WorldWideScience

Sample records for pulsed-dose-rate intracavitary brachytherapy

  1. Pulsed dose rate brachytherapy – is it the right way?

    Directory of Open Access Journals (Sweden)

    Janusz Skowronek

    2010-10-01

    Full Text Available Pulsed dose rate (PDR-BT treatment is a brachytherapy modality that combines physical advantages of high-doserate (HDR-BT technology (isodose optimization, radiation safety with the radiobiological advantages of low-dose-rate (LDR-BT brachytherapy. Pulsed brachytherapy consists of using stronger radiation source than for LDR-BT and producing series of short exposures of 10 to 30 minutes in every hour to approximately the same total dose in the sameoverall time as with the LDR-BT. Modern afterloading equipment offers certain advantages over interstitial or intracavitaryinsertion of separate needles, tubes, seeds or wires. Isodose volumes in tissues can be created flexibly by a combinationof careful placement of the catheter and the adjustment of the dwell times of the computerized stepping source.Automatic removal of the radiation sources into a shielded safe eliminates radiation exposures to staff and visitors.Radiation exposure is also eliminated to the staff who formerly loaded and unloaded multiplicity of radioactive sources into the catheters, ovoids, tubes etc. This review based on summarized clinical investigations, analyses the feasibility and the background to introduce this brachytherapy technique and chosen clinical applications of PDR-BT.

  2. A review of the clinical experience in pulsed dose rate brachytherapy.

    Science.gov (United States)

    Balgobind, Brian V; Koedooder, Kees; Ordoñez Zúñiga, Diego; Dávila Fajardo, Raquel; Rasch, Coen R N; Pieters, Bradley R

    2015-01-01

    Pulsed dose rate (PDR) brachytherapy is a treatment modality that combines physical advantages of high dose rate (HDR) brachytherapy with the radiobiological advantages of low dose rate brachytherapy. The aim of this review was to describe the effective clinical use of PDR brachytherapy worldwide in different tumour locations. We found 66 articles reporting on clinical PDR brachytherapy including the treatment procedure and outcome. Moreover, PDR brachytherapy has been applied in almost all tumour sites for which brachytherapy is indicated and with good local control and low toxicity. The main advantage of PDR is, because of the small pulse sizes used, the ability to spare normal tissue. In certain cases, HDR resembles PDR brachytherapy by the use of multifractionated low-fraction dose.

  3. Pulsed-Dose Rate Brachytherapy for the Treatment of Endometrial Cancer.

    Science.gov (United States)

    De Felice, Francesca; Caiazzo, Rossella; Benevento, Ilaria; Musio, Daniela; Rubini, Filippo; Tombolini, Vincenzo

    2017-01-01

    Endometrial cancer (EC) is the most frequent gynecologic malignancy. The aim of this review is to outline clinical practice recommendations, to suggest a technical solution, and to advise doses selection for pulsed-dose rate (PDR) brachytherapy in EC. Electronic bibliographic databases, including PubMed, clinicaltrials.gov, and the American Society of Clinical Oncology (ASCO) Meeting Library, were searched for articles in English. Clinical guidelines and systematic reviews were also considered. The appropriate therapeutic approach should consider risk factors for tumor relapse and PDR brachytherapy and have a convincing role in this multidisciplinary scenario. Performing PDR brachytherapy in EC requires robust training and experience. © 2017 S. Karger AG, Basel.

  4. Pulsed dose rate brachytherapy (PDR): an analysis of the technique at 2 years

    Energy Technology Data Exchange (ETDEWEB)

    Thienpont, M. [Ghent Rijksuniversiteit (Belgium). Kliniek voor Radiotherapie en Kerngeneeskunde; Van Eijkeren, M.; Van Hecke, H.; Boterberg, T.; De Neve, W.

    1995-12-01

    A total of 154 applications was analysed using a pulsed dose brachytherapy technique for 138 patients over a 2 year period with emphasis on technical aspects influencing the overall treatment time. Vaginal ovoids were used in 59 cases, plastic tubes in 52, a Fletcher-type in 18, vaginal cylinders in 14 and a perineal template in 11 cases. Pulses were given at hourly intervals with a median dose rate of 0.6 Gy per pulse (range 0.4 to 3 Gy). The number of pulses per application varied from 3 to 134 (median 32). The number of dwell positions varied from 1 to 542 over 1 to 18 catheters. Patient related problems were few. The room was entered almost every 77 minutes. We noted 561 status codes in 147 applications. Of the 25 different codes, the most frequent one was due to the door left open when a pulse had to be given (35%) or due to constriction of the plastic catheters at the transfer tube junction (26%). However, the median total treatment time was increased by only 5 minutes. With pulsed dose rate brachytherapy at hourly pulses we can treat our patients within the planned time despite frequent room entrance and occurrence of an appreciable number of status codes. This technique seems to fulfill its promise to replace low dose rate brachytherapy.

  5. Preliminary report of pulsed dose rate brachytherapy in head-and-neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ziemlewski, A.; Zienkiewicz, J. [Medical Univ. of Gdansk (Poland). Dept. of Oral and Maxillofacial Surgery; Serkies, K.; Badzio, A. [Medical Univ. of Gdansk (Poland). Dept. of Oncology and Radiotherapy

    2007-09-15

    Purpose: To assess the feasibility and acute/delayed toxicity of pulsed-dose-rate brachytherapy (PDR BT) in head-and-neck tumors. Patients and Methods: 45 head and neck cancer patients underwent interstitial or contact PDR BT at a dose of 10.2-70 Gy (median, 70 Gy) and 0.6 or 1.0 Gy/pulse/h. 42 patients were administered BT as part of their curative treatment; 32 of them had sole BT. Three reirradiated patients with recurrent tumor had palliative BT. Results: PDR BT was well tolerated. Intense bleeding was the only complication associated with catheter removal from the tongue and bucca. 44 patients who completed BT experienced acute mucositis. Grade 3 toxicity of skin and oral mucosa occurred in three (6.8%) and six patients (13.6%), respectively. At a median follow-up of 22 months (range, 2-67 months), late serious toxicity (grade 4, for soft tissue and bone) was seen in seven patients (15.9%). Among the parameters analyzed, only dental care performed before BT had a significant impact on mucosal side effects. Acute severe mucositis was observed in 23% of patients without dental care compared to 0% of those with dental care (p = 0.044). Late severe mucositis occurred in 17.7% and 26.9% of the respective patients (p = 0.035), overall in 23%. The larger the volume encompassed by the reference isodose, the more late (p = 0.004) mucosal reactions were observed. Conclusion: PDR BT continued over a few days is a feasible and safe approach in head-and-neck tumors; however, it is accompanied by some toxicity. Dental care should precede isotope application. (orig.)

  6. Film dosimetry calibration method for pulsed-dose-rate brachytherapy with an 192Ir source.

    Science.gov (United States)

    Schwob, Nathan; Orion, Itzhak

    2007-05-01

    192Ir sources have been widely used in clinical brachytherapy. An important challenge is to perform dosimetric measurements close to the source despite the steep dose gradient. The common, inexpensive silver halide film is a classic two-dimensional integrator dosimeter and would be an attractive solution for these dose measurements. The main disadvantage of film dosimetry is the film response to the low-energy photon. Since the photon energy spectrum is known to vary with depth, the sensitometric curves are expected to be dependent on depth. The purpose of this study is to suggest a correction method for silver halide film dosimetry that overcomes the response changes at different depths. Sensitometric curves have been obtained at different depths with verification film near a 1 Ci 192Ir pulsed-dose-rate source. The depth dependence of the film response was observed and a correction function was established. The suitability of the method was tested through measurement of the radial dose profile and radial dose function. The results were compared to Monte Carlo-simulated values according to the TG43 formalism. Monte Carlo simulations were performed separately for the beta and gamma source emissions, using the EGS4 code system, including the low-energy photon and electron transport optimization procedures. The beta source emission simulation showed that the beta dose contribution could be neglected and therefore the film-depth dependence could not be attributed to this part of the source radioactivity. The gamma source emission simulations included photon-spectra collection at several depths. The results showed a depth-dependent softening of the photon spectrum that can explain the film-energy dependence.

  7. Reirradiation for recurrent head and neck cancer with salvage interstitial pulsed-dose-rate brachytherapy. Long-term results

    Energy Technology Data Exchange (ETDEWEB)

    Strnad, Vratislav; Lotter, Michael; Kreppner, Stephan; Fietkau, Rainer [University Hospital Erlangen, Dept. of Radiation Oncology, Erlangen (Germany)

    2015-01-10

    To assess the long-term results of protocol-based interstitial pulsed-dose-rate (PDR) brachytherapy as reirradiation combined with simultaneous chemotherapy and interstitial hyperthermia in selected patients with recurrent head and neck tumors. A total of 104 patients with biopsy-proven recurrent head and neck cancer were treated with interstitial PDR brachytherapy. Salvage surgery had also been undergone by 53/104 (51 %) patients (R1 or R2 resection in > 80 % of patients). Salvage brachytherapy alone was administered in 81 patients (78 %), with a median total dose of 56.7 Gy. Salvage brachytherapy in combination with external beam radiotherapy (EBRT) was performed in 23/104 patients (32 %), using a median total dose of D{sub REF} = 24 Gy. Simultaneously to PDR brachytherapy, concomitant chemotherapy was administered in 58/104 (55.8 %) patients. A single session of interstitial hyperthermia was also used to treat 33/104 (31.7 %) patients. The analysis was performed after a median follow-up of 60 months. Calculated according to Kaplan-Meier, local tumor control rates after 2, 5, and 10 years were 92.5, 82.4, and 58.9 %, respectively. Comparing results of salvage PDR brachytherapy with or without simultaneous chemotherapy, the 10-year local control rates were 76 vs. 39 % (p= 0014), respectively. No other patient- or treatment-related parameters had a significant influence on treatment results. Soft tissue necrosis or bone necrosis developed in 18/104 (17.3 %) and 11/104 (9.6 %) patients, respectively, but only 3 % of patients required surgical treatment. PDR interstitial brachytherapy with simultaneous chemotherapy is a very effective and, in experienced hands, also a safe treatment modality in selected patients with head and neck cancer in previously irradiated areas. (orig.) [German] Es erfolgte die Analyse der Langzeitergebnisse einer protokollbasierten interstitiellen Brachytherapie (Re-Bestrahlung) mit simultaner Chemotherapie und interstitieller Hyperthermie

  8. Pulsed-dose-rate and low-dose-rate brachytherapy : Comparison of sparing effects in cells of a radiosensitive and a radioresistant cell line

    NARCIS (Netherlands)

    Pomp, J; Woudstra, EC; Kampinga, HH

    Pulsed-dose-rate regimens are an attractive alternative to continuous low-dose-rate brachytherapy. However, apart from data obtained from modeling, only a few irt vitro results are available for comparing the biological effectiveness of both modalities. Cells of two human cell lines with survival

  9. Pulsed-dose-rate peri-operative brachytherapy as an interstitial boost in organ-sparing treatment of breast cancer

    Science.gov (United States)

    Jaśkiewicz, Janusz; Dziadziuszko, Rafał; Jassem, Jacek

    2016-01-01

    Purpose To evaluate peri-operative multicatheter interstitial pulsed-dose-rate brachytherapy (PDR-BT) with an intra-operative catheter placement to boost the tumor excision site in breast cancer patients treated conservatively. Material and methods Between May 2002 and October 2008, 96 consecutive T1-3N0-2M0 breast cancer patients underwent breast-conserving therapy (BCT) including peri-operative PDR-BT boost, followed by whole breast external beam radiotherapy (WBRT). The BT dose of 15 Gy (1 Gy/pulse/h) was given on the following day after surgery. Results No increased bleeding or delayed wound healing related to the implants were observed. The only side effects included one case of temporary peri-operative breast infection and 3 cases of fat necrosis, both early and late. In 11 patients (11.4%), subsequent WBRT was omitted owing to the final pathology findings. These included eight patients who underwent mastectomy due to multiple adverse prognostic pathological features, one case of lobular carcinoma in situ, and two cases with no malignant tumor. With a median follow-up of 12 years (range: 7-14 years), among 85 patients who completed BCT, there was one ipsilateral breast tumor and one locoregional nodal recurrence. Six patients developed distant metastases and one was diagnosed with angiosarcoma within irradiated breast. The actuarial 5- and 10-year disease free survival was 90% (95% CI: 84-96%) and 87% (95% CI: 80-94%), respectively, for the patients with invasive breast cancer, and 91% (95% CI: 84-97%) and 89% (95% CI: 82-96%), respectively, for patients who completed BCT. Good cosmetic outcome by self-assessment was achieved in 58 out of 64 (91%) evaluable patients. Conclusions Peri-operative PDR-BT boost with intra-operative tube placement followed by EBRT is feasible and devoid of considerable toxicity, and provides excellent long-term local control. However, this strategy necessitates careful patient selection and histological confirmation of primary

  10. Pulsed dose rate brachytherapy as the boost in combination with external beam irradiation in base of tongue cancer. Long-term results from a uniform clinical series

    Directory of Open Access Journals (Sweden)

    Bengt Johansson

    2011-03-01

    Full Text Available Purpose: To evaluate long time outcome with regard to local tumour control, side effects and quality of life of combined pulsed dose rate (PDR boost and hyperfractionated accelerated external beam radiotherapy (EBRT for primary base of tongue (BOT cancers. Material and methods: Between 1994 and 2007, the number of 83 patients were treated with primary T1-T4 BOT cancers. Seven patients (8% were T1-2N0 (AJCC stage I-II and 76 (92% patients were T1-2N+ or T3-4N0-2 (AJCC stage III-IV. The mean estimated primary tumour volume was 15.4 (1-75 cm3. EBRT was given with 1.7 Gy bid to 40.8 Gy to primary tumour and bilateral neck lymph nodes in 2.5 weeks. PDR boost of 35 Gy and a neck dissection in clinical node positive case was performed 2-3 weeks later. The patients were followed for a median of 54 (2-168 months. Results: The 2-, 5- and 10-years rates of actuarial local control were 91%, 89% and 85%, overall survival 85%, 65% and 44%, disease free survival 86%, 80% and 76%, respectively. The regional control rate was 95%. Six patients (7% developed distant metastases. A dosimetric analysis showed a mean of 100% isodose volume of 58.2 (16.7-134 cm3. In a review of late complications 11 cases of minor (13% and 5 of major soft tissue necroses (6%, as well as 6 cases of osteoradionecroses (7% were found. The patients median subjective SOMA/LENT scoring at last follow up was as follow: grade 0 for pain and trismus, grade 1 for dysphagia and taste alteration, and grade 2 for xerostomia. Global visual- analogue-scale (VAS scoring of quality of life was 8. Conclusion: Local and regional tumour control rate was excellent in this treatment protocol. The data shows the PDR boost as at least as effective as published continuous low dose rate (CLDR results.

  11. Brachytherapy

    Science.gov (United States)

    ... days. A patient receiving LDR brachytherapy will stay overnight at the hospital. This is so the delivery device can remain in place throughout the treatment period. Pulsed dose-rate (PDR) brachytherapy is delivered in a similar way, ...

  12. dose in cervical cancer intracavitary brachytherapy

    Directory of Open Access Journals (Sweden)

    Zahra Siavashpour

    2016-04-01

    Full Text Available Purpose: To analyze the optimum organ filling point for organs at risk (OARs dose in cervical cancer high-dose-rate (HDR brachytherapy. Material and methods : In a retrospective study, 32 locally advanced cervical cancer patients (97 insertions who were treated with 3D conformal external beam radiation therapy (EBRT and concurrent chemotherapy during 2010-2013 were included. Rotterdam HDR tandem-ovoid applicators were used and computed tomography (CT scanning was performed after each insertion. The OARs delineation and GEC-ESTRO-based clinical target volumes (CTVs contouring was followed by 3D forward planning. Then, dose volume histogram (DVH parameters of organs were recorded and patients were classified based on their OARs volumes, as well as their inserted tandem length. Results : The absorbed dose to point A ranged between 6.5-7.5 Gy. D 0.1cm ³ and D 2cm ³ of the bladder significantly increased with the bladder volume enlargement (p value < 0.05. By increasing the bladder volume up to about 140 cm3, the rectum dose was also increased. For the cases with bladder volumes higher than 140 cm3, the rectum dose decreased. For bladder volumes lower than 75 cm3, the sigmoid dose decreased; however, for bladder volumes higher than 75 cm3, the sigmoid dose increased. The D 2cm ³ of the bladder and rectum were higher for longer tandems than for shorter ones, respectively. The divergence of the obtained results for different tandem lengths became wider by the extension of the bladder volume. The rectum and sigmoid volume had a direct impact on increasing their D 0.1cm ³ and D 2cm ³, as well as decreasing their D 10 , D 30 , and D 50 . Conclusions : There is a relationship between the volumes of OARs and their received doses. Selecting a bladder with a volume of about 70 cm3 or less proved to be better with regards to the dose to the bladder, rectum, and sigmoid.

  13. [Innovation in gynaecological brachytherapy: new technologies, pulse dose-rate brachytherapy, image, definition of new volumes of interest and their impact on dosimetry: application in a clinical research programme "STIC"].

    Science.gov (United States)

    Haie-Meder, C; Peiffert, D

    2006-11-01

    Brachytherapy plays a fundamental role in the therapeutic approach of patients with stage I-IV cervical carcinoma. Technical modalities have evolved during the last decades: stepping source technology, imaging modalities development, specially IMN, treatment planning system integrating 3D images. Images from CT-Scan and MRI have contributed to a better knowledge of tumoral extension and critical organs. CT and/or MRI compatible applicators allow a sectional image based approach with a better definition of tumour volume compared to traditional approaches. The introduction of 3D image based approach for GTV and CTV requires new definitions and a common language. In 2000, a working group within GEC-ESTRO was created to support 3D image based 3D treatment planning approach in cervix cancer BT. The task was to determine a common terminology enabling various groups to use a common language. Recommendations were described and proposed based on clinical experience and dosimetric concepts of different institutions. Two CTVs were described en relation to the risk for recurrence: high-risk CTV and intermediate risk CTV. In order to better define the role of such definitions and their potential impact on the complication incidence in patients with cervical cancer, a special French programme was developed. The aim of this programme is to study the incidence of the severe 2-year complication rate in two comparable patient populations: one population is treated using PDR brachytherapy with CT-Scan or MRI with the applicators in place allowing a 3D dosimetry with optimization, the second population is treated using standard X-rays radiographs without any delineation of the target nor optimisation. Each population arm includes 425 patients. A medicoeconomic assessment is performed, allowing a real cost of the most sophisticated approach compared to a historical dosimetric system.

  14. The use of trans-applicator intracavitary ultrasonography in brachytherapy for cervical cancer: phantom study of a novel approach to 3D image-guided brachytherapy.

    Science.gov (United States)

    Tamaki, Tomoaki; Miyaura, Kazunori; Murakami, Toshihiro; Kumazaki, Yu; Suzuki, Yoshiyuki; Nakano, Takashi; Kato, Shingo

    2017-04-01

    To assess the feasibility of applying trans-applicator intracavitary ultrasonography to image-guided brachytherapy for cervical cancer. For this experiment, a phantom was created and included a polyethylene tube, intended to simulate a tandem applicator, which was inserted into chicken meat and embedded in agar, along with magnetic resonance imaging (MRI)-compatible ovoid applicators. Three-dimensional images of the phantom were obtained using computed tomography (CT), MRI (T2-weighted), and intracavitary ultrasonography sectional images acquired at 1 mm slice intervals. Intracavitary ultrasonography images were acquired from within the simulated tandem applicator using a radial transducer. Magnetic resonance imaging and intracavitary ultrasonography images were manually registered onto CT images. The chicken meat was contoured as the target volume independently on the CT, MRI, and intracavitary ultrasonography images, and the Dice similarity coefficient was used to compare the target volumes. The dose distributions of a sample brachytherapy plan were also evaluated. Computed tomography, MRI, and intracavitary ultrasonography all visualized the three-dimensional phantom volumes. Intracavitary ultrasonography images depicted the meat with high echoic signals and a border clearly distinguishable from the surrounding agar. The Dice similarity coefficient values for the target volumes on CT vs. MRI, CT vs. intracavitary ultrasonography, and MRI vs. intracavitary ultrasonography were 0.966, 0.965, and 0.971, respectively, indicating similar contouring with the three modalities. Among the modalities, the differences in D50, D90, D98, and D100 values were 1.8%, 2.9%, 3.7%, and 2.9%, respectively. Three-dimensional reconstructed trans-applicator intracavitary ultrasonographic images clearly depicted meat tissue within the phantom, and could thus be used for brachytherapy planning. This study proves the concept of trans-applicator intracavitary ultrasonography for

  15. Image guided adaptive brachytherapy with combined intracavitary and interstitial technique improves the therapeutic ratio in locally advanced cervical cancer: Analysis from the retroEMBRACE study

    DEFF Research Database (Denmark)

    LU, Fokdal; Sturdza, Alina; Mazeron, Renaud

    2016-01-01

    Background and purpose Image guided adaptive brachytherapy (IGABT) using intracavitary applicators (IC) has led to a significant improvement of local control in locally advanced cervical cancer (LACC). Further improvement has been obtained with combined intracavitary/interstitial (IC/IS) applicat......Background and purpose Image guided adaptive brachytherapy (IGABT) using intracavitary applicators (IC) has led to a significant improvement of local control in locally advanced cervical cancer (LACC). Further improvement has been obtained with combined intracavitary/interstitial (IC...

  16. Economic assessment of pulsed dose-rate (P.D.R.) brachytherapy with optimized dose distribution for cervix carcinoma;Evaluation economique de la curietherapie de debit pulse gynecologique (PDR) avec optimisation de la dose pour les cancers du col uterin

    Energy Technology Data Exchange (ETDEWEB)

    Remonnay, R.; Morelle, M.; Pommier, P.; Carrere, M.O. [Lyon Univ., 69 (France); Remonnay, R.; Morelle, M.; Pommier, P. [Axe Economie de la Sante, GATE, CNRS-UMR 5824, Centre Leon-Berard, 69 - Lyon (France); Pommier, P. [Centre Leon-Berard, 69 - Lyon (France); Haie-Meder, C. [Institut Gustave-Roussy, 94 - Villejuif (France); Quetin, P. [Centre Paul-Strauss, 67 - Strasbourg (France); Kerr, C. [Centre Val-d' Aurelle, parc Euromedecine, 34 - Montpellier (France); Delannes, M. [Institut Claudius-Regaud, 31 - Toulouse (France); Castelain, B. [Centre Oscar-Lambret, 59 - Lille (France); Peignaux, K. [Centre Georges Francois Leclerc, 21 - Dijon (France); Kirova, Y. [Institut Curie, 75 - Paris (France); Romestaing, P. [Centre hospitalier Lyon Sud, 69 - Pierre-Benite (France); Williaume, D. [Centre Eugene-Marquis, 35 - Rennes (France); Krzisch, C. [Hopital Sud, 80 - Amiens (France); Thomas, L. [Institut Bergonie, 33 - Bordeaux (France); Lang, P. [Groupe hospitalier Pitie-Salpetriere, 75 - Paris (France); Baron, M.H. [Hopital Jean-Minjoz, 25 - Besancon (France); Cussac, A. [Centre Rene-Gauducheau, 44 - Nantes-Saint-Herblain (France); Lesaunier, F. [Centre Francois-Baclesse, 14 - Caen (France); Maillard, S. [Institut Jean-Godinot, 51 - Reims (France); Barillot, I. [Hopital Bretonneau, 37 - Tours (France); Charra-Brunaud, C.; Peiffert, D. [Centre Alexis-Vautrin, 54 - Vandoeuvre-les-Nancy (France)

    2010-06-15

    Purpose: Our study aims at evaluating the cost of pulsed dose-rate (P.D.R.) brachytherapy with optimized dose distribution versus traditional treatments (iridium wires, cesium, non-optimized P.D.R.). Issues surrounding reimbursement were also explored. Materials and methods: This prospective, multi-centre, non-randomized study conducted in the framework of a project entitled 'Support Program for Costly Diagnostic and Therapeutic Innovations' involved 21 hospitals. Patients with cervix carcinoma received either classical brachytherapy or the innovation. The direct medical costs of staff and equipment, as well as the costs of radioactive sources, consumables and building renovation were evaluated from a hospital point of view using a micro costing approach. Subsequent costs per brachytherapy were compared between the four strategies. Results: The economic study included 463 patients over two years. The main resources categories associated with P.D.R. brachytherapy (whether optimized or not) were radioactive sources (1053 Euros) and source projectors (735 Euros). Optimized P.D.R. induced higher cost of imagery and dosimetry (respectively 130 Euros and 367 Euros) than non-optimized P.D.R. (47 Euros and 75 Euros). Extra costs of innovation over the less costly strategy (iridium wires) reached more than 2100 Euros per treatment, but could be reduced by half in the hypothesis of 40 patients treated per year (instead of 24 in the study). Conclusion: Aside from staff, imaging and dosimetry, the current hospital reimbursements largely underestimated the cost of innovation related to equipment and sources. (authors)

  17. Comparative dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Samia de Freitas, E-mail: samiabrandao@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Campos, Tarcisio Passos Ribeiro de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2013-06-15

    Objective: comparative analysis of dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for treatment of brain tumors. Materials and methods: simulations of intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT were performed with the MCNP5 code, modeling the treatment of a brain tumor on a voxel computational phantom representing a human head. Absorbed dose rates were converted into biologically weighted dose rates. Results: intracavitary balloon catheter brachytherapy with I-125 produced biologically weighted mean dose rates of 3.2E-11, 1.3E-10, 1.9E-11 and 6.9E-13 RBE.Gy.h{sup -1}.p{sup -1}.s, respectively, on the healthy tissue, on the balloon periphery and on the /{sub 1} and /{sub 2} tumor infiltration zones. On the other hand, Cf-252 brachytherapy combined with BNCT produced a biologically weighted mean dose rate of 5.2E-09, 2.3E-07, 8.7E-09 and 2.4E-09 RBE.Gy.h{sup -1}.p{sup -1}.s, respectively on the healthy tissue, on the target tumor and on the /{sub 1} and /{sub 2} infiltration zones. Conclusion: Cf-252 brachytherapy combined with BNCT delivered a selective irradiation to the target tumor and to infiltration zones, while intracavitary balloon catheter brachytherapy with I-125 delivered negligible doses on the tumor infiltration zones. (author)

  18. A real-time applicator position monitoring system for gynecologic intracavitary brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Junyi, E-mail: junyi-xia@uiowa.edu; Waldron, Timothy; Kim, Yusung [Department of Radiation Oncology, University of Iowa, Iowa City, Iowa 52242 (United States)

    2014-01-15

    Purpose: To develop a real-time applicator position monitoring system (RAPS) for intracavitary brachytherapy using an infrared camera and reflective markers. Methods: 3D image-guided brachytherapy requires high accuracy of applicator localization; however, applicator displacement can happen during patient transfer for imaging and treatment delivery. No continuous applicator position monitoring system is currently available. The RAPS system was developed for real-time applicator position monitoring without additional radiation dose to patients. It includes an infrared camera, reflective markers, an infrared illuminator, and image processing software. After reflective markers are firmly attached to the applicator and the patient body, applicator displacement can be measured by computing the relative change in distance between the markers. The reflective markers are magnetic resonance imaging (MRI) compatible, which is suitable for MRI-guided HDR brachytherapy paradigm. In our prototype, a Microsoft Kinect sensor with a resolution of 640 by 480 pixels is used as an infrared camera. A phantom study was carried out to compare RAPS' measurements with known displacements ranging from −15 to +15 mm. A reproducibility test was also conducted. Results: The RAPS can achieve 4 frames/s using a laptop with Intel{sup ®} Core™2 Duo processor. When the pixel size is 0.95 mm, the difference between RAPS' measurements and known shift values varied from 0 to 0.8 mm with the mean value of 0.1 mm and a standard deviation of 0.44 mm. The system reproducibility was within 0.6 mm after ten reposition trials. Conclusions: This work demonstrates the feasibility of a real-time infrared camera based gynecologic intracavitary brachytherapy applicator monitoring system. Less than 1 mm accuracy is achieved when using an off-the-shelf infrared camera.

  19. Effect of chemical composition and density of the pelvic structure in intracavitary brachytherapy dosimetry

    Science.gov (United States)

    Chávez-Aguilera, N.; Torres-García, E.; Mitsoura, E.

    2011-03-01

    High dose rate (HDR) and low dose rate (LDR) intracavitary brachytherapies dosimetry in clinical practice are typically performed by commercial treatment planning systems. However, these systems do not fully consider the heterogeneities present in the real structure of the patient. The aim of this work is to obtain isodose curves and surfaces around the usual array of sources used in LDR ( 137Cs) and HDR ( 192Ir) intracavitary brachytherapy by Monte Carlo simulation, considering the real anatomic structure, density and chemical composition of media and tissues from the female pelvic region. The structural information was obtained from computed tomography images in the DICOM format. A voxel phantom (VP) was developed to perform ionizing radiation transport, considering the gamma spectrum of 137Cs and 192Ir. The absorbed dose was computed within each voxel of 2×2×3 mm 3. Four materials were considered in the VP—air, fat, muscle tissue and bone; however, one material per voxel was defined. Results show and quantify the effect of density and chemical composition of the medium on the absorbed dose distribution. According to them, the treatment planning systems underestimate the absorbed dose by 8% approximately for both radionuclides. In a heterogeneous medium, the absorbed dose distribution of 192Ir is more irregular than that of 137Cs but spatially better defined.

  20. Effect of chemical composition and density of the pelvic structure in intracavitary brachytherapy dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Chavez-Aguilera, N. [Coordinacion de Investigacion y Estudios de Posgrado, Facultad de Medicina, Universidad Autonoma del Estado de Mexico, Paseo Tollocan s/n Esquina con Jesus Carranza, 50180 Toluca (Mexico); Departamento de Fisica Medica, Instituto Estatal de Cancerologia ' Dr. Arturo Beltran Ortega' , Acapulco, Guerrero (Mexico); Torres-Garcia, E., E-mail: etorresg@uaemex.m [Coordinacion de Investigacion y Estudios de Posgrado, Facultad de Medicina, Universidad Autonoma del Estado de Mexico, Paseo Tollocan s/n Esquina con Jesus Carranza, 50180 Toluca (Mexico); Mitsoura, E. [Coordinacion de Investigacion y Estudios de Posgrado, Facultad de Medicina, Universidad Autonoma del Estado de Mexico, Paseo Tollocan s/n Esquina con Jesus Carranza, 50180 Toluca (Mexico)

    2011-03-15

    High dose rate (HDR) and low dose rate (LDR) intracavitary brachytherapies dosimetry in clinical practice are typically performed by commercial treatment planning systems. However, these systems do not fully consider the heterogeneities present in the real structure of the patient. The aim of this work is to obtain isodose curves and surfaces around the usual array of sources used in LDR ({sup 137}Cs) and HDR ({sup 192}Ir) intracavitary brachytherapy by Monte Carlo simulation, considering the real anatomic structure, density and chemical composition of media and tissues from the female pelvic region. The structural information was obtained from computed tomography images in the DICOM format. A voxel phantom (VP) was developed to perform ionizing radiation transport, considering the gamma spectrum of {sup 137}Cs and {sup 192}Ir. The absorbed dose was computed within each voxel of 2x2x3 mm{sup 3}. Four materials were considered in the VP-air, fat, muscle tissue and bone; however, one material per voxel was defined. Results show and quantify the effect of density and chemical composition of the medium on the absorbed dose distribution. According to them, the treatment planning systems underestimate the absorbed dose by 8% approximately for both radionuclides. In a heterogeneous medium, the absorbed dose distribution of {sup 192}Ir is more irregular than that of {sup 137}Cs but spatially better defined.

  1. Clinical assessment of 252Californium neutron intracavitary brachytherapy using a two-channel Y applicator combined with external beam radiotherapy for endometrial cancer

    National Research Council Canada - National Science Library

    Zhou, Qian; Tang, Cheng; Zhao, Ke-Wei; Xiong, Yan-Li; Chen, Shu; Xu, Wen-Jing; Lei, Xin

    2016-01-01

    The aim of this study was to determine the efficacy of 252Californium neutron intracavitary brachytherapy using a two-channel Y applicator combined with external beam radiotherapy for the treatment of endometrial cancer...

  2. Treatment Outcome of Medium-Dose-Rate Intracavitary Brachytherapy for Carcinoma of the Uterine Cervix: Comparison With Low-Dose-Rate Intracavitary Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kaneyasu, Yuko, E-mail: kaneyasu@hiroshima-u.ac.jp [Department of Radiation Oncology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima (Japan); Department of Radiation Oncology, Tokyo Women' s Medical University, Tokyo (Japan); Kita, Midori [Department of Radiation Oncology, Tokyo Women' s Medical University, Tokyo (Japan); Department of Clinical Radiology, Tokyo Metropolitan Tama Medical Center, Tokyo (Japan); Okawa, Tomohiko [Evaluation and Promotion Center, Utsunomiya Memorial Hospital, Tochigi (Japan); Maebayashi, Katsuya [Department of Radiation Oncology, Tokyo Women' s Medical University, Tokyo (Japan); Kohno, Mari [Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women' s Medical University Hospital, Tokyo (Japan); Sonoda, Tatsuo; Hirabayashi, Hisae [Department of Radiology, Tokyo Women' s Medical University Hospital, Tokyo (Japan); Nagata, Yasushi [Department of Radiation Oncology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima (Japan); Mitsuhashi, Norio [Department of Radiation Oncology, Tokyo Women' s Medical University, Tokyo (Japan)

    2012-09-01

    Purpose: To evaluate and compare the efficacy of medium-dose-rate (MDR) and low-dose-rate (LDR) intracavitary brachytherapy (ICBT) for uterine cervical cancer. Methods and Materials: We evaluated 419 patients with squamous cell carcinoma of the cervix who were treated by radical radiotherapy with curative intent at Tokyo Women's Medical University from 1969 to 1999. LDR was used from 1969 to 1986, and MDR has been used since July 1987. When compared with LDR, fraction dose was decreased and fraction size was increased (1 or 2 fractions) for MDR to make the total dose of MDR equal to that of LDR. In general, the patients received a total dose of 60 to 70 Gy at Point A with external beam radiotherapy combined with brachytherapy according to the International Federation of Gynecology and Obstetrics stage. In the LDR group, 32 patients had Stage I disease, 81 had Stage II, 182 had Stage III, and 29 had Stage IVA; in the MDR group, 9 patients had Stage I disease, 19 had Stage II, 55 had Stage III, and 12 had Stage IVA. Results: The 5-year overall survival rates for Stages I, II, III, and IVA in the LDR group were 78%, 72%, 55%, and 34%, respectively. In the MDR group, the 5-year overall survival rates were 100%, 68%, 52%, and 42%, respectively. No significant statistical differences were seen between the two groups. The actuarial rates of late complications Grade 2 or greater at 5 years for the rectum, bladder, and small intestine in the LDR group were 11.1%, 5.8%, and 2.0%, respectively. The rates for the MDR group were 11.7%, 4.2%, and 2.6%, respectively, all of which were without statistical differences. Conclusion: These data suggest that MDR ICBT is effective, useful, and equally as good as LDR ICBT in daytime (about 5 hours) treatments of patients with cervical cancer.

  3. Stereotactic intracavitary brachytherapy with P-32 for cystic craniopharyngiomas in children

    Energy Technology Data Exchange (ETDEWEB)

    Maarouf, Mohammad; El Majdoub, Faycal [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); University of Witten/Herdecke, Department of Stereotaxy and Functional Neurosurgery, Center of Neurosurgery, Cologne-Merheim Medical Center (CMMC), Cologne (Germany); Fuetsch, Manuel [University Hospital of Munich, Department of Neurosurgery, Munich (Germany); Hoevels, Mauritius [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); Lehrke, Ralph [St. Barbara-Klinik Hamm-Heessen, Department of Stereotaxy and Functional Neurosurgery, Hamm (Germany); Berthold, Frank [University Hospital of Cologne, Department Pediatric Oncology, Cologne (Germany); Voges, Juergen [University Hospital of Magdeburg, Department of Stereotaxy and Functional Neurosurgery, Magdeburg (Germany); Sturm, Volker [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); University Hospital of Wurzburg, Department of Neurosurgery, Wuerzburg (Germany)

    2016-03-15

    Although microsurgery remains the first-line treatment, gross total resection of cystic craniopharyngeomas (CP) is associated with significant morbidity and mortality and the addition of external irradiation to subtotal resection proves to achieve similar tumor control. However, concern regarding long-term morbidity associated with external irradiation in children still remains. With this retrospective analysis, the authors emphasize intracavitary brachytherapy using phosphorus-32 (P-32) as a treatment option for children with cystic CP. Between 1992 and 2009, 17 children (median age 15.4 years; range 7-18 years) with cystic CP underwent intracavitary brachytherapy using P-32. Eleven patients were treated for recurrent tumor cysts; 6 patients were treated primarily. MR imaging revealed solitary cysts in 7 patients; 10 patients had mixed solid-cystic lesions (median tumor volume 11.1 ml; range 0.5-78.9 ml). The median follow-up time was 61.9 months (range 16.9-196.6 months). Local cyst control could be achieved in 14 patients (82 %). Three patients showed progression of the treated cystic formation (in-field progression) after a median time of 8.3 months (range 5.3-10.3 months), which led to subsequent interventions. The development of new, defined cysts and progression of solid tumor parts (out-of-field progression) occurred in 5 patients and led to additional interventions in 4 cases. There was neither surgery-related permanent morbidity nor mortality in this study. The overall progression-free survival was 75, 63, and 52 % after 1, 3, and 5 years, respectively. Intracavitary brachytherapy using P-32 represents a safe and effective treatment option for children harboring cystic CP, even as primary treatment. However, P-32 does not clearly affect growth of solid tumor parts or the development of new cystic formations. (orig.) [German] Obwohl die Mikrochirurgie die Methode der Wahl darstellt, ist die komplette Resektion zystischer Kraniopharyngeome haeufig mit einer

  4. Evaluation of Rectal Dose During High-Dose-Rate Intracavitary Brachytherapy for Cervical Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Sha, Rajib Lochan [Department of Radiation Physics, Indo-American Cancer Institute and Research Centre, Hyderabad (India); Department of Physics, Osmania University, Hyderabad (India); Reddy, Palreddy Yadagiri [Department of Physics, Osmania University, Hyderabad (India); Rao, Ramakrishna [Department of Radiation Physics, MNJ Institute of Oncology and Regional Cancer Center, Hyderabad (India); Muralidhar, Kanaparthy R. [Department of Radiation Physics, Indo-American Cancer Institute and Research Centre, Hyderabad (India); Kudchadker, Rajat J., E-mail: rkudchad@mdanderson.org [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

    2011-01-01

    High-dose-rate intracavitary brachytherapy (HDR-ICBT) for carcinoma of the uterine cervix often results in high doses being delivered to surrounding organs at risk (OARs) such as the rectum and bladder. Therefore, it is important to accurately determine and closely monitor the dose delivered to these OARs. In this study, we measured the dose delivered to the rectum by intracavitary applications and compared this measured dose to the International Commission on Radiation Units and Measurements rectal reference point dose calculated by the treatment planning system (TPS). To measure the dose, we inserted a miniature (0.1 cm{sup 3}) ionization chamber into the rectum of 86 patients undergoing radiation therapy for cervical carcinoma. The response of the miniature chamber modified by 3 thin lead marker rings for identification purposes during imaging was also characterized. The difference between the TPS-calculated maximum dose and the measured dose was <5% in 52 patients, 5-10% in 26 patients, and 10-14% in 8 patients. The TPS-calculated maximum dose was typically higher than the measured dose. Our study indicates that it is possible to measure the rectal dose for cervical carcinoma patients undergoing HDR-ICBT. We also conclude that the dose delivered to the rectum can be reasonably predicted by the TPS-calculated dose.

  5. Metal artifact reduction in MRI-based cervical cancer intracavitary brachytherapy

    Science.gov (United States)

    Rao, Yuan James; Zoberi, Jacqueline E.; Kadbi, Mo; Grigsby, Perry W.; Cammin, Jochen; Mackey, Stacie L.; Garcia-Ramirez, Jose; Goddu, S. Murty; Schwarz, Julie K.; Gach, H. Michael

    2017-04-01

    Magnetic resonance imaging (MRI) plays an increasingly important role in brachytherapy planning for cervical cancer. Yet, metal tandem, ovoid intracavitary applicators, and fiducial markers used in brachytherapy cause magnetic susceptibility artifacts in standard MRI. These artifacts may impact the accuracy of brachytherapy treatment and the evaluation of tumor response by misrepresenting the size and location of the metal implant, and distorting the surrounding anatomy and tissue. Metal artifact reduction sequences (MARS) with high bandwidth RF selective excitations and turbo spin-echo readouts were developed for MRI of orthopedic implants. In this study, metal artifact reduction was applied to brachytherapy of cervical cancer using the orthopedic metal artifact reduction (O-MAR) sequence. O-MAR combined MARS features with view angle tilting and slice encoding for metal artifact correction (SEMAC) to minimize in-plane and through-plane susceptibility artifacts. O-MAR improved visualization of the tandem tip on T2 and proton density weighted (PDW) imaging in phantoms and accurately represented the diameter of the tandem. In a pilot group of cervical cancer patients (N  =  7), O-MAR significantly minimized the blooming artifact at the tip of the tandem in PDW MRI. There was no significant difference observed in artifact reduction between the weak (5 kHz, 7 z-phase encodes) and medium (10 kHz, 13 z-phase encodes) SEMAC settings. However, the weak setting allowed a significantly shorter acquisition time than the medium setting. O-MAR also reduced susceptibility artifacts associated with metal fiducial markers so that they appeared on MRI at their true dimensions.

  6. A newly developed MR simulation system for intracavitary brachytherapy for cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ebe, Kazuyu; Matsunaga, Naofumi [Yamaguchi Univ., Ube (Japan). School of Medicine

    1997-03-01

    We have developed a prototype system for a magnetic resonance (MR) simulation to accurately estimate radiation doses to the tumor and surrounding normal tissues during brachytherapy for cervical cancer. Six patients with cervical cancer underwent MR simulation prior to intracavitary high-dose-rate brachytherapy using Co-60 sources. Tandem and ovoid applicators filled with tap-water were placed in the uterine cavity and vaginal fornix, then MR imaging examinations were performed. Frontal and lateral images of maximum intensity projection (MIP) of applicators generated from a data set of half-Fourier single shot turbo spin-echo (HASTE) images were chosen for processing by the treatment planning computer system. Then, isodose curves on the coronal or sagittal plane of the tandem section were superimposed on corresponding T2-weighted images derived from a turbo spin-echo technique. Doses to the tumor, the posterior wall of the urinary bladder, the anterior wall of the rectum, and the urethra were read from isodose curves superimposed on the T2-weighted sagittal image. Phantom experiments were done to evaluate geometrical errors. The possible distortion of the lattice image on the phantom was small. This system promises to be useful in customizing the dose distribution corresponding to the tumor and surrounding normal tissues. (author)

  7. Low dose rate caesium-137 implant time of intracavitary brachytherapy source of a selected oncology center in Ghana

    OpenAIRE

    John Owusu Banahene; Emmanuel Ofori Darko; Baffour Awuah

    2015-01-01

    Background: The treatment time taken for a radioactive source is found to be very important in intracavitary brachytherapy treatment. The duration of the treatment time depends on the prescribed dose requested to a reference point and the calculated dose rate to the same point. The duration of the treatment time of source is found to depend on the tumour stage. In this work, the treatment time of implant has been calculated for a Caesium-137 low dose rate brachytherapy source at an oncology f...

  8. A comparative study of two reconstructive methods and different recommendations in intracavitary brachytherapy

    Directory of Open Access Journals (Sweden)

    KR Muralidhar

    2010-01-01

    Full Text Available Purpose: Intracavitary brachytherapy (ICB is a widely used technique in the treatment of cervical cancer. In our Institute, we use different reconstructive methods in the conventional planning procedure. The main aim of this study was to compare these methods using critical organ doses obtained in various treatment plans. There is a small difference in the recommendations in selecting bladder dose point between ICRU (International Commission on Radiation Units & Measurements -38 and ABS (American Brachytherapy Society. The second objective of the study was to find the difference in bladder dose using both recommendations.Material and methods: We have selected two methods: variable angle method (M1 and orthogonal method (M2. Two orthogonal sets of radiographs were taken into consideration using conventional simulator. All four radiographs were used in M1 and only two radiographs were used in M2. Bladder and rectum doses were calculated using ICRU-38 recommendations. For maximum bladder dose reference point as per the ABS recommendation, 4 to 5 reference points were marked on Foley’s balloon.Results: 64% of plans were showing more bladder dose and 50% of plans presented more rectum dose in M1 compared to M2. Many of the plans reviled maximum bladder dose point, other than ICRU-38 bladder point in both methods.Variation was exceeded in 5% of considerable number of plans.Conclusions: We observed a difference in critical organ dose between two studied methods. There is an advantage of using variable angle reconstruction method in identifying the catheters. It is useful to follow ABS recommendation to find maximum bladder dose.

  9. Tolerance and efficacy of preoperative intracavitary HDR brachytherapy in IB and IIA cervical cancer

    Science.gov (United States)

    Bialas, Brygida; Fijalkowski, Marek; Raczek-Zwierzycka, Katarzyna

    2009-01-01

    Purpose The aim of this work is to analyze the efficacy and tolerance of preoperative intracavitary HDR brachytherapy (HDR-BT) in patients with IB and IIA cervical cancer. Material and methods 139 patients with cervical cancer IB-IIA with preoperative HDR-BT, out of which 60 patients with cervical cancer IB (43.2%) and 79 with IIA (56.8%) were treated since 1996 to 2002. In preoperative BT total dose to point A ranged from 30-45 Gy in 6-9 fractions twice a week. The fraction dose was 4-5 Gy at point A. Six weeks after BT all patients underwent radical Wertheim-Meigs hysterectomy. Patients with disadvantageous risk factors or with positive specimen histology had a complementary therapy: external-beam radiotherapy (EBRT) given to the whole pelvic volume in daily fractions of 2 Gy up to total dose of 36-52 Gy (20 patients) or EBRT with cisplatin-based chemotherapy with the dose of 30-40 mg/m2 in 5-7 fractions given weekly (7 patients) or chemotherapy (6 patients). Acute and late radiation toxicity was evaluated according to EORTC/RTOG. Results In postoperative specimen histopathology the number of 114 women (82%) had tumor-free specimen within brachytherapy target (in cervix and cavity), 96 women (60.1%) had tumor-free specimen both in and outside brachytherapy target (lymph nodes, parametra, adnexis). The 5-year and 10-year DFS were 93.8% and 88% for IB and 89.7% and 64.7% for IIA respectively. 7.9% of patients developed acute toxicity both in rectum and bladder (only in I and II grade of EORTC/RTOG). Late severe complication occurred in rectum in 2.2% of patients and in bladder 1.4%. Conclusions 1. Preoperative HDR-BT in patients with IB and IIA cervical cancer is an effective and well tolerated therapy with acceptable rate of side effects. 2. Preoperative HDR-BT followed by surgery in a group without risk factors is a sufficient treatment option with no additional adjuvant therapy requirement.

  10. Dosimetric study for cervix carcinoma treatment using intensity modulated radiation therapy (IMRT) compensation based on 3D intracavitary brachytherapy technique.

    Science.gov (United States)

    Yin, Gang; Wang, Pei; Lang, Jinyi; Tian, Yin; Luo, Yangkun; Fan, Zixuan; Tam, Kin Yip

    2016-06-01

    Intensity modulated radiation therapy (IMRT) compensation based on 3D high-dose-rate (HDR) intracavitary brachytherapy (ICBT) boost technique (ICBT + IMRT) has been used in our hospital for advanced cervix carcinoma patients. The purpose of this study was to compare the dosimetric results of the four different boost techniques (the conventional 2D HDR intracavitary brachytherapy [CICBT], 3D optimized HDR intracavitary brachytherapy [OICBT], and IMRT-alone with the applicator in situ). For 30 patients with locally advanced cervical carcinoma, after the completion of external beam radiotherapy (EBRT) for whole pelvic irradiation 45 Gy/25 fractions, five fractions of ICBT + IMRT boost with 6 Gy/fractions for high risk clinical target volume (HRCTV), and 5 Gy/fractions for intermediate risk clinical target volume (IRCTV) were applied. Computed tomography (CT) and magnetic resonance imaging (MRI) scans were acquired using an in situ CT/MRI-compatible applicator. The gross tumor volume (GTV), the high/intermediate-risk clinical target volume (HRCTV/IRCTV), bladder, rectum, and sigmoid were contoured by CT scans. For ICBT + IMRT plan, values of D90, D100 of HRCTV, D90, D100, and V100 of IRCTV significantly increased (p < 0.05) in comparison to OICBT and CICBT. The D2cc values for bladder, rectum, and sigmoid were significantly lower than that of CICBT and IMRT alone. In all patients, the mean rectum V60 Gy values generated from ICBT + IMRT and OICBT techniques were very similar but for bladder and sigmoid, the V60 Gy values generated from ICBT + IMRT were higher than that of OICBT. For the ICBT + IMRT plan, the standard deviations (SD) of D90 and D2cc were found to be lower than other three treatment plans. The ICBT + IMRT technique not only provides good target coverage but also maintains low doses (D2cc) to the OAR. ICBT + IMRT is an optional technique to boost parametrial region or tumor of large size and irregular shape when intracavitary/interstitial brachytherapy

  11. Treatment optimization with concurrent SBRT and intracavitary brachytherapy for locally advanced cervical cancer.

    Science.gov (United States)

    Wan, Bin; Lang, Jinyi; Wang, Pei; Ma, C-M

    2016-01-01

    This work is aimed at investigating treatment planning strategies to optimally combine stereotactic body radiation therapy (SBRT) with intracavitary brachytherapy (ICBT) for the treatment of locally advanced cervical cancer. Forty patients (stage IIB - IIIB) previously treated with combined SBRT and ICBT were randomly selected for this retrospective study. All patients were CT- and MR-scanned with a ring applicator in situ. HR-CTV and OARs were contoured according to fused CT and MR images. Several ICBT plans were generated for each patient based on different dose prescription points, and then a matching SBRT plan was generated for each ICBT plan. The dose distribution of each composite plan was analyzed with a focus on the doses received by 90% and 100% of the target volume (D90 and D100), the target volume receiving 100% of the prescription dose (V100%), and the doses received by 2 cc and 40% of the OARs (D2cc and D40). As the distance, d, between the prescription point and the tandem varied within 1.0 and 1.9 cm, the D90, D100 and V100% for the target, as well as D2cc and D40 for the bladder and rectum approached their optimal values for d value between 1.0 and 1.4 cm. When designing a combined ICBT+SBRT plan, one should measure the size of the cervix and set the prescription isodose line 1.0 to 1.4 cm away from the tandem for the ICBT plan first and then optimize the SBRT plan based on the ICBT dose distribution to achieve the best target coverage and critical structures sparing. PACS number: 87.53.jw; 87.55.D. © 2016 The Authors.

  12. The use of a transverse CT image for the estimation of the dose given to the rectum in intracavitary brachytherapy for carcinoma of the cervix

    NARCIS (Netherlands)

    van den Bergh, F; Meertens, H; Moonen, L; van Bunningen, B

    1998-01-01

    Background and purpose: The three-dimensional (3D) dose distribution in combination with 3D anatomy of 13 patients treated for cervical carcinoma with intracavitary brachytherapy was analyzed. The aim of this study was to determine the correlation between a dose value obtained from the integral dose

  13. Clinical assessment of 252Californium neutron intracavitary brachytherapy using a two-channel Y applicator combined with external beam radiotherapy for endometrial cancer

    Directory of Open Access Journals (Sweden)

    Qian Zhou

    2016-01-01

    Full Text Available OBJECTIVE: The aim of this study was to determine the efficacy of 252Californium neutron intracavitary brachytherapy using a two-channel Y applicator combined with external beam radiotherapy for the treatment of endometrial cancer. METHODS: Thirty-one patients with stage I-III endometrial cancer were recruited for this study. The stage I patients received only 252Californium neutron intracavitary brachytherapy with a two-channel applicator. The stage II and III patients received both 252Californium neutron intracavitary brachytherapy using a two-channel applicator and parallel-opposed whole pelvic radiotherapy. RESULTS: The five-year local control rate was 80.6% (25/31, the overall survival rate was 51.6% (16/31, and the disease-free survival rate was 54.8% (17/31. The incidence of serious late complications was 12.9% (4/31. CONCLUSIONS: 252Californium neutron intracavitary brachytherapy using a two-channel applicator combined with external beam radiotherapy was effective for treating endometrial cancer and the incidence of serious late complications related to this combination was within an acceptable range.

  14. Clinical assessment of 252Californium neutron intracavitary brachytherapy using a two-channel Y applicator combined with external beam radiotherapy for endometrial cancer.

    Science.gov (United States)

    Zhou, Qian; Tang, Cheng; Zhao, Ke-Wei; Xiong, Yan-Li; Chen, Shu; Xu, Wen-Jing; Lei, Xin

    2016-01-01

    The aim of this study was to determine the efficacy of 252Californium neutron intracavitary brachytherapy using a two-channel Y applicator combined with external beam radiotherapy for the treatment of endometrial cancer. Thirty-one patients with stage I-III endometrial cancer were recruited for this study. The stage I patients received only 252Californium neutron intracavitary brachytherapy with a two-channel applicator. The stage II and III patients received both 252Californium neutron intracavitary brachytherapy using a two-channel applicator and parallel-opposed whole pelvic radiotherapy. The five-year local control rate was 80.6% (25/31), the overall survival rate was 51.6% (16/31), and the disease-free survival rate was 54.8% (17/31). The incidence of serious late complications was 12.9% (4/31). 252Californium neutron intracavitary brachytherapy using a two-channel applicator combined with external beam radiotherapy was effective for treating endometrial cancer and the incidence of serious late complications related to this combination was within an acceptable range.

  15. Optimal bladder filling during high-dose-rate intracavitary brachytherapy for cervical cancer: a dosimetric study

    Science.gov (United States)

    Shetty, Saurabha; Majumder, Dipanjan; Adurkar, Pranjal; Swamidas, Jamema; Engineer, Reena; Chopra, Supriya; Shrivastava, Shyamkishore

    2017-01-01

    Purpose The aim of this study is to compare 3D dose volume histogram (DVH) parameters of bladder and other organs at risk with different bladder filling protocol during high-dose-rate intracavitary brachytherapy (HDR-ICBT) in cervical cancer, and to find optimized bladder volume. Material and methods This dosimetric study was completed with 21 patients who underwent HDR-ICBT with computed tomography/magnetic resonance compatible applicator as a routine treatment. Computed tomography planning was done for each patient with bladder emptied (series 1), after 50 ml (series 2), and 100 ml (series 3) bladder filling with a saline infusion through the bladder catheter. Contouring was done on the Eclipse Planning System. 7 Gy to point A was prescribed with the standard loading patterns. Various 3D DVH parameters including 0.1 cc, 1 cc, 2 cc doses and mean doses to the OAR’s were noted. Paired t-test was performed. Results The mean (± SD) bladder volume was 64.5 (± 25) cc, 116.2 (± 28) cc, and 172.9 (± 29) cc, for series 1, 2, and 3, respectively. The 0.1 cm3,1 cm3, 2 cm3 mean bladder doses for series 1, series 2, and series 3 were 9.28 ± 2.27 Gy, 7.38 ± 1.72 Gy, 6.58 ± 1.58 Gy; 9.39 ± 2.28 Gy, 7.85 ± 1.85 Gy, 7.05 ± 1.59 Gy, and 10.09 ± 2.46 Gy, 8.33 ± 1.75 Gy, 7.6 ± 1.55 Gy, respectively. However, there was a trend towards higher bladder doses in series 3. Similarly, for small bowel dose 0.1 cm3, 1 cm3, and 2 cm3 in series 1, 2, and 3 were 5.44 ± 2.2 Gy, 4.41 ± 1.84 Gy, 4 ± 1.69 Gy; 4.57 ± 2.89 Gy, 3.78 ± 2.21 Gy, 3.35 ± 2.02 Gy, and 4.09 ± 2.38 Gy, 3.26 ± 1.8 Gy, 3.05 ± 1.58 Gy. Significant increase in small bowel dose in empty bladder (series 1) compared to full bladder (series 3) (p = 0.03) was noted. However, the rectal and sigmoid doses were not significantly affected with either series. Conclusions Bladder filling protocol with 50 ml and 100 ml was well tolerated and achieved a reasonably reproducible bladder volume during cervical

  16. Low dose rate caesium-137 implant time of intracavitary brachytherapy source of a selected oncology center in Ghana

    Directory of Open Access Journals (Sweden)

    John Owusu Banahene

    2015-01-01

    Full Text Available Background: The treatment time taken for a radioactive source is found to be very important in intracavitary brachytherapy treatment. The duration of the treatment time depends on the prescribed dose requested to a reference point and the calculated dose rate to the same point. The duration of the treatment time of source is found to depend on the tumour stage. In this work, the treatment time of implant has been calculated for a Caesium-137 low dose rate brachytherapy source at an oncology facility in Ghana. Objective: The objective was to determine how the treatment time of tumours depends on the dose rate to the reference point prescribed by the Oncologists and the dose rate determined by the dosimetrists at the facility. Materials and Method: Depending upon the stage of the cancer, the Oncologist determines the type of treatment modality, source configuration for the cancer patient and positions of both tandem and ovoids in the cervix. Depending also on the tumour stage, two orthogonal radiographic X-ray films are taken using a simulator machine. The treatment machine used in the study is AMRA-Curietron. The maximum activity of the source was 259GBq. It has five channels which is a manual remote afterloader. In clinical practice, the treatment time t is very short(only some few days for such low dose rate brachytherapy source like Cs-137 which lasts only for some few days in comparison with the half life of the Cs-137 source. The mathematical equation for the calculation of treatment time is written as t=D/D. Hence t is the treatment time of the radioactive source of patients undergoing intracavitary brachytherapy treatment, D is prescribed dose to a reference point and D is the dose rate to the same reference point. Results: The calculated treatment time of the Cs-137 brachytherapy source for different source arrangements or channels used in clinical practice at the brachytherapy Centre have been determined. Also provided, are the

  17. Non isocentric film-based intracavitary brachytherapy planning in cervical cancer: a retrospective dosimetric analysis with CT planning.

    Science.gov (United States)

    Tyagi, Kirti; Mukundan, Hari; Mukherjee, Deboleena; Semwal, Manoj; Sarin, Arti

    2012-09-01

    To compare intracavitary brachytherapy dose estimation for organs at risk (bladder and rectum) based on semi-orthogonal reconstruction of radiographs on non-isocentric X-ray unit and Computed Tomography (CT) - based volumetric planning in cervical cancer. Bladder and rectal points as per International Commission on Radiation Units and Measurements (ICRU) report 38, were retrospectively evaluated on 15 high dose rate intracavitary brachytherapy applications for cervical cancer cases. With the same source configuration as obtained during planning on radiographs performed on a non-isocentric X-ray unit, the mean doses to 2cc of most irradiated part of bladder and rectum were computed by CT planning and these estimates were compared with the doses at ICRU bladder and rectal points. The mean ICRU point dose for bladder was 3.08 Gy (1.9-5.9 Gy) and mean dose to 2 cc (D2cc) bladder was 6.91 Gy (2.9-12.2 Gy). ICRU rectal dose was 3.8 Gy (2.4-4.45 Gy) and was comparable with D2cc rectum dose 4.2 Gy (2.8-5.9 Gy). Comparison of mean total dose (ICRU point vs. D2cc) for each patient was found to be significantly different for bladder (p = 0.000), but not for rectum (p = 0.08). On comparison of ICRU point based planning with volumetric planning on CT, it was found that bladder doses were underestimated by the film based method. However, the rectal doses were found to be similar to the D2cc doses. The results with non isocentric film based treatment planning were similar to the existing literature on orthogonal film based simulator planning.

  18. Image guided radiation therapy boost in combination with high-dose-rate intracavitary brachytherapy for the treatment of cervical cancer.

    Science.gov (United States)

    Wang, Xianliang; Li, Jie; Wang, Pei; Yuan, Ke; Yin, Gang; Wan, Bin

    2016-04-01

    The purpose of this study was to demonstrate the dosimetric and clinical feasibility of image guided radiation therapy (IGRT) combined with high-dose-rate (HDR) intracavitary brachytherapy (ICBT) to improve dose distribution in cervical cancer treatment. For 42 cervical cancer patients, magnetic resonance imaging (MRI) scans were acquired after completion of whole pelvic irradiation 45-46 Gy and 5 fractions of B + I (ICBT + IGRT) treatment were subsequently received. The high risk clinical target volume (HRCTV), intermediate risk clinical target volume (IRCTV), bladder, rectum, and sigmoid were contoured on the computed tomography (CT) scans. The total planning aim doses for HRCTV was D90% > 85 Gy, whilst constraints for rectum and sigmoid were D2cc D100%, IRCTV D100%, and IRCTV D90% were significantly increased by a mean of 10.52 Gy, 5.61 Gy, and 2.70 Gy, respectively (p < 0.01). The D2cc for bladder, rectum, and sigmoid were lower by a mean of 21.36, 6.78, and 10.65 Gy, respectively (p < 0.01). The mean rectum V60 Gy value over 42 patients was almost the same for both techniques but for bladder and sigmoid B + I had higher V60 Gy mean values as compared with the O-ICBT. B + I can improve dose distribution in cervical cancer treatment; it could be useful for tumors extended beyond the reach of intracavitary/interstitial brachytherapy (IC/ISBT) or for centers that are inexperienced or ill-equipped with IC/ISBT techniques. Additional confirmatory prospective studies with larger numbers of patients and longer follow-up are required to validate the durability.

  19. A new technique in brachytherapy for the putting in operation of the radiation protection principle named ''ALARA': the P.D.R. (acronym for Pulsed Dose Rate); Une nouvelle technique en curietherapie pour la mise en oeuvre du principe de radioprotection dit ''ALARA'': le PDR

    Energy Technology Data Exchange (ETDEWEB)

    Hoffstetter, S.; Aletti, P.; Bellut, F.; Peiffert, D. [Centre Alexis-Vautrin, 54 - Vandoeuvre-les-Nancy (France)

    1998-07-01

    This article presents successively the different techniques of brachytherapy and gives the radiation doses received in 1995 at the beginning of the use of the projector of iridium source and in 1997 with its partial utilization. On this base, an estimation of the number of applications using this type of apparatus and then a reduction of doses received is equally proposed. (N.C.)

  20. Image guided radiation therapy boost in combination with high-dose-rate intracavitary brachytherapy for the treatment of cervical cancer

    Directory of Open Access Journals (Sweden)

    Xianliang Wang

    2016-04-01

    Full Text Available Purpose : The purpose of this study was to demonstrate the dosimetric and clinical feasibility of image guided radiation therapy (IGRT combined with high-dose-rate (HDR intracavitary brachytherapy (ICBT to improve dose distribution in cervical cancer treatment. Material and methods: For 42 cervical cancer patients, magnetic resonance imaging (MRI scans were acquired after completion of whole pelvic irradiation 45-46 Gy and 5 fractions of B + I (ICBT + IGRT treatment were subsequently received. The high risk clinical target volume (HRCTV, intermediate risk clinical target volume (IRCTV, bladder, rectum, and sigmoid were contoured on the computed tomography (CT scans. The total planning aim doses for HRCTV was D 90% > 85 Gy, whilst constraints for rectum and sigmoid were D 2cc < 75 Gy and D 2cc < 90 Gy for bladder in terms of an equivalent dose in 2 Gy (EQD2 for external beam radiotherapy (EBRT and brachytherapy boost. The IGRT plan was optimized on top of the ICBT dose distribution. A dosimetric comparison was made between B + I and optimized ICBT (O-ICBT only. Results: The mean D 90% of HRCTV was comparable for B + I and O-ICBT (p = 0.82. For B + I plan, HRCTV D100%, IRCTV D 100% , and IRCTV D 90% were significantly increased by a mean of 10.52 Gy, 5.61 Gy, and 2.70 Gy, respectively (p < 0.01. The D 2cc for bladder, rectum, and sigmoid were lower by a mean of 21.36, 6.78, and 10.65 Gy, respectively (p < 0.01. The mean rectum V60 Gy value over 42 patients was almost the same for both techniques but for bladder and sigmoid B + I had higher V60 Gy mean values as compared with the O-ICBT. Conclusions : B + I can improve dose distribution in cervical cancer treatment; it could be useful for tumors extended beyond the reach of intracavitary/interstitial brachytherapy (IC/ISBT or for centers that are inexperienced or ill-equipped with IC/ISBT techniques. Additional confirmatory prospective studies with larger numbers of patients and longer follow

  1. MRI-Guided High–Dose-Rate Intracavitary Brachytherapy for Treatment of Cervical Cancer: The University of Pittsburgh Experience

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Beant S.; Kim, Hayeon; Houser, Christopher J. [Department of Radiation Oncology, Magee-Womens Hospital of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States); Kelley, Joseph L.; Sukumvanich, Paniti; Edwards, Robert P.; Comerci, John T.; Olawaiye, Alexander B.; Huang, Marilyn; Courtney-Brooks, Madeleine [Department of Gynecologic Oncology, Magee-Womens Hospital of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States); Beriwal, Sushil, E-mail: beriwals@upmc.edu [Department of Radiation Oncology, Magee-Womens Hospital of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States)

    2015-03-01

    Purpose: Image-based brachytherapy is increasingly used for gynecologic malignancies. We report early outcomes of magnetic resonance imaging (MRI)-guided brachytherapy. Methods and Materials: Consecutive patient cases with FIGO stage IB1 to IVA cervical cancer treated at a single institution were retrospectively reviewed. All patients received concurrent cisplatin with external beam radiation therapy along with interdigitated high–dose-rate intracavitary brachytherapy. Computed tomography or MRI was completed after each application, the latter acquired for at least 1 fraction. High-risk clinical target volume (HRCTV) and organs at risk were identified by Groupe Européen de Curiethérapie and European SocieTy for Radiotherapy and Oncology guidelines. Doses were converted to equivalent 2-Gy doses (EQD{sub 2}) with planned HRCTV doses of 75 to 85 Gy. Results: From 2007 to 2013, 128 patients, median 52 years of age, were treated. Predominant characteristics included stage IIB disease (58.6%) with a median tumor size of 5 cm, squamous histology (82.8%), and no radiographic nodal involvement (53.1%). Most patients (67.2%) received intensity modulated radiation therapy (IMRT) at a median dose of 45 Gy, followed by a median brachytherapy dose of 27.5 Gy (range, 25-30 Gy) in 5 fractions. At a median follow up of 24.4 months (range, 2.1-77.2 months), estimated 2-year local control, disease-free survival, and cancer-specific survival rates were 91.6%, 81.8%, and 87.6%, respectively. Predictors of local failure included adenocarcinoma histology (P<.01) and clinical response at 3 months (P<.01). Among the adenocarcinoma subset, receiving HRCTV D{sub 90} EQD{sub 2} ≥84 Gy was associated with improved local control (2-year local control rate 100% vs 54.5%, P=.03). Grade 3 or greater gastrointestinal or genitourinary late toxicity occurred at a 2-year actuarial rate of 0.9%. Conclusions: This study constitutes one of the largest reported series of MRI

  2. Magnetic resonance imaging for planning intracavitary brachytherapy for the treatment of locally advanced cervical cancer.

    Science.gov (United States)

    Oñate Miranda, M; Pinho, D F; Wardak, Z; Albuquerque, K; Pedrosa, I

    2016-01-01

    Cervical cancer is the third most common gynecological cancer. Its treatment depends on tumor staging at the time of diagnosis, and a combination of chemotherapy and radiotherapy is the treatment of choice in locally advanced cervical cancers. The combined use of external beam radiotherapy and brachytherapy increases survival in these patients. Brachytherapy enables a larger dose of radiation to be delivered to the tumor with less toxicity for neighboring tissues with less toxicity for neighboring tissues compared to the use of external beam radiotherapy alone. For years, brachytherapy was planned exclusively using computed tomography (CT). The recent incorporation of magnetic resonance imaging (MRI) provides essential information about the tumor and neighboring structures making possible to better define the target volumes. Nevertheless, MRI has limitations, some of which can be compensated for by fusing CT and MRI. Fusing the images from the two techniques ensures optimal planning by combining the advantages of each technique.

  3. Rectal and bladder dose reduction with the addition of intravaginal balloons to vaginal packing in intracavitary brachytherapy for cervical cancer.

    Science.gov (United States)

    Eng, T Y; Patel, A J; Ha, C S

    2016-01-01

    The use of intravaginal Foley balloons in addition to conventional packing during high-dose-rate (HDR) tandem and ovoids intracavitary brachytherapy (ICBT) is a means to improve displacement of organs at risk, thus reducing dose-dependent complications. The goal of this project was to determine the reduction in dose achieved to the bladder and rectum with intravaginal Foley balloons with CT-based planning and to share our packing technique. One hundred and six HDR-ICBT procedures performed for 38 patients were analyzed for this report. An uninflated Foley balloon was inserted into the vagina above and below the tandem flange separately and secured in place with vaginal packing. CT images were then obtained with both inflated and deflated Foley balloons. Plan optimization occurred and dose volume histogram data were generated for the bladder and rectum. Maximum dose to 0.1, 1.0, and 2.0 cm(3) volumes for the rectum and bladder were analyzed and compared between inflated and deflated balloons using parametric statistical analysis. Inflation of intravaginal balloons allowed significant reduction of dose to the bladder and rectum. Amount of reduction was dependent on the anatomy of the patient and the placement of the balloons. Displacement of the organs at risk by the balloons allowed an average of 7.2% reduction in dose to the bladder (D0.1 cm(3)) and 9.3% to the rectum (D0.1 cm(3)) with a maximum reduction of 41% and 43%, respectively. For patients undergoing HDR-ICBT, a significant dose reduction to the bladder and rectum could be achieved with further displacement of these structures using intravaginal Foley balloons in addition to conventional vaginal packing. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  4. Endoscope-guided interstitial intensity-modulated brachytherapy and intracavitary brachytherapy as boost radiation for primary early T stage nasopharyngeal carcinoma.

    Directory of Open Access Journals (Sweden)

    Xiang-Bo Wan

    Full Text Available BACKGROUND: Intracavitary brachytherapy (ICBT is usually applied as boost radiotherapy for superficial residual of nasopharyngeal carcinoma (NPC after primary extern-beam radiptherapy (ERT. Here, we evaluated the outcome of endoscope-guided interstitial intensity-modulated brachytherapy (IMBT boost radiation for deep-seated residual NPC. METHODOLOGY/PRINCIPAL FINDINGS: Two hundred and thirteen patients with residual NPC who were salvaged with brachytherapy boost radiation during 2005-2009 were analyzed retrospectively. Among these patients, 171 patients had superficial residual NPC (≤1 cm below the nasopharyngeal epithelium were treated with ICBT boost radiation, and interstitial IMBT boost radiation was delivered to 42 patients with deep-seated residual NPC (>1 cm below the nasopharyngeal epithelium. We found that IMBT boost subgroup had a higher ratio of T2b (81.0% VS 34.5%, P<0.001 and stage II (90.5% VS 61.4%, P = 0.001 than that of ICBT boost subgroup. The dosage of external-beam radiotherapy in the nasopharyngeal (63.0±3.8 VS 62.6±4.3 Gray (Gy, P = 0.67 and regional lymph nodes (55.8±5.0 VS 57.5±5.7 Gy, P = 0.11 was comparable in both groups. For brachytherapy, IMBT subgroup had a lower boost radiation dosage than ICBT subgroup (11.0±2.9 VS 14.8±3.2 Gy, P<0.01. Though the IMBT group had deeper residual tumors and received lower boost radiation dosages, both subgroups had the similar 5-year actuarial overall survival rate (IMBT VS ICBT group: 96.8% VS 93.6%, P = 0.87, progression-free survival rate (92.4% VS 86.5%, P = 0.41 and distant metastasis-free survival rate (94.9% VS 92.7%, P = 0.64. Moreover, IMBT boost radiation subgroup had a similar local (97.4% VS 94.4%, P = 0.57 and regional (95.0% VS 97.2%, P = 0.34 control to ICBT subgroup. The acute and late toxicities rates were comparable between the both subgroups. CONCLUSIONS/SIGNIFICANCE: IMBT boost radiation may be a promising therapeutic

  5. Impact of delineation uncertainties on dose to organs at risk in CT-guided intracavitary brachytherapy.

    LENUS (Irish Health Repository)

    Duane, Frances K

    2014-08-07

    This study quantifies the inter- and intraobserver variations in contouring the organs at risk (OARs) in CT-guided brachytherapy (BT) for the treatment of cervical carcinoma. The dosimetric consequences are reported in accordance with the current Gynecological Groupe Européen de Curiethérapie\\/European Society for Therapeutic Radiology and Oncology guidelines.

  6. External beam radiotherapy and intracavitary brachytherapy is an acceptable treatment for locally advanced carcinoma of the uterine cervix

    Directory of Open Access Journals (Sweden)

    Md. Zillur Rahman Bhuiyan

    2016-08-01

    Full Text Available Background: Cervical carcinoma is the second most common neoplasm in women worldwide and is the most frequent cancer among women in Bangladesh. In recent years, High Dose Rate (HDR brachytherapy in combination with External Beam Radiotherapy (EBRT has been popular in the management of cancers of uterine cervix.Objectives: To evaluate the effectiveness and acute toxicity of four fractions high dose rate intracavitary brachytherapy following pelvic external beam radiotherapy in the treatment of locally advanced cervical carcinoma. Methods: Bangabandhu Sheikh Mujib Medi­cal University & NICRH chosen as a research place for EBRT and HOR brachytherapy. A typical radiotherapy treatment involves daily inadiation for several weeks. Whole pelvis was treated with total dose of SO Gy in 5 weeks. Patients were treated once a day, 5 days a week with a daily fraction size of 2.0 Gy. EBRT: Pelvic radiotherapy dose is 50 Gy in 25 fractions (2.0 Gy per fraction over 5 weeks. HDR brachytberapy dose is 7 Gy per fraction, total 4 fractions, each in a week over 4 weeks. Results: Ninety-eight patients were entered in the study. Three patients were excluded due to active non-malignant diseases. One patient had active tuberculosis, two patients had severe skin reactions and two patients withdrew following the first HDR application. The remaining Ninety patients were analyzed. Ninety patients completed the prescribed treatment and were evaluated. Eighty had complete response with relief of symptoms, negative Pap-smear and no clinical signs of persistence disease at 3 months. Ten patients had a positive Pap-smear with clinical signs of persis­tence disease. Patients were evaluated before statting treatment with EBRT and before starting treatment with HDR ICBT. Conclusion: It can be easily concluded that 4 fractions of HDR ICBT, 7 Gy each weekly and pelvic EBRT can effectively and safely control locally advanced carcinoma of the uterine cervix. So that EBRT and HDR ICBT

  7. Impact of Heterogeneity-Based Dose Calculation Using a Deterministic Grid-Based Boltzmann Equation Solver for Intracavitary Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mikell, Justin K. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas (United States); Klopp, Ann H. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gonzalez, Graciela M.N. [Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Kisling, Kelly D. [Department of Radiation Physics-Patient Care, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas (United States); Price, Michael J. [Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, Louisiana, and Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana (United States); Berner, Paula A. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Eifel, Patricia J. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mourtada, Firas, E-mail: fmourtad@christianacare.org [Department of Radiation Physics-Patient Care, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Experimental Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, Helen F. Graham Cancer Center, Newark, Delaware (United States)

    2012-07-01

    Purpose: To investigate the dosimetric impact of the heterogeneity dose calculation Acuros (Transpire Inc., Gig Harbor, WA), a grid-based Boltzmann equation solver (GBBS), for brachytherapy in a cohort of cervical cancer patients. Methods and Materials: The impact of heterogeneities was retrospectively assessed in treatment plans for 26 patients who had previously received {sup 192}Ir intracavitary brachytherapy for cervical cancer with computed tomography (CT)/magnetic resonance-compatible tandems and unshielded colpostats. The GBBS models sources, patient boundaries, applicators, and tissue heterogeneities. Multiple GBBS calculations were performed with and without solid model applicator, with and without overriding the patient contour to 1 g/cm{sup 3} muscle, and with and without overriding contrast materials to muscle or 2.25 g/cm{sup 3} bone. Impact of source and boundary modeling, applicator, tissue heterogeneities, and sensitivity of CT-to-material mapping of contrast were derived from the multiple calculations. American Association of Physicists in Medicine Task Group 43 (TG-43) guidelines and the GBBS were compared for the following clinical dosimetric parameters: Manchester points A and B, International Commission on Radiation Units and Measurements (ICRU) report 38 rectal and bladder points, three and nine o'clock, and {sub D2cm3} to the bladder, rectum, and sigmoid. Results: Points A and B, D{sub 2} cm{sup 3} bladder, ICRU bladder, and three and nine o'clock were within 5% of TG-43 for all GBBS calculations. The source and boundary and applicator account for most of the differences between the GBBS and TG-43 guidelines. The D{sub 2cm3} rectum (n = 3), D{sub 2cm3} sigmoid (n = 1), and ICRU rectum (n = 6) had differences of >5% from TG-43 for the worst case incorrect mapping of contrast to bone. Clinical dosimetric parameters were within 5% of TG-43 when rectal and balloon contrast were mapped to bone and radiopaque packing was not overridden

  8. Evaluating adjacent organ radiation doses from postoperative intracavitary vaginal vault brachytherapy for endometrial cancer.

    Science.gov (United States)

    Caon, Julianna; Holloway, Caroline; Dubash, Rustom; Yuen, Conrad; Aquino-Parsons, Christina

    2014-01-01

    To document doses received by critical organs during adjuvant high-dose-rate (HDR) vaginal vault brachytherapy. Patients treated with HDR vaginal vault radiation between January 1, 2009, and January 31, 2012, who had a CT simulation with the treatment cylinder in situ were included. The CT scans were retrospectively reviewed and the rectum, sigmoid, small bowel, and bladder were contoured. Standardized plans treating the upper 4 cm of the vaginal vault were used to deliver a total of 21 Gy (Gy) at 0.5 cm from the apex of the vaginal vault in three fractions. There were 41 patients. Median age was 62 years. The median vaginal cylinder diameter was 3 cm. The mean 2cc dose to the rectum, sigmoid, small bowel, and bladder were 5.7, 4.7, 4.0, and 5.6 Gy, respectively. Bladder volume ranged from 67-797cc. Assuming minimal interfraction organ variation, the equivalent dose in 2 Gy/fraction was extrapolated from data and may be near or beyond organ tolerance for rectum, sigmoid, and small bowel in some cases. Spearman correlation found that increased bladder volume was not associated with adjacent organs at risk dose but may be associated with a trend (p=0.06) toward increased bladder dose (R=0.30). This study describes the dose received by adjacent critical structures during vaginal vault HDR brachytherapy. This is important information for documentation in the rare setting of treatment-related toxicity or recurrence. Bladder volume was not associated with dose to adjacent organs. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  9. Monte Carlo model for a prototype CT-compatible, anatomically adaptive, shielded intracavitary brachytherapy applicator for the treatment of cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Price, Michael J.; Gifford, Kent A.; Horton, John L. Jr.; Eifel, Patricia J.; Gillin, Michael T.; Lawyer, Ann A.; Mourtada, Firas [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, University of Texas-Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States); Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 (United States); Division of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, University of Texas-Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States); Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, University of Texas-Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States); Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 (United States); Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1220 Holcombe Boulevard, Houston, Texas 77030 and Graduate School of Biomedical Sciences, University of Texas-Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States)

    2009-09-15

    Purpose: Current, clinically applicable intracavitary brachytherapy applicators that utilize shielded ovoids contain a pair of tungsten-alloy shields which serve to reduce dose delivered to the rectum and bladder during source afterloading. After applicator insertion, these fixed shields are not necessarily positioned to provide optimal shielding of these critical structures due to variations in patient anatomies. The authors present a dosimetric evaluation of a novel prototype intracavitary brachytherapy ovoid [anatomically adaptive applicator (A{sup 3})], featuring a single shield whose position can be adjusted with two degrees of freedom: Rotation about and translation along the long axis of the ovoid. Methods: The dosimetry of the device for a HDR {sup 192}Ir was characterized using radiochromic film measurements for various shield orientations. A MCNPX Monte Carlo model was developed of the prototype ovoid and integrated with a previously validated model of a v2 mHDR {sup 192}Ir source (Nucletron Co.). The model was validated for three distinct shield orientations using film measurements. Results: For the most complex case, 91% of the absolute simulated and measured dose points agreed within 2% or 2 mm and 96% agreed within 10% or 2 mm. Conclusions: Validation of the Monte Carlo model facilitates future investigations into any dosimetric advantages the use of the A{sup 3} may have over the current state of art with respect to optimization and customization of dose delivery as a function of patient anatomical geometries.

  10. Pulsed dose rate (PDR) brachytherapy as salvage treatment of locally advanced or recurrent gynecologic cancer

    DEFF Research Database (Denmark)

    Jensen, P T; Roed, H; Engelholm, S A

    1998-01-01

    . There was no difference in survival probability when stratifying the patients by primary diagnosis (recurrent vs. primary advanced), relapse locations (central vs. central + pelvic wall mass) or treatment volume. Seventeen chronic grade III complications were observed in 10 patients. Large treatment volumes significantly...

  11. Investigation of bowels adjacent to the uterus using MRI. For relief of bowel complications following intracavitary brachytherapy for cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tateno, Atsushi; Miyashita, Tsuguhiro; Kumazaki, Tatsuo [Nippon Medical School, Tokyo (Japan)

    1999-12-01

    Intracavitary brachytherapy occasionally causes bowel injuries other than rectum. To relieve these adverse events, we investigated the relationships between uterine bodies and surrounding bowels using MRI. A hundred and ten of serial 252 pelvic MRI of women, excluding the following, were reviewed. The excluded items were large intrapelvic extrauterine masses over 3.5 cm in greater diameter, large uterine corpus masses over 2 cm, three or more uterine corpus masses, past history of hysterectomy or rectocolonic resection, and massive ascites. We investigated the fundus-bowel distance (FBD), site of the nearest bowel to the uterine body, flexion type and deviation of uterus, uterine wall thickness, subcutaneous fat thickness and age. FBD ranged from 8 to 42 mm (20.2{+-}8.2 mm). In 66 cases (60%), FBD was 20 mm or less. The sites of the nearest bowel were 67 sigmoid colons, 27 rectums, 8 small intestines, and 7 descending colons. Eighty-three uteri (75.5%) were anteflexion and 27 uteri (24.5%) were retroflexion. Of the anteflexion group, 78.3% were adjacent to the sigmoid colon, and 92.6% of the retroflexion group were adjacent to rectum. Right-deviation uteri represented 33 cases (30%); mid-position 33, (30%); and left-deviation uteri, 44 (40%). Uterine wall thickness was 5 to 33 mm (17.8{+-}5.2). Subcutaneous fat thickness was 10 to 47 mm (20.2{+-}9.3). The age of patients ranged from 21 to 83 years (39.9{+-}14.4). FBD showed statistical good correlation to uterine wall thickness and subcutaneous fat thickness. In anteflexion group, correlation of uterine wall thickness with FBD was significant. In retroflexion group, however, it was not significant. The site of bowels, flexion type, and deviation type did not correlate with FBD. FBD, uterine wall thickness and subcutaneous fat thickness showed regression of quadric curves with age; these peaked at ages 50.4, 46.0 and 46.2, respectively. It is presumed that predictive factors of bowel complication are thin uterine

  12. Biological effective doses in the intracavitary high dose rate brachytherapy of cervical cancer

    Directory of Open Access Journals (Sweden)

    Y. Sobita Devi

    2011-12-01

    Full Text Available Purpose: The aim of this study is to evaluate the decrease of biological equivalent dose and its correlation withlocal/loco-regional control of tumour in the treatment of cervical cancer when the strength of the Ir-192 high dose rate(HDR brachytherapy (BT source is reduced to single, double and triple half life in relation to original strength of10 Ci (~ 4.081 cGy x m2 x h–1. Material and methods: A retrospective study was carried out on 52 cervical cancer patients with stage II and IIItreated with fractionated HDR-BT following external beam radiation therapy (EBRT. International Commission onRadiation Units and Measurement (ICRU points were defined according to ICRU Report 38, using two orthogonal radiographimages taken by Simulator (Simulix HQ. Biologically effective dose (BED was calculated at point A for diffe -rent Ir-192 source strength and its possible correlation with local/loco-regional tumour control was discussed. Result: The increase of treatment time per fraction of dose due to the fall of dose rate especially in HDR-BT of cervicalcancer results in reduction in BED of 2.59%, 7.02% and 13.68% with single, double and triple half life reduction ofsource strength, respectively. The probabilities of disease recurrence (local/loco-regional within 26 months are expectedas 0.12, 0.12, 0.16, 0.39 and 0.80 for source strength of 4.081, 2.041, 1.020, 0.510 and 0.347 cGy x m2 x h–1, respectively.The percentages of dose increase required to maintain the same BED with respect to initial BED were estimated as1.71, 5.00, 11.00 and 15.86 for the dose rate of 24.7, 12.4, 6.2 and 4.2 Gy/hr at point A, respectively. Conclusions: This retrospective study of cervical cancer patients treated with HDR-BT at different Ir-192 sourcestrength shows reduction in disease free survival according to the increase in treatment time duration per fraction.The probable result could be associated with the decrease of biological equivalent dose to point A. Clinical

  13. Comparison of a 3-D multi-group SN particle transport code with Monte Carlo for intracavitary brachytherapy of the cervix uteri.

    Science.gov (United States)

    Gifford, Kent A; Wareing, Todd A; Failla, Gregory; Horton, John L; Eifel, Patricia J; Mourtada, Firas

    2009-12-03

    A patient dose distribution was calculated by a 3D multi-group S N particle transport code for intracavitary brachytherapy of the cervix uteri and compared to previously published Monte Carlo results. A Cs-137 LDR intracavitary brachytherapy CT data set was chosen from our clinical database. MCNPX version 2.5.c, was used to calculate the dose distribution. A 3D multi-group S N particle transport code, Attila version 6.1.1 was used to simulate the same patient. Each patient applicator was built in SolidWorks, a mechanical design package, and then assembled with a coordinate transformation and rotation for the patient. The SolidWorks exported applicator geometry was imported into Attila for calculation. Dose matrices were overlaid on the patient CT data set. Dose volume histograms and point doses were compared. The MCNPX calculation required 14.8 hours, whereas the Attila calculation required 22.2 minutes on a 1.8 GHz AMD Opteron CPU. Agreement between Attila and MCNPX dose calculations at the ICRU 38 points was within +/- 3%. Calculated doses to the 2 cc and 5 cc volumes of highest dose differed by not more than +/- 1.1% between the two codes. Dose and DVH overlays agreed well qualitatively. Attila can calculate dose accurately and efficiently for this Cs-137 CT-based patient geometry. Our data showed that a three-group cross-section set is adequate for Cs-137 computations. Future work is aimed at implementing an optimized version of Attila for radiotherapy calculations.

  14. A quality indicator to evaluate high-dose-rate intracavitary brachytherapy for cancer of the cervix; Determinacao de um indicador de qualidade para avaliar a braquiterapia intracavitaria com alta taxa de dose no cancer do colo uterino

    Energy Technology Data Exchange (ETDEWEB)

    Morales, Francisco Contreras; Soboll, Daniel Scheidegger [Hospital A.C. Camargo, Sao Paulo, SP (Brazil). Dept. de Radioterapia. Servico de Fisica Medica

    2000-12-01

    The aim of this report is to prevent a simple quality indicator (QI) that can be promptly used to evaluate the high-dose-rate (HDR) intracavitary brachytherapy for the treatment of cancer of the cervix, and if necessary, to correct applicators' geometry before starting the treatment. We selected 51 HDR intracavitary applications of brachytherapy of patients with carcinoma of the cervix treated with 60 mm uterine tandem and small Fletcher colpostat, according to the Manchester method (dose prescription on point A). A QI was defined as the ratio between the volume of 100% isodose curve of the study insertion and the volume of the 100% isodose curve of an insertion considered to be ideal. The data obtained were distributed in three groups: the group with tandem placement slippage (67,5%), a group with colpostat placement slippage (21,9%), and a third group, considered normal (10,6%). Each group showed particular characteristics (p < 0.0001). QI can be the best auxiliary method to establish the error tolerance (%) allowed for HDR intracavitary brachytherapy. (author)

  15. Comparisons of late vaginal mucosal reactions between interstitial and conventional intracavitary brachytherapy in patients with gynecological cancer: speculation on the relation between pallor reaction and stenosis.

    Science.gov (United States)

    Yoshida, Ken; Yamazaki, Hideya; Nakamura, Satoaki; Masui, Koji; Kotsuma, Tadayuki; Baek, Sung Jae; Akiyama, Hironori; Tanaka, Eiichi; Yoshioka, Yasuo

    2013-09-01

    To examine late vaginal mucosal reactions in patients following interstitial brachytherapy (ISBT) compared with that of intracavitary brachytherapy (ICBT). We introduced a modified Dische score to examine late reactions in vaginal mucosa of patients with gynecological cancer who underwent vaginal brachytherapy at 6, 12, 18, 24, 36, and 60 months after treatment. A comparison was made between patients who underwent ISBT (n=37) and those under conventional ICBT (n=63) with a median follow-up time of 41 months. The ICBT group included only patients with newly diagnosed cervical cancer, whereas the ISBT group included 17 patients with recurrent and 20 with newly-diagnosed cancer. Grade 1 reactions of bleeding and discharge were exhibited by <12% of patients. Erythema was detected in approximately 30% (mainly grade 1) of the patients. A total of two (3%) patients developed superficial ulceration after ICBT, whereas three (8%) grade 1 ulcers were detected in patients after ISBT. Telangiectasias were detected in approximately 70% (60% grade 1 and 10% grade 2) of patients. No statistically significant difference was found between the patients after ISBT and ICBT. After ISBT, patients have a higher stenosis rate than after ICBT (p=0.003). The pallor scores showed a strong correlation with stenosis (p<0.0001) and were higher in patients after ICBT than in patients after ISBT (p=0.006). After ISBT, patients exhibited milder but similar late mucosal reactions compared to those after ICBT, except the fact that the stenosis was more severe and the pallor reaction was milder in these patients. It can be, therefore, concluded that the pallor reaction is related to stenosis.

  16. Results of concomitant chemoradiation for cervical cancer using high dose rate intracavitary brachytherapy: Study of JROSG (Japan Radiation Oncology Study Group)

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, Koh-Ichi (Dept. of Radiology, Sapporo Medical Univ., School of Medicine, Sapporo (JP)); Sakurai, Hideyuki; Suzuki, Yoshiyuki (Dept. of Radiology and Radiation Oncology, Gunna Univ., School of Medicine, Gunna (JP)) (and others)

    2008-03-15

    The purpose of this study was to clarify outcome for concurrent chemoradiation (CT-RT) in locally advanced cervix cancer in Japan. This is a non-randomized retrospective analysis of 226 patients treated with definitive CT-RT or radiotherapy alone (RT alone) in nine institutions between 2001 and 2003. External irradiation consisted of whole pelvic irradiation and pelvic side wall boost irradiation, using a central shield during the latter half of the treatment with the anteroposterior parallel opposing technique. The external beam irradiation was performed with 1.8 or 2 Gy per fraction. High-dose-rate intracavitary brachytherapy (HDR) was performed in all cases. In chemotherapy, platinum based drugs were used alone or in combination with other drugs such as 5FU. Grade of late complications was scaled retrospectively with CTCv2.0. Overall survival rate at 50 months of stage Ib, II and III, IV was 82% and 66% in CR-RT and 81% and 43% in R alone, respectively. Disease-free survival rate at 50 months of stage Ib, II and III, IV was 74% and 59% in CR-RT and 76% and 52% in R alone, respectively. There was no significant difference between CT-RT and RT for overall survival and disease free survival. Univariate analysis suggested that loco-regional control was better with CT-RT, but multivariate analysis could not confirm this finding. Compared to RT alone, CT-RT caused significantly more acute and late complications. Thus, late complication (grade 3-4) free survival rate at 50 month was 69% for CT-RT and 86% for RT alone (p<0.01). The therapeutic window with concomitant radiochemotherapy and HDR brachytherapy may be narrow, necessitating a close control of dose volume parameters and adherence to systems for dose prescription

  17. Use of Image-Guided Stereotactic Body Radiation Therapy in Lieu of Intracavitary Brachytherapy for the Treatment of Inoperable Endometrial Neoplasia

    Energy Technology Data Exchange (ETDEWEB)

    Kemmerer, Eric [Department of Radiation Oncology, Temple University Hospital, Philadelphia, Pennsylvania (United States); Hernandez, Enrique; Ferriss, James S. [Department of Obstetrics and Gynecology, Temple University Hospital, Philadelphia, Pennsylvania (United States); Valakh, Vladimir; Miyamoto, Curtis; Li, Shidong [Department of Radiation Oncology, Temple University Hospital, Philadelphia, Pennsylvania (United States); Micaily, Bizhan, E-mail: bizhan.micaily@tuhs.temple.edu [Department of Radiation Oncology, Temple University Hospital, Philadelphia, Pennsylvania (United States)

    2013-01-01

    Purpose: Retrospective analysis of patients with invasive endometrial neoplasia who were treated with external beam radiation therapy followed by stereotactic body radiation therapy (SBRT) boost because of the inability to undergo surgery or brachytherapy. Methods and Materials: We identified 11 women with stage I-III endometrial cancer with a median age of 78 years that were not candidates for hysterectomy or intracavitary brachytherapy secondary to comorbidities (91%) or refusal (9%). Eight patients were American Joint Committee on Cancer (AJCC) stage I (3 stage IA, 5 stage IB), and 3 patients were AJCC stage III. Patients were treated to a median of 4500 cGy at 180 cGy per fraction followed by SBRT boost (600 cGy per fraction Multiplication-Sign 5). Results: The most common side effect was acute grade 1 gastrointestinal toxicity in 73% of patients, with no late toxicities observed. With a median follow-up of 10 months since SBRT, 5 patients (45%) experienced locoregional disease progression, with 3 patients (27%) succumbing to their malignancy. At 12 and 18 months from SBRT, the overall freedom from progression was 68% and 41%, respectively. Overall freedom from progression (FFP) was 100% for all patients with AJCC stage IA endometrial carcinoma, whereas it was 33% for stage IB at 18 months. The overall FFP was 100% for International Federation of Obstetrics and Gynecology grade 1 disease. The estimated overall survival was 57% at 18 months from diagnosis. Conclusion: In this study, SBRT boost to the intact uterus was feasible, with encouragingly low rates of acute and late toxicity, and favorable disease control in patients with early-stage disease. Additional studies are needed to provide better insight into the best management of these clinically challenging cases.

  18. 卡孕栓、双氯芬酸钠栓在宫颈癌后装放疗术中镇痛效果的临床分析%Clinical analysis on the analgesic effect of Methyl Carboprost and Diclofenac Sodium for intracavitary brachytherapy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To observe the effects of Methyl Carboprost and Diclofenac Sodium on opening orifice of uterus and pain controlling in patients with uterine cervix cancer (UCC) when receiving intracavitary brachytherapy. Methods: Sixty patients with UCC of stage ⅡA-ⅢB were divided into three groups randomly before receiving the intracavitary brachytherapy:the patients in group A received Methyl Carboprost in the hind fornix of the vagina, group B received Didofenac Sodium in the anus, while group C was the control group. Results: The painlessness rates in groups A, B and C were 89.9%, 91.3%and 36.4%, respectively. The incidences of patients with relaxed uterus cervix in groups A, B and C were 91.7%, 85.9% and 48.9%, respectively. Conclusion: Methyl Carboprost and Diclofenac Sodium are useful in relaxing uterus cervix and pain controlling in patients with UCC when receiving intracavitary brachytherapy.

  19. High-dose-rate-intracavitary brachytherapy applications and the difference in the bladder and rectum doses: A study from rural centre of Maharashatra, India

    Directory of Open Access Journals (Sweden)

    Jain Vandana

    2007-01-01

    Full Text Available Aim : To report the difference in the bladder and rectum doses with different applications by the radiotherapists in the same patient of the carcinoma of the uterine cervix treated by multiple fractions of high-dose-rate (HDR intracavitary brachytherapy (ICBT. Materials and Methods : Between January 2003 to December 2004, a total of 60 cases of the carcinoma uterine cervix were selected randomly for the retrospective analyses. All 60 cases were grouped in six groups according to the treating radiotherapist who did the HDR-ICBT application. Three radiotherapists were considered for this study, named A, B and C. Ten cases for each radiotherapist in whom all three applications were done by the same radiotherapist. And 10 cases for each radiotherapist with shared applications in the same patient (A+B, A+C and B+C. The bladder and rectal doses were calculated in reference to point "A" dose and were limited to 80% of prescribed point "A" dose, as per ICRU-38 recommendations. Received dose grouped in three groups- less then 80% (< 80%, 80-100% and above 100% (>100%. A total of 180 applications for 60 patients were calculated for the above analyses. Results : There is a lot of difference in the bladder and rectal doses with the application by the different radiotherapists, even in the same patient with multiple fractions of HDR-ICBT. Applications by ′A′ radiotherapist were within the limits in the self as well as in the shared groups more number of times, by ′B′ radiotherapist was more times exceeding the limit and by ′C′ radiotherapist doses were in between the A and B. Discussion and Conclusion : For the rectal and bladder doses most important factors are patient′s age, disease stage, duration between EBRT and HDR-ICRT and patient anatomy, but these differences can be minimized to some extent by careful application, proper packing and proper fixation.

  20. Dosimetric evaluation of multilumen intracavitary balloon applicator rotation in high-dose-rate brachytherapy for breast cancer.

    Science.gov (United States)

    Kim, Yongbok; Trombetta, Mark G

    2014-01-06

    The objective of this work is to evaluate dosimetric impact of multilumen balloon applicator rotation in high-dose-rate (HDR) brachytherapy for breast cancer. Highly asymmetrical dose distribution was generated for patients A and B, depending upon applicator proximity to skin and rib. Both skin and rib spacing was ≤ 0.7 cm for A; only rib spacing was ≤ 0.7 cm for B. Thirty-five rotation scenarios were simulated for each patient by rotating outer lumens every 10° over ± 180° range with respect to central lumen using mathematically calculated rotational matrix. Thirty-five rotated plans were compared with three plans: 1) original multidwell multilumen (MDML) plan, 2) multidwell single-lumen (MDSL) plan, and 3) single-dwell single-lumen (SDSL) plan. For plan comparison, planning target volume for evaluation (PTV_EVAL) coverage (dose to 95% and 90% volume of PTV_EVAL) (D95 and D90), skin and rib maximal dose (Dmax), and normal breast tissue volume receiving 150% (V150) and 200% (V200) of prescribed dose (PD) were evaluated. Dose variation due to device rotation ranged from -5.6% to 0.8% (A) and -6.5% to 0.2% (B) for PTV_EVAL D95; -5.2% to 0.4% (A) and -4.1% to 0.7% (B) for PTV_EVAL D90; -2.0 to 18.4% (A) and -7.8 to 17.5% (B) for skin Dmax; -11.1 to 22.8% (A) and -4.7 to 55.1% (B) of PD for rib Dmax, respectively. Normal breast tissue V150 and V200 variation was < 1.0 cc, except for -0.1 to 2.5cc (B) of V200. Furthermore, 30° device rotation increased rib Dmax over 145% of PD: 152.9% (A) by clockwise 30° rotation and 152.5% (B) by counterclockwise 30° rotation. For a highly asymmetric dose distribution, device rotation can outweigh the potential benefit of improved dose shaping capability afforded by multilumen and make dosimetric data worse than single-lumen plans unless it is properly corrected.

  1. Prospective Multi-Institutional Study of Definitive Radiotherapy With High-Dose-Rate Intracavitary Brachytherapy in Patients With Nonbulky (<4-cm) Stage I and II Uterine Cervical Cancer (JAROG0401/JROSG04-2)

    Energy Technology Data Exchange (ETDEWEB)

    Toita, Takafumi, E-mail: b983255@med.u-ryukyu.ac.jp [Department of Radiology, Graduate School of Medical Science, University of Ryukyus, Okinawa (Japan); Kato, Shingo [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Niibe, Yuzuru [Department of Radiology, School of Medicine, Kitasato University, Sagamihara (Japan); Ohno, Tatsuya [Gunma University Heavy Ion Medical Center, Maebashi (Japan); Kazumoto, Tomoko [Department of Radiology, Saitama Cancer Center, Saitama (Japan); Kodaira, Takeshi [Department of Radiation Oncology, Aichi Cancer Center, Nagoya (Japan); Kataoka, Masaaki [Department of Radiology, National Shikoku Cancer Center, Ehime (Japan); Shikama, Naoto [Department of Radiation Oncology, Saku Central Hospital, Saku (Japan); Kenjo, Masahiro [Department of Radiation Oncology, Graduate School of Medical Science, Hiroshima University, Hiroshima (Japan); Tokumaru, Sunao [Department of Radiology, Saga University, Saga (Japan); Yamauchi, Chikako [Department of Radiation Oncology, Shiga Medical Center for Adults, Moriyama (Japan); Suzuki, Osamu [Department of Radiation Oncology, Osaka Medical Center for Cancer, Osaka (Japan); Sakurai, Hideyuki [Proton Medical Research Center and Tsukuba University, Tsukuba (Japan); Numasaki, Hodaka; Teshima, Teruki [Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka (Japan); Oguchi, Masahiko [Department of Radiation Oncology, Cancer Institute Hospital, Tokyo (Japan); Kagami, Yoshikazu [Radiation Oncology Division, National Cancer Center Hospital, Tokyo (Japan); Nakano, Takashi [Department of Radiation Oncology, Gunma University, Graduate School of Medicine, Maebashi (Japan); Hiraoka, Masahiro [Department of Radiation Oncology and Image-applied Therapy, Kyoto University, Graduate School of Medicine, Kyoto (Japan); Mitsuhashi, Norio [Department of Radiation Oncology, Tokyo Women' s Medical University, Tokyo (Japan)

    2012-01-01

    Purpose: To determine the efficacy of a definitive radiotherapy protocol using high-dose-rate intracavitary brachytherapy (HDR-ICBT) with a low cumulative dose schedule in nonbulky early-stage cervical cancer patients, we conducted a prospective multi-institutional study. Methods and Materials: Eligible patients had squamous cell carcinoma of the intact uterine cervix, Federation of Gynecologic Oncology and Obstetrics (FIGO) stages Ib1, IIa, and IIb, tumor size <40 mm in diameter (assessed by T2-weighted magnetic resonance imaging), and no pelvic/para-aortic lymphadenopathy. The treatment protocol consisted of whole-pelvis external beam radiotherapy (EBRT) of 20 Gy/10 fractions, pelvic EBRT with midline block of 30 Gy/15 fractions, and HDR-ICBT of 24 Gy/4 fractions (at point A). The cumulative biologically effective dose (BED) was 62 Gy{sub 10} ({alpha}/{beta} = 10) at point A. The primary endpoint was the 2-year pelvic disease progression-free (PDPF) rate. All patients received a radiotherapy quality assurance review. Results: Between September 2004 and July 2007, 60 eligible patients were enrolled. Thirty-six patients were assessed with FIGO stage Ib1; 12 patients with stage IIa; and 12 patients with stage IIb. Median tumor diameter was 28 mm (range, 6-39 mm). Median overall treatment time was 43 days. Median follow-up was 49 months (range, 7-72 months). Seven patients developed recurrences: 3 patients had pelvic recurrences (2 central, 1 nodal), and 4 patients had distant metastases. The 2-year PDPF was 96% (95% confidence interval [CI], 92%-100%). The 2-year disease-free and overall survival rates were 90% (95% CI, 82%-98%) and 95% (95% CI, 89%-100%), respectively. The 2-year late complication rates (according to Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer of Grade {>=}1) were 18% (95% CI, 8%-28%) for large intestine/rectum, 4% (95% CI, 0%-8%) for small intestine, and 0% for bladder. No Grade {>=}3 cases were

  2. A Customized Finger Brachytherapy Carrier

    OpenAIRE

    Wadhwa, Supneet Singh; Duggal, Nidhi

    2013-01-01

    In recent years, radiation therapy has been used with increasing frequency in the management of neoplasms of the head and neck region. Brachytherapy is a method of radiation treatment in which sealed radioactive sources are used to deliver the dose a short distance by interstitial (direct insertion into tissue), intracavitary (placement within a cavity) or surface application (molds). Mold brachytherapy is radiation delivered via a custom-fabricated carriers, designed to provide a more consta...

  3. Toward four-dimensional image-guided adaptive brachytherapy in locally recurrent endometrial cancer.

    Science.gov (United States)

    Fokdal, Lars; Ørtoft, Gitte; Hansen, Estrid S; Røhl, Lisbeth; Pedersen, Erik Morre; Tanderup, Kari; Lindegaard, Jacob Christian

    2014-01-01

    To evaluate clinical outcome and feasibility of a four-dimensional image-guided adaptive brachytherapy concept in patients with locally recurrent endometrial cancer. Forty-three patients with locally recurrent endometrial cancer were included. Treatment consisted of conformal external beam radiotherapy followed by a boost using pulsed-dose-rate brachytherapy (BT). Large tumors were treated with MRI-guided interstitial BT. Small tumors were treated with CT-guided intracavitary BT. The planning aim (total external beam radiotherapy and BT) for high-risk clinical target volume was D90 > 80 Gy, whereas constraints for organs at risk were D2cc ≤ 90 Gy for bladder and D2cc ≤ 70 Gy for rectum, sigmoid, and bowel in terms of equivalent dose in 2 Gy fractions. Median high-risk clinical target volume was 18 cm(3) (range, 0-91). D90 was 82 Gy (range, 77-88). D2cc to bladder, rectum, and sigmoid were 67 Gy (range, 50-81), 67 Gy (range, 51-77), and 55 Gy (range, 44-68), respectively. Median followup was 30 months (6-88). Two-year local control rate was 92% (standard error [SE], 5). Disease-free survival rate and overall survival rate was 59% (SE, 8) and 78% (SE, 7), respectively. Patients with low- to intermediate-risk for recurrence had a 2-year disease-free survival rate of 72% (SE, 9) compared with 42% (SE, 12) in patients with high risk for recurrence (p = 0.04). Late morbidity Grade 3 was recorded in 5 (12%) patients. Four-dimensional image-guided adaptive brachytherapy is feasible in locally recurrent endometrial cancer. Local control rate is good. Systemic control remains a problem in patients with high risk for recurrence. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  4. Adaptive error detection for HDR/PDR brachytherapy: Guidance for decision making during real-time in vivo point dosimetry

    DEFF Research Database (Denmark)

    Kertzscher Schwencke, Gustavo Adolfo Vladimir; Andersen, Claus E.; Tanderup, Kari

    2014-01-01

    Purpose:This study presents an adaptive error detection algorithm (AEDA) for real-timein vivo point dosimetry during high dose rate (HDR) or pulsed dose rate (PDR) brachytherapy (BT) where the error identification, in contrast to existing approaches, does not depend on an a priori reconstruction...

  5. Intracavitary therapy of craniopharyngiomas

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, B. [Ann Arbor University of Michigan Health System, Ann Arbor, MI (United States). Div. of Nuclear Medicine, Dept. of Internal Medicine; Fig, L. M. [Ann Arbor Nuclear Medicine Service, Ann Arbor, MI (United States). Dept. of Veterans Affairs Health System; Gross, M.D. [Ann Arbor University of Michigan Health System, Ann Arbor, MI (United States). Div. of Nuclear Medicine, Dept. of Internal Medicine; Ann Arbor Nuclear Medicine Service, Ann Arbor, MI (United States). Dept. of Veterans Affairs Health System

    1999-12-01

    Craniopharyngiomas are benign cystic para-hypophyseal tumors often associated with hypopituitarism and visual-field abnormalities. Their therapy by surgery and external beam radiotherapy is imperfect. The intracavitary instillation of beta-emitting colloid radiopharmaceuticals into the cysts permits the delivery of far higher radiation doses to the cyst lining than is possible by external beam radiotherapy. This technique permits destruction of the lining epithelium with resultant elimination of cyst fluid formation and cyst shrinkage in up to 80% of cases.

  6. Long term experience with 3D image guided brachytherapy and clinical outcome in cervical cancer patients.

    Science.gov (United States)

    Ribeiro, Ivone; Janssen, Hilde; De Brabandere, Marisol; Nulens, An; De Bal, Dominique; Vergote, Ignace; Van Limbergen, Erik

    2016-09-01

    To report our 10years' experience and learning curve of the treatment of cervical cancer patients with chemo radiotherapy and MRI (or CT in 9 selected patients) guided brachytherapy using pulsed dose rate (PDR) brachytherapy (BT). Hundred and seventy consecutive patients with cervical cancer FIGO stage IB-IVB (without metastases beyond the para-aortic nodal region) were treated in our institute between 2002 and 2012. Patients received external beam radiotherapy (nodal boost to the lymph nodes positive at diagnosis)±chemotherapy followed by a pulsed or low dose rate brachytherapy boost. MRI (or CT) images were taken with the applicator in situ. The first 16 patients were treated according to X-ray-based plans, optimized on MRI. High-risk CTV, intermediate-risk CTV, bladder, rectum and sigmoid were retrospectively contoured according to the GEC-ESTRO recommendations. In all other patients, treatment plans were optimized after delineation of the target volumes and organs at risk at MRI (or CT). Doses were converted to the equivalent dose in 2Gy (EQD2) by applying the linear quadratic model. The median age of the patients was 55years (range 16-88). 41% had stage III or IV disease. Of the 170 patients, 91 patients had on imaging metastatic lymph nodes at diagnosis (62 patients pelvic lymph node involvement and 29 para-aortic). In 27 (16%) patients the intracavitary technique was combined with interstitial brachytherapy. The mean D90 and D100 for the high-risk CTV were 84.8±8.36Gy and 67.5±6.29Gy for the entire patient group. Mean D90 and D100 values for the IR CTV were 68.7±5.5Gy and 56.5±6.25Gy. There was an important learning curve between both patient groups, with an increase in mean D90 of 75.8Gy for the first 16 patients compared to 85.8Gy for the second group. At the same time, the mean dose to 2cm(3) of bladder and sigmoid decreased from 86.1Gy to 82.7Gy and from 70Gy to 61.7Gy, respectively. At a median follow-up of 37months (range 2-136months), local

  7. Individualised 3D printed vaginal template for MRI guided brachytherapy in locally advanced cervical cancer.

    Science.gov (United States)

    Lindegaard, Jacob Christian; Madsen, Mikkel Lænsø; Traberg, Anders; Meisner, Bjarne; Nielsen, Søren Kynde; Tanderup, Kari; Spejlborg, Harald; Fokdal, Lars Ulrik; Nørrevang, Ole

    2016-01-01

    Intracavitary-interstitial applicators for MRI guided brachytherapy are becoming increasingly important in locally advanced cervical cancer. The 3D printing technology enables a versatile method for obtaining a high degree of individualisation of the implant. Our clinical workflow is presented and exemplified by a stage IVA cervical cancer with superior dose distribution.

  8. Surface dose in intracavitary orthovoltage radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Podgorsak, M.B.; Schreiner, L.J.; Podgorsak, E.B. (Department of Physics, McGill University, Montreal, PQ (Canada) Department of Radiation Oncology, McGill University, Montreal, PQ (Canada))

    1990-07-01

    Radiotherapy with orthovoltage techniques is often the prime treatment for localized superficial malignancies. Surface doses and depth doses measured with cylindrical and end-window Farmer chambers are presented for various orthovoltage x-ray beams in the range from 80 to 300 kVp, both for open beams and beams collimated with commercial intracavitary leaded-glass cones. For radiation fields collimated by a diaphragm positioned at a distance from the patient surface (open beams) there is a small skin-sparing effect. On the other hand, the surface doses with commercial leaded-glass intracavitary cones can exhibit a fivefold increase compared to the open-beam dose maxima. Beyond a depth of {similar to}0.2 mm in a tissue-equivalent phantom, the doses measured for open beams and beams collimated with intracavitary cones are essentially identical. The increase in the surface dose observed with intracavitary cones is attributed to photoelectrons and recoil electrons produced in the cones. The high surface doses are measured by thin-wall parallel-plate ionization chambers but cannot be measured with cylindrical Farmer chambers since these chambers have wall thicknesses too large for the transmission of electrons produced in the cone. Since cylindrical Farmer chambers are typically used for calibration of radiation output, the high surface doses produced by the intracavitary cones may be overlooked; they can, however, be reduced to open-beam values by simple modifications to the cones.

  9. Preparation of a program for the independent verification of the brachytherapy planning systems calculations; Confeccion de un programa para la verificacion independiente de los calculos de los sistemas de planificacion en braquiterapia

    Energy Technology Data Exchange (ETDEWEB)

    V Carmona, V.; Perez-Calatayud, J.; Lliso, F.; Richart Sancho, J.; Ballester, F.; Pujades-Claumarchirant, M.C.; Munoz, M.

    2010-07-01

    In this work a program is presented that independently checks for each patient the treatment planning system calculations in low dose rate, high dose rate and pulsed dose rate brachytherapy. The treatment planning system output text files are automatically loaded in this program in order to get the source coordinates, the desired calculation point coordinates and the dwell times when it is the case. The source strength and the reference dates are introduced by the user. The program allows implementing the recommendations about independent verification of the clinical brachytherapy dosimetry in a simple and accurate way, in few minutes. (Author).

  10. Rotating-shield brachytherapy for cervical cancer

    Science.gov (United States)

    Yang, Wenjun; Kim, Yusung; Wu, Xiaodong; Song, Qi; Liu, Yunlong; Bhatia, Sudershan K.; Sun, Wenqing; Flynn, Ryan T.

    2013-06-01

    In this treatment planning study, the potential benefits of a rotating shield brachytherapy (RSBT) technique based on a partially-shielded electronic brachytherapy source were assessed for treating cervical cancer. Conventional intracavitary brachytherapy (ICBT), intracavitary plus supplementary interstitial (IS+ICBT), and RSBT treatment plans for azimuthal emission angles of 180° (RSBT-180) and 45° (RSBT-45) were generated for five patients. For each patient, high-risk clinical target volume (HR-CTV) equivalent dose in 2 Gy fractions (EQD2) (α/β = 10 Gy) was escalated until bladder, rectum, or sigmoid colon tolerance EQD2 values were reached. External beam radiotherapy dose (1.8 Gy × 25) was accounted for, and brachytherapy was assumed to have been delivered in 5 fractions. IS+ICBT provided a greater HR-CTV D90 (minimum EQD2 to the hottest 90%) than ICBT. D90 was greater for RSBT-45 than IS+ICBT for all five patients, and greater for RSBT-180 than IS+ICBT for two patients. When the RSBT-45/180 plan with the lowest HR-CTV D90 that was greater than the D90 the ICBT or IS+ICBT plan was selected, the average (range) of D90 increases for RSBT over ICBT and IS+ICBT were 16.2 (6.3-27.2)and 8.5 (0.03-20.16) Gy, respectively. The average (range) treatment time increase per fraction of RSBT was 34.56 (3.68-70.41) min over ICBT and 34.59 (3.57-70.13) min over IS+ICBT. RSBT can increase D90 over ICBT and IS+ICBT without compromising organ-at-risk sparing. The D90 and treatment time improvements from RSBT depend on the patient and shield emission angle.

  11. Developing a Verification and Training Phantom for Gynecological Brachytherapy System

    Directory of Open Access Journals (Sweden)

    Mahbobeh Nazarnejad

    2012-03-01

    Full Text Available Introduction Dosimetric accuracy is a major issue in the quality assurance (QA program for treatment planning systems (TPS. An important contribution to this process has been a proper dosimetry method to guarantee the accuracy of delivered dose to the tumor. In brachytherapy (BT of gynecological (Gyn cancer it is usual to insert a combination of tandem and ovoid applicators with a complicated geometry which makes their dosimetry verification difficult and important. Therefore, evaluation and verification of dose distribution is necessary for accurate dose delivery to the patients. Materials and Methods The solid phantom was made from Perspex slabs as a tool for intracavitary brachytherapy dosimetric QA. Film dosimetry (EDR2 was done for a combination of ovoid and tandem applicators introduced by Flexitron brachytherapy system. Treatment planning was also done with Flexiplan 3D-TPS to irradiate films sandwiched between phantom slabs. Isodose curves obtained from treatment planning system and the films were compared with each other in 2D and 3D manners. Results The brachytherapy solid phantom was constructed with slabs. It was possible to insert tandems and ovoids loaded with radioactive source of Ir-192 subsequently. Relative error was 3-8.6% and average relative error was 5.08% in comparison with the films and TPS isodose curves. Conclusion Our results showed that the difference between TPS and the measurements is well within the acceptable boundaries and below the action level according to AAPM TG.45. Our findings showed that this phantom after minor corrections can be used as a method of choice for inter-comparison analysis of TPS and to fill the existing gap for accurate QA program in intracavitary brachytherapy. The constructed phantom also showed that it can be a valuable tool for verification of accurate dose delivery to the patients as well as training for brachytherapy residents and physics students.

  12. Successful treatment of a 67-year-old woman with urethral adenocarcinoma with the use of external beam radiotherapy and image guided adaptive interstitial brachytherapy

    DEFF Research Database (Denmark)

    Mujkanovic, Jasmin; Tanderup, Kari; Agerbæk, Mads

    2016-01-01

    Primary urethral cancer (PUC) is a very rare disease. This case report illustrates a successful treatment approach of a 67-year-old woman with a urethral adenocarcinoma selected for an organ preserving treatment with external beam radiotherapy (EBRT) and interstitial brachytherapy (BT) boost, using...... the GEC-ESTRO target concept originally designed for locally advanced cervical cancer (LACC). Treatment included EBRT with 45 Gy in 25 fractions followed by image guided adaptive interstitial BT (IGABT) with a pulsed-dose-rate (PDR) BT boost with 30 Gy in 50 hourly pulses. The D90 for CTVHR was 79.1 Gy...

  13. Salvage brachytherapy in combination with interstitial hyperthermia for locally recurrent prostate carcinoma following external beam radiation therapy: a prospective phase II study.

    Science.gov (United States)

    Kukiełka, Andrzej M; Strnad, Vratislav; Stauffer, Paul; Dąbrowski, Tomasz; Hetnał, Marcin; Nahajowski, Damian; Walasek, Tomasz; Brandys, Piotr; Matys, Robert

    2015-06-01

    Optimal treatment for patients with only local prostate cancer recurrence after external beam radiation therapy (EBRT) failure remains unclear. Possible curative treatments are radical prostatectomy, cryosurgery, and brachytherapy. Several single institution series proved that high-dose-rate brachytherapy (HDRBT) and pulsed-dose-rate brachytherapy (PDRBT) are reasonable options for this group of patients with acceptable levels of genitourinary and gastrointestinal toxicity. A standard dose prescription and scheme have not been established yet, and the literature presents a wide range of fractionation protocols. Furthermore, hyperthermia has shown the potential to enhance the efficacy of re-irradiation. Consequently, a prospective trial is urgently needed to attain clear structured prospective data regarding the efficacy of salvage brachytherapy with adjuvant hyperthermia for locally recurrent prostate cancer. The purpose of this report is to introduce a new prospective phase II trial that would meet this need. The primary aim of this prospective phase II study combining Iridium-192 brachytherapy with interstitial hyperthermia (IHT) is to analyze toxicity of the combined treatment; a secondary aim is to define the efficacy (bNED, DFS, OS) of salvage brachytherapy. The dose prescribed to PTV will be 30 Gy in 3 fractions for HDRBT, and 60 Gy in 2 fractions for PDRBT. During IHT, the prostate will be heated to the range of 40-47°C for 60 minutes prior to brachytherapy dose delivery. The protocol plans for treatment of 77 patients.

  14. Dynamic rotating-shield brachytherapy.

    Science.gov (United States)

    Liu, Yunlong; Flynn, Ryan T; Kim, Yusung; Yang, Wenjun; Wu, Xiaodong

    2013-12-01

    To present dynamic rotating shield brachytherapy (D-RSBT), a novel form of high-dose-rate brachytherapy (HDR-BT) with electronic brachytherapy source, where the radiation shield is capable of changing emission angles during the radiation delivery process. A D-RSBT system uses two layers of independently rotating tungsten alloy shields, each with a 180° azimuthal emission angle. The D-RSBT planning is separated into two stages: anchor plan optimization and optimal sequencing. In the anchor plan optimization, anchor plans are generated by maximizing the D90 for the high-risk clinical-tumor-volume (HR-CTV) assuming a fixed azimuthal emission angle of 11.25°. In the optimal sequencing, treatment plans that most closely approximate the anchor plans under the delivery-time constraint will be efficiently computed. Treatment plans for five cervical cancer patients were generated for D-RSBT, single-shield RSBT (S-RSBT), and (192)Ir-based intracavitary brachytherapy with supplementary interstitial brachytherapy (IS + ICBT) assuming five treatment fractions. External beam radiotherapy doses of 45 Gy in 25 fractions of 1.8 Gy each were accounted for. The high-risk clinical target volume (HR-CTV) doses were escalated such that the D2cc of the rectum, sigmoid colon, or bladder reached its tolerance equivalent dose in 2 Gy fractions (EQD2 with α∕β = 3 Gy) of 75 Gy, 75 Gy, or 90 Gy, respectively. For the patients considered, IS + ICBT had an average total dwell time of 5.7 minutes∕fraction (min∕fx) assuming a 10 Ci(192)Ir source, and the average HR-CTV D90 was 78.9 Gy. In order to match the HR-CTV D90 of IS + ICBT, D-RSBT required an average of 10.1 min∕fx more delivery time, and S-RSBT required 6.7 min∕fx more. If an additional 20 min∕fx of delivery time is allowed beyond that of the IS + ICBT case, D-RSBT and S-RSBT increased the HR-CTV D90 above IS + ICBT by an average of 16.3 Gy and 9.1 Gy, respectively. For cervical cancer patients, D-RSBT can boost HR-CTV D90

  15. [Historical overview and the current practice of intracavitary treatment of cervical and endometrial cancer in the Oncoradiology Center of Budapest].

    Science.gov (United States)

    Sinkó, Dániel; Nemeskéri, Csaba; Pallinger, Ágnes; Weisz, Csaba; Naszály, Attila; Landherr, László

    2015-06-01

    The aims of our study were to describe the history and development of intracavitary brachytherapy in the treatment of gynecological tumors, to introduce our current practice for intracavitary brachytherapy treatments based on CT planning. Gynecological intracavitary brachytherapy has been applied in our department since the early 1930s. After a long development it has been completely renewed by 2014. In our center definitive and/or preoperative gynecological HDR-AL brachytherapy treatments were given to 25 patients (13 corpus uterine cancer patients and 12 cervical cancer patients) during the period of 01. 01. 2014-31. 01. 2015. In each case, target volumes were planned by CT images, DVH (dose volume histogram) analysis was performed in order to calculate the radiation tolerance dose of rectum and urinary bladder. Evaluation was performed by the EclipseTM 11.0.47. brachytherapy treatment planning system. During the definitive treatments of the 13 uterine cancer patients the D2cc value related to rectum tolerance was 66.3 GyEQD2 (46-91 Gy). The average D2cc value of urinary bladder tolerance was 76.5 GyEQD2 (30-112 Gy). CI was 0.72 (0.6-0.95). Average value of COIN was 0.57 (0.35-0.78). Compared to the prescribed dose D100 and D90 values were given in ratios. Compared to the volume which receives 100% of reference dose V150 and V200 values were also given in ratios. D100 and D90 were calculated to be 0.66 (0.47-0.97) and 0.91 (0.8-1.25). V150 and V200 volumes were 0.11 (0.04-0.18) and 0.06 (0.02-0.1). During the definitive treatments of 12 cervical cancer patients the D2cc value related to rectum tolerance calculated by DVH was 75.2 GyEQD2 (60-82 Gy). The average D2cc value of urinary bladder tolerance was 85 GyEQD2 based on DVH. CI was 0.66 (0.42-0.76). Average value of COIN was 0.52 (0.32-0.78). Mean value of DHI was 0.46 (0.27-0.54). D100 and D90 were calculated to be 0.72 (0.57-0.89) and 0.91 (0.84-1.11). V150 and V200 volumes were 0.057 (0.02-0.13) and 0.02 (0

  16. MO-D-BRD-00: Electronic Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014, a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of electronic

  17. Local control and survival in patients with soft tissue sarcomas treated with limb sparing surgery in combination with interstitial brachytherapy and external radiation

    DEFF Research Database (Denmark)

    Muhic, A.; Hovgaard, D.; Mork, Petersen M.;

    2008-01-01

    PURPOSE: The purpose of this study was to evaluate local control, survival and complication rate after treatment of soft tissue sarcoma (STS) with limb-sparing surgery combined with pulsed-dose rate (PDR) interstitial brachytherapy (BRT) and external beam radiotherapy (EBRT). PATIENTS AND METHODS...... surgery, combined with PDR BRT and EBRT can result in good local control in patients with soft tissue sarcomas. BRT is an effective modality with good cosmetic results and acceptable toxicity Udgivelsesdato: 2008/9......PURPOSE: The purpose of this study was to evaluate local control, survival and complication rate after treatment of soft tissue sarcoma (STS) with limb-sparing surgery combined with pulsed-dose rate (PDR) interstitial brachytherapy (BRT) and external beam radiotherapy (EBRT). PATIENTS AND METHODS......: A retrospective review of 39 adult patients (female/male=25/14, mean age 51(range 21-78) years) with STS who underwent primary limb-sparing surgery combined with PDR BRT (20Gy) and additional post-operative EBRT (50Gy) during the years 1995-2004. RESULTS: Five patients developed local recurrence after a mean...

  18. IMAGE-GUIDED RADIOTHERAPY AND -BRACHYTHERAPY FOR CERVICAL CANCER

    Directory of Open Access Journals (Sweden)

    Suresh eDutta

    2015-03-01

    Full Text Available Conventional radiotherapy for cervical cancer relies on clinical examination, 3-dimensional conformal radiotherapy (3D-CRT, and 2-dimensional intracavitary brachytherapy.Excellent local control and survival have been obtained for small early stage cervical cancer with definitive radiotherapy. For bulky and locally advanced disease, the addition of chemotherapy has improved the prognosis but toxicity remains significant. New imaging technology such as positron emission tomography (PET and magnetic resonance imaging (MRI has improved tumor delineation for radiotherapy planning. Image-guided radiotherapy (IGRT may decrease treatment toxicity of whole pelvic radiation because of its potential for bone marrow, bowel, and bladder sparring. Tumor shrinkage during whole pelvic IGRT may optimize image-guided brachytherapy (IGBT, allowing for better local control and reduced toxicity for patients with cervical cancer. IGRT and IGBT should be integrated in future prospective studies for cervical cancer.

  19. Brachytherapy applications and techniques

    CERN Document Server

    Devlin, Phillip M

    2015-01-01

    Written by the foremost experts in the field, this volume is a comprehensive text and practical reference on contemporary brachytherapy. The book provides detailed, site-specific information on applications and techniques of brachytherapy in the head and neck, central nervous system, breast, thorax, gastrointestinal tract, and genitourinary tract, as well as on gynecologic brachytherapy, low dose rate and high dose rate sarcoma brachytherapy, vascular brachytherapy, and pediatric applications. The book thoroughly describes and compares the four major techniques used in brachytherapy-intraca

  20. Remote Afterloading High Dose Rate Brachytherapy AMC EXPERIANCES

    Energy Technology Data Exchange (ETDEWEB)

    Park, Su Gyong; Chang, Hye Sook; Choi, Eun Kyong; Yi, Byong Yong [Ulsan University College of Medicine, Seoul (Korea, Republic of)

    1992-12-15

    Remote afterloading high dose rate brachytherapy(HDRB) is a new technology and needs new biological principle for time and dose schedule. Here, authors attempt to evaluate the technique and clinical outcome in 116 patients, 590 procedures performed at Asan Medical Center for 3 years. From Sep. 1985 to Aug 1992, 471 procedures of intracavitary radiation in 55 patients of cervical cancer and 26 of nasopharyngeal cancer, 79 intraluminal radiation in 12 of esophageal cancer, 11 of endobronchial cancer and 1 Klatskin tumor and 40 interstitial brachytherapy in 4 of breast cancer, 1 sarcoma and 1 urethral cancer were performed. Median follow-up was 7 months with range 1-31 months. All procedures except interstitial were performed under the local anesthesia and they were all well tolerated and completed the planned therapy except 6 patients. 53/58 patients with cervical cancer and 22/26 patients with nasopharynx cancer achieved CR. Among 15 patients with palliative therapy, 80% achieves palliation. We will describe the details of the technique and results in the text. To evaluate biologic effects of HDRB and optimal time/dose/fractionation schedule, we need longer follow-up. But authors feel that HDRB with proper fractionation schedule may yield superior results compared to the low dose rate brachytherapy considering the advantages of HDRB in safety factor for operator, better control of radiation dose and volume and patients comfort over the low dose brachytherapy.

  1. Verification of the calculation program for brachytherapy planning system of high dose rate (PLATO); Programa de verificacion del calculo para un sistema de planificacion de braquiterapia de alta tasa de dosis (PLATO)

    Energy Technology Data Exchange (ETDEWEB)

    Almansa, J.; Alaman, C.; Perez-Alija, J.; Herrero, C.; Real, R. del; Ososrio, J. L.

    2011-07-01

    In our treatments are performed brachytherapy high dose rate since 2007. The procedures performed include gynecological intracavitary treatment and interstitial. The treatments are performed with a source of Ir-192 activity between 5 and 10 Ci such that small variations in treatment times can cause damage to the patient. In addition the Royal Decree 1566/1998 on Quality Criteria in radiotherapy establishes the need to verify the monitor units or treatment time in radiotherapy and brachytherapy. All this justifies the existence of a redundant system for brachytherapy dose calculation that can reveal any abnormality is present.

  2. Prospective evaluation of patient satisfaction after the use of brachytherapy specific educational materials for cervical cancer.

    Science.gov (United States)

    Rash, Dominique; Hess, Clayton; Lentz, Susan; Tait, Lauren; Michaud, Anthony; Mayadev, Jyoti

    2016-01-01

    Cervical cancer patients are faced with an enormous amount of medical information in a complex oncology field with sophisticated treatments including brachytherapy. We investigated the use of enhanced vs. standard brachytherapy-specific educational materials on patient-reported satisfaction during the informed consent process for intracavitary high-dose-rate brachytherapy. A single-institution, prospective, randomized trial was performed to study patient-reported satisfaction with novel educational materials for high-dose-rate brachytherapy in women undergoing definitive radiation for cervical cancer. Fourteen women receiving informed consent with a customized educational booklet were randomized between no further intervention and take-home educational materials. The weighted average for 10 of 11 survey questions was higher in the intervention arm but ranged between 4 (agree) and 5 (strongly agree) for all questions in both arms. The mean weighted patient satisfaction scores ± standard deviations in the control arm and the intervention arms were 54.3 ± 6.4 and 57.5 ± 2.7, respectively (p = 0.26). Knowledge acquisition is presumed to be part of the coping process for women facing increased stress during a cancer diagnosis. A brachytherapy-specific, visual, patient-educational booklet and take-home materials used to supplement the informed consent process for high-dose-rate brachytherapy resulted in high levels of patient-reported satisfaction among women treated with cervical cancer. Published by Elsevier Inc.

  3. High brachytherapy doses can counteract hypoxia in cervical cancer—a modelling study

    Science.gov (United States)

    Lindblom, Emely; Dasu, Alexandru; Beskow, Catharina; Toma-Dasu, Iuliana

    2017-01-01

    Tumour hypoxia is a well-known adverse factor for the outcome of radiotherapy. For cervical tumours in particular, several studies indicate large variability in tumour oxygenation. However, clinical evidence shows that the management of cervical cancer including brachytherapy leads to high rate of success. It was the purpose of this study to investigate whether the success of brachytherapy for cervical cancer, seemingly regardless of oxygenation status, could be explained by the characteristics of the brachytherapy dose distributions. To this end, a previously used in silico model of tumour oxygenation and radiation response was further developed to simulate the treatment of cervical cancer employing a combination of external beam radiotherapy and intracavitary brachytherapy. Using a clinically-derived brachytherapy dose distribution and assuming a homogeneous dose delivered by external radiotherapy, cell survival was assessed on voxel level by taking into account the variation of sensitivity with oxygenation as well as the effects of repair, repopulation and reoxygenation during treatment. Various scenarios were considered for the conformity of the brachytherapy dose distribution to the hypoxic region in the target. By using the clinically-prescribed brachytherapy dose distribution and varying the total dose delivered with external beam radiotherapy in 25 fractions, the resulting values of the dose for 50% tumour control, D 50, were in agreement with clinically-observed values for high cure rates if fast reoxygenation was assumed. The D 50 was furthermore similar for the different degrees of conformity of the brachytherapy dose distribution to the tumour, regardless of whether the hypoxic fraction was 10%, 25%, or 40%. To achieve 50% control with external RT only, a total dose of more than 70 Gy in 25 fractions would be required for all cases considered. It can thus be concluded that the high doses delivered in brachytherapy can counteract the increased

  4. Brachytherapy at the Institut Gustave-Roussy: Personalized vaginal mould applicator: technical modification and improvement; Curietherapie a l'Institut Gustave-Roussy: applicateur moule vaginal personnalise: modification et amelioration techniques

    Energy Technology Data Exchange (ETDEWEB)

    Albano, M.; Dumas, I.; Haie-Meder, C. [Institut Gustave-Roussy, Service de curietherapie, 94 - Villejuif (France)

    2008-12-15

    Brachytherapy plays an important role in the treatment of patients with gynaecological cancers. At the Institut Gustave-Roussy, the technique of vaginal mould applicator has been used for decades. This technique allows a personalized tailored irradiation, integrating tumour shape, size and extension and vaginal anatomy. Vaginal expansion reduces the dose to the vaginal mucosa and to the organs at risk. We report a modification of the material used for vaginal mould manufacture. The advantages of the new material are a lighter weight, and transparency allowing a better accuracy in the placement of catheters for radioactive sources. This material is applicable for low dose-rate, pulse dose-rate and high dose-rate brachytherapy. Since 2001, more than 700 vaginal moulds have been manufactured with this new approach without any intolerance. (authors)

  5. SU-F-19A-12: Split-Ring Applicator with Interstitial Needle for Improved Volumetric Coverage in HDR Brachytherapy for Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sherertz, T; Ellis, R; Colussi, V; Mislmani, M; Traughber, B; Herrmann, K; Podder, T [University Hospitals Case Medical Center, Cleveland, OH (United States)

    2014-06-15

    Purpose: To evaluate volumetric coverage of a Mick Radionuclear titanium Split-Ring applicator (SRA) with/without interstitial needle compared to an intracavitary Vienna applicator (VA), interstitial-intracavitary VA, and intracavitary ring and tandem applicator (RTA). Methods: A 57 year-old female with FIGO stage IIB cervical carcinoma was treated following chemoradiotherapy (45Gy pelvic and 5.4Gy parametrial boost) with highdose- rate (HDR) brachytherapy to 30Gy in 5 fractions using a SRA. A single interstitial needle was placed using the Ellis Interstitial Cap for the final three fractions to increase coverage of left-sided gross residual disease identified on 3T-MRI. High-risk (HR) clinical target volume (CTV) and intermediate-risk (IR) CTV were defined using axial T2-weighted 2D and 3D MRI sequences (Philips PET/MRI unit). Organs-at-risks (OARs) were delineated on CT. Oncentra planning system was used for treatment optimization satisfying GEC-ESTRO guidelines for target coverage and OAR constraints. Retrospectively, treatment plans (additional 20 plans) were simulated using intracavitary SRA (without needle), intracavitary VA (without needle), interstitial-intracavitary VA, and intracavitary RTA with this same patient case. Plans were optimized for each fraction to maintain coverage to HR-CTV. Results: Interstitial-intracavitary SRA achieved the following combined coverage for external radiation and brachytherapy (EQD2): D90 HR-CTV =94.6Gy; Bladder-2cc =88.9Gy; Rectum-2cc =65.1Gy; Sigmoid-2cc =48.9Gy; Left vaginal wall (VW) =103Gy, Right VW =99.2Gy. Interstitial-intracavitary VA was able to achieve identical D90 HR-CTV =94.6Gy, yet Bladder-2cc =91.9Gy (exceeding GEC-ESTRO recommendations of 2cc<90Gy) and Left VW =120.8Gy and Right VW =115.5Gy. Neither the SRA nor VA without interstitial needle could cover HR-CTV adequately without exceeding dose to Bladder-2cc. Conventional RTA was unable to achieve target coverage for the HR-CTV >80Gy without severely

  6. A comparison of inverse optimization algorithms for HDR/PDR prostate brachytherapy treatment planning.

    Science.gov (United States)

    Dinkla, Anna M; van der Laarse, Rob; Kaljouw, Emmie; Pieters, Bradley R; Koedooder, Kees; van Wieringen, Niek; Bel, Arjan

    2015-01-01

    Graphical optimization (GrO) is a common method for high-dose-rate/pulsed-dose-rate (PDR) prostate brachytherapy treatment planning. New methods performing inverse optimization of the dose distribution have been developed over the past years. The purpose is to compare GrO and two established inverse methods, inverse planning simulated annealing (IPSA) and hybrid inverse treatment planning and optimization (HIPO), and one new method, enhanced geometric optimization-interactive inverse planning (EGO-IIP), in terms of speed and dose-volume histogram (DVH) parameters. For 26 prostate cancer patients treated with a PDR brachytherapy boost, an experienced treatment planner optimized the dose distributions using four different methods: GrO, IPSA, HIPO, and EGO-IIP. Relevant DVH parameters (prostate-V100%, D90%, V150%; urethra-D(0.1cm3) and D(1.0cm3); rectum-D(0.1cm3) and D(2.0cm3); bladder-D(2.0cm3)) were evaluated and their compliance to the constraints. Treatment planning time was also recorded. All inverse methods resulted in shorter planning time (mean, 4-6.7 min), as compared with GrO (mean, 7.6 min). In terms of DVH parameters, none of the inverse methods outperformed the others. However, all inverse methods improved on compliance to the planning constraints as compared with GrO. On average, EGO-IIP and GrO resulted in highest D90%, and the IPSA plans resulted in lowest bladder D2.0cm3 and urethra D(1.0cm3). Inverse planning methods decrease planning time as compared with GrO for PDR/high-dose-rate prostate brachytherapy. DVH parameters are comparable for all methods. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  7. Advancements in brachytherapy

    DEFF Research Database (Denmark)

    Tanderup, Kari; Ménard, Cynthia; Polgar, Csaba

    2017-01-01

    Brachytherapy is a radiotherapy modality associated with a highly focal dose distribution. Brachytherapy treats the cancer tissue from the inside, and the radiation does not travel through healthy tissue to reach the target as with external beam radiotherapy techniques. The nature of brachytherap...... in terms of controlling dose and demonstrating excellent clinical outcome. Interests in focal, hypofractionated and adaptive treatments are increasing, and brachytherapy has significant potential to develop further in these directions with current and new treatment indications....

  8. Assessment of radiation doses to the para-aortic, pelvic, and inguinal lymph nodes delivered by image-guided adaptive brachytherapy in locally advanced cervical cancer

    DEFF Research Database (Denmark)

    Mohamed, Sandy M I; Aagaard, Torben; Fokdal, Lars U

    2015-01-01

    PURPOSE: This study evaluated the dose delivered to lymph nodes (LNs) by brachytherapy (BT) and the effect of BT image-guided optimization on the LN dose. METHODS AND MATERIALS: Twenty-five patients with locally advanced cervical cancer were retrospectively analyzed, 16 patients of them had LN...... involvement. The patients received whole pelvis intensity-modulated radiation therapy (45-50 Gy/25-30 fx) to whole pelvis and two fractions of MRI pulsed-dose-rate BT. The delineated LN groups were para-aortic, inguinal, common iliac (CI), external iliac, internal iliac, obturator, and presacral. For each LN...... group, D98%, D50%, and D2% (the dose that covers 98%, 50%, and 2% of the volume, respectively) were evaluated for optimized and standard BT plans. The correlation between total reference air kerma (TRAK) and D50% of the LN groups was evaluated. RESULTS: BT contributed considerable dose (mean D50% was 3...

  9. Is there a place for brachytherapy in the salvage treatment of cervical lymph node metastases of head and neck cancers?

    Science.gov (United States)

    Bartochowska, Anna; Skowronek, Janusz; Wierzbicka, Malgorzata; Leszczynska, Malgorzata; Szyfter, Witold

    2015-01-01

    Therapeutic options are limited for unresectable isolated cervical lymph node recurrences. The purpose of the study was to evaluate the feasibility, safety, and efficacy of high-dose-rate (HDR) and pulsed-dose-rate (PDR) brachytherapy (BT) in such cases. Sixty patients have been analyzed. All them had previously been treated with radical radiotherapy or chemoradiotherapy with or without surgery. PDR-BT and HDR-BT were used in 49 and 11 patients, respectively. In PDR-BT, a dose per pulse of 0.6-0.8 Gy (median 0.7 Gy) was given up to a median total dose of 20 Gy (range, 20-40 Gy). HDR-BT delivered a median total dose of 24 Gy (range, 7-60 Gy) in 3-10 fractions at 3-6 Gy per fraction. The overall survival and lymph node control rates at 1 and 2 years were estimated for 31.7% and 19%, and 41.4% and 27.3%, respectively. Serious late side effects (soft tissue necrosis) were observed in 11.7% of patients. Adverse events occurred statistically more often in patients >59 years (p = 0.02). HDR-BT and PDR-BT are feasible in previously irradiated patients with isolated regional lymph node metastases of head and neck cancers. The techniques should be considered if surgery is contraindicated. They provide acceptable toxicity and better tumor control than chemotherapy alone. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  10. Current situation of high-dose-rate brachytherapy for cervical cancer in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rogerio Matias Vidal da; Souza, Divanizia do Nascimento, E-mail: rmv.fisica@gmail.com [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil); Pinezi, Juliana Castro Dourado [Pontificia Universidade Catolica de Goias (PUC-Goias), Goiania, GO (Brazil); Macedo, Luiz Eduardo Andrade [Hospital Chama, Arapiraca, AL (Brazil)

    2014-05-15

    To assess the current situation of high-dose-rate (HDR) brachytherapy for cancer of the cervix in Brazil, regarding apparatuses, planning methods, prescription, fractionation schedule and evaluation of dose in organs at risk. Materials and methods: in the period between March/2012 and May/2013, a multiple choice questionnaire was developed and sent to 89 Brazilian hospitals which perform HDR brachytherapy. Results: sixty-one services answered the questionnaire. All regions of the country experienced a sharp increase in the number of HDR brachytherapy services in the period from 2001 to 2013. As regards planning, although a three-dimensional planning software was available in 91% of the centers, conventional radiography was mentioned by 92% of the respondents as their routine imaging method for such a purpose. Approximately 35% of respondents said that brachytherapy sessions are performed after teletherapy. The scheme of four 7 Gy intracavitary insertions was mentioned as the most frequently practiced. Conclusion: the authors observed that professionals have difficulty accessing adjuvant three-dimensional planning tools such as computed tomography and magnetic resonance imaging. (author)

  11. The role of interstitial brachytherapy in the management of primary radiation therapy for uterine cervical cancer

    Directory of Open Access Journals (Sweden)

    Naoya Murakami

    2016-10-01

    Full Text Available Purpose : The aim of this study was to report the clinical results of uterine cervical cancer patients treated by primary radiation therapy including brachytherapy, and investigate the role of interstitial brachytherapy (ISBT. Material and methods: All consecutive uterine cervical cancer patients who were treated by primary radiation therapy were reviewed, and those who were treated by ISBT were further investigated for clinical outcomes and related toxicities. Results : From December 2008 to October 2014, 209 consecutive uterine cervical cancer patients were treated with primary radiation therapy. Among them, 142 and 42 patients were treated by intracavitary and hybrid brachytherapy, respectively. Twenty-five patients (12% were treated by high-dose-rate (HDR-ISBT. Five patients with distant metastasis other than para-aortic lymph node were excluded, and 20 patients consisted of the analysis. Three-year overall survival (OS, progression-free survival (PFS, and local control (LC rate were 44.4%, 38.9%, and 87.8%, respectively. Distant metastasis was the most frequent site of first relapse after HDR-ISBT. One and four patients experienced grade 3 and 2 rectal bleeding, one grade 2 cystitis, and two grade 2 vaginal ulcer. Conclusions : Feasibility and favorable local control of interstitial brachytherapy for locally advanced cervical cancer was demonstrated through a single institutional experience with a small number of patients.

  12. ``In vivo'' Dose Measurements in High-Dose-Rate Brachytherapy Treatments for Cervical Cancer: A Project Proposal

    Science.gov (United States)

    Mejía, C. A. Reynoso; Burgos, A. E. Buenfil; Trejo, C. Ruiz; García, A. Mota; Durán, E. Trejo; Ponce, M. Rodríguez; de Buen, I. Gamboa

    2010-12-01

    The aim of this thesis project is to compare doses calculated from the treatment planning system using computed tomography images, with those measured "in vivo" by using thermoluminescent dosimeters placed at different regions of the rectum and bladder of a patient during high-dose-rate intracavitary brachytherapy treatment of uterine cervical carcinoma. The experimental dosimeters characterisation and calibration have concluded and the protocol to carry out the "in vivo" measurements has been established. In this work, the calibration curves of two types of thermoluminescent dosimeters (rods and chips) are presented, and the proposed protocol to measure the "in vivo" dose is fully described.

  13. Fundamental approach to the design of a dose-rate calculation program for use in brachytherapy planning

    Energy Technology Data Exchange (ETDEWEB)

    Cassell, K.J. (Saint Luke' s Hospital, Guildford (UK))

    1983-02-01

    A method, developed from the Quantisation Method, of calculating dose-rate distributions around uniformly and non-uniformly loaded brachytherapy sources is described. It allows accurate and straightforward corrections for oblique filtration and self-absorption to be made. Using this method, dose-rate distributions have been calculated for sources of radium 226, gold 198, iridium 192, caesium 137 and cobalt 60, all of which show very good agreement with existing measured and calculated data. This method is now the basis of the Interstitial and Intracavitary Dosimetry (IID) program on the General Electric RT/PLAN computerised treatment planning system.

  14. Estimation of Temperature Fields in Local Tissues During Intracavitary Hyperthermia

    Institute of Scientific and Technical Information of China (English)

    NanQun; HuZhengjun; 等

    1999-01-01

    This paper presents a heat transfer model for the hyperthermia treatment of cervix cancer using a intracavitary microwave applicator and based on which the 3-D finite element simulation of the temperature fields have done,Before then the specific absorption rate(SAR) distribution for the transvaginal probe have been measured in a phantom.The variations of the parameters have been investigated.Too,for optimization.At last,the rsults of simulation are compared to that measured in the phantom and some instructive conclusions are presented for critical application.

  15. SU-E-T-547: Rotating Shield Brachytherapy (RSBT) for Cervical Cancer.

    Science.gov (United States)

    Yang, W; Kim, Y; Liu, Y; Wu, X; Flynn, R

    2012-06-01

    To assess rotating shield brachytherapy (RSBT) delivered with the electronic brachytherapy (eBT) source comparing to intracavitary (IC) and intracavitary plus supplemental interstitial brachytherapy (IC+IS BT) delivered with conventional isotope radiation source. IC, IC+IS and RSBT plan was simulated for 5 patients with advanced cervical cancer (>40cc). One BT plan for each patient (fraction 1) guided by magnetic resonance imaging (MRI) was used in our treatment planning system (TPS). A bio- and MRI-compatible polycarbonate (Makrolon Rx3158) intrauterine applicator was simulated for IC and RSBT, and the vienna applicator was simulated for IC+IS BT. 192Ir was used as the radiation source of IC and IC+IS BT; Xoft AxxentTM eBT source was used for RSBT. A 0.5 mm thick tungsten shield was used for RS-BT with different azimuthal and zenith angles. The total dose for each plan was escalated as the external beam radiation therapy (EBRT) plus BT times fraction number (5 in our case). RSBT and IC+IS BT had higher dose conformity in terms of D90 than IC BT for all the patients. The advantage of RSBT over IC+IS BT was dependent on the shield emission angle, tumor shape and tandem applicator location. The delivery time of RSBT was increased as finer emission angle was selected. RSBT is a less-invasive potential alternative to conventional IC and IC+IS BT for treating bulky (>40cc) cervical cancer. RSBT can provide better treatment outcome with clinically acceptable increased delivery time if proper emission angle is selected based on the tumor shape and tandem applicator location. supported in part by NSF grants CCF-0830402 and CCF-0844765; and the NIH grant K25-CA123112, and American Cancer Society seed grant (IRG-77-004-31). © 2012 American Association of Physicists in Medicine.

  16. Re-irradiation of the chest wall for local breast cancer recurrence. Results of salvage brachytherapy with hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Auoragh, A. [University Hospital Erlangen, Department of Radiation Oncology, Erlangen (Germany); Hospital Fuerth, Department of Radiation Oncology, Fuerth (Germany); Strnad, V.; Ott, O.J.; Fietkau, R. [University Hospital Erlangen, Department of Radiation Oncology, Erlangen (Germany); Beckmann, M.W. [University Hospital Erlangen, Department of Gynecology and Obstetrics, Erlangen (Germany)

    2016-09-15

    Following mastectomy and adjuvant external beam radiation therapy in patients with breast cancer, the incidence of local or locoregional recurrence is approximately 9 % (2-20 %). Alongside the often limited possibilities of surgical treatment, radiation therapy combined with superficial hyperthermia is the most effective local therapy. In the present work, a retrospective analysis of salvage brachytherapy combined with superficial hyperthermia for chest wall recurrences is presented. Between 2004 and 2011, 18 patients with a total of 23 target volumes resulting from chest wall recurrences after previously mastectomy and external beam radiation therapy (median 56 Gy, range 50-68 Gy) were treated with superficial brachytherapy as salvage treatment: 8 patients (44 %) had macroscopic tumor, 3 (17 %) had microscopic tumor (R1), and 7 (39 %) had undergone R0 resection and were treated due to risk factors. A dose of 50 Gy was given (high-dose rate [HDR] and pulsed-dose rate [PDR] procedures). In all, 5 of 23 patients (22 %) received additional concurrent chemotherapy, and in 20 of 23 (87 %) target volumes additional superficial hyperthermia was carried out twice weekly. The 5-year local recurrence-free survival was 56 %, the disease-free survival was 28 %, and a 5-year overall survival was 22 %. Late side effects Common Toxicity Criteria (CTC) grade 3 were reported in 17 % of the patients: 2 of 18 (11 %) had CTC grade 3 fibrosis, and 1 of 18 (6 %) had a chronic wound healing disorder. Re-irradiation as salvage brachytherapy with superficial hyperthermia for chest wall recurrences is a feasible and safe treatment with good local control results and acceptable late side effects. (orig.) [German] Nach einer Mastektomie und adjuvanter Strahlentherapie bei Patientinnen mit Mammakarzinom kommt es bei 9 % (2-20 %) zum lokalen bzw. lokoregionaeren Rezidiv. Neben den oft limitierten operativen Behandlungsmoeglichkeiten ist die Strahlentherapie mit Oberflaechenhyperthermie die

  17. Contribution of image-guided adaptive brachytherapy to pelvic nodes treatment in locally advanced cervical cancer.

    Science.gov (United States)

    Bacorro, Warren; Dumas, Isabelle; Levy, Antonin; Rivin Del Campo, Eleonor; Canova, Charles-Henri; Felefly, Tony; Huertas, Andres; Marsolat, Fanny; Haie-Meder, Christine; Chargari, Cyrus; Mazeron, Renaud

    With the increasing use of simultaneous integrated boost in the treatment of cervical cancer, there is a need to anticipate the brachytherapy (BT) contribution at the level of the pathologic pelvic lymph nodes. This study aimed to report the dose delivered at their level during BT. Patients with pelvic nodal involvement and treated with a combination of chemoradiation followed by image-guided adaptive pulsed-dose-rate BT were selected. On per BT three-dimensional images, pelvic lymphadenopathies were delineated, without planning aim. For the purposes of the study, D100, D98, D90, and D50 were reviewed and converted in 2-Gy equivalent doses, using the linear quadratic model with an α/β of 10 Gy. Ninety-one patients were identified, allowing evaluation at the level of 226 lymphadenopathies. The majority of them were external iliac (48%), followed by common iliac (25%), and internal iliac (16%) regions. The 2-Gy equivalent doses D98 were 4.4 ± 1.9 Gy, 5.4 ± 3.1 Gy, and 4.3 ± 2.1 Gy for the obturator, internal iliac, and external iliac, respectively, and 2.8 ± 2.5 Gy for the common iliac. The contribution to the common iliac nodes was significantly lower than the one of external and internal iliac (p < 0.001). BT significantly contributes to the treatment of pelvic nodes at the level of approximately 5 Gy in the internal, external, and obturator areas and 2.5 Gy in the common iliac, allowing the anticipation of nodal boost with the simultaneous integrated boost technique. However, important individual variations have been observed, and evaluation of the genuine BT contribution should be recommended. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  18. Customized individual applicators for endocavitary brachytherapy in patients with cancers of the nasal cavity, sinonasal region and nasopharynx.

    Science.gov (United States)

    Kadah, Basel Al; Niewald, Marcus; Papaspyrou, George; Dzierma, Yvonne; Schneider, Mathias; Schick, Bernhard

    2016-06-01

    Brachytherapy has become an established therapeutic regimen for primary, persistent, recurrent and metastatic tumour disease in the head and neck region. This study presents the authors' preliminary experience with intracavitary brachytherapy by means of an individual silicone applicator in the treatment of patients with nasal, sinonasal, orbital and nasopharyngeal cancer. Between January 2001 and January 2013, twenty patients with cancer of the nasal cavity, the paranasal sinuses and nasopharynx underwent surgery and intracavitary brachytherapy with the aid of an individually manufactured silicone applicator in the Department of Otolaryngology, Head and Neck Surgery and in the Department of Radiotherapy and Radiooncology at the Saarland University Medical Center of Homburg, Germany. The tumour was localized in the nasal cavity/paranasal sinuses (15) affecting the orbit twice and the nasopharynx (5). There were 14 patients with squamous cell carcinoma, 2 patients with mixed tumours and one patient with adenocarcinoma, adenoid cystic carcinoma, mucosal melanoma or plasmocytoma. The majority of the patients presented with advanced disease (T3 or T4 tumours). In 18/20 patients, brachytherapy was performed as a boost technique, in the remaining two solely because of a previous radiation series. All surgical interventions were performed endonasally. Three to six weeks after surgery, a cast of the nasal cavity was created under general anaesthesia. Subsequently, an individual brachytherapy silicon applicator with two to four plastic tubes was manufactured. The radiation therapy was applied using the Ir-192 high-dose-rate-afterloading method (total dose 10-20 Gy) in two to five sessions, additionally in 18/20 patients a percutaneous radiotherapy with a total dose of 30-60 Gy was applied. After a mean duration of follow-up of 2 years, 7/20 patients experienced a local progression, 5/19 a regional recurrence in the neck nodes and 4/19 distant metastases. The 2-year

  19. EM-navigated catheter placement for gynecologic brachytherapy: an accuracy study

    Science.gov (United States)

    Mehrtash, Alireza; Damato, Antonio; Pernelle, Guillaume; Barber, Lauren; Farhat, Nabgha; Viswanathan, Akila; Cormack, Robert; Kapur, Tina

    2014-03-01

    Gynecologic malignancies, including cervical, endometrial, ovarian, vaginal and vulvar cancers, cause significant mortality in women worldwide. The standard care for many primary and recurrent gynecologic cancers consists of chemoradiation followed by brachytherapy. In high dose rate (HDR) brachytherapy, intracavitary applicators and /or interstitial needles are placed directly inside the cancerous tissue so as to provide catheters to deliver high doses of radiation. Although technology for the navigation of catheters and needles is well developed for procedures such as prostate biopsy, brain biopsy, and cardiac ablation, it is notably lacking for gynecologic HDR brachytherapy. Using a benchtop study that closely mimics the clinical interstitial gynecologic brachytherapy procedure, we developed a method for evaluating the accuracy of image-guided catheter placement. Future bedside translation of this technology offers the potential benefit of maximizing tumor coverage during catheter placement while avoiding damage to the adjacent organs, for example bladder, rectum and bowel. In the study, two independent experiments were performed on a phantom model to evaluate the targeting accuracy of an electromagnetic (EM) tracking system. The procedure was carried out using a laptop computer (2.1GHz Intel Core i7 computer, 8GB RAM, Windows 7 64-bit), an EM Aurora tracking system with a 1.3mm diameter 6 DOF sensor, and 6F (2 mm) brachytherapy catheters inserted through a Syed-Neblett applicator. The 3D Slicer and PLUS open source software were used to develop the system. The mean of the targeting error was less than 2.9mm, which is comparable to the targeting errors in commercial clinical navigation systems.

  20. Variability of marker-based rectal dose evaluation in HDR cervical brachytherapy.

    Science.gov (United States)

    Wang, Zhou; Jaggernauth, Wainwright; Malhotra, Harish K; Podgorsak, Matthew B

    2010-01-01

    In film-based intracavitary brachytherapy for cervical cancer, position of the rectal markers may not accurately represent the anterior rectal wall. This study was aimed at analyzing the variability of rectal dose estimation as a result of interfractional variation of marker placement. A cohort of five patients treated with multiple-fraction tandem and ovoid high-dose-rate (HDR) brachytherapy was studied. The cervical os point and the orientation of the applicators were matched among all fractional plans for each patient. Rectal points obtained from all fractions were then input into each clinical treated plan. New fractional rectal doses were obtained and a new cumulative rectal dose for each patient was calculated. The maximum interfractional variation of distances between rectal dose points and the closest source positions was 1.1 cm. The corresponding maximum variability of fractional rectal dose was 65.5%. The percentage difference in cumulative rectal dose estimation for each patient was 5.4%, 19.6%, 34.6%, 23.4%, and 13.9%, respectively. In conclusion, care should be taken when using rectal markers as reference points for estimating rectal dose in HDR cervical brachytherapy. The best estimate of true rectal dose for each fraction should be determined by the most anterior point among all fractions.

  1. Outcomes of salvage high-dose-rate brachytherapy with or without external beam radiotherapy for isolated vaginal recurrence of endometrial cancer.

    Science.gov (United States)

    Sekii, Shuhei; Murakami, Naoya; Kato, Tomoyasu; Harada, Ken; Kitaguchi, Mayuka; Takahashi, Kana; Inaba, Koji; Igaki, Hiroshi; Ito, Yoshinori; Sasaki, Ryohei; Itami, Jun

    2017-06-01

    This study was designed to retrospectively analyze outcomes of high-dose-rate (HDR) brachytherapy, with or without external beam radiotherapy (EBRT), in patients with vaginal recurrence of endometrial carcinoma, and to identify factors prognostic of patient outcomes. The medical records of all patients who underwent HDR brachytherapy for initial recurrence in the vagina of endometrial cancer after definitive surgery between 1992 and 2014 were retrospectively reviewed. All patients underwent either intracavitary brachytherapy (ICBT) or interstitial brachytherapy (ISBT) with or without EBRT. Late toxicity was graded using the EORTC (LENT/SOMA) scale, revised in 1995. Thirty-seven patients were identified. The median follow-up time was 48 months (range: 6-225 months). Of these 37 patients, 23 underwent ICBT, 14 underwent ISBT, and 26 underwent EBRT. Tumor size at first examination of initial relapse was significantly larger in the ISBT than in the ICBT group. The 4-year respective overall survival (OS), local control (LC), and progression-free survival (PFS) rates in the entire cohort were 81.0%, 77.9%, and 56.8%, respectively. The interval between diagnosis of first recurrence and radiotherapy (endometrial carcinoma with acceptable morbidity. Early radiotherapy, including brachytherapy, should be considered for women who experience vaginal recurrence of endometrial cancer.

  2. Inter-application displacement of brachytherapy dose received by the bladder and rectum of the patients with inoperable cervical cancer

    Science.gov (United States)

    Marosevic, Goran; Ljuca, Dzenita; Osmic, Hasan; Fazlic, Semir; Arsovski, Oliver; Mileusnic, Dusan

    2014-01-01

    Background The aim of the study was to examine on the CT basis the inter-application displacement of the positions D0.1cc, D1cc and D2cc of the brachytherapy dose applied to the bladder and rectum of the patients with inoperable cervical cancer. Patients and methods This prospective study included 30 patients with cervical cancer who were treated by concomitant chemo-radiotherapy. HDR intracavitary brachytherapy was made by the applicators type Fletcher tandem and ovoids. For each brachytherapy application the position D0.1cc was determined of the bladder and rectum that receive a brachytherapty dose. Then, based on the X, Y, and Z axis displacement, inter-application mean X, Y, and Z axis displacements were calculated as well as their displacement vectors (R). It has been analyzed whether there is statistically significant difference in inter-application displacement of the position of the brachytherapy dose D0.1cc, D1cc and D2cc of the bladder and rectum. The ANOVA test and post-hoc analysis by Tukey method were used for testing statistical importance of differences among the groups analyzed. The difference among the groups analyzed was considered significant if p < 0.05. Results There are significant inter-application displacements of the position of the brachytherapy dose D0,1cc, D1cc and D2cc of the bladder and rectum. Conclusions When we calculate the cumulative brachytherapy dose by summing up D0,1cc, D1cc and D2cc of the organs at risk for all the applications, we must bear in mind their inter-application displacement, and the fact that it is less likely that the worst scenario would indeed happen. PMID:24991211

  3. Treatment results of radical radiotherapy of carcinoma uterine cervix using external beam radiotherapy and high dose rate intracavitary radiotherapy

    Directory of Open Access Journals (Sweden)

    Azad S

    2010-01-01

    Full Text Available Aim: To report the outcome of carcinoma cervix patients treated radically by external beam radiotherapy and high dose rate intracavitary radiotherapy. Material and Methods: From January 2005 to December 2006, a total of 709 newly diagnosed cases of carcinoma cervix were reported in our department. All cases were staged according to the International Federation of Gynecologist and Oncologist staging system. Out of 709 cases, 342 completed radical radiotherapy and were retrospectively analyzed for the presence of local residual disease, local recurrence, distant metastases, radiation reaction, and disease free survival. Results: There were 11(3.22%, 82(23.98%, 232(67.83%, and 17(4.97% patients in stages I, II, III, and IV, respectively. The median follow up time for all patients was 36 months (range 3 -54 months. The overall treatment time (OTT ranged from 52 to 69 days (median 58 days. The 3 year disease free survival rate was 81.8%, 70.7%, 40.08%, and 11.76% for stages I, II, III, and IV, respectively. There were 91 (26.6% cases with local residual diseases, 27(7.9% developed distant metastasis, and 18(5.26% pts had local recurrence. Discussion: The results of this study suggest that radical radiotherapy with HDR brachytherapy was appropriate for the treatment of early staged cancer of uterine cervix. For locally advanced cancer of cervix addition of concurrent chemotherapy, higher radiation doses, reduction of overall treatment time to less than 8 weeks, and use of latest radiotherapy techniques such as IMRT is recommended to improve the results.

  4. MO-D-BRD-04: NIST Air-Kerma Standard for Electronic Brachytherapy Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Mitch, M. [Nat’l Institute of Standards & Technology (United States)

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014, a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of electronic

  5. MO-D-BRD-03: Radiobiology and Commissioning of Electronic Brachytherapy for IORT

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J. [Oregon Health & Science Univ (United States)

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014, a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of electronic

  6. MO-D-BRD-02: Radiological Physics and Surface Lesion Treatments with Electronic Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Fulkerson, R.

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014, a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of electronic

  7. MO-D-BRD-01: Clinical Implementation of An Electronic Brachytherapy Program for the Skin

    Energy Technology Data Exchange (ETDEWEB)

    Ouhib, Z. [Lynn Regional Cancer Center (United States)

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014, a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of electronic

  8. Clinical experiences of intracavitary hyperthermo-radiotherapy. Analysis of treatment results and adverse reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kawamori, Jiro; Hirayama, Michiko; Fukushima, Shoko; Saito, Tsutomu; Tanaka, Yoshiaki [Nihon Univ., Tokyo (Japan). School of Medicine

    1999-09-01

    We have applied intracavitary hyperthermo-radiotherapy to the treatment of various cancers. In this study, early response and acute reaction were analyzed. Eighteen patients treated with intracavitary hyperthermo-radiotherapy were as follows; 4 of esophageal cancer, 6 of uterine cervical cancer, 3 of rectal cancer, and 5 of others. Intracavitary hyperthermia was performed with Endoradiotherm 100A (OLYMPUS) once or twice a week with a total number of heating sessions ranging from 2 to 12 times. The heating was started just after the irradiation, and the temperature measured at the surface of applicator was kept at 42-44 deg C during the treatment for 30-40 min. External irradiation was performed in the majority of these 18 patients. Nine cases achieved complete response (CR), 6 cases did partial response (PR) and 3 cases were no change (NC). Of CR 9 cases, 6 cases showed 2-year local control. There were 2 esophageal tumors, 2 cervical tumors, 1 rectal tumor, and 1 vaginal stump tumor among 2-year local control cases. The treatment was interrupted in 2 patients from severe local pain during the heating. Severe vaginal mucositis occurred in 4 stump tumors. Intracavitary hyperthermoradiotherapy showed good early response for esophageal cancer and stump tumor. The advantages of intracavitary hyperthermia might be the reliability of heating for the treatment of localized tumors. (author)

  9. Single versus multichannel applicator in high-dose-rate vaginal brachytherapy optimized by inverse treatment planning.

    Science.gov (United States)

    Bahadur, Yasir A; Constantinescu, Camelia; Hassouna, Ashraf H; Eltaher, Maha M; Ghassal, Noor M; Awad, Nesreen A

    2015-01-01

    To retrospectively compare the potential dosimetric advantages of a multichannel vaginal applicator vs. a single channel one in intracavitary vaginal high-dose-rate (HDR) brachytherapy after hysterectomy, and evaluate the dosimetric advantage of fractional re-planning. We randomly selected 12 patients with endometrial carcinoma, who received adjuvant vaginal cuff HDR brachytherapy using a multichannel applicator. For each brachytherapy fraction, two inverse treatment plans (for central channel and multichannel loadings) were performed and compared. The advantage of fractional re-planning was also investigated. Dose-volume-histogram (DVH) analysis showed limited, but statistically significant difference (p = 0.007) regarding clinical-target-volume dose coverage between single and multichannel approaches. For the organs-at-risk rectum and bladder, the use of multichannel applicator demonstrated a noticeable dose reduction, when compared to single channel, but statistically significant for rectum only (p = 0.0001). For D2cc of rectum, an average fractional dose of 6.1 ± 0.7 Gy resulted for single channel vs. 5.1 ± 0.6 Gy for multichannel. For D2cc of bladder, an average fractional dose of 5 ± 0.9 Gy occurred for single channel vs. 4.9 ± 0.8 Gy for multichannel. The dosimetric benefit of fractional re-planning was demonstrated: DVH analysis showed large, but not statistically significant differences between first fraction plan and fractional re-planning, due to large inter-fraction variations for rectum and bladder positioning and filling. Vaginal HDR brachytherapy using a multichannel vaginal applicator and inverse planning provides dosimetric advantages over single channel cylinder, by reducing the dose to organs at risk without compromising the target volume coverage, but at the expense of an increased vaginal mucosa dose. Due to large inter-fraction dose variations, we recommend individual fraction treatment plan optimization.

  10. Adaptive error detection for HDR/PDR brachytherapy: Guidance for decision making during real-time in vivo point dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kertzscher, Gustavo, E-mail: guke@dtu.dk; Andersen, Claus E., E-mail: clan@dtu.dk [Centre for Nuclear Technologies, Technical University of Denmark, DTU Nutech, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Tanderup, Kari, E-mail: karitand@rm.dk [Department of Oncology, Aarhus University Hospital and Institute of Clinical Medicine, Aarhus University, Norrebrogade 44, DK-8000 Aarhus (Denmark)

    2014-05-15

    Purpose: This study presents an adaptive error detection algorithm (AEDA) for real-timein vivo point dosimetry during high dose rate (HDR) or pulsed dose rate (PDR) brachytherapy (BT) where the error identification, in contrast to existing approaches, does not depend on an a priori reconstruction of the dosimeter position. Instead, the treatment is judged based on dose rate comparisons between measurements and calculations of the most viable dosimeter position provided by the AEDA in a data driven approach. As a result, the AEDA compensates for false error cases related to systematic effects of the dosimeter position reconstruction. Given its nearly exclusive dependence on stable dosimeter positioning, the AEDA allows for a substantially simplified and time efficient real-time in vivo BT dosimetry implementation. Methods: In the event of a measured potential treatment error, the AEDA proposes the most viable dosimeter position out of alternatives to the original reconstruction by means of a data driven matching procedure between dose rate distributions. If measured dose rates do not differ significantly from the most viable alternative, the initial error indication may be attributed to a mispositioned or misreconstructed dosimeter (false error). However, if the error declaration persists, no viable dosimeter position can be found to explain the error, hence the discrepancy is more likely to originate from a misplaced or misreconstructed source applicator or from erroneously connected source guide tubes (true error). Results: The AEDA applied on twoin vivo dosimetry implementations for pulsed dose rate BT demonstrated that the AEDA correctly described effects responsible for initial error indications. The AEDA was able to correctly identify the major part of all permutations of simulated guide tube swap errors and simulated shifts of individual needles from the original reconstruction. Unidentified errors corresponded to scenarios where the dosimeter position was

  11. Outcomes of salvage high-dose-rate brachytherapy with or without external beam radiotherapy for isolated vaginal recurrence of endometrial cancer

    Directory of Open Access Journals (Sweden)

    Shuhei Sekii

    2017-05-01

    Full Text Available Purpose: This study was designed to retrospectively analyze outcomes of high-dose-rate (HDR brachytherapy, with or without external beam radiotherapy (EBRT, in patients with vaginal recurrence of endometrial carcinoma, and to identify factors prognostic of patient outcomes. Material and methods : The medical records of all patients who underwent HDR brachytherapy for initial recurrence in the vagina of endometrial cancer after definitive surgery between 1992 and 2014 were retrospectively reviewed. All patients underwent either intracavitary brachytherapy (ICBT or interstitial brachytherapy (ISBT with or without EBRT. Late toxicity was graded using the EORTC (LENT/SOMA scale, revised in 1995. Results : Thirty-seven patients were identified. The median follow-up time was 48 months (range: 6-225 months. Of these 37 patients, 23 underwent ICBT, 14 underwent ISBT, and 26 underwent EBRT. Tumor size at first examination of initial relapse was significantly larger in the ISBT than in the ICBT group. The 4-year respective overall survival (OS, local control (LC, and progression-free survival (PFS rates in the entire cohort were 81.0%, 77.9%, and 56.8%, respectively. The interval between diagnosis of first recurrence and radiotherapy (< 3 months, ≥ 3 months was a significant predictor of LC and PFS. OS and LC rates did not differ significantly in the ICBT and ISBT groups. Two patients experienced grade 2 rectal bleeding, and four experienced grade 2 hematuria. No grade 3 or higher late complications were observed. Conclusions : Salvage HDR brachytherapy is an optimal for treating vaginal recurrence of endometrial carcinoma with acceptable morbidity. Early radiotherapy, including brachytherapy, should be considered for women who experience vaginal recurrence of endometrial cancer.

  12. Protocol-based image-guided salvage brachytherapy. Early results in patients with local failure of prostate cancer after radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lahmer, G.; Lotter, M.; Kreppner, S.; Fietkau, R.; Strnad, V. [University Hospital Erlangen (Germany). Dept. of Radiation Oncology

    2013-08-15

    Purpose: To assess the overall clinical outcome of protocol-based image-guided salvage pulsed-dose-rate brachytherapy for locally recurrent prostate cancer after radiotherapy failure particularly regarding feasibility and side effects. Patients and methods: Eighteen consecutive patients with locally recurrent prostate cancer (median age, 69 years) were treated during 2005-2011 with interstitial PDR brachytherapy (PDR-BT) as salvage brachytherapy after radiotherapy failure. The treatment schedule was PDR-BT two times with 30 Gy (pulse dose 0.6 Gy/h, 24 h per day) corresponding to a total dose of 60 Gy. Dose volume adaptation was performed with the aim of optimal coverage of the whole prostate (V{sub 100} > 95 %) simultaneously respecting the protocol-based dose volume constraints for the urethra (D{sub 0.1} {sub cc} < 130 %) and the rectum (D{sub 2} {sub cc} < 50-60 %) taking into account the previous radiation therapy. Local relapse after radiotherapy (external beam irradiation, brachytherapy with J-125 seeds or combination) was confirmed mostly via choline-PET and increased PSA levels. The primary endpoint was treatment-related late toxicities - particularly proctitis, anal incontinence, cystitis, urinary incontinence, urinary frequency/urgency, and urinary retention according to the Common Toxicity Criteria. The secondary endpoint was PSA-recurrence-free survival. Results: We registered urinary toxicities only. Grade 2 and grade 3 toxicities were observed in up to 11.1 % (2/18) and 16.7 % (3/18) of patients, respectively. The most frequent late-event grade 3 toxicity was urinary retention in 17 % (3/18) of patients. No late gastrointestinal side effects occurred. The biochemical PSA-recurrence-free survival probability at 3 years was 57.1 %. The overall survival at 3 years was 88.9 %; 22 % (4/18) of patients developed metastases. The median follow-up time for all patients after salvage BT was 21 months (range, 8-77 months). Conclusion: Salvage PDR-brachytherapy

  13. Optimized Hyperthermia Treatment of Prostate Cancer Using a Novel Intracavitary Ultrasound Array

    Science.gov (United States)

    2006-01-01

    Seegenschmiedt, M. and Saur, R., Interstitial and intracavitary thermoradiotherapy Berlin: Springer-Verlag, 1993. [3] Seegenschmiedt, M., Fessenden , P., and...and eegenschmiedt, M., "Interstitial heating technologies," in Seegenschmiedt MH, Fessenden P, and ernon CC (eds.) Principles and practices of...thermoradiotherapy Berlin: Springer-Verlag, 1993. 5. Seegenschmiedt, M., Fessenden , P., and Vernon, C., Principles and practices of thermoradiotherapy and

  14. Accuracy Evaluation of Oncentra™ TPS in HDR Brachytherapy of Nasopharynx Cancer Using EGSnrc Monte Carlo Code

    Directory of Open Access Journals (Sweden)

    Hadad K

    2015-03-01

    Full Text Available Background: HDR brachytherapy is one of the commonest methods of nasopharyngeal cancer treatment. In this method, depending on how advanced one tumor is, 2 to 6 Gy dose as intracavitary brachytherapy is prescribed. Due to high dose rate and tumor location, accuracy evaluation of treatment planning system (TPS is particularly important. Common methods used in TPS dosimetry are based on computations in a homogeneous phantom. Heterogeneous phantoms, especially patient-specific voxel phantoms can increase dosimetric accuracy. Materials and Methods: In this study, using CT images taken from a patient and ctcreate-which is a part of the DOSXYZnrc computational code, patient-specific phantom was made. Dose distribution was plotted by DOSXYZnrc and compared with TPS one. Also, by extracting the voxels absorbed dose in treatment volume, dosevolume histograms (DVH was plotted and compared with Oncentra™ TPS DVHs. Results: The results from calculations were compared with data from Oncentra™ treatment planning system and it was observed that TPS calculation predicts lower dose in areas near the source, and higher dose in areas far from the source relative to MC code. Absorbed dose values in the voxels also showed that TPS reports D90 value is 40% higher than the Monte Carlo method. Conclusion: Today, most treatment planning systems use TG-43 protocol. This protocol may results in errors such as neglecting tissue heterogeneity, scattered radiation as well as applicator attenuation. Due to these errors, AAPM emphasized departing from TG-43 protocol and approaching new brachytherapy protocol TG-186 in which patient-specific phantom is used and heterogeneities are affected in dosimetry

  15. Comparison of Dose When Prescribed to Point A and Point H for Brachytherapy in Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gang, Ji Hyeong; Gim, Il Hwan; Hwang, Seon Boong; Kim, Woong; Im, Hyeong Seo; Gang, Jin Mook; Gim, Gi Hwan; Lee, Ah Ram [Dept. of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seou (Korea, Republic of)

    2012-09-15

    The purpose of this study is to compare plans prescribed to point A with these prescribed to point H recommended by ABS (American Brachytherapy Society) in high dose rate intracavitary brachytherapy for cervical carcinoma. This study selected 103 patients who received HDR (High Dose Rate) brachytherapy using tandem and ovoids from March 2010 to January 2012. Point A, bladder point, and rectal point conform with Manchester System. Point H conforms with ABS recommendation. Also Sigmoid colon point, and vagina point were established arbitrarily. We examined distance between point A and point H. The percent dose at point A was calculated when 100% dose was prescribed to point H. Additionally, the percent dose at each reference points when dose is prescribed to point H and point A were calculated. The relative dose at point A was lower when point H was located inferior to point A. The relative doses at bladder, rectal, sigmoid colon, and vagina points were higher when point H was located superior to point A, and lower when point H was located inferior to point A. This study found out that as point H got located much superior to point A, the absorbed dose of surrounding normal organs became higher, and as point H got located much inferior to point A, the absorbed dose of surrounding normal organs became lower. This differences dose not seem to affect the treatment. However, we suggest this new point is worth being considered for the treatment of HDR if dose distribution and absorbed dose at normal organs have large differences between prescribed to point A and H.

  16. Brachytherapy versus radical hysterectomy after external beam chemoradiation: a non-randomized matched comparison in IB2-IIB cervical cancer patients

    Directory of Open Access Journals (Sweden)

    Flores Vladimir

    2009-02-01

    Full Text Available Abstract Background A current paradigm in the treatment of cervical cancer with radiation therapy is that intracavitary brachytherapy is an essential component of radical treatment. This is a matched retrospective comparison of the results of treatment in patients treated with external beam chemoradiation (EBRT-CT and radical hysterectomy versus those treated with identical chemoradiation followed by brachytherapy. Methods In this non-randomized comparison EBRT-CT protocol was the same in both groups of 40 patients. In the standard treated patients, EBRT-CT was followed by one or two intracavitary Cesium (low-dose rate applications within 2 weeks of finishing external radiation to reach a point A dose of at least 85 Gy. In the surgically treated patients, radical hysterectomy with bilateral pelvic lymph node dissection and para-aortic lymph node sampling were performed within 7 weeks after EBRT-CT. Response, toxicity and survival were evaluated. Results A total of 80 patients were analyzed. The patients receiving EBRT-CT and surgery were matched with the standard treated cases. There were no differences in the clinicopathological characteristics between groups or in the delivery of EBRT-CT. The pattern of acute and late toxicity differed. Standard treated patients had more chronic proctitis while the surgically treated had acute complications of surgery and hydronephrosis. At a maximum follow-up of 60 months, median follow-up 26 (2–31 and 22 (3–27 months for the surgery and standard therapy respectively, eight patients per group have recurred and died. The progression free and overall survival are the same in both groups. Conclusion The results of this study suggest that radical hysterectomy can be used after EBRT-CT without compromising survival in FIGO stage IB2-IIB cervical cancer patients in settings were brachytherapy is not available. A randomized study is needed to uncover the value of surgery after EBRT-CT.

  17. Intracavitary urokinase in the treatment of multiloculated liver abscess : a case report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Min; Lee, Mi Suk; Lee, Jin Hee; Ym, Seong Hee [Namwon Medical Center, Namwon (Korea, Republic of); Kim, Chong Soo; Han, Young Min; Choi, Ki Chul [Chonbuk National Univ. College of Medicine, Chonju (Korea, Republic of)

    1997-08-01

    Radiologically-guided percutaneous abscess drainage has been preferred as a therapeutic modality for hepatic abscesses, though where these have been septated or multilocular, its success rate has often been low. The results of several clinical and in vitro studies have recently suggested that in difficult cases, where abscesses occur in the peritoneal cavity and retroperitoneum, or multiloculated empyema of the thorax, urokinase may be useful. To our knowledge, however, there has been only one report of a case of liver abscess in which intracavitary urokinase was administered. The authors therefore report a case of multiseptated hepatic abscess occuring in a 53-year-man. Conventional percutaneous tube drainage failed, but the use of transcatheter intracavitary urokinase was successful. Diagnosis and continuing assessment involved a combination of ultrasound and CT scanning.

  18. Brachytherapy volume visualization

    Science.gov (United States)

    Persons, Timothy M.; Webber, Richard L.; Hemler, Paul F.; Bettermann, Wolfram; Bourland, J. Daniel

    2000-04-01

    Conventional localization schemes for brachytherapy seed implants using biplane or stereoscopic projection radio- graphs can suffer form scaling distortions and poor visibility of implanted seeds, resulting in compromised source tracking and dosimetric inaccuracies. This paper proposes an alternative method for improving the visualization and thus, localization, of radiotherapy implants by synthesizing, form as few as two radiographic projections, a 3D image free of divergence artifacts. The result produces more accurate seed localization leading to improved dosimetric accuracy. Two alternative approaches are compared. The first uses orthogonal merging. The second employs the technique of tuned-aperture computed tomography (TACT), whereby 3D reconstruction is performed by shifting and adding of well-sampled projections relative to a fiducial reference system. Phantom results using nonlinear visualization methods demonstrate the applicability of localizing individual seeds for both approaches. Geometric errors are eliminated by a calibration scheme derived from the fiducial pattern that is imaged concurrently with the subject. Both merging and TACT approaches enhance seed localization by improving visualization of the seed distribution over biplanar radiographs. Unlike current methods, both alternatives demonstrate continuos one-to-one source tracking in 3D, although elimination of scaling artifacts requires more than two projections when using the merging method.

  19. Antigenic modulation of metastatic breast and ovary carcinoma cells by intracavitary injection of IFN-alpha.

    Science.gov (United States)

    Giacomini, P.; Mottolese, M.; Fraioli, R.; Benevolo, M.; Venturo, I.; Natali, P. G.

    1992-01-01

    Antigenic modulation of major histocompatibility and tumour associated antigens was observed in neoplastic cells obtained from patients with pleural and abdominal effusions of breast and ovary carcinomas following a single intracavitary dose of 18 x 10(6) U recombinant IFN-alpha. This regimen resulted in antigenic modulation in seven out of 11 tested cases, suggesting a potential, although limited, responsiveness of at least a fraction of breast and ovary carcinoma cells to in situ biomodification with IFN-alpha. PMID:1503908

  20. Evaluation of intracavitary administration of curcumin for the treatment of sarcomatoid mesothelioma

    OpenAIRE

    Pouliquen, Daniel; Nawrocki-Raby, Béatrice; Nader, Joëlle; Blandin, Stéphanie; Robard, Myriam; Birembaut, Philippe; Grégoire, Marc

    2017-01-01

    International audience; A rat model of sarcomatoid mesothelioma, mimicking some of the worst clinical conditions encountered, was established to evaluate the therapeutic potential of intracavitary curcumin administration. The M5-T1 cell line, selected from a collection established from F344 rats induced with asbestos, produces tumors within three weeks, with extended metastasis in normal tissues, after intraperitoneal inoculation in syngeneic rats. The optimal concentration/time conditions fo...

  1. OBSTRUCTION OF RIGHT VENTRICULAR OUTFLOW TRACT CAUSED BY INTRACAVITARY METASTATIC DISEASE OF PANCREATIC TUMOR

    Institute of Scientific and Technical Information of China (English)

    Meng-tao Li; Wen-ling Zhu

    2005-01-01

    @@ THE pericardium (90%) is the most common loca tion of cardiac involvement by secondary tumor,followed by myocardium and endocardium (10%).1 Cases of right ventricular outflow tract obstruction caused by intracavitary metastatic tumor growth were rarely reported, al though clinical presentation were unique. We herein reported such a case with literature review in order to improve the understanding of malignant cardiac metastasis.

  2. Brachytherapy in Gynecologic Cancers: Why Is It Underused?

    Science.gov (United States)

    Han, Kathy; Viswanathan, Akila N

    2016-04-01

    Despite its established efficacy, brachytherapy is underused in the management of cervical and vaginal cancers in some parts of the world. Possible reasons for the underutilization of brachytherapy include the adoption of less invasive techniques, such as intensity-modulated radiotherapy; reimbursement policies favoring these techniques over brachytherapy; poor physician or patient access to brachytherapy; inadequate maintenance of brachytherapy skills among practicing radiation oncologists; transitioning to high-dose-rate (HDR) brachytherapy with increased time requirements; and insufficient training of radiation oncology residents.

  3. Usefulness of intracavitary urokinase injection under sonographic guidance in treatment for periappendiceal abscess

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jong Soo; Cha, Sang Hoon; Kim, Beak Hyun; Jung, Hwan Hoon; Kim, Taik Kun [Ansan Hospital, Korea University School of Medicine, Ansan (Korea, Republic of); Seo, Bo Kyoung; Chung, Kyoo Byung [Anam Hospital, Korea University School of Medicine, Seoul (Korea, Republic of); Park, Cheol Min [Guro Hospital, Korea University School of Medicine, Seoul (Korea, Republic of)

    2002-12-15

    To evaluate usefulness of intracavitary urokinase injection for the treatment of small sized periappendiceal abscess which was not unsuitable for percutaneous catheter drainage. From December 1997 to December 1999, we performed intracavitary injection of urokinase as a treatment of periappendiceal abscess in six patients. Initially, aspiration of the abscess was done using a 18 G needle under sonographic guidance. We measured the maximal length of residual abscess and injected 5000 IU of urokinase per centimeter of the diameter of the residual abscess. 24 hours after the injection of urokinase, repeated aspiration of the residual abscess was done, and follow-up sonographic examination was performed. The size of initial abscesses in each patients was ranged from 1.6 X 1.2 to 5.8 X 3.4 cm (mean=3.9 X 2.4 cm), and initial volume of aspirated pus was ranged from 3 to 31 cc (mean=11.8 cc).24 hour after the injection, the volume of respirated pus was ranged from 4 to 13.5 cc (mean=10.4 cc). Follow-up sonography performed 3 to 10 days later revealed no residual abscess. The mean duration of hospitalization was 5.5 days. Intracavitary urokinase injection under the sonographic guidance can be a useful method for the treatment of small sized periappendiceal abscess which is not suitable for percutaneous catheter drainage.

  4. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos [Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, TX 78229 (United States); Cheng, Chih-Yao, E-mail: shic@uthscsa.ed [Radiation Oncology Department, Oklahoma University Health Science Center, Oklahoma, OK 73104 (United States)

    2010-09-21

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V{sub 100} reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as

  5. Feasibility of combined operation and perioperative intensity-modulated brachytherapy of advanced/recurrent malignancies involving the skull base

    Energy Technology Data Exchange (ETDEWEB)

    Strege, R.J.; Eichmann, T.; Mehdorn, H.M. [University Hospital Schleswig-Holstein, Kiel (Germany). Dept. of Neurosurgery; Kovacs, G.; Niehoff, P. [University Hospital Schleswig-Holstein, Kiel (Germany). Interdisciplinary Brachytherapy Center; Maune, S. [University Hospital Schleswig-Holstein, Kiel (Germany). Dept. of Otolaryngology; Holland, D. [University Hospital Schleswig-Holstein, Kiel (Germany). Dept. of Ophthalmology

    2005-02-01

    Purpose: To assess the technical feasibility and toxicity of combined operation and perioperative intensity-modulated fractionated interstitial brachytherapy (IMBT) in advanced-stage malignancies involving the skull base with the goal of preserving the patients' senses of sight. Patients and Methods: This series consisted of 18 consecutive cases: ten patients with paranasal sinus carcinomas, five with sarcomas, two with primitive neuroectodermal tumors (PNETs), and one with parotid gland carcinoma. After, in most cases, subtotal surgical resection (R1-R2: carried out so that the patients' senses of sight were preserved), two to twelve (mean five) afterloading plastic tubes were placed into the tumor bed. IMBT was performed with an iridium-192 stepping source in pulsed-dose-rate/high-dose-rate (PDR/HDR) afterloading technique. The total IMBT dose, ranging from 10 to 30 Gy, was administered in a fractionated manner (3-5 Gy/day, 5 days/week). Results: Perioperative fractionated IMBT was performed in 15 out of 18 patients and was well tolerated. Complications that partially prevented or delayed IMBT in some cases included cerebrospinal fluid leakage (twice), meningitis (twice), frontal brain syndrome (twice), afterloading tube displacement (twice), seizure (once), and general morbidity (once). No surgery- or radiation-induced injuries to the cranial nerves or eyes occurred. Median survival times were 33 months after diagnosis and 16 months after combined operation and IMBT. Conclusion: Perioperative fractionated IMBT after extensive but vision-preserving tumor resection seems to be a safe and well-tolerated treatment of advanced/recurrent malignancies involving the skull base. These preliminary state suggest that combined operation and perioperative fractionated IMBT is a palliative therapeutic option in the management of fatal malignancies involving the base of the skull, a strategy which leaves the patients' visual acuity intact. (orig.)

  6. Image guided adaptive brachytherapy for cervical cancer: dose contribution to involved pelvic nodes in two cancer centers.

    Science.gov (United States)

    van den Bos, Willemien; Beriwal, Sushil; Velema, Laura; de Leeuw, Astrid A C; Nomden, Christel N; Jürgenliemk-Schulz, Ina-M

    2014-03-01

    The goal of this study was to determine the dose contributions from image guided adaptive brachytherapy (IGABT) to individual suspicious pelvic lymph nodes (pLNN) in cervical cancer patients. Data were collected in two cancer centers, University of Pittsburgh Cancer Institute (UPCI) and University Medical Center Utrecht (UMCU). 27 and 15 patients with node positive cervical cancer treated with HDR (high dose rate) or PDR (pulsed dose rate)-IGABT were analyzed. HDR-IGABT (UPCI) was delivered with CT/MRI compatible tandem-ring applicators with 5.0-6.0 Gy × five fractions. PDR-IGABT (UMCU) dose was delivered with Utrecht tandem-ovoid applicators with 32 × 0.6 Gy × two fractions. Pelvic lymph nodes with short axis diameter of ≥ 5 mm on pre-treatment MRI or PET-CT were contoured for all BT-plans. Dose contributions to individual pLNN expressed as D90 (dose to 90% of the volume) were calculated from dose-volume histograms as absolute and relative physical dose (% of the reference dose) for each fraction. For each node, the total dose from all fractions was calculated, expressed in EQD2 (equivalent total dose in 2 Gy fractions). Fifty-seven (UPCI) and 40 (UMCU) individual pLNN were contoured. The mean D90 pLNN was 10.8% (range 5.7-25.1%) and 20.5% (range 6.8-93.3%), respectively, and therefore different in the two centers. These values translate into 2.7 Gy (1.3-6.6 Gy) EQD2 and 7.1 Gy (2.2-36.7 Gy) EQD2, respectively. Differences are caused by the location of the individual nodes in relation to the spatial dose distribution of IGABT, differences in total dose administered and radiobiology (HDR versus PDR). The IGABT dose contribution to individual pelvic nodes depends on patient and treatment related factors, and varies considerably.

  7. In vivo dosimetry in brachytherapy

    DEFF Research Database (Denmark)

    Tanderup, Kari; Beddar, Sam; Andersen, Claus Erik;

    2013-01-01

    In vivo dosimetry (IVD) has been used in brachytherapy (BT) for decades with a number of different detectors and measurement technologies. However, IVD in BT has been subject to certain difficulties and complexities, in particular due to challenges of the high-gradient BT dose distribution and th...

  8. Packing effects on the intracavitary radiation Therapy 3-Dimension plan of the uterine cervix cancer

    Energy Technology Data Exchange (ETDEWEB)

    Si, Chang Keun; Jo, Jung Kun; Lee, Du Hyun; Kim, Sun Yeung; Kim, Tae Yoon [Porton Therapy Center, National Cancer Center, Goyang (Korea, Republic of)

    2005-03-15

    An effect of a packing to uterine treatment of a cervical cancer using a dose-volume histogram for a point dose and a volume dose of the bladder and the rectum was analyzed by establishing a three-dimensional treatment plan using a CT image. Reference points of the bladder and the rectum were marked, respectively at a treatment plan device (plato brachytherapy V14.2.4) by photographing CT(marconi, USA) when the packing was used and removed under the same condition and a treatment plan was performed to A point depending on ICRU38. However, in case of the rectum, a maximum point was looked up and compared with the above point because the point presented from the ICRU is not proper as a representative value of a rectum point dose. Further, the volume dose depending on volume of 50%, 80% and 100% point doses of the rectum and the bladder was measured. The measured values were used to analyze the effect of the packing through a Wilcoxon Signed Rank Test (a SAS statistical analysis process program). The reference points at the bladder and rectum doses when the packing was removed were 116.94 35.42% and 117.59 21.08%, respectively. The points when the packing was used were 107.08 38.12% and 95.19 21.32%, respectively. After the packing was used, the reference points at the bladder and the rectum were decreased by 9.86% and 22.4%, respectively. When the packing was removed, the maximum points at the bladder and the rectum were 164.51 50.89%, 128.81 33.05% respectively. When the packing was used, the maximum points at the bladder and the rectum were 142.31 44.79,110.08 37.03%, respectively. After the packing was used, the maximum points at the bladder and the rectum were decreased by 22.2% and 18.73%, respectively. When the packing was removed, the bladder volume at 50%, 80%, and 100% point doses of the rectum and the bladder were 48.62{+-}18.09%, 16.12{+-}11.15%, and 7.51{+-}6.63%, respectively and its rectum volume were 23.41{+-}14.44%, 6.27{+-}4.28%, 2

  9. Bladder–Rectum Spacer Balloon in High-Dose-Rate Brachytherapy in Cervix Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Bhavana [Department of Radiotherapy and Oncology, Regional Cancer Centre, Postgraduate Institute of Medical Education and Research, Chandigarh (India); Patel, Firuza D., E-mail: firuzapatel@gmail.com [Department of Radiotherapy and Oncology, Regional Cancer Centre, Postgraduate Institute of Medical Education and Research, Chandigarh (India); Chakraborty, Santam; Sharma, Suresh C.; Kapoor, Rakesh [Department of Radiotherapy and Oncology, Regional Cancer Centre, Postgraduate Institute of Medical Education and Research, Chandigarh (India); Aprem, Abi Santhosh [Corporate R and D Division, HLL Lifecare Limited, Karamana, Trivandrum (India)

    2013-04-01

    Purpose: To compare bladder and rectum doses with the use of a bladder–rectum spacer balloon (BRSB) versus standard gauze packing in the same patient receiving 2 high-dose-rate intracavitary brachytherapy fractions. Methods and Materials: This was a randomized study to compare the reduction in bladder and rectum doses with the use of a BRSB compared with standard gauze packing in patients with carcinoma of the cervix being treated with high-dose-rate intracavitary brachytherapy. The patients were randomized between 2 arms. In arm A, vaginal packing was done with standard gauze packing in the first application, and BRSB was used in the second application. Arm B was the reverse of arm A. The International Commission for Radiation Units and Measurement (ICRU) point doses and doses to 0.1-cm{sup 3}, 1-cm{sup 3}, 2-cm{sup 3}, 5-cm{sup 3}, and 10-cm{sup 3} volumes of bladder and rectum were compared. The patients were also subjectively assessed for the ease of application and the time taken for application. Statistical analysis was done using the paired t test. Results: A total of 43 patients were enrolled; however, 3 patients had to be excluded because the BRSB could not be inserted owing to unfavorable local anatomy. Thus 40 patients (80 plans) were evaluated. The application was difficult in 3 patients with BRSB, and in 2 patients with BRSB the application time was prolonged. There was no significant difference in bladder doses to 0.1 cm{sup 3}, 1 cm{sup 3}, 2 cm{sup 3}, 5 cm{sup 3}, and 10 cm{sup 3} and ICRU bladder point. Statistically significant dose reductions to 0.1-cm{sup 3}, 1-cm{sup 3}, and 2-cm{sup 3} volumes for rectum were observed with the BRSB. No significant differences in 5-cm{sup 3} and 10-cm{sup 3} volumes and ICRU rectum point were observed. Conclusion: A statistically significant dose reduction was observed for small high-dose volumes in rectum with the BRSB. The doses to bladder were comparable for BRSB and gauze packing. Transparent balloons of

  10. Clinical experience of high dose rate brachytherapy using Ir-192 remote afterloading system (microSELECTRON-HDR)

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Akira; Yamamoto, Koji; Yoshioka, Shinji [Uwajima City Hospital, Ehime (Japan); Kataoka, Masaaki; Fujii, Takashi; Ikezoe, Junpei

    1999-03-01

    Twenty-one lesions were reviewed of 20 patients who were treated with high-dose-rate brachytherapy using Ir-192 remote afterloading system (microSELECTRON-HDR) between August, 1997 and August, 1998. Esophageal cancer (n=6), lung cancer (n=3), cholangioma (n=3), epipharyngeal cancer (n=2) and uterine cervical cancer (n=2) were treated with intracavitary irradiation. Regional skin recurrence of breast cancer (n=3) was treated with interstitial irradiation, and oral cavity cancer (n=2) was treated with the mold method. Eleven lesions were controlled locally with a short follow-up period. There was no significant complication related to the insertion procedures of the applicator or the tubes without pneumothorax in one patient with lung cancer. So far, this treatment is relatively safe and effective not only for curative therapy for early stage cancer but also for palliative therapy for the advanced cancer. Furthermore, it is very important that medical staffs are kept free from radiation exposure. There is no established treatment protocol in high-dose-rate brachytherapy, therefore, a careful longer follow-up is necessary to clarify the true tumor control rate and the development of the late effect on normal tissue. (author)

  11. Three-dimensional brachytherapy optimization techniques in the treatment of patients with cervix cancer; Apport des techniques de curietherapie optimisee grace a l'imagerie tridimensionnelle dans la prise en charge des patientes atteintes d'un cancer du col uterin

    Energy Technology Data Exchange (ETDEWEB)

    Haie-Meder, C.; Mazeron, R.; Verezesan, O.; Monnier, L.; Vieillot, S. [Institut Gustave-Roussy, Service de Curietherapie, 94 - Villejuif (France); Dumas, I. [Institut Gustave-Roussy, Service de Physique, 94 - Villejuif (France); Lhomme, C. [Institut Gustave-Roussy, Service d' Ooncologie Gynecologique, 94 - Villejuif (France); Morice, P. [Institut Gustave-Roussy, Service de Chirurgie Oncologique, 94 - Villejuif (France); Barillot, I. [Centre Regional Universitaire de Cancerologie Henry-S.-Kaplan, Hopital Bretonneau, CHU de Tours, 37 - Tours (France); Universite Francois-Rabelais, 37 - Tours (France)

    2009-10-15

    Traditionally, prescription and treatment planning in intracavitary brachytherapy for cervix cancer have used either reference points (mainly points A and B) or reference isodoses (60 Gy according to ICRU recommendations) to report doses to the target volume. Doses to critical organs were reported at bladder and rectum ICRU points. This practice has been supported by a long-standing clinical experience that has yielded an acceptable therapeutic ratio. The recent development of imaging has contributed to the improvement in target and organs at risk knowledge. In 2005 and 2006, the European group of brachytherapy -European Society for therapeutic radiology and oncology (GEC-E.S.T.R.O.) recommendations publications on 3-D based image brachytherapy have defined the different volumes of interest. These recommendations have been validated with intercomparison delineation studies. With the concomitant development of remote after-loading projectors, provided with miniaturized sources, it is now possible to plan radiation doses by adjusting dwell positions and relative dwell time values. These procedures allow better coverage of the targets while sparing O.A.R.. The recent literature data evidence a significant improvement in local control with no increase in complications. Further studies are needed to better define the dose recommended in both tumour and organs at risk. This is one of the goals of the European study on MRI-guided brachytherapy in locally advanced cervical cancer (E.M.B.R.A.C.E.) protocol (meaning of acronym: an international study on MRI-guided brachytherapy in locally advanced cervical cancer). (authors)

  12. Brachytherapy in the Management of Uveal Melanomas

    Directory of Open Access Journals (Sweden)

    Samuray Tuncer

    2014-09-01

    Full Text Available Uveal melanoma is the most common intraocular tumor in adults. Clinical studies have shown similar patient survival rates after treatment of medium-sized melanomas when comparing plaque brachytherapy with radioactive iodine-125 versus enucleation. This finding further emphasizes the importance of this globe-sparing treatment. Brachytherapy is a special local radiotherapy technique that aims to deliver high-dose radiation directly to the tumor by sparing the periocular structures. Brachytherapy is still the most widely used treatment for uveal melanoma. Iodine-125 and ruthenium-106 are the most common radioisotopes used in brachytherapy. After brachytherapy, sight-threatening complications occur unavoidably in many patients. Brachytherapy is mostly associated with long-term complications. Radiation retinopathy and cataract formation are the most common treatment-related complications. Brachytherapy provides local tumor control (ocular salvage in about 90% of patients. Adjunctive transpupillary thermotherapy (sandwich therapy improves the control rate of local tumors to 97%. About 10% of patients treated with brachytherapy subsequently require enucleation because of local tumor recurrence or neovascular glaucoma at 5 years of follow-up. Metastatic disease occurs in 10% of patients with medium-sized melanoma at 5-year follow-up. This rate increases to 55% at 10-year follow-up in patients with large melanomas (thickness >8 mm. Thus, it is very important to inform the patients under the light of these data prior to brachytherapy. (Turk J Ophthalmol 2014; 44: Supplement 43-8

  13. Intravascular brachytherapy for peripheral vascular disease

    Directory of Open Access Journals (Sweden)

    Hagen, Anja

    2008-09-01

    Full Text Available Scientific background: Percutaneous transluminal angioplasties (PTA through balloon dilatation with or without stenting, i.e. vessel expansion through balloons with or without of implantation of small tubes, called stents, are used in the treatment of peripheral artery occlusive disease (PAOD. The intravascular vessel irradiation, called intravascular brachytherapy, promises a reduction in the rate of repeated stenosis (rate of restenosis after PTA. Research questions: The evaluation addresses questions on medical efficacy, cost-effectiveness as well as ethic, social and legal implications in the use of brachytherapy in PAOD patients. Methods: A systematic literature search was conducted in August 2007 in the most important medical electronic databases for publications beginning from 2002. The medical evaluation included randomized controlled trials (RCT. The information synthesis was performed using meta-analysis. Health economic modeling was performed with clinical assumptions derived from the meta-analysis and economical assumptions derived from the German Diagnosis Related Groups (G-DRG-2007. Results: Medical evaluation: Twelve publications about seven RCT on brachytherapy vs. no brachytherapy were included in the medical evaluation. Two RCT showed a significant reduction in the rate of restenosis at six and/or twelve months for brachytherapy vs. no brachytherapy after successful balloon dilatation, the relative risk in the meta-analysis was 0.62 (95% CI: 0.46 to 0.84. At five years, time to recurrence of restenosis was significantly delayed after brachytherapy. One RCT showed a significant reduction in the rate of restenosis at six months for brachytherapy vs. no brachytherapy after PTA with optional stenting, the relative risk in the meta-analysis was 0.76 (95% CI: 0.61 to 0.95. One RCT observed a significantly higher rate of late thrombotic occlusions after brachytherapy in the subgroup of stented patients. A single RCT for brachytherapy

  14. Afterloading: The Technique That Rescued Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Aronowitz, Jesse N., E-mail: jesse.aronowitz@umassmemorial.org

    2015-07-01

    Although brachytherapy had been established as a highly effective modality for the treatment of cancer, its application was threatened by mid-20th century due to appreciation of the radiation hazard to health care workers. This review examines how the introduction of afterloading eliminated exposure and ushered in a brachytherapy renaissance.

  15. Intraoperative HDR Brachytherapy: Present and Future

    NARCIS (Netherlands)

    I.-K.K. Kolkman-Deurloo (Inger-Karina)

    2007-01-01

    textabstractRadiotherapy is one of the most effective modalities in cancer treatment, and can be applied either by external beam radiotherapy or by brachytherapy. Brachytherapy is a treatment modality in which tumors are irradiated by positioning radioactive sources very close to or in the tumor

  16. Intraoperative HDR Brachytherapy: Present and Future

    NARCIS (Netherlands)

    I.-K.K. Kolkman-Deurloo (Inger-Karina)

    2007-01-01

    textabstractRadiotherapy is one of the most effective modalities in cancer treatment, and can be applied either by external beam radiotherapy or by brachytherapy. Brachytherapy is a treatment modality in which tumors are irradiated by positioning radioactive sources very close to or in the tumor vol

  17. Radiobiological characterization of post-lumpectomy focal brachytherapy with lipid nanoparticle-carried radionuclides

    Science.gov (United States)

    Hrycushko, Brian A.; Gutierrez, Alonso N.; Goins, Beth; Yan, Weiqiang; Phillips, William T.; Otto, Pamela M.; Bao, Ande

    2011-02-01

    Post-operative radiotherapy has commonly been used for early stage breast cancer to treat residual disease. The primary objective of this work was to characterize, through dosimetric and radiobiological modeling, a novel focal brachytherapy technique which uses direct intracavitary infusion of β-emitting radionuclides (186Re/188Re) carried by lipid nanoparticles (liposomes). Absorbed dose calculations were performed for a spherical lumpectomy cavity with a uniformly injected activity distribution using a dose point kernel convolution technique. Radiobiological indices were used to relate predicted therapy outcome and normal tissue complication of this technique with equivalent external beam radiotherapy treatment regimens. Modeled stromal damage was used as a measure of the inhibition of the stimulatory effect on tumor growth driven by the wound healing response. A sample treatment plan delivering 50 Gy at a therapeutic range of 2.0 mm for 186Re-liposomes and 5.0 mm for 188Re-liposomes takes advantage of the dose delivery characteristics of the β-emissions, providing significant EUD (58.2 Gy and 72.5 Gy for 186Re and 188Re, respectively) with a minimal NTCP (0.046%) of the healthy ipsilateral breast. Modeling of kidney BED and ipsilateral breast NTCP showed that large injected activity concentrations of both radionuclides could be safely administered without significant complications.

  18. Therapeutic effectiveness of intracavitary urokinase in the management of stage II empyema patients

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyu Sik; Jeong, Tae Gon; Lee, Dong Won; Lee, Jeong Min; Han, Young Min; Kim, Chong Soo; Chung, Gyung Ho; Lee, Sang Yong; Sohn, Myung Hee; Choi, Ki Chul [Chonbuk National Univ. Medical School, Chonju (Korea, Republic of)

    1997-06-01

    To compare the therapeutic effectiveness of urokinase instillation via PCD catheter with other conventional therapeutic modalities, namely thoracentesis, closed thoracostomy and peroutaneous catheter drainage, in the management of patients with early and late stage II empyema Twenty seven early and 19 late stage II empyema patients were reviewed. We compared the results of treatment including average length of hospitalization, success rate, and the interval between first procedure and 75% improvement as seen on simple chest film. The average length of hospitalization and average improvement interval of stage II empyema patients treated with urokinase instillation via PCD catheter, were shortest of all : 11.8 and 8.5 days in early stage II patients, and 16.7 and 9.4 days in late stage II. For other modalities, the corresponding figures were as follows: 17.2 and 11.5, and 24.3 and 16.2 days; closed thoracostomy: 48.0 and 32.3, and 37.7 and 24.0 days; percutaneous catheter drainage: 35.2 and 17.2, and 34.8, and 20.0 days. All patients treated with intracavitary urokinase showed complete drainage of empyema. Intracavitary urokinase facilitates percutaneous catheter drainage of empyema, with a resultant reduction of hospitalization days. This method also has a high success rate.

  19. External beam and intracavitary irradiation of the esophagus carcinomas. Perkutan-endokavitaere Strahlenbehandlung der Oesophaguskarzinome

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, P.; Schraube, P.; Oberle, J.; Wannenmacher, M. (Heidelberg Univ. (Germany). Radiologische Klinik); Friedl, P. (Heidelberg Univ. (Germany). Chirurgische Klinik)

    1992-03-01

    In a prospective, non-randomized study 43 patients with inoperable oesophageal carcinoma were treated with a combined therapy of external and intracavitary irradiation according to the Heidelberg protocol adjusted to tumor stage, general condition and age. The proportion of external beam to afterloading doses was 2/3:1/3. The reference doses were between 50 and 75 Gy. Intracavitary radiotherapy was carried out with a HDR-afterloading device in single doses of 5 Gy. In a median follow-up of 23 months 46% had a complete remission and 42% had a partial remission. Within ten months 17 patients (39.5%) showed local tumor progression or recurrence. Presently the estimated median survival time of the whole collective is eleven months. The median survival was significantly influenced by achievement of complete remission (17.7 months in comparison to 8.7 months by missing complete remission). After completion of therapy 90% had sufficient oral nutrition. During long-term follow-up in 44% of the cases repeated measures had to be taken to eliminate initial or recurrent dysphagia. Almost all postradiogenic stenoses were caused by tumor progression. Radiogenic side-effects caused by HDR-afterloading boosts, exceeding the acceptance, were not found. The combined therapy reduces the period of hospitalisation and has the same palliative effects as an exclusively external radiotherapy. (orig.).

  20. Radical surgery compared with intracavitary cesium followed by radical surgery in cervical carcinoma stage IB

    Energy Technology Data Exchange (ETDEWEB)

    Tinga, D.J.; Bouma, J.; Aalders, J.G. (Dept. of Obstetrics and Gynaecology, State Univ. Hospital, Groningen (Netherlands)); Hollema, H. (Dept. of Pathology, State Univ. Hospital, Groningen (Netherlands))

    1990-01-01

    Forty-nine patients aged {le} 45 years, with cervical carcinoma stage IB ({le} 3 cm) were treated with either primary radical surgery (n = 26), or intracavitary irradiation followed by radical surgery (n = 23). With primary surgery, ovarian function had been preserved in 15 of the 25 patients, who were alive and well. Seven of the primary surgery patients were irradiated postoperatively and 2 others with a central recurrence were cured by irradiation. One other patient, who was not irradiated postoperatively, had an intestinal metastasis and died of the disease. If any of the adverse prognostic factors (as reported in the literature) had been considered as an indication for postoperative irradiation, 17 patients instead of 7 would have been irradiated after primary radical surgery. In the comparable group of 23 patients treated by intracavitary irradiation and radical surgery (and in 4 cases postoperative irradiation as well) there was no recurrence. There was no significant statistical difference between the treatment results in the cesium + surgery group and those who underwent primary radical surgery. Young patients with early cervical carcinoma without prognostic indicators for postoperative irradiation can benefit from primary radical surgery, because their ovarian function can be preserved. (authors).

  1. Dosimetry for the brachytherapy; Dosimetrie fuer die Brachytherapie

    Energy Technology Data Exchange (ETDEWEB)

    Ankerhold, Ulrike [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Fachbereich ' Dosimetrie fuer Strahlentherapie und Roentgendiagnostik' ; Schneider, Thorsten [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe ' Brachytherapie'

    2013-06-15

    The authors describe the calibration of high-dose-rate {sup 192}Ir sources for the use in brachytherapy by means of the air-kerma power, which is determined in the PTB by means of an ionization chamber. For this a primary normal for the representation of the water energy dose was constructed. Furthermore the representation of the reference air-kerma rate for low-dose-rate sources in the PTB by means of a large-volume parallel-plate extrapolation chamber is described. (HSI)

  2. Brachytherapy seed and applicator localization via iterative forward projection matching algorithm using digital X-ray projections

    Science.gov (United States)

    Pokhrel, Damodar

    Interstitial and intracavitary brachytherapy plays an essential role in management of several malignancies. However, the achievable accuracy of brachytherapy treatment for prostate and cervical cancer is limited due to the lack of intraoperative planning and adaptive replanning. A major problem in implementing TRUS-based intraoperative planning is an inability of TRUS to accurately localize individual seed poses (positions and orientations) relative to the prostate volume during or after the implantation. For the locally advanced cervical cancer patient, manual drawing of the source positions on orthogonal films can not localize the full 3D intracavitary brachytherapy (ICB) applicator geometry. A new iterative forward projection matching (IFPM) algorithm can explicitly localize each individual seed/applicator by iteratively matching computed projections of the post-implant patient with the measured projections. This thesis describes adaptation and implementation of a novel IFPM algorithm that addresses hitherto unsolved problems in localization of brachytherapy seeds and applicators. The prototype implementation of 3-parameter point-seed IFPM algorithm was experimentally validated using a set of a few cone-beam CT (CBCT) projections of both the phantom and post-implant patient's datasets. Geometric uncertainty due to gantry angle inaccuracy was incorporated. After this, IFPM algorithm was extended to 5-parameter elongated line-seed model which automatically reconstructs individual seed orientation as well as position. The accuracy of this algorithm was tested using both the synthetic-measured projections of clinically-realistic Model-6711 125I seed arrangements and measured projections of an in-house precision-machined prostate implant phantom that allows the orientations and locations of up to 100 seeds to be set to known values. The seed reconstruction error for simulation was less than 0.6 mm/3o. For the physical phantom experiments, IFPM absolute accuracy for

  3. Magnetic Resonance Imaging (MRI) Markers for MRI-Guided High-Dose-Rate Brachytherapy: Novel Marker-Flange for Cervical Cancer and Marker Catheters for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Schindel, Joshua; Muruganandham, Manickam [Department of Radiation Oncology, University of Iowa, Iowa City, Iowa (United States); Pigge, F. Christopher [Department of Chemistry, University of Iowa, Iowa City, Iowa (United States); Anderson, James [Department of Radiation Oncology, University of Iowa, Iowa City, Iowa (United States); Kim, Yusung, E-mail: yusung-kim@uiowa.edu [Department of Radiation Oncology, University of Iowa, Iowa City, Iowa (United States)

    2013-06-01

    Purpose: To present a novel marker-flange, addressing source-reconstruction uncertainties due to the artifacts of a titanium intracavitary applicator used for magnetic resonance imaging (MRI)-guided high-dose-rate (HDR) brachytherapy (BT); and to evaluate 7 different MRI marker agents used for interstitial prostate BT and intracavitary gynecologic HDR BT when treatment plans are guided by MRI. Methods and Materials: Seven MRI marker agents were analyzed: saline solution, Conray-60, copper sulfate (CuSO{sub 4}) (1.5 g/L), liquid vitamin E, fish oil, 1% agarose gel (1 g agarose powder per 100 mL distilled water), and a cobalt–chloride complex contrast (C4) (CoCl{sub 2}/glycine = 4:1). A plastic, ring-shaped marker-flange was designed and tested on both titanium and plastic applicators. Three separate phantoms were designed to test the marker-flange, interstitial catheters for prostate BT, and intracavitary catheters for gynecologic HDR BT. T1- and T2-weighted MRI were analyzed for all markers in each phantom and quantified as percentages compared with a 3% agarose gel background. The geometric accuracy of the MR signal for the marker-flange was measured using an MRI-CT fusion. Results: The CuSO{sub 4} and C4 markers on T1-weighted MRI and saline on T2-weighted MRI showed the highest signals. The marker-flange showed hyper-signals of >500% with CuSO{sub 4} and C4 on T1-weighted MRI and of >400% with saline on T2-weighted MRI on titanium applicators. On T1-weighted MRI, the MRI signal inaccuracies of marker-flanges were measured <2 mm, regardless of marker agents, and that of CuSO{sub 4} was 0.42 ± 0.14 mm. Conclusion: The use of interstitial/intracavitary markers for MRI-guided prostate/gynecologic BT was observed to be feasible, providing accurate source pathway reconstruction. The novel marker-flange can produce extremely intense, accurate signals, demonstrating its feasibility for gynecologic HDR BT.

  4. Comprehensive brachytherapy physical and clinical aspects

    CERN Document Server

    Baltas, Dimos; Meigooni, Ali S; Hoskin, Peter J

    2013-01-01

    Modern brachytherapy is one of the most important oncological treatment modalities requiring an integrated approach that utilizes new technologies, advanced clinical imaging facilities, and a thorough understanding of the radiobiological effects on different tissues, the principles of physics, dosimetry techniques and protocols, and clinical expertise. A complete overview of the field, Comprehensive Brachytherapy: Physical and Clinical Aspects is a landmark publication, presenting a detailed account of the underlying physics, design, and implementation of the techniques, along with practical guidance for practitioners. Bridging the gap between research and application, this single source brings together the technological basis, radiation dosimetry, quality assurance, and fundamentals of brachytherapy. In addition, it presents discussion of the most recent clinical practice in brachytherapy including prostate, gynecology, breast, and other clinical treatment sites. Along with exploring new clinical protocols, ...

  5. Sci—Thur AM: YIS - 11: Estimation of Bladder-Wall Cumulative Dose in Multi-Fraction Image-Based Gynaecological Brachytherapy Using Deformable Point Set Registration

    Energy Technology Data Exchange (ETDEWEB)

    Zakariaee, R [Physics Department, University of British Columbia, Vancouver, BC (Canada); Brown, C J; Hamarneh, G [School of Computing Science, Simon Fraser University, Burnaby, BC (Canada); Parsons, C A; Spadinger, I [British Columbia Cancer Agency, Vancouver, BC (Canada)

    2014-08-15

    Dosimetric parameters based on dose-volume histograms (DVH) of contoured structures are routinely used to evaluate dose delivered to target structures and organs at risk. However, the DVH provides no information on the spatial distribution of the dose in situations of repeated fractions with changes in organ shape or size. The aim of this research was to develop methods to more accurately determine geometrically localized, cumulative dose to the bladder wall in intracavitary brachytherapy for cervical cancer. The CT scans and treatment plans of 20 cervical cancer patients were used. Each patient was treated with five high-dose-rate (HDR) brachytherapy fractions of 600cGy prescribed dose. The bladder inner and outer surfaces were delineated using MIM Maestro software (MIM Software Inc.) and were imported into MATLAB (MathWorks) as 3-dimensional point clouds constituting the “bladder wall”. A point-set registration toolbox for MATLAB, Coherent Point Drift (CPD), was used to non-rigidly transform the bladder-wall points from four of the fractions to the coordinate system of the remaining (reference) fraction, which was chosen to be the emptiest bladder for each patient. The doses were accumulated on the reference fraction and new cumulative dosimetric parameters were calculated. The LENT-SOMA toxicity scores of these patients were studied against the cumulative dose parameters. Based on this study, there was no significant correlation between the toxicity scores and the determined cumulative dose parameters.

  6. Brachytherapy in breast cancer: an effective alternative

    Directory of Open Access Journals (Sweden)

    Janusz Skowronek

    2014-03-01

    Full Text Available Breast conserving surgery (BCS with following external beam radiation therapy (EBRT of the conserved breast has become widely accepted in the last decades for the treatment of early invasive breast cancer. The standard technique of EBRT after BCS is to treat the whole breast up to a total dose of 42.5 to 50 Gy. An additional dose is given to treated volume as a boost to a portion of the breast. In the early stage of breast cancer, research has shown that the area requiring radiation treatment to prevent the cancer from local recurrence is the breast tissue that surrounds the area where the initial cancer was removed. Accelerated partial breast irradiation (APBI is an approach that treats only the lumpectomy bed plus a 1-2 cm margin rather than the whole breast and as a result allows accelerated delivery of the radiation dose in four to five days. There has been a growing interest for APBI and various approaches have been developed under phase I-III clinical studies; these include multicatheter interstitial brachytherapy, balloon catheter brachytherapy, conformal external beam radiation therapy (3D-EBRT and intra-operative radiation therapy (IORT. Balloon-based brachytherapy approaches include MammoSite, Axxent electronic brachytherapy, Contura, hybrid brachytherapy devices. Another indication for breast brachytherapy is reirradiation of local recurrence after mastectomy. Published results of brachytherapy are very promising. We discuss the current status, indications, and technical aspects of breast cancer brachytherapy.

  7. Use of electronic brachytherapy to deliver postsurgical adjuvant radiation therapy for endometrial cancer: a retrospective multicenter study

    Directory of Open Access Journals (Sweden)

    William C Dooley

    2010-09-01

    Full Text Available William C Dooley1, John P Thropay2, Gary J Schreiber3, Mohamed Y Puthawala4, Steven C Lane5, James C Wurzer6, Charles E Stewart7, Gordon L Grado8, Harish G Ahuja9, Gary M Proulx101University of Oklahoma Health Sciences Center, Oklahoma City, OK; 2Beverly Oncology and Imaging Center, Montebello, CA; 3Swedish Covenant Medical Center, Chicago, IL; 4Rhode Island Hospital, Providence, RI; 5Signature Healthcare Brockton Hospital, Brockton, MA; 6AtlantiCare Regional Medical Center, Egg Harbor Township, NJ; 7St Francis Medical Center, Tulsa, OK; 8Southwest Oncology Centers, Scottsdale, AZ; 9Aspirus Regional Medical Center, Wausau, WI; 10Exeter Hospital, Exeter, NH, USABackground: This retrospective, multicenter study evaluated the feasibility and safety of high-dose rate electronic brachytherapy (EBT as a postsurgical adjuvant radiation therapy for endometrial cancer.Methods: Medical records were reviewed from 41 patients (age 40–89 years with endometrial cancer (Federation of International Gynecology and Obstetrics stages IA–IIIC treated at nine centers between April 2008 and October 2009. Treatment included intracavitary vaginal EBT alone (n = l6 at doses of 18.0–24.0 Gy in 3–4 fractions and EBT in combination with external beam radiation therapy (EBRT, n = 25 at a total radiation dose range of 40.0–80.4 Gy. Doses were prescribed to a depth of 5 mm from the applicator surface and to the upper third (n = 15 and the upper half (n = 26 of the vagina.Results: Median follow-up was 3.8 (range 0.5–12.0 months. All 41 patients received the intended dose of radiation as prescribed. Adverse events occurred in 13 of 41 patients and were mild to moderate (Grade 1–2, consisting primarily of vaginal mucositis, rectal mucosal irritation and discomfort, and temporary dysuria and diarrhea. There were no Grade 3 adverse events in the EBT-only treatment group. One patient, who was being treated with the combination of EBT and EBRT for recurrent endometrial

  8. Rectal complication after remote afterloading intracavitary therapy for carcinoma of the uterine cervix

    Energy Technology Data Exchange (ETDEWEB)

    Teshima, T.; Chatani, M.; Hata, K.; Inoue, Ta.; Inoue, To.; Suzuki, T.

    1985-06-01

    From August 1978 through December 1980, 119 patients of previously untreated carcinoma of the uterine cervix were treated using RALS, remote afterloading high dose rate intracavitary therapy at our department. The data from 92 out of 119 patients were available for analysis of rectal complication. The incidence of major rectal complications was only 2% (2/92). Uni- and multivariate analyses were used based on the external criterion variable of rectal complication which included even minor injuries. By using these methods, it was clearly indicated that these factors such as TDF of rectum, Z-coordinate of weighted geometric center (WGC-Z), the dose of whole pelvic irradiation, history of chemotherapy and Treponema pallidum hemoagglutination test (TPHA) were important for occurrence of rectal complication. According to discriminant score, 71 out of 92 cases (77%) could be correctly discriminated.

  9. Practical evaluations on heating characteristics of thin microwave antenna for intracavitary thermal therapy.

    Science.gov (United States)

    Saito, Kazuyuki; Tsubouchi, Kousuke; Takahashi, Masaharu; Ito, Koichi

    2010-01-01

    Microwave thermal therapy is one of the modalities for cancer treatment. There are several schemes of microwave heating. The authors have been studying thin coaxial antenna for intracavitary microwave heating aiming at the treatment of bile duct carcinoma. Up to now, the heating characteristics of the antenna are investigated by numerical simulation and experiment for finding a possibility of the treatment. In this study, in order to consider practical situations of the treatment, heating characteristics of the antenna inserted into a metallic stent is evaluated by numerical simulations. Moreover, the relation between coagulation size of the tissue and the radiation power from the antenna is investigated experimentally. It must be considered, when the input power of the antenna is high (around several tens of watts). From these investigations, some useful results for practical treatments were found.

  10. SU-E-T-606: Optimal Emission Angle Selection in Rotating Shield Brachytherapy.

    Science.gov (United States)

    Liu, Y; Flynn, R; Yang, W; Kim, Y; Wu, X

    2012-06-01

    In this work a general method is presented that enables clinicians to rapidly select Rotating shield brachytherapy (RSBT) emission angles based on the patient-specific tradeoff between delivery time and tumor dose conformity. Cervical cancer cases are used as examples. Anchor plans with high dose conformity but infeasible delivery times are generated with a fine emission angle, with simulated annealing. The RSBT emission angle selector determines the optimal emission angle for each case by efficiently solving a globally-optimal quadratic programming problem that closely reproduces the angular distribution of beam intensities from the anchor plan. Pareto plots of the dosimetric plan quality metrics, such as D90 versus the delivery time, are generated for clinicians. In this work two cervical cancer cases were considered for verification. The RSBT system was assumed to be a Xoft AxxentTM electronic BT(eBT) source with a 0.2mm tungsten shield. The intent for each treatment plans was to maximize tumor D90 while respective the GEC-ESTRO recommended constraints on the D2cc values to OARs. Generating anchor plans with simulated annealing takes 10-20min while emission angle selection can finish within seconds. The shield sequencing algorithm also ensures the balance between D90 and delivery time. One case shows that the D90 can achieve 98.3Gy10 with emission angle 202.5 degree with 8.64min delivery, while the conventional intracavitary plan has D90 65Gy10 with 2.86min delivery. Another case shows RSBT with emission angle 67.5 degree can produce D90 108.7Gy10 with 44min, and the conventional plan uses 2.2min for D90 48.9Gy10. The RSBT emission angle selection algorithm enables the users to rapidly determine the best emission angle for a given cervical cancer case by selecting the most appropriate D90 and delivery time. RSBT may be a less invasive alternative to intracavitary and supplementary interstitial BT for the treatment of cervical cancer tumors, supported in part by

  11. 10 CFR 35.2406 - Records of brachytherapy source accountability.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of brachytherapy source accountability. 35.2406... Records of brachytherapy source accountability. (a) A licensee shall maintain a record of brachytherapy source accountability required by § 35.406 for 3 years. (b) For temporary implants, the record...

  12. 10 CFR 35.406 - Brachytherapy sources accountability.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Brachytherapy sources accountability. 35.406 Section 35....406 Brachytherapy sources accountability. (a) A licensee shall maintain accountability at all times... area. (c) A licensee shall maintain a record of the brachytherapy source accountability in...

  13. An intrauterine ultrasound applicator for targeted delivery of thermal therapy in conjunction with HDR brachytherapy to the cervix

    Science.gov (United States)

    Wootton, Jeffery H.; Juang, Titania; Pouliot, Jean; Hsu, I.-Chow Joe; Diederich, Chris J.

    2009-02-01

    An intracavitary hyperthermia applicator for targeted heat delivery to the cervix was developed based on a linear array of sectored tubular ultrasound transducers that provides truly 3-D heating control (angular and along the length). A central conduit can incorporate an HDR source for sequential or simultaneous delivery of heat and radiation. Hyperthermia treatment volumes were determined from brachytherapy treatment planning data and used as a basis for biothermal simulations analyzing the effects of device parameters, tissue properties, and catheter materials on heating patterns. Devices were then developed with 1-3 elements at 6.5-8 MHz with 90-180° sectors and a 15-35 mm heating length, housed within a 6-mm diameter water-cooled PET catheter. Directional heating from sectored transducers could extend lateral penetration of therapeutic heating (41°C) >2 cm while maintaining rectum and bladder temperatures within 12 mm below thermal damage thresholds. Imaging artifacts were evaluated with standard CT, cone beam CT, and MR images. MR thermal imaging was used to demonstrate shaping of heating profiles in axial and coronal slices with artifact <2 mm from the device. The impact of the high-Z applicator materials on the HDR dose distribution was assessed using a well-type ionization chamber and was found to be less than 6% attenuation, which can readily be accounted for with treatment planning software. The intrauterine ultrasound device has demonstrated potential for 3-D conformal heating of clinical tumors in the delivery of targeted hyperthermia in conjunction with brachytherapy to the cervix.

  14. Piroxicam and intracavitary platinum-based chemotherapy for the treatment of advanced mesothelioma in pets: preliminary observations

    OpenAIRE

    2008-01-01

    Abstract Malignant Mesothelioma is an uncommon and very aggressive tumor that accounts for 1% of all the deaths secondary to malignancy in humans. Interestingly, this neoplasm has been occasionally described in companion animals as well. Aim of this study was the preclinical evaluation of the combination of piroxicam with platinum-based intracavitary chemotherapy in pets. Three companion animals have been treated in a three years period with this combination. Diagnosis was obtained by ultraso...

  15. Manifestation pattern of early-late vaginal morbidity after definitive radiation (chemo)therapy and image-guided adaptive brachytherapy for locally advanced cervical cancer: an analysis from the EMBRACE study.

    Science.gov (United States)

    Kirchheiner, Kathrin; Nout, Remi A; Tanderup, Kari; Lindegaard, Jacob C; Westerveld, Henrike; Haie-Meder, Christine; Petrič, Primož; Mahantshetty, Umesh; Dörr, Wolfgang; Pötter, Richard

    2014-05-01

    Brachytherapy in the treatment of locally advanced cervical cancer has changed substantially because of the introduction of combined intracavitary/interstitial applicators and an adaptive target concept, which is the focus of the prospective, multi-institutional EMBRACE study (www.embracestudy.dk) on image-guided adaptive brachytherapy (IGABT). So far, little has been reported about the development of early to late vaginal morbidity in the frame of IGABT. Therefore, the aim of the present EMBRACE analysis was to evaluate the manifestation pattern of vaginal morbidity during the first 2 years of follow-up. In total, 588 patients with a median follow-up time of 15 months and information on vaginal morbidity were included. Morbidity was prospectively assessed at baseline, every 3 months during the first year, and every 6 months in the second year according to the Common Terminology Criteria for Adverse Events, version 3, regarding vaginal stenosis, dryness, mucositis, bleeding, fistula, and other symptoms. Crude incidence rates, actuarial probabilities, and prevalence rates were analyzed. At 2 years, the actuarial probability of severe vaginal morbidity (grade ≥3) was 3.6%. However, mild and moderate vaginal symptoms were still pronounced (grade ≥1, 89%; grade ≥2, 29%), of which the majority developed within 6 months. Stenosis was most frequently observed, followed by vaginal dryness. Vaginal bleeding and mucositis were mainly mild and infrequently reported. Severe vaginal morbidity within the first 2 years after definitive radiation (chemo)therapy including IGABT with intracavitary/interstitial techniques for locally advanced cervical cancer is limited and is significantly less than has been reported from earlier studies. Thus, the new adaptive target concept seems to be a safe treatment with regard to the vagina being an organ at risk. However, mild to moderate vaginal morbidity is still pronounced with currently applied IGABT, and it needs further attention

  16. Piroxicam and intracavitary platinum-based chemotherapy for the treatment of advanced mesothelioma in pets: preliminary observations

    Directory of Open Access Journals (Sweden)

    Citro Gennaro

    2008-05-01

    Full Text Available Abstract Malignant Mesothelioma is an uncommon and very aggressive tumor that accounts for 1% of all the deaths secondary to malignancy in humans. Interestingly, this neoplasm has been occasionally described in companion animals as well. Aim of this study was the preclinical evaluation of the combination of piroxicam with platinum-based intracavitary chemotherapy in pets. Three companion animals have been treated in a three years period with this combination. Diagnosis was obtained by ultrasonographic exam of the body cavities that evidenced thickening of the mesothelium. A surgical biopsy further substantiated the diagnosis. After drainage of the malignant effusion from the affected cavity, the patients received four cycles of intracavitary CDDP at the dose of 50 mg/m2 every three weeks if dogs or four cycles of intracavitary carboplatin at the dose of 180 mg/m2 (every 3 weeks if cats, coupled with daily administration of piroxicam at the dose of 0.3 mg/kg. The therapy was able to arrest the effusion in all patients for variable remission times: one dog is still in remission after 3 years, one dog died of progressive disease after 8 months and one cat died due to progressive neoplastic growth after six months, when the patient developed a mesothelial cuirass. The combination showed remarkable efficacy at controlling the malignant effusion secondary to MM in our patients and warrants further investigations.

  17. Analysis of the severe complications of irradiation of carcinoma of the uterine cervix: treatment with intracavitary radium and parametrial irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Unal, A.; Hamberger, A.D.; Seski, J.C.

    1981-08-01

    Between January 1967 and December 1974, 254 patients with carcinoma of the uterine cervix were treated with either intracavitary radium and parametrial irradiation or 2000 rad whole pelvis irradiation followed by intracavitary radium and parametrial irradiation. In general, these patients had tumors of relatively limited volume and vaginal and uterine anatomy that was favorable for intracavitary radium. Not all patients had a lymphangiogram performed prior to irradiation. Of those who did, only patients with negative lymphangiograms are included in this analysis. All patient had a minimum follow-up of four years. The absolute four year survival rate for this group of patients was 86%. Only 6.3% of patients died of disease. The incidence of severe complications was 7.5%. Complications were associated with a high number of milligram hours of radium plus a high dose of external irradiation, in combination with either asymmetry of the radium system and/or history of previous pelvic inflammatory disease, pelvic surgery, or diverticulosis.

  18. Comparison of treatment planning on dosimetric differences between 192Ir sources for high-dose rate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Oh Nam [Dept. of Radiology, Mokpo Science University, Mokpo (Korea, Republic of); Shin, Seong Soo; Ahn, Woo Sang; KIm, Dae Yong; Choi, Won Sik [Dept. of Radiation Oncology, Gangenung Asan Hospital, University of Ulsan College of Medicine, Gangenung (Korea, Republic of); Kwon, Kyung Tae [Dept. of Radiologic Technology, Dongam Health University, Suwon (Korea, Republic of); Lim, Cheong Hwan [Dept. of Radiological Science, Hanseo University, Seosan (Korea, Republic of); Lee, Sang Ho [Dept. of Radiological Science, Seonam University, Namwon (Korea, Republic of)

    2016-06-15

    To evaluate whether the difference in geometrical characteristics between high-dose-rate (HDR) 192Ir sources would influence the dose distributions of intracavitary brachytherapy. Two types of microSelectron HDR 192Ir sources (classic and new models) were selected in this study. Two-dimensional (2D) treatment plans for classic and new sources were generated by using PLATO treatment planning system. We compared the point A, point B, and bladder and rectum reference points based on ICRU 38 recommendation. The radial dose function of the new source agrees with that of the classic source except difference of up to 2.6% at the nearest radial distance. The differences of anisotropy functions agree within 2% for r=1, 3, and 5 cm and 20°<θ<165°. The largest discrepancies of anisotropy functions reached up to 27% for θ<20° at r=0.25 cm and were up to 13%, 10%, and 7% at r=1, 3, and 5 cm for θ>170°, respectively. There were no significant differences in doses of point A, point B, and bladder point for the treatment plans between the new and classic sources. For the ICRU rectum point, the percent dose difference was on average 0.65% and up to 1.0%. The dose discrepancies between two treatment plans are mainly affected due to the geometrical difference of the source and the sealed capsule.

  19. Intracavitary afterloading boost in anal canal carcinoma. Results, function and quality of life

    Energy Technology Data Exchange (ETDEWEB)

    Vordermark, D.; Flentje, M.; Koelbl, O. [Wuerzburg Univ. (Germany). Klinik und Poliklinik fuer Strahlentherapie; Sailer, M. [Wuerzburg Univ. (Germany). Klinik fuer Chirurgie

    2001-05-01

    Background: First clinical data on a new intracavitary afterloading boost method for anal canal carcinoma is reported. Patients and Methods: 20 consecutive patients (T1 5%, T2 70%, T3 20%, T4 5%; N0 75%, N1 10%, N2 15%; all M0) treated with external beam pelvic radiotherapy (median dose 56 Gy, range 46-64 Gy), simultaneous 5-FU and mitomycin (in 75%) and an intracavitary afterloading boost (one or two fractions of 5 Gy at 5 mm depth) were analyzed after a mean {+-}SD follow-up for living patients of 4.4{+-}2.1 years. Quality of life (QoL) and anorectal manometry parameters were assessed in ten colostomy-free survivors. Results: Overall, recurrence-free and colostomy-free survival at 5 years were 84%, 79% and 69%, respectively. No death was tumorrelated. The only local failure was successfully salvaged by local excision. All three colostomies were performed for toxicity. Resting pressure and maximum squeeze pressure of the anal sphincter were reduced by 51% and 71%, as compared with control subjects, but quality of life was similar compared to healthy volunteers. Conclusion: the described regimen is highly effective but associated with increased toxicity. (orig.) [German] Hintergrund: Erste klinische Ergebnisse einer neuen Methode zur intrakavitaeren Afterloading-Boost-Bestrahlung des Analkanalkarzinoms werden vorgestellt. Patienten und Methoden: 20 in Folge behandelte Patienten (T1 5%, T2 70%, T3 20%, T4 5%, N0 75%, N1 10%, N2 15 %; alle M0) erhielten eine perkutane Bestrahlung (mediane Dosis 56 Gy, 46-64 Gy), simultan 5-FU und Mitomycin (75%) und einen intrakavitaeren Afterloading-Boost (eine oder zwei Fraktionen mit je 5 Gy in 5 mm Tiefe). Der mittlere Nachbeobachtungszeitraum lebender Patienten betrug 4,4{+-}2,1 Jahre. Zehn kolostomiefrei Ueberlebende wurden bezueglich Lebensqualitaet und anorektaler Manometriewerte untersucht. Ergebnisse: Gesamtueberleben, rezidivfreies und kolostomiefreies Ueberleben nach 5 Jahren betrugen 84%, 79% und 69%. Kein Todesfall war

  20. Interstitial hyperthermia in combination with brachytherapy.

    Science.gov (United States)

    Coughlin, C T; Douple, E B; Strohbehn, J W; Eaton, W L; Trembly, B S; Wong, T Z

    1983-07-01

    Flexible coaxial cables were modified to serve as microwave antennas operating at a frequency of 915 MHz. These antennas were inserted into nylon afterloading tubes that had been implanted in tumors using conventional interstitial implantation techniques for iridium-192 seed brachytherapy. The tumor volume was heated to 42-45 degrees C within 15 minutes and heating was continued for a total of 1 hour per treatment. Immediately following a conventional brachytherapy dose and removal of the iridium seeds the tumors were heated again in a second treatment. This interstitial technique for delivering local hyperthermia should be compatible with most brachytherapy methods. The technique has proved so far to be practical and without complications. Temperature distributions obtained in tissue phantoms and a patient are described.

  1. Dosimetric evaluation of two treatment planning systems for high dose rate brachytherapy applications

    Energy Technology Data Exchange (ETDEWEB)

    Shwetha, Bondel [Department of Radiation Physics, Kidwai, Memorial Institute of Oncology, Bangalore (India); Ravikumar, Manickam, E-mail: drravikumarm@gmail.com [Department of Radiation Physics, Kidwai, Memorial Institute of Oncology, Bangalore (India); Supe, Sanjay S.; Sathiyan, Saminathan [Department of Radiation Physics, Kidwai, Memorial Institute of Oncology, Bangalore (India); Lokesh, Vishwanath [Department of Radiotherapy, Kidwai, Memorial Institute of Oncology, Bangalore (India); Keshava, Subbarao L. [Department of Radiation Physics, Kidwai, Memorial Institute of Oncology, Bangalore (India)

    2012-04-01

    Various treatment planning systems are used to design plans for the treatment of cervical cancer using high-dose-rate brachytherapy. The purpose of this study was to make a dosimetric comparison of the 2 treatment planning systems from Varian medical systems, namely ABACUS and BrachyVision. The dose distribution of Ir-192 source generated with a single dwell position was compared using ABACUS (version 3.1) and BrachyVision (version 6.5) planning systems. Ten patients with intracavitary applications were planned on both systems using orthogonal radiographs. Doses were calculated at the prescription points (point A, right and left) and reference points RU, LU, RM, LM, bladder, and rectum. For single dwell position, little difference was observed in the doses to points along the perpendicular bisector. The mean difference between ABACUS and BrachyVision for these points was 1.88%. The mean difference in the dose calculated toward the distal end of the cable by ABACUS and BrachyVision was 3.78%, whereas along the proximal end the difference was 19.82%. For the patient case there was approximately 2% difference between ABACUS and BrachyVision planning for dose to the prescription points. The dose difference for the reference points ranged from 0.4-1.5%. For bladder and rectum, the differences were 5.2% and 13.5%, respectively. The dose difference between the rectum points was statistically significant. There is considerable difference between the dose calculations performed by the 2 treatment planning systems. It is seen that these discrepancies are caused by the differences in the calculation methodology adopted by the 2 systems.

  2. Extent of pelvic lymphadenectomy and use of adjuvant vaginal brachytherapy for early-stage endometrial cancer.

    Science.gov (United States)

    Matsuo, Koji; Machida, Hiroko; Ragab, Omar M; Takiuchi, Tsuyoshi; Pham, Huyen Q; Roman, Lynda D

    2017-03-01

    To examine trends of adjuvant radiotherapy choice and to examine associations between pelvic lymphadenectomy and radiotherapy choice for women with early-stage endometrial cancer. The Surveillance, Epidemiology, and End Results Program was used to identify surgically treated stage I-II endometrial cancer between 1983 and 2012 (type 1 n=79,474, and type 2 n=25,020). Piecewise linear regression models were used to examine temporal trends of intracavitary brachytherapy (ICBT) and whole pelvic radiotherapy (WPRT) use, pelvic lymphadenectomy rate, and sampled node counts. Multivariable binary logistic regression models were used to identify independent predictors for ICBT use. There was a significant increase in ICBT use and decrease in WPRT use during the study period. ICBT use exceeded WPRT use in 2003 for type 1 stage IA, and in 2007 for type 1 stage IB and type 2 stage IA diseases. In addition, number of sampled pelvic nodes significantly increased over time in type 1-2 stage I-II diseases (mean, 7.0-12.7 in 1988 to 15.2-17.6 in 2012, all Pcancer: adjusted-odds ratios for 1-10 and >10 nodes versus no lymphadenectomy in stage IA (1.38/2.40), IB (2.75/6.32), and II (1.36/2.91) diseases. Similar trends were observed for type 2 cancer: adjusted-odds ratios for stage IA (1.69/3.73), IB (2.25/5.65), and II (1.36/2.19) diseases. Our results suggest that surgeons and radiation oncologists are evaluating the extent of pelvic lymphadenectomy when counseling women with early-stage endometrial cancer for adjuvant radiotherapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Dosimetric evaluation of two treatment planning systems for high dose rate brachytherapy applications.

    Science.gov (United States)

    Shwetha, Bondel; Ravikumar, Manickam; Supe, Sanjay S; Sathiyan, Saminathan; Lokesh, Vishwanath; Keshava, Subbarao L

    2012-01-01

    Various treatment planning systems are used to design plans for the treatment of cervical cancer using high-dose-rate brachytherapy. The purpose of this study was to make a dosimetric comparison of the 2 treatment planning systems from Varian medical systems, namely ABACUS and BrachyVision. The dose distribution of Ir-192 source generated with a single dwell position was compared using ABACUS (version 3.1) and BrachyVision (version 6.5) planning systems. Ten patients with intracavitary applications were planned on both systems using orthogonal radiographs. Doses were calculated at the prescription points (point A, right and left) and reference points RU, LU, RM, LM, bladder, and rectum. For single dwell position, little difference was observed in the doses to points along the perpendicular bisector. The mean difference between ABACUS and BrachyVision for these points was 1.88%. The mean difference in the dose calculated toward the distal end of the cable by ABACUS and BrachyVision was 3.78%, whereas along the proximal end the difference was 19.82%. For the patient case there was approximately 2% difference between ABACUS and BrachyVision planning for dose to the prescription points. The dose difference for the reference points ranged from 0.4-1.5%. For bladder and rectum, the differences were 5.2% and 13.5%, respectively. The dose difference between the rectum points was statistically significant. There is considerable difference between the dose calculations performed by the 2 treatment planning systems. It is seen that these discrepancies are caused by the differences in the calculation methodology adopted by the 2 systems.

  4. To analyze the impact of intracavitary brachytherapy as boost radiation after external beam radiotherapy in carcinoma of the external auditory canal and middle ear: A retrospective analysis

    Directory of Open Access Journals (Sweden)

    Dinesh K Badakh

    2014-01-01

    Conclusion: ICBT as a boost after EBRT has got a positive impact on the OS. In conclusion, our results demonstrate that radical radiation therapy (EBRT and ICBT is the treatment of choice for stage T2, carcinoma of EACMA.

  5. Determination of the dose around an ovoid for treatments in intracavitary brachytherapy Hdr; Determinacion de la dosis alrededor de un ovoide para tratamientos en braquiterapia intracavitaria HDR

    Energy Technology Data Exchange (ETDEWEB)

    Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Legaria No. 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Velasco V, R. A. E. [Hospital Central Militar, Periferico y Ejercito Nacional s/n, Lomas de Sotelo, 11200 Mexico D. F. (Mexico); Serrano F, A. K. [Hospital Juarez de Mexico, Av. Instituto Politecnico Nacional No. 5190, Col. Magdalena de las Salinas, 03220 Mexico D. F. (Mexico); Azorin N, J., E-mail: trivera@ipn.m [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)

    2010-09-15

    On this work the results of the dosimetric measurements are presented around an ovoid of 2 cm diameter. The measurements were carried out using a water mannequin, an ovoid, a radiation gamma source of {sup 192}Ir and thermoluminescent dosemeters. The dosimetry was realized in the direction of the rectum and bladder. To know the effect of the shielding of the devices type Manchester in the dose, the thermoluminescent dosemeters were irradiated to a radiation gamma source of {sup 192}Ir contained in the Gamma med Plus equipment. The planning was realized normalizing the calculation to 2.5 cm from the applicator center on the transverse plane (2.5, 0, 0). The results show that the dose distribution for an ovoid without shielding is more uniform in the transversal plane to the source axis. The results were compared with the calculated results by means of the planning system BrachyVision. While the absorbed dose distribution around an ovoid with shielding is completely anisotropic. This anisotropic is due to the shielding. (Author)

  6. Dose optimisation in single plane interstitial brachytherapy

    DEFF Research Database (Denmark)

    Tanderup, Kari; Hellebust, Taran Paulsen; Honoré, Henriette Benedicte;

    2006-01-01

    BACKGROUND AND PURPOSE: Brachytherapy dose distributions can be optimised       by modulation of source dwell times. In this study dose optimisation in       single planar interstitial implants was evaluated in order to quantify the       potential benefit in patients. MATERIAL AND METHODS: In 14...

  7. CT-based interstitial HDR brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kolotas, C.; Baltas, D.; Zamboglou, N. [Staedtische Kliniken Offenbach (Germany). Strahlenklinik

    1999-09-01

    Purpose: Development, application and evaluation of a CT-guided implantation technique and a fully CT-based treatment planning procedure for brachytherapy. Methods and Materials: A brachytherapy procedure based on CT-guided implantation technique and CT-based treatment planning has been developed and clinical evaluated. For this purpose a software system (PROMETHEUS) for the 3D reconstruction of brachytherapy catheters and patient anatomy using only CT scans has been developed. An interface for the Nucletron PLATO BPS treatment planning system for optimization and calculation of dose distribution has been devised. The planning target volume(s) are defined as sets of points using contouring tools and are used for optimization of the 3D dose distribution. Dose-volume histogram based analysis of the dose distribution (COIN analysis) enables a clinically realistic evaluation of the brachytherapy application to be made. The CT-guided implantation of catheters and the CT-based treatment planning procedure has been performed for interstitial brachytherapy and for different tumor sites in 197 patients between 1996 and 1997. Results: The accuracy of the CT reconstruction was tested using first a quality assurance phantom and second, a simulated interstitial implant of 12 needles. These were compared with the results of reconstruction using radiographs. Both methods gave comparable results with regard to accuracy, but the CT based reconstruction was faster. Clinical feasibility was proved in pre-irradiated recurrences of brain tumors, in pretreated recurrences or metastatic disease, and in breast carcinomas. The tumor volumes treated were in the range 5.1 to 2,741 cm{sup 3}. Analysis of implant quality showed a slightly significant lower COIN value for the bone implants, but no differences with respect to the planning target volume. Conclusions: The Offenbach system, incorporating the PROMETHEUS software for interstitial HDR brachytherapy has proved to be extremely valuable

  8. Automated intraoperative calibration for prostate cancer brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kuiran Chen, Thomas; Heffter, Tamas; Lasso, Andras; Pinter, Csaba; Abolmaesumi, Purang; Burdette, E. Clif; Fichtinger, Gabor [Queen' s University, Kingston, Ontario K7L 3N6 (Canada); University of British Columbia, Vancouver, British Columbia V6T 1Z4 (Canada); Acoustic MedSystems, Inc., Champaign, Illinois 61820-3979 (United States); Queen' s University, Kingston, Ontario K7L 3N6 (Canada) and Johns Hopkins University, Baltimore, Maryland 21218-2682 (United States)

    2011-11-15

    Purpose: Prostate cancer brachytherapy relies on an accurate spatial registration between the implant needles and the TRUS image, called ''calibration''. The authors propose a new device and a fast, automatic method to calibrate the brachytherapy system in the operating room, with instant error feedback. Methods: A device was CAD-designed and precision-engineered, which mechanically couples a calibration phantom with an exact replica of the standard brachytherapy template. From real-time TRUS images acquired from the calibration device and processed by the calibration system, the coordinate transformation between the brachytherapy template and the TRUS images was computed automatically. The system instantly generated a report of the target reconstruction accuracy based on the current calibration outcome. Results: Four types of validation tests were conducted. First, 50 independent, real-time calibration trials yielded an average of 0.57 {+-} 0.13 mm line reconstruction error (LRE) relative to ground truth. Second, the averaged LRE was 0.37 {+-} 0.25 mm relative to ground truth in tests with six different commercial TRUS scanners operating at similar imaging settings. Furthermore, testing with five different commercial stepper systems yielded an average of 0.29 {+-} 0.16 mm LRE relative to ground truth. Finally, the system achieved an average of 0.56 {+-} 0.27 mm target registration error (TRE) relative to ground truth in needle insertion tests through the template in a water tank. Conclusions: The proposed automatic, intraoperative calibration system for prostate cancer brachytherapy has achieved high accuracy, precision, and robustness.

  9. Preliminary experience on the implementation of computed tomography (CT)-based image guided brachytherapy (IGBT) of cervical cancer using high-dose-rate (HDR) Cobalt-60 source in University of Malaya Medical Centre (UMMC)

    Science.gov (United States)

    Jamalludin, Z.; Min, U. N.; Ishak, W. Z. Wan; Malik, R. Abdul

    2016-03-01

    This study presents our preliminary work of the computed tomography (CT) image guided brachytherapy (IGBT) implementation on cervical cancer patients. We developed a protocol in which patients undergo two Magnetic Resonance Imaging (MRI) examinations; a) prior to external beam radiotherapy (EBRT) and b) prior to intra-cavitary brachytherapy for tumour identification and delineation during IGBT planning and dosimetry. For each fraction, patients were simulated using CT simulator and images were transferred to the treatment planning system. The HR-CTV, IR-CTV, bladder and rectum were delineated on CT-based contouring for cervical cancer. Plans were optimised to achieve HR-CTV and IR-CTV dose (D90) of total EQD2 80Gy and 60Gy respectively, while limiting the minimum dose to the most irradiated 2cm3 volume (D2cc) of bladder and rectum to total EQD2 90Gy and 75Gy respectively. Data from seven insertions were analysed by comparing the volume-based with traditional point- based doses. Based on our data, there were differences between volume and point doses of HR- CTV, bladder and rectum organs. As the number of patients having the CT-based IGBT increases from day to day in our centre, it is expected that the treatment and dosimetry accuracy will be improved with the implementation.

  10. Dosimetric evaluation of a combination of brachytherapy applicators for uterine cervix cancer with involvement of the distal vagina; Avaliacao dosimetrica de uma combinacao de aplicadores para braquiterapia de tumores do colo uterino com acometimento da porcao distal da vagina

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Roger Guilherme Rodrigues [Real e Benemerita Sociedade Portuguesa de Beneficencia, Sao Paulo, SP (Brazil). Servico de Radioterapia Estereotactica; Carvalho, Heloisa de Andrade; Stuart, Silvia Radwanski; Rubo, Rodrigo Augusto [Universidade de Sao Paulo (USP), SP (Brazil). Hospital das Clinicas. Servico de Radioterapia], e-mail: handrade@hcnet.usp.br; Seraide, Rodrigo Migotto [Centro de Oncologia Campinas, SP (Brazil)

    2009-07-15

    Objective: To evaluate an alternative brachytherapy technique for uterine cervix cancer involving the distal vagina, without increasing the risk of toxicity. Materials And Methods: Theoretical study comparing three different high-dose rate intracavitary brachytherapy applicators: intrauterine tandem and vaginal cylinder (TC); tandem/ring applicator combined with vaginal cylinder (TR+C); and a virtual applicator combining both the tandem/ring and vaginal cylinder in a single device (TRC). Prescribed doses were 7 Gy at point A, and 5 Gy on the surface or at a 5 mm depth of the vaginal mucosa. Doses delivered to the rectum, bladder and sigmoid colon were kept below the tolerance limits. Volumes covered by the isodoses, respectively, 50% (V50), 100% (V100), 150% (V150) and 200% (V200) were compared. Results: Both the combined TR+C and TRC presented a better dose distribution as compared with the TC applicator. The TR+C dose distribution was similar to the TRC dose, with V150 and V200 being about 50% higher for TR+C (within the cylinder). Conclusion: Combined TR+C in a two-time single application may represent an alternative therapy technique for patients affected by uterine cervix cancer involving the distal vagina. (author)

  11. Mid-dose rate intracavitary therapy for uterine cervix cancer with a Selectron; An early experience of Osaka University

    Energy Technology Data Exchange (ETDEWEB)

    Teshima, Teruki; Inoue, Takehiro; Sasaki, Shigeru; Ohtani, Masatoshi; Kozuka, Takahiro; Inoue, Toshihiko; Ikeda, Hiroshi; Yamazaki, Hideya (Osaka Univ. (Japan). Faculty of Medicine); Murayama, Shigeyuki

    1993-05-01

    From May 1991 through September 1992, a total of 17 previously untreated patients with invasive uterine cervix cancer and with intact uterus were treated with mid-dose rate intracavitary therapy administered with a Selectron. Early primary tumor responses for all patients were complete. No acute or subacute radiation injury was observed except one patient with aplastic anemia who developed rectal ulcer. Two patients of Stage IIIb died from tumor because of local, paraaortic lymph node and distant metastases. Our early experience concluded that Selectron MDR can be used for cervix cancer patients as safely and effectively as our previously used high-dose rate machine. (author).

  12. Prostate cancer brachytherapy; Braquiterapia de cancer de prostata

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Carlos Eduardo Vita; Silva, Joao L. F. [Hospital Sirio Libanes, Sao Paulo, SP (Brazil). Centro de Oncologia. Dep. de Radioterapia; Srougi, Miguel; Nesrallah, Adriano [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Escola Paulista de Medicina (EPM). Disciplina de Urologia]. E-mail: cevitabr@mandic.com.br

    1999-07-01

    The transperineal brachytherapy with {sup 125}I/Pd{sup 103} seed implantation guided by transurethral ultrasound must be presented as therapeutical option of low urinary morbidity in patients with localized prostate cancer. The combined clinical staging - including Gleason and initial PSA - must be encouraged, for definition of a group of low risk and indication of exclusive brachytherapy. Random prospective studies are necessary in order to define the best role of brachytherapy, surgery and external beam radiation therapy.

  13. Clinical implementation of MR‐guided vaginal cylinder brachytherapy

    National Research Council Canada - National Science Library

    Owrangi, Amir M; Jolly, Shruti; Balter, James M; Cao, Yue; Maturen, Katherine E; Young, Lisa; Zhu, Tong; Prisciandaro, Joann I

    2015-01-01

    ...)‐guided vaginal brachytherapy using commercially available solid applicator models. To test the fidelity of solid applicator models to digitize vaginal cylinder applicators, three datasets were evaluated...

  14. State-of-the-art: prostate LDR brachytherapy.

    Science.gov (United States)

    Voulgaris, S; Nobes, J P; Laing, R W; Langley, S E M

    2008-01-01

    This article on low dose rate (LDR) prostate brachytherapy reviews long-term results, patient selection and quality of life issues. Mature results from the United States and United Kingdom are reported and issues regarding definitions of biochemical failure are discussed. Latest data comparing brachytherapy with radical prostatectomy or no definitive treatment and also the risk of secondary malignancies after prostate brachytherapy are presented. Urological parameters of patient selection and quality of life issues concerning urinary, sexual and bowel function are reviewed. The position of prostate brachytherapy next to surgery as a first-line treatment modality is demonstrated.

  15. Dosimetric comparison of tandem and Ovoids vs. tandem and ring for intracavitary gynecologic applications.

    Science.gov (United States)

    Levin, Daphne; Menhel, Janna; Rabin, Tanya; Pfeffer, M Raphael; Symon, Zvi

    2008-01-01

    We evaluated dosimetric differences in tandem and ovoid (TO) and tandem and ring (TR) gynecologic brachytherapy applicators. Seventeen patients with cervical cancer (Stages II-IV) receiving 3 high-dose-rate (HDR) brachytherapy applications (both TO and TR) were studied. Patients underwent computed tomography (CT) scans with contrast in bladder, and were prescribed 8 Gy to ICRU points A, with additional optimization goals of maintaining the pear-shaped dose distribution and minimizing bladder and rectum doses. Bladder and rectum point doses, mean, and maximum doses were calculated. Total treatment time and volumes treated to 95%, 85%, 50%, and 20% or the prescription dose were compared. There were no significant differences between TO and TR applicators in doses to prescription points or critical organs. However, there were significant differences (p < 0.001) between the applicators in treated volumes and total treatment time. The TO treated larger volumes over a longer time. Within each patient, when the applicators were compared, treated volumes were also found to be significantly different (p < 0.01, chi(2)). Our results demonstrate that the 2 applicators, while delivering the prescribed dose to points A and keeping critical organ doses below tolerance, treat significantly different volumes. It is unclear if this difference is clinically meaningful. TO applicators may be treating surrounding healthy tissue unnecessarily, or TR applicators may be underdosing tumor tissue. Further investigation with appropriate imaging modalities is required for accurate delineation of target volumes. Clearly, the TO and TR are not identical, and should not be used interchangeably without further study.

  16. Three dimensional intensity modulated brachytherapy (IMBT): Dosimetry algorithm and inverse treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Shi Chengyu; Guo Bingqi; Cheng, Chih-Yao; Esquivel, Carlos; Eng, Tony; Papanikolaou, Niko [Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 (United States); Department of Radiation Oncology, Oklahoma University Health Science Center, Oklahoma City, Oklahoma 73104 (United States); Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 (United States)

    2010-07-15

    Purpose: The feasibility of intensity modulated brachytherapy (IMBT) to improve dose conformity for irregularly shaped targets has been previously investigated by researchers by means of using partially shielded sources. However, partial shielding does not fully explore the potential of IMBT. The goal of this study is to introduce the concept of three dimensional (3D) intensity modulated brachytherapy and solve two fundamental issues regarding the application of 3D IMBT treatment planning: The dose calculation algorithm and the inverse treatment planning method. Methods: A 3D IMBT treatment planning system prototype was developed using the MATLAB platform. This system consists of three major components: (1) A comprehensive IMBT source calibration method with dosimetric inputs from Monte Carlo (EGSnrc) simulations; (2) a ''modified TG-43'' (mTG-43) dose calculation formalism for IMBT dosimetry; and (3) a physical constraint based inverse IMBT treatment planning platform utilizing a simulated annealing optimization algorithm. The model S700 Axxent electronic brachytherapy source developed by Xoft, Inc. (Fremont, CA), was simulated in this application. Ten intracavitary accelerated partial breast irradiation (APBI) cases were studied. For each case, an ''isotropic plan'' with only optimized source dwell time and a fully optimized IMBT plan were generated and compared to the original plan in various dosimetric aspects, such as the plan quality, planning, and delivery time. The issue of the mechanical complexity of the IMBT applicator is not addressed in this study. Results: IMBT approaches showed superior plan quality compared to the original plans and the isotropic plans to different extents in all studied cases. An extremely difficult case with a small breast and a small distance to the ribs and skin, the IMBT plan minimized the high dose volume V{sub 200} by 16.1% and 4.8%, respectively, compared to the original and the

  17. Physics and basic parameters of brachytherapy.

    Science.gov (United States)

    Lee, E J; Weinhous, M S

    1997-06-01

    Brachytherapy (short-distance therapy) is the therapeutic process whereby radioactive sources are placed into very close proximity to target tissue. Radioactive materials were so used beginning shortly after the discovery of radium by Marie and Pierre Curie in 1898. For the purposes of brachytherapy, radioactive materials are those that emit "rays" that can cause ionization (and hence DNA damage and the destruction of target cells). The potentially useful rays include beta, gamma, and other possibilities such as neutrons. Beta rays, properly beta particles, are simply high energy electrons. Gamma rays are high energy photons (part of the electromagnetic spectrum like visible light, but with much higher energy). These particles are produced during the radioactive decay of certain isotopes. The physics of those events and the parameters that apply to the therapeutic use of the isotopes are the primary topics of this report.

  18. Design and optimization of a brachytherapy robot

    Science.gov (United States)

    Meltsner, Michael A.

    Trans-rectal ultrasound guided (TRUS) low dose rate (LDR) interstitial brachytherapy has become a popular procedure for the treatment of prostate cancer, the most common type of non-skin cancer among men. The current TRUS technique of LDR implantation may result in less than ideal coverage of the tumor with increased risk of negative response such as rectal toxicity and urinary retention. This technique is limited by the skill of the physician performing the implant, the accuracy of needle localization, and the inherent weaknesses of the procedure itself. The treatment may require 100 or more sources and 25 needles, compounding the inaccuracy of the needle localization procedure. A robot designed for prostate brachytherapy may increase the accuracy of needle placement while minimizing the effect of physician technique in the TRUS procedure. Furthermore, a robot may improve associated toxicities by utilizing angled insertions and freeing implantations from constraints applied by the 0.5 cm-spaced template used in the TRUS method. Within our group, Lin et al. have designed a new type of LDR source. The "directional" source is a seed designed to be partially shielded. Thus, a directional, or anisotropic, source does not emit radiation in all directions. The source can be oriented to irradiate cancerous tissues while sparing normal ones. This type of source necessitates a new, highly accurate method for localization in 6 degrees of freedom. A robot is the best way to accomplish this task accurately. The following presentation of work describes the invention and optimization of a new prostate brachytherapy robot that fulfills these goals. Furthermore, some research has been dedicated to the use of the robot to perform needle insertion tasks (brachytherapy, biopsy, RF ablation, etc.) in nearly any other soft tissue in the body. This can be accomplished with the robot combined with automatic, magnetic tracking.

  19. A fibre optic dosimeter customised for brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Suchowerska, N. [Department of Radiation Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 (Australia); School of Physics, University of Sydney, NSW 2006 (Australia)], E-mail: Natalka@email.cs.nsw.gov.au; Lambert, J.; Nakano, T. [Department of Radiation Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 (Australia); School of Physics, University of Sydney, NSW 2006 (Australia); Law, S. [School of Physics, University of Sydney, NSW 2006 (Australia); Optical Fibre Technology Centre, University of Sydney, 206 National Innovation Centre, Australian Technology Park, Eveleigh, NSW 1430 (Australia); Elsey, J. [Bandwidth Foundry Pty Ltd, Australian Technology Park, NSW, 1430 (Australia); McKenzie, D.R. [School of Physics, University of Sydney, NSW 2006 (Australia)

    2007-04-15

    In-vivo dosimetry for brachytherapy cancer treatment requires a small dosimeter with a real time readout capability that can be inserted into the patient to determine the dose to critical organs. Fibre optic scintillation dosimeters, consisting of a plastic scintillator coupled to an optical fibre, are a promising dosimeter for this application. We have implemented specific design features to optimise the performance of the dosimeter for specific in-vivo dosimetry during brachytherapy. Two sizes of the BrachyFOD{sup TM} scintillation dosimeter have been developed, with external diameters of approximately 2 and 1 mm. We have determined their important dosimetric characteristics (depth dose relation, angular dependence, energy dependence). We have shown that the background signal created by Cerenkov and fibre fluorescence does not significantly affect the performance in most clinical geometries. The dosimeter design enables readout at less than 0.5 s intervals. The clinical demands of real time in-vivo brachytherapy dosimetry can uniquely be satisfied by the BrachyFOD{sup TM}.

  20. Brachytherapy for the treatment of prostate cancer.

    Science.gov (United States)

    Cesaretti, Jamie A; Stone, Nelson N; Skouteris, Vassilios M; Park, Janelle L; Stock, Richard G

    2007-01-01

    Low-dose rate brachytherapy has become a mainstream treatment option for men diagnosed with prostate cancer because of excellent long-term treatment outcomes in low-, intermediate-, and high-risk patients. Largely due to patient lead advocacy for minimally invasive treatment options, high-quality prostate implants have become widely available in the US, Europe, and Japan. The reason that brachytherapy results are reproducible in several different practice settings is because numerous implant quality factors have been defined over the last 20 years, which can be applied objectively to judge the success of the intervention both during and after the procedure. In addition, recent long-term follow-up studies have clarified that the secondary cancer incidence of brachytherapy is not clinically meaningful. In terms of future directions, the study of radiation repair genetics may allow for the counseling physician to better estimate any given patients risk for side effects, thereby substantially reducing the therapeutic uncertainties faced by patients choosing a prostate cancer intervention.

  1. A robotic device for MRI-guided prostate brachytherapy

    NARCIS (Netherlands)

    Lagerburg, V.

    2008-01-01

    One of the treatment options for prostate cancer is brachytherapy with iodine-125 sources. In prostate brachytherapy a high radiation dose is delivered to the prostate with a steep dose fall off to critical surrounding organs. The implantation of the iodine sources is currently performed under

  2. A robotic device for MRI-guided prostate brachytherapy

    NARCIS (Netherlands)

    Lagerburg, V.

    2008-01-01

    One of the treatment options for prostate cancer is brachytherapy with iodine-125 sources. In prostate brachytherapy a high radiation dose is delivered to the prostate with a steep dose fall off to critical surrounding organs. The implantation of the iodine sources is currently performed under ultra

  3. Accelerated partial breast irradiation with iridium-192 multicatheter PDR/HDR brachytherapy. Preliminary results of the German-Austrian multicenter trial

    Energy Technology Data Exchange (ETDEWEB)

    Ott, O.J.; Lotter, M.; Sauer, R.; Strnad, V. [Dept. of Radiation Oncology, Univ. Hospital Erlangen, Erlangen (Germany); Poetter, R.; Resch, A. [Dept. of Radiotherapy and Radiobiology, Univ. Hospital AKH Wien, Vienna (Austria); Hammer, J. [Dept. of Radiation Oncology, Barmherzige Schwestern Hospital Linz, Linz (Austria); Hildebrandt, G. [Dept. of Radiation Oncology, Univ. Hospital Leipzig, Leipzig (Germany); Poehls, U.; Beckmann, M.W. [Dept. of Gynecology, Univ. Hospital Erlangen, Erlangen (Germany)

    2004-10-01

    Purpose: to evaluate perioperative morbidity, toxicity, and cosmetic outcome in patients treated with interstitial brachytherapy to the tumor bed as the sole irradiation modality after breast-conserving surgery. Patients and methods: from November 1, 2000 to January 31, 2004, 176 women with early-stage breast cancer became partakers in a protocol of tumor bed irradiation alone using pulsed-dose-rate (PDR) or high-dose-rate (HDR) interstitial multicatheter implants. Patients became eligible, if their tumor was an infiltrating carcinoma {<=} 3 cm in diameter, the surgical margins were clear by at least 2 mm, the axilla was surgically staged node-negative, the tumor was estrogen and/or progesterone receptor-positive, well or moderately differentiated (G1/2), the tumor did not contain an extensive intraductal component (EIC) and the patient's age was > 35 years. Implants were positioned using a template guide, delivering either 49.8 Gy in 83 consecutive hours (PDR) or 32.0 Gy in two daily fractions over 4 days (HDR). Perioperative morbidity, toxicity, and cosmetic outcome were assessed. Interim findings of the first 69 patients, who were treated in this multicenter trial, after a median follow-up of 24 months (range, 15-39 months) are presented. Results: one of the 69 patients (1.4%) developed a bacterial infection of the implant. No other perioperative complications, for example bleeding or hematoma, were observed. Acute toxicity was low: 2.9% of the patients (2/69) experienced mild radiodermatitis. Late toxicity: hypersensation/mild pain 7.2% (5/69), intermittent but tolerable pain 1.4% (1/69), mild dyspigmentation 10.1% (7/69), mild fibrosis 11.6% (8/69), moderate fibrosis 1.4% (1/69), mild telangiectasia (< 1 cm{sup 2}) 11.6% (8/69), and moderate teleangiectasia (1-4 cm{sup 2}) 1.4% (1/69). Good to excellent cosmetic results were observed in 92.4% of the patients evaluated. All patients (n = 176) remained disease-free to the date of evaluation. Conclusion

  4. Development of an 241Am applicator for intracavitary irradiation of gynecologic cancers.

    Science.gov (United States)

    Nath, R; Peschel, R E; Park, C H; Fischer, J J

    1988-05-01

    Sealed sources of 241Am that emit primarily 60 keV photons produce relative dose distributions in water comparable to those from 137Cs or 226Ra sources and can produce dose rates of up to 100 cGy/hr at 1 cm in water. Also, 241Am gamma rays can be effectively shielded by thin layers of high atomic number materials (HVL is 1/8th mm of lead) placed on the applicator or inside some body cavities (for example, hypaque in bladder, barium sulphate in rectum). These properties of 241Am sources open a new approach to optimizing intracavitary irradiation of various cancers by allowing a reduction in dose and volume of irradiated critical organs or by increasing tumor doses. The relative ease with which highly effective shielding is achievable with 241Am sources would allow the design and fabrication of partially shielded applicators which can produce asymmetric dose distributions to allow unidirectional irradiation of localized lesions. Design and dosimetry characteristics of a gynecological applicator containing 241Am sources are presented. The applicator consists of a 2, 3, or 4 segment vaginal plaque (loaded with 2 and 5 Ci 241Am sources) and a tandem made up of a single 8 Ci 241Am source. Dose rates at 2 cm from the plaques are 42.0, 47.4, 58.3 and 56.7 cGy/hr for 5-5, 5-4-5, 5-5-5, and 5-4-4-5 Ci plaques, respectively. The 5-4-5 Ci plaque in combination with the 8 Ci tandem produces dose rates of 60.0 and 22.8 cGy/hr to points A and B, respectively. Surface dose rates on the plaque applicators are 143, 124, 142 and 132 cGy/hr for 5-5, 5-4-5, 5-5-5 and 5-4-4-5 Ci applicators, respectively. The shielding effect of a 0.5 mm thick lead foil on one side of the 5-4-5 Ci applicator is found to be a factor of 16.8; for example, the dose rate at 2 cm from the unshielded side is 42.0 cGy/hr compared to a dose rate of 2.5 cGy/hr at 2 cm from the shielded side. Initial clinical experience with this applicator in the treatment of recurrent gynecological lesions is also presented.

  5. Intracavitary cobalt-60 irradiation in the prophylactic treatment of bladder cancer

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Tadashi; Kigure, Teruaki; Miyagata, Shigeru (Akita Univ. (Japan). School of Medicine) (and others)

    1992-05-01

    This paper describes the technique and preliminary clinical results of transurethral intracavitary whole bladder mucosal irradiation (IWI) for the prophylaxis of bladder cancer. In this procedure, first, the balloon catheter (22 Fr.) is inserted into the bladder, and next the balloon is inflated with 100 ml of air. Then a Co-60 pellet with about 110 GBq of activity is driven into the center of the bladder. With this method, we can irradiate the whole bladder mucosa almost equally. From April 1985, 36 patients with recurrent tumor and 26 patients with primary and multiple tumors of the bladder have been treated with IWI after transurethral resection or microwave coagulation of the tumors. Tumor stage and grade were as follows: Tis (7), T{sub a}, T{sub 1} (41), T{sub 2} (14), G1 (16), G2 (30) and G3 (16). The tumors were transitional cell carcinoma in all patients. IWI was performed once a week, usually 3 to 5 times, depending on the patients. The total dose to the bladder mucosa ranged from 20 to 58.5 Gy with an average dose of 37.6 Gy. Recurrence rates before and after IWI were calculated using the following formula: recurrence rates (RR)=(total number of recurrences/total months of follow up)x100. RR in the 36 patients with recurrent tumor was 14.0 before IWI and 1.8 after IWI (mean follow up 37.6 mos.). RR in the 26 patients with multiple tumors was 1.4 after IWI (mean follow up 34.8 mos.). RR in patients with G1, G2 and G3 tumors were 1.2, 1.7 and 2.2. The most common side effect was temporary urinary frequency observed in 36 patients (52.9%). Three patients had contracted bladder, and two had hydronephrosis. However, proctitis or incontinence was not evident. Although the preliminary clinical results suggest that our new technique is an effective prophylactic treatment for bladder cancer, further investigation is needed to determine its efficacy. (author).

  6. Transforming Growth Factor β-1 (TGF-β1) Is a Serum Biomarker of Radiation Induced Fibrosis in Patients Treated With Intracavitary Accelerated Partial Breast Irradiation: Preliminary Results of a Prospective Study

    Energy Technology Data Exchange (ETDEWEB)

    Boothe, Dustin L. [Weill Cornell Medical College of Cornell University, New York, New York (United States); Coplowitz, Shana [Department of Radiation Oncology, Stich Radiation Center, Weill Cornell Medical College of Cornell University, New York, New York (United States); Greenwood, Eleni [Weill Cornell Medical College of Cornell University, New York, New York (United States); Barney, Christian L. [Department of Radiation Oncology, Ohio State University, Columbus, Ohio (United States); Christos, Paul J. [Division of Biostatistics and Epidemiology, Department of Public Health, Weill Cornell Medical College of Cornell University, New York, New York (United States); Parashar, Bhupesh; Nori, Dattatreyudu; Chao, K. S. Clifford [Department of Radiation Oncology, Stich Radiation Center, Weill Cornell Medical College of Cornell University, New York, New York (United States); Wernicke, A. Gabriella, E-mail: gaw9008@med.cornell.edu [Department of Radiation Oncology, Stich Radiation Center, Weill Cornell Medical College of Cornell University, New York, New York (United States)

    2013-12-01

    Purpose: To examine a relationship between serum transforming growth factor β -1 (TGF-β1) values and radiation-induced fibrosis (RIF). Methods and Materials: We conducted a prospective analysis of the development of RIF in 39 women with American Joint Committee on Cancer stage 0-I breast cancer treated with lumpectomy and accelerated partial breast irradiation via intracavitary brachytherapy (IBAPBI). An enzyme-linked immunoassay (Quantikine, R and D, Minneapolis, MN) was used to measure serum TGF-β1 before surgery, before IBAPBI, and during IBAPBI. Blood samples for TGF-β1 were also collected from 15 healthy, nontreated women (controls). The previously validated tissue compliance meter (TCM) was used to objectively assess RIF. Results: The median time to follow-up for 39 patients was 44 months (range, 5-59 months). RIF was graded by the TCM scale as 0, 1, 2, and 3 in 5 of 20 patients (25%), 6 of 20 patients (30%), 5 of 20 patients (25%), and 4 of 20 patients (20%), respectively. The mean serum TGF-β1 values were significantly higher in patients before surgery than in disease-free controls, as follows: all cancer patients (30,201 ± 5889 pg/mL, P=.02); patients with any type of RIF (32,273 ± 5016 pg/mL, P<.0001); and women with moderate to severe RIF (34,462 ± 4713 pg/mL, P<0.0001). Patients with moderate to severe RIF had significantly elevated TGF-β1 levels when compared with those with none to mild RIF before surgery (P=.0014) during IBAPBI (P≤0001), and the elevation persisted at 6 months (P≤.001), 12 months (P≤.001), 18 months (P≤.001), and 24 months (P=.12). A receiver operating characteristic (ROC) curve of TGF-β1 values predicting moderate to severe RIF was generated with an area under the curve (AUC){sub ROC} of 0.867 (95% confidence interval 0.700-1.000). The TGF-β1 threshold cutoff was determined to be 31,000 pg/mL, with associated sensitivity and specificity of 77.8% and 90.0%, respectively. Conclusions: TGF-β1 levels correlate with

  7. MRI-guided pulsed rate intracavitary curietherapy: preliminary results on 25 patients treated at the Tours University Hospital Centre; Curietherapie intracavitaire de debit pulse guidee par IRM: resultats preliminaires chez 25 patientes traitees au centre hospitalier universitaire de Tours

    Energy Technology Data Exchange (ETDEWEB)

    Ruffier-Loubiere, A.; Ouldamer, L.; Reynaud-Bougnoux, A.; Barillot, I. [CHU de Tours, 37 - Tours (France); Ouldamer, L.; Barillot, I. [Universite Francois-Rabelais, 37 - Tours (France)

    2010-10-15

    The authors report the assessment of the feasibility of a dose escalation when using MRI-guided pulsed rate intracavitary curietherapy with manual optimization of dwell times on 25 patients treated for an invasive cervical carcinoma. A first group of patients comprised 5 women with a stage Ib2 cancer who had only one curietherapy before surgical intervention. The second group comprises eleven women presenting limited stage Ib2 or IIa or IIb cancers who have been treated by a concomitant association of radiotherapy and chemotherapy followed by MRI-guided pulsed rate intracavitary curietherapy and later by surgical intervention. The third group comprised nine women presenting a locally advanced cancer who have been treated by chemotherapy followed by a MRI-guided pulsed rate intracavitary curietherapy. It appears that MRI-guided pulsed rate intracavitary curietherapy could be an efficient mean to increase the dose in the pelvic central part. Short communication

  8. Californium-252 Brachytherapy Combined With External-Beam Radiotherapy for Cervical Cancer: Long-Term Treatment Results

    Energy Technology Data Exchange (ETDEWEB)

    Lei Xin; Qian Chengyuan; Qing Yi; Zhao Kewei; Yang Zhengzhou; Dai Nan; Zhong Zhaoyang; Tang Cheng; Li Zheng; Gu Xianqing; Zhou Qian; Feng Yan; Xiong Yanli; Shan Jinlu [Cancer Center, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing (China); Wang Dong, E-mail: dongwang64@hotmail.com [Cancer Center, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing (China)

    2011-12-01

    Purpose: To observe, by retrospective analysis, the curative effects and complications due to californium-252 ({sup 252}Cf) neutron intracavitary brachytherapy (ICBT) combined with external-beam radiotherapy (EBRT) in the treatment of cervical cancer. Methods and Materials: From February 1999 to December 2007, 696 patients with cervical cancer (Stages IB to IIIB) were treated with {sup 252}Cf-ICBT in combination of EBRT. Of all, 31 patients were at Stage IB, 104 at IIA, 363 at IIB, 64 at IIIA, and 134 at IIIB. Californium-252 ICBT was delivered at 7-12 Gy per insertion per week, with a total dose of 29-45 Gy to reference point A in three to five insertions. The whole pelvic cavity was treated with 8-MV X-ray external irradiation at 2 Gy per fraction, four times per week. After 16-38 Gy of external irradiation, the center of the whole pelvic field was blocked with a 4-cm-wide lead shield, with a total external irradiation dose of 44-56 Gy. The total treatment course was 5 to 6 weeks. Results: Overall survival rate at 3 and 5 years for all patients was 76.0% and 64.9%, respectively. Disease-free 3- and 5-year survival rates of patients were 71.2% and 58.4%, respectively. Late complications included vaginal contracture and adhesion, radiation proctitis, radiation cystitis, and inflammatory bowel, which accounted for 5.8%, 7.1%, 6.2%, and 4.9%, respectively. Univariate analysis results showed significant correlation of stage, age, histopathologic grade, and lymph node status with overall survival. Cox multiple regression analysis showed that the independent variables were stage, histopathologic grade, tumor size, and lymphatic metastasis in all patients. Conclusion: Results of this series suggest that the combined use of {sup 252}Cf-ICBT with EBRT is an effective method for treatment of cervical cancer.

  9. Multihelix rotating shield brachytherapy for cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States); Kim, Yusung; Flynn, Ryan T., E-mail: ryan-flynn@uiowa.edu [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Wu, Xiaodong [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 and Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa 52242 (United States)

    2015-11-15

    Purpose: To present a novel brachytherapy technique, called multihelix rotating shield brachytherapy (H-RSBT), for the precise angular and linear positioning of a partial shield in a curved applicator. H-RSBT mechanically enables the dose delivery using only linear translational motion of the radiation source/shield combination. The previously proposed approach of serial rotating shield brachytherapy (S-RSBT), in which the partial shield is rotated to several angular positions at each source dwell position [W. Yang et al., “Rotating-shield brachytherapy for cervical cancer,” Phys. Med. Biol. 58, 3931–3941 (2013)], is mechanically challenging to implement in a curved applicator, and H-RSBT is proposed as a feasible solution. Methods: A Henschke-type applicator, designed for an electronic brachytherapy source (Xoft Axxent™) and a 0.5 mm thick tungsten partial shield with 180° or 45° azimuthal emission angles and 116° asymmetric zenith angle, is proposed. The interior wall of the applicator contains six evenly spaced helical keyways that rigidly define the emission direction of the partial radiation shield as a function of depth in the applicator. The shield contains three uniformly distributed protruding keys on its exterior wall and is attached to the source such that it rotates freely, thus longitudinal translational motion of the source is transferred to rotational motion of the shield. S-RSBT and H-RSBT treatment plans with 180° and 45° azimuthal emission angles were generated for five cervical cancer patients with a diverse range of high-risk target volume (HR-CTV) shapes and applicator positions. For each patient, the total number of emission angles was held nearly constant for S-RSBT and H-RSBT by using dwell positions separated by 5 and 1.7 mm, respectively, and emission directions separated by 22.5° and 60°, respectively. Treatment delivery time and tumor coverage (D{sub 90} of HR-CTV) were the two metrics used as the basis for evaluation and

  10. [Perioperative interstitial brachytherapy for recurrent keloid scars].

    Science.gov (United States)

    Rio, E; Bardet, E; Peuvrel, P; Martinet, L; Perrot, P; Baraer, F; Loirat, Y; Sartre, J-Y; Malard, O; Ferron, C; Dreno, B

    2010-01-01

    Evaluation of the results of perioperative interstitial brachytherapy with low dose-rate (LDR) Ir-192 in the treatment of keloid scars. We performed a retrospective analysis of 73 histologically confirmed keloids (from 58 patients) resistant to medicosurgical treated by surgical excision plus early perioperative brachytherapy. All lesions were initially symptomatic. Local control was evaluated by clinical evaluation. Functional and cosmetic results were assessed in terms of patient responses to a self-administered questionnaire. Median age was 28 years (range 13-71 years). Scars were located as follows: 37% on the face, 32% on the trunk or abdomen, 16% on the neck, and 15% on the arms or legs. The mean delay before loading was four hours (range, 1-6h). The median dose was 20Gy (range, 15-40Gy). Sixty-four scars (from 53 patients) were evaluated. Local control was 86% (follow-up, 44.5 months; range, 14-150 months). All relapses occurred early - within 2 years posttreatment. At 20 months, survival without recurrence was significantly lower when treated lengths were more than 6cm long. The rate was 100% for treated scars below 4.5cm in length, 95% (95% CI: 55-96) for those 4.5-6cm long, and 75% (95% CI: 56-88) beyond 6cm (p=0.038). Of the 35 scars (28 patients) whose results were reassessed, six remained symptomatic and the esthetic results were considered to be good in 51% (18/35) and average in 37% (13/35) (median follow-up, 70 months; range, 16-181 months). Early perioperative LDR brachytherapy delivering 20Gy at 5mm reduced the rate of recurrent keloids resistant to other treatments and gave good functional results. 2009 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  11. The application of Geant4 simulation code for brachytherapy treatment

    CERN Document Server

    Agostinelli, S; Garelli, S; Paoli, G; Nieminen, P; Pia, M G

    2000-01-01

    Brachytherapy is a radiotherapeutic modality that makes use of radionuclides to deliver a high radiation dose to a well-defined volume while sparing surrounding healthy structures. At the National Institute for Cancer Research of Genova a High Dose Rate remote afterloading system provides Ir(192) endocavitary brachytherapy treatments. We studied the possibility to use the Geant4 Monte Carlo simulation toolkit in brachytherapy for calculation of complex physical parameters, not directly available by experiment al measurements, used in treatment planning dose deposition models.

  12. Image-guided high-dose-rate brachytherapy in inoperable endometrial cancer

    Science.gov (United States)

    Petsuksiri, J; Chansilpa, Y; Hoskin, P J

    2014-01-01

    Inoperable endometrial cancer may be treated with curative aim using radical radiotherapy alone. The radiation techniques are external beam radiotherapy (EBRT) alone, EBRT plus brachytherapy and brachytherapy alone. Recently, high-dose-rate brachytherapy has been used instead of low-dose-rate brachytherapy. Image-guided brachytherapy enables sufficient coverage of tumour and reduction of dose to the organs at risk, thus increasing the therapeutic ratio of treatment. Local control rates with three-dimensional brachytherapy appear better than with conventional techniques (about 90–100% and 70–90%, respectively). PMID:24807067

  13. Dosimetry studies on prototype 241Am sources for brachytherapy.

    Science.gov (United States)

    Nath, R; Gray, L

    1987-06-01

    Sealed sources of 241Am emit primarily 60 keV photons which, because of multiple Compton scattering, produce dose distributions in water that are comparable to those from 226Ra or 137Cs. However, americium gamma rays can be shielded by thin layers of high atomic number materials since the half value layer thickness is only 1/8th of a mm of lead for americium gamma rays as compared to a value of 12 mm for 226Ra gamma rays. This may allow effective in vivo shielding of critical organs, for example; the bladder can be partially shielded by hypaque solution, and the rectum and sigmoid colon by barium sulfate. In addition, the exposure to medical personnel involved in intracavitary application and patient care may be reduced substantially by the use of relatively thin lead aprons and light weight, portable shields. To investigate the feasibility of 241Am sources for intracavitary irradiation, dosimetry studies on prototype 241Am sources have been performed and a computer model for the determination of dose distributions around encapsulated cylindrical sources of 241Am has been developed and tested. Results of dosimetry measurements using ionization chambers, lithium fluoride thermoluminescent dosimeters, a scanning scintillation probe, and film dosimetry, confirm theoretical predictions that these sources can deliver dose rates adequate for intracavitary irradiation. Further dosimetry measurements in simulated clinical situations using lead foils and test tubes filled with hypaque or barium sulfate, confirm the predicted effectiveness of in vivo shielding which can be readily achieved with 241Am sources.

  14. A study of brachytherapy for intraocular tumor

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yung Hoon; Lee, Dong Han; Ko, Kyung Hwan; Lee, Tae Won; Lee, Sung Koo; Choi, Moon Sik [Korea Cancer Center Hospital of Korea Atomic Energy Research Institute, Seoul (Korea, Republic of)

    1994-12-01

    Our purpose of this study is to perform brachytherapy for intraocular tumor. The result were as followed. 1. Eye model was determined as a 25 mm diameter sphere. Ir-192 was considered the most appropriate as radioisotope for brachytherapy, because of the size, half, energy and availability. 2. Considering the biological response with human tissue and protection of exposed dose, we made the plaques with gold, of which size were 15 mm, 17 mm and 20 mm in diameter, and 1.5 mm in thickness. 3. Transmission factor of plaques are all 0.71 with TLD and film dosimetry at the surface of plaques and 0.45, 0.49 at 1.5 mm distance of surface, respectively. 4. As compared the measured data for the plaque with Ir-192 seeds to results of computer dose calculation model by Gary Luxton et al. and CAP-PLAN (Radiation Treatment Planning System), absorbed doses are within {+-}10% and distance deviations are within 0.4 mm. Maximum error is -11.3% and 0.8 mm, respectively. 7 figs, 2 tabs, 28 refs. (Author).

  15. Evaluation of resins for use in brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Luiz Claudio F.M. Garcia; Ferraz, Wilmar Barbosa; Chrcanovic, Bruno Ramos; Santos, Ana Maria M., E-mail: ferrazw@cdtn.b, E-mail: amms@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Brachytherapy is an advanced cancer treatment where radioactive seeds or sources are placed near or directly into the tumor thus reducing the radiation exposure in the surrounding healthy tissues. Prostate cancer can be treated with interstitial brachytherapy in initial stage of the disease in which tiny radioactive seeds with cylindrical geometry are used. Several kinds of seeds have been developed in order to obtain a better dose distribution around them and with a lower cost manufacturing. These seeds consist of an encapsulation, a radionuclide carrier, and X-ray marker. Among the materials that have potential for innovation in the construction of seeds, biocompatible resins appear as an important option. In this paper, we present some characterization results with Fourier transform infrared spectroscopic (FTIR) and ultraviolet-visible spectroscopy (UV-vis) performed on two types of resins in which curing temperatures for each one were varied as also the results of coatings with these resins under titanium substrates. Interactions of these resins in contact with the simulated body fluid were evaluated by atomic force microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. (author)

  16. Improving photoacoustic imaging contrast of brachytherapy seeds

    Science.gov (United States)

    Pan, Leo; Baghani, Ali; Rohling, Robert; Abolmaesumi, Purang; Salcudean, Septimiu; Tang, Shuo

    2013-03-01

    Prostate brachytherapy is a form of radiotherapy for treating prostate cancer where the radiation sources are seeds inserted into the prostate. Accurate localization of seeds during prostate brachytherapy is essential to the success of intraoperative treatment planning. The current standard modality used in intraoperative seeds localization is transrectal ultrasound. Transrectal ultrasound, however, suffers in image quality due to several factors such speckle, shadowing, and off-axis seed orientation. Photoacoustic imaging, based on the photoacoustic phenomenon, is an emerging imaging modality. The contrast generating mechanism in photoacoustic imaging is optical absorption that is fundamentally different from conventional B-mode ultrasound which depicts changes in acoustic impedance. A photoacoustic imaging system is developed using a commercial ultrasound system. To improve imaging contrast and depth penetration, absorption enhancing coating is applied to the seeds. In comparison to bare seeds, approximately 18.5 dB increase in signal-to-noise ratio as well as a doubling of imaging depth are achieved. Our results demonstrate that the coating of the seeds can further improve the discernibility of the seeds.

  17. Manifestation Pattern of Early-Late Vaginal Morbidity After Definitive Radiation (Chemo)Therapy and Image-Guided Adaptive Brachytherapy for Locally Advanced Cervical Cancer: An Analysis From the EMBRACE Study

    Energy Technology Data Exchange (ETDEWEB)

    Kirchheiner, Kathrin, E-mail: kathrin.kirchheiner@meduniwien.ac.at [Department of Radiation Oncology, Comprehensive Cancer Center, Medical University of Vienna/General Hospital of Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna (Austria); Nout, Remi A. [Department of Clinical Oncology, Leiden University Medical Center (Netherlands); Tanderup, Kari; Lindegaard, Jacob C. [Department of Oncology, Aarhus University Hospital (Denmark); Westerveld, Henrike [Department of Radiotherapy, Academic Medical Centre, University of Amsterdam (Netherlands); Haie-Meder, Christine [Department of Radiotherapy, Gustave-Roussy, Villejuif (France); Petrič, Primož [Department of Radiotherapy, Institute of Oncology Ljubljana (Slovenia); Department of Radiotherapy, National Center for Cancer Care and Research, Doha (Qatar); Mahantshetty, Umesh [Department of Radiation Oncology, Tata Memorial Hospital, Mumbai (India); Dörr, Wolfgang; Pötter, Richard [Department of Radiation Oncology, Comprehensive Cancer Center, Medical University of Vienna/General Hospital of Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna (Austria)

    2014-05-01

    Background and Purpose: Brachytherapy in the treatment of locally advanced cervical cancer has changed substantially because of the introduction of combined intracavitary/interstitial applicators and an adaptive target concept, which is the focus of the prospective, multi-institutional EMBRACE study ( (www.embracestudy.dk)) on image-guided adaptive brachytherapy (IGABT). So far, little has been reported about the development of early to late vaginal morbidity in the frame of IGABT. Therefore, the aim of the present EMBRACE analysis was to evaluate the manifestation pattern of vaginal morbidity during the first 2 years of follow-up. Methods and Materials: In total, 588 patients with a median follow-up time of 15 months and information on vaginal morbidity were included. Morbidity was prospectively assessed at baseline, every 3 months during the first year, and every 6 months in the second year according to the Common Terminology Criteria for Adverse Events, version 3, regarding vaginal stenosis, dryness, mucositis, bleeding, fistula, and other symptoms. Crude incidence rates, actuarial probabilities, and prevalence rates were analyzed. Results: At 2 years, the actuarial probability of severe vaginal morbidity (grade ≥3) was 3.6%. However, mild and moderate vaginal symptoms were still pronounced (grade ≥1, 89%; grade ≥2, 29%), of which the majority developed within 6 months. Stenosis was most frequently observed, followed by vaginal dryness. Vaginal bleeding and mucositis were mainly mild and infrequently reported. Conclusion: Severe vaginal morbidity within the first 2 years after definitive radiation (chemo)therapy including IGABT with intracavitary/interstitial techniques for locally advanced cervical cancer is limited and is significantly less than has been reported from earlier studies. Thus, the new adaptive target concept seems to be a safe treatment with regard to the vagina being an organ at risk. However, mild to moderate vaginal morbidity

  18. Image-Based Brachytherapy for the Treatment of Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Harkenrider, Matthew M., E-mail: mharkenrider@lumc.edu; Alite, Fiori; Silva, Scott R.; Small, William

    2015-07-15

    Cervical cancer is a disease that requires considerable multidisciplinary coordination of care and labor in order to maximize tumor control and survival while minimizing treatment-related toxicity. As with external beam radiation therapy, the use of advanced imaging and 3-dimensional treatment planning has generated a paradigm shift in the delivery of brachytherapy for the treatment of cervical cancer. The use of image-based brachytherapy, most commonly with magnetic resonance imaging (MRI), requires additional attention and effort by the treating physician to prescribe dose to the proper volume and account for adjacent organs at risk. This represents a dramatic change from the classic Manchester approach of orthogonal radiographic images and prescribing dose to point A. We reviewed the history and currently evolving data and recommendations for the clinical use of image-based brachytherapy with an emphasis on MRI-based brachytherapy.

  19. Patient release criteria for low dose rate brachytherapy implants.

    Science.gov (United States)

    Boyce, Dale E; Sheetz, Michael A

    2013-04-01

    A lack of consensus regarding a model governing the release of patients following sealed source brachytherapy has led to a set of patient release policies that vary from institution to institution. The U.S. Nuclear Regulatory Commission has issued regulatory guidance on patient release in NUREG 1556, Volume 9, Rev. 2, Appendix U, which allows calculation of release limits following implant brachytherapy. While the formalism presented in NUREG is meaningful for the calculation of release limits in the context of relatively high energy gamma emitters, it does not estimate accurately the effective dose equivalent for the common low dose rate brachytherapy sources Cs, I, and Pd. NUREG 1556 states that patient release may be based on patient-specific calculations as long as the calculation is documented. This work is intended to provide a format for patient-specific calculations to be used for the consideration of patients' release following the implantation of certain low dose rate brachytherapy isotopes.

  20. Brachytherapy on urethral carcinoma; Braquiterapia no carcinoma da uretra

    Energy Technology Data Exchange (ETDEWEB)

    Novaes, Paulo Eduardo R.S. [Fundacao Antonio Prudente, Sao Paulo, SP (Brazil). Hospital A.C. Camargo. Dept. de Radioterapia

    1996-04-01

    From 1954 to 1992 21 patients with primary urethral carcinoma were attended at A.C.Camargo Hospital - Fundacao Antonio Prudente - Sao Paulo. There were 17 female and 4 male with a median age of 58 years old. Eight patients received surgery, 8 radiation therapy and 5 were treated with palliative intention or were not treated. Patients treated by radiotherapy received 60 Gy to 80 Gy. Three patients were submitted to exclusive brachytherapy, 4 to the association of external beam and brachytherapy and 1 to external radiotherapy. Interstitial techniques were employed in 5 patients and intraluminal brachytherapy with special applicator in 2. Seven of 8 patients (87.5%) had local control and disease free survival with a minimum follow-up 4 years. Late effects were not observed. Primary urethral carcinoma is a curable disease by radiotherapy and the association of external irradiation and brachytherapy is the ideal approach. (author) 11 refs.

  1. Brachytherapy in thetreatment of the oral and oropharyngeal cancer

    Directory of Open Access Journals (Sweden)

    A. M. Zhumankulov

    2015-01-01

    Full Text Available Background. One of the methods of radiotherapy of malignant tumors of oral cavity and oropharyngeal region today is interstitial radiation therapy – brachytherapy, allowing you to create the optimum dose of irradiation to the tumor, necessary for its destruction, without severe radiation reactions in the surrounding tissues unchanged. Brachytherapy has the following advantages: high precision – the ability of the local summarization of high single doses in a limited volume of tissue; good tolerability; a short time of treatment. At this time, brachytherapy is the method of choice used as palliative therapy and as a component of radical treatment.Objective: The purpose of this article is a literature review about the latest achievements of interstitial brachytherapy in malignant tumors of the oral cavity and oropharynx.

  2. Radiotherapy and Brachytherapy : Proceedings of the NATO Advanced Study Institute on Physics of Modern Radiotherapy & Brachytherapy

    CERN Document Server

    Lemoigne, Yves

    2009-01-01

    This volume collects a series of lectures presented at the tenth ESI School held at Archamps (FR) in November 2007 and dedicated to radiotherapy and brachytherapy. The lectures focus on the multiple facets of radiotherapy in general, including external radiotherapy (often called teletherapy) as well as internal radiotherapy (called brachytherapy). Radiotherapy strategy and dose management as well as the decisive role of digital imaging in the associated clinical practice are developed in several articles. Grouped under the discipline of Conformal Radiotherapy (CRT), numerous modern techniques, from Multi-Leaf Collimators (MLC) to Intensity Modulated RadioTherapy (IMRT), are explained in detail. The importance of treatment planning based upon patient data from digital imaging (Computed Tomography) is also underlined. Finally, despite the quasi- totality of patients being presently treated with gamma and X-rays, novel powerful tools are emerging using proton and light ions (like carbon ions) beams, bound to bec...

  3. Electromagnetic tracking for treatment verification in interstitial brachytherapy

    Science.gov (United States)

    Kellermeier, Markus; Tanderup, Kari

    2016-01-01

    Electromagnetic tracking (EMT) is used in several medical fields to determine the position and orientation of dedicated sensors, e.g., attached to surgical tools. Recently, EMT has been introduced to brachytherapy for implant reconstruction and error detection. The manuscript briefly summarizes the main issues of EMT and error detection in brachytherapy. The potential and complementarity of EMT as treatment verification technology will be discussed in relation to in vivo dosimetry and imaging. PMID:27895688

  4. [Edge effect and late thrombosis -- inevitable complications of vascular brachytherapy?].

    Science.gov (United States)

    Schiele, T M; Staber, L; Kantlehner, R; Pöllinger, B; Dühmke, E; Theisen, K; Klauss, V

    2002-11-01

    Restenosis is the limiting entity after percutaneous coronary angioplasty. Vascular brachytherapy for the treatment of in-stent restenosis has been shown to reduce the repeat restenosis rate and the incidence of major adverse events in several randomized trials. Besides the beneficial effects, brachytherapy yielded some unwanted side effects. The development of new stenoses at the edges of the target lesion treated with radiation is termed edge effect. It occurs after afterloading brachytherapy as well as after implantation of radioactive stents. It is characterized by extensive intimal hyperplasia and negative remodeling. As contributing factors the axial dose fall-off, inherent to all radioactive sources, and the application of vessel wall trauma by angioplasty have been identified. The combination of both factors, by insufficient overlap of the radiation length over the injured vessel segment, has been referred to as geographic miss. It has been shown to be associated with a very high incidence of the edge effect. Avoidance of geographic miss is strongly recommended in vascular brachytherapy procedures. Late thrombosis after vascular brachytherapy is of multifactorial origin. It comprises platelet recruitment, fibrin deposition, disturbed vasomotion, non-healing dissection and stent malapposition predisposing to turbulent blood flow. The strongest predictors for late thrombosis are premature discontinuation of antiplatelet therapy and implantation of new stents during the brachytherapy procedure. With a consequent and prolonged antiplatelet therapy, the incidence of late thrombosis has been reduced to placebo levels. Edge effect and late thrombosis represent unwanted side effects of vascular brachytherapy. By means of a thorough treatment planning and prolonged antiplatelet therapy their incidences can be largely reduced. With regard to the very favorable net effect, they do not constitute relevant limitations of vascular brachytherapy.

  5. Review of advanced catheter technologies in radiation oncology brachytherapy procedures

    OpenAIRE

    Zhou J.; Zamdborg L; Sebastian E

    2015-01-01

    Jun Zhou,1,2 Leonid Zamdborg,1 Evelyn Sebastian1 1Department of Radiation Oncology, Beaumont Health System, 2Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA Abstract: The development of new catheter and applicator technologies in recent years has significantly improved treatment accuracy, efficiency, and outcomes in brachytherapy. In this paper, we review these advances, focusing on the performance of catheter imaging and reconstruction techniques in brachytherapy ...

  6. Intraluminal brachytherapy in the treatment of bile duct carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Leung, J.T. [Adelaide Radiotherapy Centre, Adelaide, SA (Australia); Kuan, R. [Sir Charles Gairdner Hospital, Nedlands, Perth, WA (Australia)

    1997-05-01

    Patients with carcinoma of the biliary tract have a poor prognosis because the disease is often unresectable at diagnosis. Intraluminal brachytherapy has been reported as an effective treatment for localized cholangiocarcinoma of the biliary tract. The purpose of our study was to analyse the survival of patients treated with brachytherapy and make some recommendations regarding its use. Fifteen patients underwent brachytherapy via a trans-hepatic approach at the Royal Prince Alfred Hospital from 1983 to 1993. Eleven patients had low-dose rate brachytherapy and four patients had high-dose rate treatment. There were nine males and six females. The median age was 64 years. Other treatment included bypass procedures in two patients, endoscopic stents in 14 patients and external beam irradiation in one patient. The median survival was 12.5 months and 47% of the patients survived 1 year. The only complication reported was cholangitis which was seen in one patient. There did not seem to be any difference in survival or complications between low- and high-dose rate brachytherapy. It is concluded that the addition of intraluminal brachytherapy after biliary drainage prolongs survival and is a safe and effective treatment, but patients still have a high rate of local failure, and further studies will be needed to address this problem. (authors). 28 refs., 3 figs.

  7. Electronic brachytherapy management of atypical fibroxanthoma: report of 8 lesions

    Directory of Open Access Journals (Sweden)

    Stephen Doggett

    2017-01-01

    Full Text Available Purpose : To evaluate the suitability of treating atypical fibroxanthoma (AFX, an uncommon skin malignancy, with electronic brachytherapy. Material and methods : From Feb 2013 to Sep 2014, we were referred a total of 8 cases of AFX in 7 patients, all involving the scalp. All of them were treated with electronic brachytherapy 50 Kev radiations (Xoft Axxent®, Fremont, California. All lesions received 40 Gy in two fractions per week with 5mm margins. Results : At a median follow-up of 23.7 months, the local recurrence rate is 12.5%. The single lesion that failed was not debulked surgically prior to electronic brachytherapy. Conclusions : To our knowledge, this is the first report in the literature on the use of radiation therapy as curative primary treatment for AFX. No contraindication to the use of radiations is found in the literature, with surgery being the sole treatment for AFX noted. Our recurrence rate is 0% for debulked lesions. Risk of recurrence is mitigated with surgical debulking prior to brachytherapy. Electronic brachytherapy appears to be a safe and effective treatment for debulked AFX. Multiple excisions, skin grafting, and wound care can be avoided in elderly patients by the use of electronic brachytherapy.

  8. 78 FR 41125 - Interim Enforcement Policy for Permanent Implant Brachytherapy Medical Event Reporting

    Science.gov (United States)

    2013-07-09

    ... COMMISSION Interim Enforcement Policy for Permanent Implant Brachytherapy Medical Event Reporting AGENCY... Commission (NRC) is issuing an interim Enforcement Policy that allows the staff to exercise enforcement...'s permanent implant brachytherapy program. This interim policy affects NRC licensees that...

  9. Low-Dose-Rate Californium-252 Neutron Intracavitary Afterloading Radiotherapy Combined With Conformal Radiotherapy for Treatment of Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Min [Department of Oncology, Armed Police Hospital of Hangzhou, Hangzhou, Zhejiang Province (China); Xu Hongde [Cancer Center, Armed Police Hospital of Hangzhou, Hangzhou, Zhejiang Province (China); Pan Songdan; Lin Shan; Yue Jianhua [Department of Oncology, Armed Police Hospital of Hangzhou, Hangzhou, Zhejiang Province (China); Liu Jianren, E-mail: liujianren0571@hotmail.com [Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province (China)

    2012-07-01

    Purpose: To study the efficacy of low-dose-rate californium-252 ({sup 252}Cf) neutron intracavitary afterloading radiotherapy (RT) combined with external pelvic RT for treatment of cervical cancer. Methods and Materials: The records of 96 patients treated for cervical cancer from 2006 to 2010 were retrospectively reviewed. For patients with tumors {<=}4 cm in diameter, external beam radiation was performed (1.8 Gy/day, five times/week) until the dose reached 20 Gy, and then {sup 252}Cf neutron intracavitary afterloading RT (once/week) was begun, and the frequency of external beam radiation was changed to four times/week. For patients with tumors >4 cm, {sup 252}Cf RT was performed one to two times before whole-pelvis external beam radiation. The tumor-eliminating dose was determined by using the depth limit of 5 mm below the mucosa as the reference point. In all patients, the total dose of the external beam radiation ranged from 46.8 to 50 Gy. For {sup 252}Cf RT, the dose delivered to point A was 6 Gy/fraction, once per week, for a total of seven times, and the total dose was 42 Gy. Results: The mean {+-} SD patient age was 54.7 {+-} 13.7 years. Six patients had disease assessed at stage IB, 13 patients had stage IIA, 49 patients had stage IIB, 3 patients had stage IIIA, 24 patients had stage IIIB, and 1 patient had stage IVA. All patients obtained complete tumor regression (CR). The mean {+-} SD time to CR was 23.5 {+-} 3.4 days. Vaginal bleeding was fully controlled in 80 patients within 1 to 8 days. The mean {+-} SD follow-up period was 27.6 {+-} 12.7 months (range, 6-48 months). Five patients died due to recurrence or metastasis. The 3-year survival and disease-free recurrence rates were 89.6% and 87.5 %, respectively. Nine patients experienced mild radiation proctitis, and 4 patients developed radiocystitis. Conclusions: Low-dose-rate {sup 252}Cf neutron RT combined with external pelvic RT is effective for treating cervical cancer, with a low incidence of

  10. Epoxy resins used to seal brachytherapy seed

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Natalia Carolina Camargos; Ferraz, Wilmar Barbosa; Reis, Sergio Carneiro dos; Santos, Ana Maria Matildes dos, E-mail: nccf@cdtn.br, E-mail: ferrazw@cdtn.br, E-mail: reissc@cdtn.br, E-mail: amms@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, BH (Brazil)

    2013-07-01

    Prostate cancer treatment with brachytherapy is recommended for patients with cancer at an early stage. In this treatment, small radioactive seeds are implanted directly in the prostate gland. These seeds are composed at least of one radionuclide carrier and an X-ray marker enclosed within a metallic tube usually sealed by laser process. This process is expensive and, furthermore, it can provoke a partial volatilization of the radionuclide and change the isotropy in dose distribution around the seed. In this paper, we present a new sealing process using epoxy resin. Three kinds of resins were utilized and characterized by scanning electron microscopy (SEM), energy dispersive X ray (EDS) and by differential scanning calorimetry (DSC) after immersion in simulated body fluid (SBF) and in sodium iodine solution (NaI). The sealing process showed excellent potential to replace the sealing laser usually employed. (author)

  11. Interstitial brachytherapy in carcinoma of the penis

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, A.J.; Ghosh, S.; Bhalavat, R.L. [Tata Memorial Hospital, Mumbai (India). Dept. of Radiation Oncology; Kulkarni, J.N. [Tata Memorial Hospital, Mumbai (India). Dept. of Surgery; Sequeira, B.V.E. [Tata Memorial Hospital, Mumbai (India). Dept. of Medical Physics

    1999-01-01

    Aim: Keeping in line with the increasing emphasis on organ preservation, we at the Tata Memorial Hospital have evaluated the role of Ir-192 interstitial implant as regards local control, functional and cosmetic outcome in early as well as locally recurrent carcinoma of the distal penis. Patients and Methods: From October 1988 to December 1996, 23 patients with histopathologically proven cancer of the penis were treated with radical radiation therapy using Ir-192 temporary interstitial implant. Our patients were in the age group of 20 to 60 years. The primary lesions were T1 and 7, T2 in 7 and recurrent in 9 patients. Only 7 patients had palpable groin nodes at presentation, all of which were pathologically negative. The median dose of implant was 50 Gy (range 40 to 60 Gy), using the LDR afterloading system and the Paris system of implant rules for dosimetry. Follow-up ranged from 4 to 117 months (median 24 months). Results: At last follow-up 18 of the 23 patients remained locally controlled with implant alone. Three patients failed only locally, 2 locoregionally and 1 only at the groin. Of the 5 patients who failed locally, 4 were successfully salvaged with partial penectomy and remained controlled when last seen. Local control with implant alone at 8 years was 70% by life table analysis. The patients had excellent functional and cosmetic outcome. We did not record any case of skin or softtissue necrosis. Only 2 patients developed meatal stenosis, both of which were treated endoscopically. Conclusion: Our results lead us to interpret that interstitial brachytherapy with Ir-192 offers excellent local control rates with preservation of organ and function. Penectomy can be reserved as a means for effective salvage. (orig.) [Deutsch] Ziel: Das Prinzip des Organerhalts gewinnt in der Onkologie zunehmend an Bedeutung. Ziel dieser Untersuchung war es, die Rolle der interstitiellen Brachytherapie mit Ir-192 zur Behandlung des fruehen und rezidivierten Peniskarzinoms zu

  12. Paddle-based rotating-shield brachytherapy

    Science.gov (United States)

    Liu, Yunlong; Flynn, Ryan T.; Kim, Yusung; Dadkhah, Hossein; Bhatia, Sudershan K.; Buatti, John M.; Xu, Weiyu; Wu, Xiaodong

    2015-01-01

    Purpose: The authors present a novel paddle-based rotating-shield brachytherapy (P-RSBT) method, whose radiation-attenuating shields are formed with a multileaf collimator (MLC), consisting of retractable paddles, to achieve intensity modulation in high-dose-rate brachytherapy. Methods: Five cervical cancer patients using an intrauterine tandem applicator were considered to assess the potential benefit of the P-RSBT method. The P-RSBT source used was a 50 kV electronic brachytherapy source (Xoft Axxent™). The paddles can be retracted independently to form multiple emission windows around the source for radiation delivery. The MLC was assumed to be rotatable. P-RSBT treatment plans were generated using the asymmetric dose–volume optimization with smoothness control method [Liu et al., Med. Phys. 41(11), 111709 (11pp.) (2014)] with a delivery time constraint, different paddle sizes, and different rotation strides. The number of treatment fractions (fx) was assumed to be five. As brachytherapy is delivered as a boost for cervical cancer, the dose distribution for each case includes the dose from external beam radiotherapy as well, which is 45 Gy in 25 fx. The high-risk clinical target volume (HR-CTV) doses were escalated until the minimum dose to the hottest 2 cm3 (D2cm3) of either the rectum, sigmoid colon, or bladder reached their tolerance doses of 75, 75, and 90 Gy3, respectively, expressed as equivalent doses in 2 Gy fractions (EQD2 with α/β = 3 Gy). Results: P-RSBT outperformed the two other RSBT delivery techniques, single-shield RSBT (S-RSBT) and dynamic-shield RSBT (D-RSBT), with a properly selected paddle size. If the paddle size was angled at 60°, the average D90 increases for the delivery plans by P-RSBT on the five cases, compared to S-RSBT, were 2.2, 8.3, 12.6, 11.9, and 9.1 Gy10, respectively, with delivery times of 10, 15, 20, 25, and 30 min/fx. The increases in HR-CTV D90, compared to D-RSBT, were 16.6, 12.9, 7.2, 3.7, and 1.7 Gy10

  13. Paddle-based rotating-shield brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunlong; Xu, Weiyu [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 (United States); Flynn, Ryan T.; Kim, Yusung; Bhatia, Sudershan K.; Buatti, John M. [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Dadkhah, Hossein [Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center, Iowa City, Iowa 52242 (United States); Wu, Xiaodong, E-mail: xiaodong-wu@uiowa.edu [Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, Iowa 52242 and Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States)

    2015-10-15

    Purpose: The authors present a novel paddle-based rotating-shield brachytherapy (P-RSBT) method, whose radiation-attenuating shields are formed with a multileaf collimator (MLC), consisting of retractable paddles, to achieve intensity modulation in high-dose-rate brachytherapy. Methods: Five cervical cancer patients using an intrauterine tandem applicator were considered to assess the potential benefit of the P-RSBT method. The P-RSBT source used was a 50 kV electronic brachytherapy source (Xoft Axxent™). The paddles can be retracted independently to form multiple emission windows around the source for radiation delivery. The MLC was assumed to be rotatable. P-RSBT treatment plans were generated using the asymmetric dose–volume optimization with smoothness control method [Liu et al., Med. Phys. 41(11), 111709 (11pp.) (2014)] with a delivery time constraint, different paddle sizes, and different rotation strides. The number of treatment fractions (fx) was assumed to be five. As brachytherapy is delivered as a boost for cervical cancer, the dose distribution for each case includes the dose from external beam radiotherapy as well, which is 45 Gy in 25 fx. The high-risk clinical target volume (HR-CTV) doses were escalated until the minimum dose to the hottest 2 cm{sup 3} (D{sub 2cm{sup 3}}) of either the rectum, sigmoid colon, or bladder reached their tolerance doses of 75, 75, and 90 Gy{sub 3}, respectively, expressed as equivalent doses in 2 Gy fractions (EQD2 with α/β = 3 Gy). Results: P-RSBT outperformed the two other RSBT delivery techniques, single-shield RSBT (S-RSBT) and dynamic-shield RSBT (D-RSBT), with a properly selected paddle size. If the paddle size was angled at 60°, the average D{sub 90} increases for the delivery plans by P-RSBT on the five cases, compared to S-RSBT, were 2.2, 8.3, 12.6, 11.9, and 9.1 Gy{sub 10}, respectively, with delivery times of 10, 15, 20, 25, and 30 min/fx. The increases in HR-CTV D{sub 90}, compared to D-RSBT, were 16

  14. Methods for prostate stabilization during transperineal LDR brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Podder, Tarun; Yu Yan [Department of Radiation Oncology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Sherman, Jason [Department of Medical Physics, University of Buffalo, Buffalo, NY 14260 (United States); Rubens, Deborah; Strang, John [Departments of Imaging Science and Surgery, University of Rochester, Rochester, NY 14642 (United States); Messing, Edward [Departments of Urology and Surgery, University of Rochester, Rochester, NY 14642 (United States); Ng, Wan-Sing [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2008-03-21

    In traditional prostate brachytherapy procedures for a low-dose-rate (LDR) radiation seed implant, stabilizing needles are first inserted to provide some rigidity and support to the prostate. Ideally this will provide better seed placement and an overall improved treatment. However, there is much speculation regarding the effectiveness of using regular brachytherapy needles as stabilizers. In this study, we explored the efficacy of two types of needle geometries (regular brachytherapy needle and hooked needle) and several clinically feasible configurations of the stabilization needles. To understand and assess the prostate movement during seed implantation, we collected in vivo data from patients during actual brachytherapy procedures. In vitro experimentation with tissue-equivalent phantoms allowed us to further understand the mechanics behind prostate stabilization. We observed superior stabilization with the hooked needles compared to the regular brachytherapy needles (more than 40% in bilateral parallel needle configuration). Prostate movement was also reduced significantly when regular brachytherapy needles were in an angulated configuration as compared to the parallel configuration (more than 60%). When the hooked needles were angulated for stabilization, further reduction in prostate displacement was observed. In general, for convenience of dosimetric planning and to avoid needle collision, all needles are desired to be in a parallel configuration. In this configuration, hooked needles provide improved stabilization of the prostate. On the other hand, both regular and hooked needles appear to be equally effective in reducing prostate movement when they are in angulated configurations, which will be useful in seed implantation using a robotic system. We have developed nonlinear spring-damper model for the prostate movement which can be used for adapting dosimetric planning during brachytherapy as well as for developing more realistic haptic devices and

  15. The role of brachytherapy in radiation and isotopes centre of Khartoum (RICK)

    CERN Document Server

    Ali, A M

    2000-01-01

    As there are many efforts devoted in order to manage the cancer, here the researcher handle one of these efforts that play a major part in treating the cancer internationally, it is a brachytherapy system. Brachytherapy was carried out mostly with radium sources, but recently some artificial sources are incorporated in this mode of treatment such as Cs-137, Ir-192, Au-198, P-32, Sr-90 and I-125. The research cover history of brachytherapy and radioactive sources used in, techniques of implementation, radiation protection and methods of brachytherapy dose calculation, as well as brachytherapy in radiation and isotopes centre in Khartoum.

  16. Utilization and Outcomes of Breast Brachytherapy in Younger Women

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Grace L. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Huo, Jinhai [Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Giordano, Sharon H. [Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Hunt, Kelly K. [Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Buchholz, Thomas A. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Smith, Benjamin D., E-mail: bsmith3@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2015-09-01

    Purpose: To directly compare (1) radiation treatment utilization patterns; (2) risks of subsequent mastectomy; and (3) costs of radiation treatment in patients treated with brachytherapy versus whole-breast irradiation (WBI), in a national, contemporary cohort of women with incident breast cancer, aged 64 years and younger. Methods and Materials: Using MarketScan health care claims data, we identified 45,884 invasive breast cancer patients (aged 18-64 years), treated from 2003 to 2010 with lumpectomy, followed by brachytherapy (n=3134) or whole-breast irradiation (n=42,750). We stratified patients into risk groups according to age (Age<50 vs Age≥50) and endocrine therapy status (Endocrine− vs Endocrine+). “Endocrine+” patients filled an endocrine therapy prescription within 1 year after lumpectomy. Pathologic hormone receptor status was not available in this dataset. In brachytherapy versus WBI patients, utilization trends and 5-year subsequent mastectomy risks were compared. Stratified, adjusted subsequent mastectomy risks were calculated using proportional hazards regression. Results: Brachytherapy utilization increased from 2003 to 2010: in patients Age<50, from 0.6% to 4.9%; patients Age≥50 from 2.2% to 11.3%; Endocrine− patients, 1.3% to 9.4%; Endocrine+ patients, 1.9% to 9.7%. Age influenced treatment selection more than endocrine status: 17% of brachytherapy patients were Age<50 versus 32% of WBI patients (P<.001); whereas 41% of brachytherapy patients were Endocrine–versus 44% of WBI patients (P=.003). Highest absolute 5-year subsequent mastectomy risks occurred in Endocrine−/Age<50 patients (24.4% after brachytherapy vs 9.0% after WBI (hazard ratio [HR] 2.18, 95% confidence interval [CI] 1.37-3.47); intermediate risks in Endocrine−/Age≥50 patients (8.6% vs 4.9%; HR 1.76, 95% CI 1.26-2.46); and lowest risks in Endocrine+ patients of any age: Endocrine+/Age<50 (5.5% vs 4.5%; HR 1.18, 95% CI 0.61-2.31); Endocrine+/Age≥50 (4.2% vs 2

  17. Vaginal brachytherapy for postoperative endometrial cancer: 2014 Survey of the American Brachytherapy Society.

    Science.gov (United States)

    Harkenrider, Matthew M; Grover, Surbhi; Erickson, Beth A; Viswanathan, Akila N; Small, Christina; Kliethermes, Stephanie; Small, William

    2016-01-01

    Report current practice patterns for postoperative endometrial cancer emphasizing vaginal brachytherapy (VBT). A 38-item survey was e-mailed to 1,598 American Brachytherapy Society (ABS) members and 4,329 US radiation oncologists in 2014 totaling 5,710 recipients. Responses of practitioners who had delivered VBT in the previous 12 months were included in the analysis. Responses were tabulated to determine relative frequency distributions. χ(2) analysis was used to compare current results with those from the 2003 ABS survey. A total of 331 respondents initiated the VBT survey, of whom 289 (87.3%) administered VBT in the prior 12 months. Lymph node dissection and number of nodes removed influenced treatment decisions for 90.5% and 69.8%, respectively. High-dose-rate was used by 96.2%. The most common vaginal length treated was 4 cm (31.0%). Three-dimensional planning was used by 83.2% with 73.4% of those for the first fraction only. Doses to normal tissues were reported by 79.8%. About half optimized to the location of dose specification and/or normal tissues. As monotherapy, the most common prescriptions were 7 Gy for three fractions to 0.5-cm depth and 6 Gy for five fractions to the surface. As a boost, the most common prescriptions were 5 Gy for three fractions to 0.5-cm depth and 6 Gy for three fractions to the vaginal surface. Optimization points were placed at the apex and lateral vagina by 73.1%. Secondary quality assurance checks were performed by 98.9%. VBT is a common adjuvant therapy for endometrial cancer patients, most commonly with HDR. Fractionation and planning processes are variable but generally align with ABS recommendations. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  18. Irradiation and dosimetry of Nitinol stent for renal artery brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Arbabi, Azim [Science and Research Campus, Islamic Azad University, P.O. Box 14515-775, Tehran (Iran, Islamic Republic of); Shahid Beheshti Medical University, P.O. Box 14335-1419, Tehran (Iran, Islamic Republic of); Sadeghi, Mahdi [Science and Research Campus, Islamic Azad University, P.O. Box 14515-775, Tehran (Iran, Islamic Republic of); Nuclear Medicine Research Group, Agricultural, Medical and Industrial Research School, P.O. Box 31485-498, Karaj (Iran, Islamic Republic of)], E-mail: msadeghi@nrcam.org; Joharifard, Mahdi [Science and Research Campus, Islamic Azad University, P.O. Box 14515-775, Tehran (Iran, Islamic Republic of)

    2009-01-15

    This study was conducted to assess the suitability of {sup 48}V radioactive stent for use in renal artery brachytherapy. A nickel-titanium alloy Nitinol stent was irradiated over the proton energy range of up to 8.5 MeV, to obtain {sup 48}V. The depth dose distribution analysis of the activated stent was done with TLD-700GR in a Perspex phantom. We investigated a unique mixed gamma/beta brachytherapy source of {sup 48}V. For a 10 mm outer-diameter {sup 48}V stent, the average measured dose rate to vessel was 37 mGy/h. The dosimetry results of the {sup 48}V stent suggest that the stent is suitable for use in renal artery brachytherapy.

  19. Fast dose optimization for rotating shield brachytherapy.

    Science.gov (United States)

    Cho, Myung; Wu, Xiaodong; Dadkhah, Hossein; Yi, Jirong; Flynn, Ryan T; Kim, Yusung; Xu, Weiyu

    2017-07-26

    To provide a fast computational method, based on the proximal graph solver (POGS) - a convex optimization solver using the alternating direction method of multipliers (ADMM), for calculating an optimal treatment plan in rotating shield brachytherapy (RSBT). RSBT treatment planning has more degrees of freedom than conventional high-dose-rate brachytherapy due to the addition of emission direction, and this necessitates a fast optimization technique to enable clinical usage. The multi-helix RSBT (H-RSBT) delivery technique(1) was investigated for five representative cervical cancer patients. Treatment plans were generated for all patients using the POGS method and the commercially available solver IBM ILOG CPLEX(2) . The rectum, bladder, sigmoid colon, high-risk clinical target volume (HRCTV), and HR-CTV boundary were the structures included in our optimization, which applied an asymmetric dose-volume optimization with smoothness control. Dose calculation resolution was 1X1X3 mm(3) for all cases. The H-RSBT applicator had 6 helices, with 33:3 mm of translation along the applicator per helical rotation and 1:7 mm spacing between dwell positions, yielding 17.5° emission angle spacing per 5 mm along the applicator. For each patient, HR-CTV D90, HR-CTV D100, rectum D2cc, sigmoid D2cc, and bladder D2cc matched within 1% for CPLEX and POGS methods. Also, similar EQD2 values between CPLEX and POGS methods were obtained. POGS was around 18 times faster than CPLEX. Over all patients, total optimization times were 32.1-65.4 seconds for CPLEX and 2.1-3.9 seconds for POGS. POGS reduced treatment plan optimization time approximately 18 times for RSBT with similar HR-CTV D90, organ at risk (OAR) D2cc values, and EQD2 values compared to CPLEX, which is significant progress toward clinical translation of RSBT. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Interstitial rotating shield brachytherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Quentin E., E-mail: quentin-adams@uiowa.edu; Xu, Jinghzu; Breitbach, Elizabeth K.; Li, Xing; Rockey, William R.; Kim, Yusung; Wu, Xiaodong; Flynn, Ryan T. [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Enger, Shirin A. [Medical Physics Unit, McGill University, 1650 Cedar Ave, Montreal, Quebec H3G 1A4 (Canada)

    2014-05-15

    Purpose: To present a novel needle, catheter, and radiation source system for interstitial rotating shield brachytherapy (I-RSBT) of the prostate. I-RSBT is a promising technique for reducing urethra, rectum, and bladder dose relative to conventional interstitial high-dose-rate brachytherapy (HDR-BT). Methods: A wire-mounted 62 GBq{sup 153}Gd source is proposed with an encapsulated diameter of 0.59 mm, active diameter of 0.44 mm, and active length of 10 mm. A concept model I-RSBT needle/catheter pair was constructed using concentric 50 and 75 μm thick nickel-titanium alloy (nitinol) tubes. The needle is 16-gauge (1.651 mm) in outer diameter and the catheter contains a 535 μm thick platinum shield. I-RSBT and conventional HDR-BT treatment plans for a prostate cancer patient were generated based on Monte Carlo dose calculations. In order to minimize urethral dose, urethral dose gradient volumes within 0–5 mm of the urethra surface were allowed to receive doses less than the prescribed dose of 100%. Results: The platinum shield reduced the dose rate on the shielded side of the source at 1 cm off-axis to 6.4% of the dose rate on the unshielded side. For the case considered, for the same minimum dose to the hottest 98% of the clinical target volume (D{sub 98%}), I-RSBT reduced urethral D{sub 0.1cc} below that of conventional HDR-BT by 29%, 33%, 38%, and 44% for urethral dose gradient volumes within 0, 1, 3, and 5 mm of the urethra surface, respectively. Percentages are expressed relative to the prescription dose of 100%. For the case considered, for the same urethral dose gradient volumes, rectum D{sub 1cc} was reduced by 7%, 6%, 6%, and 6%, respectively, and bladder D{sub 1cc} was reduced by 4%, 5%, 5%, and 6%, respectively. Treatment time to deliver 20 Gy with I-RSBT was 154 min with ten 62 GBq {sup 153}Gd sources. Conclusions: For the case considered, the proposed{sup 153}Gd-based I-RSBT system has the potential to lower the urethral dose relative to HDR-BT by 29

  1. Radioactive seed migration following parotid gland interstitial brachytherapy.

    Science.gov (United States)

    Fan, Yi; Huang, Ming-Wei; Zhao, Yi-Jiao; Gao, Hong; Zhang, Jian-Guo

    2017-09-15

    To evaluate the incidence and associated factors of pulmonary seed migration after parotid brachytherapy using a novel migrated seed detection technique. Patients diagnosed with parotid cancer who underwent permanent parotid brachytherapy from January 2006 to December 2011 were reviewed retrospectively. Head and neck CT scans and chest X-rays were evaluated during routine follow-up. Mimics software and Geomagic Studio software were used for seed reconstruction and migrated seed detection from the original implanted region, respectively. Postimplant dosimetry analysis was performed after seeds migration if the seeds were still in their emitting count. Adverse clinical sequelae from seed embolization to the lung were documented. The radioactive seed implants were identified on chest X-rays in 6 patients. The incidence rate of seed migration in 321 parotid brachytherapy patients was 1.87% (6/321) and that of individual seed migration was 0.04% (6/15218 seeds). All migrated seeds were originally from the retromandibular region. No adverse dosimetric consequences were found in the target region. Pulmonary symptoms were not reported by any patient in this study. In our patient set, migration of radioactive seeds with an initial radioactivity of 0.6-0.7 mCi to the chest following parotid brachytherapy was rare. Late migration of a single seed from the central target region did not affect the dosimetry significantly, and patients did not have severe short-term complications. This study proposed a novel technique to localize the anatomical origin of the migrated seeds during brachytherapy. Our evidence suggested that placement of seeds adjacent to blood vessels was associated with an increased likelihood of seed migration to the lungs. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  2. Validation of GPUMCD for low-energy brachytherapy seed dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hissoiny, Sami; Ozell, Benoit; Despres, Philippe; Carrier, Jean-Francois [Ecole polytechnique de Montreal, Departement de genie informatique et genie logiciel, 2500 chemin de Polytechnique, Montreal, QC, H3T 1J4 (Canada); Departement de radio-oncologie, Centre hospitalier universitaire de Quebec (CHUQ), 11 Cote du Palais, Quebec, QC, G1R 2J6 (Canada); Departement de physique, Universite de Montreal, Montreal, QC (Canada) and Departement de radio-oncologie and Centre de recherche du CHUM, Centre hospitalier de l' Universite de Montreal (CHUM), Montreal, QC, H2L 4M1 (Canada)

    2011-07-15

    Purpose: To validate GPUMCD, a new package for fast Monte Carlo dose calculations based on the GPU (graphics processing unit), as a tool for low-energy single seed brachytherapy dosimetry for specific seed models. As the currently accepted method of dose calculation in low-energy brachytherapy computations relies on severe approximations, a Monte Carlo based approach would result in more accurate dose calculations, taking in to consideration the patient anatomy as well as interseed attenuation. The first step is to evaluate the capability of GPUMCD to reproduce low-energy, single source, brachytherapy calculations which could ultimately result in fast and accurate, Monte Carlo based, brachytherapy dose calculations for routine planning. Methods: A mixed geometry engine was integrated to GPUMCD capable of handling parametric as well as voxelized geometries. In order to evaluate GPUMCD for brachytherapy calculations, several dosimetry parameters were computed and compared to values found in the literature. These parameters, defined by the AAPM Task-Group No. 43, are the radial dose function, the 2D anisotropy function, and the dose rate constant. These three parameters were computed for two different brachytherapy sources: the Amersham OncoSeed 6711 and the Imagyn IsoStar IS-12501. Results: GPUMCD was shown to yield dosimetric parameters similar to those found in the literature. It reproduces radial dose functions to within 1.25% for both sources in the 0.5< r <10 cm range. The 2D anisotropy function was found to be within 3% at r = 5 cm and within 4% at r = 1 cm. The dose rate constants obtained were within the range of other values reported in the literature.Conclusion: GPUMCD was shown to be able to reproduce various TG-43 parameters for two different low-energy brachytherapy sources found in the literature. The next step is to test GPUMCD as a fast clinical Monte Carlo brachytherapy dose calculations with multiple seeds and patient geometry, potentially providing

  3. Imaging method for monitoring delivery of high dose rate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Weisenberger, Andrew G; Majewski, Stanislaw

    2012-10-23

    A method for in-situ monitoring both the balloon/cavity and the radioactive source in brachytherapy treatment utilizing using at least one pair of miniature gamma cameras to acquire separate images of: 1) the radioactive source as it is moved in the tumor volume during brachytherapy; and 2) a relatively low intensity radiation source produced by either an injected radiopharmaceutical rendering cancerous tissue visible or from a radioactive solution filling a balloon surgically implanted into the cavity formed by the surgical resection of a tumor.

  4. Current state of the art brachytherapy treatment planning dosimetry algorithms.

    Science.gov (United States)

    Papagiannis, P; Pantelis, E; Karaiskos, P

    2014-09-01

    Following literature contributions delineating the deficiencies introduced by the approximations of conventional brachytherapy dosimetry, different model-based dosimetry algorithms have been incorporated into commercial systems for (192)Ir brachytherapy treatment planning. The calculation settings of these algorithms are pre-configured according to criteria established by their developers for optimizing computation speed vs accuracy. Their clinical use is hence straightforward. A basic understanding of these algorithms and their limitations is essential, however, for commissioning; detecting differences from conventional algorithms; explaining their origin; assessing their impact; and maintaining global uniformity of clinical practice.

  5. Uncertainty analysis in MCNP5 calculations for brachytherapy treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gerardy, I., E-mail: gerardy@isib.be [Institut Superieur Industriel de Bruxelles, 150, Rue Royale, B-1000 Brussels (Belgium); Rodenas, J.; Gallardo, S. [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia (Spain)

    2011-08-15

    The Monte Carlo (MC) method can be applied to simulate brachytherapy treatment planning. The MCNP5 code gives, together with results, a statistical uncertainty associated with them. However, the latter is not the only existing uncertainty related to the simulation and other uncertainties must be taken into account. A complete analysis of all sources of uncertainty having some influence on results of the simulation of brachytherapy treatment is presented in this paper. This analysis has been based on the recommendations of the American Association for Physicist in Medicine (AAPM) and of the International Standard Organisation (ISO).

  6. The feasibility of MRI-guided whole prostate ablation with a linear aperiodic intracavitary ultrasound phased array

    Energy Technology Data Exchange (ETDEWEB)

    Sokka, S.D. [MIT Harvard Division of Health Sciences and Technology, Boston, MA 02115 (United States); Brigham and Women' s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 (United States); Hynynen, K.H. [Brigham and Women' s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 (United States)

    2000-11-01

    Over the past decade, numerous minimally invasive thermal procedures have been investigated to treat benign prostate hyperplasia and prostate cancer. Of these methods, ultrasound has shown considerable promise due to its ability to produce more precise and deeper thermal foci. In this study, a linear, transrectal ultrasound phased array capable of ablating large tissue volumes was fabricated and evaluated. The device was designed to be compatible for use with MRI guidance and thermometry. The intracavitary applicator increases treatable tissue volume by using an ultrasonic motor to provide a mechanical rotation angle of up to 100 deg. to a 62-element 1D ultrasound array. An aperiodic array geometry was used to reduce grating lobes. In addition, a specially designed Kapton interconnect was used to reduce cable crosstalk and hence also improve the acoustic efficiency of the array. MRI-guided in vivo and ex vivo experiments were performed to verify the array's large-volume ablative capabilities. Ex vivo bovine experiments were performed to assess the focusing range of the applicator. The array generated foci in a 3 cm (2 to 5 cm from the array surface along the axis normal to the array) by 5.5 cm (along the long axis of the array) by 6 cm (along the transverse axis of the array at a depth of 4 cm) volume. In vivo rabbit thigh experiments were performed to evaluate the lesion-producing capabilities in perfused tissue. The array generated 3 cm x 2 cm x 2 cm lesions with 8 to 12 half-minute sonications equally spaced in the volume. The results indicate that transrectal ultrasound coagulation of the whole prostate is feasible with the developed device. (author)

  7. Patient-specific dosimetry for intracavitary 32P-chromic phosphate colloid therapy of cystic brain tumours.

    Science.gov (United States)

    Denis-Bacelar, Ana M; Romanchikova, Marina; Chittenden, Sarah; Saran, Frank H; Mandeville, Henry; Du, Yong; Flux, Glenn D

    2013-10-01

    (32)P-chromic phosphate colloid treatments of astrocytoma and craniopharyngioma cystic brain tumours in paediatric patients are conventionally based on a sphere model under the assumption of uniform uptake. The aims of this study were to determine the distribution of the absorbed dose delivered by (32)P on a patient-specific basis and to evaluate the accuracy with which this can be predicted from a pretherapy administration of (99m)Tc-Sn colloid. Three patients were treated with (32)P-chromic phosphate colloid following (99m)Tc-Sn colloid administrations. Convolution dosimetry was performed using pretherapy and posttherapy sequential SPECT imaging, and verified with EGSnrc Monte Carlo radiation transport simulations. Mean absorbed doses to the cyst wall and dose-volume histograms were also calculated and compared with those obtained by the sphere model approach. Highly nonuniform uptake distributions of both the (99m)Tc and (32)P colloids were observed and characterized by dose-volume histograms to the cyst wall. Mean absorbed doses delivered to the cyst wall, obtained with the convolution method, were on average 21 % (SD 18 %) and 50 % (SD 30 %) lower than those predicted by the (99m)Tc distribution and the uniform assumption of the sphere model, respectively. Absorbed doses delivered to the cyst wall by (32)P are more accurately predicted from image-based patient-specific convolution dosimetry than from simple sphere models. These results indicate the necessity to perform personalized treatment planning and verification for intracavitary irradiation of cystic brain tumours treated with radiocolloids. Patient-specific dosimetry can be used to guide the frequency and levels of repeated administrations and would facilitate data collection and comparison to support the multicentre trials necessary to progress this therapy.

  8. Epimacular brachytherapy for wet AMD: current perspectives.

    Science.gov (United States)

    Casaroli-Marano, Ricardo P; Alforja, Socorro; Giralt, Joan; Farah, Michel E

    2014-01-01

    Age-related macular degeneration (AMD) is considered the most common cause of blindness in the over-60 age group in developed countries. There are basically two forms of presentation: geographic (dry or atrophic) and wet (neovascular or exudative). Geographic atrophy accounts for approximately 85%-90% of ophthalmic frames and leads to a progressive degeneration of the retinal pigment epithelium and the photoreceptors. Wet AMD causes the highest percentage of central vision loss secondary to disease. This neovascular form involves an angiogenic process in which newly formed choroidal vessels invade the macular area. Today, intravitreal anti-angiogenic drugs attempt to block the angiogenic events and represent a major advance in the treatment of wet AMD. Currently, combination therapy for wet AMD includes different forms of radiation delivery. Epimacular brachytherapy (EMBT) seems to be a useful approach to be associated with current anti-vascular endothelial growth factor agents, presenting an acceptable efficacy and safety profile. However, at the present stage of research, the results of the clinical trials carried out to date are insufficient to justify extending routine use of EMBT for the treatment of wet AMD.

  9. An approach to using conventional brachytherapy software for clinical treatment planning of complex, Monte Carlo-based brachytherapy dose distributions

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, Mark J.; Melhus, Christopher S.; Granero, Domingo; Perez-Calatayud, Jose; Ballester, Facundo [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States); Radiation Oncology Department, Physics Section, ' ' La Fe' ' University Hospital, Avenida Campanar 21, E-46009 Valencia (Spain); Department of Atomic, Molecular, and Nuclear Physics, University of Valencia, C/Dr. Moliner 50, E-46100 Burjassot, Spain and IFIC (University of Valencia-CSIC), C/Dr. Moliner 50, E-46100 Burjassot (Spain)

    2009-06-15

    Certain brachytherapy dose distributions, such as those for LDR prostate implants, are readily modeled by treatment planning systems (TPS) that use the superposition principle of individual seed dose distributions to calculate the total dose distribution. However, dose distributions for brachytherapy treatments using high-Z shields or having significant material heterogeneities are not currently well modeled using conventional TPS. The purpose of this study is to establish a new treatment planning technique (Tufts technique) that could be applied in some clinical situations where the conventional approach is not acceptable and dose distributions present cylindrical symmetry. Dose distributions from complex brachytherapy source configurations determined with Monte Carlo methods were used as input data. These source distributions included the 2 and 3 cm diameter Valencia skin applicators from Nucletron, 4-8 cm diameter AccuBoost peripheral breast brachytherapy applicators from Advanced Radiation Therapy, and a 16 mm COMS-based eye plaque using {sup 103}Pd, {sup 125}I, and {sup 131}Cs seeds. Radial dose functions and 2D anisotropy functions were obtained by positioning the coordinate system origin along the dose distribution cylindrical axis of symmetry. Origin:tissue distance and active length were chosen to minimize TPS interpolation errors. Dosimetry parameters were entered into the PINNACLE TPS, and dose distributions were subsequently calculated and compared to the original Monte Carlo-derived dose distributions. The new planning technique was able to reproduce brachytherapy dose distributions for all three applicator types, producing dosimetric agreement typically within 2% when compared with Monte Carlo-derived dose distributions. Agreement between Monte Carlo-derived and planned dose distributions improved as the spatial resolution of the fitted dosimetry parameters improved. For agreement within 5% throughout the clinical volume, spatial resolution of

  10. Early stage carcinoma of the uterine cervix. Effects of intracavitary radium treatment on lymphoid cells in blood and pelvic lymph nodes

    Energy Technology Data Exchange (ETDEWEB)

    Onsrud, M.; Grahm, I.; Gaudernack, G.

    Sixteen patients with early stage carcinoma of the uterine cervix treated with primary radical hysterectomy and pelvic lymphadenectomy were compared with 17 patients who four to six weeks before the operation received intracavitary treatment with radium. The calculated radiation dose to the pelvic wall was approximately 10 Gy. The distribution of lymphoid cells in blood and pelvic lymph nodes was studied by an indirect immunoflourescence technique using monoclonal antibodies. The radium treated group showed a significant reduction of circulating OKT4+ (T helper) and OKT8+ (T suppressor/cytotoxic) lymphocytes. The number of Leu7+ (natural killer) cells and 1D5+ cells (monocytes) was not changed, but the ratio between monocytes and T cells was increased after radium therapy. In cell suspensions obtained from the pelvic lymph nodes, the radium treatment induced a significant reduction of the OKT4+ cell fraction. It is concluded that this low dose rate regimen of intracavitary treatment induces changes in the immune system which are of the same type as those seen after external field irradiation.

  11. In vivo dosimetry: trends and prospects for brachytherapy

    DEFF Research Database (Denmark)

    Kertzscher, Gustavo; Rosenfeld, A.; Beddar, S.

    2014-01-01

    The error types during brachytherapy (BT) treatments and their occurrence rates are not well known. The limited knowledge is partly attributed to the lack of independent verification systems of the treatment progression in the clinical workflow routine. Within the field of in vivo dosimetry (IVD)...

  12. Electromagnetic tracking for treatment verification in interstitial brachytherapy

    DEFF Research Database (Denmark)

    Bert, Christoph; Kellermeier, Markus; Tanderup, Kari

    2016-01-01

    Electromagnetic tracking (EMT) is used in several medical fields to determine the position and orientation of dedicated sensors, e.g., attached to surgical tools. Recently, EMT has been introduced to brachytherapy for implant reconstruction and error detection. The manuscript briefly summarizes...

  13. Electromagnetic tracking for treatment verification in interstitial brachytherapy

    DEFF Research Database (Denmark)

    Bert, Christoph; Kellermeier, Markus; Tanderup, Kari

    2016-01-01

    Electromagnetic tracking (EMT) is used in several medical fields to determine the position and orientation of dedicated sensors, e.g., attached to surgical tools. Recently, EMT has been introduced to brachytherapy for implant reconstruction and error detection. The manuscript briefly summarizes...

  14. Brachytherapy optimal planning with application to intravascular radiation therapy

    DEFF Research Database (Denmark)

    Sadegh, Payman; Mourtada, Firas A.; Taylor, Russell H.;

    1999-01-01

    . Dose rate calculations are based on the sosimetry formulation of the American Association of Physicists in Medicine, Task Group 43. We apply the technique to optimal planning for intravascular brachytherapy of intimal hyperplasia using ultrasound data and 192Ir seeds. The planning includes...

  15. Factors influencing outcome of I-125 prostate cancer brachytherapy

    NARCIS (Netherlands)

    Hinnen, K.A.

    2011-01-01

    Brachytherapy is becoming an increasingly popular prostate cancer treatment, probably due to the specific advantages of the procedure, such as the minimal invasiveness and the lower chance of impotence and incontinence. Nonetheless, because of the long follow-up that is required to obtain prostate

  16. Photoacoustic imaging of prostate brachytherapy seeds in ex vivo prostate

    Science.gov (United States)

    Kuo, Nathanael; Kang, Hyun Jae; DeJournett, Travis; Spicer, James; Boctor, Emad

    2011-03-01

    The localization of brachytherapy seeds in relation to the prostate is a key step in intraoperative treatment planning (ITP) for improving outcomes in prostate cancer patients treated with low dose rate prostate brachytherapy. Transrectal ultrasound (TRUS) has traditionally been the modality of choice to guide the prostate brachytherapy procedure due to its relatively low cost and apparent ease of use. However, TRUS is unable to visualize seeds well, precluding ITP and producing suboptimal results. While other modalities such as X-ray and magnetic resonance imaging have been investigated to localize seeds in relation to the prostate, photoacoustic imaging has become an emerging and promising modality to solve this challenge. Moreover, photoacoustic imaging may be more practical in the clinical setting compared to other methods since it adds little additional equipment to the ultrasound system already adopted in procedure today, reducing cost and simplifying engineering steps. In this paper, we demonstrate the latest efforts of localizing prostate brachytherapy seeds using photoacoustic imaging, including visualization of multiple seeds in actual prostate tissue. Although there are still several challenges to be met before photoacoustic imaging can be used in the operating room, we are pleased to present the current progress in this effort.

  17. Assessment of effective dose to staff in brachytherapy.

    Science.gov (United States)

    Faulkner, K; James, H V; Chapple, C L; Rawlings, D J

    1996-11-01

    The aim of this paper is to investigate the problem of monitoring effective dose to hospital staff who are involved in the treatment of tumors using sealed sources placed inside the body (brachytherapy). In addition, the use of an unsealed source to treat the thyroid was also considered. Radiation distributions produced by both sealed sources commonly used in brachytherapy (192I, 137Cs, 226Ra) and an unsealed source used in the treatment of the thyroid (131I) were used to irradiate a Rando phantom. The brachytherapy treatments of esophageal and gynecological carcinoma were simulated. The Rando phantom was loaded with lithium fluoride thermoluminescent dosimeters at positions corresponding to a number of radiosensitive organs. Film badges and electronic personal dosimeters were attached to the Rando phantom at various anatomical sites. The Rando phantom was positioned adjacent to the patient at an angle of 90 degrees to the longitudinal axis of the patient. Irradiations were performed with and without a portable lead screen used on the radiotherapy wards. Effective dose was estimated for each simulated radiotherapy treatment and compared with the personal monitor readings. The data were used as a basis for the provision of advice on the wearing of the film badge dosimeters and the design of portable lead screens. The data also permitted a comparison between the two types of dosimeter when used for personal monitoring in brachytherapy.

  18. Verification of Oncentra brachytherapy planning using independent calculation

    Science.gov (United States)

    Safian, N. A. M.; Abdullah, N. H.; Abdullah, R.; Chiang, C. S.

    2016-03-01

    This study was done to investigate the verification technique of treatment plan quality assurance for brachytherapy. It is aimed to verify the point doses in 192Ir high dose rate (HDR) brachytherapy between Oncentra Masterplan brachytherapy treatment planning system and independent calculation software at a region of rectum, bladder and prescription points for both pair ovoids and full catheter set ups. The Oncentra TPS output text files were automatically loaded into the verification programme that has been developed based on spreadsheets. The output consists of source coordinates, desired calculation point coordinates and the dwell time of a patient plan. The source strength and reference dates were entered into the programme and then dose point calculations were independently performed. The programme shows its results in a comparison of its calculated point doses with the corresponding Oncentra TPS outcome. From the total of 40 clinical cases that consisted of two fractions for 20 patients, the results that were given in term of percentage difference, it shows an agreement between TPS and independent calculation are in the range of 2%. This programme only takes a few minutes to be used is preferably recommended to be implemented as the verification technique in clinical brachytherapy dosimetry.

  19. Initial application of digital tomosynthesis to improve brachytherapy treatment planning

    Science.gov (United States)

    Baydush, Alan H.; Mirzaei McKee, Mahta; King, June; Godfrey, Devon J.

    2007-03-01

    We present preliminary investigations that examine the feasibility of incorporating volumetric images generated using digital tomosynthesis into brachytherapy treatment planning. The Integrated Brachytherapy Unit (IBU) at our facility consists of an L-arm, C-arm isocentric motion system with an x-ray tube and fluoroscopic imager attached. Clinically, this unit is used to generate oblique, anterior-posterior, and lateral images for simple treatment planning and dose prescriptions. Oncologists would strongly prefer to have volumetric data to better determine three dimensional dose distributions (dose-volume histograms) to the target area and organs at risk. Moving the patient back and forth to CT causes undo stress on the patient, allows extensive motion of organs and treatment applicators, and adds additional time to patient treatment. We propose to use the IBU imaging system with digital tomosynthesis to generate volumetric patient data, which can be used for improving treatment planning and overall reducing treatment time. Initial image data sets will be acquired over a limited arc of a human-like phantom composed of real bones and tissue equivalent material. A brachytherapy applicator will be incorporated into one of the phantoms for visualization purposes. Digital tomosynthesis will be used to generate a volumetric image of this phantom setup. This volumetric image set will be visually inspected to determine the feasibility of future incorporation of these types of images into brachytherapy treatment planning. We conclude that initial images using the tomosynthesis reconstruction technique show much promise and bode well for future work.

  20. Stepping source prostate brachytherapy: From target definition to dose delivery

    NARCIS (Netherlands)

    Dinkla, A.M.

    2015-01-01

    Brachytherapy is an effective way to treat tumours locally and conformally, and is widely used in the treatment of prostate cancer. Prior to the treatment, a CT or MRI scan is acquired. The use of MRI led to a mean increase of 3% in dose coverage of the target volume (chapter 2). Although this seems

  1. Brachytherapy treatment planning algorithm applied to prostate cancer

    Science.gov (United States)

    Herrera-Rodríguez, M. R.; Martínez-Dávalos, A.

    2000-10-01

    An application of Genetic Algorithms (GAs) for treatment planning optimization in prostate brachytherapy is presented. The importance of multi-objective selection criteria based on the contour of the volume of interest and radiosensitive structures such as the rectum and urethra is discussed. First results are obtained for a simple test case which presents radial symmetry.

  2. Patient effective dose from endovascular brachytherapy with 192Ir sources.

    Science.gov (United States)

    Perma, L; Bianchi, C; Nicolini, G; Novario, R; Tanzi, F; Conte, L

    2002-01-01

    The growing use of endovascular brachytherapy has been accompanied by the publication of a large number of studies in several fields, but few studies on patient dose have been found in the literature. Moreover, these studies were carried out on the basis of Monte Carlo simulation. The aim of the present study was to estimate the effective dose to the patient undergoing endovascular brachytherapy treatment with 112Ir sources, by means of experimental measurements. Two standard treatments were taken into account: an endovascular brachytherapy of the coronary artery corresponding to the activity x time product of 184 GBq.min and an endovascular brachytherapy of the renal artery (898 GBq.min). Experimental assessment was accomplished by thermoluminescence dosemeters positioned in more than 300 measurement points in a properly adapted Rqndo phantom. A method has been developed to estimate the mean organ doses for all tissues and organs concerned in order to calculate the effective dose associated with intravascular brachytherapy. The normalised organ doses resulting from cronary treatment were 2.4 x 10(-2) mSv.GBq(-1).min(-1) for lung, 0.9 x 10(-2) mSv.GBSq(-1).min(-1) for oesophagus and 0.48 x 10(-2) mS.GBq(-1).min(-1) for bone marrow. During brachytherapy of the renal artery, the corresponding normalised doses were 4.2 x 10(-2) mS.GBq(-1).min(-1) for colon, 7.8 x 10(-2) mSv.GBq(-1).min(-1) for stomach and 1.7 x 10(-2) mSv.GBq(-1).min(-1) for liver. Coronary treatment iJnvlled an efl'fective dose of (0.046 mSv.GBq(-1).min(-1), whereas the treatment of the renal artery resulted in an effective dose of 0.15 mSv.GBq(-1).min(-1); there were many similarities with data from former studies. Based on these results it can be concluded that the dose level of patients exposed during brachytherapy treatment is low.

  3. Epimacular brachytherapy for wet AMD: current perspectives

    Directory of Open Access Journals (Sweden)

    Casaroli-Marano RP

    2014-08-01

    Full Text Available Ricardo P Casaroli-Marano,1,2 Socorro Alforja,1 Joan Giralt,1 Michel E Farah2 1Instituto Clínic de Oftalmología (Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain; 2Department of Ophthalmology and Visual Sciences, Universidade Federal de Sao Paulo, Escola Paulista de Medicina, Sao Paulo, Brazil Abstract: Age-related macular degeneration (AMD is considered the most common cause of blindness in the over-60 age group in developed countries. There are basically two forms of presentation: geographic (dry or atrophic and wet (neovascular or exudative. Geographic atrophy accounts for approximately 85%–90% of ophthalmic frames and leads to a progressive degeneration of the retinal pigment epithelium and the photoreceptors. Wet AMD causes the highest percentage of central vision loss secondary to disease. This neovascular form involves an angiogenic process in which newly formed choroidal vessels invade the macular area. Today, intravitreal anti-angiogenic drugs attempt to block the angiogenic events and represent a major advance in the treatment of wet AMD. Currently, combination therapy for wet AMD includes different forms of radiation delivery. Epimacular brachytherapy (EMBT seems to be a useful approach to be associated with current anti-vascular endothelial growth factor agents, presenting an acceptable efficacy and safety profile. However, at the present stage of research, the results of the clinical trials carried out to date are insufficient to justify extending routine use of EMBT for the treatment of wet AMD. Keywords: macular degeneration, radiation, vascular endothelial growth factor, combined therapy, intravitreal therapy, vitrectomy

  4. Brachytherapy dose measurements in heterogeneous tissues

    Energy Technology Data Exchange (ETDEWEB)

    Paiva F, G.; Luvizotto, J.; Salles C, T.; Guimaraes A, P. C.; Dalledone S, P. de T.; Yoriyaz, H. [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil); Rubo, R., E-mail: gabrielpaivafonseca@gmail.com [Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, 05403-900 Sao Paulo (Brazil)

    2014-08-15

    Recently, Beau lieu et al. published an article providing guidance for Model-Based Dose Calculation Algorithms (MBDCAs), where tissue heterogeneity considerations are addressed. It is well-known that T G-43 formalism which considers only water medium is limited and significant dose differences have been found comparing both methodologies. The aim of the present work is to experimentally quantify dose values in heterogeneous medium using different dose measurement methods and techniques and compare them with those obtained with Monte Carlo simulations. Experiments have been performed using a Nucletron micro Selectron-Hdr Ir-192 brachytherapy source and a heterogeneous phantom composed by PMMA and different tissue equivalent cylinders like bone, lungs and muscle. Several dose measurements were obtained using tissue equivalent materials with height 1.8 cm and 4.3 cm positioned between the radiation source and the detectors. Radiochromic films, TLDs and MOSFET S have been used for the dose measurements. Film dosimetry has been performed using two methodologies: a) linearization for dose-response curve based on calibration curves to create a functional form that linearize s the dose response and b) 177 multichannel analysis dosimetry where the multiple color channels are analyzed allowing to address not only disturbances in the measurements caused by thickness variation in the film layer, but also, separate other external influences in the film response. All experiments have been simulated using the MCNP5 Monte Carlo radiation transport code. Comparison of experimental results are in good agreement with calculated dose values with differences less than 6% for almost all cases. (Author)

  5. Radiation pneumonitis caused by a migrated brachytherapy seed lodged in the lung.

    Science.gov (United States)

    Miura, Noriyoshi; Kusuhara, Yoshito; Numata, Kousaku; Shirato, Akitomi; Hashine, Katsuyoshi; Sumiyoshi, Yoshiteru; Kataoka, Masaaki; Takechi, Shinsuke

    2008-09-01

    We report a case of radiation pneumonitis caused by a migrated seed lodged in the lung after prostate brachytherapy. A 71-year-old man underwent transperineal interstitial permanent prostate brachytherapy for localized prostate cancer. On the day after brachytherapy, a routine postimplant chest X-ray revealed migration of one seed to the lower lobe of the left lung. After 1 month, pulmonary opacities were observed in the left lower lobe but not near the seed. He was diagnosed with bacterial pneumonia, and antibiotic therapy was commenced. Two months after brachytherapy, the patient's symptoms, laboratory data and pulmonary opacities improved; however, an abnormal shadow (consolidation) developed around the migrated seed. Lung consolidation disappeared almost completely 12 months after brachytherapy without any medical treatment. The abnormal shadow probably represented radiation pneumonitis. To the best of our knowledge, this is the first report of radiation pneumonitis caused by a migrated brachytherapy seed in the lung.

  6. Three-dimensional ultrasound system for guided breast brachytherapy.

    Science.gov (United States)

    De Jean, Paul; Beaulieu, Luc; Fenster, Aaron

    2009-11-01

    Breast-conserving surgery combined with subsequent radiation therapy is a standard procedure in breast cancer treatment. The disadvantage of whole-breast beam irradiation is that it requires 20-25 treatment days, which is inconvenient for patients with limited mobility or who reside far from the treatment center. However, interstitial high-dose-rate (HDR) brachytherapy is an irradiation method requiring only 5 treatment days and that delivers a lower radiation dose to the surrounding healthy tissue. It involves delivering radiation through 192Ir seeds placed inside the catheters, which are inserted into the breast. The catheters are attached to a HDR afterloader, which controls the seed placement within the catheters and irradiation times to deliver the proper radiation dose. One disadvantage of using HDR brachytherapy is that it requires performing at least one CT scan during treatment planning. The procedure at our institution involves the use of two CT scans. Performing CT scans requires moving the patient from the brachytherapy suite with catheters inserted in their breasts. One alternative is using three-dimensional ultrasound (3DUS) to image the patient. In this study, the authors developed a 3DUS translation scanning system for use in breast brachytherapy. The new system was validated using CT, the current clinical standard, to image catheters in a breast phantom. Once the CT and 3DUS images were registered, the catheter trajectories were then compared. The results showed that the average angular separation between catheter trajectories was 2.4 degrees, the average maximum trajectory separation was 1.0 mm, and the average mean trajectory separation was found to be 0.7 mm. In this article, the authors present the 3DUS translation scanning system's capabilities as well as its potential to be used as the primary treatment planning imaging modality in breast brachytherapy.

  7. Image guided, adaptive, accelerated, high dose brachytherapy as model for advanced small volume radiotherapy.

    Science.gov (United States)

    Haie-Meder, Christine; Siebert, Frank-André; Pötter, Richard

    2011-09-01

    Brachytherapy has consistently provided a very conformal radiation therapy modality. Over the last two decades this has been associated with significant improvements in imaging for brachytherapy applications (prostate, gynecology), resulting in many positive advances in treatment planning, application techniques and clinical outcome. This is emphasized by the increased use of brachytherapy in Europe with gynecology as continuous basis and prostate and breast as more recently growing fields. Image guidance enables exact knowledge of the applicator together with improved visualization of tumor and target volumes as well as of organs at risk providing the basis for very individualized 3D and 4D treatment planning. In this commentary the most important recent developments in prostate, gynecological and breast brachytherapy are reviewed, with a focus on European recent and current research aiming at the definition of areas for important future research. Moreover the positive impact of GEC-ESTRO recommendations and the highlights of brachytherapy physics are discussed what altogether presents a full overview of modern image guided brachytherapy. An overview is finally provided on past and current international brachytherapy publications focusing on "Radiotherapy and Oncology". These data show tremendous increase in almost all research areas over the last three decades strongly influenced recently by translational research in regard to imaging and technology. In order to provide high level clinical evidence for future brachytherapy practice the strong need for comprehensive prospective clinical research addressing brachytherapy issues is high-lighted. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Dosimetric analysis and comparison of IMRT and HDR brachytherapy in treatment of localized prostate cancer.

    Science.gov (United States)

    Murali, V; Kurup, P G G; Mahadev, P; Mahalakshmi, S

    2010-04-01

    Radical radiotherapy is one of the options for the management of prostate cancer. In external beam therapy, 3D conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (IMRT) are the options for delivery of increased radiation dose, as vital organs are very close to the prostate and a higher dose to these structures leads to an increased toxicity. In brachytherapy, low dose rate brachytherapy with permanent implant of radioactive seeds and high dose rate brachytherapy (HDR) with remote after loaders are available. A dosimetric analysis has been made on IMRT and HDR brachytherapy plans. Ten cases from each IMRT and HDR brachytherapy have been taken for the study. The analysis includes comparison of conformity and homogeneity indices, D100, D95, D90, D80, D50, D10 and D5 of the target. For the organs at risk (OAR), namely rectum and bladder, V100, V90 and V50 are compared. In HDR brachytherapy, the doses to 1 cc and 0.1 cc of urethra have also been studied. Since a very high dose surrounds the source, the 300% dose volumes in the target and within the catheters are also studied in two plans, to estimate the actual volume of target receiving dose over 300%. This study shows that the prescribed dose covers 93 and 92% of the target volume in IMRT and HDR brachytherapy respectively. HDR brachytherapy delivers a much lesser dose to OAR, compared to the IMRT. For rectum, the V50 in IMRT is 34.0cc whilst it is 7.5cc in HDR brachytherapy. With the graphic optimization tool in HDR brachytherapy planning, the dose to urethra could be kept within 120% of the target dose. Hence it is concluded that HDR brachytherapy may be the choice of treatment for cancer of prostate in the early stage.

  9. Dosimetric analysis and comparison of IMRT and HDR brachytherapy in treatment of localized prostate cancer

    Directory of Open Access Journals (Sweden)

    Murali V

    2010-01-01

    Full Text Available Radical radiotherapy is one of the options for the management of prostate cancer. In external beam therapy, 3D conformal radiotherapy (3DCRT and intensity modulated radiotherapy (IMRT are the options for delivery of increased radiation dose, as vital organs are very close to the prostate and a higher dose to these structures leads to an increased toxicity. In brachytherapy, low dose rate brachytherapy with permanent implant of radioactive seeds and high dose rate brachytherapy (HDR with remote after loaders are available. A dosimetric analysis has been made on IMRT and HDR brachytherapy plans. Ten cases from each IMRT and HDR brachytherapy have been taken for the study. The analysis includes comparison of conformity and homogeneity indices, D100, D95, D90, D80, D50, D10 and D5 of the target. For the organs at risk (OAR, namely rectum and bladder, V100, V90 and V50 are compared. In HDR brachytherapy, the doses to 1 cc and 0.1 cc of urethra have also been studied. Since a very high dose surrounds the source, the 300% dose volumes in the target and within the catheters are also studied in two plans, to estimate the actual volume of target receiving dose over 300%. This study shows that the prescribed dose covers 93 and 92% of the target volume in IMRT and HDR brachytherapy respectively. HDR brachytherapy delivers a much lesser dose to OAR, compared to the IMRT. For rectum, the V50 in IMRT is 34.0cc whilst it is 7.5cc in HDR brachytherapy. With the graphic optimization tool in HDR brachytherapy planning, the dose to urethra could be kept within 120% of the target dose. Hence it is concluded that HDR brachytherapy may be the choice of treatment for cancer of prostate in the early stage.

  10. MO-E-BRD-03: Intra-Operative Breast Brachytherapy: Is One Stop Shopping Best? [Non-invasive Image-Guided Breast Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Libby, B. [University of Virginia (United States)

    2015-06-15

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  11. Brachytherapy for prostate cancer: Comparative characteristics of procedures

    Directory of Open Access Journals (Sweden)

    S. V. Kanaev

    2015-01-01

    Full Text Available The introduction of interstitial radiation sources is the «youngest» of the radical method of treatment of patients with prostate cancer (PC. The high level of efficiency comparable to prostatectomy at a significantly lower rate of complications causes rapid growth of clinical use of brachytherapy (BT. Depending on the radiation source and the mode of administration into the prostate gland are two types BT – high-dose rate (temporary (HDR-BT and low-dose rate (permanent (LDR-BT brachytherapy. At the heart of these two methods are based on a single principle of direct effect of the quantum gamma radiation on the area of interest. However, the differences between the characteristics of isotopes used and technical aspects of the techniques cause the difference in performance and complication rates for expression HDR-BT and LDR-BT.

  12. Cataract extraction after brachytherapy for malignant melanoma of the choroid

    Energy Technology Data Exchange (ETDEWEB)

    Fish, G.E.; Jost, B.F.; Snyder, W.I.; Fuller, D.G.; Birch, D.G. (Texas Retina Associates, Dallas (USA))

    1991-05-01

    Thirteen eyes of 55 consecutive patients treated with brachytherapy for malignant melanoma of the choroid developed postirradiation cataracts. Cataract development was more common in older patients and in patients with larger and more anterior tumors. Eleven eyes had extracapsular cataract extraction and intraocular lens implantation. Initial visual improvement occurred in 91% of eyes, with an average improvement of 5.5 lines. Visual acuity was maintained at 20/60 or better in 55% of the eyes over an average period of follow-up of 24 months (range, 6 to 40 months). These data suggest that, visually, cataract extraction can be helpful in selected patients who develop a cataract after brachytherapy for malignant melanoma of the choroid.

  13. Brachytherapy seed localization using geometric and linear programming techniques.

    Science.gov (United States)

    Singh, Vikas; Mukherjee, Lopamudra; Xu, Jinhui; Hoffmann, Kenneth R; Dinu, Petru M; Podgorsak, Matthew

    2007-09-01

    We propose an optimization algorithm to solve the brachytherapy seed localization problem in prostate brachytherapy. Our algorithm is based on novel geometric approaches to exploit the special structure of the problem and relies on a number of key observations which help us formulate the optimization problem as a minimization integer program (IP). Our IP model precisely defines the feasibility polyhedron for this problem using a polynomial number of half-spaces; the solution to its corresponding linear program is rounded to yield an integral solution to our task of determining correspondences between seeds in multiple projection images. The algorithm is efficient in theory as well as in practice and performs well on simulation data (approximately 98% accuracy) and real X-ray images (approximately 95% accuracy). We present in detail the underlying ideas and an extensive set of performance evaluations based on our implementation.

  14. Compound dual radiation action theory for 252Cf brachytherapy.

    Science.gov (United States)

    Wang, C K; Zhang, X

    2004-01-01

    The existing dosimetry protocol that uses the concept of RBE for 252Cf brachytherapy contains large uncertainties. A new formula has been developed to correlate the biological effect (i.e. cell survival fraction) resulting from a mixed n + gamma radiation field with two physical quantities and two biological quantities. The formula is based on a pathway model evolved from that of the compound-dual-radiation-action (CDRA) theory, previously proposed by Rossi and Zaider. The new model employs the recently published data on radiation-induced DNA lesions. The new formula is capable of predicting quantitatively the synergistic effect caused by the interactions between neutron events and gamma ray events, and it is intended to be included into a new dosimetry protocol for future 252Cf brachytherapy.

  15. Dose volume analysis in brachytherapy and stereotactic radiosurgery

    CERN Document Server

    Tozer-Loft, S M

    2000-01-01

    compared with a range of figures of merit which express different aspects of the quality of each dose distributions. The results are analysed in an attempt to answer the question: What are the important features of the dose distribution (conformality, uniformity, etc) which show a definite relationship with the outcome of the treatment? Initial results show positively that, when Gamma Knife radiosurgery is used to treat acoustic neuroma, some measures of conformality seem to have a surprising, but significant association with outcome. A brief introduction to three branches of radiotherapy is given: interstitial brachytherapy, external beam megavoltage radiotherapy, and stereotactic radiosurgery. The current interest in issues around conformity, uniformity and optimisation is explained in the light of technical developments in these fields. A novel method of displaying dose-volume information, which mathematically suppresses the inverse-square law, as first suggested by L.L. Anderson for use in brachytherapy i...

  16. Review of advanced catheter technologies in radiation oncology brachytherapy procedures.

    Science.gov (United States)

    Zhou, Jun; Zamdborg, Leonid; Sebastian, Evelyn

    2015-01-01

    The development of new catheter and applicator technologies in recent years has significantly improved treatment accuracy, efficiency, and outcomes in brachytherapy. In this paper, we review these advances, focusing on the performance of catheter imaging and reconstruction techniques in brachytherapy procedures using magnetic resonance images and electromagnetic tracking. The accuracy of catheter reconstruction, imaging artifacts, and other notable properties of plastic and titanium applicators in gynecologic treatments are reviewed. The accuracy, noise performance, and limitations of electromagnetic tracking for catheter reconstruction are discussed. Several newly developed applicators for accelerated partial breast irradiation and gynecologic treatments are also reviewed. New hypofractionated high dose rate treatment schemes in prostate cancer and accelerated partial breast irradiation are presented.

  17. Distortions induced by radioactive seeds into interstitial brachytherapy dose distributions.

    Science.gov (United States)

    Zhou, Chuanyu; Inanc, Feyzi; Modrick, Joseph M

    2004-12-01

    In a previous article, we presented development and verification of an integral transport equation-based deterministic algorithm for computing three-dimensional brachytherapy dose distributions. Recently, we have included fluorescence radiation physics and parallel computation to the standing algorithms so that we can compute dose distributions for a large set of seeds without resorting to the superposition methods. The introduction of parallel computing capability provided a means to compute the dose distribution for multiple seeds in a simultaneous manner. This provided a way to study strong heterogeneity and shadow effects induced by the presence of multiple seeds in an interstitial brachytherapy implant. This article presents the algorithm for computing fluorescence radiation, algorithm for parallel computing, and display results for an 81-seed implant that has a perfect and imperfect lattice. The dosimetry data for a single model 6711 seeds is presented for verification and heterogeneity factor computations using simultaneous and superposition techniques are presented.

  18. 3T MR-Guided Brachytherapy for Gynecologic Malignancies

    CERN Document Server

    Kapur, Tina; Damato, Antonio; Schmidt, Ehud J; Viswanathan, Akila N; 10.1016/j.mri.2012.06.003

    2013-01-01

    Gynecologic malignancies are a leading cause of death in women worldwide. Standard treatment for many primary and recurrent gynecologic cancer cases includes a combination of external beam radiation, followed by brachytherapy. Magnetic Resonance Imaging (MRI) is benefitial in diagnostic evaluation, in mapping the tumor location to tailor radiation dose, and in monitoring the tumor response to treatment. Initial studies of MR-guidance in gynecologic brachtherapy demonstrate the ability to optimize tumor coverage and reduce radiation dose to normal tissues, resulting in improved outcomes for patients. In this article we describe a methodology to aid applicator placement and treatment planning for 3 Tesla (3T) MR-guided brachytherapy that was developed specifically for gynecologic cancers. This has been used in 18 cases to date in the Advanced Multimodality Image Guided Operating suite at Brigham and Women's Hospital. It is comprised of state of the art methods for MR imaging, image analysis, and treatment plann...

  19. Clinical evaluation of high dose rate intra-cavitary irradiation for treatment of uterine cervical cancer, combined with pepleomycin suppository in uterine cavity

    Energy Technology Data Exchange (ETDEWEB)

    Yamanashi, Shunji; Abe, Tatsuyuki; Mochizuki, Sachio (Jikei Univ., Tokyo (Japan). School of Medicine); Murakami, Yoshitaka; Iida, Nobuhisa

    1990-02-01

    By means of re-irradiation using pepleomycin suppository in uterine cavity, we attained local control for one patient who had local recurrence in uterine cavity and suffered from uterine fluor in which viable cancer cells were confirmed. We were enlightened by this therapeutic experience, so we attempted combination therapy using pepleomycin suppositories to supplement intra-cavitary irradiation, for the 11 selected patients who were suffering from uterine fluor. We investigated the treatment results in 7 patients of stage III out of 11 patients (of all stages), in comparison with 13 patients of stage III who were treated by irradiation alone. Consequently, these treatment results were approximately equivalent, and the incidence of sigmoid complications could be decreased. Side effects which were followed by the combination therapy were not serious, and so we believe that pepleomycin suppository is a simple method and valuable to supplement radiation therapy of uterine cervical cancer. (author).

  20. 一种新型可调充气式鼻咽后装施源器的研制和应用%A New Applicator with Regulatable Air Bag Designed for Intracavitary Brachytherapy of Nasopharyngeal Carcinoma

    Institute of Scientific and Technical Information of China (English)

    张宁; 卫光宇; 谭以昶; 黄泽黎; 李绍恩; 吕志倩

    2004-01-01

    背景与目的:鼻咽腔内近距离放疗施源器(以下简称施源器)在鼻咽腔内近距离放疗中起重要作用,直接影响治疗的效果.我们研制了一种新型施源器.方法:新型施源器用医用乳胶材料制成,在距施源器前端15 mm处置一气囊,气囊边缘与管轴相切,紧贴于管壁一侧,令充气时管轴反向拱形隆起贴近治疗部位.使用时经中鼻道达后壁,通过旋转施源器可调节施源器方向和位置,经注气孔注入空气并固定.治疗前需复核定位证实.结果:共治疗221例鼻咽癌,初治病例中鼻咽肿物消退率92.6%,复发病例鼻咽肿物全部消退,鼻咽前壁或后壁粘膜坏死5例,鼻甲水肿及后鼻道粘连8例.结论:本施源器具有安全可靠,操作方便,患者无痛苦,剂量分布理想,固定性较好等优点.在治疗中出现鼻咽粘膜坏死可能与初期使用时单次剂量过高有关.

  1. Brachytherapy in Lip Carcinoma: Long-Term Results

    Energy Technology Data Exchange (ETDEWEB)

    Guibert, Mireille, E-mail: mireilleguib@voila.fr [Department of Head and Neck Surgery, Larrey Hospital, Toulouse (France); David, Isabelle [Department of Radiation Oncology, Claudius Regaud Institut, Toulouse (France); Vergez, Sebastien [Department of Head and Neck Surgery, Larrey Hospital, Toulouse (France); Rives, Michel [Department of Radiation Oncology, Claudius Regaud Institut, Toulouse (France); Filleron, Thomas [Department of Epidemiology, Claudius Regaud Institut, Toulouse (France); Bonnet, Jacques; Delannes, Martine [Department of Radiation Oncology, Claudius Regaud Institut, Toulouse (France)

    2011-12-01

    Purpose: The aim of this study was to evaluate the effectiveness of low-dose-rate brachytherapy for local control and relapse-free survival in squamous cell and basal cell carcinomas of the lips. We compared two groups: one with tumors on the skin and the other with tumors on the lip. Patients and methods: All patients had been treated at Claudius Regaud Cancer Centre from 1990 to 2008 for squamous cell or basal cell carcinoma. Low-dose-rate brachytherapy was performed with iridium 192 wires according to the Paris system rules. On average, the dose delivered was 65 Gy. Results: 172 consecutive patients were included in our study; 69 had skin carcinoma (squamous cell or basal cell), and 92 had squamous cell mucosal carcinoma. The average follow-up time was 5.4 years. In the skin cancer group, there were five local recurrences and one lymph node recurrence. In the mucosal cancer group, there were ten local recurrences and five lymph node recurrences. The 8-year relapse-free survival for the entire population was 80%. The 8-year relapse-free survival was 85% for skin carcinoma 75% for mucosal carcinoma, with no significant difference between groups. The functional results were satisfactory for 99% of patients, and the cosmetic results were satisfactory for 92%. Maximal toxicity observed was Grade 2. Conclusions: Low-dose-rate brachytherapy can be used to treat lip carcinomas at Stages T1 and T2 as the only treatment with excellent results for local control and relapse-free survival. The benefits of brachytherapy are also cosmetic and functional, with 91% of patients having no side effects.

  2. Study of two different radioactive sources for prostate brachytherapy treatment

    Energy Technology Data Exchange (ETDEWEB)

    Pereira Neves, Lucio; Perini, Ana Paula [Instituto de Fisica, Universidade Federal de Uberlandia, Caixa Postal 593, 38400-902, Uberlandia, MG (Brazil); Souza Santos, William de; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares, Comissao Nacional de Energia Nuclear, IPENCNEN/SP, Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, 05508-000 Sao Paulo, SP (Brazil); Belinato, Walmir [Departamento de Ensino, Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia, Campus Vitoria da Conquista, Zabele, Av. Amazonas 3150, 45030-220 Vitoria da Conquista, BA (Brazil)

    2015-07-01

    In this study we evaluated two radioactive sources for brachytherapy treatments. Our main goal was to quantify the absorbed doses on organs and tissues of an adult male patient, submitted to a brachytherapy treatment with two radioactive sources. We evaluated a {sup 192}Ir and a {sup 125}I radioactive sources. The {sup 192}Ir radioactive source is a cylinder with 0.09 cm in diameter and 0.415 cm long. The {sup 125}I radioactive source is also a cylinder, with 0.08 cm in diameter and 0.45 cm long. To evaluate the absorbed dose distribution on the prostate, and other organs and tissues of an adult man, a male virtual anthropomorphic phantom MASH, coupled in the radiation transport code MCNPX 2.7.0, was employed.We simulated 75, 90 and 102 radioactive sources of {sup 125}I and one of {sup 192}Ir, inside the prostate, as normally used in these treatments, and each treatment was simulated separately. As this phantom was developed in a supine position, the displacement of the internal organs of the chest, compression of the lungs and reduction of the sagittal diameter were all taken into account. For the {sup 192}Ir, the higher doses values were obtained for the prostate and surrounding organs, as the colon, gonads and bladder. Considering the {sup 125}I sources, with photons with lower energies, the doses to organs that are far from the prostate were lower. All values for the dose rates are in agreement with those recommended for brachytherapy treatments. Besides that, the new seeds evaluated in this work present usefulness as a new tool in prostate brachytherapy treatments, and the methodology employed in this work may be applied for other radiation sources, or treatments. (authors)

  3. Surgical management of strabismus following choroidal melanoma plaque brachytherapy.

    Science.gov (United States)

    Alfreihi, Shatha H; Pineles, Stacy L; McCannel, Tara A; Prada, Angelica M; Velez, Federico G

    2017-08-01

    To characterize intraoperative findings, surgical approach, and postoperative outcomes in patients undergoing strabismus surgery following plaque brachytherapy for ocular melanoma. The records of all patients who underwent plaque brachytherapy for choroidal melanoma between May 2007 and June 2016 were reviewed retrospectively to identify those who subsequently required strabismus surgery. Of the 461 patients who underwent plaque brachytherapy during the study period, 13 (2.8%) met inclusion criteria. Visual acuity of the affected eye was 20/40 or better in 9 patients (69%). Preoperative horizontal deviation ranged from 0(Δ) to 52(Δ); vertical deviation, from 2(Δ) to 25(Δ). At final follow-up mean horizontal deviation ranged from 0 to 4(Δ); vertical deviation, from 0(Δ) to 12(Δ). Intraoperatively, all muscles directly adjacent to the treated area appeared macroscopically thicker than normal despite being functionally underacting. Magnetic resonance imaging showed enlarged muscles adjacent to the plaque radiotherapy. Microscopic examination of muscles in 2 patients showed reactive enlargement of the muscle fibers, granulation tissue, and inflammation. Persistent strabismus after plaque brachytherapy is rare. Typical findings include enlarged, underacting rectus muscles adjacent to the area of the plaque, restrictive connective tissue, and incomitant strabismus. Previously disinserted muscles may be found in abnormal locations. In this patient cohort scar tissue removal in conjunction with tightening procedures on the muscle adjacent to the plaque combined with recession of the antagonist muscle frequently resulted in good anatomical outcome. Copyright © 2017 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  4. Ruby-based inorganic scintillation detectors for 192Ir brachytherapy

    Science.gov (United States)

    Kertzscher, Gustavo; Beddar, Sam

    2016-11-01

    We tested the potential of ruby inorganic scintillation detectors (ISDs) for use in brachytherapy and investigated various unwanted luminescence properties that may compromise their accuracy. The ISDs were composed of a ruby crystal coupled to a poly(methyl methacrylate) fiber-optic cable and a charge-coupled device camera. The ISD also included a long-pass filter that was sandwiched between the ruby crystal and the fiber-optic cable. The long-pass filter prevented the Cerenkov and fluorescence background light (stem signal) induced in the fiber-optic cable from striking the ruby crystal, which generates unwanted photoluminescence rather than the desired radioluminescence. The relative contributions of the radioluminescence signal and the stem signal were quantified by exposing the ruby detectors to a high-dose-rate brachytherapy source. The photoluminescence signal was quantified by irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and compared the ISDs to commonly used organic scintillator detectors (BCF-12, BCF-60). When the brachytherapy source dwelled 0.5 cm away from the fiber-optic cable, the unwanted photoluminescence was reduced from  >5% to  5% within 10 s from the onset of irradiation and after the source had retracted. The ruby-based ISDs generated signals of up to 20 times that of BCF-12-based detectors. The study presents solutions to unwanted luminescence properties of ruby-based ISDs for high-dose-rate brachytherapy. An optic filter should be sandwiched between the ruby crystal and the fiber-optic cable to suppress the photoluminescence. Furthermore, we recommend avoiding ruby crystals that exhibit significant time-dependent luminescence.

  5. Scintillating fiber optic dosimeters for breast and prostate brachytherapy

    Science.gov (United States)

    Moutinho, L. M.; Castro, I. F.; Freitas, H.; Melo, J.; Silva, P.; Gonçalves, A.; Peralta, L.; Rachinhas, P. J.; Simões, P. C. P. S.; Pinto, S.; Pereira, A.; Santos, J. A. M.; Costa, M.; Veloso, J. F. C. A.

    2017-02-01

    Brachytherapy is a radiotherapy modality where the radioactive material is placed close to the tumor, being a common treatment for skin, breast, gynecological and prostate cancers. These treatments can be of low-dose-rate, using isotopes with mean energy of 30 keV, or high-dose-rate, using isotopes such as 192Ir with a mean energy of 380 keV. Currently these treatments are performed in most cases without in-vivo dosimetry for quality control and quality assurance. We developed a dosimeter using small diameter probes that can be inserted into the patient's body using standard brachytherapy needles. By performing real-time dosimetry in breast and prostate brachytherapy it will be possible to perform real-time dose correction when deviations from the treatment plan are observed. The dosimeter presented in this work was evaluated in-vitro. The studies consisted in the characterization of the dosimeter with 500 μm diameter sensitive probes (with a BCF-12 scintillating optical fiber) using an inhouse made gelatin breast phantom with a volume of 566 cm3. A breast brachytherapy treatment was simulated considering a tumor volume of 27 cm3 and a prescribed absolute dose of 5 Gy. The dose distribution was determined by the Inverse Planning Simulated Annealing (IPSA) optimization algorithm (ELEKTA). The dwell times estimated from the experimental measurements are in agreement with the prescribed dwell times, with relative error below 3%. The measured signal-to-noise ratio (SNR) including the stem-effect contribution is below 3%.

  6. on uterus didelphys: a case report

    Directory of Open Access Journals (Sweden)

    Abel Cordoba

    2017-01-01

    Full Text Available In November 2013, a woman with Herlyn-Werner-Wunderlich (HWW syndrome was diagnosed with a locally advanced left cervical adenocarcinoma. The patient’s malformation consisted of two uteri with two cervixes, a obstructed vagina, and a left renal agenesis. Classification FIGO: stage IIIa because of infiltration of the inferior third of the vagina wall. Locoregional management comprised an infrarenal lateral aortic lymphadenectomy followed by concomitant radio-chemotherapy to the pelvic (inguinal, pelvic, and infrarenal para aortic nodes volumes. A total of 50.4 Gy were delivered (1.8 Gy/fraction/day to the node (inguinal, pelvic, and aortic infrarenal and pelvic volume; a concomitant boost to the primary cervical tumor and macroscopic nodes to 59.92 Gy (2.14 Gy/fraction/day was performed. 20 Gy were delivered with intracavitary brachytherapy boost with mold technique and a pulsed-dose-rate technique due to the rarity of this uterine malformation. After 30 months of follow-up, there was no evidence of locoregional or distant recurrence.

  7. 恶性胸腔积液腔内化疗的护理%Nursing care of intracavitary chemotherapy for malignant pleural effusion

    Institute of Scientific and Technical Information of China (English)

    龚红英; 李兰

    2015-01-01

    目的:探讨恶性胸腔积液腔内给药化疗的护理。方法:收治晚期肿瘤患者15例,均行腔内化疗,回顾性分析其临床资料。结果:胸腔穿刺置管给药引流和后期维护过程顺利,配合完成治疗。出现引流管渗漏4例,3例堵管,经处理好转,无脱管。结论:在恶性胸腔积液腔内给药化疗的护理配合过程中,护理问题多,但经过细致护理,也可以预防和及时处理,从而达到满意的护理效果。%Objective:To explore the nursing care of intracavitary chemotherapy for malignant pleural effusion.Methods:15 patients with advanced cancer were selected,they were given intraperitoneal chemotherapy,the clinical data were retrospectively analyzed.Results:The process of pleural puncture catheterization for administration and drainage was successful,the treatment was completed with the cooperation of nuring.4 cases had drainage pipe leakage,3 cases had plugging,after treatment,the situation was better,there was no off of tube.Conclusion:In the nursing process of intracavitary chemotherapy for malignant pleural effusion,the nuring problems were more,but after careful nursing,we can timely prevent and treat these problems,so as to achieve the satisfactory effect of nursing.

  8. Stereolithographic modelling as an aid to orbital brachytherapy.

    Science.gov (United States)

    Poulsen, M; Lindsay, C; Sullivan, T; D'Urso, P

    1999-06-01

    This paper describes the technique of stereolithographic biomodelling and its application to a patient who was treated using orbital brachytherapy. The process uses a moving laser beam, directed by a computer, to draw cross-sections of the model onto the surface of photo-curable liquid plastic. Using a stereolithographic apparatus (SLA), solid or surface data is sliced by software into very thin cross-sections. A helium cadmium (HeCd) laser then generates a small intense spot of ultraviolet (UV) light that is moved across the top of a vat of liquid photo monomer by a computerised optical scanning system. The laser polymerises the liquid into a solid where it touches, precisely printing each cross-section. A vertical elevator lowers the newly formed layer, and a recoating and levelling system establishes the next layer's thickness. Successive cross-sections (0.25 mm thick), each one adhering to the one below, are built one on top of the other, to form the part from the bottom up. The biomodel allowed the implant to be planned in detail prior to the surgery. The accurate placement of brachytherapy catheters was assured, and the dosimetry could be determined and optimised prior to the definitive procedure. Stereolithography is a useful technique in the area of orbital brachytherapy. It allows the implant to to be carried out with greater accuracy and confidence. For the patient, it minimises the risk to the eye and provides them with a greater understanding of the procedure.

  9. Image-guided high dose rate endorectal brachytherapy.

    Science.gov (United States)

    Devic, Slobodan; Vuong, Té; Moftah, Belal; Evans, Michael; Podgorsak, Ervin B; Poon, Emily; Verhaegen, Frank

    2007-11-01

    Fractionated high dose rate endorectal brachytherapy (HDR-EBT) using CT-based treatment planning is an alternative method for preoperative down-sizing and down-staging of advanced rectal adeno-carcinomas. The authors present an image guidance procedure that was developed to ensure daily dose reproducibility for the four brachytherapy treatment fractions. Since the applicator might not be placed before each treatment fraction inside the rectal lumen in the same manner as it was placed during the 3D CT volume acquisition used for treatment planning, there is a shift along the catheter axis that may have to be performed. The required shift is determined by comparison of a daily radiograph with the treatment planning digitally-reconstructed radiograph (DRR). A procedure is developed for DRR reconstruction from the 3D data set used for the treatment planning, and two possible daily longitudinal shifts are illustrated: above and below the planning dose distribution. The authors also describe the procedure for rotational alignment illustrated on a clinical case. Reproduction of the treatment planned dose distribution on a daily basis is crucial for the success of fractionated 3D based brachytherapy treatments. Due to the cylindrical symmetry of the applicator used for preoperative HDR-EBT, two types of adjustments are necessary: applicator rotation and dwell position shift along the applicator's longitudinal axis. The impact of the longitudinal applicator shift prior to treatment delivery for 62 patients treated in our institution is also assessed.

  10. Fabrication of cesium-137 brachytherapy sources using vitrification technology.

    Science.gov (United States)

    Dash, Ashutosh; Varma, R N; Ram, Ramu; Saxena, S K; Mathakar, A R; Avhad, B G; Sastry, K V S; Sangurdekar, P R; Venkatesh, Meera

    2009-08-01

    137Cs source in solid matrix encapsulated in stainless-steel at MBq (mCi) levels are widely used as brachytherapy sources for the treatment of carcinoma of cervix uteri. This article describes the large-scale preparation of such sources. The process of fabrication includes vitrification of 137Cs-sodium borosilicate glass, its transformation into spheres of 5-6 mm diameter, casting of glass spheres into a cylinder of 1.5 mm (varphi) x 80 mm (l) in a platinum mould, cutting of the moulds into 5-mm-long pieces, silver coating on the sources, and finally, encapsulation in stainless steel capsules. Development of safety precautions used to trap 137Cs escaping during borosilicate glass preparation is also described. The leach rates of the radioactive sources prepared by the above technology were within permissible limits, and the sources could be used for encapsulation in stainless steel capsules and supplied for brachytherapy applications. This development was aimed at promoting the potential utility of 137Cs-brachytherapy sources in the country and reducing the user's reliance on imported sources. Since its development, more than 1000 such sources have been made by using 4.66 TBq(126 Ci) of 137Cs.

  11. A compilation of current regulations, standards and guidelines in remote afterloading brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, J.P.; Simion, G.P.; Kozlowski, S.D. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1994-10-01

    Over a dozen government and professional organizations in the United States and Europe have issued regulations and guidance concerning quality management in the practice of remote afterloading brachytherapy. Information from the publications of these organizations was collected and collated for this report. This report provides the brachytherapy licensee access to a broad field of quality management information in a single, topically organized document.

  12. Salvage high-dose-rate brachytherapy for isolated vaginal recurrence of endometrial cancer.

    Science.gov (United States)

    Baek, Sungjae; Isohashi, Fumiaki; Yamaguchi, Hiroko; Mabuchi, Seiji; Yoshida, Ken; Kotsuma, Tadayuki; Yamazaki, Hideya; Tanaka, Eiichi; Sumida, Iori; Tamari, Keisuke; Otani, Keisuke; Seo, Yuji; Suzuki, Osamu; Yoshioka, Yasuo; Kimura, Tadashi; Ogawa, Kazuhiko

    We have retrospectively analyzed the outcomes of high-dose-rate (HDR) brachytherapy as a salvage therapy for vaginal recurrence of endometrial cancer. From 1997 to 2012, salvage HDR brachytherapy was performed in 43 patients. The median age was 64 years (range, 41-88 years). HDR brachytherapy was performed by interstitial brachytherapy in 34 patients (79%) and by intracavity brachytherapy in nine patients (21%). Seventeen (40%) of the 43 patients were treated with external beam radiotherapy. The median followup period was 58 months (range, 6-179 months). The 5-year overall survival (OS), progression-free survival (PFS), and local control rates (LC) were 84%, 52%, and 78%, respectively. Patients who received brachytherapy with external beam radiotherapy experienced no nodal recurrence (0 of 17 patients), whereas 23% of the patients (6 of 26 patients) who received brachytherapy alone experienced nodal recurrence (p = 0.047). The pathologic grade at the time of initial surgery (G1-2 vs. G3) was found to be a significant prognostic factor for both OS and PFS. The respective 5-year OS was 96% vs. 40% (p endometrial cancer. Pathologic grade, age, and modality were significant prognostic factors. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  13. ALGEBRA: ALgorithm for the heterogeneous dosimetry based on GEANT4 for BRAchytherapy.

    Science.gov (United States)

    Afsharpour, H; Landry, G; D'Amours, M; Enger, S; Reniers, B; Poon, E; Carrier, J-F; Verhaegen, F; Beaulieu, L

    2012-06-07

    Task group 43 (TG43)-based dosimetry algorithms are efficient for brachytherapy dose calculation in water. However, human tissues have chemical compositions and densities different than water. Moreover, the mutual shielding effect of seeds on each other (interseed attenuation) is neglected in the TG43-based dosimetry platforms. The scientific community has expressed the need for an accurate dosimetry platform in brachytherapy. The purpose of this paper is to present ALGEBRA, a Monte Carlo platform for dosimetry in brachytherapy which is sufficiently fast and accurate for clinical and research purposes. ALGEBRA is based on the GEANT4 Monte Carlo code and is capable of handling the DICOM RT standard to recreate a virtual model of the treated site. Here, the performance of ALGEBRA is presented for the special case of LDR brachytherapy in permanent prostate and breast seed implants. However, the algorithm is also capable of handling other treatments such as HDR brachytherapy.

  14. Dosimetry Modeling for Focal Low-Dose-Rate Prostate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Al-Qaisieh, Bashar [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Mason, Josh, E-mail: joshua.mason@nhs.net [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Bownes, Peter; Henry, Ann [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Dickinson, Louise [Division of Surgery and Interventional Science, University College London, London (United Kingdom); Department of Radiology, Northwick Park Hospital, London North West NHS Trust, London (United Kingdom); Ahmed, Hashim U. [Division of Surgery and Interventional Science, University College London, London (United Kingdom); University College London Hospital, London (United Kingdom); Emberton, Mark [University College London Hospital, London (United Kingdom); Langley, Stephen [St Luke' s Cancer Centre, Guildford (United Kingdom)

    2015-07-15

    Purpose: Focal brachytherapy targeted to an individual lesion(s) within the prostate may reduce side effects experienced with whole-gland brachytherapy. The outcomes of a consensus meeting on focal prostate brachytherapy were used to investigate optimal dosimetry of focal low-dose-rate (LDR) prostate brachytherapy targeted using multiparametric magnetic resonance imaging (mp-MRI) and transperineal template prostate mapping (TPM) biopsy, including the effects of random and systematic seed displacements and interseed attenuation (ISA). Methods and Materials: Nine patients were selected according to clinical characteristics and concordance of TPM and mp-MRI. Retrospectively, 3 treatment plans were analyzed for each case: whole-gland (WG), hemi-gland (hemi), and ultra-focal (UF) plans, with 145-Gy prescription dose and identical dose constraints for each plan. Plan robustness to seed displacement and ISA were assessed using Monte Carlo simulations. Results: WG plans used a mean 28 needles and 81 seeds, hemi plans used 17 needles and 56 seeds, and UF plans used 12 needles and 25 seeds. Mean D90 (minimum dose received by 90% of the target) and V100 (percentage of the target that receives 100% dose) values were 181.3 Gy and 99.8% for the prostate in WG plans, 195.7 Gy and 97.8% for the hemi-prostate in hemi plans, and 218.3 Gy and 99.8% for the focal target in UF plans. Mean urethra D10 was 205.9 Gy, 191.4 Gy, and 92.4 Gy in WG, hemi, and UF plans, respectively. Mean rectum D2 cm{sup 3} was 107.5 Gy, 77.0 Gy, and 42.7 Gy in WG, hemi, and UF plans, respectively. Focal plans were more sensitive to seed displacement errors: random shifts with a standard deviation of 4 mm reduced mean target D90 by 14.0%, 20.5%, and 32.0% for WG, hemi, and UF plans, respectively. ISA has a similar impact on dose-volume histogram parameters for all plan types. Conclusions: Treatment planning for focal LDR brachytherapy is feasible. Dose constraints are easily met with a notable

  15. Third-party brachytherapy source calibrations and physicist responsibilities: report of the AAPM Low Energy Brachytherapy Source Calibration Working Group.

    Science.gov (United States)

    Butler, Wayne M; Bice, William S; DeWerd, Larry A; Hevezi, James M; Huq, M Saiful; Ibbott, Geoffrey S; Palta, Jatinder R; Rivard, Mark J; Seuntjens, Jan P; Thomadsen, Bruce R

    2008-09-01

    The AAPM Low Energy Brachytherapy Source Calibration Working Group was formed to investigate and recommend quality control and quality assurance procedures for brachytherapy sources prior to clinical use. Compiling and clarifying recommendations established by previous AAPM Task Groups 40, 56, and 64 were among the working group's charges, which also included the role of third-party handlers to perform loading and assay of sources. This document presents the findings of the working group on the responsibilities of the institutional medical physicist and a clarification of the existing AAPM recommendations in the assay of brachytherapy sources. Responsibility for the performance and attestation of source assays rests with the institutional medical physicist, who must use calibration equipment appropriate for each source type used at the institution. Such equipment and calibration procedures shall ensure secondary traceability to a national standard. For each multi-source implant, 10% of the sources or ten sources, whichever is greater, are to be assayed. Procedures for presterilized source packaging are outlined. The mean source strength of the assayed sources must agree with the manufacturer's stated strength to within 3%, or action must be taken to resolve the difference. Third party assays do not absolve the institutional physicist from the responsibility to perform the institutional measurement and attest to the strength of the implanted sources. The AAPM leaves it to the discretion of the institutional medical physicist whether the manufacturer's or institutional physicist's measured value should be used in performing dosimetry calculations.

  16. Ocular Response of Choroidal Melanoma With Monosomy 3 Versus Disomy 3 After Iodine-125 Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Marathe, Omkar S. [David Geffen School of Medicine, University of Los Angeles, Los Angeles, CA (United States); Wu, Jeffrey; Lee, Steve P. [Department of Radiation Oncology, University of Los Angeles, Los Angeles, CA (United States); Yu Fei; Burgess, Barry L. [Department of Ophthalmology, The Jules Stein Eye Institute, University of Los Angeles, Los Angeles, CA (United States); Leu Min [Department of Radiation Oncology, University of Los Angeles, Los Angeles, CA (United States); Straatsma, Bradley R. [Department of Ophthalmology, The Jules Stein Eye Institute, University of Los Angeles, Los Angeles, CA (United States); McCannel, Tara A., E-mail: TMcCannel@jsei.ucla.edu [Department of Ophthalmology, Jules Stein Eye Institute, University of Los Angeles, Los Angeles, CA (United States); Jonsson Comprehensive Cancer Center, University of Los Angeles, Los Angeles, CA (United States)

    2011-11-15

    Purpose: To report the ocular response of choroidal melanoma with monosomy 3 vs. disomy 3 after {sup 125}I brachytherapy. Methods and Materials: We evaluated patients with ciliochoroidal melanoma managed with fine needle aspiration biopsy immediately before plaque application for {sup 125}I brachytherapy between January 1, 2005 and December 31, 2008. Patients with (1) cytopathologic diagnosis of melanoma, (2) melanoma chromosome 3 status identified by fluorescence in situ hybridization, and (3) 6 or more months of follow-up after brachytherapy were sorted by monosomy 3 vs. disomy 3 and compared by Kruskal-Wallis test. Results: Among 40 ciliochoroidal melanomas (40 patients), 15 had monosomy 3 and 25 had disomy 3. Monosomy 3 melanomas had a median greatest basal diameter of 12.00 mm and a median tumor thickness of 6.69 mm before brachytherapy; at a median of 1.75 years after brachytherapy, median thickness was 3.10 mm. Median percentage decrease in tumor thickness was 48.3%. Disomy 3 melanomas had a median greatest basal diameter of 10.00 mm and median tumor thickness of 3.19 mm before brachytherapy; at a median of 2.00 years after brachytherapy, median tumor thickness was 2.37 mm. The median percentage decrease in tumor thickness was 22.7%. Monosomy 3 melanomas were statistically greater in size than disomy 3 melanomas (p < 0.001) and showed a greater decrease in tumor thickness after brachytherapy (p = 0.006). Conclusion: In this study, ciliochoroidal melanomas with monosomy 3 were significantly greater in size than disomy 3 melanoma and showed a significantly greater decrease in thickness at a median of 1.75 years after brachytherapy. The greater decrease in monosomy 3 melanoma thickness after brachytherapy is consistent with other malignancies in which more aggressive pathology has been shown to be associated with a greater initial response to radiotherapy.

  17. Measuring the absorbed dose in critical organs during low rate dose brachytherapy with {sup 137} Cs using thermoluminescent dosemeters; Medicion de la dosis absorbida en organos criticos durante braquiterapia de baja tasa de dosis con {sup 137} Cs usando dosimetros termoluminiscentes

    Energy Technology Data Exchange (ETDEWEB)

    Torres, A. [UAEM, Fac. de Medicina, 50180 Toluca, Estado de Mexico (Mexico); Gonzalez, P.R. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Furetta, C.; Azorin, J. [UAM-I, 09340 Mexico D.F. (Mexico); Andres, U.; Mendez, G. [Centro Estatal de Cancerologia de Tabasco, A. Gregorio Mendez No. 2838, Col. Atasta, 86100 Villahermosa, Tabasco (Mexico)

    2003-07-01

    Intracavitary Brachytherapy is one of the most used methods for the treatment of the cervical-uterine cancer. This treatment consists in the insertion of low rate dose {sup 137}Cs sources into the patient. The most used system for the treatment dose planning is that of Manchester. This planning is based on sources, which are considered fixed during the treatment. However, the experience has shown that, during the treatment, the sources could be displaced from its initial position, changing the dose from that previously prescribed. For this reason, it is necessary to make measurements of the absorbed dose to the surrounding organs (mainly bladder and rectum). This paper presents the results of measuring the absorbed dose using home-made LiF: Mg, Cu, P + Ptfe thermoluminescent dosimeters (TLD). Measurements were carried out in-vivo during 20 minutes at the beginning and at the end of the treatments. Results showed that the absorbed dose to the critical organs vary significantly due to the movement of the patient during the treatment. (Author)

  18. Clinical study of high dose rate brachytherapy on cervical carcinoma%高剂量率近距离腔内超分割放射治疗宫颈癌的临床研究

    Institute of Scientific and Technical Information of China (English)

    任锦霞; 王小虎; 赵林; 高力英; 吉宏; 刘志强; 罗莉; 杜瑞琴

    2012-01-01

    Objective To explore the possibility and biological effect in clinic by applying unconventional fractionation of intracavitary brachytherapy. Methods In vitro radiotherapy + high dose rate brachytherapy (HDR) cavity radiotherapy were applied in the treatment: the accelerator 6 MV-X lines by Simens were used in vitro illumination; around entire pelvic cavity 2 wilds central technology illuminations etc were also used; integral dose was 46-50 Gy, 23-25 fractions, for 5 weeks. When external irradiation entire pelvic cavity dosage was 30 Gy, 15 fractions the pelvic cavity central kept off the lead (4 cm×10 cm) and started to work in short-distance cavity treatment. The 192Ir high dose rate breech loading therapeutic equipment was used, without cavity internal radiation in vitro illumination at the same day. In the HDR cavity the ultra divisiongroup: point A (Ⅱb, Ⅲ) received 4 Gy perfraction, twice daily of intracavitary irradiation at point A. The intrafraction interval was more than 6 hours daily. The total dose at point A was 40 Gy in 10 fractions, 5 days, 3-4 weeks. In HDR cavity conventional division group: point A (ⅡI b, Ⅲ) received 6 Gy perfraction. The total dose at point A was 36 Gy in 6 fractions, 6 days, 6 weeks. Results By the end of radiotherapy, local control of 24 patients complete remission + partial remission was 100% and the control was 95.83% after a year. Early vagina reaction was: I degree for 10 cases, Ⅱ degree for 11 cases and Ⅲ degree for 3 cases. The reaction did not cause any break-up of treatment. Conclusion Enough fractionation including fraction number and dose perfraction are very important to improve the treatment effect and decrease the later complications of the HDR intracavitary brachytherapy for cervix carcinoma. The method is applicable because of its satisfactory early effects. Further follow-up is needed to evaluate its survival rate as well as later tissue injury.%目的 采用非常规的腔内治疗分割方式,探

  19. Novel treatment options for nonmelanoma skin cancer: focus on electronic brachytherapy

    Directory of Open Access Journals (Sweden)

    Kasper ME

    2015-11-01

    Full Text Available Michael E Kasper,1,2 Ahmed A Chaudhary3 1Department of Radiation Oncology, Lynn Cancer Institute at Boca Raton Regional Hospital, Boca Raton, 2Charles E. Schmidt College of Medicine, Florida Atlantic University, FL, 3North Main Radiation Oncology, Warren Alpert School of Medicine, Brown University, RI, USA Abstract: Nonmelanoma skin cancer (NMSC is an increasing health care issue in the United States, significantly affecting quality of life and impacting health care costs. Radiotherapy has a long history in the treatment of NMSC. Shortly after the discovery of X-rays and 226Radium, physicians cured patients with NMSC using these new treatments. Both X-ray therapy and brachytherapy have evolved over the years, ultimately delivering higher cure rates and lower toxicity. Electronic brachytherapy for NMSC is based on the technical and clinical data obtained from radionuclide skin surface brachytherapy and the small skin surface applicators developed over the past 25 years. The purpose of this review is to introduce electronic brachytherapy in the context of the history, data, and utilization of traditional radiotherapy and brachytherapy. Keywords: electronic brachytherapy, superficial radiotherapy, skin surface brachytherapy, electron beam therapy, nonmelanoma skin cancer, basal cell carcinoma, squamous cell carcinoma

  20. Electromagnetically navigated brachytherapy as a new treatment option for peripheral pulmonary tumors.

    Science.gov (United States)

    Harms, Wolfgang; Krempien, Robert; Grehn, Christian; Hensley, Frank; Debus, Jürgen; Becker, Heinrich D

    2006-02-01

    This technical note describes the principles of navigated brachytherapy for treatment of peripheral non-small cell lung cancer (NSCLC). In a prospective feasibility trial a first patient with medically inoperable NSCLC in the right upper lobe was treated with external-beam radiotherapy (50 Gy) and navigated endoluminal brachytherapy (15 Gy). Navigated bronchoscopy was performed with an electromagnetic navigation system for localization of a microsensor mounted on the tip of a dedicated catheter placed within the working channel of a bronchoscope. The probe can be actively guided by a steering mechanism to targeted lesions in the periphery of the lung. After successful localization of the NSCLC, endobronchial ultrasound (EBUS) was performed to confirm the exact position in the center of the lesion. A 6-F brachytherapy catheter was placed within the tumor. Primary 3-D-planned brachytherapy was performed on chest CTs acquired with the inserted catheter. High-dose-rate brachytherapy (370 GBq iridium-192) was applied as a boost three times a week (single dose 5 Gy) and provided highly conformal irradiations of the NSCLC including the draining bronchovascular bundle. The brachytherapy catheter was tolerated well during treatment (5 days) and alimentation was possible without any problems. Repeated CTs showed stable positioning of the catheter. During follow-up (12 months), endoluminal ultrasound and CT demonstrated a partial remission while histology showed a complete remission of the tumor. Navigated brachytherapy for peripheral pulmonary tumors not amenable to conventional bronchoscopy is feasible.

  1. Electromagnetically navigated brachytherapy as a new treatment option for peripheral pulmonary tumors

    Energy Technology Data Exchange (ETDEWEB)

    Harms, W.; Krempien, R.; Grehn, C.; Hensley, F.; Debus, J. [Dept. of Radio-Oncology, Univ. of Heidelberg (Germany); Becker, H.D. [Dept. of Interdisciplinary Bronchoscopy, Thorax Clinic at Heidelberg Univ. Medical School, Heidelberg (Germany)

    2006-02-01

    Purpose: this technical note describes the principles of navigated brachytherapy for treatment of peripheral non-small cell lung cancer (NSCLC). Material and methods: in a prospective feasibility trial a first patient with medically inoperable NSCLC in the right upper lobe was treated with external-beam radiotherapy (50 Gy) and navigated endoluminal brachytherapy (15 Gy). Navigated bronchoscopy was performed with an electromagnetic navigation system for localization of a microsensor mounted on the tip of a dedicated catheter placed within the working channel of a bronchoscope. The probe can be actively guided by a steering mechanism to targeted lesions in the periphery of the lung. After successful localization of the NSCLC, endobronchial ultrasound (EBUS) was performed to confirm the exact position in the center of the lesion. A 6-F brachytherapy catheter was placed within the tumor. Primary 3-D-planned brachytherapy was performed on chest CTs acquired with the inserted catheter. High-dose-rate brachytherapy (370 GBq iridium-192) was applied as a boost three times a week (single dose 5 Gy) and provided highly conformal irradiations of the NSCLC including the draining bronchovascular bundle. Results: the brachytherapy catheter was tolerated well during treatment (5 days) and alimentation was possible without any problems. Repeated CTs showed stable positioning of the catheter. During follow-up (12 months), endoluminal ultrasound and CT demonstrated a partial remission while histology showed a complete remission of the tumor. Conclusion: navigated brachytherapy for peripheral pulmonary tumors not amenable to conventional bronchoscopy is feasible. (orig.)

  2. Interstitial brachytherapy for eyelid carcinoma. Outcome analysis in 60 patients

    Energy Technology Data Exchange (ETDEWEB)

    Krengli, M.; Deantonio, L. [University Hospital ' ' Maggiore della Carita' ' , Division of Radiotherapy, Novara (Italy); University of ' ' Piemonte Orientale' ' , Department of Translational Medicine, Novara (Italy); Masini, L.; Filomeno, A.; Gambaro, G. [University Hospital ' ' Maggiore della Carita' ' , Division of Radiotherapy, Novara (Italy); Comoli, A.M. [University Hospital Maggiore della Carita, Ophthalmology, Novara (Italy); Negri, E. [University Hospital Maggiore della Carita, Medical Physics, Novara (Italy)

    2014-03-15

    Eyelid cancer is a therapeutic challenge due to the cosmetic and functional implications of this anatomical region and the objectives of therapy are tumor control, functional and cosmetic outcome. The present study was performed to analyze local control, toxicity, functional and cosmetic results in patients with eyelid carcinoma treated by interstitial brachytherapy. In this study 60 patients with eyelid carcinoma were treated by interstitial brachytherapy using iridium ({sup 192}Ir) wires with a linear activity of 1.2-1.7 mCi/cm. The prescription dose was 51-70 Gy (mean 65 Gy, median 66 Gy). Of the 60 patients 51 (85.0 %) had received no prior treatment, 4 (6.7 %) had received previous surgery with positive or close margins and 5 (8.3 %) had suffered local recurrence after surgery. Of the tumors 52 (86.7 %) were basal cell carcinoma, 7 (11.7 %) squamous cell carcinoma and 1 (1.7 %) Merkel cell carcinoma. Clinical stage of the 51 previously untreated tumors was 38 T1N0, 12 T2N0 and 1 T3N0. Mean follow-up was 92 months (range 6-253 months). Local control was maintained in 96.7 % of patients. Late effects higher than grade 2 were observed in 3.0 % of cases. Functional and cosmetic outcomes were optimal in 68.4 % of patients. Interstitial brachytherapy for carcinoma of the eyelid can achieve local control, cosmetic and functional results comparable to those of surgery. (orig.) [German] Das Karzinom des Augenlids stellt aufgrund der funktionellen und kosmetischen Beeintraechtigungen dieser anatomischen Region eine therapeutische Herausforderung dar. Ziele der Therapie sind sowohl die Tumorkontrolle als auch ein gutes funktionelles und kosmetisches Ergebnis. Lokale Kontrolle, Toxizitaet sowie funktionelle und kosmetische Ergebnisse bei Patienten mit Karzinom des Augenlids, die mit interstitieller Brachytherapie behandelt wurden, sollten analysiert werden. Sechzig Patienten mit Karzinom des Augenlids wurden mit interstitieller Brachytherapie mit Iridium-192-Draehten

  3. MO-E-BRD-00: Breast Brachytherapy: The Phoenix of Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  4. MO-E-BRD-01: Is Non-Invasive Image-Guided Breast Brachytherapy Good?

    Energy Technology Data Exchange (ETDEWEB)

    Hiatt, J. [Rhode Island Hospital (United States)

    2015-06-15

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  5. MO-E-BRD-02: Accelerated Partial Breast Irradiation in Brachytherapy: Is Shorter Better?

    Energy Technology Data Exchange (ETDEWEB)

    Todor, D. [Virginia Commonwealth University (United States)

    2015-06-15

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  6. [Permanent implant prostate cancer brachytherapy: 2013 state-of-the art].

    Science.gov (United States)

    Cosset, J-M; Hannoun-Lévi, J-M; Peiffert, D; Delannes, M; Pommier, P; Pierrat, N; Nickers, P; Thomas, L; Chauveinc, L

    2013-04-01

    With an experience of more than 25 years for the pioneers (and more than 14 years in France), permanent implant brachytherapy using iodine 125 seeds (essentially) is now recognized as a valuable alternative therapy for localized low-risk prostate cancer patients. The possible extension of the indications of exclusive brachytherapy towards selected patients in the intermediate-risk group has now been confirmed by several studies. Moreover, for the other patients in the intermediate-risk group and for the patients in the high-risk group, brachytherapy, as an addition to external radiotherapy, could represent one of the best ways to escalate the dose. Different permanent implant brachytherapy techniques have been proposed; preplanning or real-time procedure, loose or stranded seeds (or both), manual or automatic injection of the seeds. The main point here is the ability to perfectly master the procedure and to comply with the dosimetric constraints, which have been recently redefined by the international societies, such as the GEC-ESTRO group. Mid- and long-term results, which are now available in the literature, indicate relapse-free survival rates of about 90% at 5-10 years, the best results being obtained with satisfactory dosimetric data. Comparative data have shown that the incontinence and impotence rates after brachytherapy seemed to be significantly inferior to what is currently observed after surgery. However, a risk of about 3 to 5% of urinary retention is usually reported after brachytherapy, as well as an irritative urinary syndrome, which may significantly alter the quality of life of the patients, and last several months. In spite of those drawbacks, with excellent long-term results, low rates of incontinence and impotence, and emerging new indications (focal brachytherapy, salvage brachytherapy after localized failure of an external irradiation), permanent implant prostate brachytherapy can be expected to be proposed to an increasing number of patients

  7. SU-E-T-579: Impact of Cylinder Size in High-Dose Rate Brachytherapy (HDRBT) for Primary Cancer in the Vagina

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H; Gopalakrishnan, M; Lee, P; Sathiaseelan, V [Department of Radiation Oncology, Northwestern Memorial Hospital, Chicago, IL (United States)

    2014-06-01

    Purpose: To evaluate the dosimetric impact of cylinder size in high dose rate Brachytherapy for primary vaginal cancers. Methods: Patients treated with HDR vaginal vault radiation in a list of cylinders ranging from 2.5 to 4 cm in diameter at 0.5 cm increment were analyzed. All patients’ doses were prescribed at the 0.5 cm from the vaginal surface with different treatment lengths. A series of reference points were created to optimize the dose distribution. The fraction dose was 5.5 Gy, the treatment was repeated for 4 times in two weeks. A cylinder volume was contoured in each case according to the prescribed treatment length, and then expanded to 5 mm to get a volume Cylinder-5mm-exp. A volume of PTV-Eval was obtained by subtracting the cylinder volume from the Cylinder-5mm-exp. The shell volume, PTV-Eval serves as the target volume for dosimetric evaluation. Results: DVH curves and average doses of PTV-Eval were obtained. Our results indicated that the DVH curves shifted toward higher dose side when larger cylinder was used instead of smaller ones. When 3.0 cm cylinder was used instead of 2.5 cm, for 3.0 cm treatment length, the average dose only increased 1%, from 790 to 799 cGy. However, the average doses for 3.5 and 4 cm cylinders respectively are 932 and 1137 cGy at the same treatment length. For 5.0 cm treatment length, the average dose is 741 cGy for 2.5 cm cylinder, and 859 cGy for 3 cm cylinder. Conclusion: Our data analysis suggests that for the vaginal intracavitary HDRBT, the average dose is at least 35% larger than the prescribed dose in the studied cases; the size of the cylinder will impact the dose delivered to the target volume. The cylinder with bigger diameter tends to deliver larger average dose to the PTV-Eval.

  8. Study of dose calculation on breast brachytherapy using prism TPS

    Energy Technology Data Exchange (ETDEWEB)

    Fendriani, Yoza; Haryanto, Freddy [Nuclear Physics and Biophysics Research Division, FMIPA Institut Teknologi Bandung, Physics Buildings, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2015-09-30

    PRISM is one of non-commercial Treatment Planning System (TPS) and is developed at the University of Washington. In Indonesia, many cancer hospitals use expensive commercial TPS. This study aims to investigate Prism TPS which been applied to the dose distribution of brachytherapy by taking into account the effect of source position and inhomogeneities. The results will be applicable for clinical Treatment Planning System. Dose calculation has been implemented for water phantom and CT scan images of breast cancer using point source and line source. This study used point source and line source and divided into two cases. On the first case, Ir-192 seed source is located at the center of treatment volume. On the second case, the source position is gradually changed. The dose calculation of every case performed on a homogeneous and inhomogeneous phantom with dimension 20 × 20 × 20 cm{sup 3}. The inhomogeneous phantom has inhomogeneities volume 2 × 2 × 2 cm{sup 3}. The results of dose calculations using PRISM TPS were compared to literature data. From the calculation of PRISM TPS, dose rates show good agreement with Plato TPS and other study as published by Ramdhani. No deviations greater than ±4% for all case. Dose calculation in inhomogeneous and homogenous cases show similar result. This results indicate that Prism TPS is good in dose calculation of brachytherapy but not sensitive for inhomogeneities. Thus, the dose calculation parameters developed in this study were found to be applicable for clinical treatment planning of brachytherapy.

  9. Dose volume analysis in brachytherapy and stereotactic radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Tozer-Loft, S.M

    2000-12-01

    A brief introduction to three branches of radiotherapy is given: interstitial brachytherapy, external beam megavoltage radiotherapy, and stereotactic radiosurgery. The current interest in issues around conformity, uniformity and optimisation is explained in the light of technical developments in these fields. A novel method of displaying dose-volume information, which mathematically suppresses the inverse-square law, as first suggested by L.L. Anderson for use in brachytherapy is explained in detail, and some improvements proposed. These 'natural' histograms are extended to show the effects of real point sources which do not exactly follow the inverse-square law, and to demonstrate the in-target dose-volume distribution, previously unpublished. The histograms are used as a way of mathematically analysing the properties of theoretical mono-energetic radionuclides, and for demonstrating the dosimetric properties of a potential new brachytherapy source (Ytterbium-169). A new modification of the Anderson formalism is then described for producing Anderson Inverse-Square Shifted (AISS) histograms for the Gamma Knife, which are shown to be useful for demonstrating the quality of stereotactic radiosurgery dose distributions. A study is performed analysing the results of Gamma Knife treatments on 44 patients suffering from a benign brain tumour (acoustic neuroma). Follow-up data is used to estimate the volume shrinkage or growth of each tumour, and this measure of outcome is compared with a range of figures of merit which express different aspects of the quality of each dose distributions. The results are analysed in an attempt to answer the question: What are the important features of the dose distribution (conformality, uniformity, etc) which show a definite relationship with the outcome of the treatment? Initial results show positively that, when Gamma Knife radiosurgery is used to treat acoustic neuroma, some measures of conformality seem to have a surprising

  10. [Endobronchial brachytherapy: state of the art in 2013].

    Science.gov (United States)

    Derhem, N; Sabila, H; Mornex, F

    2013-04-01

    Endobronchial brachytherapy is an invasive technique, which allows localizing radioactive sources at the tumour contact. Therefore, high doses are administered to tumour while healthy tissues can be spared. Initially dedicated to a palliative setting, improvements helped reaching 60 to 88% symptoms alleviation and 30 to 100% of endoscopic macroscopic response. New diagnostic techniques and early diagnosis extended the indications to a curative intent: endoluminal primitive tumour, post radiation endobronchial recurrence, inoperable patients. CT-based dosimetry is a keypoint to optimize treatment quality and to minimize potential side effects, making this treatment a safe and efficient technique for specific indications.

  11. Survival following interstitial brachytherapy for recurrent malignant glioma.

    Science.gov (United States)

    Kitchen, N D; Hughes, S W; Taub, N A; Sofat, A; Beaney, R P; Thomas, D G

    1994-01-01

    The treatment of recurrent malignant glioma is difficult and at present largely disappointing. Furthermore the results of any treatment modality need to be interpreted with knowledge regarding patient selection and timing of treatment. The results of interstitial brachytherapy using iodine-125 in 23 patients are presented. There were no operative complications. Median survival time from tumour recurrence and implantation was 36 and 25 weeks respectively. Karnofsky Performance Status (KPS) was significantly associated with survival, though patient age, original tumour histology, prior chemotherapy, and time to recurrence were not. Treatment does confer modest survival benefit as compared to controls, but our results are not as impressive as others. Reasons for this finding are discussed.

  12. Prosper: image and robot-guided prostate brachytherapy

    CERN Document Server

    Baumann, Michael; Daanen, Vincent; Descotes, Jean-Luc; Giraud, Jean-Yves; Hungr, Nikolai; Leroy, Antoine; Long, Jean-Alexandre; Martin, Sébastien; Troccaz, Jocelyne

    2011-01-01

    Brachytherapy for localized prostate cancer consists in destroying cancer by introducing iodine radioactive seeds into the gland through hollow needles. The planning of the position of the seeds and their introduction into the prostate is based on intra-operative ultrasound (US) imaging. We propose to optimize the global quality of the procedure by: i) using 3D US; ii) enhancing US data with MRI registration; iii) using a specially designed needle-insertion robot, connected to the imaging data. The imaging methods have been successfully tested on patient data while the robot accuracy has been evaluated on a realistic deformable phantom.

  13. Salvage robot-assisted radical prostatectomy after brachytherapy: our experience

    Directory of Open Access Journals (Sweden)

    A. V. Govorov

    2014-01-01

    Full Text Available In case of recurrence of prostate cancer after radiation therapy patient may be offered salvage radical prostatectomy (both open and laparoscopic/robotic, hormone therapy, and a number of alternative techniques such as salvage cryoablation, HIFU-therapy and brachytherapy. Results of monitoring of patients for 10 years after salvage treatment of prostate cancer are known only after salvage prostatectomy. Technically radical prostatectomy after radiation therapy is associated with a large number of complications if compared with primary radical prostatectomy. The most frequent complications after salvage prostatectomy include incontinence, stricture formation of urethrovesical anastomosis, rectal injury, acute urinary retention and infectious complications.

  14. Growth delay effect of combined interstitial hyperthermia and brachytherapy in a rat solid tumor model.

    Science.gov (United States)

    Papadopoulos, D; Kimler, B F; Estes, N C; Durham, F J

    1989-01-01

    The rat mammary AC33 solid tumor model was used to investigate the efficacy of interstitial hyperthermia and/or brachytherapy. Subcutaneous flank tumors were heated with an interstitial microwave (915 MHz) antenna to a temperature of 43 +/- 0.5 degrees C for 45 min for two treatments, three days apart, and/or implanted with Ir-192 seeds for three days (-25 Gy tumor dose). Following treatments, tumors were measured 2 to 3 times per week. Hyperthermia alone produced a modest delay in tumor volume regrowth, while brachytherapy was substantially more effective. The combination produced a improvement in tumor regrowth delay compared to brachytherapy alone.

  15. High dose brachytherapy in pediatric oncology; Braquiterapia com alta taxa de dose em oncologia pediatrica

    Energy Technology Data Exchange (ETDEWEB)

    Ferrigno, Robson; Codjaian, Osanna Esther; Novaes, Paulo Eduardo R.S.; Trippe, Nivaldo [Fundacao Antonio Prudente, Sao Paulo, SP (Brazil). Hospital A.C. Camargo. Dept. de Radioterapia

    1995-05-01

    Brachytherapy is a kind of radiotherapy that has been used in the multidisciplinary approach of some pediatric tumors, such as soft tissue sarcomas of the extremities, head and neck and urogenital tract. Recent technological advances in this area lead to development of computerized high dose rate remote afterloading brachytherapy. This type of treatment has some advantages compared to low dose rate brachytherapy traditionally used. This article describes not only the characteristics and advantages of this kind of treatment, but also the preliminary results of the first seven children treated with high dose rate at the Hospital A.C.Camargo. (author) 10 refs., 8 figs.

  16. A case of percutaneous high dose rate brachytherapy for superior pulmonary sulcus tumor

    Energy Technology Data Exchange (ETDEWEB)

    Asakura, Tamaki; Imamura, Masahiro; Murata, Takashi [Kansai Medical Univ., Moriguchi, Osaka (Japan)] [and others

    1996-07-01

    A 64-year-old man with advanced superior pulmonary sulcus tumor suffered severe unrelieved pain even after chemotherapy, external irradiation and hyperthermia. So we planned to introduce a percutaneous high dose rate brachytherapy using the microselectron HDR {sup 192}Ir. With the estimation using the Pain Score, satisfying pain relief was attainable with a combination of the percutaneous high dose rate brachytherapy and conventional treatment. So the percutaneous high dose rate brachytherapy had the possibility to contribute to the alleviation of the pain. (author)

  17. Study of factors influencing dose distribution of brachytherapy in cervical cancer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective To study the factors which influence the dose distribution of brachytherapy in cervical cancer.Methods Ninety-five patients with cervical cancer Ⅱ-Ⅲb received fundamental radiation therapy including brachytherapy in our department from Aug.2004 to Nov.2005.The deviation of isodose curve of brachytherapy was based on A-B reference system,and the deviation of dose was defined by measuring in a practical standard body model.Results The factors influencing isodose offset significantly were parametrial...

  18. LOW-DOSE RATE BRACHYTHERAPY FOR PROSTATE CANCER: DIFFERENT INDICATIONS – DIFFERENT RESULTS

    Directory of Open Access Journals (Sweden)

    V. A. Biryukov

    2014-07-01

    Full Text Available In Russia, there is presently a growing interest in low-dose intratissue radiotherapy (brachytherapy for locally advanced prostate cancer (PC. Since its inception, current brachytherapy has undergone a number of significant changes in terms of improved visualization and better treatment planning and monitoring, which is sure to have affected the higher quality of their performance and better long-term results. The main purpose of the given paper is to generalize the data of foreign investigators who have the greatest experience with brachytherapy for its further use in the treatment of patients with locally advanced PC under the conditions of Russian clinics.

  19. Use of Monte Carlo Methods in brachytherapy; Uso del metodo de Monte Carlo en braquiterapia

    Energy Technology Data Exchange (ETDEWEB)

    Granero Cabanero, D.

    2015-07-01

    The Monte Carlo method has become a fundamental tool for brachytherapy dosimetry mainly because no difficulties associated with experimental dosimetry. In brachytherapy the main handicap of experimental dosimetry is the high dose gradient near the present sources making small uncertainties in the positioning of the detectors lead to large uncertainties in the dose. This presentation will review mainly the procedure for calculating dose distributions around a fountain using the Monte Carlo method showing the difficulties inherent in these calculations. In addition we will briefly review other applications of the method of Monte Carlo in brachytherapy dosimetry, as its use in advanced calculation algorithms, calculating barriers or obtaining dose applicators around. (Author)

  20. The role of brachytherapy in the definitive management of prostate cancer; Place de la curietherapie dans le traitement du cancer prostatique localise

    Energy Technology Data Exchange (ETDEWEB)

    Crook, J. [British Columbia Cancer Agency, Center for the Southern Interior, 399, Royal Avenue, Kelowna, British Columbia, V1Y 5L33 (Canada)

    2011-06-15

    Over the past two decades, brachytherapy has played an ever expanding role in the definitive radiotherapy of prostate cancer. Brachytherapy surpasses external beam radiotherapy in its ability to deliver intense intra-prostatic dose escalation. Although initially low dose rate permanent seed brachytherapy was favored for favorable risk prostate cancers, and high dose rate temporary brachytherapy for intermediate and advanced disease, both types of brachytherapy now have a place across all the risk groups of localized prostate cancer. This article will review indications and patient selection, planning and technical aspects, toxicity and efficacy for both low and high dose rate prostate brachytherapy. (author)

  1. American Brachytherapy Task Group Report: Adjuvant vaginal brachytherapy for early-stage endometrial cancer: A comprehensive review.

    Science.gov (United States)

    Harkenrider, Matthew M; Block, Alec M; Alektiar, Kaled M; Gaffney, David K; Jones, Ellen; Klopp, Ann; Viswanathan, Akila N; Small, William

    This article aims to review the risk stratification of endometrial cancer, treatment rationale, outcomes, treatment planning, and treatment recommendations of vaginal brachytherapy (VBT) in the postoperative management of endometrial cancer patients. The authors performed a thorough review of the literature and reference pertinent articles pertaining to the aims of this review. Adjuvant VBT for early-stage endometrial cancer patients results in very low rates of vaginal recurrence (0-3.1%) with low rates of late toxicity which are primarily vaginal in nature. Post-Operative Radiation Therapy in Endometrial Cancer 2 (PORTEC-2) supports that VBT results in noninferior rates of vaginal recurrence compared to external beam radiotherapy for the treatment of high-intermediate risk patients. VBT as a boost after external beam radiotherapy, in combination with chemotherapy, and for high-risk histologies have shown excellent results as well though randomized data do not exist supporting VBT boost. There are many different applicators, dose-fractionation schedules, and treatment planning techniques which all result in favorable clinical outcomes and low rates of toxicity. Recommendations have been published by the American Brachytherapy Society and the American Society of Radiation Oncology to help guide practitioners in the use of VBT. Data support that patients and physicians prefer joint decision making regarding the use of VBT, and patients often desire additional treatment for a marginal benefit in risk of recurrence. Discussions regarding adjuvant therapy for endometrial cancer are best performed in a multidisciplinary setting, and patients should be counseled properly regarding the risks and benefits of adjuvant therapy. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  2. Observations on rotating needle insertions using a brachytherapy robot

    Energy Technology Data Exchange (ETDEWEB)

    Meltsner, M A [Department of Medical Physics, University of Wisconsin, Madison, WI 53706 (United States); Ferrier, N J [Department of Mechanical Engineering, University of Wisconsin, Madison, WI 53706 (United States); Thomadsen, B R [Department of Medical Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2007-09-21

    A robot designed for prostate brachytherapy implantations has the potential to greatly improve treatment success. Much of the research in robotic surgery focuses on measuring accuracy. However, there exist many factors that must be optimized before an analysis of needle placement accuracy can be determined. Some of these parameters include choice of the needle type, insertion velocity, usefulness of the rotating needle and rotation speed. These parameters may affect the force at which the needle interacts with the tissue. A reduction in force has been shown to decrease the compression of the prostate and potentially increase the accuracy of seed position. Rotating the needle as it is inserted may reduce frictional forces while increasing accuracy. However, needle rotations are considered to increase tissue damage due to the drilling nature of the insertion. We explore many of the factors involved in optimizing a brachytherapy robot, and the potential effects each parameter may have on the procedure. We also investigate the interaction of rotating needles in gel and suggest the rotate-cannula-only method of conical needle insertion to minimize any tissue damage while still maintaining the benefits of reduced force and increased accuracy.

  3. Intraoperative fluoroscopic dose assessment in prostate brachytherapy patients.

    Science.gov (United States)

    Reed, Daniel R; Wallner, Kent E; Narayanan, Sreeram; Sutlief, Steve G; Ford, Eric C; Cho, Paul S

    2005-09-01

    To evaluate a fluoroscopy-based intraoperative dosimetry system to guide placement of additional sources to underdosed areas, and perform computed tomography (CT) verification. Twenty-six patients with prostate carcinoma treated with either I-125 or Pd-103 brachytherapy at the Puget Sound VA using intraoperative postimplant dosimetry were analyzed. Implants were performed by standard techniques. After completion of the initial planned brachytherapy procedure, the initial fluoroscopic intraoperative dose reconstruction analysis (I-FL) was performed with three fluoroscopic images acquired at 0 (AP), +15, and -15 degrees. Automatic seed identification was performed and the three-dimensional (3D) seed coordinates were computed and imported into VariSeed for dose visualization. Based on a 3D assessment of the isodose patterns additional seeds were implanted, and the final fluoroscopic intraoperative dose reconstruction was performed (FL). A postimplant computed tomography (CT) scan was obtained after the procedure and dosimetric parameters and isodose patterns were analyzed and compared. An average of 4.7 additional seeds were implanted after intraoperative analysis of the dose coverage (I-FL), and a median of 5 seeds. After implantation of additional seeds the mean V100 increased from 89% (I-FL) to 92% (FL) (p sources to supplement inadequately dosed areas within the prostate gland. Additionally, guided implantation of additional source, can significantly improve V100s and D90s, without significantly increasing rectal doses.

  4. Dosimetric study of I-125 seeds used in prostate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maira R.; Rosa, Luiz A.R. da, E-mail: mairasantos@ird.gov.br, E-mail: lrosa@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Facure, Alessandro, E-mail: facure@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Cardoso, Simone C., E-mail: simone@if.ufrj.br [Laboratorio de Fisica da Radiacao Gama e X, Instituto de Fisica (IF/UFRJ), Universidade Federal do Rio de Janeiro, RJ (Brazil); Pereira, Pedro P. [Dosimetrika, Rio de Janeiro, RJ (Brazil); Instituto Nacional de Cancer, E-mail: ppereira@dosimetrika.com.br [INCA-MS, Rio de Janeiro, RJ (Brazil); Silva, Ademir X. da, E-mail: ademir@con.ufrj.br [PEN/COPPE/UFRJ, Universidade Federal do Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Among the possibilities for treatment of prostate cancer, radiotherapy is one of the most commonly used procedures. One of the radiation therapy modalities is brachytherapy, where radioactive sources are placed near or in contact with the tumor mass. Prostate Brachytherapy with iodine seed permanent implantation has become increasingly widespread because it is less invasive and offers the possibility of lower doses to organs at risk and therefore less side effects to patients. The planning for this type of treatment includes the acquisition of images and the delineation of the contours of organs at risk. Generally, important factors for dose administration as, for example, the actual composition of tissues and geometry particularities of the seeds used in the treatment are disregarded. In order to assess the impact of such approaches on the outcome of prostate permanent implant treatment, experimental results, performed with TLD detectors in a prostate phantom of solid water (RW3), and the formalism of the protocol compiled by the Task Group No.43 of the American Association of Physicists in Medicine, were compared for two different irradiation geometries. The present results indicate a good agreement between them. These dataset offers the possibility to determine correction factors that may be applied in actual treatment planning. (author)

  5. Methodology of quality control for brachytherapy {sup 125}I seeds

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Eduardo S.; Zeituni, Carlos A.; Manzoli, Jose E.; Rostelato, Maria Elisa C.M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: esmoura@ipen.br

    2007-07-01

    This paper presents the methodology of quality control of {sup 125}I seeds used for brachytherapy. The {sup 125}I seeds are millimeter titanium capsules widely used in permanent implants of prostate cancer, allowing a high dose within the tumour and a low dose on the surrounding tissues, with very low harm to the other tissues. Besides, with this procedure, the patients have a low impotence rate and a small incidence of urinary incontinence. To meet the medical standards, an efficient quality control is necessary, showing values with the minimum uncertainness possible, concerning the seeds dimensions and their respective activities. The medical needles are used to insert the seeds inside the prostate. The needles used in brachytherapy have an internal diameter of 1.0 mm, so it is necessary {sup 125}I seeds with an external maximum diameter of 0.85 mm. For the seeds and the spacer positioning on the planning sheet, the seeds must have a length between 4.5 and 5.0 mm. The activities must not vary more than 5% in each batch of {sup 125}I seeds. For this methodology, we used two ionization chamber detectors and one caliper. In this paper, the methodology using one control batch with 75 seeds manufactured by GE Health care Ltd is presented. (author)

  6. Review of advanced catheter technologies in radiation oncology brachytherapy procedures

    Directory of Open Access Journals (Sweden)

    Zhou J

    2015-07-01

    Full Text Available Jun Zhou,1,2 Leonid Zamdborg,1 Evelyn Sebastian1 1Department of Radiation Oncology, Beaumont Health System, 2Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA Abstract: The development of new catheter and applicator technologies in recent years has significantly improved treatment accuracy, efficiency, and outcomes in brachytherapy. In this paper, we review these advances, focusing on the performance of catheter imaging and reconstruction techniques in brachytherapy procedures using magnetic resonance images and electromagnetic tracking. The accuracy of catheter reconstruction, imaging artifacts, and other notable properties of plastic and titanium applicators in gynecologic treatments are reviewed. The accuracy, noise performance, and limitations of electromagnetic tracking for catheter reconstruction are discussed. Several newly developed applicators for accelerated partial breast irradiation and gynecologic treatments are also reviewed. New hypofractionated high dose rate treatment schemes in prostate cancer and accelerated partial breast irradiation are presented. Keywords: catheter technologies, catheter reconstruction, electromagnetic tracking, hypofractionated high dose rate treatment, accelerated partial breast irradiation

  7. Iodine-125 orbital brachytherapy with a prosthetic implant in situ

    Energy Technology Data Exchange (ETDEWEB)

    Stannard, Clare [Groote Schuur Hospital and Cape Town Univ. (South Africa). Dept. of Radiation Oncology; Maree, Gert; Munro, Roger [Groote Schuur Hospital and Cape Town Univ. (South Africa). Dept. of Medical Physics; Lecuona, Karin [Groote Schuur Hospital and Cape Town Univ. (South Africa). Dept. of Ophthalmology; Sauerwein, Wolfgang [Universitaetsklinikum Essen (Germany). Strahlenklinik, NCTeam

    2011-05-15

    Purpose: Brachytherapy is one method of irradiating the orbit after enucleation of an eye with a malignant tumor that has a potential to recur. It consists of 6 trains of I-125 seeds placed around the periphery of the orbit, a shorter central train, and a metal disc, loaded with seeds, placed beneath the eyelids. The presence of a prosthetic orbital implant requires omission of the central train and adjustment of the activity of the seeds in the anterior orbit around the prosthesis. Patients and Methods: This is a retrospective review of the technical modifications and outcome of 12 patients treated in this manner: 6 with retinoblastoma, 5 with malignant melanoma, and 1 with an intraocular rhabdomyosarcoma. The median dose was 35.5 Gy in 73 hours for retinoblastoma and 56 Gy in 141 hours for malignant melanoma. Patients with retinoblastoma and rhabdomyosarcoma also received chemotherapy. Results: The tubes can be placed satisfactorily around the prosthesis. The increased activity in the anterior half of the tubes produced comparable dose distributions. There have been no orbital recurrences, no extrusion of the prosthesis, and cosmesis is good. Conclusion: Insertion of a prosthetic implant at the time of enucleation greatly enhances the subsequent cosmetic appearance. This should be encouraged unless there is frank tumor in the orbit. Orbital brachytherapy without the central train continues to give excellent local control. The short treatment time and good cosmesis are added advantages. The patient is spared the expense and inconvenience of removing and replacing the prosthetic implant. (orig.)

  8. Radiation Protection in Brachytherapy. Report of the SEFM Task Group on Brachytherapy; Proteccion radiologica en Braquiterapia. Informe del grupo de trabajo de Braquiterapia de la SEFM

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Calatayud, J.; Corredoira Silva, E.; Crispin Contreras, V.; Eudaldo Puell, T.; Frutos Baraja, J. de; Pino Sorroche, F.; Pujades Claumarchirant, M. C.; Richart Sancho, J.

    2015-07-01

    This document presents the report of the Brachytherapy Task Group of the Spanish Society of Medical Physics. It is dedicated to the radiation protection aspects involved in brachytherapy. The aim of this work is to include the more relevant aspects related to radiation protection issues that appear in clinical practice, and for the current equipment in Spain. Basically this report focuses on the typical contents associated with high dose rate brachytherapy with {sup 1}92Ir and {sup 6}0Co sources, and permanent seed implants with {sup 1}25I, {sup 1}03Pd and {sup 1}31Cs, which are the most current and widespread modalities. Ophthalmic brachytherapy (COMS with {sup 1}25I, {sup 1}06Ru, {sup 9}0Sr) is also included due to its availability in a significant number of spanish hospitals. The purpose of this report is to assist to the medical physicist community in establishing a radiation protection program for brachytherapy procedures, trying to solve some ambiguities in the application of legal requirements and recommendations in clinical practice. (Author)

  9. Gafchromic film dosimetry of a new HDR  192Ir brachytherapy source

    National Research Council Canada - National Science Library

    Ayoobian, Navid; Asl, Akbar Sarabi; Poorbaygi, Hosein; Javanshir, Mohammad Reza

    2016-01-01

    High‐dose‐rate (HDR) brachytherapy is a popular modality for treating cancers of the prostate, cervix, endometrium, breast, skin, bronchus, esophagus, and head and neck as well as soft‐tissue sarcomas...

  10. Penile cancer brachytherapy HDR mould technique used at the Holycross Cancer Center

    OpenAIRE

    Matys, Robert; Kubicka-Mendak, Iwona; Łyczek, Jarosław; Pawłowski, Piotr; Stawiarska, Iwona; Miedzinska, Joanna; Banatkiewicz, Paweł; Łaskawska-Wiatr, Aldona; Wittych, Justyna

    2011-01-01

    The aim of this pictorial essay is to present the mould based HDR brachytherapy technique used at the Holycross Cancer Center for penile cancer patients. We use images to describe this method step by step.

  11. Penile cancer brachytherapy HDR mould technique used at the Holycross Cancer Center.

    Science.gov (United States)

    Matys, Robert; Kubicka-Mendak, Iwona; Lyczek, Jarosław; Pawłowski, Piotr; Stawiarska, Iwona; Miedzinska, Joanna; Banatkiewicz, Paweł; Laskawska-Wiatr, Aldona; Wittych, Justyna

    2011-12-01

    The aim of this pictorial essay is to present the mould based HDR brachytherapy technique used at the Holycross Cancer Center for penile cancer patients. We use images to describe this method step by step.

  12. Study of factors influencing dose distribution of brachytherapy in cervical cancer

    Institute of Scientific and Technical Information of China (English)

    Liu Zi; Gao Ying; Luo Wei; Wang Guoqing; Wang Ruihua; Zheng Wei; Liu Rui

    2008-01-01

    Objective To study the factors which influence the dose distribution of brachytherapy in cervical cancer. Methods Ninety-five patients with cervical cancer Ⅱ - Ⅲ b received fundamental radiation therapy including brachytherapy in our department from Aug. 2004 to Nov. 2005. The deviation of isodose curve of brachytherapy was based on A-B reference system, and the deviation of dose was defined by measuring in a practical standard body model. Results The factors influencing isodose offset significantly were parametrial infiltrating degree, and anatomy factor of cervical cancer and operating skill. The degree of isodose offset could not be lowered with the increased frequency of brachytherapy. Conclusion Making simulation in cervical brachythecapy is necessary not only for the identification of the deviation of isodose curve but also for adjusting the dose distribution and revising the plan of radiotherapy.

  13. Brachytherapy, A viable option of globe salvage in treatment of large ciliary body melanocytoma

    Directory of Open Access Journals (Sweden)

    Mahesh P Shanmugam

    2014-01-01

    Full Text Available We report a case of large histopathologically proven melanocytoma of the ciliary body in a 15-year-old male, presented with rapid extraocular growth following incisional biopsy with scleral patch graft. We chose brachytherapy with Ruthenium 106 plaque over enucleation as the later was refused by the parents. The initial apical height of the tumor was 14.2 mm on ultrasonography. Two weeks after brachytherapy, the mass regressed to a size of 8.1 mm and 1 year later to 6.7 mm. This is the first case report showing the response of brachytherapy to ciliary body melanocytoma, which results in ocular and visual acuity salvation with considerable decreased in size of the tumor. The authors conclude that brachytherapy is an option in the management of non-resectable melanocytoma of the ciliary body.

  14. Dosimetry parameters calculation of two commercial iodine brachytherapy sources using SMARTEPANTS with EPDL97 library

    Directory of Open Access Journals (Sweden)

    Navid Ayoobian

    2012-01-01

    Conclusion: The good agreement between the results of this study and previous reports and high computational speed suggest that SMARTEPANTS could be extended to a real-time treatment planning system for 125 I brachytherapy treatments.

  15. Revascularização da artéria coronária direita intra-atrial Revascularization of intracavitary right coronary artery

    Directory of Open Access Journals (Sweden)

    Artur Lourenção Júnior

    1990-12-01

    Full Text Available A artéria coronária direita, em seu trajeto no sulco atrioventricular direito, pode, em raras ocasiões, penetrar na cavidade atrial direita. Esta variação anatômica poderá modificar a tática cirúrgica em operações de revascularização miocárdica. No presente trabalho, relatamos o caso em que a ponte de veia safena para a artéria coronária direita foi realizada em posição intra-atrial direita.The right coronary artery, during your course in the right atrioventricular sulcus, can sometimes penetrate the right atrial cavity. This anatomical variety can modify the surgical tactics in aortocoronary by-pass surgery. In this paper we present a patient in whom the by-pass with saphenous vein graft to the right coronary artery was made in right intracavitary position.

  16. Preparation of (103)Pd brachytherapy seeds by electroless plating of (103)Pd onto carbon bars.

    Science.gov (United States)

    Li, Zhong-Yong; Gao, Hui-Bo; Deng, Xue-Song; Zhou, Leng; Zhang, Wen-Hui; Han, Lian-Ge; Jin, Xiao-Hai; Cui, Hai-Ping

    2015-09-01

    A method for preparing (103)Pd brachytherapy seeds is reported. The key of the method was to deposit (103)Pd onto carbon bars by electroless plating so as to prepare source cores. After each carbon bar with (103)Pd was sealed in a titanium capsule, the (103)Pd seeds were fabricated. This paper provides valuable experiences and data for the preparation of (103)Pd brachytherapy seeds.

  17. 6th Annual Conference of Indian Brachytherapy Society 2016 (IBSCON 2016) Proceedings

    OpenAIRE

    Srinivasan, Venkatesan; Kuppusamy, Thayalan; Bhalavat, Rajendra L.; ,; Prahlad H Yathiraj; Kumar, Uday P.; Sharan, Krishna; Singh, Anshul; Reddy, Anusha; Fernandes, Donald; Vidyasagar, M.S.; Kumar, Rishabh; Kala, Prachi; Mandal, Sanjeet; Vibhay, Pareek

    2016-01-01

    Purpose To report the incidence, severity, and time of onset of late toxicities in patients of endometrial adenocarcinoma (EA) treated with external beam radiotherapy (EBRT) + brachytherapy (BT), or vaginal brachytherapy (VBT) alone. Material and methods Archives of a single institution from 2008-2015 were studied. The indications for EBRT and VBT were based on standard recommendations. EBRT was planned to 50 Gy/25 fractions/5 weeks/3DCRT with 4-field ‘box’ technique on a dual energy linear a...

  18. Highly efficient method for production of radioactive silver seed cores for brachytherapy.

    Science.gov (United States)

    Cardoso, Roberta Mansini; de Souza, Carla Daruich; Rostelato, Maria Elisa Chuery Martins; Araki, Koiti

    2017-02-01

    A simple and highly efficient (shorter reaction time and almost no rework) method for production of iodine based radioactive silver seed cores for brachytherapy is described. The method allows almost quantitative deposition of iodine-131 on dozens of silver substrates at once, with even distribution of activity per core and insignificant amounts of liquid and solid radioactive wastes, allowing the fabrication of cheaper radioactive iodine seeds for brachytherapy.

  19. HDR Brachytherapy Dose Distribution is Influenced by the Metal Material of the Applicator

    OpenAIRE

    Chin-Hui Wu; Yi-Jen Liao; An-Cheng Shiau; Hsin-Yu Lin; Yen-Wan Hsueh Liu; Shih-Ming Hsu

    2015-01-01

    Applicators containing metal have been widely used in recent years when applying brachytherapy to patients with cervical cancer. However, the high dose rate (HDR) treatment-planning system (TPS) that is currently used in brachytherapy still assumes that the treatment environment constitutes a homogeneous water medium and does not include a dose correction for the metal material of the applicator. The primary purpose of this study was to evaluate the HDR 192Ir dose distribution in cervical can...

  20. Effect of brachytherapy technique and patient characteristics on cervical cancer implant dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Anker, Christopher J., E-mail: chris.anker@hci.utah.edu [Department of Radiation Oncology, Huntsman Cancer Hospital, University of Utah, Salt Lake City, UT (United States); O' Donnell, Kristen [Department of Radiation Oncology, The University of Arizona, Tucson, AZ (United States); Boucher, Kenneth M. [Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT (United States); Gaffney, David K. [Department of Radiation Oncology, Huntsman Cancer Hospital, University of Utah, Salt Lake City, UT (United States)

    2013-01-01

    Our purpose was to evaluate the relationship between brachytherapy technique and patient characteristics on dose to organs-at-risk (OARs) in patients undergoing high dose rate (HDR) brachytherapy for cervical cancer. From 1998 to 2008, 31 patients with cervical cancer with full dosimetric data were identified who received definitive external-beam radiation and HDR brachytherapy with tandem and ovoid applicators. Doses were recorded at point A, the International Commission on Radiation Units and Measurements (ICRU)-38 rectal point, the ICRU-38 bladder point, the vaginal surface, and the pelvic sidewall. Generalized estimating equations were used to determine the significance of changes in OAR to point A dose ratios with differences in brachytherapy technique or patient characteristics. Patients underwent a median of 5 brachytherapy procedures (range, 3 to 5), with a total of 179 procedures for 31 patients. For all brachytherapy treatments, the average ratios between the doses for the rectal, bladder, vaginal surface, and pelvic sidewall reference points to those at point A were 0.49, 0.59, 1.15, and 0.17, respectively. In general, decreased OAR dose was associated with a lower stage, younger age, increased ovoid size, increased tandem length, and earlier implant number. Increased tandem curvature significantly increased bladder dose and decreased rectal dose. Intravenous anesthesia usage was not correlated with improved dosimetry. This study allowed identification of patient and procedure characteristics influencing OAR dosing. Although the advent of 3-dimensional (3D) image-guided brachytherapy will bring new advances in treatment optimization, the actual technique involved at the time of the brachytherapy implant procedure will remain important.

  1. WE-E-BRD-01: HDR Brachytherapy I: Overview of Clinical Application and QA

    Energy Technology Data Exchange (ETDEWEB)

    Libby, B [University of Virginia, Charlottesville, VA (United States); Showalter, T

    2014-06-15

    With the increased usage of high dose rate (HDR) brachytherapy and the introduction of dedicated image guided brachytherapy suites, it is necessary to review the processes and procedures associated with safely delivering these treatments in the expedited time scales that dedicated treatment suites afford. The speakers will present the clinical aspects of switching from LDR to HDR treatments, including guidelines for patient selection, and the clinical outcomes comparing LDR to HDR. The speakers will also discuss the HDR treatment process itself, because the shortened clinical timeline involved with a streamlined scan/plan/treat workflow can introduce other issues. Safety and QA aspects involved with the streamlined process, including increased personnel required for parallel tasks, and possible interfering tasks causing delays in patient treatments will also be discussed. Learning Objectives: To understand the clinical aspects of HDR Brachytherapy, including common clinical indications, patient selection, and the evolving evidence in support of this therapeutic modality To review the current prominent clinical trials for HDR brachytherapy To interpret the established guidelines for HDR brachytherapy quality assurance for implementation into practical clinical settings. To introduce the basic requirements for image guided brachytherapy.

  2. Brachytherapy in childhood rhabdomyosarcoma treatment; Braquiterapia no tratamento do rabdomiossarcoma da infancia

    Energy Technology Data Exchange (ETDEWEB)

    Novaes, Paulo Eduardo Ribeiro dos Santos

    1995-07-01

    A retrospective study of 21 children with rhabdomyosarcoma treated by brachytherapy to the primary site of the tumor at the Radiotherapy Department of the A.C.Camargo Hospital between january/1980 to june/1993 was undertaken. The main objectives were to comprove the utility of brachytherapy in childhood rhabdomyosarcoma, to evaluate the local control and survival, in association with chemotherapy, to analyze the late effects of the treatment and to determinate the preferential technique to each clinical situation. All patients received brachytherapy to the tumor site. The radioactive isotopes employed were Gold{sup 198}, Cesium{sup 137} and Iridium{sup 192}. The brachytherapy techniques depended on the tumor site, period of treatment, availability of the radioactive material and stage of the disease. Patients treated exclusively by brachytherapy received 40 Gy to 60 Gy. When brachytherapy was associated with external radiotherapy the dose ranged from 20 Gy to 40 Gy. Local control was achieved in 18 of 20 patients (90%). The global survival and local control survival rates were 61.9% (13/21 patients) and 72,2% (13/18 patients) respectively. (author)

  3. Tissue modeling schemes in low energy breast brachytherapy.

    Science.gov (United States)

    Afsharpour, Hossein; Landry, Guillaume; Reniers, Brigitte; Pignol, Jean-Philippe; Beaulieu, Luc; Verhaegen, Frank

    2011-11-21

    Breast tissue is heterogeneous and is mainly composed of glandular (G) and adipose (A) tissues. The proportion of G versus A varies considerably among the population. The absorbed dose distributions in accelerated partial breast irradiation therapy with low energy photon brachytherapy sources are very sensitive to tissue heterogeneities. Current clinical algorithms use the recommendations of the AAPM TG43 report which approximates the human tissues by unit density water. The aim of this study is to investigate various breast tissue modeling schemes for low energy brachytherapy. A special case of breast permanent seed implant is considered here. Six modeling schemes are considered. Uniform and non-uniform water breast (UWB and NUWB) consider the density but neglect the effect of the composition of tissues. The uniform and the non-uniform G/A breast (UGAB and NUGAB) as well the age-dependent breast (ADB) models consider the effect of the composition. The segmented breast tissue (SBT) method uses a density threshold to distinguish between G and A tissues. The PTV D(90) metric is used for the analysis and is based on the dose to water (D(90(w,m))). D(90(m,m)) is also reported for comparison to D(90(w,m)). The two-month post-implant D(90(w,m)) averaged over 38 patients is smaller in NUWB than in UWB by about 4.6% on average (ranging from 5% to 13%). Large average differences of G/A breast models with TG43 (17% and 26% in UGAB and NUGAB, respectively) show that the effect of the chemical composition dominates the effect of the density on dose distributions. D(90(w,m)) is 12% larger in SBT than in TG43 when averaged. These differences can be as low as 4% or as high as 20% when the individual patients are considered. The high sensitivity of dosimetry on the modeling scheme argues in favor of an agreement on a standard tissue modeling approach to be used in low energy breast brachytherapy. SBT appears to generate the most geometrically reliable breast tissue models in this

  4. Dosimetric equivalence of nonstandard HDR brachytherapy catheter patterns

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, J. A. M.; Hsu, I-C.; Pouliot, J. [University of California, San Francisco, California 94115 (United States)

    2009-01-15

    Purpose: To determine whether alternative high dose rate prostate brachytherapy catheter patterns can result in similar or improved dose distributions while providing better access and reducing trauma. Materials and Methods: Standard prostate cancer high dose rate brachytherapy uses a regular grid of parallel needle positions to guide the catheter insertion. This geometry does not easily allow the physician to avoid piercing the critical structures near the penile bulb nor does it provide position flexibility in the case of pubic arch interference. This study used CT datasets with 3 mm slice spacing from ten previously treated patients and digitized new catheters following three hypothetical catheter patterns: conical, bi-conical, and fireworks. The conical patterns were used to accommodate a robotic delivery using a single entry point. The bi-conical and fireworks patterns were specifically designed to avoid the critical structures near the penile bulb. For each catheter distribution, a plan was optimized with the inverse planning algorithm, IPSA, and compared with the plan used for treatment. Irrelevant of catheter geometry, a plan must fulfill the RTOG-0321 dose criteria for target dose coverage (V{sub 100}{sup Prostate}>90%) and organ-at-risk dose sparing (V{sub 75}{sup Bladder}<1 cc, V{sub 75}{sup Rectum}<1 cc, V{sub 125}{sup Urethra}<<1 cc). Results: The three nonstandard catheter patterns used 16 nonparallel, straight divergent catheters, with entry points in the perineum. Thirty plans from ten patients with prostate sizes ranging from 26 to 89 cc were optimized. All nonstandard patterns fulfilled the RTOG criteria when the clinical plan did. In some cases, the dose distribution was improved by better sparing the organs-at-risk. Conclusion: Alternative catheter patterns can provide the physician with additional ways to treat patients previously considered unsuited for brachytherapy treatment (pubic arch interference) and facilitate robotic guidance of

  5. Radiological response of ceramic and polymeric devices for breast brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Batista Nogueira, Luciana, E-mail: lucibn19@yahoo.com.br [Departamento de Propedeutica Complementar, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha 31270901, BH/MG (Brazil); Passos Ribeiro de Campos, Tarcisio, E-mail: campos@nuclear.ufmg.br [Departamento de Engenharia Nuclear, Programa de Pos Graduacao em Ciencias e Tecnicas Nucleares, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha 31270901, BH/MG (Brazil)

    2012-04-15

    In the present study, the radiological visibility of ceramic and polymeric devices implanted in breast phantom was investigated for future applications in brachytherapy. The main goal was to determine the radiological viability of ceramic and polymeric devices in vitro by performing simple radiological diagnostic methods such as conventional X-ray analysis and mammography due to its easy access to the population. The radiological response of ceramic and polymeric devices implanted in breast phantom was determined using conventional X-ray, mammography and CT analysis. - Highlights: Black-Right-Pointing-Pointer Radiological visibility of ceramic and polymeric devices implanted in breast phantom. Black-Right-Pointing-Pointer The barium incorporation in the seed improves the radiological contrast. Black-Right-Pointing-Pointer Radiological monitoring shows the position, orientation and degradation of devices. Black-Right-Pointing-Pointer Simple radiological methods such as X-ray and mammography were used for radiological monitoring.

  6. Refining prostate seed brachytherapy: Comparing high-, intermediate-, and low-activity seeds for I-125 permanent seed prostate brachytherapy.

    Science.gov (United States)

    Delouya, Guila; Bahary, Pascal; Carrier, Jean-François; Larouche, Renée-Xavière; Hervieux, Yannick; Béliveau-Nadeau, Dominic; Donath, David; Taussky, Daniel

    2015-01-01

    To analyze the difference in prostate coverage and dose to the rectum in men with prostate carcinoma treated with permanent seed brachytherapy with different seed activities. Forty-nine patients treated with iodine-125 permanent seed prostate brachytherapy with low-activity seeds of 0.30-0.37 mCi were identified. For each of these patients, 2 patients with similar prostate volume (±2 cc) were paired: one treated with intermediate seed activity (0.44-0.46 mCi) and one with high seed activity (0.60-0.66 mCi). The doses to prostate and rectum were compared using CT on Day 30. A total of 147 patients divided into the three seed activity groups were analyzed. Mean prostate volume was 35.7 cc (standard deviation [SD], 11.70). Compared with low-activity seeds, implants with high-activity seeds consisted of an average of 22 seeds and 4.7 needles less. The dose to the prostate (prostate volume receiving 100% of the prescribed dose [V100], prostate volume receiving 150% of the prescribed dose, and minimal dose covering 90% of the prostate volume expressed in Gy) was not higher on Day 30 (p = 0.58-0.97). The mean volume (in cubic centimeters) of rectal wall receiving 100% of the prescribed dose (V100) increased with activity: low activity, 0.34 cc (SD, 0.49), intermediate activity, 0.47 cc (SD, 0.48), and high activity, 0.72 cc (SD, 0.79) (p = 0.009). There was a trend (p = 0.073) toward a higher frequency of clinically unfavorable rectal dosimetry (V100 > 1.3 cc) in patients with high-activity seeds (16.7%) compared with low-activity (6.3%) or intermediate-activity (4.2%) seeds. High-activity seeds do not result in a higher dose to the prostate but in a higher dose to the rectum. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  7. A Monte Carlo investigation of lung brachytherapy treatment planning

    Science.gov (United States)

    Sutherland, J. G. H.; Furutani, K. M.; Thomson, R. M.

    2013-07-01

    Iodine-125 (125I) and Caesium-131 (131Cs) brachytherapy have been used in conjunction with sublobar resection to reduce the local recurrence of stage I non-small cell lung cancer compared with resection alone. Treatment planning for this procedure is typically performed using only a seed activity nomogram or look-up table to determine seed strand spacing for the implanted mesh. Since the post-implant seed geometry is difficult to predict, the nomogram is calculated using the TG-43 formalism for seeds in a planar geometry. In this work, the EGSnrc user-code BrachyDose is used to recalculate nomograms using a variety of tissue models for 125I and 131Cs seeds. Calculated prescription doses are compared to those calculated using TG-43. Additionally, patient CT and contour data are used to generate virtual implants to study the effects that post-implant deformation and patient-specific tissue heterogeneity have on perturbing nomogram-derived dose distributions. Differences of up to 25% in calculated prescription dose are found between TG-43 and Monte Carlo calculations with the TG-43 formalism underestimating prescription doses in general. Differences between the TG-43 formalism and Monte Carlo calculated prescription doses are greater for 125I than for 131Cs seeds. Dose distributions are found to change significantly based on implant deformation and tissues surrounding implants for patient-specific virtual implants. Results suggest that accounting for seed grid deformation and the effects of non-water media, at least approximately, are likely required to reliably predict dose distributions in lung brachytherapy patients.

  8. Development of prostate voxel models for brachytherapy treatment

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Adriano M.; Reis, Lucas P.; Grynberg, Suely E., E-mail: amsantos@cdtn.b [Center for Development of Nuclear Technology (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The tools developed recently in the areas of computer graphics and animation movies to computer games allow the creation of new voxel anthropomorphic phantoms with better resolution and thus, more anatomical details. These phantoms can be used in nuclear applications, especially in radiation protection for estimating doses in cases of occupational or accidental radioactive incidents, and in medical and biological applications. For dose estimates, the phantoms are coupled to a Monte Carlo code, which will be responsible for the transport of radiation in this environment. This study aimed to develop a computational tool to estimate the isodose curves in the prostate after brachytherapy seed implants. For this, we have created a model called FANTPROST in the shape of a 48 mm side cube, with a standard prostate inserted in the center of this cube with different distributions of brachytherapy seeds in this volume. The prostate, according to this model, was obtained from the phantom voxels MASH2 developed by Numerical Dosimetry Group, Department of Nuclear Energy - Federal University of Pernambuco. The modeling of the seeds, added to FANTPROST, was done through the use of geometric information of Iodine-125 Amersham 6711 commercial seed. The simulations were performed by the code MCNP5 for spatial distributions containing different amounts of seeds within the FANTPROST. The obtained curves allowed an estimation of the behavior of the maximum dose that decreases with distance, showing that this tool can be used for a more accurate analysis of the effects produced by the presence of such seeds in the prostate and its vicinity. (author)

  9. ACR appropriateness criteria: Permanent source brachytherapy for prostate cancer.

    Science.gov (United States)

    Davis, Brian J; Taira, Al V; Nguyen, Paul L; Assimos, Dean G; D'Amico, Anthony V; Gottschalk, Alexander R; Gustafson, Gary S; Keole, Sameer R; Liauw, Stanley L; Lloyd, Shane; McLaughlin, Patrick W; Movsas, Benjamin; Prestidge, Bradley R; Showalter, Timothy N; Vapiwala, Neha

    To provide updated American College of Radiology (ACR) appropriateness criteria for transrectal ultrasound-guided transperineal interstitial permanent source brachytherapy. The ACR appropriateness criteria are evidence-based guidelines for specific clinical conditions that are reviewed every 3 years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer reviewed journals and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances where evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment. Permanent prostate brachytherapy (PPB) is a treatment option for appropriately selected patients with localized prostate cancer with low to very high risk disease. PPB monotherapy remains an appropriate and effective curative treatment for low-risk prostate cancer patients demonstrating excellent long-term cancer control and acceptable morbidity. PPB monotherapy can be considered for select intermediate-risk patients with multiparametric MRI useful in evaluation of such patients. High-risk patients treated with PPB should receive supplemental external beam radiotherapy (EBRT) along with androgen deprivation. Similarly, patients with involved pelvic lymph nodes may also be considered for such combined treatment but reported long-term outcomes are limited. Computed tomography-based postimplant dosimetry completed within 60 days of PPB is essential for quality assurance. PPB may be considered for treatment of local recurrence after EBRT but is associated with an increased risk of toxicity. Updated appropriateness criteria for patient evaluation, selection, treatment, and postimplant dosimetry are given. These criteria are intended to be advisory only with the final responsibility for patient care residing with the treating

  10. Two years results of electronic brachytherapy for basal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Rosa Ballester-Sánchez

    2017-06-01

    Full Text Available Purpose: The use of radiation therapy (RT for non-melanoma skin cancer (NMSC has been changing throughout the last century. Over the last decades, the use of radiotherapy has surged with the development of new techniques, applicators, and devices. In recent years, electronic brachytherapy (eBT devices that use small x-ray sources have been introduced as alternative to radionuclide dependence. Nowadays, several devices have been incorporated, with a few series reported, and with a short follow-up, due to the recent introduction of these systems. The purpose of this work is to describe the clinical results of our series after two years follow-up with a specific eBT system. Material and methods: This is a prospective single-center, non-randomized pilot study, to assess clinical results of electronic brachytherapy in basal cell carcinoma using the Esteya® system. In 2014, 40 patients with 60 lesions were treated. Patient follow-up on a regular basis was performed for a period of two years. Results: Twenty-six patients with 44 lesions achieved two years follow-up. A complete response was documented in 95.5% of cases. Toxicity was mild (G1 or G2 in all cases, caused by erythema, erosion, or alopecia. Cosmesis was excellent in 88.6% of cases, and good in the rest. Change in pigmentation was the most frequent cosmetic alteration. Conclusions : This work is special, since the equipment’s treatment voltage was 69.5 kV, and this is the first prospective study with long term follow-up with Esteya®. These preliminary report show excellent results with less toxicity and excellent cosmesis. While surgery has been the treatment of choice, certain patients might benefit from eBT treatment. These are elderly patients with comorbidities or undergoing anticoagulant treatment as well as those who simply refuse surgery or might have other contraindications.

  11. Iodine-125 interstitial brachytherapy for experimental liver cancer

    Institute of Scientific and Technical Information of China (English)

    ZHOU Fei-guo; YAN Jian-jun; HUANG Liang; LIU Cai-feng; ZHANG Xiang-hua; ZHOU Wei-ping; YAN Yi-qun

    2007-01-01

    Objective:To study the effect of iodine-125 interstitial brachytherapy on liver cancer.Methods:Animal model of human liver cancer was established by injecting SMMC-7721 cells cultivated in vitro subcutaneously into the flank of BALB/c nude mice.Nude mice with tumor of 5 mm in diameter were randomly divided into 2 groups(n=10).One iodine-125 seed of apparent activity 0.8 mCi was implanted into the center of tumor in treatment group,whereas an inactive seed was implanted in control group.The other 20 nude mice with tumor reaching 10 mm in diameter were also treated as above.The size of tumor was determined weekly after implantation,and pathological examination and blood routine were taken on the 28th day.Results:Tumor growth was obviously inhibited in treatment group of tumor of 5 mm in diameter,and there was statistically significant difference in tumor volume between treatment and control groups(P<0.01).Around iodine-125 seed,apparent necrosis of tumor was shown in treatment group,accompanied by karyopyknosis and reduced plasma in residual tumor cells microscopically.Tumor growth was not inhibited in either treatment or control group of tumor of 10 mm in diameter.There was no obvious adverse effect except for decreased white blood cells in treatment groups.Conclusion:There is certain effect of iodine-125 interstitial brachytherapy on liver cancer,which is associated with the size of tumor.

  12. The calorimetric measurement of low energy brachytherapy sources

    Science.gov (United States)

    Aus, Robert John

    Historically, the dose rate to tissue from 125I and 103Pd sources was based on a source's apparent activity in free space. The American Association of Physicists in Medicine Task Group 43 (TG43) established a protocol that clarified this formalism for the dose rate determination that was universally accepted in the Medical Physics community. The TG43 protocol is based on air kerma strength and a different set of conversion factors for determining the dose rate. However, there are still many uncertainties associated with this methodology. These uncertainties are predominantly the result of the unknown effects of variations in the source encapsulation and internal source structure on the dose distribution surrounding a source. Currently, there is no method of nondestructively determining the contained radioactivity of brachytherapy sources. Without the knowledge of the contained activity, the effects of source construction variations cannot be evaluated accurately. The goal of this work was to develop a calorimeter that measures the total power generated by a source. This information could then be used to nondestructively determine the contained radioactivity activity of a source. The power generated by three different, well characterized source designs of 125I brachytherapy seeds was measured with the calorimeter. A theoretical model of the calorimeter was also developed to demonstrate that the calorimeter operated as expected. The measured and theoretical temperature results for the three different source models were consistent within the uncertainty of the measurements. The consistency between the calorimetric measurements and the theoretical expected results demonstrates proof of principle of the calorimeter. The information determined from the model can also be useful for future calorimetric research by identifying required calorimeter design features, potential design improvements and potential difficulties.

  13. The role of vaginal cuff brachytherapy in endometrial cancer.

    Science.gov (United States)

    Harkenrider, Matthew M; Block, Alec M; Siddiqui, Zaid A; Small, William

    2015-02-01

    The purpose of this article is to review the data, rationale, and recommendations of vaginal brachytherapy (VBT) in the post-operative treatment of endometrial cancer patients. The authors performed a thorough review of the medical literature regarding the use of adjuvant VBT in the treatment of endometrial cancer. Relevant data are presented in this review. Additionally, personal and institutional practices from the authors are incorporated where relevant. VBT for the adjuvant treatment of early stage endometrial cancer patients results in a low rate of recurrence (0-3.1%) with very low rates of toxicity. PORTEC-2 supports the use of adjuvant VBT versus external beam radiotherapy specifically for high-intermediate risk endometrial cancer patients. VBT has low rates of acute and chronic gastrointestinal and genitourinary toxicity and very low rates of second primary malignancy. The primary toxicity of VBT is vaginal atrophy and stenosis with controversy regarding the use of vaginal dilators for prevention. Data support that patients prefer to be involved in the decision making process for their adjuvant therapy, and patients have a lower minimal desired benefit of adjuvant VBT than do physicians. Guidelines exist from the American Brachytherapy Society and American Society of Radiation Oncology with support from the Society for Gynecologic Oncologists regarding the use of adjuvant VBT. VBT decreases the risk of recurrence with minimal toxicity in the adjuvant treatment of endometrial cancer. Adjuvant therapy should be discussed in a multi-disciplinary setting with detailed counseling of the risks and benefits with the patient so that she ultimately makes an informed decision regarding her adjuvant therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Perioperative brachytherapy for pretreated chest wall recurrence of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, A.; Naszaly, A.; Patyanik, M. [Municipal Center of Oncoradiology, Budapest (Hungary)

    2002-11-01

    Purpose: To demonstrate the technical aspects of high-dose-rate afterloading (HDR-AL) brachytherapy for isolated local chest wall recurrence of breast cancer pretreated with mastectomy and axillary node dissection plus postoperative radiotherapy. Case Report: A 63-year-old female patient with left ductal breast cancer, pT2pN1biMO, was reoperated for an isolated local chest wall recurrence 13 years after primary treatment (mastectomy, axillary dissection, and 50 Gy postoperative irradiation). Radical surgery would have involved extreme multilation. Reoperative surgical margins of 3 mm width were involved, and four parallel afterloading catheters were placed intraoperatively in this histologically positive margin site. Perioperative HDR-AL (Ir-192 stepping source, 370 GBq activity, dose rate: reference air kerma rate at 1 m 40.84 mGy/h kg) was performed. Dose per fraction: 6 Gy to the reference line, two fractions per week, total dose 30 Gy. Follow-up after secondary treatment: 5 years. Results: Firm local control and 5-year disease-free survival were obtained with perioperative HDR-AL therapy; staging procedures (clinical exam, MRI, abdominal ultrasound, and bone scan) showed no evidence of disease. The development of radiodermatitis did not exceed grade 2 level and healed spontaneously within 6 weeks. Conclusions: Isolated local chest all relapse can be effectively controlled by wide surgical excision and perioperative reirradiation with HDR-AL. This technique may represent a treatment alternative to ultraradical surgery, with equal healing probability and a better quality of life. Small-volume irradiation of the postoperative scar can be performed with HDR-AL brachytherapy, and long-term local control can be achieved with a total dose of 30 Gy. (orig.)

  15. Brachytherapy of endometrial cancers; Curietherapie des cancers de l'endometre

    Energy Technology Data Exchange (ETDEWEB)

    Peiffert, D.; Hoffstetter, S.; Charra-Brunaud, C. [Centre Alexis-Vautrin, Unite de Curietherapie, 54 - Vandoeuvre-les-Nancy (France)

    2003-04-01

    Endometrial adenocarcinomas rank third as tumoral sites en France. The tumors are confined to the uterus in 80% of the cases. Brachytherapy has a large place in the therapeutic strategy. The gold standard treatment remains extra-fascial hysterectomy with bilateral annexiectomy and bilateral internal iliac lymph node dissection. However, after surgery alone, the rate of locoregional relapses reaches 4-20%, which is reduced to 0-5% after postoperative brachytherapy of the vaginal cuff. This postoperative brachytherapy is delivered as outpatients treatment, by 3 or 4 fractions, at high dose rate. The utero-vaginal preoperative brachytherapy remains well adapted to the tumors which involve the uterine cervix. Patients presenting a localized tumor but not operable for general reasons (< 10%) can be treated with success by exclusive irradiation, which associates a pelvic irradiation followed by an utero-vaginal brachytherapy. A high local control of about 80-90% is obtained, a little lower than surgery, with a higher risk of late complications. Last but not least, local relapses in the vaginal cuff, or in the perimeatic area, can be treated by interstitial salvage brachytherapy, associated if possible with external beam irradiation. The local control is reached in half of the patients, but metastatic dissemination is frequent. We conclude that brachytherapy has a major role in the treatment of endometrial adenocarcinomas, in combination with surgery, or with external beam irradiation for not operable patients or in case of local relapses. It should use new technologies now available including computerized after-loaders and 3D dose calculation. (authors)

  16. High-dose-rate Intracavitary Radiotherapy in the Management of Cervical Intraepithelial Neoplasia 3 and Carcinoma In Situ Presenting With Poor Histologic Factors After Undergoing Excisional Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Bae, E-mail: ybkim3@yuhs.ac [Department of Radiation Oncology, Severance Hospital, Yonsei University, College of Medicine, Seoul (Korea, Republic of); Kim, Young Tae [Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University, College of Medicine, Seoul (Korea, Republic of); Cho, Nam Hoon [Department of Pathology, Severance Hospital, Yonsei University, College of Medicine, Seoul (Korea, Republic of); Koom, Woong Sub [Department of Radiation Oncology, Severance Hospital, Yonsei University, College of Medicine, Seoul (Korea, Republic of); Kim, Sunghoon; Kim, Sang Wun; Nam, Eun Ji [Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University, College of Medicine, Seoul (Korea, Republic of); Kim, Gwi Eon [Department of Radiation Oncology, Severance Hospital, Yonsei University, College of Medicine, Seoul (Korea, Republic of)

    2012-09-01

    Purpose: To assess the effectiveness of high-dose-rate intracavitary radiotherapy (HDR-ICR) in patients with cervical intraepithelial neoplasia 3 (CIN 3) and carcinoma in situ (CIS) presenting with poor histologic factors for predicting residual disease after undergoing diagnostic excisional procedures. Methods and Materials: This study was a retrospective analysis of 166 patients with CIN 3 (n=15) and CIS (n=151) between October 1986 and December 2005. They were diagnosed by conization (n=158) and punch biopsy (n=8). Pathologic analysis showed 135 cases of endocervical gland involvement (81.4%), 74 cases of positive resection margins (44.5%), and 52 cases of malignant cells on endocervical curettage (31.3%). All patients were treated with HDR-ICR using Co{sup 60} or Ir{sup 192} at a cancer center. The dose was prescribed at point A located 2 cm superior to the external os and 2 cm lateral to the axis of the tandem for intact uterus. Results: Median age was 61 years (range, 29-77). The median total dose of HDR-ICR was 30 Gy/6 fractions (range, 30-52). At follow-up (median, 152 months), 2 patients developed recurrent diseases: 1 CIN 2 and 1 invasive carcinoma. One hundred and forty patients survived and 26 patients died, owing to nonmalignant intercurrent disease. Rectal bleeding occurred in one patient; however, this symptom subsided with conservative management. Conclusions: Our data showed HDR-ICR is an effective modality for CIN 3 and CIS patients presenting with poor histologic factors after excisional procedures. HDR-ICR should be considered as a definitive treatment in CIN 3 and CIS patients with possible residual disease after undergoing excisional procedures.

  17. Size Effects of Gold and Iron Nanoparticles on Radiation Dose Enhancement in Brachytherapy and Teletherapy: A Monte Carlo Study

    Directory of Open Access Journals (Sweden)

    Ahad Ollah Ezzati

    2014-08-01

    Full Text Available Introduction In this study, we aimed to calculate dose enhancement factor (DEF for gold (Au and iron (Fe nanoparticles (NPs in brachytherapy and teletherapy, using Monte Carlo (MC method. Materials and Methods In this study, a new algorithm was introduced to calculate dose enhancement by AuNPs and FeNPs for Iridium-192 (Ir-192 brachytherapy and Cobalt-60 (Co-60 teletherapy sources, using the MC method. In this algorithm, the semi-random distribution of NPs was used instead of the regular distribution. Diameters were assumed to be 15, 30, and 100 nm in brachytherapy and 15 and 30 nm in teletherapy. Monte Carlo MCNP4C code was used for simulations, and NP density values were 0.107 mg/ml and 0.112 mg/ml in brachytherapy and teletherapy, respectively. Results AuNPs significantly enhanced the radiation dose in brachytherapy (approximately 60%, and 100 nm diameter NPs showed the most uniform dose distribution. AuNPs had an insignificant effect on teletherapy radiation field, with a dose enhancement ratio of 3% (about the calculation uncertainty or less. In addition, FeNPs had an insignificant effect on both brachytherapy and teletherapy radiation fields. FeNPs dose enhancement was 3% in brachytherapy and 6% (about the calculation uncertainty or less in teletherapy. Conclusion It can be concluded that AuNPs can significantly increase the absorbed dose in brachytherapy; however, FeNPs do not have a noticeable effect on the absorbed dose

  18. High-dose-rate interstitial brachytherapy for the treatment of penile carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Petera, J.; Odrazka, K.; Zouhar, M.; Bedrosova, J.; Dolezel, M. [Dept. of Oncology and Radiotherapy, Charles Univ. Medical School and Teaching Hospital, Hradec Kralove (Czech Republic)

    2004-02-01

    Background: interstitial low-dose-rate (LDR) brachytherapy allows conservative treatment of T1-T2 penile carcinoma. High-dose-rate (HDR) is often considered to be dangerous for interstitial implants because of a higher risk of complications, but numerous reports suggest that results may be comparable to LDR. Nevertheless, there are no data in the literature available regarding HDR interstitial brachytherapy for carcinoma of the penis. Case report: a 64-year-old man with T1 NO MO epidermoid carcinoma of the glans is reported. Interstitial HDR brachytherapy was performed using the stainless hollow needle technique and a breast template for fixation and good geometry. The dose delivered was 18 x 3 Gy twice daily. Results: after 232 days from brachytherapy, the patient was without any evidence of the tumor, experienced no serious radiation-induced complications, and had a fully functional organ. Conclusion: HDR interstitial brachytherapy is feasible in selected case of penis carcinoma, when careful planning and small single fractions are used. (orig.)

  19. Tolerance of the carotid-sheath contents to brachytherapy: an experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Werber, J.L.; Sood, B.; Alfieri, A.; McCormick, S.A.; Vikram, B. (Department of Otolaryngology--Head and Neck Surgery, New York Medical College, Beth Israel (USA))

    1991-06-01

    Tumor invasion of the carotid artery is a potential indication for brachytherapy, which delivers a high dose of irradiation to residual tumor while limiting the dose to adjacent healthy tissues. The tolerance of carotid-sheath contents to varying doses of brachytherapy, however, has not been clearly established. In order to evaluate brachytherapy effects on carotid-sheath contents, after-loading catheters were implanted bilaterally in 3 groups of 6 rabbits each (18 rabbits). Iridium 192 brachytherapy doses of either 5000 cGy (rad), 9000 cGy, or 13,000 cGy were delivered unilaterally, with the contralateral neck serving as a nonirradiated control in each animal. There were no carotid ruptures and wound healing was normal. Two animals from each group were killed at 6, 20, and 48 weeks. Even at the highest dose (13,000 cGy), nerve conduction studies performed on the vagus nerve prior to sacrifice revealed no increased latency, histologic changes were minimal, and carotid arteries were patent. These observations suggest that the carotid-sheath contents in healthy rabbits could tolerate high doses (up to 13,000 cGy) of low-dose-rate interstitial brachytherapy without complications.

  20. Braquiterapia guiada por imagen Image-guided brachytherapy

    Directory of Open Access Journals (Sweden)

    E. Villafranca

    2009-01-01

    Full Text Available La braquiterapia consiste en la administración de radiación en contacto íntimo con el tumor, con una baja exposición de los tejidos sanos circundantes. Empezó a utilizarse a comienzos del siglo XX y desde entonces ha ido desarrollándose: diferentes radioisótopos, sistemas de tratamiento a distancia, programas informáticos que permiten un cálculo individualizado de la dosis. Los cambios en los últimos años dentro de la braquiterapia han afectado a dos aspectos. En primer lugar, la incorporación de las técnicas de imagen como la ecografía, la tomografía computarizada (TC y la resonancia magnética (RM, imprescindibles para el diagnóstico y la estadificación tumoral. Su utilización mientras se realiza el implante ayuda a guiarlo y realizarlo con mayor precisión. En segundo lugar, la utilización de TC, RM y ecografía permiten mejorar la cobertura del tumor o reducir la dosis a los órganos sanos. Se utilizan dentro de sistemas de planificación inversa, que realizan el cálculo de dosis a partir de las recomendaciones de las dosis a administrar al tumor y a los órganos sanos. En estos programas de planificación es posible hacer los cálculos con mucha rapidez, teniendo en cuenta la colocación en cada momento de la fuente. Esta técnica, llamada planificación en tiempo real, empieza a mostrar ventajas en el tratamiento de los cánceres de próstata. La incorporación de las técnicas de imagen y las mejoras en los sistemas de cálculo han hecho que en la actualidad la braquiterapia juegue un papel importante en el tratamiento del cáncer de próstata, cérvix, mama, tumores de cabeza y cuello, bronquio o esófago.Brachytherapy consists in the administration of radiation in intimate contact with the tumour, with a low exposure of neighbouring healthy tissues. Its use began in the early XX century and it has developed since then: different radioisotopes, systems of remote treatment, computer programs making individual dose

  1. Radiation protection after interstitial permanent prostate brachytherapy implants

    Energy Technology Data Exchange (ETDEWEB)

    Pirraco, R.; Pereira, A.; Cavaco, A. [Instituto Portugues de Oncologia Francisco Gentil - Centro R egional de Oncologia do Porto, SA, Porto (Portugal)

    2006-07-01

    Full text of publication follows: In this study we measure patients radiation exposure dose after interstitial {sup 125}I permanent prostate Brachytherapy implants, and correlate it with dose limits for public, total activity implanted, patient preoperative weight(1), distance between prostate walls and anterior skin surface. Methods and Material: We analyse 20 patients who were implanted with {sup 125}I seeds. The instrument used to measure radiation is a calibrated Berthold Umo LB 123 aco-plated to a LB 1236-H10 detector. Three measurements were taken: at the perineal and anterior pelvic zones on contact with the skin and at 1 m from the patient. The maximum value was taken for all measurements. The dose at a distance of one meter is obtained at anterior pelvic zone, perpendicular to the skin, according to the recommendations of A.A.P.M.(1). The distance between prostate walls was determined using post -operative CT images. Results: The doses at the perineal zone have determined an average of 186 {mu}Sv/h (range: 110 340 {mu}Sv/h) and at surface pelvic zone of 41 {mu}Sv/h (range: 15 103 {mu}Sv/h). The dose at a distance of 1 meter has an average value of 0.4 {mu}Sv/h (range: 0.2 1.0 {mu}Sv/h). The average total activity implanted was 25 mCi (range: 17 38 mCi). The distance between prostate walls and skin pelvic surface of the patients has an average value of 8.9 cm (range: 6.6 -11.5 cm). At a distance of 1 meter from the pelvic zone the dose measured is very low and below dose limits imposed by the European Directive EURATOM 2 and the Portuguese law. For general public to reach annual dose limit (EURATOM - 1 mSv/year) when contacting the pelvic zone, we extrapolate that 4 days (range: 1.6 11.1 days) would be needed, assuming a daily contact period of 6 hours. Conclusion: We established a correlation between the distance of prostate walls to the skin perineal surface and the total dose, but we find no correlation between measured doses, total activity implanted

  2. Toxicity associated with bowel or bladder puncture during gynecologic interstitial brachytherapy.

    Science.gov (United States)

    Shah, Anand P; Strauss, Jonathan B; Gielda, Benjamin T; Zusag, Thomas W

    2010-05-01

    Interstitial brachytherapy for gynecologic malignancies is associated with significant toxicity. Some reports have correlated this toxicity with needle puncture of the visceral organs. This study examined our experience with interstitial brachytherapy and investigated the relationship between the visceral puncture and toxicity. The outcomes of 36 patients treated with interstitial brachytherapy for gynecologic malignancies at a single institution between 2002 and 2007 were reviewed. Computed tomography was used to guide needle placement based solely on tumor coverage. No attempts were made to avoid visceral puncture; however, the source dwell times were minimized in these areas. At a median follow-up of 21 months, the crude locoregional control rate was 78%. Bowel puncture was noted in 26 patients and bladder puncture in 19. The mean operating time was 50 min, and 86% of patients were discharged in source loading carries a low risk of morbidity.

  3. Simulation of dose distribution for iridium-192 brachytherapy source type-H01 using MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Purwaningsih, Anik [Center for development of nuclear informatics, National Nuclear Energy Agency, PUSPIPTEK, Serpong, Banten 15310 (Indonesia)

    2014-09-30

    Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result of calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.

  4. Simulation of dose distribution for iridium-192 brachytherapy source type-H01 using MCNPX

    Science.gov (United States)

    Purwaningsih, Anik

    2014-09-01

    Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result of calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.

  5. Update on prostate brachytherapy: long-term outcomes and treatment-related morbidity.

    Science.gov (United States)

    Kao, Johnny; Cesaretti, Jamie A; Stone, Nelson N; Stock, Richard G

    2011-06-01

    Current research in prostate brachytherapy focuses on five key concepts covered in this review. Transrectal ultrasound-guided prostate brachytherapy assisted by intraoperative treatment planning is the most advanced form of image-guided radiation delivery. Prostate brachytherapy alone for low-risk prostate cancer achieves lower prostate-specific antigen (PSA) nadirs than intensity-modulated radiotherapy (IMRT) or protons while maintaining durable biochemical control in about 90% of patients without late failures seen in surgically treated patients. As an organ-conserving treatment option, seed implant results in a lower rate of erectile dysfunction and urinary incontinence than surgery that has been validated in several recent prospective studies. Combined IMRT and seed implant has emerged as a rational and highly effective approach to radiation-dose escalation for intermediate- and high-risk prostate cancer. Preliminary results suggest that seed implantation may play a role in improving outcomes for historically poor-prognosis locally advanced and recurrent prostate cancers.

  6. Prostate brachytherapy seed migration to the heart seen on cardiovascular computed tomographic angiography

    Directory of Open Access Journals (Sweden)

    Shilpa Sachdeva, MD

    2017-03-01

    Full Text Available Brachytherapy consists of placing radioactive sources into or adjacent to tumors, to deliver conformal radiation treatment. The technique is used for treatment of primary malignancies and for salvage in recurrent disease. Permanent prostate brachytherapy seeds are small metal implants containing radioactive sources of I-125, Pd-103, or Cs-131 encased in a titanium shell. They can embolize through the venous system to the lungs or heart and subsequently be detected by cardiovascular computed tomography. Cardiovascular imagers should be aware of the appearance of migrated seeds, as their presence in the chest is generally benign, so that unnecessary worry and testing are avoided. We report a case of a patient who underwent brachytherapy for prostate cancer and developed a therapeutic seeds embolus to the right ventricle.

  7. Water equivalent phantom materials for 192Ir brachytherapy

    Science.gov (United States)

    Schoenfeld, Andreas A.; Harder, Dietrich; Poppe, Björn; Chofor, Ndimofor

    2015-12-01

    Several solid phantom materials have been tested regarding their suitability as water substitutes for dosimetric measurements in brachytherapy with 192Ir as a typical high energy photon emitter. The radial variations of the spectral photon fluence, of the total, primary and scattered photon fluence and of the absorbed dose to water in the transversal plane of the tested cylindrical phantoms surrounding a centric and coaxially arranged Varian GammaMed afterloading 192Ir brachytherapy source were Monte-Carlo simulated in EGSnrc. The degree of water equivalence of a phantom material was evaluated by comparing the radial dose-to-water profile in the phantom material with that in water. The phantom size was varied over a large range since it influences the dose contribution by scattered photons with energies diminished by single and multiple Compton scattering. Phantom axis distances up to 10 cm were considered as clinically relevant. Scattered photons with energies reaching down into the 25 keV region dominate the photon fluence at source distances exceeding 3.5 cm. The tested phantom materials showed significant differences in the degree of water equivalence. In phantoms with radii up to 10 cm, RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, and Plastic Water LR phantoms show excellent water equivalence with dose deviations from a water phantom not exceeding 0.8%, while Original Plastic Water (as of 2015), Plastic Water (1995), Blue Water, polyethylene, and polystyrene show deviations up to 2.6%. For larger phantom radii up to 30 cm, the deviations for RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, and Plastic Water LR remain below 1.4%, while Original Plastic Water (as of 2015), Plastic Water (1995), Blue Water, polyethylene, and polystyrene produce deviations up to 8.1%. PMMA plays a separate role, with deviations up to 4.3% for radii not exceeding 10 cm, but below 1% for radii up to 30 cm. As suggested by

  8. The Preliminary Prototype of Medium Dose Rate Brachytherapy Equipment

    Directory of Open Access Journals (Sweden)

    A. Satmoko

    2013-08-01

    Full Text Available A preliminary prototype of a brachytherapy equipment has been constructed. The work started by developing conceptual design, followed by basic design and detailed design. In the conceptual design, design requirements are stated. In the basic design, technical specifications for main components are determined. In detailed design, general drawings are discussed. The prototype consists of three main systems: a mechanical system, an instrumentation system, and a safety system. The mechanical system assures the movement mechanism of the isotope source position beginning from the standby position until the applicators. It consists of three main modules: a position handling module, a container module, and a channel distribution module. The position handling module serves to move the isotope source position. As shielding, the second module is to store the source when the equipment is in standby position. The prototype provides 12 output channels. The channel selection is performed by the third module. The instrumentation system controls the movement of source position by handling motor operations. It consists of several modules. A microcontroller module serves as a control center whose task includes both controlling motors and communicating with computer. A motor module serves to handle motors. 10 sensors, including their signal conditionings, are introduced to read the environment conditions of the equipment. LEDs are used to display these conditions. In order to facilitate the operators’ duty, communication via RS232 is provided. The brachytherapy equipment can therefore be operated by using computer. Interface software is developed using C# language. To complete both mechanical and instrumentation systems performance, a safety system is developed to make sure that the safety for operator and patients from receiving excessive radiation. An interlock system is introduced to guard against abnormal conditions. In the worst case, a manual intervention

  9. Rapid emission angle selection for rotating-shield brachytherapy

    Science.gov (United States)

    Liu, Yunlong; Flynn, Ryan T.; Yang, Wenjun; Kim, Yusung; Bhatia, Sudershan K.; Sun, Wenqing; Wu, Xiaodong

    2013-01-01

    Purpose: The authors present a rapid emission angle selection (REAS) method that enables the efficient selection of the azimuthal shield angle for rotating shield brachytherapy (RSBT). The REAS method produces a Pareto curve from which a potential RSBT user can select a treatment plan that balances the tradeoff between delivery time and tumor dose conformity. Methods: Two cervical cancer patients were considered as test cases for the REAS method. The RSBT source considered was a Xoft AxxentTM electronic brachytherapy source, partially shielded with 0.5 mm of tungsten, which traveled inside a tandem intrauterine applicator. Three anchor RSBT plans were generated for each case using dose-volume optimization, with azimuthal shield emission angles of 90°, 180°, and 270°. The REAS method converts the anchor plans to treatment plans for all possible emission angles by combining neighboring beamlets to form beamlets for larger emission angles. Treatment plans based on exhaustive dose-volume optimization (ERVO) and exhaustive surface optimization (ERSO) were also generated for both cases. Uniform dwell-time scaling was applied to all plans such that that high-risk clinical target volume D90 was maximized without violating the D2cc tolerances of the rectum, bladder, and sigmoid colon. Results: By choosing three azimuthal emission angles out of 32 potential angles, the REAS method performs about 10 times faster than the ERVO method. By setting D90 to 85–100 Gy10, the delivery times used by REAS generated plans are 21.0% and 19.5% less than exhaustive surface optimized plans used by the two clinical cases. By setting the delivery time budget to 5–25 and 10–30 min/fx, respectively, for two the cases, the D90 contributions for REAS are improved by 5.8% and 5.1% compared to the ERSO plans. The ranges used in this comparison were selected in order to keep both D90 and the delivery time within acceptable limits. Conclusions: The REAS method enables efficient RSBT

  10. Evaluation of 101Rh as a brachytherapy source

    Science.gov (United States)

    Ghorbani, Mahdi; Meigooni, Ali Soleimani

    2015-01-01

    Purpose Recently a number of hypothetical sources have been proposed and evaluated for use in brachytherapy. In the present study, a hypothetical 101Rh source with mean photon energy of 121.5 keV and half-life of 3.3 years, has been evaluated as an alternative to the existing high-dose-rate (HDR) sources. Dosimetric characteristics of this source model have been determined following the recommendation of the Task Group 43 (TG-43) of the American Association of the Physicist in Medicine (AAPM), and the results are compared with the published data for 57Co source and Flexisource 192Ir sources with similar geometries. Material and methods MCNPX Monte Carlo code was used for simulation of the 101Rh hypothetical HDR source design. Geometric design of this hypothetical source was considered to be similar to that of Flexisource 192Ir source. Task group No. 43 dosimetric parameters, including air kerma strength per mCi, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated for the 101Rh source through simulations. Results Air kerma strength per activity and dose rate constant for the hypothetical 101Rh source were 1.09 ± 0.01 U/mCi and 1.18 ± 0.08 cGy/(h.U), respectively. At distances beyond 1.0 cm in phantom, radial dose function for the hypothetical 101Rh source is higher than that of 192Ir. It has also similar 2D anisotropy functions to the Flexisource 192Ir source. Conclusions 101Rh is proposed as an alternative to the existing HDR sources for use in brachytherapy. This source provides medium energy photons, relatively long half-life, higher dose rate constant and radial dose function, and similar 2D anisotropy function to the Flexisource 192Ir HDR source design. The longer half-life of the source reduces the frequency of the source exchange for the clinical environment. PMID:26034499

  11. [Prostate brachytherapy: oncological and functional results after 400 cases].

    Science.gov (United States)

    Gastaldi, Emilio; Chiono, Luciano; Gallo, Fabrizio; Giberti, Claudio

    2014-01-01

    Brachytherapy (BT) with real-time technique for the treatment of low and medium risk prostate cancer (CaP) has been a well known practice for over 25 years in the USA and for over 
15 years in Italy. However, it is an uncommon procedure, because of problems related to the organization and cooperation among urologists, radiotherapists and physics, to the competition of alternative therapies, to dogmatic and educational beliefs, and to the poor knowledge of this technique.
 Between May1999 and July 2013, 400 patients with low and medium risk CaP underwent I 125 BT using a "real-time" approach. The seeds implantation was performed using a Mick applicator in the first 190 patients and the "QuickLink" technique in the last 210 cases. Oncologic results were reported for the first 250 cases with a mean follow-up of 10 years, while functional outcomes and complications were assessed in 350 patients with a minimum follow-up of 1 year.
 A good quality implantation was assessed in 90% of the patients (D90>145 Gy). A biochemical failure was assessed, based on Phoenix criteria, in 12 patients (4.8%). Out of these patients, 
10 underwent prostate biopsy (the other 2 patients showed a systemic disease). The biopsy showed a CaP in 6/10 patients who underwent retropubic radical prostatectomy (4 patients) and external radiotherapy (2 patients) respectively. The remaining 4/10 patients with negative biopsy were treated with total androgen blockade (3 patients) and watchful waiting (1 patient) respectively. Functional results showed an incidence of postoperative irritative disorders in 70% of the patients during the first six months and a good recovery of erectile function in 78.8% and 68.2% of the patients after one and five years from BT respectively.
 Brachytherapy is a good alternative to radical prostatectomy in the low and medium risk prostatic cancers with excellent oncologic and functional results.

  12. Plaque Brachytherapy for Uveal Melanoma: A Vision Prognostication Model

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Niloufer [Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio (United States); Khan, Mohammad K. [Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia (United States); Bena, James [Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio (United States); Macklis, Roger [Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio (United States); Singh, Arun D., E-mail: singha@ccf.org [Department of Ophthalmic Oncology, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio (United States)

    2012-11-01

    Purpose: To generate a vision prognostication model after plaque brachytherapy for uveal melanoma. Methods and Materials: All patients with primary single ciliary body or choroidal melanoma treated with iodine-125 or ruthenium-106 plaque brachytherapy between January 1, 2005, and June 30, 2010, were included. The primary endpoint was loss of visual acuity. Only patients with initial visual acuity better than or equal to 20/50 were used to evaluate visual acuity worse than 20/50 at the end of the study, and only patients with initial visual acuity better than or equal to 20/200 were used to evaluate visual acuity worse than 20/200 at the end of the study. Factors analyzed were sex, age, cataracts, diabetes, tumor size (basal dimension and apical height), tumor location, and radiation dose to the tumor apex, fovea, and optic disc. Univariate and multivariable Cox proportional hazards were used to determine the influence of baseline patient factors on vision loss. Kaplan-Meier curves (log rank analysis) were used to estimate freedom from vision loss. Results: Of 189 patients, 92% (174) were alive as of February 1, 2011. At presentation, visual acuity was better than or equal to 20/50 and better than or equal to 20/200 in 108 and 173 patients, respectively. Of these patients, 44.4% (48) had post-treatment visual acuity of worse than 20/50 and 25.4% (44) had post-treatment visual acuity worse than 20/200. By multivariable analysis, increased age (hazard ratio [HR] of 1.01 [1.00-1.03], P=.05), increase in tumor height (HR of 1.35 [1.22-1.48], P<.001), and a greater total dose to the fovea (HR of 1.01 [1.00-1.01], P<.001) were predictive of vision loss. This information was used to develop a nomogram predictive of vision loss. Conclusions: By providing a means to predict vision loss at 3 years after treatment, our vision prognostication model can be an important tool for patient selection and treatment counseling.

  13. Occupational exposure of professionals during interstitial permanent prostate brachytherapy implants

    Energy Technology Data Exchange (ETDEWEB)

    Pirraco, R.; Pereira, A.; Viterbo, T.; Cavaco, A. [Instituto Portugues de Oncologia Francisco Gentil, Centro R egional de Oncologia do Porto, SA, Porto (Portugal)

    2006-07-01

    Full text of publication follows: Introduction: In this study we present dose measurements for professionals exposed during interstitial 125 I permanent prostate brachytherapy implants. Methods and Materials: The implant technique used was intra operative real time using strand and loose seeds. The professionals inside the operating room are an oncologist, a radiologist, a physicist, a nurse and an anesthesiologist. The oncologist and the physicist contact directly the loaded needle with radioactive seeds and two types of measurements were taken: total body and extremities (finger) dose. The rest of the team operates at long distances, but measurements were made. To measure total body equivalent dose we use a Berthold Umo LB 123 coupled with a LB 1236-H10 detector, and we recorded dose, time and distance from implant location. Finger dosemeters are thermo -luminescent dosimeter (TLD) rings that were controlled over one month. Results: 50 cases (average number of applications per year) were analysed for extremities measurements and 9 cases for total body measurements (in this case, the results were extrapolated for 50 cases), with an average of 26.1 mCi total activity per implant (in a range of 17.4 - 40.3 mCi). The finger dose was 1.8 mSv for the oncologist and 1.9 mSv for the physicist. The interpolation of total body equivalent dose for the oncologist was 24 mSv, for the radiologist 6 mSv and 9 mSv for the physicist. The rest of the team did not receive anything but background radiation. The annual national limit dose for workers is 20 mSv for total body irradiation, and 500 mSv for extremities. Conclusion: In conclusion we may say that during interstitial permanent prostate brachytherapy implants, total doses received for all groups are not significant when compared to annual limits for Portuguese laws 1. Even so, our main goal is always to get the less possible dose (ALARA principle). References: 1. Decreto Lei n. 180/2002 de 8 de Agosto. (authors)

  14. SU-F-BRA-04: Prostate HDR Brachytherapy with Multichannel Robotic System

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, F Maria; Podder, T [University Hospitals Case Medical Center, Cleveland, OH (United States); Yu, Y [Thomas Jefferson University, Philadelphia, PA (United States)

    2015-06-15

    Purpose: High-dose-rate (HDR) brachytherapy is gradually becoming popular in treating patients with prostate cancers. However, placement of the HDR needles at desired locations into the patient is challenging. Application of robotic system may improve the accuracy of the clinical procedure. This experimental study is to evaluate the feasibility of using a multichannel robotic system for prostate HDR brachytherapy. Methods: In this experimental study, the robotic system employed was a 6-DOF Multichannel Image-guided Robotic Assistant for Brachytherapy (MIRAB), which was designed and fabricated for prostate seed implantation. The MIRAB has the provision of rotating 16 needles while inserting them. Ten prostate HDR brachytherapy needles were simultaneously inserted using MIRAB into a commercially available prostate phantom. After inserting the needles into the prostate phantom at desired locations, 2mm thick CT slices were obtained for dosimetric planning. HDR plan was generated using Oncetra planning system with a total prescription dose of 34Gy in 4 fractions. Plan quality was evaluated considering dose coverage to prostate and planning target volume (PTV), with 3mm margin around prostate, as well as the dose limit to the organs at risk (OARs) following the American Brachytherapy Society (ABS) guidelines. Results: From the CT scan, it is observed that the needles were inserted straight into the desired locations and they were adequately spaced and distributed for a clinically acceptable HDR plan. Coverage to PTV and prostate were about 91% (V100= 91%) and 96% (V100=96%), respectively. Dose to 1cc of urethra, rectum, and bladder were within the ABS specified limits. Conclusion: The MIRAB was able to insert multiple needles simultaneously into the prostate precisely. By controlling the MIRAB to insert all the ten utilized needles into the prostate phantom, we could achieve the robotic HDR brachytherapy successfully. Further study for assessing the system

  15. MO-FG-210-00: US Guided Systems for Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Ultrasound (US) is one of the most widely used imaging modalities in medical practice. Since US imaging offers real-time imaging capability, it has becomes an excellent option to provide image guidance for brachytherapy (IGBT). (1) The physics and the fundamental principles of US imaging are presented, and the typical steps required to commission an US system for IGBT is provided for illustration. (2) Application of US for prostate HDR brachytherapy, including partial prostate treatments using MR-ultrasound co-registration to enable a focused treatment on the disease within the prostate is also presented. Prostate HDR with US image guidance planning can benefit from real time visualization of the needles, and fusion of the ultrasound images with T2 weighted MR allows the focusing of the treatment to the specific areas of disease within the prostate, so that the entire gland need not be treated. Finally, (3) ultrasound guidance for an eye plaque program is presented. US can be a key component of placement and QA for episcleral plaque brachytherapy for ocular cancer, and the UCLA eye plaque program with US for image guidance is presented to demonstrate the utility of US verification of plaque placement in improving the methods and QA in episcleral plaque brachytherapy. Learning Objectives: To understand the physics of an US system and the necessary aspects of commissioning US for image guided brachytherapy (IGBT). To understand real time planning of prostate HDR using ultrasound, and its application in partial prostate treatments using MR-ultrasound fusion to focus treatment on disease within the prostate. To understand the methods and QA in applying US for localizing the target and the implant during a episcleral plaque brachytherapy procedures.

  16. Brachytherapy for early oral tongue cancer. Low dose rate to high dose rate

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Hideya [Toyonaka Municipal Hospital, Osaka (Japan); Inoue, Takehiro; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Inoue, Toshihiko [Osaka Univ., Suita (Japan). Graduate School of Medicine; Furukawa, Souhei; Kakimoto, Naoya [Osaka Univ., Suita (Japan). Graduate School of Dentistry

    2003-03-01

    To examine the compatibility of low dose rate (LDR) with high dose rate (HDR) brachytherapy, we reviewed 399 patients with early oral tongue cancer (T1-2N0M0) treated solely by brachytherapy at Osaka University Hospital between 1967 and 1999. For patients in the LDR group (n=341), the treatment sources consisted of Ir-192 pin for 227 patients (1973-1996; irradiated dose, 61-85 Gy; median, 70 Gy), Ra-226 needle for 113 patients (1967-1986; 55-93 Gy; median, 70 Gy). Ra-226 and Ir-192 were combined for one patient. Ir-192 HDR (microSelectron-HDR) was used for 58 patients in the HDR group (1991-present; 48-60 Gy; median, 60 Gy). LDR implantations were performed via oral and HDR via a submental/submandibular approach. The dose rates at the reference point for the LDR group were 0.30 to 0.8 Gy/h, and for the HDR group 1.0 to 3.4 Gy/min. The patients in the HDR group received a total dose of 48-60 Gy (8-10 fractions) during one week. Two fractions were administered per day (at least a 6-h interval). The 3- and 5-year local control rates for patients in the LDR group were 85% and 80%, respectively, and those in the HDR group were both 84%. HDR brachytherapy showed the same lymph-node control rate as did LDR brachytherapy (67% at 5 years). HDR brachytherapy achieved the same locoregional result as did LDR brachytherapy. A converting factor of 0.86 is applicable for HDR in the treatment of early oral tongue cancer. (author)

  17. The Royal College of Radiologists' audit of prostate brachytherapy in the year 2012.

    Science.gov (United States)

    Stewart, A J; Drinkwater, K J; Laing, R W; Nobes, J P; Locke, I

    2015-06-01

    This audit provides a comprehensive overview of UK prostate brachytherapy practice in the year 2012, measured against existing standards, immediately before the introduction of new Royal College of Radiologists (RCR) guidelines. This audit allows comparison with European and North American brachytherapy practice and for the impact of the RCR 2012 guidelines to be assessed in the future. A web-based data collection tool was developed by the RCR Clinical Audit Committee and sent to audit leads at all cancer centres in the UK. Standards were developed based on available guidelines in use at the start of 2012 covering case mix and dosimetry. Further questions were included to reflect areas of anticipated change with the implementation of the 2012 guidelines. Audit findings were compared with similar audits of practice in Europe, the USA and Latin America. Forty-nine of 59 cancer centres submitted data. Twenty-nine centres reported carrying out prostate brachytherapy; of these, 25 (86%) provided data regarding the number of implants, staffing, dosimetry, medication and anaesthesia and follow-up. Audit standards achieved excellent compliance in most areas, although were low in post-implant dosimetry and in post-implant scanning at 30 days. This audit provides a comprehensive picture of prostate brachytherapy in the UK in 2012. Patterns of care of prostate brachytherapy are similar to practice in the USA and Europe. The number of prostate brachytherapy implants carried out in the UK has grown significantly since a previous RCR audit in 2005 and it is important that centres maintain minimum numbers of cases to ensure that experience can be maintained and compliance to guidelines achieved. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  18. Brachytherapy for early oral tongue cancer: low dose rate to high dose rate.

    Science.gov (United States)

    Yamazaki, Hideya; Inoue, Takehiro; Yoshida, Ken; Yoshioka, Yasuo; Furukawa, Souhei; Kakimoto, Naoya; Shimizutani, Kimishige; Inoue, Toshihiko

    2003-03-01

    To examine the compatibility of low dose rate (LDR) with high dose rate (HDR) brachytherapy, we reviewed 399 patients with early oral tongue cancer (T1-2N0M0) treated solely by brachytherapy at Osaka University Hospital between 1967 and 1999. For patients in the LDR group (n = 341), the treatment sources consisted of Ir-192 pin for 227 patients (1973-1996; irradiated dose, 61-85 Gy; median, 70 Gy), Ra-226 needle for 113 patients (1967-1986; 55-93 Gy; median, 70 Gy). Ra-226 and Ir-192 were combined for one patient. Ir-192 HDR (microSelectron-HDR) was used for 58 patients in the HDR group (1991-present; 48-60 Gy; median, 60 Gy). LDR implantations were performed via oral and HDR via a submental/submandibular approach. The dose rates at the reference point for the LDR group were 0.30 to 0.8 Gy/h, and for the HDR group 1.0 to 3.4 Gy/min. The patients in the HDR group received a total dose of 48-60 Gy (8-10 fractions) during one week. Two fractions were administered per day (at least a 6-h interval). The 3- and 5-year local control rates for patients in the LDR group were 85% and 80%, respectively, and those in the HDR group were both 84%. HDR brachytherapy showed the same lymph-node control rate as did LDR brachytherapy (67% at 5 years). HDR brachytherapy achieved the same locoregional result as did LDR brachytherapy. A converting factor of 0.86 is applicable for HDR in the treatment of early oral tongue cancer.

  19. Survival of patients with advanced pancreatic cancer after iodine125 seeds implantation brachytherapy

    Science.gov (United States)

    Han, Quanli; Deng, Muhong; Lv, Yao; Dai, Guanghai

    2017-01-01

    Abstract Background: Brachytherapy with iodine125-labeled seeds (125I-seeds) implantation is increasingly being used to treat tumors because of its positional precision, minimal invasion, least damage to noncancerous tissue due to slow and continuous release of radioactivity and facilitation with modern medical imaging technologies. This study evaluates the survival and pain relief outcomes of the 125I-seeds implantation brachytherapy in advanced pancreatic cancer patients. Methods: Literature search was carried out in multiple electronic databases (Google Scholar, Embase, Medline/PubMed, and Ovid SP) and studies reporting I125 seeds implantation brachytherapy in pancreatic cancer patients with unresectable tumor were selected by following predetermined eligibility criteria. Random effects meta-analysis was performed to achieve inverse variance weighted effect size of the overall survival rate after the intervention. Sensitivity and subgroups analyses were also carried out. Results: Twenty-three studies (824 patients’ data) were included in the meta-analysis. 125I-seeds implantation brachytherapy alone was associated with 8.98 [95% confidence interval (CI): 6.94, 11.03] months (P < 0.00001) overall survival with 1-year survival of 25.7 ± 9.3% (mean ± standard deviation; SD) and 2-year survival was 17.9 ± 8.6% (mean ± SD). In stage IV pancreatic cancer patients, overall survival was 7.13 [95% CI: 4.75, 9.51] months (P < 0.00001). In patients treated with 125I-seeds implantation along with 1 or more therapies, overall survival was 11.75 [95% CI: 9.84, 13.65] months (P < 0.00001) with 1-year survival of 47.4 ± 22.75% (mean ± SD) and 2-year survival was 16.97 ± 3.1% (mean ± SD). 125I-seeds brachytherapy was associated with relief of pain in 79.7 ± 9.9% (mean ± SD) of the patients. Conclusions: Survival of pancreatic cancer patients after 125I-seeds implantation brachytherapy is found to be 9 months

  20. In vivo dosimetry thermoluminescence dosimeters during brachytherapy with a 370 GBq {sup 192}Ir source

    Energy Technology Data Exchange (ETDEWEB)

    Cuepers, S.; Piessens, M.; Verbeke, L.; Roelstraete, A. [Onze-Lieve-Vrouw Hospitaal, Aalst (Belgium). Dept. of Radiotherapy and Oncology

    1995-12-01

    When using LiF thermoluminescence dosimeters in brachytherapy, we have to take into account the properties of a high dose rate {sup 192}Ir source (energy spectrum ranging form 9 to 885 keV, steep dose gradient in the vicinity of the source) and these of the dosimeters themselves (supralinearity, reproducibility, size). All these characteristics combine into a set of correction factors which have been determined during in phantom measurements. These results have then been used to measure the dose delivered to organs at risk (e.g. rectum, bladder, etc.) during high dose rate brachytherapy with a 370 GBq {sup 192}Ir source for patients with gynaecological tumors.

  1. High dose-rate brachytherapy source position quality assurance using radiochromic film.

    Science.gov (United States)

    Evans, M D C; Devic, S; Podgorsak, E B

    2007-01-01

    Traditionally, radiographic film has been used to verify high-dose-rate brachytherapy source position accuracy by co-registering autoradiographic and diagnostic images of the associated applicator. Filmless PACS-based clinics that do not have access to radiographic film and wet developers may have trouble performing this quality assurance test in a simple and practical manner. We describe an alternative method for quality assurance using radiochromic-type film. In addition to being easy and practical to use, radiochromic film has some advantages in comparison with traditional radiographic film when used for HDR brachytherapy quality assurance.

  2. Endovascular brachytherapy to prevent restenosis after angioplasty; Endovaskulaere Brachytherapie in der Restenoseprophylaxe nach Angioplastie und Stentimplantation: Eine Uebersicht

    Energy Technology Data Exchange (ETDEWEB)

    Wohlgemuth, W.A.; Bohndorf, K. [Klinikum Augsburg (Germany). Klinik fuer Diagnostische Radiologie und Neuroradiologie

    2003-02-01

    Endovascular radiotherapy is the first effective prophylaxis of restenosis after percutaneous transluminal angioplasty (PTA) and stenting. The FDA recently approved two devices for the delivery of intracoronary radiation following coronary artery stenting. Published multicenter, double-blind, randomized trials of intracoronary radiation therapy report good results for preventing in-stent restenosis, while the data for the peripheral circulation are still inconclusive. Beta-emitters are easier applicable and probably also safer, whereas gamma-emitters have been more extensively evaluated clinically so far. Primary indication for endovascular brachytherapy are patients at high risk for restenosis, such as previous restenoses, in-stent hyperplasia, long stented segment, long PTA lesion, narrow residual vascular lumen and diabetes. Data from coronary circulation suggest a safety margin of at least 4 to 10 mm at both ends of the angioplastic segment to avoid edge restenosis. To prevent late thrombosis of the treated coronary segment, antiplatelet therapy with clopidogrel and aspirin are recommended for at least 6 months after PTA and for 12 months after a newly implanted stent. An established medication regimen after radiotherapy of peripheral arteries is still lacking. (orig.) [German] Die endovaskulaere Radiotherapie stellt das erste erfolgreiche Therapiekonzept in der Restenoseprophylaxe nach PTA und Stentimplantation dar. Am 3.11.2000 hat die amerikanische Food and Drug Administration erstmalig zwei Brachytherapiegeraete zur Restenoseprophylaxe nach Koronararterien-Stenting zugelassen. Grosse multizentrische, kontrollierte Studien wurden fuer das koronare Stromgebiet mit positiven Ergebnissen publiziert, die Datenlage im peripheren Stromgebiet ist noch ungenuegend. Beta-Strahler bieten Vorteile in der Anwendung, moeglicherweise auch in der Sicherheit, Gamma-Strahler dagegen sind besser klinisch evaluiert. Die primaere Indikation zur endovaskulaeren Brachytherapie

  3. Transradial coronary brachytherapy with the Novoste Beta-Rail system.

    Science.gov (United States)

    Bertrand, Olivier F; De Larochellière, Robert; Gleeton, Onil; Plante, Sylvain; Tessier, Michel; Guimond, Jean

    2002-03-01

    We report our initial experience in 10 consecutive patients who underwent transradial coronary brachytherapy for in-stent restenosis using a 90Sr/Y source and the Novoste Beta-Rail system. In all patients, procedures were successfully completed using a right transradial approach. We performed the procedures with the Beta-Rail catheter using 7 Fr (Zuma II, Medtronic, MN; n = 5) or 8 Fr (Cordis, Miami, FL; n = 5) guiding catheters. All lesions were successfully dilated and no additional stent was inserted. We used a 40 mm source (n = 3) or a 60 mm source (n = 7) with manual stepping in four cases. In three cases, we did one stepping, and in one case, we did three steppings. The mean dwell time was 195 plus minus 44 sec. The mean delivered dose was 23 +/- 3 Gy at 2 mm distance from the source. No radiation treatment was interrupted. Mean fluoroscopy time was 26 +/- 13 min. Procedural success was achieved in all patients. Three patients had mild CK elevations (< 3 times upper normal limit). All patients were pretreated with clopidogrel (300 mg) and combined treatment with aspirin + clopidogrel is to be continued for at least 1 year. Clinical follow-up up to 3 months has not yielded any complication and all patients have remained free from angina.

  4. Pedicle versus free flap reconstruction in patients receiving intraoperative brachytherapy.

    Science.gov (United States)

    Geiger, Erik J; Basques, Bryce A; Chang, Christopher C; Son, Yung; Sasaki, Clarence T; McGregor, Andrew; Ariyan, Stephan; Narayan, Deepak

    2016-08-01

    Introduction This study compared complication rates between pedicle flaps and free flaps used for resurfacing of intraoperative brachytherapy (IOBT) implants placed following head and neck tumour extirpation to help clarify the ideal reconstructive procedure for this scenario. Patients and methods A retrospective review of reconstructions with IOBT at our institution was conducted. Patient and treatment details were recorded, as were the number and type of flap complications, including re-operations. Logistic regressions compared complications between flap groups. Results Fifty free flaps and 55 pedicle flaps were included. On multivariate analysis, free flap reconstruction with IOBT was significantly associated with both an increased risk of having any flap complication (OR = 2.9, p = 0.037) and with need for operative revision (OR = 3.5, p = 0.048) compared to pedicle flap reconstruction. Conclusions In the setting of IOBT, free flaps are associated with an increased risk of having complications and requiring operative revisions.

  5. Application of spherical micro diodes for brachytherapy dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Broisman, Andrey, E-mail: andreybr@ariel.ac.i [Medical Physics, Ariel University Center, Ariel 40700 (Israel); Shani, Gad [Biomedical Engineering, Ben Gurion University, P.O. Box 653, Beer Sheva 84105 (Israel)

    2011-03-15

    The research presented in this paper demonstrates the feasibility and the advantages of using spherical micro diodes for radiation dosimetry. The spherical symmetry of the diode response is demonstrated, compared to that of planar diodes. The application of the spherical diode described here is for radiotherapy dosimetry, particularly brachytherapy. Measurements were done in PMMA phantoms. The advantage of the spherical diode is that it can be used for radiation measurement in a 4{pi} geometry, it was demonstrated by measurements in both axial and azimuthal planes. The diodes were found to respond equally to radiation coming from all directions, directly from the source or due to scattered radiation within the medium. In the present work 1.8 mm diameter silicone diodes were used. The small size of these spherical diodes provides local dose measurement and can be used for in situ dosimetry while treatment takes place. Treatment planning correction can be made accordingly. Commercially available seeds of the isotopes I{sup 125} and Pd{sup 103} were used as radiation sources. The spherical diodes response was compared with that of planar diodes XRB generally used for UV and X-ray dosimetry, and with TLD measurements. We have also compared the measured results with Monte Carlo simulation, applying the MCNP code and with calculations shown in the TG-43 report.

  6. MRI/TRUS data fusion for prostate brachytherapy. Preliminary results

    CERN Document Server

    Reynier, Christophe; Fourneret, Philippe; Dusserre, André; Gay-Jeune, Cécile; Descotes, Jean-Luc; Bolla, Michel; Giraud, Jean-Yves

    2008-01-01

    Prostate brachytherapy involves implanting radioactive seeds (I125 for instance) permanently in the gland for the treatment of localized prostate cancers, e.g., cT1c-T2a N0 M0 with good prognostic factors. Treatment planning and seed implanting are most often based on the intensive use of transrectal ultrasound (TRUS) imaging. This is not easy because prostate visualization is difficult in this imaging modality particularly as regards the apex of the gland and from an intra- and interobserver variability standpoint. Radioactive seeds are implanted inside open interventional MR machines in some centers. Since MRI was shown to be sensitive and specific for prostate imaging whilst open MR is prohibitive for most centers and makes surgical procedures very complex, this work suggests bringing the MR virtually in the operating room with MRI/TRUS data fusion. This involves providing the physician with bi-modality images (TRUS plus MRI) intended to improve treatment planning from the data registration stage. The pape...

  7. Development of irradiation support devices for production of brachytherapy seeds

    Energy Technology Data Exchange (ETDEWEB)

    Mattos, Fabio R.; Rostelato, Maria Elisa C.M.; Zeituni, Carlos A.; Souza, Carla D.; Moura, Joao A.; Peleias Junior, Fernando S.; Karan Junior, Dib; Feher, Anselmo; Oliveira, Tiago B.; Benega, Marcos A.G., E-mail: tiagooliveira298@gmail.com, E-mail: mattos.fr@gmail.com, E-mail: elisaros@ipen.br, E-mail: czeituni@ipen.br, E-mail: carladdsouza@yahoo.com.br, E-mail: jamoura@ipen.br, E-mail: ernandopeleias@gmail.com, E-mail: s, E-mail: dib.karan@usp.br, E-mail: afeher@ipen.br, E-mail: marcosagbenega@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Ophthalmic tumors treatment with brachytherapy sources has been widely used as a primary or secondary therapy for non-malignant or malignant tumors, for example, choroid melanoma, and retinoblastoma. Ruthenium-106, Iodine-125, Palladium -103, Gold-198 and Iridium-192, are some radionuclides that can be applied for treatment of ocular tumors. These sources are in small sizes (a few millimeters) and different shapes (rods, wires, disks). To ensure high accuracy during treatment, they are positioned in eye applicators, specially designed to fit on the surface of tumor. The Nuclear and Energy Research Institute (IPEN/CNEN) in a partnership with Paulista Medicine School (UNIFESP) created a project that aims to develop a prototype of Iridium-192 seeds for treatment of eye cancer. This seed consists in a core of Ir -Pt alloy (20%-80%) with a length of 3 mm, to be activated in IPEN's IEA-R1 Reactor, and a titanium capsule sealing the core. It was imperative to develop a sustainer device for irradiation. This piece is used to avoid overlapping of one cores and, therefore, avoiding the 'shadow effect' that does not allow full activation of each core due to the high density. (author)

  8. Monte Carlo evaluation of kerma in an HDR brachytherapy bunker

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Calatayud, J [Department of Atomic, Molecular and Nuclear Physics, and IFIC, CSIC-University of Valencia, Burjassot (Spain); Granero, D [Department of Atomic, Molecular and Nuclear Physics, and IFIC, CSIC-University of Valencia, Burjassot (Spain); Ballester, F [Department of Atomic, Molecular and Nuclear Physics, and IFIC, CSIC-University of Valencia, Burjassot (Spain); Casal, E [Department of Atomic, Molecular and Nuclear Physics, and IFIC, CSIC-University of Valencia, Burjassot (Spain); Crispin, V [FIVO, Fundacion Instituto Valenciano De OncologIa, Valencia (Spain); Puchades, V [Grupo IMO-SFA, Madrid (Spain); Leon, A [Department of Chemistry and Nuclear Engineering, Polytechnic University of Valencia, Valencia (Spain); Verdu, G [Department of Chemistry and Nuclear Engineering, Polytechnic University of Valencia, Valencia (Spain)

    2004-12-21

    In recent years, the use of high dose rate (HDR) after-loader machines has greatly increased due to the shift from traditional Cs-137/Ir-192 low dose rate (LDR) to HDR brachytherapy. The method used to calculate the required concrete and, where appropriate, lead shielding in the door is based on analytical methods provided by documents published by the ICRP, the IAEA and the NCRP. The purpose of this study is to perform a more realistic kerma evaluation at the entrance maze door of an HDR bunker using the Monte Carlo code GEANT4. The Monte Carlo results were validated experimentally. The spectrum at the maze entrance door, obtained with Monte Carlo, has an average energy of about 110 keV, maintaining a similar value along the length of the maze. The comparison of results from the aforementioned values with the Monte Carlo ones shows that results obtained using the albedo coefficient from the ICRP document more closely match those given by the Monte Carlo method, although the maximum value given by MC calculations is 30% greater. (note)

  9. How one institution overcame the challenges to start an MRI-based brachytherapy program for cervical cancer

    Directory of Open Access Journals (Sweden)

    Matthew M. Harkenrider

    2017-03-01

    Full Text Available Purpose : Adaptive magnetic resonance imaging (MRI-based brachytherapy results in improved local control and decreased high-grade toxicities compared to historical controls. Incorporating MRI into the workflow of a department can be a major challenge when initiating an MRI-based brachytherapy program. This project aims to describe the goals, challenges, and solutions when initiating an MRI-based cervical cancer brachytherapy program at our institution. Material and methods : We describe the 6-month multi-disciplinary planning phase to initiate an MRI-based brachytherapy program. We describe the specific challenges that were encountered prior to treating our first patient. Results : We describe the solutions that were realized and executed to solve the challenges that we faced to establish our MRI-based brachytherapy program. We emphasize detailed coordination of care, planning, and communication to make the workflow feasible. We detail the imaging and radiation physics solutions to safely deliver MRI-based brachytherapy. The focus of these efforts is always on the delivery of optimal, state of the art patient care and treatment delivery within the context of our available institutional resources. Conclusions : Previous publications have supported a transition to MRI-based brachytherapy, and this can be safely and efficiently accomplished as described in this manuscript.

  10. Simultaneous radiochemotherapy and endoluminal HDR brachytherapy in esophageal cancer; Simultane Radiochemotherapie mit intraluminaler HDR-Brachytherapie des Oesophaguskarzinoms

    Energy Technology Data Exchange (ETDEWEB)

    Patonay, P.; Naszaly, A.; Mayer, A. [Hauptstaedtisches Zentrum fuer Radioonkologie und Strahlentherapie, Budapest (Hungary)

    2007-02-15

    Purpose: to study efficacy and toxicity of radiochemotherapy in esophageal cancer including initial endoluminal high-dose-rate brachytherapy (HDR-BT). Patients and methods: between 01/1995 and 06/2005, 61 patients with esophageal cancer were treated preoperatively with definitive and palliative intent. Treatment started with intraluminal HDR-BT for recanalization of the esophagus (single fraction size of 8 Gy in 0.5 cm depth, three times, q7d) followed by external-beam radiation therapy (50 Gy total dose, 5 x 2 Gy/week, 25 fractions in 5 weeks). Chemotherapy was started simultaneously with external irradiation (three courses of cisplatin and 5-fluorouracil, q21d). Results: swallowing function improved in 55/61 patients (dysphagia classification according to the RTOG), and worsened in 6/61 patients, respectively. Median duration of symptomatic improvement was 11 months, median follow-up 12 months (range 3-68 months). Following simultaneous radiochemotherapy, tumor resectability was achieved in 7/25 patients of the neoadjuvant group, and the histological specimen showed complete remission in 6/7 patients. Conclusion: these results indicate a favorable effect of simultaneous radiochemotherapy starting with endoluminal HDR-after-loading-(AL-)BT in esophageal cancer. (orig.)

  11. CT-guided brachytherapy. A novel percutaneous technique for interstitial ablation of liver malignancies; CT-gesteuerte Brachytherapie. Eine neue perkutane Technik zur interstitiellen Ablation von Lebermetastasen

    Energy Technology Data Exchange (ETDEWEB)

    Ricke, J.; Wust, P.; Stohlmann, A.; Beck, A.; Cho, C.H.; Pech, M.; Wieners, G.; Spors, B.; Werk, M.; Rosner, C.; Haenninen, E.L.; Felix, R. [Klinik fuer Strahlenheilkunde, Charite Virchow-Klinikum, Humboldt-Univ. zu Berlin (Germany)

    2004-05-01

    Purpose: to assess safety and efficacy of CT-guided brachytherapy of liver malignancies. Patients and methods: 21 patients with 21 liver malignancies (19 metastases, two primary liver tumors) were treated with interstitial CT-guided brachytherapy applying a {sup 192}Ir source. In all patients, the use of image-guided thermal tumor ablation such as by radiofrequency or laser-induced thermotherapy (LITT) was impeded either by tumor size {>=} 5 cm in seven, adjacent portal or hepatic vein in ten, or adjacent bile duct bifurcation in four patients. Dosimetry was performed using three-dimensional CT data sets acquired after CT-guided positioning of the brachytherapy catheters. Results: the mean tumor diameter was 4.6 cm (2.5-11 cm). The mean minimal tumor dose inside the tumor margin amounted to 17 Gy (12-20 Gy). The proportion of the liver parenchyma exposed to > 5 gy was 18% (5-39%) of total liver parenchyma minus tumor volume. Nausea and vomiting were observed in six patients after brachytherapy (28%). One patient demonstrated obstructive jaundice due to tumor edema after irradiation of a metastasis adjacent to the bile duct bifurcation. We commonly encountered asymptomatic increases of liver enzymes. Local control rates after 6 and 12 months were 87% and 70%, respectively. Conclusion: CT-guided brachytherapy is safe and effective. This technique displays broader indications compared to image-guided thermal ablation by radiofrequency or LITT with respect to tumor size or localization. (orig.) [German] Ziel: Analyse der Sicherheit und Effektivitaet CT-gesteuerter Brachytherapie zur Ablation von Lebermalignomen. Patienten und Methodik: 21 Patienten mit 21 Lebermalignomen (19 Metastasen, zwei primaere Lebermalignome) wurden mit perkutaner, CT-gesteuerter interstitieller Brachytherapie mit {sup 192}Ir behandelt. Alle Patienten wiesen Umstaende auf, die eine bildgefuehrte thermische Ablation mit Radiofrequenz oder laserinduzierter Thermotherapie (LITT) einschraenkten

  12. Application of intracavitary three-dimensional ultrasonography in the diagnosis of polycystic ovary syndrome%三维腔内超声在多囊卵巢综合征诊断中的应用

    Institute of Scientific and Technical Information of China (English)

    胡佳琪; 石华; 郭瑞强; 郝力丹; 朱敏怡

    2010-01-01

    探讨多囊卵巢综合征(PCOS)患者卵巢的三维超声容积参数特点.检测40例PCOS患者(PCOS组)和40例月经正常者(对照组)的卵巢三维容积指标,应用接受者操作特性曲线(ROC曲线)比较各项指标的诊断价值.PCOS组的卵巢容积、间质容积以及两者之比显著大于对照组(均P<0.05).ROC曲线分析表明卵巢容积、间质容积和两者之比用于诊断PCOS更有意义(曲线下面积分别为0.876、0.926、0.886),其中间质容积在诊断PCOS中价值最高,其截断值为7.52 cm3时,敏感性为88%,特异性为90%.三维腔内超声容积测量能为PCOS的诊断提供更多定量依据.%To evaluate the application of intracavitary three-dimensional ultrasonography in the diagnosis of polycystic ovary syndrome ( PCOS). The three-dimensional volumes of ovary were measured by intracavitary ultrasonography in 40 PCOS patients and 40 normal controls. The diagnostic value of parameters derived from three-dimensional ultrasonography was evaluated by using the receiver operating characteristic (ROC) curve. The ovarian volume, stromal volume, and the stromal/total volume ratio in PCOS group were significantly higher than those in control group (both P < 0. 05 ) ; the area under ROC curve ( AUC ) of them were 0. 876, 0. 926, 0. 886 respectively. Among these parameters, stromal volume had the highest diagnostic value for PCOS, the cut-off value of which was 7.52 cm3 with a sensitivity of 88% and a specificity of 90%. Volume parameters of ovary measured by intracavitary three-dimensional ultrasonography can offer quantitative information for the diagnosis of PCOS.

  13. Bladder accumulated dose in image-guided high-dose-rate brachytherapy for locally advanced cervical cancer and its relation to urinary toxicity

    Science.gov (United States)

    Zakariaee, Roja; Hamarneh, Ghassan; Brown, Colin J.; Gaudet, Marc; Aquino-Parsons, Christina; Spadinger, Ingrid

    2016-12-01

    The purpose of this study was to estimate locally accumulated dose to the bladder in multi-fraction high-dose-date (HDR) image-guided intracavitary brachytherapy (IG-ICBT) for cervical cancer, and study the locally-accumulated dose parameters as predictors of late urinary toxicity. A retrospective study of 60 cervical cancer patients who received five HDR IG-ICBT sessions was performed. The bladder outer and inner surfaces were segmented for all sessions and a bladder-wall contour point-set was created in MATLAB. The bladder-wall point-sets for each patient were registered using a deformable point-set registration toolbox called coherent point drift (CPD), and the fraction doses were accumulated. Various dosimetric and volumetric parameters were calculated using the registered doses, including r{{\\text{D}}n \\text{c{{\\text{m}}\\text{3}}}} (minimum dose to the most exposed n-cm3 volume of bladder wall), r V n Gy (wall volume receiving at least m Gy), and r\\text{EQD}{{2}n \\text{c{{\\text{m}}\\text{3}}}} (minimum equivalent biologically weighted dose to the most exposed n-cm3 of bladder wall), where n  =  1/2/5/10 and m  =  3/5/10. Minimum dose to contiguous 1 and 2 cm3 hot-spot volumes was also calculated. The unregistered dose volume histogram (DVH)-summed equivalent of r{{\\text{D}}n \\text{c{{\\text{m}}3}}} and r\\text{EQD}{{2}n \\text{c{{\\text{m}}3}}} parameters (i.e. s{{\\text{D}}n \\text{c{{\\text{m}}\\text{3}}}} and s\\text{EQD}{{2}n \\text{c{{\\text{m}}3}}} ) were determined for comparison. Late urinary toxicity was assessed using the LENT-SOMA scale, with toxicity Grade 0-1 categorized as Controls and Grade 2-4 as Cases. A two-sample t-test was used to identify the differences between the means of Control and Case groups for all parameters. A binomial logistic regression was also performed between the registered dose parameters and toxicity grouping. Seventeen patients were in the Case and 43 patients in the Control group. Contiguous

  14. Interactive multiobjective optimization for anatomy-based three-dimensional HDR brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ruotsalainen, Henri [Department of Physics and Mathematics, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio (Finland); Miettinen, Kaisa [Department of Mathematical Information Technology, PO Box 35 (Agora), FI-40014 University of Jyvaeskylae (Finland); Palmgren, Jan-Erik; Lahtinen, Tapani, E-mail: henrimatias.ruotsalainen@gmail.co [Department of Oncology, Kuopio University Hospital, PO Box 1777, FI-70211 Kuopio (Finland)

    2010-08-21

    In this paper, we present an anatomy-based three-dimensional dose optimization approach for HDR brachytherapy using interactive multiobjective optimization (IMOO). In brachytherapy, the goals are to irradiate a tumor without causing damage to healthy tissue. These goals are often conflicting, i.e. when one target is optimized the other will suffer, and the solution is a compromise between them. IMOO is capable of handling multiple and strongly conflicting objectives in a convenient way. With the IMOO approach, a treatment planner's knowledge is used to direct the optimization process. Thus, the weaknesses of widely used optimization techniques (e.g. defining weights, computational burden and trial-and-error planning) can be avoided, planning times can be shortened and the number of solutions to be calculated is small. Further, plan quality can be improved by finding advantageous trade-offs between the solutions. In addition, our approach offers an easy way to navigate among the obtained Pareto optimal solutions (i.e. different treatment plans). When considering a simulation model of clinical 3D HDR brachytherapy, the number of variables is significantly smaller compared to IMRT, for example. Thus, when solving the model, the CPU time is relatively short. This makes it possible to exploit IMOO to solve a 3D HDR brachytherapy optimization problem. To demonstrate the advantages of IMOO, two clinical examples of optimizing a gynecologic cervix cancer treatment plan are presented.

  15. ``In Vivo'' Dosimetry in High Dose Rate Brachytherapy for Cervical Cancer Treatments

    Science.gov (United States)

    González-Azcorra, S. A.; Mota-García, A.; Poitevín-Chacón, M. A.; Santamaría-Torruco, B. J.; Rodríguez-Ponce, M.; Herrera-Martínez, F. P.; Gamboa de Buen, I.; Ruíz-Trejo, C.; Buenfil, A. E.

    2008-08-01

    In this prospective study, rectal dose was measured "in vivo" using TLD-100 crystals (3×3×1 mm3), and it has been compared to the prescribed dose. Measurements were performed in patients with cervical cancer classified in FIGO stages IB-IIIB and treated with high dose rate brachytherapy (HDR BT) at the Instituto Nacional de Cancerología (INCan).

  16. Determination of the tissue inhomogeneity correction in high dose rate Brachytherapy for Iridium-192 source

    Directory of Open Access Journals (Sweden)

    Barlanka Ravikumar

    2012-01-01

    Full Text Available In Brachytherapy treatment planning, the effects of tissue heterogeneities are commonly neglected due to lack of accurate, general and fast three-dimensional (3D dose-computational algorithms. In performing dose calculations, it is assumed that the tumor and surrounding tissues constitute a uniform, homogeneous medium equivalent to water. In the recent past, three-dimensional computed tomography (3D-CT based treatment planning for Brachytherapy applications has been popularly adopted. However, most of the current commercially available planning systems do not provide the heterogeneity corrections for Brachytherapy dosimetry. In the present study, we have measured and quantified the impact of inhomogeneity caused by different tissues with a 0.015 cc ion chamber. Measurements were carried out in wax phantom which was employed to measure the heterogeneity. Iridium-192 (192 Ir source from high dose rate (HDR Brachytherapy machine was used as the radiation source. The reduction of dose due to tissue inhomogeneity was measured as the ratio of dose measured with different types of inhomogeneity (bone, spleen, liver, muscle and lung to dose measured with homogeneous medium for different distances. It was observed that different tissues attenuate differently, with bone tissue showing maximum attenuation value and lung tissue resulting minimum value and rest of the tissues giving values lying in between those of bone and lung. It was also found that inhomogeneity at short distance is considerably more than that at larger distances.

  17. Clinical outcomes following 3D image-guided brachytherapy for vaginal recurrence of endometrial cancer.

    Science.gov (United States)

    Lee, Larissa J; Damato, Antonio L; Viswanathan, Akila N

    2013-12-01

    To evaluate clinical outcomes for women with recurrent endometrial cancer treated with 3D image-guided brachytherapy 44 women, of whom 13 had received prior RT, received salvage RT for vaginal recurrence from 9/03 to 8/11. HDR or LDR interstitial brachytherapy was performed under MR or CT guidance in 35 patients (80%); 9 (20%) had CT-guided HDR cylinder brachytherapy. The median cumulative dose in EQD2 was 75.5 Gy. Actuarial estimates of local failure (LF), disease-free (DFS) and overall survival (OS) were calculated by Kaplan-Meier. Histologic subtypes were endometrioid (EAC, 33), papillary serous/clear cell (UPSC/CC, 5) and carcinosarcoma (CS, 6). The 2-year DFS/OS rates were 75%/89% for EAC and 11%/24% for UPSC/CC/CS (both pradiotherapy. 3D image-guided brachytherapy results in excellent local control for women with recurrent endometrial cancer, particularly with cumulative EQD2 doses greater than 70 Gy. Successful salvage of vaginal recurrence is related to tumor grade and histologic subtype. © 2013.

  18. Perioperative Interstitial High-Dose-Rate Brachytherapy for the Treatment of Recurrent Keloids

    DEFF Research Database (Denmark)

    Jiang, Ping; Baumann, René; Dunst, Juergen;

    2016-01-01

    PURPOSE: To prospectively evaluate high-dose-rate brachytherapy in the treatment of therapy-resistant keloids and report first results, with emphasis on feasibility and early treatment outcome. METHODS AND MATERIALS: From 2009 to 2014, 24 patients with 32 recurrent keloids were treated with immed...

  19. Individualised 3D printed vaginal template for MRI guided brachytherapy in locally advanced cervical cancer

    DEFF Research Database (Denmark)

    Lindegaard, Jacob Christian; Lænsø Madsen, Mads; Hansen, Anders Traberg

    2016-01-01

    Intracavitary–interstitial applicators for MRI guided brachytherapy are becoming increasingly important in locally advanced cervical cancer. The 3D printing technology enables a versatile method for obtaining a high degree of individualisation of the implant. Our clinical workflow is presented...

  20. Comparison of 60Co and 192Ir sources in HDR brachytherapy

    Directory of Open Access Journals (Sweden)

    Grzegorz Zwierzchowski

    2011-12-01

    Full Text Available This paper compares the isotopes 60Co and 192Ir as radiation sources for high-dose-rate (HDR afterloadingbrachytherapy. The smaller size of 192Ir sources made it the preferred radionuclide for temporary brachytherapy treatments.Recently also 60Co sources have been made available with identical geometrical dimensions. This paper comparesthe characteristics of both nuclides in different fields of brachytherapy based on scientific literature. In an additionalpart of this paper reports from medical physicists of several radiation therapy institutes are discussed. The purposeof this work is to investigate the advantages or disadvantages of both radionuclides for HDR brachytherapy due to theirphysical differences. The motivation is to provide useful information to support decision-making procedures in theselection of equipment for brachytherapy treatment rooms. The results of this work show that no advantages or disadvantagesexist for 60Co sources compared to 192Ir sources with regard to clinical aspects. Nevertheless, there are potentiallogistical advantages of 60Co sources due to its longer half-life (5.3 years vs. 74 days, making it an interesting alternativeespecially in developing countries.

  1. Perineal recurrence of prostate cancer six years after trans-perineal brachytherapy

    NARCIS (Netherlands)

    Eppinga, Wietse; Vijverberg, Peter; Moerland, Rien; Brand, Eric; van der Voort van Zyp, Jochem; Noteboom, Juus; van Vulpen, Marco

    2015-01-01

    We report a case of perineal recurrence of prostate cancer 6 years after low-dose-rate (LDR) brachytherapy for localized prostate cancer. The most common approach to treat such perineal masses, including those occurring after prior biopsy or surgery, is local excision. We report the use of stereotac

  2. Incidence and prediction of seed migration to the chest after iodine-125 brachytherapy for hepatocellular carcinoma.

    Science.gov (United States)

    Lin, Junqing; Yang, Weizhu; Jiang, Na; Zheng, Qubin; Huang, Jingyao; Huang, Ning; Li, Ang; Jiang, Han

    2017-08-08

    The aims were to determine the incidence of seed migration to the chest and to analyze the predictive factors after iodine-125 brachytherapy for hepatocellular carcinoma. Three hundred ninety-nine patients with hepatocellular carcinoma underwent iodine-125 seed brachytherapy. After seed implantation, chest X-ray radiograph or computerized tomography were undertaken to assess the occurrence and location of seed migration at 3 months after brachytherapy. The incidence of seed migration to the lung and heart was calculated. A statistical analysis of the influences of seed loss to the chest was performed between patients with and without seed migration. A total of 13,977 seeds were implanted in 399 patients. One hundred fifty of the 13,977 (1.07%) seeds migrated to the chest in 81 of the 399 (20.30%) patients. Of all the migrated seeds, 112 (74.67%) migrated to the lungs in 59 (67.82%) patients, and 38 (25.33%) seeds migrated to the heart in 28 (47.46%) patients. No case exhibited clinical symptoms related to the migrated seeds. The number of seeds implanted and the number of seed implantations were significantly associated with seed migration. The occurrence of seed migration to the lungs and heart was evaluated. Furthermore, the number of seeds implanted and the number of seed implantation procedures are significant predictors of seed migration. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  3. Surface membrane based bladder registration for evaluation of accumulated dose during brachytherapy in cervical cancer

    DEFF Research Database (Denmark)

    Noe, Karsten Østergaard; Tanderup, Kari; Sørensen, Thomas Sangild

    2011-01-01

    of the fixed surface. Optional landmark based matches can be included in the suggested iterative solver. The technique is demonstrated for bladder registration in brachytherapy treatment evaluation of cervical cancer. It holds promise to better estimate the accumulated but unintentional dose delivered...

  4. Monte Carlo Simulation of Dosimetric Parameters for HYBRID PdI Source in Brachytherapy

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A novel brachytherapy source model, ADVANTAGE HYBRID PdI, has been designed by CIAE For treatment of cancer. In this project, the purpose of this study is to obtain the dosimetric parameters of HYBRID PdI source. The Monte Carlo simulation

  5. A gEUD-based inverse planning technique for HDR prostate brachytherapy: Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Giantsoudi, D. [Department of Radiological Sciences, University of Texas Health Sciences Center, San Antonio, Texas 78229 (United States); Department of Radiation Oncology, Francis H. Burr Proton Therapy Center, Boston, Massachusetts 02114 (United States); Baltas, D. [Department of Medical Physics and Engineering, Strahlenklinik, Klinikum Offenbach GmbH, 63069 Offenbach (Germany); Nuclear and Particle Physics Section, Physics Department, University of Athens, 15701 Athens (Greece); Karabis, A. [Pi-Medical Ltd., Athens 10676 (Greece); Mavroidis, P. [Department of Radiological Sciences, University of Texas Health Sciences Center, San Antonio, Texas 78299 and Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, 17176 (Sweden); Zamboglou, N.; Tselis, N. [Strahlenklinik, Klinikum Offenbach GmbH, 63069 Offenbach (Germany); Shi, C. [St. Vincent' s Medical Center, 2800 Main Street, Bridgeport, Connecticut 06606 (United States); Papanikolaou, N. [Department of Radiological Sciences, University of Texas Health Sciences Center, San Antonio, Texas 78299 (United States)

    2013-04-15

    Purpose: The purpose of this work was to study the feasibility of a new inverse planning technique based on the generalized equivalent uniform dose for image-guided high dose rate (HDR) prostate cancer brachytherapy in comparison to conventional dose-volume based optimization. Methods: The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO (Hybrid Inverse Planning Optimization) is compared with alternative plans, which were produced through inverse planning using the generalized equivalent uniform dose (gEUD). All the common dose-volume indices for the prostate and the organs at risk were considered together with radiobiological measures. The clinical effectiveness of the different dose distributions was investigated by comparing dose volume histogram and gEUD evaluators. Results: Our results demonstrate the feasibility of gEUD-based inverse planning in HDR brachytherapy implants for prostate. A statistically significant decrease in D{sub 10} or/and final gEUD values for the organs at risk (urethra, bladder, and rectum) was found while improving dose homogeneity or dose conformity of the target volume. Conclusions: Following the promising results of gEUD-based optimization in intensity modulated radiation therapy treatment optimization, as reported in the literature, the implementation of a similar model in HDR brachytherapy treatment plan optimization is suggested by this study. The potential of improved sparing of organs at risk was shown for various gEUD-based optimization parameter protocols, which indicates the ability of this method to adapt to the user's preferences.

  6. A Monte Carlo dosimetry study using Henschke applicator for cervical brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Pei-Chieh [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101 Sec. 2, Kung Fu Road, Hsinchu 30013, Taiwan (China); Department of Radiation Oncology, Cathay General Hospital, 280 Renai Rd. Sec.4, Taipei 106, Taiwan (China); Chao, Tsi-Chian [Department of Medical Imaging and Radiological Science, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan (China); Lee, Chung-Chi [Department of Medical Imaging and Radiological Science, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan (China); Department of Radiation Oncology, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kwei-Shan, Tao-Yuan 333, Taiwan (China); Wu, Ching-Jung [Department of Radiation Oncology, Cathay General Hospital, 280 Renai Rd. Sec.4, Taipei 106, Taiwan (China); Tung, Chuan-Jong, E-mail: cjtung@mail.cgu.edu.t [Department of Medical Imaging and Radiological Science, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan (China)

    2010-07-21

    In recent years the Henschke applicator has been widely used for gynecologic patients treated by brachytherapy in Taiwan. However, the commercial brachytherapy planning system did not properly evaluate the dose perturbation caused by the Henschke applicator. Since the European Society for Therapeutic Radiology and Oncology advised that the effect of source shielding should be incorporated into the brachytherapy planning system, it required calculation and comparison of the dose distribution around the applicator. This study used the Monte Carlo MCNP code to simulate the dose distribution in a water phantom that contained the Henschke applicator with one tandem and two ovoids. Three dwell positions of a high dose rate {sup 192}Ir source were simulated by including and excluding the applicator. The mesh tally option of the MCNP was applied to facilitate the calculation of a large number of tallies in the phantom. The voxel size effect and the charge particle equilibrium were studied by comparing the results calculated with different tally options. The calculated results showed that the brachytherapy planning system overestimated the rectal dose and that the shielding material in the applicator contributed more than 40% to the rectal dose.

  7. A single session of intraluminal brachytherapy in palliation of oesophageal cancer

    NARCIS (Netherlands)

    Jager, J; Langendijk, H; Pannebakker, M; Rijken, J; deJong, J

    1995-01-01

    Between September 1987 and September 1993, 88 patients with oesophageal cancer were treated by a single session of intraluminal brachytherapy of 15 Gy prescribed at 1 cm distance from the central axis, using MDR Cs-137 (n = 51) during the first part of the study and HDR Ir-192 (n = 37) during the se

  8. Dwell time modulation restrictions do not necessarily improve treatment plan quality for prostate HDR brachytherapy

    NARCIS (Netherlands)

    Balvert, M.; Gorissen, B.L.; den Hertog, D.; Hoffmann, A.L.

    2015-01-01

    Inverse planning algorithms for dwell time optimisation in interstitial high-dose-rate (HDR) brachytherapy may produce solutions with large dwell time variations within catheters, which may result in undesirable selective high-dose subvolumes. Extending the dwell time optimisation model with a dwell

  9. HDR Brachytherapy Dose Distribution is Influenced by the Metal Material of the Applicator.

    Science.gov (United States)

    Wu, Chin-Hui; Liao, Yi-Jen; Shiau, An-Cheng; Lin, Hsin-Yu; Hsueh Liu, Yen-Wan; Hsu, Shih-Ming

    2015-12-11

    Applicators containing metal have been widely used in recent years when applying brachytherapy to patients with cervical cancer. However, the high dose rate (HDR) treatment-planning system (TPS) that is currently used in brachytherapy still assumes that the treatment environment constitutes a homogeneous water medium and does not include a dose correction for the metal material of the applicator. The primary purpose of this study was to evaluate the HDR (192)Ir dose distribution in cervical cancer patients when performing brachytherapy using a metal-containing applicator. Thermoluminescent dosimeter (TLD) measurements and Monte Carlo N-Particle eXtended (MCNPX) code were used to explore the doses to the rectum and bladder when using a Henschke applicator containing metal during brachytherapy. When the applicator was assumed to be present, the absolute dose difference between the TLD measurement and MCNPX simulation values was within approximately 5%. A comparison of the MCNPX simulation and TPS calculation values revealed that the TPS overestimated the International Commission of Radiation Units and Measurement (ICRU) rectum and bladder reference doses by 57.78% and 49.59%, respectively. We therefore suggest that the TPS should be modified to account for the shielding effects of the applicator to ensure the accuracy of the delivered doses.

  10. Methodology for commissioning a brachytherapy treatment planning system in the era of 3D planning.

    Science.gov (United States)

    Dempsey, Claire

    2010-12-01

    To describe the steps undertaken to commission a 3D high dose rate (HDR) brachytherapy treatment planning system (TPS). Emphasis was placed on validating previously published recommendations, in addition to checking 3D parameters such as treatment optimization and dose volume histogram (DVH) analysis. Commissioning was performed of the brachytherapy module of the Nucletron Oncentra MasterPlan treatment planning system (version 3.2). Commissioning test results were compared to an independent external beam TPS (Varian Eclipse v 8.6) and the previously commissioned Nucletron Plato (v 14.3.7) brachytherapy treatment planning system, with point doses also independently verified using the brachytherapy module in RadCalc (v 6.0) independent point dose calculation software. Tests were divided into eight categories: (i) Image import accuracy, (ii) Reconstruction accuracy, (iii) Source configuration data check, (iv) Dose calculation accuracy, (v) Treatment optimization validation, (vi) DVH reproducibility, (vii) Treatment export check and (viii) Printout consistency. Point dose agreement between Oncentra, Plato and RadCalc was better than 5% with source data and dose calculation protocols following the American Association of Physicists in Medicine (AAPM) guidelines. Testing of image accuracy (import and reconstruction), along with validation of automated treatment optimization and DVH analysis generated a more comprehensive set of testing procedures than previously listed in published recommendations.

  11. Salvage/Adjuvant Brachytherapy After Ophthalmic Artery Chemosurgery for Intraocular Retinoblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Francis, Jasmine H., E-mail: francij1@mskcc.org [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Barker, Christopher A.; Wolden, Suzanne L.; McCormick, Beryl; Segal, Kira; Cohen, Gil [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Gobin, Y. Pierre; Marr, Brian P. [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Weill-Cornell Medical College, New York-Presbyterian Hospital, New York, New York (United States); Brodie, Scott E. [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Mount Sinai School of Medicine, New York, New York (United States); Dunkel, Ira J.; Abramson, David H. [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Weill-Cornell Medical College, New York-Presbyterian Hospital, New York, New York (United States)

    2013-11-01

    Purpose: To evaluate the efficacy and toxicity of brachytherapy after ophthalmic artery chemosurgery (OAC) for retinoblastoma. Methods and Materials: This was a single-arm, retrospective study of 15 eyes in 15 patients treated with OAC followed by brachytherapy at (blinded institution) between May 1, 2006, and December 31, 2012, with a median 19 months' follow-up from plaque insertion. Outcome measurements included patient and ocular survival, visual function, and retinal toxicity measured by electroretinogram (ERG). Results: Brachytherapy was used as adjuvant treatment in 2 eyes and as salvage therapy in 13 eyes of which 12 had localized vitreous seeding. No patients developed metastasis or died of retinoblastoma. The Kaplan-Meier estimate of ocular survival was 79.4% (95% confidence interval 48.7%-92.8%) at 18 months. Three eyes were enucleated, and an additional 6 eyes developed out-of-target volume recurrences, which were controlled with additional treatments. Patients with an ocular complication had a mean interval between last OAC and plaque of 2.5 months (SD 2.3 months), which was statistically less (P=.045) than patients without ocular complication who had a mean interval between last OAC and plaque of 6.5 months (SD 4.4 months). ERG responses from pre- versus postplaque were unchanged or improved in more than half the eyes. Conclusions: Brachytherapy following OAC is effective, even in the presence of vitreous seeding; the majority of eyes maintained stable or improved retinal function following treatment, as assessed by ERG.

  12. Long-term outcomes of eye-conserving treatment with Ruthenium(106) brachytherapy for choroidal melanoma.

    NARCIS (Netherlands)

    Verschueren, K.M.; Creutzberg, C.L.; Schalij-Delfos, N.E.; Ketelaars, M.; Klijsen, F.L.; Haeseker, B.I.; Ligtenberg, S.M.; Keunen, J.E.E.; Marijnen, C.A.

    2010-01-01

    PURPOSE: To evaluate long-term outcomes of eye-conserving treatment using Ruthenium-106 plaque brachytherapy with or without transpupillary thermotherapy (TTT) for small to intermediate size choroidal melanomas. METHODS: Outcomes of 425 consecutive patients were analysed. The median basal tumour

  13. Dosimetric comparison of MRI-based HDR brachytherapy and stereotactic radiotherapy in patients with advanced cervical cancer: A virtual brachytherapy study

    Science.gov (United States)

    Otahal, Bretislav; Dolezel, Martin; Cvek, Jakub; Simetka, Ondrej; Klat, Jaroslav; Knybel, Lukas; Molenda, Lukas; Skacelikova, Eva; Hlavka, Ales; Feltl, David

    2014-01-01

    Aim To evaluate the treatment plans of 3D image-guided brachytherapy (BT) and stereotactic robotic radiotherapy with online image guidance – CyberKnife (CK) in patients with locally advanced cervix cancer. Methods and materials Ten pairs of plans for patients with locally advanced inoperable cervical cancer were created using MR based 3D brachytherapy and stereotaxis CK. The dose that covers 98% of the target volume (HR CTV D98) was taken as a reference and other parameters were compared. Results Of the ten studied cases, the dose from D100 GTV was comparable for both devices, on average, the BT GTV D90 was 10–20% higher than for CK. The HR CTV D90 was higher for CK with an average difference of 10–20%, but only fifteen percent of HR CTV (the peripheral part) received a higher dose from CK, while 85% of the target volume received higher doses from BT. We found a significant organ-sparing effect of CK compared to brachytherapy (20–30% lower doses in 0.1 cm3, 1 cm3, and 2 cm3). Conclusion BT remains to be the best method for dose escalation. Due to the significant organ-sparing effect of CK, patients that are not candidates for BT could benefit from stereotaxis more than from classical external beam radiotherapy. PMID:25337413

  14. Brachytherapy on restenosis. {sup 32}P radioisotope in animal model

    Energy Technology Data Exchange (ETDEWEB)

    Bergoc, R.; Rivera, E.; Cocca, C.; Martin, G.; Cricco, G. [Buenos Aires Univ. (Argentina). School of Pharmacy and Biochemistry; Croci, M.; Guzman, L.

    2000-05-01

    Despite a notorious decline in age-adjusted death rates for cardiovascular pathologies, coronary artery disease still remains as the main cause of mortality above the age of 40 in men and 60 in women. More than 25% of death in persons over the age of 35 are due to coronary disease. In about 50% of men and 30% of women, the first manifestation of the disease is an acute myocardial infarction and 10% a sudden cardiac death. In Argentina it is estimated that in 1998 about 100.000-115.000 people suffered as first manifestation of coronary illness a myocardial acute infarct. Angioplasty has an important and well established site in the treatment of the coronary illness and restenosis represents the principal complication of this method for myocardial re-vascularization. About a 35-40% of treated arteries present restenosis within the first six month the intervention with the concomitant need of re-interventions, re-hospitalizations, by-pass surgery, work discontinuity and the high cost for the health system. A number of drugs were tested as anti-restenosis: anticoagulants, aspirin, antispasmodics and lipid-lowering agents but none was clearly efficient; also, experimental studies in which intravascular irradiation with different source types and energies, radiation doses and doses rate to prevent restenosis was utilized; however, there is no consensus in many aspects of this intravascular brachytherapy. The first step in this work was to induce the experimental model in rabbits. Afterwards, by means of the balloon methodology and stent implantation, brachytherapy experiments were carried out to evaluate the biological effect on different layers of arteries, with different Doses using a beta particle emitting radioisotope ({sup 32}P). The arteriosclerotic lesions were induced in New Zealand rabbits through the administration of a diet with high cholesterol content. Angioplastic interventions on femoral arteries were done with balloon methodology and controlled by

  15. Stereotactic interstitial brachytherapy for the treatment of oligodendroglial brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    El Majdoub, Faycal; Neudorfer, Clemens; Maarouf, Mohammad [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); University of Witten/Herdecke, Department of Stereotaxy and Functional Neurosurgery, Center of Neurosurgery, Cologne-Merheim Medical Center (CMMC), Cologne (Germany); Blau, Tobias; Deckert, Martina [University Hospital of Cologne, Department of Neuropathology, Cologne (Germany); Hellmich, Martin [University Hospital of Cologne, Institute of Statistics, Informatics and Epidemiology, Cologne (Germany); Buehrle, Christian [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); Sturm, Volker [University Hospital of Cologne, Department of Stereotaxy and Functional Neurosurgery, Cologne (Germany); University Hospital of Wurzburg, Department of Neurosurgery, Wuerzburg (Germany)

    2015-12-15

    We evaluated the treatment of oligodendroglial brain tumors with interstitial brachytherapy (IBT) using {sup 125}iodine seeds ({sup 125}I) and analyzed prognostic factors. Between January 1991 and December 2010, 63 patients (median age 43.3 years, range 20.8-63.4 years) suffering from oligodendroglial brain tumors were treated with {sup 125}I IBT either as primary, adjuvantly after incomplete resection, or as salvage therapy after tumor recurrence. Possible prognostic factors influencing disease progression and survival were retrospectively investigated. The actuarial 2-, 5-, and 10-year overall and progression-free survival rates after IBT for WHO II tumors were 96.9, 96.9, 89.8 % and 96.9, 93.8, 47.3 %; for WHO III tumors 90.3, 77, 54.9 % and 80.6, 58.4, 45.9 %, respectively. Magnetic resonance imaging demonstrated complete remission in 2 patients, partial remission in 13 patients, stable disease in 17 patients and tumor progression in 31 patients. Median time to progression for WHO II tumors was 87.6 months and for WHO III tumors 27.8 months. Neurological status improved in 10 patients and remained stable in 20 patients, while 9 patients deteriorated. There was no treatment-related mortality. Treatment-related morbidity was transient in 11 patients. WHO II, KPS ≥ 90 %, frontal location, and tumor surface dose > 50 Gy were associated with increased overall survival (p ≤ 0.05). Oligodendroglioma and frontal location were associated with a prolonged progression-free survival (p ≤ 0.05). Our study indicates that IBT achieves local control rates comparable to surgery and radio-/chemotherapy treatment, is minimally invasive, and safe. Due to the low rate of side effects, IBT may represent an attractive option as part of a multimodal treatment schedule, being supplementary to microsurgery or as a salvage therapy after chemotherapy and conventional irradiation. (orig.) [German] Die Behandlung oligodendroglialer Hirntumoren durch die interstitielle Brachytherapie

  16. Brachytherapy Application With In Situ Dose Painting Administered by Gold Nanoparticle Eluters

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Neeharika [Department of Sciences, Wentworth Institute of Technology, Boston, Massachusetts (United States); Cifter, Gizem [Department of Physics and Applied Physics, University of Massachusetts, Lowell, Massachusetts (United States); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts (United States); Sajo, Erno [Department of Physics and Applied Physics, University of Massachusetts, Lowell, Massachusetts (United States); Kumar, Rajiv; Sridhar, Srinivas [Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts (United States); Electronic Materials Research Institute and Department of Physics, Northeastern University, Boston, Massachusetts (United States); Nguyen, Paul L.; Cormack, Robert A.; Makrigiorgos, G. Mike [Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts (United States); Ngwa, Wilfred, E-mail: wngwa@lroc.harvard.edu [Department of Physics and Applied Physics, University of Massachusetts, Lowell, Massachusetts (United States); Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts (United States)

    2015-02-01

    Purpose: Recent studies show promise that administering gold nanoparticles (GNP) to tumor cells during brachytherapy could significantly enhance radiation damage to the tumor. A new strategy proposed for sustained administration of the GNP in prostate tumors is to load them into routinely used brachytherapy spacers for customizable in situ release after implantation. This in silico study investigated the intratumor biodistribution and corresponding dose enhancement over time due to GNP released from such GNP-loaded brachytherapy spacers (GBS). Method and Materials: An experimentally determined intratumoral diffusion coefficient (D) for 10-nm nanoparticles was used to estimate D for other sizes by using the Stokes-Einstein equation. GNP concentration profiles, obtained using D, were then used to calculate the corresponding dose enhancement factor (DEF) for each tumor voxel, using dose painting-by-numbers approach, for times relevant to the considered brachytherapy sources' lifetimes. The investigation was carried out as a function of GNP size for the clinically applicable low-dose-rate brachytherapy sources iodine-125 (I-125), palladium-103 (Pd-103), and cesium-131 (Cs-131). Results: Results showed that dose enhancement to tumor voxels and subvolumes during brachytherapy can be customized by varying the size of GNP released or eluted from the GBS. For example, using a concentration of 7 mg/g GNP, significant DEF (>20%) could be achieved 5 mm from a GBS after 5, 12, 25, 46, 72, 120, and 195 days, respectively, for GNP sizes of 2, 5, 10, 20, 30, and 50 nm and for 80 nm when treating with I-125. Conclusions: Analyses showed that using Cs-131 provides the highest dose enhancement to tumor voxels. However, given its relatively longer half-life, I-125 presents the most flexibility for customizing the dose enhancement as a function of GNP size. These findings provide a useful reference for further work toward development of potential new brachytherapy application

  17. TU-F-201-03: Applications in Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Trichter, S. [New York Weill Cornell Medical Ctr (United States)

    2015-06-15

    Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to) external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.

  18. Localization of brachytherapy seeds in ultrasound by registration to fluoroscopy

    Science.gov (United States)

    Fallavollita, P.; KarimAghaloo, Z.; Burdette, E. C.; Song, D. Y.; Abolmaesumi, P.; Fichtinger, G.

    2010-02-01

    Motivation: In prostate brachytherapy, transrectal ultrasound (TRUS) is used to visualize the anatomy, while implanted seeds can be seen in C-arm fluoroscopy or CT. Intra-operative dosimetry optimization requires localization of the implants in TRUS relative to the anatomy. This could be achieved by registration of TRUS images and the implants reconstructed from fluoroscopy or CT. Methods: TRUS images are filtered, compounded, and registered on the reconstructed implants by using an intensity-based metric based on a 3D point-to-volume registration scheme. A phantom was implanted with 48 seeds, imaged with TRUS and CT/X-ray. Ground-truth registration was established between the two. Seeds were reconstructed from CT/X-ray. Seven TRUS filtering techniques and two image similarity metrics were analyzed as well. Results: For point-to-volume registration, noise reduction combined with beam profile filter and mean squares metrics yielded the best result: an average of 0.38 +/- 0.19 mm seed localization error relative to the ground-truth. In human patient data C-arm fluoroscopy images showed 81 radioactive seeds implanted inside the prostate. A qualitative analysis showed clinically correct agreement between the seeds visible in TRUS and reconstructed from intra-operative fluoroscopy imaging. The measured registration error compared to the manually selected seed locations by the clinician was 2.86 +/- 1.26 mm. Conclusion: Fully automated seed localization in TRUS performed excellently on ground-truth phantom, adequate in clinical data and was time efficient having an average runtime of 90 seconds.

  19. Dosimetry in intravascular brachytherapy; Calculos dosimetricos em braquiterapia intravascular

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Laelia Pumilla Botelho

    2000-03-01

    Among the cardiovascular diseases responsible for deaths in the adult population in almost all countries of the world, the most common is acute myocardial infarction, which generally occurs because of the occlusion of one or more coronary arteries. Several diagnostic techniques and therapies are being tested for the treatment of coronary artery disease. Balloon angioplasty has been a popular treatment which is less invasive than traditional surgeries involving revascularization of the myocardium, thus promising a better quality of life for patients. Unfortunately, the rate of restenosis (re-closing of the vessel) after balloon angioplasty is high (approximately 30-50% within the first year after treatment).Recently, the idea of delivering high radiation doses to coronary arteries to avoid or delay restenosis has been suggested. Known as intravascular brachytherapy, the technique has been used with several radiation sources, and researchers have obtained success in decreasing the rate of restenosis in some patient populations. In order to study the radiation dosimetry in the patient and radiological protection for the attending staff for this therapy, radiation dose distributions for monoenergetic electrons and photons (at nine discrete energies) were calculated for blood vessels of diameter 0.15, o,30 and 0.45 cm with balloon and wire sources using the radiation transport code MCNP4B. Specific calculations were carried out for several candidate radionuclides as well. Two s tent sources (metallic prosthesis that put inside of patient's artery through angioplasty) employing {sup 32} P are also simulated. Advantages and disadvantages of the various radionuclides and source geometries are discussed. The dosimetry developed here will aid in the realization of the benefits obtained in patients for this promising new technology. (author)

  20. Techniques and results of brachytherapy for carcinoma of the tongue

    Energy Technology Data Exchange (ETDEWEB)

    Jingu, Kenichi; Akita, Yuzou [Fukuoka Univ. (Japan). School of Medicine; Shimamura, Yasushi; Kunitake, Naonobu; Nakamura, Kazumasa; Oomagari, Junichi; Wada, Susumu; Uehara, Satoru; Masuda, Kouji

    1997-11-01

    Three hundred and twelve patients with 1987 UICC T1, 2 carcinoma of the tongue, who underwent definitive brachytherapy from November, 1978 to March, 1991 in the Department of Radiology, Kyushu University Hospital, and from January, 1985 to December, 1994 in the Department of Radiotherapy, Kyushu Cancer Center, were reviewed retrospectively. All patients were admitted 15-30 mg Pentazocine and O.25 mg Atropine sulfate as the premedication. Thirty to 60 minutes after, the tip of tongue and the lesion were put under local infiltration anesthesia with 10-20 ml of 1-2% Lidocaine or 1% Procaine HCL. The tongue was pulled out by the thread of the tip. Partial resection or wide excisional biopsy of the tumor was performed to reduce the tumor volume and the radiation volume and also to estimate Jacobson-Yamamoto`s grading histologically in the bottom of the tumor. Radium needles or Iridium hair pins were implanted in the lesion following Paterson`s method, and left for 3-10 days to the minimum tumor dose of 70 Gy calculated by computer. The secondary neck lymph node metastases rates of the patients with T1 carcinoma of the tongue were 27% and 53% in the Jacobson-Yamamoto grading 1-3 group and 4 group. The rates of the patients with T2 were 28% and 82% in 1-3 group and 4 group. Two year`s local control rates of the patients with T1 and T2 carcinoma were 95% and 82%. Two year`s late reaction (mandibular bone exposure or refractory ulcer of soft tissue) rates of the patients with T1 and T2 carcinoma were 7% and 12%. (author)

  1. 调强放疗加腔内放疗治疗宫颈癌的临床研究%Clinical Research of Intensity-Modulated Radiation Therapy and Brachytherapy for 185 Patients with Carcinoma of the Cervix

    Institute of Scientific and Technical Information of China (English)

    丁云霞; 陈宏; 曹学武; 康保国

    2015-01-01

    目的:观察研究宫颈癌进行调强放疗(IMRT)加腔内治疗的疗效及副反应。方法185例(ⅡB郁A)首治宫颈癌,采取全盆腔IMRT 27~29次,对盆腔内直肠、膀胱、小肠、股骨头及盆骨进行必要的保护,宫颈肿瘤组织的总量院59.4~63.8Gy(2.2Gy/次);主要淋巴引流区总量院48.6~53.2Gy(1.8Gy/次)。盆腔或腹膜后淋巴结转移灶总量63.8~64.4Gy(2.2~2.3Gy/次)。盆腔IMRT后再行3~4次的腔内治疗,A点总量达78~82Gy(调强放疗+腔内治疗)。结果放疗后近期效果达CR为98.92%。1年、2年及3年的生存率分别为院99.26%、88.24%及83.33%;无病生存率为院91.85%、84.71%及81.25%;盆腔未控率为4.44%、5.88%及8.33%。放射性直肠炎及膀胱炎发生率分别为3.78%~4.65%;0%~2.33%。结论 IMRT+腔内放疗治疗宫颈癌具有很好的治疗效果,盆腔控制率好,肠道及直肠膀胱放射的损伤及并发症低。%Objective To evaluate disease outcomes and toxicity in cervical cancer patients treated with pelvic intensity-modulated radiation therapy (IMRT) and Ir-192 brachytherapy. Methods There were 185 patients with StageIIB-ⅣA cervical carcinoma treated with IMRT. Intensity-modulated radiation therapy plans were designed,which to deliver 59.4~63.8Gy to GTV in 2.2Gy daily fractions and 48.6~53.2Gy in 1.8Gy daily fractions to CTV, 63.8~64.4Gy in 2.2Gy or 2.3Gy daily fraction to the metastasis of the pelvic cavity and the retroperitoneal lymph node. while minimizing dose to the bowel, bladder, and rectum. After intensity-modulated radiation therapy is been complied, al patients underwent between three and four courses of high-dose rate intracavitary brachytherapy (HDRICB). Total prescribed point A doses (external beam radiotherapy + HDRICB ) ranged from 78Gy to 82 Gy. Results The rate of complete regression is 98.92% in cervical tumor. The overal survival rate and the disease-free survival rate of one-year, two-year and three-year, which were 99.26%, 88.24%and 83

  2. Minimal percentage of dose received by 90% of the urethra (%UD90 is the most significant predictor of PSA bounce in patients who underwent low-dose-rate brachytherapy (LDR-brachytherapy for prostate cancer

    Directory of Open Access Journals (Sweden)

    Tanaka Nobumichi

    2012-09-01

    Full Text Available Abstract Background To clarify the significant clinicopathological and postdosimetric parameters to predict PSA bounce in patients who underwent low-dose-rate brachytherapy (LDR-brachytherapy for prostate cancer. Methods We studied 200 consecutive patients who received LDR-brachytherapy between July 2004 and November 2008. Of them, 137 patients did not receive neoadjuvant or adjuvant androgen deprivation therapy. One hundred and forty-two patients were treated with LDR-brachytherapy alone, and 58 were treated with LDR-brachytherapy in combination with external beam radiation therapy. The cut-off value of PSA bounce was 0.1 ng/mL. The incidence, time, height, and duration of PSA bounce were investigated. Clinicopathological and postdosimetric parameters were evaluated to elucidate independent factors to predict PSA bounce in hormone-naïve patients who underwent LDR-brachytherapy alone. Results Fifty patients (25% showed PSA bounce and 10 patients (5% showed PSA failure. The median time, height, and duration of PSA bounce were 17 months, 0.29 ng/mL, and 7.0 months, respectively. In 103 hormone-naïve patients treated with LDR-brachytherapy alone, and univariate Cox proportional regression hazard model indicated that age and minimal percentage of the dose received by 30% and 90% of the urethra were independent predictors of PSA bounce. With a multivariate Cox proportional regression hazard model, minimal percentage of the dose received by 90% of the urethra was the most significant parameter of PSA bounce. Conclusions Minimal percentage of the dose received by 90% of the urethra was the most significant predictor of PSA bounce in hormone-naïve patients treated with LDR-brachytherapy alone.

  3. High dose rate interstitial brachytherapy in soft tissue sarcomas: technical aspect

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Mi Son; Kang, Seung Hee; Kim, Byoung Suck; Oh, Young Taek [College of Medicine, Ajou Univ., Suwon (Korea, Republic of)

    1999-03-01

    To discuss the technical aspect of interstitial brachytherapy including method of implant, insertion time of radioactive source, total radiation dose, and complication, we reviewed patients who had diagnoses of soft tissue sarcoma and were treated by conservative surgery, interstitial implant and external beam radiation therapy. Between May 1995 and Dec. 1997, the patients with primary or recurrent soft tissue sarcoma underwent surgical resection (wide margin excision) and received radiotherapy including interstitial brachytherapy. Catheters were placed with regular intervals of 1-1.5 cm immediately after tumor removal and covering the critical structures, such as neurovascular bundle or bone, with gelform, muscle, or tissue expander in the cases where the tumors were close to those structures. Brachytherapy consisted of source axis with 2-2.5 Gy/fraction, twice a day, starting on 6th day after the surgery. Within one month after the surgery, total dose of 50-55 Gy was delivered to the tumor bed with wide margin by the external beam radiotherapy. All patients completed planned interstitial brachytherapy without acute side effects directly related with catheter implantation such as infection or bleeding. With median follow up duration of 25 months (range 12-41 months), no local recurrences were observed. And there was no severe form of chromic complication (RTOG/EORTC grade 3 or 4). The high dose rate interstitial brachytherapy is easy and safe way to minimize the radiation dose delivered to the adjacent normal tissue and to decrease radiation induced chronic morbidity such as fibrosis by reducing the total dose of external radiotherapy in the management of soft tissue sarcoma with conservative surgery.

  4. On the Development of a Miniature Neutron Generator for the Brachytherapy Treatment of Cancer

    Science.gov (United States)

    Forman, L.

    2009-03-01

    Brachytherapy refers to application of an irradiation source within a tumor. 252Cf needles used in brachytherapy have been successfully applied to treatment of some of the most virulent cancers but it is doubtful that it will be widely used because of difficulty in dealing with unwanted dose (source cannot be turned off) and in adhering to stringent NRC regulations that have been exacerbated in our post 911 environment. We have been working on the development of a miniature neutron generator with the reaction target placed at the end of a needle (tube) for brachytherapy applications. Orifice geometries are most amenable, e.g. rectum and cervix, but interstitial use is possible with microsurgery. This paper dicusses the results of a 30 watt DD neutron generator SBU project that demonstrates that sufficient hydrogen isotope current can be delivered down a small diameter needle required for a DT neutron treatment device, and, will summarize the progress of building a commercial device pursued by the All Russian Institute for Automatics (VNIIA) supported by the DOE's Industrial Proliferation Prevention Program (IPP). It is known that most of the fast neutron (FN) beam cancer treatment facilities have been closed down. It appears that the major limitation in the use of FN beams has been damage to healthy tissue, which is relatively insensitive to photons, but this problem is alleviated by brachytherapy. Moreover, recent clinical results indicate that fast neutrons in the boost mode are most highly effective in treating large, hypoxic, and rapidly repopulating diseases. It appears that early boost application of FN may halt angiogenesis (development and repair of tumor vascular system) and shrink the tumor resulting in lower hypoxia. The boost brachytherapy application of a small, low cost neutron generator holds promise of significant contribution to the treatment of cancer.

  5. High dose rate endobronchial brachytherapy. Results and complications in 189 patients

    Energy Technology Data Exchange (ETDEWEB)

    Taulelle, M.; Chauvet, B.; Vincent, P.; Felix-Faure, C.; Buciarelli, B.; Garcia, R.; Brewer, Y.; Reboul, F. [Clinique Sainte Catherine, Dept. of Radiation Therapy, Avignon (France)

    1998-02-01

    The purpose of this study was to determine the benefit of high dose rate endobronchial brachytherapy in the treatment of obstructive lung cancer. Between September 1990 and March 1995, 189 patients with bronchogenic carcinoma were treated with high dose rate endobronchial brachytherapy. Most patients (63.3%) had received prior treatment and presented with symptomatic bronchial obstruction due to either recurrent or residual endobronchial disease. A small group (12%) was medically unfit for either surgical resection or thoracic radiotherapy and benefited from endobronchial brachytherapy alone for small endobronchial tumours. The remainder of the patients had not been treated previously and endobronchial brachytherapy was performed for life-threatening symptoms requiring emergency obstruction relief before other therapy. Treatment was performed weekly and consisted of three to four 8 to 10 Gy fractions at a radius of 10 mm from the centre of the source. Major symptomatic relief was obtained for haemoptysis (74%), dyspnoea (54%), and cough (54%). Complete endoscopic response was observed in 54% of cases. Median survival was 7 months for the entire group. For small, strictly endobronchial tumours, complete response rate was 96%, median survival 17 months, and 30 month survival 46%, with a plateau starting at 18 months. Grade 3 to 4 toxicities occurred at a rate of 17% and included massive haemoptysis (n=13), bronchial stenosis (n=12), soft tissue necrosis (n=8), and bronchial fistula (n=3). By univariate analysis, no factor was found to be predictive of late pulmonary toxicity. The present study confirms the usefulness of endobronchial brachytherapy in alleviating symptoms caused by endobronchial recurrence of bronchogenic carcinoma. In addition, this therapy can be tried with curative intent in patients who present with small endobronchial tumours and are not candidates for other forms of therapy. (au). 23 refs.

  6. Treatment planning for multicatheter interstitial brachytherapy of breast cancer - from Paris system to anatomy-based inverse planning

    National Research Council Canada - National Science Library

    Tibor Major; Csaba Polgár

    2017-01-01

    .... The catheter reconstruction is also easier and faster on CT images compared to X-ray films. In high dose rate brachytherapy, using a stepping source, a number of forward dose optimization methods...

  7. Development of an open source software module for enhanced visualization during MR-guided interstitial gynecologic brachytherapy.

    Science.gov (United States)

    Chen, Xiaojun; Egger, Jan

    2014-01-01

    In 2010, gynecologic malignancies were the 4th leading cause of death in U.S. women and for patients with extensive primary or recurrent disease, treatment with interstitial brachytherapy may be an option. However, brachytherapy requires precise insertion of hollow catheters with introducers into the tumor in order to eradicate the cancer. In this study, a software solution to assist interstitial gynecologic brachytherapy has been investigated and the software has been realized as an own module under (3D) Slicer, which is a free open source software platform for (translational) biomedical research. The developed research module allows on-time processing of intra-operative magnetic resonance imaging (iMRI) data over a direct DICOM connection to a MR scanner. Afterwards follows a multi-stage registration of CAD models of the medical brachytherapy devices (template, obturator) to the patient's MR images, enabling the virtual placement of interstitial needles to assist the physician during the intervention.

  8. Brachytherapy for Patients With Prostate Cancer: American Society of Clinical Oncology/Cancer Care Ontario Joint Guideline Update.

    Science.gov (United States)

    Chin, Joseph; Rumble, R Bryan; Kollmeier, Marisa; Heath, Elisabeth; Efstathiou, Jason; Dorff, Tanya; Berman, Barry; Feifer, Andrew; Jacques, Arthur; Loblaw, D Andrew

    2017-03-27

    Purpose To jointly update the Cancer Care Ontario guideline on brachytherapy for patients with prostate cancer to account for new evidence. Methods An Update Panel conducted a targeted systematic literature review and identified more recent randomized controlled trials comparing dose-escalated external beam radiation therapy (EBRT) with brachytherapy in men with prostate cancer. Results Five randomized controlled trials provided the evidence for this update. Recommendations For patients with low-risk prostate cancer who require or choose active treatment, low-dose rate brachytherapy (LDR) alone, EBRT alone, and/or radical prostatectomy (RP) should be offered to eligible patients. For patients with intermediate-risk prostate cancer choosing EBRT with or without androgen-deprivation therapy, brachytherapy boost (LDR or high-dose rate [HDR]) should be offered to eligible patients. For low-intermediate risk prostate cancer (Gleason 7, prostate-specific antigen < 10 ng/mL or Gleason 6, prostate-specific antigen, 10 to 20 ng/mL), LDR brachytherapy alone may be offered as monotherapy. For patients with high-risk prostate cancer receiving EBRT and androgen-deprivation therapy, brachytherapy boost (LDR or HDR) should be offered to eligible patients. Iodine-125 and palladium-103 are each reasonable isotope options for patients receiving LDR brachytherapy; no recommendation can be made for or against using cesium-131 or HDR monotherapy. Patients should be encouraged to participate in clinical trials to test novel or targeted approaches to this disease. Additional information is available at www.asco.org/Brachytherapy-guideline and www.asco.org/guidelineswiki .

  9. High Intensity Focused Ultrasound versus Brachytherapy for the Treatment of Localized Prostate Cancer: A Matched-Pair Analysis

    Directory of Open Access Journals (Sweden)

    Fouad Aoun

    2015-01-01

    Full Text Available Purpose. To evaluate postoperative morbidity and long term oncologic and functional outcomes of high intensity focused ultrasound (HIFU compared to brachytherapy for the treatment of localized prostate cancer. Material and Methods. Patients treated by brachytherapy were matched 1 : 1 with patients who underwent HIFU. Differences in postoperative complications across the two groups were assessed using Wilcoxon’s rank-sum or χ2 test. Kaplan-Meier curves, log-rank tests, and Cox regression models were constructed to assess differences in survival rates between the two groups. Results. Brachytherapy was significantly associated with lower voiding LUTS and less frequent acute urinary retention (p<0.05. Median oncologic follow-up was 83 months (13–123 months in the HIFU cohort and 44 months (13–89 months in the brachytherapy cohort. Median time to achieve PSA nadir was statistically shorter in the HIFU. Biochemical recurrence-free survival rate was significantly higher in the brachytherapy cohort compared to HIFU cohort (68.5% versus 53%, p<0.05. No statistically significant difference in metastasis-free, cancer specific, and overall survivals was observed between the two groups. Conclusion. HIFU and brachytherapy are safe with no significant difference in cancer specific survival on long term oncologic follow-up. Nonetheless, a randomized controlled trial is needed to confirm these results.

  10. Technical Note: Contrast solution density and cross section errors in inhomogeneity-corrected dose calculation for breast balloon brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Leonard H.; Zhang Miao; Howell, Roger W.; Yue, Ning J.; Khan, Atif J. [Department of Radiation Oncology, University of Medicine and Dentistry of New Jersey: Robert Wood Johnson Medical School and Cancer Institute of New Jersey, New Brunswick, New Jersey 08903 (United States); Department of Radiology, University of Medicine and Dentistry of New Jersey: New Jersey Medical School, Newark, New Jersey 07103 (United States); Department of Radiation Oncology, University of Medicine and Dentistry of New Jersey: Robert Wood Johnson Medical School and Cancer Institute of New Jersey, New Brunswick, New Jersey 08903 (United States)

    2013-01-15

    Purpose: Recent recommendations by the American Association of Physicists in Medicine Task Group 186 emphasize the importance of understanding material properties and their effect on inhomogeneity-corrected dose calculation for brachytherapy. Radiographic contrast is normally injected into breast brachytherapy balloons. In this study, the authors independently estimate properties of contrast solution that were expected to be incorrectly specified in a commercial brachytherapy dose calculation algorithm. Methods: The mass density and atomic weight fractions of a clinical formulation of radiographic contrast solution were determined using manufacturers' data. The mass density was verified through measurement and compared with the density obtained by the treatment planning system's CT calibration. The atomic weight fractions were used to determine the photon interaction cross section of the contrast solution for a commercial high-dose-rate (HDR) brachytherapy source and compared with that of muscle. Results: The density of contrast solution was 10% less than that obtained from the CT calibration. The cross section of the contrast solution for the HDR source was 1.2% greater than that of muscle. Both errors could be addressed by overriding the density of the contrast solution in the treatment planning system. Conclusions: The authors estimate the error in mass density and cross section parameters used by a commercial brachytherapy dose calculation algorithm for radiographic contrast used in a clinical breast brachytherapy practice. This approach is adaptable to other clinics seeking to evaluate dose calculation errors and determine appropriate density override values if desired.

  11. Study of encapsulated {sup 170}Tm sources for their potential use in brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ballester, Facundo; Granero, Domingo; Perez-Calatayud, Jose; Venselaar, Jack L. M.; Rivard, Mark J. [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, E-46100 Burjassot (Spain) and IFIC, CSIC, University of Valencia, E-46100 Burjassot (Spain); Department of Radiation Oncology, ERESA, Hospital General Universitario, E-46014 Valencia (Spain); Department of Radiation Oncology, La Fe University Hospital, E-46009 Valencia (Spain); Department of Medical Physics, Instituut Verbeeten, Tilburg 5000LA (Netherlands); Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)

    2010-04-15

    Purpose: High dose-rate (HDR) brachytherapy is currently performed with {sup 192}Ir sources, and {sup 60}Co has returned recently into clinical use as a source for this kind of cancer treatment. Both radionuclides have mean photon energies high enough to require specific shielded treatment rooms. In recent years, {sup 169}Yb has been explored as an alternative for HDR-brachytherapy implants. Although it has mean photon energy lower than {sup 192}Ir, it still requires extensive shielding to deliver treatment. An alternative radionuclide for brachytherapy is {sup 170}Tm (Z=69) because it has three physical properties adequate for clinical practice: (a) 128.6 day half-life, (b) high specific activity, and (c) mean photon energy of 66.39 keV. The main drawback of this radionuclide is the low photon yield (six photons per 100 electrons emitted). The purpose of this work is to study the dosimetric characteristics of this radionuclide for potential use in HDR-brachytherapy. Methods: The authors have assumed a theoretical {sup 170}Tm cylindrical source encapsulated with stainless steel and typical dimensions taken from the currently available HDR {sup 192}Ir brachytherapy sources. The dose-rate distribution was calculated for this source using the GEANT4 Monte Carlo (MC) code considering both photon and electron {sup 170}Tm spectra. The AAPM TG-43 U1 brachytherapy dosimetry parameters were derived. To study general properties of {sup 170}Tm encapsulated sources, spherical sources encapsulated with stainless steel and platinum were also studied. Moreover, the influence of small variations in the active core and capsule dimensions on the dosimetric characteristics was assessed. Treatment times required for a {sup 170}Tm source were compared to those for {sup 192}Ir and {sup 169}Yb for the same contained activity. Results: Due to the energetic beta spectrum and the large electron yield, the bremsstrahlung contribution to the dose was of the same order of magnitude as from the

  12. Source localisation and dose verification for a novel brachytherapy unit

    Science.gov (United States)

    Metaxas, Marinos G.

    A recent development in the field of radiotherapy has been the introduction of the PRS Intrabeam system (Carl Zeiss Surgical GmbH, Oberkochen, Germany). This is essentially a portable, miniaturised, electron-driven photon generator that allows high intensity, soft-energy x-rays (50 kVp) to be delivered directly to the tumour site in a single fraction. The system has been used for the interstitial radiation treatment of both brain and breast tumours. At present, a standardised in-vivo dose verification technique is not available for the PRS treatments. The isotropical distribution of photons about the tip of the PRS probe inserted in the tissue can effectively be viewed as a point source of radiation buried in the body. This work has looked into ways of localising the PRS source utilising its own radiation field. Moreover, the response of monoenergetic sources, mimicking realistic brachytherapy sources, has also been investigated. The purpose of this project was to attempt to localise the source as well as derive important dosimetric information from the resulting image. A detection system comprised of a well-collimated Germanium detector (HPGe) has been devised in a rotate-translate Emission Computed Tomography (ECT) modality. The superior energy resolving ability of the detection system allowed for energy selective reconstruction to be carried out in the case of the monoenergetic source (241Am). Results showed that the monoenergetic source can be localised to within 1 mm and the continuous PRS x-ray source to within 3mm. For the PRS dose map derivation, Monte Carlo studies have been employed in order to extract information on the dosimetric aspect of the resulting image. The final goal of this work was therefore to formulate a direct mathematical relation (Transform Map) between the image created by the escaping photons and the dose map as predicted by the theoretical model. The formation therefore of the in-vivo PRS image could allow for a real-time monitoring

  13. Retrospective analysis of role of interstitial brachytherapy using template (MUPIT in locally advanced gynecological malignancies

    Directory of Open Access Journals (Sweden)

    Nandwani Pooja

    2007-01-01

    Full Text Available Aim : The aim of this retrospective study was to assess treatment outcomes for patients with locally advanced gynecological malignancies being treated with interstitial brachytherapy using Martinez universal perineal interstitial template (MUPIT and to study the acute and late sequelae and survival after treatment by this technique. Materials and Methods : Ninety seven patients untreated with histopathological confirmation of carcinoma of cervix (37 vault (40 and vagina (20 were treated by combination of external beam RT (EBRT using megavoltage irradiation to pelvis to dose of 4000-5000 cGy followed by interstitial brachytherapy using MUPIT between September 2001 to March 2005. Median age was 46 years. Only those patients who were found unsuitable for conventional brachytherapy or in whom intracavitatory radiotherapy was found to be unlikely to encompass a proper dose distribution were treated by interstitial template brachytherapy using MUPIT application and were enrolled in this study. The dose of MUPIT was 1600-2400 cGy in 4-6# with 400 cGy /# and two fractions a day with minimum gap of six hours in between two fractions on micro-HDR. Criteria for inclusion of patients were as follows: Hb minimum 10 gm/dl, performance status - 70% or more (Karnofsy scale, histopathological confirmation FIGO stage IIB-IIIB (excluding frozen pelvis. Results : Among the 97 patients studied, 12 patients lost to follow-up and hence they were excluded from the study. Follow-up of rest of the patients was then done up to September 2006. The duration of follow-up was in the range of 20-60 months. Parameters studied were local control rate, complication rate, mortality rate and number of patients developing systemic metastasis. Local control was achieved in 56/85 (64.7% and complication rate was 15/85 (17.6%. Local control was better for nonbulky tumors compared bulky tumors irrespective of stage of disease. Local control was better in patients with good regression of

  14. Benefit of Adjuvant Brachytherapy Versus External Beam Radiation for Early Breast Cancer: Impact of Patient Stratification on Breast Preservation

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Grace L. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Jiang, Jing [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Buchholz, Thomas A. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Xu, Ying [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Hoffman, Karen E. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Giordano, Sharon H. [Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Hunt, Kelly K. [Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Smith, Benjamin D., E-mail: bsmith3@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2014-02-01

    Purpose: Brachytherapy after lumpectomy is an increasingly popular breast cancer treatment, but data concerning its effectiveness are conflicting. Recently proposed “suitability” criteria guiding patient selection for brachytherapy have never been empirically validated. Methods: Using the Surveillance, Epidemiology, and End Results–Medicare linked database, we compared women aged 66 years or older with invasive breast cancer (n=28,718) or ductal carcinoma in situ (n=7229) diagnosed from 2002 to 2007, treated with lumpectomy alone, brachytherapy, or external beam radiation therapy (EBRT). The likelihood of breast preservation, measured by subsequent mastectomy risk, was compared by use of multivariate proportional hazards, further stratified by American Society for Radiation Oncology (ASTRO) brachytherapy suitability groups. We compared 1-year postoperative complications using the χ{sup 2} test and 5-year local toxicities using the log-rank test. Results: For patients with invasive cancer, the 5-year subsequent mastectomy risk was 4.7% after lumpectomy alone (95% confidence interval [CI], 4.1%-5.4%), 2.8% after brachytherapy (95% CI, 1.8%-4.3%), and 1.3% after EBRT (95% CI, 1.1%-1.5%) (P<.001). Compared with lumpectomy alone, brachytherapy achieved a more modest reduction in adjusted risk (hazard ratio [HR], 0.61; 95% CI, 0.40-0.94) than achieved with EBRT (HR, 0.22; 95% CI, 0.18-0.28). Relative risks did not differ when stratified by ASTRO suitability group (P=.84 for interaction), although ASTRO “suitable” patients did show a low absolute subsequent mastectomy risk, with a minimal absolute difference in risk after brachytherapy (1.6%; 95% CI, 0.7%-3.5%) versus EBRT (0.8%; 95% CI, 0.6%-1.1%). For patients with ductal carcinoma in situ, EBRT maintained a reduced risk of subsequent mastectomy (HR, 0.40; 95% CI, 0.28-0.55; P<.001), whereas the small number of patients treated with brachytherapy (n=179) precluded definitive comparison with lumpectomy alone

  15. Interstitial brachytherapy for liver metastases and assessment of response by positron emission tomography: a case report

    Directory of Open Access Journals (Sweden)

    Goura Kishor Rath

    2010-10-01

    Full Text Available For liver metastases (LM, image guided percutaneous ablative procedures such as radiofrequency ablation (RFA, laser induced thermal therapy (LITT and trans-arterial chemo-embolisation (TACE are increasingly being used because they are relatively safer, less invasive and equally effective. CT scan guided interstitial brachytherapy (IBT with a single large dose of radiation by high dose rate (HDR brachytherapy is a novel technique of treating LM and has shown good results. Positron emission tomography (PET scan may provide better information for assessing the response toIBT procedures. We hereby report a case of LM that was treated by HDR IBT and PET scan was done in addition to CT scan for assessing the response.

  16. Dosimetry in HDR brachytherapy with Fricke-gel layers and Fricke-gel catheters

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G; Carrara, M; Negri, A; Invernizzi, M; Tenconi, C; Scotti, A; Pirola, L; Borroni, M; Tomatis, S; Fallai, C, E-mail: grazia.gambarini@mi.infn.i

    2010-11-01

    Fricke-gel layer dosimeters (FGLD) and Fricke gel dosimetric catheters (FGDC) have been designed and tested with the aim of enquiring their suitability for HDR {sup 192}Ir brachytherapy source control and for in-vivo dose verification during treatment. Anisotropy function measurements have been carried out with FGLDs in which a thin plastic tube has been placed in for the {sup 192}Ir source insertion. FGDCs are constituted by plastic tubes (3 mm of external diameter and 13 cm of length) filled with the dosimeter-gel. Absorbed dose images and profiles were attained by means of optical analysis. Dedicated software has been developed both for achieving anisotropy function values and for obtaining reliable results in visible light absorbance measurements across the thin cylindrical dosimeters. Preparation and analysis procedures have been optimised. The results confirm that the proposed methods are very promising for HDR brachytherapy dosimetry.

  17. Dosimetric equivalence of non-standard high dose rate (HDR) brachytherapy catheter patterns

    CERN Document Server

    Cunha, J Adam M; Pouliot, Jean

    2009-01-01

    Purpose: To determine whether alternative HDR prostate brachytherapy catheter patterns can result in improved dose distributions while providing better access and reducing trauma. Methods: Prostate HDR brachytherapy uses a grid of parallel needle positions to guide the catheter insertion. This geometry does not easily allow the physician to avoid piercing the critical structures near the penile bulb nor does it provide position flexibility in the case of pubic arch interference. On CT data from ten previously-treated patients new catheters were digitized following three catheter patterns: conical, bi-conical, and fireworks. The conical patterns were used to accommodate a robotic delivery using a single entry point. The bi-conical and fireworks patterns were specifically designed to avoid the critical structures near the penile bulb. For each catheter distribution, a plan was optimized with the inverse planning algorithm, IPSA, and compared with the plan used for treatment. Irrelevant of catheter geometry, a p...

  18. Isodose curve determination of prostate for the treatment of brachytherapy using MCNPX code

    Energy Technology Data Exchange (ETDEWEB)

    Reis Junior, J.P.; Menezes, A.F.; Medeiros, J.A.C.C., E-mail: jjunior@con.ufrj.br, E-mail: ademir@con.ufrj.br, E-mail: amenezes@con.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ/COPPE/PEN), RJ (Brazil). Coord. dos Programas de Pos-Graduacao em Engenharia. Programa de Engenharia Nuclear; Salmom, H.A., E-mail: heliosalmom@coinet.com.br [MD.X Barra Medical Center, Barra da Tijuca, Rio de Janeiro, RJ (Brazil); Facure, A.N.S.S., E-mail: facure@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Silva, A.X. [Universidade Federal do Rio de Janeiro (UFRJ/DEN), Rio de Janeiro, RJ (Brazil). Escola Politecnica. Dept. de Engenharia Nuclear

    2011-07-01

    Using voxel phantom MAX 06 coupled to the code MCNPX it possible to plot the isodose curves for the main levels involved in the treatment of prostate brachytherapy, V100 and V150 which are, respectively corresponding curves 144 and 216 Gy to curves are indicative of the quality of the existing implant of prostate brachytherapy. The number of 79 seeds {sup 125}I, were placed in the voxels simulator MAX 06, in the slices x = 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0 with the calculation model used in MCNPX in all voxels present in a matrix, it was possible to trace the isodose curves for MATLAB. For comparison and using own routines MCNPX it was possible to trace the same curves using mesh tallies. The results showed agreement with predicted values in the planning system prowess 3D. (author)

  19. Plastic optical fibre sensor for in-vivo radiation monitoring during brachytherapy

    Science.gov (United States)

    Woulfe, P.; Sullivan, F. J.; Lewis, E.; O'Keeffe, S.

    2015-09-01

    An optical fibre sensor is presented for applications in real-time in-vivo monitoring of the radiation dose a cancer patient receives during seed implantation in Brachytherapy. The sensor is based on radioluminescence whereby radiation sensitive scintillation material is embedded in the core of a 1mm plastic optical fibre. Three scintillation materials are investigated: thallium-doped caesium iodide (CsI:Tl), terbium-doped gadolinium oxysulphide (Gd2O2S:Tb) and europium-doped lanthanum oxysulphide (La2O2S:Eu). Terbium-doped gadolinium oxysulphide was identified as being the most suitable scintillator and further testing demonstrates its measureable response to different activities of Iodine-125, the radio-active source commonly used in Brachytherapy for treating prostate cancer.

  20. Quality control for cervical cancer treatments on Hdr brachytherapy with Ir-192

    Energy Technology Data Exchange (ETDEWEB)

    Alvarino B, G.; Cogollo P, R.; Paez M, M., E-mail: lvarinog@hotmail.com [Universidad de Cordoba, Physics and Electronics Department, Carrera 6 No. 76-103, Monteria, Cordoba (Colombia)

    2013-10-01

    This work, developed at the National Cancer Institute in partnership with Universidad Nacional de Colombia located in Bogota, Colombia, presents the results of simulations of cervical cancer treatments, on Hdr brachytherapy with Ir-192, using as a physical simulator a natural female pelvis bone with soft tissue elaborated with the experimental material JJT. The doses were measured experimentally, prior to dosimetric characterization, with crystal thermoluminescence 100 LiF: Mg, Ti, located in the organs at risk: rectum and bladder. On the other hand, these treatments were planned and calculated theoretically by the system Micro-Selectron Hdr, with Plato brachytherapy software V 14.1 from the Netherlands Nucletron, and doses obtained in the same organs were compared with experimental results using dosimeters. The comparison of these results shows the correlation degree between the planning of dosimetric treatments and the experimental results, making the process in a form of quality control in vivo, of this type of procedure. (Author)

  1. Dosimetric study of surface applicators of HDR brachytherapy GammaMed Plus equipment

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Rivera, E., E-mail: eric-1985@fisica.ugto.mx, E-mail: modesto@fisica.ugto.mx, E-mail: uvaldoreyes@fisica.ugto.mx; Sosa, M., E-mail: eric-1985@fisica.ugto.mx, E-mail: modesto@fisica.ugto.mx, E-mail: uvaldoreyes@fisica.ugto.mx; Reyes, U., E-mail: eric-1985@fisica.ugto.mx, E-mail: modesto@fisica.ugto.mx, E-mail: uvaldoreyes@fisica.ugto.mx; Jesús Bernal-Alvarado, José de, E-mail: bernal@fisica.ugto.mx, E-mail: theo@fisica.ugto.mx, E-mail: gil@fisica.ugto.mx; Córdova, T., E-mail: bernal@fisica.ugto.mx, E-mail: theo@fisica.ugto.mx, E-mail: gil@fisica.ugto.mx; Gil-Villegas, A., E-mail: bernal@fisica.ugto.mx, E-mail: theo@fisica.ugto.mx, E-mail: gil@fisica.ugto.mx [División de Ciencias e Ingenierías, Universidad de Guanajuato, 37150 León, Gto. (Mexico); Monzón, E., E-mail: emonzon@imss.gob.mx [Unidad de Alta Especialidad No.1, Instituto Mexicano del Seguro Social, Léon, Gto. (Mexico)

    2014-11-07

    The cone type surface applicators used in HDR brachytherapy for treatment of small skin lesions are an alternative to be used with both electron beams and orthovoltage X-ray equipment. For a good treatment planning is necessary to know the dose distribution of these applicators, which can be obtained by experimental measurement and Monte Carlo simulation as well. In this study the dose distribution of surface applicators of 3 and 3.5 cm diameter, respectively of HDR brachytherapy GammaMed Plus equipment has been estimated using the Monte Carlo method, MCNP code. The applicators simulated were placed on the surface of a water phantom of 20 × 20 × 20 cm and the dose was calculated at depths from 0 to 3 cm with increments of 0.25 mm. The dose profiles obtained at depth show the expected gradients for surface therapy.

  2. Intracoronary brachytherapy in the treatment of in-stent restenosis. Initial experience in Brazil

    Directory of Open Access Journals (Sweden)

    Fábio Sândoli de Brito Jr

    2001-09-01

    Full Text Available Intracoronary brachytherapy using beta or gamma radiation is currently the most efficient type of therapy for preventing the recurrence of coronary in-stent restenosis. Its implementation depends on the interaction among interventionists, radiotherapists, and physicists to assure the safety and quality of the method. The authors report the pioneering experience in Brazil of the treatment of 2 patients with coronary in-stent restenosis, in whom beta radiation was used as part of the international multicenter randomized PREVENT study (Proliferation REduction with Vascular ENergy Trial. The procedures were performed rapidly and did not require significant modifications in the traditional techniques used for conventional angioplasty. Alteration in the radiological protection devices of the hemodynamic laboratory were also not required, showing that intracoronary brachytherapy using beta radiation can be incorporated into the interventional tools of cardiology in our environment.

  3. European research projects for metrology in Brachytherapy and External Beam Cancer Therapy

    Science.gov (United States)

    Ankerhold, Ulrike; Toni, Maria Pia

    2012-10-01

    In 2008, within the framework of the European Metrology Research Programme (EMRP), two projects were launched with the central objective of providing reliable measuring techniques for the methods of modern cancer therapy using ionizing radiation—such as brachytherapy, intensity modulated radiation therapy and hadron therapy—and using high intensity therapeutic ultrasound. The two three-year projects are ‘Increasing cancer treatment efficacy using 3D brachytherapy’ (Brachytherapy) and ‘External Beam Cancer Therapy’ (EBCT). For these modern treatment methods there is an urgent requirement for establishing a sound metrological basis with regard to the radiation dose delivered and its spatial distribution. This paper gives a brief overview about the two projects' work, their goals and findings. The details of the projects' work and their outcomes are presented within these conference proceedings or in the cited publications.

  4. Anatomy-based three-dimensional dose optimization in brachytherapy using multiobjective genetic algorithms.

    Science.gov (United States)

    Lahanas, M; Baltas, D; Zamboglou, N

    1999-09-01

    In conventional dose optimization algorithms, in brachytherapy, multiple objectives are expressed in terms of an aggregating function which combines individual objective values into a single utility value, making the problem single objective, prior to optimization. A multiobjective genetic algorithm (MOGA) was developed for dose optimization based on an a posteriori approach, leaving the decision-making process to a planner and offering a representative trade-off surface of the various objectives. The MOGA provides a flexible search engine which provides the maximum of information for a decision maker. Tests performed with various treatment plans in brachytherapy have shown that MOGA gives solutions which are superior to those of traditional dose optimization algorithms. Objectives were proposed in terms of the COIN distribution and differential volume histograms, taking into account patient anatomy in the optimization process.

  5. An orthodontic device for retaining implanted radioactive sources during brachytherapy for cancer of the oral cavity

    Energy Technology Data Exchange (ETDEWEB)

    Masuko, Noriko; Katsura, Kouji [Niigata Univ. (Japan). School of Dentistry; Sugita, Tadashi; Sakai, Kunio; Sato, Katsurou; Kawana, Masahiro; Nonomura, Naobumi

    2000-03-01

    An orthodontic retainer was devised to keeping implanted radioactive sources in position and improve the quality of life during brachytherapy for cancer of the oral cavity. The retainer was used in 3 patients with oral cancer, one with cancer of the hard palate, one with cancer of the soft palate, and one with cancer of the floor of mouth, during brachytherapy using {sup 198}Au grains and {sup 137}Cs needles. These patients could speak freely. One with cancer of the hard palate could drink water and ingest semi-liquid food during treatment instead of nasal tube feeding. The plaster dental model obtained while making the retainer proved to be useful for training radiation oncologists. (author)

  6. Reduction in radiation exposure to nursing personnel with the use of remote afterloading brachytherapy devices

    Energy Technology Data Exchange (ETDEWEB)

    Grigsby, P.W.; Perez, C.A.; Eichling, J.; Purdy, J.; Slessinger, E. (Mallinckrodt Institute of Radiology, St. Louis, MO (USA))

    1991-03-01

    The radiation exposure to nursing personnel from patients with brachytherapy implants on a large brachytherapy service were reviewed. Exposure to nurses, as determined by TLD monitors, indicates a 7-fold reduction in exposure after the implementation of the use of remote afterloading devices. Quarterly TLD monitor data for six quarters prior to the use of remote afterloading devices demonstrate an average projected annual dose equivalent to the nurses of 152 and 154 mrem (1.5 mSv). After the implementation of the remote afterloading devices, the quarterly TLD monitor data indicate an average dose equivalent per nurse of 23 and 19 mrem (0.2 mSv). This is an 87% reduction in exposure to nurses with the use of these devices (p less than 0.01).

  7. SU-E-T-786: Utility of Gold Wires to Optimize Intensity Modulation Capacity of a Novel Directional Modulated Brachytherapy Tandem Applicator for Image Guided Cervical Cancer Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Han, D [University of California, San Diego, La Jolla, CA (United States); Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Safigholi, H; Soliman, A; Song, W [Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Scanderbeg, D [University of California, San Diego, La Jolla, CA (United States); UCSD Medical Center, La Jolla, CA (United States); Liu, Z [University of California, San Diego, La Jolla, CA (United States)

    2015-06-15

    Purpose: To evaluate the impact of using gold wires to differentially fill various channels on plan quality compared with conventional T&R applicator, inside a novel directional modulated brachytherapy (DMBT) tandem applicator for cervical cancer brachytherapy. Materials and Methods: The novel DMBT tandem applicator has a 5.4-mm diameter MR-compatible tungsten alloy enclosed in a 0.3-mm thick plastic tubing that wraps around the tandem. To modulate the radiation intensity, 6 symmetric peripheral holes of 1.3-mm diameter are grooved along the tungsten alloy rod. These grooved holes are differentially filled with gold wires to generate various degrees of directional beams. For example, three different fill patterns of 1) all void, 2) all filled except the hole containing the 192-Ir source, and 3) two adjacent holes to the 192-Ir source filled were Monte Carlo simulated. The resulting 3D dose distributions were imported into an in-house-coded inverse optimization planning system to generate HDR brachytherapy clinical plans for 19 patient cases. All plans generated were normalized to the same D90 as the clinical plans and D2cc doses of OARs were evaluated. Prescription ranged between 15 and 17.5Gy. Results: In general, the plans in case 1) resulted in the highest D2cc doses for the OARs with 11.65±2.30Gy, 7.47±3.05Gy, and 9.84±2.48Gy for bladder, rectum, and sigmoid, respectively, although the differences were small. For the case 2), D2cc doses were 11.61±2.29Gy, 7.41±3.07Gy, and 9.75±2.45Gy, respectively. And, for the case 3), D2cc doses were 11.60±2.28Gy, 7.41±3.05Gy, and 9.74±2.45Gy, respectively. Difference between 1) and 2) cases were small with the average D2cc difference of <0.64%. Difference between 1) and 3) cases were even smaller with the average D2cc difference of <0.1%. Conclusions: There is a minimal clinical benefit by differentially filling grooved holes in the novel DMBT tandem applicator for image guided cervical cancer brachytherapy.

  8. ENT COBRA (Consortium for Brachytherapy Data Analysis): interdisciplinary standardized data collection system for head and neck patients treated with interventional radiotherapy (brachytherapy)

    OpenAIRE

    2016-01-01

    Purpose Aim of the COBRA (Consortium for Brachytherapy Data Analysis) project is to create a multicenter group (consortium) and a web-based system for standardized data collection. Material and methods GEC-ESTRO (Groupe Européen de Curiethérapie – European Society for Radiotherapy & Oncology) Head and Neck (H&N) Working Group participated in the project and in the implementation of the consortium agreement, the ontology (data-set) and the necessary COBRA software services as well as the peer ...

  9. Evaluation of PC-ISO for customized, 3D printed, gynecologic 192Ir HDR brachytherapy applicators.

    Science.gov (United States)

    Cunha, J Adam M; Mellis, Katherine; Sethi, Rajni; Siauw, Timmy; Sudhyadhom, Atchar; Garg, Animesh; Goldberg, Ken; Hsu, I-Chow; Pouliot, Jean

    2015-01-01

    The purpose of this study was to evaluate the radiation attenuation properties of PC-ISO, a commercially available, biocompatible, sterilizable 3D printing material, and its suitability for customized, single-use gynecologic (GYN) brachytherapy applicators that have the potential for accurate guiding of seeds through linear and curved internal channels. A custom radiochromic film dosimetry apparatus was 3D-printed in PC-ISO with a single catheter channel and a slit to hold a film segment. The apparatus was designed specifically to test geometry pertinent for use of this material in a clinical setting. A brachytherapy dose plan was computed to deliver a cylindrical dose distribution to the film. The dose plan used an 192Ir source and was normalized to 1500 cGy at 1 cm from the channel. The material was evaluated by comparing the film exposure to an identical test done in water. The Hounsfield unit (HU) distributions were computed from a CT scan of the apparatus and compared to the HU distribution of water and the HU distribution of a commercial GYN cylinder applicator. The dose depth curve of PC-ISO as measured by the radiochromic film was within 1% of water between 1 cm and 6 cm from the channel. The mean HU was -10 for PC-ISO and -1 for water. As expected, the honeycombed structure of the PC-ISO 3D printing process created a moderate spread of HU values, but the mean was comparable to water. PC-ISO is sufficiently water-equivalent to be compatible with our HDR brachytherapy planning system and clinical workflow and, therefore, it is suitable for creating custom GYN brachytherapy applicators. Our current clinical practice includes the use of custom GYN applicators made of commercially available PC-ISO when doing so can improve the patient's treatment. PACS number: none.

  10. Evaluation of PC-ISO for customized, 3D Printed, gynecologic 192-Ir HDR brachytherapy applicators.

    Science.gov (United States)

    Cunha, J Adam M; Mellis, Katherine; Sethi, Rajni; Siauw, Timmy; Sudhyadhom, Atchar; Garg, Animesh; Goldberg, Ken; Hsu, I-Chow; Pouliot, Jean

    2015-01-08

    The purpose of this study was to evaluate the radiation attenuation properties of PC-ISO, a commercially available, biocompatible, sterilizable 3D printing material, and its suitability for customized, single-use gynecologic (GYN) brachytherapy applicators that have the potential for accurate guiding of seeds through linear and curved internal channels. A custom radiochromic film dosimetry apparatus was 3D-printed in PC-ISO with a single catheter channel and a slit to hold a film segment. The apparatus was designed specifically to test geometry pertinent for use of this material in a clinical setting. A brachytherapy dose plan was computed to deliver a cylindrical dose distribution to the film. The dose plan used an 192Ir source and was normalized to 1500 cGy at 1 cm from the channel. The material was evaluated by comparing the film exposure to an identical test done in water. The Hounsfield unit (HU) distributions were computed from a CT scan of the apparatus and compared to the HU distribution of water and the HU distribution of a commercial GYN cylinder applicator. The dose depth curve of PC-ISO as measured by the radiochromic film was within 1% of water between 1 cm and 6 cm from the channel. The mean HU was -10 for PC-ISO and -1 for water. As expected, the honeycombed structure of the PC-ISO 3D printing process created a moderate spread of HU values, but the mean was comparable to water. PC-ISO is sufficiently water-equivalent to be compatible with our HDR brachytherapy planning system and clinical workflow and, therefore, it is suitable for creating custom GYN brachytherapy applicators. Our current clinical practice includes the use of custom GYN applicators made of commercially available PC-ISO when doing so can improve the patient's treatment. 

  11. High-dose rate brachytherapy in the treatment of cancer of the cervix uteri

    Directory of Open Access Journals (Sweden)

    D. A. Aliyev

    2011-01-01

    Full Text Available Analysis of the results of examining and treating 246 patients with Stages IIA-IIIB cancer of the cervix uteri (CCU, receiving specific chemoradiotherapy (CRT at the Department of Radiotherapy, National Oncology Center (Baku, has ascertained that CRT using two high-dose (9 Gy rate brachytherapy fractions and competitive cisplatin chemotherapy is an effective, reasonably safe, and economically sound treatment method for locally advanced CCU. The method shows acceptable toxicity and may be used in routine clinical practice.

  12. Incorporation of Electronic Brachytherapy for Skin Cancer into a Community Dermatology Practice

    OpenAIRE

    Doggett, Stephen; Willoughby, Mark; Willoughby, Cole; Mafong, Erick; Han, Amy

    2015-01-01

    Objective: The introduction of an electronic brachytherapy delivery system into an existing general dermatology practice is described. Radiobiologic rational for the dose fractionation schedule is detailed. Design: A miniaturized 50keV x-ray tube and delivery system are United States Food and Drug Administration cleared for nonmelanoma skin cancer. The device is introduced into an existing multi-physician dermatology practice in a standard unshielded treatment room. Setting: A multi-site, mul...

  13. SU-E-T-366: Clinical Implementation of MR-Guided Vaginal Cylinder Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Owrangi, A; Jolly, S; Balter, J; Cao, Y; Young, L; Zhu, T; Prisciandaro, J [University of Michigan, Ann Arbor, MI (United States)

    2014-06-01

    Purpose: To evaluate the accuracy of MR-based vaginal brachytherapy source localization using an in-house MR-visible marker versus the alignment of an applicator model to MR images. Methods: Three consecutive patients undergoing vaginal HDR brachytherapy with a plastic cylinder were scanned with both CT and MRI (including T1- and T2- weighted images). An MR-visible source localization marker, consisting of a sealed thin catheter filled with either water (for T2 contrast) or Gd-doped water (for T1 contrast), was assembled shortly before scanning. Clinically, the applicator channel was digitized on CT with an x-ray marker. To evaluate the efficacy of MR-based applicator reconstruction, each MR image volume was aligned locally to the CT images based on the region containing the cylinder. Applicator digitization was performed on the MR images using (1) the MR visible marker and (2) alignment of an applicator surface model from Varian's Brachytherapy Planning software to the MRI images. Resulting source positions were compared with the original CT digitization. Results: Although the source path was visualized by the MR marker, the applicator tip proved difficult to identify due to challenges in achieving a watertight seal. This resulted in observed displacements of the catheter tip, at times >1cm. Deviations between the central source positions identified via aligning the applicator surface model to MR and using the xray marker on CT ranged from 0.07 – 0.19 cm and 0.07 – 0.20 cm on T1- weighted and T2-weighted images, respectively. Conclusion: Based on the current study, aligning the applicator model to MRI provides a practical, current approach to perform MR-based brachytherapy planning. Further study is needed to produce catheters with reliably and reproducibly identifiable tips. Attempts are being made to improve catheter seals, as well as to increase the viscosity of the contrast material to decrease fluid mobility inside the catheter.

  14. Computed tomography-ultrasound fusion brachytherapy: description and evolution of the technique.

    Science.gov (United States)

    Fuller, Donald B; Jin, Haoran

    2007-01-01

    In this manuscript, we describe our computed tomography (CT)-ultrasound (US) fusion prostate brachytherapy method and report the updated dosimetry result and trend. This cohort of 132 consecutive patients received CT-US fusion prostate brachytherapy from the first author (DBF) from December 2002 to August 2006. The technique consists of a hybrid preplanned and intraoperative dynamic dosimetry method, which initially delivers a standard preplanned source distribution, and then uses interval CT-based source identification dosimetry, fused to an identically spaced intraoperative US volume study series, to direct remedial sources that correct initial dosimetry deficiencies. The median and minimum prostate Day 0 prostate volume of interest receiving 100% of prescribed dose (V(100)) results in this patient cohort measured 98.26% and 92.61%, respectively, with all Day 0 prostate dose received by 90% of the volume of interest (D(90)) results exceeding 100% of the prescribed dose, and the maximum Day 0 prostate D(90) value measuring 128% of the prescribed dose. During the period of this analysis, a trend to the decreased quantity of dynamic remedial millicuries per case was identified, with the total sources decreasing from 116% to 106% of the preplanned level, resulting in minimal V(100) and D(90) decreases, while continuing to exceed the minimum Day 0 dosimetry requirements. CT-US fusion dynamic prostate brachytherapy represents a consistent prostate brachytherapy dosimetry delivery mechanism, creating a tight lower and upper bound to the final Day 0 prostate V(100) and D(90) parameters. The practice and pitfalls of this technique are discussed in detail.

  15. CT-Based Brachytherapy Treatment Planning using Monte Carlo Simulation Aided by an Interface Software

    Directory of Open Access Journals (Sweden)

    Vahid Moslemi

    2011-03-01

    Full Text Available Introduction: In brachytherapy, radioactive sources are placed close to the tumor, therefore, small changes in their positions can cause large changes in the dose distribution. This emphasizes the need for computerized treatment planning. The usual method for treatment planning of cervix brachytherapy uses conventional radiographs in the Manchester system. Nowadays, because of their advantages in locating the source positions and the surrounding tissues, CT and MRI images are replacing conventional radiographs. In this study, we used CT images in Monte Carlo based dose calculation for brachytherapy treatment planning, using an interface software to create the geometry file required in the MCNP code. The aim of using the interface software is to facilitate and speed up the geometry set-up for simulations based on the patient’s anatomy. This paper examines the feasibility of this method in cervix brachytherapy and assesses its accuracy and speed. Material and Methods: For dosimetric measurements regarding the treatment plan, a pelvic phantom was made from polyethylene in which the treatment applicators could be placed. For simulations using CT images, the phantom was scanned at 120 kVp. Using an interface software written in MATLAB, the CT images were converted into MCNP input file and the simulation was then performed. Results: Using the interface software, preparation time for the simulations of the applicator and surrounding structures was approximately 3 minutes; the corresponding time needed in the conventional MCNP geometry entry being approximately 1 hour. The discrepancy in the simulated and measured doses to point A was 1.7% of the prescribed dose.  The corresponding dose differences between the two methods in rectum and bladder were 3.0% and 3.7% of the prescribed dose, respectively. Comparing the results of simulation using the interface software with those of simulation using the standard MCNP geometry entry showed a less than 1

  16. Adjuvant radiotherapy in Stage II endometrial carcinoma: Is brachytherapy alone sufficient for local control?

    Science.gov (United States)

    Paydar, Ima; DeWees, Todd; Powell, Matthew; Mutch, David G; Grigsby, Perry W; Schwarz, Julie K

    2015-01-01

    To evaluate recurrence patterns and overall survival in patients treated with adjuvant radiation after surgical staging for Stage II endometrial carcinoma. Secondary goals include identification of prognostic factors for recurrence and toxicity assessment. The medical records of 41 patients treated with adjuvant radiotherapy at Washington University School of Medicine after surgical staging for endometrial cancer (total abdominal hysterectomy and bilateral salpingo-oophorectomy, peritoneal cytology, lymph node dissection) were reviewed. Nineteen were treated with a combination of external beam radiotherapy and vaginal brachytherapy (VB), and 22 patients were treated with postoperative VB alone. Median followup for all patients was 41 months. Median patient age was 59 years (range, 42-87 years). All tumors were of endometrioid histology. There were 20 Grade 1 tumors, 13 Grade 2 tumors, and 8 Grade 3 tumors. For all patients, the 5-year overall survival was 69.8%, and the 5-year recurrence-free survival was 89.0%. There was no statistically significant difference in overall survival (p = 0.510) or freedom from vaginal (p = 0.840), distant (p = 0.133), or any recurrence (p = 0.275) with respect to modality of treatment (external beam radiotherapy and VB vs. VB alone). There were no pelvic lymph node recurrences. In the univariate analysis, there were no risk factors influencing overall survival or recurrences. One patient experienced a toxicity requiring hospital admission. She was treated with pelvic external beam radiation plus brachytherapy. VB alone results in excellent local control for patients with Stage II endometrial cancer after surgical staging. Long-term toxicities are rare and more common in the group of patients who were treated with pelvic external beam plus brachytherapy. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  17. Impact of comorbidity in elderly prostate cancer patients treated with brachytherapy

    Institute of Scientific and Technical Information of China (English)

    Costanza Chiumento; Alba Fiorentino; Mariella Cozzolino; Rocchina Caivano; Stefania Clemente; Piernicola Pedicini; Vincenzo Fusco

    2013-01-01

    Objective:To analyze the correlations among comorbidity and overall survival (OS),biochemical progression-free survival (b-PFS) and toxicity in elderly patents with localized prostate cancer treated with 125I brachytherapy.Methods:Elderly men,aged ≥65 years,with low-intermediate risk prostate cancer,were treated with permanent 125I brachytherapy as monotherapy.Comorbidity data were obtained from medical reports using age-adjusted Charlson comorbidity index (a-CCI).The patients were categorized into two age groups (<75and ≥75 years old),and two comorbidity score groups (a-CCI ≤3 and >3).Toxicity was scored with Radiation Therapy Oncology Group (RTOG) scale.Results:From June 2003 to October 2009,a total of 92 elderly patients underwent prostate brachytherapy,including 57 men (62%) with low-risk prostate cancer,and 35 men (38%) with intermediate-risk prostate cancer.The median age of patients was 75 years (range,65-87 years).Forty-seven patients (51%) had a-CCI ≤3 and 45 patients (49%) a-CCI >3.With a median follow-up period of 56 months (range,24-103 months),the 5-year actuarial OS and b-PFS were 91.3% and 92.4% respectively,without statistical significance between two Charlson score groups.Toxicity was mild.None of the patients experienced gastrointestinal (GI) toxicity,and only 4 patiens (4%) experienced late genitourinary (GU) grade-3 (G3) toxicity.No correlation between acute GU and GI toxicity and comorbidity was showed (P=0.50 and P=0.70,respectively).Conclusions:Our data suggest that elderly men with low-intermediate risk prostate cancer and comorbidity can be considered for a radical treatment as 125I low-dose rate brachytherapy.

  18. Recovery of hormone sensitivity after salvage brachytherapy for hormone refractory localized prostate cancer

    OpenAIRE

    Dan Smith; P. Nick Plowman

    2010-01-01

    PURPOSE: Recent work has demonstrated the return of hormone sensitivity after palliative chemotherapy in androgen independent prostate cancer. We wished to establish whether a similar phenomenon existed in patients with no exposure to chemotherapy. MATERIALS AND METHODS: A review of “hormone resistant” patients who had received salvage brachytherapy for localized prostate cancer after previous external beam radiotherapy was undertaken. Three patients with subsequent biochemical re...

  19. Salvage high-dose-rate interstitial brachytherapy for locally recurrent rectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pellizzon, Antonio Cassio Assis, E-mail: acapellizzon@hcancer.org.br [A.C. Camargo Cancer Center, Sao Paulo, SP (Brazil). Departamento de Radioterapia

    2016-05-15

    For tumors of the lower third of the rectum, the only safe surgical procedure is abdominal-perineal resection. High-dose-rate interstitial brachytherapy is a promising treatment for local recurrence of previously irradiated lower rectal cancer, due to the extremely high concentrated dose delivered to the tumor and the sparing of normal tissue, when compared with a course of external beam radiation therapy. (author)

  20. Long-term survival after intraluminal brachytherapy for inoperable hilar cholangiocarcinoma: A case report

    Institute of Scientific and Technical Information of China (English)

    Siu-Yin Chan; Ronnie T. Poon; Kelvin K. Ng; Chi-Leung Liu; Raymond T. Chan; Sheung-Tat Fan

    2005-01-01

    Surgical resection with a tumor-free margin is the onlycurative treatment for hilar cholangiocarcinoma (Klatskin tumor). However, over half of the patients present late with unresectable tumors. Radiotherapy using external beamirradiation or intraluminal brachytherapy (ILBT) has been used to treat unresectable hilar cholangiocarcinoma with satisfactory outcome. We reported a patient with unresectable hilar cholangiocarcinoma surviving more than 6 years after combined external beam irradiation and ILBT.