WorldWideScience

Sample records for pulsed remote plasma

  1. Crystalline phase control and growth selectivity of β-MnO{sub 2} thin films by remote plasma assisted pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Abi-Akl, M.; Tabbal, M., E-mail: malek.tabbal@aub.edu.lb; Kassem, W.

    2016-08-01

    In this paper, we exploit the effect of coupling an oxygen remote plasma source to Pulsed Laser Deposition (PLD) for the growth of pure and well crystallized β-MnO{sub 2} films. Films were grown on Si substrates by laser ablation of a MnO target in oxygen ambient and remote plasma. X-Ray Diffraction, Fourier Transform Infra-Red spectroscopy and Raman scattering were used to determine the crystalline structure and bonding in the grown layers, whereas Atomic Force Microscopy was used to study their morphology and surface roughness. Deposition at 500 °C and high oxygen pressure (33.3–66.6 Pa) resulted in the formation of films with roughness of 12 nm consisting of nsutite γ-MnO{sub 2}, a structure characterized by the intergrowth of the pyrolusite β-MnO{sub 2} in a ramsdellite R-MnO{sub 2} matrix. Deposition at the same temperature but low pressure (1.33–3.33 Pa) in oxygen ambient lead to the formation of Mn{sub 2}O{sub 3} whereas plasma activation within the same pressure range induced the growth of single phase highly crystalline β-MnO{sub 2} having smooth surfaces with a roughness value of 0.6 nm. Such results underline the capability of remote plasma assisted PLD in selecting and controlling the crystalline phase of manganese oxide layers. - Highlights: • MnO{sub 2} films were grown by Remote Plasma Assisted Pulsed Laser Deposition. • Crystalline MnO{sub 2} is formed at a substrate temperature of 500 °C. • Smooth crystalline single phase β-MnO{sub 2} films were obtained at 1.33–3.33 Pa. • Deposition at 1.33–3.33 Pa without plasma activation lead to the growth of Mn{sub 2}O{sub 3}. • Without plasma, mixed phases of MnO{sub 2} polymorphs are obtained at 33.3 Pa and above.

  2. The design of remote participation platform for EAST plasma control

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Q.P., E-mail: qpyuan@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Xiao, B.J. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); University of Science & Technology of China, Hefei (China); Zhang, R.R. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Chai, W.T.; Liu, J.; Xiao, R.; Zhou, Z.C.; Pei, X.F. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); University of Science & Technology of China, Hefei (China)

    2016-11-15

    Highlights: • The remote participation platform for EAST plasma control is composed of real time control service and scenario management. • The web based interface has been developed for supporting remote participation. • The functionality module has been designed and assistant tools have been developed. - Abstract: EAST has become a physics experimental platform for high parameter and steady-state long-pulse plasma operation. A new remote participation platform for EAST plasma control is designed, which is composed of gatekeeper system, web-based user interface system, discharge scenario management system, online simulation system and data interface with on-site plasma control system (PCS). The identification and access privilege of remote participator is validated by the gatekeeper system. Only authorized users can set control parameters for next shot plasma control or making discharge scenario for future shot through WebPCS which is a web-based user interface and designed based on B/S structure. The systematic architecture design and preliminary deployment of such remote platform will be presented in this paper.

  3. Remote detection of radioactive material using high-power pulsed electromagnetic radiation.

    Science.gov (United States)

    Kim, Dongsung; Yu, Dongho; Sawant, Ashwini; Choe, Mun Seok; Lee, Ingeun; Kim, Sung Gug; Choi, EunMi

    2017-05-09

    Remote detection of radioactive materials is impossible when the measurement location is far from the radioactive source such that the leakage of high-energy photons or electrons from the source cannot be measured. Current technologies are less effective in this respect because they only allow the detection at distances to which the high-energy photons or electrons can reach the detector. Here we demonstrate an experimental method for remote detection of radioactive materials by inducing plasma breakdown with the high-power pulsed electromagnetic waves. Measurements of the plasma formation time and its dispersion lead to enhanced detection sensitivity compared to the theoretically predicted one based only on the plasma on and off phenomena. We show that lower power of the incident electromagnetic wave is sufficient for plasma breakdown in atmospheric-pressure air and the elimination of the statistical distribution is possible in the presence of radioactive material.

  4. Physics-electrical hybrid model for real time impedance matching and remote plasma characterization in RF plasma sources.

    Science.gov (United States)

    Sudhir, Dass; Bandyopadhyay, M; Chakraborty, A

    2016-02-01

    Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the same authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.

  5. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operation—An alternate approach

    International Nuclear Information System (INIS)

    Sudhir, Dass; Bandyopadhyay, M.; Chakraborty, A.; Kraus, W.; Gahlaut, A.; Bansal, G.

    2014-01-01

    Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is not present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard

  6. Concave pulse shaping of a circularly polarized laser pulse from non-uniform overdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Min Sup [School of Natural Science, UNIST, BanYeon-Ri 100, Ulju-gun, Ulsan, 689-798 (Korea, Republic of); Kulagin, Victor V. [Sternberg Astronomical Institute, Moscow State University, Universitetsky prosp. 13, Moscow, 119992 (Russian Federation); Suk, Hyyong, E-mail: hysuk@gist.ac.kr [Department of Physics and Photon Science, GIST, 123 Cheomdan-gwangiro, Buk-gu, Gwangju, 500-712 (Korea, Republic of)

    2015-03-20

    Pulse shaping of circularly polarized laser pulses in nonuniform overdense plasmas are investigated numerically. Specifically we show by two-dimensional particle-in-cell simulations the generation of a concave pulse front of a circularly polarized, a few tens of petawatt laser pulse from a density-tapered, overdense plasma slab. The concept used for the transverse-directional shaping is the differential transmittance depending on the plasma density, and the laser intensity. For suitable selection of the slab parameters for the concave pulse shaping, we studied numerically the pulse transmittance, which can be used for further parameter design of the pulse shaping. The concavely shaped circularly polarized pulse is expected to add more freedom in controlling the ion-beam characteristics in the RPDA regime. - Highlights: • Laser pulse shaping for a concave front by non-uniform overdense plasma was studied. • Particle-in-cell (PIC) simulations were used for the investigation. • A laser pulse can be shaped by a density-tapered overdense plasma. • The concave and sharp pulse front are useful in many laser–plasma applications. • They are important for ion acceleration, especially in the radiation pressure dominant regime.

  7. Pulsed high-density plasmas for advanced dry etching processes

    International Nuclear Information System (INIS)

    Banna, Samer; Agarwal, Ankur; Cunge, Gilles; Darnon, Maxime; Pargon, Erwine; Joubert, Olivier

    2012-01-01

    Plasma etching processes at the 22 nm technology node and below will have to satisfy multiple stringent scaling requirements of microelectronics fabrication. To satisfy these requirements simultaneously, significant improvements in controlling key plasma parameters are essential. Pulsed plasmas exhibit considerable potential to meet the majority of the scaling challenges, while leveraging the broad expertise developed over the years in conventional continuous wave plasma processing. Comprehending the underlying physics and etching mechanisms in pulsed plasma operation is, however, a complex undertaking; hence the full potential of this strategy has not yet been realized. In this review paper, we first address the general potential of pulsed plasmas for plasma etching processes followed by the dynamics of pulsed plasmas in conventional high-density plasma reactors. The authors reviewed more than 30 years of academic research on pulsed plasmas for microelectronics processing, primarily for silicon and conductor etch applications, highlighting the potential benefits to date and challenges in extending the technology for mass-production. Schemes such as source pulsing, bias pulsing, synchronous pulsing, and others in conventional high-density plasma reactors used in the semiconductor industry have demonstrated greater flexibility in controlling critical plasma parameters such as ion and radical densities, ion energies, and electron temperature. Specifically, plasma pulsing allows for independent control of ion flux and neutral radicals flux to the wafer, which is key to eliminating several feature profile distortions at the nanometer scale. However, such flexibility might also introduce some difficulty in developing new etching processes based on pulsed plasmas. Therefore, the main characteristics of continuous wave plasmas and different pulsing schemes are compared to provide guidelines for implementing different schemes in advanced plasma etching processes based on

  8. Remote imaging laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy using nanosecond pulses from a mobile lidar system.

    Science.gov (United States)

    Grönlund, Rasmus; Lundqvist, Mats; Svanberg, Sune

    2006-08-01

    A mobile lidar system was used in remote imaging laser-induced breakdown spectroscopy (LIBS) and laser-induced fluorescence (LIF) experiments. Also, computer-controlled remote ablation of a chosen area was demonstrated, relevant to cleaning of cultural heritage items. Nanosecond frequency-tripled Nd:YAG laser pulses at 355 nm were employed in experiments with a stand-off distance of 60 meters using pulse energies of up to 170 mJ. By coaxial transmission and common folding of the transmission and reception optical paths using a large computer-controlled mirror, full elemental imaging capability was achieved on composite targets. Different spectral identification algorithms were compared in producing thematic data based on plasma or fluorescence light.

  9. Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun

    Science.gov (United States)

    Robert, E.; Sarron, V.; Riès, D.; Dozias, S.; Vandamme, M.; Pouvesle, J.-M.

    2012-06-01

    An experimental study of atmospheric-pressure rare gas plasma propagation in a high-aspect-ratio capillary is reported. The plasma is generated with a plasma gun device based on a dielectric barrier discharge (DBD) reactor powered by either nanosecond or microsecond rise-time high-voltage pulses at single-shot to multi-kHz frequencies. The influence of the voltage waveform, pulse polarity, pulse repetition rate and capillary material have been studied using nanosecond intensified charge-coupled device imaging and plasma-front velocity measurements. The evolution of the plasma appearance during its propagation and the study of the role of the different experimental parameters lead us to suggest a new denomination of pulsed atmospheric-pressure plasma streams to describe all the plasma features, including the previously so-called plasma bullet. The unique properties of such non-thermal plasma launching in capillaries, far from the primary DBD plasma, are associated with a fast ionization wave travelling with velocity in the 107-108 cm s-1 range. Voltage pulse tailoring is shown to allow for a significant improvement of such plasma delivery. Thus, the plasma gun device affords unique opportunities in biomedical endoscopic applications.

  10. Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun

    International Nuclear Information System (INIS)

    Robert, E; Sarron, V; Riès, D; Dozias, S; Vandamme, M; Pouvesle, J-M

    2012-01-01

    An experimental study of atmospheric-pressure rare gas plasma propagation in a high-aspect-ratio capillary is reported. The plasma is generated with a plasma gun device based on a dielectric barrier discharge (DBD) reactor powered by either nanosecond or microsecond rise-time high-voltage pulses at single-shot to multi-kHz frequencies. The influence of the voltage waveform, pulse polarity, pulse repetition rate and capillary material have been studied using nanosecond intensified charge-coupled device imaging and plasma-front velocity measurements. The evolution of the plasma appearance during its propagation and the study of the role of the different experimental parameters lead us to suggest a new denomination of pulsed atmospheric-pressure plasma streams to describe all the plasma features, including the previously so-called plasma bullet. The unique properties of such non-thermal plasma launching in capillaries, far from the primary DBD plasma, are associated with a fast ionization wave travelling with velocity in the 10 7 –10 8 cm s −1 range. Voltage pulse tailoring is shown to allow for a significant improvement of such plasma delivery. Thus, the plasma gun device affords unique opportunities in biomedical endoscopic applications. (paper)

  11. Maskless patterning by pulsed-power plasma printing

    NARCIS (Netherlands)

    Huiskamp, T.; Brok, W.J.M.; Stevens, A.A.E.; Heesch, van E.J.M.; Pemen, A.J.M.

    2012-01-01

    In this paper, pulsed-power technology was applied to plasma printing, which is a maskless plasma patterning solution that is being developed for the fabrication process of printed electronics. A high-voltage pulse source was developed and applied to a high-speed plasma printer to improve the speed

  12. Pulsed Plasma Electron Sources

    Science.gov (United States)

    Krasik, Yakov

    2008-11-01

    Pulsed (˜10-7 s) electron beams with high current density (>10^2 A/cm^2) are generated in diodes with electric field of E > 10^6 V/cm. The source of electrons in these diodes is explosive emission plasma, which limits pulse duration; in the case E Saveliev, J. Appl. Phys. 98, 093308 (2005). Ya. E. Krasik, A. Dunaevsky, and J. Felsteiner, Phys. Plasmas 8, 2466 (2001). D. Yarmolich, V. Vekselman, V. Tz. Gurovich, and Ya. E. Krasik, Phys. Rev. Lett. 100, 075004 (2008). J. Z. Gleizer, Y. Hadas and Ya. E. Krasik, Europhysics Lett. 82, 55001 (2008).

  13. Producing High Intense Attosecond Pulse Train by Interaction of Three-Color Pulse and Overdense Plasma

    Science.gov (United States)

    Salehi, M.; Mirzanejad, S.

    2017-05-01

    Amplifying the attosecond pulse by the chirp pulse amplification method is impossible. Furthermore, the intensity of attosecond pulse is low in the interaction of laser pulse and underdense plasma. This motivates us to propose using a multi-color pulse to produce the high intense attosecond pulse. In the present study, the relativistic interaction of a three-color linearly-polarized laser-pulse with highly overdense plasma is studied. We show that the combination of {{ω }}1, {{ω }}2 and {{ω }}3 frequencies decreases the instance full width at half maximum reflected attosecond pulse train from the overdense plasma surface. Moreover, we show that the three-color pulse increases the intensity of generated harmonics, which is explained by the relativistic oscillating mirror model. The obtained results demonstrate that if the three-color laser pulse interacts with overdense plasma, it will enhance two orders of magnitude of intensity of ultra short attosecond pulses in comparison with monochromatic pulse.

  14. Laser-pulsed Plasma Chemistry: Laser-initiated Plasma Oxidation Of Niobium

    OpenAIRE

    Marks R.F.; Pollak R.A.; Avouris Ph.; Lin C.T.; Thefaine Y.J.

    1983-01-01

    We report the first observation of the chemical modification of a solid surface exposed to an ambient gas plasma initiated by the interaction of laser radiation with the same surface. A new technique, which we designate laser-pulsed plasma chemistry (LPPC), is proposed for activating heterogeneous chemical reactions at solid surfaces in a gaseous ambient by means of a plasma initiated by laser radiation. Results for niobium metal in one atmosphere oxygen demonstrate single-pulse, self-limitin...

  15. The effect of applied electric field on pulsed radio frequency and pulsed direct current plasma jet array

    International Nuclear Information System (INIS)

    Hu, J. T.; Liu, X. Y.; Liu, J. H.; Xiong, Z. L.; Liu, D. W.; Lu, X. P.; Iza, F.; Kong, M. G.

    2012-01-01

    Here we compare the plasma plume propagation characteristics of a 3-channel pulsed RF plasma jet array and those of the same device operated by a pulsed dc source. For the pulsed-RF jet array, numerous long life time ions and metastables accumulated in the plasma channel make the plasma plume respond quickly to applied electric field. Its structure similar as “plasma bullet” is an anode glow indeed. For the pulsed dc plasma jet array, the strong electric field in the vicinity of the tube is the reason for the growing plasma bullet in the launching period. The repulsive forces between the growing plasma bullets result in the divergence of the pulsed dc plasma jet array. Finally, the comparison of 309 nm and 777 nm emissions between these two jet arrays suggests the high chemical activity of pulsed RF plasma jet array.

  16. Pulsed-Plasma Disinfection of Water Containing Escherichia coli

    Science.gov (United States)

    Satoh, Kohki; MacGregor, Scott J.; Anderson, John G.; Woolsey, Gerry A.; Fouracre, R. Anthony

    2007-03-01

    The disinfection of water containing the microorganism, Escherichia coli (E. coli) by exposure to a pulsed-discharge plasma generated above the water using a multineedle electrode (plasma-exposure treatment), and by sparging the off-gas of the pulsed plasma into the water (off-gas-sparging treatment), is performed in the ambient gases of air, oxygen, and nitrogen. For the off-gas-sparging treatment, bactericidal action is observed only when oxygen is used as the ambient gas, and ozone is found to generate the bactericidal action. For the plasma-exposure treatment, the density of E. coli bacteria decreases exponentially with plasma-exposure time for all the ambient gases. It may be concluded that the main contributors to E. coli inactivation are particle species produced by the pulsed plasma. For the ambient gases of air and nitrogen, the influence of acidification of the water in the system, as a result of pulsed-plasma exposure, may also contribute to the decay of E. coli density.

  17. Remote system for counting of nuclear pulses

    International Nuclear Information System (INIS)

    Nieves V, J.A.; Garcia H, J.M.; Aguilar B, M.A.

    1999-01-01

    In this work, it is describe technically the remote system for counting of nuclear pulses, an integral system of the project radiological monitoring in a petroleum distillation tower. The system acquires the counting of incident nuclear particles in a nuclear detector which process this information and send it in serial form, using the RS-485 toward a remote receiver, which can be a Personal computer or any other device capable to interpret the communication protocol. (Author)

  18. Remote operation of the vertical plasma stabilization @ the GOLEM tokamak for the plasma physics education

    Energy Technology Data Exchange (ETDEWEB)

    Svoboda, V., E-mail: svoboda@fjfi.cvut.cz [Faculty of Nuclear Sciences and Physical Engineering CTU Prague, CZ-115 19 (Czech Republic); Kocman, J.; Grover, O. [Faculty of Nuclear Sciences and Physical Engineering CTU Prague, CZ-115 19 (Czech Republic); Krbec, J.; Stöckel, J. [Faculty of Nuclear Sciences and Physical Engineering CTU Prague, CZ-115 19 (Czech Republic); Institute of Plasma Physics AS CR, CZ-182 21 Prague (Czech Republic)

    2015-10-15

    Graphical abstract: * Understandable remote operation of a vertical plasma position control system in the tokamak GOLEM for educational purposes.* Two combinable modes of real-time plasma position control: position based feedback and a pre-defined waveform.* More than 20% plasma life prolongation with plasma position control in feedback mode. - Highlights: • Understandable remote operation of a vertical plasma position control system in the tokamak GOLEM for educational purposes. • Two combinable modes of real-time plasma position control: position based feedback and a pre-defined waveform. • More than 20% plasma life prolongation with plasma position control in feedback mode. - Abstract: The GOLEM tokamak at the Czech Technical University has been established as an educational tokamak device for domestic and foreign students. Remote participation in the scope of several laboratory practices, plasma physics schools and workshops has been successfully performed from abroad. A new enhancement allowing understandable remote control of vertical plasma position in two modes (i) predefined and (ii) feedback control is presented. It allows to drive the current in the stabilization coils in any time-dependent scenario, which can include as a parameter the actual plasma position measured by magnetic diagnostics. Arbitrary movement of the plasma column in a vertical direction, stabilization of the plasma column in the center of the tokamak vessel as well as prolongation/shortening of plasma life according to the remotely defined request are demonstrated.

  19. Modification of structural materials by pulsed plasma flows

    International Nuclear Information System (INIS)

    Bandura, A.N.; Garkusha, I.E.; Byrka, O.V.; Makhlaj, V.A.

    2011-01-01

    Features of surface modification and materials alloying from gas and metallic plasma as a result of the plasma ions mixing with the steel substrate in liquid phase are investigated in this paper.The experiments have been carried out with pulsed plasma gun, which generates plasma streams with ion energy up to 2 keV, plasma density 2x10 14 cm -3 , average specific power of 10 MW/cm 2 and plasma energy density in the range of (5-40) J/cm 2 . The nitrogen, helium, other gases and their mixtures can be used as working gases. The regime of plasma treatment was chosen with variation of both the discharge voltage and the distance of the material surface from the gun output. Modification of thin (0.5-2 µm) PVD coatings of MoN, C+W, TiN, TiC, Cr, Cr+CrN and others by the pulsed plasma streams are analyzed also. It is shown that pulsed plasma treatment results in essential improvement of physical and mechanical properties of exposed materials. For example, microhardness of samples with Cr coating, after plasma treatment, increased in 2,5 times. Mechanisms of surface modification of a different alloys and coating irradiated with pulsed plasma streams of different ions are discussed. (authors)

  20. Channeling and stability of laser pulses in plasmas

    International Nuclear Information System (INIS)

    Sprangle, P.; Krall, J.; Esarey, E.

    1995-01-01

    A laser pulse propagating in a plasma is found to undergo a combination of hose and modulation instabilities. The coupled equations for the laser beam envelope and centroid are derived and solved for a laser pulse of finite length propagating through either a uniform plasma or preformed plasma density channel. The laser envelope equation describes the pulse self-focusing and optical guiding in plasmas and is used to analyze the self-modulation instability. The laser centroid equation describes the transverse motion of the laser pulse (hosing) in plasmas. Significant coupling between the centroid and envelope motion as well as harmonic generation in the envelope can occur. In addition, the transverse profile of the generated wake field is strongly affected by the laser hose instability. Methods to reduce the laser hose instability are demonstrated. copyright 1995 American Institute of Physics

  1. Energy coupling to the plasma in repetitive nanosecond pulse discharges

    International Nuclear Information System (INIS)

    Adamovich, Igor V.; Nishihara, Munetake; Choi, Inchul; Uddi, Mruthunjaya; Lempert, Walter R.

    2009-01-01

    A new analytic quasi-one-dimensional model of energy coupling to nanosecond pulse discharge plasmas in plane-to-plane geometry has been developed. The use of a one-dimensional approach is based on images of repetitively pulsed nanosecond discharge plasmas in dry air demonstrating that the plasma remains diffuse and uniform on a nanosecond time scale over a wide range of pressures. The model provides analytic expressions for the time-dependent electric field and electron density in the plasma, electric field in the sheath, sheath boundary location, and coupled pulse energy. The analytic model predictions are in very good agreement with numerical calculations. The model demonstrates that (i) the energy coupled to the plasma during an individual nanosecond discharge pulse is controlled primarily by the capacitance of the dielectric layers and by the breakdown voltage and (ii) the pulse energy coupled to the plasma during a burst of nanosecond pulses decreases as a function of the pulse number in the burst. This occurs primarily because of plasma temperature rise and resultant reduction in breakdown voltage, such that the coupled pulse energy varies approximately proportionally to the number density. Analytic expression for coupled pulse energy scaling has been incorporated into the air plasma chemistry model, validated previously by comparing with atomic oxygen number density measurements in nanosecond pulse discharges. The results of kinetic modeling using the modified air plasma chemistry model are compared with time-resolved temperature measurements in a repetitively pulsed nanosecond discharge in air, by emission spectroscopy, and purely rotational coherent anti-Stokes Raman spectroscopy showing good agreement.

  2. Electromagnetic pulses at the boundary of a nonlinear plasma

    International Nuclear Information System (INIS)

    Satorius, E.H.

    1975-01-01

    An investigation was made of the behavior of strong electromagnetic pulses at the boundary of a nonlinear, cold, collisionless, and uniform plasma. The nonlinearity considered here is due to the nonlinear terms in the fluid equation which is used to describe the plasma. Two cases are studied. First, the case where there is a voltage pulse applied across the plane boundary of a semi-infinite, nonlinear plasma. Two different voltage pulses are considered, i.e., a delta function pulse and a suddenly turned-on sinusoidal pulse. The resulting electromagnetic fields propagating in the nonlinear plasma are found in this case. In the second case, the reflection of incident E-polarized and H-polarized, electromagnetic pulses at various angles of incidence from a nonlinear, semi-infinite plasma are considered. Again, two forms of incident pulses are considered: a delta function pulse and a suddenly turned-on sinusoidal pulse. In case two, the reflected electromagnetic fields are found. In both cases, the method used for finding the fields is to first solve the fluid equation (which describes the plasma) for the nonlinear conduction current in terms of the electric field using a perturbation method (since the nonlinear effects are assumed to be small). Next, this current is substituted into Maxwell's equations, and finally the electromagnetic fields which satisfy the boundary conditions are found. (U.S.)

  3. Electromagnetic pulse compression and energy localization in quantum plasmas

    International Nuclear Information System (INIS)

    Hefferon, Gareth; Sharma, Ashutosh; Kourakis, Ioannis

    2010-01-01

    The evolution of the intensity of a relativistic laser beam propagating through a dense quantum plasma is investigated, by considering different plasma regimes. A cold quantum fluid plasma and then a thermal quantum description(s) is (are) adopted, in comparison with the classical case of reference. Considering a Gaussian beam cross-section, we investigate both the longitudinal compression and lateral/longitudinal localization of the intensity of a finite-radius electromagnetic pulse. By employing a quantum plasma fluid model in combination with Maxwell's equations, we rely on earlier results on the quantum dielectric response, to model beam-plasma interaction. We present an extensive parametric investigation of the dependence of the longitudinal pulse compression mechanism on the electron density in cold quantum plasmas, and also study the role of the Fermi temperature in thermal quantum plasmas. Our numerical results show pulse localization through a series of successive compression cycles, as the pulse propagates through the plasma. A pulse of 100 fs propagating through cold quantum plasma is compressed to a temporal size of ∼1.35 attosecond and a spatial size of ∼1.08.10 -3 cm. Incorporating Fermi pressure via a thermal quantum plasma model is shown to enhance localization effects. A 100 fs pulse propagating through quantum plasma with a Fermi temperature of 350 K is compressed to a temporal size of ∼0.6 attosecond and a spatial size of ∼2.4.10 -3 cm.

  4. Plasma lenses for ultrashort multi-petawatt laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Palastro, J. P.; Gordon, D.; Hafizi, B.; Johnson, L. A.; Peñano, J.; Hubbard, R. F.; Helle, M.; Kaganovich, D. [Naval Research Laboratory, Washington DC 20375-5346 (United States)

    2015-12-15

    An ideal plasma lens can provide the focusing power of a small f-number, solid-state focusing optic at a fraction of the diameter. An ideal plasma lens, however, relies on a steady-state, linear laser pulse-plasma interaction. Ultrashort multi-petawatt (MPW) pulses possess broad bandwidths and extreme intensities, and, as a result, their interaction with the plasma lens is neither steady state nor linear. Here, we examine nonlinear and time-dependent modifications to plasma lens focusing, and show that these result in chromatic and phase aberrations and amplitude distortion. We find that a plasma lens can provide enhanced focusing for 30 fs pulses with peak power up to ∼1 PW. The performance degrades through the MPW regime, until finally a focusing penalty is incurred at ∼10 PW.

  5. Characterization of the pulse plasma source

    International Nuclear Information System (INIS)

    Milosavljevic, V; Karkari, S K; Ellingboe, A R

    2007-01-01

    Characterization of the pulse plasma source through the determination of the local thermodynamic equilibrium (LTE) threshold is described. The maximum electron density measured at the peak in discharge current is determined by the width of the He II Paschen alpha spectral line, and the electron temperature is determined from the ratios of the relative intensities of spectral lines emitted from successive ionized stages of atoms. The electron density and temperature maximum values are measured to be 1.3 x 10 17 cm -3 and 19 000 K, respectively. These are typical characteristics for low-pressure, pulsed plasma sources for input energy of 15.8 J at 130 Pa pressure in helium-argon mixture. The use of LTE-based analysis of the emission spectra is justified by measurement of the local plasma electron density at four positions in the discharge tube using a floating hairpin resonance probe. The hairpin resonance probe data are collected during the creation and decay phases of the pulse. From the spatio-temporal profile of the plasma density a 60 μs time-window during which LTE exists throughout the entire plasma source is determined

  6. Guiding of laser pulses in plasma waveguides created by linearly-polarized femtosecond laser pulses

    OpenAIRE

    Lemos, N.; Cardoso, L.; Geada, J.; Figueira, G.; Albert, F.; Dias, J. M.

    2018-01-01

    We experimentally demonstrate that plasma waveguides produced with ultra-short laser pulses (sub-picosecond) in gas jets are capable of guiding high intensity laser pulses. This scheme has the unique ability of guiding a high-intensity laser pulse in a plasma waveguide created by the same laser system in the very simple and stable experimental setup. A hot plasma column was created by a femtosecond class laser that expands into an on-axis parabolic low density profile suitable to act as a wav...

  7. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses

    International Nuclear Information System (INIS)

    Ma, Guangjin; Dallari, William; Borot, Antonin; Tsakiris, George D.; Veisz, Laszlo; Krausz, Ferenc; Yu, Wei

    2015-01-01

    We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ∼100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach

  8. Highly Supersonic Ion Pulses in a Collisionless Magnetized Plasma

    DEFF Research Database (Denmark)

    Juul Rasmussen, Jens; Schrittwieser, R.

    1982-01-01

    The initial transient response of a collisionless plasma to a high positive voltage step is investigated. Four different pulses are observed. An electron plasma wave pulse is followed by an ion burst. The latter is overtaken and absorbed by a highly supersonic ion pulse. Thereafter, an ion...

  9. Ultrarelativistic electromagnetic pulses in plasmas

    Science.gov (United States)

    Ashour-Abdalla, M.; Leboeuf, J. N.; Tajima, T.; Dawson, J. M.; Kennel, C. F.

    1981-01-01

    The physical processes of a linearly polarized electromagnetic pulse of highly relativistic amplitude in an underdense plasma accelerating particles to very high energies are studied through computer simulation. An electron-positron plasma is considered first. The maximum momenta achieved scale as the square of the wave amplitude. This acceleration stops when the bulk of the wave energy is converted to particle energy. The pulse leaves behind as a wake a vacuum region whose length scales as the amplitude of the wave. The results can be explained in terms of a snow plow or piston-like action of the radiation on the plasma. When a mass ratio other than unity is chosen and electrostatic effects begin to play a role, first the ion energy increases faster than the electron energy and then the electron energy catches up later, eventually reaching the same value.

  10. Process Performances of 2 ns Pulsed Discharge Plasma

    Science.gov (United States)

    Matsumoto, Takao; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori

    2011-08-01

    Pulsed discharge plasmas have been used to treat exhaust gases. Since pulse duration and the rise time of applied voltage to the discharge electrode has a strong influence on the energy efficiency of pollutant removal, the development of a short-pulse generator is of paramount importance for practical applications. In this work, it is demonstrated that the non thermal plasma produced by the 2 ns pulsed discharge has a higher energy efficiency than the 5 ns pulsed discharge plasma for NO removal and ozone generation. Typically, the NO removal efficiency was 1.0 mol kW-1 h-1 for 70% NO removal (initial NO concentration = 200 ppm, gas flow = 10 L/min). Meanwhile, the ozone yield was 500 g kW-1 h-1 for 20 g/m3 ozone concentration in the case of oxygen feeding. These energy efficiencies are the highest in the literature.

  11. Interaction of ultra-short ultra-intense laser pulses with under-dense plasmas

    International Nuclear Information System (INIS)

    Solodov, A.

    2000-12-01

    Different aspects of interaction of ultra-short ultra-intense laser pulses with underdense plasmas are studied analytically and numerically. These studies can be interesting for laser-driven electron acceleration in plasma, X-ray lasers, high-order harmonic generation, initial confinement fusion with fast ignition. For numerical simulations a fully-relativistic particle code WAKE was used, developed earlier at Ecole Polytechnique. It was modified during the work on the thesis in the part of simulation of ion motion, test electron motion, diagnostics for the field and plasma. The studies in the thesis cover the problems of photon acceleration in the plasma wake of a short intense laser pulse, phase velocity of the plasma wave in the Self-Modulated Laser Wake-Field Accelerator (SM LWFA), relativistic channeling of laser pulses with duration of the order of a plasma period, ion dynamics in the wake of a short intense laser pulse, plasma wave breaking. Simulation of three experiments on the laser pulse propagation in plasma and electron acceleration were performed. Among the main results of the thesis, it was found that reduction of the plasma wave phase velocity in the SM LWFA is crucial for electron acceleration, only if a plasma channel is used for the laser pulse guiding. Self-similar structures describing relativistic guiding of short laser pulses in plasmas were found and relativistic channeling of initially Gaussian laser pulses of a few plasma periods in duration was demonstrated. It was shown that ponderomotive force of a plasma wake excited by a short laser pulse forms a channel in plasma and plasma wave breaking in the channel was analyzed in detail. Effectiveness of electron acceleration by the laser field and plasma wave was compared and frequency shift of probe laser pulses by the plasma waves was found in conditions relevant to the current experiments. (author)

  12. Plasma probe characteristics in low density hydrogen pulsed plasmas

    International Nuclear Information System (INIS)

    Astakhov, D I; Lee, C J; Bijkerk, F; Goedheer, W J; Ivanov, V V; Krivtsun, V M; Zotovich, A I; Zyryanov, S M; Lopaev, D V

    2015-01-01

    Probe theories are only applicable in the regime where the probe’s perturbation of the plasma can be neglected. However, it is not always possible to know, a priori, that a particular probe theory can be successfully applied, especially in low density plasmas. This is especially difficult in the case of transient, low density plasmas. Here, we applied probe diagnostics in combination with a 2D particle-in-cell model, to an experiment with a pulsed low density hydrogen plasma. The calculations took into account the full chamber geometry, including the plasma probe as an electrode in the chamber. It was found that the simulations reproduce the time evolution of the probe IV characteristics with good accuracy. The disagreement between the simulated and probe measured plasma density is attributed to the limited applicability of probe theory to measurements of low density pulsed plasmas on a similarly short time scale as investigated here. Indeed, in the case studied here, probe measurements would lead to, either a large overestimate, or underestimate of the plasma density, depending on the chosen probe theory. In contrast, the simulations of the plasma evolution and the probe characteristics do not suffer from such strict applicability limits. These studies show that probe theory cannot be justified through probe measurements. However, limiting cases of probe theories can be used to estimate upper and lower bounds on plasma densities. These theories include and neglect orbital motion, respectively, with different collisional terms leading to intermediate estimates. (paper)

  13. Acceleration Modes and Transitions in Pulsed Plasma Accelerators

    Science.gov (United States)

    Polzin, Kurt A.; Greve, Christine M.

    2018-01-01

    Pulsed plasma accelerators typically operate by storing energy in a capacitor bank and then discharging this energy through a gas, ionizing and accelerating it through the Lorentz body force. Two plasma accelerator types employing this general scheme have typically been studied: the gas-fed pulsed plasma thruster and the quasi-steady magnetoplasmadynamic (MPD) accelerator. The gas-fed pulsed plasma accelerator is generally represented as a completely transient device discharging in approximately 1-10 microseconds. When the capacitor bank is discharged through the gas, a current sheet forms at the breech of the thruster and propagates forward under a j (current density) by B (magnetic field) body force, entraining propellant it encounters. This process is sometimes referred to as detonation-mode acceleration because the current sheet representation approximates that of a strong shock propagating through the gas. Acceleration of the initial current sheet ceases when either the current sheet reaches the end of the device and is ejected or when the current in the circuit reverses, striking a new current sheet at the breech and depriving the initial sheet of additional acceleration. In the quasi-steady MPD accelerator, the pulse is lengthened to approximately 1 millisecond or longer and maintained at an approximately constant level during discharge. The time over which the transient phenomena experienced during startup typically occur is short relative to the overall discharge time, which is now long enough for the plasma to assume a relatively steady-state configuration. The ionized gas flows through a stationary current channel in a manner that is sometimes referred to as the deflagration-mode of operation. The plasma experiences electromagnetic acceleration as it flows through the current channel towards the exit of the device. A device that had a short pulse length but appeared to operate in a plasma acceleration regime different from the gas-fed pulsed plasma

  14. Time-dependent plasma behavior triggered by a pulsed electron gun under conditions of beam-plasma-discharge

    International Nuclear Information System (INIS)

    Szuszczewicz, E.P.; Lin, C.S.

    1982-01-01

    This chapter reports on experiments whose purpose was to simulate spaceborne applications of energetic electron guns while exploring the ''in situ'' diagnostics of time-dependent beam-plasma behavior under pulsed electron gun conditions. Beam-plasma-discharge (BPD), the BPD afterglow that exists after gun-pulse termination, and the plasma decay process are considered. It is concluded that there is a rapid enhancement in plasma density as the gas turns on; that during the pulse-ON time a quasi-steady-state BPD can be maintained with characteristics identical with its dc counterpart; that in the period immediately following gun-pulse termination the plasma loss process is dominated by cross-field radial diffusion; and that the afterglow plasma is within + or -10% of being an isodensity contour

  15. Influence of the laser pulse duration on laser-produced plasma properties

    International Nuclear Information System (INIS)

    Drogoff, B Le; Margot, J; Vidal, F; Laville, S; Chaker, M; Sabsabi, M; Johnston, T W; Barthelemy, O

    2004-01-01

    In the framework of laser-induced plasma spectroscopy (LIPS) applications, time-resolved characteristics of laser-produced aluminium plasmas in air at atmospheric pressure are investigated for laser pulse durations ranging from 100 fs to 270 ps. Measurements show that for delays after the laser pulse longer than ∼100 ns, the plasma temperature increases slightly with the laser pulse duration, while the electron density is independent of it. In addition, as the pulse duration increases, the plasma radiation emission lasts longer and the spectral lines arise later from the continuum emission. The time dependence of the continuum emission appears to be similar whatever the duration of the laser pulse is, while the temporal evolution of the line emission seems to be affected mainly by the plasma temperature. Finally, as far as spectrochemical applications (such as LIPS) of laser-produced plasmas are concerned, this study highlights the importance of the choice of appropriate temporal gating parameters for each laser pulse duration

  16. Plasma effects in attosecond pulse generation from ultra-relativistic laser-plasma interactions

    International Nuclear Information System (INIS)

    Boyd, T.J.M.

    2010-01-01

    Complete text of publication follows. Particle-in-cell simulations were performed to examine the influence of plasma effects on high harmonic spectra from the interaction of ultra-intense p-polarized laser pulses with overdense plasma targets. Furthermore, a theoretical model is proposed to explain the radiation mechanism that leads to attosecond pulse generation in the reflected field. It is shown that plasma harmonic emission affects the spectral characteristics, causing deviations in the harmonic power decay as compared with the so-called universal 8/3-decay. These deviations may occur, in a varying degree, as a consequence of the extent to which the plasma line and its harmonics affect the emission. It is also found a strong correlation of the emitted attosecond pulses with electron density structures within the plasma, responsible to generate intense localised electrostatic fields. A theoretical model based on the excitation of Langmuir waves by the re-entrant Brunel electron beams in the plasma and their electromagnetic interaction with the laser field is proposed to explain the flatter power spectral emission - described by a weaker 5/3 index and observed in numerical simulations - than that of the universal decay.

  17. Self-focusing and Raman scattering of laser pulses in tenuous plasmas

    International Nuclear Information System (INIS)

    Antonsen, T.M. Jr.; Mora, P.

    1993-01-01

    The propagation and self-focusing of short, intense laser pulses in a tenuous plasma is studied both analytically and numerically. Specifically, pulses of length of the order of a few plasma wavelengths and of intensity, which is large enough for relativistic self-focusing to occur, are considered. Such pulses are of interest in various laser plasma acceleration schemes. It is found that these pulses are likely to be strongly affected by Raman instabilities. Two different regimes of instability, corresponding to large and small scattering angles, are found to be important. Small-angle scattering is perhaps the most severe since it couples strongly with relativistic self-focusing, leading the pulses to acquire significant axial and transverse structure in a time of the order of the self-focusing time. Thus it will be difficult to propagate smooth self-focused pulses through tenuous plasmas for distances longer than the Rayleigh length, except for pulse duration of the order of the plasma period

  18. Bulk plasma properties in the pulsed glow discharge

    International Nuclear Information System (INIS)

    Jackson, Glen P.; King, Fred L.

    2003-01-01

    This work focuses on the spatial and temporal characteristics of a glow discharge plasma operated with power pulses of 5 ms in duration at 25% duty cycle. Interpretation of emission data provides insight into the nature of the plasma at each instant of a typical pulse cycle and at each position in space. Because the bulk plasma properties affect the distribution of excited energy levels of the sputtered atoms, an improved understanding of the plasma affords the ability to select conditions that enhance analytically important emission lines. Optical emission spectroscopy was used to determine the relative populations of excited states for atoms and ions during the initial breakdown, the steady state and the recombining periods of the discharge pulse cycle. The plasma is highly ionizing in nature at the time of breakdown--with lower excited states being overpopulated--before reaching the steady state, or plateau, period, also ionizing in nature. These behaviors arise from a loss of charged particles and photons to the surroundings that shifts the plasma away from Saha and Boltzmann balances during these periods. The post-pulse period typically displays recombining behavior, characterized by population inversion for selected species--except for regions close to the cathode, where electrons and ions are lost by diffusion and are not available for recombination. The sputtered analyte atom emissions closely mimic those of the plasma bath gas, except that their emissions persevere for longer in the recombining after-peak period than do the discharge gas species

  19. Hose-Modulation Instability of Laser Pulses in Plasmas

    International Nuclear Information System (INIS)

    Sprangle, P.; Krall, J.; Esarey, E.

    1994-01-01

    A laser pulse propagating in a uniform plasma or a preformed plasma density channel is found to undergo a combination of hose and modulation instabilities, provided the pulse centroid has an initial tilt. Coupled equations for the laser centroid and envelope are derived and solved for a finite-length laser pulse. Significant coupling between the centroid and the envelope, harmonic generation in the envelope, and strong modification of the wake field can occur. Methods to reduce the growth rate of the laser hose instability are demonstrated

  20. Research on imploded plasma heating by short pulse laser for fast ignition

    International Nuclear Information System (INIS)

    Kodama, R.; Kitagawa, Y.; Mima, K.

    2001-01-01

    Since the peta watt module (PWM) laser was constructed in 1995, investigated are heating processes of imploded plasmas by intense short pulse lasers. In order to heat the dense plasma locally, a heating laser pulse should be guided into compressed plasmas as deeply as possible. Since the last IAEA Fusion Conference, the feasibility of fast ignition has been investigated by using the short pulse GEKKO MII glass laser and the PWM laser with GEKKO XII laser. We found that relativistic electrons are generated efficiently in a preformed plasma to heat dense plasmas. The coupling efficiency of short pulse laser energy to a solid density plasma is 40% when no plasmas are pre-formed, and 20% when a large scale plasma is formed by a long pulse laser pre-irradiation. The experimental results are confirmed by numerical simulations using the simulation code 'MONET' which stands for the Monte-Carlo Electron Transport code developed at Osaka. In the GEKKO XII and PWM laser experiments, intense heating pulses are injected into imploded plasmas. As a result of the injection of heating pulse, it is found that high energy electrons and ions could penetrate into imploded core plasmas to enhance neutron yield by factor 3∼5. (author)

  1. Plasma Discharge Process in a Pulsed Diaphragm Discharge System

    Science.gov (United States)

    Duan, Jianjin; Hu, Jue; Zhang, Chao; Wen, Yuanbin; Meng, Yuedong; Zhang, Chengxu

    2014-12-01

    As one of the most important steps in wastewater treatment, limited study on plasma discharge process is a key challenge in the development of plasma applications. In this study, we focus on the plasma discharge process of a pulsed diaphragm discharge system. According to the analysis, the pulsed diaphragm discharge proceeds in seven stages: (1) Joule heating and heat exchange stage; (2) nucleated site formation; (3) plasma generation (initiation of the breakdown stage); (4) avalanche growth and plasma expansion; (5) plasma contraction; (6) termination of the plasma discharge; and (7) heat exchange stage. From this analysis, a critical voltage criterion for breakdown is obtained. We anticipate this finding will provide guidance for a better application of plasma discharges, especially diaphragm plasma discharges.

  2. Long pulse, plasma cathode E-gun

    International Nuclear Information System (INIS)

    Goebel, D.M.; Schumacher, R.W.; Watkins, R.M.

    1993-01-01

    A unique, long-pulse E-gun has been developed for high-power tube applications. The Hollow-Cathode-Plasma (HCP) E-gun overcomes the limitations of conventional thermionic-cathode guns that have limited current density (typically ≤ 10 A/cm 2 ) or field-emission guns that offer high current density but suffer from short pulsewidth capability (typically 50 A/cm 2 ), long-pulse operation without gap closure, and also requires no cathode-heater power. The gun employs a low-pressure glow discharge inside a hollow cathode (HC) structure to provide a stable, uniform plasma surface from which a high current-density electron beam can be extracted. The plasma density is controlled by a low-voltage HC discharge pulser to produce the desired electron current density at the first grid of a multi-grid accelerator system. A dc high-voltage electron-beam supply accelerates the electrons across the gap, while the HC pulser modulates the beam current to generate arbitrary pulse waveforms. The electron accelerator utilizes a multi-aperture array that produces a large area, high perveance (>35 μpervs) beam consisting initially of many individual beamlets. The E-beam is normally operated without an applied magnetic field in the ion-focused regime, where the plasma produced by beam ionization of a background gas space-charge neutralizes the beam, and the Bennett self-pinch compresses the beamlets and increases the current density. The self-pinched beam has been observed to propagate over a meter without beam breakup or instabilities. The HCP E-gun has been operated at voltages up to 150 kV, currents up to 750 A, and pulse lengths of up to 120 μsec

  3. Tribological properties of plasma and pulse plasma nitrided AISI 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Podgornik, B.; Vizintin, J. [Ljubljana Univ. (Slovenia). Center of Tribology and Tech. Diagnostics; Leskovsek, V. [Inst. of Metals and Technologies, Ljubljana (Slovenia)

    1998-10-10

    Plasma nitriding is usually used for ferrous materials to improve their surface properties. Knowledge of the properties of thin surface layers is essential for designing engineering components with optimal wear performance. In our study, we investigated the microstructural, mechanical and tribological properties of plasma- and pulse plasma-nitrided AISI 4140 steel in comparison to hardened steel. The influence of nitriding case depth as well as the presence of a compound layer on its tribological behaviour was also examined. Plasma and pulse plasma nitriding were carried out using commercial nitriding processes. Nitrided samples were fully characterised, using metallographic, SEM microscopic, microhardness and profilometric techniques, before and after wear testing. Wear tests were performed on a pin-on-disc wear testing machine in which nitrided pins were mated to hardened ball bearing steel discs. The wear tests were carried out under dry conditions where hardened samples were used as a reference. The resulting wear loss as well as the coefficient of friction was monitored as a function of load and test time. Several microscopic techniques were used to analyse the worn surfaces and wear debris in order to determine the dominant friction and wear characteristics. Results showed improved tribological properties of AISI 4140 steel after plasma and pulse plasma nitriding compared to hardening. However, the compound layer should be removed from the surface by mechanical means or by decreasing the amount of nitrogen in the nitriding atmosphere, to avoid impairment of the tribological properties by fracture of the hard and brittle compound layer followed by the formation of hard abrasive particles. (orig.) 10 refs.

  4. Self-resonant wakefield excitation by intense laser pulse in plasmas

    International Nuclear Information System (INIS)

    Andreev, N.E.; Pogosova, A.A.; Gorbunov, L.M.; Ramazashvili, R.R.; Kirsanov, V.I.

    1993-01-01

    It is demonstrated by theoretical analysis and numerical calculations that in an underdense plasma the process of three-dimensional evolution of the short and strong laser pulse (with duration equal to several plasma periods) leads to compression and self-modulation of the pulse, so that during a fairly long period of time beats of pulse amplitude generates resonantly a strong and stable plasma wakefield. The intensity of the wake-field is so high that it can provide a new promising outlook for the plasma based accelerator concept. Linear analysis of dispersion relation predicts that taking into account transverse component of wavenumber considerably increases the growth rate of resonance instability of the pulse. The numerical simulations demonstrate that considered self-focusing and resonant-modulation instability are essentially three dimensional processes. Laser field evolution in each transverse cross section of the pulse is synchronized by the regular structure of plasma wave that is excited by the pulse. The considered effect of resonant modulation has a threshold. For the pulses with the intensity below the threshold the refraction dominates and no modulation appears. The studied phenomenon can be referred to as the Self-Resonant Wakefield (SRWF) excitation that is driven by self-focusing and self-modulation of laser pulse with quite a moderate initial duration. In fact, this method of excitation differs from both suggested in Ref.1 (PBWA) and in Refs.2,3 (LWFA), being even more than the combination of these concepts. Unlike the first scheme it does not require initially the two-frequency laser pulse, since the modulation here appears in the most natural way due to evolution of the pulse. In contrast with the LWFA, the considered SRWF generation scheme gives the possibility to raise the intensity of wake-excitation due to pulse self-focusing ( initial stage) and self modulation (second stage)

  5. Prepulse suppression using a self-induced, ultrashort pulse plasma mirror

    International Nuclear Information System (INIS)

    Gold, D.M.; Nathel, H.; Bolton, P.R.; White, W.E.; Van Woerkom, L.D.

    1991-01-01

    The plasma mirror is a self-induced, plasm-based optical element which can be inserted into existing experiments to reduce repulse energy without significant degradation of ultrashort pulse laser light. The authors have characteristics of the reflected pulse. The initial measurements indicate that the incident pulse reflects specularly from a high density, highly reflective plasma. The reflected pulse has a smoothed spatial profile and reduced pulsewidth. This paper outlines future work to characterize both the plasm mirror technique of repulse suppression and its reflected pulse

  6. Advanced Pulse Oximetry System for Remote Monitoring and Management

    Science.gov (United States)

    Pak, Ju Geon; Park, Kee Hyun

    2012-01-01

    Pulse oximetry data such as saturation of peripheral oxygen (SpO2) and pulse rate are vital signals for early diagnosis of heart disease. Therefore, various pulse oximeters have been developed continuously. However, some of the existing pulse oximeters are not equipped with communication capabilities, and consequently, the continuous monitoring of patient health is restricted. Moreover, even though certain oximeters have been built as network models, they focus on exchanging only pulse oximetry data, and they do not provide sufficient device management functions. In this paper, we propose an advanced pulse oximetry system for remote monitoring and management. The system consists of a networked pulse oximeter and a personal monitoring server. The proposed pulse oximeter measures a patient's pulse oximetry data and transmits the data to the personal monitoring server. The personal monitoring server then analyzes the received data and displays the results to the patient. Furthermore, for device management purposes, operational errors that occur in the pulse oximeter are reported to the personal monitoring server, and the system configurations of the pulse oximeter, such as thresholds and measurement targets, are modified by the server. We verify that the proposed pulse oximetry system operates efficiently and that it is appropriate for monitoring and managing a pulse oximeter in real time. PMID:22933841

  7. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    Science.gov (United States)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Döbeli, Max; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas

    2015-10-01

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially 18O substituted La0.6Sr0.4MnO3 target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  8. Propagation and reflection of chirped pulses in the nonuniform ionospheric plasma

    International Nuclear Information System (INIS)

    Levitsky, S.M.

    2009-01-01

    By passing of a chirped pulse in a inhomogeneous ionospheric plasma this pulses due to the dispersion futures of the plasma becomes deformed and can be strongly compressed. The chirped pulse can be compressed also being reflected by the ionosphere. This can give some advantage using such pulses in the experiments of ionospheric zoning.

  9. Controlling Plasma Channels through Ultrashort Laser Pulse Filamentation

    Science.gov (United States)

    Ionin, Andrey; Seleznev, Leonid; Sunchugasheva, Elena

    2013-09-01

    A review of studies fulfilled at the Lebedev Institute in collaboration with the Moscow State University and Institute of Atmospheric Optics in Tomsk on influence of various characteristics of ultrashort laser pulse on plasma channels formed under its filamentation is presented. Filamentation of high-power laser pulses with wavefront controlled by a deformable mirror, with cross-sections spatially formed by various diaphragms and with different wavelengths was experimentally and numerically studied. An application of plasma channels formed due to filamentation of ultrashort laser pulse including a train of such pulses for triggering and guiding long electric discharges is discussed. The research was supported by RFBR Grants 11-02-12061-ofi-m and 11-02-01100, and EOARD Grant 097007 through ISTC Project 4073 P

  10. Multi-Pulse DARHT Machine-Plasma Plume Problem

    International Nuclear Information System (INIS)

    Lauer, E J

    2004-01-01

    The plasma current decay time constant is predicted to be short compared to the pulse length and so self-focusing is predicted for most of the beam pulse. Four- pulse beam envelopes for a high dose case require mitigation, those for a low dose case do not. Methods of mitigation are summarized. Hose instability growth in the plume length is predicted to be minimal

  11. Nonstationary propagation of a gaussian electromagnetic pulse in a decaying/growth plasma

    International Nuclear Information System (INIS)

    Kaushik, S.C.; Sen, R.

    1975-01-01

    The propagation of a gaussian electromagnetic pulse in a growing/decaying (time-dependent) plasma has been studied when the duration of the pulse is comparable with the decay/growing time of the plasma. Because of the different group velocities of the front and tail portions of the pulse, the pulse is compressed/broadened in a time-dependent plasma. The effect of absorption on the compression/broadening is found to be negligible. However, the peak value of the pulse is suppressed by attenuation. (author)

  12. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas, E-mail: thomas.lippert@psi.ch [General Energy Research Department, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Döbeli, Max [Ion Beam Physics, ETH Zurich, CH-8093 Zurich (Switzerland)

    2015-10-28

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially {sup 18}O substituted La{sub 0.6}Sr{sub 0.4}MnO{sub 3} target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  13. Study of Pulsed vs. RF Plasma Properties for Surface Processing Applications

    Science.gov (United States)

    Tang, Ricky; Hopkins, Matthew; Barnat, Edward; Miller, Paul

    2015-09-01

    The ability to manipulate the plasma parameters (density, E/N) was previously demonstrated using a double-pulsed column discharge. Experiments extending this to large-surface plasmas of interest to the plasma processing community were conducted. Differences between an audio-frequency pulsed plasma and a radio-frequency (rf) discharge, both prevalent in plasma processing applications, were studied. Optical emission spectroscopy shows higher-intensity emission in the UV/visible range for the pulsed plasma comparing to the rf plasma at comparable powers. Data suggest that the electron energy is higher for the pulsed plasma leading to higher ionization, resulting in increased ion density and ion flux. Diode laser absorption measurements of the concentration of the 1S5 metastable and 1S4 resonance states of argon (correlated with the plasma E/N) provide comparisons between the excitation/ionization states of the two plasmas. Preliminary modeling efforts suggest that the low-frequency polarity switch causes a much more abrupt potential variation to support interesting transport phenomena, generating a ``wave'' of higher temperature electrons leading to more ionization, as well as ``sheath capture'' of a higher density bolus of ions that are then accelerated during polarity switch.

  14. effect of the plasma ion channel on self-focusing of a Gaussian laser pulse in underdense plasma

    Directory of Open Access Journals (Sweden)

    Sh Irani

    2013-09-01

    Full Text Available  We have considered the self-focusing of a Gaussian laser pulse in unmagnetized plasma. High-intensity electromagnetic fields cause the variation of electron density in plasma. These changes in the special conditions cause the acceleration of electrons to the higher energy and velocities. Thus the equation of plasma density evolution was obtained considering the electrons ponderomotive force. Then, an equation for the width of laser pulse with a relativistic mass correction term and the effect of ion channel were derived and the propagation of high-intensity laser pulse in an underdense plasma with weak relativistic approximation was investigated. It is shown that the ratio of ion channel radius to spot size could result in different forms of self focusing for the laser pulse in plasma.

  15. Developments in remote participation in plasma physics experiments

    International Nuclear Information System (INIS)

    Blackwell, B.

    1999-01-01

    Recent growth in the size of plasma experiments and developments in network based software have contributed to a high level of interest in remote participation. Highlights of the recent conferences on this subject, and the ensuing 'white paper' are presented, with demonstrations of various Data Server/Web/Java based remote access techniques. These not only allow AINSE/AFRG users convenient access to H-1NF data from their home laboratory, but are (or soon will be) available to and from many overseas laboratories with similar systems. Many large plasma laboratories predict a large increase in remote access in the next two years. Several demonstrations of remote experiment control have been performed over medium speed networks, and several new experiments are planning on remote access from the beginning. In this paper we consider data access rights and security, access to common documents, and access to processed and raw data. The full version of this document can be viewed on the ANU's H-1NF web page at: http://rsphysse.anu.edu.au/

  16. An investigation of pulsed high density plasmas

    International Nuclear Information System (INIS)

    Timmermans, C.J.

    1984-01-01

    In this thesis a wall-stabilized argon cascade arc is studied at values of pulsed pressure up to 14 bar and a pulsed current range up to 2200 A with a time duration of about 2 ms. The basic plasma is a CW cascade arc with a 5 mm diameter plasma column and a length of 90 mm, which operates at a 60 A DC current and at one atmosphere filling pressure. The author starts with an extensive summary of the CW arc investigations. After a brief introduction of the basic transport equations the mass equations of the constituent particles are treated using the extended collisional radiative model. The energy balance equations and the momentum balance are discussed. The electron density is determined from measurements of the continuum radiation. The final chapter contains the experimental results on the electron temperatures and electron densities in the pressure and current pulsed plasma. Attention is given to the deviations from local thermodynamic equilibrium values of the ground level densities of the different argon systems. (Auth.)

  17. New developments of plasma science with pulsed power technology

    International Nuclear Information System (INIS)

    Kamada, Keiichi; Ozaki, Tetsuo

    2010-03-01

    In this proceedings, the papers presented at the symposium on “New developments of Plasma Science with Pulsed Power Technology” held at National Institute for Fusion Science on March 5-6, 2009 are collected. The papers reflect the present status and recent progress in the experimental and theoretical works on plasma science using pulsed power technology. (author)

  18. Roughness generation during Si etching in Cl{sub 2} pulsed plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mourey, Odile; Petit-Etienne, Camille; Cunge, Gilles, E-mail: gilles.cunge@cea.fr; Darnon, Maxime; Despiau-Pujo, Emilie; Brichon, Paulin; Lattu-Romain, Eddy; Pons, Michel; Joubert, Olivier [Univ. Grenoble Alpes, CNRS, CEA-Leti Minatec, LTM, F-38054 Grenoble Cedex (France)

    2016-07-15

    Pulsed plasmas are promising candidates to go beyond limitations of continuous waves' plasma. However, their interaction with surfaces remains poorly understood. The authors investigated the silicon etching mechanism in inductively coupled plasma (ICP) Cl{sub 2} operated either in an ICP-pulsed mode or in a bias-pulsed mode (in which only the bias power is pulsed). The authors observed systematically the development of an important surface roughness at a low duty cycle. By using plasma diagnostics, they show that the roughness is correlated to an anomalously large (Cl atoms flux)/(energetic ion flux) ratio in the pulsed mode. The rational is that the Cl atom flux is not modulated on the timescale of the plasma pulses although the ion fluxes and energy are modulated. As a result, a very strong surface chlorination occurs during the OFF period when the surface is not exposed to energetic ions. Therefore, each energetic ion in the ON period will bombard a heavily chlorinated silicon surface, leading to anomalously high etching yield. In the ICP pulsed mode (in which the ion energy is high), the authors report yields as high as 40, which mean that each individual ion impacts will generate a “crater” of about 2 nm depth at the surface. Since the ion flux is very small in the pulsed ICP mode, this process is stochastic and is responsible for the roughness initiation. The roughness expansion can then be attributed partly to the ion channeling effect and is probably enhanced by the formation of a SiClx reactive layer with nonhomogeneous thickness over the topography of the surface. This phenomenon could be a serious limitation of pulsed plasma processes.

  19. Bacteria killing effect of pulsed plasmas in oxygen+air at atmospheric pressure

    International Nuclear Information System (INIS)

    Akan, T.

    2005-01-01

    Bacteria Killing Method. The high voltage pulsed plasma is a non-equilibrium plasma and generates UV photons, ozone and active oxygen. The aim of this paper is to present a simple device to generate plasma able to kill efficiently bacteria. One of the probes charged with bacteria, was kept as a control probes (not exposed to the pulsed plasma), the rest of the probes were exposed to the pulsed plasma and afterwards compared with above mentioned control probe (reference sample). During treatment the bacteria were exposed to the active atoms, molecules, charged particles and photons generated by the pulsed plasma. The temperature of the support of samples with bacteria exposed to plasma increased during the treatment with only 1-2 degrees. Full killing time of Staphylococcus species as low as 3 minutes have been obtained quite easily

  20. EVOLUTION OF FAST MAGNETOACOUSTIC PULSES IN RANDOMLY STRUCTURED CORONAL PLASMAS

    International Nuclear Information System (INIS)

    Yuan, D.; Li, B.; Pascoe, D. J.; Nakariakov, V. M.; Keppens, R.

    2015-01-01

    We investigate the evolution of fast magnetoacoustic pulses in randomly structured plasmas, in the context of large-scale propagating waves in the solar atmosphere. We perform one-dimensional numerical simulations of fast wave pulses propagating perpendicular to a constant magnetic field in a low-β plasma with a random density profile across the field. Both linear and nonlinear regimes are considered. We study how the evolution of the pulse amplitude and width depends on their initial values and the parameters of the random structuring. Acting as a dispersive medium, a randomly structured plasma causes amplitude attenuation and width broadening of the fast wave pulses. After the passage of the main pulse, secondary propagating and standing fast waves appear. Width evolution of both linear and nonlinear pulses can be well approximated by linear functions; however, narrow pulses may have zero or negative broadening. This arises because narrow pulses are prone to splitting, while broad pulses usually deviate less from their initial Gaussian shape and form ripple structures on top of the main pulse. Linear pulses decay at an almost constant rate, while nonlinear pulses decay exponentially. A pulse interacts most efficiently with a random medium with a correlation length of about half of the initial pulse width. This detailed model of fast wave pulses propagating in highly structured media substantiates the interpretation of EIT waves as fast magnetoacoustic waves. Evolution of a fast pulse provides us with a novel method to diagnose the sub-resolution filamentation of the solar atmosphere

  1. Temporally asymmetric laser pulse for magnetic-field generation in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mamta; Gopal, Krishna; Gupta, Devki Nandan, E-mail: dngupta@physics.du.ac.in

    2016-04-01

    Of particular interest in this article, the case study of an asymmetric laser pulse interaction with a plasma for magnetic field enhancement has been investigated. The strong ponderomotive force due to the short leading edge of the propagating laser pulse drives a large nonlinear current, producing a stronger quasistatic magnetic field. An analytical expression for the magnetic field is derived and the strength of the magnetic field is estimated for the current laser-plasma parameters. The theoretical results are validated through the particle-in-cell (PIC) simulations and are in very close agreement with the simulation based estimations. This kind of magnetic field can be useful in the plasma based accelerators as well as in the laser-fusion based experiments. - Highlights: • We employ an asymmetric laser pulse to enhance the magnetic field strength in a plasma. • Short leading front of the pulse drives a strong ponderomotive force. • An analytical expression for the magnetic field is derived. • The strength of the magnetic field is estimated for the current laser–plasma parameters.

  2. Temporally asymmetric laser pulse for magnetic-field generation in plasmas

    International Nuclear Information System (INIS)

    Singh, Mamta; Gopal, Krishna; Gupta, Devki Nandan

    2016-01-01

    Of particular interest in this article, the case study of an asymmetric laser pulse interaction with a plasma for magnetic field enhancement has been investigated. The strong ponderomotive force due to the short leading edge of the propagating laser pulse drives a large nonlinear current, producing a stronger quasistatic magnetic field. An analytical expression for the magnetic field is derived and the strength of the magnetic field is estimated for the current laser-plasma parameters. The theoretical results are validated through the particle-in-cell (PIC) simulations and are in very close agreement with the simulation based estimations. This kind of magnetic field can be useful in the plasma based accelerators as well as in the laser-fusion based experiments. - Highlights: • We employ an asymmetric laser pulse to enhance the magnetic field strength in a plasma. • Short leading front of the pulse drives a strong ponderomotive force. • An analytical expression for the magnetic field is derived. • The strength of the magnetic field is estimated for the current laser–plasma parameters.

  3. Intense microwave pulse propagation through gas breakdown plasmas in a waveguide

    International Nuclear Information System (INIS)

    Byrne, D.P.

    1986-01-01

    High-power microwave pulse-compression techniques are used to generate 2.856 GHz pulses which are propagated in a TE 10 mode through a gas filled section of waveguide, where the pulses interact with self-generated gas-breakdown plasmas. Pulse envelopes transmitted through the plasmas, with duration varying from 2 ns to greater than 1 μs, and peak powers of a few kW to nearly 100 MW, are measured as a function of incident pulse and gas pressure for air, nitrogen, and helium. In addition, the spatial and temporal development of the optical radiation emitted by the breakdown plasmas are measured. For transmitted pulse durations ≥ 100 ns, good agreement is found with both theory and existing measurements. For transmitted pulse duration as short as 2 ns (less than 10 rf cycles), a two-dimensional model is used in which the electrons in the plasma are treated as a fluid whose interactions with the microwave pulse are governed by a self-consistent set of fluid equations and Maxwell's equations for the electromagnetic field. The predictions of this model for air are compared with the experimental results over a pressure range of 0.8 torr to 300 torr. Good agreement is obtained above about 1 torr pressure, demonstrating that microwave pulse propagation above the breakdown threshold can be accurately modeled on this time scale. 63 refs., 44 figs., 2 tabs

  4. Comparison of pulsed corona plasma and pulsed electric fields for the decontamination of water containing Legionella pneumophila as model organism.

    Science.gov (United States)

    Banaschik, Robert; Burchhardt, Gerhard; Zocher, Katja; Hammerschmidt, Sven; Kolb, Juergen F; Weltmann, Klaus-Dieter

    2016-12-01

    Pulsed corona plasma and pulsed electric fields were assessed for their capacity to kill Legionella pneumophila in water. Electrical parameters such as in particular dissipated energy were equal for both treatments. This was accomplished by changing the polarity of the applied high voltage pulses in a coaxial electrode geometry resulting in the generation of corona plasma or an electric field. For corona plasma, generated by high voltage pulses with peak voltages of +80kV, Legionella were completely killed, corresponding to a log-reduction of 5.4 (CFU/ml) after a treatment time of 12.5min. For the application of pulsed electric fields from peak voltages of -80kV a survival of log 2.54 (CFU/ml) was still detectable after this treatment time. Scanning electron microscopy images of L. pneumophila showed rupture of cells after plasma treatment. In contrast, the morphology of bacteria seems to be intact after application of pulsed electric fields. The more efficient killing for the same energy input observed for pulsed corona plasma is likely due to induced chemical processes and the generation of reactive species as indicated by the evolution of hydrogen peroxide. This suggests that the higher efficacy and efficiency of pulsed corona plasma is primarily associated with the combined effect of the applied electric fields and the promoted reaction chemistry. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Self-compression of intense short laser pulses in relativistic magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Olumi, M.; Maraghechi, B., E-mail: behrouz@aut.ac.ir [Department of Physics, Amirkabir University of Technology, Post code 15916-34311 Tehran (Iran, Islamic Republic of)

    2014-11-15

    The compression of a relativistic Gaussian laser pulse in a magnetized plasma is investigated. By considering relativistic nonlinearity and using non-linear Schrödinger equation with paraxial approximation, a second-order differential equation is obtained for the pulse width parameter (in time) to demonstrate the longitudinal pulse compression. The compression of laser pulse in a magnetized plasma can be observed by the numerical solution of the equation for the pulse width parameter. The effects of magnetic field and chirping are investigated. It is shown that in the presence of magnetic field and negative initial chirp, compression of pulse is significantly enhanced.

  6. Downstream plasma transport and metal ionization in a high-powered pulsed-plasma magnetron

    International Nuclear Information System (INIS)

    Meng, Liang; Szott, Matthew M.; McLain, Jake T.; Ruzic, David N.; Yu, He

    2014-01-01

    Downstream plasma transport and ionization processes in a high-powered pulsed-plasma magnetron were studied. The temporal evolution and spatial distribution of electron density (n e ) and temperature (T e ) were characterized with a 3D scanning triple Langmuir probe. Plasma expanded from the racetrack region into the downstream region, where a high n e peak was formed some time into the pulse-off period. The expansion speed and directionality towards the substrate increased with a stronger magnetic field (B), largely as a consequence of a larger potential drop in the bulk plasma region during a relatively slower sheath formation. The fraction of Cu ions in the deposition flux was measured on the substrate using a gridded energy analyzer. It increased with higher pulse voltage. With increased B field from 200 to 800 Gauss above racetrack, n e increased but the Cu ion fraction decreased from 42% to 16%. A comprehensive model was built, including the diffusion of as-sputtered Cu flux, the Cu ionization in the entire plasma region using the mapped n e and T e data, and ion extraction efficiency based on the measured plasma potential (V p ) distribution. The calculations matched the measurements and indicated the main causes of lower Cu ion fractions in stronger B fields to be the lower T e and inefficient ion extraction in a larger pre-sheath potential.

  7. FY 1998 annual summary report on research and development of hybrid pulse plasma coating (HPPC) system (first year); 1998 nendo hybrid gata pulse plasma coating (HPPC) system no kenkyu kaihatsu seika hokokusho. Daiichinendo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The R and D program was implemented for a hybrid pulse plasma coating system, where organometallic gases as the feed gases were selected, and methods for feeding them and treating the exhaust gases to remove organic metals were studied, as the preliminary steps for the pulse introduction tests. The tests of combining an rf plasma with microwaves and pulse plasma generation have been started. The power source characteristics, e.g., pulse width, voltage and current, were analyzed, and high-voltage pulse voltage application tests were conducted, in order to grasp the power source characteristics related to the pulse voltage application. Generation of high-density plasma has been confirmed by the tests with microwaves absorbed by an rf plasma, and the plasma density measurement has been started using the single probe and double probe methods. It is also confirmed that a pulse voltage can be applied to a high-density plasma. A plasma source type ion injector (PSII) has been made on a trial basis, to collect the data for the injector. (NEDO).

  8. Calculation of mass transfer in the remote cutting of metals by radiation of a high-power repetitively pulsed CO2 laser

    International Nuclear Information System (INIS)

    Gladush, G G; Rodionov, N B

    2002-01-01

    The mechanism of remote cutting of steel plates by radiation of a high-power repetitively pulsed CO 2 laser is theoretically studied. The models of melt removal by the gravity force and the recoil pressure of material vapour are proposed and the sufficient conditions for the initiation of cutting are determined. A numerical model of a thermally thin plate was employed to describe the cutting for large focal spots. (interaction of laser radiation with matter. laser plasma)

  9. Spatio-temporal dynamics of a pulsed microwave argon plasma: ignition and afterglow

    International Nuclear Information System (INIS)

    Carbone, Emile; Sadeghi, Nader; Vos, Erik; Hübner, Simon; Van Veldhuizen, Eddie; Van Dijk, Jan; Nijdam, Sander; Kroesen, Gerrit

    2015-01-01

    In this paper, a detailed investigation of the spatio-temporal dynamics of a pulsed microwave plasma is presented. The plasma is ignited inside a dielectric tube in a repetitively pulsed regime at pressures ranging from 1 up to 100 mbar with pulse repetition frequencies from 200 Hz up to 500 kHz. Various diagnostic techniques are employed to obtain the main plasma parameters both spatially and with high temporal resolution. Thomson scattering is used to obtain the electron density and mean electron energy at fixed positions in the dielectric tube. The temporal evolution of the two resonant and two metastable argon 4s states are measured by laser diode absorption spectroscopy. Nanosecond time-resolved imaging of the discharge allows us to follow the spatio-temporal evolution of the discharge with high temporal and spatial resolution. Finally, the temporal evolution of argon 4p and higher states is measured by optical emission spectroscopy. The combination of these various diagnostics techniques gives deeper insight on the plasma dynamics during pulsed microwave plasma operation from low to high pressure regimes. The effects of the pulse repetition frequency on the plasma ignition dynamics are discussed and the plasma-off time is found to be the relevant parameter for the observed ignition modes. Depending on the delay between two plasma pulses, the dynamics of the ionization front are found to be changing dramatically. This is also reflected in the dynamics of the electron density and temperature and argon line emission from the plasma. On the other hand, the (quasi) steady state properties of the plasma are found to depend only weakly on the pulse repetition frequency and the afterglow kinetics present an uniform spatio-temporal behavior. However, compared to continuous operation, the time-averaged metastable and resonant state 4s densities are found to be significantly larger around a few kHz pulsing frequency. (paper)

  10. Design of a repetitively pulsed megajoule dense-plasma focus

    International Nuclear Information System (INIS)

    Zucker, O.; Bostick, W.; Gullickson, R.; Long, J.; Luce, J.; Sahlin, H.

    1975-01-01

    This report describes a 1 pulse per second, dense-plasma-focus (DPF) materials-testing device capable of delivering a minimum of 10 15 neutrons per pulse. Moderate scaling up from existing designs is shown to be sufficient to provide 2 x 10 13 neutrons/ cm 2 . s to a suitable target. The average power consumption, which has become a major issue due to the energy crisis, is analyzed with respect to other plasma devices and is shown to be highly favorable. Also discussed is a novel approach to capacitor-bank and switch design with respect to repetitive-pulse operation. (auth)

  11. Formation of plasma channels in air under filamentation of focused ultrashort laser pulses

    International Nuclear Information System (INIS)

    Ionin, A A; Seleznev, L V; Sunchugasheva, E S

    2015-01-01

    The formation of plasma channels in air under filamentation of focused ultrashort laser pulses was experimentally and theoretically studied together with theoreticians of the Moscow State University and the Institute of Atmospheric Optics. The influence of various characteristics of ultrashort laser pulses on these plasma channels is discussed. Plasma channels formed under filamentation of focused laser beams with a wavefront distorted by spherical aberration (introduced by adaptive optics) and by astigmatism, with cross-section spatially formed by various diaphragms and with different UV and IR wavelengths, were experimentally and numerically studied. The influence of plasma channels created by a filament of a focused UV or IR femtosecond laser pulse (λ = 248 nm or 740 nm) on characteristics of other plasma channels formed by a femtosecond pulse at the same wavelength following the first one with varied nanosecond time delay was also experimentally studied. An application of plasma channels formed due to the filamentation of focused UV ultrashort laser pulses including a train of such pulses and a combination of ultrashort and long (∼100 ns) laser pulses for triggering and guiding long (∼1 m) electric discharges is discussed. (topical review)

  12. Dynamics of a multiple-pulse-driven x-ray laser plasma

    International Nuclear Information System (INIS)

    Wan, A.S.; Da Silva, L.B.; Moreno, J.C.; Cauble, R.; Celliers, P.; Dalhed, H.E. Jr.; Koch, J.A.; Nilsen, J.

    1996-01-01

    In this paper we describe experimental and computational studies of multiple-pulse-driven laser plasma, which is the gain medium for a neon-like yttrium x-ray laser. Near-field emission profiles have been measured both with and without reinjection of the x-ray laser photons to couple with the amplifying medium created by later pulses using an external multilayer mirror. From the temporal and spatial evolution of the near-field emission profiles we can examine the pulse-to-pulse variation of the x-ray laser plasma due to changes in the hydrodynamics, laser deposition, and the injecting of x-ray laser photons back into an amplifying x-ray laser plasma. Using a combination of radiation hydrodynamics, atomic kinetics, and ray propagation codes, reasonable agreement has been obtained between simulations and the experimental results. copyright 1996 American Institute of Physics

  13. Self-focusing and guiding of short laser pulses in ionizing gases and plasmas

    International Nuclear Information System (INIS)

    Esarey, E.; Sprangle, P.; Krall, J.; Ting, A.

    1997-01-01

    The propagation of intense laser pulses in gases and plasmas is relevant to a wide range of applications, including laser-driven accelerators, laser-plasma channeling, harmonic generation, supercontinuum generation, X-ray lasers, and laser-fusion schemes. Here, several features of intense, short-pulse (≤1 ps) laser propagation in gases undergoing ionization and in plasmas are reviewed, discussed, and analyzed. The wave equations for laser pulse propagation in a gas undergoing ionization and in a plasma are derived. The source-dependent expansion method is discussed, which is a general method for solving the paraxial wave equation with nonlinear source terms. In gases, the propagation of high-power (near the critical power) laser pulses is considered including the effects of diffraction, nonlinear self-focusing, ionization, and plasma generation. Self-guided solutions and the stability of these solutions are discussed. In plasmas, optical guiding by relativistic effects, ponderomotive effects, and preformed density channels is considered. The self-consistent plasma response is discussed, including plasma wave effects and instabilities such as self-modulation. Recent experiments on the guiding of laser pulses in gases and in plasmas are briefly summarized

  14. Studies on surface modification of poly(tetrafluoroethylene) film by remote and direct Ar plasma

    International Nuclear Information System (INIS)

    Wang Chen; Chen Jierong; Li Ru

    2008-01-01

    Poly(tetrafluoroethylene) (PTFE) surfaces are modified with remote and direct Ar plasma, and the effects of the modification on the hydrophilicity of PTFE are investigated. The surface microstructures and compositions of the PTFE film were characterized with the goniometer, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Results show that the remote and direct plasma treatments modify the PTFE surface in morphology and composition, and both modifications cause surface oxidation of PTFE films, in the forming of some polar functional groups enhancing polymer wettability. When the remote and direct Ar plasma treats PTFE film, the contact angles decrease from the untreated 108-58 o and 65.2 o , respectively. The effect of the remote Ar plasma is more noticeable. The role of all kinds of active species, e.g. electrons, ions and free radicals involved in plasma surface modification is further evaluated. This shows that remote Ar plasma can restrain the ion and electron etching reaction and enhance radical reaction

  15. Electromagnetic-implosion generation of pulsed high energy density plasma

    International Nuclear Information System (INIS)

    Baker, W.L.; Broderick, N.F.; Degnan, J.H.; Hussey, T.W.; Kiuttu, G.F.; Kloc, D.A.; Reinovsky, R.E.

    1983-01-01

    This chapter reports on the experimental and theoretical investigation of the generation of pulsed high-energy-density plasmas by electromagnetic implosion of cylindrical foils (i.e., imploding liners or hollow Z-pinches) at the Air Force Weapons Laboratory. Presents a comparison of experimental data with one-dimensional MHD and two-dimensional calculations. Points out that the study is distinct from other imploding liner efforts in that the approach is to produce a hot, dense plasma from the imploded liner itself, rather than to compress a magnetic-field-performed plasma mixture. The goal is to produce an intense laboratory pulsed X-ray source

  16. Plasma shape control by pulsed solenoid on laser ion source

    International Nuclear Information System (INIS)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-01-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS

  17. Plasma shape control by pulsed solenoid on laser ion source

    Science.gov (United States)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-09-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  18. Plasma shape control by pulsed solenoid on laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, M. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Ikeda, S. [Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Romanelli, M. [Cornell University, Ithaca, NY 14850 (United States); Kumaki, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Waseda University, Shinjuku, Tokyo 169-0072 (Japan); Fuwa, Y. [RIKEN, Wako, Saitama 351-0198 (Japan); Kyoto University, Uji, Kyoto 611-0011 (Japan); Kanesue, T. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Hayashizaki, N. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); Lambiase, R. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Okamura, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-09-21

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  19. Pulsed, atmospheric pressure plasma source for emission spectrometry

    Science.gov (United States)

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2004-05-11

    A low-power, plasma source-based, portable molecular light emission generator/detector employing an atmospheric pressure pulsed-plasma for molecular fragmentation and excitation is described. The average power required for the operation of the plasma is between 0.02 W and 5 W. The features of the optical emission spectra obtained with the pulsed plasma source are significantly different from those obtained with direct current (dc) discharge higher power; for example, strong CH emission at 431.2 nm which is only weakly observed with dc plasma sources was observed, and the intense CN emission observed at 383-388 nm using dc plasma sources was weak in most cases. Strong CN emission was only observed using the present apparatus when compounds containing nitrogen, such as aniline were employed as samples. The present apparatus detects dimethylsulfoxide at 200 ppb using helium as the plasma gas by observing the emission band of the CH radical. When coupled with a gas chromatograph for separating components present in a sample to be analyzed, the present invention provides an apparatus for detecting the arrival of a particular component in the sample at the end of the chromatographic column and the identity thereof.

  20. Pulsed nanocrystalline plasma electrolytic boriding as a novel ...

    Indian Academy of Sciences (India)

    Potentiodynamic polarization and electrochemical impedance spectroscopy were employed to test borided CP-Ti, treated by a relatively new method called pulsed plasma electrolytic boriding. The results show excellent corrosion resistance for modified CP-Ti. The effect of frequency and duty cycle of pulsed current was ...

  1. Rapid further heating of tokamak plasma by fast-rising magnetic pulse

    International Nuclear Information System (INIS)

    Inoue, N.; Nihei, H.; Yamazaki, K.; Ichimura, M.; Morikawa, J.; Hoshino, K.; Uchida, T.

    1977-01-01

    The object of the experiment was to study the rapid further heating of a tokamak plasma and its influence on confinement. For this purpose, a high-voltage theta-pinch pulse was applied to a tokamak plasma and production of a high-temperature (keV) plasma was ensured within a microsecond. The magnetic pulse is applied at the plasma current maximum parallel or antiparallel to the study toroidal field. In either case, the pulsed field quickly penetrates the plasma and the plasma resistivity estimated from the penetration time is about 100 times larger than the classical. A burst of energetic neutrals of approximately 1 μs duration was observed and the energy distribution had two components of the order of 1 keV and 0.1 keV in the antiparallel case. Doppler broadening measurement shows heating of ions to a temperature higher than 200 eV; however, the line profile is not always Maxwellian distribution. The X-rays disappear at the moment of applying the magnetic pulse and reappear about 100 μs later with an intensive burst, while both energy levels are the same (approximately 100 keV). (author)

  2. A high-voltage pulse generator for corona plasma generation

    NARCIS (Netherlands)

    Yan, K.; Heesch, van E.J.M.; Pemen, A.J.M.; Huijbrechts, P.A.H.J.; Gompel, van F.M.; Leuken, van H.E.M.; Matyas, Z.

    2002-01-01

    This paper discusses a high-voltage pulse generator for producing corona plasma. The generator consists of three resonant charging circuits, a transmission line transformer, and a triggered spark-gap switch. Voltage pulses in the order of 30-100 kV with a rise time of 10-20 ns, a pulse duration of

  3. Exponential frequency spectrum and Lorentzian pulses in magnetized plasmas

    International Nuclear Information System (INIS)

    Pace, D. C.; Shi, M.; Maggs, J. E.; Morales, G. J.; Carter, T. A.

    2008-01-01

    Two different experiments involving pressure gradients across the confinement magnetic field in a large plasma column are found to exhibit a broadband turbulence that displays an exponential frequency spectrum for frequencies below the ion cyclotron frequency. The exponential feature has been traced to the presence of solitary pulses having a Lorentzian temporal signature. These pulses arise from nonlinear interactions of drift-Alfven waves driven by the pressure gradients. In both experiments the width of the pulses is narrowly distributed resulting in exponential spectra with a single characteristic time scale. The temporal width of the pulses is measured to be a fraction of a period of the drift-Alfven waves. The experiments are performed in the Large Plasma Device (LAPD-U) [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] operated by the Basic Plasma Science Facility at the University of California, Los Angeles. One experiment involves a controlled, pure electron temperature gradient associated with a microscopic (6 mm gradient length) hot electron temperature filament created by the injection a small electron beam embedded in the center of a large, cold magnetized plasma. The other experiment is a macroscopic (3.5 cm gradient length) limiter-edge experiment in which a density gradient is established by inserting a metallic plate at the edge of the nominal plasma column of the LAPD-U. The temperature filament experiment permits a detailed study of the transition from coherent to turbulent behavior and the concomitant change from classical to anomalous transport. In the limiter experiment the turbulence sampled is always fully developed. The similarity of the results in the two experiments strongly suggests a universal feature of pressure-gradient driven turbulence in magnetized plasmas that results in nondiffusive cross-field transport. This may explain previous observations in helical confinement devices, research tokamaks, and arc plasmas.

  4. Temporal development of the plasma composition of a pulsed aluminum plasma stream in the presence of oxygen

    International Nuclear Information System (INIS)

    Schneider, J.M.; Anders, A.; Brown, I.G.; Hjoervarsson, B.; Hultman, L.

    1999-01-01

    We describe the temporal development of the plasma composition of pulsed aluminum plasma streams at various oxygen pressures. The plasma was formed with a vacuum arc plasma source and the time resolved plasma composition was measured with time-of-flight charge-to-mass spectrometry. The temporal development of the plasma composition as well as the Al average ion charge state was found to be a strong function of the oxygen pressure. Oxygen and hydrogen concentrations of up to 0.36 and 0.32, respectively, were found in the first 50 μs of the pulse at oxygen pressures of ≥5x10 -5 Torr. The average charge state of aluminum ions was found to vary from +1.2 to +2.5 depending on the oxygen pressure and the time elapsed after ignition of the arc. These results are of fundamental importance for the understanding of the evolution of the composition (through the plasma composition) and microstructure (through the Al ion flux energy) of alumina thin films produced by pulsed, reactive aluminum plasmas. copyright 1999 American Institute of Physics

  5. Investigation of arcing on fiber-formed nanostructured tungsten by pulsed plasma during steady state plasma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yajima, M., E-mail: yajima.miyuki@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, 509-5292 Japan (Japan); Ohno, N. [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Kajita, S. [EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); De Temmerman, G. [ITER Organization, Route de Vinon sur Verdon, CS 90 046-13067 St Paul Lez Durance Cedex (France); Bystrov, K.; Bardin, S.; Morgan, T.W. [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Partner in the Trilateral Euregio Cluster, 5612 AJ Eindhoven (Netherlands); Masuzaki, S. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, 509-5292 Japan (Japan)

    2016-11-15

    Arcing on fiber-formed nanostructured tungsten samples during ELM-like pulses was investigated using the superimposition of high power pulsed plasma on a steady state plasma with hydrogen gas in the linear plasma device Pilot-PSI. The ignition of arcing was observed when the floating potential of the samples was less than −75 V with sufficient heat flux. The surface observation showed that the arc spots were not in the center, but in the peripheral area of the plasma column. Considering the plasma potential profile in the Pilot-PSI, the arcing occurred at the position where the heat flux and the sheath potential drop are sufficiently large.

  6. Theory and Modeling of Petawatt Laser Pulse Propagation in Low Density Plasmas

    International Nuclear Information System (INIS)

    Shadwick, Bradley A.; Kalmykov, S. Y.

    2016-01-01

    Report describing accomplishments in all-optical control of self-injection in laser-plasma accelerators and in developing advanced numerical models of laser-plasma interactions. All-optical approaches to controlling electron self-injection and beam formation in laser-plasma accelerators (LPAs) were explored. It was demonstrated that control over the laser pulse evolution is the key ingredient in the generation of low-background, low-phase-space-volume electron beams. To this end, preserving a smooth laser pulse envelope throughout the acceleration process can be achieved through tuning the phase and amplitude of the incident pulse. A negative frequency chirp compensates the frequency red-shift accumulated due to wake excitation, preventing evolution of the pulse into a relativistic optical shock. This reduces the ponderomotive force exerted on quiescent plasma electrons, suppressing expansion of the bubble and continuous injection of background electrons, thereby reducing the charge in the low-energy tail by an order of magnitude. Slowly raising the density in the pulse propagation direction locks electrons in the accelerating phase, boosting their energy, keeping continuous injection at a low level, tripling the brightness of the quasi-monoenergetic component. Additionally, propagating the negatively chirped pulse in a plasma channel suppresses diffraction of the pulse leading edge, further reducing continuous injection. As a side effect, oscillations of the pulse tail may be enhanced, leading to production of low-background, polychromatic electron beams. Such beams, consisting of quasi-monoenergetic components with controllable energy and energy separation, may be useful as drivers of polychromatic x-rays based on Thomson backscattering. These all-optical methods of electron beam quality control are critically important for the development of future compact, high-repetition-rate, GeV-scale LPA using 10 TW-class, ultra-high bandwidth pulses and mm-scale, dense

  7. Theory and Modeling of Petawatt Laser Pulse Propagation in Low Density Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Shadwick, Bradley A. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Physics and Astronomy; Kalmykov, S. Y. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Physics and Astronomy

    2016-12-08

    Report describing accomplishments in all-optical control of self-injection in laser-plasma accelerators and in developing advanced numerical models of laser-plasma interactions. All-optical approaches to controlling electron self-injection and beam formation in laser-plasma accelerators (LPAs) were explored. It was demonstrated that control over the laser pulse evolution is the key ingredient in the generation of low-background, low-phase-space-volume electron beams. To this end, preserving a smooth laser pulse envelope throughout the acceleration process can be achieved through tuning the phase and amplitude of the incident pulse. A negative frequency chirp compensates the frequency red-shift accumulated due to wake excitation, preventing evolution of the pulse into a relativistic optical shock. This reduces the ponderomotive force exerted on quiescent plasma electrons, suppressing expansion of the bubble and continuous injection of background electrons, thereby reducing the charge in the low-energy tail by an order of magnitude. Slowly raising the density in the pulse propagation direction locks electrons in the accelerating phase, boosting their energy, keeping continuous injection at a low level, tripling the brightness of the quasi-monoenergetic component. Additionally, propagating the negatively chirped pulse in a plasma channel suppresses diffraction of the pulse leading edge, further reducing continuous injection. As a side effect, oscillations of the pulse tail may be enhanced, leading to production of low-background, polychromatic electron beams. Such beams, consisting of quasi-monoenergetic components with controllable energy and energy separation, may be useful as drivers of polychromatic x-rays based on Thomson backscattering. These all-optical methods of electron beam quality control are critically important for the development of future compact, high-repetition-rate, GeV-scale LPA using 10 TW-class, ultra-high bandwidth pulses and mm-scale, dense

  8. Contamination Study of Micro Pulsed Plasma Thruster

    National Research Council Canada - National Science Library

    Kesenek, Ceylan

    2008-01-01

    .... Micro-Pulsed Plasma Thrusters (PPTs) are highly reliable and simple micro propulsion systems that will offer attitude control, station keeping, constellation flying, and drag compensation for such satellites...

  9. Generation of electromagnetic pulses from plasma channels induced by femtosecond light strings

    OpenAIRE

    Cheng, Chung-Chieh; Wright, E. M.; Moloney, J. V.

    2000-01-01

    We present a model that elucidates the physics underlying the generation of an electromagnetic pulse from a femtosecond laser induced plasma channel. The radiation pressure force from the laser pulse spatially separates the ionized electrons from the heavier ions and the induced dipole moment subsequently oscillates at the plasma frequency and radiates an electromagnetic pulse.

  10. A remote maintenance robot system for a pulsed nuclear reactor

    International Nuclear Information System (INIS)

    Thunborg, S.

    1987-01-01

    This paper presents a remote maintenance robot system for use in a hazardous environment. The system consists of turntable, robot and hoist subsystems which operate under the control of a supervisory computer to perform coordinated programmed maintenance operations on a pulsed nuclear reactor. The system is operational

  11. Plasma discreteness effects in the presence of an intense, ultrashort laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Savchenko, V.I.; Fisch, N.J.

    1996-03-01

    Discrete effects of the plasma irradiated by an ultrashort, intense laser pulse are investigated. Although, for most plasmas of interest, the damping of the laser pulse is due to collective plasma effects, in certain regimes the energy absorbed in the plasma microfields can be important. A scattering matrix is derived for an electron scattering off an ion in the presence of an intense laser field.

  12. Plasma discreteness effects in the presence of an intense, ultrashort laser pulse

    International Nuclear Information System (INIS)

    Savchenko, V.I.; Fisch, N.J.

    1996-03-01

    Discrete effects of the plasma irradiated by an ultrashort, intense laser pulse are investigated. Although, for most plasmas of interest, the damping of the laser pulse is due to collective plasma effects, in certain regimes the energy absorbed in the plasma microfields can be important. A scattering matrix is derived for an electron scattering off an ion in the presence of an intense laser field

  13. Effects of pulsed electric field on ULQ and RFP plasmas

    International Nuclear Information System (INIS)

    Watanabe, M.; Saito, K.; Suzuki, T.

    1997-01-01

    Dynamo activity and self-organization processes are investigated using the application of pulsed poloidal and toroidal electric fields on ULQ and RFP plasmas. Synchronized to the application of the pulsed electric fields, the remarkable responses of the several plasma parameters are observed. The plasma has a preferential magnetic field structure, and the external perturbation activates fluctuation to maintain the structure through dynamo effect. This process changes the total dissipation with the variation of magnetic helicity in the system, showing that self organization accompanies an enhanced dissipation. (author)

  14. Magnetic pulse compression circuits for plasma devices

    Energy Technology Data Exchange (ETDEWEB)

    Georgescu, N; Zoita, V; Presura, R [Inst. of Physics and Technology of Radiation Devices, Bucharest (Romania)

    1997-12-31

    Two magnetic pulse compression circuits (MPCC), for two different plasma devices, are presented. The first is a 20 J/pulse, 3-stage circuit designed to trigger a low pressure discharge. The circuit has 16-18 kV working voltage, and 200 nF in each stage. The saturable inductors are realized with toroidal 25 {mu}m strip-wound cores, made of a Fe-Ni alloy, with 1.5 T saturation induction. The total magnetic volume is around 290 cm{sup 3}. By using a 25 kV/1 A thyratron as a primary switch, the time compression is from 3.5 {mu}s to 450 ns, in a short-circuit load. The second magnetic pulser is a 200 J/pulse circuit, designed to drive a high average power plasma focus soft X-ray source, for X-ray microlithography as the main application. The 3-stage pulser should supply a maximum load current of 100 kA with a rise-time of 250 - 300 ns. The maximum pulse voltage applied on the plasma discharge chamber is around 20 - 25 kV. The three saturable inductors in the circuit are made of toroidal strip-wound cores with METGLAS 2605 CO amorphous alloy as the magnetic material. The total, optimized mass of the magnetic material is 34 kg. The maximum repetition rate is limited at 100 Hz by the thyratron used in the first stage of the circuit, the driver supplying to the load about 20 kW average power. (author). 1 tab., 3 figs., 3 refs.

  15. Generation of atto-second pulses on relativistic mirror plasma

    International Nuclear Information System (INIS)

    Vincenti, H.

    2012-12-01

    When an ultra intense femtosecond laser (I > 10 16 W.cm -2 ) with high contrast is focused on a solid target, the laser field at focus is high enough to completely ionize the target surface during the rising edge of the laser pulse and form a plasma. This plasma is so dense (the electron density is of the order of hundred times the critical density) that it completely reflects the incident laser beam in the specular direction: this is the so-called 'plasma mirror'. When laser intensity becomes very high, the non-linear response of the plasma mirror to the laser field periodically deforms the incident electric field leading to high harmonic generation in the reflected beam. In the temporal domain this harmonic spectrum is associated to a train of atto-second pulses. The goals of my work were to get a better comprehension of the properties of harmonic beams produced on plasma mirrors and design new methods to control theses properties, notably in order to produce isolated atto-second pulses instead of trains. Initially, we imagined and modeled the first realistic technique to generate isolated atto-second on plasma mirrors. This brand new approach is based on a totally new physical effect: 'the atto-second lighthouse effect'. Its principle consists in sending the atto-second pulses of the train in different directions and selects one of these pulses by putting a slit in the far field. Despite its simplicity, this technique is very general and applies to any high harmonic generation mechanism. Moreover, the atto-second lighthouse effect has many other applications (e.g in metrology). In particular, it paves the way to atto-second pump-probe experiments. Then, we studied the spatial properties of these harmonics, whose control and characterization are crucial if one wants to use this source in future application experiments. For instance, we need to control very precisely the harmonic beam divergence in order to achieve the atto-second lighthouse effect and get

  16. Pulsed lower-hybrid wave penetration in reactor plasmas

    International Nuclear Information System (INIS)

    Cohen, R.H.; Bonoli, P.T.; Porkolab, M.; Rognlien, T.D.

    1989-01-01

    Providing lower-hybrid power in short, intense (GW) pulses allows enhanced wave penetration in reactor-grade plasmas. We examine nonlinear absorption, ray propagation, and parametric instability of the intense pulses. We find that simultaneously achieving good penetration while avoiding parametric instabilities is possible, but imposes restrictions on the peak power density, pulse duration, and/or r.f. spot shape. In particular, power launched in narrow strips, elongated along the field direction, is desired

  17. Characteristics of 2-heptanone decomposition using nanosecond pulsed discharge plasma

    Science.gov (United States)

    Nakase, Yuki; Fukuchi, Yuichi; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori; Kumamoto University Collaboration

    2015-09-01

    Volatile organic compounds (VOC) evaporate at room temperature. VOCs typically consist of toluene, benzene and ethyl acetate, which are used in cosmetics, dry cleaning products and paints. Exposure to elevated levels of VOCs may cause headaches, dizziness and irritation to the eyes, nose, and throat; they may also cause environmental problems such as air pollution, acid rain and photochemical smog. As such, they require prompt removal. Nanosecond pulsed discharge is a kind of non-thermal plasma consisting of a streamer discharge. Several advantages of nanosecond pulsed discharge plasma have been demonstrated by studies of our research group, including low heat loss, highly energetic electron generation, and the production of highly active radicals. These advantages have shown ns pulsed discharge plasma capable of higher energy efficiency for processes, such as air purification, wastewater treatment and ozone generation. In this research, nanosecond pulsed discharge plasma was employed to treat 2-heptanone, which is a volatile organic compound type and presents several harmful effects. Characteristics of treatment dependent on applied voltage, gas flow rate and input energy density were investigated. Furthermore, byproducts generated by treatment were also investigated.

  18. Repetitive plasma opening switch for powerful high-voltage pulse generators

    International Nuclear Information System (INIS)

    Dolgachev, G.I.; Zakatov, L.P.; Nitishinskii, M.S.; Ushakov, A.G.

    1998-01-01

    Results are presented of experimental studies of plasma opening switches that serve to sharpen the pulses of inductive microsecond high-voltage pulse generators. It is demonstrated that repetitive plasma opening switches can be used to create super-powerful generators operating in a quasi-continuous regime. An erosion switching mechanism and the problem of magnetic insulation in repetitive switches are considered. Achieving super-high peak power in plasma switches makes it possible to develop new types of high-power generators of electron beams and X radiation. Possible implementations and the efficiency of these generators are discussed

  19. Physics and application of plasmas based on pulsed power technology

    International Nuclear Information System (INIS)

    Hotta, Eiki; Ozaki, Tetsuo

    2012-04-01

    The papers presented at the symposium on 'Physics and Application of Plasmas Based on Pulsed Power Technology' held on December 21-22, 2010 at National Institute of Fusion Science are collected. The papers in this proceeding reflect the current status and progress in the experimental and theoretical researches on high power particle beams and high energy density plasmas produced by pulsed power technology. (author)

  20. Comparison between the water activation effects by pulsed and sinusoidal helium plasma jets

    Science.gov (United States)

    Xu, Han; Liu, Dingxin; Xia, Wenjie; Chen, Chen; Wang, Weitao; Liu, Zhijie; Wang, Xiaohua; Kong, Michael G.

    2018-01-01

    Comparisons between pulsed and sinusoidal plasma jets have been extensively reported for the discharge characteristics and gaseous reactive species, but rarely for the aqueous reactive species in water solutions treated by the two types of plasma jets. This motivates us to compare the concentrations of aqueous reactive species induced by a pulsed and a sinusoidal plasma jet, since it is widely reported that these aqueous reactive species play a crucial role in various plasma biomedical applications. Experimental results show that the aqueous H2O2, OH/O2-, and O2-/ONOO- induced by the pulsed plasma jet have higher concentrations, and the proportional difference increases with the discharge power. However, the emission intensities of OH(A) and O(3p5P) are higher for the sinusoidal plasma jet, which may be attributed to its higher gas temperature since more water vapor could participate in the plasma. In addition, the efficiency of bacterial inactivation induced by the pulsed plasma jet is higher than that for the sinusoidal plasma jet, in accordance with the concentration relation of aqueous reactive species for the two types of plasma jets.

  1. Surface damage characteristics of CFC and tungsten with repetitive ELM-like pulsed plasma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Y., E-mail: ykikuchi@eng.u-hyogo.ac.jp [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, 671-2280 Hyogo (Japan); Nishijima, D. [Center for Energy Research, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0417 (United States); Nakatsuka, M.; Ando, K.; Higashi, T.; Ueno, Y.; Ishihara, M.; Shoda, K.; Nagata, M. [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, 671-2280 Hyogo (Japan); Kawai, T.; Ueda, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Fukumoto, N. [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, 671-2280 Hyogo (Japan); Doerner, R.P. [Center for Energy Research, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0417 (United States)

    2011-08-01

    Surface damage of carbon fiber composite (CFC) and tungsten (W) due to repetitive ELM-like pulsed plasma irradiation has been investigated by using a magnetized coaxial plasma gun. CX2002U CFC and stress-relieved W samples were exposed to repetitive pulsed deuterium plasmas with duration of {approx}0.5 ms, incident ion energy of {approx}30 eV, and surface absorbed energy density of {approx}0.3-0.7 MJ/m{sup 2}. Bright spots on a CFC surface during pulsed plasma exposures were clearly observed with a high-speed camera, indicating a local surface heating. No melting of a W surface was observed under a single plasma pulse exposure at energy density of {approx}0.7 MJ/m{sup 2}, although cracks were formed. Cracking of the W surface grew with repetitive pulsed plasma exposures. Subsequently, the surface melted due to localized heat absorption.

  2. Laser-pulse compression in a collisional plasma under weak-relativistic ponderomotive nonlinearity

    International Nuclear Information System (INIS)

    Singh, Mamta; Gupta, D. N.

    2016-01-01

    We present theory and numerical analysis which demonstrate laser-pulse compression in a collisional plasma under the weak-relativistic ponderomotive nonlinearity. Plasma equilibrium density is modified due to the ohmic heating of electrons, the collisions, and the weak relativistic-ponderomotive force during the interaction of a laser pulse with plasmas. First, within one-dimensional analysis, the longitudinal self-compression mechanism is discussed. Three-dimensional analysis (spatiotemporal) of laser pulse propagation is also investigated by coupling the self-compression with the self-focusing. In the regime in which the laser becomes self-focused due to the weak relativistic-ponderomotive nonlinearity, we provide results for enhanced pulse compression. The results show that the matched interplay between self-focusing and self-compression can improve significantly the temporal profile of the compressed pulse. Enhanced pulse compression can be achieved by optimizing and selecting the parameters such as collision frequency, ion-temperature, and laser intensity.

  3. Laser-pulse compression in a collisional plasma under weak-relativistic ponderomotive nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mamta; Gupta, D. N., E-mail: dngupta@physics.du.ac.in [Department of Physics and Astrophysics, North Campus, University of Delhi, Delhi 110 007 (India)

    2016-05-15

    We present theory and numerical analysis which demonstrate laser-pulse compression in a collisional plasma under the weak-relativistic ponderomotive nonlinearity. Plasma equilibrium density is modified due to the ohmic heating of electrons, the collisions, and the weak relativistic-ponderomotive force during the interaction of a laser pulse with plasmas. First, within one-dimensional analysis, the longitudinal self-compression mechanism is discussed. Three-dimensional analysis (spatiotemporal) of laser pulse propagation is also investigated by coupling the self-compression with the self-focusing. In the regime in which the laser becomes self-focused due to the weak relativistic-ponderomotive nonlinearity, we provide results for enhanced pulse compression. The results show that the matched interplay between self-focusing and self-compression can improve significantly the temporal profile of the compressed pulse. Enhanced pulse compression can be achieved by optimizing and selecting the parameters such as collision frequency, ion-temperature, and laser intensity.

  4. Structure of pulsed plasma jets

    International Nuclear Information System (INIS)

    Cavolowsky, J.A.

    1987-01-01

    A pulsed plasma jet is a turbulent, inhomogeneous fluid mechanical discharge capable of initiating and enhancing combustion. Having shown the ability to ignite lean fuel mixtures, it now offers the potential for real-time control of combustion processes. This study explored the fluid-mechanical and chemical properties of such jets. The fluid-mechanical structure of the jet was examined using two optical diagnostic techniques. Self-light streak photography provided information on the motion of luminous gas particles in its core. It revealed that plasma jets behave either totally subsonic or embody a supersonic core. The turbulent, thermal evolution of the jet was explored using high-speed-laser schlieren cinematography. By examining plasma jet generators with both opaque and transparent plasma cavities, detailed information on plasma formation and jet structure, beginning with the electric arc discharge in the cavity, was obtained. These records revealed the production of thermal stratifications in the cavity that could account for the plasma particles in the jet core. After the electrical discharges ceased, the turbulent jet behaved as a self-similar plume. Molecular-beam mass spectrometry was used to determine temperature and species concentration in the jet. Both non-combustible and combustible jets were studied

  5. Electromagnetic pulses in a strongly magnetized electron-positron plasma

    International Nuclear Information System (INIS)

    Yu, M.Y.; Rao, N.N.

    1985-01-01

    The conditions for the existence of large-amplitude localized electromagnetic wave pulses in an electron-positron plasma penetrated by a very strong ambient magnetic field are obtained. It is shown that such pulses can exist in pulsar polar magnetospheres. 12 references

  6. Electromagnetic soliton production during interaction of relativistically strong laser pulses with plasma

    International Nuclear Information System (INIS)

    Bulanov, S.V.; Esirkepov, T.Zh.; Kamenets, F.F.; Naumova, N.M.

    1995-01-01

    The paper presents the results of a numeric modelling of the propagation of ultra short relativistically strong laser pulses in a rarefied plasma by the 'particle in cell'. Primary attention is paid to the process of the formation of electromagnetic solitons which can not be described in the approximation of envelopes. It is found that under certain conditions a significant portion of pulse energy can transform is solitons. The soliton excitation mechanism is related to a decrease of local frequency of electromagnetic radiation due to the generation of wave plasma waves. From one soliton to a stub of solitons can be generated in the wake of a relatively long pulse depending on the parameters of laser pulse in plasma. Particles are effectively accelerated forwards radiation propagation in the electric field of wake plasma waves. 22 refs., 7 figs

  7. Mathematical Modeling of Liquid-fed Pulsed Plasma Thruster

    Directory of Open Access Journals (Sweden)

    Kaartikey Misra

    2018-01-01

    Full Text Available Liquid propellants are fast becoming attractive for pulsed plasma thrusters due to their high efficiency and low contamination issues. However, the complete plasma interaction and acceleration processes are still not very clear. Present paper develops a multi-layer numerical model for liquid propellant PPTs (pulsed plasma thrusters. The model is based on a quasi-steady flow assumption. The model proposes a possible acceleration mechanism for liquid-fed pulsed plasma thrusters and accurately predicts the propellant utilization capabilities and estimations for the fraction of propellant gas that is completely ionized and accelerated to high exit velocities. Validation of the numerical model and the assumptions on which the model is based on is achieved by comparing the experimental results and the simulation results for two different liquid-fed thrusters developed at the University of Tokyo. Simulation results shows that up-to 50 % of liquid propellant injected is completely ionized and accelerated to high exit velocities (>50 Km/s, whereas, neutral gas contribute to only 7 % of the total specific impulse and accelerated to low exit velocity (<4 Km/s. The model shows an accuracy up-to 92 % . Optimization methods are briefly discussed to ensure efficient propellant utilization and performance. The model acts as a tool to understand the background physics and to optimize the performance for liquid-fed PPTs.

  8. Nonlinear dynamics of electromagnetic pulses in cold relativistic plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bonatto, A.; Pakter, R.; Rizzato, F.B. [Universidade Federal do Rio Grande do Sul, Instituto de Fisica, Rio Grande do Sul (Brazil)

    2004-07-01

    The propagation of intense electromagnetic pulses in plasmas is a subject of current interest particularly for particle acceleration and laser fusion.In the present analysis we study the self consistent propagation of nonlinear electromagnetic pulses in a one dimensional relativistic electron-ion plasma, from the perspective of nonlinear dynamics. We show how a series of Hamiltonian bifurcations give rise to the electric fields which are of relevance in the subject of particle acceleration. Connections between these bifurcated solutions and results of earlier analysis are made. (authors)

  9. Nonlinear dynamics of electromagnetic pulses in cold relativistic plasmas

    International Nuclear Information System (INIS)

    Bonatto, A.; Pakter, R.; Rizzato, F.B.

    2004-01-01

    The propagation of intense electromagnetic pulses in plasmas is a subject of current interest particularly for particle acceleration and laser fusion.In the present analysis we study the self consistent propagation of nonlinear electromagnetic pulses in a one dimensional relativistic electron-ion plasma, from the perspective of nonlinear dynamics. We show how a series of Hamiltonian bifurcations give rise to the electric fields which are of relevance in the subject of particle acceleration. Connections between these bifurcated solutions and results of earlier analysis are made. (authors)

  10. Plasma wakefields driven by an incoherent combination of laser pulses: a path towards high-average power laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, C.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.

    2014-05-01

    he wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e.,without constraining the pulse phases) is studied analytically and by means of fully-self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structure in the laser energy density produced by the combined pulses exists on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators and associated applications.

  11. Multi-Axis Thrust Measurements of the EO-1 Pulsed Plasma Thruster

    Science.gov (United States)

    Arrington, Lynn A.; Haag, Thomas W.

    1999-01-01

    Pulsed plasma thrusters are low thrust propulsive devices which have a high specific impulse at low power. A pulsed plasma thruster is currently scheduled to fly as an experiment on NASA's Earth Observing-1 satellite mission. The pulsed plasma thruster will be used to replace one of the reaction wheels. As part of the qualification testing of the thruster it is necessary to determine the nominal thrust as a function of charge energy. These data will be used to determine control algorithms. Testing was first completed on a breadboard pulsed plasma thruster to determine nominal or primary axis thrust and associated propellant mass consumption as a function of energy and then later to determine if any significant off-axis thrust component existed. On conclusion that there was a significant off-axis thrust component with the bread-board in the direction of the anode electrode, the test matrix was expanded on the flight hardware to include thrust measurements along all three orthogonal axes. Similar off-axis components were found with the flight unit.

  12. Propagation of an asymmetric relativistic laser pulse in plasma

    International Nuclear Information System (INIS)

    Garuchava, D.P.; Murusidze, I.G.; Suramlishvili, G.I.; Tsintsadze, N.L.; Tskhakaya, D.D.

    1997-01-01

    The interaction of a relativistically intense asymmetric laser pulse with a plasma has been studied. The asymmetric shape of the pulse implies that the rise time of the leading edge of the pulse is much greater than the fall time of the trailing edge. The numerical simulation of the propagation of such a pulse through an underdense plasma has shown that relativistic self-focusing enhances the effect of ponderomotive self-channeling. The radial ponderomotive force totally expels the electrons from the axis creating a density channel, that is, cavitation occurs. A very short fall time of the trailing edge (τ l ω p <1) causes a rapid increase in the amplitude of a laser driven longitudinal electric field to values of a few GV/cm at the back of the pulse. The numerical simulation also has shown that the channel as well as the large-amplitude longitudinal field can be sustained in the range immediately behind the pulse, thus creating favorable conditions to accelerate a trailing bunch of electrons to extremely high energies. According to our model, the accelerating electric field can reach the value 10 GV/cm. copyright 1997 The American Physical Society

  13. Effects of pulse frequency of input power on the physical and chemical properties of pulsed streamer discharge plasmas in water

    Science.gov (United States)

    Ruma; Lukes, P.; Aoki, N.; Spetlikova, E.; Hosseini, S. H. R.; Sakugawa, T.; Akiyama, H.

    2013-03-01

    A repetitive pulsed-power modulator, which employs a magnetic pulse compression circuit with a high-speed thyristor switch, was used to study the effects of the pulse repetition rate of input power on the physical and chemical properties of pulsed discharges in water. Positive high-voltage pulses of 20 kV with repetition rates of up to 1 kHz were used to generate a discharge in water using the point-to-plane electrode geometry. By varying the pulse repetition rate, two distinct modes of the discharge plasma were formed in water. The first mode was characterized by the formation of a corona-like discharge propagating through water in the form of streamer channels. The second mode was formed typically above 500 Hz, when the formation of streamer channels in water was suppressed and all plasmas occurred inside a spheroidal aggregate of very fine gas bubbles surrounding the tip of the high-voltage electrode. The production of hydrogen peroxide, degradation of organic dye Acid Orange 7 (AO7) and inactivation of bacteria Escherichia coli by the discharge in water were studied under different discharge plasma modes in dependence on the pulse repetition rate of input power. The efficiency of both chemical and biocidal processes induced by the plasma in water decreased significantly with pulse repetition rates above 500 Hz.

  14. Effects of pulse frequency of input power on the physical and chemical properties of pulsed streamer discharge plasmas in water

    International Nuclear Information System (INIS)

    Ruma; Aoki, N; Hosseini, S H R; Sakugawa, T; Akiyama, H; Lukes, P; Spetlikova, E

    2013-01-01

    A repetitive pulsed-power modulator, which employs a magnetic pulse compression circuit with a high-speed thyristor switch, was used to study the effects of the pulse repetition rate of input power on the physical and chemical properties of pulsed discharges in water. Positive high-voltage pulses of 20 kV with repetition rates of up to 1 kHz were used to generate a discharge in water using the point-to-plane electrode geometry. By varying the pulse repetition rate, two distinct modes of the discharge plasma were formed in water. The first mode was characterized by the formation of a corona-like discharge propagating through water in the form of streamer channels. The second mode was formed typically above 500 Hz, when the formation of streamer channels in water was suppressed and all plasmas occurred inside a spheroidal aggregate of very fine gas bubbles surrounding the tip of the high-voltage electrode. The production of hydrogen peroxide, degradation of organic dye Acid Orange 7 (AO7) and inactivation of bacteria Escherichia coli by the discharge in water were studied under different discharge plasma modes in dependence on the pulse repetition rate of input power. The efficiency of both chemical and biocidal processes induced by the plasma in water decreased significantly with pulse repetition rates above 500 Hz. (paper)

  15. Explosive-Emission Plasma Dynamics in Ion Diode in Double-Pulse Mode

    International Nuclear Information System (INIS)

    Pushkarev, Alexander I.; Isakova, Yulia I.

    2011-01-01

    The results of an experimental investigation of explosive-emission plasma dynamics in an ion diode with self-magnetic insulation are presented. The investigations were accomplished at the TEMP-4M accelerator set in a mode of double pulse formation. Plasma behaviour in the anode-cathode gap was analyzed according to both the current-voltage characteristics of the diode (time resolution of 0.5 ns) and thermal imprints on a target (spatial resolution of 0.8 mm). It was shown that when plasma formation at the potential electrode was complete, and up until the second (positive) pulse, the explosive-emission plasma expanded across the anode-cathode gap with a speed of 1.3±0.2 cm/μs. After the voltage polarity at the potential electrode was reversed (second pulse), the plasma erosion in the anode-cathode gap (similar to the effect of a plasma opening switch) occurred. During the generation of an ion beam the size of the anode-cathode gap spacing was determined by the thickness of the plasma layer on the potential electrode and the layer thickness of the electrons drifting along the grounded electrode. (15th asian conference on electrical discharge)

  16. Interaction of nanosecond ultraviolet laser pulses with reactive dusty plasma

    International Nuclear Information System (INIS)

    Wetering, F. M. J. H. van de; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Gibert, T.; Mikikian, M.; Rabat, H.; Kovačević, E.; Berndt, J.

    2016-01-01

    Even though UV laser pulses that irradiate a gas discharge are small compared to the plasma volume (≲3%) and plasma-on time (≲6 × 10 −6 %), they are found to dramatically change the discharge characteristics on a global scale. The reactive argon–acetylene plasma allows the growth of nanoparticles with diameters up to 1 μm, which are formed inside the discharge volume due to spontaneous polymerization reactions. It is found that the laser pulses predominantly accelerate and enhance the coagulation phase and are able to suppress the formation of a dust void.

  17. Development of the dense plasma focus for short-pulse applications

    Science.gov (United States)

    Bennett, N.; Blasco, M.; Breeding, K.; Constantino, D.; DeYoung, A.; DiPuccio, V.; Friedman, J.; Gall, B.; Gardner, S.; Gatling, J.; Hagen, E. C.; Luttman, A.; Meehan, B. T.; Misch, M.; Molnar, S.; Morgan, G.; O'Brien, R.; Robbins, L.; Rundberg, R.; Sipe, N.; Welch, D. R.; Yuan, V.

    2017-01-01

    The dense plasma focus (DPF) has long been considered a compact source for pulsed neutrons and has traditionally been optimized for the total neutron yield. In this paper, we describe the efforts to optimize the DPF for short-pulse applications by introducing a reentrant cathode at the end of the coaxial plasma gun. The resulting neutron pulse widths are reduced by an average of 21 ±9 % from the traditional long-drift DPF design. Pulse widths and yields achieved from deuterium-tritium fusion at 2 MA are 61.8 ±30.7 ns FWHM and 1.84 ±0.49 ×1012 neutrons per shot. Simulations were conducted concurrently to elucidate the DPF operation and confirm the role of the reentrant cathode. A hybrid fluid-kinetic particle-in-cell modeling capability demonstrates correct sheath velocities, plasma instabilities, and fusion yield rates. Consistent with previous findings that the DPF is dominated by beam-target fusion from superthermal ions, we estimate that the thermonuclear contribution is at the 1% level.

  18. Application of pulsed plasma streams for materials alloying and coatings modification

    International Nuclear Information System (INIS)

    Byrka, O.V.; Bandura, A.N.; Chebotarev, V.V.; Sadowski, M.J.; Langner, J.

    2002-01-01

    Results of pulsed plasma streams processing of material surfaces with previously deposited FeB and TiAlN coatings are presented. Under the plasma treatment intensive mixing the materials of coating with the material of substrate was achieved.In the first case this provided boronizing of the modified layer with aim of corrosion properties improvement,in the second case-formation of intermediate mixed layer for subsequent deposition of the hard alloyed coatings. Materials alloying with pulsed metal-gas plasma is discussed also

  19. Web based system architecture for long pulse remote experimentation

    International Nuclear Information System (INIS)

    Heras, E. de las; Lastra, D.; Vega, J.; Castro, R.; Ruiz, M.; Barrera, E.

    2010-01-01

    Remote experimentation (RE) methods will be essential in next generation fusion devices. Requirements for long pulse RE will be: on-line data visualization, on-line data acquisition processes monitoring and on-line data acquisition systems interactions (start, stop or set-up modifications). Note that these methods are not oriented to real-time control of fusion plant devices. INDRA Sistemas S.A., CIEMAT (Centro de Investigaciones Energeticas Medioambientales y Tecnologicas) and UPM (Universidad Politecnica de Madrid) have designed a specific software architecture for these purposes. The architecture can be supported on the BeansNet platform, whose integration with an application server provides an adequate solution to the requirements. BeansNet is a JINI based framework developed by INDRA, which makes easy the implementation of a remote experimentation model based on a Service Oriented Architecture. The new software architecture has been designed on the basis of the experience acquired in the development of an upgrade of the TJ-II remote experimentation system.

  20. Preliminary Calculation for Plasma Chamber Design of Pulsed Electron Source Based on Plasma

    International Nuclear Information System (INIS)

    Widdi Usada

    2009-01-01

    This paper described the characteristics of pulsed electron sources with anode-cathode distance of 5 cm, electrode diameter of 10 cm, driven by capacitor energy of 25 J. The preliminary results showed that if the system is operated with diode resistance is 1.6 Ω, plasma resistance is 0.14 Ω, and β is 0.94, the achieved of plasma voltage is 640 V, its current is 4.395 kA with its pulse width of 0.8 μsecond. According to breakdown voltage based on Paschen empirical formula, with this achieved voltage, this system could be operated for operation pressure of 1 torr. (author)

  1. Electrical resistivity change in Al:ZnO thin films dynamically deposited by bipolar pulsed direct-current sputtering and a remote plasma source

    International Nuclear Information System (INIS)

    Yang, Wonkyun; Joo, Junghoon

    2010-01-01

    The Al-doped ZnO (AZO) thin films for a transparent conducting oxide in solar cell devices were deposited by bipolar pulsed dc magnetron sputtering. This work was performed in an in-line type system and investigated AZO films in a static deposition mode and dynamic one, which is more important in the practical fields. Because of this dynamic deposition process, the zigzagged columnar structure was observed. This resulted in the decreasing electrical property, optical properties, and surface roughness. As a deposition in the dynamic mode, the resistivity increased from 1.64x10 -3 to 2.50x10 -3 Ω cm, as compared to that in the static mode, and the transmittance also decreased from 83.9% to 78.3%. To recover the disadvantage, a remote plasma source (RPS) was supported between the substrate and target for reducing zigzagged formation during the deposition. The deposition rate decreased by using RPS, but the electrical and optical properties of films got better than only dynamic mode. The resistivity and transmittance in the dynamic mode using RPS were 2.1x10 -3 Ω cm and 85.5%, respectively. In this study, the authors found the possibility to advance the electrical and optical properties of AZO thin films in the industry mode.

  2. Pulsed Plasma with Synchronous Boundary Voltage for Rapid Atomic Layer Etching

    Energy Technology Data Exchange (ETDEWEB)

    Economou, Demetre J.; Donnelly, Vincent M.

    2014-05-13

    Atomic Layer ETching (ALET) of a solid with monolayer precision is a critical requirement for advancing nanoscience and nanotechnology. Current plasma etching techniques do not have the level of control or damage-free nature that is needed for patterning delicate sub-20 nm structures. In addition, conventional ALET, based on pulsed gases with long reactant adsorption and purging steps, is very slow. In this work, novel pulsed plasma methods with synchronous substrate and/or “boundary electrode” bias were developed for highly selective, rapid ALET. Pulsed plasma and tailored bias voltage waveforms provided controlled ion energy and narrow energy spread, which are critical for highly selective and damage-free etching. The broad goal of the project was to investigate the plasma science and engineering that will lead to rapid ALET with monolayer precision. A combined experimental-simulation study was employed to achieve this goal.

  3. Experimental investigation of vapor shielding effects induced by ELM-like pulsed plasma loads using the double plasma gun device

    Science.gov (United States)

    Sakuma, I.; Kikuchi, Y.; Kitagawa, Y.; Asai, Y.; Onishi, K.; Fukumoto, N.; Nagata, M.

    2015-08-01

    We have developed a unique experimental device of so-called double plasma gun, which consists of two magnetized coaxial plasma gun (MCPG) devices, in order to clarify effects of vapor shielding on material erosion due to transient events in magnetically confined fusion devices. Two ELM-like pulsed plasmas produced by the two MCPG devices were injected into a target chamber with a variable time difference. For generating ablated plasmas in front of a target material, an aluminum foil sample in the target chamber was exposed to a pulsed plasma produced by the 1st MCPG device. The 2nd pulsed plasma was produced with a time delay of 70 μs. It was found that a surface absorbed energy measured by a calorimeter was reduced to ∼66% of that without the Al foil sample. Thus, the reduction of the incoming plasma energy by the vapor shielding effect was successfully demonstrated in the present experiment.

  4. Experimental investigation of vapor shielding effects induced by ELM-like pulsed plasma loads using the double plasma gun device

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, I., E-mail: eu13z002@steng.u-hyogo.ac.jp; Kikuchi, Y.; Kitagawa, Y.; Asai, Y.; Onishi, K.; Fukumoto, N.; Nagata, M.

    2015-08-15

    We have developed a unique experimental device of so-called double plasma gun, which consists of two magnetized coaxial plasma gun (MCPG) devices, in order to clarify effects of vapor shielding on material erosion due to transient events in magnetically confined fusion devices. Two ELM-like pulsed plasmas produced by the two MCPG devices were injected into a target chamber with a variable time difference. For generating ablated plasmas in front of a target material, an aluminum foil sample in the target chamber was exposed to a pulsed plasma produced by the 1st MCPG device. The 2nd pulsed plasma was produced with a time delay of 70 μs. It was found that a surface absorbed energy measured by a calorimeter was reduced to ∼66% of that without the Al foil sample. Thus, the reduction of the incoming plasma energy by the vapor shielding effect was successfully demonstrated in the present experiment.

  5. Luminescent Characteristics of a Pulsed Discharge Plasma in Xe-KBr Mixture

    Science.gov (United States)

    Heneral, A. A.; Zhmenyak, Y. V.

    2018-03-01

    A mixture of xenon with a nontoxic halogen carrier Xe-KBr is used to create a plasma radiation source at the 282-nm transition of the XeBr* molecule excited by a high-voltage pulsed-periodic discharge. The luminescence spectra of the plasma of a longitudinal pulsed-periodic discharge in the Xe-KBr mixture at low pressures are studied experimentally. The most intense UV bands of exciplex XeBr* molecules are recorded in the spectral range of 250-350 nm. The spectral, temporal, and energetic characteristics of the radiation source are presented, as well as the dependence of the XeBr* exciplex molecule formation efficiency on the discharge excitation conditions. The optimal conditions for the excitation of UV radiation in the pulsed-periodic discharge plasma are determined.

  6. Scattering of an ultrashort electromagnetic pulse in a plasma

    International Nuclear Information System (INIS)

    Astapenko, V. A.

    2011-01-01

    An analytic approach is developed to describing how ultrashort electromagnetic pulses with a duration of one period or less at the carrier frequency are scattered in a plasma. Formulas are derived to calculate and analyze the angular and spectral probabilities of radiation scattering via two possible mechanisms-Compton and transition radiation channels-throughout the entire pulse. Numerical simulations were carried out for a Gaussian pulse. The effect of the phase of the carrier frequency relative to the pulse envelope on the scattering parameters is investigated.

  7. A pulsed plasma jet with the various Ar/N2 mixtures

    Science.gov (United States)

    Barkhordari, A.; Ganjovi, A.; Mirzaei, I.; Falahat, A.; Rostami Ravari, M. N.

    2017-12-01

    In this paper, using the Optical Emission Spectroscopy technique, the physical properties of a fabricated pulsed DBD plasma jet are studied. Ar/N2 gaseous mixture is taken as operational gas, and Ar contribution in Ar/N2 mixture is varied from 75 to 95%. Through the optical emission spectra analysis of the pulsed DBD plasma jet, the rotational, vibrational and excitation temperatures and density of electrons in plasma medium of the pulsed plasma jet are obtained. It is seen that, at the wavelength of 750.38 nm, the radiation intensity from the Ar 4p → 4 s transition increases at the higher Ar contributions in Ar/N2 mixture. It is found that, for 95% of Ar presence in the mixture, the emission intensities from argon and molecular nitrogen are higher, and the emission line intensities will increase nonlinearly. In addition, it is observed that the quenching of Ar* by N2 results in the higher intensities of N2 excited molecules. Moreover, at the higher percentages of Ar in Ar/N2 mixture, while all the plasma temperatures are increased, the plasma electron density is reduced.

  8. Application-oriented research on plasma channeling of a large pulsed current

    International Nuclear Information System (INIS)

    Liu Jingye

    2000-01-01

    Utilizing the avalanche effect of plasma produced by the collision of energetic primary electrons with hydrogen molecules in a plasma, channeling of a large pulsed current is achieved, with the plasma acting as the carrier

  9. Repetitively pulsed capacitor bank for the dense-plasma focus

    International Nuclear Information System (INIS)

    Zucker, O.; Bostick, W.; Gullickson, R.; Long, J.; Luce, J.; Sahlin, H.

    1975-12-01

    This report describes a 1 pulse per second capacitor bank designed to energize a dense-plasma focus (DPF). The DPF is a neutron source capable (with moderate scaling) of delivering a minimum of 10 15 neutrons per pulse or neutron flux of 2 x 10 13 N/cm 2 .s. The average power consumption, which has become a major issue due to the energy crisis, is analyzed with respect to other plasma devices and is shown to be highly favorable. This small source size high flux neutron source could be extemely useful to qualify fission reactor material irradiation results for fusion reactor design

  10. Repetitively pulsed capacitor bank for the dense-plasma focus

    International Nuclear Information System (INIS)

    Zucker, O.; Bostick, W.; Gullickson, R.; Long, J.; Luce, J.; Sahlin, H.

    1976-01-01

    This report describes a 1 pulse per second capacitor bank designed to energize a dense-plasma focus (DPF). The DPF is a neutron source capable (with moderate scaling) of delivering a minimum of 10 15 neutrons per pulse or neutron flux of 2 x 10 13 N/cm 2 . s. The average power consumption, which has become a major issue due to the energy crisis, is analyzed with respect to other plasma devices and is shown to be highly favorable. This small source size high flux neutron source could be extremely useful to qualify fission reactor material irradiation results for fusion reactor design

  11. Influence of mode-beating pulse on laser-induced plasma

    Science.gov (United States)

    Nishihara, M.; Freund, J. B.; Glumac, N. G.; Elliott, G. S.

    2018-04-01

    This paper addresses the influence of mode-beating pulse on laser-induced plasma. The second harmonic of a Nd:YAG laser, operated either with the single mode or multimode, was used for non-resonant optical breakdown, and subsequent plasma development was visualized using a streak imaging system. The single mode lasing leads to a stable breakdown location and smooth envelopment of the plasma boundary, while the multimode lasing, with the dominant mode-beating frequency of 500-800 MHz, leads to fluctuations in the breakdown location, a globally modulated plasma surface, and growth of local microstructures at the plasma boundary. The distribution of the local inhomogeneity was measured from the elastic scattering signals on the streak image. The distance between the local structures agreed with the expected wavelength of hydrodynamic instability development due to the interference between the surface excited wave and transmitted wave. A numerical simulation, however, indicates that the local microstructure could also be directly generated at the peaks of the higher harmonic components if the multimode pulse contains up to the eighth harmonic of the fundamental cavity mode.

  12. Development and verification test on remote plasma cutting of large metallic waste

    International Nuclear Information System (INIS)

    Ozawa, Tamotsu; Yamada, Kunitaka; Abe, Tadashi

    1979-01-01

    Plasma cutting is the cutting method to melt and scatter cut objects by generating arc between an electrode in a nozzle and the cut objects and making working gas fed to surround it into high temperature, high speed plasma jet. In case of remote plasma cutting, a torch for the plasma cutting is operated remotely with a manipulator from the outside of a cell. At the time of planning the method of breaking up solid wastes, the type of cutting machines and the method of remote operation of the cutting machines and cut objects were examined. It was decided to adopt plasma cutting machines, because their cutting capability such as materials, thickness and cutting speed is excellent, and the construction and handling are simple. The form of the solid wastes to be cut is not uniform, accordingly the method of manipulator operation was adopted to respond to various forms flexibly. Cut objects are placed on a turntable to change the position successively. In case of remote plasma cutting, the controls of torch speed and gap must be made with a manipulator. The use of light-shielding glasses reduces largely the watchability of cut objects and becomes hindrance in the operation. As for the safety aspect, the suitable gas for cutting, which does not contain hydrogen, must be selected. The tests carried out for two years since November, 1977, are reported in this paper, and most of the problems have been solved. (Kako, I.)

  13. Production of oxide-metal P/M composites using pulsed plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Blinkov, I.V.; Manukhin, A.V.; Ostapovich, A.O.; Pavlov, IU.A.

    1987-08-01

    The possibility of producing oxide-metal P/M composites using plasma generated by a pulsed discharge is investigated experimentally for the system Al/sup 2/O/sub 3/-Ni. It is found that Al/sup 2/O/sub 3/ metallization in plasma is accompanied by spheroidization; changes in the physicomechanical properties of the Al/sup 2/O/sub 3/-Ni composite during plasma treatment are examined. The characteristic features of the process associated with the effect of pulsed energy on the disperse flow of the oxide-metal mixture are discussed. 7 references.

  14. Radiation from a pulsed dipole source in a moving magnetized plasma

    International Nuclear Information System (INIS)

    Gavrilenko, V. G.; Petrov, E. Yu.; Pikulin, V. D.; Sutyagina, D. A.

    2006-01-01

    The problem of radiation from a pulsed dipole source in a moving magnetized plasma described by a diagonal permittivity tensor is considered. An exact solution describing the spatiotemporal behavior of the excited electromagnetic field is obtained. The shape of an electromagnetic pulse that is generated by the source and propagates at different angles to both the direction of the external magnetic field and the direction of plasma motion is investigated. It is found that even nonrelativistic motion of the plasma medium can substantially influence the parameters of radiation from prescribed unsteady sources

  15. Dynamics of plasma expansion in the pulsed laser material interaction

    Indian Academy of Sciences (India)

    at different ambient gas pressures using an adiabatic expansion model. ... Pulsed laser; plasma expansion; plasma ionization; plume dimension. 1. ...... De A, Shakhatov V A, Pascale De O 2001 Optical emission spectroscopy and modeling of.

  16. DEVICE FOR INVESTIGATION OF MAGNETRON AND PULSED-LASER PLASMA

    Directory of Open Access Journals (Sweden)

    A. P. Burmakov

    2012-01-01

    Full Text Available Various modifications of complex pulsed laser and magnetron deposition thin-film structures unit are presented. They include joint and separate variants of layer deposition. Unit realizes the plasma parameters control and enhances the possibility of laser-plasma and magnetron methods of coatings deposition.

  17. Interaction of UV laser pulses with reactive dusty plasmas

    NARCIS (Netherlands)

    van de Wetering, F.M.J.H.; Beckers, J.; Nijdam, S.; Oosterbeek, W.; Kovacevic, E.; Berndt, J.

    2016-01-01

    This contribution deals with the effects of UV photons on the synthesis and transport of nanoparticles in reactive complex plasmas (capacitively coupled RF discharge). First measurements showed that the irradiation of a reactive acetylene-argon plasma with high-energy, ns UV laser pulses (355 nm, 75

  18. Enhancement and stabilization of plasma using collinear long-short double-pulse laser-induced breakdown spectroscopy

    Science.gov (United States)

    Cui, Minchao; Deguchi, Yoshihiro; Wang, Zhenzhen; Fujita, Yuki; Liu, Renwei; Shiou, Fang-Jung; Zhao, Shengdun

    2018-04-01

    A collinear long-short dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) method was employed to enhance and stabilize the laser-induced plasma from steel sample. The long-pulse-width laser beam with the pulse width of 60 μs was generated by a Nd: YAG laser which was operated at FR (free running) mode. The comparative experiments were carried out between single pulse LIBS (SP-LIBS) and long-short DP-LIBS. The recorded results showed that the emission intensities and the temperature of plasma were enhanced by long-short DP-LIBS. The plasma images showed that the plasma was bigger and had a longer lifetime in long-short DP-LIBS situation. Through the calculation of time-resolved plasma temperature and intensity ratio, it can be concluded that the plasma was stabilized by the long-pulse-width laser beam. The long-short DP-LIBS method also generated the stable plasma condition from the samples with different initial temperatures, which overcame the difficulties of LIBS in the online measurement for steel production line.

  19. Dynamic behavior of detached recombining plasmas during ELM-like plasma heat pulses in the divertor plasma simulator NAGDIS-II

    International Nuclear Information System (INIS)

    Uesugi, Y.; Hattori, N.; Nishijima, D.; Ohno, N.; Takamura, S.

    2001-01-01

    It has been recognized that the ELMs associated with a good confinement at the edge, such as H-mode, must bring an enormous energy to the divertor target plate through SOL and detached plasmas. The understanding of the ELM energy transport through SOL to the divertor target is rather poor at the moment, which leads to an ambiguous estimation of the deposited heat load on the divertor target in ITER. In the present work the ELM-like plasma heat pulse is generated by rf heating in a linear divertor plasma simulator. Energetic electrons with an energy range 10-40 eV are effectively generated by rf heating in low temperature plasmas with (T e )< ∼1 eV. It is observed experimentally that the energetic electrons ionize the highly excited Rydberg atoms quickly, bringing a rapid increase of the ion particle flux to the target, and make the detached plasmas attached to the target. Detailed physical processes about the interaction between the heat pulse with conduction and convection, and detached recombining plasmas are discussed

  20. Optimization of plasma mirror reflectivity and optical quality using double laser pulses

    International Nuclear Information System (INIS)

    Scott, G G; Clarke, R J; Green, J S; Heathcote, R I; Neely, D; Bagnoud, V; Brabetz, C; Zielbauer, B; Powell, H W; McKenna, P; Arber, T D

    2015-01-01

    We measure a record 96 ±2.5% specularly reflected energy fraction from an interaction with a plasma mirror (PM) surface preionized by a controlled prepulse and find that the optical quality is dependent on the inter pulse time delay. Simulations show that the main pulse reflected energy is a strong function of plasma density scale length, which increases with the time delay and reaches a peak reflectivity for a scale length of 0.3 μm, which is achieved here for a pulse separation time of 3 ps. It is found that the incident laser quasi near field intensity distribution leads to nonuniformities in this plasma expansion and consequent critical surface position distribution. The PM optical quality is found to be governed by the resultant perturbations in the critical surface position, which become larger with inter pulse time delay. (paper)

  1. Interaction of ultra-short ultra-intense laser pulses with under-dense plasmas; Interaction d'impulsions laser ultra-courtes et ultra-intenses avec des plasmas sous denses

    Energy Technology Data Exchange (ETDEWEB)

    Solodov, A

    2000-12-15

    Different aspects of interaction of ultra-short ultra-intense laser pulses with underdense plasmas are studied analytically and numerically. These studies can be interesting for laser-driven electron acceleration in plasma, X-ray lasers, high-order harmonic generation, initial confinement fusion with fast ignition. For numerical simulations a fully-relativistic particle code WAKE was used, developed earlier at Ecole Polytechnique. It was modified during the work on the thesis in the part of simulation of ion motion, test electron motion, diagnostics for the field and plasma. The studies in the thesis cover the problems of photon acceleration in the plasma wake of a short intense laser pulse, phase velocity of the plasma wave in the Self-Modulated Laser Wake-Field Accelerator (SM LWFA), relativistic channeling of laser pulses with duration of the order of a plasma period, ion dynamics in the wake of a short intense laser pulse, plasma wave breaking. Simulation of three experiments on the laser pulse propagation in plasma and electron acceleration were performed. Among the main results of the thesis, it was found that reduction of the plasma wave phase velocity in the SM LWFA is crucial for electron acceleration, only if a plasma channel is used for the laser pulse guiding. Self-similar structures describing relativistic guiding of short laser pulses in plasmas were found and relativistic channeling of initially Gaussian laser pulses of a few plasma periods in duration was demonstrated. It was shown that ponderomotive force of a plasma wake excited by a short laser pulse forms a channel in plasma and plasma wave breaking in the channel was analyzed in detail. Effectiveness of electron acceleration by the laser field and plasma wave was compared and frequency shift of probe laser pulses by the plasma waves was found in conditions relevant to the current experiments. (author)

  2. Influence of plasma parameters in pulsed plasma gun on modification processes in exposed structural materials

    International Nuclear Information System (INIS)

    Byrka, O.V.; Bandura, A.N.; Chebotarev, V.V.; Garkusha, I.E.; Garkusha, V.V.; Makhai, V.A.; Tereshin, V.I.

    2011-01-01

    This paper is focused on investigation of helium, nitrogen and krypton plasma streams generated by pulsed plasma gun (PPA). The main objection of this study is adjustment of plasma treatment regimes for different materials that allows achieving optimal thickness of modified layer with simultaneously minimal value of surface roughness. Features of materials alloying from gas and metallic plasma as a result of the plasma ions mixing with the steel substrate in liquid phase are discussed also.

  3. Deposition of thin films and surface modification by pulsed high energy density plasma

    International Nuclear Information System (INIS)

    Yan Pengxun; Yang Size

    2002-01-01

    The use of pulsed high energy density plasma is a new low temperature plasma technology for material surface treatment and thin film deposition. The authors present detailed theoretical and experimental studies of the production mechanism and physical properties of the pulsed plasma. The basic physics of the pulsed plasma-material interaction has been investigated. Diagnostic measurements show that the pulsed plasma has a high electron temperature of 10-100 eV, density of 10 14 -10 16 cm -3 , translation velocity of ∼10 -7 cm/s and power density of ∼10 4 W/cm 2 . Its use in material surface treatment combines the effects of laser surface treatment, electron beam treatment, shock wave bombardment, ion implantation, sputtering deposition and chemical vapor deposition. The metastable phase and other kinds of compounds can be produced on low temperature substrates. For thin film deposition, a high deposition ratio and strong film to substrate adhesion can be achieved. The thin film deposition and material surface modification by the pulsed plasma and related physical mechanism have been investigated. Thin film c-BN, Ti(CN), TiN, DLC and AlN materials have been produced successfully on various substrates at room temperature. A wide interface layer exists between film and substrate, resulting in strong adhesion. Metal surface properties can be improved greatly by using this kind of treatment

  4. A high-current pulsed cathodic vacuum arc plasma source

    International Nuclear Information System (INIS)

    Oates, T.W.H.; Pigott, J.; Mckenzie, D.R.; Bilek, M.M.M.

    2003-01-01

    Cathodic vacuum arcs (CVAs) are well established as a method for producing metal plasmas for thin film deposition and as a source of metal ions. Fundamental differences exist between direct current (dc) and pulsed CVAs. We present here results of our investigations into the design and construction of a high-current center-triggered pulsed CVA. Power supply design based on electrolytic capacitors is discussed and optimized based on obtaining the most effective utilization of the cathode material. Anode configuration is also discussed with respect to the optimization of the electron collection capability. Type I and II cathode spots are observed and discussed with respect to cathode surface contamination. An unfiltered deposition rate of 1.7 nm per pulse, at a distance of 100 mm from the source, has been demonstrated. Instantaneous plasma densities in excess of 1x10 19 m -3 are observed after magnetic filtering. Time averaged densities an order of magnitude greater than common dc arc densities have been demonstrated, limited by pulse repetition rate and filter efficiency

  5. Explaining Cold-Pulse Dynamics in Tokamak Plasmas Using Local Turbulent Transport Models

    Science.gov (United States)

    Rodriguez-Fernandez, P.; White, A. E.; Howard, N. T.; Grierson, B. A.; Staebler, G. M.; Rice, J. E.; Yuan, X.; Cao, N. M.; Creely, A. J.; Greenwald, M. J.; Hubbard, A. E.; Hughes, J. W.; Irby, J. H.; Sciortino, F.

    2018-02-01

    A long-standing enigma in plasma transport has been resolved by modeling of cold-pulse experiments conducted on the Alcator C-Mod tokamak. Controlled edge cooling of fusion plasmas triggers core electron heating on time scales faster than an energy confinement time, which has long been interpreted as strong evidence of nonlocal transport. This Letter shows that the steady-state profiles, the cold-pulse rise time, and disappearance at higher density as measured in these experiments are successfully captured by a recent local quasilinear turbulent transport model, demonstrating that the existence of nonlocal transport phenomena is not necessary for explaining the behavior and time scales of cold-pulse experiments in tokamak plasmas.

  6. Exponential power spectra, deterministic chaos and Lorentzian pulses in plasma edge dynamics

    International Nuclear Information System (INIS)

    Maggs, J E; Morales, G J

    2012-01-01

    Exponential spectra have been observed in the edges of tokamaks, stellarators, helical devices and linear machines. The observation of exponential power spectra is significant because such a spectral character has been closely associated with the phenomenon of deterministic chaos by the nonlinear dynamics community. The proximate cause of exponential power spectra in both magnetized plasma edges and nonlinear dynamics models is the occurrence of Lorentzian pulses in the time signals of fluctuations. Lorentzian pulses are produced by chaotic behavior in the separatrix regions of plasma E × B flow fields or the limit cycle regions of nonlinear models. Chaotic advection, driven by the potential fields of drift waves in plasmas, results in transport. The observation of exponential power spectra and Lorentzian pulses suggests that fluctuations and transport at the edge of magnetized plasmas arise from deterministic, rather than stochastic, dynamics. (paper)

  7. Application of piezodetectors for diagnostics of pulsed and quasi-steady-state plasma streams

    Energy Technology Data Exchange (ETDEWEB)

    Bandura, A.N.; Chebotarev, V.V.; Garkusha, I.E.; Tereshin, V.I.; Ladygina, M.S. [NSC KIPT, Kharkov (Ukraine). Inst. of Plasma Physics

    2006-04-15

    The paper reports on studies of the plasma streams generated by two experimental devices: the quasi-steady-state plasma accelerator (QSPA) Kh-50 and the pulsed plasma gun PROSVET. The radial distributions of the plasma pressure for different times and varied distances from the accelerator output have been used for investigation of the plasma stream dynamics and study the plasma compression in the focus region for different operational regimes of plasma accelerators. In experiments for the application of pulsed plasma streams for surface modification of different industrial steels, optimal regimes of surface processing have been chosen on the basis of the plasma pressure measurements. Examples of application of the piezodetectors in simulation experiments on plasma surface interaction under high heat loads are presented.

  8. Application of piezodetectors for diagnostics of pulsed and quasi-steady-state plasma streams

    International Nuclear Information System (INIS)

    Bandura, A.N.; Chebotarev, V.V.; Garkusha, I.E.; Tereshin, V.I.; Ladygina, M.S.

    2006-01-01

    The paper reports on studies of the plasma streams generated by two experimental devices: the quasi-steady-state plasma accelerator (QSPA) Kh-50 and the pulsed plasma gun PROSVET. The radial distributions of the plasma pressure for different times and varied distances from the accelerator output have been used for investigation of the plasma stream dynamics and study the plasma compression in the focus region for different operational regimes of plasma accelerators. In experiments for the application of pulsed plasma streams for surface modification of different industrial steels, optimal regimes of surface processing have been chosen on the basis of the plasma pressure measurements. Examples of application of the piezodetectors in simulation experiments on plasma surface interaction under high heat loads are presented

  9. Electric fields in plasmas under pulsed currents

    International Nuclear Information System (INIS)

    Tsigutkin, K.; Doron, R.; Stambulchik, E.; Bernshtam, V.; Maron, Y.; Fruchtman, A.; Commisso, R. J.

    2007-01-01

    Electric fields in a plasma that conducts a high-current pulse are measured as a function of time and space. The experiment is performed using a coaxial configuration, in which a current rising to 160 kA in 100 ns is conducted through a plasma that prefills the region between two coaxial electrodes. The electric field is determined using laser spectroscopy and line-shape analysis. Plasma doping allows for three-dimensional spatially resolved measurements. The measured peak magnitude and propagation velocity of the electric field is found to match those of the Hall electric field, inferred from the magnetic-field front propagation measured previously

  10. The interaction of intense subpicosecond laser pulses with underdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Coverdale, Christine Ann [Univ. of California, Davis, CA (United States)

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 1016 W/cm2 laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by Lplasma ≥ 2LRayleigh > cτ. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (no ≤ 0.05ncr). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in ω-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  11. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  12. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge.

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  13. Ionization by a pulsed plasma surface water

    International Nuclear Information System (INIS)

    Bloyet, E.; Leprince, P.; Marec, J.; Llamas Blasco, M.

    1981-01-01

    The ionization mechanism is studied of a pulsed surface wave generating a microwave discharge. When the plasma is dominated by collisions, it is found that the velocity of the ionization front depends on the ponderomotive force due to the field gradient in the front. (orig.)

  14. A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition

    International Nuclear Information System (INIS)

    Shiraishi, Taisuke; Urushihara, Tomonori; Gundersen, Martin

    2009-01-01

    Application of nanosecond pulsed low temperature plasma as an ignition technique for automotive gasoline engines, which require a discharge under conditions of high back pressure, has been studied experimentally using a single-cylinder engine. The nanosecond pulsed plasma refers to the transient (non-equilibrated) phase of a plasma before the formation of an arc discharge; it was obtained by applying a high voltage with a nanosecond pulse (FWHM of approximately 80 or 25 ns) between coaxial cylindrical electrodes. It was confirmed that nanosecond pulsed plasma can form a volumetric multi-channel streamer discharge at an energy consumption of 60 mJ cycle -1 under a high back pressure of 1400 kPa. It was found that the initial combustion period was shortened compared with the conventional spark ignition. The initial flame visualization suggested that the nanosecond pulsed plasma ignition results in the formation of a spatially dispersed initial flame kernel at a position of high electric field strength around the central electrode. It was observed that the electric field strength in the air gap between the coaxial cylindrical electrodes was increased further by applying a shorter pulse. It was also clarified that the shorter pulse improved ignitability even further.

  15. A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition

    Science.gov (United States)

    Shiraishi, Taisuke; Urushihara, Tomonori; Gundersen, Martin

    2009-07-01

    Application of nanosecond pulsed low temperature plasma as an ignition technique for automotive gasoline engines, which require a discharge under conditions of high back pressure, has been studied experimentally using a single-cylinder engine. The nanosecond pulsed plasma refers to the transient (non-equilibrated) phase of a plasma before the formation of an arc discharge; it was obtained by applying a high voltage with a nanosecond pulse (FWHM of approximately 80 or 25 ns) between coaxial cylindrical electrodes. It was confirmed that nanosecond pulsed plasma can form a volumetric multi-channel streamer discharge at an energy consumption of 60 mJ cycle-1 under a high back pressure of 1400 kPa. It was found that the initial combustion period was shortened compared with the conventional spark ignition. The initial flame visualization suggested that the nanosecond pulsed plasma ignition results in the formation of a spatially dispersed initial flame kernel at a position of high electric field strength around the central electrode. It was observed that the electric field strength in the air gap between the coaxial cylindrical electrodes was increased further by applying a shorter pulse. It was also clarified that the shorter pulse improved ignitability even further.

  16. Influence of pulsed plasma streams processing on wear behavior of steels in different friction conditions

    International Nuclear Information System (INIS)

    Bandura, A.N.; Byrka, O.V.; Tereshin, V.I.; Bovda, A.M.; Tortika, A.S.

    2000-01-01

    Pulsed plasma streams processing was applied for surface modification of industrial steel samples. Different types of wear tests (pin-on-disk,flat-on-flat, abrasive,cavitation) were carried out for samples irradiated by pulsed nitrogen plasma streams. There was achieved essential decrease of wear and tear of processed surfaces of all kinds of steels including previously thermally quenched ones. Obtained results are of importance for both determination of optimal regimes of plasma streams processing and the most resulting use of pulsed plasma streams for technology purpose, i.e. for identification of wear modes and optimal friction conditions for steels processed by plasma streams

  17. Physics and applications of plasmas produced by pulsed power technology

    International Nuclear Information System (INIS)

    Ozaki, Tetsuo; Katsuki, Sunao

    2013-10-01

    The papers presented at the symposium on 'Physics and Applications of Plasmas Produced by Pulsed Power Technology' held on March 27-28, 2012 at the National Institute for Fusion Science are collected in these proceedings. The papers in these proceedings reflect the current status and progress in the experimental and theoretical research on high power particle beams and high energy density plasmas produced by pulsed power technology. This issue is the collection of 22 papers presented at the entitled meeting. Ten of the presented papers are indexed individually. (J.P.N.)

  18. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation

    International Nuclear Information System (INIS)

    Sang Chaofeng; Sun Jizhong; Wang Dezhen

    2010-01-01

    A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.

  19. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation

    Science.gov (United States)

    Sang, Chaofeng; Sun, Jizhong; Wang, Dezhen

    2010-02-01

    A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.

  20. Pondermotive absorption of a short intense laser pulse in a non-uniform plasma

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A A; Platonov, K Yu [Inst. for Laser Physics, SC ` Vavilov State Optical Inst.` 12, Birzhevaya line, St Petersburg (Russian Federation); Tanaka, K A

    1998-03-01

    An analytical description of the pondermotive absorption mechanism at a short high intense laser pulse interaction with a strong inhomogeneous plasma is presented. The optimal conditions for the maximum of resonance absorption of laser pulse interaction with non-uniform plasma at normal incidence are founded. (author)

  1. Investigation of plasma potential and pulsed discharge characteristics in enhanced glow discharge plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Li Liuhe; Lu Qiuyuan; Fu, Ricky K.Y.; Chu, Paul K.

    2009-01-01

    Enhanced glow discharge plasma immersion ion implantation and deposition (EGD-PII and D) does not require external plasma sources. In this technique, the plasma is produced by self-glow discharge when a high negative voltage is applied to the sample. The small-area, pointed-shape hollow anode and large area tabular cathode form an electron-focused electric field. Using a special electric field design, the electrons from either the plasma or target (secondary electrons) are focused to a special hollow anode. As a result of the special electron-focusing field, the self-glow discharge process can be enhanced to achieve effective ion implantation into the substrate. In this work, the plasma potential distribution is investigated in details and the possible pulse discharge mechanism is discussed. The unique characteristics of the pulsed plasma and plasma extinction are studied.

  2. Iron plasma generation using a Nd:YAG laser pulse of several hundred picoseconds

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Jun, E-mail: jtamura@post.j-parc.jp [J-PARC Center, Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); Kumaki, Masafumi [Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Kondo, Kotaro [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Kanesue, Takeshi; Okamura, Masahiro [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2016-02-15

    We investigated the high intensity plasma generated by using a Nd:YAG laser to apply a laser-produced plasma to the direct plasma injection scheme. The capability of the source to generate high charge state ions strongly depends on the power density of the laser irradiation. Therefore, we focused on using a higher power laser with several hundred picoseconds of pulse width. The iron target was irradiated with the pulsed laser, and the ion current of the laser-produced iron plasma was measured using a Faraday cup and the charge state distribution was investigated using an electrostatic ion analyzer. We found that higher charge state iron ions (up to Fe{sup 21+}) were obtained using a laser pulse of several hundred picoseconds in comparison to those obtained using a laser pulse of several nanoseconds (up to Fe{sup 19+}). We also found that when the laser irradiation area was relatively large, the laser power was absorbed mainly by the contamination on the target surface.

  3. Remote spectral measurements of the blood volume pulse with applications for imaging photoplethysmography

    Science.gov (United States)

    Blackford, Ethan B.; Estepp, Justin R.; McDuff, Daniel J.

    2018-02-01

    Imaging photoplethysmography uses camera image sensors to measure variations in light absorption related to the delivery of the blood volume pulse to peripheral tissues. The characteristics of the measured BVP waveform depends on the spectral absorption of various tissue components including melanin, hemoglobin, water, and yellow pigments. Signal quality and artifact rejection can be enhanced by taking into account the spectral properties of the BVP waveform and surrounding tissue. The current literature regarding the spectral relationships of remote PPG is limited. To supplement this fundamental data, we present an analysis of remotely-measured, visible and near-infrared spectroscopy to better understand the spectral signature of remotely measured BVP signals. To do so, spectra were measured from the right cheek of 25, stationary participants whose heads were stabilized by a chinrest. A collimating lens was used to collect reflected light from a region of 3 cm in diameter. The spectrometer provided 3 nm resolution measurements from 500-1000 nm. Measurements were acquired at a rate of 50 complete spectra per second for a period of five minutes. Reference physiology, including electrocardiography was simultaneously and synchronously acquired. The spectral data were analyzed to determine the relationship between light wavelength and the resulting remote-BVP signal-to-noise ratio and to identify those bands best suited for pulse rate measurement. To our knowledge this is the most comprehensive dataset of remotely-measured spectral iPPG data. In due course, we plan to release this dataset for research purposes.

  4. Remote-LIBS characterization of ITER-like plasma facing materials

    International Nuclear Information System (INIS)

    Almaviva, S.; Caneve, L.; Colao, F.; Fantoni, R.; Maddaluno, G.

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► Description of a LIBS set-up as remote diagnostics in new generation fusion machines. ► Identification of the atomic composition of samples simulating plasma facing components. ► Submicrometric resolution in depth profiling the elemental composition of the samples. ► Identification of elements present in traces or as impurities on the sample surface. ► Discussion on the applicability of the Calibration Free method for quantitative analysis. - Abstract: The occurrence of several plasma-wall interaction processes, eventually affecting the overall system performances, is expected in a working fusion device chamber. Monitoring the changes in the composition of the plasma facing component (PFC) surface layer, as a result of erosion and redeposition mechanisms, can provide useful information on the possible plasma pollution and fuel retention. To this aim, suitable diagnostic techniques able to perform depth profiling analysis of the superficial layers on the PFCs have been developed. Due to the constraints commonly found in fusion devices, the measuring apparatus must be non invasive, remote and sensitive to light elements. These requirements make LIBS (Laser Induced Breakdown Spectroscopy) an ideal candidate for on-line monitoring the walls of current and of next generation (as ITER) fusion devices. LIBS is a well established tool for qualitative, semi-quantitative and quantitative analysis of surfaces, with micro-destructive characteristics and some capabilities for stratigraphy. In this work, LIBS depth profiling capability has been verified for the determination of the composition of multilayer structures simulating plasma facing components covered with deposited impurity layers. A new experimental setup has been designed and realized in order to optimize the characteristics of a LIBS system working in vacuum conditions and remotely, two noticeable properties for an ITER-relevant diagnostics. A quantitative

  5. Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement

    International Nuclear Information System (INIS)

    Babushok, V.I.; DeLucia, F.C.; Gottfried, J.L.; Munson, C.A.; Miziolek, A.W.

    2006-01-01

    A review of recent results of the studies of double laser pulse plasma and ablation for laser induced breakdown spectroscopy applications is presented. The double pulse laser induced breakdown spectroscopy configuration was suggested with the aim of overcoming the sensitivity shortcomings of the conventional single pulse laser induced breakdown spectroscopy technique. Several configurations have been suggested for the realization of the double pulse laser induced breakdown spectroscopy technique: collinear, orthogonal pre-spark, orthogonal pre-heating and dual pulse crossed beam modes. In addition, combinations of laser pulses with different wavelengths, different energies and durations were studied, thus providing flexibility in the choice of wavelength, pulse width, energy and pulse sequence. The double pulse laser induced breakdown spectroscopy approach provides a significant enhancement in the intensity of laser induced breakdown spectroscopy emission lines up to two orders of magnitude greater than a conventional single pulse laser induced breakdown spectroscopy. The double pulse technique leads to a better coupling of the laser beam with the plasma plume and target material, thus providing a more temporally effective energy delivery to the plasma and target. The experimental results demonstrate that the maximum effect is obtained at some optimum separation delay time between pulses. The optimum value of the interpulse delay depends on several factors, such as the target material, the energy level of excited states responsible for the emission, and the type of enhancement process considered. Depending on the specified parameter, the enhancement effects were observed on different time scales ranging from the picosecond time level (e.g., ion yield, ablation mass) up to the hundred microsecond level (e.g., increased emission intensity for laser induced breakdown spectroscopy of submerged metal target in water). Several suggestions have been proposed to explain

  6. Force-free electromagnetic pulses in a laboratory plasma

    Science.gov (United States)

    Stenzel, R. L.; Urrutia, J. M.

    1990-01-01

    A short, intense current pulse is drawn from an electrode immersed in a magnetized afterglow plasma. The induced magnetic field B(r,t) assumes the shape of a helical double vortex which propagates along B(0) through the uniform plasma as a whistler mode. The observations support a prediction of force-free (J x B + neE = 0) electromagnetic fields and solitary waves. Energy and helicity are approximately conserved.

  7. Analog modeling of splitting the envelope of an electromagnetic pulse reflected from a plasma layer

    International Nuclear Information System (INIS)

    Bakunov, M.I.; Rogozhin, I.Yu.

    1997-01-01

    By means of a simple radio engineering model, an experimental study is carried out of the effect of the strong deformation of the envelope of a quasimonochromatic electromagnetic pulse reflected from a thin plasma layer placed on the surface of an ideal conductor. This deformation is considered under the conditions of the plasma resonance in the plasma layer and when the thickness of the layer is less then the wavelength of the incident radiation. It is shown that the pulse whose initial profile is Gaussian, after the reflection, is separated (entirely of partially) into two pulses with amplitudes that can be controlled by means of varying the parameters of the incident pulse and plasma layer

  8. Investigating Tribological Characteristics of HVOF Sprayed AISI 316 Stainless Steel Coating by Pulsed Plasma Nitriding

    Science.gov (United States)

    Mindivan, H.

    2018-01-01

    In this study, surface modification of aluminum alloy using High-Velocity Oxygen Fuel (HVOF) thermal spray and pulsed plasma nitriding processes was investigated. AISI 316 stainless steel coating on 1050 aluminum alloy substrate by HVOF process was pulsed plasma nitrided at 793 K under 0.00025 MPa pressure for 43200 s in a gas mixture of 75 % N2 and 25 % H2. The results showed that the pulse plasma nitriding process produced a surface layer with CrN, iron nitrides (Fe3N, Fe4N) and expanded austenite (γN). The pulsed plasma nitrided HVOF-sprayed coating showed higher surface hardness, lower wear rate and coefficient of friction than the untreated HVOF-sprayed one.

  9. Deposition of diamond-like carbon films by plasma source ion implantation with superposed pulse

    International Nuclear Information System (INIS)

    Baba, K.; Hatada, R.

    2003-01-01

    Diamond-like carbon (DLC) films were prepared on silicon wafer substrate by plasma source ion implantation with superposed negative pulse. Methane and acetylene gases were used as working gases for plasma. A negative DC voltage and a negative pulse voltage were superposed and applied to the substrate holder. The DC voltage was changed in the range from 0 to -4 kV and the pulse voltage was changed from 0 to -18 kV. The surface of DLC films was very smooth. The deposition rate of DLC films increased with increasing in superposed DC bias voltage. Carbon ion implantation was confirmed for the DLC film deposited from methane plasma with high pulse voltage. I D /I G ratios of Raman spectroscopy were around 1.5 independent on pulse voltage. The maximum hardness of 20.3 GPa was observed for the film prepared with high DC and high pulse voltage

  10. Increase in the energy absorption of pulsed plasma by the formation of tungsten nanostructure

    Science.gov (United States)

    Sato, D.; Ohno, N.; Domon, F.; Kajita, S.; Kikuchi, Y.; Sakuma, I.

    2017-06-01

    The synergistic effects of steady-state and pulsed plasma irradiation to material have been investigated in the device NAGDIS-PG (NAGoya DIvertor Simulator with Plasma Gun). The duration of the pulsed plasma was ~0.25 ms. To investigate the pulsed plasma heat load on the materials, we developed a temperature measurement system using radiation from the sample in a high time resolution. The heat deposited in response to the transient plasma on a tungsten surface was revealed by using this system. When the nanostructures were formed by helium plasma irradiation, the temperature increase on the bulk sample was enhanced. The result suggested that the amount of absorbed energy on the surface was increased by the formation of nanostructures. The possible mechanisms causing the phenomena are discussed with the calculation of a sample temperature in response to the transient heat load.

  11. Investigation of laser plasma instabilities using picosecond laser pulses

    International Nuclear Information System (INIS)

    Kline, J L; Montgomery, D S; Yin, L; Flippo, K A; Shimada, T; Johnson, R P; Rose, H A; Albright, B J; Hardin, R A

    2008-01-01

    A new short-pulse version of the single-hot-spot configuration has been implemented to enhance the performance of experiments to understand Stimulated Raman Scattering. The laser pulse length was reduced from ∼200 to ∼3 ps. The reduced pulse length improves the experiment by minimizing effects such as plasma hydrodynamic evolution and ponderomotive filamentation of the interaction beam. In addition, the shortened laser pulses allow full length 2D particle-in-cell simulations of the experiments. Using the improved single-hot-spot configuration, a series of experiments to investigate kλ D scaling of SRS has been performed. Details of the experimental setup and initial results will be presented

  12. Laser pulse guiding and electron acceleration in the ablative capillary discharge plasma

    International Nuclear Information System (INIS)

    Kameshima, T.; Kotaki, H.; Kando, M.; Daito, I.; Kawase, K.; Fukuda, Y.; Homma, T.; Esirkepov, T. Zh.; Chen, L. M.; Kondo, S.; Bobrova, N. A.; Sasorov, P. V.; Bulanov, S. V.

    2009-01-01

    The results of experiments are presented for the laser electron acceleration in the ablative capillary discharge plasma. The plasma channel is formed by the discharge inside the ablative capillary. The intense short laser pulse is guided over a 4 cm length. The generated relativistic electrons show both the quasimonoenergetic and quasi-Maxwellian energy spectra, depending on laser and plasma parameters. The analysis of the inner walls of the capillaries that underwent several tens of shots shows that the wall deformation and blistering resulted from the discharge and laser pulse effects.

  13. Pulsed nanocrystalline plasma electrolytic boriding as a novel ...

    Indian Academy of Sciences (India)

    WINTEC

    borided CP-Ti, treated by a relatively new method called pulsed plasma electrolytic boriding. The results ... ratio, high stiffness and strength (Donachie 2000; Lutjer- ing and Albrecht ..... both direct current and a.c. techniques. Although the main ...

  14. Surface damage of W exposed to combined stationary D plasma and ELMs-like pulsed plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Y.Z., E-mail: jaja880816@aliyun.com [Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu, Sichuan 610213 (China); Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, W., E-mail: liuw@mail.tsinghua.edu.cn [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Xu, B.; Qu, S.L. [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Morgan, T.W. [FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, 5612AJ Eindhoven (Netherlands)

    2017-04-15

    The surface damage of W under D plasma and ELMs-like transient heat loads was studied by combined stationary and pulsed D plasma. Low-flux transient heat loads will promote blister formation due to the gas expansion inside the blisters. On the contrary, high-flux transient heat loads will mitigate blistering due to the high surface temperature. Therefore, blistering on W surface first increased and then decreased with the increasing transient heat loads. The promotion effect of pulsed plasma on blistering is more obvious on [001] and [110] surfaces than on [111] surface, and the orientation dependence of blisters was mitigated by the transient heat loads. Surface modification induced by transient heat loads only formed on [001] and [110] surfaces, but did not form on [111] surface. The orientation dependence of surface modification was mainly due to the slipping system of dislocations.

  15. Effect of frequency variation on electromagnetic pulse interaction with charges and plasma

    NARCIS (Netherlands)

    Khachatryan, A.G.; van Goor, F.A.; Verschuur, Jeroen W.J.; Boller, Klaus J.

    2005-01-01

    The effect of frequency variation (chirp) in an electromagnetic (EM) pulse on the pulse interaction with a charged particle and plasma is studied. Various types of chirp and pulse envelopes are considered. In vacuum, a charged particle receives a kick in the polarization direction after interaction

  16. Beryllium layer response to ITER-like ELM plasma pulses in QSPA-Be

    Directory of Open Access Journals (Sweden)

    N.S. Klimov

    2017-08-01

    Full Text Available Material migration in ITER is expected to move beryllium (Be eroded from the first wall primarily to the tungsten (W divertor region and to magnetically shadowed areas of the wall itself. This paper is concerned with experimental study of Be layer response to ELM-like plasma pulses using the new QSPA-Be plasma gun (SRC RF TRINITI. The Be layers (1→50µm thick are deposited on special castellated Be and W targets supplied by the ITER Organization using the Thermionic Vacuum Arc technique. Transient deuterium plasma pulses with duration ∼0.5ms were selected to provide absorbed energy densities on the plasma stream axis for a 30° target inclination of 0.2 and 0.5MJm−2, the first well below and the second near the Be melting point. This latter value is close to the prescribed maximum energy density for controlled ELMs on ITER. At 0.2MJm−2 on W, all Be layer thicknesses tested retain their integrity up to the maximum pulse number, except at local defects (flakes, holes and cracks and on tile edges. At 0.5MJm−2 on W, Be layer melting and melt layer agglomeration are the main damage processes, they happen immediately in the first plasma impact. Melt layer movement was observed only near plasma facing edges. No significant melt splashing is observed in spite of high plasma pressure (higher than expected in ITER. Be layer of 10µm thick on Be target has higher resistance to plasma irradiation than 1 and 55µm, and retain their integrity up to the maximum pulse number at 0.2MJm−2. For 1µm and 55µm thick on Be target significant Be layer losses were observed at 0.2MJm−2.

  17. Characterization of Wet Air Plasma Jet Powered by Sinusoidal High Voltage and Nanosecond Pulses for Plasma Agricultural Application

    Science.gov (United States)

    Takashima, Keisuke; Shimada, Keisuke; Konishi, Hideaki; Kaneko, Toshiro

    2015-09-01

    Not only for the plasma sterilization but also for many of plasma life-science applications, atmospheric pressure plasma devices that allowed us to control its state and reactive species production are deserved to resolve the roles of the chemical species. Influence of the hydroxyl radical and ozone on germination of conidia of a strawberry pathogen is presented. Water addition to air plasma jet significantly improves germination suppression performance, while measured reactive oxygen species (ROS) are reduced. Although the results show a negative correlation between ROS and the germination suppression, this infers the importance of chemical composition generated by plasma. For further control of the plasma product, a plasma jet powered by sinusoidal high voltage and nanosecond pulses is developed and characterized with the voltage-charge Lissajous. Control of breakdown phase and discharge power by pulse-imposed phase is presented. This work is supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) Grant Number 15K17480 and Exploratory Research Grant Number 23644199.

  18. Consolidation of W–Ta composites: Hot isostatic pressing and spark and pulse plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Dias, M., E-mail: marta.dias@itn.pt [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Guerreiro, F. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Correia, J.B. [LNEG, Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar, 1649-038 Lisboa (Portugal); Galatanu, A. [National Institute of Materials Physics, Atomistilor 105 bis Bucharest-Magurele, 077125 Ilfov (Romania); Rosiński, M. [Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw (Poland); Monge, M.A.; Munoz, A. [Departamento de Física, Univerdidad Carlos III de Madrid, Avd. de la Universidad 30, 28911 Madrid (Spain); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Carvalho, P.A. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2015-10-15

    Highlights: • Consolidation of W–Ta composites using three techniques: HIP, SPS and PPS. • Comparison of consolidation methods in terms of W–Ta interdiffusion and densification. • Microstructure analysis in terms of oxides formation. - Abstract: Composites consisting of tantalum fiber/powder dispersed in a nanostructured W matrix have been consolidated by spark and pulse plasma sintering as well as by hot isostatic pressing. The microstructural observations revealed that the tungsten–tantalum fiber composites consolidated by hot isostatic pressing and pulse plasma sintering presented a continuous layer of Ta{sub 2}O{sub 5} phase at the W/Ta interfaces, while the samples consolidated by spark plasma sintering evidenced a Ta + Ta{sub 2}O{sub 5} eutectic mixture due to the higher temperature of this consolidation process. Similar results have been obtained for the tungsten–tantalum powder composites. A (W, Ta) solid solution was detected around the prior nanostructured W particles in tungsten–tantalum powder composites consolidated by spark and pulse plasma sintering. Higher densifications were obtained for composites consolidated by hot isostatic pressing and pulse plasma sintering.

  19. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber.

    Science.gov (United States)

    Dechana, A; Thamboon, P; Boonyawan, D

    2014-10-01

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films-analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques-will be discussed.

  20. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    Energy Technology Data Exchange (ETDEWEB)

    Dechana, A. [Program of Physics and General Science, Faculty of Science and Technology, Songkhla Rajabhat University, Songkhla 90000 (Thailand); Thamboon, P. [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Boonyawan, D., E-mail: dheerawan.b@cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-10-15

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al{sub 2}O{sub 3} layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al{sub 2}O{sub 3} films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.

  1. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    Science.gov (United States)

    Dechana, A.; Thamboon, P.; Boonyawan, D.

    2014-10-01

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.

  2. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    International Nuclear Information System (INIS)

    Dechana, A.; Thamboon, P.; Boonyawan, D.

    2014-01-01

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al 2 O 3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al 2 O 3 films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed

  3. The application of high-speed photography and spectrography for investigations of erosive pulsed plasma streams

    International Nuclear Information System (INIS)

    Kiselevskiy, L.I.; Minko, L.Ja.

    The extensive information of pulsed plasma dynamic processes related to formation and interaction of plasma streams with a surrounding medium and obstacles is obtained with the help of high-speed photo and spectrography. The wave structure of pulsed supersonic under-expanded erosive plasma jets is studied. Some physical processes which are due to interactions of laser radiation with the laser-produced erosive plasma and of this plasma with a surrounding medium are investigated. The wide possibilities of frame photography of spectra quantitative spectroscopic investigations of fast-proceeding plasma processes are shown on the basis of joint use of high-speed photographic apparatus (type SFR) and standard spectrographs. The radial distribution of charged-particle concentrations at separate moments of time is obtained from the broadening of spectral lines at the brightness of the continuous spectrum of an erosive plasma jet from a pulsed accelerator

  4. Railguns and plasma accelerators: arc armatures, pulse power sources and US patents

    International Nuclear Information System (INIS)

    Friedrich, O.M. Jr.

    1980-11-01

    Railguns and plasma accelerators have the potential for use in many basic and applied research projects, such as in creating high-pressures for equation-of-state studies and in impact fusion. A brief review of railguns and plasma accelerators with references is presented. Railgun performance is critically dependent on armature operation. Plasma arc railgun armatures are addressed. Pulsed power supplies for multi-stage railguns are considered. This includes brief comments on the compensated pulsed alternator, or compulsator, rotating machinery, and distributed energy sources for railguns. References are given at the end of each section. Appendix A contains a brief review of the US Patents on multi-staging techniques for electromagnetic accelerators, plasma propulsion devices, and electric guns

  5. Railguns and plasma accelerators: arc armatures, pulse power sources and US patents

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, O.M. Jr.

    1980-11-01

    Railguns and plasma accelerators have the potential for use in many basic and applied research projects, such as in creating high-pressures for equation-of-state studies and in impact fusion. A brief review of railguns and plasma accelerators with references is presented. Railgun performance is critically dependent on armature operation. Plasma arc railgun armatures are addressed. Pulsed power supplies for multi-stage railguns are considered. This includes brief comments on the compensated pulsed alternator, or compulsator, rotating machinery, and distributed energy sources for railguns. References are given at the end of each section. Appendix A contains a brief review of the US Patents on multi-staging techniques for electromagnetic accelerators, plasma propulsion devices, and electric guns.

  6. Web Based System Architecture for Long Pulse Remote Experimentation

    Energy Technology Data Exchange (ETDEWEB)

    De Las Heras, E.; Lastra, D. [INDRA Sistemas, S.A., Unidad de Sistemas de Control, Madrid (Spain); Vega, J.; Castro, R. [Association Euratom CIEMAT for Fusion, Madrid (Spain); Ruiz, M.; Barrera, E. [Universidad Politecnica de Madrid (Spain)

    2009-07-01

    INDRA is the first Information Technology company in Spain and it presents here, through a series of transparencies, its own approach for the remote experimentation architecture for long pulses (REAL). All the architecture is based on Java-2 platform standards and REAL is a totally open architecture. By itself REAL offers significant advantages: -) access authentication and authorization under multiple security implementations, -) local or remote network access: LAN, WAN, VPN..., -) on-line access to acquisition systems for monitoring and configuration, -) scalability, flexibility, robustness, platform independence,.... The BeansNet implementation of REAL gives additional good things such as: -) easy implementation, -) graphical tool for service composition and configuration, -) availability and hot-swap (no need of stopping or restarting services after update or remodeling, and -) INDRA support. The implementation of BeansNet at the TJ-2 stellarator at Ciemat is presented. This document is made of the presentation transparencies. (A.C.)

  7. Physics of Neutralization of Intense Charged Particle Beam Pulses by a Background Plasma

    International Nuclear Information System (INIS)

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.A.; Startsev, E.A.; Sefkow, A.B; Friedman, A.F.; Lee, E.P.

    2009-01-01

    Neutralization and focusing of intense charged particle beam pulses by a background plasma forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self-magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating

  8. Propagation of intense laser pulses in an underdense plasma

    International Nuclear Information System (INIS)

    Monot, P.; Auguste, T.; Gibbon, P.; Jakober, F.; Mainfray, G.

    1994-01-01

    Experiments carried out with a laser beam focused into a vacuum chamber onto a 3-mm long, pulsed hydrogen jet, at powers close to the critical power required for relativistic self focusing, have shown that an underdense plasma is able to significantly reduce the divergence of an intense laser pulse. The propagation mode is in good agreement with theoretical predictions of relativistic self focusing. 2 figs., 8 refs

  9. Pulsed Corona Plasma Technology for Treating VOC Emissions from Pulp Mills

    International Nuclear Information System (INIS)

    Fridman, Alexander A.; Gutsol, Alexander; Kennedy, Lawrence A.; Saveliev, Alexei V.; Korobtsev, Sergey V.; Shiryaevsky, Valery L.; Medvedev, Dmitry

    2004-01-01

    Under the DOE Office of Industrial Technologies Forest Products program various plasma technologies were evaluated under project FWP 49885 ''Experimental Assessment of Low-Temperature Plasma Technologies for Treating Volatile Organic Compound Emissions from Pulp Mills and Wood Products Plants''. The heterogeneous pulsed corona discharge was chosen as the best non-equilibrium plasma technology for control of the vent emissions from HVLC Brownstock Washers. The technology for removal of Volatile Organic Compounds (VOCs) from gas emissions with conditions typical of the exhausts of the paper industry by means of pulsed corona plasma techniques presented in this work. For the compounds of interest in this study (methanol, acetone, dimethyl sulfide and ? -pinene), high removal efficiencies were obtained with power levels competitive with the present technologies for the VOCs removal. Laboratory experiments were made using installation with the average power up to 20 W. Pilot plant prepared for on-site test has average plasma power up to 6.4 kW. The model of the Pilot Plant operation is presented

  10. Remote automatic control scheme for plasma arc cutting of contaminated waste

    International Nuclear Information System (INIS)

    Dudar, A.M.; Ward, C.R.; Kriikku, E.M.

    1993-01-01

    Plasma arc cutting is a popular technique used for size reduction of radioactively contaminated metallic waste such as glove boxes, vessels, and ducts. It is a very aggressive process and is capable of cutting metal objects up to 3 in. thick. The crucial control criteria in plasma cutting is maintaining a open-quotes stand-offclose quotes distance between the plasma torch tip and the material being cut. Manual plasma cutting techniques in radioactive environments require the operator to wear a plastic suit covered by a metallic suit. This is very cumbersome, time-consuming, and also generates additional waste (plastic and metallic suits). Teleoperated remote cutting is preferable to manual cutting, but our experience has shown that remote control of the stand-off distance is particularly difficult because of the brightness of the plasma arc and inadequate viewing angles. Also, the heat generated by the torch causes the sheet metal to deform and warp during plasma cutting, creating a dynamically changing metal surface. The aforementioned factors make it extremely difficult, if not impossible, to perform plasma cuts of waste with a variety of shapes and sizes in a teleoperated fashion with an operator in the loop. Automating the process is clearly desirable

  11. Surface modifications on toughened, fine-grained, recrystallized tungsten with repetitive ELM-like pulsed plasma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Y., E-mail: ykikuchi@eng.u-hyogo.ac.jp [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, 671-2280 Hyogo (Japan); Sakuma, I.; Kitagawa, Y.; Asai, Y.; Onishi, K.; Fukumoto, N.; Nagata, M. [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, 671-2280 Hyogo (Japan); Ueda, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kurishita, H. [Institute for Materials Research, Tohoku University, Ibaraki 311-1313 (Japan)

    2015-08-15

    Surface modifications of toughened, fine-grained, recrystallized tungsten (TFGR W) materials with 1.1 wt.% TiC and 3.3 wt.% TaC dispersoids due to repetitive ELM-like pulsed (∼0.15 ms) helium plasma irradiation have been investigated by using a magnetized coaxial plasma gun. No surface cracking at the center part of the TFGR W samples exposed to 20 plasma pulses of ∼0.3 MJ m{sup −2} was observed. The suppression of surface crack formation due to the increase of the grain boundary strength by addition of TiC and TaC dispersoids was confirmed in comparison with a pure W material. On the other hand, surface cracks and small pits appeared at the edge part of the TFGR W sample after the pulsed plasma irradiation. Erosion of the TiC and TaC dispersoids due to the pulsed plasma irradiation could cause the small pits on the surface, resulting in the surface crack formation.

  12. Surface modifications on toughened, fine-grained, recrystallized tungsten with repetitive ELM-like pulsed plasma irradiation

    Science.gov (United States)

    Kikuchi, Y.; Sakuma, I.; Kitagawa, Y.; Asai, Y.; Onishi, K.; Fukumoto, N.; Nagata, M.; Ueda, Y.; Kurishita, H.

    2015-08-01

    Surface modifications of toughened, fine-grained, recrystallized tungsten (TFGR W) materials with 1.1 wt.% TiC and 3.3 wt.% TaC dispersoids due to repetitive ELM-like pulsed (∼0.15 ms) helium plasma irradiation have been investigated by using a magnetized coaxial plasma gun. No surface cracking at the center part of the TFGR W samples exposed to 20 plasma pulses of ∼0.3 MJ m-2 was observed. The suppression of surface crack formation due to the increase of the grain boundary strength by addition of TiC and TaC dispersoids was confirmed in comparison with a pure W material. On the other hand, surface cracks and small pits appeared at the edge part of the TFGR W sample after the pulsed plasma irradiation. Erosion of the TiC and TaC dispersoids due to the pulsed plasma irradiation could cause the small pits on the surface, resulting in the surface crack formation.

  13. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    Energy Technology Data Exchange (ETDEWEB)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-03-15

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  14. Remote system for counting of nuclear pulses; Sistema remoto de conteo de pulsos nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Nieves V, J.A.; Garcia H, J.M.; Aguilar B, M.A. [Instituto Nacional de Investigaciones Nucleares, Ingenieria Electronica, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    In this work, it is describe technically the remote system for counting of nuclear pulses, an integral system of the project radiological monitoring in a petroleum distillation tower. The system acquires the counting of incident nuclear particles in a nuclear detector which process this information and send it in serial form, using the RS-485 toward a remote receiver, which can be a Personal computer or any other device capable to interpret the communication protocol. (Author)

  15. On the structure of pulsed plasma jets

    Science.gov (United States)

    Cavolowsky, John Arthur

    A pulsed plasma jet is a turbulent, inhomogeneous fluid mechanical discharge capable of initiating and inhancing combustion. Having shown the ability to ignite lean fuel mixtures, is now offers the potential for real-time control of combustion processes. The fluid mechanical and chemical properties of such jets are explored. The fluid mechanical structure of the jet was examined using two optical diagnostic techniques. Self-light streak photography provided information on the motion of luminous gas particles in its core. The turbulent, thermal evolution of the jet was explored using high speed laser schlieren cinematography. By examine plasma jet generators with both opaque and transparent plasma cavities, detailed information on plasma formation and jet structure, beginning with the electric arc discharge in the cavity, was obtained. Molecular beam mass spectroscopy was used to determine temperature and species concentration in the jet. Both noncombustible and combustible jets were studied. Species measurements in combustible jets revealed significant concentrations of radicals and products of complete as well as incomplete combustion.

  16. X-ray spectroscopic diagnostics of plasma produced by femtosecond laser pulses at interaction with cluster target

    International Nuclear Information System (INIS)

    Skobelev, I.Yu.; Faenov, A.Ya.; Magunov, A.I.

    2002-01-01

    By means of X-ray spectroscopy one determined parameters of plasma produced at interaction of supershort laser pulses with cluster targets. One investigated into the effect of both initial properties of a cluster target and properties of a laser pulse on plasma characteristics. To diagnose plasma one applied a model of production of emitting spectra covering a whole number of free parameters. The conducted experimental investigations show that the investigated model of cluster heating by supershort pulses is the actual physical model, while the applied fitting parameters have a meaning of average values of plasma parameters [ru

  17. The Feasibility and Validity of a Remote Pulse Oximetry System for Pulmonary Rehabilitation: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Jonathan Tang

    2012-01-01

    Full Text Available Pulmonary rehabilitation is an effective treatment for people with chronic obstructive pulmonary disease. However, access to these services is limited especially in rural and remote areas. Telerehabilitation has the potential to deliver pulmonary rehabilitation programs to these communities. The aim of this study was threefold: to establish the technical feasibility of transmitting real-time pulse oximetry data, determine the validity of remote measurements compared to conventional face-to-face measures, and evaluate the participants’ perception of the usability of the technology. Thirty-seven healthy individuals participated in a single remote pulmonary rehabilitation exercise session, conducted using the eHAB telerehabilitation system. Validity was assessed by comparing the participant's oxygen saturation and heart rate with the data set received at the therapist’s remote location. There was an 80% exact agreement between participant and therapist data sets. The mean absolute difference and Bland and Altman’s limits of agreement fell within the minimum clinically important difference for both oxygen saturation and heart rate values. Participants found the system easy to use and felt confident that they would be able to use it at home. Remote measurement of pulse oximetry data for a pulmonary rehabilitation exercise session was feasible and valid when compared to conventional face-to-face methods.

  18. Remote handling needs of the Princeton Plasma Physics Laboratory

    International Nuclear Information System (INIS)

    Smiltnieks, V.

    1982-07-01

    This report is the result of a Task Force study commissioned by the Canadian Fusion Fuels Technology Project (CFFTP) to investigate the remote handling requirements at the Princeton Plasma Physics Laboratory (PPPL) and identify specific areas where CFFTP could offer a contractual or collaborative participation, drawing on the Canadian industrial expertise in remote handling technology. The Task Force reviewed four areas related to remote handling requirements; the TFTR facility as a whole, the service equipment required for remote maintenance, the more complex in-vessel components, and the tritium systems. Remote maintenance requirements both inside the vacuum vessel and around the periphery of the machine were identified as the principal areas where Canadian resources could effectively provide an input, initially in requirement definition, concept evaluation and feasibility design, and subsequently in detailed design and manufacture. Support requirements were identified in such areas as the mock-up facility and a variety of planning studies relating to reliability, availability, and staff training. Specific tasks are described which provide an important data base to the facility's remote handling requirements. Canadian involvement in the areas is suggested where expertise exists and support for the remote handling work is warranted. Reliability, maintenance operations, inspection strategy and decommissioning are suggested for study. Several specific components are singled out as needing development

  19. Agricultural and Food Processing Applications of Pulsed Power and Plasma Technologies

    Science.gov (United States)

    Takaki, Koichi

    Agricultural and food processing applications of pulsed power and plasma technologies are described in this paper. Repetitively operated compact pulsed power generators with a moderate peak power are developed for the agricultural and the food processing applications. These applications are mainly based on biological effects and can be categorized as germination control of plants such as Basidiomycota and arabidopsis inactivation of bacteria in soil and liquid medium of hydroponics; extraction of juice from fruits and vegetables; decontamination of air and liquid, etc. Types of pulsed power that have biological effects are caused with gas discharges, water discharges, and electromagnetic fields. The discharges yield free radicals, UV radiation, intense electric field, and shock waves. Biologically based applications of pulsed power and plasma are performed by selecting the type that gives the target objects the adequate result from among these agents or byproducts. For instance, intense electric fields form pores on the cell membrane, which is called electroporation, or influence the nuclei. This paper mainly describes the application of the pulsed power for the germination control of Basidiomycota i.e. mushroom, inactivation of fungi in the soil and the liquid medium in hydroponics, and extraction of polyphenol from skins of grape.

  20. A thermodynamic model of plasma generation by pulsed laser irradiation in vacuum

    CERN Document Server

    Tosto, S

    2003-01-01

    This paper introduces a thermodynamic model to determine composition, temperature and pressure of the plasma cloud induced by pulsed laser irradiation in the case where a relevant thermal sputtering mechanism is operating at the surface of a molten layer. The model concerns in particular pulse lengths of the order of several nanoseconds and completes the results of a previous paper concerning the physics of the evaporation and boiling driven thermal sputtering (Tosto S 2002 J. Phys. D: Appl. Phys. 35); the recession rate and temperature at the molten surface are linked to the pulse fluence and plasma properties in the frame of a unique physical model. This paper shows that the plasma properties depend critically on the non-equilibrium character of the surface evaporation and boiling mechanisms. The extension of the model to the case of continuous laser irradiation is also discussed. Some examples of computer simulation aim to show the results available in the particular case of a metal target; the comparison ...

  1. Structural and tribological properties of carbon steels modified by plasma pulses

    International Nuclear Information System (INIS)

    Sartowska, B.; Walis, L.; Piekoszewski, J.; Senatorski, J.; Stanislawski, J.; Nowicki, L.; Ratajczak, R.; Barlak, M.; Kopcewicz, M.; Kalinowska, J.; Prokert, F.

    2006-01-01

    Carbon steels with different concentration of carbon and heat (Armco-iron, steels 20, 45, 65 and N9) were treated according to the standard procedures: they were irradiated with five intense (about 5 J/cm 2 ), short (μs range) argon or nitrogen plasma pulses generated in a rod plasma injector (RPI) type of plasma generator. Samples were characterized by the following methods: nuclear reaction analysis (NRA) 14 N(d,α) 12 C , scanning electron microscopy (SEM), conversion electron Moessbauer spectroscopy (CEMS), X-ray diffraction analysis (GXRD), and Amsler wear tests. SEM observations shown that the morphology of the pulse treated samples, both argon and nitrogen plasma are identical. It has been found, that nitrogen is much more efficient than argon in ausenitization of carbon steel. The craters and droplets are uniformly distributed over the surface, which is typical of melted and rapidly recrystallized top layers. The thickness of the modified layers is in the range of 1.2-1.6 μm

  2. Plasma erosion opening switch in the double-pulse operation mode of a high-current electron accelerator

    International Nuclear Information System (INIS)

    Isakov, I.F.; Lopatin, V.S.; Remnev, G.E.

    1987-01-01

    This paper reports the results of investigations of the operation of a fast current opening switch, with a 10/sup 13/-10/sup 16/ plasma density produced either by dielectric surface flashover or by explosive emission of graphite. A series of two pulses was applied to two diodes in parallel. The first pulse produced plasma in the first diode which closed that diode gap by the arrival time of the second pulse. The first, shorted, diode then acted as an erosion switch for the second pulse. A factor of 2.5-3 power multiplication was obtained under optimum conditions. The opening-switch resistance during the magnetic insulation phase, neglecting the electron losses between the switch and the generating diode, exceeded 100 Ω. The duration of the rapid opening phase was less than 5 ns under optimum conditions. This method of plasma production does not require external plasma sources, and permits a wide variation of plasma density, which in turn allows high inductor currents and stored energies

  3. Nonlinear interaction of powerful short electromagnetic pulses with an electron plasma

    International Nuclear Information System (INIS)

    Rao, N.N.; Yu, M.Y.; Shukla, P.K.

    1990-01-01

    The nonlinear interaction of powerful short electromagnetic pulses with a plasma consisting of two groups of electrons and immobile ions has been studied. It is shown that the interaction is governed by a nonlinear equation for the electromagnetic wave envelope and a driven nonlinear equation for the low-frequency electron fluctuations. The driver for the latter depends explicitly on the spatio-temporal evolution of the electromagnetic wave flux. It is found that, depending on the cold-to-hot electron density ratio, the localized pulse can propagate with sub- as well as supersonic velocities accompanied by compressional or rarefactional density perturbations. The conditions of existence for the different types of solitary pulses are obtained. The present investigation may be relevant to the study of wave-plasma interaction devices such as inertial fusion confinement as well as to ionospheric modification experiments. (author)

  4. Treatment of Dye Wastewater by Using a Hybrid Gas/Liquid Pulsed Discharge Plasma Reactor

    International Nuclear Information System (INIS)

    Lu Na; Li Jie; Wu Yan; Masayuki, Sato

    2012-01-01

    A hybrid gas/liquid pulsed discharge plasma reactor using a porous ceramic tube is proposed for dye wastewater treatment. High voltage pulsed discharge plasma was generated in the gas phase and simultaneously the plasma channel was permeated through the tiny holes of the ceramic tube into the water phase accompanied by gas bubbles. The porous ceramic tube not only separated the gas phase and liquid phase but also offered an effective plasma spreading channel. The effects of the peak pulse voltage, additive gas varieties, gas bubbling rate, solution conductivity and TiO 2 addition were investigated. The results showed that this reactor was effective for dye wastewater treatment. The decoloration efficiency of Acid Orange II was enhanced with an increase in the power supplied. Under the studied conditions, 97% of Acid Orange II in aqueous solution was effectively decolored with additive oxygen gas, which was 51% higher than that with argon gas, and the increasing O 2 bubbling rate also benefited the decoloration of dye wastewater. Water conductivity had a small effect on the level of decoloration. Catalysis of TiO 2 could be induced by the pulsed discharge plasma and addition of TiO 2 aided the decoloration of Acid Orange II.

  5. An Experimental Study of a Pulsed Electromagnetic Plasma Accelerator

    Science.gov (United States)

    Thio, Y. C. Francis; Eskridge, Richard; Lee, Mike; Smith, James; Martin, Adam; Markusic, Tom E.; Cassibry, Jason T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) pulsed electromagnetic plasma accelerator (PEPA-0). Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  6. Study of novel plasma devices generated by high power lasers coupled with a micro-pulse power technology

    International Nuclear Information System (INIS)

    Nishida, A; Chen, Z L; Jin, Z; Kondo, K; Nakagawa, M; Kodama, R; Arima, H; Yoneda, H

    2008-01-01

    The authors have proposed introducing a micro pulse power technology in high power laser plasma experiments to boost up the return current, resulting in efficiently guiding of energetic electrons. High current pulse power generators with a pulse laser trigger system generate high-density plasma that is well conductor. To efficiently guiding by using a micro pulse power, we estimated parameter of a micro pulse power system that is voltage of rise time, current, charging voltage and capacitance

  7. Fiscal 1999 regional consortium R and D project. Report of R and D results on regional consortium energy (R and D of hybrid pulse plasma coating (HPPC) system - 2nd year); 1999 nendo hybrid gata pulse plasma coating (HPPC) system no kenkyu kaihatsu seika hokokusho. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    A surface reforming system was developed which enables DLC or ceramic films to be uniformly and adhesively coated on the surfaces of objects such as metallic dies and tools of complicated shape, which used to be impossible by a conventional dry coating. This paper describes the fiscal 1999 results. The technologies consist of pulse introduction of gaseous materials, pulse generation of plasma, application of negative high-voltage pulse, the HPPC (hybrid pulse plasma coating) system of advanced hybrid control, etc. Technologies were developed for 1 Hz pulse on/off introduction of methane and toluene gas, with the film forming experiment carried out. The density of Ar plasma formed by RF was measured by a Langmuir probe method. High densities of plasma were successfully achieved by a magnetic field. In the experiment of applying a negative pulse voltage to a model metallic die, it was possible to apply up to 14 kV pulse voltage. Elucidated was a plasma chemical phenomenon at the time of pulse gas introduction and pulse plasma formation, using a quadrupole mass spectrometer capable of measuring ion types in plasma, with the control conditions optimized. (NEDO)

  8. Pure rotational CARS thermometry studies of low-temperature oxidation kinetics in air and ethene-air nanosecond pulse discharge plasmas

    International Nuclear Information System (INIS)

    Zuzeek, Yvette; Choi, Inchul; Uddi, Mruthunjaya; Adamovich, Igor V; Lempert, Walter R

    2010-01-01

    Pure rotational CARS thermometry is used to study low-temperature plasma assisted fuel oxidation kinetics in a repetitive nanosecond pulse discharge in ethene-air at stoichiometric and fuel lean conditions at 40 Torr pressure. Air and fuel-air mixtures are excited by a burst of high-voltage nanosecond pulses (peak voltage, 20 kV; pulse duration, ∼ 25 ns) at a 40 kHz pulse repetition rate and a burst repetition rate of 10 Hz. The number of pulses in the burst is varied from a few pulses to a few hundred pulses. The results are compared with the previously developed hydrocarbon-air plasma chemistry model, modified to incorporate non-empirical scaling of the nanosecond discharge pulse energy coupled to the plasma with number density, as well as one-dimensional conduction heat transfer. Experimental time-resolved temperature, determined as a function of the number of pulses in the burst, is found to agree well with the model predictions. The results demonstrate that the heating rate in fuel-air plasmas is much faster compared with air plasmas, primarily due to energy release in exothermic reactions of fuel with O atoms generated by the plasma. It is found that the initial heating rate in fuel-air plasmas is controlled by the rate of radical (primarily O atoms) generation and is nearly independent of the equivalence ratio. At long burst durations, the heating rate in lean fuel air-mixtures is significantly reduced when all fuel is oxidized.

  9. Fokker-Planck simulations of interactions of femtosecond laser pulses with dense plasmas

    International Nuclear Information System (INIS)

    Drska, L.; Limpouch, J.; Liska, R.

    1993-01-01

    The interaction of femtosecond laser pulses with fully ionized solid-state density plasmas in the regime of the normal skin effect was investigated by means of numerical simulation. For short wavelength lasers and 120 fs FWHM laser pulses the regime of normal skin effect is shown to hold for peak intensities up to 10 17 W/cm 2 . Basic characteristics of the interaction are revealed and certain departures of the electron distribution function, of the plasma dielectric constant and of laser absorption from simplistic models are pointed out. (author) 1 tab., 4 figs., 14 refs

  10. High Efficiency, 100 mJ per pulse, Nd:YAG Oscillator Optimized for Space-Based Earth and Planetary Remote Sensing

    Science.gov (United States)

    Coyle, D. Barry; Stysley, Paul R.; Poulios, Demetrios; Fredrickson, Robert M.; Kay, Richard B.; Cory, Kenneth C.

    2014-01-01

    We report on a newly solid state laser transmitter, designed and packaged for Earth and planetary space-based remote sensing applications for high efficiency, low part count, high pulse energy scalability/stability, and long life. Finally, we have completed a long term operational test which surpassed 2 Billion pulses with no measured decay in pulse energy.

  11. a New Approach for Accuracy Improvement of Pulsed LIDAR Remote Sensing Data

    Science.gov (United States)

    Zhou, G.; Huang, W.; Zhou, X.; He, C.; Li, X.; Huang, Y.; Zhang, L.

    2018-05-01

    In remote sensing applications, the accuracy of time interval measurement is one of the most important parameters that affect the quality of pulsed lidar data. The traditional time interval measurement technique has the disadvantages of low measurement accuracy, complicated circuit structure and large error. A high-precision time interval data cannot be obtained in these traditional methods. In order to obtain higher quality of remote sensing cloud images based on the time interval measurement, a higher accuracy time interval measurement method is proposed. The method is based on charging the capacitance and sampling the change of capacitor voltage at the same time. Firstly, the approximate model of the capacitance voltage curve in the time of flight of pulse is fitted based on the sampled data. Then, the whole charging time is obtained with the fitting function. In this method, only a high-speed A/D sampler and capacitor are required in a single receiving channel, and the collected data is processed directly in the main control unit. The experimental results show that the proposed method can get error less than 3 ps. Compared with other methods, the proposed method improves the time interval accuracy by at least 20 %.

  12. Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films

    Science.gov (United States)

    Chou, Chia-Man; Lai, Chih-Chang; Chang, Chih-Wei; Wen, Kai-Shin; Hsiao, Vincent K. S.

    2017-07-01

    We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO)-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD) incorporated with radio-frequency (r.f.)-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD)-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC) structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr). High oxygen vapor pressure (150 mTorr) and low r.f. power (10 W) are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.

  13. Atomic oxygen production scaling in a nanosecond-pulsed externally grounded dielectric barrier plasma jet

    Science.gov (United States)

    Sands, Brian; Schmidt, Jacob; Ganguly, Biswa; Scofield, James

    2014-10-01

    Atomic oxygen production is studied in a capillary dielectric barrier plasma jet that is externally grounded and driven with a 20-ns risetime positive unipolar pulsed voltage at pulse repetition rates up to 25 kHz. The power coupled to the discharge can be easily increased by increasing the pulse repetition rate. At a critical turnover frequency, determined by the net energy density coupled to the discharge, the plasma chemistry abruptly changes. This is indicated by increased plasma conductance and a transition in reactive oxygen species production from an ozone-dominated production regime below the turnover frequency to atomic-oxygen-dominated production at higher pulse rates. Here, we characterize atomic oxygen production scaling using spatially- and temporally-resolved two-photon absorption laser-induced-fluorescence (TALIF). Quantitative results are obtained via calibration with xenon using a similar laser excitation and collection system. These results are compared with quantitative ozone and discharge power measurements using a helium gas flow with oxygen admixtures up to 3%.

  14. Frontiers of particle beam and high energy density plasma science using pulse power technology

    International Nuclear Information System (INIS)

    Masugata, Katsumi

    2011-04-01

    The papers presented at the symposium on “Frontiers of Particle Beam and High Energy Density Plasma Science using Pulse Power Technology” held in November 20-21, 2009 at National Institute for Fusion Science are collected. The papers reflect the present status and resent progress in the experiment and theoretical works on high power particle beams and high energy density plasmas produced by pulsed power technology. (author)

  15. Pulsed Electron Source with Grid Plasma Cathode and Longitudinal Magnetic Field for Modification of Material and Product Surfaces

    Science.gov (United States)

    Devyatkov, V. N.; Koval, N. N.

    2018-01-01

    The description and the main characteristics of the pulsed electron source "SOLO" developed on the basis of the plasma cathode with grid stabilization of the emission plasma boundary are presented. The emission plasma is generated by a low-pressure arc discharge, and that allows to form the dense low-energy electron beam with a wide range of independently adjustable parameters of beam current pulses (pulse duration of 20-250 μs, pulse repetition rate of 1-10 s-1, amplitude of beam current pulses of 20-300 A, and energy of beam electrons of 5-25 keV). The special features of generation of emission plasma by constricted low-pressure arc discharge in the grid plasma cathode partially dipped into a non-uniform magnetic field and of formation and transportation of the electron beam in a longitudinal magnetic field are considered. The application area of the electron source and technologies realized with its help are specified.

  16. Opacity and atomic analysis of double pulse laser ablated Li plasma

    Science.gov (United States)

    Sivakumaran, V.; Joshi, H. C.; Kumar, Ajai

    2014-09-01

    Opacity effects for neutral and ionic emission lines of lithium have been investigated by Atomic Data Analysis Structure (ADAS). Line ratios and opacity corrected photon emissivity coefficients are calculated over a wide range of electron temperatures and densities. The experimentally measured temporal evolution of the line profiles of the over dense Li plasma formed in the double pulse laser ablation experiment have been explained using the ADAS analysis and the plasma parameters of the plasma plume under consideration have been estimated. These results could be projected as a diagnostic tool to estimate plasma parameters of an over dense lithium plasma.

  17. Compressing and focusing a short laser pulse by a thin plasma lens

    International Nuclear Information System (INIS)

    Ren, C.; Duda, B. J.; Hemker, R. G.; Mori, W. B.; Katsouleas, T.; Antonsen, T. M.; Mora, P.

    2001-01-01

    We consider the possibility of using a thin plasma slab as an optical element to both focus and compress an intense laser pulse. By thin we mean that the focal length is larger than the lens thickness. We derive analytic formulas for the spot size and pulse length evolution of a short laser pulse propagating through a thin uniform plasma lens. The formulas are compared to simulation results from two types of particle-in-cell code. The simulations give a greater final spot size and a shorter focal length than the analytic formulas. The difference arises from spherical aberrations in the lens which lead to the generation of higher-order vacuum Gaussian modes. The simulations also show that Raman side scattering can develop. A thin lens experiment could provide unequivocal evidence of relativistic self-focusing

  18. Allowable propagation of short pulse laser beam in a plasma channel and electromagnetic solitary waves

    International Nuclear Information System (INIS)

    Zhang, Shan; Hong, Xue-Ren; Wang, Hong-Yu; Xie, Bai-Song

    2011-01-01

    Nonparaxial and nonlinear propagation of a short intense laser beam in a parabolic plasma channel is analyzed by means of the variational method and nonlinear dynamics. The beam propagation properties are classified by five kinds of behaviors. In particularly, the electromagnetic solitary wave for finite pulse laser is found beside the other four propagation cases including beam periodically oscillating with defocussing and focusing amplitude, constant spot size, beam catastrophic focusing. It is also found that the laser pulse can be allowed to propagate in the plasma channel only when a certain relation for laser parameters and plasma channel parameters is satisfied. For the solitary wave, it may provide an effective way to obtain ultra-short laser pulse.

  19. Post-CMP cleaning for metallic contaminant removal by using a remote plasma and UV/ozone

    International Nuclear Information System (INIS)

    Lim, Jong Min; Jeon, Bu Yong; Lee, Chong Mu

    2000-01-01

    For the chemical mechanical polishing (CMP) process to be successful, it is important to establish a good post-CMP cleaning process that will remove not only slurry and particles but also metallic impurities from the polished surface. The common metallic contaminants found after oxide CMP and Cu CMP include Cu, K, and Fe. Scrubbing, a popular method for post-CMP cleaning, is effective in removing particles, but removal of metallic contaminants using this method is not so effective. In this study, the removal of Fe metallic contaminants like Fe, which are commonly found on the wafer surface after CMP processes, was investigated using remote-hydrogen-plasma and UV/O 3 cleaning techniques. Our results show that metal contaminants, including Fe, can be effectively removed by using a hydrogen-plasma or UV/O 3 cleaning technique performed under optimal process conditions. In remote plasma H 2 cleaning, contaminant removal is enhanced with decreasing plasma exposure time and increasing rf-power. The optimal process condition for the removal of the Fe impurities existing on the wafer surface is an rf-power of 100 W. Plasma cleaning for 5 min or less is effective in removing Fe contaminants, but a plasma exposure time of 1 min is more appropriate than 5 min in view of the process time, The surface roughness decreased by 30∼50 % after remote-H 2 -plasma cleaning. On the other hand, the highest efficiency of Fe-impurity removal was achieved for an UV exposure time of 30 s. The removal mechanism for the Fe contaminants in the remote-H 2 -plasma and the UV/O 3 cleaning processes is considered to be the liftoff of Fe atoms when the SiO is removed by evaporation after the chemical or native SiO 2 formed underneath the metal atoms reacts with H + and e - to form SiO

  20. Electron Acceleration and the Propagation of Ultrashort High-Intensity Laser Pulses in Plasmas

    International Nuclear Information System (INIS)

    Wang, Xiaofang; Krishnan, Mohan; Saleh, Ned; Wang, Haiwen; Umstadter, Donald

    2000-01-01

    Reported are interactions of high-intensity laser pulses (λ=810 nm and I≤3x10 18 W /cm 2 ) with plasmas in a new parameter regime, in which the pulse duration (τ=29 fs ) corresponds to 0.6-2.6 plasma periods. Relativistic filamentation is observed to cause laser-beam breakup and scattering of the beam out of the vacuum propagation angle. A beam of megaelectronvolt electrons with divergence angle as small as 1 degree sign is generated in the forward direction, which is correlated to the growth of the relativistic filamentation. Raman scattering, however, is found to be much less than previous long-pulse results. (c) 2000 The American Physical Society

  1. Experimental investigation of plasma dynamics in dc and short-pulse magnetron discharges

    International Nuclear Information System (INIS)

    Seo, Sang-Hun; In, Jung-Hwan; Chang, Hong-Young

    2006-01-01

    The spatiotemporal evolution of the electron energy distribution function (EEDF) and of plasma parameters such as the electron density, the electron temperature and the plasma and floating potentials has been investigated using spatially and temporally resolved single Langmuir probe measurements in dc and mid-frequency, short-pulse magnetron discharges with a repetition frequency of 10 kHz and a duty cycle of 10%. In the pulsed discharge of the short duty cycle, a peak electron temperature higher than 10 eV was observed near the cathode fall region during the early phase of the pulse-on, which is about three times higher than the steady-state value of the electron temperature in the dc discharge. The temporal evolution of the measured EEDFs showed the initial efficient electron heating during the early phase of the pulse-on and the subsequent relaxation of electron energy by the inelastic collisions and the diffusive loss. The high-energy electrons generated during the pulse-on phase diffused the downstream region toward the grounded substrate, resulting in a bi-Maxwellian EEDF consisting of the background low-energy electrons and the high-energy electrons. The results of the spatially and temporally resolved probe measurements will be presented and the enhanced efficiency of the electron heating in the short-pulse discharge will be explained on the basis of the global model of a pulsed discharge

  2. Remote network control plasma diagnostic system for Tokamak T-10

    International Nuclear Information System (INIS)

    Troynov, V I; Zimin, A M; Krupin, V A; Notkin, G E; Nurgaliev, M R

    2016-01-01

    The parameters of molecular plasma in closed magnetic trap is studied in this paper. Using the system of molecular diagnostics, which was designed by the authors on the «Tokamak T-10» facility, the radiation of hydrogen isotopes at the plasma edge is investigated. The scheme of optical radiation registration within visible spectrum is described. For visualization, identification and processing of registered molecular spectra a new software is developed using MatLab environment. The software also includes electronic atlas of electronic-vibrational-rotational transitions for molecules of protium and deuterium. To register radiation from limiter cross-section a network control system is designed using the means of the Internet/Intranet. Remote control system diagram and methods are given. The examples of web-interfaces for working out equipment control scenarios and viewing of results are provided. After test run in Intranet, the remote diagnostic system will be accessible through Internet. (paper)

  3. Temperature and Nitric Oxide Generation in a Pulsed Arc Discharge Plasma

    International Nuclear Information System (INIS)

    Namihira, T.; Sakai, S.; Matsuda, M.; Wang, D.; Kiyan, T.; Akiyama, H.; Okamoto, K.; Toda, K.

    2007-01-01

    Nitric oxide (NO) is increasingly being used in medical treatments of high blood pressure, acute respiratory distress syndrome and other illnesses related to the lungs. Currently a NO inhalation system consists of a gas cylinder of N 2 mixed with a high concentration of NO. This arrangement is potentially risky due to the possibility of an accidental leak of NO from the cylinder. The presence of NO in the air leads to the formation of nitric dioxide (NO 2 ), which is toxic to the lungs. Therefore, an on-site generator of NO would be highly desirable for medical doctors to use with patients with lung disease. To develop the NO inhalation system without a gas cylinder, which would include a high concentration of NO, NAMIHIRA et al have recently reported on the production of NO from room air using a pulsed arc discharge. In the present work, the temperature of the pulsed arc discharge plasma used to generate NO was measured to optimize the discharge condition. The results of the temperature measurements showed the temperature of the pulsed arc discharge plasma reached about 10,000 K immediately after discharge initiation and gradually decreased over tens of microseconds. In addition, it was found that NO was formed in a discharge plasma having temperatures higher than 9,000 K and a smaller input energy into the discharge plasma generates NO more efficiently than a larger one

  4. Comparison of experimental target currents with analytical model results for plasma immersion ion implantation

    International Nuclear Information System (INIS)

    En, W.G.; Lieberman, M.A.; Cheung, N.W.

    1995-01-01

    Ion implantation is a standard fabrication technique used in semiconductor manufacturing. Implantation has also been used to modify the surface properties of materials to improve their resistance to wear, corrosion and fatigue. However, conventional ion implanters require complex optics to scan a narrow ion beam across the target to achieve implantation uniformity. An alternative implantation technique, called Plasma Immersion Ion Implantation (PIII), immerses the target into a plasma. The ions are extracted from the plasma directly and accelerated by applying negative high-voltage pulses to the target. An analytical model of the voltage and current characteristics of a remote plasma is presented. The model simulates the ion, electron and secondary electron currents induced before, during and after a high voltage negative pulse is applied to a target immersed in a plasma. The model also includes analytical relations that describe the sheath expansion and collapse due to negative high voltage pulses. The sheath collapse is found to be important for high repetition rate pulses. Good correlation is shown between the model and experiment for a wide variety of voltage pulses and plasma conditions

  5. Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films

    Directory of Open Access Journals (Sweden)

    Chia-Man Chou

    2017-07-01

    Full Text Available We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD incorporated with radio-frequency (r.f.-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr. High oxygen vapor pressure (150 mTorr and low r.f. power (10 W are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.

  6. Emission characteristics of 6.78-MHz radio-frequency glow discharge plasma in a pulsed mode

    Science.gov (United States)

    Zhang, Xinyue; Wagatsuma, Kazuaki

    2017-07-01

    This paper investigated Boltzmann plots for both atomic and ionic emission lines of iron in an argon glow discharge plasma driven by 6.78-MHz radio-frequency (RF) voltage in a pulsed operation, in order to discuss how the excitation/ionization process was affected by the pulsation. For this purpose, a pulse frequency as well as a duty ratio of the pulsed RF voltage was selected as the experimenter parameters. A Grimm-style radiation source was employed at a forward RF power of 70 W and at an argon pressures of 670 Pa. The Boltzmann plot for low-lying excited levels of iron atom was on a linear relationship, which was probably attributed to thermal collisions with ultimate electrons in the negative glow region; in this case, the excitation temperature was obtained in a narrow range of 3300-3400 K, which was hardly affected by the duty ratio as well as the pulse frequency of the pulsed RF glow discharge plasma. This observation suggested that the RF plasma could be supported by a self-stabilized negative glow region, where the kinetic energy distribution of the electrons would be changed to a lesser extent. Additional non-thermal excitation processes, such as a Penning-type collision and a charge-transfer collision, led to deviations (overpopulation) of particular energy levels of iron atom or iron ion from the normal Boltzmann distribution. However, their contributions to the overall excitation/ionization were not altered so greatly, when the pulse frequency or the duty ratio was varied in the pulsed RF glow discharge plasma.

  7. Pulsed, Inductively Generated, Streaming Plasma Ion Source for Heavy Ion Fusion Linacs

    International Nuclear Information System (INIS)

    Steven C. Glidden; Howard D Sanders; John B. Greenly; Daniel L. Dongwoo

    2006-01-01

    This report describes a compact, high current density, pulsed ion source, based on electrodeless, inductively driven gas breakdown, developed to meet the requirements on normalized emittance, current density, uniformity and pulse duration for an ion injector in a heavy-ion fusion driver. The plasma source produces >10 (micro)s pulse of Argon plasma with ion current densities >100 mA/cm2 at 30 cm from the source and with strongly axially directed ion energy of about 80 eV, and sub-eV transverse temperature. The source has good reproducibility and spatial uniformity. Control of the current density during the pulse has been demonstrated with a novel modulator coil method which allows attenuation of the ion current density without significantly affecting the beam quality. This project was carried out in two phases. Phase 1 used source configurations adapted from light ion sources to demonstrate the feasibility of the concept. In Phase 2 the performance of the source was enhanced and quantified in greater detail, a modulator for controlling the pulse shape was developed, and experiments were conducted with the ions accelerated to >40 kV

  8. Emission spectra of photoionized plasmas induced by intense EUV pulses: Experimental and theoretical investigations

    Science.gov (United States)

    Saber, Ismail; Bartnik, Andrzej; Skrzeczanowski, Wojciech; Wachulak, Przemysław; Jarocki, Roman; Fiedorowicz, Henryk

    2017-03-01

    Experimental measurements and numerical modeling of emission spectra in photoionized plasma in the ultraviolet and visible light (UV/Vis) range for noble gases have been investigated. The photoionized plasmas were created using laser-produced plasma (LPP) extreme ultraviolet (EUV) source. The source was based on a gas puff target; irradiated with 10ns/10J/10Hz Nd:YAG laser. The EUV radiation pulses were collected and focused using grazing incidence multifoil EUV collector. The laser pulses were focused on a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Irradiation of gases resulted in a formation of low temperature photoionized plasmas emitting radiation in the UV/Vis spectral range. Atomic photoionized plasmas produced this way consisted of atomic and ionic with various ionization states. The most dominated observed spectral lines originated from radiative transitions in singly charged ions. To assist in a theoretical interpretation of the measured spectra, an atomic code based on Cowan's programs and a collisional-radiative PrismSPECT code have been used to calculate the theoretical spectra. A comparison of the calculated spectral lines with experimentally obtained results is presented. Electron temperature in plasma is estimated using the Boltzmann plot method, by an assumption that a local thermodynamic equilibrium (LTE) condition in the plasma is validated in the first few ionization states. A brief discussion for the measured and computed spectra is given.

  9. Terahertz waves radiated from two noncollinear femtosecond plasma filaments

    Energy Technology Data Exchange (ETDEWEB)

    Du, Hai-Wei; Hoshina, Hiromichi; Otani, Chiko, E-mail: otani@riken.jp [Terahertz Sensing and Imaging Research Team, RIKEN Center for Advanced Photonics, RIKEN, Sendai, Miyagi 980-0845 (Japan); Midorikawa, Katsumi [Attosecond Science Research Team, RIKEN Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan)

    2015-11-23

    Terahertz (THz) waves radiated from two noncollinear femtosecond plasma filaments with a crossing angle of 25° are investigated. The irradiated THz waves from the crossing filaments show a small THz pulse after the main THz pulse, which was not observed in those from single-filament scheme. Since the position of the small THz pulse changes with the time-delay of two filaments, this phenomenon can be explained by a model in which the small THz pulse is from the second filament. The denser plasma in the overlap region of the filaments changes the movement of space charges in the plasma, thereby changing the angular distribution of THz radiation. As a result, this schematic induces some THz wave from the second filament to propagate along the path of the THz wave from the first filament. Thus, this schematic alters the direction of the THz radiation from the filamentation, which can be used in THz wave remote sensing.

  10. Surface modification of polyacrylonitrile co-polymer membranes using pulsed direct current nitrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Dipankar; Neogi, Sudarsan; De, Sirshendu, E-mail: sde@che.iitkgp.ernet.in

    2015-12-31

    Low temperature plasma treatment using pulsed direct current discharge of nitrogen gas was employed to enhance hydrophilicity of the polyacrylonitrile co-polymer membranes. The membranes were characterized in terms of morphology, structure, hydrophilicity, and membrane performance. Properties and functional groups on the surface of polyacrylonitrile co-polymer membranes were investigated by contact angle, scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy. Effects of plasma conditions, namely, pulsed voltage, duty cycle and treatment time on increase in membrane hydrophilicity were studied. Permeability of treated membrane was increased by 47% and it was retained up to 70 days. Surface etching due to plasma treatment was confirmed by weight loss of the treated membranes. Due to surface etching, average pore size increased and rejection of 200 kDa polyethylene glycol decreased to about 70% for the treated membrane. Oxygen and nitrogen functional groups were responsible for surface hydrophilicity. - Highlights: • Surface modification of polyacrylonitrile co-polymer membranes by pulsed direct current nitrogen plasma • Hydrophilic functional groups incorporated on the membrane surface • Significant enhancement of the permeability and wettability of the membranes • Water contact angle increased with storage time and finally stabilized.

  11. Surface modification of polyacrylonitrile co-polymer membranes using pulsed direct current nitrogen plasma

    International Nuclear Information System (INIS)

    Pal, Dipankar; Neogi, Sudarsan; De, Sirshendu

    2015-01-01

    Low temperature plasma treatment using pulsed direct current discharge of nitrogen gas was employed to enhance hydrophilicity of the polyacrylonitrile co-polymer membranes. The membranes were characterized in terms of morphology, structure, hydrophilicity, and membrane performance. Properties and functional groups on the surface of polyacrylonitrile co-polymer membranes were investigated by contact angle, scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy. Effects of plasma conditions, namely, pulsed voltage, duty cycle and treatment time on increase in membrane hydrophilicity were studied. Permeability of treated membrane was increased by 47% and it was retained up to 70 days. Surface etching due to plasma treatment was confirmed by weight loss of the treated membranes. Due to surface etching, average pore size increased and rejection of 200 kDa polyethylene glycol decreased to about 70% for the treated membrane. Oxygen and nitrogen functional groups were responsible for surface hydrophilicity. - Highlights: • Surface modification of polyacrylonitrile co-polymer membranes by pulsed direct current nitrogen plasma • Hydrophilic functional groups incorporated on the membrane surface • Significant enhancement of the permeability and wettability of the membranes • Water contact angle increased with storage time and finally stabilized.

  12. Multi-pulse enhanced laser ion acceleration using plasma half cavity targets

    International Nuclear Information System (INIS)

    Scott, G. G.; Brenner, C. M.; Neely, D.; Green, J. S.; Robinson, A. P. L.; Spindloe, C.; Bagnoud, V.; Brabetz, C.; Zielbauer, B.; Carroll, D. C.; MacLellan, D. A.; McKenna, P.; Roth, M.; Wagner, F.

    2012-01-01

    We report on a plasma half cavity target design for laser driven ion acceleration that enhances the laser to proton energy conversion efficiency and has been found to modify the low energy region of the proton spectrum. The target design utilizes the high fraction of laser energy reflected from an ionized surface and refocuses it such that a double pulse interaction is attained. We report on numerical simulations and experimental results demonstrating that conversion efficiencies can be doubled, compared to planar foil interactions, when the secondary pulse is delivered within picoseconds of the primary pulse.

  13. Multi-pulse enhanced laser ion acceleration using plasma half cavity targets

    Energy Technology Data Exchange (ETDEWEB)

    Scott, G. G.; Brenner, C. M.; Neely, D. [Central Laser Facility, STFC Rutherford Appleton Laboratory, OX11 0QX Didcot (United Kingdom); Department of Physics SUPA, University of Strathclyde, G4 0NG Glasgow (United Kingdom); Green, J. S.; Robinson, A. P. L.; Spindloe, C. [Central Laser Facility, STFC Rutherford Appleton Laboratory, OX11 0QX Didcot (United Kingdom); Bagnoud, V.; Brabetz, C.; Zielbauer, B. [PHELIX Group, Gesellschaft fuer Schwerionenforschung, D-64291 Darmstadt (Germany); Carroll, D. C.; MacLellan, D. A.; McKenna, P. [Department of Physics SUPA, University of Strathclyde, G4 0NG Glasgow (United Kingdom); Roth, M. [Fachbereich Physik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany); Wagner, F. [PHELIX Group, Gesellschaft fuer Schwerionenforschung, D-64291 Darmstadt (Germany); Fachbereich Physik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany)

    2012-07-09

    We report on a plasma half cavity target design for laser driven ion acceleration that enhances the laser to proton energy conversion efficiency and has been found to modify the low energy region of the proton spectrum. The target design utilizes the high fraction of laser energy reflected from an ionized surface and refocuses it such that a double pulse interaction is attained. We report on numerical simulations and experimental results demonstrating that conversion efficiencies can be doubled, compared to planar foil interactions, when the secondary pulse is delivered within picoseconds of the primary pulse.

  14. Dynamics of the spectrum of a self-modulated powerful laser pulse in an underdense plasma

    International Nuclear Information System (INIS)

    Andreev, N.E.; Kirsanov, V.I.; Sakharov, A.S.

    1997-01-01

    The evolution of the spectrum of a powerful laser pulse during its self-modulation in an underdense plasma is studied analytically and numerically. It is shown that, in the early stages of the self-modulation instability, the linear theory gives a qualitatively correct description of the dynamics of the pulse spectrum in most cases. Depending on the parameters of the laser pulse and of the plasma, this spectrum contains either Stocks satellites (downshifted from the fundamental frequency to a value equal to the plasma frequency), or both Stocks and anti-Stocks satellites of the fundamental frequency. When the three-dimensional mechanism for the instability is dominant and the pulse power is close to the critical power for relativistic self-focusing, the numerical calculations show that the intensity of the blue satellite exceeds the intensity of the red one. This specific feature of the spectrum, which does not arise when the instability is one-dimensional, cannot be explained in terms of the linear para-axial theory, and can be used to identify the three-dimensional mechanism for the instability in experiments on the self-modulation of powerful laser pulses. It is shown that the transition to the nonlinear stage of the instability is accompanied by the occurrence of cascades (at frequencies separated from the laser carrier frequency by intervals equal to an integer number of plasma frequencies) in the spectrum of the laser pulse

  15. Silicon dioxide etching process for fabrication of micro-optics employing pulse-modulated electron-beam-excited plasma

    International Nuclear Information System (INIS)

    Takeda, Keigo; Ohta, Takayuki; Ito, Masafumi; Hori, Masaru

    2006-01-01

    Silicon dioxide etching process employing a pulse-modulated electron-beam-excited plasma (EBEP) has been developed for a fabrication process of optical micro-electro-mechanical systems (MEMSs). Nonplanar dielectric materials were etched by using self-bias induced by the electron beam generating the plasma. In order to investigate the effect of pulse modulation on electron beam, plasma diagnostics were carried out in the EBEP employing C 4 F 8 gas diluted with Ar gas by using a Langmuir single probe and time resolved optical emission spectroscopy. It was found that the pulse-modulated EBEP has an excellent potential to reduce the plasma-induced thermal damage on a photoresist film on a substrate to get the uniform etching and the anisotropic SiO 2 etching in comparison with the conventional EBEP. The pulse-modulated EBEP enabled us to get the high etch rate of SiO 2 of 375 nm/min without any additional bias power supply. Furthermore, the microfabrication on the core area of optical fiber was realized. These results indicate that the pulse-modulated EBEP will be a powerful tool for the application to optical MEMS process

  16. Pulsed x-ray generation from a plasma focus device

    International Nuclear Information System (INIS)

    Zambra, M; Bruzzone, H; Sidelnikov, Y; Kies, W; Moreno, C; Sylvester, G; Silva, P; Moreno, J; Soto, L

    2003-01-01

    Dynamical pinches coupled to electrodes like the dense Z-pinch or the dense plasma focus have been intensively studied in the last four decades for their high fusion efficiency and their application potential. Though the expectations of the eighties of the last century, scaling these pinches up to fusion reactors, did not come true, the development of fast and powerful experiments resulted in new insights in pinch physics and paved the way for developing compact dynamical pinches as pulsed neutron and X-radiation sources for many applications. There is a permanent and growing interest in the research community for understanding and determining the generation properties of X-rays, neutrons and charged particles emitted from a high-temperature high-density plasmas, especially in the plasma focus configuration. The Plasma Physics and Plasma Technology Group of the CCHEN has developed the SPEED4 fast-plasma focus device, in collaboration with the Plasma Physics Group of the Dusseldorf University, in order to perform experimental studies such as X-ray and neutron emission, and electron and ion beam characterization (author)

  17. Shaping the electron beams with submicrosecond pulse duration in sources and electron accelerators with plasma emitters

    CERN Document Server

    Gushenets, V I

    2001-01-01

    One studies the techniques in use to shape submicrosecond electron beams and the physical processes associated with extraction of electrons from plasma in plasma emitters. Plasma emitter base sources and accelerators enable to generate pulse beams with currents varying from tens of amperes up to 10 sup 3 A, with current densities up to several amperes per a square centimeter, with pulse duration constituting hundreds of nanoseconds and with high frequencies of repetition

  18. Spectroscopic measurements of anode plasma with cryogenic pulsed ion sources

    International Nuclear Information System (INIS)

    Yoneda, H.; Urata, T.; Ohbayashi, K.; Kim, Y.; Horioka, K.; Kasuya, K.

    1987-01-01

    In ion beam diodes, electromagnetic wave is coupled to ion beam. Ion is extracted from anode plasma, which is produced early in the power pulse. However, exact mechanism of anode plasma production, expansion and ion extraction process is unknown. In particularly, anode plasma expansion is seemed to be one of the reasons of rapid impedance collapse of the diode, which is serious problem in high power experiments. Some experimental results showed that anode plasma expansion velocity was about 5 times larger than that inferred from simple thermal velocity. Several explanations for these results were proposed; for example, electron collisionarity in anode plasma, fast neutral gas particle, diamagnetism. To solve this question, it is necessary to measure the characteristic of anode plasma with space and time resolution. The authors made spectroscopic measurements to investigate variety of electron temperature, electron density, expansion velocity of anode plasma with various ion sources

  19. A Concept for Directly Coupled Pulsed Electromagnetic Acceleration of Plasmas

    Science.gov (United States)

    Thio, Y.C. Francis; Cassibry, Jason T.; Eskridge, Richard; Smith, James; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Plasma jets with high momentum flux density are required for a variety of applications in propulsion research. Methods of producing these plasma jets are being investigated at NASA Marshall Space Flight Center. The experimental goal in the immediate future is to develop plasma accelerators which are capable of producing plasma jets with momentum flux density represented by velocities up to 200 km/s and ion density up to 10(exp 24) per cu m, with sufficient precision and reproducibility in their properties, and with sufficiently high efficiency. The jets must be sufficiently focused to allow them to be transported over several meters. A plasma accelerator concept is presented that might be able to meet these requirements. It is a self-switching, shaped coaxial pulsed plasma thruster, with focusing of the plasma flow by shaping muzzle current distribution as in plasma focus devices, and by mechanical tapering of the gun walls. Some 2-D MHD modeling in support of the conceptual design will be presented.

  20. Nonlinear Theory of Nonparaxial Laser Pulse Propagation in Plasma Channels

    International Nuclear Information System (INIS)

    Esarey, E.; Schroeder, C. B.; Shadwick, B. A.; Wurtele, J. S.; Leemans, W. P.

    2000-01-01

    Nonparaxial propagation of ultrashort, high-power laser pulses in plasma channels is examined. In the adiabatic limit, pulse energy conservation, nonlinear group velocity, damped betatron oscillations, self-steepening, self-phase modulation, and shock formation are analyzed. In the nonadiabatic limit, the coupling of forward Raman scattering (FRS) and the self-modulation instability (SMI) is analyzed and growth rates are derived, including regimes of reduced growth. The SMI is found to dominate FRS in most regimes of interest. (c) 2000 The American Physical Society

  1. The influence of plasma density decreasement by pre-pulse on the laser wakefield acceleration

    Directory of Open Access Journals (Sweden)

    Ke-Gong Dong

    2011-12-01

    Full Text Available In the laser wakefield acceleration, the generation of electron beam is very sensitive to the plasma density. Not only the laser-wakefield interaction, but also the electron trapping and acceleration would be effected by the plasma density. However, the plasma density could be changed in the experiment by different reasons, which will result in the mismatch of parameters arranged initially. Forward Raman scattering spectrum demonstrated that the interaction density was decreased obviously in the experiment, which was verified by the pre-pulse conditions and two-dimensional particle-in-cell simulations. It was demonstrated that the plasma density was very important on the self-evolutions and energy coupling of laser pulse and wakefield, and eventually the energy spectrum of electron beam.

  2. Remote Metrology, Mapping, and Motion Sensing of Plasma Facing Components Using FM Coherent Laser Radar

    International Nuclear Information System (INIS)

    Menon, M.M.; Barry, R.E.; Slotwinsky, A.; Kugel, H.W.; Skinner, C.H.

    2000-01-01

    Metrology inside a D/T burning fusion reactor must necessarily be conducted remotely since the in-vessel environment would be highly radioactive due to neutron activation of the torus walls. A technique based on frequency modulated coherent laser radar (FM CLR) for such remote metrology is described. Since the FM CLR relies on frequency shift to measure distances, the results are largely insensitive to surface reflectance characteristics. Results of measurements in TFTR and NSTX fusion devices using a prototype FM CLR unit, capable of remotely measuring distances (range) up to 22 m with better than 0.1-mm precision, are provided. These results illustrate that the FM CLR can be used for precision remote metrology as well as viewing. It is also shown that by conducting Doppler corrected range measurements using the CLR, the motion of objects can be tracked. Thus, the FM CLR has the potential to remotely measure the motion of plasma facing components (PFCs) during plasma disruptions

  3. Wake-Field Wave Resonant Excitation in Magnetized Plasmas by Electromagnetic Pulse

    International Nuclear Information System (INIS)

    Milant'ev, V.P.; Turikov, V.A.

    2006-01-01

    In this paper the space charge wave excitation process at electromagnetic pulse propagation along external magnetic field in vicinity of electron cyclotron resonance. In hydrodynamic approach it is obtained an equation for plasma density under ponderomotive force action. With help of this equation we investigated a wake-field wave amplitude dependence from resonance detuning. The numerical simulation using a PIC method electromagnetic pulse propagation process in the resonant conditions was done

  4. TELEMATICS APPLICATIONS REMOT: Description of the intended plasma physics demonstrator

    NARCIS (Netherlands)

    Kemmerling, G.; van der Meer, E.; Ephraïm, M.; Balke, C.; Lourens, W.; Korten, M.

    2012-01-01

    This document presents the intended plasma physics demonstator in the REMOT Project. Due to the complexity of the system the demonstrator should be kept as simple as possible without sacrificing flexibility. The demonstrator should be made in such a way that it can easily be modified and expanded.

  5. Interaction of high power ultrashort laser pulses with plasmas

    International Nuclear Information System (INIS)

    Geissler, M.

    2000-12-01

    The invention of short laser-pulses has opened a vast application range from testing ultra high-speed semiconductor devices to precision material processing, from triggering and tracing chemical reactions to sophisticated surgical applications in opthalmology and neurosurgery. In physical science, ultrashort light pulses enable researchers to follow ultrafast relaxation processes in the microcosm on time scale never before accessible and study light-matter-interactions at unprecedented intensity levels. The aim of this thesis is to investigate the interaction of ultrashort high power laser pulses with plasmas for a broad intensity range. First the ionization of atoms with intense laser fields is investigated. For sufficient strong and low frequent laser pulses, electrons can be removed from the core by a tunnel process through a potential barrier formed by the electric field of the laser. This mechanism is described by a well-established theory, but the interaction of few-cycle laser pulses with atoms can lead to regimes where the tunnel theory loses its validity. This regime is investigated and a new description of the ionization is found. Although the ionization plays a major role in many high-energy laser processes, there exist no simple and complete model for the evolution of laser pulses in field-ionizing media. A new propagation equation and the polarization response for field-ionizing media are presented and the results are compared with experimental data. Further the interaction of high power laser radiation with atoms result in nonlinear response of the electrons. The spectrum of this induced nonlinear dipole moment reaches beyond visible wavelengths into the x-ray regime. This effect is known as high harmonic generation (HHG) and is a promising tool for the generation of coherent shot wavelength radiation, but the conversions are still not efficient enough for most practical applications. Phase matching schemes to overcome the limitation are discussed

  6. Plasma characteristics of long-pulse discharges heated by neutral beam injection in the Large Helical Device

    Science.gov (United States)

    Takeiri, Y.; Nakamura, Y.; Noda, N.; Osakabe, M.; Kawahata, K.; Oka, Y.; Kaneko, O.; Tsumori, K.; Sato, M.; Mutoh, T.; Shimozuma, T.; Goto, M.; Ida, K.; Inagaki, S.; Kado, S.; Masuzaki, S.; Morita, S.; Nagayama, Y.; Narihara, K.; Peterson, B. J.; Sakakibara, S.; Sato, K.; Shoji, M.; Tanaka, K.; de Vries, P. C.; Sudo, S.; Ohyabu, N.; Motojima, O.

    2000-02-01

    Long-pulse neutral beam injection heating has been achieved in the large helical device (LHD). Two different confinement states are observed for different averaged densities in the long-pulse plasmas. A quasi-steady-state plasma was sustained for 21 s with an injection power of 0.6 MW, where the central plasma temperature was around 1 keV with a line-averaged electron density of 0.3 × 1019 m-3 . The discharge duration can be so extended as to keep the plasma properties in the short-pulse discharge. The energy confinement time is nearly the same as that of the short-pulse discharge, which is 1.3 times as long as the international stellarator scaling ISS95. At higher densities, a relaxation oscillation phenomenon, observed as if the plasma would breathe, lasted for 20 s with a period of 1-2 s. The phenomenon is characterized with profile expansion and contraction of the electron temperature. The density oscillation is out of phase with the temperature oscillation and is related to the density clamping phenomenon. The observed plasma properties are shown in detail for the `breathing' oscillation phenomenon. Possible mechanisms for the breathing oscillation are also discussed, with a view of the screening effect near the last closed magnetic surface and the power balance between the heating and the radiation powers. The long-pulse heating results indicate unique characteristics of the LHD where no special feedback stabilization is required due to absence of disruption and no need for current drive.

  7. A Sub-microsecond Pulsed Plasma Jet for Endodontic Biofilm Disinfection

    Science.gov (United States)

    Jiang, Chunqi; Schaudinn, Christoph; Jaramillo, David E.; Gundersen, Martin A.; Costerton, J. William

    A pulsed, tapered cylindrical plasma jet, several centimeter long and bovine dentins. Resultant colony-forming unit counts were associated with changes in bacterial cell morphology observed using scanning electron microscopy (SEM) following the treatment and control. Treatment of dentin discs cultivated with E. faecalis monolayer biofilms with the plasma (average power ≈ 1 W) for 5 min resulted in 92.4% kill (P technology is a potential ­alternative or supplement to existing protocols for root canal disinfection.

  8. Secondary plasma formation after single pulse laser ablation underwater and its advantages for laser induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Gavrilović, M R; Cvejić, M; Lazic, V; Jovićević, S

    2016-06-07

    In this work we present studies of spatial and temporal plasma evolution after single pulse ablation of an aluminium target in water. The laser ablation was performed using 20 ns long pulses emitted at 1064 nm. The plasma characterization was performed by fast photography, the Schlieren technique, shadowgraphy and optical emission spectroscopy. The experimental results indicate the existence of two distinct plasma stages: the first stage has a duration of approximately 500 ns from the laser pulse, and is followed by a new plasma growth starting from the crater center. The secondary plasma slowly evolves inside the growing vapor bubble, and its optical emission lasts over several tens of microseconds. Later, the hot glowing particles, trapped inside the vapor cavity, were detected during the whole cycle of the bubble, where the first collapse occurs after 475 μs from the laser pulse. Differences in the plasma properties during the two evolution phases are discussed, with an accent on the optical emission since its detection is of primary importance for LIBS. Here we demonstrate that the LIBS signal quality in single pulse excitation underwater can be greatly enhanced by detecting only the secondary plasma emission, and also by applying long acquisition gates (in the order of 10-100 μs). The presented results are of great importance for LIBS measurements inside a liquid environment, since they prove that a good analytical signal can be obtained by using nanosecond pulses from a single commercial laser source and by employing cost effective, not gated detectors.

  9. Plasma-enhanced chemical vapor deposition of aluminum oxide using ultrashort precursor injection pulses

    NARCIS (Netherlands)

    Dingemans, G.; Sanden, van de M.C.M.; Kessels, W.M.M.

    2012-01-01

    An alternative plasma-enhanced chemical vapor deposition (PECVD) method is developed and applied for the deposition of high-quality aluminum oxide (AlOx) films. The PECVD method combines a continuous plasma with ultrashort precursor injection pulses. We demonstrate that the modulation of the

  10. Pulsed Electromagnetic Acceleration of Plasma: A Review

    Science.gov (United States)

    Thio, Y. C. Francis; Turchi, Peter J.; Markusic, Thomas E.; Cassibry, Jason T.; Sommer, James; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Much have been learned in the acceleration mechanisms involved in accelerating a plasma electromagnetically in the laboratory over the last 40 years since the early review by Winston Bostik of 1963, but the accumulated understanding is very much scattered throughout the literature. This literature extends back at least to the early sixties and includes Rosenbluth's snowplow model, discussions by Ralph Lovberg, Colgate's boundary-layer model of a current sheet, many papers from the activity at Columbia by Robert Gross and his colleagues, and the relevant, 1-D unsteady descriptions developed from the U. of Maryland theta-pinch studies. Recent progress on the understanding of the pulsed penetration of magnetic fields into collisionless or nearly collisionless plasmas are also be reviewed. Somewhat more recently, we have the two-dimensional, unsteady results in the collisional regime associated with so-called wall-instability in large radius pinch discharges and also in coaxial plasma guns (e.g., Plasma Flow Switch). Among other things, for example, we have the phenomenon of a high- density plasma discharge propagating in a cooaxial gun as an apparently straight sheet (vs paraboloid) because mass re-distribution (on a microsecond timescale) compensates for the 1/r- squared variation of magnetic pressure. We will attempt to collate some of this vast material and bring some coherence tc the development of the subject.

  11. Survey of high-voltage pulse technology suitable for large-scale plasma source ion implantation processes

    International Nuclear Information System (INIS)

    Reass, W.A.

    1994-01-01

    Many new plasma processes ideas are finding their way from the research lab to the manufacturing plant floor. These require high voltage (HV) pulse power equipment, which must be optimized for application, system efficiency, and reliability. Although no single HV pulse technology is suitable for all plasma processes, various classes of high voltage pulsers may offer a greater versatility and economy to the manufacturer. Technology developed for existing radar and particle accelerator modulator power systems can be utilized to develop a modern large scale plasma source ion implantation (PSII) system. The HV pulse networks can be broadly defined by two classes of systems, those that generate the voltage directly, and those that use some type of pulse forming network and step-up transformer. This article will examine these HV pulse technologies and discuss their applicability to the specific PSII process. Typical systems that will be reviewed will include high power solid state, hard tube systems such as crossed-field ''hollow beam'' switch tubes and planar tetrodes, and ''soft'' tube systems with crossatrons and thyratrons. Results will be tabulated and suggestions provided for a particular PSII process

  12. Modular Pulsed Plasma Electric Propulsion System for Cubesats

    Science.gov (United States)

    Perez, Andres Dono; Gazulla, Oriol Tintore; Teel, George Lewis; Mai, Nghia; Lukas, Joseph; Haque, Sumadra; Uribe, Eddie; Keidar, Michael; Agasid, Elwood

    2014-01-01

    Current capabilities of CubeSats must be improved in order to perform more ambitious missions. Electric propulsion systems will play a key role due to their large specific impulse. Compared to other propulsion alternatives, their simplicity allows an easier miniaturization and manufacturing of autonomous modules into the nano and pico-satellite platform. Pulsed Plasma Thrusters (PPTs) appear as one of the most promising technologies for the near term. The utilization of solid and non-volatile propellants, their low power requirements and their proven reliability in the large scale make them great candidates for rapid implementation. The main challenges are the integration and miniaturization of all the electronic circuitry into a printed circuit board (PCB) that can satisfy the strict requirements that CubeSats present. NASA Ames and the George Washington University have demonstrated functionality and control of three discrete Micro-Cathode Arc Thrusters (CAT) using a bench top configuration that was compatible with the ARC PhoneSat Bus. This demonstration was successfully conducted in a vaccum chamber at the ARC Environmental Test Laboratory. A new effort will integrate a low power Plasma Processing Unit and two plasma thrusters onto a single printed circuit board that will utilize less than 13 U of Bus volume. The target design will be optimized for the accommodation into the PhoneSatEDISON Demonstration of SmallSatellite Networks (EDSN) bus as it uses the same software interface application, which was demonstrated in the previous task. This paper describes the design, integration and architecture of the proposed propulsion subsystem for a planned Technology Demonstration Mission. In addition, a general review of the Pulsed Plasma technology available for CubeSats is presented in order to assess the necessary challenges to overcome further development.

  13. Improved size distribution control of silicon nanocrystals in a spatially confined remote plasma

    NARCIS (Netherlands)

    Dogan, I.; Westerman, R. H. J.; M. C. M. van de Sanden,

    2015-01-01

    This work demonstrates how to improve the size distribution of silicon nanocrystals (Si-NCs) synthesized in a remote plasma, in which the flow dynamics and the particular chemistry initially resulted in the formation of small (2-10 nm) and large (50-120 nm) Si-NCs. Plasma consists of two regions: an

  14. Emission Characteristics of Laser-Induced Plasma Using Collinear Long and Short Dual-Pulse Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Wang, Zhenzhen; Deguchi, Yoshihiro; Liu, Renwei; Ikutomo, Akihiro; Zhang, Zhenzhen; Chong, Daotong; Yan, Junjie; Liu, Jiping; Shiou, Fang-Jung

    2017-09-01

    Collinear long and short dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) was employed to clarify the emission characteristics from laser-induced plasma. The plasma was sustained and became stable by the long pulse-width laser with the pulse width of 60 μs under free running (FR) conditions as an external energy source. Comparing the measurement results of stainless steel in air using single-pulse LIBS (SP-LIBS) and DP-LIBS, the emission intensity was markedly enhanced using DP-LIBS. The temperature of plasma induced by DP-LIBS was maintained at a higher temperature under different gate delay time and short pulse-width laser power conditions compared with those measured using short SP-LIBS. Moreover, the variation rates of plasma temperatures measured using DP-LIBS were also lower. The superior detection ability was verified by the measurement of aluminum sample in water. The spectra were clearly detected using DP-LIBS, whereas it cannot be identified using SP-LIBS of short and long pulse widths. The effects of gate delay time and short pulse-width laser power were also discussed. These results demonstrate the feasibility and enhanced detection ability of the proposed collinear long and short DP-LIBS method.

  15. Time evolution of plasma potential in pulsed operation of ECRIS

    International Nuclear Information System (INIS)

    Tarvainen, O.; Koivisto, H.; Ropponen, T.; Toivanen, V.; Higurashi, Y.; Nakagawa, T.

    2012-01-01

    The time evolution of plasma potential has been measured with a retarding field analyzer in pulsed operation mode with electron cyclotron resonance ion sources at JYFL and RIKEN. Three different ion sources with microwave frequencies ranging from 6.4 to 18 GHz were employed for the experiments. The plasma potential was observed to increase 10-75 % during the Pre-glow and 10-30 % during the afterglow compared to steady state. The paper is followed by the slides of the presentation. (authors)

  16. Remote plasma-enhanced metalorganic chemical vapor deposition of aluminum oxide thin films

    NARCIS (Netherlands)

    Volintiru, I.; Creatore, M.; Hemmen, van J.L.; Sanden, van de M.C.M.

    2008-01-01

    Aluminum oxide films were deposited using remote plasma-enhanced metalorganic chemical vapor deposition from oxygen/trimethylaluminum mixtures. Initial studies by in situ spectroscopic ellipsometry demonstrated that the aluminum oxide films deposited at temperatures

  17. Laser and Plasma Parameters for Laser Pulse Amplification by Stimulated Brillouin Backscattering in the Strong Coupling Regime

    Science.gov (United States)

    Gangolf, Thomas; Blecher, Marius; Bolanos, Simon; Lancia, Livia; Marques, Jean-Raphael; Cerchez, Mirela; Prasad, Rajendra; Aurand, Bastian; Loiseau, Pascal; Fuchs, Julien; Willi, Oswald

    2017-10-01

    In the ongoing quest for novel techniques to obtain ever higher laser powers, plasma amplification has drawn much attention, benefiting from the fact that a plasma can sustain much higher energy densities than a solid state amplifier. As a plasma process, Stimulated Brillouin Backscattering in the strong coupling regime (sc-SBS) can be used to transfer energy from one laser pulse (pump) to another (seed), by a nonlinear ion oscillation forced by the pump laser. Here, we report on experimental results on amplification by sc-SBS using the ARCTURUS Ti:Sapphire multi-beam laser system at the University of Duesseldorf, Germany. Counter-propagating in a supersonic Hydrogen gas jet target, an ultrashort seed pulse with a pulse duration between 30 and 160 fs and an energy between 1 and 12 mJ was amplified by a high-energy pump pulse (1.7 ps, 700 mJ). For some of the measurements, the gas was pre-ionized with a separate laser pulse (780 fs, 460 mJ). Preliminary analysis shows that the amplification was larger for the longer seed pulses, consistent with theoretical predictions.

  18. Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air

    International Nuclear Information System (INIS)

    Yang Guoqing; Zhang Guanjun; Zhang Wenyuan

    2011-01-01

    Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The electrical parameters including discharging power, peak and density of micro-discharge current were calculated, and the electron energy was estimated. Surface treatment experiments of polytetrafluoroethylene films were conducted for both different applied voltages and different treating durations. Results show that the surface energy of polytetrafluoroethylene film could be improved to 40 mJ/m 2 or more by plasma treatment. Surface roughness measurement and surface X-ray photoelectron spectroscopy analysis indicate that there are chemical etching and implantation of polar oxygen groups in the sample surface treating process, resulting in the improvement of the sample surface energy. Compared with an AC source of 50 Hz, the dielectric barrier discharges generated by a repetitive pulsed source could provide higher peak power, lower mean power, larger micro-discharge current density and higher electron energy. Therefore, with the same applied peak voltage and treating duration, the improvement of polytetrafluoroethylene surface energy using repetitive pulsed plasma is more effective, and the plasma treatment process based on repetitive pulsed dielectric barrier discharges in air is thus feasible and applicable.

  19. Enhanced propagation for relativistic laser pulses in inhomogeneous plasmas using hollow channels.

    Science.gov (United States)

    Fuchs, J; d'Humières, E; Sentoku, Y; Antici, P; Atzeni, S; Bandulet, H; Depierreux, S; Labaune, C; Schiavi, A

    2010-11-26

    The influence of long (several millimeters) and hollow channels, bored in inhomogeneous ionized plasma by using a long pulse laser beam, on the propagation of short, ultraintense laser pulses has been studied. Compared to the case without a channel, propagation in channels significantly improves beam transmission and maintains a beam quality close to propagation in vacuum. In addition, the growth of the forward-Raman instability is strongly reduced. These results are beneficial for the direct scheme of the fast ignitor concept of inertial confinement fusion as we demonstrate, in fast-ignition-relevant conditions, that with such channels laser energy can be carried through increasingly dense plasmas close to the fuel core with minimal losses.

  20. Analytical and Numerical Studies of the Complex Interaction of a Fast Ion Beam Pulse with a Background Plasma

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2003-01-01

    Plasma neutralization of an intense ion beam pulse is of interest for many applications, including plasma lenses, heavy ion fusion, high energy physics, etc. Comprehensive analytical, numerical, and experimental studies are underway to investigate the complex interaction of a fast ion beam with a background plasma. The positively charged ion beam attracts plasma electrons, and as a result the plasma electrons have a tendency to neutralize the beam charge and current. A suite of particle-in-cell codes has been developed to study the propagation of an ion beam pulse through the background plasma. For quasi-steady-state propagation of the ion beam pulse, an analytical theory has been developed using the assumption of long charge bunches and conservation of generalized vorticity. The analytical results agree well with the results of the numerical simulations. The visualization of the data obtained in the numerical simulations shows complex collective phenomena during beam entry into and ex it from the plasma

  1. Pulsed neutron generators based on plasma focus devices of low energy

    International Nuclear Information System (INIS)

    Silva, Patricio; Moreno, Jose; Soto, Leopoldo

    2003-01-01

    The plasma focus is a pulsed neutron source especially suited for applications because it reduces the danger of contamination of conventional isotopic radioactive sources. As first stage of a program to design a repetitive pulsed neutron generator for industrial applications we constructed two very small plasma focus operating at an energy level of the order of a) tens of joules (PF-50J, 160nF capacitor bank, 20-35 kV, 32-100J, ∼150ns first quarter of period) and b) hundred of joules (PF-400J, 880nF, 20-35kV, 176-539J, ∼300ns first quarter of period). In this article we present results related to design and construction of these small plasma foci (PF-50J and PF-400J). Neutron yield vs. deuterium. pressure has been obtained, a maximum emission of the order of 7x10 4 and 10 6 neutrons per shot has been measured in the PF-50J and PF-400J respectively (author)

  2. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Thresholds of surface plasma formation by the interaction of laser pulses with a metal

    Science.gov (United States)

    Borets-Pervak, I. Yu; Vorob'ev, V. S.

    1995-04-01

    An analysis is made of a model of the formation of a surface laser plasma which takes account of the heating and vaporisation of thermally insulated surface microdefects. This model is used in an interpretation of experiments in which such a plasma has been formed by irradiation of a titanium target with microsecond CO2 laser pulses. A comparison with the experimental breakdown intensities is used to calculate the average sizes of microdefects and their concentration: the results are in agreement with the published data. The dependence of the delay time of plasma formation on the total energy in a laser pulse is calculated.

  3. Excitation of hydrogen atom by ultrashort laser pulses in optically dense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Calisti, A. [Aix Marseille Universite, CNRS, PIIM, Marseille (France); Astapenko, V.A. [Moscow Institute of Physics and Technology, Dolgoprudnyi (Russian Federation); Lisitsa, V.S. [Moscow Institute of Physics and Technology, Dolgoprudnyi (Russian Federation); Russian Research Center ' ' Kurchatov Institute' ' , Moscow (Russian Federation); National Research Nuclear University MEPhI, Moscow (Russian Federation)

    2017-10-15

    The features of excitation of a hydrogen atom by ultrashort laser pulses (USP) with a Gaussian envelope in optically dense plasma at a Lyman-beta transition are studied theoretically. The problem is of interest for diagnostics of optically dense media. USP have two doubtless advantages over conventional laser excitation: (a) the USP carrier frequency is shifted to the region of short wavelengths allowing exciting atoms from the ground state and (b) the wide spectrum of USP allows them to penetrate into optically dense media to much longer distances as compared with monochromatic radiation. As actual realistic cases, two examples are considered: hot rarefied plasma (the coronal limit) and dense cold plasma (the Boltzmann equilibrium). Universal expressions for the total probability of excitation of the transition under consideration are obtained in view of absorption of radiation in a medium. As initial data for the spectral form of a line, the results of calculations by methods of molecular dynamics are used. The probability of excitation of an atom is analysed for different values of problem parameters: the pulse duration, the optical thickness of a medium, and the detuning of the pulse carrier frequency from the eigenfrequency of an electron transition. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. On scattering diagnostics with periodically pulsed lasers to follow the continuous evolution of time dependent plasma parameters

    International Nuclear Information System (INIS)

    Hellermann, M. von; Hirsch, K.; Doeble, H.F.

    1977-04-01

    The possibilities to use periodically pulsed lasers for plasma scattering diagnostics are discussed. An experiment with succesful application of a periodically pulsed frequency-doubled Nd:YAG laser is described and results are given. Application of the method to monitor continuously, with millisecond time resolution, parameters of Tokamak type plasmas, is considered. (orig.) [de

  5. Permanent magnet electron cyclotron resonance plasma source with remote window

    International Nuclear Information System (INIS)

    Berry, L.A.; Gorbatkin, S.M.

    1995-01-01

    An electron cyclotron resonance (ECR) plasma has been used in conjunction with a solid metal sputter target for Cu deposition over 200 mm diameters. The goal is to develop a deposition system and process suitable for filling submicron, high-aspect ratio ULSI features. The system uses a permanent magnet for creation of the magnetic field necessary for ECR, and is significantly more compact than systems equipped with electromagnets. A custom launcher design allows remote microwave injection with the microwave entrance window shielded from the copper flux. When microwaves are introduced at an angle with respect to the plasma, high electron densities can be produced with a plasma frequency significantly greater than the electron cyclotron frequency. Copper deposition rates of 1000 A/min have been achieved

  6. Relativistic electron drift in overdense plasma produced by a superintense femtosecond laser pulse

    International Nuclear Information System (INIS)

    Rastunkov, V.S.; Krainov, V.P.

    2004-01-01

    The general peculiarities of electron motion in the skin layer at the irradiation of overdense plasma by a superintense linearly polarized laser pulse of femtosecond duration are considered. The quiver electron energy is assumed to be a relativistic quantity. Relativistic electron drift along the propagation of laser radiation produced by a magnetic part of a laser field remains after the end of the laser pulse, unlike the relativistic drift of a free electron in underdense plasma. As a result, the penetration depth is much larger than the classical skin depth. The conclusion has been made that the drift velocity is a nonrelativistic quantity even at the peak laser intensity of 10 21 W/cm 2 . The time at which an electron penetrates into field-free matter from the skin layer is much less than the pulse duration

  7. Ex-vessel remote maintenance development plans for the Burning Plasma Experiment

    International Nuclear Information System (INIS)

    Burgess, T.W.; Davis, F.C.

    1991-01-01

    Remote maintenance (RM) is fundamental to the basic design requirements of the Burning Plasma Experiment (BPX), and an extensive RM development and demonstration program is planned to meet these requirements. The program first draws from the experience base that exists in the fission community and Europe's Joint European Torus (JET) Project. Successful solutions are applied where possible and, in many cases, improved in order to achieve the performance demanded by a multiyear program that must be capable of efficiently executing RM procedures. Early, concurrent efforts in the design and fabrication of prototype remote handling (RH) equipment, remote tooling, and maintainable machine components will precede an extensive use of mock-up equipment in order to test, develop, and demonstrate the technology. 7 refs,. 5 figs

  8. HIGH ENERGY REPLACEMENT FOR TEFLON PROPELLANT IN PULSED PLASMA THRUSTERS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This program will utilize a well-characterized Pulsed Plasma Thruster (PPT) to test experimental high-energy extinguishable solid propellants (HE), instead of...

  9. Reflection of an electromagnetic pulse from a subcritical waveguide taper and from a supercritical-density plasma in a waveguide

    International Nuclear Information System (INIS)

    Rukhadze, Anri A; Tarakanov, V P

    2006-01-01

    Two related problems are studied by numerical simulations using the KARAT code: the reflection of the TM 01 mode of an electromagnetic pulse from the subcritical taper of the section of a circular waveguide and the reflection of the same pulse from a 'cold' collisionless plasma with a density increasing up to a supercritical value along the waveguide axis. It is shown that in the former case the pulse is totally reflected with an insignificant distortion of its shape, in accordance with the linear theory. In the latter case, the character of reflection depends substantially on the plasma density increase length, the pulse duration, and the wave field amplitude, a significant field deceleration and amplitude growth occurring near the critical point; the pulse absorption in the plasma far exceeds the absorption due to the linear transformation of the incident transverse wave to the longitudinal plasma oscillations. (laser applications and other topics in quantum electronics)

  10. Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation

    International Nuclear Information System (INIS)

    Rohwetter, Ph.; Stelmaszczyk, K.; Woeste, L.; Ackermann, R.; Mejean, G.; Salmon, E.; Kasparian, J.; Yu, J.; Wolf, J.-P.

    2005-01-01

    We demonstrate laser induced ablation and plasma line emission from a metallic target at distances up to 180 m from the laser, using filaments (self-guided propagation structures ∼ 100 μm in diameter and ∼ 5 x 10 13 W/cm 2 in intensity) appearing as femtosecond and terawatt laser pulses propagating in air. The remarkable property of filaments to propagate over a long distance independently of the diffraction limit opens the frontier to long range operation of the laser-induced breakdown spectroscopy technique. We call this special configuration of remote laser-induced breakdown spectroscopy 'remote filament-induced breakdown spectroscopy'. Our results show main features of filament-induced ablation on the surface of a metallic sample and associated plasma emission. Our experimental data allow us to estimate requirements for the detection system needed for kilometer-range remote filament-induced breakdown spectroscopy experiment

  11. Application of mid-infrared pulses for quasi-phase-matching of high-order harmonics in silver plasma.

    Science.gov (United States)

    Ganeev, Rashid A; Husakou, Anton; Suzuki, Masayuki; Kuroda, Hiroto

    2016-02-22

    We demonstrate the quasi-phase-matching of a group of harmonics generated in Ag multi-jet plasma using tunable pulses in the region of 1160 - 1540 nm and their second harmonic emission. The numerical treatment of this effect includes microscopic description of the harmonic generation, propagation of the pump pulse, and the propagation of the generated harmonics. We obtained more than 30-fold growth of harmonics at the conditions of quasi-phase-matching in the region of 35 nm using eight-jet plasma compared with the case of imperforated plasma.

  12. Measurements of plasma termination in ICRF heated long pulse discharges with fast framing cameras in the Large Helical Device

    International Nuclear Information System (INIS)

    Shoji, Mamoru; Kasahara, Hiroshi; Tanaka, Hirohiko

    2015-01-01

    The termination process of long pulse plasma discharges in the Large Helical Device (LHD) have been observed with fast framing cameras, which shows that the reason for the termination of the discharged has been changed with increased plasma heating power, improvements of plasma heating systems and change of the divertor configuration, etc. For long pulse discharges in FYs2010-2012, the main reason triggering the plasma termination was reduction of ICRF heating power with rise of iron ion emission due to electric breakdown in an ICRF antenna. In the experimental campaign in FY2013, the duration time of ICRF heated long pulse plasma discharges has been extended to about 48 minutes with a plasma heating power of ∼1.2 MW and a line-averaged electron density of ∼1.2 × 10"1"9 m"-"3. The termination of the discharges was triggered by release of large amounts of carbon dusts from closed divertor regions, indicating that the control of dust formation in the divertor regions is indispensable for extending the duration time of long pulse discharges. (author)

  13. Deposition of fluorocarbon films by Pulsed Plasma Thruster on the anode side

    International Nuclear Information System (INIS)

    Zhang, Rui; Zhang, Daixian; Zhang, Fan; He, Zhen; Wu, Jianjun

    2013-01-01

    Fluorocarbon thin films were deposited by Pulsed Plasma Thruster at different angles on the anode side of the thruster. Density and velocity of the plasma in the plume of the Pulsed Plasma Thruster were determined using double and triple Langmuir probe apparatus respectively. The deposited films were characterized by X-ray photoelectron spectroscopy (XPS), scanning probe microscope (SPM) and UV–vis spectrometer. Low F/C ratio (0.64–0.86) fluorocarbon films are deposited. The F/C ratio decreases with angle increasing from 0 degree to 30 degree; however it turns to increase with angle increasing from 45 degree to 90 degree. The films deposited at center angles appear rougher compared with that prepared at angles beyond 45 degree. These films basically show having strong absorption properties for wavelength below 600 nm and having enhanced reflective characteristics. Due to the influence of the chemical composition and the surface morphology of the films, the optical properties of these films also show significant angular dependence.

  14. Frequency up-conversion and spectral breaking of a high power microwave pulse propagation in a self-generated plasma

    International Nuclear Information System (INIS)

    Kuo, S.P.; Ren, A.

    1993-01-01

    The main concern of the propagation of high power microwave pulse is the energy loss of the pulse before reaching the destination. The loss is caused by self-generated plasma. There are two processes which are responsible for the energy loss (so called tail erosion). They are collisional damping and cutoff reflection. In very high power region, the cutoff reflection is much more severe than the collisional damping. A frequency up-conversion process may help to avoid the cutoff reflection of powerful electromagnetic pulse propagating in a self-generated plasma. Both chamber experiments and numerical simulation are performed. When the field amplitude only slightly exceeds the breakdown threshold field of the background gas, the result shows that the carrier frequency ω of the pulse shifts upward during the growth of local plasma frequency ωpe 2 . Thus, the self-generated plasma remains underdense to the pulse. However, the spectrum of the pulse starts to break up into two major peaks when the amplitude of the pulse is further increased. The frequency of one of the peaks is lower than the original carrier frequency and that of the other peak is higher than the original carrier frequency. These phenomena are observed both experimentally and numerically. The frequency down shift result is believed to be caused by damping mechanisms. Good agreement between the experimental results and the numerical simulation is obtained

  15. Study of ultra-high gradient wakefield excitation by intense ultrashort laser pulses in plasma

    International Nuclear Information System (INIS)

    Kotaki, Hideyuki

    2002-12-01

    We investigate a mechanism of nonlinear phenomena in laser-plasma interaction, a laser wakefield excited by intense laser pulses, and the possibility of generating an intense bright electron source by an intense laser pulse. We need to understand and further employ some of these phenomena for our purposes. We measure self-focusing, filamentation, and the anomalous blueshift of the laser pulse. The ionization of gas with the self-focusing causes a broad continuous spectrum with blueshift. The normal blueshift depends on the laser intensity and the plasma density. We, however, have found different phenomenon. The laser spectrum shifts to fixed wavelength independent of the laser power and gas pressure above some critical power. We call the phenomenon 'anomalous blueshift'. The results are explained by the formation of filaments. An intense laser pulse can excite a laser wakefield in plasma. The coherent wakefield excited by 2 TW, 50 fs laser pulses in a gas-jet plasma around 10 18 cm -3 is measured with a time-resolved frequency domain interferometer (FDI). The density distribution of the helium gas is measured with a time-resolved Mach-Zehnder interferometer to search for the optimum laser focus position and timing in the gas-jet. The results show an accelerating wakefield excitation of 20 GeV/m with good coherency, which is useful for ultrahigh gradient particle acceleration in a compact system. This is the first time-resolved measurement of laser wakefield excitation in a gas-jet plasma. The experimental results are compared with a Particle-in-Cell (PIC) simulation. The pump-probe interferometer system of FDI and the anomalous blueshift will be modified to the optical injection system as a relativistic electron beam injector. In 1D PIC simulation we obtain the results of high quality intense electron beam acceleration. These results illuminate the possibility of a high energy and a high quality electron beam acceleration. (author)

  16. An Experimental Study of a Low-Jitter Pulsed Electromagnetic Plasma Accelerator

    Science.gov (United States)

    Thio, Y. C. Francis; Lee, Michael; Eskridge, Richard; Smith, James; Martin, Adam; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    An experimental plasma accelerator for a variety of applications under development at the NASA Marshall Space Flight Center is described. The accelerator is a pulsed plasma thruster and has been tested experimentally and plasma jet velocities of approximately 50 kilometers per second have been obtained. The plasma jet structure has been photographed with 10 ns exposure times to reveal a stable and repeatable plasma structure. Data for velocity profile information has been obtained using light pipes embedded in the gun walls to record the plasma transit at various barrel locations. Preliminary spatially resolved spectral data and magnetic field probe data are also presented. A high speed triggering system has been developed and tested as a means of reducing the gun "jitter". This jitter has been characterized and future work for second generation "ultra-low jitter" gun development is identified.

  17. Multi-Pulse Excitation for Underwater Analysis of Copper-Based Alloys Using a Novel Remote Laser-Induced Breakdown Spectroscopy (LIBS) System.

    Science.gov (United States)

    Guirado, Salvador; Fortes, Francisco J; Laserna, J Javier

    2016-04-01

    In this work, the use of multi-pulse excitation has been evaluated as an effective solution to mitigate the preferential ablation of the most volatile elements, namely Sn, Pb, and Zn, observed during laser-induced breakdown spectroscopy (LIBS) analysis of copper-based alloys. The novel remote LIBS prototype used in this experiments featured both single-pulse (SP-LIBS) and multi-pulse excitation (MP-LIBS). The remote instrument is capable of performing chemical analysis of submersed materials up to a depth of 50 m. Laser-induced breakdown spectroscopy analysis was performed at air pressure settings simulating the conditions during a real subsea analysis. A set of five certified bronze standards with variable concentration of Cu, As, Sn, Pb, and Zn were used. In SP-LIBS, signal emission is strongly sensitive to ambient pressure. In this case, fractionation effect was observed. Multi-pulse excitation circumvents the effect of pressure over the quantitative analysis, thus avoiding the fractionation phenomena observed in single pulse LIBS. The use of copper as internal standard minimizes matrix effects and discrepancies due to variation in ablated mass. © The Author(s) 2016.

  18. Synthesis of Nanomaterials by the Pulsed Plasma in Liquid and their Bio-medical Applications

    Science.gov (United States)

    Omurzak, E.; Abdullaeva, Z.; Satyvaldiev, A.; Zhasnakunov, Z.; Kelgenbaeva, Z.; Akai Tegin, R. Adil; Syrgakbek kyzy, D.; Doolotkeldieva, T.; Bobusheva, S.; Mashimo, T.

    2018-01-01

    Pulsed plasma in liquid is a simple, ecologically friendly, cost-efficient method based on electrical discharge between two metal electrodes submerged into a dielectric liquid. We synthesized carbon-encapsulated Fe (Fe@C) magnetic nanoparticles with low cytotoxicity using pulsed plasma in a liquid. Body-centered cubic Fe core nanoparticles showed good crystalline structures with an average size between 20 and 30 nm were encapsulated in onion-like carbon coatings with a thickness of 2-10 nm. Thermal gravimetric analysis showed a high stability of the as-synthesized samples under thermal treatment and oxidation. Cytotoxicity measurements showed higher cancer cell viability than samples synthesized by different methods. Carbon coated ZnO nanorods with about 20 nm thickness and 150 nm length were synthesized by this method using different surfactant materials such as cetyl trimethylammonium bromide (CTAB) and sodium dodecyl sulphate (SDS). Cu and Ag nanoparticles of about 10 nm in size were also synthesized by the pulsed plasma in aquatic solution of 0.2 % gelatine as surfactant material. These nanoparticles showed high antibacterial activity for Erwinia amylovora and Escherichia coli.

  19. Structural characterization of H plasma-doped ZnO single crystals by positron annihilation spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Anwand, Wolfgang; Brauer, Gerhard; Cowan, Thomas E. [Institut fuer Strahlenphysik, Forschungszentrum Dresden-Rossendorf, P.O. Box 510 119, 01314 Dresden (Germany); Grambole, Dieter; Skorupa, Wolfgang [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Dresden-Rossendorf, P.O. Box 510 119, 01314 Dresden (Germany); Cizek, Jakub; Kuriplach, Jan; Prochazka, Ivan [Department of Low Temperature Physics, Charles University, V Holesovickach 2, 18000 Prague (Czech Republic); Egger, Werner; Sperr, Peter [Institut fuer Angewandte Physik und Messtechnik, Fakultaet fuer Luft- und Raumfahrttechnik, Universitaet der Bundeswehr, Heisenbergweg 39, 85579 Neubiberg (Germany)

    2010-11-15

    Nominally undoped, hydrothermally grown ZnO single crystals have been investigated before and after exposure to remote H plasma. Structural characterizations have been made by various positron annihilation spectroscopies (continuous and pulsed slow positron beams, conventional lifetime). The content of bound hydrogen (H-b) before and after the remote H plasma treatment at the polished side of the crystals was determined at depths of 100 and 600 nm, respectively, using nuclear reaction analysis. At a depth of 100 nm, H-b increased from (11.8{+-}2.5) to (48.7{+-}7.6) x 10{sup 19} cm{sup -3} after remote H plasma treatment, whereas at 600 nm no change in H-b was observed. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Evaluation of remote maintenance schemes by plasma equilibrium analysis in Tokamak DEMO reactor

    International Nuclear Information System (INIS)

    Utoh, Hiroyasu; Tobita, Kenji; Asakura, Nobuyuki; Sakamoto, Yoshiteru

    2014-01-01

    Highlights: • The remote maintenance schemes in DEMO reactor were evaluated by the plasma equilibrium analysis. • Horizontal sector transport maintenance scheme requires the largest total PF coil current. • The difference of total PF coil current for MHD equilibrium in between the large segmented divertor maintenance and the segmentalized divertor maintenance was about 10%. - Abstract: The remote maintenance schemes in a DEMO reactor are categorized by insertion direction, blanket segmentation, and divertor maintenance scheme, and are quantitatively evaluated by analysing the plasma equilibrium. The positions of the poloidal field (PF) coil are limited by the size of the toroidal field (TF) coil and the maintenance port layout of each remote maintenance scheme. Because the PF coils are located near the larger TF coil and far from the plasma surface, the horizontal sector transport maintenance scheme requires the largest part of total PF coil current, 25% larger than that required for separated sector transport using vertical maintenance ports with segmented divertor maintenance (SDM). In the unsegmented divertor maintenance (UDM) scheme, the total magnetic stored energy in the PF coils at plasma equilibrium is about 30% larger than that stored in the SDM scheme, but the time required for removal and installation of all the divertor cassettes in the UDM scheme is roughly a third of that required in the SDM scheme because the number of divertor cassettes in the UDM scheme is a third of that in the SDM scheme. From the viewpoint of simple maintenance operations, the merit of the UDM scheme has more merit than the SDM scheme

  1. Research of precise pulse plasma arc powder welding technology of thin-walled inner hole parts

    Institute of Scientific and Technical Information of China (English)

    Li Zhanming; Du Xiaokun; Sun Xiaofeng; Song Wei

    2017-01-01

    The inner hole parts played an oriented or supporting role in engineering machinery and equipment,which are prone to appear surface damages such as wear,strain and corrosion.The precise pulse plasma arc powder welding method is used for surface damage repairing of inner hole parts in this paper.The working principle and process of the technology are illustrated,and the microstructure and property of repairing layer by precise pulse plasma powder welding and CO2 gas shielded welding are tested and observed by microscope,micro hardness tester and X-ray residual stress tester etc.Results showed that the substrate deformation of thin-walled inner hole parts samples by precise pulse plasma powder welding is relatively small.The repair layer and substrate is metallurgical bonding,the transition zones (including fusion zone and heat affected zone) are relatively narrow and the welding quality is good.h showed that the thin-walled inner hole parts can be repaired by this technology and equipment.

  2. Plasma density remote control system of experimental advanced superconductive tokamak

    International Nuclear Information System (INIS)

    Zhang Mingxin; Luo Jiarong; Li Guiming; Wang Hua; Zhao Dazheng; Xu Congdong

    2007-01-01

    In Tokamak experiments, experimental data and information on the density control are stored in the local computer system. Therefore, the researchers have to be in the control room for getting the data. Plasma Density Remote Control System (DRCS), which is implemented by encapsulating the business logic on the client in the B/S module, conducts the complicated science computation and realizes the synchronization with the experimental process on the client. At the same time, Web Services and Data File Services are deployed for the data exchange. It is proved in the experiments that DRCS not only meets the requirements for the remote control, but also shows an enhanced capability on the data transmission. (authors)

  3. PTFE treatment by remote atmospheric Ar/O2 plasmas : a simple reaction scheme model proposal

    NARCIS (Netherlands)

    Carbone, E.A.D.; Verhoeven, M.W.G.M.; Keuning, W.; van der Mullen, J.J.A.M.

    2016-01-01

    Polytetrafluoroethylene (PTFE) samples were treated by a remote atmospheric pressure microwave plasma torch and analyzed by water contact angle (WCA) and X-ray photoelectron spectroscopy (XPS). In the case of pure argon plasma a decrease of WCA is observed meanwhile an increase of hydrophobicity was

  4. Towards higher stability of resonant absorption measurements in pulsed plasmas.

    Science.gov (United States)

    Britun, Nikolay; Michiels, Matthieu; Snyders, Rony

    2015-12-01

    Possible ways to increase the reliability of time-resolved particle density measurements in pulsed gaseous discharges using resonant absorption spectroscopy are proposed. A special synchronization, called "dynamic source triggering," between a gated detector and two pulsed discharges, one representing the discharge of interest and another being used as a reference source, is developed. An internal digital delay generator in the intensified charge coupled device camera, used at the same time as a detector, is utilized for this purpose. According to the proposed scheme, the light pulses from the reference source follow the gates of detector, passing through the discharge of interest only when necessary. This allows for the utilization of short-pulse plasmas as reference sources, which is critical for time-resolved absorption analysis of strongly emitting pulsed discharges. In addition to dynamic source triggering, the reliability of absorption measurements can be further increased using simultaneous detection of spectra relevant for absorption method, which is also demonstrated in this work. The proposed methods are illustrated by the time-resolved measurements of the metal atom density in a high-power impulse magnetron sputtering (HiPIMS) discharge, using either a hollow cathode lamp or another HiPIMS discharge as a pulsed reference source.

  5. Towards higher stability of resonant absorption measurements in pulsed plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Britun, Nikolay, E-mail: nikolay.britun@umons.ac.be [Chimie des Interactions Plasma Surface (ChIPS), CIRMAP, Université de Mons, 23 Place du Parc, B-7000 Mons (Belgium); Michiels, Matthieu [Materia Nova Research Center, Parc Initialis, B-7000 Mons (Belgium); Snyders, Rony [Chimie des Interactions Plasma Surface (ChIPS), CIRMAP, Université de Mons, 23 Place du Parc, B-7000 Mons (Belgium); Materia Nova Research Center, Parc Initialis, B-7000 Mons (Belgium)

    2015-12-15

    Possible ways to increase the reliability of time-resolved particle density measurements in pulsed gaseous discharges using resonant absorption spectroscopy are proposed. A special synchronization, called “dynamic source triggering,” between a gated detector and two pulsed discharges, one representing the discharge of interest and another being used as a reference source, is developed. An internal digital delay generator in the intensified charge coupled device camera, used at the same time as a detector, is utilized for this purpose. According to the proposed scheme, the light pulses from the reference source follow the gates of detector, passing through the discharge of interest only when necessary. This allows for the utilization of short-pulse plasmas as reference sources, which is critical for time-resolved absorption analysis of strongly emitting pulsed discharges. In addition to dynamic source triggering, the reliability of absorption measurements can be further increased using simultaneous detection of spectra relevant for absorption method, which is also demonstrated in this work. The proposed methods are illustrated by the time-resolved measurements of the metal atom density in a high-power impulse magnetron sputtering (HiPIMS) discharge, using either a hollow cathode lamp or another HiPIMS discharge as a pulsed reference source.

  6. Remote operation of the vertical plasma stabilization @ the GOLEM tokamak for the plasma physics education

    Czech Academy of Sciences Publication Activity Database

    Svoboda, V.; Kocman, J.; Grover, O.; Krbec, Jaroslav; Stöckel, Jan

    96-97, October (2015), s. 974-979 ISSN 0920-3796. [Symposium on Fusion Technology 2014(SOFT-28)/28./. San Sebastián, 29.09.2014-03.10.2014] Institutional support: RVO:61389021 Keywords : tokamak technology * remote participation * plasma stabilization Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 1.301, year: 2015 http://dx.doi.org/10.1016/j.fusengdes.2015.06.044

  7. A compact plasma pre-ionized TEA-CO2 laser pulse clipper for material processing

    Science.gov (United States)

    Gasmi, Taieb

    2017-08-01

    An extra-laser cavity CO2-TEA laser pulse clipper using gas breakdown techniques for high spatial resolution material processing and shallow material engraving and drilling processes is presented. Complete extinction of the nitrogen tail, that extends the pulse width, is obtained at pressures from 375 up to 1500 torr for nitrogen and argon gases. Excellent energy stability and pulse repeatability were further enhanced using high voltage assisted preionized plasma gas technique. Experimental data illustrates the direct correlation between laser pulse width and depth of engraving in aluminum and alumina materials.

  8. Studying dense plasmas with coherent XUV pulses

    International Nuclear Information System (INIS)

    Stabile, H.

    2006-12-01

    The investigation of dense plasma dynamic requires the development of diagnostics able to ensure the measurement of electronic density with micro-metric space resolution and sub-nanosecond, or even subpicosecond, time resolution (indeed this must be at least comparable with the characteristic tune scale of plasma evolution). In contrast with low-density plasmas, dense plasmas cannot be studied using optical probes in the visible domain, the density range accessible being limited to the critical density (N c equals 1.1*10 21 λ -2 (μm) ∼ 10 21 cm -3 for infrared). In addition, light is reflected even at smaller densities if the medium exhibits sharp density gradients. Hence probing of dense plasmas, for instance those produced by laser irradiation of solids, requires using shorter wavelength radiation. Thanks to their physical properties, high order harmonics generated in rare gases are particularly adapted to the study of dense plasmas. Indeed, they can naturally be synchronized with the generating laser and their pulse duration is very short, which makes it possible to use them in pump-probe experiments. Moreover, they exhibit good spatial and temporal coherencies. Two types of diagnostics were developed during this thesis. The first one was used to study the instantaneous creation of hot-solid-density plasma generated by focusing a femtosecond high-contrast laser on an ultra-thin foil (100 nm) in the 10 18 W/cm 2 intensity regime. The use of high order harmonics, providing a probe beam of sufficiently short wavelengths to penetrate such a medium, enables the study of its dynamics on the 100 fs time scale. The second one uses the harmonics beam as probe beam (λ equals 32 nm) within an interferometric device. This diagnostic was designed to ensure a micro-metric spatial resolution and a temporal resolution in the femtosecond range. The first results in presence of plasma created by irradiation of an aluminum target underline the potentialities of this new

  9. Ultra-intense, short pulse laser-plasma interactions with applications to the fast ignitor

    International Nuclear Information System (INIS)

    Wilks, S.C.; Kruer, W.L.; Young, P.E.; Hammer, J.; Tabak, M.

    1995-04-01

    Due to the advent of chirped pulse amplification (CPA) as an efficient means of creating ultra-high intensity laser light (I > 5x10 17 W/cm 2 ) in pulses less than a few picoseconds, new ideas for achieving ignition and gain in DT targets with less than 1 megajoule of input energy are currently being pursued. Two types of powerful lasers are employed in this scheme: (1) channeling beams and (2) ignition beams. The current state of laser-plasma interactions relating to this fusion scheme will be discussed. In particular, plasma physics issues in the ultra-intense regime are crucial to the success of this scheme. We compare simulation and experimental results in this highly nonlinear regime

  10. Analysis of organic pollutant degradation in pulsed plasma by coherent anti-Stokes Raman spectroscopy

    International Nuclear Information System (INIS)

    Bratescu, Maria Antoneta; Hieda, Junko; Umemura, Tomonari; Saito, Nagahiro; Takai, Osamu

    2011-01-01

    The degradation of p-benzoquinone (p-BQ) in water was investigated by the coherent anti-Stokes Raman spectroscopy (CARS) method, in which the change of the anti-Stokes signal intensity corresponding to the vibrational transitions of the molecule is monitored during and after solution plasma processing (SPP). In the beginning of SPP treatment, the CARS signal intensity of the ring vibrational molecular transitions at 1233 and 1660 cm -1 increases under the influence of the electric field of the plasma, depending on the delay time between the plasma pulse and the laser firing pulse. At the same time, the plasma contributes to the degradation of p-BQ molecules by generating hydrogen and hydroxyl radicals, which decompose p-BQ into different carboxylic acids. After SPP, the CARS signal intensity of the vibrational bands of p-BQ ceased and the degradation of p-BQ was confirmed by UV-visible absorption spectroscopy and liquid chromatography analysis.

  11. The reduction of leading- and trailing-edge of high-voltage steep pulse in plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Zhu Zongtao; Gui Gang; Wang Zhijian; Gong Chunzhi; Yang Shiqin; Tian Xiubo

    2010-01-01

    During plasma immersion ion implantation (PIII) processes, due to the capacitance effect of the coaxial cable and plasma load, the output voltage pulse of high-voltage modulator possesses a longer leading- and trailing-edge time. The leading- and trailing-edge of the high voltage (HV) pulse have a critical effect on the ion-energy uniformity, depth and dose distribution during PIII processes. In this work, a tetrode was used as a hard tube to switch the DC high voltage, and a HV pulse modulator with a maximum pulse voltage of 40 kV was built successfully. The effect of the trailing-edge time on the implantation uniformity was simulated by one-dimension PIC method. The potential on the control grids of the tetrode was optimized to obtain a HV pulse with a short rise time. In our system, 200 V potential on grid one is utilized and the leading-edge time of pulse can be as small as 1 μs. The IGBTs in series was utilized to release the remnant charges reserved in the equivalent capacitance of the plasma load and coaxial cable. Thus the trailing-edge time of the HV pulse could be reduced. The effect of the driver signals with different delay time and the absorption parameters of each IGBTs were simulated by PSPICE software to optimize the design the electric circuit. (authors)

  12. Extreme degree of ionization in homogenous micro-capillary plasma columns heated by ultrafast current pulses.

    Science.gov (United States)

    Avaria, G; Grisham, M; Li, J; Tomasel, F G; Shlyaptsev, V N; Busquet, M; Woolston, M; Rocca, J J

    2015-03-06

    Homogeneous plasma columns with ionization levels typical of megaampere discharges are created by rapidly heating gas-filled 520-μm-diameter channels with nanosecond rise time current pulses of 40 kA. Current densities of up to 0.3  GA cm^{-2} greatly increase Joule heating with respect to conventional capillary discharge Z pinches, reaching unprecedented degrees of ionization for a high-Z plasma column heated by a current pulse of remarkably low amplitude. Dense xenon plasmas are ionized to Xe^{28+}, while xenon impurities in hydrogen discharges reach Xe^{30+}. The unique characteristics of these hot, ∼300:1 length-to-diameter aspect ratio plasmas allow the observation of unexpected spectroscopic phenomena. Axial spectra show the unusual dominance of the intercombination line over the resonance line of He-like Al by nearly an order of magnitude, caused by differences in opacities in the axial and radial directions. These plasma columns could enable the development of sub-10-nm x-ray lasers.

  13. Study on the plasma generation characteristics of an induction-triggered coaxial pulsed plasma thruster

    Science.gov (United States)

    Weisheng, CUI; Wenzheng, LIU; Jia, TIAN; Xiuyang, CHEN

    2018-02-01

    At present, spark plugs are used to trigger discharge in pulsed plasma thrusters (PPT), which are known to be life-limiting components due to plasma corrosion and carbon deposition. A strong electric field could be formed in a cathode triple junction (CTJ) to achieve a trigger function under vacuum conditions. We propose an induction-triggered electrode structure on the basis of the CTJ trigger principle. The induction-triggered electrode structure could increase the electric field strength of the CTJ without changing the voltage between electrodes, contributing to a reduction in the electrode breakdown voltage. Additionally, it can maintain the plasma generation effect when the breakdown voltage is reduced in the discharge experiments. The induction-triggered electrode structure could ensure an effective trigger when the ablation distance of Teflon increases, and the magnetic field produced by the discharge current could further improve the plasma density and propagation velocity. The induction-triggered coaxial PPT we propose has a simplified trigger structure, and it is an effective attempt to optimize the micro-satellite thruster.

  14. Aerodynamic performance enhancement of a flying wing using nanosecond pulsed DBD plasma actuator

    Directory of Open Access Journals (Sweden)

    Han Menghu

    2015-04-01

    Full Text Available Experimental investigation of aerodynamic control on a 35° swept flying wing by means of nanosecond dielectric barrier discharge (NS-DBD plasma was carried out at subsonic flow speed of 20–40 m/s, corresponding to Reynolds number of 3.1 × 105–6.2 × 105. In control condition, the plasma actuator was installed symmetrically on the leading edge of the wing. Lift coefficient, drag coefficient, lift-to-drag ratio and pitching moment coefficient were tested with and without control for a range of angles of attack. The tested results indicate that an increase of 14.5% in maximum lift coefficient, a decrease of 34.2% in drag coefficient, an increase of 22.4% in maximum lift-to-drag ratio and an increase of 2° at stall angle of attack could be achieved compared with the baseline case. The effects of pulsed frequency, amplitude and chord Reynolds number were also investigated. And the results revealed that control efficiency demonstrated strong dependence on pulsed frequency. Moreover, the results of pitching moment coefficient indicated that the breakdown of leading edge vortices could be delayed by plasma actuator at low pulsed frequencies.

  15. Shock wave interaction with pulsed glow discharge and afterglow plasmas

    International Nuclear Information System (INIS)

    Podder, N.K.; LoCascio, A.C.

    2009-01-01

    Acoustic shock waves are launched by the spark-discharge of a high voltage capacitor in pulsed glow discharge and afterglow plasmas. The glow discharge section of the shock tube is switched on for a period of less than one second at a time, during which a shock wave is launched starting with a large delay between the plasma switch-on and the shock-launch. In the subsequent runs this delay is decremented in equal time intervals up to the plasma switch-on time. A photo acoustic deflection method sensitive to the density gradient of the shock wave is used to study the propagating shock structure and velocity in the igniting plasma. A similar set of measurements are also performed at the plasma switch-off, in which the delay time is incremented in equal time intervals from the plasma switch-off time until the afterglow plasma fully neutralizes itself into the room-temperature gas. Thus, complete time histories of the shock wave propagation in the igniting plasma, as well as in the afterglow plasma, are produced. In the igniting plasma, the changes in the shock-front velocity and dispersion are found to be a strong non-linear function of delay until a saturation point is reached. On the other hand, in the afterglow plasma the trend has been opposite and reversing towards the room temperature values. The observed shock wave properties in both igniting and afterglow plasmas correlate well with the inferred temperature changes in the two plasmas

  16. Stages of polymer transformation during remote plasma oxidation (RPO) at atmospheric pressure

    Science.gov (United States)

    Luan, P.; Oehrlein, G. S.

    2018-04-01

    The interaction of cold temperature plasma sources with materials can be separated into two types: ‘direct’ and ‘remote’ treatments. Compared to the ‘direct’ treatment which involves energetic charged species along with short-lived, strongly oxidative neutral species, ‘remote’ treatment by the long-lived weakly oxidative species is less invasive and better for producing uniformly treated surfaces. In this paper, we examine the prototypical case of remote plasma oxidation (RPO) of polymer materials by employing a surface micro-discharge (in a N2/O2 mixture environment) treatment on polystyrene. Using material characterization techniques including real-time ellipsometry, x-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy, the time evolution of polymer film thickness, refractive index, surface, and bulk chemical composition were evaluated. These measurements revealed three consecutive stages of polymer transformation, i.e. surface adsorption and oxidation, bulk film permeation and thickness expansion followed by the material removal as a result of RPO. By correlating the observed film thickness changes with simultaneously obtained chemical information, we found that the three stages were due to the three effects of weakly oxidative species on polymers: (1) surface oxidation and nitrate (R-ONO2) chemisorption, (2) bulk oxidation, and (3) etching. Our results demonstrate that surface adsorption and oxidation, bulk oxidation, and etching can all happen during one continuous plasma treatment. We show that surface nitrate is only adsorbed on the top few nanometers of the polymer surface. The polymer film expansion also provided evidence for the diffusion and reaction of long-lived plasma species in the polymer bulk. Besides, we found that the remote plasma etched surface was relatively rich in O-C=O (ester or carboxylic acid). These findings clarify the roles of long-lived weakly oxidative plasma species on polymers and advance

  17. An imaging proton spectrometer for short-pulse laser plasma experiments

    International Nuclear Information System (INIS)

    Chen Hui; Hazi, A. U.; Maren, R. van; Chen, S. N.; Le Pape, S.; Rygg, J. R.; Shepherd, R.; Fuchs, J.; Gauthier, M.

    2010-01-01

    The ultraintense short pulse laser pulses incident on solid targets can generate energetic protons. In addition to their potentially important applications such as in cancer treatments and proton fast ignition, these protons are essential to understand the complex physics of intense laser plasma interaction. To better characterize these laser-produced protons, we designed and constructed a novel spectrometer that will not only measure proton energy distribution with high resolution but also provide its angular characteristics. The information obtained from this spectrometer compliments those from commonly used diagnostics including radiochromic film packs, CR39 nuclear track detectors, and nonimaging magnetic spectrometers. The basic characterizations and sample data from this instrument are presented.

  18. An imaging proton spectrometer for short-pulse laser plasma experiments

    Energy Technology Data Exchange (ETDEWEB)

    Chen Hui; Hazi, A. U.; Maren, R. van; Chen, S. N.; Le Pape, S.; Rygg, J. R.; Shepherd, R. [Lawrence Livermore National Laboratory, Livemore, California 94551 (United States); Fuchs, J.; Gauthier, M. [LULI Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2010-10-15

    The ultraintense short pulse laser pulses incident on solid targets can generate energetic protons. In addition to their potentially important applications such as in cancer treatments and proton fast ignition, these protons are essential to understand the complex physics of intense laser plasma interaction. To better characterize these laser-produced protons, we designed and constructed a novel spectrometer that will not only measure proton energy distribution with high resolution but also provide its angular characteristics. The information obtained from this spectrometer compliments those from commonly used diagnostics including radiochromic film packs, CR39 nuclear track detectors, and nonimaging magnetic spectrometers. The basic characterizations and sample data from this instrument are presented.

  19. High-Power Plasma Switch for 11.4 GHz Microwave Pulse Compressor

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2010-01-01

    Results obtained in several experiments on active RF pulse compression at X-band using a magnicon as the high-power RF source are presented. In these experiments, microwave energy was stored in high-Q TE01 and TE02 modes of two parallel-fed resonators, and then discharged using switches activated with rapidly fired plasma discharge tubes. Designs and high-power tests of several versions of the compressor are described. In these experiments, coherent pulse superposition was demonstrated at a 5-9 MW level of incident power. The compressed pulses observed had powers of 50-70 MW and durations of 40-70 ns. Peak power gains were measured to be in the range of 7:1-11:1 with efficiency in the range of 50-63%.

  20. Emission spectra from super-critical rippled plasma density profiles illuminated by intense laser pulses

    International Nuclear Information System (INIS)

    Ondarza R, R.; Boyd, T.J.M.

    2000-01-01

    High-order harmonic emission from the interaction of intense femtosecond laser pulses with super-critical plasmas characterized by a rippled density profile at the vacuum-plasma interface has been observed from particle-in-cell (PIC) simulations. A plasma simulation box several laser wavelengths in extent was prepared with a rippled density of a fraction of a laser wavelength. Emission spectra at the very initial stage of the interaction were recorded with spectral characteristics dissimilar to those previously reported in the literature. The reflected light spectra were characterized by a strong emission at the plasma line and by a series of harmonics at multiples of the ripple frequency. Harmonic spectra were obtained for different values of the plasma ripple frequency. In all cases the harmonics were emitted at the precise multiple harmonic number of the ripple frequency. Another important feature apparent from the simulations was that the emission peaks appeared to havea complex structure as compared with those for unrippled plasmas. For the cases when the plasma was rippled the peaks that corresponded to the multiples of the rippled density typically showed a double peak for the first few harmonics. The reflected emission plots for the main laser pulse showed strong emission at the plasma frequency and at multiples of that frequency as reported by the authors in the literature. (Author)

  1. Pulsed Plasma Polymerization of Perfluorooctyl Ethylene for Transparent Hydrophobic Thin Coatings

    International Nuclear Information System (INIS)

    Liu Xiaojun; Wang Lei; Hao Jie; Chu Liqiang

    2015-01-01

    Herein we report on the deposition of transparent hydrophobic thin coatings by radio frequency plasma polymerization (PP) of perfluorooctyl ethylene (PFOE) in both pulsed and continuous wave (CW) modes. The chemical compositions of the resulting PP-PFOE coatings were confirmed by means of Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The thicknesses and surface morphologies of the coatings were examined using surface plasmon resonance spectroscopy and atomic force microscopy. The surface wetting properties and optical transmittance were measured using a water contact angle goniometer and UV-vis spectroscopy. The FT-IR and XPS data showed that the PP-PFOE coatings deposited in the pulsed mode had a higher retention of CF 2 groups compared to those from the CW mode. While the water contact angle of the freshly deposited PP-PFOE from the pulsed mode showed a decrease from 120 degrees to 111 degrees in the first two days, it then remained almost unchanged up to 45 days. The UV-vis data indicated that a PP-PFOE coating 30.6 nm thick had a light transmittance above 90% in the UV and visible ranges. The deposition rates under various plasma conditions are also discussed. (paper)

  2. Investigation of plasma stream collision produced by thin films irradiated by powerful pulsed electron beam

    International Nuclear Information System (INIS)

    Efremov, V P; Demidov, B A; Ivkin, M V; Mescheryakov, A N; Petrov, V A; Potapenko, A I

    2006-01-01

    Collision of fast plasma streams in vacuum is investigated. Plasma streams were produced by irradiation of thin foils with a powerful pulsed electron beam. Interaction of the plasma flows was studied by using frame and streak cameras. One-dimensional numerical simulation was carried out. Application of this method for porous ICF targets and high-energy physics is discussed

  3. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Calculation of mass transfer in the remote cutting of metals by radiation of a high-power repetitively pulsed CO2 laser

    Science.gov (United States)

    Gladush, G. G.; Rodionov, N. B.

    2002-01-01

    The mechanism of remote cutting of steel plates by radiation of a high-power repetitively pulsed CO2 laser is theoretically studied. The models of melt removal by the gravity force and the recoil pressure of material vapour are proposed and the sufficient conditions for the initiation of cutting are determined. A numerical model of a thermally thin plate was employed to describe the cutting for large focal spots.

  4. Plasma channels during filamentation of a femtosecond laser pulse with wavefront astigmatism in air

    Energy Technology Data Exchange (ETDEWEB)

    Dergachev, A A; Kandidov, V P; Shlenov, S A [Lomonosov Moscow State University, Faculty of Physics, Moscow (Russian Federation); Ionin, A A; Mokrousova, D V; Seleznev, L V; Sinitsyn, D V; Sunchugasheva, E S; Shustikova, A P [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2014-12-31

    We have demonstrated experimentally and numerically the possibility of controlling parameters of plasma channels formed during filamentation of a femtosecond laser pulse by introducing astigmatism in the laser beam wavefront. It is found that weak astigmatism increases the length of the plasma channel in comparison with the case of aberration-free focusing and that strong astigmatism can cause splitting of the plasma channel into two channels located one after another on the filament axis. (interaction of laser radiation with matter. laser plasma)

  5. Two-dimensional spatial survey of the plasma potential and electric field in a pulsed bipolar magnetron discharge

    International Nuclear Information System (INIS)

    Vetushka, A.; Karkari, S.K.; Bradley, J.W.

    2004-01-01

    Emissive and Langmuir probe techniques have been used to obtain two-dimensional (2D) spatial maps of the plasma potential V p , electric field E, and ion trajectories in a pulsed bipolar magnetron discharge. The magnetron was pulsed at a frequency of 100 kHz, with a 50% duty cycle and operated at an argon pressure of 0.74 Pa. The pulse wave form was characterized by three distinct phases: the 'overshoot', 'reverse', and 'on' phases. In the 'on' phase of the pulse, when the cathode voltage is driven to -670 V, the 2D spatial distribution of V p has a similar form to that in dc magnetron, with significant axial and radial electric fields in the bulk plasma, accelerating ions to the sheath edge above the cathode racetrack region. During the 'overshoot' phase (duration 200 ns), V p is raised to values greater than +330 V, more than 100 V above the cathode potential, with E pointing away from the target. In the 'reverse' phase V p has a value of +45 V at all measured positions, 2 V more positive than the target potential. In this phase there is no electric field present in the plasma. In the bulk of the plasma, the results from Langmuir probe and the emissive probe are in good agreement, however, in one particular region of the plasma outside the radius of the cathode, the emissive probe measurements are consistently more positive (up to 45 V in the 'on' time). This discrepancy is discussed in terms of the different frequency response of the probes and their perturbation of the plasma. A simple circuit model of the plasma-probe system has been proposed to explain our results. A brief discussion of the effect of the changing plasma potential distribution on the operation of the magnetron is given

  6. Observation of bulk-ion heating in a tokamak plasma by application of positive and negative current pulses in TRIAM-1

    Energy Technology Data Exchange (ETDEWEB)

    Toi, K; Hiraki, N; Nakamura, K; Mitarai, O; Kawai, Y; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1980-09-01

    A positive of negative current pulse induced by a pulsed toroidal electric field much higher than the Dreicer field increases the bulk-ion temperature of the plasma centre two to three times, without macroscopic plasma destruction. The decay time of the raised ion temperature agrees well with the prediction from neoclassical transport theory. The magnitude of the positive current pulse is limited by violent current disruption, and that of the negative current by a lack of MHD equilibrium which is due to a marked reduction of the total plasma current. The relevant current-driven instabilities in the turbulent heating of a tokamak plasma, skin heating and inward transfer of the energy deposition in the skin layer are briefly discussed.

  7. Preliminary investigation on the use of low current pulsed power Z-pinch plasma devices for the study of early stage plasma instabilities

    Science.gov (United States)

    Kaselouris, E.; Dimitriou, V.; Fitilis, I.; Skoulakis, A.; Koundourakis, G.; Clark, E. L.; Chatzakis, J.; Bakarezos, Μ; Nikolos, I. K.; Papadogiannis, N. A.; Tatarakis, M.

    2018-01-01

    This article addresses key features for the implementation of low current pulsed power plasma devices for the study of matter dynamics from the solid to the plasma phase. The renewed interest in such low current plasma devices lies in the need to investigate methods for the mitigation of prompt seeding mechanisms for the generation of plasma instabilities. The low current when driven into thick wires (skin effect mode) allows for the simultaneous existence of all phases of matter from solid to plasma. Such studies are important for the concept of inertial confinement fusion where the mitigation of the instability seeding mechanisms arising from the very early moments within the target’s heating is of crucial importance. Similarly, in the magnetized liner inertial fusion concept it is an open question as to how much surface non-uniformity correlates with the magneto-Rayleigh-Taylor instability, which develops during the implosion. This study presents experimental and simulation results, which demonstrate that the use of low current pulsed power devices in conjunction with appropriate diagnostics can be important for studying seeding mechanisms for the imminent generation of plasma instabilities in future research.

  8. Methods and Apparatus for Pulsed-DC Dielectric Barrier Discharge Plasma Actuator and Circuit

    Science.gov (United States)

    Corke, Thomas C. (Inventor); Kaszeta, Richard (Inventor); Gold, Calman (Inventor)

    2017-01-01

    A plasma generating device intended to induce a flow in a fluid via plasma generation includes a dielectric separating two electrodes and a power supply. The first electrode is exposed to a fluid flow while the second electrode is positioned under the dielectric. The power supply is electrically coupled to a switch and the first and second electrodes. When the power supply is energized by repeated action of the switch, it causes a pulsed DC current between the electrodes which causes the fluid to ionize generating a plasma. The generation of the plasma induces a force with a velocity component in the fluid.

  9. Ultra-intense, short pulse laser-plasma interactions with applications to the fast ignitor

    Energy Technology Data Exchange (ETDEWEB)

    Wilks, S.C.; Kruer, W.L.; Young, P.E.; Hammer, J.; Tabak, M.

    1995-04-01

    Due to the advent of chirped pulse amplification (CPA) as an efficient means of creating ultra-high intensity laser light (I > 5{times}10{sup 17} W/cm{sup 2}) in pulses less than a few picoseconds, new ideas for achieving ignition and gain in DT targets with less than 1 megajoule of input energy are currently being pursued. Two types of powerful lasers are employed in this scheme: (1) channeling beams and (2) ignition beams. The current state of laser-plasma interactions relating to this fusion scheme will be discussed. In particular, plasma physics issues in the ultra-intense regime are crucial to the success of this scheme. We compare simulation and experimental results in this highly nonlinear regime.

  10. Development of a high energy pulsed plasma simulator for the study of liquid lithium trenches

    Energy Technology Data Exchange (ETDEWEB)

    Jung, S., E-mail: jung73@illinois.edu [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Christenson, M.; Curreli, D. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Bryniarski, C. [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Andruczyk, D.; Ruzic, D.N. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States)

    2014-12-15

    Highlights: • A pulse device for a liquid lithium trench study is developed. • It consists of a coaxial plasma gun, a theta pinch, and guiding magnets. • A large energy enhancement is observed with the use of the plasma gun. • A further increase in energy and velocity is observed with the theta pinch. - Abstract: To simulate detrimental events in a tokamak and provide a test-stand for a liquid-lithium infused trench (LiMIT) device [1], a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. The plasma is characterized using a triple Langmuir probe, optical methods, and a calorimeter. Clear advantages have been observed with the application of a coaxial plasma accelerator as a pre-ionization source. The experimental results of the plasma gun in conjunction with the existing theta pinch show a significant improvement from the previous energy deposition by a factor of 14 or higher, resulting in a maximum energy and heat flux of 0.065 ± 0.002 MJ/m{sup 2} and 0.43 ± 0.01 GW/m{sup 2}. A few ways to further increase the plasma heat flux for LiMIT experiments are discussed.

  11. Development of a high energy pulsed plasma simulator for the study of liquid lithium trenches

    International Nuclear Information System (INIS)

    Jung, S.; Christenson, M.; Curreli, D.; Bryniarski, C.; Andruczyk, D.; Ruzic, D.N.

    2014-01-01

    Highlights: • A pulse device for a liquid lithium trench study is developed. • It consists of a coaxial plasma gun, a theta pinch, and guiding magnets. • A large energy enhancement is observed with the use of the plasma gun. • A further increase in energy and velocity is observed with the theta pinch. - Abstract: To simulate detrimental events in a tokamak and provide a test-stand for a liquid-lithium infused trench (LiMIT) device [1], a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. The plasma is characterized using a triple Langmuir probe, optical methods, and a calorimeter. Clear advantages have been observed with the application of a coaxial plasma accelerator as a pre-ionization source. The experimental results of the plasma gun in conjunction with the existing theta pinch show a significant improvement from the previous energy deposition by a factor of 14 or higher, resulting in a maximum energy and heat flux of 0.065 ± 0.002 MJ/m 2 and 0.43 ± 0.01 GW/m 2 . A few ways to further increase the plasma heat flux for LiMIT experiments are discussed

  12. Using hydrocarbon as a carbon source for synthesis of carbon nanotube by electric field induced needle-pulsed plasma

    International Nuclear Information System (INIS)

    Kazemi Kia, Kaveh; Bonabi, Fahimeh

    2013-01-01

    In this work different hydrocarbons are used as the carbon source, in the production of carbon nanotubes (CNTs) and nano onions. An electric field induced needle pulse arc-discharge reactor is used. The influence of starting carbon on the synthesis of CNTs is investigated. The production efficiency is compared for Acetone, Isopropanol and Naphthalene as simple hydrocarbons. The hydrocarbons are preheated and then pretreated by electric field before being exposed to plasma. The hydrocarbon vapor is injected into plasma through a graphite spout in the cathode assembly. The pulsed plasma takes place between two graphite rods while a strong electric field has been already established alongside the electrodes. The pulse width is 0.3 μs. Mechanism of precursor decomposition is discussed by describing three forms of energy that are utilized to disintegrate the precursor molecules: thermal energy, electric field and kinetic energy of plasma. Molecular polarity of a hydrocarbon is one of the reasons for choosing carbon raw material as a precursor in an electric field induced low power pulsed-plasma. The results show that in order to obtain high quality carbon nanotubes, Acetone is preferred to Isopropanol and Naphthalene. Scanning probe microscopy techniques are used to investigate the products. - Highlights: • We synthesized CNTs (carbon nano tubes) by needle pulsed plasma. • We use different hydrocarbons as carbon source in the production of CNTs. • We investigated the influence of starting carbon on the synthesis of CNTs. • Thermal energy, electric field and kinetic energy are used to break carbon bonds. • Polar hydrocarbon molecules are more efficient than nonpolar ones in production

  13. Enhanced self-magnetic field by atomic polarization in partially stripped plasma produced by a short and intense laser pulse

    International Nuclear Information System (INIS)

    Hu Qianglin; Liu Shibing; Jiang, Y.J.; Zhang Jie

    2005-01-01

    The enhancement and redistribution of a self-generated quasistatic magnetic field, due to the presence of the polarization field induced by partially ionized atoms, are analytically revealed when a linearly polarized intense and short pulse laser propagates in a partially stripped plasma with higher density. In particular, the shorter wavelength of the laser pulse can evidently intensify the amplitude of the magnetic field. These enhancement and redistribution of the magnetic field are considered physically as a result of the competition of the electrostatic field (electron-ion separation) associated with the plasma wave, the atomic polarization field, and the pondoromotive potential associated with the laser field. This competition leads to the generation of a positive, large amplitude magnetic field in the zone of the pulse center, which forms a significant difference in partially and fully stripped plasmas. The numerical result shows further that the magnetic field is resonantly modulated by the plasma wave when the pulse length is the integer times the plasma wavelength. This apparently implies that the further enhancement and restructure of the large amplitude self-magnetic field can evidently impede the acceleration and stable transfer of the hot-electron beam

  14. Palm top plasma focus device as a portable pulsed neutron source

    International Nuclear Information System (INIS)

    Rout, R. K.; Niranjan, Ram; Srivastava, R.; Rawool, A. M.; Kaushik, T. C.; Gupta, Satish C.; Mishra, P.

    2013-01-01

    Development of a palm top plasma focus device generating (5.2 ± 0.8) × 10 4 neutrons/pulse into 4π steradians with a pulse width of 15 ± 3 ns is reported for the first time. The weight of the system is less than 1.5 kg. The system comprises a compact capacitor bank, a triggered open air spark gap switch, and a sealed type miniature plasma focus tube. The setup is around 14 cm in diameter and 12.5 cm in length. The energy driver for the unit is a capacitor bank of four cylindrical commercially available electrolytic capacitors. Each capacitor is of 2 μF capacity, 4.5 cm in diameter, and 9.8 cm in length. The cost of each capacitor is less than US$ 10. The internal diameter and the effective length of the plasma focus unit are 2.9 cm and 5 cm, respectively. A DC to DC converter power supply powered by two rechargeable batteries charges the capacitor bank to the desired voltage and also provides a trigger pulse of −15 kV to the spark gap. The maximum energy of operation of the device is 100 J (8 μF, 5 kV, 59 kA) with deuterium gas filling pressure of 3 mbar. The neutrons have also been produced at energy as low as 36 J (3 kV) of operation. The neutron diagnostics are carried out with a bank of 3 He detectors and with a plastic scintillator detector. The device is portable, reusable, and can be operated for multiple shots with a single gas filling.

  15. Kr photoionized plasma induced by intense extreme ultraviolet pulses

    Science.gov (United States)

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.; Skrzeczanowski, W.

    2016-04-01

    Irradiation of any gas with an intense EUV (extreme ultraviolet) radiation beam can result in creation of photoionized plasmas. The parameters of such plasmas can be significantly different when compared with those of the laser produced plasmas (LPP) or discharge plasmas. In this work, the photoionized plasmas were created in a krypton gas irradiated using an LPP EUV source operating at a 10 Hz repetition rate. The Kr gas was injected into the vacuum chamber synchronously with the EUV radiation pulses. The EUV beam was focused onto a Kr gas stream using an axisymmetrical ellipsoidal collector. The resulting low temperature Kr plasmas emitted electromagnetic radiation in the wide spectral range. The emission spectra were measured either in the EUV or an optical range. The EUV spectrum was dominated by emission lines originating from Kr III and Kr IV ions, and the UV/VIS spectra were composed from Kr II and Kr I lines. The spectral lines recorded in EUV, UV, and VIS ranges were used for the construction of Boltzmann plots to be used for the estimation of the electron temperature. It was shown that for the lowest Kr III and Kr IV levels, the local thermodynamic equilibrium (LTE) conditions were not fulfilled. The electron temperature was thus estimated based on Kr II and Kr I species where the partial LTE conditions could be expected.

  16. Formation of metal nanoparticles of various sizes in plasma plumes produced by Ti:sapphire laser pulses

    International Nuclear Information System (INIS)

    Chakravarty, U.; Naik, P. A.; Mukherjee, C.; Kumbhare, S. R.; Gupta, P. D.

    2010-01-01

    In this paper, an experimental study on generation of nanoparticle various sizes using Ti:sapphire laser pulses, is reported. Nanoparticle formation in plasma plumes of metals like silver and copper, expanding in vacuum, has been studied using stretched pulses of 300 ps duration [subnanoseconds (sub-ns)] from a Ti:sapphire laser. It has been compared with the nanoparticle formation (of the same materials) when compressed pulses of 45 fs duration were used under similar focusing conditions. Nanoparticle formation is observed at intensities as high as 2x10 16 W/cm 2 . The structural analysis of the nanoparticle deposition on a silicon substrate showed that, using 45 fs pulses, smaller nanoparticles of average size ∼20 nm were generated, whereas on using the sub-ns pulses, larger particles were produced. Also, the visible light transmission and reflection from the nanoparticle film of Ag on glass substrate showed surface plasmon resonance (SPR). The SPR curves of the films of nanoparticles deposited by femtosecond pulses were always broader and reflection/transmission was always smaller when compared with the films formed using the sub-ns pulses, indicating smaller size particle formation by ultrashort pulses. Thus, it has been demonstrated that variation in the laser pulse duration of laser offers a simple tool for varying the size of the nanoparticles generated in plasma plumes.

  17. Control, data acquisition, data analysis and remote participation in LHD

    International Nuclear Information System (INIS)

    Nagayama, Y.; Emoto, M.; Nakanishi, H.; Sudo, S.; Imazu, S.; Inagaki, S.; Iwata, C.; Kojima, M.; Nonomura, M.; Ohsuna, M.; Tsuda, K.; Yoshida, M.; Chikaraishi, H.; Funaba, H.; Horiuchi, R.; Ishiguro, S.; Ito, Y.; Kubo, S.; Mase, A.; Mito, T.

    2008-01-01

    This paper presents the control, data acquisition, data analysis and remote participation facilities of the Large Helical Device (LHD), which is designed to confine the plasma in steady state. In LHD the plasma duration exceeds 3000 s by controlling the plasma position, the density and the ICRF heating. The 'LABCOM' data acquisition system takes both the short-pulse and the steady-state data. A two-layer Mass Storage System with RAIDs and Blu-ray Disk jukeboxes in a storage area network has been developed to increase capacity of storage. The steady-state data can be monitored with a Web browser in real time. A high-level data analysis system with Web interfaces is being developed in order to provide easier usage of LHD data and large FORTRAN codes in a supercomputer. A virtual laboratory system for the Japanese fusion community has been developed with Multi-protocol Label Switching Virtual Private Network Technology. Collaborators at remote sites can join the LHD experiment or use the NIFS supercomputer system as if they were working in the LHD control room

  18. Plasma Emission Spectra of Opuntia Nopalea Obtained with Microsecond Laser Pulses

    International Nuclear Information System (INIS)

    Ponce, L.; Flores, T.; Arronte, A.; Flores, A.

    2008-01-01

    Laser-induced Plasma Spectroscopy was performed during the spines ablation of Opuntia by using Nd:YAG microsecond laser pulses. The results show strong absorption in Glochids that causes the intense electronic noise on the spectra. This process is consider suitable for practical elimination of spines in alimentary products like opuntia

  19. Remote in-situ laser-induced breakdown spectroscopy using optical fibers

    Science.gov (United States)

    Marquardt, Brian James

    The following dissertation describes the development of methods for performing remote Laser-Induced Breakdown Spectroscopy (LIBS) using optical fibers. Studies were performed to determine the optimal excitation and collection parameters for remote LIBS measurements of glasses, soils and paint. A number of fiber-optic LIBS probes were developed and used to characterize various samples by plasma emission spectroscopy. A novel method for launching high-power laser pulses into optical fibers without causing catastrophic failure is introduced. A systematic study of a number of commercially available optical fibers was performed to determine which optical fibers were best suited for delivering high-power laser pulses. The general design of an all fiber-optic LIBS probe is described and applied to the determination of Pb in soil. A fiber-optic probe was developed for the microanalysis of solid samples remotely by LIBS, Raman spectroscopy and Raman imaging. The design of the probe allows for real-time sample imaging in-situ using coherent imaging fibers. This allows for precise atomic emission and Raman measurements to be performed remotely on samples in hostile or inaccessible environments. A novel technique was developed for collecting spectral plasma images using an acousto-optic tunable filter (AOTF). The spatial and temporal characteristics of the plasma were studied as a function of delay time. From the plasma images the distribution of Pb emission could be determined and fiber-optic designs could be optimized for signal collection. The performance of a two fiber LIBS probe is demonstrated for the determination of the amount of lead in samples of dry paint. It is shown that dry paint samples can be analyzed for their Pb content in-situ using a fiber-optic LIBS probe with detection limits well below the levels currently regulated by the Consumer Products Safety Commission. It is also shown that these measurements can be performed on both latex and enamel paints, and

  20. Laser ablation comparison by picosecond pulses train and nanosecond pulse

    Science.gov (United States)

    Lednev, V. N.; Filippov, M. N.; Bunkin, A. F.; Pershin, S. M.

    2015-12-01

    A comparison of laser ablation by a train of picosecond pulses and nanosecond pulses revealed a difference in laser craters, ablation thresholds, plasma sizes and spectral line intensities. Laser ablation with a train of picosecond pulses resulted in improved crater quality while ablated mass decreased up to 30%. A reduction in laser plasma dimensions for picosecond train ablation was observed while the intensity of atomic/ionic lines in the plasma spectra was greater by a factor of 2-4 indicating an improved excitation and atomization in the plasma.

  1. Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Albertazzi, B. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); INRS-EMT, Varennes, Quebec J3X 1S2 (Canada); Beard, J.; Billette, J.; Portugall, O. [LNCMI, UPR 3228, CNRS-UFJ-UPS-INSA, 31400 Toulouse (France); Ciardi, A. [LERMA, Observatoire de Paris, Ecole Normale Superieure, Universite Pierre et Marie Curie, CNRS UMR 8112, Paris (France); Vinci, T.; Albrecht, J.; Chen, S. N.; Da Silva, D.; Hirardin, B.; Nakatsutsumi, M.; Romagnagni, L.; Simond, S.; Veuillot, E.; Fuchs, J. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Burris-Mog, T.; Dittrich, S.; Herrmannsdoerfer, T.; Kroll, F.; Nitsche, S. [Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden (Germany); and others

    2013-04-15

    The production of strongly magnetized laser plasmas, of interest for laboratory astrophysics and inertial confinement fusion studies, is presented. This is achieved by coupling a 16 kV pulse-power system. This is achieved by coupling a 16 kV pulse-power system, which generates a magnetic field by means of a split coil, with the ELFIE laser facility at Ecole Polytechnique. In order to influence the plasma dynamics in a significant manner, the system can generate, repetitively and without debris, high amplitude magnetic fields (40 T) in a manner compatible with a high-energy laser environment. A description of the system and preliminary results demonstrating the possibility to magnetically collimate plasma jets are given.

  2. Acetylcysteine reduces plasma homocysteine concentration and improves pulse pressure and endothelial function in patients with end-stage renal failure

    DEFF Research Database (Denmark)

    Scholze, Alexandra; Rinder, Christiane; Beige, Joachim

    2004-01-01

    Increased oxidative stress, elevated plasma homocysteine concentration, increased pulse pressure, and impaired endothelial function constitute risk factors for increased mortality in patients with end-stage renal failure.......Increased oxidative stress, elevated plasma homocysteine concentration, increased pulse pressure, and impaired endothelial function constitute risk factors for increased mortality in patients with end-stage renal failure....

  3. Dynamics of the spectral behaviour of an ultrashort laser pulse in an argon-gas-filled capillary discharge-preformed plasma channel

    Directory of Open Access Journals (Sweden)

    Sakai S.

    2013-11-01

    Full Text Available We have reported the argon plasma waveguide produced in an alumina (Al2O3 capillary discharge and used to guide ultrashort laser pulses at intensities of the order of 1016  W/cm2. A one-dimensional magnetohydrodynamic (MHD code was used to evaluate the average degree of ionization of Ar in the preformed plasma channel. The spectrum of the propagated laser pulse in the Ar plasma waveguide was not modified and was well reproduced by a particle-in-cell (PIC simulation under initial ion charge state of Ar3+ in the preformed plasma waveguide. The optimum timing for the laser pulse injection was around 150 ns after initiation of a discharge with a peak current of 200 A.

  4. On the stability of the interface between dense plasma and liquid under electrical pulse discharge in liquid medium

    International Nuclear Information System (INIS)

    Starchyk, P.D.; Porytskyy, P.V.

    2005-01-01

    It is shown that the most important influence on the plasma of electrical pulse discharges in liquid have the processes in a zone of its contact with condensed medium. The investigations of growth of corrugations are conducted which arise on an interface between both the plasma channels of electrical pulse discharges and limiting it liquid. It is shown that the growth of perturbations caused by Rayleigh-Taylor instability are nonlinearly saturated. It is established the interconnection between both the pointed perturbations and the parameters of a dense plasma of discharge channel

  5. Space-time-dependent development of the plasma in a pulsed hollow-cathode discharge

    International Nuclear Information System (INIS)

    Schaefer, G.; Wages, M.

    1988-01-01

    This paper presents streak camera investigations on the space-time-dependent development of pulsed hollow-cathode discharges (HCD's) starting from low-current preionization discharges. The discharges started closer to the end of the cathode, then moved further into the cathode, and then spread over a longer range along the axis of the cathode. The depth range of the intense pulsed hollow-cathode plasma was found to be two to eight times the cathode diameter

  6. Frontiers in pulse-power-based high energy density plasma physics and its applications

    International Nuclear Information System (INIS)

    Horioka, Kazuhiko

    2008-03-01

    The papers in this volume of report were presented at the Symposium on Frontiers in Pulse-power-based High Energy Density Physics' held by National Institute for Fusion Science. The topics include the present status of high energy density plasma researches, extreme ultraviolet sources, intense radiation sources, high power ion beams, and R and D of related pulse power technologies. The 13 of the presented papers are indexed individually. (J.P.N.)

  7. Numerical simulation of Trichel pulses of negative DC corona discharge based on a plasma chemical model

    Science.gov (United States)

    Chen, Xiaoyue; Lan, Lei; Lu, Hailiang; Wang, Yu; Wen, Xishan; Du, Xinyu; He, Wangling

    2017-10-01

    A numerical simulation method of negative direct current (DC) corona discharge based on a plasma chemical model is presented, and a coaxial cylindrical gap is adopted. There were 15 particle species and 61 kinds of collision reactions electrons involved, and 22 kinds of reactions between ions are considered in plasma chemical reactions. Based on this method, continuous Trichel pulses are calculated on about a 100 us timescale, and microcosmic physicochemical process of negative DC corona discharge in three different periods is discussed. The obtained results show that the amplitude of Trichel pulses is between 1-2 mA, and that pulse interval is in the order of 10-5 s. The positive ions produced by avalanche ionization enhanced the electric field near the cathode at the beginning of the pulse, then disappeared from the surface of cathode. The electric field decreases and the pulse ceases to develop. The negative ions produced by attachment slowly move away from the cathode, and the electric field increases gradually until the next pulse begins to develop. The positive and negative ions with the highest density during the corona discharge process are O4+ and O3- , respectively.

  8. Time resolved 2-D optical imaging of a pulsed unbalanced magnetron plasma

    International Nuclear Information System (INIS)

    Bradley, J W; Clarke, G C B; Braithwaite, N St J; Bryant, P M; Kelly, P J

    2006-01-01

    Using wavelength filtered two dimensional (2-D) optical imaging, the temporal and spatial evolution of selected excited species in a pulsed magnetron discharge has been studied. A titanium target was sputtered at a pulse frequency of 100 kHz, in an argon atmosphere, at an operating pressure of 0.27 Pa. The radial information of the emissivity was determined using the Abel inversion technique. The results show strong excitation of the observed species above the racetrack in the on-time, and the possible development of an ion-acoustic wave, initiated after the off-on transition. The on-off transition is accompanied by a burst of light from the plasma bulk consistent with the transient plasma potential reaching about +200 V. During this phase, we argue that there is a release of secondary electrons from the grounded substrate and walls due to ion bombardment, as well as an increased confinement of energetic plasma electrons. The characteristic decay times of the selected transitions at 750.4, 751.5, 810.4 and 811.5 nm (ArI), present within the bandpass width of our filters, is briefly discussed in terms of the production of fast electrons in the system

  9. Self-consistent evolution of plasma discharge and electromagnetic fields in a microwave pulse compressor

    International Nuclear Information System (INIS)

    Shlapakovski, A. S.; Beilin, L.; Krasik, Ya. E.; Hadas, Y.; Schamiloglu, E.

    2015-01-01

    Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasing ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed

  10. Self-consistent evolution of plasma discharge and electromagnetic fields in a microwave pulse compressor

    Science.gov (United States)

    Shlapakovski, A. S.; Beilin, L.; Hadas, Y.; Schamiloglu, E.; Krasik, Ya. E.

    2015-07-01

    Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasing ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed.

  11. Probing ultrafast dynamics of solid-density plasma generated by high-contrast intense laser pulses

    Science.gov (United States)

    Jana, Kamalesh; Blackman, David R.; Shaikh, Moniruzzaman; Lad, Amit D.; Sarkar, Deep; Dey, Indranuj; Robinson, Alex P. L.; Pasley, John; Ravindra Kumar, G.

    2018-01-01

    We present ultrafast dynamics of solid-density plasma created by high-contrast (picosecond contrast ˜10-9), high-intensity (˜4 × 1018 W/cm2) laser pulses using time-resolved pump-probe Doppler spectrometry. Experiments show a rapid rise in blue-shift at early time delay (2-4.3 ps) followed by a rapid fall (4.3-8.3 ps) and then a slow rise in blue-shift at later time delays (>8.3 ps). Simulations show that the early-time observations, specifically the absence of any red-shifting of the reflected probe, can only be reproduced if the front surface is unperturbed by the laser pre-pulse at the moment that the high intensity pulse arrives. A flexible diagnostic which is capable of diagnosing the presence of low-levels of pre-plasma formation would be useful for potential applications in laser-produced proton and ion production, such as cancer therapy and security imaging.

  12. Laser pulse propagation in a meter scale rubidium vapor/plasma cell in AWAKE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Joulaei, A. [Max-Planck Institute for Physics, Munich (Germany); University of Mazandaran (Iran, Islamic Republic of); Moody, J. [Max-Planck Institute for Physics, Munich (Germany); Berti, N.; Kasparian, J. [University of Geneva (Switzerland); Mirzanejhad, S. [University of Mazandaran (Iran, Islamic Republic of); Muggli, P. [Max-Planck Institute for Physics, Munich (Germany)

    2016-09-01

    We present the results of numerical studies of laser pulse propagating in a 3.5 cm Rb vapor cell in the linear dispersion regime by using a 1D model and a 2D code that has been modified for our special case. The 2D simulation finally aimed at finding laser beam parameters suitable to make the Rb vapor fully ionized to obtain a uniform, 10 m-long, at least 1 mm in radius plasma in the next step for the AWAKE experiment. - Highlights: • Discussion the AWAKE plasma source based on photoionization of rubidium vapor with a TW/cm^2 Intensity laser with a spectrum across valence ground state transition resonances. • Examines the propagation of the AWAKE ionization laser through rubidium vapor at design density on a small scale and reduced intensity with a linear numerical model compared to experimental results. • Discusses physics of pulse propagation through the vapor at high intensity regime where strong ionization occurs within the laser pulse.

  13. Pulse power requirements for large aperture optical switches based on plasma electrode Pockels cells

    International Nuclear Information System (INIS)

    Rhodes, M.A.; Taylor, J.

    1992-06-01

    We discuss very large-aperture optical switches (greater than 30 x 30 cm) as an enabling technology for inertial confinement fusion drivers based on multipass laser amplifiers. Large-scale laser fusion drivers such as the Nova laser have been based on single-pass amplifier designs in part because of the unavailability of a suitable large-aperture switch. We are developing an optical switch based on a Pockels cell employing plasma-electrodes. A plasma-electrode Pockels cell (PEPC) is a longitudinal-mode Pockels cell in which a plasma discharge is formed on each side of an electro-optic crystal (typically KDP or deuterated KDP, often designated KD*P). The plasmas formed on either side of the crystal act as transparent electrodes for a switching-pulse and are intended to allow uniform charging of the entire crystal. The switching-pulse is a nominally rectangular high-voltage pulse equal to the half-wave voltage V x ( 8 kV for KD*P or 17 kV for KDP) and is applied across the crystal via the plasma-electrodes. When the crystal is charged to V x , the polarization of an incoming, linearly polarized, laser beam is rotated by 90 degree. When used in conjunction with an appropriate, passive polarizer, an optical switch is thus realized. A switch with a clear aperture of 37 x 37 cm is now in construction for the Beamlet laser which will serve as a test bed for this switch as well as other technologies required for an advanced NOVA laser design. In this paper, we discuss the unique power electronics requirements of PEPC optical switches

  14. Efficient ion heating of tokamak plasma by application of positive and negative current pulse in TRIAM-1

    International Nuclear Information System (INIS)

    Toi, Kazuo; Hiraki, Naoji; Nakamura, Kazuo; Mitarai, Osamu; Kawai, Yoshinobu

    1980-01-01

    The efficient heating of bulk ions of tokamak plasma is observed by application of the pulsed toroidal electric field much higher than the Dreicer field with the positive and negative polarities for the ohmic heating field. No deleterious effect on the confinement properties of tokamak plasma appears by the heating. The decay time of ion temperature raised by the heating pulse agrees well with the prediction by the neoclassical transport theory. The magnitude of the current induced by the pulsed electric field with the positive polarity is limited by the violent current disruption. In the case of the negative polarity, this is limited by lack of the MHD equilibrium due to vanishing the total plasma current. The ratio of drift velocity to electron thermal one / attains around 0.5, which suggests that the efficient ion heating may be due to the current-driven turbulence. (author)

  15. Efficient ion heating of tokamak plasma by application of positive and negative current pulse in TRIAM-1

    Energy Technology Data Exchange (ETDEWEB)

    Toi, K; Hiraki, N; Nakamura, K; Mitarai, O; Kawai, Y [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1980-02-01

    The efficient heating of bulk ions of tokamak plasma is observed by application of the pulsed toroidal electric field much higher than the Dreicer field with the positive and negative polarities for the ohmic heating field. No deleterious effect on the confinement properties of tokamak plasma appears by the heating. The decay time of ion temperature raised by the heating pulse agrees well with the prediction by the neoclassical transport theory. The magnitude of the current induced by the pulsed electric field with the positive polarity is limited by the violent current disruption. In the case of the negative polarity, this is limited by lack of the MHD equilibrium due to vanishing the total plasma current. The ratio of drift velocity to electron thermal one / attains around 0.5, which suggests that the efficient ion heating may be due to the current-driven turbulence.

  16. Electronic perturbation investigations into excitation and ionization in the millisecond pulsed glow discharge plasma

    International Nuclear Information System (INIS)

    Li Lei; Robertson-Honecker, Jennifer; Vaghela, Vishal; King, Fred L.

    2006-01-01

    This study employed a power perturbation method to examine the energy transfer processes at different locations within the afterpeak regime of a millisecond pulsed glow discharge plasma. Brief power perturbation pulses were applied during the afterpeak regime altering the environment of the collapsing plasma. Responses of several transitions to the power perturbations were measured via atomic emission and absorption spectroscopic methods at various distances from the surface of the cathode. The experimental data provide further insight into the energy transfer processes that occur at different spatial locations and in different temporal regimes of these pulsed glow discharge plasmas. Although the enhancement of the large population of metastable argon atoms is again confirmed, the mechanism responsible for this enhancement remains unclear. The most likely possibility involves some form of ion-electron recombination followed by radiative relaxation of the resulting species. The metastable argon atoms subsequently Penning ionize sputtered copper atoms which then appear to undergo a similar ion-electron recombination process yielding variable degrees of observable afterpeak emission for copper atom transitions. The kinetic information of these processes was approximated from the corresponding relaxation time. The electron thermalization time allowing for recombination with ions was found to be ∼25 μs after the discharge power termination

  17. Plasma focus - a pulsed radiation source

    International Nuclear Information System (INIS)

    Blagoev, Alexandar; Zapryanov, Stanislav; Gol'tsev, Vasilii; Gemishev, Orlin

    2014-01-01

    The article is devoted to the applications of plasma focus (PF) in radiobiology. Briefly describes the principle of operation of the device and the parameters of the PF type 'Mader' at the Physics Department of the University. Phase pinch discharge zones appear hot and dense plasma, which is a source of X-ray and neutron pulse when the working gas is deuterium. These radiations are essential for biological applications. Besides these bundles are obtained from accelerated charged particles and shock wave of ionized gas. Described are some of the contributions of other authors using PF in radiobiology. Given the results in the exposure of living organisms with soft X-ray emission of PF. We examined the viability of the cells of the two types of yeasts, after irradiation with X-rays at a dose of 65 mSv, where no change was found on the performance. It is shown that soft X-ray radiation doses on the order of tens of mSv, cause a significant change in the productivity of the electronic transport in the photosynthetic apparatus of Chlamydomonas reinhardtii. Trichoderma reesei M7 shows remarkable vitality irradiation with substantial doses of hard X-ray radiation (tens Sv). Appear endoglyukonazata changes in the protein component and the residual mass

  18. Pulsed-plasma gas-discharge inactivation of microbial pathogens in chilled poultry wash water.

    Science.gov (United States)

    Rowan, N J; Espie, S; Harrower, J; Anderson, J G; Marsili, L; MacGregor, S J

    2007-12-01

    A pulsed-plasma gas-discharge (PPGD) system was developed for the novel decontamination of chilled poultry wash water. Treatment of poultry wash water in the plasma generation chamber for up to 24 s at 4 degrees C reduced Escherichia coli NCTC 9001, Campylobacter jejuni ATCC 33560, Campylobacter coli ATCC 33559, Listeria monocytogenes NCTC 9863, Salmonella enterica serovar Enteritidis ATCC 4931, and S. enterica serovar Typhimurium ATCC 14028 populations to non-detectable levels ( or = 3 log CFU/ml) in recalcitrant B. cereus NCTC 11145 endospore numbers within 30 s, the level of endospore reduction was dependent on the nature of the sparged gas used in the plasma treatments. Scanning electron microscopy revealed that significant damage occurred at the cellular level in PPGD-treated test organisms. This electrotechnology delivers energy in intense ultrashort bursts, generating products such as ozone, UV light, acoustic and shock waves, and pulsed electric fields that have multiple bactericidal properties. This technology offers an exciting complementary or alternative approach for treating raw poultry wash water and for preventing cross-contamination in processing environments.

  19. Ozone and dinitrogen monoxide production in atmospheric pressure air dielectric barrier discharge plasma effluent generated by nanosecond pulse superimposed alternating current voltage

    Science.gov (United States)

    Takashima, Keisuke; Kaneko, Toshiro

    2017-06-01

    The effects of nanosecond pulse superposition to alternating current voltage (NS + AC) on the generation of an air dielectric barrier discharge (DBD) plasma and reactive species are experimentally studied, along with measurements of ozone (O3) and dinitrogen monoxide (N2O) in the exhausted gas through the air DBD plasma (air plasma effluent). The charge-voltage cycle measurement indicates that the role of nanosecond pulse superposition is to induce electrical charge transport and excess charge accumulation on the dielectric surface following the nanosecond pulses. The densities of O3 and N2O in NS + AC DBD are found to be significantly increased in the plasma effluent, compared to the sum of those densities generated in NS DBD and AC DBD operated individually. The production of O3 and N2O is modulated significantly by the phase in which the nanosecond pulse is superimposed. The density increase and modulation effects by the nanosecond pulse are found to correspond with the electrical charge transport and the excess electrical charge accumulation induced by the nanosecond pulse. It is suggested that the electrical charge transport by the nanosecond pulse might result in the enhancement of the nanosecond pulse current, which may lead to more efficient molecular dissociation, and the excess electrical charge accumulation induced by the nanosecond pulse increases the discharge coupling power which would enhance molecular dissociation.

  20. Effect of pulse slippage on resonant second harmonic generation of a short pulse laser in a plasma

    International Nuclear Information System (INIS)

    Nitikant; Sharma, A K

    2004-01-01

    The process of second harmonic generation of an intense short pulse laser in a plasma is resonantly enhanced by the application of a magnetic wiggler. The wiggler of suitable wave number k-vector 0 provides necessary momentum to second harmonic photons to make harmonic generation a resonant process. The laser imparts an oscillatory velocity to electrons and exerts a longitudinal ponderomotive force on them at (2ω 1 ,2k-vector 1 ), where ω 1 and k-vector 1 are the frequency and the wave number of the laser, respectively. As the electrons acquire oscillatory velocity at the second harmonic, the wiggler magnetic field beats with it to produce a transverse second harmonic current at (2ω 1 ,2k-vector 1 +k-vector 0 ), driving the second harmonic electromagnetic radiation. However, the group velocity of the second harmonic wave is greater than that of the fundamental wave, hence, the generated pulse slips out of the main laser pulse and its amplitude saturates

  1. Space-Based CO2 Active Optical Remote Sensing using 2-μm Triple-Pulse IPDA Lidar

    Science.gov (United States)

    Singh, Upendra; Refaat, Tamer; Ismail, Syed; Petros, Mulugeta

    2017-04-01

    Sustained high-quality column CO2 measurements from space are required to improve estimates of regional and global scale sources and sinks to attribute them to specific biogeochemical processes for improving models of carbon-climate interactions and to reduce uncertainties in projecting future change. Several studies show that space-borne CO2 measurements offer many advantages particularly over high altitudes, tropics and southern oceans. Current satellite-based sensing provides rapid CO2 monitoring with global-scale coverage and high spatial resolution. However, these sensors are based on passive remote sensing, which involves limitations such as full seasonal and high latitude coverage, poor sensitivity to the lower atmosphere, retrieval complexities and radiation path length uncertainties. CO2 active optical remote sensing is an alternative technique that has the potential to overcome these limitations. The need for space-based CO2 active optical remote sensing using the Integrated Path Differential Absorption (IPDA) lidar has been advocated by the Advanced Space Carbon and Climate Observation of Planet Earth (A-Scope) and Active Sensing of CO2 Emission over Nights, Days, and Seasons (ASCENDS) studies in Europe and the USA. Space-based IPDA systems can provide sustained, high precision and low-bias column CO2 in presence of thin clouds and aerosols while covering critical regions such as high latitude ecosystems, tropical ecosystems, southern ocean, managed ecosystems, urban and industrial systems and coastal systems. At NASA Langley Research Center, technology developments are in progress to provide high pulse energy 2-μm IPDA that enables optimum, lower troposphere weighted column CO2 measurements from space. This system provides simultaneous ranging; information on aerosol and cloud distributions; measurements over region of broken clouds; and reduces influences of surface complexities. Through the continual support from NASA Earth Science Technology Office

  2. Noncircular plasma shape analysis in long-pulse current drive experiment in TRIAM-1M

    International Nuclear Information System (INIS)

    Minooka, Mayumi; Kawasaki, Shoji; Jotaki, Eriko; Moriyama, Shin-ichi; Nagao, Akihiro; Nakamura, Kazuo; Hiraki, Naoji; Nakamura, Yukio; Itoh, Satoshi

    1991-01-01

    Plasma cross section was noncircularized and the plasma shape was analyzed in order to study the characteristics of the plasma in long-pulse current drive experiments in high-field superconducting tokamak TRIAM-1M. Filament approximation method was adopted, since on-line processing by data processing computer is possible. The experiments of the noncircularization were carried out during 30-to 60-sec discharges. As a result, it became clear that D-shape plasma of elongation ratio 1.4 was maintained stably. By the analysis the internal inductance and poloidal beta were assessed, and so informations about the plasma current profile and internal pressure were obtained. (author)

  3. Effect of radiation damping on the interaction of ultra-intense laser pulses with an overdense plasma

    International Nuclear Information System (INIS)

    Zhidkov, Alexei; Koga, James; Sasaki, Akira; Ueshima, Yutaka

    2001-01-01

    The effect of radiation damping on the interaction of an ultra-intense laser pulse with an overdense plasma is studied via relativistic particle-in-cell simulation. The calculation is performed for a Cu solid slab including ionization. We find a strong effect from radiation damping on the electron energy cut-off at about 150 MeV and on the absorption of a laser pulse with an intensity I=5x10 22 W/cm 2 and duration of 20 fs. Hot electrons reradiate more then 10% of the laser energy during the laser pulse. With the laser intensity, the energy loss due to the radiation damping increases as I 3 . In addition, we observe that the laser pulse may not propagate in the plasma even if ω pl 2 /ω 2 γ<1. The increase of skin depth with the laser intensity due to relativistic effects gives rise to the absorption efficiency. (author)

  4. Generation of plasma X-ray sources via high repetition rate femtosecond laser pulses

    Science.gov (United States)

    Baguckis, Artūras; Plukis, Artūras; Reklaitis, Jonas; Remeikis, Vidmantas; Giniūnas, Linas; Vengris, Mikas

    2017-12-01

    In this study, we present the development and characterization of Cu plasma X-ray source driven by 20 W average power high repetition rate femtosecond laser in ambient atmosphere environment. The peak Cu- Kα photon flux of 2.3 × 109 photons/s into full solid angle is demonstrated (with a process conversion efficiency of 10-7), using pulses with peak intensity of 4.65 × 1014 W/cm2. Such Cu- Kα flux is significantly larger than others found in comparable experiments, performed in air environment. The effects of resonance plasma absorption process, when optimized, are shown to increase measured flux by the factor of 2-3. The relationship between X-ray photon flux and plasma-driving pulse repetition rate is quasi-linear, suggesting that fluxes could further be increased to 1010 photons/s using even higher average powers of driving radiation. These results suggest that to fully utilize the potential of high repetition rate laser sources, novel target material delivery systems (for example, jet-based ones) are required. On the other hand, this study demonstrates that high energy lasers currently used for plasma X-ray sources can be conveniently and efficiently replaced by high average power and repetition rate laser radiation, as a way to increase the brightness of the generated X-rays.

  5. Interaction of intense laser pulses with neutral gases and preformed plasmas

    International Nuclear Information System (INIS)

    Mackinnon, A. J.; Borghesi, M.; Iwase, A.; Jones, M. W.; Willi, O.

    1998-01-01

    The interaction of a high intensity laser pulse with a neutral gas or preformed plasma has been studied over a wide range of target and laser conditions. It was found that the propagation of 2ps laser pulses (λ=1.054μm, P=5-10TW, I∼5x10 14 -1x10 14 -1x10 18 Wcm -2 ) in neutral gases with atomic densities greater than 0.001 of critical was strongly influenced by ionisation induced refraction. Preformed density channels were effective in overcoming refraction but the channel length was found to be limited by ionization induced defocusing of the prepulse

  6. Global (volume-averaged) model of inductively coupled chlorine plasma : influence of Cl wall recombination and external heating on continuous and pulse-modulated plasmas

    NARCIS (Netherlands)

    Kemaneci, E.H.; Carbone, E.A.D.; Booth, J.P.; Graef, W.A.A.D.; Dijk, van J.; Kroesen, G.M.W.

    An inductively coupled radio-frequency plasma in chlorine is investigated via a global (volume-averaged) model, both in continuous and square wave modulated power input modes. After the power is switched off (in a pulsed mode) an ion–ion plasma appears. In order to model this phenomenon, a novel

  7. Remote metal analysis by laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Duckworth, A.

    1996-01-01

    This paper describes a new technique by which the composition of irradiated or inaccessible reactor components can be determined remotely. The technique uses very short duration, high energy laser pulses at a wavelength which can be transmitted down an optical fibre to ablate a tiny plasma from the surface of a metal component. Light from the plasma is collected by a second fibre and returned to a spectrometer where it is split into the characteristic emission wavelengths of the elements in the sample. Comparison of the emission line amplitude for a particular element with that of a chosen calibration line can be used to deduce the concentration of the element in the sample. The technique has been used successfully to differentiate between different highly radioactive control rod batches at Sizewell ''A'' and Hinkley Point ''A'' Power Stations. The material analysis accuracy is comparable with that obtained from electron microphobe analysis and other direct spectroscopic methods. However, by analysing the mild steel control rod casing material remotely, difficult sample removal becomes unneccessary and the integrity of the component remains essentially unaltered. In addition, removal of deposits or surface corrosion is incorporated very neatly into the process. These factors make remote laser induced breakdown spectroscopy an ideal tool for material analysis in the nuclear environment. (UK)

  8. Remote metal analysis by laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Duckworth, A.

    1996-01-01

    This paper describes a new technique by which the composition of irradiated or inaccessible reactor components can be determined remotely. The technique uses very short duration, high energy laser pulses at a wavelength which can be transmitted down an optical fibre to ablate a tiny plasma from the surface of a metal component. Light from the plasma is collected by a second fibre and returned to a spectrometer where it is split into the characteristic emission wavelengths of the elements in the sample. Comparison of the emission line amplitude for a particular element with that of a chosen calibrationline can be used to deduce the concentration of the element in the sample. The technique has been used successfully to differentiate between highly radioactive control rod batches at Sizewell 'A' and Hinkley Point 'A Power Stations. The material analysis accuracy is comparable with that obtained from electron microprobe analysis and other direct spectroscopic methods. However, by analysing the mild steel control rod casing material remotely, difficult sample removal becomes unnecessary and the integrity of the component remains essentially unaltered. In addition, removal of deposits or surface corrosion is incorporated very neatly into the process. These factors make remote laser induced breakdown spectroscopy an ideal tool for material analysis in the nuclear environment. (Author)

  9. Control of Reactive Species Generated by Low-frequency Biased Nanosecond Pulse Discharge in Atmospheric Pressure Plasma Effluent

    Science.gov (United States)

    Takashima, Keisuke; Kaneko, Toshiro

    2016-09-01

    The control of hydroxyl radical and the other gas phase species generation in the ejected gas through air plasma (air plasma effluent) has been experimentally studied, which is a key to extend the range of plasma treatment. Nanosecond pulse discharge is known to produce high reduced electric field (E/N) discharge that leads to efficient generation of the reactive species than conventional low frequency discharge, while the charge-voltage cycle in the low frequency discharge is known to be well-controlled. In this study, the nanosecond pulse discharge biased with AC low frequency high voltage is used to take advantages of these discharges, which allows us to modulate the reactive species composition in the air plasma effluent. The utilization of the gas-liquid interface and the liquid phase chemical reactions between the modulated long-lived reactive species delivered from the air plasma effluent could realize efficient liquid phase chemical reactions leading to short-lived reactive species production far from the air plasma, which is crucial for some plasma agricultural applications.

  10. Computers in plasma physics: remote data access and magnetic configuration design

    International Nuclear Information System (INIS)

    Blackwell, B.D.; McMillan, B.F.; Searle, A.C.; Gardner, H.J.; Price, D.M.; Fredian, T.W.

    2000-01-01

    Full text: Two graphically intensive examples of the application of computers in plasma physics are described remote data access for plasma confinement experiments, and a code for real-time magnetic field tracing and optimisation. The application for both of these is the H-1NF National Plasma Fusion Research Facility, a Commonwealth Major National Research Facility within the Research School of Physical Science, Institute of Advanced Studies, ANU. It is based on the 'flexible' heliac stellarator H-1, a plasma confinement device in which the confining fields are generated solely by external conductors. These complex, fully three dimensional magnetic fields are used as examples for the magnetic design application, and data from plasma physics experiments are used to illustrate the remote access techniques. As plasma fusion experiments grow in size, increased remote access allows physicists to participate in experiments and data analysis from their home base. Three types of access will be described and demonstrated - a simple Java-based web interface, an example TCP client-server built around the widely used MDSPlus data system and the visualisation package IDL (RSI Inc), and a virtual desktop Environment (VNC: AT and T Research) that simulates terminals local to the plasma facility. A client server TCP/IP - web interface to the programmable logic controller that provides user interface to the programmable high power magnet power supplies is described. A very general configuration file allows great flexibility, and allows new displays and interfaces to be created (usually) without changes to the underlying C++ and Java code. The magnetic field code BLINE provides accurate calculation of complex magnetic fields, and 3D visualisation in real time, using a low cost multiprocessor computer and an OpenGL-compatible graphics accelerator. A fast, flexible multi-mesh interpolation method is used for tracing vacuum magnetic field lines created by arbitrary filamentary

  11. Measurements of the asymmetric dynamic sheath around a pulse biased sphere immersed in flowing metal plasma

    Science.gov (United States)

    Wu, Hongchen; Anders, André

    2008-08-01

    A long-probe technique was utilized to record the expansion and retreat of the dynamic sheath around a spherical substrate immersed in pulsed cathode arc metal plasma. Positively biased, long cylindrical probes were placed on the side and downstream of a negatively pulsed biased stainless steel sphere of 1 in. (25.4 mm) diameter. The amplitude and width of the negative high voltage pulses (HVPs) were 2 kV, 5 kV, 10 kV, and 2 µs, 4 µs, 10 µs, respectively. The variation of the probe (electron) current during the HVP is a direct measure for the sheath expansion and retreat. Maximum sheath sizes were determined for the different parameters of the HVP. The expected rarefaction zone behind the biased sphere (wake) due to the fast plasma flow was clearly established and quantified.

  12. Effects of pulse frequency of input power on the physical and chemical properties of pulsed streamer discharge plasmas in water

    Czech Academy of Sciences Publication Activity Database

    Ruma, Ruma.; Lukeš, Petr; Aoki, N.; Doležalová, Eva; Hosseini, S.H.R.; Sakugawa, T.; Akiyama, H.

    2013-01-01

    Roč. 46, č. 12 (2013), s. 125202-125202 ISSN 0022-3727 R&D Projects: GA ČR(CZ) GD104/09/H080 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100431203 Program:M Institutional support: RVO:61389021 Keywords : discharge in water * pulsed power * pulse frequency * hydrogen peroxide * organic dye * bacteria * generator * liquids Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.521, year: 2013 http://dx.doi.org/10.1088/0022-3727/46/12/125202

  13. Langmuir probe measurement of the bismuth plasma plume formed by an extreme-ultraviolet pulsed laser

    Czech Academy of Sciences Publication Activity Database

    Pira, P.; Burian, T.; Kolpaková, A.; Tichý, M.; Kudrna, P.; Daniš, S.; Juha, Libor; Lančok, Ján; Vyšín, Luděk; Civiš, Svatopluk; Zelinger, Zdeněk; Kubát, Pavel; Wild, J.

    2014-01-01

    Roč. 47, č. 40 (2014), 1-6 ISSN 0022-3727 R&D Projects: GA ČR(CZ) GAP108/11/1312 Institutional support: RVO:68378271 ; RVO:61388955 Keywords : XUV laser * pulsed laser deposition * Langmuir probe * plasma plume Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.721, year: 2014

  14. Laser plasma as a source of intense attosecond pulses via high-order harmonic generation

    International Nuclear Information System (INIS)

    Ozaki, T.

    2013-01-01

    The incredible progress in ultrafast laser technology and Ti:sapphire lasers have lead to many important applications, one of them being high-order harmonic generation (HHG). HHG is a source of coherent extreme ultraviolet (XUV) radiation, which has opened new frontiers in science by extending nonlinear optics and time-resolved spectroscopy to the XUV region, and pushing ultrafast science to the attosecond domain. Progress in attosecond science has revealed many new phenomena that have not been seen with femtosecond pulses. Clearly, the next frontier is to study nonlinear effects at the attosecond timescale and in the XUV. However, a problem with present-day attosecond pulses is that they are just too weak to induce measurable nonlinearities, which severely limits the application of this source. While HHG from solid targets has shown promise for higher conversion efficiency, there is no experiment so far that demonstrates isolated attosecond pulse generation. The generation of isolated, several 100-as pulses with few-µJ energy will enable us to enter a completely new phase in attoscience. In past works, we have demonstrated that high-order harmonics from lowly ionized plasma is a highly efficient method to generate coherent XUV pulses. For example, indium plasma has been shown to generate intense 13th harmonic of the Ti:sapphire laser, with conversion efficiency of 10-4. However, the quasi-monochromatic nature of indium harmonics would make it difficult to generate attosecond pulses. We have also demonstrated that one could increase the harmonic yield by using nanoparticle targets. Specifically, we showed that by using indium oxide nanoparticles or C60 film, we could obtain intense harmonics between wavelengths of 50 to 90 nm. The energy in each of these harmonic orders was measured to be a few µJ, which is sufficient for many applications. However, the problem of using nanoparticle or film targets is the rapid decrease in the harmonic intensity, due to the rapid

  15. Measurements of the plasma density in the FTU tokamak by a pulsed time-of-flight X-wave refractometer

    International Nuclear Information System (INIS)

    Petrov, V. G.; Petrov, A. A.; Malyshev, A. Yu.; De Benedetti, M.; Tudisco, O.

    2008-01-01

    On-line control over the plasma density in tokamaks (especially, in long-term discharges) requires reliable measurements of the averaged plasma density. For this purpose, a new method of density measurements-a pulsed time-of-flight plasma refractometry-was developed and tested in the T-11M tokamak. This method allows one to determine the averaged density from the measured time delay of nanosecond microwave pulses propagating through the plasma. For an O-wave, the measured time delay is proportional to the line-averaged density and is independent of the density profile (f>>f p ) τ o ∼ k o 1/f 2 ∫ l N(x)dx. Here, f is the frequency of the probing wave, f p is the plasma frequency, l= 4 a is the path length for two-pass probing in the equatorial plane, a is the plasma minor radius, k O and k X are numerical factors, f c is the electron-cyclotron frequency at the axis of the plasma column, and f p >>f c , f. Measurements of the time delay provide the same information as plasma interferometry, though they do no employ the effect of interference. When the conditions f p >>f c , f are not satisfied, the measured time delay depends on the shape of the density profile. In this case, in order to determine the average density regardless of the density profile, it is necessary to perform simultaneous measurements at several probing frequencies in order to determine the average density. In ITER (Bt ∼ 5T), a spectral window between the lower and upper cutoff frequencies in the range of 50-100 GHz can be used for pulsed time-of-flight X-wave refractometry. This appreciably simplifies the diagnostics and eliminates the problem of the first mirror. In this paper, the first results obtained in the FTU tokamak with a prototype of the ITER pulsed time-of-flight refractometer are presented. The geometry and layout of experiments similar to the planned ITER experiments are described. The density measured by pulsed time-of-flight refractometry is shown to agree well with the

  16. Investigations of Pulsed Plasma Streams Generated by 'Prosvet' device Operated with Different Gases

    International Nuclear Information System (INIS)

    Byrka, O.V.; Bandura, A.N.; Chebotarev, V.V. and others

    2006-01-01

    The paper presents the investigations of plasma streams generated by pulsed plasma gun 'Prosvet' operated with different gases: krypton (m=84) and helium (m=4). Contour parameters of working gas spectral lines (full intensities and half-widths) are used for determination of spatial distributions of the electron density and temperature. Temporal distributions of the spectral lines intensities (both neutrals and ions of working gas), impurity spectral lines and continuum intensities are analyzed. Plasma stream velocity was estimated by time-of-flight method between two monochromators (MUM) connected with photo-multiplier. longitudinal distributions of the plasma pressure for different time moments and varied distances from the accelerator output have been used for investigation of the plasma stream dynamics and study the plasma compression in the focus region for different operational regimes of plasma accelerator. Experiments show that operation regime of the accelerator and plasma stream parameters strongly depend on the gas atomic mass

  17. Relativistic Channeling of a Picosecond Laser Pulse in a Near-Critical Preformed Plasma

    International Nuclear Information System (INIS)

    Borghesi, M.; MacKinnon, A.J.; Barringer, L.; Gaillard, R.; Gizzi, L.; Meyer, C.; Willi, O.; Pukhov, A.; Meyer-ter-Vehn, J.

    1997-01-01

    Relativistic self-channeling of a picosecond laser pulse in a preformed plasma near critical density has been observed both experimentally and in 3D particle-in-cell simulations. Optical probing measurements indicate the formation of a single pulsating propagation channel, typically of about 5μm in diameter. The computational results reveal the importance in the channel formation of relativistic electrons traveling with the light pulse and of the corresponding self-generated magnetic field. copyright 1997 The American Physical Society

  18. Remote plasma sputtering of indium tin oxide thin films for large area flexible electronics

    International Nuclear Information System (INIS)

    Yeadon, A.D.; Wakeham, S.J.; Brown, H.L.; Thwaites, M.J.; Whiting, M.J.; Baker, M.A.

    2011-01-01

    Indium tin oxide (ITO) thin films with a specific resistivity of 3.5 × 10 −4 Ω cm and average visible light transmission (VLT) of 90% have been reactively sputtered onto A4 Polyethylene terephthalate (PET), glass and silicon substrates using a remote plasma sputtering system. This system offers independent control of the plasma density and the target power enabling the effect of the plasma on ITO properties to be studied. Characterization of ITO on glass and silicon has shown that increasing the plasma density gives rise to a decrease in the specific resistivity and an increase in the optical band gap of the ITO films. Samples deposited at plasma powers of 1.5 kW, 2.0 kW and 2.5 kW and optimized oxygen flow rates exhibited specific resistivity values of 3.8 × 10 −4 Ω cm, 3.7 × 10 −4 Ω cm and 3.5 × 10 −4 Ω cm and optical gaps of 3.48 eV, 3.51 eV and 3.78 eV respectively. The increase in plasma density also influenced the crystalline texture and the VLT increased from 70 to 95%, indicating that more oxygen is being incorporated into the growing film. It has been shown that the remote plasma sputter technique can be used in an in-line process to produce uniform ITO coatings on PET with specific resistivities of between 3.5 × 10 −4 and 4.5 × 10 −4 Ω cm and optical transmission of greater than 85% over substrate widths of up to 30 cm.

  19. Experimental platform for investigations of high-intensity laser plasma interactions in the magnetic field of a pulsed power generator

    Science.gov (United States)

    Ivanov, V. V.; Maximov, A. V.; Swanson, K. J.; Wong, N. L.; Sarkisov, G. S.; Wiewior, P. P.; Astanovitskiy, A. L.; Covington, A. M.

    2018-03-01

    An experimental platform for the studying of high-intensity laser plasma interactions in strong magnetic fields has been developed based on the 1 MA Zebra pulsed power generator coupled with the 50-TW Leopard laser. The Zebra generator produces 100-300 T longitudinal and transverse magnetic fields with different types of loads. The Leopard laser creates plasma at an intensity of 1019 W/cm2 in the magnetic field of coil loads. Focusing and targeting systems are integrated in the vacuum chamber of the pulsed power generator and protected from the plasma debris and strong mechanical shock. The first experiments with plasma at laser intensity >2 × 1018 W/cm2 demonstrated collimation of the laser produced plasma in the axial magnetic field strength >100 T.

  20. Long pulse operation of high performance plasmas in JT-60U

    International Nuclear Information System (INIS)

    Ide, Shunsuke

    2005-01-01

    Recent experimental progress in JT-60U advanced tokamak research is presented; sustainment of the normalized beta (β N ) - 3 in a normal magnetic shear plasma, the bootstrap current fraction (f BS ) - 45% in a weak shear plasma and ∼75% in a reversed magnetic shear plasma in a nearly full non-inductive current drive condition for longer than the current relaxation time. Achievement of high-density high-radiation fraction together with high-confinement in advanced plasmas was demonstrated. Achievement and foundings in long pulse operations after system modification are presented as well. A 65 s discharge of I p =0.7 MA was successfully obtained. As a result, high-β N of 2.3 was successfully sustained for a very long period of 22.3 s. In addition, a 30 s standard ELMy H-mode plasma of I p up to 1.4 MA has also been obtained. Effectiveness of divertor pumping to control particle recycling and the electron density under the wall retention was saturated was demonstrated. These achievement and issues in the development will be discussed. (author)

  1. Diagnostics of plasma produced by femtosecond laser pulse impact upon a target with an internal nanostructure

    International Nuclear Information System (INIS)

    Skobelev, I. Yu.; Faenov, A. Ya.; Gasilov, S. V.; Pikuz, T. A.; Pikuz, S. A.; Magunov, A. I.; Boldarev, A. S.; Gasilov, V. A.

    2010-01-01

    X-ray diagnostics of the interaction of femtosecond laser pulses with intensities of 10 16 -10 18 W/cm 2 with CO 2 clusters and frozen nanosize water particles is carried out. The stage of cluster expansion and the formation of a plasma channel, which governs the parameters of the formed X-ray radiation source and accelerated ion flows, is studied. The measurements are based on recording spatially resolved X-ray spectra of H- and He-like oxygen ions. Utilization of Rydberg transitions for spectra diagnostics makes it possible to determine plasma parameters on a time scale of t ∼ 10 ps after the beginning of a femtosecond pulse. The role of the rear edge of the laser pulse in sustaining the plasma temperature at a level of ∼100 eV in the stage of a nonadiabatic cluster expansion is shown. The analysis of the profiles and relative intensities of spectral lines allows one to determine the temperature and density of plasma electrons and distinguish the populations of 'thermal' ions and ions that are accelerated up to energies of a few tens of kiloelectronvolts. It is shown that the use of solid clusters made of frozen nanoscale water droplets as targets leads to a substantial increase in the number of fast He-like ions. In this case, however, the efficiency of acceleration of H-like ions does not increase, because the time of their ionization in plasma exceeds the time of cluster expansion.

  2. Pulse holographic measurement techniques

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Baik, Seong Hoon; Hong, Seok Kyung; Kim, Jeong Moog; Kim, Duk Hyun

    1992-01-01

    With the development of laser, remote inspection techniques using laser have been growing on. The inspection and measurement techniques by pulse holography are well-established technique for precise measurement, and widely used in various fields of industry now. In nuclear industry, this technology is practically used because holographic inspection is remote, noncontact, and precise measurement technique. In relation to remote inspection technology in nuclear industry, state-of-the art of pulse HNDT (Holographic non-destructive testing) and holographic measurement techniques are examined. First of all, the fundamental principles as well as practical problems for applications are briefly described. The fields of pulse holography have been divided into the HNDT, flow visualization and distribution study, and other application techniques. Additionally holographic particle study, bubble chamber holography, and applications to other visualization techniques are described. Lastly, the current status for the researches and applications of pulse holography to nuclear industry which are carried out actively in Europe and USA, is described. (Author)

  3. Electron Hole Plasma in Solids Induced by Ultrashort XUV Laser Pulses

    International Nuclear Information System (INIS)

    Rethfeld, B.; Medvedev, N.

    2013-01-01

    Irradiation of solids with ultrashort XUV laser pulses leads to an excitation of electrons from the valence band and deeper shells to the conduction band leading to a nonequilibrium highly energetic electron hole plasma. We investigate the transient electron dynamics in a solid semiconductor and metal (silicon and aluminum, respectively) under irradiation with a femtosecond VUV to XUV laser pulse as used in experiments with the Free Electron Laser FLASH at DESY in Hamburg, Germany. Applying the Asymptotical Trajectory Monte-Carlo technique, we obtain the transient energy distribution of the excited and ionized electrons within the solid. Photon absorption by electrons in different bands and secondary excitation and ionization processes are simulated event by event. The method was extended in order to take into account the electronic band structure and Pauli's principle for electrons in the conduction band. In this talk we review our results on the dynamics of the transient electron-hole plasma, in particular its transient density and energy distribution in dependence on laser and material parameters. For semiconductors we introduce the concept of an ''effective energy gap'' for collective electronic excitation, which can be applied to estimate the free electron density after high-intensity ultrashort XUV laser pulse irradiation. For aluminum we demonstrate that the electronic spectra depend on the relaxation kinetics of the excited electronic subsystem. Experimentally observed spectra of emitted photons from irradiated aluminum can be explained well with our results. (author)

  4. Electron energy distributions and electron impact source functions in Ar/N{sub 2} inductively coupled plasmas using pulsed power

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Michael D., E-mail: mdlogue@umich.edu; Kushner, Mark J., E-mail: mjkush@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122 (United States)

    2015-01-28

    In plasma materials processing, such as plasma etching, control of the time-averaged electron energy distributions (EEDs) in the plasma allows for control of the time-averaged electron impact source functions of reactive species in the plasma and their fluxes to surfaces. One potential method for refining the control of EEDs is through the use of pulsed power. Inductively coupled plasmas (ICPs) are attractive for using pulsed power in this manner because the EEDs are dominantly controlled by the ICP power as opposed to the bias power applied to the substrate. In this paper, we discuss results from a computational investigation of EEDs and electron impact source functions in low pressure (5–50 mTorr) ICPs sustained in Ar/N{sub 2} for various duty cycles. We find there is an ability to control EEDs, and thus source functions, by pulsing the ICP power, with the greatest variability of the EEDs located within the skin depth of the electromagnetic field. The transit time of hot electrons produced in the skin depth at the onset of pulse power produces a delay in the response of the EEDs as a function of distance from the coils. The choice of ICP pressure has a large impact on the dynamics of the EEDs, whereas duty cycle has a small influence on time-averaged EEDs and source functions.

  5. Plasma interactions determine the composition in pulsed laser deposited thin films

    Science.gov (United States)

    Chen, Jikun; Döbeli, Max; Stender, Dieter; Conder, Kazimierz; Wokaun, Alexander; Schneider, Christof W.; Lippert, Thomas

    2014-09-01

    Plasma chemistry and scattering strongly affect the congruent, elemental transfer during pulsed laser deposition of target metal species in an oxygen atmosphere. Studying the plasma properties of La0.6Sr0.4MnO3, we demonstrate for as grown La0.6Sr0.4MnO3-δ films that a congruent transfer of metallic species is achieved in two pressure windows: ˜10-3 mbar and ˜2 × 10-1 mbar. In the intermediate pressure range, La0.6Sr0.4MnO3-δ becomes cation deficient and simultaneously almost fully stoichiometric in oxygen. Important for thin film growth is the presence of negative atomic oxygen and under which conditions positive metal-oxygen ions are created in the plasma. This insight into the plasma chemistry shows why the pressure window to obtain films with a desired composition and crystalline structure is narrow and requires a careful adjustment of the process parameters.

  6. Development and characterization of a high yield transportable pulsed neutron source with efficient and compact pulsed power system

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Rishi, E-mail: rishiv9@gmail.com, E-mail: rishiv@barc.gov.in; Mishra, Ekansh; Dhang, Prosenjit; Sagar, Karuna; Meena, Manraj; Shyam, Anurag [Energetics and Electromagnetics Division, Bhabha Atomic Research Centre Autonagar, Vishakapatnam 530012 (India)

    2016-09-15

    The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ∼10 kJ is segregated into four modules of ∼2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA–600 kA (corresponding to charging voltage range of 14 kV–18 kV) in a quarter time period of ∼2 μs. The neutron yield performance of this device has been optimized by discretely varying deuterium filling gas pressure in the range of 6 mbar–11 mbar at ∼17 kV/550 kA discharge. At ∼7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ∼4 × 10{sup 9} neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ∼2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.

  7. Measurements of ion temperature and flow of pulsed plasmas produced by a magnetized coaxial plasma gun device using an ion Doppler spectrometer

    Science.gov (United States)

    Kitagawa, Y.; Sakuma, I.; Iwamoto, D.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    It is important to know surface damage characteristics of plasma-facing component materials during transient heat and particle loads such as type I ELMs. A magnetized coaxial plasma gun (MCPG) device has been used as transient heat and particle source in ELM simulation experiments. Characteristics of pulsed plasmas produced by the MCPG device play an important role for the plasma material interaction. In this study, ion temperature and flow velocity of pulsed He plasmas were measured by an ion Doppler spectrometer (IDS). The IDS system consists of a light collection system including optical fibers, 1m-spectrometer and a 16 channel photomultiplier tube (PMT) detector. The IDS system measures the width and Doppler shift of HeII (468.58 nm) emission line with the time resolution of 1 μs. The Doppler broadened and shifted spectra were measured with 45 and 135 degree angles with respect to the plasmoid traveling direction. The observed emission line profile was represented by sum of two Gaussian components to determine the temperature and flow velocity. The minor component at around the wavelength of zero-velocity was produced by the stationary plasma. As the results, the ion velocity and temperature were 68 km/s and 19 eV, respectively. Thus, the He ion flow energy is 97 eV. The observed flow velocity agrees with that measured by a time of flight technique.

  8. Transient magnetized plasma as an optical element for high power laser pulses

    Directory of Open Access Journals (Sweden)

    Nobuhiko Nakanii

    2015-02-01

    Full Text Available Underdense plasma produced in gas jets by low intensity laser prepulses in the presence of a static magnetic field, B∼0.3  T, is shown experimentally to become an optical element allowing steering of tightly focused high power femtosecond laser pulses within several degrees along with essential enhancement of pulse’s focusability. Strong laser prepulses form a density ramp perpendicularly to magnetic field direction and, owing to the light refraction, main laser pulses propagate along the magnetic field even if it is tilted from the laser axis. Electrons generated in the laser pulse wake are well collimated and follow in the direction of the magnetic field; their characteristics are measured to be not sensitive to the tilt of magnetic field up to angles ±5°.

  9. Remote plasma enhanced chemical deposition of non-crystalline GeO2 on Ge and Si substrates.

    Science.gov (United States)

    Lucovsky, Gerald; Zeller, Daniel

    2011-09-01

    Non-crystalline GeO2 films remote were plasma deposited at 300 degrees C onto Ge substrates after a final rinse in NH4OH. The reactant precursors gas were: (i) down-stream injected 2% GeH4 in He as the Ge precursor, and (ii) up-stream, plasma excited O2-He mixtures as the O precursor. Films annealed at 400 degrees C displayed no evidence for loss of O resulting in Ge sub-oxide formation, and for a 5-6 eV mid-gap absorption associated with formation of GeOx suboxide bonding, x deposited on Ge and annealed at 600 degrees C and 700 degrees C display spectra indicative of loss of O-atoms, accompanied with a 5.5 eV absorption. X-ray absorption spectroscopy and many-electron theory are combined to describe symmetries and degeneracies for O-vacancy bonding defects. These include comparisons with remote plasma-deposited non-crystalline SiO2 on Si substrates with SiON interfacial layers. Three different properties of remote plasma GeO2 films are addressed comparisons between (i) conduction band and band edge states of GeO2 and SiO2, and (ii) electronic structure of O-atom vacancy defects in GeO2 and SiO2, and differences between (iii) annealing of GeO2 films on Ge substrates, and Si substrates passivated with SiON interfacial transition regions important for device applications.

  10. Purification of water by bipolar pulsed discharge plasma combined with TiO2 catalysis

    International Nuclear Information System (INIS)

    Zhang, Yongrui; Ma, Wenchang; Zhang, Xian; Wang, Liming; Zhang, Ruobing; Guan, Zhicheng

    2013-01-01

    In the process of water treatment by bipolar pulsed discharge plasma, there are not only the chemical effects such as the cold plasma, but also the physical effects such as the optical radiation. The energy of the optical radiation can be used by photocatalyst. Therefore, the effect of the photocatalyst to the degradation of the organic pollutant was investigated using a packed bed reactor by bipolar pulsed discharge in the air-liquid-solid mixture. The nanoparticle TiO 2 photocatalyst was obtained using the sol-gel method and the typical dye solution Indigo Carmine was chosen as the degradation target to test the catalytic effect of the nanoparticle TiO 2 photocatalyst. Experiment results proved that the degradation efficiency of the Indigo Carmine solution was increased by a certain extent with the TiO 2 photocatalyst. It was totally decolorized within 3 minutes by bipolar pulsed discharge in the condition that the peak voltage was 30 kV and the air flow was 1.0 m 3 h −1 .

  11. Generation of uniform low-temperature plasma in a pulsed non-self-sustained glow discharge with a large-area hollow cathode

    Energy Technology Data Exchange (ETDEWEB)

    Akhmadeev, Yu. H.; Denisov, V. V., E-mail: volodyadenisov@yandex.ru; Koval, N. N.; Kovalsky, S. S.; Lopatin, I. V.; Schanin, P. M.; Yakovlev, V. V. [Russian Academy of Sciences, Institute of High-Current Electronics, Siberian Branch (Russian Federation)

    2017-01-15

    Generation of plasma in a pulsed non-self-sustained glow discharge with a hollow cathode with an area of ≥2 m{sup 2} at gas pressures of 0.4–1 Pa was studied experimentally. At an auxiliary arc-discharge current of 100 A and a main discharge voltage of 240 V, a pulse-periodic glow discharge with a current amplitude of 370 A, pulse duration of 340 μs, and repetition rate of 1 kHz was obtained. The possibility of creating a uniform gas-discharge plasma with a density of up to 10{sup 12} cm{sup −3} and an electron temperature of 1 eV in a volume of >0.2 m{sup 3} was demonstrated. Such plasma can be efficiently used to treat material surfaces and generate pulsed ion beams with a current density of up to 15 mA/cm{sup 2}.

  12. Plasma luminescence feedback control system for precise ultrashort pulse laser tissue ablation

    Science.gov (United States)

    Kim, Beop-Min; Feit, Michael D.; Rubenchik, Alexander M.; Gold, David M.; Darrow, Christopher B.; Marion, John E., II; Da Silva, Luiz B.

    1998-05-01

    Plasma luminescence spectroscopy was used for precise ablation of bone tissue without damaging nearby soft tissue using an ultrashort pulse laser. Strong contrast of the luminescence spectra between bone marrow and spinal cord provided the real time feedback control so bone tissue is selectively ablated while preserving the spinal cord.

  13. Optimal pulse modulator design criteria for plasma source ion implanters

    International Nuclear Information System (INIS)

    Reass, W.

    1993-01-01

    This paper describes what are believed to be the required characteristics of a high-voltage modulator for efficient and optimal ion deposition from the ''Plasma Source Ion Implantation'' (PSII) process. The PSII process is a method to chemically or physically alter and enhance surface properties of objects by placing them in a weakly ionized plasma and pulsing the object with a high negative voltage. The attracted ions implant themselves and form chemical bonds or are interstitially mixed with the base material. Present industrial uses of implanted objects tends to be for limited-production, high-value-added items. Traditional implanting hardware uses the typical low-current (ma) semiconductor ''raster scan'' implanters. The targets must also be manipulated to maintain a surface normal to the ion beam. The PSII method can provide ''bulk'' equipment processing on a large industrial scale. For the first generation equipment, currents are scaled from milliamps to hundreds of amps, voltages to -175kV, at kilohertz rep-rates, and high plasma ion densities

  14. Measurements of the asymmetric dynamic sheath around a pulse biased sphere immersed in flowing metal plasma

    International Nuclear Information System (INIS)

    Wu Hongchen; Anders, Andre

    2008-01-01

    A long-probe technique was utilized to record the expansion and retreat of the dynamic sheath around a spherical substrate immersed in pulsed cathode arc metal plasma. Positively biased, long cylindrical probes were placed on the side and downstream of a negatively pulsed biased stainless steel sphere of 1 in. (25.4 mm) diameter. The amplitude and width of the negative high voltage pulses (HVPs) were 2 kV, 5 kV, 10 kV, and 2 μs, 4 μs, 10 μs, respectively. The variation of the probe (electron) current during the HVP is a direct measure for the sheath expansion and retreat. Maximum sheath sizes were determined for the different parameters of the HVP. The expected rarefaction zone behind the biased sphere (wake) due to the fast plasma flow was clearly established and quantified.

  15. Enhanced Electron Attachment to Highly-Excited Molecules and Its Applications in Pulsed Plasmas

    International Nuclear Information System (INIS)

    Ding, W.X.; Ma, C.Y.; McCorkle, D.L.; Pinnaduwage, L.A.

    1999-01-01

    Studies conducted over the past several years have shown that electron attachment to highly-excited states of molecules have extremely large cross sections. We will discuss the implications of this for pulsed discharges used for H - generation, material processing, and plasma remediation

  16. Modification of Pulsed Electric Field Conditions Results in Distinct Activation Profiles of Platelet-Rich Plasma.

    Science.gov (United States)

    Frelinger, Andrew L; Gerrits, Anja J; Garner, Allen L; Torres, Andrew S; Caiafa, Antonio; Morton, Christine A; Berny-Lang, Michelle A; Carmichael, Sabrina L; Neculaes, V Bogdan; Michelson, Alan D

    2016-01-01

    Activated autologous platelet-rich plasma (PRP) used in therapeutic wound healing applications is poorly characterized and standardized. Using pulsed electric fields (PEF) to activate platelets may reduce variability and eliminate complications associated with the use of bovine thrombin. We previously reported that exposing PRP to sub-microsecond duration, high electric field (SMHEF) pulses generates a greater number of platelet-derived microparticles, increased expression of prothrombotic platelet surfaces, and differential release of growth factors compared to thrombin. Moreover, the platelet releasate produced by SMHEF pulses induced greater cell proliferation than plasma. To determine whether sub-microsecond duration, low electric field (SMLEF) bipolar pulses results in differential activation of PRP compared to SMHEF, with respect to profiles of activation markers, growth factor release, and cell proliferation capacity. PRP activation by SMLEF bipolar pulses was compared to SMHEF pulses and bovine thrombin. PRP was prepared using the Harvest SmartPreP2 System from acid citrate dextrose anticoagulated healthy donor blood. PEF activation by either SMHEF or SMLEF pulses was performed using a standard electroporation cuvette preloaded with CaCl2 and a prototype instrument designed to take into account the electrical properties of PRP. Flow cytometry was used to assess platelet surface P-selectin expression, and annexin V binding. Platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), endothelial growth factor (EGF) and platelet factor 4 (PF4), and were measured by ELISA. The ability of supernatants to stimulate proliferation of human epithelial cells in culture was also evaluated. Controls included vehicle-treated, unactivated PRP and PRP with 10 mM CaCl2 activated with 1 U/mL bovine thrombin. PRP activated with SMLEF bipolar pulses or thrombin had similar light scatter profiles, consistent with the presence of platelet

  17. Modification of Pulsed Electric Field Conditions Results in Distinct Activation Profiles of Platelet-Rich Plasma.

    Directory of Open Access Journals (Sweden)

    Andrew L Frelinger

    Full Text Available Activated autologous platelet-rich plasma (PRP used in therapeutic wound healing applications is poorly characterized and standardized. Using pulsed electric fields (PEF to activate platelets may reduce variability and eliminate complications associated with the use of bovine thrombin. We previously reported that exposing PRP to sub-microsecond duration, high electric field (SMHEF pulses generates a greater number of platelet-derived microparticles, increased expression of prothrombotic platelet surfaces, and differential release of growth factors compared to thrombin. Moreover, the platelet releasate produced by SMHEF pulses induced greater cell proliferation than plasma.To determine whether sub-microsecond duration, low electric field (SMLEF bipolar pulses results in differential activation of PRP compared to SMHEF, with respect to profiles of activation markers, growth factor release, and cell proliferation capacity.PRP activation by SMLEF bipolar pulses was compared to SMHEF pulses and bovine thrombin. PRP was prepared using the Harvest SmartPreP2 System from acid citrate dextrose anticoagulated healthy donor blood. PEF activation by either SMHEF or SMLEF pulses was performed using a standard electroporation cuvette preloaded with CaCl2 and a prototype instrument designed to take into account the electrical properties of PRP. Flow cytometry was used to assess platelet surface P-selectin expression, and annexin V binding. Platelet-derived growth factor (PDGF, vascular endothelial growth factor (VEGF, endothelial growth factor (EGF and platelet factor 4 (PF4, and were measured by ELISA. The ability of supernatants to stimulate proliferation of human epithelial cells in culture was also evaluated. Controls included vehicle-treated, unactivated PRP and PRP with 10 mM CaCl2 activated with 1 U/mL bovine thrombin.PRP activated with SMLEF bipolar pulses or thrombin had similar light scatter profiles, consistent with the presence of platelet

  18. Development of a low-energy and high-current pulsed neutral beam injector with a washer-gun plasma source for high-beta plasma experiments.

    Science.gov (United States)

    Ii, Toru; Gi, Keii; Umezawa, Toshiyuki; Asai, Tomohiko; Inomoto, Michiaki; Ono, Yasushi

    2012-08-01

    We have developed a novel and economical neutral-beam injection system by employing a washer-gun plasma source. It provides a low-cost and maintenance-free ion beam, thus eliminating the need for the filaments and water-cooling systems employed conventionally. In our primary experiments, the washer gun produced a source plasma with an electron temperature of approximately 5 eV and an electron density of 5 × 10(17) m(-3), i.e., conditions suitable for ion-beam extraction. The dependence of the extracted beam current on the acceleration voltage is consistent with space-charge current limitation, because the observed current density is almost proportional to the 3/2 power of the acceleration voltage below approximately 8 kV. By optimizing plasma formation, we successfully achieved beam extraction of up to 40 A at 15 kV and a pulse length in excess of 0.25 ms. Its low-voltage and high-current pulsed-beam properties enable us to apply this high-power neutral beam injection into a high-beta compact torus plasma characterized by a low magnetic field.

  19. Plasma source ion implantation of metal ions: Synchronization of cathodic-arc plasma production and target bias pulses

    International Nuclear Information System (INIS)

    Wood, B.P.; Reass, W.A.; Henins, I.

    1995-01-01

    An erbium cathodic-arc has been installed on a Plasma Source Ion Implantation (PSII) experiment to allow the implantation of erbium metal and the growth of adherent erbia (erbium oxide) films on a variety of substrates. Operation of the PSII pulser and the cathodic-arc are synchronized to achieve pure implantation, rather than the hybrid implantation/deposition being investigated in other laboratories. The relative phase of the 20 μs PSII and cathodic-arc pulses can to adjusted to tailor the energy distribution of implanted ions and suppress the initial high-current drain on the pulse modulator. The authors present experimental data on this effect and make a comparison to results from particle-in-cell simulations

  20. Cathode material and pulsed plasma treatment influence on the microstructure and microhardness of high-chromium cast iron surface

    Directory of Open Access Journals (Sweden)

    Юлія Геннадіївна Чабак

    2016-11-01

    Full Text Available The article presents an analysis of the cathode material and the pulse plasma treatment mode influence on the surface microstructure and microhardness of high chrome (15% Cr cast iron. The methods of metallographic analysis and microhardness measurements were used. It has been shown that pulsed plasma treatment at 4 kV voltage with the use of the electro-axial thermal accelerator results in surface modification with high microhardness 950-1050 HV50, and in the formation of the coating due to the transfer of the electrodes material. The specific features of using different cathode materials have been systematized. It has been found that graphite electrodes are not recommended to be used due to their low strength and fracture under plasma pulses. In case of using tungsten cathode a coating of small thickness (20-30 microns and having cracks has been formed on the specimen surface. The most expedient is to apply the electrodes with low melting point (such as killed St.3, which provides a high-quality state of treated surface and formation the protective crack-free coating of 80-100 microns thick. It has been found that as a result of the plasma pulsed treatment the enrichment of coating with carbon is likely to occur that results in microhardness increase. The prospects of this technology as well as its shortcomings have been described

  1. Propagation of an intense laser pulse in an under-dense plasma: channeling and stimulated Raman scattering

    International Nuclear Information System (INIS)

    Friou, A.

    2012-01-01

    This thesis is divided in two parts: i) the laser channeling in hundreds of microns long under-dense plasmas (0.1 nc ≤ n ≤ nc, nc being the critical density) of a laser pulse of intensity 10 18-20 W/cm 2 and duration 1-10 ps; ii) the saturation mechanisms of stimulated Raman back-scattering of a laser pulse of intensity 10 14 to 10 16 W/cm 2 and duration of about 1 ps. A parametric study was performed to study the channeling of a very intense laser pulse, using a 2D PIC (Particle In Cell) code. Various kinds of channels were obtained depending on the laser and plasma parameters, thereby reproducing and enlarging previous studies. Moreover, the channeling velocity was measured and scaling laws were established for homogeneous plasmas. They are then applied to inhomogeneous plasmas, similar to those encountered in inertial confinement fusion (ICF). It is then possible to estimate the energy necessary to channel to the critical density, an important step for the fast ignition scheme of ICF. Raman saturation was studied using numerical simulations, in order to determine if it is due to dephasing or to the growth of sidebands, using different approaches. The first is to study Raman simulations (electromagnetic) performed with kinetic PIC and Vlasov codes. The second, is to study the evolution of a plasma initialized with a distribution function after the adiabatic theory, using a Vlasov code (electrostatic). In this case, we observe the growth of a sideband, with dominant wave number and growth rate in good agreement with kinetic simulations. The saturation of the plasma wave can be caused by both saturation mechanisms. [fr

  2. Study of plasma wall interactions in the long-pulse NB-heated discharges of JT-60U towards steady-state operation

    International Nuclear Information System (INIS)

    Takenaga, H.; Asakura, N.; Higashijima, S.; Nakano, T.; Kubo, H.; Konoshima, S.; Oyama, N.; Isayama, A.; Ide, S.; Fujita, T.; Miura, Y.

    2005-01-01

    Long time scale variation of plasma-wall interactions and its impact on particle balance, main plasma performance and particle behavior have been investigated in ELMy H-mode plasmas by extending the discharge pulse and the neutral beam heating pulse to 65 s and 30 s, respectively. The wall pumping rate starts to decrease in the latter phase by repeating the long-pulse discharges with 60% of Greenwald density sustained by gas-puffing. After several discharges, the wall inventory is saturated in the latter phase and, consequently, the density increases with neutral beam fuelling only. The edge pressure in the main plasma is reduced and ELMs are close to the type III regime under conditions of wall saturation. The intensities of C II emission near the X-point and CD band emission in the inner divertor start to increase before the wall saturates and continue to increase after the wall is saturated

  3. On the intrinsic moisture permeation rate of remote microwave plasma-deposited silicon nitride layers

    NARCIS (Netherlands)

    van Assche, F. J. H.; Unnikrishnan, S.; Michels, J. J.; van Mol, A. M. B.; van de Weijer, P.; M. C. M. van de Sanden,; Creatore, M.

    2014-01-01

    We report on a low substrate temperature (110 °C) remote microwave plasma-enhanced chemical vapor deposition (PECVD) process of silicon nitride barrier layers against moisture permeation for organic light emitting diodes (OLEDs) and other moisture sensitive devices such as organic

  4. Development of high energy pulsed plasma simulator for plasma-lithium trench experiment

    Science.gov (United States)

    Jung, Soonwook

    To simulate detrimental events in a tokamak and provide a test-stand for a liquid lithium infused trench (LiMIT) device, a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. An overall objective of the project is to develop a compact device that can produce 100 MW/m2 to 1 GW/m2 of plasma heat flux (a typical heat flux level in a major fusion device) in ~ 100 mus (≤ 0.1 MJ/m2) for a liquid lithium plasma facing component research. The existing theta pinch device, DEVeX, was built and operated for study on lithium vapor shielding effect. However, a typical plasma energy of 3 - 4 kJ/m2 is too low to study an interaction of plasma and plasma facing components in fusion devices. No or little preionized plasma, ringing of magnetic field, collisions of high energy particles with background gas have been reported as the main issues. Therefore, DEVeX is reconfigured to mitigate these issues. The new device is mainly composed of a plasma gun for a preionization source, a theta pinch for heating, and guiding magnets for a better plasma transportation. Each component will be driven by capacitor banks and controlled by high voltage / current switches. Several diagnostics including triple Langmuir probe, calorimeter, optical emission measurement, Rogowski coil, flux loop, and fast ionization gauge are used to characterize the new device. A coaxial plasma gun is manufactured and installed in the previous theta pinch chamber. The plasma gun is equipped with 500 uF capacitor and a gas puff valve. The increase of the plasma velocity with the plasma gun capacitor voltage is consistent with the theoretical predictions and the velocity is located between the snowplow model and the weak - coupling limit. Plasma energies measured with the calorimeter ranges from 0.02 - 0.065 MJ/m2 and increases with the voltage at the capacitor bank. A cross-check between the plasma energy measured with the calorimeter and the triple probe

  5. A Guillemin type E pulse forming network as the driver for a pulsed, high density plasma source.

    Science.gov (United States)

    Rathod, Priyavandna J; Anitha, V P; Sholapurwala, Z H; Saxena, Y C

    2014-06-01

    A Guillemin type E pulse forming network (PFN) has been designed, developed, and tested for its application in generating high density (~1 × 10(18) m(-3)) plasmas. In the present study, plasma thus generated is utilized to investigate the interaction of high power microwaves (HPMs) with plasma in an experimental architecture known as SYMPLE (System for Microwave PLasma Experiment). Plasma discharges of ~100 μs (max) duration are to be produced, by delivering energy of 5 kJ stored in a PFN to the plasma source, a washer gun. The output of the PFN, in terms of its rise time, flat top and amplitude, needs to be tailored, depending on the experimental requirements. An ignitron (NL8900) trigger generator (ITG) is developed in-house to control the PFN discharge through the gun. This ITG is also to be used in a circuit that synchronizes the HPM and plasma shots, to ensure that HPM-plasma interaction takes place during a temporal regime where appropriate parametric conditions are satisfied. Hence it is necessary to retain the jitter within ±2.5 μs. Further, requirement on plasma quiescence (~10%) necessitates maintaining the ripple within 5%. The developmental work of the PFN, keeping in view the above criteria and the test results, is presented in this paper. The parameters of the PFN have been analytically approximated and verified with PSPICE simulation. The test results presented include rise time ~5-8 μs, flat top variable in the range 20-100 μs, ripple within ~1.5%, and jitter within ±2.5 μs, producing quiescent (plasma discharge meeting the experimental requirements.

  6. Shaping of pulses in optical grating-based laser systems for optimal control of electrons in laser plasma wake-field accelerator

    International Nuclear Information System (INIS)

    Toth, Cs.; Faure, J.; Geddes, C.G.R.; Tilborg, J. van; Leemans, W.P.

    2003-01-01

    In typical chirped pulse amplification (CPA) laser systems, scanning the grating separation in the optical compressor causes the well know generation of linear chirp of frequency vs. time in a laser pulse, as well as a modification of all the higher order phase terms. By setting the compressor angle slightly different from the optimum value to generate the shortest pulse, a typical scan around this value will produce significant changes to the pulse shape. Such pulse shape changes can lead to significant differences in the interaction with plasmas such as used in laser wake-field accelerators. Strong electron yield dependence on laser pulse shape in laser plasma wake-field electron acceleration experiments have been observed in the L'OASIS Lab of LBNL [1]. These experiments show the importance of pulse skewness parameter, S, defined here on the basis of the ratio of the ''head-width-half-max'' (HWHM) and the ''tail-width-halfmax'' (TWHM), respectively

  7. Extraction of a long-pulsed intense electron beam from a pulsed plasma based on hollow cathode discharge

    International Nuclear Information System (INIS)

    Uramoto, Johshin.

    1977-05-01

    An intense electron beam (up to 1.0 kV, 0.8 kA in 0.8 cm phi) is extracted along a uniform magnetic field with a long decay time (up to 2 msec) from a pulsed high density plasma source which is produced with a fast rise time (< 100 μsec) by a secondary discharge based on a dc hollow cathode discharge. Through a back stream of ionized ions from a beam-extracting anode region where a neutral gas is fed, a space charge limit of the electron beam is so reduced that the beam current is determined by an initially injected electron flux and concentrated in a central aperture of the extracting anode. Moreover, the beam pulse width is much extended by the neutral gas feed into the anode space. (auth.)

  8. Particle-in-cell simulations of high energy electron production by intense laser pulses in underdense plasmas

    International Nuclear Information System (INIS)

    Susumu, Kato; Eisuke, Miura; Kazuyoshi, Koyama; Mitsumori, Tanimoto; Masahiro, Adachi

    2004-01-01

    The propagation of intense laser pulses and the generation of high energy electrons from underdense plasmas are investigated using two dimensional particle-in-cell simulations. When the ratio of the laser power to the critical power of relativistic self-focusing gets the optimal value, the laser pulse propagates in a steady way and electrons have maximum energies. (author)

  9. Particle-in-cell simulations of high energy electron production by intense laser pulses in underdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Susumu, Kato; Eisuke, Miura; Kazuyoshi, Koyama [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan); Mitsumori, Tanimoto [Meisei Univ., Dept. of Electrical Engineering, Hino, Tokyo (Japan); Masahiro, Adachi [Hiroshima Univ., Graduate school of Advanced Science of Matter, Higashi-Hiroshima, Hiroshima (Japan)

    2004-07-01

    The propagation of intense laser pulses and the generation of high energy electrons from underdense plasmas are investigated using two dimensional particle-in-cell simulations. When the ratio of the laser power to the critical power of relativistic self-focusing gets the optimal value, the laser pulse propagates in a steady way and electrons have maximum energies. (author)

  10. Pulse pileup effects of plasma electron temperature measurements by soft x-ray energy analysis

    International Nuclear Information System (INIS)

    Dyer, G.R.; Neilson, G.H.; Kelley, G.G.

    1978-10-01

    The electron temperature of hot plasmas is conveniently derived from bremsstrahlung spectra obtained by pulse-height analysis using a lithium-compensated silicon detector. Time-resolved temperature measurements require high counting rates, with ultimate rate limited by pulse pileup. To evaluate this limit, spectral distortion due to pileup and consequent effects on temperature determination are investigated. Expressions for distorted spectra are derived as functions of Maxwellian temperature and pileup fraction for both square and triangular pulse shapes. A comparison of temperatures obtained from distorted spectra with actual values indicates that measurements with less than 10% error can be made in the absence of line radiation, even from spectra containing 40% pileup

  11. Spectroscopic and shadowgraphic analysis of laser induced plasmas in the orthogonal double pulse pre-ablation configuration

    International Nuclear Information System (INIS)

    Cristoforetti, G.; Legnaioli, S.; Pardini, L.; Palleschi, V.; Salvetti, A.; Tognoni, E.

    2006-01-01

    This work focuses on the study of the plumes obtained in the double pulse orthogonal Laser Induced Breakdown Spectroscopy (LIBS) in the pre-ablation configuration using both spectroscopic and shadowgraphic approaches. Single and double pulse LIBS experiments were carried out on a brass sample in air. Both the distance of the air plasma from the target surface and the interpulse delay were varied (respectively in the range 0.1-4.2 mm and up to 50 μs) revealing a significant variation of the plasma emission and of the plume-shock wave dynamical expansion in different cases. The intensity of both atomic and ionized zinc lines was measured in all the cases, allowing the calculation of the spatially averaged temperature and electron density and an estimation of the ablated mass. The line intensities and the thermodynamic parameters obtained by the spectroscopic measurements were discussed bearing in mind the dynamical expansion characteristics obtained from the shadowgraphic approach. All the data seem to be consistent with the model previously proposed for the double pulse collinear configuration where the line enhancement is mainly attributed to the ambient gas rarefaction produced by the first laser pulse, which causes a less effective shielding of the second laser pulse

  12. Interferometric characterization of laboratory plasma astrophysical jets produced by a 1-μs pulsed power driver

    International Nuclear Information System (INIS)

    Plouhinec, Damien; Zucchini, Frederic; Loyen, Arnaud; Sol, David; Combes, Philippe; Grunenwald, Julien; Hammer, David A.

    2014-01-01

    A high current driver based on microsecond LTD technology has been used to perform laboratory plasma astrophysics studies using a conical wire array load coupled a 950 kA, 1.2-μs pulsed power generator. A plasma jet is generated as a result of the on-axis shock formed by the ablation streams from the wires of a conical tungsten wire-array load together with conservation of the axial momentum. The aim of this paper is to produce a scaled-down laboratory simulation of astrophysical Herbig-Haro plasma jets occurring during star formation along with some of their interactions with the interstellar medium, such as a cross wind. Due to the relatively long duration of the current pulse delivered by the driver, the jet develops on a 2-μs timescale and grows up to 100 mm. A time-resolved laser interferometer has been fielded to measure the plasma areal electron density as a function of time in and around the plasma jets. The setup consists of a continuous diode-pumped solid state laser (5 W-532 nm), a Mach-Zehnder interferometer and fast gated visible multi frame camera. (authors)

  13. Terahertz Pulse Generation in Underdense Relativistic Plasmas: From Photoionization-Induced Radiation to Coherent Transition Radiation

    Science.gov (United States)

    Déchard, J.; Debayle, A.; Davoine, X.; Gremillet, L.; Bergé, L.

    2018-04-01

    Terahertz to far-infrared emission by two-color, ultrashort optical pulses interacting with underdense helium gases at ultrahigh intensities (>1019 W /cm2 ) is investigated by means of 3D particle-in-cell simulations. The terahertz field is shown to be produced by two mechanisms occurring sequentially, namely, photoionization-induced radiation (PIR) by the two-color pulse, and coherent transition radiation (CTR) by the wakefield-accelerated electrons escaping the plasma. We exhibit laser-plasma parameters for which CTR proves to be the dominant process, providing terahertz bursts with field strength as high as 100 GV /m and energy in excess of 10 mJ. Analytical models are developed for both the PIR and CTR processes, which correctly reproduce the simulation data.

  14. Outlook for the use of microsecond plasma opening switches to generate high-power nanosecond current pulses

    International Nuclear Information System (INIS)

    Dolgachev, G.I.; Maslennikov, D.D.; Ushakov, A.G.

    2006-01-01

    Paper deals with a phenomenon of current breaking in a conducting plasma volume of plasma opening switchers with a nanosecond time of energy initiation and their application in high-power generators. One determined the conditions to ensure megavolt voltages under the erosion mode making use of external applied magnetic field to ensure magnetic insulation of gap of plasma opening switchers. One studied the peculiar features of application of plasma opening switchers under 5-6 MV voltages to ensure X-ray and gamma-radiation pulses [ru

  15. Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited).

    Science.gov (United States)

    Smith, Roger J

    2008-10-01

    A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B(pol) diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T(e), n(e), and B(parallel) along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n(e)B(parallel) product and higher n(e) and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.

  16. Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited)

    International Nuclear Information System (INIS)

    Smith, Roger J.

    2008-01-01

    A novel diagnostic technique for the remote and nonperturbative sensing of the local magnetic field in reactor relevant plasmas is presented. Pulsed polarimetry [Patent No. 12/150,169 (pending)] combines optical scattering with the Faraday effect. The polarimetric light detection and ranging (LIDAR)-like diagnostic has the potential to be a local B pol diagnostic on ITER and can achieve spatial resolutions of millimeters on high energy density (HED) plasmas using existing lasers. The pulsed polarimetry method is based on nonlocal measurements and subtle effects are introduced that are not present in either cw polarimetry or Thomson scattering LIDAR. Important features include the capability of simultaneously measuring local T e , n e , and B || along the line of sight, a resiliency to refractive effects, a short measurement duration providing near instantaneous data in time, and location for real-time feedback and control of magnetohydrodynamic (MHD) instabilities and the realization of a widely applicable internal magnetic field diagnostic for the magnetic fusion energy program. The technique improves for higher n e B || product and higher n e and is well suited for diagnosing the transient plasmas in the HED program. Larger devices such as ITER and DEMO are also better suited to the technique, allowing longer pulse lengths and thereby relaxing key technology constraints making pulsed polarimetry a valuable asset for next step devices. The pulsed polarimetry technique is clarified by way of illustration on the ITER tokamak and plasmas within the magnetized target fusion program within present technological means.

  17. Pulse compression radar reflectometry for density measurements on fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Costley, A; Prentice, R [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Laviron, C [Compagnie Generale des Matieres Nucleaires (COGEMA), 78 - Velizy-Villacoublay (France); Prentice, R [Toulouse-3 Univ., 31 (France). Centre d` Etude Spatiale des Rayonnements

    1994-07-01

    On tokamaks and other toroidal machines, reflectometry is a very rapidly developing technique for density profile measurements, particularly near the edge. Its principle relies on the total reflection of an electromagnetic wave at a cutoff layer, where the critical density is reached and the local refractive index goes to zero. With the new fast frequency synthesizers now available, a method based on pulse compression radar is proposed for plasma reflectometry, overcoming the limitations of the previous reflectometry methods. The measurement can be made on a time-scale which is effectively very short relatively to the plasma fluctuations, and the very high reproducibility and stability of the source allows an absolute calibration of the waveguides to be made, which corrects for the effects of the parasitic reflections. 2 refs., 5 figs.

  18. Plasma processes in water under effect of short duration pulse discharges

    Science.gov (United States)

    Gurbanov, Elchin

    2013-09-01

    It is very important to get a clear water without any impurities and bacteria by methods, that don't change the physical and chemical indicators of water now. In this article the plasma processes during the water treatment by strong electric fields and short duration pulse discharges are considered. The crown discharge around an electrode with a small radius of curvature consists of plasma leader channels with a high conductivity, where the thermo ionization processes and UV-radiation are taken place. Simultaneously the partial discharges around potential electrode lead to formation of atomic oxygen and ozone. The spark discharge arises, when plasma leader channels cross the all interelectrode gap, where the temperature and pressure are strongly grown. As a result the shock waves and dispersing liquid streams in all discharge gap are formed. The plasma channels extend, pressure inside it becomes less than hydrostatic one and the collapse and UV-radiation processes are started. The considered physical processes can be successfully used as a basis for development of pilot-industrial installations for conditioning of drinking water and to disinfecting of sewage.

  19. Plasma interactions determine the composition in pulsed laser deposited thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jikun; Stender, Dieter; Conder, Kazimierz; Wokaun, Alexander; Schneider, Christof W.; Lippert, Thomas, E-mail: thomas.lippert@psi.ch [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Döbeli, Max [Laboratory of Ion Beam Physics, ETH Zurich, CH-8093 Zurich (Switzerland)

    2014-09-15

    Plasma chemistry and scattering strongly affect the congruent, elemental transfer during pulsed laser deposition of target metal species in an oxygen atmosphere. Studying the plasma properties of La{sub 0.6}Sr{sub 0.4}MnO{sub 3}, we demonstrate for as grown La{sub 0.6}Sr{sub 0.4}MnO{sub 3-δ} films that a congruent transfer of metallic species is achieved in two pressure windows: ∼10{sup −3} mbar and ∼2 × 10{sup −1} mbar. In the intermediate pressure range, La{sub 0.6}Sr{sub 0.4}MnO{sub 3-δ} becomes cation deficient and simultaneously almost fully stoichiometric in oxygen. Important for thin film growth is the presence of negative atomic oxygen and under which conditions positive metal-oxygen ions are created in the plasma. This insight into the plasma chemistry shows why the pressure window to obtain films with a desired composition and crystalline structure is narrow and requires a careful adjustment of the process parameters.

  20. New Edge Coherent Mode Providing Continuous Transport in Long Pulse H-mode Plasmas

    DEFF Research Database (Denmark)

    Wang, H.Q.; Xu, G.S.; Wan, B.N.

    2014-01-01

    An electrostatic coherent mode near the electron diamagnetic frequency (20–90 kHz) is observed in the steep-gradient pedestal region of long pulse H-mode plasmas in the Experimental Advanced Super-conducting Tokamak, using a newly developed dual gas-puff-imaging system and diamond-coated reciproc...

  1. Comment on ''Generation of Electromagnetic Pulses from Plasma Channels Induced by Femtosecond Light Strings''

    International Nuclear Information System (INIS)

    Shvets, Gennady; Kaganovich, Igor; Startsev, Edward

    2002-01-01

    In a recent Letter, Cheng et al. calculated/predicted several new effects: that (a) fraction of the short laser pulse momentum can be imparted to plasma electrons via collisional damping of the laser, thereby exciting a long-lived (longer than an oscillation period) plasma wave, which (b) gives rise to a spatially uniform dipole moment of a plasma, which (c) emits far-field narrow-band radiation at the plasma frequency omega subscript ''p'' over the recombination time of the plasma. We claim that the calculation of the effect (a) is in error and the predicted effects (b,c) do not occur as described. In fact, predicted narrow-band emission at omega subscript ''p'' would not occur even if the momentum transfer and the dipole excitation were calculated correctly

  2. Anomalously deep penetration of hydrogen into niobium under action of pulse high temperature hydrogen plasma

    International Nuclear Information System (INIS)

    Didyk, A.Yu.

    2011-01-01

    The method of elastic recoil detection (ERD) has been used for the study of storage and redistribution processes of hydrogen atoms under the influence of pulse high temperature hydrogen plasma obtained using the 'Plasma Focus' PF-4 set-up in three high purity niobium foils. It was established that with an increase of number of PF-4 set-up pulses there occur spreading and transfer of implanted hydrogen atoms to large depths in three Nb-foils which are significantly larger than the projected range of hydrogen ions (with the velocity ∼ 10 8 cm/s). The maximum hydrogen concentration up to 60 at. % is reached in the nearest to Ph-4 surface of the third Nb-foil at 20 impulses of the Ph-4 set-up. The observed phenomenon can be described by transfer of implanted hydrogen atoms under the action of powerful shock waves, created by pulse hydrogen plasma and (or) by accelerating hydrogen atom diffusion under the influence of compression straining wave at the front of the shock wave at redistribution of hydrogen atoms at large depths. Similar behavior was discovered and described also in series of nickel, vanadium, niobium and tantalum foils (two or three foils and more in a series) including series of foils from heterogeneous (different) materials, which were studied, too

  3. Time-resolved electron thermal conduction by probing of plasma formation in transparent solids with high power subpicosecond laser pulses

    International Nuclear Information System (INIS)

    Vu, B.T.V.

    1994-02-01

    This dissertation work includes a series of experimental measurements in a search for better understanding of high temperature (10 4 -10 6 K) and high density plasmas (10 22 -10 24 cm -3 ) produced by irradiating a transparent solid target with high intensity (10 13 - 10 15 W/cm 2 ) and subpicosecond (10 -12 -10 -13 s) laser pulses. Experimentally, pump and probe schemes with both frontside (vacuum-plasma side) and backside (plasma-bulk material side) probes are used to excite and interrogate or probe the plasma evolution, thereby providing useful insights into the plasma formation mechanisms. A series of different experiments has been carried out so as to characterize plasma parameters and the importance of various nonlinear processes. Experimental evidence shows that electron thermal conduction is supersonic in a time scale of the first picosecond after laser irradiation, so fast that it was often left unresolved in the past. The experimental results from frontside probing demonstrate that upon irradiation with a strong (pump) laser pulse, a thin high temperature (∼40eV) super-critical density (∼10 23 /cm 3 ) plasma layer is quickly formed at the target surface which in turn becomes strongly reflective and prevents further transmission of the remainder of the laser pulse. In the bulk region behind the surface, it is also found that a large sub-critical (∼10 18 /cm 3 ) plasma is produced by inverse Bremsstrahlung absorption and collisional ionization. The bulk underdense plasma is evidenced by large absorption of the backside probe light. A simple and analytical model, modified from the avalanche model, for plasma evolution in transparent materials is proposed to explain the experimental results. Elimination of the bulk plasma is then experimentally illustrated by using targets overcoated with highly absorptive films

  4. A comparative study on the activity of TiO2 in pulsed plasma under different discharge conditions

    Science.gov (United States)

    Lijuan, DUAN; Nan, JIANG; Na, LU; Kefeng, SHANG; Jie, LI; Yan, WU

    2018-05-01

    In the present study, a combination of pulsed discharge plasma and TiO2 (plasma/TiO2) has been developed in order to study the activity of TiO2 by varying the discharge conditions of pulsed voltage, discharge mode, air flow rate and solution conductivity. Phenol was used as the chemical probe to characterize the activity of TiO2 in a pulsed discharge system. The experimental results showed that the phenol removal efficiency could be improved by about 10% by increasing the applied voltage. The phenol removal efficiency for three discharge modes in the plasma-discharge-alone system was found to be highest in the spark mode, followed by the spark–streamer mode and finally the streamer mode. In the plasma/TiO2 system, the highest catalytic effect of TiO2 was observed in the spark–streamer discharge mode, which may be attributed to the favorable chemical and physical effects from the spark–streamer discharge mode, such as ultraviolet light, O3, H2O2, pyrolysis, shockwaves and high-energy electrons. Meanwhile, the optimal flow rate and conductivity were 0.05 m3 l‑1 and 10 μS cm‑1, respectively. The main phenolic intermediates were hydroquinone, catechol, and p-benzoquinone during the discharge treatment process. A different phenol degradation pathway was observed in the plasma/TiO2 system as compared to plasma alone. Analysis of the reaction intermediates demonstrated that p-benzoquinone reduction was selectively catalyzed on the TiO2 surface. The effective decomposition of phenol constant (D e) increased from 74.11% to 79.16% when TiO2 was added, indicating that higher phenol mineralization was achieved in the plasma/TiO2 system.

  5. Resonant third-harmonic generation of a short-pulse laser from electron-hole plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Niti [Department of Physics, Lovely Professional University, Phagwara, Punjab 144 402 (India); Nandan Gupta, Devki [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Suk, Hyyong [Advanced Photonics Research Institute (APRI) and Graduate Program of Photonics and Applied Physics, Gwangju Institute of Science and Technology, Gwangju 500 712 (Korea, Republic of)

    2012-01-15

    In semiconductors, free carriers are created in pairs in inter-band transitions and consist of an electron and its corresponding hole. At very high carrier densities, carrier-carrier collisions dominate over carrier-lattice collisions and carriers begin to behave collectively to form plasma. Here, we apply a short-pulse laser to generate third-harmonic radiation from a semiconductor plasma (electron-hole plasma) in the presence of a transverse wiggler magnetic-field. The process of third-harmonic generation of an intense short-pulse laser is resonantly enhanced by the magnetic wiggler, i.e., wiggler magnetic field provides the necessary momentum to third-harmonic photons. In addition, a high-power laser radiation, propagating through a semiconductor imparts an oscillatory velocity to the electrons and exerts a ponderomotive force on electrons at the third-harmonic frequency of the laser. This oscillatory velocity produces a third-harmonic longitudinal current. And due to the beating of the longitudinal electron velocity and the wiggler magnetic field, a transverse third-harmonic current is produced that drives third-harmonic electromagnetic radiation. It is finally observed that for a specific wiggler wave number value, the phase-matching conditions for the process are satisfied, leading to resonant enhancement in the energy conversion efficiency.

  6. Resonant third-harmonic generation of a short-pulse laser from electron-hole plasmas

    International Nuclear Information System (INIS)

    Kant, Niti; Nandan Gupta, Devki; Suk, Hyyong

    2012-01-01

    In semiconductors, free carriers are created in pairs in inter-band transitions and consist of an electron and its corresponding hole. At very high carrier densities, carrier-carrier collisions dominate over carrier-lattice collisions and carriers begin to behave collectively to form plasma. Here, we apply a short-pulse laser to generate third-harmonic radiation from a semiconductor plasma (electron-hole plasma) in the presence of a transverse wiggler magnetic-field. The process of third-harmonic generation of an intense short-pulse laser is resonantly enhanced by the magnetic wiggler, i.e., wiggler magnetic field provides the necessary momentum to third-harmonic photons. In addition, a high-power laser radiation, propagating through a semiconductor imparts an oscillatory velocity to the electrons and exerts a ponderomotive force on electrons at the third-harmonic frequency of the laser. This oscillatory velocity produces a third-harmonic longitudinal current. And due to the beating of the longitudinal electron velocity and the wiggler magnetic field, a transverse third-harmonic current is produced that drives third-harmonic electromagnetic radiation. It is finally observed that for a specific wiggler wave number value, the phase-matching conditions for the process are satisfied, leading to resonant enhancement in the energy conversion efficiency.

  7. Response of fuzzy tungsten surfaces to pulsed plasma bombardment

    International Nuclear Information System (INIS)

    Nishijima, D.; Doerner, R.P.; Iwamoto, D.; Kikuchi, Y.; Miyamoto, M.; Nagata, M.; Sakuma, I.; Shoda, K.; Ueda, Y.

    2013-01-01

    Damage of fuzzy tungsten surfaces due to a transient plasma load is characterized in terms of mass loss, surface morphology, and optical properties. A single D pulsed (∼0.1–0.2 ms) plasma shot with surface absorbed energy density of ∼1.1 MJ m −2 leads to a mass loss of ∼80 μg, which cannot be explained by physical sputtering. Thus, macroscopic erosion processes such as droplets and dust release as well as arcing are thought to be responsible for the mass loss. In fact, scanning electron microscopy observations reveal the melting of the tips of fuzz and arc tracks. The optical reflectivity of the damaged (melted) surface is measured to be higher than that of an undamaged fuzzy surface (below ∼0.01%). Spectroscopic ellipsometry shows that the refractive index, n, and extinction coefficient, k, increase from n ≈ 1 and k ≈ 0 for an undamaged fuzzy surface with an increase in the degree of damage of fuzz

  8. Generation of plasmas in water: utilization of a high-frequency, low-voltage bipolar pulse power supply with impedance control

    International Nuclear Information System (INIS)

    Baroch, P; Potocky, S; Saito, N

    2011-01-01

    Presented work focuses on the investigation and characterization of plasma discharges generated in water by newly developed bipolar pulse power supply. The main aim of our work was to solve and overcome problems with intensive arc discharge transition when the discharge is ignited and maintained by a low output impedance pulse power supply. For this purpose a novel type of bipolar pulse power supply was developed and tested. It was found that two distinguished stable modes of discharges generated in the water can be realized. Effects of water conductivity, pulse frequency and initial water temperature on the discharge properties were investigated. Optical emission spectroscopy was employed to study plasma parameters of the discharge and the correlation between the data obtained from the optical emission spectroscopy and the chemical species measured in the water was carried out.

  9. Plasma surface treatment of Cu by nanosecond-pulse diffuse discharges in atmospheric air

    Science.gov (United States)

    Cheng, ZHANG; Jintao, QIU; Fei, KONG; Xingmin, HOU; Zhi, FANG; Yu, YIN; Tao, SHAO

    2018-01-01

    Nanosecond-pulse diffuse discharges could provide high-density plasma and high-energy electrons at atmospheric pressure. In this paper, the surface treatment of Cu by nanosecond-pulse diffuse discharges is conducted in atmospheric air. Factors influencing the water contact angle (WCA), chemical composition and microhardness, such as the gap spacing and treatment time, are investigated. The results show that after the plasma surface treatment, the WCA considerably decreases from 87° to 42.3°, and the surface energy increases from 20.46 mJ m-2 to 66.28 mJ m-2. Results of energy dispersive x-ray analysis show that the concentration of carbon decreases, but the concentrations of oxygen and nitrogen increase significantly. Moreover, the microhardness increases by approximately 30% after the plasma treatment. The aforementioned changes on the Cu surface indicate the plasma surface treatment enhances the hydrophilicity and microhardness, and it cleans the carbon and achieves oxidization on the Cu surface. Furthermore, by increasing the gap spacing and treatment time, better treatment effects can be obtained. The microhardness in the case of a 2.5 cm gap is higher than that in the case of a 3 cm gap. More oxygen and nitrogen species appear on the Cu surface for the 2.5 cm gap treatment than for the 3 cm gap treatment. The WCA significantly decreases with the treatment time when it is no longer than 90 s, and then it reaches saturation. In addition, more oxygen-containing and nitrogen-containing groups appear after extended plasma treatment time. They contribute to the improvement of the hydrophilicity and oxidation on the Cu surface.

  10. Epitaxial growth and processing of InP films in a ``novel`` remote plasma-MOCVD apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, G. [Bari Univ. (Italy). Centro di Studio per la Chimica; Losurdo, M. [Bari Univ. (Italy). Centro di Studio per la Chimica; Capezzuto, P. [Bari Univ. (Italy). Centro di Studio per la Chimica; Capozzi, V. [Bari Univ. (Italy). Ist. di Fisica; Lorusso, F.G. [Bari Univ. (Italy). Ist. di Fisica; Minafra, A. [Bari Univ. (Italy). Ist. di Fisica

    1996-06-01

    A new remote plasma MOCVD apparatus for the treatment and deposition of III-V materials and, specifically, of indium phosphide, has been developed. The plasma source is used to produce hydrogen atoms and to predissociate phosphine for, respectively, the reduction of native oxide on InP substrate surface and the InP deposition. In situ diagnostics by optical emission spectroscopy, mass spectrometry, and spectroscopic ellipsometry are used to fingerprint the gas phase and the growth surface. The plasma cleaning process effectively reduce the InP oxide layer without surface damage. Indium phosphide epilayers deposited from trimethylindium and plasma activated PH{sub 3} show singular photoluminescence spectra with signal intensity higher than that of the best InP film deposited under conventional MOCVD condition (without PH{sub 3} plasma preactivation). (orig.)

  11. Self-organization of single filaments and diffusive plasmas during a single pulse in dielectric-barrier discharges

    International Nuclear Information System (INIS)

    Babaeva, Natalia Yu; Kushner, Mark J

    2014-01-01

    Self-organization of filaments in dielectric-barrier discharges (DBDs) probably has many origins. However, the dominant cause is proposed to be the accumulation of charge on the surfaces of the bounding dielectrics that reinforces successive discharge pulses to occur at the same locations. A secondary cause is the electrostatic repulsion of individual plasma filaments. Self-organization typically develops over many discharge pulses. In this paper, we discuss the results of a computational investigation of plasma filaments in overvoltage DBDs that, under select conditions, display self-organized patterns (SOPs) of plasma density during a single discharge pulse. (Overvoltage refers to the rapid application of a voltage in excess of the quasi-dc breakdown voltage.) The origin of the SOPs is a synergistic relationship between the speed of the surface-ionization waves that propagate along each dielectric and the rate at which avalanche occurs across the gap. For our test conditions, SOPs were not observed at lower voltages and gradually formed at higher voltages. The same conditions that result in SOPs, i.e. the application of an overvoltage, also produce more diffuse discharges. A transition from a single narrow filament to a more diffuse structure was observed as overvoltage was approached. The sensitivity of SOPs to the orientation and permittivity of the bounding dielectrics is discussed. (paper)

  12. Optimization of the plasma parameters for the high current and uniform large-scale pulse arc ion source of the VEST-NBI system

    International Nuclear Information System (INIS)

    Jung, Bongki; Park, Min; Heo, Sung Ryul; Kim, Tae-Seong; Jeong, Seung Ho; Chang, Doo-Hee; Lee, Kwang Won; In, Sang-Ryul

    2016-01-01

    Highlights: • High power magnetic bucket-type arc plasma source for the VEST NBI system is developed with modifications based on the prototype plasma source for KSTAR. • Plasma parameters in pulse duration are measured to characterize the plasma source. • High plasma density and good uniformity is achieved at the low operating pressure below 1 Pa. • Required ion beam current density is confirmed by analysis of plasma parameters and results of a particle balance model. - Abstract: A large-scale hydrogen arc plasma source was developed at the Korea Atomic Energy Research Institute for a high power pulsed NBI system of VEST which is a compact spherical tokamak at Seoul national university. One of the research target of VEST is to study innovative tokamak operating scenarios. For this purpose, high current density and uniform large-scale pulse plasma source is required to satisfy the target ion beam power efficiently. Therefore, optimizing the plasma parameters of the ion source such as the electron density, temperature, and plasma uniformity is conducted by changing the operating conditions of the plasma source. Furthermore, ion species of the hydrogen plasma source are analyzed using a particle balance model to increase the monatomic fraction which is another essential parameter for increasing the ion beam current density. Conclusively, efficient operating conditions are presented from the results of the optimized plasma parameters and the extractable ion beam current is calculated.

  13. Changes in mean plasma ACTH reflect changes in amplitude and frequency of secretory pulses

    International Nuclear Information System (INIS)

    Carnes, M.; Lent, S.J.; Erisman, S.; Feyzi, J.

    1988-01-01

    ACTH is secreted in an episodic manner from the anterior pituitary. Unanesthetized rats with indwelling jugular and femoral venous cannulae were continuously bled and simultaneously infused with isotonic fluid by peristaltic pump. Two-minute blood samples were collected for up to five hours in 8 male rats. ACTH was measured by radioimmunoassay. The resulting time series were analyzed for significant secretory pulses with the PULSAR program. Elevations or declines in mean plasma ACTH levels were associated with significant changes in amplitude and frequency of secretory pulses

  14. PLASMA SLOSHING IN PULSE-HEATED SOLAR AND STELLAR CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Reale, F., E-mail: fabio.reale@unipa.it [Dipartimento di Fisica and Chimica, Università di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy)

    2016-08-01

    There is evidence that coronal heating is highly intermittent, and flares are the high energy extreme. The properties of the heat pulses are difficult to constrain. Here, hydrodynamic loop modeling shows that several large amplitude oscillations (∼20% in density) are triggered in flare light curves if the duration of the heat pulse is shorter than the sound crossing time of the flaring loop. The reason for this is that the plasma does not have enough time to reach pressure equilibrium during heating, and traveling pressure fronts develop. The period is a few minutes for typical solar coronal loops, dictated by the sound crossing time in the decay phase. The long period and large amplitude make these oscillations different from typical magnetohydrodynamic (MHD) waves. This diagnostic can be applied both to observations of solar and stellar flares and to future observations of non-flaring loops at high resolution.

  15. Self-Resonant Plasma Wake-Field Excitation by a Laser-Pulse with a Steep Leading-Edge for Particle-Acceleration

    NARCIS (Netherlands)

    Goloviznin, V. V.; van Amersfoort, P. W.

    1995-01-01

    The self-modulational instability of a relatively long laser pulse with a power close to or less than the critical power for relativistic self-focusing in plasma is considered. Strong wake-field excitation occurs as the result of a correlated transverse and longitudinal evolution of the pulse. The

  16. Study of plasma-material surface interaction using langmuir probe technique during plasma treatment

    International Nuclear Information System (INIS)

    Saloum, S.; Akel, M.

    2012-01-01

    In this study, we tried to understand the plasma-surface interactions by using Langmuir probes. Two different types of plasmas were studied, the first is the electropositive plasma in Argon and the second is the electronegative plasma in Sulfur Hexafluoride. In the first type, the effects of Argon gas pressure, the injection of Helium in the remote zone and the substrate bias on the measurements of the Electron Energy Probability Function (EEPF) and on the plasma parameters (electron density (n e ), effective electron temperature (T e ff), plasma potential (V p ) and floating potential (V f )) have been investigated. The obtained EEPFs and plasma parameters have been used to control two remote plasma processes. The first is the remote Plasma Enhanced Chemical Vapor Deposition (PE-CVD) of thin films, on silicon wafers, from Hexamethyldisiloxane (HMDSO) precursor diluted in the remote Ar-He plasma. The second is the pure Argon remote plasma treatment of polymethylmethacrylate (PMMA) polymer surface. In the second type, the plasma diagnostics were performed in the remote zone as a function of SF 6 flow rate, where relative concentrations of fluorine atoms were measured using actinometry optical emission spectroscopy; electron density, electron temperature and plasma potential were determined using single cylindrical Langmuir probe, positive ion flux and negative ion fraction were determined using an planar probe. The silicon etching process in SF 6 plasma was studied. (author)

  17. Study of plasma-material surface interaction using Langmuir probe technique during plasma treatment

    International Nuclear Information System (INIS)

    Saloum, S.; Akel, M.

    2009-06-01

    In this study, we tried to understand the plasma-surface interactions by using Langmuir probes. Two different types of plasmas were studied, the first is the electropositive plasma in Argon and the second is the electronegative plasma in Sulfur Hexafluoride. In the first type, the effects of Argon gas pressure, the injection of Helium in the remote zone and the substrate bias on the measurements of the Electron Energy Probability Function (EEPF) and on the plasma parameters (electron density (n e ), effective electron temperature (T e ff), plasma potential (V p ) and floating potential (V f )) have been investigated. The obtained EEPFs and plasma parameters have been used to control two remote plasma processes. The first is the remote Plasma Enhanced Chemical Vapor Deposition (PE-CVD) of thin films, on silicon wafers, from Hexamethyldisoloxane (HMDSO) precursor diluted in the remote Ar-He plasma. The second is the pure Argon remote plasma treatment of polymethylmethacrylate (PMMA) polymer surface. In the second type, the plasma diagnostics were performed in the remote zone as a function of SF 6 flow rate, where relative concentrations of fluorine atoms were measured using actinometry optical emission spectroscopy; electron density, electron temperature and plasma potential were determined using single cylindrical Langmuir probe, positive ion flux and negative ion fraction were determined using an planar probe. The silicon etching process in SF 6 plasma was studied. (author)

  18. Simulation of impurity transport in the peripheral plasma due to the emission of dust in long pulse discharges on the Large Helical Device

    Directory of Open Access Journals (Sweden)

    M. Shoji

    2017-08-01

    Full Text Available Two different plasma termination processes by dust emission were observed in long pulse discharges in the Large Helical Device. One is a plasma termination caused by large amounts of carbon dust released from a lower divertor region. The other is termination caused by stainless steel (iron dust emission from the surface of a helical coil can. The effect of the dust emission on the sustainment of the long pulse discharges are investigated using a three-dimensional edge plasma transport code (EMC3-EIRENE coupled with a dust transport code (DUSTT. The simulation shows that the plasma is more influenced by the iron dust emission from the helical coil can than by the carbon dust emission from the divertor region. The simulation revealed that the plasma flow in divertor legs is quite effective for preventing dust from terminating the long pulse discharges.

  19. Plasma spectroscopy diagnostics in pulsed-power X-ray radiography diode research

    International Nuclear Information System (INIS)

    Maron, Yitzhak; Oliver, Bryan Velten; Portillo, Salvador; Johnston, Mark D.; Rose, David Vincent; Hahn, Kelly Denise; Schamiloglu, Edl; Welch, Dale R.; Droemer, Darryl W.; Rovang, Dean Curtis; Maenchen, John Eric

    2005-01-01

    Spectroscopic investigations in the visible and near UV are underway to study plasmas present in X-ray radiography diodes during the time of the electron beam propagation. These studies are being performed on the RITS-3 accelerator (5.25 MV and 120 kA) at Sandia National Laboratories using several diode configurations. The proper characterization of the plasmas occurring during the time of the X-ray pulse can lead to a greater understanding of diode behavior and X-ray spot size evolution. By studying these plasmas along with the use of selective dopants, insights into such phenomena as impedance collapse, thermal and non-thermal species behavior, charge and current neutralization, anode and cathode plasma formation and propagation, and beam/foil interactions, can be obtained. Information from line and continuum emission and absorption can give key plasma parameters such as temperatures, densities, charge states, and expansion velocities. This information is important for proper modeling and future predictive capabilities for the design and improvement of flash X-ray radiography diodes. Diagnostics include a gated, intensified multichannel plate camera combined with a 1 meter Czerny-Turner monochromator with a multi-fiber spectral input, allowing for both temporal and spatial resolution. Recent results are presented.

  20. Plasma devices for focusing extreme light pulses

    International Nuclear Information System (INIS)

    Fuchs, J.; Gonoskov, A.A.; Nakatsutsumi, M.; Nazarov, W.; Quere, F.; Sergeev, A.M.; Yan, X.Q.

    2014-01-01

    Since the inception of the laser, there has been a constant push toward increasing the laser peak intensity, as this has lead to opening the exploration of new territories, and the production of compact sources of particles and radiation with unprecedented characteristics. However, increasing the peak laser intensity is usually performed by enhancing the produced laser properties, either by lowering its duration or increasing its energy, which involves a great level of complexity for the laser chain, or comes at great cost. Focusing tightly is another possibility to increase the laser intensity, but this comes at the risk of damaging the optics with target debris, as it requires their placement in close proximity to the interaction region. Plasma devices are an attractive, compact alternative to tightly focus extreme light pulses and further increase the final laser intensity. (authors)

  1. Surface Passivation of Silicon Using HfO2 Thin Films Deposited by Remote Plasma Atomic Layer Deposition System.

    Science.gov (United States)

    Zhang, Xiao-Ying; Hsu, Chia-Hsun; Lien, Shui-Yang; Chen, Song-Yan; Huang, Wei; Yang, Chih-Hsiang; Kung, Chung-Yuan; Zhu, Wen-Zhang; Xiong, Fei-Bing; Meng, Xian-Guo

    2017-12-01

    Hafnium oxide (HfO 2 ) thin films have attracted much attention owing to their usefulness in equivalent oxide thickness scaling in microelectronics, which arises from their high dielectric constant and thermodynamic stability with silicon. However, the surface passivation properties of such films, particularly on crystalline silicon (c-Si), have rarely been reported upon. In this study, the HfO 2 thin films were deposited on c-Si substrates with and without oxygen plasma pretreatments, using a remote plasma atomic layer deposition system. Post-annealing was performed using a rapid thermal processing system at different temperatures in N 2 ambient for 10 min. The effects of oxygen plasma pretreatment and post-annealing on the properties of the HfO 2 thin films were investigated. They indicate that the in situ remote plasma pretreatment of Si substrate can result in the formation of better SiO 2 , resulting in a better chemical passivation. The deposited HfO 2 thin films with oxygen plasma pretreatment and post-annealing at 500 °C for 10 min were effective in improving the lifetime of c-Si (original lifetime of 1 μs) to up to 67 μs.

  2. A Dual-Mode UWB Wireless Platform with Random Pulse Length Detection for Remote Patient Monitoring

    DEFF Research Database (Denmark)

    Reyes, Carlos; Bisbe, Sergi; Shen, Ming

    2013-01-01

    on a single hardware platform, but it is capable of both monitoring and data transmission. This is achieved by employing a new random pulse length detection method that allows data transmission by using a modulated monitoring signal. To prove the proposed concept a test system has been built, using commercial......This paper presents a dual-mode ultra-wideband platform for wireless Remote Patient Monitoring (RPM). Existing RPM solutions are typically based on two different hardware platforms; one responsible for medical-data monitoring and one to handle data transmission. The proposed RPM topology is based...

  3. Comparison of pulsed Nd : YAG laser welding qualitative features with plasma plume thermal characteristics

    International Nuclear Information System (INIS)

    Sabbaghzadeh, J; Dadras, S; Torkamany, M J

    2007-01-01

    A spectroscopic approach was used to study the effects of different operating parameters on st14 sheet metal welding with a 400 W maximum average power pulsed Nd : YAG laser. The parameters included pulse duration and peak power and type and flow rate of the assist gas and welding speed. Weld quality, including penetration depth and melt width, has been compared with the FeI electron temperature obtained from spectroscopic observations of a plasma plume. A correlation between the standard deviation of the electron temperature and the quality of welding has also been found

  4. Nanosecond Pulsed Discharge in Water without Bubbles: A Fundamental Study of Initiation, Propagation and Plasma Characteristics

    Science.gov (United States)

    Seepersad, Yohan

    The state of plasma is widely known as a gas-phase phenomenon, but plasma in liquids have also received significant attention over the last century. Generating plasma in liquids however is theoretically challenging, and this problem is often overcome via liquid-gas phase transition preceding the actual plasma formation. In this sense, plasma forms in gas bubbles in the liquid. Recent work at the Drexel Plasma Institute has shown that nanosecond pulsed electric fields can initiate plasma in liquids without any initial cavitation phase, at voltages below theoretical direct-ionization thresholds. This unique regime is poorly understood and does not fit into any current descriptive mechanisms. As with all new phenomena, a complete fundamental description is paramount to understanding its usefulness to practical applications. The primary goals of this research were to qualitatively and quantitatively understand the phenomenon of nanosecond pulsed discharge in liquids as a means to characterizing properties that may open up niche application possibilities. Analysis of the plasma was based on experimental results from non-invasive, sub-nanosecond time-resolved optical diagnostics, including direct imaging, transmission imaging (Schlieren and shadow), and optical emission spectroscopy. The physical characteristics of the plasma were studied as a function of variations in the electric field amplitude and polarity, liquid permittivity, and pulse duration. It was found that the plasma size and emission intensity was dependent on the permittivity of the liquid, as well as the voltage polarity, and the structure and dynamics were explained by a 'cold-lightning' mechanism. The under-breakdown dynamics at the liquid-electrode interface were investigated by transmission imaging to provide evidence for a novel mechanism for initiation based on the electrostriction. This mechanism was proposed by collaborators on the project and developed alongside the experimental work in this

  5. Microstructural characterization of pulsed plasma nitrided 316L stainless steel

    International Nuclear Information System (INIS)

    Asgari, M.; Barnoush, A.; Johnsen, R.; Hoel, R.

    2011-01-01

    Highlights: → The low temperature pulsed plasma nitrided layer of 316 SS was studied. → The plastic deformation induced in the austenite due to nitriding is characterized by EBSD at different depths (i.e., nitrogen concentration). → Nanomechanical properties of the nitride layer was investigated by nanoindentation at different depths (i.e., nitrogen concentration). → High hardness, high nitrogen concentration and high dislocation density is detected in the nitride layer. → The hardness and nitrogen concentration decreased sharply beyond the nitride layer. - Abstract: Pulsed plasma nitriding (PPN) treatment is one of the new processes to improve the surface hardness and tribology behavior of austenitic stainless steels. Through low temperature treatment (<440 deg. C), it is possible to obtain unique combinations of wear and corrosion properties. Such a combination is achieved through the formation of a so-called 'extended austenite phase'. These surface layers are often also referred to as S-phase, m-phase or γ-phase. In this work, nitrided layers on austenitic stainless steels AISI 316L (SS316L) were examined by means of a nanoindentation method at different loads. Additionally, the mechanical properties of the S-phase at different depths were studied. Electron back-scatter diffraction (EBSD) examination of the layer showed a high amount of plasticity induced in the layer during its formation. XRD results confirmed the formation of the S-phase, and no deleterious CrN phase was detected.

  6. A HIGH CURRENT, HIGH VOLTAGE SOLID-STATE PULSE GENERATOR FOR THE NIF PLASMA ELECTRODE POCKELS CELL

    International Nuclear Information System (INIS)

    Arnold, P A; Barbosa, F; Cook, E G; Hickman, B C; Akana, G L; Brooksby, C A

    2007-01-01

    A high current, high voltage, all solid-state pulse modulator has been developed for use in the Plasma Electrode Pockels Cell (PEPC) subsystem in the National Ignition Facility. The MOSFET-switched pulse generator, designed to be a more capable plug-in replacement for the thyratron-switched units currently deployed in NIF, offers unprecedented capabilities including burst-mode operation, pulse width agility and a steady-state pulse repetition frequency exceeding 1 Hz. Capable of delivering requisite fast risetime, 17 kV flattop pulses into a 6 (Omega) load, the pulser employs a modular architecture characteristic of the inductive adder technology, pioneered at LLNL for use in acceleration applications, which keeps primary voltages low (and well within the capabilities of existing FET technology), reduces fabrication costs and is amenable to rapid assembly and quick field repairs

  7. Comments on pulses of characteristic energy produced in solar flare detonations and its possible application to other astrophysical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, P [Universidade Mackenzie, Sao Paulo (Brazil). Centro de Radio-Astronomia e Astrofisica

    1977-06-01

    A qualitative discussion of physical conditions at neutral sheets was developed in an attempt to explain the repetitive pulsed energy-production mechanism, which has been suggested for solar flares. A characteristic energy per pulse appears to depend critically on the magnetic field strength and dipole length applied to a high temperature plasma, and seem to be regulated by discrete characteristic relative changes in the magnetic moment, following Syrovatskii's model. Discrete energy pulses are produced when neutral sheet thickness approaches to critical values, proportional to the characteristic relative changes in the magnetic moment. Repetition of pulses may occur in multi-sheet configurations as magnetically complex active centres, or at a single sheet where the total system energy change exceeds the critical conditions. The time-scale of the pulsed energy release may be explained by the tearing mode instability, and the repetition time-scale might be understood by the Sweet mechanism in limit conditions. The mechanism might have attractive applications in other high temperature astrophysical plasmas. An empirical relation is derived for pulses' energy prediction, in orders of magnitude, and some possible tests were suggested. An attempt was made to interpret soft ..gamma..-ray events of cosmic origin.

  8. Comments on pulses of characteristic energy produced in solar flare detonations and its possible application to other astrophysical plasmas

    International Nuclear Information System (INIS)

    Kaufmann, P.

    1977-01-01

    A qualitative discussion of physical conditions at neutral sheets was developed in an attempt to explain the repetitive pulsed energy-production mechanism, which has been suggested for solar flares. A characteristic energy per pulse appears to depend critically on the magnetic field strength and dipole length applied to a high temperature plasma, and seem to be regulated by discrete characteristic relative changes in the magnetic moment, following Syrovatskii's model. Discrete energy pulses are produced when neutral sheet thickness approaches to critical values, proportional to the characteristic relative changes in the magnetic moment. Repetition of pulses may occur in multi-sheet configurations as magnetically complex active centres, or at a single sheet where the total system energy change exceeds the critical conditions. The time-scale of the pulsed energy release may be explained by the tearing mode instability, and the repetition time-scale might be understood by the Sweet mechanism in limit conditions. The mechanism might have attractive applications in other high temperature astrophysical plasmas. An empirical relation is derived for pulses' energy prediction, in orders of magnitude, and some possible tests were suggested. An attempt was made to interpret soft γ-ray events of cosmic origin. (Auth.)

  9. A high-voltage equipment (high voltage supply, high voltage pulse generators, resonant charging inductance, synchro-instruments for gyrotron frequency measurements) for plasma applications

    International Nuclear Information System (INIS)

    Spassov, Velin

    1996-01-01

    This document reports my activities as visitor-professor at the Gyrotron Project - INPE Plasma Laboratory. The main objective of my activities was designing, construction and testing a suitable high-voltage pulse generator for plasma applications, and efforts were concentrated on the following points: Design of high-voltage resonant power supply with tunable output (0 - 50 kV) for line-type high voltage pulse generator; design of line-type pulse generator (4 microseconds pulse duration, 0 - 25 kV tunable voltage) for non linear loads such as a gyrotron and P III reactor; design of resonant charging inductance for resonant line-type pulse generator, and design of high resolution synchro instrument for gyrotron frequency measurement. (author)

  10. Effects of cathode pulse at low frequency on the structure and composition of plasma electrolytic oxidation ceramic coatings

    International Nuclear Information System (INIS)

    Yao Zhongping; Xu Yongjun; Jiang Zhaohua; Wang Fuping

    2009-01-01

    The aim of this work is to investigate the effects of the cathode pulse under the low working frequency on the structure and the composition of the ceramic coatings on Ti-6Al-4V alloys by plasma electrolytic oxidation (PEO). Ceramic coatings were prepared on Ti alloy by pulsed bi-polar plasma electrolytic oxidation in NaAlO 2 solution. The phase composition, morphology, and element distribution in the coating were investigated by X-ray diffractometry, scanning electron microscopy, and energy distribution spectroscopy. The coating was mainly composed of a large amount of Al 2 TiO 5 and a little α-Al 2 O 3 and rutile TiO 2 . Increasing the cathode pulse, the amount of rutile TiO 2 was increased while the amount of Al 2 O 3 was decreased; and decreasing the cathode pulse, the amount of Al 2 O 3 was increased while the amount of rutile TiO 2 was decreased. The thickness of the coatings was increased and then decreased with the increase of the cathode pulse. The grain sizes of Al 2 TiO 5 were increased with the cathode current densities, but changed little with the cathode pulse width. The grain size of α-Al 2 O 3 was decreased with the decrease of the cathode pulse, while the grain size of TiO 2 was increased with the increase of the cathode pulse. The proper cathode pulse was helpful to reduce the roughness and to increase the density of the coatings.

  11. TRACE ANALYSIS BY LASER-EXCITED ATOMIC FLUORESCENCE WITH ATOMIZATION IN A PULSED PLASMA

    OpenAIRE

    Lunyov , O.; Oshemkov , S.; Petrov , A.

    1991-01-01

    The possibilities of plasma atomization for laser fluorescence trace analysis are discussed. Pulsed hot hollow cathode discharge was used for analysis of solutions and powdered samples. The high voltage spark and laser-induced breakdown (laser spark) were used as atomizers of metal-containing atmospheric aerosols. Detection limits were improved by means of temporal background selection.

  12. Treatment of Wastewater with High Conductivity by Pulsed Discharge Plasma

    International Nuclear Information System (INIS)

    Wang Zhaojun; Jiang Song; Liu Kefu

    2014-01-01

    A wastewater treatment system was established by means of pulsed dielectric barrier discharge (DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation of rhodamine B, which makes use of the high conductivity and lessenes its negative influence on the discharge process. At the same time, the reactive species like ozone and ultraviolet (UV) light generated by the DBD can be utilized for the treatment of wastewater. The effects of some factors like conductivity, peak pulse voltage, discharge frequency and pH values were investigated. The results show that the combination of these reactive species could enhance the degradation of the dye while the ozone played the most important role in the process. The degradation efficiency was enhanced with the increase of energy supplied. The reduction in the concentration of rhodamine B was much more effective with high solution conductivity; under the highest conductivity condition, the degradation rate could rise to 99%. (plasma technology)

  13. Gamma-rays generated from plasmas in the interaction of solid targets with femtosecond laser pulses

    International Nuclear Information System (INIS)

    He Jingtang; Zhang Ping; Chen Duanbao; Li Zuhao; Tang Xiaowei; Zhang Ying; Wang Long; Feng Baohua; Zhang Xiulan; Wei Zhiyi; Li Zanliang; Zhang Jie

    1998-01-01

    The γ-rays with energies up to 300 keV have been observed from plasmas produced by femtosecond laser pulses at a focused intensity of 5 x 10 15 W·cm -2 ·μm 2 irradiating Ta, Mo and Cu targets. By introducing an 8% prepulse of 70 ps before the main pulse, the fraction of high energy γ-ray photons (hν>100 keV) was significantly enhanced relative to low energy photons (hν<100 keV)

  14. Frequency-dependent absorbance of broadband terahertz wave in dense plasma sheet

    Science.gov (United States)

    Peng, Yan; Qi, Binbin; Jiang, Xiankai; Zhu, Zhi; Zhao, Hongwei; Zhu, Yiming

    2018-05-01

    Due to the ability of accurate fingerprinting and low-ionization for different substances, terahertz (THz) technology has a lot of crucial applications in material analysis, information transfer, and safety inspection, etc. However, the spectral characteristic of atmospheric gas and ionized gas has not been widely investigated, which is important for the remote sensing application. Here, in this paper, we investigate the absorbance of broadband terahertz wave in dense plasma sheet generated by femtosecond laser pulses. It was found that as the terahertz wave transmits through the plasma sheet formed, respectively, in carbon dioxide, oxygen, argon and nitrogen, spectrum presents completely different and frequency-dependent absorbance. The reasons for these absorption peaks are related to the molecular polarity, electric charge, intermolecular and intramolecular interactions, and collisional absorption of gas molecules. These results have significant implications for the remote sensing of gas medium.

  15. Comparative study of nanocomposites prepared by pulsed and dc sputtering combined with plasma polymerization suitable for photovoltaic device applications

    International Nuclear Information System (INIS)

    Hussain, Amreen A.; Pal, Arup R.; Kar, Rajib; Bailung, Heremba; Chutia, Joyanti; Patil, Dinkar S.

    2014-01-01

    Plasma processing, a single step method for production of large area composite films, is employed to deposit plasma polymerized aniline-Titanium dioxide (PPani-TiO 2 ) nanocomposite thin films. The deposition of PPani-TiO 2 nanocomposite films are made using reactive magnetron sputtering and plasma polymerization combined process. This study focuses on the direct comparison between continuous and pulsed dc magnetron sputtering techniques of titanium in combination with rf plasma polymerization of aniline. The deposited PPani-TiO 2 nanocomposite films are characterized and discussed in terms of structural, morphological and optical properties. A self powered hybrid photodetector has been developed by plasma based process. The proposed method provides a new route where the self-assembly of molecules, that is, the spontaneous association of atomic or molecular building blocks under plasma environment, emerge as a successful strategy to form well-defined structural and morphological units of nanometer dimensions. - Highlights: • PPani-TiO 2 nanocomposite by pulsed and dc sputtering with rf plasma polymerization. • In-situ and Ex-situ H 2 SO 4 doping in PPani-TiO 2 nanocomposite. • PPani-TiO 2 nanocomposite based self-powered-hybrid photodetector

  16. Time-resolved electron thermal conduction by probing of plasma formation in transparent solids with high power subpicosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Brian -Tinh Van [Univ. of California, Davis, CA (United States)

    1994-02-01

    This dissertation work includes a series of experimental measurements in a search for better understanding of high temperature (104-106K) and high density plasmas (1022-1024cm-3) produced by irradiating a transparent solid target with high intensity (1013 - 1015W/cm2) and subpicosecond (10-12-10-13s) laser pulses. Experimentally, pump and probe schemes with both frontside (vacuum-plasma side) and backside (plasma-bulk material side) probes are used to excite and interrogate or probe the plasma evolution, thereby providing useful insights into the plasma formation mechanisms. A series of different experiments has been carried out so as to characterize plasma parameters and the importance of various nonlinear processes. Experimental evidence shows that electron thermal conduction is supersonic in a time scale of the first picosecond after laser irradiation, so fast that it was often left unresolved in the past. The experimental results from frontside probing demonstrate that upon irradiation with a strong (pump) laser pulse, a thin high temperature (~40eV) super-critical density (~1023/cm3) plasma layer is quickly formed at the target surface which in turn becomes strongly reflective and prevents further transmission of the remainder of the laser pulse. In the bulk region behind the surface, it is also found that a large sub-critical (~1018/cm3) plasma is produced by inverse Bremsstrahlung absorption and collisional ionization. The bulk underdense plasma is evidenced by large absorption of the backside probe light. A simple and analytical model, modified from the avalanche model, for plasma evolution in transparent materials is proposed to explain the experimental results. Elimination of the bulk plasma is then experimentally illustrated by using targets overcoated with highly absorptive films.

  17. Erosion of pyrolytic carbon under high surface energy deposition from a pulsed hydrogen plasma

    International Nuclear Information System (INIS)

    Bolt, H.

    1992-01-01

    Carbon materials are widely applied as plasma facing materials in nuclear fusion devices and are also the prime candidate materials for the next generation of experimental fusion reactors. During operation these materials are frequently subjected to high energy deposition from plasma disruptions. The erosion of carbon materials is regarded as the main issue governing the operational lifetime of plasma facing components. Laboratory experiments have been performed to study the thermal erosion behaviour of carbon in a plasma environment. In the experiments the surface of pyrolytic carbon specimens was exposed to pulsed energy deposition of up to 3.8 MJ m -2 from a hydrogen plasma. The behaviour of the eroded carbon species in the plasma was measured by time-resolved and space-resolved spectroscopy. Intense line radiation of ionic carbon has been measured in the plasma in front of the carbon surface. The results show that the eroded carbon is immediately ionised in the vicinity of the material surface, with a fraction of it being ionised to the double-charged state. (Author)

  18. A 5 kA pulsed power supply for inductive and plasma loads in large volume plasma device

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, P. K., E-mail: pkumar@ipr.res.in; Singh, S. K.; Sanyasi, A. K.; Awasthi, L. M., E-mail: kushagra.lalit@gmail.com; Mattoo, S. K. [Institute for Plasma Research, Gandhinagar (India)

    2016-07-15

    This paper describes 5 kA, 12 ms pulsed power supply for inductive load of Electron Energy Filter (EEF) in large volume plasma device. The power supply is based upon the principle of rapid sourcing of energy from the capacitor bank (2.8 F/200 V) by using a static switch, comprising of ten Insulated Gate Bipolar Transistors (IGBTs). A suitable mechanism is developed to ensure equal sharing of current and uniform power distribution during the operation of these IGBTs. Safe commutation of power to the EEF is ensured by the proper optimization of its components and by the introduction of over voltage protection (>6 kV) using an indigenously designed snubber circuit. Various time sequences relevant to different actions of power supply, viz., pulse width control and repetition rate, are realized through optically isolated computer controlled interface.

  19. Spectroscopic and probe measurements of the electron temperature in the plasma of a pulse-periodic microwave discharge in argon

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, V. V., E-mail: vvandreev@mail.ru; Vasileska, I., E-mail: ivonavasileska@yahoo.com; Korneeva, M. A., E-mail: korneevama@mail.ru [Peoples’ Friendship University of Russia (Russian Federation)

    2016-07-15

    A pulse-periodic 2.45-GHz electron-cyclotron resonance plasma source on the basis of a permanent- magnet mirror trap has been constructed and tested. Variations in the discharge parameters and the electron temperature of argon plasma have been investigated in the argon pressure range of 1 × 10{sup –4} to 4 × 10{sup –3} Torr at a net pulsed input microwave power of up to 600 W. The plasma electron temperature in the above ranges of gas pressures and input powers has been measured by a Langmuir probe and determined using optical emission spectroscopy (OES) from the intensity ratios of spectral lines. The OES results agree qualitatively and quantitatively with the data obtained using the double probe.

  20. A study of the transient plasma potential in a pulsed bi-polar dc magnetron discharge

    International Nuclear Information System (INIS)

    Bradley, J W; Karkari, S K; Vetushka, A

    2004-01-01

    The temporal evolution of the plasma potential, V p , in a pulsed dc magnetron plasma has been determined using the emissive probe technique. The discharge was operated in the 'asymmetric bi-polar' mode, in which the discharge voltage changes polarity during part of the pulse cycle. The probe measurements, with a time-resolution of 20 ns or better, were made along a line above the racetrack, normal to the plane of the cathode target, for a fixed frequency (100 kHz), duty cycle (50%), argon pressure (0.74 Pa) and discharge power (583 W). At all the measured positions, V p was found to respond to the large and rapid changes in the cathode voltage, V d , during the different phases of the pulse cycle, with V p always more positive than V d . At a typical substrate position (>80 mm from the target), V p remains a few volts above the most positive surface in the discharge at all times. In the 'on' phase of the pulse, the measurements show a significant axial electric field is generated in the plasma, with the plasma potential dropping by a total of about 30 V over a distance of 70 mm, from the bulk plasma to a position close to the beginning of the cathode fall. This is consistent with measurements made in the dc magnetron. During the stable 'reverse' phase of the discharge, for distances greater than 18 mm from the target, the axial electric field is found to collapse, with V p elevated uniformly to about 3 V above V d . Between the target and this field-free region an ion sheath forms, and the current flowing to the target is still an ion current in this 'reverse' period. During the initial 200 ns of the voltage 'overshoot' phase (between 'on' and 'reverse' phases), V d reached a potential of +290 V; however, close to the target, V p was found to attain a much higher value, namely +378 V. Along the line of measurement, the axial electric field reverses in direction in this phase, and an electron current of up to 9 A flows to the target. The spatial and temporal

  1. Plasmas for the low-temperature growth of high-quality GaN films by molecular beam epitaxy and remote plasma MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, M.; Capezzuto, P.; Bruno, G. [Plasmachemistry Research Center, CNR, Bari (Italy); Namkoong, G.; Doolittle, W.A.; Brown, A.S. [Georgia Inst. of Tech., Atlanta (United States). School of Electrical and Computer Engineering, Microelectronic Research Center

    2002-03-16

    GaN heteroepitaxial growth on sapphire (0001) substrates was carried out by both radio-frequency (rf) remote plasma metalorganic chemical vapor deposition (RP-MOCVD) and molecular beam epitaxy (MBE). A multistep growth process including substrate plasma cleaning and nitridation, buffer growth, its subsequent annealing and epilayer growth was used. In order to achieve a better understanding of the GaN growth, in-situ real time investigation of the surface chemistry is performed for all the steps using the conventional reflection high-energy electron spectroscopy (RHEED) during the MBE process, while laser reflectance interferometry (LRI) and spectroscopic ellipsometry (SE), which do not require UHV conditions, are used for the monitoring of the RP-MOCVD process. The chemistry of the rf N{sub 2} plasma sapphire nitridation and its effect on the epilayer growth and quality are discussed in both MBE and RP-MOCVD. (orig.)

  2. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Geohegan, D.B.

    1994-09-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume.

  3. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    International Nuclear Information System (INIS)

    Geohegan, D.B.

    1994-01-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume

  4. Conceptual design of pulsed high voltage and high precision power supply for a cyclotron auto-resonance maser (CARM) for plasma heating

    International Nuclear Information System (INIS)

    Zito, Pietro; Maffia, Giuseppe; Lampasi, Alessandro

    2015-01-01

    Highlights: • ENEA started a project to develop a cyclotron auto-resonance maser (CARM). • This facility requires an advanced pulsed high voltage power supply (HVPS). • The conceptual design answers to the performances requested for CARM HVPS. • The pulse transformer parameters were estimated according to IEEE standards. • PWM PID-based controller has been optimized to follow very fast rectangular pulses. - Abstract: Due to the high electron temperature during the plasma burning, both a higher power (>1 MW) and a higher frequency (up to 300 GHz) are required for plasma heating in future fusion experiments like DEMO. For this task, ENEA started a project to develop a cyclotron auto-resonance maser (CARM) able to produce an electron radiation in synchronism with the electromagnetic field and to transfer the electron beam kinetic energy to the plasma. This facility requires an advanced pulsed high voltage power supply (HVPS) with the following technical characteristics: variable output voltage up to 700 kV; variable pulse length in the range 5–50 μs; overshoot < 2%; rise time < 1 μs; voltage accuracy (including drop, ripple and stability) <0.1%. This paper describes the conceptual design and the technical solutions adopted to achieve the performance requested for the CARM HVPS.

  5. Conceptual design of pulsed high voltage and high precision power supply for a cyclotron auto-resonance maser (CARM) for plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Zito, Pietro, E-mail: pietro.zito@enea.it; Maffia, Giuseppe; Lampasi, Alessandro

    2015-10-15

    Highlights: • ENEA started a project to develop a cyclotron auto-resonance maser (CARM). • This facility requires an advanced pulsed high voltage power supply (HVPS). • The conceptual design answers to the performances requested for CARM HVPS. • The pulse transformer parameters were estimated according to IEEE standards. • PWM PID-based controller has been optimized to follow very fast rectangular pulses. - Abstract: Due to the high electron temperature during the plasma burning, both a higher power (>1 MW) and a higher frequency (up to 300 GHz) are required for plasma heating in future fusion experiments like DEMO. For this task, ENEA started a project to develop a cyclotron auto-resonance maser (CARM) able to produce an electron radiation in synchronism with the electromagnetic field and to transfer the electron beam kinetic energy to the plasma. This facility requires an advanced pulsed high voltage power supply (HVPS) with the following technical characteristics: variable output voltage up to 700 kV; variable pulse length in the range 5–50 μs; overshoot < 2%; rise time < 1 μs; voltage accuracy (including drop, ripple and stability) <0.1%. This paper describes the conceptual design and the technical solutions adopted to achieve the performance requested for the CARM HVPS.

  6. Disinfection and toxicological assessments of pulsed UV and pulsed-plasma gas-discharge treated-water containing the waterborne protozoan enteroparasite Cryptosporidium parvum.

    Science.gov (United States)

    Hayes, Jennifer; Kirf, Dominik; Garvey, Mary; Rowan, Neil

    2013-09-01

    We report for the first time on the comparative use of pulsed-plasma gas-discharge (PPGD) and pulsed UV light (PUV) for the novel destruction of the waterborne enteroparasite Cryptosporidium parvum. It also describes the first cyto-, geno- and ecotoxicological assays undertaken to assess the safety of water decontaminated using PPGD and PUV. During PPGD treatments, the application of high voltage pulses (16 kV, 10 pps) to gas-injected water (N2 or O2, flow rate 2.5L/min) resulted in the formation of a plasma that generated free radicals, ultraviolet light, acoustic shock waves and electric fields that killed ca. 4 log C. parvum oocysts in 32 min exposure. Findings showed that PPGD-treated water produced significant cytotoxic properties (as determined by MTT and neutral red assays), genotoxic properties (as determined by comet and Ames assays), and ecotoxic properties (as determined by Microtox™, Thamnotox™ and Daphnotox™ assays) that are representative of different trophic levels in aquatic environment (pozone (0.8 mg/L) and/or dissociated nitric and nitrous acid that contributed to the observed disinfection and toxicity. Chemical analysis of PPGD-treated water revealed increasing levels of electrode metals that were present at ≤ 30 times the tolerated respective values for EU drinking water. PUV-treated water did not exhibit any toxicity and was shown to be far superior to that of PPGD for killing C. parvum oocysts taking only 90 s of pulsing [UV dose of 6.29 μJ/cm(2)] to produce a 4-log reduction compared to a similar reduction level achieved after 32min PPGD treatment as determined by combined in vitro CaCo-2 cell culture-qPCR. © 2013. Published by Elsevier B.V. All rights reserved.

  7. Development of bipolar-pulse accelerator for intense pulsed ion beam acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Masugata, Katsumi [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan)]. E-mail: masugata@eng.toyama-u.ac.jp; Shimizu, Yuichro [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Fujioka, Yuhki [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Kitamura, Iwao [Department of Electrical and Electronic System Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555 (Japan); Tanoue, Hisao [National Institute of Advanced Industry Science and Technology, 1-1-1, Umezono, Tsukuba-shi, Ibaraki 305-8568 (Japan); Arai, Kazuo [National Institute of Advanced Industry Science and Technology, 1-1-1, Umezono, Tsukuba-shi, Ibaraki 305-8568 (Japan)

    2004-12-21

    To improve the purity of intense pulsed ion beams, a new type of pulsed ion beam accelerator named 'bipolar pulse accelerator' was proposed. To confirm the principle of the accelerator a prototype of the experimental system was developed. The system utilizes By type magnetically insulated acceleration gap and operated with single polar negative pulse. A coaxial gas puff plasma gun was used as an ion source, which was placed inside the grounded anode. Source plasma (nitrogen) of current density {approx}25A/cm2, duration {approx}1.5{mu}s was injected into the acceleration gap by the plasma gun. The ions were successfully accelerated from the grounded anode to the drift tube by applying negative pulse of voltage 240kV, duration 100ns to the drift tube. Pulsed ion beam of current density {approx}40A/cm2, duration {approx}50ns was obtained at 41mm downstream from the anode surface. To evaluate the irradiation effect of the ion beam to solid material, an amorphous silicon thin film of thickness {approx}500nm was used as the target, which was deposited on the glass substrate. The film was found to be poly-crystallized after 4-shots of the pulsed nitrogen ion beam irradiation.

  8. A remote in-vessel and ex-vessel force-reflecting telerobotic system for the burning plasma experiment

    International Nuclear Information System (INIS)

    Kuban, D.P.; Busko, N.

    1992-01-01

    The Burning Plasma Experiment (BPX) has made an applaudable commitment to total remote maintenance which will undoubtedly move fusion energy closer to commercial reality. This commitment poses new and formidable challenges due to the dimensional constraints, diversity of maintenance operations, and the geometrically intricate equipment arrangements. These challenges must be addressed for successful hot operation of the Princeton Plasma Physics Laboratory BPX. This paper reports on a new manipulator system, called the TeleMate, which is under development to contribute to this needed capability. This system combines enhancements to a proven mechanical design with state-of-the-art controls technology, to produce a flexible system that can be configured to address the numerous remote fusion applications. The mechanical portion of the system has many years of operation in existing radioactive facilities. This paper presents a system description, the development status, initial test data, and control system performance

  9. Unresolved spectral structures emitted from heavy atom plasmas produced by short pulse laser

    International Nuclear Information System (INIS)

    Fraenkel, M.; Zigler, A.

    1999-01-01

    Spectra of rare earth elements emitted from ultra short pulse laser produced plasma were recorded using simultaneously high and low resolution, spectrometers. A study of the broad band emission of the Δn = 1 transitions in highly ionized Ba and Sm plasma showed that this band is completely unresolved. The spectra were analyzed using the LTE based on super-transition array (STA) model. The theory reconstructs the entire Ba spectrum using a single temperature and density, whereas for Sm the discrepancies between the theory and experiment are not reconcilable. The agreement in the Ba case is attributed to the fact that BaF 2 target is transparent to the laser's prepulse effects, producing a homogeneous dense plasma, whereas for Sm the dilute plasma created by the prepulse is far from LTE. The obtained results posses a significant implication to the applicability of the STA model, in particular for calculations of opacities and conversion of laser light to X-rays. (orig.)

  10. Unresolved spectral structures emitted from heavy atom plasmas produced by short pulse laser

    Energy Technology Data Exchange (ETDEWEB)

    Fraenkel, M.; Zigler, A. [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics; Bar-Shalom, A.; Oreg, J. [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev; Faenov, A.Ya.; Pikuz, T.A. [Multicharged Ions Spectra Data Center of VNIIFTRI, Russian Committee of Standards Moscow region (Russian Federation)

    1999-09-01

    Spectra of rare earth elements emitted from ultra short pulse laser produced plasma were recorded using simultaneously high and low resolution, spectrometers. A study of the broad band emission of the {delta}n = 1 transitions in highly ionized Ba and Sm plasma showed that this band is completely unresolved. The spectra were analyzed using the LTE based on super-transition array (STA) model. The theory reconstructs the entire Ba spectrum using a single temperature and density, whereas for Sm the discrepancies between the theory and experiment are not reconcilable. The agreement in the Ba case is attributed to the fact that BaF{sub 2} target is transparent to the laser's prepulse effects, producing a homogeneous dense plasma, whereas for Sm the dilute plasma created by the prepulse is far from LTE. The obtained results posses a significant implication to the applicability of the STA model, in particular for calculations of opacities and conversion of laser light to X-rays. (orig.)

  11. The design of remote discharge scenario management system on EAST

    Energy Technology Data Exchange (ETDEWEB)

    Chai, W.T, E-mail: wtchai@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); University of Science and Technology of China, Hefei, Anhui (China); Xiao, B.J [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); University of Science and Technology of China, Hefei, Anhui (China); Yuan, Q.P; Zhang, R.R. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China)

    2016-11-15

    Highlights: • The remote discharge scenario management system is established on EAST, it provides some useful function for operators to manage discharge scenarios and formulate discharge schedule. • Operators can use this system to formulate discharge schedule on account of it can electing optimal scenarios automatically. • The system is not only for local user but also for remote user. • In the future, we can combine with actual discharge data and data mining technology to acquire optimal configuration, which to generate expert database and guiding experiment. - Abstract: The discharge scenarios on EAST plasma control system (PCS), characterized by different waveform parameters and different hardware requirements, will need a systematic discharge scenario management system for remote and local operators, in order to optimize storage structure and rationally manage discharge time. The remote management of discharge scenarios will require extending the functionalities of the present PCS “future shot” and “next shot” modules. Taking advantage of database technique, the operators can acquire detail information of all discharge scenarios directly without PCS user interface and search the specified scenarios by key words. In addition, the system can elect optimal scenarios automatically based on discharge schedule and plasma pulse setting for later artificial selection. To this purpose, a new remote discharge scenario management system (RDSMS) basis for Web is being conceived on EAST. The system contains a database with functions of “user management”, “scenario verification”, “prepared scenario management”, “actual discharge scenario management” and “discharge schedule management”. This paper will present the relevant conceptual design and give an account of the test results for implementation on EAST discharges.

  12. The design of remote discharge scenario management system on EAST

    International Nuclear Information System (INIS)

    Chai, W.T; Xiao, B.J; Yuan, Q.P; Zhang, R.R.

    2016-01-01

    Highlights: • The remote discharge scenario management system is established on EAST, it provides some useful function for operators to manage discharge scenarios and formulate discharge schedule. • Operators can use this system to formulate discharge schedule on account of it can electing optimal scenarios automatically. • The system is not only for local user but also for remote user. • In the future, we can combine with actual discharge data and data mining technology to acquire optimal configuration, which to generate expert database and guiding experiment. - Abstract: The discharge scenarios on EAST plasma control system (PCS), characterized by different waveform parameters and different hardware requirements, will need a systematic discharge scenario management system for remote and local operators, in order to optimize storage structure and rationally manage discharge time. The remote management of discharge scenarios will require extending the functionalities of the present PCS “future shot” and “next shot” modules. Taking advantage of database technique, the operators can acquire detail information of all discharge scenarios directly without PCS user interface and search the specified scenarios by key words. In addition, the system can elect optimal scenarios automatically based on discharge schedule and plasma pulse setting for later artificial selection. To this purpose, a new remote discharge scenario management system (RDSMS) basis for Web is being conceived on EAST. The system contains a database with functions of “user management”, “scenario verification”, “prepared scenario management”, “actual discharge scenario management” and “discharge schedule management”. This paper will present the relevant conceptual design and give an account of the test results for implementation on EAST discharges.

  13. Fields of an ultrashort tightly focused radially polarized laser pulse in a linear response plasma

    Science.gov (United States)

    Salamin, Yousef I.

    2017-10-01

    Analytical expressions for the fields of a radially polarized, ultrashort, and tightly focused laser pulse propagating in a linear-response plasma are derived and discussed. The fields are obtained from solving the inhomogeneous wave equations for the vector and scalar potentials, linked by the Lorenz gauge, in a plasma background. First, the scalar potential is eliminated using the gauge condition, then the vector potential is synthesized from Fourier components of an initial uniform distribution of wavenumbers, and the inverse Fourier transformation is carried out term-by-term in a truncated series (finite sum). The zeroth-order term in, for example, the axial electric field component is shown to model a pulse much better than its widely used paraxial approximation counterpart. Some of the propagation characteristics of the fields are discussed and all fields are shown to have manifested the expected limits for propagation in a vacuum.

  14. Pulsed power magnet technology for laser particle acceleration and laser plasma physics - a survey of developments at Helmholtz-Zentrum Dresden-Rossendorf

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Florian; Joost, Martin [Helmholtz-Zentrum Dresden-Rossendorf (Germany); TU Dresden (Germany); Burris-Mog, Trevor; Herrmannsdoerfer, Thomas; Kraft, Stephan; Masood, Umar; Schlenvoigt, Hans-Peter; Sobiella, Manfred; Wustmann, Bernd; Zherlitsyn, Sergei; Cowan, Thomas; Schramm, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2013-07-01

    Since the mid-1950s, pulsed high-field magnets have become a common, versatile research tool with application mostly in solid state physics and material research. Recently developed pulsed power magnet technology, specifically designed to meet the demands of laser acceleration and laser plasma experiments, open up new research opportunities: We present a pulsed air core solenoid (up to 20 T) for effective collection and focusing of laser accelerated particles. It could function as a crucial part of a compact, laser-based ion source (pursued by the LIGHT collaboration) or of beam guidance systems. Furthermore, the poster shows a split pair coil, utterly compact and with optical access in between the coil pairs and on axis, to study laser-driven plasma expansion under high magnetic fields (30 T). To power such devices, portable capacitor-based pulse generators have been developed at Helmholtz-Zentrum Dresden-Rossendorf. We present first results of the functional testing of our third-generation pulse generator. Looking forward, we outline a concept for a medical gantry based on pulsed high field beam optics.

  15. Intense pulsed heavy ion beam technology

    International Nuclear Information System (INIS)

    Masugata, Katsumi; Ito, Hiroaki

    2010-01-01

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm 2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm 2 was obtained. The beam consists of aluminum ions (Al (1-3)+ ) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89%. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were successively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm 2 was observed in the cathode, which suggests the bipolar pulse acceleration. (author)

  16. Pulsed cold plasma-induced blood coagulation and its pilot application in stanching bleeding during rat hepatectomy

    Science.gov (United States)

    Keping, YAN; Qikang, JIN; Chao, ZHENG; Guanlei, DENG; Shengyong, YIN; Zhen, LIU

    2018-04-01

    This paper presents plasma-induced blood coagulation and its pilot application in rat hepatectomy by using a home-made pulsed cold plasma jet. Experiments were conducted on blood coagulation in vitro, the influence of plasma on tissue in vivo, and the pilot application of rat hepatectomy. Experimental results show that the cold plasma can lead to rapid blood coagulation. Compared with the control sample, the plasma-induced agglomerated layer of blood is thicker and denser, and is mostly composed of broken platelets. When the surface of the liver was treated by plasma, the influence of the plasma can penetrate into the liver to a depth of about 500 μm. During the rat hepatectomy, cold plasma was proved to be effective for stanching bleeding on incision. No obvious bleeding was found in the abdominal cavities of all six rats 48 h after the hepatectomy. This implies that cold plasma can be an effective modality to control bleeding during surgical operation.

  17. Suprathermal Electron Generation and Channel Formation by an Ultrarelativistic Laser Pulse in an Underdense Preformed Plasma

    International Nuclear Information System (INIS)

    Malka, G.; Gaillard, R.; Miquel, J.L.; Rousseaux, C.; Bonnaud, G.; Busquet, M.; Lours, L.; Fuchs, J.; Pepin, H.; Fuchs, J.; Amiranoff, F.; Baton, S.D.

    1997-01-01

    Relativistic electrons are produced, with energies up to 20MeV, by the interaction of a high-intensity subpicosecond laser pulse (1 μm , 300 fs , 10 19 W/cm 2 ) with an underdense plasma. Two suprathermal electron populations appear with temperatures of 1 and 3MeV. In the same conditions, the laser beam transmission is increased up to 20% 30%. We observe both features along with the evidence of laser pulse channeling. A fluid model predicts a strong self-focusing of the pulse. Acceleration in the enhanced laser field seems the most likely mechanism leading to the second electron population. copyright 1997 The American Physical Society

  18. Imaging of the magnetic field structure in megagauss plasmas by combining pulsed polarimetry with an optical Kerr effect shutter technique

    International Nuclear Information System (INIS)

    Smith, R. J.

    2010-01-01

    Pulsed polarimetry in combination with a high speed photographic technique based on the optical Kerr effect is described. The backscatter in a pulsed polarimeter is directed through a scattering cell and photographed using an ∼1 ps shutter, essentially freezing the intensity pattern. The image provides both the local electron density and magnetic field distributions along and transverse to the laser sightline. Submillimeter spatial resolution is possible for probing wavelengths in the visible due to the high densities and strong optical activity. Pulsed polarimetry is thereby extended to centimeter-sized plasmas with n e >10 19 -10 20 cm -3 and B>20-100 T (MG) produced by multiterawatt, multimega-ampere electrical drivers, wire Z pinches, and liner imploded magnetized plasmas.

  19. Anomalous intensities of Ne-like ion resonance line in plasma produced by picosecond laser pulse

    International Nuclear Information System (INIS)

    Bryunetkin, B.A.; Skobelev, I.Yu.; Faenov, A.Ya.; Kalashnikov, M.P.; Nikles, P.; Shnyupep, M.

    1995-01-01

    An anomalous structure of intensities of spectral lines of CuXX and GeXXX Ne-like ions emitted by plasma produced by laser pulses of picosecond duration and up to 2x10 18 W/cm 2 flux density is recorded for the first time. It is shown that spectrum maximum of these ions is emitted from a plasma region whose density is significantly above the critical value of the length of heating laser radiation wave. 9 refs.; 3 figs

  20. Unified model of plasma formation, bubble generation and shock wave emission in water for fs to ns laser pulses (Conference Presentation)

    Science.gov (United States)

    Liang, Xiao-Xuan; Freidank, Sebastian; Linz, Norbert; Paltauf, Günther; Zhang, Zhenxi; Vogel, Alfred

    2017-03-01

    We developed modeling tools for optical breakdown events in water that span various phases reaching from breakdown initiation via solvated electron generation, through laser induced-plasma formation and temperature evolution in the focal spot to the later phases of cavitation bubble dynamics and shock wave emission and applied them to a large parameter space of pulse durations, wavelengths, and pulse energies. The rate equation model considers the interplay of linear absorption, photoionization, avalanche ionization and recombination, traces thermalization and temperature evolution during the laser pulse, and portrays the role of thermal ionization that becomes relevant for T > 3000 K. Modeling of free-electron generation includes recent insights on breakdown initiation in water via multiphoton excitation of valence band electrons into a solvated state at Eini = 6.6 eV followed by up-conversion into the conduction band level that is located at 9.5 eV. The ability of tracing the temperature evolution enabled us to link the model of laser-induced plasma formation with a hydrodynamic model of plasma-induced pressure evolution and phase transitions that, in turn, traces bubble generation and dynamics as well as shock wave emission. This way, the amount of nonlinear energy deposition in transparent dielectrics and the resulting material modifications can be assessed as a function of incident laser energy. The unified model of plasma formation and bubble dynamics yields an excellent agreement with experimental results over the entire range of investigated pulse durations (femtosecond to nanosecond), wavelengths (UV to IR) and pulse energies.

  1. Development of intense pulsed heavy ion beam diode using gas puff plasma gun as ion source

    International Nuclear Information System (INIS)

    Ito, H.; Higashiyama, M.; Takata, S.; Kitamura, I.; Masugata, K.

    2006-01-01

    A magnetically insulated ion diode with an active ion source of a gas puff plasma gun has been developed in order to generate a high-intensity pulsed heavy ion beam for the implantation process of semiconductors and the surface modification of materials. The nitrogen plasma produced by the plasma gun is injected into the acceleration gap of the diode with the external magnetic field system. The ion diode is operated at diode voltage approx. =200 kV, diode current approx. =2 kA and pulse duration approx. =150 ns. A new acceleration gap configuration for focusing ion beam has been designed in order to enhance the ion current density. The experimental results show that the ion current density is enhanced by a factor of 2 and the ion beam has the ion current density of 27 A/cm 2 . In addition, the coaxial type Marx generator with voltage 200 kV and current 15 kA has been developed and installed in the focus type ion diode. The ion beam of ion current density approx. =54 A/cm 2 is obtained. To produce metallic ion beams, an ion source by aluminum wire discharge has been developed and the aluminum plasma of ion current density ∼70 A/cm 2 is measured. (author)

  2. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments.

    Science.gov (United States)

    Chaplin, Vernon H; Bellan, Paul M

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.

  3. Stark widths of Xe II lines in a pulsed plasma

    International Nuclear Information System (INIS)

    Djurovic, S; Pelaez, R J; Cirisan, M; Aparicio, J A; Mar, S

    2006-01-01

    In this paper, we present a review of experimental work on Stark broadening of singly ionized xenon lines. Eighty lines, from close UV to the red region of the spectrum, have been studied. Stark halfwidths were compared with experimental data from the literature and modified semi-empirical calculations. A pulsed arc with 95% of helium and 5% xenon was used as a plasma source for this study. Measured electron densities N e and temperatures T were in the ranges of 0.2-1.6 x 10 23 m -3 and 18 300-25 500 K, respectively

  4. Comparative study of nanocomposites prepared by pulsed and dc sputtering combined with plasma polymerization suitable for photovoltaic device applications

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Amreen A. [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam (India); Pal, Arup R., E-mail: arpal@iasst.gov.in [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam (India); Kar, Rajib [Laser and Plasma Technology Division, Bhabha Atomic Research Center, Trombay, Mumbai (India); Bailung, Heremba; Chutia, Joyanti [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam (India); Patil, Dinkar S. [Laser and Plasma Technology Division, Bhabha Atomic Research Center, Trombay, Mumbai (India)

    2014-12-15

    Plasma processing, a single step method for production of large area composite films, is employed to deposit plasma polymerized aniline-Titanium dioxide (PPani-TiO{sub 2}) nanocomposite thin films. The deposition of PPani-TiO{sub 2} nanocomposite films are made using reactive magnetron sputtering and plasma polymerization combined process. This study focuses on the direct comparison between continuous and pulsed dc magnetron sputtering techniques of titanium in combination with rf plasma polymerization of aniline. The deposited PPani-TiO{sub 2} nanocomposite films are characterized and discussed in terms of structural, morphological and optical properties. A self powered hybrid photodetector has been developed by plasma based process. The proposed method provides a new route where the self-assembly of molecules, that is, the spontaneous association of atomic or molecular building blocks under plasma environment, emerge as a successful strategy to form well-defined structural and morphological units of nanometer dimensions. - Highlights: • PPani-TiO{sub 2} nanocomposite by pulsed and dc sputtering with rf plasma polymerization. • In-situ and Ex-situ H{sub 2}SO{sub 4} doping in PPani-TiO{sub 2} nanocomposite. • PPani-TiO{sub 2} nanocomposite based self-powered-hybrid photodetector.

  5. Regeneration of Acid Orange 7 Exhausted Granular Activated Carbon Using Pulsed Discharge Plasmas

    International Nuclear Information System (INIS)

    Wang Huijuan; Guo He; Liu Yongjie; Yi Chengwu

    2015-01-01

    In this paper, a pulsed discharge plasma (PDP) system with a multi-needle-to-plate electrodes geometry was set up to investigate the regeneration of acid orange 7 (AO7) exhausted granular activated carbon (GAC). Regeneration of GAC was studied under different conditions of peak pulse discharge voltage and water pH, as well as the modification effect of GAC by the pulse discharge process, to figure out the regeneration efficiency and the change of the GAC structure by the PDP treatment. The obtained results showed that there was an appropriate peak pulse voltage and an optimal initial pH value of the solution for GAC regeneration. Analyses of scanning electron microscope (SEM), Boehm titration, Brunauer-Emmett-Teller (BET), Horvath-Kawazoe (HK), and X-ray Diffraction (XRD) showed that there were more mesopore and macropore in the regenerated GAC and the structure turned smoother with the increase of discharge voltage; the amount of acidic functional groups on the GAC surface increased while the amount of basic functional groups decreased after the regeneration process. From the result of the XRD analysis, there were no new substances produced on the GAC after PDP treatment. (paper)

  6. Device performance of in situ steam generated gate dielectric nitrided by remote plasma nitridation

    International Nuclear Information System (INIS)

    Al-Shareef, H. N.; Karamcheti, A.; Luo, T. Y.; Bersuker, G.; Brown, G. A.; Murto, R. W.; Jackson, M. D.; Huff, H. R.; Kraus, P.; Lopes, D.

    2001-01-01

    In situ steam generated (ISSG) oxides have recently attracted interest for use as gate dielectrics because of their demonstrated reliability improvement over oxides formed by dry oxidation. [G. Minor, G. Xing, H. S. Joo, E. Sanchez, Y. Yokota, C. Chen, D. Lopes, and A. Balakrishna, Electrochem. Soc. Symp. Proc. 99-10, 3 (1999); T. Y. Luo, H. N. Al-Shareef, G. A. Brown, M. Laughery, V. Watt, A. Karamcheti, M. D. Jackson, and H. R. Huff, Proc. SPIE 4181, 220 (2000).] We show in this letter that nitridation of ISSG oxide using a remote plasma decreases the gate leakage current of ISSG oxide by an order of magnitude without significantly degrading transistor performance. In particular, it is shown that the peak normalized transconductance of n-channel devices with an ISSG oxide gate dielectric decreases by only 4% and the normalized drive current by only 3% after remote plasma nitridation (RPN). In addition, it is shown that the reliability of the ISSG oxide exhibits only a small degradation after RPN. These observations suggest that the ISSG/RPN process holds promise for gate dielectric applications. [copyright] 2001 American Institute of Physics

  7. Plasma surface treatment to improve surface charge accumulation and dissipation of epoxy resin exposed to DC and nanosecond-pulse voltages

    Science.gov (United States)

    Zhang, Cheng; Lin, Haofan; Zhang, Shuai; Xie, Qin; Ren, Chengyan; Shao, Tao

    2017-10-01

    In this paper, deposition by non-thermal plasma is used as a surface modification technique to change the surface characteristics of epoxy resin exposed to DC and nanosecond-pulse voltages. The corresponding surface characteristics in both cases of DC and nanosecond-pulse voltages before and after the modification are compared and investigated. The measurement of the surface potential provides the surface charge distribution, which is used to show the accumulation and dissipation process of the surface charges. Morphology observations, chemical composition and electrical parameters measurements are used to evaluate the treatment effects. The experimental results show that, before the plasma treatment, the accumulated surface charges in the case of the DC voltage are more than that in the case of the nanosecond-pulse voltage. Moreover, the decay rate of the surface charges for the DC voltage is higher than that for the nanosecond-pulse voltage. However, the decay rate is no more than 41% after 1800 s for both types of voltages. After the plasma treatment, the maximum surface potentials decrease to 57.33% and 32.57% of their values before treatment for the DC and nanosecond-pulse voltages, respectively, indicating a decrease in the accumulated surface charges. The decay rate exceeds 90% for both types of voltages. These changes are mainly attributed to a change in the surface nanostructure, an increase in conductivity, and a decrease in the depth of energy level.

  8. Plasma surface treatment to improve surface charge accumulation and dissipation of epoxy resin exposed to DC and nanosecond-pulse voltages

    International Nuclear Information System (INIS)

    Zhang, Cheng; Lin, Haofan; Zhang, Shuai; Ren, Chengyan; Shao, Tao; Xie, Qin

    2017-01-01

    In this paper, deposition by non-thermal plasma is used as a surface modification technique to change the surface characteristics of epoxy resin exposed to DC and nanosecond-pulse voltages. The corresponding surface characteristics in both cases of DC and nanosecond-pulse voltages before and after the modification are compared and investigated. The measurement of the surface potential provides the surface charge distribution, which is used to show the accumulation and dissipation process of the surface charges. Morphology observations, chemical composition and electrical parameters measurements are used to evaluate the treatment effects. The experimental results show that, before the plasma treatment, the accumulated surface charges in the case of the DC voltage are more than that in the case of the nanosecond-pulse voltage. Moreover, the decay rate of the surface charges for the DC voltage is higher than that for the nanosecond-pulse voltage. However, the decay rate is no more than 41% after 1800 s for both types of voltages. After the plasma treatment, the maximum surface potentials decrease to 57.33% and 32.57% of their values before treatment for the DC and nanosecond-pulse voltages, respectively, indicating a decrease in the accumulated surface charges. The decay rate exceeds 90% for both types of voltages. These changes are mainly attributed to a change in the surface nanostructure, an increase in conductivity, and a decrease in the depth of energy level. (paper)

  9. Characteristics of Droplets Ejected from Liquid Propellants Ablated by Laser Pulses in Laser Plasma Propulsion

    International Nuclear Information System (INIS)

    Zheng Zhiyuan; Gao Hua; Fan Zhenjun; Xing Jie

    2014-01-01

    The angular distribution and pressure force of droplets ejected from liquid water and glycerol ablated by nanosecond laser pulses are investigated under different viscosities in laser plasma propulsion. It is shown that with increasing viscosity, the distribution angles present a decrease tendency for two liquids, and the angular distribution of glycerol is smaller than that of water. A smaller distribution leads to a higher pressure force generation. The results indicate that ablation can be controlled by varying the viscosity of liquid propellant in laser plasma propulsion

  10. Fenton chemistry promoted by sub-microsecond pulsed corona plasmas for organic micropollutant degradation in water.

    Czech Academy of Sciences Publication Activity Database

    Banaschik, R.; Lukeš, Petr; Miron, C.; Banaschik, R.; Pipa, A.V.; Fricke, K.; Bednarski, P.; Kolb, J.F.

    2017-01-01

    Roč. 245, August (2017), s. 539-548 ISSN 0013-4686 R&D Projects: GA MŠk(CZ) LD14080 Grant - others:European Cooperation in Science and Technology(XE) COST TD1208 Institutional support: RVO:61389021 Keywords : advanced oxidation * non-thermal plasma * electrode corrosion * pulsed electrolysis * hydroxyl radicals * pollutant degradation Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 4.798, year: 2016 http://www.sciencedirect.com/science/article/pii/S0013468617311179

  11. W/Cu composites produced by low temperature Pulse Plasma Sintering

    International Nuclear Information System (INIS)

    Rosinski, M.S.; Fortuna, E.; Michalski, A.J.; Kurzydlowski, K.J.

    2006-01-01

    The plasma facing components (PFCs) must withstand the thermal, mechanical and neutron loads under cyclic mode of operation and vacuum. Despite that PFCs of ITER and demonstration reactors must assure reliability and long in service lifetime. For that reason PFCs are designed to be made of beryllium, tungsten or carbon fibre composites armours and copper based heat sink material. Such design concepts can only be used if joining methods of these dissimilar materials are resolved. Several techniques have been developed for joining W and Cu e. g. casting of pure Cu onto W, high temperature brazing, direct diffusion bonding or CVDs of W onto Cu. The main problem in the development of such joints is the large difference in the coefficients of thermal expansion, CTE (alpha Cu > 4 alpha W) and elastic modula (ECu > 0.2 EW). These differences result in large stresses at the W/Cu interfaces during manufacturing and/or during operation, which may lead to cracking or delamination reducing lifetime of the components. Possible solution to this problem is the use of W-Cu composites (FGM). W-Cu composites are widely used for spark erosion electrodes, in heavy duty circuit breakers and as heat sinks of microelectronic devices. They are commonly produced by infiltration of a porous sintered tungsten by liquid copper. Other technological route is powder metallurgy. Coatings can be produced by low pressure plasma spraying. All these methods, however, are known to have some disadvantages. For infiltration there is a 30 wt.% limit of Cu content while for powder metallurgy and plasma spraying techniques porosity is of concern. In our work the W-Cu composites of different composition were produced by pulse plasma sintering (PPS). This new method utilizes pulsed high electric discharges to heat the powders under uniaxial load. The arc discharges clean surface of powder particles and intensify diffusion. The total sintering time is reduced to several minutes. In our investigations various

  12. Investigation of the time evolution of plasma parameters in a pulsed magnetron discharge

    Czech Academy of Sciences Publication Activity Database

    Straňák, V.; Hubička, Zdeněk; Adámek, P.; Blažek, J.; Tichý, M.; Špatenka, P.; Hippler, R.; Wrehde, S.

    2006-01-01

    Roč. 56, - (2006), s. 1364-1370 ISSN 0011-4626 R&D Projects: GA ČR GA202/05/2242; GA ČR GA202/06/0776 Grant - others:Deutsche Forschungsgemeinschaft(DE) SFB/TR 24 Institutional research plan: CEZ:AV0Z10100522 Keywords : pulsed magnetron * time resolved measurements * Langmuir probe Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.568, year: 2006

  13. Design and characterization of a small multipurpose capacitor bank for plasma physics and pulsed power experiments

    International Nuclear Information System (INIS)

    Tarifeno, Ariel; Pavez, Cristian; Soto, Leopoldo

    2008-01-01

    Pulsed power technologies essentially refer to power sources providing a huge amount of energy during very short times. These technologies have applications in several fields of science and engineering: production of transient electrical discharges and plasmas, generation of radiation and ion beams, high density matter, production of pulsed high magnetic fields and shock waves. The achievements of these fields are relevant for several economical and industrial areas: electronics, microlithography, mining, medicine, agriculture, defense, materials, among others. In the present work, the design and construction of a small capacitor bank conceived for carrying out a variety of research activities are presented. The main features of this system are 1.2 μF of capacity, 30 kV maximum charge voltage, 33 nH inductance, 500 J of energy, 180 kA at the peak of current and dI/dt∼10 11 A s -1 . The procedure and results related to the characterization of the capacitor bank are presented. Possible applications of this capacitor bank to scaling studies related to plasma focus and Z-pinch, high pulsed magnetic field generation and rock fragmentation by electrical discharges are mentioned.

  14. Fiber-optic laser-induced breakdown spectroscopy of zirconium metal in air: Special features of the plasma produced by a long-pulse laser

    Science.gov (United States)

    Matsumoto, Ayumu; Ohba, Hironori; Toshimitsu, Masaaki; Akaoka, Katsuaki; Ruas, Alexandre; Sakka, Tetsuo; Wakaida, Ikuo

    2018-04-01

    The decommissioning of the Tokyo Electric Power Company (TEPCO) Fukushima Daiichi Nuclear Power Plant is an essential issue in nuclear R&D. Fiber-optic laser-induced breakdown spectroscopy (Fiber-optic LIBS) could be used for in-situ elemental analysis of the inside of the damaged reactors. To improve the performances under difficult conditions, using a long-pulse laser can be an efficient alternative. In this work, the emission spectra of zirconium metal in air obtained for a normal-pulse laser (6 ns) and a long-pulse laser (100 ns) (wavelength: 1064 nm, pulse energy: 12.5 mJ, spot diameter: 0.35 mm) are compared to investigate the fundamental aspects of fiber-optic LIBS with the long-pulse laser. The spectral features are considerably different: when the long-pulse laser is used, the atomic and molecular emission is remarkably enhanced. The enhancement of the atomic emission at the near infrared (NIR) region would lead to the observation of emission lines with minimum overlapping. To understand the differences in the spectra induced respectively from the normal-pulse laser and the long-pulse laser, photodiode signals, time-resolved spectra, plasma parameters, emission from the ambient air, and emission regions are investigated, showing the particular characteristics of the plasma produced by the long-pulse laser.

  15. Activation of peroxydisulfate by gas-liquid pulsed discharge plasma to enhance the degradation of p-nitrophenol

    Science.gov (United States)

    Shang, Kefeng; Wang, Hao; Li, Jie; Lu, Na; Jiang, Nan; Wu, Yan

    2017-06-01

    Pulsed discharge in water and over water surfaces generates ultraviolet radiation, local high temperature, shock waves, and chemical reactive species, including hydroxyl radicals, hydrogen peroxide, and ozone. Pulsed discharge plasma (PDP) can oxidize and mineralize pollutants very efficiently, but high energy consumption restricts its application for industrial wastewater treatment. A novel method for improving the energy efficiency of wastewater treatment by PDP was proposed, in which peroxydisulfate (PDS) was added to wastewater and PDS was activated by PDP to produce more strong oxidizing radicals, including sulfate radicals and hydroxyl radicals, leading to a higher oxidation capacity for the PDP system. The experimental results show that the increase in solution conductivity slightly decreased the discharge power of the pulse discharge over the water surface. An increase in the discharge intensity improved the activation of PDS and therefore the degradation efficiency and energy efficiency of p-nitrophenol (PNP). An increase in the addition dosage of PDS greatly facilitated the degradation of PNP at a molar ratio of PDS to PNP of lower than 80:1, but the performance enhancement was no longer obvious at a dosage of more than 80:1. Under an applied voltage of 20 kV and a gas discharge gap of 2 mm, the degradation efficiency and energy efficiency of the PNP reached 90.7% and 45.0 mg kWh-1 for the plasma/PDS system, respectively, which was 34% and 18.0 mg kWh-1 higher than for the discharge plasma treatment alone. Analysis of the physical and chemical effects indicated that ozone and hydrogen peroxide were important for PNP degradation and UV irradiation and heat from the discharge plasma might be the main physical effects for the activation of PDS.

  16. Variable pattern of high-order harmonic spectra from a laser-produced plasma by using the chirped pulses of narrow-bandwidth radiation

    International Nuclear Information System (INIS)

    Ganeev, R. A.; Suzuki, M.; Baba, M.; Kuroda, H.; Redkin, P. V.

    2007-01-01

    Various plasmas prepared by laser ablation of the surfaces of solid targets were examined by the narrow-bandwidth radiation of different chirp and pulse durations. The high-order harmonics generated during laser-plasma interaction showed different brightness, wavelength shift, harmonic cutoff, and efficiency by using variable chirps of pump radiation. An analysis of harmonic optimization at these conditions is presented. The blueshifted and redshifted harmonics observed in this case were analyzed and attributed to the abundance of free electrons and self-phase modulation of the driving pulse. The resonance-induced enhancement of the 15th harmonic from GaN-nanoparticle-containing plasma caused by the tuning of harmonic wavelength close to the ionic transition was demonstrated

  17. Surface characterization of hydrophobic thin films deposited by inductively coupled and pulsed plasmas

    International Nuclear Information System (INIS)

    Kim, Youngsoo; Lee, Ji-Hye; Kim, Kang-Jin; Lee, Yeonhee

    2009-01-01

    Different fluorocarbon thin films were deposited on Si substrates using a plasma-polymerization method. Fluorine-containing hydrophobic thin films were obtained by inductively coupled plasma (ICP) and pulsed plasma (PP) with a mixture of fluorocarbon precursors C 2 F 6 , C 3 F 8 , and c-C 4 F 8 and the unsaturated hydrocarbons of C 2 H 2 . The influence on the fluorocarbon surfaces of the process parameters for plasma polymerization, including the gas ratio and the plasma power, were investigated under two plasma-polymerized techniques with different fluorocarbon gas precursors. The hydrophobic properties, surface morphologies, and chemical compositions were elucidated using water contact angle measurements, field emission-scanning electron microscope, x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). In this study, the ICP technique provides coarser grained films and more hydrophobic surfaces as well as a higher deposition rate compared to the PP technique. XPS, FT-IR, and TOF-SIMS analyses indicated that the ICP technique produced more fluorine-related functional groups, including CF 2 and CF 3 , on the surface. From the curve-fitted XPS results, fluorocarbon films grown under ICP technique exhibited less degree of cross-linking and higher CF 2 concentrations than those grown under PP technique.

  18. An XPS study of pulsed plasma polymerised allyl alcohol film growth on polyurethane

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Lucy [Department of Chemistry, University of York, Heslington, York YO10 5DD (United Kingdom); Bismarck, Alexander [Department of Chemical Engineering, Polymer and Composite Engineering (PaCE) Group, Imperial College London, London SW7 2AZ (United Kingdom); Lee, Adam F. [Department of Chemistry, University of York, Heslington, York YO10 5DD (United Kingdom); Wilson, Darren [Smith and Nephew Research Centre, York Science Park, Heslington, York YO10 5DF (United Kingdom); Wilson, Karen [Department of Chemistry, University of York, Heslington, York YO10 5DD (United Kingdom)]. E-mail: kw13@york.ac.uk

    2006-09-30

    The growth of highly functionalised poly allyl alcohol films by pulsed plasma polymerisation of CH{sub 2} =CHCH{sub 2}OH on biomedical grade polyurethane has been followed by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. Film thickness is observed to increase approximately linearly with plasma modification time, suggesting a layer-by-layer growth mode of poly allyl alcohol. Water contact angle measurements reveal the change in the surface free energy of wetting decreases linearly with plasma modification up to the monolayer point after which a constant limiting value of -24 mJ m{sup -2} was attained. Films prepared at 20 W plasma power with a duty cycle of 10 {mu}s:500 {mu}s exhibit a high degree of hydroxyl (-OH) retention with minimal fragmentation of the monomer observed. Increasing the plasma power up to 125 W is found to improve -OH retention at the expense of ether formation generating films close to the monomer stoichiometry. Duty cycle plays an important role in controlling both film composition and thickness, with longer off times increasing -OH retention, while longer on times enhance allyl alcohol film growth.

  19. Multi-probe ionization chamber system for nuclear-generated plasma diagnostics

    International Nuclear Information System (INIS)

    Choi, W.Y.; Ellis, W.H.

    1990-01-01

    This paper reports on the pulsed ionization chamber (PIC) plasma diagnostic system used in studies of nuclear seeded plasma kinetics upgraded to increase the capabilities and extend the range of plasma parameter measurements to higher densities and temperatures. The PIC plasma diagnostic chamber has been provided with additional measurement features in the form of conductivity and Langmuir probes, while the overall experimental system has been fully automated, with computerized control, measurement, data acquisition and analysis by means of IEEE-488 (GPIB) bus control and data transfer protocols using a Macintosh series microcomputer. The design and use of a simple TTL switching system enables remote switching among the various GPIB instruments comprising the multi-probe plasma diagnostic system using software, without the need for a microprocessor. The new system will be used to extend the present study of nuclear generated plasma in He, Ar, Xe, fissionable UF 6 and other fluorine containing gases

  20. Effects of pulse-to-pulse residual species on discharges in repetitively pulsed discharges through packed bed reactors

    Science.gov (United States)

    Kruszelnicki, Juliusz; Engeling, Kenneth W.; Foster, John E.; Kushner, Mark J.

    2016-09-01

    Atmospheric pressure dielectric barrier discharges (DBDs) sustained in packed bed reactors (PBRs) are being investigated for conversion of toxic and waste gases, and CO2 removal. These discharges are repetitively pulsed having varying flow rates and internal geometries, which results in species from the prior pulse still being in the discharge zone at the time the following discharge pulse occurs. A non-negligible residual plasma density remains, which effectively acts as preionization. This residual charge changes the discharge properties of subsequent pulses, and may impact important PBR properties such as chemical selectivity. Similarly, the residual neutral reactive species produced during earlier pulses will impact the reaction rates on subsequent pulses. We report on results of a computational investigation of a 2D PBR using the plasma hydrodynamics simulator nonPDPSIM. Results will be discussed for air flowing though an array of dielectric rods at atmospheric pressure. The effects of inter-pulse residual species on PBR discharges will be quantified. Means of controlling the presence of residual species in the reactor through gas flow rate, pulse repetition, pulse width and geometry will be described. Comparisons will be made to experiments. Work supported by US DOE Office of Fusion Energy Science and the National Science Foundation.

  1. Time-resolved probing of electron thermal conduction in femtosecond-laser-pulse-produced plasmas

    International Nuclear Information System (INIS)

    Vue, B.T.V.

    1993-06-01

    We present time-resolved measurements of reflectivity, transmissivity and frequency shifts of probe light interacting with the rear of a disk-like plasma produced by irradiation of a transparent solid target with 0.1ps FWHM laser pulses at peak intensity 5 x 10 l4 W/CM 2 . Experimental results show a large increase in reflection, revealing rapid formation of a steep gradient and overdense surface plasma layer during the first picosecond after irradiation. Frequency shifts due to a moving ionization created by thermal conduction into the solid target are recorded. Calculations using a nonlinear thermal heat wave model show good agreement with the measured frequency shifts, further confining the strong thermal transport effect

  2. Studies on surface graft polymerization of acrylic acid onto PTFE film by remote argon plasma initiation

    International Nuclear Information System (INIS)

    Wang Chen; Chen Jierong

    2007-01-01

    The graft polymerization of acrylic acid (AAc) was carried out onto poly(tetrafluoroethylene) (PTFE) films that had been pretreated with remote argon plasma and subsequently exposed to oxygen to create peroxides. Peroxides are known to be the species responsible for initiating the graft polymerization when PTFE reacts with AAc. We chose different parameters of remote plasma treatment to get the optimum condition for introducing maximum peroxides (2.87 x 10 -11 mol/cm 2 ) on the surface. The influence of grafted reaction conditions on the grafting degree was investigated. The maximum grafting degree was 25.2 μg/cm 2 . The surface microstructures and compositions of the AAc grafted PTFE film were characterized with the water contact angle meter, Fourier-transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). Contact angle measurements revealed that the water contact angle decreased from 108 o to 41 o and the surface free energy increased from 22.1 x 10 -5 to 62.1 x 10 -5 N cm -1 by the grafting of the AAc chains. The hydrophilicity of the PTFE film surface was greatly enhanced. The time-dependent activity of the grafted surface was better than that of the plasma treated film

  3. Activating basal-plane catalytic activity of two-dimensional MoS2 monolayer with remote hydrogen plasma

    KAUST Repository

    Cheng, Chia-Chin

    2016-09-10

    Two-dimensional layered transition metal dichalcogenide (TMD) materials such as Molybdenum disufide (MoS2) have been recognized as one of the low-cost and efficient electrocatalysts for hydrogen evolution reaction (HER). The crystal edges that account for a small percentage of the surface area, rather than the basal planes, of MoS2 monolayer have been confirmed as their active catalytic sites. As a result, extensive efforts have been developing in activating the basal planes of MoS2 for enhancing their HER activity. Here, we report a simple and efficient approach-using a remote hydrogen-plasma process-to creating S-vacancies on the basal plane of monolayer crystalline MoS2; this process can generate high density of S-vacancies while mainly maintaining the morphology and structure of MoS2 monolayer. The density of S-vacancies (defects) on MoS2 monolayers resulted from the remote hydrogen-plasma process can be tuned and play a critical role in HER, as evidenced in the results of our spectroscopic and electrical measurements. The H2-plasma treated MoS2 also provides an excellent platform for systematic and fundamental study of defect-property relationships in TMDs, which provides insights for future applications including electrical, optical and magnetic devices. © 2016 Elsevier Ltd.

  4. Electromagnetic radiation emitted by a plasma produced in air by laser pulses with lambda = 10.6 μm

    International Nuclear Information System (INIS)

    Danilychev, V.A.; Zvorykin, V.D.; Kholin, I.V.; Chugunov, A.Y.

    1981-01-01

    The spectrum, brightness, and energy have been measured for the electromagnetic radiation emitted by a plasma produced in air near a solid surface by pulses from a high-power CO 2 laser. The air pressure was varied over the range p 0 = 0.1--760 torr, and the laser power density was varied over the range q = 5 x 10 6 --10 8 W/cm 2 . At p 0 > or approx. =2--5 torr the radiation properties of the plasma are determined by a laser-beam absorption wave which arises in the gas. The maximum brightness temperature, T/sub b/approx. =50 000 K (lambda = 400 +- 20 nm), is reached at p 0 = 25 torr. The emission spectrum is quite different from an equilibrium spectrum, consisting primarily of NII, OII, and NIII lines. The total energy radiation by the plasma in the wavelength interval 360--2600 nm into a solid angle of 4π sr reaches 2.3% of the laser pulse energy

  5. Impacts of ambient and ablation plasmas on short- and ultrashort-pulse laser processing of surfaces

    Czech Academy of Sciences Publication Activity Database

    Bulgakova, Nadezhda M.; Panchenko, A.N.; Zhukov, V.P.; Kudryashov, S.I.; Pereira, A.; Marine, W.; Mocek, Tomáš; Bulgakov, A.V.

    2014-01-01

    Roč. 5, č. 4 (2014), s. 1344-1372 ISSN 2072-666X R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143 Institutional support: RVO:68378271 Keywords : pulsed laser ablation * laser material processing * laser plasma * ambient gas breakdown * material redeposition * plasma pipe formation * microstructures Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.269, year: 2014

  6. Pulsed high energy synthesis of fine metal powders

    Science.gov (United States)

    Witherspoon, F. Douglas (Inventor); Massey, Dennis W. (Inventor)

    1999-01-01

    Repetitively pulsed plasma jets generated by a capillary arc discharge at high stagnation pressure (>15,000 psi) and high temperature (>10,000 K) are utilized to produce 0.1-10 .mu.m sized metal powders and decrease cost of production. The plasma jets impact and atomize melt materials to form the fine powders. The melt can originate from a conventional melt stream or from a pulsed arc between two electrodes. Gas streams used in conventional gas atomization are replaced with much higher momentum flux plasma jets. Delivering strong incident shocks aids in primary disintegration of the molten material. A series of short duration, high pressure plasma pulses fragment the molten material. The pulses introduce sharp velocity gradients in the molten material which disintegrates into fine particles. The plasma pulses have peak pressures of approximately one kilobar. The high pressures improve the efficiency of disintegration. High gas flow velocities and pressures are achieved without reduction in gas density. Repetitively pulsed plasma jets will produce powders with lower mean size and narrower size distribution than conventional atomization techniques.

  7. A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond- and microsecond-pulse generators in helium

    International Nuclear Information System (INIS)

    Zhang, Cheng; Shao, Tao; Wang, Ruixue; Yan, Ping; Zhou, Zhongsheng; Zhou, Yixiao

    2014-01-01

    Power source is an important parameter that can affect the characteristics of atmospheric-pressure plasma jets (APPJs), because it can play a key role on the discharge characteristics and ionization process of APPJs. In this paper, the characteristics of helium APPJs sustained by both nanosecond-pulse and microsecond-pulse generators are compared from the aspects of plume length, discharge current, consumption power, energy, and optical emission spectrum. Experimental results showed that the pulsed APPJ was initiated near the high-voltage electrode with a small curvature radius, and then the stable helium APPJ could be observed when the applied voltage increased. Moreover, the discharge current of the nanosecond-pulse APPJ was larger than that of the microsecond-pulse APPJ. Furthermore, although the nanosecond-pulse generator consumed less energy than the microsecond-pulse generator, longer plume length, larger instantaneous power per pulse and stronger spectral line intensity could be obtained in the nanosecond-pulse excitation case. In addition, some discussion indicated that the rise time of the applied voltage could play a prominent role on the generation of APPJs

  8. Development of bipolar pulse accelerator for intense pulsed ion beam acceleration

    International Nuclear Information System (INIS)

    Fujioka, Y.; Mitsui, C.; Kitamura, I.; Takahashi, T.; Masugata, K.; Tanoue, H.; Arai, K.

    2003-01-01

    To improve the purity of an intense pulsed ion beams a new type of pulsed ion beam accelerator named 'bipolar pulse accelerator (BPA)' was proposed. In the accelerator purity of the beam is expected. To confirm the principle of the accelerator experimental system was developed. The system utilizes B y type magnetically insulated acceleration gap and operated with single polar negative pulse. A coaxial gas puff plasma gun placed in the grounded anode was used as an ion source, and source plasma (nitrogen) of current density approx. = 25 A/cm 2 , duration approx. = 1.5 μs was injected into the acceleration gap. The ions are successfully accelerated from the grounded anode to the drift tube by applying negative pulse of voltage 180 kV, duration 60 ns to the drift tube. Pulsed ion beam of current density approx. = 40 A/cm 2 , duration approx. 60 ns was obtained at 42 mm downstream from the anode surface. (author)

  9. Addressing EO-1 Spacecraft Pulsed Plasma Thruster EMI Concerns

    Science.gov (United States)

    Zakrzwski, C. M.; Davis, Mitch; Sarmiento, Charles; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The Pulsed Plasma Thruster (PPT) Experiment on the Earth Observing One (EO-1) spacecraft has been designed to demonstrate the capability of a new generation PPT to perform spacecraft attitude control. Results from PPT unit level radiated electromagnetic interference (EMI) tests led to concerns about potential interference problems with other spacecraft subsystems. Initial plans to address these concerns included firing the PPT at the spacecraft level both in atmosphere, with special ground support equipment. and in vacuum. During the spacecraft level tests, additional concerns where raised about potential harm to the Advanced Land Imager (ALI). The inadequacy of standard radiated emission test protocol to address pulsed electromagnetic discharges and the lack of resources required to perform compatibility tests between the PPT and an ALI test unit led to changes in the spacecraft level validation plan. An EMI shield box for the PPT was constructed and validated for spacecraft level ambient testing. Spacecraft level vacuum tests of the PPT were deleted. Implementation of the shield box allowed for successful spacecraft level testing of the PPT while eliminating any risk to the ALI. The ALI demonstration will precede the PPT demonstration to eliminate any possible risk of damage of ALI from PPT operation.

  10. Development of a 100 KV 10 a pulse generator on the basis of electron tubes for plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Kaur, Mandeep; Barve, D.N.; Chakravarthy, D.P.

    2006-01-01

    The design of a high-voltage pulsing system on the basis of hard tube of hard tube for a plasma immersion ion implantation (PIII) facility is presented. A list of requirements, which have to be fulfilled by a high-voltage pulse generator to get best results and an optimum operation of the PIII system, is given. The requirement for the pulse generator can be fulfilled well using a pulse generator design, which employs a hard tube switch. The pulse generator design presented is optimized for PIII systems. The hard tube control can produce nearly rectangular pulses of any duration and repetition frequencies and is especially optimized for obtaining voltage rise times as short as possible. (author)

  11. Heating of a dense plasma by an ultrashort laser pulse in the anomalous skin-effect regime

    International Nuclear Information System (INIS)

    Andreev, A.A.; Gamalii, E.G.; Novikov, V.N.; Semakhin, A.N.; Tikhonchuk, V.T.

    1992-01-01

    The absorption of laser light in an overdense plasma with a sharp boundary and the heating of the plasma under conditions corresponding to the anomalous skin effect are studied. Heat transfer from the absorption region near the surface into the interior of the plasma is studied in the kinetic approximation. At high intensities of the laser pulse, the electron distribution function is deformed, and the plasma is heated at a rate tens of times that predicted by classical heat-transfer theory, because of the severe limitation on thermal conductivity. The anisotropy of the electron distribution function in the skin layer leads to an increase in the absorption coefficient. The angular distribution and the polarization dependence of the absorption coefficient are discussed

  12. Plasma-pulse formation and acceleration for fast high-power technology and switching applications

    International Nuclear Information System (INIS)

    Doucet, H.J.; Jones, W.D.; Moustaizis, S.; Lamain, H.; Rouille, C.

    1985-01-01

    A carbon plasma gun powered by a low-inductance capacitor bank and transmission line is used to produce μsec-length pulses of protons having densities of 10/sup 12/-10/sup 14/ cm/sup -3/ at distances of 0.3-1.5 m from the gun and velocities of 10-20 cm/μs. Essential features are a low-inductance surface switch and a nonlinear transmission grid

  13. Nonlinear Charge and Current Neutralization of an Ion Beam Pulse in a Pre-formed Plasma

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Shvets, Gennady; Startsev, Edward; Davidson, Ronald C.

    2001-01-01

    The propagation of a high-current finite-length ion beam in a cold pre-formed plasma is investigated. The outcome of the calculation is the quantitative prediction of the degree of charge and current neutralization of the ion beam pulse by the background plasma. The electric magnetic fields generated by the ion beam are studied analytically for the nonlinear case where the plasma density is comparable in size with the beam density. Particle-in-cell simulations and fluid calculations of current and charge neutralization have been performed for parameters relevant to heavy ion fusion assuming long, dense beams with el >> V(subscript b)/omega(subscript b), where V(subscript b) is the beam velocity and omega subscript b is the electron plasma frequency evaluated with the ion beam density. An important conclusion is that for long, nonrelativistic ion beams, charge neutralization is, for all practical purposes, complete even for very tenuous background plasmas. As a result, the self-magnetic force dominates the electric force and the beam ions are always pinched during beam propagation in a background plasma

  14. Nonlinear Charge and Current Neutralization of an Ion Beam Pulse in a Pre-formed Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Igor D. Kaganovich; Gennady Shvets; Edward Startsev; Ronald C. Davidson

    2001-01-30

    The propagation of a high-current finite-length ion beam in a cold pre-formed plasma is investigated. The outcome of the calculation is the quantitative prediction of the degree of charge and current neutralization of the ion beam pulse by the background plasma. The electric magnetic fields generated by the ion beam are studied analytically for the nonlinear case where the plasma density is comparable in size with the beam density. Particle-in-cell simulations and fluid calculations of current and charge neutralization have been performed for parameters relevant to heavy ion fusion assuming long, dense beams with el >> V(subscript b)/omega(subscript b), where V(subscript b) is the beam velocity and omega subscript b is the electron plasma frequency evaluated with the ion beam density. An important conclusion is that for long, nonrelativistic ion beams, charge neutralization is, for all practical purposes, complete even for very tenuous background plasmas. As a result, the self-magnetic force dominates the electric force and the beam ions are always pinched during beam propagation in a background plasma.

  15. Properties of spectra of the reflected and transmitted radiation during propagation of relativistically strong laser pulses in underdense plasmas

    International Nuclear Information System (INIS)

    Bulanov, S.V.; Esirkepov, T.Z.; Naumova, N.M.

    1996-01-01

    Particle-in-cell simulation has been performed to study the spatial-temporal evolution of the pulse propagating in an underdense plasma. The spectra both of the reflected and transmitted radiation are investigated. The spectrum structure of the reflected radiation is due to the backward stimulated Raman scattering meanwhile the transmitted radiation structure is mainly due to the nonlinear self-phase-modulation. The influence of the pulse shape on the transmitted radiation spectrum is revealed. The dependence of the main features of the spectrum and the self-consistent pulse distortion is found. The pulse distortion is accompanied by the relativistic electrons generation. copyright 1996 American Institute of Physics

  16. International Conference on the Interaction of atoms, molecules and plasmas with intense ultrashort laser pulses. Book of abstracts

    International Nuclear Information System (INIS)

    2006-01-01

    International Conference on the Interaction of atoms, molecules and plasmas with intense ultrashort laser pulses was held in Hungary in 2006. This conference which joined the ULTRA COST activity ('Laser-matter interactions with ultra-short pulses, high-frequency pulses and ultra-intense pulses. From attophysics to petawatt physics') and the XTRA ('Ultrashort XUV Pulses for Time-Resolved and Non-Linear Applications') Marie-Curie Research Training Network, intends to offer a possibility to the members of both of these activities to exchange ideas on recent theoretical and experimental results on the interaction of ultrashort laser pulses with matter giving a broad view from theoretical models to practical and technical applications. Ultrashort laser pulses reaching extra high intensities open new windows to obtain information about molecular and atomic processes. These pulses are even able to penetrate into atomic scalelengths not only by generating particles of ultrahigh energy but also inside the spatial and temporal atomic scalelengths. New regimes of laser-matter interaction were opened in the last decade with an increasing number of laboratories and researchers in these fields. (S.I.)

  17. Simulation of intense short-pulse laser-plasma interaction

    International Nuclear Information System (INIS)

    Yamagiwa, Mitsuru

    2000-01-01

    We have completed the massive parallelization of a 2-dimensional giga-particle code and have achieved a 530-fold acceleration rate with 512 processing elements (PE's). Using this we have implemented a simulation of the interaction of a solid thin film and a high intensity laser and have discovered a phenomenon in which high quality short pulses from the far ultraviolet to soft X-rays are generated at the back surface of the thin layer. We have also introduced the atomic process database code (Hullac) and have the possibility for high precision simulations of X-ray laser radiation. With respect to laser acceleration we have the possibility to quantitatively evaluate relativistic self-focusing assumed to occur in higher intensity fields. Ion acceleration from a solid target and an underdense plasma irradiated by an intense and an ultra intense laser, respectively, has also been studied by particle-in-cell (PIC) simulations. (author)

  18. Plasma Channel Lenses and Plasma Tornadoes for Optical Beam Focusing and Transport

    Science.gov (United States)

    Hubbard, R. F.; Kaganovich, D.; Johnson, L. A.; Gordon, D. F.; Penano, J. R.; Hafizi, B.; Helle, M. H.; Mamonau, A. A.

    2017-10-01

    Shaped plasmas offer the possibility of manipulating laser pulses at intensities far above the damage limits for conventional optics. An example is the plasma channel, which is a cylindrical plasma column with an on-axis density minimum. Long plasma channels have been widely used to guide intense laser pulses, particularly in laser wakefield accelerators. A new concept, the ``plasma tornado'', offers the possibility of creating long plasma channels with no nearby structures and at densities lower than can be achieved by capillary discharges. A short plasma channel can focus a laser pulse in much the same manner as a conventional lens or off-axis parabola. When placed in front of the focal point of an intense laser pulse, a plasma channel lens (PCL) can reduce the effective f-number of conventional focusing optics. When placed beyond the focal point, it can act as a collimator. We will present experimental and modeling results for a new plasma tornado design, review experimental methods for generating short PCLs, and discuss potential applications. Supported by the Naval Research Laboratory Base Program.

  19. Capillary-discharge sodium plasma for pulsed-power X-ray laser experiments

    International Nuclear Information System (INIS)

    Young, F.C.; Commisso, R.J.; Cooperstein, G.

    1986-01-01

    A capillary discharge plasma is being studied as a source of sodium plasma for Na/Ne x-ray laser experiments. The objective is to develop an intense x-ray pump of He-α emission from Na for matched-line photopumping of Ne. A uniform Na-bearing plasma (≅2-cm dia and ≅4-cm long) is to be injected into the anode-cathode gap of the Gamble II pulsed-power generator and imploded by MA-level currents to produce the intense sodium K-line radiation. Implosions of neon gas puffs have produced up to 50 GW of 0.92-keV He-α line emission, and similar x-ray power is expected from sodium implosions. Plasma from the capillary is produced by discharging current through an evacuated small hole in a plastic dielectric (≤ 3-mm dia and 1 to 2.5-cm long). A Na-bearing plasma is generated by forming the hole in NaF. Discharges of 30-kA (60-kA) peak current and 2-μs (2.6-μs) period are provided by a 0.6-μF (1.8-μF) capacitor bank charged to 25 kV. Diagnostics to evaluate plasma characteristics include witness plates, Faraday cups, photodiodes, open-shutter photographs, framing images, and visible light and near UV spectrographs. This plasma source emits visible light for 5-10 μs over a region extending - 1.5 cm from the capillary. Emission is more intense for capillary dia ≤ 0.8 mm. Spectroscopic measurements indicate that both positive ions and neutrals are present, including neutral Na from NaF capillaries. Velocities of≅2 cm/μs are deduced from Faraday cup measurements. For a 0.3-mm dia plastic capillary and 30-kA discharge current, ≅100 μg of capillary material is removed, which corresponds to≅10 μg/cm in the plasma

  20. Pulsed Corona Discharge Generated By Marx Generator

    Science.gov (United States)

    Sretenovic, G. B.; Obradovic, B. M.; Kovacevic, V. V.; Kuraica, M. M.; Puric J.

    2010-07-01

    The pulsed plasma has a significant role in new environmental protection technologies. As a part of a pulsed corona system for pollution control applications, Marx type repetitive pulse generator was constructed and tested in arrangement with wire-plate corona reactor. We performed electrical measurements, and obtained voltage and current signals, and also power and energy delivered per pulse. Ozone formation by streamer plasma in air was chosen to monitor chemical activity of the pulsed corona discharge.