mechanisms governing the partitioning of major and trace metals from the combustion of sewage sludge, and mixtures of coal and sewage sludge. The research also showed that the co-combustion of coal and sewage sludge emitted fine particulate matter that might potentially cause greater lung injury than that from the combustion of either coal alone or municipal sewage sludge alone. The reason appeared to be that the toxicity measured required the presence of large amounts of both zinc and sulfur in particles that were inhaled. MSS provided the zinc while coal provided the sulfur. Additional research showed that the toxic effects could most likely be engineered out of the process, through the introduction of kaolinite sorbent downstream of the combustion zone, or removing the sulfur from the fuel. These results are consequences of applying ''Health Effects Engineering'' to this issue. Health Effects Engineering is a new discipline arising out of this work, and is derived from using a collaboration of combustion engineers and toxicologists to mitigate the potentially bad health effects from combustion of this biomass fuel.

  10. Coal combustion science. Quarterly progress report, July--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. [ed.; Baxter, L.L.; Davis, K.A.; Hurt, R.H.; Yang, N.Y.C.

    1995-09-01

    This document is a quarterly status report of the Coal Combustion Science Project that is being conducted at the Combustion Research Facility, Sandia National Laboratories, Livermore, California. The information reported is for the period July-September 1994. The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project.

  11. Coal combustion products. A global perspective

    Energy Technology Data Exchange (ETDEWEB)

    Heidrich, Craig [Ash Development Association Australia, Wollongong (Australia); Feuerborn, Hans-Joachim [European Coal Combustion Products Association, Essen (Germany); Weir, Anne [Association of Canadian Industries Recycling Coal Ash (CIRCA), London (Canada)

    2013-07-01

    Large-scale use of coal in power generation gives rise to significant quantities of coal combustion products (CCP) from which important 'hard won' end use markets have been established. Current global CCP production and utilisation including volume and value of international trade will be discussed. An overview of country-specific classification systems for CCPs will be discussed, moreover the important role of legislation in creating legal certainty for the ongoing investment in CCPs management and market development. (orig.)

  12. Effects of calcium magnesium acetate on the combustion of coal-water slurries. Final project report, 1 September 1989--28 February 1993

    Energy Technology Data Exchange (ETDEWEB)

    Levendis, Y.A.; Wise, D.; Metghalchi, H.; Cumper, J.; Atal, A.; Estrada, K.R.; Murphy, B.; Steciak, J.; Hottel, H.C.; Simons, G.

    1993-07-01

    To conduct studies on the combustion of coal water fuels (CWFs) an appropriate facility was designed and constructed. The main components were (1) a high-temperature isothermal laminar flow furnace that facilitates observation of combustion events in its interior. The design of this system and its characterization are described in Chapter 1. (2) Apparatus for slurry droplet/agglomerate particle generation and introduction in the furnace. These devices are described in Chapters 1 and 3 and other attached publications. (3) An electronic optical pyrometer whose design, construction theory of operation, calibration and performance are presented in Chapter 2. (4) A multitude of other accessories, such as particle fluidization devices, a suction thermometer, a velocimeter, high speed photographic equipment, calibration devices for the pyrometer, etc., are described throughout this report. Results on the combustion of CWF droplets and CWF agglomerates made from micronized coal are described in Chapter 3. In the same chapter the combustion of CWF containing dissolved calcium magnesium acetate (CMA) axe described. The combustion behavior of pre-dried CWF agglomerates of pulverized grain coal is contrasted to that of agglomerates of micronized coal in Chapter 4. In the same chapter the combustion of agglomerates of carbon black and diesel soot is discussed as well. The effect of CMA on the combustion of the above materials is also discussed. Finally, the sulfur capture capability of CMA impregnated micronized and pulverized bituminous coals is examined in Chapter 5.

  13. Emissions from carpet combustion in a pilot-scale rotary kiln: comparison with coal and particle-board combustion.

    Science.gov (United States)

    Konopa, Stephanie Lucero; Mulholland, James A; Realff, Matthew J; Lemieux, Paul M

    2008-08-01

    The use of post-consumer carpet as a potential fuel substitute in cement kilns and other high-temperature processes is being considered to address the problem of huge volumes of carpet waste and the opportunity of waste-to-energy recovery. Carpet represents a high volume waste stream, provides high energy value, and contains other recoverable materials for the production of cement. This research studied the emission characteristics of burning 0.46-kg charges of chopped nylon carpet squares, pulverized coal, and particle-board pellets in a pilot-scale natural gas-fired rotary kiln. Carpet was tested with different amounts of water added. Emissions of oxygen, carbon dioxide, nitric oxide (NO), sulfur dioxide (SO2), carbon monoxide (CO), and total hydrocarbons and temperatures were continuously monitored. It was found that carpet burned faster and more completely than coal and particle board, with a rapid volatile release that resulted in large and variable transient emission peaks. NO emissions from carpet combustion ranged from 0.06 to 0.15 g/MJ and were inversely related to CO emissions. Carpet combustion yielded higher NO emissions than coal and particle-board combustion, consistent with its higher nitrogen content. SO2 emissions were highest for coal combustion, consistent with its higher sulfur content than carpet or particle board. Adding water to carpet slowed its burn time and reduced variability in the emission transients, reducing the CO peak but increasing NO emissions. Results of this study indicate that carpet waste can be used as an effective alternative fuel, with the caveats that it might be necessary to wet carpet or chop it finely to avoid excessive transient puff emissions due to its high volatility compared with other solid fuels, and that controlled mixing of combustion air might be used to control NO emissions from nylon carpet.

  14. Oxy-Fuel Combustion of Coal

    DEFF Research Database (Denmark)

    Brix, Jacob

    This Ph.D. thesis describes an experimental and modeling investigation of the thermal conversion of coal and an experimental investigation of the emission of NO from char combustion in O2/N2 and O2/CO2 atmospheres. The motivation for the work has been the prospective use of the technology “Oxy...... the experiments. Devolatilization experiments showed that the volatile weight loss was not affected by the change from N2 to CO2. Analysis by Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area of sampled char did not reveal differences between the two atmospheres either. Char...... gasification though using only EFR-char devolatilized at 1273 K, 1473 K and 1573 K due to a lack of samples. Interestingly, it was found that devolatilization temperature did not affect the gasification rate constant. A detailed COal COmbustion MOdel (COCOMO) encompassing among others the three char...

  15. Coal Combustion Products Extension Program

    Energy Technology Data Exchange (ETDEWEB)

    Tarunjit S. Butalia; William E. Wolfe

    2003-12-31

    The primary objective of the CCP Extension Program is to promote the responsible uses of Ohio CCPs that are technically sound, environmentally safe, and commercially competitive. A secondary objective is to assist other CCP generating states (particularly neighboring states) in establishing CCP use programs within their states. The goal of the CCP extension program at OSU is to work with CCP stakeholders to increase the overall CCP state utilization rate to more than 30% by the year 2005. The program aims to increase FGD utilization for Ohio to more than 20% by the year 2005. The increased utilization rates are expected to be achieved through increased use of CCPs for highway, mine reclamation, agricultural, manufacturing, and other civil engineering uses. In order to accomplish these objectives and goals, the highly successful CCP pilot extension program previously in place at the university has been expanded and adopted by the university as a part of its outreach and engagement mission. The extension program is an innovative technology transfer program with multiple sponsors. The program is a collaborative effort between The Ohio State University (College of Engineering and University Extension Service), United States Department of Energy's National Energy Technology Laboratory, Ohio Department of Development's Coal Development Office, and trade associations such as the American Coal Ash Association as well as the Midwest Coal Ash Association. Industry co-sponsors include American Electric Power, Dravo Lime Company, and ISG Resources. Implementation of the proposed project results in both direct and indirect as well as societal benefits. These benefits include (1) increased utilization of CCPs instead of landfilling, (2) development of proper construction and installation procedures, (3) education of regulators, specification-writers, designers, construction contractors, and the public, (4) emphasis on recycling and decrease in the need for landfill

  16. Soot, organics, and ultrafine ash from air- and oxy-fired coal combustion

    KAUST Repository

    Andersen, Myrrha E.

    2016-10-19

    Pulverized bituminous coal was burned in a 10. W externally heated entrained flow furnace under air-combustion and three oxy-combustion inlet oxygen conditions (28, 32, and 36%). Experiments were designed to produce flames with practically relevant stoichiometric ratios (SR. =1.2-1.4) and constant residence times (2.3. s). Size-classified fly ash samples were collected, and measurements focused on the soot, elemental carbon (EC), and organic carbon (OC) composition of the total and ultrafine (<0.6. μm) fly ash. Results indicate that although the total fly ash carbon, as measured by loss on ignition, was always acceptably low (<2%) with all three oxy-combustion conditions lower than air-combustion, the ultrafine fly ash for both air-fired and oxy-fired combustion conditions consists primarily of carbonaceous material (50-95%). Carbonaceous components on particles <0.6. μm measured by a thermal optical method showed that large fractions (52-93%) consisted of OC rather than EC, as expected. This observation was supported by thermogravimetric analysis indicating that for the air, 28% oxy, and 32% oxy conditions, 14-71% of this material may be OC volatilizing between 100. C and 550. C with the remaining 29-86% being EC/soot. However, for the 36% oxy condition, OC may comprise over 90% of the ultrafine carbon with a much smaller EC/soot contribution. These data were interpreted by considering the effects of oxy-combustion on flame attachment, ignition delay, and soot oxidation of a bituminous coal, and the effects of these processes on OC and EC emissions. Flame aerodynamics and inlet oxidant composition may influence emissions of organic hazardous air pollutants (HAPs) from a bituminous coal. During oxy-coal combustion, judicious control of inlet oxygen concentration and placement may be used to minimize organic HAP and soot emissions.

  17. Performance of PAHs emission from bituminous coal combustion

    Institute of Scientific and Technical Information of China (English)

    严建华; 尤孝方; 李晓东; 倪明江; 尹雪峰; 岑可法

    2004-01-01

    Carcinogenic and mutagenic polycyclic aromatic hydrocarbons (PAHs) generated in coal combustion have caused great environmental health concern. Seventeen PAHs (16 high priority PAHs recommended by USEPA plus Benzo[e]pyrene) present in five raw bituminous coals and released during bituminous coal combustion were studied. The effects of combustion temperature, gas atmosphere, and chlorine content of raw coal on PAHs formation were investigated. Two additives (copper and cupric oxide) were added when the coal was burned. The results indicated that significant quantities of PAHs were produced from incomplete combustion of coal pyrolysis products at high temperature, and that temperature is an important causative factor of PAHs formation. PAHs concentrations decrease with the increase of chlorine content in oxygen or in nitrogen atmosphere. Copper and cupric oxide additives can promote PAHs formation (especially the multi-ring PAHs) during coal combustion.

  18. Organic emissions in coal combustion in relation to coal structure and combustion temperature

    Energy Technology Data Exchange (ETDEWEB)

    Bruinsma, O.S.L.; Verhagen, E.J.H.; Moulijn, J.A.

    1985-10-01

    The pulsed combustion of coal has been studied in a small fluidized-bed reactor. The effect of combustion temperature and coal rank on the organic composition of the off-gas was investigated. Results are presented for the combustion of an anthracite, a medium-volatile bituminous coal and a high-volatile bituminous coal at 700, 800 and 900 C. The analytical techniques used include on-line FT-IR, O2 monitoring, FID and off-line GC-MS using Tenax as adsorbent. About 120 hydrocarbons were found, of which over 80% have been identified. Overall combustion characteristics such as oxygen consumption, total amount of unburned hydrocarbons and swelling properties of the coal have been related to the composition of the organic substances in the off-gas. The distribution of the polycyclic aromatics, from benzene to chrysene, and of alkylated derivatives is discussed in detail. Oxygen-containing compounds have also been analysed, although detailed discussion would be premature. 20 references.

  19. Experimental study on NOx emission and unburnt carbon of a radial biased swirl burner for coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Shan Xue; Shi' en Hui; Qulan Zhou; Tongmo Xu [Xi' an Jiaotong University, Xi' an (China). State Key Laboratory of Multiphase Flow in Power Engineering

    2009-07-15

    Pilot tests were carried out on a 1 MW thermal pulverized coal fired testing furnace. Symmetrical combustion was implemented by use of two whirl burners with dual air adjustment. The burnout air device was installed in various places at the top of the main burner, which consists of a primary air pipe with a varying cross-section and an impact ring. In the primary air pipe, the air pulverized coal (PC) stream was separated into a whirling stream that was thick inside and thin outside, thus realizing the thin-thick distribution at the burner nozzle in the radial direction. From the comparative combustion tests of three coals with relatively great characteristic differences, Shaanbei Shenhua high rank bituminous coal (SH coal), Shanxi Hejin low rank bituminous coal (HJ coal), and Shanxi Changzhi meager coal (CZ coal), were obtained such test results as the primary air ratio, inner secondary air ratio, outer secondary air ratio, impact of the change of outer secondary air, change of the relative position for the layout of burnout air, change of the swirling intensity of the primary air and secondary air, etc., on the NOx emission, and unburnt carbon content in fly ash (CFA). At the same time, the relationship between the NOx emission and burnout ratio and affecting factors of the corresponding test items on the combustion stability and economic results were also acquired. The results may provide a vital guiding significance to engineering designs and practical applications. According to the experimental results, the influence of each individual parameter on NOx formation and unburned carbon in fly ash agrees well with the existing literature. In this study, the influences of various combinations of these parameters are also examined, thus providing some reference for the design of the radial biased swirl burner, the configuration of the furnace, and the distribution of the air. 23 refs., 14 figs., 2 tabs.

  20. Observer-Based Fuel Control Using Oxygen Measurement. A study based on a first-principles model of a pulverized coal fired Benson Boiler

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Palle; Bendtsen, Jan Dimon; Mortensen, Jan Henrik; Just Nielsen, Rene; Soendergaard Pedersen, Tom [Aalborg Univ. (Denmark). Dept. of Control Engineering

    2005-01-01

    This report describes an attempt to improve the existing control of coal mills used at the Danish power plant Nordjyllandsvaerket Unit 3. The coal mills pulverize raw coal to a fine-grained powder, which is injected into the furnace of the power plant. In the furnace the coal is combusted, producing heat, which is used for steam production. With better control of the coal mills, the power plant can be controlled more efficiently during load changes, thus improving the overall availability and efficiency of the plant. One of the main difficulties from a control point of view is that the coal mills are not equipped with sensors that detect how much coal is injected into the furnace. During the project, a fairly detailed, non-linear differential equation model of the furnace and the steam circuit was constructed and validated against data obtained at the plant. It was observed that this model was able to capture most of the important dynamics found in the data. Based on this model, it is possible to extract linearized models in various operating points. The report discusses this approach and illustrates how the model can be linearized and reduced to a lower-order linear model that is valid in the vicinity of an operating point by removing states that have little influence on the overall response. A viable adaptive control strategy would then be to design controllers for each of these simplified linear models, i.e., the control loop that sets references to the coal mills and feedwater, and use the load as a separate input to the control. The control gains should then be scheduled according to the load. However, the variations and uncertainties in the coal mill are not addressed directly in this approach. Another control approach was taken in this project, where a Kalman filter based on measurements of air flow blown into the furnace and the oxygen concentration in the flue gas is designed to estimate the actual coal flow injected into the furnace. With this estimate

  1. Investigation of swirling flow mixing for application in an MHD pulverized coal combustor using isothermal modeling

    Energy Technology Data Exchange (ETDEWEB)

    Power, W. H.

    1980-05-01

    The purpose of this study was to investigate combustor reactant mixing with swirling oxidizer flow. The combustor configuration that was considered was designed to simulate a 4 lbm/sec mas flow pulverized coal combustor being tested in The University of Tennessee Space Institute MHD Facility. A one-fourth dimensionally scaled combustor model was developed for isothermal flow testing. A comparison was made of cold flow tests using 3 swirler designs with a base case oxidizer injector design of perforated plated which demonstrated acceptable performance in the 4 lbm/sec MHD combustor. The three swirlers that were evaluated were designed to allow a wide range of swirl intensity to be investigated. The design criterion of the swirler was the swirl number which has been related to swirler geometry. The results of the study showed that the swirlers that were tested fell short of the mixing characteristics displayed with the perforated plate base case oxidizer injector. Test data obtained with the cold flow model established that the actual swirl numbers of two of the swirlers were much lower than the design swirl numbers. Recirculation zones were defined for all configurations that were tested, and a comparison of velocity profiles was made for the configurations.

  2. 75 FR 64974 - Notice of Data Availability on Coal Combustion Residual Surface Impoundments

    Science.gov (United States)

    2010-10-21

    ... Coal Combustion Residual Surface Impoundments AGENCY: Environmental Protection Agency (EPA). ACTION... of Coal Combustion Residuals from Electric Utilities. The Agency is seeking public comment on how, if...; Disposal of Coal Combustion Residuals From Electric Utilities Docket, Attention Docket ID No.,...

  3. Fluidized bed combustion of high ash Singareni coal

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, M.K.; Biswas, R.R.; Mukherjee, S.K.; Talapatra, P.C.; Roy, R.U.; Rao, S.K.; Sen, M.M.

    1986-04-01

    Fluid bed combustion is comparatively a new technology for efficient combustion of high ash coals, which constitute the bulk of Indian coal resources. A 2-tonne equivalent steam per hour fluid bed combustion boiler was installed at the CPRI for experimentation with Indian coals and this paper discusses the salient features of tests conducted in the unit with minus 6 mm high ash Singareni coal of Andhra Pradesh. Data on combustion, heat transfer and heat utilization characteristics of the boiler under varying operating conditions show that high ash Singareni coal slacks can be burnt efficiently with high thermal efficiency, combustion efficiency and heat transfer rates from bed to surface in direct contact in a fluid bed combustion boiler. 3 refs., 5 figs., 4 tabs.

  4. Coal combustion products: trash or treasure?

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T.

    2006-07-15

    Coal combustion by-products can be a valuable resource to various industries. The American Coal Ash Association (ACAA) collects data on production and uses of coal combustion products (CCPs). 122.5 million tons of CCPs were produced in 2004. The article discusses the results of the ACCA's 2004 survey. Fly ash is predominantly used as a substitute for Portland cement; bottom ash for structural fill, embankments and paved road cases. Synthetic gypsum from the FGD process is commonly used in wallboard. Plant owners are only likely to have a buyer for a portion of their CCPs. Although sale of hot water (from Antelope Valley Station) from condensers for use in a fish farm to raise tilapia proved unviable, the Great Plains Synfuels Plant which manufactures natural gas from lignite produces a wide range of products including anhydrous ammonia, phenol, krypton, carbon dioxide (for enhanced oil recovery), tar oils and liquid nitrogen. ACCA's goal is to educate people about CCPs and how to make them into useful products, and market them, in order to reduce waste disposal and enhance revenue. The article lists members of the ACCA. 2 photos., 1 tab.

  5. SELECTION OF SUSTAINABLE TECHNOLOGIES FOR COMBUSTION OF BOSNIAN COALS

    Directory of Open Access Journals (Sweden)

    Anes Kazagić

    2010-01-01

    Full Text Available This paper deals with optimization of coal combustion conditions to support selection a sustainable combustion technology and an optimal furnace and boiler design. A methodology for optimization of coal combustion conditions is proposed and demonstrated on the example of Bosnian coals. The properties of Bosnian coals vary widely from one coal basin to the next, even between coal mines within the same basin. Very high percentage of ash (particularly in Bosnian brown coal makes clear certain differences between Bosnian coal types and other world coal types, providing a strong argument for investigating specific problems related to the combustion of Bosnian coals, as well as ways to improve their combustion behaviour. In this work, options of the referent energy system (boiler with different process temperatures, corresponding to the different combustion technologies; pulverised fuel combustion (slag tap or dry bottom furnace and fluidized bed combustion, are under consideration for the coals tested. Sustainability assessment, based on calculation economic and environment indicators, in combination with common low cost planning method, is used for the optimization. The total costs in the lifetime are presented by General index of total costs, calculated on the base of agglomeration of basic economic indicators and the economic indicators derived from environmental indicators. So, proposed methodology is based on identification of those combustion technologies and combustion conditions for coals tested for which the total costs in lifetime of the system under consideration are lowest, provided that all environmental issues of the energy system is fulfilled during the lifetime. Inputs for calculation of the sustainability indicators are provided by the measurements on an experimental furnace with possibility of infinite variation of process temperature, supported by good praxis from the power plants which use the fuels tested and by thermal

  6. 小型常压煤粉仓惰性气体保护系统设计及应用%Design and Application of Inert Gas Protection System to Small-Scale Atmospheric Pressure Pulverized Coal Bunker

    Institute of Scientific and Technical Information of China (English)

    徐尧; 王乃继; 肖翠微

    2012-01-01

    According to the fuel safety storage requirements of the pulverized coal-fired industrial boiler, in order to solve the coal spon- taneous combustion problems caused by CO content and the temperature increased in the coal bunker, with the related national standards and overseas design handbook, the design calculation method and system control plan of the inert gas protection system was provided for the small-scale atmospheric pressure pulverized coal bunker. According to the two coal bunkers with volume of 40 m^3 , an inert gas pro- tection system of the small-scale atmospheric pressure pulverized coal bunker was designed. When the CO content in the pulverized coal bunker reached at 1 200×10^-6 or the temperature at the any location of the bunker was over 70 ℃, the inert gas protection system would have a protection to the coal bunker with the automatic start, manual start or mechanical emergency start. The project cases were applied to verify the inert gas protection system. The result showed that when the storage value of the protective gas CO2 would be 355 kg, the low pressure CO2 inerting system applied to the protection of the pulverized coal bunker could remarkably reduce the risks of the pulverized coal spontaneous combustion.%为解决煤粉仓CO浓度或温度增高导致的自燃问题,根据煤粉工业锅炉系统燃料安全储存需求,参照相关国家标准和国外设计手册,提出了小型常压煤粉仓惰性气体保护系统设计计算方法和系统控制方案。针对2台容积40m^3的煤粉仓设计了小型常压煤粉仓惰性气体保护系统,当检测到煤粉仓内CO体积分数达1200×10^-6或任意一处温度高于70℃时,系统可通过自动启动、手动启动、机械应急启动3种方式对煤粉仓保护,结合工程实例对该系统予以验证。结果表明:采用低压CO2惰化系统对煤粉仓实施保护,当保护气体CO2的储存量为355kg,可明显降低煤粉自燃的风险。

  7. EFFECT OF HEATING RATE ON THE THERMODYNAMIC PROPERTIES OF PULVERIZED COAL

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan Sampath

    2000-01-01

    that at combustion level heating rates (10{sup 4}-10{sup 5} K/s) coal structural changes are delayed and attendant increases in heat capacity and thermal conductivity are pushed to higher temperatures or require significant hold times to become manifest.

  8. Experimental research on combustion fluorine retention using calcium-based sorbets during coal combustion (Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    QI Qing-jie; LIN Zhi-yan; LIU Jian-zhong; WU Xian; ZHOU Jun-hu; CEN Ke-fa

    2008-01-01

    In order to provide experimental guide to commercial use of fluorine pollution control during coal combustion, with fluorine pollution control during coal combustion in mind, this paper proposed the theory of combustion fluorine retention technology. Feasibility of fluorine retention reaction with calcium-based fluorine retention agent was analyzed through thermo-dynamic calculation during coal combustion. By simulating the restraining and retention effects and influential factors of calcium-based sorbets on vaporized fluoride during experimental combustion using fixed bed tube furnace, the paper systematically explored the influential law of such factors as combustion temperature, retention time, and added quantities of calcium-based sorbets on effects of fluorine retention. The research result shows that adding calcium-based fluorine retention agent in coal combustion has double effects of fluorine retention and sulfur retention, it lays an experimental foundation for commercial test of combustion fluorine retention.

  9. Economic Analysis for Rebuilding of an Aged Pulverized Coal-Fired Boiler with a New Boiler in an Aged Thermal Power Plant

    Directory of Open Access Journals (Sweden)

    Burhanettin Cetin

    2013-01-01

    Full Text Available Fossil-fired thermal power plants (TPP produce a significant part of electricity in the world. Because of the aging TPPs and so their equipment (especially boiler, thermal power plants also produce less power than their installed capacities, and there has been power loss in time. This situation affects the supply and demand balance of countries. For this reason, aging equipments such as pulverized coal-fired boiler (PCB must be renewed and power loss must be recovered, instead of building new TPPs. In this study, economic analysis of rebuilding an aged pulverized coal-fired boiler with a new pulverized coal-fired boiler including flue gas desulfurization (FGD unit and a circulating fluidized bed boiler (FBB are investigated in an existing old TPP. Emission costs are also added to model, and the developed model is applied to a 200 MWe pulverized coal-fired thermal power plant in Turkey. As a result, the payback period and the net present value are calculated for different technical and economic parameters such as power loss, load factor, electricity price, discount rate, and escalation rate by using the annual value method. The outcomes of this study show that rebuilding of a pulverized coal-fired boiler with a new one is amortized itself in a very short time.

  10. Plasma system for start-up of pulverized fuel-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Dyjakon, A.K. [Wroclaw Univ. of Technology, Wroclaw (Poland). Inst. of Power Engineering and Fluid Mechanics

    2009-07-01

    Pulverized coal combustion requires preliminary heating of the combustion chamber. Conventional heavy oil start-up systems are used during the boiler kindling, resulting in pollution, additional maintenance and high cost. This paper described the advantages of a plasma start-up system for the ignition and stabilization of a pulverized coal flame in coal-fired steam boiler. In a plasma start-up system, the heat source for ignition and stabilization of the pulverized coal combustion is a plasma at a temperature of 5,000 to 10,000 degrees C. The plasma interaction involves rapid heating of coal particles and thermal decomposition of the organic compounds resulting in fast release of the volatile matter and destruction of particles below 5 {mu}m. It also involves thermal dissociation of gaseous products with radical generation and gas ionization. The highly reactive mixture that is produced promotes flame propagation in the presence of oxygen. A continuous plasma discharge in a pulverized burner stabilizes the dust flame. This paper described the advantages associated with the use of a plasma start-up system, such as the possibility of limiting pollutant emissions to the atmosphere. It also presented laboratory study results on the influence of the fuels such as lignite, bituminous coal, wood and carbonaceous shale and their properties on the operational range of the plasma assisted pulverized coal burner. 13 refs., 2 tabs., 7 figs.

  11. Analysis of Chemical Reaction Kinetics Behavior of Nitrogen Oxide During Air-staged Combustion in Pulverized Boiler

    Directory of Open Access Journals (Sweden)

    Jun-Xia Zhang

    2016-03-01

    Full Text Available Because the air-staged combustion technology is one of the key technologies with low investment running costs and high emission reduction efficiency for the pulverized boiler, it is important to reveal the chemical reaction kinetics mechanism for developing various technologies of nitrogen oxide reduction emissions. At the present work, a three-dimensional mesh model of the large-scale four corner tangentially fired boiler furnace is established with the GAMBIT pre-processing of the FLUENT software. The partial turbulent premixed and diffusion flame was simulated for the air-staged combustion processing. Parameters distributions for the air-staged and no the air-staged were obtained, including in-furnace flow field, temperature field and nitrogen oxide concentration field. The results show that the air-staged has more regular velocity field, higher velocity of flue gas, higher turbulence intensity and more uniform temperature of flue gas. In addition, a lower negative pressure zone and lower O2 concentration zone is formed in the main combustion zone, which is conducive to the NO of fuel type reduced to N2, enhanced the effect of NOx reduction. Copyright © 2016 BCREC GROUP. All rights reserved Received: 5th November 2015; Revised: 14th January 2016; Accepted: 16th January 2016  How to Cite: Zhang, J.X., Zhang, J.F. (2016. Analysis of Chemical Reaction Kinetics Behavior of Nitrogen Oxide During Air-staged Combustion in Pulverized Boiler. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 100-108. (doi:10.9767/bcrec.11.1.431.100-108 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.431.100-108

  12. Catalysts for cleaner combustion of coal, wood and briquettes sulfur dioxide reduction options for low emission sources

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.V. [Global Environmental Solutions, Inc., Morton Grove, IL (United States)

    1995-12-31

    Coal fired, low emission sources are a major factor in the air quality problems facing eastern European cities. These sources include: stoker-fired boilers which feed district heating systems and also meet local industrial steam demand, hand-fired boilers which provide heat for one building or a small group of buildings, and masonary tile stoves which heat individual rooms. Global Environmental Systems is marketing through Global Environmental Systems of Polane, Inc. catalysts to improve the combustion of coal, wood or fuel oils in these combustion systems. PCCL-II Combustion Catalysts promotes more complete combustion, reduces or eliminates slag formations, soot, corrosion and some air pollution emissions and is especially effective on high sulfur-high vanadium residual oils. Glo-Klen is a semi-dry powder continuous acting catalyst that is injected directly into the furnace of boilers by operating personnel. It is a multi-purpose catalyst that is a furnace combustion catalyst that saves fuel by increasing combustion efficiency, a cleaner of heat transfer surfaces that saves additional fuel by increasing the absorption of heat, a corrosion-inhibiting catalyst that reduces costly corrosion damage and an air pollution reducing catalyst that reduces air pollution type stack emissions. The reduction of sulfur dioxides from coal or oil-fired boilers of the hand fired stoker design and larger, can be controlled by the induction of the Glo-Klen combustion catalyst and either hydrated lime or pulverized limestone.

  13. Mercury speciation and its emissions from a 220 MW pulverized coal-fired boiler power plant in flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.H.; Zhuo, Y.Q.; Duan, Y.F.; Chen, L.; Yang, L.G.; Zhang, L.A.; Jiang, Y.M.; Xu, X.C. [Southeast University, Nanjing (China). Thermoenergy Engineering Research Institute

    2007-07-15

    Distributions of mercury speciation of Hg{sup 0}, Hg{sup 2+} and Hg{sup P} in flue gas and fly ash were sampled by using the Ontario Hydro Method in a 220 MW pulverized coal-fired boiler power plant in China. The mercury speciation was varied greatly when flue gas going through the electrostatic precipitator (ESP). The mercury adsorbed on fly ashes was found strongly dependent on unburnt carbon content in fly ash and slightly on the particle sizes, which implies that the physical and chemical features of some elemental substances enriched to fly ash surface also have a non-ignored effect on the mercury adsorption. The concentration of chlorine in coal, oxygen and NOx in flue gas has a positive correlation with the formation of the oxidized mercury, but the sulfur in coal has a positive influence on the formation of elemental mercury.

  14. Energy Saving and Pollution Reducing Effects of Coal Combustion Catalysts

    Institute of Scientific and Technical Information of China (English)

    WU Zenghua; YU Zhiwu; ZHU Wentao; ZHOU Rui

    2001-01-01

    Coal catalytic agents (CCS type) have been prepared to improve coal combustion and reduce air pollution.The energy and pollution reductions resulting from the catalysts have been examined with thermal analysis and chromatography.The CCS agents lower the ignition temperature by 30-80℃ and improve the coal combustion efficiency by 10%-25%.The agents also reduce the release of carbon monoxide,sulfur dioxide,and coal particles to environment.The working mechanisms of the catalysts are discussed in terms of their participation in various physico-chemical processes during combustion.

  15. Two-in-one fuel combining sugar cane with low rank coal and its CO₂ reduction effects in pulverized-coal power plants.

    Science.gov (United States)

    Lee, Dong-Wook; Bae, Jong-Soo; Lee, Young-Joo; Park, Se-Joon; Hong, Jai-Chang; Lee, Byoung-Hwa; Jeon, Chung-Hwan; Choi, Young-Chan

    2013-02-05

    Coal-fired power plants are facing to two major independent problems, namely, the burden to reduce CO(2) emission to comply with renewable portfolio standard (RPS) and cap-and-trade system, and the need to use low-rank coal due to the instability of high-rank coal supply. To address such unresolved issues, integrated gasification combined cycle (IGCC) with carbon capture and storage (CCS) has been suggested, and low rank coal has been upgraded by high-pressure and high-temperature processes. However, IGCC incurs huge construction costs, and the coal upgrading processes require fossil-fuel-derived additives and harsh operation condition. Here, we first show a hybrid coal that can solve these two problems simultaneously while using existing power plants. Hybrid coal is defined as a two-in-one fuel combining low rank coal with a sugar cane-derived bioliquid, such as molasses and sugar cane juice, by bioliquid diffusion into coal intrapores and precarbonization of the bioliquid. Unlike the simple blend of biomass and coal showing dual combustion behavior, hybrid coal provided a single coal combustion pattern. If hybrid coal (biomass/coal ratio = 28 wt %) is used as a fuel for 500 MW power generation, the net CO(2) emission is 21.2-33.1% and 12.5-25.7% lower than those for low rank coal and designed coal, and the required coal supply can be reduced by 33% compared with low rank coal. Considering high oil prices and time required before a stable renewable energy supply can be established, hybrid coal could be recognized as an innovative low-carbon-emission energy technology that can bridge the gulf between fossil fuels and renewable energy, because various water-soluble biomass could be used as an additive for hybrid coal through proper modification of preparation conditions.

  16. Structure Based Predictive Model for Coal Char Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Robert Hurt; Joseph Calo; Robert Essenhigh; Christopher Hadad

    2000-12-30

    This unique collaborative project has taken a very fundamental look at the origin of structure, and combustion reactivity of coal chars. It was a combined experimental and theoretical effort involving three universities and collaborators from universities outside the U.S. and from U.S. National Laboratories and contract research companies. The project goal was to improve our understanding of char structure and behavior by examining the fundamental chemistry of its polyaromatic building blocks. The project team investigated the elementary oxidative attack on polyaromatic systems, and coupled with a study of the assembly processes that convert these polyaromatic clusters to mature carbon materials (or chars). We believe that the work done in this project has defined a powerful new science-based approach to the understanding of char behavior. The work on aromatic oxidation pathways made extensive use of computational chemistry, and was led by Professor Christopher Hadad in the Department of Chemistry at Ohio State University. Laboratory experiments on char structure, properties, and combustion reactivity were carried out at both OSU and Brown, led by Principle Investigators Joseph Calo, Robert Essenhigh, and Robert Hurt. Modeling activities were divided into two parts: first unique models of crystal structure development were formulated by the team at Brown (PI'S Hurt and Calo) with input from Boston University and significant collaboration with Dr. Alan Kerstein at Sandia and with Dr. Zhong-Ying chen at SAIC. Secondly, new combustion models were developed and tested, led by Professor Essenhigh at OSU, Dieter Foertsch (a collaborator at the University of Stuttgart), and Professor Hurt at Brown. One product of this work is the CBK8 model of carbon burnout, which has already found practical use in CFD codes and in other numerical models of pulverized fuel combustion processes, such as EPRI's NOxLOI Predictor. The remainder of the report consists of detailed

  17. Pulverized coal injection on the blast furnaces at U.S. Steel Kosice, S.R.O.

    Energy Technology Data Exchange (ETDEWEB)

    Baran, P.; McCoy, M.; Szalona, T. [United States Steel Corp., Kosice (Slovakia)

    2008-07-01

    United States Steel Corporation at Kosice built a new modern PCI facility that meets environmental criteria and provides a replacement for financially demanding metallurgical coke with a less expensive pulverized coal. The pulverized coal injection (PCI) technology was applied to blast furnaces no. 2 and 3 in 1993 and has resulted in the following improvements: production has increased an average of 400 to 500 tons/day; pig iron production economics have improved not only because of replacing the metallurgical coke with PCI, but also due to a decrease in the total fuel rate for producing 1 ton of hot metal; blast furnace gas utilization increased with ETA CO values around 48 per cent; and the blast furnace operation is more stable by regular burden descend. The most distinguished change has been in the way raw materials are charged to the furnaces. This paper outlined the coal quality requirements for PCI and presented a basic technological description of PCI preparation. The operational experience of the 2 blast furnaces were presented for the period of 2000 to 2007. Recommendations for PCI rate increase were also presented. It was concluded that using PCI technology in blast furnace no. 1 may bring the greatest economic efficiency for United Steel Corporation at Kosice. 4 refs., 2 tabs., 8 figs.

  18. Clean coal technologies handbook: fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    1999-01-01

    The term fluidisation is used to describe a type or mode of contact between fluids and granular solids, in such a way that solid particles appear as suspended in the moving fluid. The fluid moves vertically upwards through the bed formed by the particles. The reason to use the word fluidisation is that, when a solid particles bed is treated in the above mentioned way, it acquires an aspect very similar to that of a boiling liquid, and it has properties similar to those of a liquid. Thus, a bed in such conditions is called fluidised bed; the name fluidisation is reserved to the operation required to reach such state. This contacting method shows a number of fetaures which make it very useful to carry on many important processes in the fields of Chemical Engineering and Extractive Metallurgy; for that reason it has been studied very deeply in the last year, on the theoretical aspect and on its practical applications as well. Going back in time to the origin of the fluidisation, as it is known at present, we find that is started to develop at the beginning of the 1940's. The first application of fluidisation is described by Agricola in his famous book De re metallica, which must have been written in XVI the century. In this book there is the mention of the concentration of metallic ores by means of an expansion of the bed produced by a vertical upwards water flow which passes through the layer of rough mineral. From the beginning of its development, fluidisation has had many applications, such as water clarification, pulverised coal gasification, catalytic cracking chemical processes, drying of pulverulent materials and incineration of solid residues, among others. Until the end of 1950 the application was not used to coal combustion; it has strongly development after the energy crisis. Starting in the 1970's a great effort at world level is being made to develop the technology of Fluidised Bed Combustion (FBC), pushed on by two main reasons.: 1) Reduction

  19. Distribution and Fate of Mercury in Pulverized Bituminous Coal-Fired Power Plants in Coal Energy-Dominant Huainan City, China.

    Science.gov (United States)

    Chen, Bingyu; Liu, Guijian; Sun, Ruoyu

    2016-05-01

    A better understanding on the partitioning behavior of mercury (Hg) during coal combustion in large-scale coal-fired power plants is fundamental for drafting Hg-emission control regulations. Two large coal-fired utility boilers, equipped with electrostatic precipitators (ESPs) and a wet flue gas desulfurization (WFGD) system, respectively, in coal energy-dominant Huainan City, China, were selected to investigate the distribution and fate of Hg during coal combustion. In three sampling campaigns, we found that Hg in bottom ash was severely depleted with a relative enrichment (RE) index coal. We estimated that Hg emissions in all Huainan coal-fired power plants varied from 1.8 Mg in 2003 to 7.3 Mg in 2010.

  20. Effects of pyrite on the spontaneous combustion of coal

    Institute of Scientific and Technical Information of China (English)

    Jun Deng; Xiaofeng Ma; Yutao Zhang; Yaqing Li; Wenwen Zhu

    2015-01-01

    Pyrite has a significant effect on the spontaneous combustion of coal. The presence of pyrite can change the propensity of coal towards spontaneous combustion. The influences of various pyrite contents on the parameters of spontaneous combustion, such as index gases, temperature and released heat etc., were investigated in this study. Coal samples with different pyrite contents (0%, 3%, 5%, 7%and 9%) were made by mixing coal and pyrite. The oxidation experiments under temperature-programmed condition were carried out to test the release rate of gaseous oxidation products at different temperatures. Differential scanning calorimeter (DSC) was employed to measure the intensity of heat release during coal oxidation for various pyrite contents. The results indicate that pyrite can nonlinearly accelerate the process of spontaneous combustion. The coal sample with a pyrite content of 5% has the largest CO release rate and oxygen adsorption as well. However, the coal sample with a pyrite content of 7% has the largest rate of heat flow according to the results from the DSC tests. Pyrite contents of 5%–7% in coal has the most significant effects on spontaneous combustion within the range of this study. The conclusions are conducive to the evaluation and control for the spontaneous combustion of coal.

  1. Combustion development of an industrial scale burner, with particular reference to coal blends and co-firing coal with natural gas and sawdust

    Energy Technology Data Exchange (ETDEWEB)

    Allen, G. [International Combustion Limited, Derby (United Kingdom). Rolls Royce Industrial Power Group

    1998-12-31

    Described herein are the results of pulverised coal combustion experiments performed on a 35 MWth low NO{sub x} burner installed in International Combustion`s large scale combustion test facility. In-flame and furnace exit combustion/emissions species and temperature measurements were taken during firing trials with: different coal blends; a coal-wood dust fuel blend; coal and natural gas `In-Burner` co-firing. The NO{sub x} and unburned carbon in ash results generated from the coal blend tests were shown to correlate well against fuel ratio. The gas co-firing results confirmed low momentum gas injection along the burner axis as optimum. This reduced NO{sub x} by 16% whilst unburned carbon in ash fell from 3 to 1.5%. Larger NO{sub x} reductions were anticipated by virtue of activating an `In-Burner` gas reburn de-NO{sub x} process. A 1/2th scale isothermal low NO{sub x} burner model was used to characterise pulverized coal particle (PF) dynamics in the near burner region. Laser sheet velocimetry and laser doppler anemometry measurements indicated that the larger PF particles follow a straight trajectory and penetrate the burner internal recirculation zone. Conversely, the smaller PF particles are drawn radially outwards into the shear layer between the burner PA and SA flow streams to initiate combustion. A CFD model of this burner was validated against the experimental data. This exercise highlighted the importance of specifying accurate CFD model inlet boundary conditions, adopting fine grids, and selecting appropriate turbulence models. This mathematical model was subsequently used to derive new flame stabiliser concepts, which were tested on a full size burner. 9 refs., 27 figs., 8 tabs.

  2. Desulfurization kinetics of coal combustion gases

    Directory of Open Access Journals (Sweden)

    S.R. Bragança

    2003-06-01

    Full Text Available Desulfurization of the gases from coal combustion was studied, using limestone (marble as the sorbent in a fluidized-bed reactor. The kinetic parameter, k, was measured by analyzing the reduction in SO2 emissions in relation to time when a batch of limestone was introduced directly into the combustor chamber. The influence of sorbent composition and particle size was also studied. The CaO content in the limestone was more important than the MgO content. Sorbent particle size showed a strong influence on the reaction time and efficiency of desulfurization. The results of this work prove that marble type is very important in the choice of sorbent for a desulfurization process. A magnesian limestone showed a better performance than a dolomite. Therefore, the magnesian limestone is more efficient for a shorter particle residence time, which is characteristic of the bubbling fluidized bed.

  3. Desulfurization kinetics of coal combustion gases

    Energy Technology Data Exchange (ETDEWEB)

    Braganca, S.R.; Jablonski, A.; Castellan, J.L. [Universidade Federal Rio Grande do Sul, Porto Alegre (Brazil)

    2003-06-01

    Desulfurization of the gases from coal combustion was studied, using limestone (marble) as the sorbent in a fluidized-bed reactor. The kinetic parameter, k, was measured by analyzing the reduction in SO{sub 2} emissions in relation to time when a batch of limestone was introduced directly into the combustor chamber. The influence of sorbent composition and particle size was also studied. The CaO content in the limestone was more important than the MgO content. Sorbent particle size showed a strong influence on the reaction time and efficiency of desulfurization. The results of this work prove that marble type is very important in the choice of sorbent for a desulfurization process. A magnesian limestone showed a better performance than a dolomite. Therefore, the magnesian limestone is more efficient for a shorter particle residence time, which is characteristic of the bubbling fluidized bed.

  4. Carbon dioxide from coal combustion: Variation with rank of US coal

    Science.gov (United States)

    Quick, J.C.; Glick, D.C.

    2000-01-01

    Carbon dioxide from combustion of US coal systematically varies with ASTM rank indices, allowing the amount of CO2 produced per net unit of energy to be predicted for individual coals. No single predictive equation is applicable to all coals. Accordingly, we provide one equation for coals above high volatile bituminous rank and another for lower rank coals. When applied to public data for commercial coals from western US mines these equations show a 15% variation of kg CO2 (net GJ)-1. This range of variation suggests reduction of US CO2 emissions is possible by prudent selection of coal for combustion. Maceral and mineral content are shown to slightly affect CO2 emissions from US coal. We also suggest that CO2 emissions increased between 6 and 8% in instances where Midwestern US power plants stopped burning local, high-sulfur bituminous coal and started burning low-sulfur, subbituminous C rank coal from the western US.

  5. Effect of oxydesulphurization on the combustion characteristics of coal

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, S.; Kucukbayrak, S. [Technical University of Istanbul, Istanbul (Turkey). Dept. of Chemical Engineering

    1997-06-01

    Desulphurization of a Turkish lignite by oxydesulphurization using dilute alkaline solutions, obtained by the extraction of fly ash with water, was carried out under 0-1.5 MPa partial pressure of oxygen at temperatures between 403 and 498 K for 30-90 min time intervals. The combustion characteristics of original and desulphurized lignite samples are compared using TGA. DTG curves were derived and the effects of desulphurization conditions such as temperature, partial pressure of oxygen and time on coal reactivity were studied. Ignition temperature, maximum combustion rate, combustion period, and the end temperature of combustion were considered. Relations between coal reactivity and removals of sulphur and ash contents were also studied.

  6. MECHANISMS AND OPTIMIZATION OF COAL COMBUSTION

    Energy Technology Data Exchange (ETDEWEB)

    Kyriacos Zygourakis

    2000-10-31

    The completed research project has made some significant contributions that will help us meet the challenges outlined in the previous section. One of the major novelties of our experimental approach involves the application of video microscopy and digital image analysis to study important transient phenomena (like particle swelling and ignitions) occurring during coal pyrolysis and combustion. Image analysis was also used to analyze the macropore structure of chars, a dominant factor in determining char reactivity and ignition behavior at high temperatures where all the commercial processes operate. By combining advanced experimental techniques with mathematical modeling, we were able to achieve the main objectives of our project. More specifically: (1) We accurately quantified the effect of several important process conditions (like pyrolysis heating rate, particle size, heat treatment temperature and soak time) on the combustion behavior of chars. These measurements shed new light into the fundamental mechanisms of important transient processes like particle swelling and ignitions. (2) We developed and tested theoretical models that can predict the ignition behavior of char particles and their burn-off times at high temperatures where intraparticle diffusional limitations are very important.

  7. Modelling of the pulverised coal preparation for combustion in a plasma chamber

    Energy Technology Data Exchange (ETDEWEB)

    Z. Jankoski; F.C. Lockwood; V. Messerle; E. Karpenko; A. Ustimenko [Imperial College London, London (United Kingdom). Department of Mechanical Engineering

    2003-07-01

    The objective of this study is to simulate the behaviour of pulverized coal in the plasma chamber through numerical experiments carried out with the aid of developed thermodynamic, kinetic and multi dimensional computational fluid dynamics based mathematical models. The data needed for the validation of the numerical procedure were obtained from a cylindrical direct flow burner equipped with a plasmatron (plasma generator) with 100 kW of electric power and mounted on a full-scale boiler (Gusinoozersk TPP, Eastern Siberia). The experiments were carried out using 'Tugnuisk' bituminous coal. Two mathematical models were employed: the one ('1D Plasma-Coal') being one dimensional, but with an emphasis on complex chemistry, the other (3D FAFNIR) being fully three-dimensional with emphasis on the geometry and overall combustion processes. 1D Plasma-Coal numerical experiments gave the predicted temperatures and velocities of gas and solids along the chamber length; while the concentrations of the gas components (CO, CO{sub 2}, H{sub 2}, CH{sub 4}, C{sub 6}H{sub 6}, N{sub 2}, H{sub 2}O) were reported for the chamber exit. The degree of coal gasification showed that 54% of coal carbon was gasified within the plasma chamber. 3D numerical results for plasma jet spreading length were in good agreement with the measured data, while the temperature profiles within the plasma chamber were over predicted. The predictions of main species concentrations reveal that oxygen was completely consumed with the exit product stream consisting of combustible gases, un-burnt volatiles and char particles.

  8. Methodology for Evaluating Encapsulated Beneficial Uses of Coal Combustion Residuals

    Science.gov (United States)

    The primary purpose of this document is to present an evaluation methodology developed by the EPA for making determinations about environmental releases from encapsulated products containing coal combustion residuals.

  9. EXPERIMENTAL STUDY ON HORIZONTAL COMBUSTION TECHNIQUE FOR BITUMINOUS COAL BRIQUET

    Institute of Scientific and Technical Information of China (English)

    路春美; 程世庆; 邵延玲; 张晔

    1997-01-01

    Through a lot of experiments, a new kind of stove using horizontal combustion technique for bituminous coal briquet has been developed. Making use of this stove, studies have been made on burning process of bituminous coal briquet, distribution of temperature field in the stove, the regularities of evolution and combustion of volatile matter, the burning rate and efficiency of bituminous coal briquet, characteristics of fire-sealing and sulfur-retention. The results show that, with the technique, some achievements can be obtained in combustion of bituminous coal briquet, such as lower pollution that the flue gas black degree is below 0.5R and dust concentration is below 90mg/m3 . The stove's combustion efficiency reaches 90%, sulfur fixing efficiency is 60%, and CO concentration is decreased by 40% compared with other traditional stoves. With so many advantages, the stove can be used extensively in civil stoves and smaller industrial boilers.

  10. Pulverized Coal Fired Burner Using Coflow Jets with Velocity Difference in Revolving Kiln of Cement%回转水泥窑同向速差射流煤粉燃烧器

    Institute of Scientific and Technical Information of China (English)

    张拥军

    2000-01-01

    利用多股气体同向流动,人为控制气流的喷射速度,造成一定的速度差,借助射流的强烈的引射作用,使高温烟气回流至一次风、粉混合气流中,使一次风、粉提前加热、着火,从而强化了煤粉的燃烧,并保证了所需火焰的形状,解决了在回转水泥窑中大比例掺烧无烟煤的技术难题。%Using velocity difference among the multiple coflow jets and the strong entraiment effect of high speed jets,the high temperature flue will be recirculated to the exit of pulverized coal stream and mixed with the steam.The coal will be heated and ignited in advance,and thus the coal combustion will be intensified. Meanwhile the flame configuration can be ensured by using the present burner.Therefore the combustion of large amounts of anthrecite added to the bituminous coal is solved.

  11. EVALUATION OF BROWN COAL SPONTANEOUS COMBUSTION AND SOURCES GENESIS PROGNOSES

    Directory of Open Access Journals (Sweden)

    Vlastimil MONI

    2014-10-01

    Full Text Available This article presents summarizing information about the solution of partial part of research problem of prognoses of deposited brown coal spontaneous combustion sources genesis as a part of project TA01020351 – program ALFA. We will gradually describe the results of long term measurements carried out on selected brown coal heaps realized from 2011 to 2013. The attention is devoted to characterization of key parameters. These parameters influence the genesis of combustion. The second problem is the comparison of results of thermal imaging with laboratory results of gas and coal samples sampled in situ, with the influence of atmospheric conditions (insolation, aeration, rainfall, atmospheric pressure changes etc., with influence of coal mass degradation, physical and chemical factors and another failure factors to brown coal spontaneous combustion processes.

  12. Combustion characterization of beneficiated coal-based fuels

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Levasseur, A.A.

    1995-11-01

    The Pittsburgh Energy Technology Center (PETC) of the U.S. Department of Energy is sponsoring the development of advanced coal-cleaning technologies aimed at expanding the use of the nation`s vast coal reserves in an environmentally and economically acceptable manner. Because of the lack of practical experience with deeply beneficiated coal-based fuels, PETC has contracted Combustion Engineering, Inc. to perform a multi-year project on `Combustion Characterization of Beneficiated Coal-Based Fuels.` The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of Beneficiated Coal-Based Fuels (BCs) influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs.

  13. Coal power and combustion. Quarterly report, January--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    ERDA's coal combustion and power program has focused on two major areas: Direct combustion of coal and advanced power systems. Efforts in the area of direct combustion are concentrated on: Development of atmospheric and pressurized systems capable of burning high-sulfur coal of all rank and quality in fluidized-bed combustors; development of advanced technology power systems to generate power more economically than present technology permits while using medium- and high-sulfur coal in an environmentally-acceptable manner; development of the technology enabling coal-oil slurries to be substituted as feedstock for gas or oil-fired combustors; and improvement of the efficiency of present boilers. Compared with conventional coal-fired systems, fluidized-bed combustion systems give higher power generation efficiencies and cleaner exhaust gases, even when burning high-sulfur coals. If the fluidized-bed system is pressurized, additional economies in capital and operating costs may be realized. The benefits from high-pressure combustion are a reduction of furnace size due to decreased gas volume and better sulfur removal. High-pressure combustion, however, requires the development of equipment to clean the hot combustion products to make them suitable for use in power generation turbines. The advanced power systems program is directed toward developing electric power systems capable of operating on coal or coal-derived fuels. These systems involve the use of high temperature gas turbines burning low-Btu gas and turbine systems using inert gases and alkali metal vapors. Some 25 projects in these areas are described, including a brief summary of progress during the quarter. (LTN)

  14. Combustion characteristics of semicokes derived from pyrolysis of low rank bituminous coal

    Institute of Scientific and Technical Information of China (English)

    Qian Wei; Xie Qiang; Huang Yuyi; Dang Jiatao; Sun Kaidi; Yang Qian; Wang Jincao

    2012-01-01

    Various semicokes were obtained from medium-low temperature pyrolysis of Dongrong long flame coal.The proximate analysis,calorific value and Hardgrove grindability index (HGI) of semicokes were determined,and the ignition temperature,burnout temperature,ignition index,burnout index,burnout ratio,combustion characteristic index of semicokes were measured and analyzed using thermogravimetry analysis (TGA).The effects of pyrolysis temperature,heating rate,and pyrolysis time on yield,composition and calorific value of long flame coal derived semicokes were investigated,especially the influence of pyrolysis temperature on combustion characteristics and grindability of the semicokes was studied combined with X-ray diffraction (XRD) analysis of semicokes.The results show that the volatile content,ash content and calorific value of semicokes pyrolyzed at all process parameters studied meet the technical specifications of the pulverized coal-fired furnaces (PCFF) referring to China Standards GB/T 7562-1998.The pyrolysis temperature is the most influential factor among pyrolysis process parameters.As pyrolysis temperature increases,the yield,ignition index,combustion reactivity and burnout index of semicokes show a decreasing tend,but the ash content increases.In the range of 400 and 450 ℃,the grindability of semicokes is rational,especially the grindability of semicokes pyrolyzed at 450 ℃ is suitable.Except for the decrease of volatile content and increase of ash content,the decrease of combustion performance of semicokes pyrolyzed at higher temperature should be attributed to the improvement of the degree of structural ordering and the increase of aromaticity and average crystallite size of char.It is concluded that the semicokes pyrolyzed at the temperature of 450 ℃ is the proper fuel for PCFF.

  15. The Mechanisms of Flame Stabilization and Low NOx Emission in an Eccentric Jet Pulverized Coal Combustor

    Institute of Scientific and Technical Information of China (English)

    SunWenchao; SunYezhu; 等

    1992-01-01

    The mechanisms of flame stabilization and low NOx emission features of an accentric jet pulverzed coal combustor were studied through numerical modelling and experimental investigation.The results show that the formation of the unique flowfield structure is closely related to the interaction among combustor configuration.the primary jet and the control Jet.and that certain rules should be follwed in orber to obtain the optimum condition for flame stabilization.The distributions of temperature and concentration of NO,O2,CO and CO2 inside the combustor were experimentally measured.The effects of strustural and operational parameters on combustion and NO formation were studied.It was found that reduction of primary air,suitable use of control jet and reasonable uptilt angle of the primary jet all contributed to the reduction of NOx at the combustor exit.A new hypothesis,that reasonable separation of oxygen and fuel within the fuel-rich zone is beneficial to further reduction of NOx emission,is given,The study showed that good compatibility existed between the capability of flame stabilization and low NOX emission for this type of combustor.

  16. Prevention of spontaneous combustion in coal stockpiles : Experimental results in coal storage yard

    NARCIS (Netherlands)

    Fierro, V.; Miranda, J.L.; Romero, C.; Andrés, J.M.; Arriaga, A.; Schmal, D.; Visser, G.H.

    1999-01-01

    The spontaneous ignition of coal stockpiles is a serious economic and safety problem. This paper deals with oxidation and spontaneous combustion of coal piles laid in coal storage yard and the measures to avoid the heat losses produced. Investigations on self heating were carried out with five test

  17. Prevention of spontaneous combustion in coal stockpiles : Experimental results in coal storage yard

    NARCIS (Netherlands)

    Fierro, V.; Miranda, J.L.; Romero, C.; Andrés, J.M.; Arriaga, A.; Schmal, D.; Visser, G.H.

    1999-01-01

    The spontaneous ignition of coal stockpiles is a serious economic and safety problem. This paper deals with oxidation and spontaneous combustion of coal piles laid in coal storage yard and the measures to avoid the heat losses produced. Investigations on self heating were carried out with five test

  18. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Harold H. Schobert; M. Mercedes Maroto-Valer; Zhe Lu

    2003-09-30

    The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly unburned carbon in fly ash. Unburned carbon is nowadays regarded as a waste product and its fate is mainly disposal, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, the principal objective of this work was to characterize and utilize the unburned carbon in fly ash for the production of activated carbons. The unburned carbon samples were collected from different combustion systems, including pulverized utility boilers, a utility cyclone, a stoker, and a fluidized bed combustor. LOI (loss-on-ignition), proximate, ultimate, and petrographic analyses were conducted, and the surface areas of the samples were characterized by N2 adsorption isotherms at 77K. The LOIs of the unburned carbon samples varied between 21.79-84.52%. The proximate analyses showed that all the samples had very low moisture contents (0.17 to 3.39 wt %), while the volatile matter contents varied between 0.45 to 24.82 wt%. The elemental analyses show that all the unburned carbon samples consist mainly of carbon with very little hydrogen, nitrogen, sulfur and oxygen In addition, the potential use of unburned carbon as precursor for activated carbon (AC) was investigated. Activated carbons with specific surface area up to 1075m{sup 2}/g were produced from the unburned carbon. The porosity of the resultant activated carbons was related to the properties of the unburned carbon feedstock and the activation conditions used. It was found that not all the unburned carbon samples are equally suited for activation, and furthermore, their potential as activated carbons precursors could be

  19. Analysis of combustion efficiency in CFB coal combustors

    Energy Technology Data Exchange (ETDEWEB)

    Afsin Gungor [Nigde University, Nigde (Turkey). Department of Mechanical Engineering, Faculty of Engineering and Architecture

    2008-06-15

    Fluidized bed technology is well known for its high combustion efficiency and is widely used in coal combustion. In this study, the combustor efficiency has been defined and investigated for CFB coal combustor based on the losses using a dynamic 2D model. The model is shown to agree well with the published data. The effect of operating parameters such as excess air ratio, bed operational velocity, coal particle diameter and combustor load and the effect of design variables such as bed height and bed diameter on the mean bed temperature, the overall CO emission and the combustion efficiency are analyzed for the small-scale of CFBC in the presently developed model. As a result of this analysis, it is observed that the combustion efficiency decreases with increasing excess air value. The combustion efficiency increases with the bed operational velocity. Increasing coal particle size results in higher combustion efficiency values. The coal feed rate has negative effect on the combustion efficiency. The combustor efficiency considerably increases with increasing combustor height and diameter if other parameters are kept unchanged. 46 refs., 16 figs., 6 tabs.

  20. Atmospheric emission of mercury due to combustion of steam coal and domestic coal in China

    Science.gov (United States)

    Wang, Shaobin; Luo, Kunli

    2017-08-01

    To study the mercury emission due to the combustion of steam coal and domestic coal in China, we analyzed the mercury contents of coal, fly ash, bottom ash and sluicing water in thermal power plants, steam boilers as well as domestic coal-stoves, in Shaanxi, Shanxi, Shandong and Yunnan Provinces. This study conduct an estimate of the Hg emission rates from steam coal and domestic coal combustion based on the method of mass distribution ratio of fly ash and bottom ash. The results show that the Hg emission rate of coal combustion in thermal power plants is about 50.21% (electrostatic precipitators + wet flue gas desulfurization), and that in heating boilers is about 67.23%, and 92.28% in industrial boilers without flue gas desulphurisation equipment. Furthermore, Hg emission rate is 83.61% due to domestic coal combustion in coal-stoves. The Hg emission amount into the atmosphere from power and heat generation, industrial boilers, domestic coal-stoves and spontaneous combustion of coal gangue is roughly estimated to be 133 ± 4, 100 ± 17, 11 ± 0.1 and 47 ± 26 tons in China in 2014, respectively, and the total Hg emission amount from this paper is estimated at 292 tons. The trends of Hg emission in China from 1991 to 2014 show an accelerating growth after 2002. The proportion of mercury emission due to thermal power, heating generation and industrial energy utilization continuously increased. The atmospheric emission of mercury due to combustion of steam coal, domestic coal and coal gangue accounts nearly 50% in total anthropogenic Hg emissions in China, indicating one of the largest sources of Hg emission in China which should draw more public and scientific attention in the future.

  1. Reserch process geomigration during underground gasification and coal combustion

    Directory of Open Access Journals (Sweden)

    Zholudyev S.V.

    2014-12-01

    Full Text Available The chemical composition of subsoil water in the over- and subcoal deposits during underground combustion of brown coal can vary under coals thermal development product and pollution. Analysis of the substances-contaminants migratory in water is one of the main issues of further implementation of technologies UCG and UCC.

  2. Properties and Developments of Combustion and Gasification of Coal and Char in a CO2-Rich and Recycled Flue Gases Atmosphere by Rapid Heating

    Directory of Open Access Journals (Sweden)

    Zhigang Li

    2012-01-01

    Full Text Available Combustion and gasification properties of pulverized coal and char have been investigated experimentally under the conditions of high temperature gradient of order 200°C·s−1 by a CO2 gas laser beam and CO2-rich atmospheres with 5% and 10% O2. The laser heating makes a more ideal experimental condition compared with previous studies with a TG-DTA, because it is able to minimize effects of coal oxidation and combustion by rapid heating process like radiative heat transfer condition. The experimental results indicated that coal weight reduction ratio to gases followed the Arrhenius equation with increasing coal temperature; further which were increased around 5% with adding H2O in CO2-rich atmosphere. In addition, coal-water mixtures with different water/coal mass ratio were used in order to investigate roles of water vapor in the process of coal gasification and combustion. Furthermore, char-water mixtures with different water/char mass ratio were also measured in order to discuss the generation ratio of CO/CO2, and specified that the source of Hydrocarbons is volatile matter from coal. Moreover, it was confirmed that generations of CO and Hydrocarbons gases are mainly dependent on coal temperature and O2 concentration, and they are stimulated at temperature over 1000°C in the CO2-rich atmosphere.

  3. Study on the influence of electromagnetic field on the property of coal combustion burnout in circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Y. [Ruiping Coal and Electric Power Ltd. Co., Ruzhou (China)

    2008-08-15

    To study the influences of electromagnetism field pretreatment of pulverized Coal (EFPPC) on the properties of its combustion, thermogravimetric analysis, a Muffle furnace experiment and an X-ray diffraction experiment were carried out for three Coal banks. It was shown that EFPPC will induce the molecular structure of Coal to change into amorphous carbon, which causes an increase in the rate of oxygen absorption during the initial stages of Coal burning and reaction activity. It is also shown that the residual carbon of bituminous Coal would be increased by about 0.33% - 0.41%, i.e, the loss of standard Coal is about 3,000 t/a for double 480 t/h boilers, when applying EFPPC for 1 min at a temperature of 800 - 1,000 {sup o}C. When the temperature increases 200 {sup o}C, the residual carbon increases by about 2.07% but the effect of EFPPC is less than 0.21% for bituminous Coal and residual carbon is about 1.47% and the effect of EFPPC is less than 0.05% for lean Coal. Therefore the effect of increasing the temperature of EFPPC on residual carbon is less than that of increasing the time of EFPPC. 9 refs., 4 figs., 2 tabs.

  4. Suppression of fine ash formation in pulverized coal flames. Final technical report, September 30, 1992--January 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kramlich, J.C.; Chenevert, B.; Park, Jungsung; Hoffman, D.A.; Butcher, E.K.

    1996-07-19

    Coal ash, and particularly fine fly ash, remain one of the principal practical and environmental problems in coal-based power generation. In particular, submicron aerosols are identified with direct inhalation risk. Submicron ash is thought to arise from mineral vaporization during char combustion, followed by nucleation, condensation and coagulation to yield an aerosol. While aerosols are predominantly made out of volatile alkali minerals, they also can include refractory oxides that are chemically reduced to more volatile forms within the char particle and vaporized. Most of the ash of size greater than 1 {mu}m is generated by agglomeration of mineral as the char particle bums out. These two principal mechanisms are thought to account for most of the ash generated in coal combustion. Previous research has shown that various forms of coal treatment can influence the yields of fine ash from combustion. The research reported here investigates various forms of treatment, including physical coal cleaning, aerodynamic sizing, degree of grinding, and combinations of these on both aerosol yields and on yields of fine residual ash (1-4 {mu}m). The work also includes results from the combustion of artificial chars that include individual mineral elements. This research shows that these various forms of coal treatment can significantly change ash characteristics. While none of the treatments affected the bulk of the residual ash size distribution significantly, the yield of the ash aerosol mode (d<0.5 {mu}m) and fine residual ash mode (1-4 {mu}m) are changed by the treatments.

  5. Atmospheric fluidized bed coal combustion research, development and application

    CERN Document Server

    Valk, M

    1994-01-01

    The use of fluidized bed coal combustion technology has been developed in the past decade in The Netherlands with a view to expanding the industrial use of coal as an energy supply. Various research groups from universities, institutes for applied science and from boiler industries participated and contributed to this research area. Comprehensive results of such recent experimentation and development work on atmospheric fluidized bed combustion of coal are covered in this volume. Each chapter, written by an expert, treats one specific subject and gives both the theoretical background as well a

  6. The Production and Release of CFCs from Coal Combustion

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The destruction of the ozone layer in the atmosphere caused by industrially synthesized CFCs has aroused greatest concerns from the international society, but the CFCs formed from burning of coal containing fluorine have not been recognized by the world yet. In the present study, we condensed the gas through cold traps and used the GC-MS to measure the gas composition, and found that the content of CFC-12 in the smog from coal combustion was significantly higher than the background value of the local atmosphere. This proves that CFC-12 is formed in the process of coal combustion. This paper discusses a new source of non-synthesized CFCs.

  7. 太阳能在煤粉锅炉上的应用%Application of Solar Energy in Pulverized Coal Boiler

    Institute of Scientific and Technical Information of China (English)

    王春华; 李梦浩; 徐乐乐; 刘小秋; 韩长明; 梁源

    2012-01-01

    Through conducting numerical simulation on the combustion and heat transfer process of the boiler, under the conditions of the different temperature the temperature distribution and volume fraction distribution of the pollutant in the combustion chamber were predicted. The results show that when the furnace temperature met the production requirement if the secondary and tertiary air is preheated to a high - temperature, the total amount of air and coal are both reduced. Meanwhile, the amount of the pollutants could be reduced to achieve the purpose of energy - saving and emissions - reduction. As the increasing air temperature, the furnace temperature at the same section is more uniformity, thus the water wall tube would be heated uniformly, which is helpful for water cycle stability in boiler. Therefore, combustion technology of high temperature and low oxygen could be used in the pulverized coal boiler. To reach high - temperature air, a solar air - heater should be installed on boilers tail to utilize solar energy to assist the flue gas waste heat to heat the secondary and tertiary air to 873 K above.%通过对煤粉锅炉炉膛内的燃烧、传热过程进行数值计算研究,预测了不同空气温度下炉膛内的温度分布和污染物体积分数分布.结果表明,在达到工业生产要求的炉内温度时,二、三次风使用高温空气,可降低总空气量和煤粉消耗量,同时还可减少污染物的生成量,达到节能减排的目的;随着空气温度的升高,炉膛内同一截面的温度更加趋于均匀,这样水冷壁各管吸热均匀,有利于锅炉水循环的稳定性,有利于煤粉锅炉应用高温低氧燃烧技术.为了实现空气高温,可在锅炉尾部增设太阳能空气加热器,利用太阳能辅助烟气余热将二、三次风加热到873 K以上.

  8. Isotopic signature of atmospheric phosphate emitted from coal combustion

    Science.gov (United States)

    Weinberger, Roi; Weiner, Tal; Angert, Alon

    2016-07-01

    Atmospheric deposition of phosphorus (P) serves as an important nutrient input for many terrestrial, marine and freshwater ecosystems, influencing their biogeochemistry and primary production. Fossil fuel combustion, principally coal, is estimated to be a major source of atmospheric-P in industrialized regions. In this research, we aim to find a distinct isotopic signature for fly coal ash, the by-product of coal combustion that is emitted to the atmosphere. This signature could be used to identify coal's contribution to atmospheric-P. For this aim, ten fly coal ash samples from different coal sources, collected by power station filters, were analyzed for P concentrations and stable oxygen isotopic composition (δ18OP). Two inorganic phosphate fractions were analyzed: HCl-extractable and resin-extractable (bioavailable P). High HCl-P concentrations of up to 3500 μg P/g ash were found with a distinct δ18OP range of 17.1-20.5‰. The resin-P concentrations were substantially lower (biosphere since these combustion products likely acidify in the atmosphere to become bioavailable. This is also supported by our finding that smaller particles, which are more indicative of the particles actually emitted to the atmosphere, are significantly P-richer. Natural dust sources' δ18OP overlap fly ash's range, complicating the assessment of coal's contribution. Nonetheless, our results provide a new tool for identification of fossil fuel combustion sources in local and global atmospheric P deposition.

  9. [Experimental study on the size spectra and emission factor of ultrafine particle from coal combustion].

    Science.gov (United States)

    Sun, Zai; Yang, Wen-jun; Xie, Xiao-fang; Chen, Qiu-fang; Cai, Zhi-liang

    2014-12-01

    The emission characteristics of ultrafine particles released from pulverized coal combustion were studied, the size spectra of ultrafine particles (5.6-560 nm) were measured with FMPS (fast mobility particle sizer) on a self-built aerosol experiment platform. Meanwhile, a particle dynamic evolution model was established to obtain the particle deposition rate and the emission rate through the optimized algorithm. Finally, the emission factor was calculated. The results showed that at the beginning of particle generation, the size spectra were polydisperse and complex, the initial size spectra was mainly composed of three modes including 10 nm, 30-40 nm and 100-200 nm. Among them, the number concentration of mode around 10 nm was higher than those of other modes, the size spectrum of around 100-200 nm was lognormal distributed, with a CMD (count median diameter) of around 16 nm. Then, as time went on, the total number concentration was decayed by exponential law, the CMD first increased and then tended to be stable gradually. The calculation results showed that the emission factor of particles from coal combustion under laboratory condition was (5.54 x 10(12) ± 2.18 x 10(12)) unit x g(-1).

  10. Pulverized coal injection at BF N5 during campaign extension period : ArcelorMittal South Africa, Newcastle Works

    Energy Technology Data Exchange (ETDEWEB)

    Scholtz, V. [ArcelorMittal South Africa, Newcastle, KwaZulu-Natal (South Africa)

    2008-07-01

    Blast furnace no. 5 at ArcelorMittal South Africa's Newcastle facility was constructed in 1976 and designed to produce 5000 thm/day, with a hearth diameter of 10.14 m and a working volume of 2017 m{sup 3}. In April 2005, it began using pulverized coal (PC) following a planned maintenance shutdown. Initially, the PC was injected at a rate of 70 kg/thm, but within 5 months, the PC injection (PCI) rate was increased to 160 kg/thm. This was achieved with good replacement ratios, despite a burden that consisted of 40 per cent lump ore. However, the success was brief because of the high rate of unprepared burden, inadequate raw material quality and an aging hearth. The coke rate was therefore increased to reduce hearth wear while maintaining decent hot metal production, resulting in a lower than expected PCI rate of 100 kg/thm. The injection coal rate of 160 kg/thm will be targeted again once the hearth is replaced. Very few changes had been made in the PCI blend in the past because of the low-cost local supply of high volatile, medium ash coals. However, a new coal mine that opened in Newcastle in July 2007 made it possible to partially replace the coal in use. This paper described the operating parameters for the campaign extension period, which required a less than standard injection practice to reduce the amount of production outages. The hearth and stave conditions during the campaign extension were found to be the major barriers to injecting high PCI rates. It was concluded that it is important to re-evaluate the raw material cost for all the fuels used on a regular basis, since the costs to produce coke for higher injection rates could outweigh the advantages at the blast furnace. 3 refs., 1 tabs., 3 figs.

  11. Chemical looping combustion of coal in interconnected fluidized beds

    Institute of Scientific and Technical Information of China (English)

    SHEN LaiHong; ZHENG Min; XIAO Jun; ZHANG Hui; XIAO Rui

    2007-01-01

    Chemical looping combustion is the indirect combustion by use of oxygen carrier.It can be used for CO2 capture in power generating processes. In this paper,chemical looping combustion of coal in interconnected fluidized beds with inherent separation of CO2 is proposed. It consists of a high velocity fluidized bed as an air reactor in which oxygen carrier is oxidized, a cyclone, and a bubbling fluidized bed as a fuel reactor in which oxygen carrier is reduced by direct and indirect reactions with coal. The air reactor is connected to the fuel reactor through the cyclone. To raise the high carbon conversion efficiency and separate oxygen carrier particle from ash, coal slurry instead of coal particle is introduced into the bottom of the bubbling fluidized bed. Coal gasification and the reduction of oxygen carrier with the water gas take place simultaneously in the fuel reactor. The flue gas from the fuel reactor is CO2 and water. Almost pure CO2 could be obtained after the condensation of water. The reduced oxygen carrier is then returned back to the air reactor, where it is oxidized with air. Thermodyanmics analysis indicates that NiO/Ni oxygen carrier is the optimal one for chemical looping combustion of coal.Simulation of the processes for chemical looping combustion of coal, including coal gasification and reduction of oxygen carrier, is carried out with Aspen Plus software. The effects of air reactor temperature, fuel reactor temperature, and ratio of water to coal on the composition of fuel gas, recirculation of oxygen carrier particles, etc., are discussed. Some useful results are achieved. The suitable temperature of air reactor should be between 1050-1150Cand the optimal temperature of the fuel reactor be between 900-950℃.

  12. Chemical looping combustion of coal in interconnected fluidized beds

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Chemical looping combustion is the indirect combustion by use of oxygen carrier. It can be used for CO2 capture in power generating processes. In this paper, chemical looping combustion of coal in interconnected fluidized beds with inherent separation of CO2 is proposed. It consists of a high velocity fluidized bed as an air reactor in which oxygen carrier is oxidized, a cyclone, and a bubbling fluidized bed as a fuel reactor in which oxygen carrier is reduced by direct and indirect reactions with coal. The air reactor is connected to the fuel reactor through the cyclone. To raise the high carbon conversion efficiency and separate oxygen carrier particle from ash, coal slurry instead of coal particle is introduced into the bottom of the bubbling fluidized bed. Coal gasification and the reduction of oxygen carrier with the water gas take place simultaneously in the fuel reactor. The flue gas from the fuel reactor is CO2 and water. Almost pure CO2 could be obtained after the con- densation of water. The reduced oxygen carrier is then returned back to the air reactor, where it is oxidized with air. Thermodyanmics analysis indicates that NiO/Ni oxygen carrier is the optimal one for chemical looping combustion of coal. Simulation of the processes for chemical looping combustion of coal, including coal gasification and reduction of oxygen carrier, is carried out with Aspen Plus software. The effects of air reactor temperature, fuel reactor temperature, and ratio of water to coal on the composition of fuel gas, recirculation of oxygen carrier par- ticles, etc., are discussed. Some useful results are achieved. The suitable tem- perature of air reactor should be between 1050―1150℃and the optimal temperature of the fuel reactor be between 900―950℃.

  13. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when

  14. Influence of mineral transformation on emission of particulate matters during coal combustion

    Institute of Scientific and Technical Information of China (English)

    LIU Xiaowei; XU Minghou; YU Dunxi; GAO Xiangpeng; CAO Qian; HAO Wei

    2007-01-01

    Combustion of pulverized coal was studied in a drop tube furnace to understand coal mineral properties with the emission of particulate matters (PM). Experimental conditions were selected as follows: coal particle size was smaller than 63 μm; reaction temperature was 1 100℃, 1 250℃ and 1 400℃ respectively; oxygen content was 20% and 50% respectively, PM was collected with a 13-stagelow pressure impactor (LPI) having an aerodynamic cut-off diameter ranging from 10.0 μm to 0.03 μm for a size-segregated collection. Such properties as concentration, particle size distribution and elemental composition of PM were investigated. The experimental results indicate that the emitted PM has a bimodal distribution having two peaks around 4.0 μm and 0.1 μm Increasing temperature leads to the formation of more PM; varied oxygen content leads to much change of emitted PM. PM was also subjected to XRF analysis to quantify the elemental composition. The results show that PM of 0.1 μm is rich in sulfates. Meanwhile, SiO2 and Al2O3 are prevalent in PM of 4.0 μm, which means that the last peak around 4.0 μm is mainly aluminosilicate salts.

  15. The applicability analysis of burning Indonesian coal in small efficient pulverized coal fired boiler%小型高效煤粉锅炉燃用印尼煤的适用性分析

    Institute of Scientific and Technical Information of China (English)

    王忠会; 马文静; 李会强; 马维唯

    2015-01-01

    结合高效煤粉锅炉的工艺流程、技术特点及印尼煤的煤质分析,探讨了小型高效煤粉锅炉燃用印尼煤的适用性分析。由小型工业煤粉锅炉燃用印尼煤的实际运行结果可知,可选择适合小型煤粉锅炉燃用的印尼煤燃料,以确保锅炉的正常运行。%The applicability analysis of burning Indonesian coal in small efficient pulverized coal fired boiler was done combined with efficient pulverized coal fired boiler process flow,technical features and coal quality analysis of the Indonesian coal.The practical operating results of small efficient pulverized coal fired boiler burning Indonesian coal showed that choosing the suitable Indonesian coal could ensure the normal operation of the boiler.

  16. Mercury in coal and the impact of coal quality on mercury emissions from combustion systems

    Science.gov (United States)

    Kolker, A.; Senior, C.L.; Quick, J.C.

    2006-01-01

    The proportion of Hg in coal feedstock that is emitted by stack gases of utility power stations is a complex function of coal chemistry and properties, combustion conditions, and the positioning and type of air pollution control devices employed. Mercury in bituminous coal is found primarily within Fe-sulfides, whereas lower rank coal tends to have a greater proportion of organic-bound Hg. Preparation of bituminous coal to reduce S generally reduces input Hg relative to in-ground concentrations, but the amount of this reduction varies according to the fraction of Hg in sulfides and the efficiency of sulfide removal. The mode of occurrence of Hg in coal does not directly affect the speciation of Hg in the combustion flue gas. However, other constituents in the coal, notably Cl and S, and the combustion characteristics of the coal, influence the species of Hg that are formed in the flue gas and enter air pollution control devices. The formation of gaseous oxidized Hg or particulate-bound Hg occurs post-combustion; these forms of Hg can be in part captured in the air pollution control devices that exist on coal-fired boilers, without modification. For a given coal type, the capture efficiency of Hg by pollution control systems varies according to type of device and the conditions of its deployment. For bituminous coal, on average, more than 60% of Hg in flue gas is captured by fabric filter (FF) and flue-gas desulfurization (FGD) systems. Key variables affecting performance for Hg control include Cl and S content of the coal, the positioning (hot side vs. cold side) of the system, and the amount of unburned C in coal ash. Knowledge of coal quality parameters and their effect on the performance of air pollution control devices allows optimization of Hg capture co-benefit. ?? 2006 Elsevier Ltd. All rights reserved.

  17. Chemical analyses of coal, coal-associated rocks and coal combustion products collected for the National Coal Quality Inventory

    Science.gov (United States)

    Hatch, Joseph R.; Bullock, John H.; Finkelman, Robert B.

    2006-01-01

    In 1999, the USGS initiated the National Coal Quality Inventory (NaCQI) project to address a need for quality information on coals that will be mined during the next 20-30 years. At the time this project was initiated, the publicly available USGS coal quality data was based on samples primarily collected and analyzed between 1973 and 1985. The primary objective of NaCQI was to create a database containing comprehensive, accurate and accessible chemical information on the quality of mined and prepared United States coals and their combustion byproducts. This objective was to be accomplished through maintaining the existing publicly available coal quality database, expanding the database through the acquisition of new samples from priority areas, and analysis of the samples using updated coal analytical chemistry procedures. Priorities for sampling include those areas where future sources of compliance coal are federally owned. This project was a cooperative effort between the U.S. Geological Survey (USGS), State geological surveys, universities, coal burning utilities, and the coal mining industry. Funding support came from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE).

  18. Novel fragmentation model for pulverized coal particles gasification in low temperature air thermal plasma

    OpenAIRE

    Jovanović Rastko D.; Cvetinović Dejan B.; Stefanović Predrag Lj.; Škobalj Predrag D.; Marković Zoran J.

    2016-01-01

    New system for start-up and flame support based on coal gasification by low temperature air thermal plasma is planned to supplement current heavy oil system in Serbian thermal power plants in order to decrease air pollutions emission and operational costs. Locally introduced plasma thermal energy heats up and ignites entrained coal particles, thus starting chain process which releases heat energy from gasified coal particles inside burner channel. Important...

  19. Combustion characteristics of coal and refuse from passenger trains.

    Science.gov (United States)

    Fu-min, Ren; Feng, Yue; Ming, Gao; Min, Yu

    2010-07-01

    Refuse from passenger trains is becoming a significant issue with the development of the Chinese railway. Co-firing is regarded as a promising thermal technology, both environmentally and economically, in reducing the quantity of refuse. The co-firing property of passenger train refuse with coal, however, may differ due to the differences in the composition of the refuse. In the present study, combustion properties of refuse from passenger train samples and the mixture of refuse with coal were studied in a tube furnace. Thermo analysis methods, such as thermogravimetry (TG), differential scanning calorimetry (DSC), differential thermal analysis (DTA) and derivative thermogravimetry (DTG) analyses were employed to evaluate combustion performance. We found that the mixture of passenger train refuse and coal at a ratio of 1:1 has a lower ignition and burnout temperature than the coal-only sample. Moreover, refuse from railway passenger trains has more reactive combustion properties than the coal-only sample, and the addition of railway passenger train refuse to coal can promote the reactivity of coal.

  20. Modeling radiation in particle clouds: On the importance of inter-particle radiation for pulverized solid fuel combustion

    CERN Document Server

    Haugen, Nils Erland L

    2014-01-01

    The importance of inter-particle radiation for clusters of gray and diffuse particles is investigated. The radiative cooling of each individual particle is found to vary strongly with its position in the cluster, and a mean radiative particle cooling term is proposed for single particle simulations of particle clusters or for high detail simulation, like Direct Numerical Simulations of small sub-volumes of large clusters of particles. Radiative cooling is shown to be important both for furnaces for coal gasification and coal combustion. Broadening the particle size distribution is found to have just a minor effect on the radiative particle cooling. This is particularly the case for large and dense particle clusters where there is essentially no effect of size distribution broadening at all. For smaller and more dilute particle clusters, the effect of distribution broadening is clear but still not dominant.

  1. Pyrolysis and combustion behaviour of coal-MBM blends.

    Science.gov (United States)

    Skodras, G; Grammelis, P; Basinas, P

    2007-01-01

    In the present work, thermogravimetric analysis was employed in order to investigate the behaviour of MBM and their blends with Greek brown coal, under pyrolysis and combustion conditions. MBM presented enhanced pyrolysis rates reflecting its high volatile and low ash contents compared to Greek brown coal. Increased conversion rates were observed when MBM was added in the brown coal sample. Significant interactions were detected between the two fuel blend components leading to significant deviations from the expected behaviour. The catalytic effect of mineral matter on the pyrolysis of MBM resulted in reaction rate decrease and DTG curve shift to lower temperatures for the demineralised MBM. Alterations in the combustion process due to the mineral matter were minimal when testing the blends. Interactions maintained during combustion and lower reactivity of MBM was achieved due to the reduced oxygen content.

  2. Pyrolysis and combustion behaviour of coal-MBM blends

    Energy Technology Data Exchange (ETDEWEB)

    Skodras, G.; Grammelis, P.; Basinas, P. [Center for Research & Technology Hellas, Ptolemais (Greece)

    2007-01-15

    In the present work, thermogravimetric analysis was employed in order to investigate the behaviour of MBM (meat and bone meal) and their blends with Greek brown coal, under pyrolysis and combustion conditions. MBM presented enhanced pyrolysis rates reflecting its high volatile and low ash contents compared to Greek brown coal. Increased conversion rates were observed when MBM was added in the brown coal sample. Significant interactions were detected between the two fuel blend components leading to significant deviations from the expected behaviour. The catalytic effect of mineral matter on the pyrolysis of MBM resulted in reaction rate decrease and DTG curve shift to lower temperatures for the demineralised MBM. Alterations in the combustion process due to the mineral matter were minimal when testing the blends. Interactions maintained during combustion and lower reactivity of MBM was achieved due to the reduced oxygen content.

  3. Commercial Demonstration of Oxy-Coal Combustion Clean Power Technology

    Energy Technology Data Exchange (ETDEWEB)

    K.J. McCauley; K.C. Alexander; D.K. McDonald; N. Perrin; J.-P. Tranier [Babcock & Wilcox Power Generation Group (United Kingdom)

    2009-07-01

    Oxy-Coal Combustion is an advanced clean coal-based power generation technology with carbon capture and storage that will be Near Zero Emissions (NZEP), will capture and safely store CO{sub 2} in a geologic formation, and generate clean power for sale. This sustainable technology will utilize natural resources and support energy security goals. The unique benefits of oxy-coal combustion allow for near zero emissions of coal combustion products. The emissions of particulate matter, sulfur dioxide, nitrogen oxides and mercury will not only be below regulated levels, but all will be within the uncertainty of current industry measurement methods, essentially zero. This advanced technology will demonstrate all these reduced levels and will lead to commercially available NZEP plants for power generation. Since 1991, with the support of the US-DOE, Babcock & Wilcox Power Generation Group, Inc. (B&W PGG) and Air Liquide (AL) have worked to bring an advanced technology to the market for Carbon Capture and Storage (CCS) for coal-fired electric power generation plants. Oxy-coal combustion is now ready for at-scale demonstration leading directly to full scale commercialization and availability in the power generation marketplace. This paper will discuss the follow up of the results of the 30 MWth large pilot test program completed in December, 2008. This oxy-coal combustion technology has been through small lab pilot testing, large pilot testing, and a rigorous bottom-up integration and optimization analysis. Our paper will describe incorporating the best technological thinking for the integration of a modern PC-fired boiler, environmental control equipment, air separation unit (ASU) and compression purification unit (CPU). 5 refs., 3 figs.

  4. USGS TOXIC SUBSTANCES FROM COAL COMBUSTION -- FORMS OF OCCURRENCE ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Allan Kolker; Stanley J. Mroczkowski; Curtis A. Palmer; Robert B. Finkelman

    1999-04-01

    Detailed information on trace-element modes of occurrence in coal is essential to understanding and predicting trace-element transformations taking place during coal combustion. The USGS has developed quantitative and semi-quantitative methods for determining the mode of occurrence of trace elements in coal. This information is needed to generate predictive models for trace-element behavior, the ultimate goal of DOE contract DE-AC22-95PC95101 ``Toxic Substances From Coal Combustion--A Comprehensive Assessment'' awarded to PSI, Inc. USGS activities in support of this contract have a direct bearing on the predictive equations being developed as the primary product of the PSI program.

  5. Combustion tests of coal-water slurry. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Farthing, G.A. Jr.; Johnson, S.A.; Vecci, S.J.

    1982-03-01

    The results of an experimental test program to determine the combustion characteristics of coal-water slurry (CWS) fuels (65 to 75 percent dry coal by weight and exhibiting room temperature viscosities of about 1000 cp) are presented. The slurry tested contained 66 percent solids by weight and was produced from a beneficiated high volatile eastern bituminous coal. The CWS and its parent coal were each fired in B and W's 4.0 x 10/sup 6/ Btu/hr Basic Combustion Test Unit. Each fuel was also subjected to extensive laboratory analysis work. No burner or atomizer development work was done - the primary objective of the study being to demonstrate that the CWS could be fired with existing fuel oil handling equipment.

  6. Combustion of coal gas fuels in a staged combustor

    Science.gov (United States)

    Rosfjord, T. J.; Mcvey, J. B.; Sederquist, R. A.; Schultz, D. F.

    1982-01-01

    Gaseous fuels produced from coal resources generally have heating values much lower than natural gas; the low heating value could result in unstable or inefficient combustion. Coal gas fuels may contain ammonia which if oxidized in an uncontrolled manner could result in unacceptable nitrogen oxide exhaust emission levels. Previous investigations indicate that staged, rich-lean combustion represents a desirable approach to achieve stable, efficient, low nitrogen oxide emission operation for coal-derived liquid fuels contaning up to 0.8-wt pct nitrogen. An experimental program was conducted to determine whether this fuel tolerance can be extended to include coal-derived gaseous fuels. The results of tests with three nitrogen-free fuels having heating values of 100, 250, and 350 Btu/scf and a 250 Btu/scf heating value doped to contain 0.7 pct ammonia are presented.

  7. OxyFuel combustion of Coal and Biomass

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg

    of coal and straw at conditions relevant to suspension-fired boilers by clarifying the effect of the change in combustion atmosphere on fuel burnout, flame temperatures, emissions of polluting species (NO, SO2, and CO), fly ash quality, and deposit formation. This work is one of the first to investigate...... and oxyfuel atmospheres. Apart from slightly improved burnout and reduced emissions of NO during oxyfuel combustion these operating conditions yield similar combustion characteristics in both environments. Co-firing coal and biomass or combustion of pure biomass in an oxyfuel power plant could yield...... be adjusted independently. By increasing the concentration of oxygen in the oxidant, i.e. by reducing the flue gas recirculation ratio, it is possible to achieve similar burnout at lower oxygen excess levels. Further work on implications of this strategy are necessary in order to fully clarify its potential...

  8. A new theory of chemical method to prevent spontaneous combustion of coal

    Institute of Scientific and Technical Information of China (English)

    LU Wei

    2009-01-01

    In order to prevent spontaneous combustion of coal from the source, based on the study on the mechanism of spontaneous combustion of coal, especially the process of coal to self-ignite and different activate structures have different activation for oxidization, the new theory and mechanism with chemical inhibition that can change the tendency of spontaneous combustion of coal and let the activate structures deactivate were brought forward. Therefore, coal was not self-ignited under a certain temperature when being chemically inhibited.

  9. Enrichment of trace elements in bottom ash from coal oxy-combustion: Effect of coal types

    CSIR Research Space (South Africa)

    Oboirien, BO

    2016-09-01

    Full Text Available In this study, the enrichment of trace elements in two coals under air and oxy-combustion conditions was studied. Twenty-one trace elements were evaluated. The two coal samples had a different concentration for the 21 trace elements, which was due...

  10. Low-rank coal research: Volume 3, Combustion research: Final report. [Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M. D.; Hajicek, D. R.; Zobeck, B. J.; Kalmanovitch, D. P.; Potas, T. A.; Maas, D. J.; Malterer, T. J.; DeWall, R. A.; Miller, B. G.; Johnson, M. D.

    1987-04-01

    Volume III, Combustion Research, contains articles on fluidized bed combustion, advanced processes for low-rank coal slurry production, low-rank coal slurry combustion, heat engine utilization of low-rank coals, and Great Plains Gasification Plant. These articles have been entered individually into EDB and ERA. (LTN)

  11. Discussion on Improvement of Chain-grate Boiler to Pulverized Coal Boiler%某链条锅炉改造为煤粉锅炉的探讨

    Institute of Scientific and Technical Information of China (English)

    刘新龙; 王惠云; 杨林; 王鹏南

    2016-01-01

    对链条锅炉改造为煤粉锅炉做了系统的介绍。对改造中所涉及的各系统和设备进行了一定的分析,并证明链条炉改造为煤粉炉是可行的,其配套的烟气处理技术是有效的。%The improvement of the chain-grate boiler to pulverized coal boiler is systematically introduced. Based on the analysis of the related systems and equipments, it's proven that it's feasible to improve the chain-grate boiler to pulverized coal boiler and the corresponding flue gas treatment technology is efficient.

  12. 论路用混凝土掺合料——粉煤灰%Road Mixes the Material with the Concretes Pulverized Coal Ash

    Institute of Scientific and Technical Information of China (English)

    李吉平

    2009-01-01

    This paper introduced the road mixes the material pulverized coal ash with the concretes the characteristic, technical performance, to pulverized coal ash quality requirement, standard, choice, design requirements and isometric substitution law and excess substitution method com-putation principle.%文章介绍了路用混凝土掺合料粉煤灰的特点、技术性能、对粉煤灰的质量要求、标准、选择,以及设计要求和配制混凝土时取代水泥的等量取代法和超量取代法的计算原理.

  13. Comparative Study of Coal and Biomass Co-Combustion With Coal Burning Separately Through Emissions Analysis

    Directory of Open Access Journals (Sweden)

    Mohammad Siddique

    2016-06-01

    Full Text Available Appropriate eco-friendly methods to mitigate the problem of emissions from combustion of fossil fuel are highly demanded. The current study was focused on the effect of using coal & coal-biomass co-combustion on the gaseous emissions. Different biomass' were used along with coal. The coal used was lignite coal and the biomass' were tree waste, cow dung and banana tree leaves. Various ratios of coal and biomass were used to investigate the combustion behavior of coal-biomass blends and their emissions. The study revealed that the ratio of 80:20 of coal (lignite-cow dung and 100% banana tree leaves emits less emissions of CO, CO2, NOx and SO2 as compared to 100% coal. Maximum amount of CO emissions were 1510.5 ppm for banana tree waste and minimum amount obtained for lakhra coal and cow dung manure (70:30 of 684.667 ppm. Maximum percentage of SO2 (345.33 ppm was released from blend of lakhra coal and tree leaves (90:10 and minimum amount of SO2 present in samples is in lakhra coal-banana tree waste (80:20. The maximum amount of NO obtained for banana tree waste were 68 ppm whereas maximum amount of NOx was liberated from lakhra coal-tree leaves (60:40 and minimum amount from cow dung manure (30.83 ppm. The study concludes that utilization of biomass with coal could make remedial action against environment pollution.

  14. MECHANISMS AND OPTIMIZATION OF COAL COMBUSTION

    Energy Technology Data Exchange (ETDEWEB)

    Kyriacos Zygourakis

    1998-05-01

    We report the development of a novel experimental technique that combines video microscopy and thermogravimetric analysis to optimize the detection of coal and char particle ignitions. This technique is particularly effective for detecting ignitions occurring in coal or char samples containing multiple particles, where other commonly used techniques fail. The new approach also allows for visualization of ignition mechanism. Devolatilized char particles appear to ignite heterogeneously, while coal particles may ignite homogeneously, heterogeneously or through a combination of both mechanisms.

  15. Technological Analysis on Choren High-Pressure Pulverized Coal Gasification Process%科林高压干粉煤气化工艺技术分析

    Institute of Scientific and Technical Information of China (English)

    赵小倩; 胡长胜

    2011-01-01

    The process and features of Choren high-pressure pulveried coal gasification are presented. Operability of the gasification technology is analysed. And the operation data as compared with the other two coal gasification processes, i.e. pulverized coal gasification process with waste heat boiler and coal-water slurry pressure gasification process, using in China are described briefly. Choren high-pressure pulverized coal gasification process is featured with simple in equipment structure, wider applicability of coal variety, lower consumption and high localization of equipment.%介绍了科林高压干粉煤气化的工艺流程、工艺特点.对该气化技术的可操作性进行了分析,并与国内应用的2种煤气化工艺(干粉煤废锅气化工艺和水煤浆加压气化工艺)数据进行了简单对比.科林高压干粉煤气化工艺具有设备结构简单、煤种适用性更宽、消耗低和设备国产化程度高的特点.

  16. Detection of Coal Mine Spontaneous Combustion by Fuzzy Inference System

    Institute of Scientific and Technical Information of China (English)

    SUN Ji-ping; SONG Shu; MA Feng-ying; ZHANG Ya-li

    2006-01-01

    The spontaneous combustion is a smoldering process and characterized by a slow burning speed and a long duration. Therefore, it is a hazard to coal mines. Early detection of coal mine spontaneous combustion is quite difficult because of the complexity of different coal mines. And the traditional threshold discriminance is not suitable for spontaneous combustion detection due to the uncertainty of coalmine combustion. Restrictions of the single detection method will also affect the detection precision in the early time of spontaneous combustion. Although multiple detection methods can be adopted as a complementarity to improve the accuracy of detection, the synthesized method will increase the complicacy of criterion, making it difficult to estimate the combustion. To solve this problem, a fuzzy inference system based on CRI (Compositional Rule of Inference) and fuzzy reasoning method FITA (First Infer Then Aggregate) are presented. And the neural network is also developed to realize the fuzzy inference system. Finally, the effectiveness of the inference system is demonstrated by means of an experiment.

  17. Numerical simulation of the coal combustion process initiated by a plasma source

    Science.gov (United States)

    Askarova, A. S.; Messerle, V. E.; Ustimenko, A. B.; Bolegenova, S. A.; Maksimov, V. Yu.

    2014-12-01

    Numerical experiments on the torch combustion of the coal dust prepared by a plasma-thermochemical treatment for combustion have been done using the method of three-dimensional simulation. It is shown that the plasma preparation of coal for combustion enables one to optimize the process, improve the conditions for inflammation and combustion and minimize the emissions of harmful substances.

  18. Optimization of pulverised coal combustion by means of CFD/CTA modeling

    Directory of Open Access Journals (Sweden)

    Filkoski Risto V.

    2006-01-01

    Full Text Available The objective of the work presented in this paper was to apply a method for handling two-phase reacting flow for prediction of pulverized coal combustion in large-scale boiler furnace and to assess the ability of the model to predict existing power plant data. The paper presents the principal steps and results of the numerical modeling of power boiler furnace with tangential disposition of the burners. The computational fluid dynamics/computational thermal analysis (CFD/CTA approach is utilized for creation of a three-dimensional model of the boiler furnace, including the platen superheater in the upper part of the furnace. Standard k-e model is employed for description of the turbulent flow. Coal combustion is modeled by the mixture fraction/probability density function approach for the reaction chemistry, with equilibrium assumption applied for description of the system chemistry. Radiation heat transfer is computed by means of the simplified P-N model, based on the expansion of the radiation intensity into an orthogonal series of spherical harmonics. Some distinctive results regarding the examined boiler performance in capacity range between 65 and 95% are presented graphically. Comparing the simulation predictions and available site measurements concerning temperature, heat flux and combustion efficiency, a conclusion can be drawn that the model produces realistic insight into the furnace processes. Qualitative agreement indicates reasonability of the calculations and validates the employed sub-models. After the validation and verification of the model it was used to check the combustion efficiency as a function of coal dust sieve characteristics, as well as the impact of burners modification with introduction of over fire air ports to the appearance of incomplete combustion, including CO concentration, as well as to the NOx concentration. The described case and other experiences with CFD/CTA stress the advantages of numerical modeling and

  19. Critical Value of CO of Forecasting Coal Spontaneous Combustion

    Institute of Scientific and Technical Information of China (English)

    HE Qi-ling; DAI Guang-long; WANG De-ming

    2003-01-01

    CO has been used widely in the production process of colliery as an index gas to predict spontaneous combustion of coal. But in some collieries there are CO gas in the upper corner of the face all the times, sometime CO gas even exceeds the regulated critical index. This phenomenon is much more obvious in the fully-mechanized longwall face and fully-mechanized longwall and top-coal caving face. Although many measures of fire-proof and fire-extinguishing have been adopted, the flowing amount of CO gas can be only decreasd, but can not be eliminated completely. Using the different kinds of coal, the experiment of coal oxidation was made at the low temperature. The experiment indicates that some kinds of coal can produce CO under the condition of normal temperature oxidation, sometime the CO consistency is very high, and the intension of CO can be decreased with oxidation time prolonging. Selecting rational critical value of CO is the kev to predicting spontaneous combustion of coal correctly and reliably. The problem of selecting retional critical value of CO was studied. Finally, the amount of CO gas released by different kinds of coal was obtained under normal temperature condition.

  20. FY 2000 Report on the results of international cooperative research scheme (power generation - No.3). Developmental research on high-performance plasma-assisted fine coal powder combustion mechanism for coal-fired power generation boilers to realize oilless ignition; 2000 nendo kokusai kyodo kenkyu teian kobo jigyo seika hokokusho (hatsuden No.3). Oilless chakka wo jitsugensuru sekitan karyoku hatsuden bifuntan nenshoroyo koseino plasma jonen kiko no kaihatsu kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the results of the developmental research on the high-performance plasma-assisted fine coal powder combustion mechanism for coal-fired power generation boilers, a theme adopted by the international cooperative research scheme. The program for design/manufacture of the plasma torch manufactures laminar type torches for 100kW high power class and 10kW middle class. The high-performance plasma-assisted combustion mechanism is designed and manufactured using the torch. It has a structure which supplies secondary air and secondary coal flow to the primary coal flow. It is tested for starting up a commercial boiler firing finely pulverized coal, to confirm its functions. The tests for optimizing the oilless ignition and operation are conducted in Tashtagonal Iron Plant and Berdsk Chemical Plant. It is found that the cold start can be realized in the boiler, when the muffle burners are preheated for 30 to 40 minutes before the finely pulverized coal is supplied and the steady-state coal combustion is attained 3 to 5 minutes after the coal is supplied. The program for the combustion basics for the plasma-assisted mechanism collects the data related to its dependence on coal type. (NEDO)

  1. Combustion characteristics and arsenic retention during co-combustion of agricultural biomass and bituminous coal.

    Science.gov (United States)

    Zhou, Chuncai; Liu, Guijian; Wang, Xudong; Qi, Cuicui; Hu, Yunhu

    2016-08-01

    A combination of thermogravimetric analysis (TG) and laboratory-scale circulated fluidized bed combustion experiment was conducted to investigate the thermochemical, kinetic and arsenic retention behavior during co-combustion bituminous coal with typical agricultural biomass. Results shown that ignition performance and thermal reactivity of coal could be enhanced by adding biomass in suitable proportion. Arsenic was enriched in fly ash and associated with fine particles during combustion of coal/biomass blends. The emission of arsenic decreased with increasing proportion of biomass in blends. The retention of arsenic may be attributed to the interaction between arsenic and fly ash components. The positive correlation between calcium content and arsenic concentration in ash suggesting that the arsenic-calcium interaction may be regarded as the primary mechanism for arsenic retention.

  2. 配煤技术在Shell粉煤气化中的应用及优化%THE APPLICATION AND OPTIMIZATION OF COAL BLENDING IN SHELL PULVERIZED-COAL GASIFICATION PROCESS

    Institute of Scientific and Technical Information of China (English)

    吴国祥

    2012-01-01

    The requirement for coal property on Shell pulverized-coal gasification process is simply introduced and the definition and theoretical foundation of Coal blending technology are described.The main reasons for coal blending measure to Shell coal gasification plant are analyzed and concrete procedures of coal blending technology and corresponding cases are discussed in detail and the optimized measures for coal blending are resulted in.%介绍Shell粉煤气化工艺对煤质的要求,阐述配煤技术的定义及理论依据,分析Shell气化采用配煤措施的主要原因,详细论述配煤技术的具体实施步骤及相应案例,得出优化配煤的措施。

  3. The advanced super critical 700{sup o}C pulverized coal-fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kjaer, S.; Klauke, F.; Vanstone, R.; Zeijseink, A.; Weissinger, G.; Kristensen, P.; Meier, J.; Blum, R.; Wieghardt, K. [Tech-Wise A/S, Fredericia (Denmark)

    2001-07-01

    This paper presents the efforts of a large European group of manufacturers, utilities and institutes co-operating in a phased long-term project named 'Advanced 700{sup o}C PF Power Plant'. The first phase started in 1998 based on a grant from the Commission's Thermie programme under the 4th Framework programme. The overall objective of the project is to ensure a role for coal in Europe also in future. The project's targets renewedpublic and political acceptance of coal by improving efficiency and economy of well-proven, super critical pulverised coal-fired technology. Net efficiencies of more than 50% will be reached through development of a super critical steam cycle operating at maximum steam temperatures in the range of 700{sup o}C. Principal efforts are based on development of creep resistant - and expensive - nickel-based materials named super-alloys for the hottest areas of the water/steam cycle. Three benchmarks for theinvestigations have been set up: (i) the net efficiency of the demonstration plant from the present state of the art performance of 44% will be boosted into the range of 50-51% for a plant located inland with a cooling tower and 53-54% for the best seawater-cooled versions. (ii) reductions of investment cost of PF power plant by revising the overall architecture of the plant. (iii) Co-firing of up to 20% biomass with coal. The Advanced 700{sup o}C PF power plant project (or AD700) will improve the competitiveness of coal-fired power generation and give a major reduction of CO{sub 2} from coal-fired power plants in the range of 15% from the best PF power plants presently and up to 40% from older plants. 11 figs., 2 tabs.

  4. Influence of Coal Quality on Combustion Performance

    DEFF Research Database (Denmark)

    Lans, Robert Pieter Van Der; Glarborg, Peter; Dam-Johansen, Kim

    1998-01-01

    Three coals have been fired in a tangentially and an opposed fired full scale power plant (about 400 MWe) and in a pilot scale test rig (160 kWt) in order to investigate the influence of coal quality on nitrogen oxide (NO) formation and unburned carbon in relation to furnace design. In-flame and ......Three coals have been fired in a tangentially and an opposed fired full scale power plant (about 400 MWe) and in a pilot scale test rig (160 kWt) in order to investigate the influence of coal quality on nitrogen oxide (NO) formation and unburned carbon in relation to furnace design. In......-flame and furnace gas temperatures have been measured, and substantial differences in temperature between the coals were observed in the full scale furnaces. Identical trends in NO emission as a function of coal type were obtained for the three furnaces. The emissions correlated well with the high temperature...... volatile yield obtained from heated wire mesh analysis. Under air staging conditions the pilot scale test rig was able to reproduce quantitatively the amount of NO from the tangentially fired plant, which operates with over fire air. This is probably due to the relatively small influence of the near burner...

  5. Risk management of energy efficiency projects in the industry - sample plant for injecting pulverized coal into the blast furnaces

    Directory of Open Access Journals (Sweden)

    Jovanović Filip P.

    2016-01-01

    Full Text Available This paper analyses the applicability of well-known risk management methodologies in energy efficiency projects in the industry. The possibilities of application of the selected risk management methodology are demonstrated within the project of the plants for injecting pulverized coal into blast furnaces nos. 1 and 2, implemented by the company US STEEL SERBIA d.o.o. in Smederevo. The aim of the project was to increase energy efficiency through the reduction of the quantity of coke, whose production requires large amounts of energy, reduction of harmful exhaust emission and increase productivity of blast furnaces through the reduction of production costs. The project was complex and had high costs, so that it was necessary to predict risk events and plan responses to identified risks at an early stage of implementation, in the course of the project design, in order to minimise losses and implement the project in accordance with the defined time and cost limitations. [Projekat Ministarstva nauke Republike Srbije, br. 179081: Researching contemporary tendencies of strategic management using specialized management disciplines in function of competitiveness of Serbian economy

  6. PROTOTYPE SCALE TESTING OF LIMB TECHNOLOGY FOR A PULVERIZED-COAL-FIRED BOILER

    Science.gov (United States)

    The report summarizes results of an evaluation of furnace sorbent injection (FSI) to control sulfur dioxide (SO2) emissions from coal-fired utility boilers. (NOTE: FSI of calcium-based sorbents has shown promise as a moderate SO2 removal technology.) The Electric Power Research I...

  7. Combustion velocity of coal in seat of an underground fire

    Energy Technology Data Exchange (ETDEWEB)

    Yanchenko, G.A.; Kuzyaev, L.S.; Serra-Suares, L.Kh.

    1988-02-01

    Using the example of an underground fire in a very long coal channel, analyzes the processes of energy interchange between the gas phase and the coal surface in the channel and explains that calculations to assess the duration of burning (and hence assist in extinguishing or containing the fire) need to be able to account for the speed of transition of the coal from the solid phase (burning mass) to the gaseous phase in conditions of oxygen (in the form of products of complete combustion), reduction and dry distillation (in the form of products of incomplete combustion). Demonstrates in formulaic form the correlation between the mass velocity of the coal burning, the volume velocity of the arrival of air at the seat of the fire, the excess oxidant coefficient and the volume of air which is theoretically required to completely burn 1 kg of coal and presents the coefficients of excess oxygen and a generalized, statistical coefficient averaged for eight basic coal groups in tabular form. 1 ref.

  8. CO-FIRING COAL, FEEDLOT, AND LITTER BIOMASS (CFB AND LFB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thien; Gengsheng Wei; Soyuz Priyadarsan

    2002-01-15

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. In this project a co-firing technology is proposed which would use manure that cannot be used for fertilizer, for power generation. Since the animal manure has economic uses as both a fertilizer and as a fuel, it is properly referred to as feedlot biomass (FB) for cow manure, or litter biomass (LB) for chicken manure. The biomass will be used a as a fuel by mixing it with coal in a 90:10 blend and firing it in existing coal fired combustion devices. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Therefore, it is the goal of the current research to develop an animal biomass cofiring technology. A cofiring technology is being developed by performing: (1) studies on fundamental fuel characteristics, (2) small scale boiler burner experiments, (3) gasifier experiments, (4) computer simulations, and (5) an economic analysis. The fundamental fuel studies reveal that biomass is not as high a quality fuel as coal. The biomass fuels are higher in ash, higher in moisture, higher in nitrogen and sulfur (which can cause air pollution), and lower in heat content than coal. Additionally, experiments indicate that the biomass fuels have higher gas content, release gases more readily than coal, and less homogeneous. Small-scale boiler experiments revealed that the biomass blends can be successfully fired, and NO{sub x} pollutant emissions produced will be similar to or lower than pollutant emissions when firing coal. This is a surprising

  9. CHAR CRYSTALLINE TRANSFORMATIONS DURING COAL COMBUSTION AND THEIR IMPLICATIONS FOR CARBON BURNOUT

    Energy Technology Data Exchange (ETDEWEB)

    ROBERT H. HURT

    1998-09-08

    Recent work at Sandia National Laboratories, Imperial College, and the U.K. utility PowerGen, has identified an important mechanism believed to have a large influence on unburned carbon levels from pulverized coal-fired boilers. That mechanism is char carbon crystalline rearrangements on subsecond times scales at temperatures of 1800 - 2500 K, which lead to char deactivation in the flame zones of furnaces. The so-called thermal annealing of carbons is a well known phenomenon, but its key role in carbon burnout has only recently been appreciated, and there is a lack of quantitative data in this time/temperature range. In addition, a new fundamental tool has recently become available to study crystalline transformations, namely high resolution transmission electron microscopy (HRTEM) fringe imaging, which provides a wealth of information on the nature and degree of crystallinity in carbon materials such as coal chars. Motivated by these new developments, this University Coal Research project has been initiated with the following two goals:  to determine transient, high-temperature, thermal deactivation kinetics as a function of parent coal and temperature history.  to characterize the effect of this thermal treatment on carbon crystalline structure through high-resolution transmission electron microscopy and specialized, quantitative image analysis. Work is currently underway on the following three tasks: Task 1 Experimental technique development. The goal of this task is to develop and demonstrate an apparatus and procedure for measuring transient, high-temperature, thermal deactivation of coal chars. While peak gas temperatures in boilers are often in the range 1800 - 2000 K, peak particle temperatures can be much higher due to high rates of heat release at the particle surface due to exothermic carbon oxidation. The prototype transient heat treatment apparatus is based on an inert-gas purged graphite-rod sample holder that is subjected to rapid Joule heating to

  10. DNA damage induced by coal dust, fly and bottom ash from coal combustion evaluated using the micronucleus test and comet assay in vitro.

    Science.gov (United States)

    Matzenbacher, Cristina Araujo; Garcia, Ana Letícia Hilario; Dos Santos, Marcela Silva; Nicolau, Caroline Cardoso; Premoli, Suziane; Corrêa, Dione Silva; de Souza, Claudia Telles; Niekraszewicz, Liana; Dias, Johnny Ferraz; Delgado, Tânia Valéria; Kalkreuth, Wolfgang; Grivicich, Ivana; da Silva, Juliana

    2017-02-15

    Coal mining and combustion generating huge amounts of bottom and fly ash are major causes of environmental pollution and health hazards due to the release of polycyclic aromatic hydrocarbons (PAH) and heavy metals. The Candiota coalfield in Rio Grande do Sul, is one of the largest open-cast coal mines in Brazil. The aim of this study was to evaluate genotoxic and mutagenic effects of coal, bottom ash and fly ash samples from Candiota with the comet assay (alkaline and modified version) and micronucleus test using the lung fibroblast cell line (V79). Qualitative and quantitative analysis of PAH and inorganic elements was carried out by High Performance Liquid Chromatography (HPLC) and by Particle-Induced X-ray Emission (PIXE) techniques respectively. The samples demonstrated genotoxic and mutagenic effects. The comet assay modified using DNA-glicosilase formamidopirimidina (FPG) endonuclease showed damage related to oxidative stress mechanisms. The amount of PAHs was higher in fly ash followed by pulverized coal. The amount of inorganic elements was highest in fly ash, followed by bottom ash. It is concluded that the samples induce DNA damage by mechanisms that include oxidative stress, due to their complex composition, and that protective measures have to be taken regarding occupational and environmental hazards.

  11. Pulverized coal firing of aluminum melting furnaces. First annual technical progress report, May 1978-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    West, C.E.; Hines, J.E.; Stewart, D.L. Jr.; Yu, H.

    1979-10-01

    The ultimate objective of this program is the commercial demonstration of an efficient, environmentally acceptable coal firing process suitable for implementation on melting furnaces throughout the aluminum industry. To achieve this goal, the program has been divided into two phases. Phase I has begun with the design and construction of a 350 lb/h (coal) staged slagging cyclone combustor (SSCC) attached to a 7-ft dia aluminum melting ladle furnace. Process development will culminate with a 1000 pph prototype SSCC firing a 40,000 lb capacity open hearth melting furnace at the Alcoa Laboratories. Phase II implementation is currently planned for Alcoa's Lafayette, IN, Works, where two of the ingot plant's five open hearth melting furnaces will be converted to utilize coal. In addition to confirmation of data gathered in Phase I, the effect of extended production schedule operation on equipment and efficiencies will be determined. This work would begin in 1982 pursuant to technical and economic evaluation of the process development at that time. A major design subcontract for assistance in the design of the SSCC is 80% completed.

  12. Minimum secure speed of fully mechanized coal face based on critical temperature of coal spontaneous combustion

    Institute of Scientific and Technical Information of China (English)

    Wei LIU; Yue-Ping QIN; Yong-Jiang HAO; Tian-Zhu GUI; Jing-Yan JIA

    2013-01-01

    The critical temperature theory of spontaneous combustion of coal and the numerical simulation method are used to explore the minimum secure speed of fully mechanized coal face to prevent the spontaneous combustion in goaf.Combined with the actual situation of workface 31005 in a coal mine,the highest temperatures in goaf at different advancing speeds were obtained by the numerical simulation of spontaneous combustion in goaf,and then a power function equation between the highest temperature and the advancing speed was achieved by regression analysis.The advancing speed corresponding to the critical temperature value was taken as the minimum safe speed of workface based on the equation.Finally,the accuracy and reliability of the speed were verified by the actual advancing process of workface 31005.The results of this research show that the new judgment method of the minimum safety speed has a higher value to be applied in the field.

  13. NO Reduction over Biomass and Coal Char during Simultaneous Combustion

    DEFF Research Database (Denmark)

    Zhao, Ke; Glarborg, Peter; Jensen, Anker Degn

    2013-01-01

    . The straw and bark chars showed higher reactivity, about a factor of 4–5, than bituminous char at 850 °C. The difference in reactivity between biomass char and bituminous char decreased with increasing reaction temperature. The reaction rate expressions for NO reduction during simultaneous combustion......This paper reports an experimental study of NO reduction over chars of straw, bark, bituminous coal, and lignite. The experiments were performed in a fixed bed reactor in the temperature range 850–1150 °C. The chars were generated by in situ pyrolysis at the reaction temperature to minimize further...... thermal deactivation. The rates of NO reduction over char were studied by char combustion experiments and O2-free experiments respectively. Two simple models were applied to interpret the data from the char combustion experiments. One model assumed that combustion and NO release take place uniformly...

  14. HT-L与Shell及Texaco粉煤气化技术的比较%Technological Comparison of HT-L with Shell and Texaco Pulverized Coal Gasification Processes

    Institute of Scientific and Technical Information of China (English)

    吴胜军

    2011-01-01

    介绍了HT-L粉煤气化技术的工艺特点,并从比氧耗、有效气成分、煤气化效率、能耗等方面与Shell 及Texaco粉煤气化技术进行了分析比较.结果表明:HT-L粉煤气化技术具有高效节能、煤种适用范围广、气化效率高、能耗低、建设和运行成本低、工艺成熟可靠并具有自主知识产权的优点,具有广阔的发展前景.%Process features are described of the HT-L pulverized coal gasification technology, and an analytical comparison is done with the Shell and Texaco pulverized coal gasification technology in terms of specific oxygen consumption, active gas constituent, coal gasification efficiency, and energy consumption. The results show that the HT-L technology has the advantages of highly efficient energy saving, wide scope of application to various coal types, high gasification efficiency, low energy consumption, low construction and operation cost, mature and reliable technology, and possession of independent intellectual property, and so it brings about broad prospects for development.

  15. Selection of Special Valves in Pulverized Coal Gasiifcation Industry%粉煤气化特殊阀门选型

    Institute of Scientific and Technical Information of China (English)

    张赫

    2016-01-01

    China is a country of ‘lean oil, less gas, rich in coal’, therewith the technology of coal gasification is an important means to realize the clean and efficient use of coal. Moreover the technology of pressured pulverized coal gasification recognized as a mature technology in the industry possess advantages of large production capacity and high gasification efficiency. However, the erosion of special valve from abrasion by particles of process fluid can be serious, which will cause the short service cycle and huge economic losses. This paper is based on the successful experience in the similar domestic plants among these years, summarize the application of variety of special valves in the industry, put forward suggestions of instrument selection, and provide the reference for the engineering of similar projects in the future.%我国是一个“贫油、少气、富煤”的国家,煤气化技术是实现煤炭清洁高效利用的重要手段。粉煤加压气化技术是目前业内认可较为成熟的技术,具有生产能力大、气化效率高的特点。然而由于其工艺介质的特点,其中所应用的特殊阀门磨损严重,使用周期短,导致装置频繁停车,造成了巨大的经济损失。本文根据近些年国内粉煤气化的成功运行经验,对其中多种特殊应用的阀门使用进行了总结探讨,提出建议的仪表选型,为同类项目的仪表设计工作提供参考依据。

  16. Duquesne Light Company`s modifications for nitric oxide RACT compliance on a 200 MW face fired pulverized coal unit

    Energy Technology Data Exchange (ETDEWEB)

    Breen, B.P.; Bionda, J.P.; Gabrielson, J.E. [Energy Systems Associates, Pittsburgh, PA (United States); Hallo, A.; Gretz, G.F. [Duquesne Light Co., Pittsburgh, PA (United States)

    1996-12-31

    This paper discusses the results of a research test program conducted on Duquesne Light Company`s Elrama Unit 4. The program was designed to determine the viability of achieving compliance with the recently enacted PA DER Reasonably Available Control Technology (RACT) regulations. These regulations stipulate presumptive RACT requirements for wall fired boilers which include the installation and operation of low NO{sub x} burners with separated overfire air. Duquesne Light Company contracted Energy Systems Associates (ESA) to aide in the design and testing of a novel low NO{sub x} burner design and separated overfire air system. A three-dimensional computational furnace model was developed by ESA of the Elrama Unit 4 furnace, and a two-dimensional fluid dynamics model was developed of the coal burner. By modifying the coal burners, it has been possible to reduce the nitric oxide emissions by 30% on Unit 4, with minimal impact of the unburned carbon in the ash. The burner modifications create fuel rich streams which are surrounded by air rich zones in the primary flame region, thus staging combustion at the burner. Additional nitric oxide reductions are realized when the combustion is further staged by use of the separated overfire air system.

  17. Toxic substances from coal combustion -- A comprehensive assessment

    Energy Technology Data Exchange (ETDEWEB)

    Senior, C.L.; Panagiotou, T.; Huggins, F.E.; Huffman, G.P.; Yap, N.; Wendt, J.O.L.; Seames, W.; Ames, M.R.; Sarofim, A.F.; Lighty, J.; Kolker, A.; Finkelman, R.; Palmer, C.A.; Mroczkowsky, S.J.; Helble, J.J.; Mamani-Paco, R.

    1999-07-30

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the period from 1 April 1999 to 30 June 1999. During this quarter low temperature ashing and elemental analysis of the three Phase II coals were completed. Results from MIT and USGS are comparable. Plans were made for measurements of loss of trace elements during devolatilization and for single particle combustion studies at the University of Utah. The iodated charcoal trap was tested on coal combustion flue gas and was shown to collect both Hg and Se in from the vapor phase with 100% efficiency. Data from the University of Arizona self-sustained combustor were analyzed from the combustion of three coals: Ohio, Wyodak and Illinois No. 6. Ash size distributions and enrichment factors for selected trace elements were calculated. The correlation between the concentration of the more volatile trace elements in the ash and the

  18. Combustion and NOx Emission Behavior of Chinese Coals

    Institute of Scientific and Technical Information of China (English)

    CHENHonggang; XIEKechang

    2002-01-01

    Seven Chinese coals ranking from anthracite to sub-bituminous from the Shanxi province were selected for study to forecast the combustion and NOx emission behavior.Three UK,one Indonesia and one South Africa coal was included in the study for reference.A flat flame-turbulent jet apparatus was employed to assess flame stability,ignition performance and NOx emission behavior for the initial stage of devolatilization and combustion. This apparatus can simulate particle heating rates,maximum temperatures and the influence of the turbulent fluid interactionson the fate of volatiles.To simulate processes occurring over longer residence time, additional devolatilization experiments were performed in a drop tube furnace.Char reactivity was studied through thermogravimetric analysis.Finally,fouling propensity was studied with the aid of a purpose-built laboratory combustor that enabled the characteristics of the ash deposit to be assessed empirically.The results show that Chinese coals do not appear to possess unusual features in respect of NOx formation,flame stability and ignition,char burnout and ash slagging.The range of coals available in China appears sufficiently broad that suits all requirements.In particular,Shenfu coal,with its initial fast devolatilization and nitrogen release rates and its low initial nitrogen content and high char reactivity,will perform well when fired in industrial boilers as far as NOx emission,flame stability and combustion efficiency are concerned.Pingshuo coal exhibits high char reactivity and an attractive slagging performance suggesting that this fuel represents a good compromise between NOx emission and overall plant efficiency.

  19. Kinetics of Coal Char Combustion in Oxygen-Enriched Environment

    Science.gov (United States)

    Czakiert, T.; Nowak, W.

    The influence of oxygen-enriched gaseous atmosphere on coal char combustion was studied. Two different coals, i.e. lignite and bituminous coal, were used as a basic fuel and the reacting gases of oxygen & CO2 were used to simulate flue gas recirculation. Moreover, a broad range of in-furnace conditions, i.e. five temperatures of 873, 973, 1073, 1173, 1273K and five oxygen concentrations of 20, 40, 60, 80, 100%vol., was investigated. Thermogravimetric method of measurement was employed to obtain the processing data on fuel conversion rate under foregoing investigated conditions. For further calculations, simplified Shrinking-Core Model was introduced. Finally, fundamental kinetic parameters, i.e. pre-exponential factor, activation energy and reaction order, were established and then on the basis of their values reaction-controlling regime for coal char combustion in oxygen-enriched environment was predicted. The investigations, financially supported by Polish Government, are a part of Framework Project "Supercritical Coal-fired Power Units".

  20. Grindability and combustion behavior of coal and torrefied biomass blends.

    Science.gov (United States)

    Gil, M V; García, R; Pevida, C; Rubiera, F

    2015-09-01

    Biomass samples (pine, black poplar and chestnut woodchips) were torrefied to improve their grindability before being combusted in blends with coal. Torrefaction temperatures between 240 and 300 °C and residence times between 11 and 43 min were studied. The grindability of the torrefied biomass, evaluated from the particle size distribution of the ground sample, significantly improved compared to raw biomass. Higher temperatures increased the proportion of smaller-sized particles after grinding. Torrefied chestnut woodchips (280 °C, 22 min) showed the best grinding properties. This sample was blended with coal (5-55 wt.% biomass). The addition of torrefied biomass to coal up to 15 wt.% did not significantly increase the proportion of large-sized particles after grinding. No relevant differences in the burnout value were detected between the coal and coal/torrefied biomass blends due to the high reactivity of the coal. NO and SO2 emissions decreased as the percentage of torrefied biomass in the blend with coal increased.

  1. Characterization of bottom ashes from coal pulverized power plants to determine their potential use feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Menendez, E.; Alvaro, A. M.; Argiz, C.; Parra, J. L.; Moragues, A.

    2013-07-01

    The disposal of coal by products represents environmental and economical problems around the world. Therefore, the reuse and valorisation of this waste has become an important issue in the last decades. While high-value construction products containing fly ash were developed and its use is actually totally accepted as an addition to cement, the use of the bottom ash as supplementary cementitious material has not been allow. This paper examines the chemical and physical properties of fly ashes and bottom ashes from two different coal power plants in order to compare them and analyse the potential feasibility of bottom ash as cement replacement. The mechanical properties of cement mortars made with different percentages of both ashes were also study. The results obtained showed similar chemical composition of both kinds of ashes. The compressive strength values of mortars with 10 % and 25 % of cement replacement (at 28 days) were above the limits established in European standards and there were not significant differences between fly ash and bottom ash from both origins. (Author)

  2. Notes on Contributions to the Science of Rare Earth Element Enrichment in Coal and Coal Combustion Byproducts

    Directory of Open Access Journals (Sweden)

    James C. Hower

    2016-03-01

    Full Text Available Coal and coal combustion byproducts can have significant concentrations of lanthanides (rare earth elements. Rare earths are vital in the production of modern electronics and optics, among other uses. Enrichment in coals may have been a function of a number of processes, with contributions from volcanic ash falls being among the most significant mechanisms. In this paper, we discuss some of the important coal-based deposits in China and the US and critique classification systems used to evaluate the relative value of the rare earth concentrations and the distribution of the elements within the coals and coal combustion byproducts.

  3. The effect of imported coals and coal blends on grinding and combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Maier, H.; Rebmann, M.; Fingerle, A.; Hein, K.R.G. [University of Stuttgart, Stuttgart (Germany). Inst.-IVD

    1998-12-31

    The European Union is one of the biggest regions importing bituminous coal from overseas areas and countries like South Africa, Australia, Colombia, North America, and Indonesia/Asia. The use of these coals can raise specific problems with regard to the milling and combustion behaviour. In this project the following facilities were used for the test trials; a 120 kg/h impact milling system to investigate the milling behaviour; the 0.5 MW{sub th} IVD semi-industrial scale pulverised combustion chamber for the combustion studies and; a 80 kW{sub th} turbulent natural gas free jet burner, for the characterisation studies. The results concerning the milling behaviour show that most of the tested coals and coal blending the Hardgrove Index is a measure to determine the grindability on laboratory scale but also not generally valid. The coal characterization studies with the turbulent gas burner show that the heat up-rate and the devolatilization of the volatiles is comparable to those in full scale coal flames. The volatile release is about 10 times faster compared to values determined with electricity heated flow reactors. 11 refs., 33 figs., 5 tabs.

  4. Nitrogen Chemistry in Fluidized Bed Combustion of Coal

    DEFF Research Database (Denmark)

    Jensen, Anker Degn

    The present Ph.D thesis describes an experimental and theoretical investigation of the formation and destruction of nitrogen oxides (NOx and N2O) in fluidized bed combustion (FBC) of coal. A review of the current knowledge of nitrogen chemistry in FBC is presented. The review covers both laboratory...... and reduction by homogeneous and heterogeneous reactions. The data for the estimation of kinetics of the heterogeneous reactions were measured by one of the partners in the project for char and bed material sampled from a pressurized FBC pilot plant burning Kiveton Park coal. Experimental data from the pilot...... identified. Laboratory measurements showed that 50 % of the fuel-N stays in the char after devolatilization and in the model it is assumed that this is oxidized to NO during char combustion. A significant amount of NO, 10-18 % of the fuel-N, was formed by oxidation of NH3 catalyzed by bed material...

  5. Combustion studies of coal derived solid fuels by thermogravimetric analysis. III. Correlation between burnout temperature and carbon combustion efficiency

    Science.gov (United States)

    Rostam-Abadi, M.; DeBarr, J.A.; Chen, W.T.

    1990-01-01

    Burning profiles of 35-53 ??m size fractions of an Illinois coal and three partially devolatilized coals prepared from the original coal were obtained using a thermogravimetric analyzer. The burning profile burnout temperatures were higher for lower volatile fuels and correlated well with carbon combustion efficiencies of the fuels when burned in a laboratory-scale laminar flow reactor. Fuels with higher burnout temperatures had lower carbon combustion efficiencies under various time-temperature conditions in the laboratory-scale reactor. ?? 1990.

  6. Experimental simulation and numerical analysis of coal spontaneous combustion process at low temperature

    Institute of Scientific and Technical Information of China (English)

    文虎; 徐精彩; 葛岭梅

    2001-01-01

    The characteristic of coal spontaneous, combustion includes oxidative property and exothermic capacity. It can really simulate the process of coal spontaneous combustion to use the large-scale experimental unit loading coal ! 000 kg. According to the field change of gas concentration and coal temperature determined through experiment of coal self-ignite at low temperature stage, and on the basis of hydromechanics and heat-transfer theory, some parameters can be calculated at different low temperature stage, such as, oxygen consumption rate, heat liberation intensity. It offers a theoretic criterion for quantitatively analyzing characteristic of coal self-ignite and forecasting coal spontaneous combustion. According to coal exothermic capability and its thermal storage surroundings, thermal equilibrium is applied to deduce the computational method of limit parameter of coal self-ignite. It offers a quantitative theoretic criterion for coal self-ignite forecasting and preventing. According to the measurement and test of spontaneous combustion of Haibei coal, some token parameter of Haibei coal,spontaneous combustion is quantitatively analyzed, such as, spontaneous combustion period of coal, critical temperature, oxygen consumption rate, heat liberation intensity, and limit parameter of coal self-ignite.

  7. Experimental simulation and numerical analysis of coal spontaneous combustion process at low temperature*

    Institute of Scientific and Technical Information of China (English)

    WEN Hu; XU Jing-cai; GE Ling-mei

    2001-01-01

    The characteristic of coal spontaneous combustion includes oxidative p roperty and exothermic capacity. It can really simulate the process of coal spon taneous combustion to use the large-scale experimental unit loading coal 1 000 kg. According to the field change of gas concentration and coal temperature determi ned through experiment of coal self-ignite at low temperature stage, and on the basis of hydromechanics and heat-transfer theory, some parameters can be calcul at ed at different low temperature stage, such as, oxygen consumption rate, heat li beration intensity. It offers a theoretic criterion for quantitatively analyzing characteristic of coal self-ignite and forecasting coal spontaneous combustion . According to coal exothermic capability and its thermal storage surroundings, t hermal equilibrium is applied to deduce the computational method of limit parame ter of coal self-ignite. It offers a quantitative theoretic criterion for coal s elf-ignite forecasting and preventing. According to the measurement and test of spontaneous combustion of Haibei coal, some token parameter of Haibei coal spont aneous combustion is quantitatively analyzed, such as, spontaneous combustion pe riod of coal, critical temperature, oxygen consumption rate, heat liberation int ensity, and limit parameter of coal self-ignite.

  8. Low-NO/SUB/x combustion of coal by vertical cyclone furnace (II): slag tap combustion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, M.; Kusakabe, T.; Matsumoto, T.; Miyajima, K.; Yamazaki, M.

    1983-01-01

    Slag tap combustion of coal was investigated in the hope of developing a method of low-NOx, low-dust combustion. Miike coal (heating value 7000 kcal/kg) was combusted with air preheated to approximately 650 C in the same experimental vertical cyclone furnace as that used in the previous study. The furnace temperature rose to 1510-1740 C and trouble-free slag tap combustion was achieved. The concentration of NO in the flue gas fell sharply with decreasing excess air ratio in the primary combustion chamber. 2 references.

  9. Co-combustion of coal and meat and bone meal

    Energy Technology Data Exchange (ETDEWEB)

    I. Gulyurtlu; D. Boavida; P. Abelha; M.H. Lopes; I. Cabrita [DEECA-INETI, Lisbon (Portugal)

    2005-12-01

    Feeding meat and bone meal (MBM) to cattle, sheep or other animals has been banned within the EU since 1 of July 1994. The quantities to be eliminated are measured in millions of tons. Disposal to landfill is not an option, as simply burying the material cannot destroy any potential bovine spongiform encephalopathy (BSE) pathogens. One disposal option is the co-combustion of coal and MBM, to ensure that any living organism is totally thermally destroyed and at the same time valorising its energetic potential. Fluidised bed co-combustion of MBM is considered a viable technological option as it has the flexibility to burn coal with different materials in an efficient way, at relatively low temperatures (750-850{sup o}C) with lower environmental impact. For this purpose, co-combustion tests of coal and MBM were carried out on a pilot scale FBC, to investigate the implications of the results. This involved the determination of the emissions of pollutants like NOx, N{sub 2}O, VOC, CO{sub 2}, as well as the composition and the valorisation of the ashes produced. The ashes from the bed, the cyclones and the stack were collected and analyzed for biological activity, ecotoxicity, heavy metal concentration and leachability. The results obtained suggest that the ashes were suitable to be deposited in municipal landfills. 23 refs., 10 figs., 10 tabs.

  10. Coal Direct Chemical Looping Retrofit to Pulverized Coal Power Plants for In-Situ CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Liang; Li, Fanxing; Kim, Ray; Bayham, Samuel; McGiveron, Omar; Tong, Andrew; Connell, Daniel; Luo, Siwei; Sridhar, Deepak; Wang, Fei; Sun, Zhenchao; Fan, Liang-Shih

    2013-09-30

    A novel Coal Direct Chemical Looping (CDCL) system is proposed to effectively capture CO2 from existing PC power plants. The work during the past three years has led to an oxygen carrier particle with satisfactory performance. Moreover, successful laboratory, bench scale, and integrated demonstrations have been performed. The proposed project further advanced the novel CDCL technology to sub-pilot scale (25 kWth). To be more specific, the following objectives attained in the proposed project are: 1. to further improve the oxygen carrying capacity as well as the sulfur/ash tolerance of the current (working) particle; 2. to demonstrate continuous CDCL operations in an integrated mode with > 99% coal (bituminous, subbituminous, and lignite) conversion as well as the production of high temperature exhaust gas stream that is suitable for steam generation in existing PC boilers; 3. to identify, via demonstrations, the fate of sulfur and NOx; 4. to conduct thorough techno-economic analysis that validates the technical and economical attractiveness of the CDCL system. The objectives outlined above were achieved through collaborative efforts among all the participants. CONSOL Energy Inc. performed the techno-economic analysis of the CDCL process. Shell/CRI was able to perform feasibility and economic studies on the large scale particle synthesis and provide composite particles for the sub-pilot scale testing. The experience of B&W (with boilers) and Air Products (with handling gases) assisted the retrofit system design as well as the demonstration unit operations. The experience gained from the sub-pilot scale demonstration of the Syngas Chemical Looping (SCL) process at OSU was able to ensure the successful handling of the solids. Phase 1 focused on studies to improve the current particle to better suit the CDCL operations. The optimum operating conditions for the reducer reactor such as the temperature, char gasification enhancer type, and flow rate were identified. The

  11. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Bradley Adams; Andrew Fry; Constance Senior; Hong Shim; Huafeng Wang; Jost Wendt; Christopher Shaddix

    2009-06-30

    fouling mechanisms in coal-fired power plants to understand key issues influencing these deposition regimes and infer their behavior under oxy-fired conditions. Based on the results of this survey, an algorithm for integrating slagging predictions into CFD models was outlined. This method accounts for ash formation, particle impaction and sticking, deposit growth and physical properties and impact of the deposit on system flow and heat transfer. A model for fouling in the back pass has also been identified which includes vaporization of sodium, deposition of sodium sulfate on fly ash particles and tube surfaces, and deposit growth rate on tubes. In Year 1, REI has also performed a review of the literature describing corrosion in order to understand the behavior of oxidation, sulfidation, chloridation, and carburization mechanisms in air-fired and oxy-combustion systems. REI and Vattenfall have met and exchanged information concerning oxy-coal combustion mechanisms for CFD simulations currently used by Vattenfall. In preparation for Year 2 of this program, two coals (North Antelope PRB, Western bituminous) have been ordered, pulverized and delivered to the University of Utah and Sandia National Labs. Materials for the corrosion experiments have been identified, suppliers located, and a schedule for equipment fabrication and shakedown has been established. Finally, a flue gas recycle system has been designed and is being constructed for the OFC.

  12. Combustion and fuel characterization of coal-water fuels

    Energy Technology Data Exchange (ETDEWEB)

    1989-07-01

    Pittsburgh Energy Technology Center (PETC) of the Department of Energy initiated a comprehensive effort in 1982 to develop the necessary performance and cost data and to assess the commercial viability of coal water fuels (CWFs) as applied to representative utility and industrial units. The effort comprised six tasks beginning with coal resource evaluation and culminating in the assessment of the technical and economic consequences of switching representative commercial units from oil to state-of-the-art CWF firing. Extensive bench, pilot and commercial-scale tests were performed to develop necessary CWF combustion and fireside performance data for the subsequent boiler performance analyses and retrofit cost estimates. This report (Volume 2) provides a review of the fuel selection and procurement activities. Included is a discussion on coal washability, transport of the slurry, and characterization. 20 figs., 26 tabs.

  13. Co-combustion of agricultural residues with coal in a fluidized bed combustor.

    Science.gov (United States)

    Ghani, W A W A K; Alias, A B; Savory, R M; Cliffe, K R

    2009-02-01

    Power generation from biomass is an attractive technology that utilizes agricultural residual waste. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from agricultural residues (rice husk and palm kernel) were co-fired with coal in a 0.15m diameter and 2.3m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those for pure coal combustion. Co-combustion of a mixture of biomass with coal in a fluidized bed combustor designed for coal combustion increased combustion efficiency up to 20% depending upon excess air levels. Observed carbon monoxide levels fluctuated between 200 and 900 ppm with the addition of coal. It is evident from this research that efficient co-firing of biomass with coal can be achieved with minimal modifications to existing coal-fired boilers.

  14. Investigation of Fly Ash and Activated Carbon Obtained from Pulverized Coal Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Edward K. Levy; Christopher Kiely; Zheng Yao

    2006-08-31

    One of the techniques for Hg capture in coal-fired boilers involves injection of activated carbon (AC) into the boiler downstream of the air preheater. Hg is adsorbed onto the AC particles and fly ash, which are then both removed in an electrostatic precipitator or baghouse. This project addressed the issues of Hg on activated carbon and on fly ash from a materials re-use point of view. It also addressed the possible connection between SCR reactors, fly ash properties and Hg capture. The project has determined the feasibility of separating AC from fly ash in a fluidized bed and of regenerating the separated AC by heating the AC to elevated temperatures in a fluidized bed. The temperatures needed to drive off the Hg from the ash in a fluidized bed have also been determined. Finally, samples of fly ash from power plants with SCR reactors for NO{sub x} control have been analyzed in an effort to determine the effects of SCR on the ash.

  15. Assessing the Exergy Costs of a 332-MW Pulverized Coal-Fired Boiler

    Directory of Open Access Journals (Sweden)

    Victor H. Rangel-Hernandez

    2016-08-01

    Full Text Available In this paper, we analyze the exergy costs of a real large industrial boiler with the aim of improving efficiency. Specifically, the 350-MW front-fired, natural circulation, single reheat and balanced draft coal-fired boiler forms part of a 1050-MW conventional power plant located in Spain. We start with a diagram of the power plant, followed by a formulation of the exergy cost allocation problem to determine the exergy cost of the product of the boiler as a whole and the expenses of the individual components and energy streams. We also define a productive structure of the system. Furthermore, a proposal for including the exergy of radiation is provided in this study. Our results show that the unit exergy cost of the product of the boiler goes from 2.352 to 2.5, and that the maximum values are located in the ancillary electrical devices, such as induced-draft fans and coil heaters. Finally, radiation does not have an effect on the electricity cost, but affects at least 30% of the unit exergy cost of the boiler’s product.

  16. Pressurised coal combustion in a pilot scale facility

    Energy Technology Data Exchange (ETDEWEB)

    Hardalupas, Y.; Prassas, I.; Taylor, A.M.K.P.; Whitelaw, J.H. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Mechanical Engineering Dept.

    1998-12-31

    Flux, velocity and the temperature characteristics of burning coal particles were measured simultaneously in the primary combustion zone of the swirl-stabilised burner of the pilot-scale furnace constructed at Imperial College. The furnace was designed to operate at pressures up to 5 bar and at thermal loadings up to 150 kW, and provision was made for optical access in the near-burner region of the combustor. The combined instrument used a novel technique for the simultaneous measurement of velocity and size, as well as the angle between the trajectory of the particle and an axis of reference, of particles of arbitrary shape, the so-called Shadow Doppler Velocimeter; and a two-colour pyrometer, for the simultaneous measurement of velocity, size and temperature of burning pulverised coal particles. The experiments performed consisted of: measurement of the gaseous phase as a function of the swirl number; measurement of the size, velocity, and temperature of burning coal particles as a function of the swirl number; and measurement of the size and velocity of burning coal particles inside the pressurised coal combustor at atmospheric pressure. The experiments were to evaluate and improve and further develop existing instrumentation with potential to be used in pressurised combustors; provide a database of accurate measurements for the needs of numerical models; and improve the understanding of the fluid mechanics and combustion processes at atmospheric pressures. Results obtained using the optical instrumentation showed that in an open flame, evidence of particle centrifuging existed downstream of the quarl entry. The temperature of volatile flames was about 2250 K and that of the char below 2000 K. Measurements along radial profiles inside the coal combustor showed that the axial and tangential velocity of the particles was almost independent of size. 19 refs., 15 figs., 1 tab.

  17. Thermal behaviour and kinetics of coal/biomass blends during co-combustion.

    Science.gov (United States)

    Gil, M V; Casal, D; Pevida, C; Pis, J J; Rubiera, F

    2010-07-01

    The thermal characteristics and kinetics of coal, biomass (pine sawdust) and their blends were evaluated under combustion conditions using a non-isothermal thermogravimetric method (TGA). Biomass was blended with coal in the range of 5-80 wt.% to evaluate their co-combustion behaviour. No significant interactions were detected between the coal and biomass, since no deviations from their expected behaviour were observed in these experiments. Biomass combustion takes place in two steps: between 200 and 360 degrees C the volatiles are released and burned, and at 360-490 degrees C char combustion takes place. In contrast, coal is characterized by only one combustion stage at 315-615 degrees C. The coal/biomass blends presented three combustion steps, corresponding to the sum of the biomass and coal individual stages. Several solid-state mechanisms were tested by the Coats-Redfern method in order to find out the mechanisms responsible for the oxidation of the samples. The kinetic parameters were determined assuming single separate reactions for each stage of thermal conversion. The combustion process of coal consists of one reaction, whereas, in the case of the biomass and coal/biomass blends, this process consists of two or three independent reactions, respectively. The results showed that the chemical first order reaction is the most effective mechanism for the first step of biomass oxidation and for coal combustion. However, diffusion mechanisms were found to be responsible for the second step of biomass combustion.

  18. Mercury stable isotope signatures of world coal deposits and historical coal combustion emissions.

    Science.gov (United States)

    Sun, Ruoyu; Sonke, Jeroen E; Heimbürger, Lars-Eric; Belkin, Harvey E; Liu, Guijian; Shome, Debasish; Cukrowska, Ewa; Liousse, Catherine; Pokrovsky, Oleg S; Streets, David G

    2014-07-01

    Mercury (Hg) emissions from coal combustion contribute approximately half of anthropogenic Hg emissions to the atmosphere. With the implementation of the first legally binding UNEP treaty aimed at reducing anthropogenic Hg emissions, the identification and traceability of Hg emissions from different countries/regions are critically important. Here, we present a comprehensive world coal Hg stable isotope database including 108 new coal samples from major coal-producing deposits in South Africa, China, Europe, India, Indonesia, Mongolia, former USSR, and the U.S. A 4.7‰ range in δ(202)Hg (-3.9 to 0.8‰) and a 1‰ range in Δ(199)Hg (-0.6 to 0.4‰) are observed. Fourteen (p coal Hg emissions tracing. A revised coal combustion Hg isotope fractionation model is presented, and suggests that gaseous elemental coal Hg emissions are enriched in the heavier Hg isotopes relative to oxidized forms of emitted Hg. The model explains to first order the published δ(202)Hg observations on near-field Hg deposition from a power plant and global scale atmospheric gaseous Hg. Yet, model uncertainties appear too large at present to permit straightforward Hg isotope source identification of atmospheric forms of Hg. Finally, global historical (1850-2008) coal Hg isotope emission curves were modeled and indicate modern-day mean δ(202)Hg and Δ(199)Hg values for bulk coal emissions of -1.2 ± 0.5‰ (1SD) and 0.05 ± 0.06‰ (1SD).

  19. Study and application of plasticity plaster-slurry for preventing coal spontaneous combustion

    Institute of Scientific and Technical Information of China (English)

    LIU Ai-hua(刘爱华); CAI Kang-xu(蔡康旭); GUO Da(郭达); ZHANG Fu-sheng(张复胜)

    2003-01-01

    Introduced the modulation scheme, function and mechanism of plasticity plaster-slurry preventing coal spontaneous combustion. The applications show that the plasticity plaster-slurry has good hygroscopicity and adsorptivity. To spray it on the coal wall of tunnel can shut off leakage wind fast and effectively. To press it into the coal body can absorb the heat and descend the temperature, surround the coal pieces, eliminate the possibility of the fiery district resuming combustion.

  20. Temporal measurements and kinetics of selenium release during coal combustion and gasification in a fluidized bed.

    Science.gov (United States)

    Shen, Fenghua; Liu, Jing; Zhang, Zhen; Yang, Yingju

    2016-06-05

    The temporal release of selenium from coal during combustion and gasification in a fluidized bed was measured in situ by an on-line analysis system of trace elements in flue gas. The on-line analysis system is based on an inductively coupled plasma optical emission spectroscopy (ICP-OES), and can measure concentrations of trace elements in flue gas quantitatively and continuously. The results of on-line analysis suggest that the concentration of selenium in flue gas during coal gasification is higher than that during coal combustion. Based on the results of on-line analysis, a second-order kinetic law r(x)=0.94e(-26.58/RT)(-0.56 x(2) -0.51 x+1.05) was determined for selenium release during coal combustion, and r(x)=11.96e(-45.03/RT)(-0.53 x(2) -0.56 x+1.09) for selenium release during coal gasification. These two kinetic laws can predict respectively the temporal release of selenium during coal combustion and gasification with an acceptable accuracy. Thermodynamic calculations were conducted to predict selenium species during coal combustion and gasification. The speciation of selenium in flue gas during coal combustion differs from that during coal gasification, indicating that selenium volatilization is different. The gaseous selenium species can react with CaO during coal combustion, but it is not likely to interact with mineral during coal gasification.

  1. Effects of electrical resistance on the spontaneous combustion tendency of coal and the interaction matrix concept

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    There have been several developments in determining the spontaneous combustion liability of coal. Most of the methods of concern have purely been based on the internal properties of the coal itself. The relation between the crossing-point method and the electrical resistance of coal was examined here to outline the spontaneous combustion tendency of coal. The electrical resistance property of coal was looked into as a decision-making parameter of the interaction matrix concept for the final decision on the spontaneous combustion tendency.

  2. Coal slurry combustion optimization on single cylinder engine

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Under the sponsorship of the US Department of Energy, Morgantown Energy Technology Center, GE Transportation System has been conducting a proof of concept program to use coal water slurry (CWS) fuel to power a diesel engine locomotive since 1988. As reported earlier [1], a high pressure electronically controlled accumulator injector using a diamond compact insert nozzle was developed for this project. The improved reliability and durability of this new FIE allowed for an improved and more thorough study of combustion of CWS fuel in a diesel engine. It was decided to include a diesel pilot fuel injector in the combustion system mainly due to engine start and low load operation needs. BKM, Inc. of San Diego, CA was contracted to develop the electronic diesel fuel pilot/starting FIE for the research engine. As a result, the experimental combustion study was very much facilitated due to the ability of changing pilot/CWS injection timings and quantities without having to stop the engine. Other parameters studied included combustion chamber configuration (by changing CWS fuel injector nozzle hole number/shape/angle), as well as injection pressure. The initial phase of this combustion study is now complete. The results have been adopted into the design of a 12 cylinder engine FIE, to be tested in 1992. This paper summarizes the main findings of this study.

  3. Applying Rock Engineering Systems (RES approach to Evaluate and Classify the Coal Spontaneous Combustion Potential in Eastern Alborz Coal Mines

    Directory of Open Access Journals (Sweden)

    Amir Saffari

    2013-12-01

    Full Text Available Subject analysis of the potential of spontaneous combustion in coal layers with analytical and numerical methods has been always considered as a difficult task because of the complexity of the coal behavior and the number of factors influencing it. Empirical methods, due to accounting for certain and specific factors, have not accuracy and efficiency for all positions. The Rock Engineering Systems (RES approach as a systematic method for analyzing and classifying is proposed in engineering projects. The present study is concerned with employing the RES approach to categorize coal spontaneous combustion in coal regions. Using this approach, the interaction of parameters affecting each other in an equal scale on the coal spontaneous combustion was evaluated. The Intrinsic, geological and mining characteristics of coal seams were studied in order to identifying important parameters. Then, the main stages of implementation of the RES method i.e. interaction matrix formation, coding matrix and forming a list category were performed. Later, an index of Coal Spontaneous Combustion Potential (CSCPi was determined to format the mathematical equation. Then, the obtained data related to the intrinsic, geological and mining, and special index were calculated for each layer in the case study (Pashkalat coal region, Iran. So, the study offers a perfect and comprehensive classification of the layers. Finally, by using the event of spontaneous combustion occurred in Pashkalat coal region, an initial validation for this systematic approach in the study area was conducted, which suggested relatively good concordance in Pashkalat coal region.

  4. Thermally induced structural changes in coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Gavalas, G.R.; Flagan, R.C.

    1990-01-17

    The effect of particle shape on char burnout is investigated in the limit of shrinking core combustion. As a first step, the particle temperature is assumed to proceed in the shrinking core regime and under conditions of negligible Stefan flow. The problem then reduces to calculating the oxygen concentration field around a non-spherical particle with the oxidation reaction taking place on the external surface. This problem has been addressed by an analytical technique and a numerical technique. An analytical technique known as domain perturbation'' was used to examine the change due to reaction in the shape of a slightly nonspherical, but axisymmetric, particle. It was found that the aspect ratio always increases with conversion, i.e., the particle becomes less spherical. A numerical technique, based on the boundary integral'' method was developed to handle the case of an axisymmetric particle with otherwise arbitrary shape. Numerical results are presented which again show the aspect ratio to increase with conversion. 8 refs.

  5. Characterization of feed coal and coal combustion products from power plants in Indiana and Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.; O' Connor, J.T.; Brownfield, I.K.

    1999-07-01

    The US Geological Survey, Kentucky Geological Survey, and the University of Kentucky Center for Applied Energy Research are collaborating with Indiana and Kentucky utilities to determine the physical and chemical properties of feed coal and coal combustion products (CCP) from three coal-fired power plants. These three plants are designated as Units K1, K2, and I1 and burn high-, moderate-, and low-sulfur coals, respectively. Over 200 samples of feed coal and CCP were analyzed by various chemical and mineralogical methods to determine mode of occurrence and distribution of trace elements in the CCP. Generally, feed coals from all 3 Units contain mostly well-crystallized kaolinite and quartz. Comparatively, Unit K1 feed coals have higher amounts of carbonates, pyrite and sphalerite. Unit K2 feed coals contain higher kaolinite and illite/muscovite when compared to Unit K1 coals. Unit I1 feed coals contain beta-form quartz and alumino-phosphates with minor amounts of calcite, micas, anatase, and zircon when compared to K1 and K2 feed coals. Mineralogy of feed coals indicate that the coal sources for Units K1 and K2 are highly variable, with Unit K1 displaying the greatest mineralogic variability; Unit I1 feed coal however, displayed little mineralogic variation supporting a single source. Similarly, element contents of Units K1 and K2 feed coals show more variability than those of Unit I1. Fly ash samples from Units K1 and K2 consist mostly of glass, mullite, quartz, and spines group minerals. Minor amounts of illite/muscovite, sulfates, hematite, and corundum are also present. Spinel group minerals identified include magnetite, franklinite, magnesioferrite, trevorite, jacobisite, and zincochromite. Scanning Electron Microscope analysis reveals that most of the spinel minerals are dendritic intergrowths within aluminum silicate glass. Unit I1 fly ash samples contain glass, quartz, perovskite, lime, gehlenite, and apatite with minor amounts of periclase, anhydrite

  6. Analysis of irrationality of coal susceptibility to spontaneous combustion determination method with fluid oxygen adsorption

    Institute of Scientific and Technical Information of China (English)

    HE Qi-lin

    2008-01-01

    Based on experiment results and theoretical analysis,pointed out that the method of coal susceptibility to spontaneous combustion determination with fluid oxygen adsorption can not present the essence of coal oxidation process and oxidation reaction.The method is incorrect,paying attention at one aspect and ignoring the rest.The method is not reasonable for coal susceptibility to spontaneous combustion determination.Susceptibility to spontaneous combustion of coal reflects chemical property of coal oxidation with oxygen absorption and heat release at low temperature.Coal's susceptibility to spontaneous combustion is mainly decided by the number of molecules with reaction activation energy and activation molecule production rate at certain temperature.Therefore,index of susceptibility to spontaneous combustion should adopt accumulative value or trend of heat release or oxygen adsorption during oxidation process.

  7. Analysis of irrationality of coal susceptibility to spontaneous combustion determination method with fluid oxygen adsorption

    Institute of Scientific and Technical Information of China (English)

    HE Qi-lin

    2008-01-01

    Based on experiment results and theoretical analysis, pointed out that the method of coal susceptibility to spontaneous combustion determination with fluid oxygen adsorption can not present the essence of coal oxidation process and oxidation reaction. The method is incorrect, paying attention at one aspect and ignoring the rest. The method is not reasonable for coal susceptibility to spontaneous combustion determination. Sus-ceptibility to spontaneous combustion of coal reflects chemical property of coal oxidation with oxygen absorption and heat release at low temperature. Coal's susceptibility to spon-taneous combustion is mainly decided by the number of molecules with reaction activation energy and activation molecule production rate at certain temperature. Therefore, index of susceptibility to spontaneous combustion should adopt accumulative value or trend of heat release or oxygen adsorption during oxidation process.

  8. Influence of high-energy impact on the physical and technical characteristics of coal fuels

    Science.gov (United States)

    Mal'tsev, L. I.; Belogurova, T. P.; Kravchenko, I. V.

    2017-08-01

    Currently, in the world's large-scale coal-fired power industry, the combustion of pulverized coal is the most widely spread technology of combusting the coals. In recent years, the micropulverization technology for preparation and combustion of the coal has been developed in this field. As applied to the small-scale power industry, the method of combusting the coal in the form of a coal-water slurry has been explored for years. Fine coal powders are produced and used in the pulverized-coal gasification. Therefore, the coal preparation methods that involve high-dispersion disintegration of coals attract the greatest interest. The article deals with the problems of high-energy impact on the coal during the preparation of pulverized-coal fuels and coal-water slurries, in particular, during the milling of the coal in ball drum mills and the subsequent regrinding in disintegrators or the cavitation treatment of the coal-water slurries. The investigations were conducted using samples of anthracite and lignite from Belovskii open-pit mine (Kuznetsk Basin). It is shown that both the disintegration and the cavitation treatment are efficient methods for controlling the fuel characteristics. Both methods allow increasing the degree of dispersion of the coal. The content of the small-sized particles reground by cavitation considerably exceeds the similar figure obtained using the disintegrator. The specific surface area of the coal is increased by both cavitation and disintegration with the cavitation treatment producing a considerably greater effect. Being subjected to the cavitation treatment, most coal particles assume the form of a split characterized by the thermodynamically nonequilibrium state. Under external action, in particular, of temperature, the morphological structure of such pulverized materials changes faster and, consequently, the combustion of the treated coal should occur more efficiently. The obtained results are explained from the physical point of view.

  9. The effect of biomass on pollutant emission and burnout in co-combustion with coal

    Energy Technology Data Exchange (ETDEWEB)

    Kruczek, H.; Raczka, P.; Tatarek, A. [Wroclaw Technical University, Wroclaw (Poland)

    2006-08-15

    This paper presents experimental and numerical results on the co-combustion of different types of biomass with hard and brown coal. The main aim of this work was to assess the impact of the cocombustion of biomass in brown and hard coal-fired systems on the combustion process itself and on the level of pollutant formation and its dependence on combustion temperature stoichiometry. The experimental results obtained have shown that in general biomass addition leads to decreased NO and SO{sub 2} emissions, except with the hard coal Bogdanka. In addition, the biomass has a beneficial effect on the burnout of the coal/biomass mixture. To help to account for this effect, the behaviour of coal and biomass, the coal/biomass mixture and of fuel-N was studied by thermal analysis, in nitrogen and in air. The results obtained have shown that gas phase interactions are dominant in the combustion of biomass/coal mixtures.

  10. On-Line Analysis and Kinetic Behavior of Arsenic Release during Coal Combustion and Pyrolysis.

    Science.gov (United States)

    Shen, Fenghua; Liu, Jing; Zhang, Zhen; Dai, Jinxin

    2015-11-17

    The kinetic behavior of arsenic (As) release during coal combustion and pyrolysis in a fluidized bed was investigated by applying an on-line analysis system of trace elements in flue gas. This system, based on inductively coupled plasma optical emission spectroscopy (ICP-OES), was developed to measure trace elements concentrations in flue gas quantitatively and continuously. Obvious variations of arsenic concentration in flue gas were observed during coal combustion and pyrolysis, indicating strong influences of atmosphere and temperature on arsenic release behavior. Kinetic laws governing the arsenic release during coal combustion and pyrolysis were determined based on the results of instantaneous arsenic concentration in flue gas. A second-order kinetic law was determined for arsenic release during coal combustion, and the arsenic release during coal pyrolysis followed a fourth-order kinetic law. The results showed that the arsenic release rate during coal pyrolysis was faster than that during coal combustion. Thermodynamic calculations were carried out to identify the forms of arsenic in vapor and solid phases during coal combustion and pyrolysis, respectively. Ca3(AsO4)2 and Ca(AsO2)2 are the possible species resulting from As-Ca interaction during coal combustion. Ca(AsO2)2 is the most probable species during coal pyrolysis.

  11. Kinetics of coal combustion: Part 3, Mechanisms and kinetics of char combustion

    Energy Technology Data Exchange (ETDEWEB)

    Gavalas, G. R.; Flagan, R. C. [California Inst. of Tech., Pasadena, CA (USA)

    1988-09-01

    This report summarizes a three-year research program aimed at developing this level of understanding of char combustion through a combination of detailed analysis of chars as produced during devolatilization and as they evolve during oxidation, and theoretical studies of the porous microstructures and of pore diffusion and reaction within the coal particles. A small number of coals have been studied in detail, namely a HVA bituminous (PSOC 1451), a sub-bituminous (PSOC 1488), and a lignite (PSOC 1443). Chars have been generated from size-classified samples of these coals by pyrolysis in an inert atmosphere in a drop tube furnace. The chars were then characterized both chemically and physically. Subsequent oxidation studies were performed on these chars. 42 refs., 54 figs., 4 tabs.

  12. Clean coal combustion: development of clean combustion technologies for residual fuels

    Energy Technology Data Exchange (ETDEWEB)

    Montiel, M.F. [Electric Research Institute, Cuernavaca (Mexico)

    2003-07-01

    Most of the large quantities of heavy fuel oil (about 4% sulphur-content) produced in Mexican refineries are burned in power plants. More natural gas is being used, and it is estimated that by 2010, about one-third of Mexico's electricity will be produced from natural gas. As petroleum and gas reserves are depleted, power plants will consume more imported coal. To continue combustion of dirty fuels, advanced clean combustion technologies must be developed. Two feasibility projects were conducted over the period 1989-1995 on combustion of Mexican fuels in a bubbling fluidized combustor and in IGCC power plants. More recent feasibility studies for cogeneration plants in refineries are outlined. Solid fuels for IGCC and CFB are among the most important developments. Over the period 2004-2008, projects to study clean combustion of Mexican fuels will be conducted in the following areas: operational problems in IGCC plants, construction of an entrained flow gasifier for synthesis gas production and for feeding of heavy fuels and coal emulsions, and development of CFD (computational fluid dynamics) models.

  13. A Model for Nitrogen Chemistry in Oxy-Fuel Combustion of Pulverized Coal

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Hansen, Stine; Toftegaard, Maja Bøg

    2011-01-01

    involving both char and soot. Here, the tar yield of the volatiles is mainly converted to soot and H2, limiting the concentration of hydrocarbons and thereby the importance of gas-phase removal of NO. Our work emphasizes the need for accurate descriptions of mixing, volatile composition (fate of tar...

  14. Metallic species derived from fluidized bed coal combustion. [59 references

    Energy Technology Data Exchange (ETDEWEB)

    Natusch, D.F.S.; Taylor, D.R.

    1980-01-01

    Samples of fly ash generated by the combustion of Montana Rosebud coal in an experimental 18 inch fluidized bed combustor were collected. The use of a heated cascade impactor permitted collection of size fractionated material that avoided condensation of volatile gases on the particles. Elemental concentration trends were determined as a function of size and temperature and the results compared to published reports for conventional power plants. The behavior of trace metals appears to be substantially different in the two systems due to lower operating temperatures and the addition of limestone to the fluidized bed. Corrosion of the impactor plates was observed at the highest temperature and lowest limestone feed rate sampled during the study. Data from the elemental concentration and leaching studies suggest that corrosion is most likely due to reactions involving sodium sulfate. However, it is concluded that corrosion is less of a potential problem in fluidized-bed systems than in conventional coal-fired systems.

  15. A new SOx simulation model of coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Li Yonghua; Chen Hongwei; Zhen Zhi; Feng Zhaoxing; Dong Jianxun [North China Electric Power University, Baoding (China)

    2003-07-01

    It is very important to study the emission of pollutants from a coal combustion device, and we consider the best way is to use numerical simulation for such a study. By using a mathematical model with a post-processing method and based on combustion simulation, this paper reports the calculation of the SOx distribution in a power plant boiler furnace. For the formation of SOx, a conventional chemical reaction model is adopted, and according to the principles of reaction dynamics, a model for the SOx formation is also put forward. It is the first time the calculation and on-site testing an 800MW-unit boiler have been combined in China. The test and calculation results show that the model is reasonable, and such a study will be valuable as a reference for boiler design and clean operation. 5 refs., 1 fig., 3 tabs.

  16. Transformations of inorganic coal constituents in combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Helble, J.J. (ed.); Srinivasachar, S.; Wilemski, G.; Boni, A.A. (PSI Technology Co., Andover, MA (United States)); Kang, Shim-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M. (Massachusetts Inst. of Tech., Cambridge, MA (United States)); Peterson, T.W.; Wendt, O.L.; Gallagher, N.B.; Bool, L. (Arizona Univ., Tucson, AZ (United States)); Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A. (Kentucky Univ., Lexington

    1992-11-01

    This report contains the computer codes developed for the coal combustion project. In Subsection B.1 the FORTRAN code developed for the percolative fragmentation model (or the discrete model, since a char is expressed as a collection of discrete elements in a discrete space) is presented. In Subsection B.2 the code for the continuum model (thus named because mineral inclusions are distributed in a continuum space) is presented. A stereological model code developed to obtain the pore size distribution from a two-dimensional data is presented in Subsection B.3.

  17. Pyrolysis of Compositions of Mixtures of Combustible Shales and Brown Coals Deposited in Belarus

    Science.gov (United States)

    Lishtvan, I. I.; Dudarchik, V. M.; Kraiko, V. M.; Belova, Yu. V.

    2013-11-01

    This paper presents the results of investigating the pyrolysis of compositions of mixtures of brown coals and combustible shales in a close-packed and a moving layer and the yield dynamics of the pyrolysis gas and resin. A comparative analysis of the quality of pyrolysis products obtained from combustible shales and brown coal and from their mixtures has been performed.

  18. A Reduced Order Model for the Design of Oxy-Coal Combustion Systems

    Directory of Open Access Journals (Sweden)

    Steven L. Rowan

    2015-01-01

    Full Text Available Oxy-coal combustion is one of the more promising technologies currently under development for addressing the issues associated with greenhouse gas emissions from coal-fired power plants. Oxy-coal combustion involves combusting the coal fuel in mixtures of pure oxygen and recycled flue gas (RFG consisting of mainly carbon dioxide (CO2. As a consequence, many researchers and power plant designers have turned to CFD simulations for the study and design of new oxy-coal combustion power plants, as well as refitting existing air-coal combustion facilities to oxy-coal combustion operations. While CFD is a powerful tool that can provide a vast amount of information, the simulations themselves can be quite expensive in terms of computational resources and time investment. As a remedy, a reduced order model (ROM for oxy-coal combustion has been developed to supplement the CFD simulations. With this model, it is possible to quickly estimate the average outlet temperature of combustion flue gases given a known set of mass flow rates of fuel and oxidant entering the power plant boiler as well as determine the required reactor inlet mass flow rates for a desired outlet temperature. Several cases have been examined with this model. The results compare quite favorably to full CFD simulation results.

  19. Environmental indicators of the combustion of prospective coal water slurry containing petrochemicals.

    Science.gov (United States)

    Dmitrienko, Margarita A; Nyashina, Galina S; Strizhak, Pavel A

    2017-09-15

    Negative environmental impact of coal combustion has been known to humankind for a fairly long time. Sulfur and nitrogen oxides are considered the most dangerous anthropogenic emissions. A possible solution to this problem is replacing coal dust combustion with that of coal water slurry containing petrochemicals (CWSP). Coal processing wastes and used combustible liquids (oils, sludge, resins) are promising in terms of their economic and energy yield characteristics. However, no research has yet been conducted on the environmental indicators of fuels based on CWSP. The present work contains the findings of the research of CO, CO2, NOx, SOx emissions from the combustion of coals and CWSPs produced from coal processing waste (filter cakes). It is demonstrated for the first time that the concentrations of dangerous emissions from the combustion of CWSPs (carbon oxide and dioxide), even when combustible heavy liquid fractions are added, are not worse than those of coal. As for the concentration of sulfur and nitrogen oxides, it is significantly lower for CWSPs combustion as compared to coals. The presented research findings illustrate the prospects of the wide use of CWSPs as a fuel that is cheap and beneficial, in terms of both energy output and ecology, as compared to coal. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Dynamic mathematical model and numerical calculation method on spontaneous combustion of loose coal

    Institute of Scientific and Technical Information of China (English)

    WEN Hu(文虎)

    2003-01-01

    Through the experiment of coal spontaneous combustion and relationship particle size with oxidation character of loose coal, some calculation formula of characteristic parameters is got in the process of coal spontaneous combustion. According to these theories of porous medium hydrodynamics, mass transfer and heat transfer, mathematical models of air leak field, oxygen concentration field and temperature field are set up. Through experimental and theoretical analysis, 3-D dynamic mathematical model of coal spontaneous combustion is set up. The method of ascertaining boundary condition of model is analyzed, and finite difference method is adopted to solve 2-D mathematical model.

  1. Co-combustion of different sewage sludge and coal: a non-isothermal thermogravimetric kinetic analysis.

    Science.gov (United States)

    Otero, M; Calvo, L F; Gil, M V; García, A I; Morán, A

    2008-09-01

    The kinetics of the combustion of coal, two different sewage sludge and their blends (containing different dried weight percentages of sewage sludge) was studied by simultaneous thermogravimetric analysis. Once the weight percentage of sludge in the blend was 10%, the effects on the combustion of coal were hardly noticeable in terms of weight loss. The Arrhenius activation energy corresponding to the co-combustion of the blends was evaluated by non-isothermal kinetic analysis. This showed that, though differences between coal and sewage sludge, the combustion of their blends kept kinetically alike to that of the coal. This work illustrates how thermogravimetric analysis may be used as an easy rapid tool to asses, not only mass loss, but also kinetics of the co-combustion of sewage sludge and coal blends.

  2. Mercury emission, control and measurement from coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei-Ping [North China Electric Power Univ., Beijing (China). School of Energy and Power Engineering; Western Kentucky Univ., Bowling Green, KY (United States). Inst. for Combustion Science and Environmental Technology; Cao, Yan [Western Kentucky Univ., Bowling Green, KY (United States). Inst. for Combustion Science and Environmental Technology; Zhang, Kai [North China Electric Power Univ., Beijing (China). School of Energy and Power Engineering

    2013-07-01

    Coal-fired electric power generation accounts for 65% of U.S. emissions of sulfur dioxide (SO2), 22% of nitrogen oxides (NOx), and 37% of mercury (Hg). The proposed Clear Air Interstate Rule (CAIR) and Clean Air Mercury Rule (CAMR) will attempt to regulate these emissions using a cap-and-trade program to replace a number of existing regulatory requirements that will impact this industry over the next decade. Mercury emissions remain the largest source that has not yet been efficiently controlled, in part because this is one of the most expensive to control. Mercury is a toxic, persistent pollutant that accumulates in the food chain. During the coal combustion process, when both sampling and accurate measurements are challenging, we know that mercury is present in three species: elemental, oxidized and particulate. There are three basic types of mercury measurement methods: Ontario Hydro Method, mercury continuous emission monitoring systems (CEMS) and sorbent-based monitoring. Particulate mercury is best captured by electrostatic precipitators (ESP). Oxidized mercury is best captured in wet scrubbers. Elemental mercury is the most difficult to capture, but selective catalytic reduction units (SCRs) are able to convert elemental mercury to oxidized mercury allowing it to be captured by wet flue gas desulfurization (FGD). This works well for eastern coals with high chlorine contents, but this does not work well on the Wyoming Powder River Basin (PRB) coals. However, no good explanation for its mechanism, correlations of chlorine content in coal with SCR performance, and impacts of higher chlorine content in coal on FGD re-emission are available. The combination of SCR and FGD affords more than an 80% reduction in mercury emissions in the case of high chlorine content coals. The mercury emission results from different coal ranks, boilers, and the air pollution control device (APCD) in power plant will be discussed. Based on this UAEPA new regulation, most power plants

  3. Co-combustion of waste from olive oil production with coal in a fluidised bed.

    Science.gov (United States)

    Cliffe, K R; Patumsawad, S

    2001-01-01

    Waste from olive oil production was co-fired with coal in a fluidised bed combustor to study the feasibility of using this waste as an energy source. The combustion efficiency and CO emission were investigated and compared to those of burning 100% of coal. Olive oil waste with up to 20% mass concentration can be co-fired with coal in a fluidised bed combustor designed for coal combustion with a maximum drop of efficiency of 5%. A 10% olive oil waste concentration gave a lower CO emission than 100% coal firing due to improved combustion in the freeboard region. A 20% olive oil waste mixture gave a higher CO emission than both 100% coal firing and 10% olive oil waste mixture, but the combustion efficiency was higher than the 10% olive oil waste mixture due to lower elutriation from the bed.

  4. Evaluation of the propensity for coal spontaneous combustion based on catastrophe theory

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-tao; ZHANG Xi-chen; TIEN Jerry C; LI Ya-qing

    2011-01-01

    Generally,different prevention measures should be taken according to spontaneous combustion propensities.The current methods to evaluate the propensity of coal spontaneous combustion,such as chromatographic method of oxygen adsorption,oxidation kinetics method and activation energy method,are mostly affected by human factors.Their boundaries among different classes of propensities were all established by subjective judgments.A new evaluation method using catastrophe theory is introduced.This method can accurately depict the process of coal spontaneous combustion and the evaluation index,"catastrophe temperature",be obtained based on the model.In terms of catastrophe temperature,the spontaneous combustion propensity of different coals can be sequenced.Experimental data indicate that this method is appropriate to describe the spontaneous combustion process and to evaluate the propensity of coal spontaneous combustion.

  5. Investigation on thermal and trace element characteristics during co-combustion biomass with coal gangue.

    Science.gov (United States)

    Zhou, Chuncai; Liu, Guijian; Fang, Ting; Lam, Paul Kwan Sing

    2015-01-01

    The thermochemical behaviors during co-combustion of coal gangue (CG), soybean stalk (SS), sawdust (SD) and their blends prepared at different ratios have been determined via thermogravimetric analysis. The simulate experiments in a fixed bed reactor were performed to investigate the partition behaviors of trace elements during co-combustion. The combustion profiles of biomass was more complicated than that of coal gangue. Ignition property and thermal reactivity of coal gangue could be enhanced by the addition of biomass. No interactions were observed between coal gangue and biomass during co-combustion. The volatilization ratios of trace elements decrease with the increasing proportions of biomass in the blends during co-combustion. Based on the results of heating value, activation energy, base/acid ratio and gaseous pollutant emissions, the blending ratio of 20-30% biomass content is regarded as optimum composition for blending and could be applied directly at current combustion application with few modifications.

  6. Fluorine emission from com-bustion of steam coal of North China Plate and Northwest China

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To study the amount of fluorine emission from the combustion of the steam coal (mainly Permo-Carbonif- erous coal) from the North China Plate and Northwest China, the fluorine contents of the coal, the fly ash and the cinder in high-temperature power stations as well as mid-low temperature power stations have been analyzed. This note provides a rough estimate of the total annual amount of fluorine emission as well as emission ratio from steam coal combustion in China. Our results show that by combustion of 1 t of Permo-Carboniferous coal (containing roughly 100 g fluorine), high-temperature power stations emit roughly 90 g fluorine into the atmosphere. The fluorine emission ratio of coal combustion in high-temperature power stations is about 96% and that in mid-low temperature power stations is about 78%. A total of 800 million tons of coal is burnt in China every year, and the coal comes mainly from Permo- Carboniferous deposite in the North China Plate and Northwest China coal mines. Taking the average fluorine content of the coal used at a low value of 100 mg/kg, the total annual fluorine emission from steam coal combustion into the atmosphere is estimated to be 66398 t.

  7. [Emission factors of polycyclic aromatic hydrocarbons (PAHs) in residential coal combustion and its influence factors].

    Science.gov (United States)

    Hai, Ting-Ting; Chen, Ying-Jun; Wang, Yan; Tian, Chong-Guo; Lin, Tian

    2013-07-01

    As the emission source of polycyclic aromatic hydrocarbons (PAHs), domestic coal combustion has attracted increasing attention in China. According to the coal maturity, combustion form and stove type associated with domestic coal combustion, a large-size, full-flow dilution tunnel and fractional sampling system was employed to collect the emissions from five coals with various maturities, which were burned in the form of raw-coal-chunk (RCC)/honeycomb-coal-briquettes (HCB) in different residential stoves, and then the emission factors of PAHs (EF(PAHs)) were achieved. The results indicate that the EF(PAHs) of bituminous coal ranged from 1.1 mg x kg(-1) to 3.9 mg x kg(-1) for RCC and 2.5 mg x kg(-1) to 21. 1 mg x kg(-1) for HCB, and the anthracite EF(PAH8) were 0.2 mg x kg(-1) for RCC and 0.6 mg x kg(-1) for HCB, respectively. Among all the influence factors of emission factors of PAHs from domestic coal combustion, the maturity of coal played a major role, the range of variance reaching 1 to 2 orders of magnitude in coals with different maturity. Followed by the form of combustion (RCC/HCB), the EF(PAHs) of HCB was 2-6 times higher than that of RCC for the same geological maturity of the coal. The type of stove had little influence on EF(PAHs).

  8. Structure-Based Predictive model for Coal Char Combustion.

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, R.; Colo, J [Brown Univ., Providence, RI (United States). Div. of Engineering; Essenhigh, R.; Hadad, C [Ohio State Univ., Columbus, OH (United States). Dept. of Chemistry; Stanley, E. [Boston Univ., MA (United States). Dept. of Physics

    1997-09-24

    During the third quarter of this project, progress was made on both major technical tasks. Progress was made in the chemistry department at OSU on the calculation of thermodynamic properties for a number of model organic compounds. Modelling work was carried out at Brown to adapt a thermodynamic model of carbonaceous mesophase formation, originally applied to pitch carbonization, to the prediction of coke texture in coal combustion. This latter work makes use of the FG-DVC model of coal pyrolysis developed by Advanced Fuel Research to specify the pool of aromatic clusters that participate in the order/disorder transition. This modelling approach shows promise for the mechanistic prediction of the rank dependence of char structure and will therefore be pursued further. Crystalline ordering phenomena were also observed in a model char prepared from phenol-formaldehyde carbonized at 900{degrees}C and 1300{degrees}C using high-resolution TEM fringe imaging. Dramatic changes occur in the structure between 900 and 1300{degrees}C, making this char a suitable candidate for upcoming in situ work on the hot stage TEM. Work also proceeded on molecular dynamics simulations at Boston University and on equipment modification and testing for the combustion experiments with widely varying flame types at Ohio State.

  9. The effect of fuel pyrolysis on the coal particle combustion: An analytical investigation

    OpenAIRE

    Baghsheikhi Mostafa; Rahbari Alireza; Ashrafizadeh Seyed Mehdi; Bidabadi Mehdi

    2016-01-01

    The aim of this work is to analytically investigate the symmetrical combustion of an isolated coal particle with the fuel pyrolysis effect. The modelling concept of coal particles is similar to that of the liquid droplet combustion but in the case of coal devolatilization, the particles do not shrink like droplet does due to evaporation of liquid fuel. The rate of devolatilization of volatiles can be calculated using the equation that is similar to Arrheniu...

  10. X-ray powder diffraction-based method for the determination of the glass content and mineralogy of coal (co)-combustion fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    O. Font; N. Moreno; X. Querol; M. Izquierdo; E. Alvarez; S. Diez; J. Elvira; D. Antenucci; H. Nugteren; F. Plana; A. Lopez; P. Coca; F.G. Pena [Institute of Environmental Assessment and Water Research (IDA-CSIC), Barcelona (Spain)

    2010-10-15

    The relevance of Al-Si glass in a number of fly ash applications, such as use as a pozzolanic material, zeolite synthesis, and geopolymer production, necessitated research towards investigation of methods for an easy and consistent determination of the glass content in this coal (co)-combustion by-products. A glass standard-addition X-ray powder diffraction (XRD)-based method is proposed in this study as an alternative to the non straightforward procedure of conventional methods for determining the amorphous components, mainly by difference of the total mass and the addition of quantified crystalline species. A >99% Al-Si glass slag sample was selected as a standard for glass. A number of glass standard/fly ash mixtures were performed on Fluidized Bed Combustion (FBC) and pulverized coal combustion (PCC) fly ashes and subsequently analyzed by XRD. The method provides results closer to quantitative proportions of the Al-Si amorphous material of this (co)-combustion by-product, with a range of values <3% when compared with those obtained by the conventional Reference Intensity Method (RIM) method, demonstrating suitability and consistence of the procedure. The mineralogy of FBC and PCC fly ash was also investigated using the RIM method. The occurrence and proportions of the crystalline components in fly ash are in line with the combustion technology and their inherent operational parameters, especially the (co)-combustion temperature. The FBC fly ash shows the highest content of relic phases from feed coal (quartz, illite, calcite, and feldspars) and lower contents of amorphous components. The PCC fly ash are characterized by the highest proportions of mullite and Al-Si glass and low contents of quartz an other relict phases. The occurrence and distribution of anhydrite and Fe-oxide species appears to be related to the content of Ca and Fe in the feed fuels, showing slightly higher contents in FBC than in PCC fly ash. 26 refs., 3 figs., 5 tabs.

  11. Coal combustion science quarterly progress report, October--December 1992. Task 1, Coal char combustion [and] Task 2, Fate of mineral matter

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. [ed.] [Sandia National Labs., Livermore, CA (United States); Hurt, R.H.; Baxter, L.L. [Sandia National Labs., Albuquerque, NM (United States)

    1993-06-01

    In the Coal Combustion Laboratory (CCL) this quarter, controlled laboratory experiments were carried out to better understand the late stages of coal combustion and its relation to unburned carbon levels in fly ash. Optical in situ measurements were made during char combustion at high carbon conversions and the optical data were related to particle morphologies revealed by optical microscopy on samples extracted under the same conditions. Results of this work are reported in detail below. In the data presented below, we compare the fraction of alkali metal loss to that of the alkaline earth metals as a function of coal rank to draw conclusions about the mechanism of release for the latter. Figure 2.1 illustrates the fractional release of the major alkali and alkaline earth metals (Na, K, Ca, Mg) as a function of coal rank for a series of coals and for several coal blends. All data are derived from combustion experiments in Sandia`s Multifuel Combustor (MFC) and represent the average of three to eight experiments under conditions where the mass loss on a dry, ash-free (daf) basis exceeds 95 %. There are no missing data in the figure. The several coals with no indicated result exhibited no mass loss of the alkali or alkaline earth metals in our experiments. There is a clear rank dependence indicated by the data in Fig. 2.1, reflecting the mode of occurrence of the material in the coal.

  12. Recent advances in the use of synchrotron radiation for the analysis of coal combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Manowitz, B. [Brookhaven National Lab., Upton, NY (United States)

    1995-11-01

    Two major coal combustion problems are the formation and build-up of slag deposits on heat transfer surfaces and the production and control of toxic species in coal combustion emissions. The use of synchrotron radiation for the analysis of coal combustion products can play a role in the better understanding of both these phenomena. An understanding of the chemical composition of such slags under boiler operating conditions and as a function of the mineral composition of various coals is one ultimate goal of this program. The principal constituents in the ash of many coals are the oxides of Si, Al, Fe, Ca, K, S, and Na. The analytical method required must be able to determine the functional forms of all these elements both in coal and in coal ash at elevated temperatures. One unique way of conducting these analyses is by x-ray spectroscopy.

  13. Mercury speciation and emissions from coal combustion in Guiyang, Southwest China.

    Science.gov (United States)

    Tang, Shunlin; Feng, Xinbin; Qiu, Jianrong; Yin, Guoxun; Yang, Zaichan

    2007-10-01

    Although China has been regarded as one of the largest anthropogenic mercury emission source with coal combustion, so far the actual measurements of Hg species and Hg emissions from the combustion and the capture of Hg in Chinese emission control devices were very limited. Aiming at Hg mercury species measurements in Guiyang, the capital city of Guizhou province in Southwest China, we studied flue gases of medium-to-small-sized industrial steam coal-firing boiler (10-30 t/h) with no control devices, medium-to-small-sized industrial steam coal-firing boiler with WFGD and large-scale coal combustion with ESPs using Ontario Hytro method. We obtained mercury emission factors of the three representative coal combustion and estimated mercury emissions in Guiyang in 2003, as well as the whole province from 1986 to 2002. Coal combustion in Guiyang emitted 1898 kg mercury to the atmosphere, of which 36% Hg is released from power plants, 41% from industrial coal combustion, and 23% from domestic users, and 267 kg is Hg(p), 813 kg is Hg(2+) and 817 kg is Hg0. Mercury emission in Guizhou province increased sharply from 5.8 t in 1986 to 16.4 t in 2002. With the implementation of national economic strategy of China's Western Development, the annual mercury emission from coal combustion in the province is estimated to be about 32 t in 2015.

  14. Experiment study of optimization on prediction index gases of coal spontaneous combustion

    Institute of Scientific and Technical Information of China (English)

    牛会永; 邓湘陵; 李石林; 蔡康旭; 朱豪; 李芳; 邓军

    2016-01-01

    The coal of Anyuan Mine has the characteristic of easy spontaneous combustion. Conventional method is difficult to predict it. Coal samples from this mine were tested in laboratory. The data obtained from laboratory determination were initialized for the value which was defined as “K”. The ratio of each index gas and value of “K”, and the ratio of combination index gases and value of “K”, were analyzed simultaneously. The research results show that for this coal mine, if there is carbon monoxide in the gas sample, the phenomenon of oxidation and temperature rising for coal exists in this mine; if there is C2H4 in the gas sample, the temperature of coal perhaps exceeds 130 °C. If the coal temperature is between 35 °C and 130 °C, prediction and forecast for coal spontaneous combustion depend on the value ofΦ(CO)/K mainly; if the temperature of coal is between 130 °C and 300 °C, prediction and forecast for coal spontaneous combustion depend on the value ofΦ(C2H6)/Φ(C2H2)andΦ(C2H6)/K. The research results provide experimental basis for the prediction of coal spontaneous combustion in Anyuan coal mine, and have better guidance on safe production of this coal mine.

  15. Reactivity to CO{sub 2} of chars prepared in O{sub 2}/N{sub 2} and O{sub 2}/CO{sub 2} mixtures for pulverized coal injection (PCI) in blast furnace in relation to char petrographic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Pohlmann, Juliana G.; Osorio, Eduardo; Vilela, Antonio C.F. [Iron and Steelmaking Laboratory, UFRGS, Porto Alegre (Brazil); Borrego, Angeles G. [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)

    2010-12-01

    Pulverized coal injection (PCI) is employed in blast furnace tuyeres in order to increase the injection rate without increasing the amount of unburned char inside the stack. When coal is injected with air in the region of tuyeres, the resolidified char will burn in an atmosphere with progressively lower oxygen content and higher CO{sub 2} concentration. In this study, an experimental approach comprising refiring has been followed to separate the combustion process into two distinct devolatilization and combustion steps. A drop tube furnace (DTF) operating at 1300 C in an atmosphere with low oxygen concentration was used to simulate devolatilization and then the char was refired into DTF at the same temperature under two different atmospheres O{sub 2}/N{sub 2} (typical combustion) and O{sub 2}/CO{sub 2} (oxy-combustion) with the same oxygen concentration. Coal injection was also performed under a higher oxygen concentration in both typical combustion and oxy-combustion atmospheres. The fuels tested comprised a petroleum coke and coals ranging in rank from high to low volatile bituminous, currently used for PCI injection. Specific surface areas, reactivity to CO{sub 2} and char petrography have been used to chars characterization. The morphology and appearance of the chars generated under oxy-fuel (O{sub 2}/CO{sub 2}) and conventional combustion (O{sub 2}/N{sub 2}) conditions with similar amount of oxygen were similar for each parent coal. Vitrinite-rich particles generated cenospheres with anisotropic optical texture increasing in size with increasing coal rank, whereas inertinite yielded a variety of morphologies and optical textures. The apparent reactivity to CO{sub 2} measured at high temperature (1000 C) tended to increase with burnout reflecting the operation under a regime controlled by internal diffusion in which surface area also increased. This may have a significant effect in the reactivity to CO{sub 2} of the chars inside the stack of the blast furnace

  16. Evolution of Submicrometer Organic Aerosols during a Complete Residential Coal Combustion Process.

    Science.gov (United States)

    Zhou, Wei; Jiang, Jingkun; Duan, Lei; Hao, Jiming

    2016-07-19

    In the absence of particulate matter (PM) control devices, residential coal combustion contributes significantly to ambient PM pollution. Characterizing PM emissions from residential coal combustion with high time resolution is beneficial for developing control policies and evaluating the environmental impact of PM. This study reports the evolution of submicrometer organic aerosols (OA) during a complete residential coal combustion process, that is, from fire start to fire extinction. Three commonly used coal types (bituminous, anthracite, and semicoke coals) were evaluated in a typical residential stove in China. For all three types of coal, the OA emission exhibited distinct characteristics in the four stages, that is, ignition, fierce combustion, relatively stable combustion, and ember combustion. OA emissions during the ignition stage accounted for 58.2-85.4% of the total OA emission of a complete combustion process. The OA concentration decreased rapidly during the fierce combustion stage and remained low during the relatively stable combustion stage. During these two stages, a significant ion peak of m/z 73 from organic acids were observed. The degree of oxidation of the OA increased from the first stage to the last stage. Implications for ambient OA source-apportionment and residential PM emission characterization and control are discussed.

  17. STRUCTURE-BASED PREDICTIVE MODEL FOR COAL CHAR COMBUSTION

    Energy Technology Data Exchange (ETDEWEB)

    CHRISTOPHER M. HADAD; JOSEPH M. CALO; ROBERT H. ESSENHIGH; ROBERT H. HURT

    1998-06-04

    During the past quarter of this project, significant progress continued was made on both major technical tasks. Progress was made at OSU on advancing the application of computational chemistry to oxidative attack on model polyaromatic hydrocarbons (PAHs) and graphitic structures. This work is directed at the application of quantitative ab initio molecular orbital theory to address the decomposition products and mechanisms of coal char reactivity. Previously, it was shown that the �hybrid� B3LYP method can be used to provide quantitative information concerning the stability of the corresponding radicals that arise by hydrogen atom abstraction from monocyclic aromatic rings. In the most recent quarter, these approaches have been extended to larger carbocyclic ring systems, such as coronene, in order to compare the properties of a large carbonaceous PAH to that of the smaller, monocyclic aromatic systems. It was concluded that, at least for bond dissociation energy considerations, the properties of the large PAHs can be modeled reasonably well by smaller systems. In addition to the preceding work, investigations were initiated on the interaction of selected radicals in the �radical pool� with the different types of aromatic structures. In particular, the different pathways for addition vs. abstraction to benzene and furan by H and OH radicals were examined. Thus far, the addition channel appears to be significantly favored over abstraction on both kinetic and thermochemical grounds. Experimental work at Brown University in support of the development of predictive structural models of coal char combustion was focused on elucidating the role of coal mineral matter impurities on reactivity. An �inverse� approach was used where a carbon material was doped with coal mineral matter. The carbon material was derived from a high carbon content fly ash (Fly Ash 23 from the Salem Basin Power Plant. The ash was obtained from Pittsburgh #8 coal (PSOC 1451). Doped

  18. Reaction Kinetic Equation for Char Combustion of Underground Coal Gasification

    Institute of Scientific and Technical Information of China (English)

    YU Hong-guan; YANG Lan-he; FENG Wei-min; LIU Shu-qin; SONG Zhen-qi

    2006-01-01

    Based on the quasi-steady-state approximation, the dynamic equation of char combustion in the oxidation zone of underground coal gasification (UCG) was derived. The parameters of the dynamic equation were determined at 900℃ using a thermo-gravimetric (TG) analyzer connected to a flue gas analyzer and this equation. The equation was simplified for specific coals, including high ash content, low ash content, and low ash fusibility ones. The results show that 1) the apparent reaction rate constant increases with an increase in volatile matter value as dry ash-free basis, 2) the effective coefficient of diffusion decreases with an increase in ash as dry basis, and 3) the mass transfer coefficient is independent of coal quality on the whole. The apparent reaction rate constant, mass-transfer coefficient and effective coefficient of diffusion of six char samples range from 7.51×104 m/s to 8.98×104 m/s, 3.05×106 m/s to 3.23×106 m/s and 5.36×106 m2/s to 8.23×106 m2/s at 900℃, respectively.

  19. Toxic substances from coal combustion -- A comprehensive assessment

    Energy Technology Data Exchange (ETDEWEB)

    C.L. Senior; T. Panagiotou; F.E. Huggins; G.P. Huffman; N. Yap; J.O.L. Wendt; W. Seames; M.R. Ames; A.F Sarofim; J. Lighty; A. Kolker; R. Finkelman; C.A. Palmer; S.J. Mroczkowsky; J.J. Helble; R. Mamani-Paco

    1999-11-01

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from 1 July 1999 to 30 September 1999. During this period the MIT INAA procedures were revised to improve the quality of the analytical results. Two steps have been taken to reduce the analytical errors. A new nitric acid leaching procedure, modified from ASTM procedure D2492, section 7.3.1 for determination of pyritic sulfur, was developed by USGS and validated. To date, analytical results have been returned for all but the last complete round of the four-step leaching procedure. USGS analysts in Denver have halted development of the cold vapor atomic fluorescence technique for mercury analysis procedure in favor of a new direct analyzer for Hg that the USGS is in the process of acquiring. Since early June, emphasis at USGS has been placed on microanalysis of clay minerals in project coals in

  20. Collaborative Studies for Mercury Characterization in Coal and Coal Combustion Products, Republic of South Africa

    Science.gov (United States)

    Kolker, Allan; Senior, Constance L.; van Alphen, Chris

    2014-12-15

    Mercury (Hg) analyses were obtained for 42 samples of feed coal provided by Eskom, the national electric utility of South Africa, representing all 13 coal-fired power stations operated by Eskom in South Africa. This sampling includes results for three older power stations returned to service starting in the late 2000s. These stations were not sampled in the most recent previous study. Mercury concentrations determined in the present study are similar to or slightly lower than those previously reported, and input Hg for the three stations returned to service is comparable to that for the other 10 power stations. Determination of halogen contents of the 42 feed coals confirms that chlorine contents are generally low, and as such, the extent of Hg self-capture by particulate control devices (PCDs) is rather limited. Eight density separates of a South African Highveld (#4) coal were also provided by Eskom, and these show a strong mineralogical association of Hg (and arsenic) with pyrite. The density separates were used to predict Hg and ash contents of coal products used in South Africa or exported. A suite of 48 paired samples of pulverization-mill feed coal and fly ash collected in a previous (2010) United Nations Environment Programme-sponsored study of emissions from the Duvha and Kendal power stations was obtained for further investigation in the present study. These samples show that in each station, Hg capture varies by boiler unit and confirms that units equipped with fabric filters for air pollution control are much more effective in capturing Hg than those equipped with electrostatic precipitators. Apart from tracking the performance of PCDs individually, changes resulting in improved mercury capture of the Eskom fleet are discussed. These include Hg reduction through coal selection and washing, as well as through optimization of equipment and operational parameters. Operational changes leading to increased mercury capture include increasing mercury

  1. Principles of Selecting Type of Direct Flow Pulverized Coal Burner before Retrofit%直流煤粉燃烧器改造前的选型原则

    Institute of Scientific and Technical Information of China (English)

    李凤瑞

    2001-01-01

    针对锅炉燃烧器改造问题,提出在燃烧器改造前如何根据锅炉实际情况选择合适燃烧器类型的5项选型原则,包括煤种匹配原则、炉型匹配原则、工作业绩及创新性原则、经济性及安装检修方便性原则、运行自适应原则。对电厂煤粉燃烧器的改造有一定参考作用。%Which structure type of burner should be adopted for various utilities pulverized coal-fired boilers﹖ This paper puts forward five principles of selecting burner's type being of directive significance for the power plant that is going to retrofit burners.

  2. Comparison of an Internal Combustion Engine Derating Operated on Producer Gas from Coal and Biomass Gasification

    Directory of Open Access Journals (Sweden)

    Muhammad Ade Andriansyah Efendi

    2016-06-01

    Full Text Available Gasification is an effective and clean way to convert coal and biomass into useful fuels and chemical feedstocks. Producer gas utilization for internal combustion engine has been studied, not only from biomass gasification but also from coal gasification. This paper compares the research that has done author using coal gasification with other research results using biomass gasification. Coal gasifier performance test conducted with capacity of 20 kg/h coal. The proximate and ultimate analysis of raw coal, ash product and producer gas was conducted and comparised. The result of analysis shows that the efficiency of the coal gasification was 61% while range of gasifier efficiency for biomass is between 50-80%. Meanwhile, the experimental results on the performance of internal combustion engines using gas producer shows that the derating for power generation using coal producer gas was 46% and biomass was 20-50% depend on compression ratio of engine and characteristic of producer gas. 

  3. Naturally Occurring Radioactive Materials in Coals and Coal Combustion Residuals in the United States.

    Science.gov (United States)

    Lauer, Nancy E; Hower, James C; Hsu-Kim, Heileen; Taggart, Ross K; Vengosh, Avner

    2015-09-15

    The distribution and enrichment of naturally occurring radioactive materials (NORM) in coal combustion residuals (CCRs) from different coal source basins have not been fully characterized in the United States. Here we provide a systematic analysis of the occurrence of NORM ((232)Th, (228)Ra, (238)U, (226)Ra, and (210)Pb) in coals and associated CCRs from the Illinois, Appalachian, and Powder River Basins. Illinois CCRs had the highest total Ra ((228)Ra + (226)Ra = 297 ± 46 Bq/kg) and the lowest (228)Ra/(226)Ra activity ratio (0.31 ± 0.09), followed by Appalachian CCRs (283 ± 34 Bq/kg; 0.67 ± 0.09), and Powder River CCRs (213 ± 21 Bq/kg; 0.79 ± 0.10). Total Ra and (228)Ra/(226)Ra variations in CCRs correspond to the U and Th concentrations and ash contents of their feed coals, and we show that these relationships can be used to predict total NORM concentrations in CCRs. We observed differential NORM volatility during combustion that results in (210)Pb enrichment and (210)Pb/(226)Ra ratios greater than 1 in most fly-ash samples. Overall, total NORM activities in CCRs are 7-10- and 3-5-fold higher than NORM activities in parent coals and average U.S. soil, respectively. This study lays the groundwork for future research related to the environmental and human health implications of CCR disposal and accidental release to the environment in the context of this elevated radioactivity.

  4. Influence of the gray gases number in the weighted sum of gray gases model on the radiative heat exchange calculation inside pulverized coal-fired furnaces

    Directory of Open Access Journals (Sweden)

    Crnomarković Nenad Đ.

    2016-01-01

    Full Text Available The influence of the number of gray gases in the weighted sum in the gray gases model on the calculation of the radiative heat transfer is discussed in the paper. A computer code which solved the set of equations of the mathematical model describing the reactive two-phase turbulent flow with radiative heat exchange and with thermal equilibrium between phases inside the pulverized coal-fired furnace was used. Gas-phase radiative properties were determined by the simple gray gas model and two combinations of the weighted sum of the gray gases models: one gray gas plus a clear gas and two gray gases plus a clear gas. Investigation was carried out for two values of the total extinction coefficient of the dispersed phase, for the clean furnace walls and furnace walls covered by an ash layer deposit, and for three levels of the approximation accuracy of the weighting coefficients. The influence of the number of gray gases was analyzed through the relative differences of the wall fluxes, wall temperatures, medium temperatures, and heat transfer rate through all furnace walls. The investigation showed that there were conditions of the numerical investigations for which the relative differences of the variables describing the radiative heat exchange decrease with the increase in the number of gray gases. The results of this investigation show that if the weighted sum of the gray gases model is used, the complexity of the computer code and calculation time can be reduced by optimizing the number of gray gases. [Projekat Ministarstva nauke Republike Srbije, br. TR-33018: Increase in energy and ecology efficiency of processes in pulverized coal-fired furnace and optimization of utility steam boiler air preheater by using in-house developed software tools

  5. Effects of Coal Combustion Additives on the Forms and Recovery of Uranium in Coal Bottom Ash

    Science.gov (United States)

    Tang, Ye; Li, Yilian

    2017-04-01

    Recovering uranium from uranium-rich coal ash is an important way to utilize unconventional uranium resource. Although it might be expected that the uranium in residual form would prevent uranium recovery from coal ash, raising the recovery rate in way of controlling residual uranium has not yet been studied. In this study, three different kinds of combustion promoting additives were investigated by coal combustion experiments, in order to decrease the proportion of residual-form uranium in ash and increase the acid leaching rate. Analytical procedures included Tessier sequential extraction, acidleaching, and characterization(ICP-MS, XRF, BET and SEM-EDS). It was showed that the effects of additives in reducing residual uranium were as the following order: alkaline earth metal compounds > transition metal compounds> alkali metal compounds. Adding alkali metal additives(KCl, NaCl, K2CO3, Na2CO3) raised the percentage of residual uranium largely. Additionally, one transition metal additive(Fe2O3) reached a decreasing amplitude of 5.15%, while the other two additives(MnO2 and Fe3O4)made the rates increased. However, coal combustion with alkaline earth metal compounds mixed had target effects. Among this kind of additives(Ca(OH)2, CaCO3, CaO, CaCl2), CaCO3displayed the best effect on restricting the rising proportion of residual uranium by 18%. Moreover, the leaching recovery research indicated that CaCO3 could raise the recovery rate by 10.8%. The XRF profiles supported that the CaCO3 could lower the concentration of SiO2 in the bottom ash from 79.76% to 49.69%. Besides, The BET and SEM revealed that the decomposition of CaCO3 brought about a variation of surface structures and area, which promoted the contact between the leaching agent and bottom ash. The uranium content increase was determined by ICP-MS and EDS. These findings suggest that CaCO3 could be a favorable additive for the controlling of residual uranium and improvement of uranium recovery rates. Key words

  6. Clean coal technologies market potential

    Energy Technology Data Exchange (ETDEWEB)

    Drazga, B. (ed.)

    2007-01-30

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  7. Studying the specific features pertinent to combustion of chars obtained from coals having different degrees of metamorphism and biomass chars

    Science.gov (United States)

    Bestsennyi, I. V.; Shchudlo, T. S.; Dunaevskaya, N. I.; Topal, A. I.

    2013-12-01

    Better conditions for igniting low-reaction coal (anthracite) can be obtained, higher fuel burnout ratio can be achieved, and the problem of shortage of a certain grade of coal can be solved by firing coal mixtures and by combusting coal jointly with solid biomass in coal-fired boilers. Results from studying the synergetic effect that had been revealed previously during the combustion of coal mixtures in flames are presented. A similar effect was also obtained during joint combustion of coal and wood in a flame. The kinetics pertinent to combustion of char mixtures obtained from coals characterized by different degrees of metamorphism and the kinetics pertinent to combustion of wood chars were studied on the RSK-1D laboratory setup. It was found from the experiments that the combustion rate of char mixtures obtained from coals having close degrees of metamorphism is equal to the value determined as a weighted mean rate with respect to the content of carbon. The combustion rate of char mixtures obtained from coals having essentially different degrees of metamorphism is close to the combustion rate of more reactive coal initially in the process and to the combustion rate of less reactive coal at the end of the process. A dependence of the specific burnout rate of carbon contained in the char of two wood fractions on reciprocal temperature in the range 663—833 K is obtained. The combustion mode of an experimental sample is determined together with the reaction rate constant and activation energy.

  8. Control of combustion area using electrical resistivity method for underground coal gasification

    Institute of Scientific and Technical Information of China (English)

    Selivanova Tatiana; Grebenyuk Igor; Belov Alexey

    2012-01-01

    Underground coal gasification (UCG) is one of the clean technologies to collect heat energy and gases (hydrogen,methane,etc.) in an underground coal seam.It is necessary to further developing environmentally friendly UCG system construction.One of the most important UCG's problems is underground control of combustion area for efficient gas production,estimation of subsidence and gas leakage to the surface.For this objective,laboratory experiments were conducted according to the UCG model to identify the process of combustion cavity development by monitoring the electrical resistivity activity on the coal samples to setup fundamental data for the technology engineering to evaluate combustion area.While burning coal specimens,that had been sampled from various coal deposits,electrical resistivity was monitored.Symmetric four electrodes system (ABMN) of direct and low-frequency current electric resistance method was used.for laboratory resistivity measurement of rock samples.Made research and the results suggest that front-end of electro conductivity activity during heating and combusting of coal specimen depended on heating temperature.Combusting coal electro conductivity has complicated multistage type of change.Electrical resistivity method is expected to be a useful geophysical tool to for evaluation of combustion volume and its migration in the coal seam.

  9. PASSIVE CONTROL OF PARTICLE DISPERSION IN A PARTICLE-LADEN CIRCULAR JET USING ELLIPTIC CO-ANNULAR FLOW: A MEANS FOR IMPROVING UTILIZATION AND EMISSION REDUCTIONS IN PULVERIZED COAL BURNER

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan R. Choudhuri

    2003-06-01

    A passive control technology utilizing elliptic co-flow to control the particle flinging and particle dispersion in a particle (coal)-laden flow was investigated using experimental and numerical techniques. Preferential concentration of particles occurs in particle-laden jets used in pulverized coal burner and causes uncontrollable NO{sub x} formation due to inhomogeneous local stoichiometry. This particular project was aimed at characterizing the near-field flow behavior of elliptic coaxial jets. The knowledge gained from the project will serve as the basis of further investigation on fluid-particle interactions in an asymmetric coaxial jet flow-field and thus is important to improve the design of pulverized coal burners where non-homogeneity of particle concentration causes increased NO{sub x} formation.

  10. Comparative analysis for performance of brown coal combustion in a vortex furnace with improved design

    Science.gov (United States)

    Krasinsky, D. V.

    2016-09-01

    Comparative study of 3D numerical simulation of fluid flow and coal-firing processes was applied for flame combustion of Kansk-Achinsk brown coal in a vortex furnace of improved design with bottom injection of secondary air. The analysis of engineering performance of this furnace was carried out for several operational modes as a function of coal grinding fineness and coal input rate. The preferable operational regime for furnace was found.

  11. Dioxin emissions from coal combustion in domestic stove: Formation in the chimney and coal chlorine content influence

    Directory of Open Access Journals (Sweden)

    Paradiz Bostjan

    2015-01-01

    Full Text Available Combustion experiments conducted in domestic stove burning hard coal demonstrated a predominant influence of the coal chlorine content on the PCDD/F emissions, together with a pronounced effect of the flue gas temperature. PCDD/F concentrations of over 100 ng TEQ/m3, three orders of magnitude higher than in a modern waste incinerator, were measured in the flue gases of a domestic stove when combusting high chlorine coal (0.31 %. The PCDD/F concentrations in the flue gases dropped below 0,5 ng TEQ/m3, when low chlorine coal (0.07 % was used. When low chlorine coal was impregnated with NaCl to obtain 0.38 % chlorine content, the emission of the PCDD/Fs increased by two orders of magnitude. Pronounced nonlinearity of the PCDD/F concentrations related to chlorine content in the coal was observed. The combustion of the high chlorine coal yielded PCDD/F concentrations in flue gases one order of magnitude lower in a fan cooled chimney when compared to an insulated one, thus indicating formation in the chimney. The influence of flue gas temperature on the PCDD/F emissions was less pronounced when burning low chlorine coal. The predominant pathway of the PCDD/F emissions is via flue gases, 99 % of the TEQ in the case of the high chlorine coal for insulated chimney.

  12. Combustion characterization of coals for industrial applications. Final technical report, January 1, 1981-May 29, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Nsakala, N.; Patel, R.L.; Lao, T.C.

    1985-03-01

    In-depth fundamental information was obtained from a two-inch inner diameter laminar flow reactor referred to as the Drop Tube Furnace System (DTFS). This information consists of the following: (1) pyrolysis kinetic characteristics of four coals of various rank (Texas lignite, Montana subbituminous, Alabama high volatile bituminous, and Pennsylvania anthracite); and (2) combustion kinetic studies of chars produced from the foregoing parent coals. A number of standard ASTM and special in-house bench scale tests were also performed on the coals and chars prepared therefrom to characterize their physicochemical properties. The pilot scale (500,000 Btu/hr) Controlled Mixing History Furnace (CMHF) was used to determine the effect of staged combustion on NO/sub x/ emissions control from an overall combustion performance of the Alabama high volatile bituminous coal. The quantitative fundamental data developed from this study indicate significant differences in coal/char chemical, physical, and reactivity characteristics, which should be useful to those interested in modeling coal combustion and pyrolysis processes. These results underscore the fact that coal selection is one of the keys governing a successful coal conversion/utilization process. The combustion kinetic information obtained on the high volatile bituminous coal has been used in conjunction with combustion engineering's proprietary mathematical models to predict the combustion performance of this coal in the Controlled Mixing History Furnace. Comparison of the predicted data with the experimental results shows a virtually one-to-one scale-up from the DTFS to the CMHF. These data should provide vital information to designers in the area of carbon burnout and NO/sub x/ reduction for large scale coal utilization applications. 31 refs., 28 figs., 17 tabs.

  13. Investigation of formation of nitrogen compounds in coal combustion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Blair, D.W.; Crane, I.D.; Wendt, J.O.L.

    1983-10-01

    This is the final report on DOE contract number DE-AC21-80MC14061. It concerns the formation of nitrogen oxide from fuel-bound nitrogen during coal combustion. The work reported was divided into three tasks. They addressed problems of time-resolving pyrolysis rates of coal under simulated combustion conditions, the combustion of the tar that results from such pyrolysis, and theoretical modeling of the pyrolysis process. In all of these tasks, special attention was devoted to the fate of coal nitrogen. The first two tasks were performed by Exxon Research and Engineering Company. 49 references.

  14. Coal Combustion Wastes Reuse in Low Energy Artificial Aggregates Manufacturing

    Directory of Open Access Journals (Sweden)

    Raffaele Cioffi

    2013-10-01

    Full Text Available Sustainable building material design relies mostly on energy saving processes, decrease of raw materials consumption, and increase of waste and by-products recycling. Natural and lightweight artificial aggregates production implies relevant environmental impact. This paper addresses both the issues of residues recycling and energy optimization. Particularly, three coal combustion wastes (Weathered Fly Ash, WFA; Wastewater Treatment Sludge, WTS; Desulfurization Device Sludge, DDS supplied by the Italian electric utility company (ENEL have been employed in the manufacture of cold bonded artificial aggregates. Previously, the residues have been characterized in terms of chemical and mineralogical compositions, water content, particle size distribution, and heavy metal release behavior. These wastes have been used in the mix design of binding systems with the only addition of lime. Finally, the artificial aggregates have been submitted to physical, mechanical, and leaching testing, revealing that they are potentially suitable for many civil engineering applications.

  15. Coal Combustion Wastes Reuse in Low Energy Artificial Aggregates Manufacturing.

    Science.gov (United States)

    Ferone, Claudio; Colangelo, Francesco; Messina, Francesco; Iucolano, Fabio; Liguori, Barbara; Cioffi, Raffaele

    2013-10-31

    Sustainable building material design relies mostly on energy saving processes, decrease of raw materials consumption, and increase of waste and by-products recycling. Natural and lightweight artificial aggregates production implies relevant environmental impact. This paper addresses both the issues of residues recycling and energy optimization. Particularly, three coal combustion wastes (Weathered Fly Ash, WFA; Wastewater Treatment Sludge, WTS; Desulfurization Device Sludge, DDS) supplied by the Italian electric utility company (ENEL) have been employed in the manufacture of cold bonded artificial aggregates. Previously, the residues have been characterized in terms of chemical and mineralogical compositions, water content, particle size distribution, and heavy metal release behavior. These wastes have been used in the mix design of binding systems with the only addition of lime. Finally, the artificial aggregates have been submitted to physical, mechanical, and leaching testing, revealing that they are potentially suitable for many civil engineering applications.

  16. Utilization of coal combustion fly ash in terracotta bodies

    Energy Technology Data Exchange (ETDEWEB)

    Kara, A.; Kurama, S. [Dept. of Materials Science and Engineering, Anadolu Univ., Eskisehir (Turkey); Kurama, H.; Kara, Y. [Osmangazi Univ., Mining Engineering Dept., Eskisehir (Turkey)

    2004-07-01

    In this present work, coal combustion fly ash from a power plant in Turkey was used in combination with a traditional raw material in terracotta production with the aim of having a product with improved physico-mechanical properties and lower production cost. Several compositions were prepared by adding different amounts of fly ash (ranging from 0 to 20%) in a yellow firing terracotta formulation and shaped by wet pressing. Following firing at a suitable temperature, some of the physical properties of the resultant tiles were determined as a function of the fly ash content. A combination of XRD, SEM and EDX techniques were also employed to correlate the properties with the phase composition. The results indicated that fly ash could be utilized easily in certain amounts in such an application. (orig.)

  17. Chromium speciation in coal and biomass co-combustion products.

    Science.gov (United States)

    Stam, Arthur F; Meij, Ruud; Te Winkel, Henk; Eijk, Ronald J van; Huggins, Frank E; Brem, Gerrit

    2011-03-15

    Chromium speciation is vital for the toxicity of products resulting from co-combustion of coal and biomass. Therefore, understanding of formation processes has been studied using a combination of X-ray absorption fine structure (XAFS) spectroscopy and thermodynamic equilibrium calculations. The influence of cofiring on Cr speciation is very dependent on the type of fuel. Cr(VI) contents in the investigated fly ash samples from coal and cofiring average around 7% of the total chromium. An exception is cofiring 7-28% wood for which ashes exhibited Cr(VI) concentrations of 12-16% of the total chromium. Measurements are in line with thermodynamic predictions: RE factors of Cr around 1 are in line with volatile Cr only above 1400 °C; lower Cr(VI) concentrations with lower oxygen content and Cr(III) dissolved in aluminosilicate glass. Stability of Cr(VI) below 700 °C does not correlate with Cr(VI) concentrations found in the combustion products. It is indicated that Cr(VI) formation is a high-temperature process dependent on Cr evaporation (mode of occurrence in fuel, promoted by organic association), oxidation (local oxygen content), and formation of solid chromates (promoted by presence of free lime (CaO) in the ash). CaCrO(4)(s) is a probable chemical form but, given different leachable fractions (varying from 25 to 100%), different forms of Cr(VI) must be present. Clay-bound Cr is likely to dissolve in the aluminosilicate glass phase during melting of the clay.

  18. Capture of CO{sub 2} in Coal Combustion (CCCC)

    Energy Technology Data Exchange (ETDEWEB)

    Mattisson, T.; Abanades, J.C.; Lyngfelt, A.; Abad, A.; Johansson, M.; Adanez, J.; Garcia-Labiano, F.; Diego, L.F. de; Gayan, P.; Kronberger, B.; Hofbauer, H.; Luisser, M.; Palacios, J.M.; Alvares, D.; Grasa, G.; Oakey, J.; Arias, B.; Orjala, M.; Heiskanen, V.P.

    2005-10-15

    The aim of the project is to develop processes for carbon dioxide capture from coal-fired power plants with small energy penalties. Two novel processes are studied: chemical-looping combustion (CLC) and the lime carbonation/calcination cycle (LCCC). Both parts of the project have been highly successful. With respect to CLC the process was a paper concept when the project started, never tested in actual operation. In this project a large number of oxygen carriers have been produced and tested and many were found to have suitable properties for the process. A small reactor system for chemical-looping combustion was developed, tested and found to be working well with three different oxygen carriers. Furthermore cold-flow models indicate the realism of the process in full scale. The kinetics of a limited number of particles has been studied in detail, and modelling shows that the solids inventories needed will be small. With respect to the LCCC part, some of the options investigated can be potentially competitive to capture CO{sub 2} in coal-based power generation and cement plants. The observed decay in capture capacity of the sorbent can be compensated with a large make up flow of fresh limestone due to its low price. The key reactor systems (carbonator and calciner) have shown no major barriers for continuous operation All the options studied have the inherent advantage of low efficiency penalties. For some options, no major technical barriers have been identified and confidence has been built on the operation and understanding of individual units. Some of the options are ready to be demonstrated at large pilot level in a continuous power plant.

  19. RESEARCH OF LEVEL OF SPONTANEOUS COMBUSTION ON COAL HEAPS GENESIS DANGER

    Directory of Open Access Journals (Sweden)

    Vlastimil MONI

    2014-07-01

    Full Text Available The article presents the summary of information about the spontaneous combustion of brown coal mass on coal heaps. It describes the procedure “The evaluation of the degree of the danger for the genesis of the spontaneous combustion of coal on coal heaps”. The evaluation includes analysis of important influencing factors. The conclusion of this article contains definite text of the proposition. It will be verified in the last year of the solution of this project TA01020351 – program ALFA.

  20. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal

    Energy Technology Data Exchange (ETDEWEB)

    Nick Degenstein; Minish Shah; Doughlas Louie

    2012-05-01

    The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

  1. Preparation and combustion of coal-water fuel from the Sin Pun coal deposit, southern Thailand

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    In response to an inquiry by the Department of Mineral Resources in Thailand, the Energy & Environmental Research Center (EERC) prepared a program to assess the responsiveness of Sin Pun lignite to the temperature and pressure conditions of hot-water drying. The results indicate that drying made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 27 wt% for the raw coal to about 15 wt% for the hot-water-dried (HWD) coals. The energy density for a pumpable coal-water fuel (CWF) indicates an increase from 4500 to 6100 Btu/lb by hot-water drying. Approximately 650 lb of HWD Sin Pun CWF were fired in the EERC`s combustion test facility. The fuel burned extremely well, with no feed problems noted during the course of the test. Fouling and slagging deposits each indicated a very low rate of ash deposition, with only a dusty layer formed on the cooled metal surfaces. The combustor was operated at between 20% and 25% excess air, resulting in a flue gas SO{sub 2} concentration averaging approximately 6500 parts per million.

  2. Fast Ignition and Stable Combustion of Coarse Coal Particles in a Nonslagging Cyclone Combustor

    Institute of Scientific and Technical Information of China (English)

    BiaoZhou; X.L.Wang; 等

    1995-01-01

    A combustion set-up of an innovative nonalagging cyclone combustor called “Spouting-Cyclone Combustor(SCC)”,,with two-stage combustion,organized in orthogonal vortex flows,was established and the experimental studies on the fast ignition and stable combustion of coarse coal particles in this combustor were carried out.The flame temperature versus ignition time and the practical fast ignition the temperature fields in SCC were obtained.These results whow that it is possible to obtain highly efficient and clean combustion of unground coal particles by using this technology.

  3. Oxidation of Mercury in Products of Coal Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Peter Walsh; Giang Tong; Neeles Bhopatkar; Thomas Gale; George Blankenship; Conrad Ingram; Selasi Blavo Tesfamariam Mehreteab; Victor Banjoko; Yohannes Ghirmazion; Heng Ban; April Sibley

    2009-09-14

    Laboratory measurements of mercury oxidation during selective catalytic reduction (SCR) of nitric oxide, simulation of pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash, and synthesis of new materials for simultaneous oxidation and adsorption of mercury, were performed in support of the development of technology for control of mercury emissions from coal-fired boilers and furnaces. Conversion of gas-phase mercury from the elemental state to water-soluble oxidized form (HgCl{sub 2}) enables removal of mercury during wet flue gas desulfurization. The increase in mercury oxidation in a monolithic V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} SCR catalyst with increasing HCl at low levels of HCl (< 10 ppmv) and decrease in mercury oxidation with increasing NH{sub 3}/NO ratio during SCR were consistent with results of previous work by others. The most significant finding of the present work was the inhibition of mercury oxidation in the presence of CO during SCR of NO at low levels of HCl. In the presence of 2 ppmv HCl, expected in combustion products from some Powder River Basin coals, an increase in CO from 0 to 50 ppmv reduced the extent of mercury oxidation from 24 {+-} 3 to 1 {+-} 4%. Further increase in CO to 100 ppmv completely suppressed mercury oxidation. In the presence of 11-12 ppmv HCl, increasing CO from 0 to {approx}120 ppmv reduced mercury oxidation from {approx}70% to 50%. Conversion of SO{sub 2} to sulfate also decreased with increasing NH{sub 3}/NO ratio, but the effects of HCl and CO in flue gas on SO{sub 2} oxidation were unclear. Oxidation and adsorption of mercury by unburned carbon and fly ash enables mercury removal in a particulate control device. A chemical kinetic mechanism consisting of nine homogeneous and heterogeneous reactions for mercury oxidation and removal was developed to interpret pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash in experiments at pilot

  4. Low temperature combustion of organic coal-water fuel droplets containing petrochemicals while soaring in a combustion chamber model

    Directory of Open Access Journals (Sweden)

    Valiullin Timur R.

    2017-01-01

    Full Text Available The paper examines the integral characteristics (minimum temperature, ignition delay times of stable combustion initiation of organic coal-water fuel droplets (initial radius is 0.3-1.5 mm in the oxidizer flow (the temperature and velocity varied in ranges 500-900 K, 0.5-3 m/s. The main components of organic coal-water fuel were: brown coal particles, filter-cakes obtained in coal processing, waste engine, and turbine oils. The different modes of soaring and ignition of organic coal-water fuel have been established. The conditions have been set under which it is possible to implement the sustainable soaring and ignition of organic coal-water fuel droplets. We have compared the ignition characteristics with those defined in the traditional approach (based on placing the droplets on a low-inertia thermocouple junction into the combustion chamber. The paper shows the scale of the influence of heat sink over the thermocouple junction on ignition inertia. An original technique for releasing organic coal-water fuel droplets to the combustion chamber was proposed and tested. The limitations of this technique and the prospects of experimental results for the optimization of energy equipment operation were also formulated.

  5. Toxic substances from coal combustion -- A comprehensive assessment

    Energy Technology Data Exchange (ETDEWEB)

    Senior, C.L.; Huggins, F.E.; Huffman, G.P.; Shan, N.; Yap, N.; Wendt, J.O.L.; Seames, W.; Ames, M.R.; Sarofim, A.F.; Swenson, S.; Lighty, J.; Kolker, A.; Finkelman, R.; Palmer, C.; Mroczkowski, S.; Helble, J.; Mamani-Paco, R.; Sterling, R.; Dunham, G.; Miller, S.

    2000-08-17

    The final program review meeting of Phase II was held on June 22 in Salt Lake City. The goals of the meeting were to present work in progress and to identify the remaining critical experiments or analyses, particularly those involving collaboration among various groups. The information presented at the meeting is summarized in this report. Remaining fixed bed, bench-scale experiments at EERC were discussed. There are more ash samples which can be run. Of particular interest are high carbon ash samples to be generated by the University of Arizona this summer and some ash-derived sorbents that EERC has evaluated on a different program. The use of separation techniques (electrostatic or magnetic) was also discussed as a way to understand the active components in the ash with respect to mercury. XAFS analysis of leached and unleached ash samples from the University of Arizona was given a high priority. In order to better understand the fixed bed test results, CCSEM and Moessbauer analyses of those ash samples need to be completed. Utah plans to analyze the ash from the single particle combustion experiments for those major elements not measured by INAA. USGS must still complete mercury analyses on the whole coals and leaching residues. Priorities for further work at the SHRIMP-RG facility include arsenic on ash surfaces and mercury in sulfide minerals. Moessbauer analyses of coal samples from the University of Utah were completed; samples from the top and bottom layers of containers of five different coals showed little oxidation of pyrite in the top relative to the bottom except for Wyodak.

  6. Research on coal pyrolysis and combustion poly-generation system

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Mengxiang; Cen, Jianmeng; Li, Chao [Zhejiang Univ., Hangzhou (China). Inst. for Thermal Power Engineering] [and others

    2013-07-01

    A new poly-generation system combined coal combustion and pyrolysis has been developed for clean and high efficient utilization of coal. Coal is first pyrolyzed in a fluidized bed gasifier and produced gas is then purified and used for MeOH or DME production. Tar is collected during purification and can be processed to extract monocyclic aromatic hydrocarbons, polycyclic aromatic hydrocarbons and to make liquid fuels by hydrorefining. Semi-coke from the gasifier is burned in a CFB boiler for heat or power generation. A 12MW CFB gas, tar, heat and power poly-generation system was erected by Zhejiang University in cooperation with the Huainan Mining Industry (Group) Co., Ltd. in 2007. The experimental study focused on the two fluidized bed operation and characterization of gas, tar and char yields and compositions. The results showed that the system could operate stable, and produce about 0.12Nm{sup 3}/kg gas with 22MJ/Nm{sup 3} heating value and about 10wt.% tar when pyrolysis temperature between 500 and 600 C. The produced gases were mainly H{sub 2}, CH{sub 4}, N{sub 2}, CO, CO{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}, C{sub 3}H{sub 6} and C{sub 3}H{sub 8}. Gas component concentrations were 24.18, 36.29, 7.96, 5.6, 7.84, 11.70 and 3.28%, respectively. The CFB boiler run steadily, whether the gasifier run or not, and produced 12MW power.

  7. Low emission U-fired boiler combustion system

    Energy Technology Data Exchange (ETDEWEB)

    Ake, Terence (North Brookfield, MA); Beittel, Roderick (Worcester, MA); Lisauskas, Robert A. (Shrewsbury, MA); Reicker, Eric (Barre, MA)

    2000-01-01

    At least one main combustion chamber contains at least one pulverized coal burner. Each pulverized coal burner is operatively arranged for minimizing NO.sub.X production and for maintaining a predetermined operating temperature to liquefy ash within the combustion chamber. The combustion chamber includes a slag drain for removing slag from the combustion chamber. A slag screen is positioned in a generally U-shaped furnace flow pattern. The slag screen is positioned between the combustion chamber and a radiant furnace. The radiant furnace includes a reburning zone for in-furnace No.sub.X reduction. The reburning zone extends between a reburning fuel injection source and at least one overfire air injection port for injecting air.

  8. Analysis of the Common Faults of Coal Pulverizing System of Thermal Power Plant%火力电厂制粉系统常见故障分析

    Institute of Scientific and Technical Information of China (English)

    李炀文; 张超; 刘学伟

    2014-01-01

    Mill is the coal drying and grinding into qualified coal fineness to the boiler burner, the boiler to meet the load de-mand of machinery. ZGM-123G type coal pulverizer is a kind of medium speed coal mill of type system, its advantages of sim-ple, compact layout, power consumption is low, the disadvantage is the requirement to control boiler operation, such as milling system fault is a direct threat to the normal operation of the boiler. Abnormal phenomenon it is necessary to often happen on mill-ing system in the production process and the reason to make the summary, and put forward the accident processing method.%磨煤机是将原煤经干燥和碾磨后制成细度合格的煤粉送到锅炉燃烧器,以满足锅炉负荷的需求的机械。ZGM-123G型磨煤机是一种中速辊盘式磨煤机,其优点系统简单,布置紧凑,运行电耗也较低,缺点是对锅炉运行操作控制要求高,如制粉系统中出现故障就直接威胁到锅炉的正常运行。因此有必要对生产过程中制粉系统常发生的异常现象及原因做出总结,并针对性提出事故处理方法。

  9. Carbon and oxygen isotopic composition of coal and carbon dioxide derived from laboratory coal combustion: A preliminary study

    Science.gov (United States)

    Warwick, Peter; Ruppert, Leslie F.

    2016-01-01

    The concentration of carbon dioxide (CO2) in the atmosphere has dramatically increased from the start of the industrial revolution in the mid-1700s to present levels exceeding 400 ppm. Carbon dioxide derived from fossil fuel combustion is a greenhouse gas and a major contributor to on-going climate change. Carbon and oxygen stable isotope geochemistry is a useful tool to help model and predict the contributions of anthropogenic sources of CO2 in the global carbon cycle. Surprisingly few studies have addressed the carbon and oxygen isotopic composition of CO2 derived from coal combustion. The goal of this study is to document the relationships between the carbon and oxygen isotope signatures of coal and signatures of the CO2 produced from laboratory coal combustion in atmospheric conditions.Six coal samples were selected that represent various geologic ages (Carboniferous to Tertiary) and coal ranks (lignite to bituminous). Duplicate splits of the six coal samples were ignited and partially combusted in the laboratory at atmospheric conditions. The resulting coal-combustion gases were collected and the molecular composition of the collected gases and isotopic analyses of δ13C of CO2, δ13C of CH4, and δ18O of CO2 were analysed by a commercial laboratory. Splits (~ 1 g) of the un-combusted dried ground coal samples were analyzed for δ13C and δ18O by the U.S. Geological Survey Reston Stable Isotope Laboratory.The major findings of this preliminary work indicate that the isotopic signatures of δ13C (relative to the Vienna Pee Dee Belemnite scale, VPDB) of CO2 resulting from coal combustion are similar to the δ13CVPDB signature of the bulk coal (− 28.46 to − 23.86 ‰) and are not similar to atmospheric δ13CVPDB of CO2 (~ − 8 ‰, see http://www.esrl.noaa.gov/gmd/outreach/isotopes/c13tellsus.html). The δ18O values of bulk coal are strongly correlated to the coal dry ash yields and appear to have little or no influence on the δ18O values of CO2

  10. Mercury emissions from coal combustion in Silesia, analysis using geostatistics

    Science.gov (United States)

    Zasina, Damian; Zawadzki, Jaroslaw

    2015-04-01

    Data provided by the UNEP's report on mercury [1] shows that solid fuel combustion in significant source of mercury emission to air. Silesia, located in southwestern Poland, is notably affected by mercury emission due to being one of the most industrialized Polish regions: the place of coal mining, production of metals, stone mining, mineral quarrying and chemical industry. Moreover, Silesia is the region with high population density. People are exposed to severe risk of mercury emitted from both: industrial and domestic sources (i.e. small household furnaces). Small sources have significant contribution to total emission of mercury. Official and statistical analysis, including prepared for international purposes [2] did not provide data about spatial distribution of the mercury emitted to air, however number of analysis on Polish public power and energy sector had been prepared so far [3; 4]. The distribution of locations exposed for mercury emission from small domestic sources is interesting matter merging information from various sources: statistical, economical and environmental. This paper presents geostatistical approach to distibution of mercury emission from coal combustion. Analysed data organized in 2 independent levels: individual, bottom-up approach derived from national emission reporting system [5; 6] and top down - regional data calculated basing on official statistics [7]. Analysis, that will be presented, will include comparison of spatial distributions of mercury emission using data derived from sources mentioned above. Investigation will include three voivodeships of Poland: Lower Silesian, Opole (voivodeship) and Silesian using selected geostatistical methodologies including ordinary kriging [8]. References [1] UNEP. Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport. UNEP Chemicals Branch, Geneva, Switzerland, 2013. [2] NCEM. Poland's Informative Inventory Report 2014. NCEM at the IEP-NRI, 2014. http

  11. Novel approaches in advanced combustion characterization of fuels for advanced pressurized combustion

    Energy Technology Data Exchange (ETDEWEB)

    Aho, M.; Haemaelaeine