WorldWideScience

Sample records for pulsed plasmoid electric

  1. Anomalous heating and plasmoid formation in pulsed power driven magnetic reconnection experiments

    Science.gov (United States)

    Hare, Jack

    2017-10-01

    Magnetic reconnection is an important process occurring in various plasma environments, including high energy density plasmas. In this talk we will present results from a recently developed magnetic reconnection platform driven by the MAGPIE pulsed power generator (1 MA, 250 ns) at Imperial College London. In these experiments, supersonic, sub-Alfvénic plasma flows collide, bringing anti-parallel magnetic fields into contact and producing a well-defined, elongated reconnection layer. This layer is long-lasting (>200 ns, > 10 hydrodynamic flow times) and is diagnosed using a suite of high resolution, spatially and temporally resolved diagnostics which include laser interferometry, Thomson scattering and Faraday rotation imaging. We observe significant heating of the electrons and ions inside the reconnection layer, and calculate that the heating must occur on time-scales far faster than can be explained by classical mechanisms. Possible anomalous mechanisms include in-plane electric fields caused by two-fluid effects, and enhanced resistivity and viscosity caused by kinetic turbulence. We also observe the repeated formation of plasmoids in the reconnection layer, which are ejected outwards along the layer at super-Alfvénic velocities. The O-point magnetic field structure of these plasmoids is determined using in situ magnetic probes, and these plasmoids could also play a role in the anomalous heating of the electrons and ions. In addition, we present further modifications to this experimental platform which enable us to study asymmetric reconnection or measure the out-of-plane magnetic field inside the plasmoids. This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) Grant No. EP/N013379/1, and by the U.S. Department of Energy (DOE) Awards No. DE-F03-02NA00057 and No. DE-SC-0001063.

  2. Collisionless magnetic reconnection in a plasmoid chain

    Directory of Open Access Journals (Sweden)

    S. Markidis

    2012-02-01

    Full Text Available The kinetic features of plasmoid chain formation and evolution are investigated by two dimensional Particle-in-Cell simulations. Magnetic reconnection is initiated in multiple X points by the tearing instability. Plasmoids form and grow in size by continuously coalescing. Each chain plasmoid exhibits a strong out-of plane core magnetic field and an out-of-plane electron current that drives the coalescing process. The disappearance of the X points in the coalescence process are due to anti-reconnection, a magnetic reconnection where the plasma inflow and outflow are reversed with respect to the original reconnection flow pattern. Anti-reconnection is characterized by the Hall magnetic field quadrupole signature. Two new kinetic features, not reported by previous studies of plasmoid chain evolution, are here revealed. First, intense electric fields develop in-plane normally to the separatrices and drive the ion dynamics in the plasmoids. Second, several bipolar electric field structures are localized in proximity of the plasmoid chain. The analysis of the electron distribution function and phase space reveals the presence of counter-streaming electron beams, unstable to the two stream instability, and phase space electron holes along the reconnection separatrices.

  3. Thermal Modeling for Pulsed Inductive FRC Plasmoid Thrusters

    Science.gov (United States)

    Pfaff, Michael

    Due to the rising importance of space based infrastructure, long-range robotic space missions, and the need for active attitude control for spacecraft, research into Electric Propulsion is becoming increasingly important. Electric Propulsion (EP) systems utilize electric power to accelerate ions in order to produce thrust. Unlike traditional chemical propulsion, this means that thrust levels are relatively low. The trade-off is that EP thrusters have very high specific impulses (Isp), and can therefore make do with far less onboard propellant than cold gas, monopropellant, or bipropellant engines. As a consequence of the high power levels used to accelerate the ionized propellant, there is a mass and cost penalty in terms of solar panels and a power processing unit. Due to the large power consumption (and waste heat) from electric propulsion thrusters, accurate measurements and predictions of thermal losses are needed. Excessive heating in sensitive locations within a thruster may lead to premature failure of vital components. Between the fixed cost required to purchase these components, as well as the man-hours needed to assemble (or replace) them, attempting to build a high-power thruster without reliable thermal modeling can be expensive. This paper will explain the usage of FEM modeling and experimental tests in characterizing the ElectroMagnetic Plasmoid Thruster (EMPT) and the Electrodeless Lorentz Force (ELF) thruster at the MSNW LLC facility in Redmond, Washington. The EMPT thruster model is validated using an experimental setup, and steady state temperatures are predicted for vacuum conditions. Preliminary analysis of the ELF thruster indicates possible material failure in absence of an active cooling system for driving electronics and for certain power levels.

  4. Plasmoid behavior in helical plasmas

    International Nuclear Information System (INIS)

    Ishizaki, R.; Nakajima, N.

    2009-01-01

    Full text: It is well known that an ablation cloud; a high density and low temperature plasmoid, drifts to the lower field side in tokamak plasmas, which leads to a good performance on fueling in tokamak. Such a good performance, however, has not been obtained yet in the planar axis heliotron; Large Helical Device (LHD) experiments, even if a pellet has been injected from the high field side. The purpose of the study is to clarify the difference on the plasmoid motion between tokamak and LHD plasmas by using the MHD simulation including ablation processes. It is found in tokamaks that the drift motion is induced by a tire tube force and 1/R force in the major radius direction, and that the pressure and density of the plasmoid have oscillation due to fast compressional Alfven wave. On the other hand, the upper and lower portions surrounding the plasmoid center drift to the higher field side, because 1/R force by magnetic field becomes negative in the major radius direction since the magnetic field surrounding the plasmoid is accumulated by the extremely large ablation pressure and the magnetic pressure perturbation becomes positive. It is also found that the plasmoid does not drift when the perturbation of the plasmoid is small. In addition, the motion of the plasmoid is investigated in LHD plasmas in four cases that the plasmoids are initially located at the inner and outer sides of the torus on the vertically and horizontally elongated poloidal cross sections. The plasmoids drift to the lower field sides in all cases. However, in the case that it is located at the inner side of the torus on the horizontally elongated poloidal cross section, it is found that the plasmoid drifts in the negative direction of the major radius and subsequently drifts in the positive direction of it. In other words, the plasmoid finally drifts in the positive direction of the major radius the same as the plasmoid located at the outer side of the torus. This fact might be one of the

  5. Parallel electric fields in a simulation of magnetotail reconnection and plasmoid evolution

    International Nuclear Information System (INIS)

    Hesse, M.; Birn, J.

    1990-01-01

    Properties of the electric field component parallel to the magnetic field are investigate in a 3D MHD simulation of plasmoid formation and evolution in the magnetotail, in the presence of a net dawn-dusk magnetic field component. The spatial localization of E-parallel, and the concept of a diffusion zone and the role of E-parallel in accelerating electrons are discussed. A localization of the region of enhanced E-parallel in all space directions is found, with a strong concentration in the z direction. This region is identified as the diffusion zone, which plays a crucial role in reconnection theory through the local break-down of magnetic flux conservation. 12 refs

  6. The Plasmoid Thruster Experiment (PTX)

    Science.gov (United States)

    Eskridge, Richard; Martin, Adam; Koelfgen, Syri; Lee, Mike; Smith, James W.

    2003-01-01

    A plasmoid is a compact plasma structure with an integral magnetic field. They have been studied extensively in controlled fusion research and are categorized according to the relative strength of the poloidal and toroidal magnetic field (B(phi), and B(tau), respectively). An object with B(phi)/B(tau) >> 1 is classified as a Field Reverse Configuration (FRC); if B(phi) = B(tau), it is called a Spheromak. There are a number of possible advantages to using accelerated plasmoids for in-space propulsion. A thruster based on this concept would operate by repetitively producing plasmoids and ejecting them from the device at high velocity. The plasmoid is formed inside of a single turn conical theta-pinch coil; as this process is inductive, there are no life-limiting electrodes. Similar experiments have yielded plasmoid velocities of at least 50 km/s (l), and calculations indicate that velocities in excess of 100 km/s are possible. A thruster based on this concept would be capable of producing an I(sp) in the range of 5,000 - 10,OOO s, with thrust densities of order 10(exp 5) N/m(exp 2). The current experiment is designed to produce jet powers in the range of 5-10 kW, although the concept should be scalable to higher power. The purpose of this experiment is to determine the feasibility of this plasma propulsion concept. To accomplish this, it will be necessary to determine: a.) specific impulse and thrust, b.) efficiency and mass utilization, c.) which type of plasmoid (FRC-like or Spheromak-like) gives the best performance, and d.) the characteristics required of actual thruster components (i.e., switch and capacitor technology). The plasmoid mass and velocity will be measured with a variety of diagnostics, including internal and external B-dot probes, flux loops, Langmuir probes, high-speed cameras, and an interferometer. Simulations of the plasmoid thruster using MOQUI, a time dependent MHD code, will be carried out concurrently with experimental testing. The PTX

  7. A Plasmoid Thruster for Space Propulsion

    Science.gov (United States)

    Koelfgen, Syri J.; Hawk, Clark W.; Eskridge, Richard; Smith, James W.; Martin, Adam K.

    2003-01-01

    There are a number of possible advantages to using accelerated plasmoids for in-space propulsion. A plasmoid is a compact plasma structure with an integral magnetic field. They have been studied extensively in controlled fusion research and are classified according to the relative strength of the poloidal and toroidal magnetic field (B(sub p), and B(sub t), respectively). An object with B(sub p), / B(sub t) much greater than 1 is classified as a Field Reversed Configuration (FRC); if B(sub p) approximately equal to B(sub t), it is called a Spheromak. The plasmoid thruster operates by producing FRC-like plasmoids and subsequently ejecting them from the device at a high velocity. The plasmoid is formed inside of a single-turn conical theta-pinch coil. As this process is inductive, there are no electrodes. Similar experiments have yielded plasmoid velocities of at least 50 km/s, and calculations indicate that velocities in excess of 100 km/s should be possible. This concept should be capable of producing Isp's in the range of 5,000 - 15,000 s with thrust densities on the order of 10(exp 5) N per square meters. The current experiment is designed to produce jet powers in the range of 5 - 10 kW, although the concept should be scalable to several MW's. The plasmoid mass and velocity will be measured with a variety of diagnostics, including internal and external B-dot probes, flux loops, Langmuir probes, high-speed cameras and a laser interferometer. Also of key importance will be measurements of the efficiency and mass utilization. Simulations of the plasmoid thruster using MOQUI, a time-dependent MHD code, will be carried out concurrently with experimental testing.

  8. Plasmoid statistics in relativistic magnetic reconnection

    Science.gov (United States)

    Petropoulou, M.; Christie, I. M.; Sironi, L.; Giannios, D.

    2018-04-01

    Plasmoids, overdense blobs of plasma containing magnetic fields and high-energy particles, are a self-consistent outcome of the reconnection process in the relativistic regime. Recent two-dimensional particle-in-cell (PIC) simulations have shown that plasmoids can undergo a variety of processes (e.g. mergers, bulk acceleration, growth, and advection) within the reconnection layer. We developed a Monte Carlo code, benchmarked with the recent PIC simulations, to examine the effects of these processes on the steady-state size and momentum distributions of the plasmoid chain. The differential plasmoid size distribution is shown to be a power law, ranging from a few plasma skin depths to ˜0.1 of the reconnection layer's length. The power-law slope is shown to be linearly dependent upon the ratio of the plasmoid acceleration and growth rates, which slightly decreases with increasing plasma magnetization. We perform a detailed comparison of our results with those of recent PIC simulations and briefly discuss the astrophysical implications of our findings through the representative case of flaring events from blazar jets.

  9. Filamentary structure of a three-dimensional plasmoid

    International Nuclear Information System (INIS)

    Birn, J.; Hesse, M.; Schindler, K.

    1989-01-01

    We have examined the changes of the magnetic field topology and the field line connections of a simple explicit magnetic field model of a plasmoid in different stages from its formation to its complete disconnection from the Earth. Particular emphasis was on the effects of a net cross-tail magnetic field component that breaks the symmetry around the neutral sheet. We find, consistent with the qualititative conclusions of Hughes and Sibeck (1987), that the initial stage of the plasmoid formation is characterized by the formation of helical field lines which cross the neutral sheet typically more than once, but are still connected with the Earth, so that no topology change occurs. In that case a nontopological notion of reconnection is required (Schindler et al., 1988). When reconnection proceeds to lobe field lines, the central plasmoid flux rope becomes enveloped by a sheath of open field lines that pull the plasmoid flux rope back toward the tail. The period of gradual separation of the plasmoid is characterized by a conversion through magnetic reconnection, of helical field lines connected with the Earth to open ones going tailward into interplanetary space. The detailed tracing of magnetic field lines reveals that the structure of the plasmoid region is more complicated than was earlier envisioned. We find that plasmoid field lines no longer form a separate class of field lines as in the symmetric case. During the stage of gradual separation from the Earth the plasmoid is characterized by the central flux rope connected with the Earth which is wrapped by strands of open, partially open, and closed field lines in a filamentary way forming a layer of intermingled flux tubes of different types inside the earlier mentioned sheath of open field lines

  10. R. F. plasmoids and resonant discharges; Plasmoides a haute frequence et decharges resonnantes

    Energy Technology Data Exchange (ETDEWEB)

    Taillet, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-06-15

    In R.F. discharges at reduced pressure a resonance can increase by an order of magnitude the intensity of the plasma R.F. electric field. The electron density of the plasma adjusts itself to keep the resonant frequency equal to the excitation frequency. This behaviour has been observed by an electron beam technique. When such a discharge is excited in electronegative gases, the negative ion density may be higher than the electron density. Therefore, the D.C. potential distribution in plasma and sheath is modified. The plasma appears as a luminous body isolated from the walls by a large sheath (R.F. plasmoid). (author) [French] Dans les decharges H.F. a faible pression une resonance peut elever d'un ordre de grandeur l'intensite du champ electrique interne du plasma. La densite electronique s'ajuste elle-meme de facon a rendre egales la frequence d'excitation et la frequence de la resonance. Ce mecanisme a ete observe a l'aide de faisceaux electroniques. Lorsqu'une telle decharge est excitee dans un gaz electronegatif, la densite des ions negatifs peut etre plus elevee, que la densite electronique, ce qui modifie la distribution du potentiel continu dans le plasma et la gaine. Le plasma apparait comme un corps lumineux isole des parois par une large gaine (plasmoide a haute frequence). (auteur)

  11. R. F. plasmoids and resonant discharges; Plasmoides a haute frequence et decharges resonnantes

    Energy Technology Data Exchange (ETDEWEB)

    Taillet, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-06-15

    In R.F. discharges at reduced pressure a resonance can increase by an order of magnitude the intensity of the plasma R.F. electric field. The electron density of the plasma adjusts itself to keep the resonant frequency equal to the excitation frequency. This behaviour has been observed by an electron beam technique. When such a discharge is excited in electronegative gases, the negative ion density may be higher than the electron density. Therefore, the D.C. potential distribution in plasma and sheath is modified. The plasma appears as a luminous body isolated from the walls by a large sheath (R.F. plasmoid). (author) [French] Dans les decharges H.F. a faible pression une resonance peut elever d'un ordre de grandeur l'intensite du champ electrique interne du plasma. La densite electronique s'ajuste elle-meme de facon a rendre egales la frequence d'excitation et la frequence de la resonance. Ce mecanisme a ete observe a l'aide de faisceaux electroniques. Lorsqu'une telle decharge est excitee dans un gaz electronegatif, la densite des ions negatifs peut etre plus elevee, que la densite electronique, ce qui modifie la distribution du potentiel continu dans le plasma et la gaine. Le plasma apparait comme un corps lumineux isole des parois par une large gaine (plasmoide a haute frequence). (auteur)

  12. A new magnetic reconnection paradigm: Stochastic plasmoid chains

    Science.gov (United States)

    Loureiro, Nuno

    2015-11-01

    Recent analytical and numerical research in magnetic reconnection has converged on the notion that reconnection sites (current sheets) are unstable to the formation of multiple magnetic islands (plasmoids), provided that the system is sufficiently large (or, in other words, that the Lundquist number of the plasma is high). Nonlinearly, plasmoids come to define the reconnection geometry. Their nonlinear dynamics is rather complex and best thought of as new form of turbulence whose properties are determined by continuous plasmoid formation and their subsequent ejection from the sheet, as well as the interaction (coalescence) between plasmoids of different sizes. The existence of these stochastic plasmoid chains has powerful implications for several aspects of the reconnection process, from determining the reconnection rate to the details and efficiency of the energy conversion and dissipation. In addition, the plasmoid instability may also directly bear on the little understood problem of the reconnection trigger, or onset, i.e., the abrupt transition from a slow stage of energy accumulation to a fast (explosive) stage of energy release. This talk will first provide a brief overview of these recent developments in the reconnection field. I will then discuss recent work addressing the onset problem in the context of a forming current sheet which becomes progressively more unstable to the plasmoid instability. Work partially supported by Fundação para a Ciência e Tecnologia via Grants UID/FIS/50010/2013 and IF/00530/2013.

  13. Conditions for plasmoid penetration across abrupt magnetic barriers

    International Nuclear Information System (INIS)

    Brenning, Nils; Hurtig, Tomas; Raadu, Michael A.

    2005-01-01

    The penetration of plasma clouds, or plasmoids, across abrupt magnetic barriers (of the scale less than a few ion gyro radii, using the plasmoid directed velocity) is studied. The insight gained earlier, from detailed experimental and computer simulation investigations of a case study, is generalized into other parameter regimes. It is concluded for what parameters a plasmoid should be expected to penetrate the magnetic barrier through self-polarization, penetrate through magnetic expulsion, or be rejected from the barrier. The scaling parameters are n e , v 0 , B perpendicular , m i , T i , and the width w of the plasmoid. The scaling is based on a model for strongly driven, nonlinear magnetic field diffusion into a plasma which is a generalization of the earlier laboratory findings. The results are applied to experiments earlier reported in the literature, and also to the proposed application of impulsive penetration of plasmoids from the solar wind into the Earth's magnetosphere

  14. Fast Magnetic Reconnection in the Plasmoid-Dominated Regime

    International Nuclear Information System (INIS)

    Uzdensky, D. A.; Loureiro, N. F.; Schekochihin, A. A.

    2010-01-01

    A conceptual model of resistive magnetic reconnection via a stochastic plasmoid chain is proposed. The global reconnection rate is shown to be independent of the Lundquist number. The distribution of fluxes in the plasmoids is shown to be an inverse-square law. It is argued that there is a finite probability of emergence of abnormally large plasmoids, which can disrupt the chain (and may be responsible for observable large abrupt events in solar flares and sawtooth crashes). A criterion for the transition from the resistive magnetohydrodynamic to the collisionless regime is provided.

  15. Laser-driven magnetic reconnection in the multi-plasmoid regime

    Science.gov (United States)

    Totorica, Samuel; Abel, Tom; Fiuza, Frederico

    2017-10-01

    Magnetic reconnection is a promising candidate mechanism for accelerating the nonthermal particles associated with explosive astrophysical phenomena. Laboratory experiments are starting to probe multi-plasmoid regimes of relevance for particle acceleration. We have performed two- and three-dimensional particle-in-cell (PIC) simulations to explore particle acceleration for parameters relevant to laser-driven reconnection experiments. We have extended our previous work to explore particle acceleration in larger system sizes. Our results show the transition to plasmoid-dominated acceleration associated with the merging and contraction of plasmoids that further extend the maximum energy of the power-law tail of the particle distribution. Furthermore, we have modeled Coulomb collisions and will discuss the influence of collisionality on the plasmoid formation, dynamics, and particle acceleration.

  16. EVOLUTION OF RELATIVISTIC PLASMOID CHAINS IN A POYNTING-DOMINATED PLASMA

    International Nuclear Information System (INIS)

    Takamoto, Makoto

    2013-01-01

    In this paper, we investigate the evolution of plasmoid chains in a Poynting-dominated plasma. We model the relativistic current sheet with a cold background plasma using the relativistic resistive magnetohydrodynamic approximation and solve for its temporal evolution numerically. We perform various calculations using different magnetization parameters of the background plasma and different Lundquist numbers. Numerical results show that the initially induced plasmoid triggers a secondary tearing instability, which gradually fills the current sheet with plasmoids, as has also been observed in the non-relativistic case. We find that plasmoid chains greatly enhance the reconnection rate, which becomes independent of the Lundquist number when the Lundquist number exceeds a critical value. In addition, we show that the distribution of plasmoid size becomes a power law. Since magnetic reconnection is expected to play an important role in various high-energy astrophysical phenomena, our results can be used for explaining the physical mechanisms of those phenomena

  17. Magnetic reconnection mediated by hyper-resistive plasmoid instability

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yi-Min; Bhattacharjee, A. [Center for Integrated Computation and Analysis of Reconnection and Turbulence, Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, Max Planck-Princeton Center for Plasma Physics and Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Forbes, Terry G. [Space Science Center, University of New Hampshire, Durham, New Hampshire 03824 (United States)

    2013-08-15

    Magnetic reconnection mediated by the hyper-resistive plasmoid instability is studied with both linear analysis and nonlinear simulations. The linear growth rate is found to scale as S{sub H}{sup 1/6} with respect to the hyper-resistive Lundquist number S{sub H}≡L{sup 3}V{sub A}/η{sub H}, where L is the system size, V{sub A} is the Alfvén velocity, and η{sub H} is the hyper-resistivity. In the nonlinear regime, reconnection rate becomes nearly independent of S{sub H}, the number of plasmoids scales as S{sub H}{sup 1/2}, and the secondary current sheet length and width both scale as S{sub H}{sup −1/2}. These scalings are consistent with a heuristic argument assuming secondary current sheets are close to marginal stability. The distribution of plasmoids as a function of the enclosed flux ψ is found to obey a ψ{sup −1} power law over an extended range, followed by a rapid fall off for large plasmoids. These results are compared with those from resistive magnetohydrodynamic studies.

  18. Formation and evolution of plasmoids and flux-ropes in the Earth's Magnetotail

    Science.gov (United States)

    Ge, Y.; Raeder, J.

    2013-12-01

    The observation of plasmoids and flux-ropes in the Earth's magnetotail was crucial to establish the simultaneous presence of multiple x-lines in the tail, and has become the basis for the Near Earth Neutral Line (NENL) model of substorms. While the 'classical' NENL model envisions x-lines that extend across the entire tail, recent observations have shown that neither do the x-lines and resulting plasmoids encompass the entire tail, nor do the x-lines have to lie along the y-axis. Furthermore, several x-line/plasmoid/flux-rope structures can exist simultaneously. The fragmentation of the tail by spatially and temporally limited x-lines has important consequences for the mass and energy budget of the tail. Recent ARTEMIS observations have shown that the plasmoids in the distant tail are limited in the Y direction and some flux ropes are tilted during their tailward propagation. In this study we simulate plasmoids and flux-ropes in the Earth's magnetotail using the Open Global Geospace Circulation Model (OpenGGCM). We investigate the generation mechanisms for tail plasmoids and flux-ropes and their evolution as they propagate in the magnetotail. The simulation results show that the limited extend of NENL controls the length or the Y scale of tail plasmoid and flux rope. In addition, by studying their 3D magnetic topology we find that tilted flux ropes form due to a progressive spreading of the reconnection line along the east-west direction, which produces and releases the two ends of the flux rope at different times and at different speeds. By constructing a catalogue of observational signatures of plasmoid and flux rope we compare the differences of their signatures and find that large-scale plasmoids have much weaker core fields than that found inside the small-scale flux ropes.

  19. On acceleration of plasmoids in magnetohydrodynamic simulations of magnetotail reconnection

    International Nuclear Information System (INIS)

    Scholer, M.; Hautz, R.

    1991-01-01

    The formation and acceleration of plasmoids is investigated by two-dimensional magnetohydrodynamic simulations. The initial equilibrium contains a plasma sheet with a northward magnetic field (B z ) component and a tailward pressure gradient. Reconnection is initiated by three different methods: Case A, a constant resistivity is applied everywhere and a tearing mode evolves, case B, a spatially localized resistivity is fixed in the near-Earth region, and case C, the resistivity is allowed to depend on the electrical current density. In case A, the authors obtain the same results as have been presented by Otto et al. (1990): the tearing instability releases the tension of the closed field lines so that the inherent pressure gradient of the two-dimensional system is not balanced anymore. The pressure gradient then sets the plasmoid into motion. Any sling-shot effect of open magnetic field lines is of minor importance. A completely different behavior has been found in cases B and C. In these cases the high-speed flow in the wedge-shaped region tailward of the near-Earth neutral line pushes against the detached plasmoid and drives it tailward. The ideal terms contributing to the acceleration are still only the pressure and the magnetic field term. However, in these cases the pressure is due to the dynamic pressure of the fast outflow from the reconnection region. The outflow in the wedge-shaped region on both sides of the neutral line is due to acceleration of plasma by tangential magnetic stresses at the slow mode shocks extending form the X line

  20. Analysis of Long-living Plasmoids at Atmospheric Pressure

    International Nuclear Information System (INIS)

    Noack, S.; Versteegh, A.; Juettner, B.; Fussmann, G.

    2008-01-01

    Ball-like plasmoids were generated by discharging a capacitor bank via a water surface. In the autonomous stage after current zero they have diameters up to 0.2 m and lifetimes of some hundreds milliseconds. They were studied by applying high speed cameras, spectroscopy and an array of lasers. The latter allows to determine the index of refraction and thus give information on the internal structure of the plasmoids

  1. On the formation and evolution of plasmoids: A survey of ISEE 3 geotail data

    International Nuclear Information System (INIS)

    Moldwin, M.B.; Hughes, W.J.

    1992-01-01

    ISEE 3 magnetometer and electron plasma measurements from the 1983 Geotail Mission were surveyed to determine the magnetic and plasma properties of plasmoids and their evolution with distance downtail. Events were selected on the basis of a bipolar magnetic signature in either the geocentric solar magnetospheric B z and/or B y component; most had B z bipolar signatures. The authors found 366 events consistent with this signature while ISEE 3 was in the plasma sheet. Plasmoid length was determined using both the magnetometer and the electron plasma velocity data. They found the average length of plasmoids is 16.7 ± 13.0 R E , significantly smaller than previous estimates. Many plasmoids have a well-defined magnetic core field, characterized by a field strength maximum at the center of the pass through the structure. The size, velocity, magnetic core strength, and B z field amplitude of plasmoids do not depend on distance beyond 100 R E downtail. The average electron temperature inside plasmoids drops by a factor of 2 and the electron density increases by a factor of 2 as plasmoids propagate from near Earth distances (within 100 R E of the Earth) to the deep tail. They conclude that the stable size of the plasmoids, the density increase and the temperature decrease are consistent with a flux of cold electrons into the plasmoid. The strong correlation of interplanetary magnetic field B y an hour before the event with the strength and direction of B y observed inside plasmoids, the existence of events with the bipolar signature in both the B y and B z components, and the possible mass flux all are consistent with plasmoids being 'open' magnetic structures

  2. Magnetic reconnection and stochastic plasmoid chains in high-Lundquist-number plasmas

    KAUST Repository

    Loureiro, N. F.

    2012-04-13

    A numerical study of magnetic reconnection in the large-Lundquist-number (S), plasmoid-dominated regime is carried out for S up to 10 7. The theoretical model of Uzdensky [Phys. Rev. Lett. 105, 235002 (2010)] is confirmed and partially amended. The normalized reconnection rate is Ẽ eff ∼ 0.02 independently of S for S ≫ 10 4. The plasmoid flux (ψ) and half-width (w x) distribution functions scale as f (ψ) ∼ - ψ -2 and f (w x) ∼ w x -2. The joint distribution of ψ and w x shows that plasmoids populate a triangular region w x ≲ψ/B 0, where B 0 is the reconnecting field. It is argued that this feature is due to plasmoid coalescence. Macroscopic "monster" plasmoids with w x ∼ 10 % of the system size are shown to emerge in just a few Alfvén times, independently of S, suggesting that large disruptive events are an inevitable feature of large-S reconnection. © 2012 American Institute of Physics.

  3. Magnetic reconnection and stochastic plasmoid chains in high-Lundquist-number plasmas

    KAUST Repository

    Loureiro, N. F.; Samtaney, Ravi; Schekochihin, A. A.; Uzdensky, D. A.

    2012-01-01

    A numerical study of magnetic reconnection in the large-Lundquist-number (S), plasmoid-dominated regime is carried out for S up to 10 7. The theoretical model of Uzdensky [Phys. Rev. Lett. 105, 235002 (2010)] is confirmed and partially amended. The normalized reconnection rate is Ẽ eff ∼ 0.02 independently of S for S ≫ 10 4. The plasmoid flux (ψ) and half-width (w x) distribution functions scale as f (ψ) ∼ - ψ -2 and f (w x) ∼ w x -2. The joint distribution of ψ and w x shows that plasmoids populate a triangular region w x ≲ψ/B 0, where B 0 is the reconnecting field. It is argued that this feature is due to plasmoid coalescence. Macroscopic "monster" plasmoids with w x ∼ 10 % of the system size are shown to emerge in just a few Alfvén times, independently of S, suggesting that large disruptive events are an inevitable feature of large-S reconnection. © 2012 American Institute of Physics.

  4. Oscillations Excited by Plasmoids Formed During Magnetic Reconnection in a Vertical Gravitationally Stratified Current Sheet

    Science.gov (United States)

    Jelínek, P.; Karlický, M.; Van Doorsselaere, T.; Bárta, M.

    2017-10-01

    Using the FLASH code, which solves the full set of the 2D non-ideal (resistive) time-dependent magnetohydrodynamic (MHD) equations, we study processes during the magnetic reconnection in a vertical gravitationally stratified current sheet. We show that during these processes, which correspond to processes in solar flares, plasmoids are formed due to the tearing mode instability of the current sheet. These plasmoids move upward or downward along the vertical current sheet and some of them merge into larger plasmoids. We study the density and temperature structure of these plasmoids and their time evolution in detail. We found that during the merging of two plasmoids, the resulting larger plasmoid starts to oscillate with a period largely determined by L/{c}{{A}}, where L is the size of the plasmoid and c A is the Alfvén speed in the lateral parts of the plasmoid. In our model, L/{c}{{A}} evaluates to ˜ 25 {{s}}. Furthermore, the plasmoid moving downward merges with the underlying flare arcade, which causes oscillations of the arcade. In our model, the period of this arcade oscillation is ˜ 35 {{s}}, which also corresponds to L/{c}{{A}}, but here L means the length of the loop and c A is the average Alfvén speed in the loop. We also show that the merging process of the plasmoid with the flare arcade is a complex process as presented by complex density and temperature structures of the oscillating arcade. Moreover, all these processes are associated with magnetoacoustic waves produced by the motion and merging of plasmoids.

  5. Estimation of tail reconnection lines by AKR onsets and plasmoid entries observed with GEOTAIL spacecraft

    International Nuclear Information System (INIS)

    Murata, Takeshi; Matsumoto, Hiroshi; Kojima, Hirotsugu

    1995-01-01

    We estimate the location of the reconnection line and plasmoid size in the geomagnetic tail using data from the Plasma Wave Instrument onboard the GEOTAIL spacecraft. We first compare AKR onset events with high energy particle observations at geosynchronous orbit. We determine the plasmoid ejection (re-connection) time by the AKR enhancement only when it corrresponds to energetic particle enhancement within five minutes. The traveling time of the plasmoid from the X-line to the spacecraft is calculated by the difference in time of the AKR onset and that of the plasmoid encounter with GEOTAIL. Assuming the plasmoid propagates with the Alfven velocity in the tail lobe as MHD simulations predict, we estimate the location of the reconnection line in 11 events. The results show that the most probable location of the plasmoid edge is distributed around Χ = -60 R E in the GSE coordinates. The estimated size of the plasmoids ranges from 10 to 50 R E in the χ direction. If we apply this result to the alternative plasmoid model in which the evolution of the tearing instability causes the generation of plasmoids, the X-line should be approximately at χ = -35 R E . 15 refs., 3 figs., 1 tab

  6. Formation and evolution of plasmoid and flux-rope in the Earth's Magnetotail

    Science.gov (United States)

    Ge, Yasong; Raeder, Joachim

    2015-04-01

    The observation of plasmoids and flux-ropes in the Earth's magnetotail was crucial to establish the simultaneous presence of multiple x-lines in the tail, and has become the basis for the Near Earth Neutral Line (NENL) model of substorms. While the "classical" NENL model envisions x-lines that extend across the entire tail, recent observations have shown that neither do the x-lines and resulting plasmoids encompass the entire tail, nor do the x-lines have to lie along the y-axis. The fragmentation of the tail by spatially and temporally limited x-lines has important consequences for the mass and energy budget of the tail. Recent ARTEMIS observations have shown that the plasmoids in the distant tail are limited in the Y direction and some flux ropes are tilted during their tailward propagation. Understanding their formation and evolution during their propagation through the magnetotail shall shred more light on the general energy and flux transport of the Earth's magnetosphere. In this study we simulate plasmoids and flux-ropes in the Earth's magnetotail using the Open Global Geospace Circulation Model (OpenGGCM). We investigate the generation mechanisms for tail plasmoids and flux-ropes and their evolution as they propagate in the magnetotail. The simulation results show that the limited extend of NENL controls the length or the Y scale of tail plasmoid and flux rope. In addition, by studying their 3D magnetic topology we find that the tilted flux rope forms due to a progressive spreading of reconnection line along the east-west direction, which produces and releases two ends of the flux rope at different times and in different speeds. By constructing a catalogue of observational signatures of plasmoid and flux rope we compare the differences of their signatures and find that large-scale plasmoids have much weaker core fields than that inside the small-scale flux ropes.

  7. Electron acceleration by turbulent plasmoid reconnection

    Science.gov (United States)

    Zhou, X.; Büchner, J.; Widmer, F.; Muñoz, P. A.

    2018-04-01

    In space and astrophysical plasmas, like in planetary magnetospheres, as that of Mercury, energetic electrons are often found near current sheets, which hint at electron acceleration by magnetic reconnection. Unfortunately, electron acceleration by reconnection is not well understood yet, in particular, acceleration by turbulent plasmoid reconnection. We have investigated electron acceleration by turbulent plasmoid reconnection, described by MHD simulations, via test particle calculations. In order to avoid resolving all relevant turbulence scales down to the dissipation scales, a mean-field turbulence model is used to describe the turbulence of sub-grid scales and their effects via a turbulent electromotive force (EMF). The mean-field model describes the turbulent EMF as a function of the mean values of current density, vorticity, magnetic field as well as of the energy, cross-helicity, and residual helicity of the turbulence. We found that, mainly around X-points of turbulent reconnection, strongly enhanced localized EMFs most efficiently accelerated electrons and caused the formation of power-law spectra. Magnetic-field-aligned EMFs, caused by the turbulence, dominate the electron acceleration process. Scaling the acceleration processes to parameters of the Hermean magnetotail, electron energies up to 60 keV can be reached by turbulent plasmoid reconnection through the thermal plasma.

  8. General theory of the plasmoid instability

    International Nuclear Information System (INIS)

    Comisso, L.; Lingam, M.; Huang, Y.-M.; Bhattacharjee, A.

    2016-01-01

    In a general theory of the onset and development of the plasmoid instability is formulated by means of a principle of least time. We derive and show the scaling relations for the final aspect ratio, transition time to rapid onset, growth rate, and number of plasmoids that depend on the initial perturbation amplitude (ŵ_0), the characteristic rate of current sheet evolution (1/τ), and the Lundquist number (S). They are not simple power laws, and are proportional to S"ατ"β[ln f(S,τ,ŵ_0)]"σ. Finally, the detailed dynamics of the instability is also elucidated, and shown to comprise of a period of quiescence followed by sudden growth over a short time scale.

  9. On the onset of the plasmoid instability

    International Nuclear Information System (INIS)

    Baty, H.

    2012-01-01

    A numerical study of magnetic reconnection in two-dimensional resistive magnetohydrodynamics for marginally unstable Sweet-Parker current sheets that are subject to plasmoid formation is carried out. Despite the procedure used to form the primary Sweet-Parker-like current layer, that is different with respect to previous studies, the reconnection layer is unstable to the plasmoid instability for a Lundquist number greater than the expected critical value S c ≈10 4 . For Lundquist numbers S≳S c , the instability exhibits a quasi-periodic behaviour consisting of formation, rapid growth, and evacuation of a moving magnetic island. The so called “plasmoid” breaks up the primary current layer and significantly enhances the maximum current density over the value expected from Sweet-Parker theory. This local enhancement spatially coincides with the downstream X-point of the magnetic island and is associated with the formation of a pair of slow-mode Petschek-like shocks bounding the outflowing plasma. These results suggest that the inter-plasmoid current layers forming in high-Lundquist-number plasmas (S≫S c ) could not be simply described as marginally stable Sweet-Parker current sheets.

  10. Cryosurgery with Pulsed Electric Fields

    Science.gov (United States)

    Daniels, Charlotte S.; Rubinsky, Boris

    2011-01-01

    This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to

  11. Cryosurgery with pulsed electric fields.

    Directory of Open Access Journals (Sweden)

    Charlotte S Daniels

    Full Text Available This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused

  12. Observations of Ball-Lightning-Like Plasmoids Ejected from Silicon by Localized Microwaves

    Directory of Open Access Journals (Sweden)

    Michael Sztucki

    2013-09-01

    Full Text Available This paper presents experimental characterization of plasmoids (fireballs obtained by directing localized microwave power (<1 kW at 2.45 GHz onto a silicon-based substrate in a microwave cavity. The plasmoid emerges up from the hotspot created in the solid substrate into the air within the microwave cavity. The experimental diagnostics employed for the fireball characterization in this study include measurements of microwave scattering, optical spectroscopy, small-angle X-ray scattering (SAXS, scanning electron microscopy (SEM and energy dispersive X-ray spectroscopy (EDS. Various characteristics of these plasmoids as dusty plasma are drawn by a theoretical analysis of the experimental observations. Aggregations of dust particles within the plasmoid are detected at nanometer and micrometer scales by both in-situ SAXS and ex-situ SEM measurements. The resemblance of these plasmoids to the natural ball-lightning (BL phenomenon is discussed with regard to silicon nano-particle clustering and formation of slowly-oxidized silicon micro-spheres within the BL. Potential applications and practical derivatives of this study (e.g., direct conversion of solids to powders, material identification by breakdown spectroscopy (MIBS, thermite ignition, and combustion are discussed.

  13. A Comparative Examination of Plasmoid Structure and Dynamics at Mercury, Earth, Jupiter, and Saturn

    Science.gov (United States)

    Slavin, James A.

    2010-01-01

    The circulation of plasma and magnetic flux within planetary magnetospheres is governed by the solar wind-driven Dungey and planetary rotation-driven cycles. The Dungey cycle is responsible for all circulation at Mercury and Earth. Jupiter and Saturn's magnetospheres are dominated by the Vasyliunas cycle, but there is evidence for a small Dungey cycle contribution driven by the solar wind. Despite these fundamental differences, all well-observed magnetospheres eject relatively large parcels of the hot plasma, termed plasmoids, down their tails at high speeds. Plasmoids escape from the restraining force of the planetary magnetic field through reconnection in the equatorial current sheet separating the northern and southern hemispheres of the magnetosphere. The reconnection process gives the magnetic field threading plasmoids a helical or flux rope-type topology. In the Dungey cycle reconnection also provides the primary tailward force that accelerates plasmoids to high speeds as they move down the tail. We compare the available observations of plasmoids at Mercury, Earth, Jupiter, and Saturn for the purpose of determining the relative role of plasmoids and the reconnection process in the dynamics these planetary magnetic tails.

  14. Pulsed electric fields

    Science.gov (United States)

    The concept of pulsed electric fields (PEF) was first proposed in 1967 to change the behavior or microorganisms. The electric field phenomenon was identified as membrane rupture theory in the 1980s. Increasing the membrane permeability led to the application of PEF assisted extraction of cellular co...

  15. Probes and their application to the study of H.F. plasmoids; Les sondes et leur application dans l'etude des plasmoides H.F

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, A; Geller, R [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    In the first part of this paper, we study the single Langmuir probe and the double-probe method. In the second part, we describe the probe-technique in connection with R.F. plasmoids. (author) [French] Dans la premiere partie de cet article, nous rappelons les principes d'utilisation de la sonde simple de Langmuir ainsi que la methode de la sonde double. La seconde partie est consacree a la pratique des sondes dans l'etude des plasmoides H.F. (auteur)

  16. Bursty emission of whistler waves in association with plasmoid collision

    Directory of Open Access Journals (Sweden)

    K. Fujimoto

    2017-07-01

    Full Text Available A new mechanism to generate whistler waves in the course of collisionless magnetic reconnection is proposed. It is found that intense whistler emissions occur in association with plasmoid collisions. The key processes are strong perpendicular heating of the electrons through a secondary magnetic reconnection during plasmoid collision and the subsequent compression of the ambient magnetic field, leading to whistler instability due to the electron temperature anisotropy. The emissions have a bursty nature, completing in a short time within the ion timescales, as has often been observed in the Earth's magnetosphere. The whistler waves can accelerate the electrons in the parallel direction, contributing to the generation of high-energy electrons. The present study suggests that the bursty emission of whistler waves could be an indicator of plasmoid collisions and the associated particle energization during collisionless magnetic reconnection.

  17. Global simulation of formation and evolution of plasmoid and flux-rope in the Earth's Magnetotail

    Science.gov (United States)

    Ge, Y.; Raeder, J.; Du, A.

    2014-12-01

    The observation of plasmoids and flux-ropes in the Earth's magnetotail was crucial to establish the simultaneous presence of multiple x-lines in the tail, and has become the basis for the Near Earth Neutral Line (NENL) model of substorms. While the "classical" NENL model envisions x-lines that extend across the entire tail, recent observations have shown that neither do the x-lines and resulting plasmoids encompass the entire tail, nor do the x-lines have to lie along the y-axis. The fragmentation of the tail by spatially and temporally limited x-lines has important consequences for the mass and energy budget of the tail. Recent ARTEMIS observations have shown that the plasmoids in the distant tail are limited in the Y direction and some flux ropes are tilted during their tailward propagation. Understanding their formation and evolution during their propagation through the magnetotail shall shred more light on the general energy and flux transport of the Earth's magnetosphere. In this study we simulate plasmoids and flux-ropes in the Earth's magnetotail using the Open Global Geospace Circulation Model (OpenGGCM). We investigate the generation mechanisms for tail plasmoids and flux-ropes and their evolution as they propagate in the magnetotail. The simulation results show that the limited extend of NENL controls the length or the Y scale of tail plasmoid and flux rope. In addition, by studying their 3D magnetic topology we find that the tilted flux rope forms due to a progressive spreading of reconnection line along the east-west direction, which produces and releases two ends of the flux rope at different times and in different speeds. By constructing a catalogue of observational signatures of plasmoid and flux rope we compare the differences of their signatures and find that large-scale plasmoids have much weaker core fields than that inside the small-scale flux ropes.

  18. Containment forces in low energy states of plasmoids

    International Nuclear Information System (INIS)

    Wells, D.R.; Hawkins, L.C.

    1987-01-01

    The application of Hamilton's principle to the problem of the determination of the structure of low free energy state plasmoids is discussed. It is shown that Clebsch representations of the vector fields and representations involving side conditions on the functional result in the same sets of Euler-Lagrange equations. The relationship of these representations to the problem of containment forces in vortex structures (plasmoids) is considered. It is demonstrated that the lowest free energy state of an incompressible plasma is always Lorentz force and Magnus force free. For a compressible plasma obeying the adiabatic gas laws, the Magnus force is finite. Introduction of conservation of angular momentum as an additional side condition also results in finite containment forces. (author)

  19. Comparative Examination of Plasmoid Ejection at Mercury, Earth, Jupiter, and Saturn

    Science.gov (United States)

    Slavin, James A.; Jackman, Caitriona M.; Vogt, Marissa F.

    2011-01-01

    The onset of magnetic reconnection in the near-tail of Earth, long known to herald the fast magnetospheric convection that leads to geomagnetic storms and substorms, is very closely associated with the formation and down-tail ejection of magnetic loops or flux ropes called plasmoids. Plasmoids form as a result of the fragmentation of preexisting cross-tail current sheet as a result of magnetic reconnection. Depending upon the number, location, and intensity of the individual reconnection X-lines and how they evolve, some of these loop-like or helical magnetic structures may also be carried sunward. At the inner edge of the tail they are expected to "re-reconnect' with the planetary magnetic field and dissipate. Plasmoid ejection has now been observed in the magnetotails of Mercury, Earth, Jupiter, and Saturn. These magnetic field and charged particle measurements have been taken by the MESSENGER, Voyager, Galileo, Cassini, and numerous Earth missions. Here we present a comparative examination of the structure and dynamics of plasmoids observed in the magnetotails of these 5 planets. The results are used to learn more about how these magnetic structures form and to assess similarities and differences in the nature of magnetotail reconnection at these planets.

  20. Moderate and high intensity pulsed electric fields

    OpenAIRE

    Timmermans, Rian Adriana Hendrika

    2018-01-01

    Pulsed Electric Field (PEF) processing has gained a lot of interest the last decades as mild processing technology as alternative to thermal pasteurisation, and is suitable for preservation of liquid food products such as fruit juices. PEF conditions typically applied at industrial scale for pasteurisation are high intensity pulsed electric fields aiming for minimal heat load, with an electric field strength (E) in the range of 15 − 20 kV/cm and pulse width (τ) between 2 − 20 μs. Alternativel...

  1. Simultaneous EUV and radio observations of bidirectional plasmoids ejection during magnetic reconnection

    Science.gov (United States)

    Kumar, Pankaj; Cho, Kyung-Suk

    2013-09-01

    We present a multiwavelength study of the X-class flare, which occurred in active region (AR) NOAA 11339 on 3 November 2011. The extreme ultraviolet (EUV) images recorded by SDO/AIA show the activation of a remote filament (located north of the AR) with footpoint brightenings about 50 min prior to the flare's occurrence. The kinked filament rises up slowly, and after reaching a projected height of ~49 Mm, it bends and falls freely near the AR, where the X-class flare was triggered. Dynamic radio spectrum from the Green Bank Solar Radio Burst Spectrometer (GBSRBS) shows simultaneous detection of both positive and negative drifting pulsating structures (DPSs) in the decimetric radio frequencies (500-1200 MHz) during the impulsive phase of the flare. The global negative DPSs in solar flares are generally interpreted as a signature of electron acceleration related to the upward-moving plasmoids in the solar corona. The EUV images from AIA 94 Å reveal the ejection of multiple plasmoids, which move simultaneously upward and downward in the corona during the magnetic reconnection. The estimated speeds of the upward- and downward-moving plasmoids are ~152-362 and ~83-254 km s-1, respectively. These observations strongly support the recent numerical simulations of the formation and interaction of multiple plasmoids due to tearing of the current-sheet structure. On the basis of our analysis, we suggest that the simultaneous detection of both the negative and positive DPSs is most likely generated by the interaction or coalescence of the multiple plasmoids moving upward and downward along the current-sheet structure during the magnetic reconnection process. Moreover, the differential emission measure (DEM) analysis of the active region reveals a hot flux-rope structure (visible in AIA 131 and 94 Å) prior to the flare initiation and ejection of the multitemperature plasmoids during the flare impulsive phase. Movie is available in electronic form at http://www.aanda.org

  2. Scaling laws of resistive magnetohydrodynamic reconnection in the high-Lundquist-number, plasmoid-unstable regime

    International Nuclear Information System (INIS)

    Huang Yimin; Bhattacharjee, A.

    2010-01-01

    The Sweet-Parker layer in a system that exceeds a critical value of the Lundquist number (S) is unstable to the plasmoid instability. In this paper, a numerical scaling study has been done with an island coalescing system driven by a low level of random noise. In the early stage, a primary Sweet-Parker layer forms between the two coalescing islands. The primary Sweet-Parker layer breaks into multiple plasmoids and even thinner current sheets through multiple levels of cascading if the Lundquist number is greater than a critical value S c ≅4x10 4 . As a result of the plasmoid instability, the system realizes a fast nonlinear reconnection rate that is nearly independent of S, and is only weakly dependent on the level of noise. The number of plasmoids in the linear regime is found to scales as S 3/8 , as predicted by an earlier asymptotic analysis [N. F. Loureiro et al., Phys. Plasmas 14, 100703 (2007)]. In the nonlinear regime, the number of plasmoids follows a steeper scaling, and is proportional to S. The thickness and length of current sheets are found to scale as S -1 , and the local current densities of current sheets scale as S -1 . Heuristic arguments are given in support of theses scaling relations.

  3. Three-dimensional simulation study of compact toroid plasmoid injection into magnetized plasmas

    International Nuclear Information System (INIS)

    Suzuki, Y.; Watanabe, T.-H.; Sato, T.; Hayashi, T.

    1999-04-01

    Three-dimensional dynamics of a compact toroid (CT) plasmoid, which is injected into a magnetized target plasma region is investigated by using magnetohydrodynamic (MHD) numerical simulations. It is found that the process of the CT penetration into this region is much more complicated than what has been analyzed so far by using a conducting sphere (CS) model. The injected CT suffers from a tilting instability, which grows with the similar time scale as the CT penetration. The instability is accompanied by magnetic reconnection between the CT magnetic field and the target magnetic field, which disrupts the magnetic configuration of the CT. Magnetic reconnection plays a role to supply the high density plasma initially confined in the CT magnetic field into the target region. Also, the penetration depth of the CT high density plasma is examined. It is shown to be shorter than that estimated from the CS model. The CT high density plasma is decelerated mainly by the Lorentz force of the target magnetic field, which includes not only the magnetic pressure force but also the magnetic tension force. Furthermore, by comparing the CT plasmoid injection with the bare plasmoid injection, magnetic reconnection is considered to relax the magnetic tension force, that is the deceleration of the CT plasmoid. (author)

  4. Pulsed electric field inactivation in a microreactor

    NARCIS (Netherlands)

    Fox, M.B.

    2006-01-01

    Pulsed electric fields (PEF) is a novel, non-thermal pasteurization method which uses short, high electric field pulses to inactivate microorganisms. The advantage of a pasteurization method like PEF compared to regular heat pasteurization is that the taste, flavour, texture and nutritional value

  5. Mitigation of rotational instability of high-beta field-reversed configuration by double-sided magnetized plasmoid injection

    Energy Technology Data Exchange (ETDEWEB)

    Itagaki, H.; Inomoto, M. [Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Asai, T.; Takahashi, Ts. [College of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)

    2014-03-15

    Active control of destructive rotational instability in a high-beta field-reversed configuration (FRC) plasma was demonstrated by using double-sided plasmoid injection technique. The elliptical deformation of the FRC's cross section was mitigated as a result of substantial suppression of spontaneous spin-up by the plasmoid injection. It was found that the injected plasmoid provided better stability against the rotational mode, suggesting that the compensation of the FRC's decaying magnetic flux might help to suppress its spin-up.

  6. [Mechanism of ablation with nanosecond pulsed electric field].

    Science.gov (United States)

    Cen, Chao; Chen, Xin-hua; Zheng, Shu-sen

    2015-11-01

    Nanosecond pulsed electric field ablation has been widely applied in clinical cancer treatment, while its molecular mechanism is still unclear. Researchers have revealed that nanosecond pulsed electric field generates nanopores in plasma membrane, leading to a rapid influx of Ca²⁺; it has specific effect on intracellular organelle membranes, resulting in endoplasmic reticulum injuries and mitochondrial membrane potential changes. In addition, it may also change cellular morphology through damage of cytoskeleton. This article reviews the recent research advances on the molecular mechanism of cell membrane and organelle changes induced by nanosecond pulsed electric field ablation.

  7. Electrical control of calcium oscillations in mesenchymal stem cells using microsecond pulsed electric fields.

    Science.gov (United States)

    Hanna, Hanna; Andre, Franck M; Mir, Lluis M

    2017-04-20

    Human mesenchymal stem cells are promising tools for regenerative medicine due to their ability to differentiate into many cellular types such as osteocytes, chondrocytes and adipocytes amongst many other cell types. These cells present spontaneous calcium oscillations implicating calcium channels and pumps of the plasma membrane and the endoplasmic reticulum. These oscillations regulate many basic functions in the cell such as proliferation and differentiation. Therefore, the possibility to mimic or regulate these oscillations might be useful to regulate mesenchymal stem cells biological functions. One or several electric pulses of 100 μs were used to induce Ca 2+ spikes caused by the penetration of Ca 2+ from the extracellular medium, through the transiently electropermeabilized plasma membrane, in human adipose mesenchymal stem cells from several donors. Attached cells were preloaded with Fluo-4 AM and exposed to the electric pulse(s) under the fluorescence microscope. Viability was also checked. According to the pulse(s) electric field amplitude, it is possible to generate a supplementary calcium spike with properties close to those of calcium spontaneous oscillations, or, on the contrary, to inhibit the spontaneous calcium oscillations for a very long time compared to the pulse duration. Through that inhibition of the oscillations, Ca 2+ oscillations of desired amplitude and frequency could then be imposed on the cells using subsequent electric pulses. None of the pulses used here, even those with the highest amplitude, caused a loss of cell viability. An easy way to control Ca 2+ oscillations in mesenchymal stem cells, through their cancellation or the addition of supplementary Ca 2+ spikes, is reported here. Indeed, the direct link between the microsecond electric pulse(s) delivery and the occurrence/cancellation of cytosolic Ca 2+ spikes allowed us to mimic and regulate the Ca 2+ oscillations in these cells. Since microsecond electric pulse delivery

  8. Effect of rising time of rectangular pulse on inactivation of staphylococcus aureus by pulsed electric field

    Science.gov (United States)

    Zhang, Ruobing; Liang, Dapeng; Zheng, Nanchen; Xiao, Jianfu; Mo, Mengbin; Li, Jing

    2013-03-01

    Pulsed electric field (PEF) is a novel non-thermal food processing technology that involves the electric discharge of high voltage short pulses through the food product. In PEF study, rectangular pulses are most commonly used for inactivating microorganisms. However, little information is available on the inactivation effect of rising time of rectangular pulse. In this paper, inactivation effects, electric field strength, treatment time and conductivity on staphylococcus aureus inactivation were investigated when the pulse rising time is reduced from 2.5 μs to 200 ns. Experimental results showed that inactivation effect of PEF increased with electric field strength, solution conductivity and treatment time. Rising time of the rectangular pulse had a significant effect on the inactivation of staphylococcus aureus. Rectangular pulses with a rising time of 200 ns had a better inactivation effect than that with 2 μs. In addition, temperature increase of the solution treated by pulses with 200 ns rising time was lower than that with 2 μs. In order to obtain a given inactivation effect, treatment time required for the rectangular pulse with 200 ns rise time was shorter than that with 2 μs.

  9. Effect of rising time of rectangular pulse on inactivation of staphylococcus aureus by pulsed electric field

    International Nuclear Information System (INIS)

    Zhang, Ruobing; Liang, Dapeng; Xiao, Jianfu; Mo, Mengbin; Li, Jing; Zheng, Nanchen

    2013-01-01

    Pulsed electric field (PEF) is a novel non-thermal food processing technology that involves the electric discharge of high voltage short pulses through the food product. In PEF study, rectangular pulses are most commonly used for inactivating microorganisms. However, little information is available on the inactivation effect of rising time of rectangular pulse. In this paper, inactivation effects, electric field strength, treatment time and conductivity on staphylococcus aureus inactivation were investigated when the pulse rising time is reduced from 2.5 μs to 200 ns. Experimental results showed that inactivation effect of PEF increased with electric field strength, solution conductivity and treatment time. Rising time of the rectangular pulse had a significant effect on the inactivation of staphylococcus aureus. Rectangular pulses with a rising time of 200 ns had a better inactivation effect than that with 2 μs. In addition, temperature increase of the solution treated by pulses with 200 ns rising time was lower than that with 2 μs. In order to obtain a given inactivation effect, treatment time required for the rectangular pulse with 200 ns rise time was shorter than that with 2 μs.

  10. FAST MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE MEDIATED BY THE PLASMOID INSTABILITY

    International Nuclear Information System (INIS)

    Ni, Lei; Kliem, Bernhard; Lin, Jun; Wu, Ning

    2015-01-01

    Magnetic reconnection in the partially ionized solar chromosphere is studied in 2.5 dimensional magnetohydrodynamic simulations including radiative cooling and ambipolar diffusion. A Harris current sheet with and without a guide field is considered. Characteristic values of the parameters in the middle chromosphere imply a high magnetic Reynolds number of ∼10 6 -10 7 in the present simulations. Fast magnetic reconnection then develops as a consequence of the plasmoid instability without the need to invoke anomalous resistivity enhancements. Multiple levels of the instability are followed as it cascades to smaller scales, which approach the ion inertial length. The reconnection rate, normalized to the asymptotic values of magnetic field and Alfvén velocity in the inflow region, reaches values in the range ∼0.01-0.03 throughout the cascading plasmoid formation and for zero as well as for strong guide field. The outflow velocity reaches ≈40 km s –1 . Slow-mode shocks extend from the X-points, heating the plasmoids up to ∼8 × 10 4 K. In the case of zero guide field, the inclusion of both ambipolar diffusion and radiative cooling causes a rapid thinning of the current sheet (down to ∼30 m) and early formation of secondary islands. Both of these processes have very little effect on the plasmoid instability for a strong guide field. The reconnection rates, temperature enhancements, and upward outflow velocities from the vertical current sheet correspond well to their characteristic values in chromospheric jets

  11. FAST MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE MEDIATED BY THE PLASMOID INSTABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Lei; Kliem, Bernhard; Lin, Jun [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Wu, Ning, E-mail: leini@ynao.ac.cn [School of Tourism and Geography, Yunnan Normal University, Kunming 650031 (China)

    2015-01-20

    Magnetic reconnection in the partially ionized solar chromosphere is studied in 2.5 dimensional magnetohydrodynamic simulations including radiative cooling and ambipolar diffusion. A Harris current sheet with and without a guide field is considered. Characteristic values of the parameters in the middle chromosphere imply a high magnetic Reynolds number of ∼10{sup 6}-10{sup 7} in the present simulations. Fast magnetic reconnection then develops as a consequence of the plasmoid instability without the need to invoke anomalous resistivity enhancements. Multiple levels of the instability are followed as it cascades to smaller scales, which approach the ion inertial length. The reconnection rate, normalized to the asymptotic values of magnetic field and Alfvén velocity in the inflow region, reaches values in the range ∼0.01-0.03 throughout the cascading plasmoid formation and for zero as well as for strong guide field. The outflow velocity reaches ≈40 km s{sup –1}. Slow-mode shocks extend from the X-points, heating the plasmoids up to ∼8 × 10{sup 4} K. In the case of zero guide field, the inclusion of both ambipolar diffusion and radiative cooling causes a rapid thinning of the current sheet (down to ∼30 m) and early formation of secondary islands. Both of these processes have very little effect on the plasmoid instability for a strong guide field. The reconnection rates, temperature enhancements, and upward outflow velocities from the vertical current sheet correspond well to their characteristic values in chromospheric jets.

  12. Electrosensitization Increases Antitumor Effectiveness of Nanosecond Pulsed Electric Fields In Vivo

    OpenAIRE

    Muratori, Claudia; Pakhomov, Andrei G.; Heller, Loree; Casciola, Maura; Gianulis, Elena; Grigoryev, Sergey; Xiao, Shu; Pakhomova, O. N.

    2017-01-01

    Nanosecond pulsed electric fields are emerging as a new modality for tissue and tumor ablation. We previously reported that cells exposed to pulsed electric fields develop hypersensitivity to subsequent pulsed electric field applications. This phenomenon, named electrosensitization, is evoked by splitting the pulsed electric field treatment in fractions (split-dose treatments) and causes in vitro a 2- to 3-fold increase in cytotoxicity. The aim of this study was to show the benefit of split-d...

  13. Electrosensitization Increases Antitumor Effectiveness of Nanosecond Pulsed Electric Fields In Vivo.

    Science.gov (United States)

    Muratori, Claudia; Pakhomov, Andrei G; Heller, Loree; Casciola, Maura; Gianulis, Elena; Grigoryev, Sergey; Xiao, Shu; Pakhomova, O N

    2017-01-01

    Nanosecond pulsed electric fields are emerging as a new modality for tissue and tumor ablation. We previously reported that cells exposed to pulsed electric fields develop hypersensitivity to subsequent pulsed electric field applications. This phenomenon, named electrosensitization, is evoked by splitting the pulsed electric field treatment in fractions (split-dose treatments) and causes in vitro a 2- to 3-fold increase in cytotoxicity. The aim of this study was to show the benefit of split-dose treatments for in vivo tumor ablation by nanosecond pulsed electric field. KLN 205 squamous carcinoma cells were embedded in an agarose gel or grown subcutaneously as tumors in mice. Nanosecond pulsed electric field ablations were produced using a 2-needle probe with a 6.5-mm interelectrode distance. In agarose gel, splitting a pulsed electric field dose of 300, 300-ns pulses (20 Hz, 4.4-6.4 kV) in 2 equal fractions increased cell death up to 3-fold compared to single-train treatments. We then compared the antitumor effectiveness of these treatments in vivo. At 24 hours after treatment, sensitizing tumors by a split-dose pulsed electric field exposure (150 + 150, 300-ns pulses, 20 Hz, 6.4 kV) caused a 4- and 2-fold tumor volume reduction as compared to sham and single-train treatments, respectively. Tumor volume reduction that exceeds 75% was 43% for split-dose-treated animals compared to only 12% for single-dose treatments. The difference between the 2 experimental groups remained statistically significant for at least 1 week after the treatment. The results show that electrosensitization occurs in vivo and can be exploited to assist in vivo cancer ablation.

  14. Confinement of 2,4 MeV deuterons by plasmoids and focalization of electron beams in plasma focus discharges

    International Nuclear Information System (INIS)

    Nardi, V.; Bostick, W.; Prior, W.; Feugeas, J.; Bortolotti, A.

    1982-01-01

    A detailed analysis has been completed on the internal structure of ions and electron beams which are efected, along the system axis, in opposite directions (0 0 and 180 0 ). An image (contact print) of plasmoids which emit MeV deuterons is formed by the deuteron emission and it is revealed by etching deuteron tracks in a target of plastic material (CR-39). Ion-imaging with different energy filters discriminates between tracks of plasmoid ions and tracks of charged products of D-D fusion reactions. Ions-imaging can also discriminate plasmoid deuterons from MeV deuterons of a directed beam. (L.C.) [pt

  15. The First ALMA Observation of a Solar Plasmoid Ejection from an X-Ray Bright Point

    Energy Technology Data Exchange (ETDEWEB)

    Shimojo, Masumi [National Astronomical Observatory of Japan, Tokyo, 181-8588 (Japan); Hudson, Hugh S. [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); White, Stephen M. [Space Vehicles Directorate, Air Force Research Laboratory, Kirtland AFB, NM 87117-5776 (United States); Bastian, Timothy S. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Iwai, Kazumasa, E-mail: masumi.shimojo@nao.ac.jp [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, 464-8601 (Japan)

    2017-05-20

    Eruptive phenomena such as plasmoid ejections or jets are important features of solar activity and have the potential to improve our understanding of the dynamics of the solar atmosphere. Such ejections are often thought to be signatures of the outflows expected in regions of fast magnetic reconnection. The 304 Å EUV line of helium, formed at around 10{sup 5} K, is found to be a reliable tracer of such phenomena, but the determination of physical parameters from such observations is not straightforward. We have observed a plasmoid ejection from an X-ray bright point simultaneously at millimeter wavelengths with ALMA, at EUV wavelengths with SDO /AIA, and in soft X-rays with Hinode /XRT. This paper reports the physical parameters of the plasmoid obtained by combining the radio, EUV, and X-ray data. As a result, we conclude that the plasmoid can consist either of (approximately) isothermal ∼10{sup 5} K plasma that is optically thin at 100 GHz, or a ∼10{sup 4} K core with a hot envelope. The analysis demonstrates the value of the additional temperature and density constraints that ALMA provides, and future science observations with ALMA will be able to match the spatial resolution of space-borne and other high-resolution telescopes.

  16. The effect of pulsed electric fields on carotenoids bioaccessibility

    NARCIS (Netherlands)

    Bot, Francesca; Verkerk, Ruud; Mastwijk, Hennie; Anese, Monica; Fogliano, Vincenzo; Capuano, Edoardo

    2018-01-01

    Tomato fractions were subjected to pulsed electric fields treatment combined or not with heating. Results showed that pulsed electric fields and heating applied in combination or individually induced permeabilization of cell membranes in the tomato fractions. However, no changes in β-carotene and

  17. Motion of Plasmoid in a Curvilinear Magnetic Field; Mouvement d'un Plasmoide dans un Champ Magnetique Curviligne; Dvizhenie plazmennogo sgustka v krivolinejnom magnitnom pole; Movimiento de un Plasmoide en un Campo Magnetico Curvilineo

    Energy Technology Data Exchange (ETDEWEB)

    Vojcenja, V. S.; Gorbanjuk, A. G.; Onishhenko, I. N.; Safronov, B. G.; Hizhnjak, N. A.; Shkoda, V. V. [Fiziko-Tehnicheskij Institut, AN USSR, Khar' kov, USSR (Ukraine)

    1966-04-15

    The passage of. a plasmoid through the magnetic field of a toroidal solenoid and its decontamination from heavy ion impurities have been studied theoretically and experimentally. The theoretical analysis has been carried out within the framework of a drift approximation. The passage of the plasma is achieved through the closing currents which SinelnikoV assumed to exist. The circuit-closing currents substantially reduce the polarization fields but, as calculations show, do not prevent me drift ofheavy ions to the chamber walls. Even in dense plasma, in which 4{pi}n{sub 0}Mc{sup 2}/H{sup 2}{sub 0} >> 1, the heavy-ion drift is governed by the same laws as in the single-particle approximation. More precise analysis of the field structure shows that, in addition to the polarization field perpendicular to the torus plane, there is a radial electric field directed towards the inner wall of the toroidal chamber. The magnitude of the polarization field is determined essentially by the shorting currents and measurement of the polarization fields therefore confirms indirectly the assumed existence of these currents. Earlier experiments showed that the measured polarization fields agree in order of magnitude with the theoretical predictions. We study the results of the experimental investigation of the passage and decontamination of fast plasmoids of high density (n{sub 0} > 10{sup 13} cm{sup -3}, 4{pi}n{sub 0}Mc{sup 2}/H{sup 2}{sub 0} Asymptotically-Equal-To 5 x 10{sup 3} >> 1). A coaxial source with a pulsed gas inlet was used to obtain the plasmoids (1 cm{sup 3} of hydrogen at atmospheric pressure). The 17-{mu}F source bank was charged to 18 kV. After passing through the rectilinear section of the magnetic field (L = 150 cm) the plasma entered the toroidal magnetic field (radius of curvature, 75 cm; angle of deflection, approximately 90 Degree-Sign ). The magnitude of the pulsed magnetic field reached 10 kOe and remained virtually unchanged during the passage of the plasma

  18. Eradication of multidrug-resistant pseudomonas biofilm with pulsed electric fields.

    Science.gov (United States)

    Khan, Saiqa I; Blumrosen, Gaddi; Vecchio, Daniela; Golberg, Alexander; McCormack, Michael C; Yarmush, Martin L; Hamblin, Michael R; Austen, William G

    2016-03-01

    Biofilm formation is a significant problem, accounting for over eighty percent of microbial infections in the body. Biofilm eradication is problematic due to increased resistance to antibiotics and antimicrobials as compared to planktonic cells. The purpose of this study was to investigate the effect of Pulsed Electric Fields (PEF) on biofilm-infected mesh. Prolene mesh was infected with bioluminescent Pseudomonas aeruginosa and treated with PEF using a concentric electrode system to derive, in a single experiment, the critical electric field strength needed to kill bacteria. The effect of the electric field strength and the number of pulses (with a fixed pulse length duration and frequency) on bacterial eradication was investigated. For all experiments, biofilm formation and disruption were confirmed with bioluminescent imaging and Scanning Electron Microscopy (SEM). Computation and statistical methods were used to analyze treatment efficiency and to compare it to existing theoretical models. In all experiments 1500 V are applied through a central electrode, with pulse duration of 50 μs, and pulse delivery frequency of 2 Hz. We found that the critical electric field strength (Ecr) needed to eradicate 100-80% of bacteria in the treated area was 121 ± 14 V/mm when 300 pulses were applied, and 235 ± 6.1 V/mm when 150 pulses were applied. The area at which 100-80% of bacteria were eradicated was 50.5 ± 9.9 mm(2) for 300 pulses, and 13.4 ± 0.65 mm(2) for 150 pulses. 80% threshold eradication was not achieved with 100 pulses. The results indicate that increased efficacy of treatment is due to increased number of pulses delivered. In addition, we that showed the bacterial death rate as a function of the electrical field follows the statistical Weibull model for 150 and 300 pulses. We hypothesize that in the clinical setting, combining systemic antibacterial therapy with PEF will yield a synergistic effect leading to improved

  19. Numerical MHD study for plasmoid instability in uniform resistivity

    Science.gov (United States)

    Shimizu, Tohru; Kondoh, Koji; Zenitani, Seiji

    2017-11-01

    The plasmoid instability (PI) caused in uniform resistivity is numerically studied with a MHD numerical code of HLLD scheme. It is shown that the PI observed in numerical studies may often include numerical (non-physical) tearing instability caused by the numerical dissipations. By increasing the numerical resolutions, the numerical tearing instability gradually disappears and the physical tearing instability remains. Hence, the convergence of the numerical results is observed. Note that the reconnection rate observed in the numerical tearing instability can be higher than that of the physical tearing instability. On the other hand, regardless of the numerical and physical tearing instabilities, the tearing instability can be classified into symmetric and asymmetric tearing instability. The symmetric tearing instability tends to occur when the thinning of current sheet is stopped by the physical or numerical dissipations, often resulting in the drastic changes in plasmoid chain's structure and its activity. In this paper, by eliminating the numerical tearing instability, we could not specify the critical Lundquist number Sc beyond which PI is fully developed. It suggests that Sc does not exist, at least around S = 105.

  20. Electrical pulse burnout of transistors in intense ionizing radiation

    International Nuclear Information System (INIS)

    Hartman, E.F.; Evans, D.C.

    1975-01-01

    Tests examining possible synergistic effects of electrical pulses and ionizing radiation on transistors were performed and energy/power thresholds for transistor burnout determined. The effect of ionizing radiation on burnout thresholds was found to be minimal, indicating that electrical pulse testing in the absence of radiation produces burnout-threshold results which are applicable to IEMP studies. The conditions of ionized transistor junctions and radiation induced current surges at semiconductor device terminals are inherent in IEMP studies of electrical circuits

  1. Electric field measurements in a nanosecond pulse discharge in atmospheric air

    International Nuclear Information System (INIS)

    Simeni Simeni, Marien; Frederickson, Kraig; Lempert, Walter R; Adamovich, Igor V; Goldberg, Benjamin M; Zhang, Cheng

    2017-01-01

    The paper presents the results of temporally and spatially resolved electric field measurements in a nanosecond pulse discharge in atmospheric air, sustained between a razor edge high-voltage electrode and a plane grounded electrode covered by a thin dielectric plate. The electric field is measured by picosecond four-wave mixing in a collinear phase-matching geometry, with time resolution of approximately 2 ns, using an absolute calibration provided by measurements of a known electrostatic electric field. The results demonstrate electric field offset on the discharge center plane before the discharge pulse due to surface charge accumulation on the dielectric from the weaker, opposite polarity pre-pulse. During the discharge pulse, the electric field follows the applied voltage until ‘forward’ breakdown occurs, after which the field in the plasma is significantly reduced due to charge separation. When the applied voltage is reduced, the field in the plasma reverses direction and increases again, until the weak ‘reverse’ breakdown occurs, producing a secondary transient reduction in the electric field. After the pulse, the field is gradually reduced on a microsecond time scale, likely due to residual surface charge neutralization by transport of opposite polarity charges from the plasma. Spatially resolved electric field measurements show that the discharge develops as a surface ionization wave. Significant surface charge accumulation on the dielectric surface is detected near the end of the discharge pulse. Spatially resolved measurements of electric field vector components demonstrate that the vertical electric field in the surface ionization wave peaks ahead of the horizontal electric field. Behind the wave, the vertical field remains low, near the detection limit, while the horizontal field is gradually reduced to near the detection limit at the discharge center plane. These results are consistent with time-resolved measurements of electric field

  2. High-intensity pulsed electric field variables affecting Staphylococcus aureus inoculated in milk.

    Science.gov (United States)

    Sobrino-López, A; Raybaudi-Massilia, R; Martín-Belloso, O

    2006-10-01

    Staphylococcus aureus is an important milk-related pathogen that is inactivated by high-intensity pulsed electric fields (HIPEF). In this study, inactivation of Staph. aureus suspended in milk by HIPEF was studied using a response surface methodology, in which electric field intensity, pulse number, pulse width, pulse polarity, and the fat content of milk were the controlled variables. It was found that the fat content of milk did not significantly affect the microbial inactivation of Staph. aureus. A maximum value of 4.5 log reductions was obtained by applying 150 bipolar pulses of 8 mus each at 35 kV/cm. Bipolar pulses were more effective than those applied in the monopolar mode. An increase in electric field intensity, pulse number, or pulse width resulted in a drop in the survival fraction of Staph. aureus. Pulse widths close to 6.7 micros lead to greater microbial death with a minimum number of applied pulses. At a constant treatment time, a greater number of shorter pulses achieved better inactivation than those treatments performed at a lower number of longer pulses. The combined action of pulse number and electric field intensity followed a similar pattern, indicating that the same fraction of microbial death can be reached with different combinations of the variables. The behavior and relationship among the electrical variables suggest that the energy input of HIPEF processing might be optimized without decreasing the microbial death.

  3. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    Science.gov (United States)

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm, Martin C., Jr.; Austen, William G., Jr.; Yarmush, Martin L.

    2015-05-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases.

  4. The effect of pulsed electric fields on carotenoids bioaccessibility: The role of tomato matrix.

    Science.gov (United States)

    Bot, Francesca; Verkerk, Ruud; Mastwijk, Hennie; Anese, Monica; Fogliano, Vincenzo; Capuano, Edoardo

    2018-02-01

    Tomato fractions were subjected to pulsed electric fields treatment combined or not with heating. Results showed that pulsed electric fields and heating applied in combination or individually induced permeabilization of cell membranes in the tomato fractions. However, no changes in β-carotene and lycopene bioaccessibility were found upon combined and individual pulsed electric fields and heating, except in the following cases: (i) in tissue, a significant decrease in lycopene bioaccessibility upon combined pulsed electric fields and heating and heating only was observed; (ii) in chromoplasts, both β-carotene and lycopene bioaccessibility significantly decreased upon combined pulsed electric fields and heating and pulsed electric fields only. The reduction in carotenoids bioaccessibility was attributed to modification in chromoplasts membrane and carotenoids-protein complexes. Differences in the effects of pulsed electric fields on bioaccessibility among different tomato fractions were related to tomato structure complexity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Energy-Saving Sintering of Electrically Conductive Powders by Modified Pulsed Electric Current Heating Using an Electrically Nonconductive Die

    Science.gov (United States)

    Ito, Mikio; Kawahara, Kenta; Araki, Keita

    2014-04-01

    Sintering of Cu and thermoelectric Ca3Co4O9 was tried using a modified pulsed electric current sintering (PECS) process, where an electrically nonconductive die was used instead of a conventional graphite die. The pulsed electric current flowed through graphite punches and sample powder, which caused the Joule heating of the powder compact itself, resulting in sintering under smaller power consumption. Especially for the Ca3Co4O9 powder, densification during sintering was also accelerated by this modified PECS process.

  6. Nanosecond pulsed electric field ablation of hepatocellular carcinoma.

    Science.gov (United States)

    Beebe, Stephen J; Chen, Xinhua; Liu, Jie A; Schoenbach, Karl H

    2011-01-01

    Hepatocellular carcinoma often evades effective therapy and recurrences are frequent. Recently, nanosecond pulsed electric field (nsPEF) ablation using pulse power technology has emerged as a local-regional, non-thermal, and non-drug therapy for skin cancers. In the studies reported here we use nsPEFs to ablate murine, rat and human HCCs in vitro and an ectopic murine Hepa 1-6 HCC in vivo. Using pulses with 60 or 300 ns and electric fields as high as 60 kV/cm, murine Hepa 1-6, rat N1S1 and human HepG2 HCC are readily eliminated with changes in caspase-3 activity. Interestingly caspase activities increase in the mouse and human model and decrease in the rat model as electric field strengths are increased. In vivo, while sham treated control mice survived an average of 15 days after injection and before humane euthanasia, Hepa 1-6 tumors were eliminated for longer than 50 days with 3 treatments using one hundred pulses with 100 ns at 55 kV/cm. Survival was 40% in mice treated with 30 ns pulses at 55 kV/cm. This study demonstrates that nsPEF ablation is not limited to effectively treating skin cancers and provides a rationale for treating orthotopic hepatocellular carcinoma in pre-clinical applications and ultimately in clinical trials.

  7. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    Science.gov (United States)

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm Jr., Martin C.; Austen Jr., William G.; Yarmush, Martin L.

    2015-01-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases. PMID:25965851

  8. Review of the Dynamics of Coalescence and Demulsification by High-Voltage Pulsed Electric Fields

    Directory of Open Access Journals (Sweden)

    Ye Peng

    2016-01-01

    Full Text Available The coalescence of droplets in oil can be implemented rapidly by high-voltage pulse electric field, which is an effective demulsification dehydration technological method. At present, it is widely believed that the main reason of pulse electric field promoting droplets coalescence is the dipole coalescence and oscillation coalescence in pulse electric field, and the optimal coalescence pulse electric field parameters exist. Around the above content, the dynamics of high-voltage pulse electric field promoting the coalescence of emulsified droplets is studied by researchers domestically and abroad. By review, the progress of high-voltage pulse electric field demulsification technology can get a better understanding, which has an effect of throwing a sprat to catch a whale on promoting the industrial application.

  9. Effect of electrical pulse on the precipitates and material strength of 2024 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weichao, E-mail: weichao127@gmail.com; Wang, Yongjun, E-mail: t.s.wu@163.com; Wang, Junbiao, E-mail: wangjunb@nwpu.edu.cn; Wei, Shengmin, E-mail: weism@nwpu.edu.cn

    2014-07-01

    The effect of electrical pulse on the metastable precipitates and material strength of Al–Cu–Mg based 2024 aluminum alloy was investigated by means of tensile tests, hardness measurement, transmission electron microscopy and differential scanning calorimetry. The experimental results show that the electrical pulse passing through the naturally aged 2024 alloy can cause an electrical pulse retrogression effect which is characterized by the decrease of material strength and the appearance of Portevin–Le Chatelier (PLC) effect. More electrical pulses under higher current densities are more efficient in causing the electrical pulse retrogression effect. TEM and DSC experimental results reveal that, the electrical pulse retrogression effect is owing to the dissolution of the metastable precipitates in naturally aged 2024 alloy. Compared with the traditional retrogression heat treatment that heats the aluminum alloys through bulk heating in furnace for short time to reduce their material strength, the electrical pulse retrogression effect occurs at a much lower temperature and the pulse treated alloy can nearly restore to its original strength at a faster speed at room temperature.

  10. Comparison of pulsed corona plasma and pulsed electric fields for the decontamination of water containing Legionella pneumophila as model organism.

    Science.gov (United States)

    Banaschik, Robert; Burchhardt, Gerhard; Zocher, Katja; Hammerschmidt, Sven; Kolb, Juergen F; Weltmann, Klaus-Dieter

    2016-12-01

    Pulsed corona plasma and pulsed electric fields were assessed for their capacity to kill Legionella pneumophila in water. Electrical parameters such as in particular dissipated energy were equal for both treatments. This was accomplished by changing the polarity of the applied high voltage pulses in a coaxial electrode geometry resulting in the generation of corona plasma or an electric field. For corona plasma, generated by high voltage pulses with peak voltages of +80kV, Legionella were completely killed, corresponding to a log-reduction of 5.4 (CFU/ml) after a treatment time of 12.5min. For the application of pulsed electric fields from peak voltages of -80kV a survival of log 2.54 (CFU/ml) was still detectable after this treatment time. Scanning electron microscopy images of L. pneumophila showed rupture of cells after plasma treatment. In contrast, the morphology of bacteria seems to be intact after application of pulsed electric fields. The more efficient killing for the same energy input observed for pulsed corona plasma is likely due to induced chemical processes and the generation of reactive species as indicated by the evolution of hydrogen peroxide. This suggests that the higher efficacy and efficiency of pulsed corona plasma is primarily associated with the combined effect of the applied electric fields and the promoted reaction chemistry. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Pulsed electric field sensor based on original waveform measurement

    International Nuclear Information System (INIS)

    Ma Liang; Wu Wei; Cheng Yinhui; Zhou Hui; Li Baozhong; Li Jinxi; Zhu Meng

    2010-01-01

    The paper introduces the differential and original waveform measurement principles for pulsed E-field, and develops an pulsed E-field sensor based on original waveform measurement along with its theoretical correction model. The sensor consists of antenna, integrator, amplifier and driver, optic-electric/electric-optic conversion module and transmission module. The time-domain calibration in TEM cell indicates that, its risetime response is shorter than 1.0 ns, and the output pulse width at 90% of the maximum amplitude is wider than 10.0 μs. The output amplitude of the sensor is linear to the electric field intensity in a dynamic range of 20 dB. The measurement capability can be extended to 10 V/m or 50 kV/m by changing the system's antenna and other relative modules. (authors)

  12. The First ALMA Observation of a Solar Plasmoid Ejection from an X-Ray Bright Point

    Science.gov (United States)

    Shimojo, M.; Hudson, H. S.; White, S. M.; Bastian, T.; Iwai, K.

    2017-12-01

    Eruptive phenomena are important features of energy releases events, such solar flares, and have the potential to improve our understanding of the dynamics of the solar atmosphere. The 304 A EUV line of helium, formed at around 10^5 K, is found to be a reliable tracer of such phenomena, but the determination of physical parameters from such observations is not straightforward. We have observed a plasmoid ejection from an X-ray bright point simultaneously with ALMA, SDO/AIA, and Hinode/XRT. This paper reports the physical parameters of the plasmoid obtained by combining the radio, EUV, and X-ray data. As a result, we conclude that the plasmoid can consist either of (approximately) isothermal ˜10^5 K plasma that is optically thin at 100 GHz, or a ˜10^4 K core with a hot envelope. The analysis demonstrates the value of the additional temperature and density constraints that ALMA provides, and future science observations with ALMA will be able to match the spatial resolution of space-borne and other high-resolution telescopes.

  13. Fresh water disinfection by pulsed low electric field

    International Nuclear Information System (INIS)

    Zheng, C; Xu, Y; Liu, Z; Yan, K

    2013-01-01

    In this paper, we describe a pulsed low electric field process for water disinfection. Electric intensity of 0.6–1.7 kV cm −1 is applied. Experiments are performed with a 1.2 L axis-cylinder reactor. A bipolar pulsed power source with pulsed width of 25 μs and frequency of 100–3000 Hz is used. Water conductivity of 3–200 μs cm −1 is investigated, which can significantly affect pulsed voltage-current waveforms and injected energy. Energy per pulse rises with increased water conductivity. The initial E. Coli density and water conductivity are two major factors influencing the disinfection. No disinfection effect is performed with deionized water of 3 μs cm −1 . When water conductivity is 25 μs cm −1 and bacteria density is 10 4 –10 6 cfu ml −1 , significant disinfection effect is observed. More than 99% of the cells can be disinfected with an energy density of less than 70 J ml −1 , while water temperature is below 30 °C.

  14. Rapid hardening induced by electric pulse annealing in nanostructured pure aluminum

    DEFF Research Database (Denmark)

    Zeng, Wei; Shen, Yao; Zhang, Ning

    2012-01-01

    Nanostructured pure aluminum was fabricated by heavy cold-rolling and then subjected to recovery annealing either by applying electric pulse annealing or by traditional air furnace annealing. Both annealing treatments resulted in an increase in yield strength due to the occurrence of a “dislocation...... source-limited hardening” mechanism. However, the hardening kinetics was substantially faster for the electric pulse annealed material. Detailed microstructural characterization suggested that the rapid hardening during electric pulse annealing is related to an enhanced rate of recovery of dislocation...

  15. Ionization and recombination in attosecond electric field pulses

    International Nuclear Information System (INIS)

    Dimitrovski, Darko; Solov'ev, Eugene A.; Briggs, John S.

    2005-01-01

    Based on the results of a previous communication [Dimitrovski et al., Phys. Rev. Lett. 93, 083003 (2004)], we study ionization and excitation of a hydrogenic atom from the ground and first excited states in short electric field pulses of several cycles. A process of ionization and recombination which occurs periodically in time is identified, for both small and extremely large peak electric field strengths. In the limit of large electric peak fields closed-form analytic expressions for the population of the initial state after single- and few-cycle pulses are derived. These formulas, strictly valid for asymptotically large momentum transfer from the field, give excellent agreement with fully numerical calculations for all momentum transfers

  16. Transient Features in Nanosecond Pulsed Electric Fields Differentially Modulate Mitochondria and Viability

    Science.gov (United States)

    Beebe, Stephen J.; Chen, Yeong-Jer; Sain, Nova M.; Schoenbach, Karl H.; Xiao, Shu

    2012-01-01

    It is hypothesized that high frequency components of nanosecond pulsed electric fields (nsPEFs), determined by transient pulse features, are important for maximizing electric field interactions with intracellular structures. For monopolar square wave pulses, these transient features are determined by the rapid rise and fall of the pulsed electric fields. To determine effects on mitochondria membranes and plasma membranes, N1-S1 hepatocellular carcinoma cells were exposed to single 600 ns pulses with varying electric fields (0–80 kV/cm) and short (15 ns) or long (150 ns) rise and fall times. Plasma membrane effects were evaluated using Fluo-4 to determine calcium influx, the only measurable source of increases in intracellular calcium. Mitochondria membrane effects were evaluated using tetramethylrhodamine ethyl ester (TMRE) to determine mitochondria membrane potentials (ΔΨm). Single pulses with short rise and fall times caused electric field-dependent increases in calcium influx, dissipation of ΔΨm and cell death. Pulses with long rise and fall times exhibited electric field-dependent increases in calcium influx, but diminished effects on dissipation of ΔΨm and viability. Results indicate that high frequency components have significant differential impact on mitochondria membranes, which determines cell death, but lesser variances on plasma membranes, which allows calcium influxes, a primary determinant for dissipation of ΔΨm and cell death. PMID:23284682

  17. Ultrafast Electric Field Pulse Control of Giant Temperature Change in Ferroelectrics

    Science.gov (United States)

    Qi, Y.; Liu, S.; Lindenberg, A. M.; Rappe, A. M.

    2018-01-01

    There is a surge of interest in developing environmentally friendly solid-state-based cooling technology. Here, we point out that a fast cooling rate (≈1011 K /s ) can be achieved by driving solid crystals to a high-temperature phase with a properly designed electric field pulse. Specifically, we predict that an ultrafast electric field pulse can cause a giant temperature decrease up to 32 K in PbTiO3 occurring on few picosecond time scales. We explain the underlying physics of this giant electric field pulse-induced temperature change with the concept of internal energy redistribution: the electric field does work on a ferroelectric crystal and redistributes its internal energy, and the way the kinetic energy is redistributed determines the temperature change and strongly depends on the electric field temporal profile. This concept is supported by our all-atom molecular dynamics simulations of PbTiO3 and BaTiO3 . Moreover, this internal energy redistribution concept can also be applied to understand electrocaloric effect. We further propose new strategies for inducing giant cooling effect with ultrafast electric field pulse. This Letter offers a general framework to understand electric-field-induced temperature change and highlights the opportunities of electric field engineering for controlled design of fast and efficient cooling technology.

  18. Pulsed electrical discharge in gas bubbles in water

    Science.gov (United States)

    Gershman, Sophia

    A phenomenological picture of pulsed electrical discharge in gas bubbles in water is produced by combining electrical, spectroscopic, and imaging methods. The discharge is generated by applying one microsecond long 5 to 20 kilovolt pulses between the needle and disk electrodes submerged in water. A gas bubble is generated at the tip of the needle electrode. The study includes detailed experimental investigation of the discharge in argon bubbles and a brief look at the discharge in oxygen bubbles. Imaging, electrical characteristics, and time-resolved optical emission data point to a fast streamer propagation mechanism and formation of a plasma channel in the bubble. Spectroscopic methods based on line intensity ratios and Boltzmann plots of line intensities of argon, atomic hydrogen, and argon ions and the examination of molecular emission bands from molecular nitrogen and hydroxyl radicals provide evidence of both fast beam-like electrons and slow thermalized ones with temperatures of 0.6 -- 0.8 electron-volts. The collisional nature of plasma at atmospheric pressure affects the decay rates of optical emission. Spectroscopic study of rotational-vibrational bands of hydroxyl radical and molecular nitrogen gives vibrational and rotational excitation temperatures of the discharge of about 0.9 and 0.1 electron-volt, respectively. Imaging and electrical evidence show that discharge charge is deposited on the bubble wall and water serves as a dielectric barrier for the field strength and time scales of this experiment. Comparing the electrical and imaging information for consecutive pulses applied at a frequency of 1 Hz indicates that each discharge proceeds as an entirely new process with no memory of the previous discharge aside from long-lived chemical species, such as ozone and oxygen. Intermediate values for the discharge gap and pulse duration, low repetition rate, and unidirectional character of the applied voltage pulses make the discharge process here unique

  19. Breakdown in ZnO Varistors by High Power Electrical Pulses; TOPICAL

    International Nuclear Information System (INIS)

    PIKE, GORDON E.

    2001-01-01

    This report documents an investigation of irreversible electrical breakdown in ZnO varistors due to short pulses of high electric field and current density. For those varistors that suffer breakdown, there is a monotonic, pulse-by-pulse degradation in the switching electric field. The electrical and structural characteristics of varistors during and after breakdown are described qualitatively and quantitatively. Once breakdown is nucleated, the degradation typically follows a well-defined relationship between the number of post-initiation pulses and the degraded switching voltage. In some cases the degraded varistor has a remnant 20(micro)m diameter hollow track showing strong evidence of once-molten ZnO. A model is developed for both electrical and thermal effects during high energy pulsing. The breakdown is assumed to start at one electrode and advance towards the other electrode as a thin filament of conductive material that grows incrementally with each successive pulse. The model is partially validated by experiments in which the varistor rod is cut at several different lengths from the electrode. Invariably one section of the cut varistor has a switching field that is not degraded while the other section(s) are heavily degraded. Based on the experiments and models of behavior during breakdown, some speculations about the nature of the nucleating mechanism are offered in the last section

  20. Plasmoids everywhere: ideal tearing, the transition to fast reconnection, and solar activity.

    Science.gov (United States)

    Velli, M. C. M.; Pucci, F.; Tenerani, A.; Shi, C.; Del Sarto, D.; Rappazzo, A. F.

    2017-12-01

    We discuss the role of generalized ``ideal" tearing (IT) as a possible trigger mechanism for magnetic reconnection to understand energetic phenomena in the solar atmosphere. We begin with a pedagogical introduction to the IT concept, how it stems from the classical analysis of the tearing instability, what is meant by plasmoids, and the connections of IT to the plasmoid instability and Sweet Parker current sheets. We then proceed to analyze how the IT concept extends to equilibria with flows, small scale kinetic effects, different current structures and different magnetic field topology configurations. Finally we discuss the relationship of reconnection triggering to nonlinear cascades and turbulent evolution, and how different situations may arise depending on scale, boundary conditions, and time-history, from coronal heating via nanoflares, to solar flares and coronal mass ejections. Issues of local topology, dimensionality, anisotropy will also be discussed.

  1. The role of nanosecond electric pulse-induced mechanical stress in cellular nanoporation

    Science.gov (United States)

    Roth, Caleb C.

    Background: Exposures of cells to very short (less than 1 microsecond) electric pulses in the megavolt/meter range have been shown to cause a multitude of effects, both physical and molecular in nature. Physically, nanosecond electrical pulse exposure can disrupt the plasma membrane, leading to a phenomenon known as nanoporation. Nanoporation is the production of nanometer sized holes (less than 2 nanometers in diameter) that can persist for up to fifteen minutes, allowing the flow of ions into and out of the cell. Nanoporation can lead to secondary physical effects, such as cellular swelling, shrinking and blebbing. Molecularly, nanosecond electrical pulses have been shown to activate signaling pathways, produce oxidative stress, stimulate hormone secretion and induce both apoptotic and necrotic death. The mechanism by which nanosecond electrical pulses cause molecular changes is unknown; however, it is thought the flow of ions, such as calcium, into the cell via nanopores, could be a major cause. The ability of nanosecond electrical pulses to cause membranes to become permeable and to induce apoptosis makes the technology a desirable modality for cancer research; however, the lack of understanding regarding the mechanisms by which nanosecond electrical pulses cause nanoporation impedes further development of this technology. This dissertation documents the genomic and proteomic responses of cells exposed to nanosecond electrical pulses and describes in detail the biophysical effects of these electrical pulses, including the demonstration for the first time of the generation of acoustic pressure transients capable of disrupting plasma membranes and possibly contributing to nanoporation. Methods: Jurkat, clone E6-1 (human lymphocytic cell line), U937 (human lymphocytic cell line), Chinese hamster ovarian cells and adult primary human dermal fibroblasts exposed to nanosecond electrical pulses were subjected to a variety of molecular assays, including flow cytometry

  2. Experimental Study of a Long-Living Plasmoid Using High-Speed Filming.

    Czech Academy of Sciences Publication Activity Database

    Stelmashuk, Vitaliy; Hoffer, Petr

    2017-01-01

    Roč. 45, č. 12 (2017), s. 3160-3165 ISSN 0093-3813 Institutional support: RVO:61389021 Keywords : Plasmoid * discharge in contact with water * atmospheric-pressure plasmas Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.052, year: 2016

  3. Transmembrane molecular transport during versus after extremely large, nanosecond electric pulses.

    Science.gov (United States)

    Smith, Kyle C; Weaver, James C

    2011-08-19

    Recently there has been intense and growing interest in the non-thermal biological effects of nanosecond electric pulses, particularly apoptosis induction. These effects have been hypothesized to result from the widespread creation of small, lipidic pores in the plasma and organelle membranes of cells (supra-electroporation) and, more specifically, ionic and molecular transport through these pores. Here we show that transport occurs overwhelmingly after pulsing. First, we show that the electrical drift distance for typical charged solutes during nanosecond pulses (up to 100 ns), even those with very large magnitudes (up to 10 MV/m), ranges from only a fraction of the membrane thickness (5 nm) to several membrane thicknesses. This is much smaller than the diameter of a typical cell (∼16 μm), which implies that molecular drift transport during nanosecond pulses is necessarily minimal. This implication is not dependent on assumptions about pore density or the molecular flux through pores. Second, we show that molecular transport resulting from post-pulse diffusion through minimum-size pores is orders of magnitude larger than electrical drift-driven transport during nanosecond pulses. While field-assisted charge entry and the magnitude of flux favor transport during nanosecond pulses, these effects are too small to overcome the orders of magnitude more time available for post-pulse transport. Therefore, the basic conclusion that essentially all transmembrane molecular transport occurs post-pulse holds across the plausible range of relevant parameters. Our analysis shows that a primary direct consequence of nanosecond electric pulses is the creation (or maintenance) of large populations of small pores in cell membranes that govern post-pulse transmembrane transport of small ions and molecules. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. The effect of applied electric field on pulsed radio frequency and pulsed direct current plasma jet array

    International Nuclear Information System (INIS)

    Hu, J. T.; Liu, X. Y.; Liu, J. H.; Xiong, Z. L.; Liu, D. W.; Lu, X. P.; Iza, F.; Kong, M. G.

    2012-01-01

    Here we compare the plasma plume propagation characteristics of a 3-channel pulsed RF plasma jet array and those of the same device operated by a pulsed dc source. For the pulsed-RF jet array, numerous long life time ions and metastables accumulated in the plasma channel make the plasma plume respond quickly to applied electric field. Its structure similar as “plasma bullet” is an anode glow indeed. For the pulsed dc plasma jet array, the strong electric field in the vicinity of the tube is the reason for the growing plasma bullet in the launching period. The repulsive forces between the growing plasma bullets result in the divergence of the pulsed dc plasma jet array. Finally, the comparison of 309 nm and 777 nm emissions between these two jet arrays suggests the high chemical activity of pulsed RF plasma jet array.

  5. Pulsed power, ICF, and SDI

    International Nuclear Information System (INIS)

    Van Devender, J.P.

    1986-01-01

    Pulsed power technology has been developed over many years for nuclear weapon effects simulation, inertial fusion, and directed energy. Every four years there is a factor of ten increase in power available, and we are now near the 100 TW, couple of million joule (MJ) mark, according to the author. 100 TW is sufficient for studying physics relevant to Inertial Confinement Fusion (ICF) or the Strategic Defense Initiative (SDI). Pulsed power can be viewed as a basic technology for making electron beams, X-rays, and ion beams. Applications include ICF, plasmoid-directed energy weapons, and microwave weapons. The author presents a set of tentative requirements for an effective defense, a concept for deploying the defense, and a strategy for making the transition to a defense-dominated world

  6. Pulsed electrical discharges for medicine and biology techniques, processes, applications

    CERN Document Server

    Kolikov, Victor

    2015-01-01

    This book presents the application of pulsed electrical discharges in water and water dispersions of metal nanoparticles in medicine (surgery, dentistry, and oncology), biology, and ecology. The intensive electrical and shock waves represent a novel technique to destroy viruses and this way to  prepare anti-virus vaccines. The method of pulsed electrical discharges in water allows to decontaminate water from almost all known bacteria and spores of fungi being present in human beings. The nanoparticles used are not genotoxic and mutagenic. This book is useful for researchers and graduate students.

  7. Test research of consistency for amplitude calibration coefficients of pulsed electric field sensor

    International Nuclear Information System (INIS)

    Meng Cui; Guo Xiaoqiang; Chen Xiangyue; Nie Xin; Mao Congguang; Xiang Hui; Cheng Jianping

    2007-01-01

    The amplitude calibration of an electric field sensor is important in the measurement of electromagnetic pulse. In this paper, an arbitrary waveform generator (AWG) is used to generate multi-waveform electric field in the TEM cell and the dipole antenna pulsed electric field sensor is calibrated. In the frequency band of the sensor, the calibrated amplitude coefficients with different waveforms are identical. The coefficient derived from the TEM cell calibration system suits to the measurement of unknown electric field pulse within the frequency band. (authors)

  8. Propagation of 1-THz bandwidth electrical pulses on high Tc superconducting transmission lines

    International Nuclear Information System (INIS)

    Nuss, M.C.; Mankiewich, P.M.; Howard, R.E.; Harvey, T.E.; Brandle, C.D.; Straugh, B.L.; Smith, P.R.

    1989-01-01

    The new high temperature superconductors have triggered enormous interest not only because of the unique physics involved but also because of their technical potentials, such as the promise for propagation of extremely short electrical pulses. Superconducting band caps of --20TH z are predicted assuming BCS theory for the superconductor, making lossless propagation of electrical pulses as short as 50 fs possible. Despite microwave measurements at low frequencies of several gigahertz first studies at higher frequencies by Dykaar et al have shown distortion-free propagation of 100-GHz electrical pulses on YBa 2 Cu 3 O 3 (YBCO) lines for --5-mm propagation distance. Results were also reported for aluminum coplanar lines and a YBCO ground plane. The authors report on the propagation of 1-ps electrical pulses (1-THz bandwidth) on YBCO coplanar transmission lines defined on lanthanum gallate (LaGaO 3 ) as a substrate. On LaGaO 3 , YBCO grows highly oriented as on SrTiO 3 . However, unlike SrTiO 3 , LaGaO 3 has a much lower dielectric constant and small losses in the terahertz frequency range. Electrical pulses of --750-fs duration are generated in a radiation-damaged silicon-on-sapphire photoconductive switch integrated into a 20-μm coplanar stripline with 10-μm spacing and excited with 100-fs optical pulses from a CPM laser. An μ1-THz bandwidth electrical contact is made to the YBCO coplanar stripline defined on LaGaO 3 using a flip-chip geometry. They find that electrical pulses broaden only from 750 fs to 1 ps with little loss in amplitude on traveling through their flip-chip input and propagated electrical pulses are probed by electooptic sampling in two small LiTaO 3 crystals separated by 3 mm

  9. Process Control of Pre-Sowing Seed Treatment by Pulsed Electric Field

    Directory of Open Access Journals (Sweden)

    Starodubtseva Galina Petrovna

    2018-03-01

    Full Text Available Presented paper investigates the application of a line voltage changer to an installation for pre-sowing seed treatment by pulsed electric field (PEF in order to increase the sowing quality of seeds and to suppress pathogenic microflora. The installation comprises an AC voltage regulator, a high voltage source, a voltage inverter, a working chamber for seed treatment, a control unit, and current and voltage sensors. The proposed installation differs from the existing apparatuses as it automatically provides the transformation of the pulsed electric field parameters by constant monitoring of power processes in a layer of treated seeds and feedback sending to the control unit. Seed treatment efficiency depends on the dose being determined by the parameters of electric field, namely, intensity in the seed layer, pulse duration, pulse repetition frequency, and seed treatment time. The parameters of rational treatment were determined, and the minimum treatment dose was calculated on the basis of results from the laboratory tests on the effect of pulsed electric field on sowing qualities of winter wheat seeds. It was experimentally confirmed that the proposed installation provides automatic transformation of electric field parameters depending on the changes taking place in the seed layer on the example of seeds with different moisture content maintaining the necessary treatment dose, ensuring the stability and repeatability of results.

  10. A new pulsed electric field microreactor: comparison between the laboratory and microtechnology scale

    NARCIS (Netherlands)

    Fox, M.B.; Fox, Martijn; Esveld, Erik; Lüttge, Regina; Boom, Remko

    This paper presents a new microreactor dedicated for pulsed electric field treatment (PEF), which is a pasteurization method that inactivates microorganisms with short electric pulses. The PEF microreactor consists of a flow-through channel with a constriction where the electric field is focussed.

  11. A new pulsed electric field microreactor: comparison between the laboratory and microtechnology scale

    NARCIS (Netherlands)

    Fox, M.B.; Esveld, D.C.; Luttge, R.; Boom, R.M.

    2005-01-01

    This paper presents a new microreactor dedicated for pulsed electric field treatment (PEF), which is a pasteurization method that inactivates microorganisms with short electric pulses. The PEF microreactor consists of a flow-through channel with a constriction where the electric field is focussed.

  12. Microsecond-scale electric field pulses in cloud lightning discharges

    Science.gov (United States)

    Villanueva, Y.; Rakov, V. A.; Uman, M. A.; Brook, M.

    1994-01-01

    From wideband electric field records acquired using a 12-bit digitizing system with a 500-ns sampling interval, microsecond-scale pulses in different stages of cloud flashes in Florida and New Mexico are analyzed. Pulse occurrence statistics and waveshape characteristics are presented. The larger pulses tend to occur early in the flash, confirming the results of Bils et al. (1988) and in contrast with the three-stage representation of cloud-discharge electric fields suggested by Kitagawa and Brook (1960). Possible explanations for the discrepancy are discussed. The tendency for the larger pulses to occur early in the cloud flash suggests that they are related to the initial in-cloud channel formation processes and contradicts the common view found in the atmospheric radio-noise literature that the main sources of VLF/LF electromagnetic radiation in cloud flashes are the K processes which occur in the final, or J type, part of the cloud discharge.

  13. Electric fields in plasmas under pulsed currents

    International Nuclear Information System (INIS)

    Tsigutkin, K.; Doron, R.; Stambulchik, E.; Bernshtam, V.; Maron, Y.; Fruchtman, A.; Commisso, R. J.

    2007-01-01

    Electric fields in a plasma that conducts a high-current pulse are measured as a function of time and space. The experiment is performed using a coaxial configuration, in which a current rising to 160 kA in 100 ns is conducted through a plasma that prefills the region between two coaxial electrodes. The electric field is determined using laser spectroscopy and line-shape analysis. Plasma doping allows for three-dimensional spatially resolved measurements. The measured peak magnitude and propagation velocity of the electric field is found to match those of the Hall electric field, inferred from the magnetic-field front propagation measured previously

  14. Electrical response of relaxing dielectrics compressed by arbitrary stress pulses

    International Nuclear Information System (INIS)

    Lysne, P.C.

    1983-01-01

    The theoretical problem of the electric response of biased dielectrics and piezoelectrics subjected to planar stress pulse loading is considered. The materials are taken to exhibit dielectric relaxation in the sense that changes in the polarization induced by electric fields do not occur instantaneously with changes in the fields. While this paper considers arbitrary stress pulse loading of the specimen, examples that are amenable to projectile impact techniques are considered in detail. They are shock reverberation, thin pulse, and ramp loading experiments. It is anticipated that these experiments will play a role in investigations of dielectric relaxation caused by shock induced damage in insulators

  15. Development of Long-Lifetime Pulsed Gas Valves for Pulsed Electric Thrusters

    Science.gov (United States)

    Burkhardt, Wendel M.; Crapuchettes, John M.; Addona, Brad M.; Polzin, Kurt A.

    2015-01-01

    It is advantageous for gas-fed pulsed electric thrusters to employ pulsed valves so propellant is only flowing to the device during operation. The propellant utilization of the thruster will be maximized when all the gas injected into the thruster is acted upon by the fields produced by the electrical pulse. Gas that is injected too early will diffuse away from the thruster before the electrical pulse can act to accelerate the propellant. Gas that is injected too late will miss being accelerated by the already-completed electrical pulse. As a consequence, the valve must open quickly and close equally quickly, only remaining open for a short duration. In addition, the valve must have only a small amount of volume between the sealing body and the thruster so the front and back ends of the pulse are as coincident as possible with the valve cycling, with very little latent propellant remaining in the feed lines after the valve is closed. For a real mission of interest, a pulsed thruster can be expected to pulse at least 10(exp 10) - 10(exp 11) times, setting the range for the number of times a valve must open and close. The valves described in this paper have been fabricated and tested for operation in an inductive pulsed plasma thruster (IPPT) for in-space propulsion. In general, an IPPT is an electrodeless space propulsion device where a capacitor is charged to an initial voltage and then discharged, producing a high-current pulse through a coil. The field produced by this pulse ionizes propellant, inductively driving current in a plasma located near the face of the coil. Once the plasma is formed, it can be accelerated and expelled at a high exhaust velocity by the electromagnetic Lorentz body force arising from the interaction of the induced plasma current and the magnetic field produced by the current in the coil. The valve characteristics needed for the IPPT application require a fast-acting valve capable of a minimum of 10(exp 10) valve actuation cycles. Since

  16. Time-resolved processes in a pulsed electrical discharge in argon bubbles in water

    Science.gov (United States)

    Gershman, S.; Belkind, A.

    2010-12-01

    A phenomenological picture of a pulsed electrical discharge in gas bubbles in water is produced by combining electrical, spectroscopic, and imaging characterization methods. The discharge is generated by applying 1 μ s pulses of 5 to 20 kV between a needle and a disk electrode submerged in water. An Ar gas bubble surrounds the tip of the needle electrode. Imaging, electrical characteristics, and time-resolved optical emission spectroscopic data suggest a fast streamer propagation mechanism and the formation of a plasma channel in the bubble. Comparing the electrical and imaging data for consecutive pulses applied to the bubble at a frequency of 1 Hz indicates that each discharge proceeds as an entirely new process with no memory of the previous discharge aside from the presence of long-lived chemical species, such as ozone and oxygen. Imaging and electrical data show the presence of two discharge events during each applied voltage pulse, a forward discharge near the beginning of the applied pulse depositing charge on the surface of the bubble and a reverse discharge removing the accumulated charge from the water/gas interface when the applied voltage is turned off. The pd value of ~ 300-500 torr cm, the 1 μs long pulse duration, low repetition rate, and unidirectional character of the applied voltage pulses make the discharge process here unique compared to the traditional corona or dielectric barrier discharges.

  17. Energy and dose characteristics of ion bombardment during pulsed laser deposition of thin films under pulsed electric field

    International Nuclear Information System (INIS)

    Fominski, V.Yu.; Nevolin, V.N.; Smurov, I.

    2004-01-01

    Experiments on pulsed laser deposition of Fe films on Si substrates were performed with the aim to analyze the role of factors determining the formation of an energy spectrum and a dose of ions bombarding the film in strong pulsed electric fields. The amplitude of the high-voltage pulse (-40 kV) applied to the substrate and the laser fluence at the Fe target were fixed during the deposition. Owing to the high laser fluence (8 J/cm 2 ) at a relatively low power (20 mJ), the ionization of the laser plume was high, but the Fe vapor pressure near the substrate was low enough to avoid arcing. Electric signals from a target exposed to laser radiation were measured under different conditions (at different delay times) of application of electric pulses. The Si(100) substrates were analyzed using Rutherford ion backscattering/channeling spectrometry. The ion implantation dose occurred to be the highest if the high-voltage pulse was applied at a moment of time when the ion component of the plume approached the substrate. In this case, the implanted ions had the highest energy determined by the amplitude of the electric pulse. An advance or delay in applying a high-voltage pulse caused the ion dose and energy to decrease. A physical model incorporating three possible modes of ion implantation was proposed for the interpretation of the experimental results. If a laser plume was formed in the external field, ions were accelerated from the front of the dense plasma, and the ion current depended on the gas-dynamic expansion of the plume. The application of a high-voltage pulse, at the instant when the front approached the substrate, maintained the mode that was characteristic of the traditional plasma immersion ion implantation, and the ion current was governed by the dynamics of the plasma sheath in the substrate-to-target gap. In the case of an extremely late application of a high-voltage pulse, ions retained in the entire volume of the experimental chamber (as a result of the

  18. Generation of short electrical pulses based on bipolar transistorsny

    Directory of Open Access Journals (Sweden)

    M. Gerding

    2004-01-01

    Full Text Available A system for the generation of short electrical pulses based on the minority carrier charge storage and the step recovery effect of bipolar transistors is presented. Electrical pulses of about 90 ps up to 800 ps duration are generated with a maximum amplitude of approximately 7V at 50Ω. The bipolar transistor is driven into saturation and the base-collector and base-emitter junctions become forward biased. The resulting fast switch-off edge of the transistor’s output signal is the basis for the pulse generation. The fast switching of the transistor occurs as a result of the minority carriers that have been injected and stored across the base-collector junction under forward bias conditions. If the saturated transistor is suddenly reverse biased the pn-junction will appear as a low impedance until the stored charge is depleted. Then the impedance will suddenly increase to its normal high value and the flow of current through the junction will turn to zero, abruptly. A differentiation of the output signal of the transistor results in two short pulses with opposite polarities. The differentiating circuit is implemented by a transmission line network, which mainly acts as a high pass filter. Both the transistor technology (pnp or npn and the phase of the transfer function of the differentating circuit influence the polarity of the output pulses. The pulse duration depends on the transistor parameters as well as on the transfer function of the pulse shaping network. This way of generating short electrical pulses is a new alternative for conventional comb generators based on steprecovery diodes (SRD. Due to the three-terminal structure of the transistor the isolation problem between the input and the output signal of the transistor network is drastically simplified. Furthermore the transistor is an active element in contrast to a SRD, so that its current gain can be used to minimize the power of the driving signal.

  19. Electric field simulation and measurement of a pulse line ion accelerator

    International Nuclear Information System (INIS)

    Shen Xiaokang; Zhang Zimin; Cao Shuchun; Zhao Hongwei; Zhao Quantang; Liu Ming; Jing Yi; Wang Bo; Shen Xiaoli

    2012-01-01

    An oil dielectric helical pulse line to demonstrate the principles of a Pulse Line Ion Accelerator (PLIA) has been designed and fabricated. The simulation of the axial electric field of an accelerator with CST code has been completed and the simulation results show complete agreement with the theoretical calculations. To fully understand the real value of the electric field excited from the helical line in PLIA, an optical electric integrated electric field measurement system was adopted. The measurement result shows that the real magnitude of axial electric field is smaller than that calculated, probably due to the actual pitch of the resister column which is much less than that of helix. (authors)

  20. Electrical pulse burnout testing of light-emitting diodes

    International Nuclear Information System (INIS)

    Kalma, A.H.; Fischer, C.J.

    1975-01-01

    Electrical pulse burnout thresholds were measured in GaAs, GaAsP, and GaP light-emitting diodes (LEDs) by studying the degradation in light output and the change in I-V characteristics both during the pulse and in the steady state. Pulse widths ranging from a few hundred nsec to 100 μsec were used. Light output degradation was the most sensitive parameter and was used to determine the thresholds. Just above threshold, damage is caused by an increase in generation-recombination current in the space-charge retion. This current is non-radiative and the light output drops, but the damage is not catastrophic. At higher power, the junction burns through and shunt resistance paths are formed which more drastically degrade the light output. The experimental data match reasonably with the theoretical Wunsch--Bell/Tasca model if a burnout area of 1 / 10 the junction area is assumed. Both the adiabatic term (At -1 ) and the heat flow term (Bt - /sup 1 / 2 /) contribute in all devices, and the equilibrium term (C) contributes in some GaAsP devices. The scatter in the data for GaAs devices is greater than that for GaAsP devices, apparently because the former types have a significant fraction of mavericks with lower-than-normal thresholds. The use of LEDs to examine electrical pulse burnout is advantageous because the light output is quite sensitive to damage and the combined measurement of optical and electrical properties provides additional information about the mechanisms involved

  1. Hemorrhage control by microsecond electrical pulses

    Science.gov (United States)

    Mandel, Yossi; Manivanh, Richard; Dalal, Roopa; Huie, Phil; Wang, Jenny; Brinton, Mark; Palanker, Daniel

    2013-02-01

    Non-compressible hemorrhages are the most common preventable cause of death on battlefield or in civilian traumatic injuries. We report the use of sub-millisecond pulses of electric current to induce rapid constriction in femoral and mesenteric arteries and veins in rats. Extent of vascular constriction could be modulated by pulse duration, amplitude and repetition rate. Electrically-induced vasoconstriction could be maintained at steady level until the end of stimulation, and blood vessels dilated back to their original size within a few minutes after the end of stimulation. At higher settings, a blood clotting could be introduced, leading to complete and permanent occlusion of the vessels. The latter regime dramatically decreased the bleeding rate in the injured femoral and mesenteric arteries, with a complete hemorrhage arrest achieved within seconds. The average blood loss from the treated femoral artery was about 7 times less than that of a non-treated control. This new treatment modality offers a promising approach to non-damaging control of bleeding during surgery, and to efficient hemorrhage arrest in trauma patients.

  2. Strategies, Protections and Mitigations for Electric Grid from Electromagnetic Pulse Effects

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Rita Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States); Frickey, Steven Jay [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-01-01

    The mission of DOE’s Office of Electricity Delivery and Energy Reliability (OE) is to lead national efforts to modernize the electricity delivery system, enhance the security and reliability of America’s energy infrastructure and facilitate recovery from disruptions to the energy supply. One of the threats OE is concerned about is a high-altitude electro-magnetic pulse (HEMP) from a nuclear explosion and eletro-magnetic pulse (EMP) or E1 pulse can be generated by EMP weapons. DOE-OE provides federal leadership and technical guidance in addressing electric grid issues. The Idaho National Laboratory (INL) was chosen to conduct the EMP study for DOE-OE due to its capabilities and experience in setting up EMP experiments on the electric grid and conducting vulnerability assessments and developing innovative technology to increase infrastructure resiliency. This report identifies known impacts to EMP threats, known mitigations and effectiveness of mitigations, potential cost of mitigation, areas for government and private partnerships in protecting the electric grid to EMP, and identifying gaps in our knowledge and protection strategies.

  3. The second phase of bipolar, nanosecond-range electric pulses determines the electroporation efficiency.

    Science.gov (United States)

    Pakhomov, Andrei G; Grigoryev, Sergey; Semenov, Iurii; Casciola, Maura; Jiang, Chunqi; Xiao, Shu

    2018-03-29

    Bipolar cancellation refers to a phenomenon when applying a second electric pulse reduces ("cancels") cell membrane damage by a preceding electric pulse of the opposite polarity. Bipolar cancellation is a reason why bipolar nanosecond electric pulses (nsEP) cause weaker electroporation than just a single unipolar phase of the same pulse. This study was undertaken to explore the dependence of bipolar cancellation on nsEP parameters, with emphasis on the amplitude ratio of two opposite polarity phases of a bipolar pulse. Individual cells (CHO, U937, or adult mouse ventricular cardiomyocytes (VCM)) were exposed to either uni- or bipolar trapezoidal nsEP, or to nanosecond electric field oscillations (NEFO). The membrane injury was evaluated by time-lapse confocal imaging of the uptake of propidium (Pr) or YO-PRO-1 (YP) dyes and by phosphatidylserine (PS) externalization. Within studied limits, bipolar cancellation showed little or no dependence on the electric field intensity, pulse repetition rate, chosen endpoint, or cell type. However, cancellation could increase for larger pulse numbers and/or for longer pulses. The sole most critical parameter which determines bipolar cancellation was the phase ratio: maximum cancellation was observed with the 2nd phase of about 50% of the first one, whereas a larger 2nd phase could add a damaging effect of its own. "Swapping" the two phases, i.e., delivering the smaller phase before the larger one, reduced or eliminated cancellation. These findings are discussed in the context of hypothetical mechanisms of bipolar cancellation and electroporation by nsEP. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. An explanation for parallel electric field pulses observed over thunderstorms

    Science.gov (United States)

    Kelley, M. C.; Barnum, B. H.

    2009-10-01

    Every electric field instrument flown on sounding rockets over a thunderstorm has detected pulses of electric fields parallel to the Earth's magnetic field associated with every strike. This paper describes the ionospheric signatures found during a flight from Wallops Island, Virginia, on 2 September 1995. The electric field results in a drifting Maxwellian corresponding to energies up to 1 eV. The distribution function relaxes because of elastic and inelastic collisions, resulting in electron heating up to 4000-5000 K and potentially observable red line emissions and enhanced ISR electron temperatures. The field strength scales with the current in cloud-to-ground strikes and falls off as r -1 with distance. Pulses of both polarities are found, although most electric fields are downward, parallel to the magnetic field. The pulse may be the reaction of ambient plasma to a current pulse carried at the whistler packet's highest group velocity. The charge source required to produce the electric field is very likely electrons of a few keV traveling at the packet velocity. We conjecture that the current source is the divergence of the current flowing at mesospheric heights, the phenomenon called an elve. The whistler packet's effective radiated power is as high as 25 mW at ionospheric heights, comparable to some ionospheric heater transmissions. Comparing the Poynting flux at the base of the ionosphere with flux an equal distance away along the ground, some 30 db are lost in the mesosphere. Another 10 db are lost in the transition from free space to the whistler mode.

  5. Electrical Tree Initiation and Growth in Silicone Rubber under Combined DC-Pulse Voltage

    Directory of Open Access Journals (Sweden)

    Tao Han

    2018-03-01

    Full Text Available Electrical tree is a serious threat to silicone rubber (SIR insulation and can even cause breakdown. Electrical trees under alternating current (AC and direct current (DC voltage have been widely researched. While there are pulses in high-voltage direct current (HVDC cables under operating conditions caused by lightning and operating overvoltage in the power system, little research has been reported about trees under combined DC-pulse voltage. Their inception and growth mechanism is still not clear. In this paper, electrical trees are studied under several types of combined DC-pulse voltage. The initiation and growth process was recorded by a digital microscope system. The experimental results indicate that the inception pulse voltage is different under each voltage type and is influenced by the combined DC. The initial tree has two structures, determined by the pulse polarity. With increased DC prestressing time, tree inception pulse voltage with the same polarity is clearly decreased. Moreover, a special initial bubble tree was observed after the prestressing DC.

  6. Moderate and high intensity pulsed electric fields

    NARCIS (Netherlands)

    Timmermans, Rian Adriana Hendrika

    2018-01-01

    Pulsed Electric Field (PEF) processing has gained a lot of interest the last decades as mild processing technology as alternative to thermal pasteurisation, and is suitable for preservation of liquid food products such as fruit juices. PEF conditions typically applied at industrial scale for

  7. Effects of pulsed electric field on ULQ and RFP plasmas

    International Nuclear Information System (INIS)

    Watanabe, M.; Saito, K.; Suzuki, T.

    1997-01-01

    Dynamo activity and self-organization processes are investigated using the application of pulsed poloidal and toroidal electric fields on ULQ and RFP plasmas. Synchronized to the application of the pulsed electric fields, the remarkable responses of the several plasma parameters are observed. The plasma has a preferential magnetic field structure, and the external perturbation activates fluctuation to maintain the structure through dynamo effect. This process changes the total dissipation with the variation of magnetic helicity in the system, showing that self organization accompanies an enhanced dissipation. (author)

  8. Effect of pulsed electric fields on microbial inactivation and physico-chemical properties of whole porcine blood.

    Science.gov (United States)

    Boulaaba, Annika; Egen, Nathalie; Klein, Günter

    2014-04-01

    The objective of this study was to determine the lethal effectiveness of pulsed electric fields on the inactivation of the porcine blood endogenous microflora. Furthermore, the impact of pulsed electric field application on physico-chemical and sensory properties in this medium should be proved. Blood samples from a commercial abattoir in Germany were processed by a continuous pilot plant-pulsed electric field system at electric field strength of 11 kV/cm for treatment times of 163 and 209 µs. The applied pulse frequencies of 134 and 175 Hz correspond to an energy input of 91 and 114 kJ/kg, respectively. In these conditions, the effectiveness of pulsed electric field processing on microbial inactivation was limited: 1.35 log10 CFU/mL reduction of total aerobic plate count (p pulsed electric field-treated blood samples. Pulsed electric field processing leads to a complete hemolysis of the red blood cells, in addition significant decreased L* (lightness), a* (redness) and b* (yellowness) values (p < 0.0001) were observed. Furthermore, changes in the sensory attributes color (changed from red to dark brown) and odor (changed from fresh to musty and tangy) were noticed.

  9. Toward 6 log10 pulsed electric field inactivation with conductive plastic packaging material

    NARCIS (Netherlands)

    Roodenburg, B.; Haan, S.W.H. de; Ferreira, J.A.; Coronel, P.; Wouters, P.C.; Hatt, V.

    2013-01-01

    Generally, high grade products such as pulsed electric field (PEF) treated fruit juices are packaged after their preservative treatment. However, PEF treatment after packaging could avoid recontamination of the product and becomes feasible when electric field pulses of sufficient magnitude can be

  10. Photoinduced electric currents in ring-shaped molecules by circularly polarized laser pulses

    International Nuclear Information System (INIS)

    Nobusada, Katsuyuki; Yabana, Kazuhiro

    2007-01-01

    We have theoretically demonstrated that circularly polarized laser pulses induce electric currents and magnetic moments in ring-shaped molecules Na 10 and benzene. The time-dependent adiabatic local density approximation is employed for this purpose, solving the time-dependent Kohn-Sham equation in real space and real time. It has been found that the electric currents are induced efficiently and persist continuously even after the laser pulses were switched off provided the frequency of the applied laser pulse is in tune with the excitation energy of the electronic excited state with the dipole strength for each molecular system. The electric currents are definitely revealed to be a second-order nonlinear optical response to the magnitude of the electric field. The magnetic dipole moments inevitably accompany the ring currents, so that the molecules are magnetized. The production of the electric currents and the magnetic moments in the present procedure is found to be much more efficient than that utilizing static magnetic fields

  11. Design of Electric Field Sensors for Measurement of Electromagnetic Pulse

    Directory of Open Access Journals (Sweden)

    Hui ZHANG

    2014-01-01

    Full Text Available In this paper, a D-dot electric field sensor and a fiber-optic transmission electric field sensor are developed for measurement of electromagnetic pulse. The D-dot sensor is a differential model sensor without source and has a simple structure. The fiber-optic transmission sensor is in the type of small dipole antenna, which uses its outside shielding layer as a pair of antennas. Design of the sensor circuit and the test system are introduced in this paper. A calibration system for these pulsed field sensors is established and the test results verified the ability of the developed sensors for measurement of the standard electromagnetic pulse field (the half peak width is 25 ns and the rising time is 2.5 ns.

  12. Effects of a-adrenergic agonist and laser trabeculoplasty on plasmoid aqueous humor of glaucomatous rabbits

    International Nuclear Information System (INIS)

    Ahmed, S.A.

    2005-01-01

    The present study aimed to determine the protection of blood aqueous barrier by the apraclonidine drops, which is an adrenergic receptor agonist that reduces each of the aqueous humor protein production and the intraocular pressure in glaucomatous rabbits eye before and after treatment with apraclonidine and diode laser trabeculoplasty (DLT).The rabbits were classified into four groups in addition to a normal one. Group (I) was treated with apraclonidine only twice daily, group (II) with apraclonidine before DLT, group (III) with apraclonidine after laser and group (IV) was treated with apraclonidine before and after laser. The aqueous humor was withdrawn from the anterior chamber of the normal and glaucomatous rabbits eye immediately after treatment (direct effect) and one week after treatment for the plasmoid (delayed effect). The intraocular pressure (IOP) was measured then the protein contents and the changes in the molecular structures of aqueous humor proteins were detected using gel column chromatography and electrophoretic mobility. Apraclonidine eye drops led to decrease in IOP and prevented its rise after DLT. The degree of permeability of the barrier was deduced by the amount of protein in the plasmoid aqueous humor after DLT. In normal rabbits, the total protein was increased in the plasmoid aqueous humor. In the four treated groups, the total protein was decreased. The most pronounced decrease was in the group that treated with apraclonidine before and after laser. The change in total protein content was accompanied with change in its molecular weight and electrophoretic mobility. From the obtained results, it could be concluded that the withdrawing of the aqueous humor from the anterior chamber of the eye in appreciable amount leads to reformation of new aqueous humor (plasmoid) with elevated protein concentration. Moreover, the treatment with apraclonidine before DLT completely protected the blood aqueous barrier from disruption caused by laser and

  13. Effect of counter electric field during the irradiation of pulsed x-ray on the after-pulses of GM counter

    International Nuclear Information System (INIS)

    Igarashi, Ryuji; Narita, Yuichi; Ozawa, Yasutomo.

    1979-01-01

    The authors once made it clear by using pulsed radiation that the number of spurious discharge generation in organic gas-quenching type GM counters depends on the intensity of incident radiation. This spurious discharge is peculiar to the organic gas-quenching type GM counters, which the authors named after-pulses. The present study has been carried out to find the experimental conditions to verify the delayed generation mechanism of such after-pulses in bipolar GM tubes and the conditions to give the maximum number of after-pulses generation. For this purpose, a large low electric field region, whose field intensity is variable, should be provided in the tubes. Since it has been generally impossible in the bipolar GM tubes, the provision of that region transiently has been tried. The effect of the intensity of electric field in GM tubes during irradiation on the generation of after-pulses has been investigated by changing radiation intensity, anode voltage, and irradiated position. Consideration of the results has revealed that the number of after-pulse generation can be increased by forming transient low electric field region in the bipolar GM counters of organic gas-quenching type. It was the new knowledge that the transient anode voltage to maximize the after-pulse generating factor was several tens of negative voltage even if the conditions were varied. It seems that this fact depends upon the voltage giving the conditions to maximize the probability of forming after-pulse factors. (Wakatsuki, Y.)

  14. S. cerevisiae fermentation activity after moderate pulsed electric field pre-treatments.

    Science.gov (United States)

    Mattar, Jessy R; Turk, Mohammad F; Nonus, Maurice; Lebovka, Nikolai I; El Zakhem, Henri; Vorobiev, Eugene

    2015-06-01

    The batch fermentation process, inoculated by Pulsed Electric Field (PEF) treated wine yeasts (Saccharomyces cerevisiae Actiflore F33), was studied. PEF treatment was applied to the aqueous yeast suspensions ([Y] = 0.012 g/L) at the electric field strengths of E = 100 and 6000 V/cm using the same treatment protocol (number of pulses n = 1000, pulse duration ti = 100 μs, and pulse repetition time Δt = 100 ms). Electrical conductivity was increasing during and after the PEF treatment, which reflected cell electroporation. Then, fermentation was run for 150 h in an incubator (30 °C) with synchronic agitation. Electro-stimulation was revealing itself by the improvement of fermentation characteristics, and thus increased yeast metabolism. At the end of the lag phase (t = 40 h), fructose consumption in samples with electrically activated inoculum exceeded that of the control samples by ≈ 2.33 times for E = 100 V/cm and by ≈ 3.98 for E = 6000 V/cm. At the end of the log phase (120 h of fermentation), ≈ 30% mass reduction was reached in samples with PEF-treated inocula (E = 6000 V/cm), whereas the same mass reduction of the control sample required approximately 20 extra hours of fermentation. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Pulsed Electric Field treatment of packaged food

    NARCIS (Netherlands)

    Roodenburg, B.

    2011-01-01

    Food manufacturers are looking for new preservation techniques that don’t influence the fresh-like characteristics of products. Non-thermal pasteurisation of food with Pulsed Electric Fields (often referred to as PEF) is an emerging technology, where the change of the food is less than with thermal

  16. Hardening of alloys in glow discharge with the use of pulsed electric current

    International Nuclear Information System (INIS)

    Shipko, M.N.; Pomel'nikova, A.S.; Solunin, A.M.; Solunin, M.A.

    2002-01-01

    The effect of ex/ternal pulsed electric field on the thickness of a hardened surface layer of a Nd-Fe-B system alloy during chemical heat treatment in a glow discharge is studied. The relationship is established between the hardened layer thickness and the frequency of external electric field which is verified by derived equations for the relation between electron energy and pulsed electric field frequency [ru

  17. Measuring the electric field of few-cycle laser pulses by attosecond cross correlation

    International Nuclear Information System (INIS)

    Bandrauk, Andre D.; Chelkowski, Szczepan; Shon, Nguyen Hong

    2002-01-01

    A new technique for directly measuring the electric field of linearly polarized few-cycle laser pulses is proposed. Based on the solution of the time-dependent Schroedinger equation (TDSE) for an H atom in the combined field of infrared (IR) femtosecond (fs) and ultraviolet (UV) attosecond (as) laser pulses we show that, as a function of the time delay between two pulses, the difference (or equivalently, asymmetry) of photoelectron signals in opposite directions (along the polarization vector of laser pulses) reproduces very well the profile of the electric field (or vector potential) in the IR pulse. Such ionization asymmetry can be used for directly measuring the carrier-envelope phase difference (i.e., the relative phase of the carrier frequency with respect to the pulse envelope) of the IR fs laser pulse

  18. Comparison of membrane electroporation and protein denature in response to pulsed electric field with different durations.

    Science.gov (United States)

    Huang, Feiran; Fang, Zhihui; Mast, Jason; Chen, Wei

    2013-05-01

    In this paper, we compared the minimum potential differences in the electroporation of membrane lipid bilayers and the denaturation of membrane proteins in response to an intensive pulsed electric field with various pulse durations. Single skeletal muscle fibers were exposed to a pulsed external electric field. The field-induced changes in the membrane integrity (leakage current) and the Na channel currents were monitored to identify the minimum electric field needed to damage the membrane lipid bilayer and the membrane proteins, respectively. We found that in response to a relatively long pulsed electric shock (longer than the membrane intrinsic time constant), a lower membrane potential was needed to electroporate the cell membrane than for denaturing the membrane proteins, while for a short pulse a higher membrane potential was needed. In other words, phospholipid bilayers are more sensitive to the electric field than the membrane proteins for a long pulsed shock, while for a short pulse the proteins become more vulnerable. We can predict that for a short or ultrashort pulsed electric shock, the minimum membrane potential required to start to denature the protein functions in the cell plasma membrane is lower than that which starts to reduce the membrane integrity. Copyright © 2013 Wiley Periodicals, Inc.

  19. Pulsed electric fields for pasteurization: defining processing conditions

    Science.gov (United States)

    Application of pulsed electric fields (PEF) technology in food pasteurization has been extensively studied. Optimal PEF treatment conditions for maximum microbial inactivation depend on multiple factors including PEF processing conditions, production parameters and product properties. In order for...

  20. Electric field measurements in nanosecond pulse discharges in air over liquid water surface

    Science.gov (United States)

    Simeni Simeni, Marien; Baratte, Edmond; Zhang, Cheng; Frederickson, Kraig; Adamovich, Igor V.

    2018-01-01

    Electric field in nanosecond pulse discharges in ambient air is measured by picosecond four-wave mixing, with absolute calibration by a known electrostatic field. The measurements are done in two geometries, (a) the discharge between two parallel cylinder electrodes placed inside quartz tubes, and (b) the discharge between a razor edge electrode and distilled water surface. In the first case, breakdown field exceeds DC breakdown threshold by approximately a factor of four, 140 ± 10 kV cm-1. In the second case, electric field is measured for both positive and negative pulse polarities, with pulse durations of ˜10 ns and ˜100 ns, respectively. In the short duration, positive polarity pulse, breakdown occurs at 85 kV cm-1, after which the electric field decreases over several ns due to charge separation in the plasma, with no field reversal detected when the applied voltage is reduced. In a long duration, negative polarity pulse, breakdown occurs at a lower electric field, 30 kV cm-1, after which the field decays over several tens of ns and reverses direction when the applied voltage is reduced at the end of the pulse. For both pulse polarities, electric field after the pulse decays on a microsecond time scale, due to residual surface charge neutralization by transport of opposite polarity charges from the plasma. Measurements 1 mm away from the discharge center plane, ˜100 μm from the water surface, show that during the voltage rise, horizontal field component (Ex ) lags in time behind the vertical component (Ey ). After breakdown, Ey is reduced to near zero and reverses direction. Further away from the water surface (≈0.9 mm), Ex is much higher compared to Ey during the entire voltage pulse. The results provide insight into air plasma kinetics and charge transport processes near plasma-liquid interface, over a wide range of time scales.

  1. Polyphenol extraction from fresh tea leaves by pulsed electric field : a study of mechanisms

    NARCIS (Netherlands)

    Zderic, Aleksandra; Zondervan, Edwin

    2016-01-01

    The major interest in pulsed electric field treatment of biological tissues is derived from its non-thermal application: increasing cell permeability. This application has an important implication in extraction of complex organic molecules. In this work, pulsed electric field treatment is

  2. Effects of pulsed electrical field processing on microbial survival, quality change and nutritional characteristics of blueberries

    Science.gov (United States)

    Whole fresh blueberries were treated using a parallel pulsed electric field (PEF) treatment chamber and a sanitizer solution (60 ppm peracetic acid [PAA]) as PEF treatment medium with square wave bipolar pulses at 2 kV/cm electric field strength, 1us pulse width, and 100 pulses per second for 2, 4, ...

  3. Nanosecond electric pulses modulate skeletal muscle calcium dynamics and contraction

    Science.gov (United States)

    Valdez, Chris; Jirjis, Michael B.; Roth, Caleb C.; Barnes, Ronald A.; Ibey, Bennett L.

    2017-02-01

    Irreversible electroporation therapy is utilized to remove cancerous tissues thru the delivery of rapid (250Hz) and high voltage (V) (1,500V/cm) electric pulses across microsecond durations. Clinical research demonstrated that bipolar (BP) high voltage microsecond pulses opposed to monophasic waveforms relieve muscle contraction during electroporation treatment. Our group along with others discovered that nanosecond electric pulses (nsEP) can activate second messenger cascades, induce cytoskeletal rearrangement, and depending on the nsEP duration and frequency, initiate apoptotic pathways. Of high interest across in vivo and in vitro applications, is how nsEP affects muscle physiology, and if nuances exist in comparison to longer duration electroporation applications. To this end, we exposed mature skeletal muscle cells to monopolar (MP) and BP nsEP stimulation across a wide range of electric field amplitudes (1-20 kV/cm). From live confocal microscopy, we simultaneously monitored intracellular calcium dynamics along with nsEP-induced muscle movement on a single cell level. In addition, we also evaluated membrane permeability with Yo-PRO-1 and Propidium Iodide (PI) across various nsEP parameters. The results from our findings suggest that skeletal muscle calcium dynamics, and nsEP-induced contraction exhibit exclusive responses to both MP and BP nsEP exposure. Overall the results suggest in vivo nsEP application may elicit unique physiology and field applications compared to longer pulse duration electroporation.

  4. Effects of acoustic noise on the auditory nerve compound action potentials evoked by electric pulse trains.

    Science.gov (United States)

    Nourski, Kirill V; Abbas, Paul J; Miller, Charles A; Robinson, Barbara K; Jeng, Fuh-Cherng

    2005-04-01

    This study investigated the effects of acoustic noise on the auditory nerve compound action potentials in response to electric pulse trains. Subjects were adult guinea pigs, implanted with a minimally invasive electrode to preserve acoustic sensitivity. Electrically evoked compound action potentials (ECAP) were recorded from the auditory nerve trunk in response to electric pulse trains both during and after the presentation of acoustic white noise. Simultaneously presented acoustic noise produced a decrease in ECAP amplitude. The effect of the acoustic masker on the electric probe was greatest at the onset of the acoustic stimulus and it was followed by a partial recovery of the ECAP amplitude. Following cessation of the acoustic noise, ECAP amplitude recovered over a period of approximately 100-200 ms. The effects of the acoustic noise were more prominent at lower electric pulse rates (interpulse intervals of 3 ms and higher). At higher pulse rates, the ECAP adaptation to the electric pulse train alone was larger and the acoustic noise, when presented, produced little additional effect. The observed effects of noise on ECAP were the greatest at high electric stimulus levels and, for a particular electric stimulus level, at high acoustic noise levels.

  5. Validation of a pulsed electric field process to pasteurize strawberry puree

    Science.gov (United States)

    An inexpensive data acquisition method was developed to validate the exact number and shape of the pulses applied during pulsed electric fields (PEF) processing. The novel validation method was evaluated in conjunction with developing a pasteurization PEF process for strawberry puree. Both buffered...

  6. Influence of pulsed electric field on defectoscopic characteristics of electro- x-ray radiography

    International Nuclear Information System (INIS)

    Gusev, E.A.; Lomonosov, V.V.; Sosnin, F.R.

    1988-01-01

    A new method to increase electric resistance of semiconductor plates in the process of electro-X-ray radiography, which is based on influence of a pulsed electric field on the plate semiconductor layer is suggested. The effect of a pulsed field with the intensity E=10 6 V/cm, frequency of 50 Hz and front length of 1 ns has increased electric resistance of the semiconductor layer and improved flaw detection in the process of electroradiography

  7. Metal release in a stainless steel Pulsed Electric Field (PEF) system Part I. Effect of different pulse shapes; theory and experimental method

    NARCIS (Netherlands)

    Roodenburg, B.; Morren, J.; Berg, H.E.; Haan, S.W.H.de

    2005-01-01

    Liquid pumpable food is mostly pasteurised by heat treatment. In the last decennia there is an increasing interest in so-called Pulsed Electric Field (PEF) treatment. During this treatment food is pumped between two metal electrodes and exposed to short high electric field pulses, typical 2-4 kV

  8. [Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].

    Science.gov (United States)

    Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui

    2015-02-01

    This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields.

  9. Interactions of pulsed electric fields with living organisms

    International Nuclear Information System (INIS)

    Vezinet, R.; Joly, J.C.; Meyer, O.; Gilbert, C.; Fourrier-Lamer, A.; Silve, A.; Mir, L.M.; Rols, M.P.; Chopinet, L.; Teissie, J.; Roux, D.

    2013-01-01

    Biologists are more and more involved in the study of the interactions of electromagnetic fields with human body for therapeutics and health applications. In this article we present 4 studies. The first study concerns the interaction between the electromagnetic field and the biochemical reaction of the hydrolysis of the acetylcholine, a primary neurotransmitter of the human body. It has been shown that a progressive slowing-down of the reaction appears when the pulse repetition frequency increases. The second study is dedicated to the effects of electromagnetic pulses at the cell membrane level. We know that electromagnetic pulses can alter the permeability of the cell membrane. We have used rectangular electromagnetic pulses to allow chemicals to enter the cell. In the case of cancer treatment the efficiency of a chemicals like bleomycin can be largely increased. The third study is dedicated to the use of 2 electromagnetic pulses of different duration to optimize gene transfer into the cell nucleus. The last study focuses on the analysis of plant reactions when facing electromagnetic pulses. An experiment performed on a sunflower shows that despite high electric fields no electro-physiological response of the plant has been measured when the sunflower was submitted to electromagnetic pulses

  10. Pulsed electric fields (PEF applications on wine production: A review

    Directory of Open Access Journals (Sweden)

    Ozturk Burcu

    2017-01-01

    Full Text Available Novel techniques have been searched in the last decades as a result of increasing demand for high quality food products. Non-thermal processing technologies, such as pulsed electric fields (PEF have been improved to achieve inhibition of deleterious effects on quality-related compounds. The working principle of PEF is based on the application of pulses of high voltage (typically above 20 kV/cm up to 70 kV/cm to liquid foods placed between two electrodes. Pulsed electric fields technique has also been studied in winemaking process. Certain positive influences of PEF on vinification have been reported as elimination of pathogenic microorganisms, reduction of maceration time, increase in phenolic compounds extraction , acceleration of wine aging and inactivation of oxidative enzymes. The aim of this review is to summarize the potential applications of PEF in winemaking and to express its effects on quality of wine.

  11. Light electric transformer to transform the size of particles contained in a gas flow into electrical pulses

    Energy Technology Data Exchange (ETDEWEB)

    Berber, V.A.; Zolotenko, V.A.; Naguev, E.N.; Pavlov, V.V.; Sokolov, V.E.; Syromyatnikov, A.N.; Eremenko, A.I.

    1979-08-09

    The equipment measures the air dust. The aerosol flow is hence irradiated with a convergent light bundle. Using mirrors and mechanically operable screens, it is possible to divert part of the light onto a photo receiver to produce electric pulses of the dispersly composed aerosols and another part onto a former for standardized light pulses. The accuracy of the measurement is increased by the stability of the standardized light pulses.

  12. Pulsed electric field processing for fruit and vegetables

    Science.gov (United States)

    This month’s column reviews the theory and current applications of pulsed electric field (PEF) processing for fruits and vegetables to improve their safety and quality. This month’s column coauthor, Stefan Toepfl, is advanced research manager at the German Institute of Food Technologies and professo...

  13. Optimized extraction of polysaccharides from corn silk by pulsed electric field and response surface quadratic design.

    Science.gov (United States)

    Zhao, Wenzhu; Yu, Zhipeng; Liu, Jingbo; Yu, Yiding; Yin, Yongguang; Lin, Songyi; Chen, Feng

    2011-09-01

    Corn silk is a traditional Chinese herbal medicine, which has been widely used for treatment of some diseases. In this study the effects of pulsed electric field on the extraction of polysaccharides from corn silk were investigated. Polysaccharides in corn silk were extracted by pulsed electric field and optimized by response surface methodology (RSM), based on a Box-Behnken design (BBD). Three independent variables, including electric field intensity (kV cm(-1) ), ratio of liquid to raw material and pulse duration (µs), were investigated. The experimental data were fitted to a second-order polynomial equation and also profiled into the corresponding 3-D contour plots. Optimal extraction conditions were as follows: electric field intensity 30 kV cm(-1) , ratio of liquid to raw material 50, and pulse duration 6 µs. Under these condition, the experimental yield of extracted polysaccharides was 7.31% ± 0.15%, matching well with the predicted value. The results showed that a pulsed electric field could be applied to extract value-added products from foods and/or agricultural matrix. Copyright © 2011 Society of Chemical Industry.

  14. Measurement of electroosmotic and electrophoretic velocities using pulsed and sinusoidal electric fields.

    Science.gov (United States)

    Sadek, Samir H; Pimenta, Francisco; Pinho, Fernando T; Alves, Manuel A

    2017-04-01

    In this work, we explore two methods to simultaneously measure the electroosmotic mobility in microchannels and the electrophoretic mobility of micron-sized tracer particles. The first method is based on imposing a pulsed electric field, which allows to isolate electrophoresis and electroosmosis at the startup and shutdown of the pulse, respectively. In the second method, a sinusoidal electric field is generated and the mobilities are found by minimizing the difference between the measured velocity of tracer particles and the velocity computed from an analytical expression. Both methods produced consistent results using polydimethylsiloxane microchannels and polystyrene micro-particles, provided that the temporal resolution of the particle tracking velocimetry technique used to compute the velocity of the tracer particles is fast enough to resolve the diffusion time-scale based on the characteristic channel length scale. Additionally, we present results with the pulse method for viscoelastic fluids, which show a more complex transient response with significant velocity overshoots and undershoots after the start and the end of the applied electric pulse, respectively. © 2016 The Authors. Electrophoresis published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. About the realization of laser acceleration schemes based on plasmoids in R.F. wells

    International Nuclear Information System (INIS)

    Sessler, A.M.; Wurtele, J.S.; Dzergach, A.I.; Kabanov, V.S.

    1998-06-01

    The laser acceleration of plasmoids is investigated theoretically. Preliminary studies suggest that this configuration, which is based on the forced oscillations of finite pieces of plasma contained in moving or vibrating r.f. wells, has very much simplified plasma physics compared to that of other plasma-based ion acceleration schemes. It is necessary to consider the case when the applied electric field, E, of frequency ω, is large, E ≤ e/4π var-epsilon o rλ, where r is the Classical electron radius and when the plasma density, n, is high n 2 . Realization of this proposal requires the development, among other things, of biresonant accelerating systems including oversized single-mode tue-like resonators and the connection of this resonator to a terawatt FELs. If these problems, which will be delineated, are overcome--and progress in optics gives one reason to believe they can be--then gradients of ∼ 10 GeV/m can be attained. Preliminary design of a linac, based upon this proposal and of a proof-of-principle experiment are presented

  16. Effect of pulsed electric field treatment on hot-boned muscles of different potential tenderness.

    Science.gov (United States)

    Suwandy, Via; Carne, Alan; van de Ven, Remy; Bekhit, Alaa El-Din A; Hopkins, David L

    2015-07-01

    In this study, the effect of pulsed electric field (PEF) treatment and ageing on the quality of beef M. longissimus lumborum (LL) and M. semimembranosus (SM) muscles was evaluated, including the tenderness, water loss and post-mortem proteolysis. Muscles were obtained from 12 steers (6 steers for each muscle), removed from the carcasses 4 hour postmortem and were treated with pulsed electric field within 2h. Six different pulsed electric field intensities (voltages of 5 and 10 kV × frequencies of 20, 50 and 90 Hz) plus a control were applied to each muscle to determine the optimum treatment conditions. Beef LL was found to get tougher with increasing treatment frequency whereas beef SM muscle was found to have up to 21.6% reduction in the shear force with pulsed electric field treatment. Post-mortem proteolysis showed an increase in both troponin and desmin degradation in beef LL treated with low intensity PEF treatment (20 Hz) compared to non-treated control samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Variable Weight Fractional Collisions for Multiple Species Mixtures

    Science.gov (United States)

    2017-08-28

    Rarefied Kinetic Flow 2 Preionization Chemistry - CR-Excitation/Ionization 3 Driver Pulse - Ionization+ Electromagnetics 4 Field Reversal - Magnetic...Ionization 3 Driver Pulse - Ionization+ Electromagnetics 4 Field Reversal - Magnetic Reconnection 5 Plasmoid Ejection -~j× ~B, Neutral Entrainment Continuous...Preionization Chemistry - CR-Excitation/Ionization 3 Driver Pulse - Ionization+ Electromagnetics 4 Field Reversal - Magnetic Reconnection 5 Plasmoid Ejection

  18. Nanosecond electric pulses trigger actin responses in plant cells

    International Nuclear Information System (INIS)

    Berghoefer, Thomas; Eing, Christian; Flickinger, Bianca; Hohenberger, Petra; Wegner, Lars H.; Frey, Wolfgang; Nick, Peter

    2009-01-01

    We have analyzed the cellular effects of nanosecond pulsed electrical fields on plant cells using fluorescently tagged marker lines in the tobacco cell line BY-2 and confocal laser scanning microscopy. We observe a disintegration of the cytoskeleton in the cell cortex, followed by contraction of actin filaments towards the nucleus, and disintegration of the nuclear envelope. These responses are accompanied by irreversible permeabilization of the plasma membrane manifest as uptake of Trypan Blue. By pretreatment with the actin-stabilizing drug phalloidin, the detachment of transvacuolar actin from the cell periphery can be suppressed, and this treatment can also suppress the irreversible perforation of the plasma membrane. We discuss these findings in terms of a model, where nanosecond pulsed electric fields trigger actin responses that are key events in the plant-specific form of programmed cell death.

  19. Electric field measurements in a dielectric barrier nanosecond pulse discharge with sub-nanosecond time resolution

    International Nuclear Information System (INIS)

    Goldberg, Benjamin M; Shkurenkov, Ivan; Adamovich, Igor V; Lempert, Walter R; O’Byrne, Sean

    2015-01-01

    The paper presents the results of time-resolved electric field measurements in a nanosecond discharge between two plane electrodes covered by dielectric plates, using picosecond four-wave mixing diagnostics. For absolute calibration, the IR signal was measured in hydrogen at a pressure of 440 Torr, for electrostatic electric field ranging from 0 to 8 kV cm −1 . The calibration curve (i.e. the square root of IR signal intensity versus electric field) was shown to be linear. By measuring the intensities of the pump, Stokes, and IR signal beam for each laser shot during the time sweep across the high-voltage pulse, temporal evolution of the electric field in the nanosecond pulse discharge was determined with sub-nanosecond time resolution. The results are compared to kinetic modeling predictions, showing good agreement, including non-zero electric field offset before the main high voltage pulse, breakdown moment, and reduction of electric field in the plasma after breakdown. The difference between the experimental results and model predictions is likely due to non-1D structure of the discharge. Comparison with the kinetic modeling predictions shows that electric field in the nanosecond pulse discharge is controlled primarily by electron impact excitation and charge accumulation on the dielectric surfaces. (paper)

  20. Inactivation of Listeria innocua in liquid whole egg by pulsed electric fields and nisin.

    Science.gov (United States)

    Calderón-Miranda, M L; Barbosa-Cánovas, G V; Swanson, B G

    1999-10-01

    Consumer demand for fresh-like products with little or no degradation of nutritional and organoleptic properties has led to the study of new technologies in food preservation. Pulsed electric fields (PEF) is a nonthermal preservation method used to inactivate microorganisms mainly in liquid foods. Microorganisms in the presence of PEF suffer cell membrane damage. Nisin is a natural antimicrobial known to disrupt cell membrane integrity. Thus the combination of PEF and nisin represents a hurdle for the survival of Listeria innocua in liquid whole egg (LWE). L. innocua suspended in LWE was subjected to two different treatments: PEF and PEF followed by exposure to nisin. The selected frequency and pulse duration for PEF was 3.5 Hz and 2 micros, respectively. Electric field intensities of 30, 40 and 50 kV/cm were used. The number of pulses applied to the LWE was 10.6, 21.3 and 32. The highest extent of microbial inactivation with PEF was 3.5 log cycles (U) for an electric field intensity of 50 kV/cm and 32 pulses. Treatment of LWE by PEF was conducted at low temperatures, 36 degrees C being the highest. Exposure of L. innocua to nisin following the PEF treatment exhibited an additive effect on the inactivation of the microorganism. Moreover, a synergistic effect was observed as the electric field intensity, number of pulses and nisin concentration increased. L. innocua exposed to 10 IU nisin/ml after PEF exhibited a decrease in population of 4.1 U for an electric field intensity of 50 kV/cm and 32 pulses. Exposure of L. innocua to 100 IU nisin/ml following PEF resulted in 5.5 U for an electric field intensity of 50 kV/cm and 32 pulses. The model developed for the inactivation of L. innocua by PEF and followed by exposure to nisin proved to be accurate (p = 0.05) when used to model the inactivation of the microorganism by PEF in LWE with 1.2 or 37 IU nisin/ml. The presence of 37 IU nisin/ml in LWE during the PEF treatment for an electric field intensity of 50 kV/cm and

  1. Is pulsed electric field still effective for RNA separation in capillary electrophoresis?

    Science.gov (United States)

    Li, Zhenqing; Dou, Xiaoming; Ni, Yi; Chen, Qinmiao; Cheng, Shuyi; Yamaguchi, Yoshinori

    2012-03-16

    Pulsed field capillary electrophoresis (PFCE) is a predominant technique to cope with difficulties in resolving large DNA strands, yet it is still unclear whether pulsed electric field is effective for the separation of higher mass RNA. In this paper we focused on the role of pulsed electric field in large RNA fragments analysis by comparing RNA separation performance in PFCE with that in constant field CE. Separation performance in terms of migration mobility, plate numbers, resolution, and selectivity has been tested for the analysis of RNA from 0.1 to 10.0 kilo nucleotide (knt) under different electrophoretic conditions. Denaturation, important to obtain uniform and identifiable peaks, was accomplished by heating the sample in 4.0M urea prior to analysis and the presence of 4.0M urea in the electrophoresis buffer. Results demonstrate that unlike DNA in PFCE, the pulsed electric field mainly affects the separation performance of RNA between 0.4 and 2.0 knt. The migration mobility of long RNA fragments is not a strong function of modulation depth and pulsed frequency. Moreover, the logarithm of RNA mobility is almost inversely proportional to the logarithm of molecule size up to 6.0 knt with correlation coefficient higher than 0.99 in all the polymer concentrations measured here. Resonance frequency of RNA in PFCE was also observed. While these initial experiments show no distinct advantages of using PFCE for RNA separation, they do take further step toward characterizing the migration behavior of RNA under pulsed field conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Two-temperature model of the energy balance for the plasma of a high-frequency induction discharge near the plasmoid axis

    International Nuclear Information System (INIS)

    Gerasimov, A.V.; Kirpichnikov, A.P.

    2000-01-01

    On the basis of analysis of the equation system for energy balance within near-the-axis range of HF-plasmatron inductor in terms of a two-temperature model one derived the analytical dependences to calculate temperature fields within that range in a two-dimensional definition of the problem. Paper presents the results of calculations carried out for various cross sections of HF-discharge plasmoid. The calculations were carried out for the air plasma under the atmospheric pressure. The derived formulae describe rather accurately distribution of temperature fields near the plasmoid axis and may be applied to tackle rather wide scope of problems dealing with heat transfer [ru

  3. Effect of Shock Waves Generated by Pulsed Electric Discharges in Water on Yeast Cells and Virus Particles

    Science.gov (United States)

    Girdyuk, A. E.; Gorshkov, A. N.; Egorov, V. V.; Kolikov, V. A.; Snetov, V. N.; Shneerson, G. A.

    2018-02-01

    The aim of this study is to determine the optimal parameters of the electric pulses and shock waves generated by them for the soft destruction of the virus and yeast envelopes with no changes in the structure of antigenic surface albumin and in the cell morphology in order to use them to produce antivirus vaccines and in biotechnology. The pulse electric discharges in water have been studied for different values of amplitude, pulse duration and the rate of the rise in the current. A mathematical model has been developed to estimate the optimal parameters of pulsed electric charges and shock waves for the complete destruction of the yeast cell envelopes and virus particles at a minimum of pulses.

  4. High-efficiency gene transfer into skeletal muscle mediated by electric pulses

    DEFF Research Database (Denmark)

    Mir, L M; Bureau, M F; Gehl, J

    1999-01-01

    Gene delivery to skeletal muscle is a promising strategy for the treatment of muscle disorders and for the systemic secretion of therapeutic proteins. However, present DNA delivery technologies have to be improved with regard to both the level of expression and interindividual variability. We...... report very efficient plasmid DNA transfer in muscle fibers by using square-wave electric pulses of low field strength (less than 300 V/cm) and of long duration (more than 1 ms). Contrary to the electropermeabilization-induced uptake of small molecules into muscle fibers, plasmid DNA has to be present...... in the tissue during the electric pulses, suggesting a direct effect of the electric field on DNA during electrotransfer. This i.m. electrotransfer method increases reporter and therapeutic gene expression by several orders of magnitude in various muscles in mouse, rat, rabbit, and monkey. Moreover, i...

  5. Sludge pre-treatment with pulsed electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Kopplow, O.; Barjenbruch, M.; Heinz, V.

    2003-07-01

    The anaerobic stabilization process depends - among others - on the bio-availability of organic carbon. Through pre-treatment of the sludge which leads to the destruction of micro-organisms and to the setting-free of cell content substances (disintegration), the carbon can be microbially converted better and faster. Moreover, effects on the digestion are likely. However, only little experience is available in the sludge treatment with pulsed electric fields. Laboratory-scale digestion tests have been run to analyse the influence of pulsed electric fields on the properties of sludge, anaerobic degradation, sludge water reload and foaming of digesters. The results will be compared with those of other disintegration methods (high pressure homogenise, thermal treatment). The effect of pre-treatment on the sludge is shown by the COD release. Degrees of disintegration have been achieved up to 20%. The specific energy input was high. The energy consumption has been decreased by initial improvements (pre-heating to 55{sup o}C). The filament bacteria were partially destroyed. The foam reduction in the digesters was marginal. The anaerobic degradation performance has been improved in every case. The degradation rate of organic matter increased about 9%. Due to the increase of degradation, there is a higher reload of the sludge-water with COD and nitrogen compounds. (author)

  6. The Study for Shortening the Process Time at Soy Food Production by using the Pulsed Electric Field

    Science.gov (United States)

    Saito, Tsukasa; Jinushi, Makoto; Minamitani, Yasushi

    We investigated method to osmose water and seasoner to dried soybeans fast by pulsed electric field, in order to make soybeans a processed food fast. By applying the pulsed electric field to the dried soybeans in water, osmosis time of water to the soybean became approximately half. Then the emission of the discharge was observed on dried soybean. The color of coffee permeated more into the soybean treated than no-treated by the pulsed electric field.

  7. Pulsed electric field (PEF)research at USDA, ARS, ERRC

    Science.gov (United States)

    This article summarizes the effects of pulsed electric fields on the microbiological safety and quality aspects of various liquid food matrices, obtained at USDA, ARS, Eastern Regional Research Center under CRIS Project No. 1935-41420-013-00D, Processing Intervention Technologies for Enhancing the S...

  8. Evidence that pulsed electric field treatment enhances the cell wall porosity of yeast cells.

    Science.gov (United States)

    Ganeva, Valentina; Galutzov, Bojidar; Teissie, Justin

    2014-02-01

    The application of rectangular electric pulses, with 0.1-2 ms duration and field intensity of 2.5-4.5 kV/cm, to yeast suspension mediates liberation of cytoplasmic proteins without cell lysis. The aim of this study was to evaluate the effect of pulsed electric field with similar parameters on cell wall porosity of different yeast species. We found that electrically treated cells become more susceptible to lyticase digestion. In dependence on the strain and the electrical conditions, cell lysis was obtained at 2-8 times lower enzyme concentration in comparison with control untreated cells. The increase of the maximal lysis rate was between two and nine times. Furthermore, when applied at low concentration (1 U/ml), the lyticase enhanced the rate of protein liberation from electropermeabilized cells without provoking cell lysis. Significant differences in the cell surface of control and electrically treated cells were revealed by scanning electron microscopy. Data presented in this study allow us to conclude that electric field pulses provoke not only plasma membrane permeabilization, but also changes in the cell wall structure, leading to increased wall porosity.

  9. Pulsed chemical oxygen - iodine laser initiated by a transverse electric discharge

    International Nuclear Information System (INIS)

    Vagin, Nikolai P; Yuryshev, Nikolai N

    2001-01-01

    A pulsed chemical oxygen - iodine laser with a volume production of atomic iodine in a pulsed transverse electric discharge is studied. An increase in the partial oxygen pressure was shown to increase the pulse energy with retention of the pulse duration. At the same time, an increase in the iodide pressure and the discharge energy shortens the pulse duration. Pulses with a duration of 6.5 μs were obtained, which corresponds to a concentration of iodine atoms of 1.8 x 10 15 cm -3 . This concentration is close to the maximum concentration attained in studies of both cw and pulsed oxygen-iodine lasers. A specific energy output of 0.9 J litre -1 and a specific power of 75 kW litre -1 were obtained. The ways of increasing these parameters were indicated. It was found that SF 6 is an efficient buffer gas favouring improvements in the energy pulse parameters. (lasers)

  10. Pulsed Electric Field treatment of packaged food

    OpenAIRE

    Roodenburg, B.

    2011-01-01

    Food manufacturers are looking for new preservation techniques that don’t influence the fresh-like characteristics of products. Non-thermal pasteurisation of food with Pulsed Electric Fields (often referred to as PEF) is an emerging technology, where the change of the food is less than with thermal pasteurisation. With this method, pasteurisation is realised by electroporation of bacterial membranes, which prolong the shelf-life of the product. Existing PEF treatment is based on the applicati...

  11. Effects on functional groups and zeta potential of SAP1pulsed electric field technology.

    Science.gov (United States)

    Liang, Rong; Li, Xuenan; Lin, Songyi; Wang, Jia

    2017-01-01

    SAP 1 pulsed electric field (PEF) technology. The effects of electric field intensity and pulse frequency on SAP 1 electric field intensity 15 kV cm -1 , pulse frequency 1600 Hz and flow velocity 2.93 mL min -1 ). Furthermore, the PEF-treated SAP 1 < MW < 3kDa under optimal conditions lacked the characteristic absorbance of N-H, C = C and the amide band and the zeta potential was reduced to -18.0 mV. Overall, the results of the present study suggest that the improvement of antioxidant activity of SAP 1 < MW < 3kDa is a result of the contribution of the functional groups and the change in zeta potential when treated with PEF. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design

    Energy Technology Data Exchange (ETDEWEB)

    Kia, Kaveh Kazemi [Department of Electrical and Computer Engineering, Islamic Azad University of Bonab, Bonab (Iran, Islamic Republic of); Bonabi, Fahimeh [Department of Engineering, Islamic Azad University of Bonab, Bonab (Iran, Islamic Republic of)

    2012-12-15

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 {mu}s. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  13. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: circuitry and mechanical design.

    Science.gov (United States)

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    2012-12-01

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  14. [Rapid measurement of trace mercury in aqueous solutions with optical-electrical dual pulse LIBS technique].

    Science.gov (United States)

    Zhang, Qian; Xiong, Wei; Chen, Yu-Qi; Li, Run-Hua

    2011-02-01

    A wood slice was used as absorber to transfer liquid sample to solid sample in order to solve the problems existing in directly analyzing aqueous solutions with laser-induced breakdown spectroscopy (LIBS). An optical-electrical dual pulse LIBS (OEDP-LIBS) technique was first used to enhance atomic emission of mercury in laser-induced plasma. The calibration curves of mercury were obtained by typical single pulse LIBS and OEDP-LIBS techniques. The limit of detection (LOD) of mercury in these two techniques reaches 2.4 and 0.3 mg x L(-1), respectively. Under current experimental conditions, the time-integrated a tomic emission of mercury at 253.65 nm was enhanced 50 times and the LOD of mercury was improved by one order, if comparing OEDP-LIBS to single pulse LIBS. The required time for a whole analysis process is less than 5 minutes. As the atomic emission of mercury decays slowly while increasing the delay time between electrical pulse and laser pulse, increasing the electrical pulse width can further enhance the time integrated intensity of mercury emission and improve the detection sensitivity of mercury by OEDP-LIBS technique.

  15. Exploring the effects of pulsed electric field processing parameters on polyacetylene extraction from carrot slices.

    Science.gov (United States)

    Aguiló-Aguayo, Ingrid; Abreu, Corina; Hossain, Mohammad B; Altisent, Rosa; Brunton, Nigel; Viñas, Inmaculada; Rai, Dilip K

    2015-03-02

    The effects of various pulsed electric field (PEF) parameters on the extraction of polyacetylenes from carrot slices were investigated. Optimised conditions with regard to electric field strength (1-4 kV/cm), number of pulses (100-1500), pulse frequency (10-200 Hz) and pulse width (10-30 μs) were identified using response surface methodology (RSM) to maximise the extraction of falcarinol (FaOH), falcarindiol (FaDOH) and falcarindiol-3-acetate (FaDOAc) from carrot slices. Data obtained from RSM and experiments fitted significantly (p pulses of 10 μs at 10 Hz. The predicted values from the developed quadratic polynomial equation were in close agreement with the actual experimental values with low average mean deviations (E%) ranging from 0.68% to 3.58%.

  16. The effect of high voltage pulsed electric field on water molecular

    Science.gov (United States)

    Fan, Xuejie; Bai, Yaxiang; Ren, Ziying

    2017-10-01

    In order to study the mechanism of high voltage pulsed electric field pre-treatment on the food drying technology. In this paper, water was treated with high pulse electric field (HPEF) in different frequency, and different voltage, then, the viscosity coefficient and the surface tension coefficient of the water were measured. The results showed that indicated that the viscosity coefficient and the surface tension coefficient of the treated water can be decreased, and while HPEF pre-treatment was applied for 22.5kV at a frequency of 50Hz and 70 Hz, the surface tension and the viscosity coefficient of the pre-treatment treatment were reduced 13.1% and 7.5%, respectively.

  17. Response of larval sea lampreys (Petromyzon marinus) to pulsed DC electrical stimuli in laboratory experiments

    Science.gov (United States)

    Bowen, Anjanette K.; Weisser, John W.; Bergstedt, Roger A.; Famoye, Felix

    2003-01-01

    Four electrical factors that are used in pulsed DC electrofishing for larval sea lampreys (Petromyzon marinus) were evaluated in two laboratory studies to determine the optimal values to induce larval emergence over a range of water temperatures and conductivities. Burrowed larvae were exposed to combinations of pulsed DC electrical factors including five pulse frequencies, three pulse patterns, and two levels of duty cycle over a range of seven voltage gradients in two separate studies conducted at water temperatures of 10, 15, and 20°C and water conductivities of 25, 200, and 900 μS/cm. A four-way analysis of variance was used to determine significant (α = 0.05) influences of each electrical factor on larval emergence. Multiple comparison tests with Bonferroni adjustments were used to determine which values of each factor resulted in significantly higher emergence at each temperature and conductivity. Voltage gradient and pulse frequency significantly affected emergence according to the ANOVA model at each temperature and conductivity tested. Duty cycle and pulse pattern generally did not significantly influence the model. Findings suggest that a setting of 2.0 V/cm, 3 pulses/sec, 10% duty, and 2:2 pulse pattern seems the most promising in waters of medium conductivity and across a variety of temperatures. This information provides a basis for understanding larval response to pulsed DC electrofishing gear factors and identifies electrofisher settings that show promise to increase the efficiency of the gear during assessments for burrowed sea lamprey larvae.

  18. Tumour Cell Membrane Poration and Ablation by Pulsed Low-Intensity Electric Field with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    2015-03-01

    Full Text Available Electroporation is a physical method to increase permeabilization of cell membrane by electrical pulses. Carbon nanotubes (CNTs can potentially act like “lighting rods” or exhibit direct physical force on cell membrane under alternating electromagnetic fields thus reducing the required field strength. A cell poration/ablation system was built for exploring these effects of CNTs in which two-electrode sets were constructed and two perpendicular electric fields could be generated sequentially. By applying this system to breast cancer cells in the presence of multi-walled CNTs (MWCNTs, the effective pulse amplitude was reduced to 50 V/cm (main field/15 V/cm (alignment field at the optimized pulse frequency (5 Hz of 500 pulses. Under these conditions instant cell membrane permeabilization was increased to 38.62%, 2.77-fold higher than that without CNTs. Moreover, we also observed irreversible electroporation occurred under these conditions, such that only 39.23% of the cells were viable 24 h post treatment, in contrast to 87.01% cell viability without presence of CNTs. These results indicate that CNT-enhanced electroporation has the potential for tumour cell ablation by significantly lower electric fields than that in conventional electroporation therapy thus avoiding potential risks associated with the use of high intensity electric pulses.

  19. Numerical simulation of nanosecond-pulse electrical discharges

    Science.gov (United States)

    Poggie, J.; Adamovich, I.; Bisek, N.; Nishihara, M.

    2013-02-01

    Recent experiments with a nanosecond-pulse, dielectric barrier discharge at the stagnation point of a Mach 5 cylinder flow have demonstrated the formation of weak shock waves near the electrode edge, which propagate upstream and perturb the bow shock. This is a promising means of flow control, and understanding the detailed physics of the conversion of electrical energy into gas motion will aid in the design of efficient actuators based on the concept. In this work, a simplified configuration with planar symmetry was chosen as a vehicle to develop a physics-based model of nanosecond-pulse discharges, including realistic air kinetics, electron energy transport, and compressible bulk gas flow. A reduced plasma kinetic model (23 species and 50 processes) was developed to capture the dominant species and reactions for energy storage and thermalization in the discharge. The kinetic model included electronically and vibrationally excited species, and several species of ions and ground state neutrals. The governing equations included the Poisson equation for the electric potential, diffusion equations for each neutral species, conservation equations for each charged species, and mass-averaged conservation equations for the bulk gas flow. The results of calculations with this model highlighted the path of energy transfer in the discharge. At breakdown, the input electrical energy was transformed over a time scale on the order of 1 ns into chemical energy of ions, dissociation products, and vibrationally and electronically excited particles. About 30% of this energy was subsequently thermalized over a time scale of 10 µs. Since the thermalization time scale was faster than the acoustic time scale, the heat release led to the formation of weak shock waves originating near the sheath edge, consistent with experimental observations. The computed translational temperature rise (40 K) and nitrogen vibrational temperature rise (370 K) were of the same order of magnitude as

  20. A Pulsed Electric Field (PEF) bench static system to study bacteria inactivation

    International Nuclear Information System (INIS)

    Cortese, Pietro; Dellacasa, Giuseppe; Gemme, Roberto; Bonetta, Sara; Bonetta, Silvia; Carraro, Elisabetta; Motta, Francesca; Paganoni, Marco; Pizzichemi, Marco

    2011-01-01

    Pulsed Electric Fields (PEF) technology is a promising non-thermal processing method for inactivation of microorganisms. A small PEF bench system able to treat a 0.4 ml static liquid volume has been built and tested at the laboratories of the Universita del Piemonte Orientale in Alessandria, Italy. The technique used to produce the required fields consists of charging high voltage cables of various lengths and subsequently discharge them on a cylindrical cell. The pulse intensity can be adjusted to reach a maximum electric field in the cell of about 35 kV/cm and the pulse frequency can reach 10 Hz. We describe the PEF system in some detail and, as a benchmark of its performances, we report preliminary results obtained on Escherichia coli (ATCC 25922) at 10 9 Cfu/ml concentration suspended in a McIlvaine buffer (pH 7.2).

  1. Pulsed high voltage electric discharge disinfection of microbially contaminated liquids.

    Science.gov (United States)

    Anpilov, A M; Barkhudarov, E M; Christofi, N; Kop'ev, V A; Kossyi, I A; Taktakishvili, M I; Zadiraka, Y

    2002-01-01

    To examine the use of a novel multielectrode slipping surface discharge (SSD) treatment system, capable of pulsed plasma discharge directly in water, in killing micro-organisms. Potable water containing Escherichia coli and somatic coliphages was treated with pulsed electric discharges generated by the SSD. The SSD system was highly efficient in the microbial disinfection of water with a low energy utilization (eta approximately 10-4 kW h l-1). The SSD treatment was effective in the destruction of E. coli and its coliphages through the generation of u.v. radiation, ozone and free radicals. The non-thermal treatment method can be used for the eradication of micro-organisms in a range of contaminated liquids, including milk, negating the use of pasteurization. The method utilizes multipoint electric discharges capable of treating large volumes of liquid under static and flowing regimes.

  2. Toroidal plasmoid generation via extreme hydrodynamic shear.

    Science.gov (United States)

    Gharib, Morteza; Mendoza, Sean; Rosenfeld, Moshe; Beizai, Masoud; Alves Pereira, Francisco J

    2017-11-28

    Saint Elmo's fire and lightning are two known forms of naturally occurring atmospheric pressure plasmas. As a technology, nonthermal plasmas are induced from artificially created electromagnetic or electrostatic fields. Here we report the observation of arguably a unique case of a naturally formed such plasma, created in air at room temperature without external electromagnetic action, by impinging a high-speed microjet of deionized water on a dielectric solid surface. We demonstrate that tribo-electrification from extreme and focused hydrodynamic shear is the driving mechanism for the generation of energetic free electrons. Air ionization results in a plasma that, unlike the general family, is topologically well defined in the form of a coherent toroidal structure. Possibly confined through its self-induced electromagnetic field, this plasmoid is shown to emit strong luminescence and discrete-frequency radio waves. Our experimental study suggests the discovery of a unique platform to support experimentation in low-temperature plasma science. Copyright © 2017 the Author(s). Published by PNAS.

  3. Quantifying pulsed electric field-induced membrane nanoporation in single cells.

    Science.gov (United States)

    Moen, Erick K; Ibey, Bennett L; Beier, Hope T; Armani, Andrea M

    2016-11-01

    Plasma membrane disruption can trigger a host of cellular activities. One commonly observed type of disruption is pore formation. Molecular dynamic (MD) simulations of simplified lipid membrane structures predict that controllably disrupting the membrane via nano-scale poration may be possible with nanosecond pulsed electric fields (nsPEF). Until recently, researchers hoping to verify this hypothesis experimentally have been limited to measuring the relatively slow process of fluorescent markers diffusing across the membrane, which is indirect evidence of nanoporation that could be channel-mediated. Leveraging recent advances in nonlinear optical microscopy, we elucidate the role of pulse parameters in nsPEF-induced membrane permeabilization in live cells. Unlike previous techniques, it is able to directly observe loss of membrane order at the onset of the pulse. We also develop a complementary theoretical model that relates increasing membrane permeabilization to membrane pore density. Due to the significantly improved spatial and temporal resolution possible with our imaging method, we are able to directly compare our experimental and theoretical results. Their agreement provides substantial evidence that nanoporation does occur and that its development is dictated by the electric field distribution. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Effect of electrical pulse treatment on the thermal fatigue resistance of bionic compacted graphite cast iron processed in water

    International Nuclear Information System (INIS)

    Liu, Yan; Zhou, Hong; Su, Hang; Yang, Chunyan; Cheng, Jingyan; Zhang, Peng; Ren, Luquan

    2012-01-01

    Highlights: ► Electrical pulse treatment can reduce cracks on bionic units before thermal fatigue tests. ► Electrical pulse treatment can reduce crack sources during thermal fatigue tests. ► Thermal fatigue resistance of bionic units processed in water is enhanced. ► Thermal fatigue resistance of bionic CGI processed in water is improved. -- Abstract: In order to further enhance the thermal fatigue resistance of bionic compacted graphite cast iron (CGI) which is processed by laser in water, the electrical pulse treatment is applied to improve the thermal fatigue resistance of bionic units. The results show that the electrical pulse treatment causes the supersaturated carbon atoms located in the lattice of austenite to react with the iron atoms to form the Fe 3 C. The microstructures of the bionic units processed in water are refined by the electrical pulse treatment. The cracks on the bionic units are reduced by the electrical pulse treatment before the thermal fatigue tests; and during the tests, the thermal fatigue resistance of bionic units is therefore enhanced by reducing the crack sources. By this way, the thermal fatigue resistance of bionic CGI processed in water is improved.

  5. Effect of high-hydrostatic pressure and moderate-intensity pulsed electric field on plum.

    Science.gov (United States)

    García-Parra, J; González-Cebrino, F; Delgado-Adámez, J; Cava, R; Martín-Belloso, O; Élez-Martínez, P; Ramírez, R

    2018-03-01

    Moderate intensity pulse electric fields were applied in plum with the aim to increase bioactive compounds content of the fruit, while high-hydrostatic pressure was applied to preserve the purées. High-hydrostatic pressure treatment was compared with an equivalent thermal treatment. The addition of ascorbic acid during purée manufacture was also evaluated. The main objective of this study was to assess the effects on microorganisms, polyphenoloxidase, color and bioactive compounds of high-hydrostatic pressure, or thermal-processed plum purées made of moderate intensity pulse electric field-treated or no-moderate intensity pulse electric field-treated plums, after processing during storage. The application of moderate intensity pulse electric field to plums slightly increased the levels of anthocyanins and the antioxidant activity of purées. The application of Hydrostatic-high pressure (HHP) increased the levels of bioactive compounds in purées, while the thermal treatment preserved better the color during storage. The addition of ascorbic acid during the manufacture of plum purée was an important factor for the final quality of purées. The color and the bioactive compounds content were better preserved in purées with ascorbic acid. The no inactivation of polyphenoloxidase enzyme with treatments applied in this study affected the stability purées. Probably more intense treatments conditions (high-hydrostatic pressure and thermal treatment) would be necessary to reach better quality and shelf life during storage.

  6. Quality stability and sensory attributes of apple juice processed by thermosonication, pulsed electric field and thermal processing.

    Science.gov (United States)

    Sulaiman, Alifdalino; Farid, Mohammed; Silva, Filipa Vm

    2017-04-01

    Worldwide, apple juice is the second most popular juice, after orange juice. It is susceptible to enzymatic browning spoilage by polyphenoloxidase, an endogenous enzyme. In this study, Royal Gala apple juice was treated by thermosonication (TS: 1.3 W/mL, 58 ℃, 10 min), pulsed electric field (PEF: 24.8 kV/cm, 60 pulses, 169 µs treatment time, 53.8 ℃) and heat (75 ℃, 20 min) and stored at 3.0 ℃ and 20.0 ℃ for 30 days. A sensory analysis was carried out after processing. The polyphenoloxidase activity, antioxidant activity and total color difference of the apple juice were determined before and after processing and during storage. The sensory analysis revealed that thermosonication and pulsed electric field juices tasted differently from the thermally treated juice. Apart from the pulsed electric field apple juice stored at room temperature, the processed juice was stable during storage, since the pH and soluble solids remained constant and fermentation was not observed. Polyphenoloxidase did not reactivate during storage. Along storage, the juices' antioxidant activity decreased and total color difference increased (up to 6.8). While the antioxidant activity increased from 86 to 103% with thermosonication and was retained after pulsed electric field, thermal processing reduced it to 67%. The processing increased the total color difference slightly. No differences in the total color difference of the juices processed by the three methods were registered after storage. Thermosonication and pulsed electric field could possibly be a better alternative to thermal preservation of apple juice, but refrigerated storage is recommended for pulsed electric field apple juice.

  7. Verification and Analysis of Implementing Virtual Electric Devices in Circuit Simulation of Pulsed DC Electrical Devices in the NI MULTISIM 10.1 Environment

    Directory of Open Access Journals (Sweden)

    V. A. Solov'ev

    2015-01-01

    Full Text Available The paper presents the analysis results of the implementation potential and evaluation of the virtual electric devices reliability when conducting circuit simulation of pulsed DC electrical devices in the NI Multisim 10.1environment. It analyses metrological properties of electric measuring devices and sensors of the NI Multisim 10.1environment. To calculate the reliable parameters of periodic non-sinusoidal electrical values based on their physical feasibility the mathematical expressions have been defined.To verify the virtual electric devices a circuit model of the power section of buck DC converter with enabled devices under consideration at its input and output is used as a consumer of pulse current of trapezoidal or triangular form. It is used as an example to show a technique to verify readings of virtual electric measuring devices in the NI Multisim 10.1environment.It is found that when simulating the pulsed DC electric devices to measure average and RMS voltage supply and current consumption values it is advisable to use the probe. Electric device power consumption read from the virtual power meter is equal to its average value, and its displayed power factor is inversely proportional to the input current form factor. To determine the RMS pulsed DC current by ammeter and multi-meter it is necessary to measure current by these devices in DC and AC modes, and then determine the RMS value of measurement results.Virtual electric devices verification has proved the possibility of their application to determine the energy performance of transistor converters for various purposes in the circuit simulation in the NI 10.1 Multisim environment, thus saving time of their designing.

  8. Giant lipid vesicles under electric field pulses assessed by non invasive imaging.

    Science.gov (United States)

    Mauroy, Chloé; Portet, Thomas; Winterhalder, Martin; Bellard, Elisabeth; Blache, Marie-Claire; Teissié, Justin; Zumbusch, Andreas; Rols, Marie-Pierre

    2012-10-01

    We present experimental results regarding the effects of electric pulses on giant unilamellar vesicles (GUVs). We have used phase contrast and coherent anti-Stokes Raman scattering (CARS) microscopy as relevant optical approaches to gain insight into membrane changes under electropermeabilization. No addition of exogenous molecules (lipid analogue, fluorescent dye) was needed. Therefore, experiments were performed on pure lipid systems avoiding possible artefacts linked to their use. Structural membrane changes were assessed by loss of contrast inside the GUVs due to sucrose and glucose mixing. Our observations, performed at the single vesicle level, indicate these changes are under the control of the number of pulses and field intensity. Larger number of pulses enhances membrane alterations. A threshold value of the field intensity must be applied to allow exchange of molecules between GUVs and the external medium. This threshold depends on the size of the vesicles, the larger GUVs being affected at lower electric field strengths than the smaller ones. Our experimental data are well described by a simple model in which molecule entry is driven by direct exchange. The CARS microscopic study of the effect of pulse duration confirms that pulses, in the ms time range, induce loss of lipids and membrane deformations facing the electrodes. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Inactivation of Listeria innocua in skim milk by pulsed electric fields and nisin.

    Science.gov (United States)

    Calderón-Miranda, M L; Barbosa-Cánovas, G V; Swanson, B G

    1999-10-01

    Pulsed electric fields (PEF) is an emerging nonthermal processing technology used to inactivate microorganisms in liquid foods such as milk. PEF results in loss of cell membrane functionality that leads to inactivation of the microorganism. There are many processes that aid in the stability and safety of foods. The combination of different preservation factors, such as nisin and PEF, to control microorganisms should be explored. The objective of this research was to study the inactivation of Listeria innocua suspended in skim milk by PEF as well as the sensitization of PEF treated L. innocua to nisin. The selected electric field intensity was 30, 40 and 50 kV/cm and the number of pulses applied was 10.6, 21.3 and 32. The sensitization exhibited by PEF treated L. innocua to nisin was assessed for 10 or 100 IU nisin/ml. A progressive decrease in the population of L. innocua was observed for the selected field intensities, with the greatest reduction being 2 1/2 log cycles (U). The exposure of L. innocua to nisin after PEF had an additive effect on the inactivation of the microorganism as that exhibited by the PEF alone. As the electric field, number of pulses and nisin concentration increased, synergism was observed in the inactivation of L. innocua as a result of exposure to nisin after PEF. The reduction of L. innocua accomplished by exposure to 10 IU nisin/ml after 32 pulsed electric fields was 2, 2.7, and 3.4 U for an electric field intensity of 30, 40, and 50 kV/cm, respectively. Population of L. innocua subjected to 100 IU nisin/ml after PEF was 2.8-3.8 U for the selected electric field intensities and 32 pulses. The designed model for the inactivation of L. innocua as a result of the PEF followed by exposure to nisin proved to be accurate in the prediction of the inactivation of L. innocua in skim milk containing 1.2 or 37 IU nisin/ml. Inactivation of L. innocua in skim milk containing 37 IU nisin/ml resulted in a decrease in population of 3.7 U.

  10. [Fluorescence polarization used to investigate the cell membrane fluidity of Saccharomyces cerevisiae treated by pulsed electric field].

    Science.gov (United States)

    Zhang, Ying; Zeng, Xin-An; Wen, Qi-Biao; Li, Lin

    2008-01-01

    To know the lethal mechanism of microorganisms under pulsed electric field treatment, the relationship between the inactivation of Saccharomyces cerevisiae (CICC1308) cell and the permeability and fluidity changes of its cell membrane treated by pulsed electric field (0-25 kV x cm(-1), 0-266 ms) was investigated. With 1,6-diphenyl-1,3,5-hexatriene (DPH) used as a probe, the cell membrane fluidity of Saccharomyces cerevisiae treated by pulsed electric field was expressed by fluorescence polarization. Results showed that the cell membrane fluidity decreases when the electric flied strength is up to 5 kV x cm(-1), and decreases with the increase in electric field strength and treatment time. The plate counting method and ultraviolet spectrophotometer were used to determine the cell viability and to investigate the cell membrane permeability, respectively, treated by pulsed electric field. Results showed that the lethal ratio and the content of protein and nucleic acid leaked from intracellular plasma increased with the increase in the electric field strength and the extension of treatment time. Even in a quite lower electric field of 5 kV x cm(-1) with a tiny microorganism lethal level, the increase in UV absorption value and the decrease in fluidity were significant. It was demonstrated that the cell membrane fluidity decreases with the increase in lethal ratio and cell membrane permeability. The viscosity of cell membrane increases with the decrease in fluidity. These phenomena indicated that cell membrane is one of the most key sites during the pulsed electric field treatment, and the increased membrane permeability and the decreased cell membrane fluidity contribute to the cell death.

  11. Determination of electric field threshold for electrofusion of erythrocyte ghosts. Comparison of pulse-first and contact-first protocols.

    OpenAIRE

    Wu, Y; Montes, J G; Sjodin, R A

    1992-01-01

    Rabbit erythrocyte ghosts were fused by means of electric pulses to determine the electrofusion thresholds for these membranes. Two protocols were used to investigate fusion events: contact-first, and pulse-first. Electrical capacitance discharge (CD) pulses were used to induce fusion. Plots of fusion yield vs peak field strength yielded curves that intersected the field strength axis at positive values (pseudothresholds) which depended on the protocol and decay half time of the pulses. It wa...

  12. Pasteurization of strawberry puree using a pilot plant pulsed electric fields (PEF) system

    Science.gov (United States)

    The processing of strawberry puree by pulsed electric fields (PEF) in a pilot plant system has never been evaluated. In addition, a method does not exist to validate the exact number and shape of the pulses applied during PEF processing. Both buffered peptone water (BPW) and fresh strawberry puree (...

  13. An assessment of potential applications with pulsed electric field in wines

    Directory of Open Access Journals (Sweden)

    Drosou Foteini

    2017-01-01

    Full Text Available Pulsed electric fields (PEF is a non-thermal processing technology that uses instantaneous, pulses of high voltage for a short period in the range of milliseconds to microseconds; the application of high intensity electric field on toasted wood chips leads to a quick diffusion of extractable molecules. Currently most PEF studies, in the field of oenology, have been focusing on the application of PEF as a pretreatment of grape musts by examining the microbial inactivation and the enhancement of polyphenol extraction. In this study a post-treatment of wine is introduced as method to enhance the wood flavor in the wine with a green noninvasive technology. Major phenolic aldehydes that have been identified as the characteristic compounds of oak volatile compounds were selected as markers and were analyzed instrumentally to compare the influence of PEF processing to non-treated samples. PEF treated samples brought about higher concentrations of the examined oak compounds in the samples treated with PEF, which may explain the advantages of its application. The modulation of the intensity of the electric field and the period of pulses influenced the concentrations of the volatile phenols that were leached out. Differences found between the assayed treatments indicate that PEF application could be a potential practice for a rapid extraction of volatile compounds from oak.

  14. Formation of the electrical pulse in the SQS mode

    International Nuclear Information System (INIS)

    Han Jiaxiang; Xu Zizong; Li Hongdi; Chen Hongfang

    1994-01-01

    The pulse of the electrical signals from the counter working in SQS mode have been displayed and studied carefully. Some interesting information on the formation of SQS avalanche has been presented. The typical value of the transition time from the primary to the SQS avalanche is 15 ns, that of its spread is 10 ns

  15. A novel application of pulsed electric field (PEF) processing for improving glutathione (GSH) antioxidant activity.

    Science.gov (United States)

    Wang, Jia; Wang, Ke; Wang, Ying; Lin, Songyi; Zhao, Ping; Jones, Gregory

    2014-10-15

    Glutathione (GSH) was treated by pulsed electric field (PEF) processing to investigate its effect on antioxidant activity. The antioxidant activity of GSH was evaluated using 2,2-diphenyl-1-picrylhydrazy (DPPH) radical inhibition. A Box-Behnken design (BBD) with three independent variables, which were concentration, electric field intensity and pulse frequency was used to establish the regression equation of second-order response surface. Optimal conditions were as follows: GSH concentration 8.86mg/mL, electric field intensity 9.74kV/cm and pulse frequency 2549.08Hz. The DPPH radical inhibition increased from 81.83% to 97.40%. Near-infrared spectroscopy (NIR) and mid-infrared spectroscopy (MIR) were used to analyse the change of structure and functional groups of GSH. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Guiding of Long-Distance Electric Discharges by Combined Femtosecond and Nanosecond Pulses Emitted by Hybrid KrF Laser System

    Science.gov (United States)

    2014-01-30

    laser pulse initiated HV discharge with a time delay of tens nanoseconds – evidently it is developing due to an avalanche -like growth of electron...AFRL-AFOSR-UK-TR-2014-0040 Guiding of long-distance electric discharges by combined femtosecond and nanosecond pulses emitted by...and guiding electric discharge , KrF laser, femtosecond pulse , nanosecond pulse , filamentation, plasma channel, lightning control, laser control of

  17. Effect of pulsed electric field and pasteurisation treatments on the rheological properties of mango nectar (Mangifera indica

    Directory of Open Access Journals (Sweden)

    S. S. Manjunatha

    2015-01-01

    Full Text Available The rheological behaviour of pulsed electric field (PEF processed and thermally pasteurised mango nectar (Mangifera indica was evaluated using controlled stress rheometer. The mango nectar was subjected to pulsed electric field (PEF as well as thermal processing. The rheological parameter shear stress was measured up to the shear rate of 750 s-1 using co-axial cylinder attachment at wide range of temperatures from 10 to 70 °C. The investigation showed that pulsed electric field (PEF processed and thermally pasteurised mango nectar behaved like a pseudo plastic (shear thinning fluid and obeyed Herschel-Bulkley model (0.9780 0.893, p < 0.05 and flow activation energy (Ea was significantly (p < 0.05 affected by processing conditions. The results indicated that the pulsed electric field (PEF and thermal processing condition has affected the rheological properties of mango nectar. The combined equation relating to shear stress (τ with temperature and shear rate of mango nectar was established.

  18. Activation of Anti-tumor Immune Response by Ablation of HCC with Nanosecond Pulsed Electric Field.

    Science.gov (United States)

    Xu, Xiaobo; Chen, Yiling; Zhang, Ruiqing; Miao, Xudong; Chen, Xinhua

    2018-03-28

    Locoregional therapy is playing an increasingly important role in the non-surgical management of hepatocellular carcinoma (HCC). The novel technique of non-thermal electric ablation by nanosecond pulsed electric field has been recognized as a potential locoregional methodology for indicated HCC. This manuscript explores the most recent studies to indicate its unique anti-tumor immune response. The possible immune mechanism, termed as nano-pulse stimulation, was also analyzed.

  19. Liberation of a pinned spiral wave by a rotating electric pulse

    Science.gov (United States)

    Chen, Jiang-Xing; Peng, Liang; Ma, Jun; Ying, He-Ping

    2014-08-01

    Spiral waves may be pinned to anatomical heterogeneities in the cardiac tissue, which leads to monomorphic ventricular tachycardia. Wave emission from heterogeneities (WEH) induced by electric pulses in one direction (EP) is a promising method for liberating such waves by using heterogeneities as internal virtual pacing sites. Here, based on the WEH effect, a new mechanism of liberation by means of a rotating electric pulse (REP) is proposed in a generic model of excitable media. Compared with the EP, the REP has the advantage of opening wider time window to liberate pinned spiral. The influences of rotating direction and frequency of the REP, and the radius of the obstacles on this new mechanism are studied. We believe this strategy may improve manipulations with pinned spiral waves in heart experiments.

  20. Production of pulsed electric fields using capacitively coupled electrodes

    Science.gov (United States)

    Kendall, B. R. F.; Schwab, F. A. S.

    1980-01-01

    It is shown that pulsed electric fields can be produced over extended volumes by taking advantage of the internal capacitances in a stacked array of electrodes. The design, construction, and performance of practical arrays are discussed. The prototype arrays involved fields of 100-1000 V/cm extending over several centimeters. Scaling to larger physical dimensions is straightforward.

  1. Inactivation of microorganisms within collagen gel biomatrices using pulsed electric field treatment.

    Science.gov (United States)

    Griffiths, Sarah; Maclean, Michelle; Anderson, John G; MacGregor, Scott J; Grant, M Helen

    2012-02-01

    Pulsed electric field (PEF) treatment was examined as a potential decontamination method for tissue engineering biomatrices by determining the susceptibility of a range of microorganisms whilst within a collagen gel. High intensity pulsed electric fields were applied to collagen gel biomatrices containing either Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, Candida albicans, Saccharomyces cerevisiae or the spores of Aspergillus niger. The results established varying degrees of microbial PEF susceptibility. When high initial cell densities (10(6)-10(7) CFU ml(-1)) were PEF treated with 100 pulses at 45 kV cm(-1), the greatest log reduction was achieved with S. cerevisiae (~6.5 log(10) CFU ml(-1)) and the lowest reduction achieved with S. epidermidis (~0.5 log(10) CFU ml(-1)). The results demonstrate that inactivation is influenced by the intrinsic properties of the microorganism treated. Further investigations are required to optimise the microbial inactivation kinetics associated with PEF treatment of collagen gel biomatrices.

  2. Crystallization of Fe83B17 amorphous alloy by electric pulses produced by a capacitor discharge

    International Nuclear Information System (INIS)

    Georgarakis, Konstantinos; Dudina, Dina V.; Mali, Vyacheslav I.; Anisimov, Alexander G.; Bulina, Natalia V.; Moreira Jorge, Alberto Jr.; Yavari, Alain R.

    2015-01-01

    Heating of conductive materials by electric current is used in many technological processes. Application of electric pulses to metallic glasses induces their fast crystallization, which is an interesting and complex phenomenon. In this work, crystallization of the Fe 83 B 17 amorphous alloy induced by pulses of electric current produced has been studied using X-ray diffraction and transmission electron microscopy. Ribbons of the alloy were directly subjected to single pulses of electric current 250 μs long formed by a capacitor discharge. As the value of ∫I 2 dt was increased from 0.33 to 2.00 A 2 s, different crystallization stages could be observed. The crystallization began through the formation of the nuclei of α-Fe. At high values of ∫I 2 dt, α-Fe and tetragonal and orthorhombic Fe 3 B and Fe 23 B 6 were detected in the crystallized ribbons with crystallites of about 50 nm. Thermal annealing of the ribbons at 600 C for 2 min resulted in the formation of α-Fe and tetragonal Fe 3 B. It was concluded that pulses of electric current produced by a capacitor discharge induced transformation of the Fe 83 B 17 amorphous phase into metastable crystalline products. (orig.)

  3. Effects on DPPH inhibition of egg-white protein polypeptides treated by pulsed electric field technology.

    Science.gov (United States)

    Wang, Ke; Wang, Jia; Liu, Bolong; Lin, Songyi; Zhao, Ping; Liu, Jingbo; Jones, Gregory; Huang, Hsiang-Chi

    2013-05-01

    Egg-white protein polypeptides are potentially used as a functional ingredient in food products. In this study, the effects on DPPH inhibition of egg-white protein polypeptides ranging from 10 to 30 kDa treated by pulsed electric field (PEF) technology were investigated. 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) inhibition (%) was used to evaluate the antioxidant activity of polypeptides. In order to develop and optimize a pulsed electric field (PEF) mathematical model for improving the antioxidant activity, we have investigated three variables, including concentration (6, 8 and 10 mg mL(-1)), electric field intensity (10, 20 and 30 kV cm(-1)) and pulse frequency (2000, 2350 and 2700 Hz) and subsequently optimized them by response surface methodology (RSM). The concentration (8 mg mL(-1)), electric field intensity (10 kV cm(-1)) and pulse frequency (2000 Hz) were found to be the optimal conditions under which the DPPH inhibition increased 28.44%, compared to the sample without PEF treatment. Both near-infrared spectroscopy (NIR) and mid-infrared spectroscopy (MIR) were used to analyze the change of functional groups. The results showed that PEF technology could improve the antioxidant activity of antioxidant polypeptides from egg-white protein under the optimized conditions. © 2012 Society of Chemical Industry.

  4. Domain wall manipulation in magnetic nanotubes induced by electric current pulses

    International Nuclear Information System (INIS)

    Otálora, J A; López-López, J A; Landeros, P; Núñez, A S

    2012-01-01

    We propose that the injection of electric currents can be used to independently manipulate the position and chirality of vortex-like domain walls in metallic ferromagnetic nanotubes. We support this proposal upon theoretical and numerical assessment of the magnetization dynamics driven by such currents. We show that proper interplay between the tube geometry, magnitude of the electric current and the duration of a current pulse, can be used to manipulate the position, velocity and chirality of a vortex domain wall. Our calculations suggest that domain wall velocities greater than 1 km s -1 can be achieved for tube diameters of the order of 30 nm and increasing with it. We also find that the transition from steady to precessional domain wall motion occurs for very high electric current densities, of the order of 10 13 A m -2 . Furthermore, the great stability displayed by such chiral magnetic configurations, and the reduced Ohmic loses provided by the current pulses, lead to highly reproducible and efficient domain wall reversal mechanisms.

  5. Preliminary Optical And Electric Field Pulse Statistics From Storm Overflights During The Altus Cumulus Electrification Study

    Science.gov (United States)

    Mach, D. A.; Blakeslee, R. J.; Bailey, J. C.; Farrell, W. M.; Goldberg, R. A.; Desch, M. D.; Houser, J. G.

    2003-01-01

    The Altus Cumulus Electrification Study (ACES) was conducted during the month of August, 2002 in an area near Key West, Florida. One of the goals of this uninhabited aerial vehicle (UAV) study was to collect high resolution optical pulse and electric field data from thunderstorms. During the month long campaign, we acquired 5294 lightning generated optical pulses with associated electric field changes. Most of these observations were made while close to the top of the storms. We found filtered mean and median 10-10% optical pulse widths of 875 and 830 microns respectively while the 50-50% mean and median optical pulse widths are 422 and 365 microns respectively. These values are similar to previous results as are the 10-90% mean and median rise times of 327 and 265 microns. The peak electrical to optical pulse delay mean and median were 209 and 145 microns which is longer than one would expect from theoretical results. The results of the pulse analysis will contribute to further validation of the Optical Transient Detector (OTD) and the Lightning Imaging Sensor (LIS) satellites. Pre-launch estimates of the flash detection efficiency were based on a small sample of optical pulse measurements associated with less than 350 lightning discharges collected by NASA U-2 aircraft in the early 1980s. Preliminary analyses of the ACES measurements show that we have greatly increased the number of optical pulses available for validation of the LIS and other orbital lightning optical sensors. Since the Altus was often close to the cloud tops, many of the optical pulses are from low-energy pulses. From these low-energy pulses, we can determine the fraction of optical lightning pulses below the thresholds of LIS, OTD, and any future satellite-based optical sensors such as the geostationary Lightning Mapping Sensor.

  6. Electrical noise modulates perception of electrical pulses in humans: sensation enhancement via stochastic resonance.

    Science.gov (United States)

    Iliopoulos, Fivos; Nierhaus, Till; Villringer, Arno

    2014-03-01

    Although noise is usually considered to be harmful for signal detection and information transmission, stochastic resonance (SR) describes the counterintuitive phenomenon of noise enhancing the detection and transmission of weak input signals. In mammalian sensory systems, SR-related phenomena may arise both in the peripheral and the central nervous system. Here, we investigate behavioral SR effects of subliminal electrical noise stimulation on the perception of somatosensory stimuli in humans. We compare the likelihood to detect near-threshold pulses of different intensities applied on the left index finger during presence vs. absence of subliminal noise on the same or an adjacent finger. We show that (low-pass) noise can enhance signal detection when applied on the same finger. This enhancement is strong for near-threshold pulses below the 50% detection threshold and becomes stronger when near-threshold pulses are applied as brief trains. The effect reverses at pulse intensities above threshold, especially when noise is replaced by subliminal sinusoidal stimulation, arguing for a peripheral direct current addition. Unfiltered noise applied on longer pulses enhances detection of all pulse intensities. Noise applied to an adjacent finger has two opposing effects: an inhibiting effect (presumably due to lateral inhibition) and an enhancing effect (most likely due to SR in the central nervous system). In summary, we demonstrate that subliminal noise can significantly modulate detection performance of near-threshold stimuli. Our results indicate SR effects in the peripheral and central nervous system.

  7. X-ray emission from a nanosecond-pulse discharge in an inhomogeneous electric field at atmospheric pressure

    International Nuclear Information System (INIS)

    Zhang Cheng; Shao Tao; Ren Chengyan; Zhang Dongdong; Tarasenko, Victor; Kostyrya, Igor D.; Ma Hao; Yan Ping

    2012-01-01

    This paper describes experimental studies of the dependence of the X-ray intensity on the anode material in nanosecond high-voltage discharges. The discharges were generated by two nanosecond-pulse generators in atmospheric air with a highly inhomogeneous electric field by a tube-plate gap. The output pulse of the first generator (repetitive pulse generator) has a rise time of about 15 ns and a full width at half maximum of 30–40 ns. The output of the second generator (single pulse generator) has a rise time of about 0.3 ns and a full width at half maximum of 1 ns. The electrical characteristics and the X-ray emission of nanosecond-pulse discharge in atmospheric air are studied by the measurement of voltage-current waveforms, discharge images, X-ray count and dose. Our experimental results showed that the anode material rarely affects electrical characteristics, but it can significantly affect the X-ray density. Comparing the density of X-rays, it was shown that the highest x-rays density occurred in the diffuse discharge in repetitive pulse mode, then the spark discharge with a small air gap, and then the corona discharge with a large air gap, in which the X-ray density was the lowest. Therefore, it could be confirmed that the bremsstrahlung at the anode contributes to the X-ray emission from nanosecond-pulse discharges.

  8. Parametric performance predictions for high-power pulsed electric CO lasers

    International Nuclear Information System (INIS)

    Center, R.E.; Caledonia, G.E.

    1975-01-01

    A kinetic model of the pulsed electrical CO laser is used to survey the time-dependent laser performance on parameters such as gas mixture, initial translational temperature, and discharge pulse length for both multiline and selected-line operation. Predictions are presented for the total output efficiency, spectral distributions of the stimulated transitions, energy partitioning in the vibrational and translational modes, and the translational temperature history in CO-N 2 mixtures. A brief description of the kinetic model is included. Simple scaling relationships are presented which can be used to scale the results to other densities in the pressure-broadened regime

  9. Enhancing Food Processing by Pulsed and High Voltage Electric Fields: Principles and Applications.

    Science.gov (United States)

    Wang, Qijun; Li, Yifei; Sun, Da-Wen; Zhu, Zhiwei

    2018-02-02

    Improvements in living standards result in a growing demand for food with high quality attributes including freshness, nutrition and safety. However, current industrial processing methods rely on traditional thermal and chemical methods, such as sterilization and solvent extraction, which could induce negative effects on food quality and safety. The electric fields (EFs) involving pulsed electric fields (PEFs) and high voltage electric fields (HVEFs) have been studied and developed for assisting and enhancing various food processes. In this review, the principles and applications of pulsed and high voltage electric fields are described in details for a range of food processes, including microbial inactivation, component extraction, and winemaking, thawing and drying, freezing and enzymatic inactivation. Moreover, the advantages and limitations of electric field related technologies are discussed to foresee future developments in the food industry. This review demonstrates that electric field technology has a great potential to enhance food processing by supplementing or replacing the conventional methods employed in different food manufacturing processes. Successful industrial applications of electric field treatments have been achieved in some areas such as microbial inactivation and extraction. However, investigations of HVEFs are still in an early stage and translating the technology into industrial applications need further research efforts.

  10. The effect of high-frequency electrical pulses on organic tissue in root canals.

    Science.gov (United States)

    Lendini, M; Alemanno, E; Migliaretti, G; Berutti, E

    2005-08-01

    To evaluate debris and smear layer scores after application of high-frequency electrical pulses produced by the Endox Endodontic System (Lysis Srl, Nova Milanese, Italy) on intact pulp tissue and organic and inorganic residues after endodontic instrumentation. The study comprised 75 teeth planned for extraction. The teeth were randomly divided into two groups (60 teeth) and a control group (15 teeth): group 1 (30 teeth) was not subjected to instrumentation; group 2 (30 teeth) was instrumented by Hero Shaper instruments and apical stops were prepared to size 40. Each group was subdivided into subgroups A and B (15 teeth); two electrical pulses were applied to subgroups 1A and 2A (one in the apical third and one in the middle third, respectively, at 3 and 6 mm from the root apices); four electrical pulses were applied to subgroups 1B and 2B (two in the apical third, two in the middle third). The control group (15 teeth) was prepared with Hero Shapers and irrigated with 5 mL of EDTA (10%) and 5 mL of 5% NaOCl at 50 degrees C but not subjected to the electrical pulse treatment. Roots were split longitudinally and canal walls were examined at 80x, 200x, 750x, 1500x and 15,000x magnifications, using a scanning electron microscope. Smear layer and debris scores were recorded at the 3 and 6 mm levels using a five-step scoring scale and a 200-microm grid. Means were tested for significance using the one-way anova model and the Bonferroni post-hoc test. The differences between groups were considered to be statistically significant when P < 0.05. The mean value for debris scores for the three groups varied from 1.80 (+/-0.77) to 4.50 (+/-0.68). The smear layer scores for group 2 and the control specimens varied from 2.00 (+/-0.91) to 2.33 (+/-0.99). A significant difference was found in mean debris scores at the 3 and 6 mm levels between the three groups (P < 0.001). The Bonferroni post-hoc test confirmed that the difference was due to group 1. In the two subgroups treated

  11. C-phycocyanin extraction assisted by pulsed electric field from Artrosphira platensis.

    Science.gov (United States)

    Martínez, Juan Manuel; Luengo, Elisa; Saldaña, Guillermo; Álvarez, Ignacio; Raso, Javier

    2017-09-01

    This paper assesses the application of pulsed electric fields (PEF) to the fresh biomass of Artrhospira platensis in order to enhance the extraction of C-phycocyanin into aqueous media. Electroporation of A. platensis depended on both electric field strength and treatment duration. The minimum electric field intensity for detecting C-phycocyanin in the extraction medium was 15kV/cm after the application of a treatment time 150μs (50 pulses of 3μs). However higher electric field strength were required when shorter treatment times were applied. Response surface methodology was used in order to investigate the influence of electric field strength (15-25kV/cm), treatment time (60-150μs), and temperature of application of PEF (10-40°C) on C-phycocyanin extraction yield (PEY). The increment of the temperature PEF treatment reduced the electric field strength and the treatment time required to obtain a given PEY and, consequently decreased the total specific energy delivered by the treatment. For example, the increment of temperature from 10°C to 40°C permitted to reduce the electric field strength required to extract 100mg/g d w of C-phycocyanin from 25 to 18kV/cm, and the specific energy input from 106.7 to 67.5kJ/Kg. Results obtained in this investigation demonstrated PEF's potential for selectively extraction C-phycocyanin from fresh A. platensis biomass. The purity of the C-phycocyanin extract obtained from the electroporated cells was higher than that obtained using other techniques based on the cell complete destruction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The neuronal response to electrical constant-amplitude pulse train stimulation: additive Gaussian noise.

    Science.gov (United States)

    Matsuoka, A J; Abbas, P J; Rubinstein, J T; Miller, C A

    2000-11-01

    Experimental results from humans and animals show that electrically evoked compound action potential (EAP) responses to constant-amplitude pulse train stimulation can demonstrate an alternating pattern, due to the combined effects of highly synchronized responses to electrical stimulation and refractory effects (Wilson et al., 1994). One way to improve signal representation is to reduce the level of across-fiber synchrony and hence, the level of the amplitude alternation. To accomplish this goal, we have examined EAP responses in the presence of Gaussian noise added to the pulse train stimulus. Addition of Gaussian noise at a level approximately -30 dB relative to EAP threshold to the pulse trains decreased the amount of alternation, indicating that stochastic resonance may be induced in the auditory nerve. The use of some type of conditioning stimulus such as Gaussian noise may provide a more 'normal' neural response pattern.

  13. Amplifiable DNA from Gram-negative and Gram-positive bacteria by a low strength pulsed electric field method

    Science.gov (United States)

    Vitzthum, Frank; Geiger, Georg; Bisswanger, Hans; Elkine, Bentsian; Brunner, Herwig; Bernhagen, Jürgen

    2000-01-01

    An efficient electric field-based procedure for cell disruption and DNA isolation is described. Isoosmotic suspensions of Gram-negative and Gram-positive bacteria were treated with pulsed electric fields of Pulses had an exponential decay waveform with a time constant of 3.4 µs. DNA yield was linearly dependent on time or pulse number, with several thousand pulses needed. Electrochemical side-effects and electrophoresis were minimal. The lysates contained non-fragmented DNA which was readily amplifiable by PCR. As the method was not limited to samples of high specific resistance, it should be applicable to physiological fluids and be useful for genomic and DNA diagnostic applications. PMID:10734214

  14. Higher-order power harmonics of pulsed electrical stimulation modulates corticospinal contribution of peripheral nerve stimulation.

    Science.gov (United States)

    Chen, Chiun-Fan; Bikson, Marom; Chou, Li-Wei; Shan, Chunlei; Khadka, Niranjan; Chen, Wen-Shiang; Fregni, Felipe

    2017-03-03

    It is well established that electrical-stimulation frequency is crucial to determining the scale of induced neuromodulation, particularly when attempting to modulate corticospinal excitability. However, the modulatory effects of stimulation frequency are not only determined by its absolute value but also by other parameters such as power at harmonics. The stimulus pulse shape further influences parameters such as excitation threshold and fiber selectivity. The explicit role of the power in these harmonics in determining the outcome of stimulation has not previously been analyzed. In this study, we adopted an animal model of peripheral electrical stimulation that includes an amplitude-adapted pulse train which induces force enhancements with a corticospinal contribution. We report that the electrical-stimulation-induced force enhancements were correlated with the amplitude of stimulation power harmonics during the amplitude-adapted pulse train. In an exploratory analysis, different levels of correlation were observed between force enhancement and power harmonics of 20-80 Hz (r = 0.4247, p = 0.0243), 100-180 Hz (r = 0.5894, p = 0.0001), 200-280 Hz (r = 0.7002, p harmonics. This is a pilot, but important first demonstration that power at high order harmonics in the frequency spectrum of electrical stimulation pulses may contribute to neuromodulation, thus warrant explicit attention in therapy design and analysis.

  15. Effect of pulsed electric field on the rheological and colour properties of soy milk.

    Science.gov (United States)

    Xiang, Bob Y; Simpson, Marian V; Ngadi, Michael O; Simpson, Benjamin K

    2011-12-01

    The effects of pulsed electric field (PEF) treatments on rheological and colour properties of soy milk were evaluated. Flow behaviour, viscosity and rheological parameters of PEF-treated soy milk were monitored using a controlled stress rheometer. For PEF treatments, electric field intensity of 18, 20 and 22 kV cm(-1) and number of pulses of 25, 50, 75 and 100 were used. For the measurements of rheological properties of soy milk shear rates between 0 and 200 s(-1) was used. The rheological behaviour of control and the PEF-treated soy milk were described using a power law model. The PEF treatments affected the rheological properties of soy milk. Apparent viscosity of soy milk increased from 6.62 to 7.46 (10(-3) Pa s) with increase in electric field intensity from 18 to 22 kV cm(-1) and increase in the number of pulses from 0 to 100. The consistency index (K) of soy milk also changed with PEF treatments. Lightness (L*), red/greenness (a*) and yellowness/blueness (b*) of soy milk were affected by PEF treatments.

  16. Effect of electric pulse modification on mircostructure and properties of Ni-rich Al-Si piston alloy

    Directory of Open Access Journals (Sweden)

    Bing Wang

    2016-03-01

    Full Text Available In order to improve the properties of Ni-rich (2.5wt.% Al-Si piston alloy, electric pulse modification was applied in fabricating the Ni-rich Al-Si piston alloy in this study. The effect of electric pulse modification on the mechanical properties of the Ni-rich Al-Si piston alloy was studied using optical microscope (OM, scanning electron microscope (SEM, X-ray diffraction (XRD, microhardness measurement and tensile strength testing. The results showed that the microstructures of Ni-rich Al-Si piston alloy treated by electric pulse modification were refined, the solid solubility of Cu, Ni, Si, etc. in α-Al matrix was improved, and furthermore, the microhardness and high-temperature tensile strength were increased by 9.41% and 17.5%, respectively. The distribution of second phases was also more uniform compared with that of a non-modified sample.

  17. Modification of Pulsed Electric Field Conditions Results in Distinct Activation Profiles of Platelet-Rich Plasma.

    Science.gov (United States)

    Frelinger, Andrew L; Gerrits, Anja J; Garner, Allen L; Torres, Andrew S; Caiafa, Antonio; Morton, Christine A; Berny-Lang, Michelle A; Carmichael, Sabrina L; Neculaes, V Bogdan; Michelson, Alan D

    2016-01-01

    Activated autologous platelet-rich plasma (PRP) used in therapeutic wound healing applications is poorly characterized and standardized. Using pulsed electric fields (PEF) to activate platelets may reduce variability and eliminate complications associated with the use of bovine thrombin. We previously reported that exposing PRP to sub-microsecond duration, high electric field (SMHEF) pulses generates a greater number of platelet-derived microparticles, increased expression of prothrombotic platelet surfaces, and differential release of growth factors compared to thrombin. Moreover, the platelet releasate produced by SMHEF pulses induced greater cell proliferation than plasma. To determine whether sub-microsecond duration, low electric field (SMLEF) bipolar pulses results in differential activation of PRP compared to SMHEF, with respect to profiles of activation markers, growth factor release, and cell proliferation capacity. PRP activation by SMLEF bipolar pulses was compared to SMHEF pulses and bovine thrombin. PRP was prepared using the Harvest SmartPreP2 System from acid citrate dextrose anticoagulated healthy donor blood. PEF activation by either SMHEF or SMLEF pulses was performed using a standard electroporation cuvette preloaded with CaCl2 and a prototype instrument designed to take into account the electrical properties of PRP. Flow cytometry was used to assess platelet surface P-selectin expression, and annexin V binding. Platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), endothelial growth factor (EGF) and platelet factor 4 (PF4), and were measured by ELISA. The ability of supernatants to stimulate proliferation of human epithelial cells in culture was also evaluated. Controls included vehicle-treated, unactivated PRP and PRP with 10 mM CaCl2 activated with 1 U/mL bovine thrombin. PRP activated with SMLEF bipolar pulses or thrombin had similar light scatter profiles, consistent with the presence of platelet

  18. Modification of Pulsed Electric Field Conditions Results in Distinct Activation Profiles of Platelet-Rich Plasma.

    Directory of Open Access Journals (Sweden)

    Andrew L Frelinger

    Full Text Available Activated autologous platelet-rich plasma (PRP used in therapeutic wound healing applications is poorly characterized and standardized. Using pulsed electric fields (PEF to activate platelets may reduce variability and eliminate complications associated with the use of bovine thrombin. We previously reported that exposing PRP to sub-microsecond duration, high electric field (SMHEF pulses generates a greater number of platelet-derived microparticles, increased expression of prothrombotic platelet surfaces, and differential release of growth factors compared to thrombin. Moreover, the platelet releasate produced by SMHEF pulses induced greater cell proliferation than plasma.To determine whether sub-microsecond duration, low electric field (SMLEF bipolar pulses results in differential activation of PRP compared to SMHEF, with respect to profiles of activation markers, growth factor release, and cell proliferation capacity.PRP activation by SMLEF bipolar pulses was compared to SMHEF pulses and bovine thrombin. PRP was prepared using the Harvest SmartPreP2 System from acid citrate dextrose anticoagulated healthy donor blood. PEF activation by either SMHEF or SMLEF pulses was performed using a standard electroporation cuvette preloaded with CaCl2 and a prototype instrument designed to take into account the electrical properties of PRP. Flow cytometry was used to assess platelet surface P-selectin expression, and annexin V binding. Platelet-derived growth factor (PDGF, vascular endothelial growth factor (VEGF, endothelial growth factor (EGF and platelet factor 4 (PF4, and were measured by ELISA. The ability of supernatants to stimulate proliferation of human epithelial cells in culture was also evaluated. Controls included vehicle-treated, unactivated PRP and PRP with 10 mM CaCl2 activated with 1 U/mL bovine thrombin.PRP activated with SMLEF bipolar pulses or thrombin had similar light scatter profiles, consistent with the presence of platelet

  19. Electric field measurements in a nanosecond pulse discharge by picosecond CARS/4-wave mixing

    Science.gov (United States)

    Goldberg, Ben; Shkurenkov, Ivan; Adamovich, Igor; Lempert, Walter

    2014-10-01

    Time-resolved electric field measurements in hydrogen by picosecond CARS/4-wave mixing are presented. Measurements are carried out in a high voltage nanosecond pulse discharge in hydrogen in plane-to-plane geometry, at pressures of up to several hundred Torr, and with a time resolution of 0.2 ns. Absolute calibration of the diagnostics is done using a sub-breakdown high voltage pulse of 12 kV/cm. A diffuse discharge is obtained by applying a peak high voltage pulse of 40 kV/cm between the electrodes. It is found that breakdown occurs at a lower field, 15--20 kV/cm, after which the field in the plasma is reduced rapidly due to plasma self shielding The experimental results are compared with kinetic modeling calculations, showing good agreement between the measured and the predicted electric field.

  20. An experimental platform for pulsed-power driven magnetic reconnection

    Science.gov (United States)

    Hare, J. D.; Suttle, L. G.; Lebedev, S. V.; Loureiro, N. F.; Ciardi, A.; Chittenden, J. P.; Clayson, T.; Eardley, S. J.; Garcia, C.; Halliday, J. W. D.; Robinson, T.; Smith, R. A.; Stuart, N.; Suzuki-Vidal, F.; Tubman, E. R.

    2018-05-01

    We describe a versatile pulsed-power driven platform for magnetic reconnection experiments, based on the exploding wire arrays driven in parallel [Suttle et al., Phys. Rev. Lett. 116, 225001 (2016)]. This platform produces inherently magnetised plasma flows for the duration of the generator current pulse (250 ns), resulting in a long-lasting reconnection layer. The layer exists for long enough to allow the evolution of complex processes such as plasmoid formation and movement to be diagnosed by a suite of high spatial and temporal resolution laser-based diagnostics. We can access a wide range of magnetic reconnection regimes by changing the wire material or moving the electrodes inside the wire arrays. We present results with aluminium and carbon wires, in which the parameters of the inflows and the layer that forms are significantly different. By moving the electrodes inside the wire arrays, we change how strongly the inflows are driven. This enables us to study both symmetric reconnection in a range of different regimes and asymmetric reconnection.

  1. Briquetting of titanium shavings with using of short electrical pulses

    International Nuclear Information System (INIS)

    Abramova, K.B.; Samujlov, S.D.; Filin, Yu.A.

    1998-01-01

    It is proposed and tested a new technology of briquetting of metallic shavings. The technology includes pressing of shavings with comparatively low pressure and processing it by means of short pulse of high density electrical current. Strength of the briquette arrears as a result of the sport electric welding of the contacts between the shaving particles. The technology permits: to produce firm briquettes from the shavings or other scrap of any metal or alloy, for example from titanium; to produce briquettes practically of any porosity; to decrease the compression and abandon heating almost for high-strength alloy in comparison with existing methods [ru

  2. Pulse number control of electrical resistance for multi-level storage based on phase change

    International Nuclear Information System (INIS)

    Nakayama, K; Takata, M; Kasai, T; Kitagawa, A; Akita, J

    2007-01-01

    Phase change nonvolatile memory devices composed of SeSbTe chalcogenide semiconductor thin film were fabricated. The resistivity of the SeSbTe system was investigated to apply to multi-level data storage. The chalcogenide semiconductor acts as a programmable resistor that has a large dynamic range. The resistance of the chalcogenide semiconductor can be set to intermediate resistances between the amorphous and crystalline states using electric pulses of a specified power, and it can be controlled by repetition of the electric pulses. The size of the memory cell used in this work is 200 nm thick with a contact area of 1 μm diameter. The resistance of the chalcogenide semiconductor gradually varies from 41 kΩ to 840 Ω within octal steps. The resistance of the chalcogenide semiconductor decreases with increasing number of applied pulses. The step-down characteristic of the resistance can be explained as the crystalline region of the active phase change region increases with increasing number of applied pulses. The extent of crystallization was also estimated by the overall resistivity of the active region of the memory cell

  3. An investigation for structure transformation in electric pulse modified liquid aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Qi Jingang, E-mail: Qijingang1974@sina.co [School of Material Science and Engineering, Liaoning University of Technology, Jinzhou 121001 (China); Wang Jianzhong; He Lijia; Zhao Zuofu; Du Huiling [School of Material Science and Engineering, Liaoning University of Technology, Jinzhou 121001 (China)

    2011-02-15

    The electric pulse (EP) modification of liquid metal is a novel method for grain refinement. In this work, the structure tests of EP-modified liquid aluminum were conducted and investigated using high-temperature X-ray diffractometer by virtue of the outstanding structural heredity of EP-modified liquid aluminum. The results show that the EP-modified liquid structure tends to be slack and unordered with increasing temperature similar to that of the unmodified. Nevertheless, the quantitative characterization denoted by the liquid structural parameters exhibits its discrepancy. At the modifying temperature of 750 {sup o}C, the order of degree of EP-modified liquid aluminum is remarkably strengthened and the value of average atomic number per cluster changes from 119 (no EP) up to 174 (EP) by an increase of 46%. These tests experimentally testified Wang's electric pulse modification (EPM) model that was built only by phenomenology, and hereby the mechanism of grain refinement resulting from EPM is further elucidated.

  4. Modeling high-intensity pulsed electric field inactivation of a lipase from Pseudomonas fluorescens.

    Science.gov (United States)

    Soliva-Fortuny, R; Bendicho-Porta, S; Martín-Belloso, O

    2006-11-01

    The inactivation kinetics of a lipase from Pseudomonas fluorescens (EC 3.1.1.3.) were studied in a simulated skim milk ultrafiltrate treated with high-intensity pulsed electric fields. Samples were subjected to electric field intensities ranging from 16.4 to 27.4 kV/cm for up to 314.5 micros, thus achieving a maximum inactivation of 62.1%. The suitability of describing experimental data using mechanistic first-order kinetics and an empirical model based on the Weibull distribution function is discussed. In addition, different mathematical expressions relating the residual activity values to field strength and treatment time are supplied. A first-order fractional conversion model predicted residual activity with good accuracy (A(f) = 1.018). A mechanistic insight of the model kinetics was that experimental values were the consequence of different structural organizations of the enzyme, with uneven resistance to the pulsed electric field treatments. The Weibull model was also useful in predicting the energy density necessary to achieve lipase inactivation.

  5. Effect of pulsed electric field on the germination of barley seeds

    DEFF Research Database (Denmark)

    Dymek, Katarzyna; Dejmek, Petr; Panarese, Valentina

    2012-01-01

    This study explores metabolic responses of germinating barley seeds upon the application of pulsed electric fields (PEF). Malting barley seeds were steeped in aerated water for 24 h and PEF-treated at varying voltages (0 (control), 110, 160, 240, 320, 400 and 480 V). The seeds were then allowed...

  6. Active RF Pulse Compression Using An Electrically Controlled Semiconductor Switch

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiquan; Tantawi, Sami; /SLAC

    2007-01-10

    First we review the theory of active pulse compression systems using resonant delay lines. Then we describe the design of an electrically controlled semiconductor active switch. The switch comprises an active window and an overmoded waveguide three-port network. The active window is based on a four-inch silicon wafer which has 960 PIN diodes. These are spatially combined in an overmoded waveguide. We describe the philosophy and design methodology for the three-port network and the active window. We then present the results of using this device to compress 11.4 GHz RF signals with high compression ratios. We show how the system can be used with amplifier like sources, in which one can change the phase of the source by manipulating the input to the source. We also show how the active switch can be used to compress a pulse from an oscillator like sources, which is not possible with passive pulse compression systems.

  7. Synchronized and configurable source of electrical pulses for x-ray pump-probe experiments

    International Nuclear Information System (INIS)

    Strachan, J. P.; Chembrolu, V.; Yu, X. W.; Tyliszczak, T.; Acremann, Y.

    2007-01-01

    A method is described for the generation of software tunable patterns of nanosecond electrical pulses. The bipolar, high repetition rate (up to 250 MHz), fast rise time (<30 ps), square pulses are suitable for applications such as the excitation sequence in dynamic pump-probe experiments. Synchronization with the time structure of a synchrotron facility is possible as well as fine control of the relative delay in steps of 10 ps. The pulse generator described here is used to excite magnetic nanostructures with current pulses. Having an excitation system which can match the high repetition rate of a synchrotron allows for utilization of the full x-ray flux and is needed in experiments which require a large photon flux. The fast rise times allow for picosecond time resolution in pump-probe experiments. All pulse pattern parameters are configurable by software

  8. Measurements of Electric Field in a Nanosecond Pulse Discharge by 4-WAVE Mixing

    Science.gov (United States)

    Baratte, Edmond; Adamovich, Igor V.; Simeni Simeni, Marien; Frederickson, Kraig

    2017-06-01

    Picosecond four-wave mixing is used to measure temporally and Picosecond four-wave mixing is used to measure temporally and spatially resolved electric field in a nanosecond pulse dielectric discharge sustained in room air and in an atmospheric pressure hydrogen diffusion flame. Measurements of the electric field, and more precisely the reduced electric field (E/N) in the plasma is critical for determination rate coefficients of electron impact processes in the plasma, as well as for quantifying energy partition in the electric discharge among different molecular energy modes. The four-wave mixing measurements are performed using a collinear phase matching geometry, with nitrogen used as the probe species, at temporal resolution of about 2 ns . Absolute calibration is performed by measurement of a known electrostatic electric field. In the present experiments, the discharge is sustained between two stainless steel plate electrodes, each placed in a quartz sleeve, which greatly improves plasma uniformity. Our previous measurements of electric field in a nanosecond pulse dielectric barrier discharge by picosecond 4-wave mixing have been done in air at room temperature, in a discharge sustained between a razor edge high-voltage electrode and a plane grounded electrode (a quartz plate or a layer of distilled water). Electric field measurements in a flame, which is a high-temperature environment, are more challenging because the four-wave mixing signal is proportional to the to square root of the difference betwen the populations of N2 ground vibrational level (v=0) and first excited vibrational level (v=1). At high temperatures, the total number density is reduced, thus reducing absolute vibrational level populations of N2. Also, the signal is reduced further due to a wider distribution of N2 molecules over multiple rotational levels at higher temperatures, while the present four-wave mixing diagnostics is using spectrally narrow output of a ps laser and a high

  9. Generic functional modelling of multi-pulse auto-transformer rectifier units for more-electric aircraft applications

    Directory of Open Access Journals (Sweden)

    Tao YANG

    2018-05-01

    Full Text Available The Auto-Transformer Rectifier Unit (ATRU is one preferred solution for high-power AC/DC power conversion in aircraft. This is mainly due to its simple structure, high reliability and reduced kVA ratings. Indeed, the ATRU has become a preferred AC/DC solution to supply power to the electric environment control system on-board future aircraft. In this paper, a general modelling method for ATRUs is introduced. The developed model is based on the fact that the DC voltage and current are strongly related to the voltage and current vectors at the AC terminals of ATRUs. In this paper, we carry on our research in modelling symmetric 18-pulse ATRUs and develop a generic modelling technique. The developed generic model can study not only symmetric but also asymmetric ATRUs. An 18-pulse asymmetric ATRU is used to demonstrate the accuracy and efficiency of the developed model by comparing with corresponding detailed switching SABER models provided by our industrial partner. The functional models also allow accelerated and accurate simulations and thus enable whole-scale more-electric aircraft electrical power system studies in the future. Keywords: Asymmetric transformer, Functional modelling, More-Electric Aircraft, Multi-pulse rectifier, Transformer rectifier unit

  10. Quantum dynamics of an electric charge in an oscillating pulsed magnetic field

    International Nuclear Information System (INIS)

    Oliveira, I.S.; Guimaraes, A.P.; Silva, X.A. da

    1996-11-01

    The motion of a charged particle under the action of a time-dependent oscillating magnetic field has been investigated. For one and two magnetic pulses were obtained analytical expressions for the free current decay and current echo in agreement with a recently proposed classical description of electrical current in fields E and B. When the resonance condition is achieved, the axis of quantization is turned over by 90 degrees. The results suggest a magnetic pulsed resonant method to separate charged particles in a beam. (author). 12 refs

  11. High impact ionization rate in silicon by sub-picosecond THz electric field pulses (Conference Presentation)

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun; Iwaszczuk, Krzysztof; Hirori, Hideki

    2017-01-01

    Summary form only given. Metallic antenna arrays fabricated on high resistivity silicon are used to localize and enhance the incident THz field resulting in high electric field pulses with peak electric field strength reaching several MV/cm on the silicon surface near the antenna tips. In such high...... electric field strengths high density of carriers are generated in silicon through impact ionization process. The high density of generated carriers induces a change of refractive index in silicon. By measuring the change of reflectivity of tightly focused 800 nm light, the local density of free carriers...... near the antenna tips is measured. Using the NIR probing technique, we observed that the density of carriers increases by over 8 orders of magnitude in a time duration of approximately 500 fs with an incident THz pulse of peak electric field strength 700 kV/cm. This shows that a single impact...

  12. Using hydrocarbon as a carbon source for synthesis of carbon nanotube by electric field induced needle-pulsed plasma

    International Nuclear Information System (INIS)

    Kazemi Kia, Kaveh; Bonabi, Fahimeh

    2013-01-01

    In this work different hydrocarbons are used as the carbon source, in the production of carbon nanotubes (CNTs) and nano onions. An electric field induced needle pulse arc-discharge reactor is used. The influence of starting carbon on the synthesis of CNTs is investigated. The production efficiency is compared for Acetone, Isopropanol and Naphthalene as simple hydrocarbons. The hydrocarbons are preheated and then pretreated by electric field before being exposed to plasma. The hydrocarbon vapor is injected into plasma through a graphite spout in the cathode assembly. The pulsed plasma takes place between two graphite rods while a strong electric field has been already established alongside the electrodes. The pulse width is 0.3 μs. Mechanism of precursor decomposition is discussed by describing three forms of energy that are utilized to disintegrate the precursor molecules: thermal energy, electric field and kinetic energy of plasma. Molecular polarity of a hydrocarbon is one of the reasons for choosing carbon raw material as a precursor in an electric field induced low power pulsed-plasma. The results show that in order to obtain high quality carbon nanotubes, Acetone is preferred to Isopropanol and Naphthalene. Scanning probe microscopy techniques are used to investigate the products. - Highlights: • We synthesized CNTs (carbon nano tubes) by needle pulsed plasma. • We use different hydrocarbons as carbon source in the production of CNTs. • We investigated the influence of starting carbon on the synthesis of CNTs. • Thermal energy, electric field and kinetic energy are used to break carbon bonds. • Polar hydrocarbon molecules are more efficient than nonpolar ones in production

  13. Exploring the Effects of Pulsed Electric Field Processing Parameters on Polyacetylene Extraction from Carrot Slices

    Directory of Open Access Journals (Sweden)

    Ingrid Aguiló-Aguayo

    2015-03-01

    Full Text Available The effects of various pulsed electric field (PEF parameters on the extraction of polyacetylenes from carrot slices were investigated. Optimised conditions with regard to electric field strength (1–4 kV/cm, number of pulses (100–1500, pulse frequency (10–200 Hz and pulse width (10–30 μs were identified using response surface methodology (RSM to maximise the extraction of falcarinol (FaOH, falcarindiol (FaDOH and falcarindiol-3-acetate (FaDOAc from carrot slices. Data obtained from RSM and experiments fitted significantly (p < 0.0001 the proposed second-order response functions with high regression coefficients (R2 ranging from 0.82 to 0.75. Maximal FaOH (188%, FaDOH (164.9% and FaDOAc (166.8% levels relative to untreated samples were obtained from carrot slices after applying PEF treatments at 4 kV/cm with 100 number of pulses of 10 μs at 10 Hz. The predicted values from the developed quadratic polynomial equation were in close agreement with the actual experimental values with low average mean deviations (E% ranging from 0.68% to 3.58%.

  14. The separated electric and magnetic field responses of luminescent bacteria exposed to pulsed microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Catrin F., E-mail: williamscf@cardiff.ac.uk [School of Engineering, Cardiff University, Queen' s Buildings, Newport Road, Cardiff, CF24 3AA Wales (United Kingdom); School of Biosciences, Cardiff University, Main Building, Cathays Park, Cardiff, CF10 3AT Wales (United Kingdom); Geroni, Gilles M.; Pirog, Antoine; Lees, Jonathan; Porch, Adrian [School of Engineering, Cardiff University, Queen' s Buildings, Newport Road, Cardiff, CF24 3AA Wales (United Kingdom); Lloyd, David [School of Biosciences, Cardiff University, Main Building, Cathays Park, Cardiff, CF10 3AT Wales (United Kingdom)

    2016-08-29

    Electromagnetic fields (EMFs) are ubiquitous in the digital world we inhabit, with microwave and millimetre wave sources of non-ionizing radiation employed extensively in electronics and communications, e.g., in mobile phones and Wi-Fi. Indeed, the advent of 5G systems and the “internet of things” is likely to lead to massive densification of wireless networks. Whilst the thermal effects of EMFs on biological systems are well characterised, their putative non-thermal effects remain a controversial subject. Here, we use the bioluminescent marine bacterium, Vibrio fischeri, to monitor the effects of pulsed microwave electromagnetic fields, of nominal frequency 2.5 GHz, on light emission. Separated electric and magnetic field effects were investigated using a resonant microwave cavity, within which the maxima of each field are separated. For pulsed electric field exposure, the bacteria gave reproducible responses and recovery in light emission. At the lowest pulsed duty cycle (1.25%) and after short durations (100 ms) of exposure to the electric field at power levels of 4.5 W rms, we observed an initial stimulation of bioluminescence, whereas successive microwave pulses became inhibitory. Much of this behaviour is due to thermal effects, as the bacterial light output is very sensitive to the local temperature. Conversely, magnetic field exposure gave no measurable short-term responses even at the highest power levels of 32 W rms. Thus, we were able to detect, de-convolute, and evaluate independently the effects of separated electric and magnetic fields on exposure of a luminescent biological system to microwave irradiation.

  15. The separated electric and magnetic field responses of luminescent bacteria exposed to pulsed microwave irradiation

    Science.gov (United States)

    Williams, Catrin F.; Geroni, Gilles M.; Pirog, Antoine; Lloyd, David; Lees, Jonathan; Porch, Adrian

    2016-08-01

    Electromagnetic fields (EMFs) are ubiquitous in the digital world we inhabit, with microwave and millimetre wave sources of non-ionizing radiation employed extensively in electronics and communications, e.g., in mobile phones and Wi-Fi. Indeed, the advent of 5G systems and the "internet of things" is likely to lead to massive densification of wireless networks. Whilst the thermal effects of EMFs on biological systems are well characterised, their putative non-thermal effects remain a controversial subject. Here, we use the bioluminescent marine bacterium, Vibrio fischeri, to monitor the effects of pulsed microwave electromagnetic fields, of nominal frequency 2.5 GHz, on light emission. Separated electric and magnetic field effects were investigated using a resonant microwave cavity, within which the maxima of each field are separated. For pulsed electric field exposure, the bacteria gave reproducible responses and recovery in light emission. At the lowest pulsed duty cycle (1.25%) and after short durations (100 ms) of exposure to the electric field at power levels of 4.5 W rms, we observed an initial stimulation of bioluminescence, whereas successive microwave pulses became inhibitory. Much of this behaviour is due to thermal effects, as the bacterial light output is very sensitive to the local temperature. Conversely, magnetic field exposure gave no measurable short-term responses even at the highest power levels of 32 W rms. Thus, we were able to detect, de-convolute, and evaluate independently the effects of separated electric and magnetic fields on exposure of a luminescent biological system to microwave irradiation.

  16. The separated electric and magnetic field responses of luminescent bacteria exposed to pulsed microwave irradiation

    International Nuclear Information System (INIS)

    Williams, Catrin F.; Geroni, Gilles M.; Pirog, Antoine; Lees, Jonathan; Porch, Adrian; Lloyd, David

    2016-01-01

    Electromagnetic fields (EMFs) are ubiquitous in the digital world we inhabit, with microwave and millimetre wave sources of non-ionizing radiation employed extensively in electronics and communications, e.g., in mobile phones and Wi-Fi. Indeed, the advent of 5G systems and the “internet of things” is likely to lead to massive densification of wireless networks. Whilst the thermal effects of EMFs on biological systems are well characterised, their putative non-thermal effects remain a controversial subject. Here, we use the bioluminescent marine bacterium, Vibrio fischeri, to monitor the effects of pulsed microwave electromagnetic fields, of nominal frequency 2.5 GHz, on light emission. Separated electric and magnetic field effects were investigated using a resonant microwave cavity, within which the maxima of each field are separated. For pulsed electric field exposure, the bacteria gave reproducible responses and recovery in light emission. At the lowest pulsed duty cycle (1.25%) and after short durations (100 ms) of exposure to the electric field at power levels of 4.5 W rms, we observed an initial stimulation of bioluminescence, whereas successive microwave pulses became inhibitory. Much of this behaviour is due to thermal effects, as the bacterial light output is very sensitive to the local temperature. Conversely, magnetic field exposure gave no measurable short-term responses even at the highest power levels of 32 W rms. Thus, we were able to detect, de-convolute, and evaluate independently the effects of separated electric and magnetic fields on exposure of a luminescent biological system to microwave irradiation.

  17. Combination of microsecond and nanosecond pulsed electric field treatments for inactivation of Escherichia coli in water samples.

    Science.gov (United States)

    Žgalin, Maj Kobe; Hodžić, Duša; Reberšek, Matej; Kandušer, Maša

    2012-10-01

    Inactivation of microorganisms with pulsed electric fields is one of the nonthermal methods most commonly used in biotechnological applications such as liquid food pasteurization and water treatment. In this study, the effects of microsecond and nanosecond pulses on inactivation of Escherichia coli in distilled water were investigated. Bacterial colonies were counted on agar plates, and the count was expressed as colony-forming units per milliliter of bacterial suspension. Inactivation of bacterial cells was shown as the reduction of colony-forming units per milliliter of treated samples compared to untreated control. According to our results, when using microsecond pulses the level of inactivation increases with application of more intense electric field strengths and with number of pulses delivered. Almost 2-log reductions in bacterial counts were achieved at a field strength of 30 kV/cm with eight pulses and a 4.5-log reduction was observed at the same field strength using 48 pulses. Extending the duration of microsecond pulses from 100 to 250 μs showed no improvement in inactivation. Nanosecond pulses alone did not have any detectable effect on inactivation of E. coli regardless of the treatment time, but a significant 3-log reduction was achieved in combination with microsecond pulses.

  18. Studies on Plasmoid Merging using Compact Toroid Injectors

    Science.gov (United States)

    Allfrey, Ian; Matsumoto, Tadafumi; Roche, Thomas; Gota, Hiroshi; Edo, Takahiro; Asai, Tomohiko; Sheftman, Daniel; Osin Team; Dima Team

    2017-10-01

    C-2 and C-2U experiments have used magnetized coaxial plasma guns (MCPG) to inject compact toroids (CTs) for refueling the long-lived advanced beam-driven field-reversed configuration (FRC) plasma. This refueling method will also be used for the C-2W experiment. To minimize momentum transfer from the CT to the FRC two CTs are injected radially, diametrically opposed and coincident in time. To improve understanding of the CT characteristics TAE has a dedicated test bed for the development of CT injectors (CTI), where plasmoid merging experiments are performed. The test bed has two CTIs on axis with both axial and transverse magnetic fields. The 1 kG magnetic fields, intended to approximate the magnetic field strength and injection angle on C-2W, allow studies of cross-field transport and merging. Both CTIs are capable of injecting multiple CTs at up to 1 kHz. The resulting merged CT lives >100 μs with a radius of 25 cm. More detailed results of CT parameters will be presented.

  19. Monopole patch antenna for in vivo exposure to nanosecond pulsed electric fields.

    Science.gov (United States)

    Merla, C; Apollonio, F; Paffi, A; Marino, C; Vernier, P T; Liberti, M

    2017-07-01

    To explore the promising therapeutic applications of short nanosecond electric pulses, in vitro and in vivo experiments are highly required. In this paper, an exposure system based on monopole patch antenna is reported to perform in vivo experiments on newborn mice with both monopolar and bipolar nanosecond signals. Analytical design and numerical simulations of the antenna in air were carried out as well as experimental characterizations in term of scattering parameter (S 11 ) and spatial electric field distribution. Numerical dosimetry of the setup with four newborn mice properly placed in proximity of the antenna patch was carried out, exploiting a matching technique to decrease the reflections due to dielectric discontinuities (i.e., from air to mouse tissues). Such technique consists in the use of a matching dielectric box with dielectric permittivity similar to those of the mice. The average computed electric field inside single mice was homogeneous (better than 68 %) with an efficiency higher than 20 V m -1  V -1 for the four exposed mice. These results demonstrate the possibility of a multiple (four) exposure of small animals to short nanosecond pulses (both monopolar and bipolar) in a controlled and efficient way.

  20. The Electrode Modality Development in Pulsed Electric Field Treatment Facilitates Biocellular Mechanism Study and Improves Cancer Ablation Efficacy

    OpenAIRE

    Cen, Chao; Chen, Xinhua

    2017-01-01

    Pulsed electric field treatment is now widely used in diverse biological and medical applications: gene delivery, electrochemotherapy, and cancer therapy. This minimally invasive technique has several advantages over traditional ablation techniques, such as nonthermal elimination and blood vessel spare effect. Different electrodes are subsequently developed for a specific treatment purpose. Here, we provide a systematic review of electrode modality development in pulsed electric field treatme...

  1. Pulsed currents carried by whistlers. IV. Electric fields and radiation excited by an electrode

    International Nuclear Information System (INIS)

    Stenzel, R.L.; Urrutia, J.M.; Rousculp, C.L.

    1995-01-01

    Electromagnetic properties of current pulses carried by whistler wave packets are obtained from a basic laboratory experiment. While the magnetic field and current density are described in the preceding companion paper (Part III), the present analysis starts with the electric field. The inductive and space charge electric field contributions are separately calculated in Fourier space from the measured magnetic field and Ohm's law along B 0 . Inverse Fourier transformation yields the total electric field in space and time, separated into rotational and divergent contributions. The space-charge density in whistler wave packets is obtained. The cross-field tensor conductivity is determined. The frozen-in condition is nearly satisfied, E+v e xB congruent 0. The dissipation is obtained from Poynting's theorem. The waves are collisionally damped; Landau damping is negligible. A radiation resistance for the electrode is determined. Analogous to Poynting's theorem, the transport of helicity is analyzed. Current helicity is generated by a flow of helicity between pulses traveling in opposite directions which carry opposite signs of helicity. Helicity is dissipated by collisions. These observations complete a detailed description of whistler/current pulses which can occur in various laboratory and space plasmas. copyright 1995 American Institute of Physics

  2. The Electrode Modality Development in Pulsed Electric Field Treatment Facilitates Biocellular Mechanism Study and Improves Cancer Ablation Efficacy.

    Science.gov (United States)

    Cen, Chao; Chen, Xinhua

    2017-01-01

    Pulsed electric field treatment is now widely used in diverse biological and medical applications: gene delivery, electrochemotherapy, and cancer therapy. This minimally invasive technique has several advantages over traditional ablation techniques, such as nonthermal elimination and blood vessel spare effect. Different electrodes are subsequently developed for a specific treatment purpose. Here, we provide a systematic review of electrode modality development in pulsed electric field treatment. For electrodes invented for experiment in vitro, sheet electrode and electrode cuvette, electrodes with high-speed fluorescence imaging system, electrodes with patch-clamp, and electrodes with confocal laser scanning microscopy are introduced. For electrodes invented for experiment in vivo, monopolar electrodes, five-needle array electrodes, single-needle bipolar electrode, parallel plate electrodes, and suction electrode are introduced. The pulsed electric field provides a promising treatment for cancer.

  3. Optimising the inactivation of grape juice spoilage organisms by pulse electric fields.

    Science.gov (United States)

    Marsellés-Fontanet, A Robert; Puig, Anna; Olmos, Paola; Mínguez-Sanz, Santiago; Martín-Belloso, Olga

    2009-04-15

    The effect of some pulsed electric field (PEF) processing parameters (electric field strength, pulse frequency and treatment time), on a mixture of microorganisms (Kloeckera apiculata, Saccharomyces cerevisiae, Lactobacillus plantarum, Lactobacillus hilgardii and Gluconobacter oxydans) typically present in grape juice and wine were evaluated. An experimental design based on response surface methodology (RSM) was used and results were also compared with those of a factorially designed experiment. The relationship between the levels of inactivation of microorganisms and the energy applied to the grape juice was analysed. Yeast and bacteria were inactivated by the PEF treatments, with reductions that ranged from 2.24 to 3.94 log units. All PEF parameters affected microbial inactivation. Optimal inactivation of the mixture of spoilage microorganisms was predicted by the RSM models at 35.0 kV cm(-1) with 303 Hz pulse width for 1 ms. Inactivation was greater for yeasts than for bacteria, as was predicted by the RSM. The maximum efficacy of the PEF treatment for inactivation of microorganisms in grape juice was observed around 1500 MJ L(-1) for all the microorganisms investigated. The RSM could be used in the fruit juice industry to optimise the inactivation of spoilage microorganisms by PEF.

  4. Pre-breakdown processes in a dielectric fluid in inhomogeneous pulsed electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Shneider, Mikhail N., E-mail: m.n.shneider@gmail.com [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Pekker, Mikhail [MMSolution, 6808 Walker Street, Philadelphia, Pennsylvania 19135 (United States)

    2015-06-14

    We consider the development of pre-breakdown cavitation nanopores appearing in the dielectric fluid under the influence of the electrostrictive stresses in the inhomogeneous pulsed electric field. It is shown that three characteristic regions can be distinguished near the needle electrode. In the first region, where the electric field gradient is greatest, the cavitation nanopores, occurring during the voltage nanosecond pulse, may grow to the size at which an electron accelerated by the field inside the pores can acquire enough energy for excitation and ionization of the liquid on the opposite pore wall, i.e., the breakdown conditions are satisfied. In the second region, the negative pressure caused by the electrostriction is large enough for the cavitation initiation (which can be registered by optical methods), but, during the voltage pulse, the pores do not reach the size at which the potential difference across their borders becomes sufficient for ionization or excitation of water molecules. And, in the third, the development of cavitation is impossible, due to an insufficient level of the negative pressure: in this area, the spontaneously occurring micropores do not grow and collapse under the influence of surface tension forces. This paper discusses the expansion dynamics of the cavitation pores and their most probable shape.

  5. Cost analysis of commercial pasteurization of orange juice by pulsed electric fields

    Science.gov (United States)

    The cost of pulsed electric field (PEF) pasteurization of orange juice was estimated. The cost analysis was based on processing conditions that met the US FDA (5 log reduction) requirement for fruit juice pasteurization and that achieved a 2 month microbial shelf-life. PEF-treated samples processed ...

  6. Comparison of laser diode response to pulsed electrical and radiative excitations

    International Nuclear Information System (INIS)

    Baggio, J.; Rainsant, J.M.; D'hose, C.; Lalande, P.; Musseau, O.; Leray, J.L.

    1996-01-01

    The authors have studied the electrical and optical response of two laser diodes under transient irradiation. Both diodes exhibit a positive photocurrent, which adds to the bias current, and a decrease of the optical power until extinction when dose rate is increased. Direct carrier generation in the laser cavity is a second order phenomena. The diode overall response is driven by both the substrate photocurrent and the transient conduction of current confinement regions, which decrease the net current density in the cavity and switches-off the laser emission. This behavior is in good agreement with pulsed electrical characterizations and 2D simulations

  7. Continuous raw skim milk processing by pulsed electric field at non-lethal temperature: effect on microbial inactivation and functional properties

    OpenAIRE

    Floury , Juliane; Grosset , Noël; Leconte , Nadine; Pasco , Maryvonne; Madec , Marie-Noëlle; Jeantet , Romain

    2006-01-01

    International audience; Pulsed electric field (PEF) is an emerging non-thermal processing technology used to inactivate microorganisms in liquid foods such as milk. The objective of this research was to study the effectiveness of continuous PEF equipment (square wave pulses) on total microorganisms of raw skim milk and on Salmonella enteritidis inactivation under moderate temperatures (T < 50 °C). Processing parameters (electric field and pulse width) were chosen as follows: 45 kV*cm-1/500 ns...

  8. Photodetachment of H- by a short laser pulse in crossed static electric and magnetic fields

    International Nuclear Information System (INIS)

    Peng Liangyou; Wang Qiaoling; Starace, Anthony F.

    2006-01-01

    We present a detailed quantum mechanical treatment of the photodetachment of H - by a short laser pulse in the presence of crossed static electric and magnetic fields. An exact analytic formula is presented for the final state electron wave function (describing an electron in both static electric and magnetic fields and a short laser pulse of arbitrary intensity). In the limit of a weak laser pulse, final state electron wave packet motion is examined and related to the closed classical electron orbits in crossed static fields predicted by Peters and Delos [Phys. Rev. A 47, 3020 (1993)]. Owing to these closed orbit trajectories, we show that the detachment probability can be modulated, depending on the time delay between two laser pulses and their relative phase, thereby providing a means to partially control the photodetachment process. In the limit of a long, weak pulse (i.e., a monochromatic radiation field) our results reduce to those of others; however, for this case we analyze the photodetachment cross section numerically over a much larger range of electron kinetic energy (i.e., up to 500 cm -1 ) than in previous studies and relate the detailed structures both analytically and numerically to the above-mentioned, closed classical periodic orbits

  9. Inactivation of Escherichia coli, Saccharomyces cerevisiae, and Lactobacillus brevis in Low-fat Milk by Pulsed Electric Field Treatment: A Pilot-scale Study

    OpenAIRE

    Lee, Gun Joon; Han, Bok Kung; Choi, Hyuk Joon; Kang, Shin Ho; Baick, Seung Chun; Lee, Dong-Un

    2015-01-01

    We investigated the effects of a pulsed electric field (PEF) treatment on microbial inactivation and the physical properties of low-fat milk. Milk inoculated with Escherichia coli, Saccharomyces cerevisiae, or Lactobacillus brevis was supplied to a pilot-scale PEF treatment system at a flow rate of 30 L/h. Pulses with an electric field strength of 10 kV/cm and a pulse width of 30 ?s were applied to the milk with total pulse energies of 50-250 kJ/L achieved by varying the pulse frequency. The ...

  10. Applications of lightweight composite materials in pulsed rotating electrical generators

    International Nuclear Information System (INIS)

    Walls, W.A.; Maifold, S.M.

    1987-01-01

    Present rotating electrical pulse power generators are limited in energy storage capability, specific energy, and peak power density by the use of iron-magnetic circuits. This paper discusses lightweight and compact iron-core homopolar generators (HPGs) which have attained specific energies of 6 kJ/kg and have the potential to achieve 8 kJ/kg in the near future. Prototype iron based pulsed alternators are the favored choice for high power to mass ratio applications and have estimated peak ratings of 180 kW/kg. In terms of total energy storage capability, these machines are limited to several hundred MJ due to the availability of large steel forgings for rotors and basic design considerations including rotor dynamics, allowable rotor tip speeds, and present high speed current collection technology

  11. Bipolar pulse generator for intense pulsed ion beam accelerator

    International Nuclear Information System (INIS)

    Ito, H.; Igawa, K.; Kitamura, I.; Masugata, K.

    2007-01-01

    A new type of pulsed ion beam accelerator named ''bipolar pulse accelerator'' (BPA) has been proposed in order to improve the purity of intense pulsed ion beams. To confirm the principle of the BPA, we developed a bipolar pulse generator for the bipolar pulse experiment, which consists of a Marx generator and a pulse forming line (PFL) with a rail gap switch on its end. In this article, we report the first experimental result of the bipolar pulse and evaluate the electrical characteristics of the bipolar pulse generator. When the bipolar pulse generator was operated at 70% of the full charge condition of the PFL, the bipolar pulse with the first (-138 kV, 72 ns) and the second pulse (+130 kV, 70 ns) was successfully obtained. The evaluation of the electrical characteristics indicates that the developed generator can produce the bipolar pulse with fast rise time and sharp reversing time

  12. Characterization of carbon fiber polymer matrix composites subjected to simultaneous application of electric current pulse and low velocity impact

    Science.gov (United States)

    Hart, Robert James

    2011-12-01

    The use of composite materials in aerospace, electronics, and wind industries has become increasingly common, and these composite components are required to carry mechanical, electrical, and thermal loads simultaneously. A unique property of carbon fiber composites is that when an electric current is applied to the specimen, the mechanical strength of the specimen increases. Previous studies have shown that the higher the electric current, the greater the increase in impact strength. However, as current passes through the composite, heat is generated through Joule heating. This Joule heating can cause degradation of the composite and thus a loss in strength. In order to minimize the negative effects of heating, it is desired to apply a very high current for a very short duration of time. This thesis investigated the material responses of carbon fiber composite plates subjected to electrical current pulse loads of up to 1700 Amps. For 32 ply unidirectional IM7/977-3 specimens, the peak impact load and absorbed energy increased slightly with the addition of a current pulse at the time of an impact event. In 16 ply cross-ply IM7/977-2 specimens, the addition of the current pulse caused detrimental effects due to electrical arcing at the interface between the composite and electrodes. Further refinement of the experimental setup should minimize the risk of electrical arcing and should better elucidate the effects of a current pulse on the impact strength of the specimens.

  13. Separation of large DNA molecules by applying pulsed electric field to size exclusion chromatography-based microchip

    Science.gov (United States)

    Azuma, Naoki; Itoh, Shintaro; Fukuzawa, Kenji; Zhang, Hedong

    2018-02-01

    Through electrophoresis driven by a pulsed electric field, we succeeded in separating large DNA molecules with an electrophoretic microchip based on size exclusion chromatography (SEC), which was proposed in our previous study. The conditions of the pulsed electric field required to achieve the separation were determined by numerical analyses using our originally proposed separation model. From the numerical results, we succeeded in separating large DNA molecules (λ DNA and T4 DNA) within 1600 s, which was approximately half of that achieved under a direct electric field in our previous study. Our SEC-based electrophoresis microchip will be one of the effective tools to meet the growing demand of faster and more convenient separation of large DNA molecules, especially in the field of epidemiological research of infectious diseases.

  14. Development of the experimental procedure to examine the response of carbon fiber-reinforced polymer composites subjected to a high-intensity pulsed electric field and low-velocity impact.

    Science.gov (United States)

    Hart, Robert J; Zhupanska, Olesya I

    2016-01-01

    A new fully automated experimental setup has been developed to study the response of carbon fiber reinforced polymer (CFRP) composites subjected to a high-intensity pulsed electric field and low-velocity impact. The experimental setup allows for real-time measurements of the pulsed electric current, voltage, impact load, and displacements on the CFRP composite specimens. The setup includes a new custom-built current pulse generator that utilizes a bank of capacitor modules capable of producing a 20 ms current pulse with an amplitude of up to 2500 A. The setup enabled application of the pulsed current and impact load and successfully achieved coordination between the peak of the current pulse and the peak of the impact load. A series of electrical, impact, and coordinated electrical-impact characterization tests were performed on 32-ply IM7/977-3 unidirectional CFRP composites to assess their ability to withstand application of a pulsed electric current and determine the effects of the pulsed current on the impact response. Experimental results revealed that the electrical resistance of CFRP composites decreased with an increase in the electric current magnitude. It was also found that the electrified CFRP specimens withstood higher average impact loads compared to the non-electrified specimens.

  15. Petawatt pulsed-power accelerator

    Science.gov (United States)

    Stygar, William A.; Cuneo, Michael E.; Headley, Daniel I.; Ives, Harry C.; Ives, legal representative; Berry Cottrell; Leeper, Ramon J.; Mazarakis, Michael G.; Olson, Craig L.; Porter, John L.; Wagoner; Tim C.

    2010-03-16

    A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

  16. [Orthogonal design method to optimize rehabilitation prescription of pulsed electric field at Jiaji (EX-B 2) points for spinal cord injury].

    Science.gov (United States)

    Zhang, Lifeng; Zhang, Hui; Wang, Lin; Liu, Yanyan; Sun, Xianyue; Li, Lingyan; Hou, Jing

    2015-01-01

    By using orthogonal design method to optimnize prescription of pulsed electric field at Jiaji (EX- B 2) points for spinal cord injury (SCI). Fifty six patients of SCI were selected, in which 36 cases were divided into orthogonal design trial and 20 cases were into clinical verification. With 36 patients who received orthogonal design trial, Frankel grading scale was used as observation index to screen optimal prescription of pulsed electric field. Pulse frequency (factor A) included low frequency (factor A(I), 10(2) Hz). moderate frequency (factor A(II), 10(4) Hz) and high frequency (factor A(III), 10(3) Hz); pulse amplitude (factor B) included 0-30 V (factor B ), 0-60 V (factor B(II)) and 0-90 V (factor B(III)); pulse width (factor C) included 0.1 ms (factor C(I)). 0.6 ms (factor C(II)) and 0.9 ms (factor C(III)); acupuncture time (factor D) included one month (DI), three months (D(II)) and five months (D(III)). Twenty patients were used for clinical efficacy observation and the effects of screened optimal pre scription of pulsed electric field at Jiaji (EX-B 2) points combined with regular rehabilitation training on spasm se- verity, score of sensory and motor functions, Barthel index and Frankel score were observed. (1) As results of orthogonal design trial, the optimal prescription was A(III) B(III), C(I), D(III), which were high frequency (10(3) Hz), 0-90 V of pulse amplitude, 0.4 ms of pulse width and 5 months of treatment time. (2) As results of 20 patient clinical verification, Ashworth score, tendon reflex and clonus were all significantly improved (Ppulsed electric field at Jiaji (EX-B 2) points for spinal cord injury is high frequency (10& Hz), 0-90 V of pulse amplitude, 0.4 ms of pulse width and 5 months of treatment time. The optimal prescription of pulsed electric field at Jiaji (EX-B 2) points combined with regular rehabilitation could obviously improve spasm severity, enhance senso- ry and motor functions, and ameliorate activity of daily life and

  17. The change of electric potentials in the oral cavity after application of extremely low frequency pulsed magnetic field

    Directory of Open Access Journals (Sweden)

    Piotr Skomro

    2012-12-01

    Full Text Available Electric potentials occurring in the oral cavity deserve attention as they may cause various diseases and subjective feelings, which are very difficult to treat. The aim of this study was to evaluate the electric potentials within the oral cavity in patients with metal fillings and metal prosthetic restorations, after using a pulsed electromagnetic field. The study was carried out on 84 patients. The Viofor JPS Classic device was used in the treatment. It generates a pulsed electromagnetic field with low induction of the extremely low frequency (ELF range. Average values of electric potentials in the preliminary test were about the same in both groups; they were 148.8 mV and 145.5 mV. After another appliance of ELF fields there was found a steady decline in the average value of electric potentials in the study group. This decrease was statistically highly significant, while mean values of electric potentials in the control group were characterized by a slightly upward tendency. The obtained statistically significant reduction of electric potentials in the oral cavity of patients having metal fillings and metal prosthetic restorations, after application of the Viofor JPS Classic device, implies a huge impact of ELF pulsed electromagnetic field on inhibition of electrochemical processes, as well as on inhibition of dental alloy corrosion. 

  18. Hydrodynamical flows in dielectric liquid in strong inhomogeneous pulsed electric field

    International Nuclear Information System (INIS)

    Tereshonok, Dmitry V; Babaeva, Natalia Yu; Naidis, George V; Smirnov, Boris M

    2016-01-01

    We consider a hydrodynamical flow of dielectric liquid near a high voltage needle-shaped electrode in a strong inhomogeneous pulsed electric field. It was shown that under a small rise time, a negative pressure area (pressure is less than critical pressure) appears near the electrode leading to the formation of a cavity in which electric breakdown can develop. A comparison of the dependence of the velocity of fluid near an electrode for two cases (taking into account the dependence of dielectric permeability of the liquid on the electric field and without taking it into account) was made. A field-dependent dielectric coefficient leads to the appearance of two local maximums of the velocities and increases the minimum pressure, thus lowering the possibility of cavitation. While under the constant value of dielectric permeability only one local maximum appears. (paper)

  19. Influence of Pulsed Electric Fields and Mitochondria-Cytoskeleton Interactions on Cell Respiration.

    Science.gov (United States)

    Goswami, Ishan; Perry, Justin B; Allen, Mitchell E; Brown, David A; von Spakovsky, Michael R; Verbridge, Scott S

    2018-06-19

    Pulsed electric fields with microsecond pulse width (μsPEFs) are used clinically; namely, irreversible electroporation/Nanoknife is used for soft tissue tumor ablation. The μsPEF pulse parameters used in irreversible electroporation (0.5-1 kV/cm, 80-100 pulses, ∼100 μs each, 1 Hz frequency) may cause an internal field to develop within the cell because of the disruption of the outer cell membrane and subsequent penetration of the electric field. An internal field may disrupt voltage-sensitive mitochondria, although the research literature has been relatively unclear regarding whether such disruptions occur with μsPEFs. This investigation reports the influence of clinically used μsPEF parameters on mitochondrial respiration in live cells. Using a high-throughput Agilent Seahorse machine, it was observed that μsPEF exposure comprising 80 pulses with amplitudes of 600 or 700 V/cm did not alter mitochondrial respiration in 4T1 cells measured after overnight postexposure recovery. To record alterations in mitochondrial function immediately after μsPEF exposure, high-resolution respirometry was used to measure the electron transport chain state via responses to glutamate-malate and ADP and mitochondrial membrane potential via response to carbonyl cyanide-p-trifluoromethoxyphenylhydrazone. In addition to measuring immediate mitochondrial responses to μsPEF exposure, measurements were also made on cells permeabilized using digitonin and those with compromised cytoskeleton due to actin depolymerization via treatment with the drug latrunculin B. The former treatment was used as a control to tease out the effects of plasma membrane permeabilization, whereas the latter was used to investigate indirect effects on the mitochondria that may occur if μsPEFs impact the cytoskeleton on which the mitochondria are anchored. Based on the results, it was concluded that within the pulse parameters tested, μsPEFs alone do not hinder mitochondrial physiology but can be used

  20. The Rayleigh-Taylor instability under electrical pulse discharge in water

    International Nuclear Information System (INIS)

    Kononov, A.V.; Porytskyy, P.V.; Starchyk, P.D.; Voitenko, L.M.

    1999-01-01

    The development of the Rayleigh-Taylor instability is studied on the interface between both the plasma channel and liquid medium under an electrical pulse discharge in water.It is shown that,growth of the irregularities of the contact interface leads to the increasing of heat flux from the discharge channel due to the growth of an interfacial area and the incoming of water matter into a discharge channel.As a result of these processes the characteristics of the discharge may be strongly varied

  1. Comparative evaluation of experimental and theoretical erosion resistance of materials upon electric pulse treatment

    International Nuclear Information System (INIS)

    Karpman, M.G.; Fetisov, G.P.; Bologov, D.V.

    1999-01-01

    Using the Palatnik criterion a comparative analysis is performed of the theoretical and experimental data on comparative electric erosion and erosion resistance of the electrodes and parts made of different materials upon their treatment using electric pulse technique. A reasonable qualitative agreement of the theoretical and experimental data indicates the possibility of using the Palatnik criterion to predict the serviceability of different pairs of the materials in conditions of electroerosion wear [ru

  2. Sodium current inhibition by nanosecond pulsed electric field (nsPEF)--fact or artifact?

    NARCIS (Netherlands)

    Verkerk, Arie O.; van Ginneken, Antoni C. G.; Wilders, Ronald

    2013-01-01

    In two recent publications in Bioelectromagnetics it has been demonstrated that the voltage-gated sodium current (I(Na)) is inhibited in response to a nanosecond pulsed electric field (nsPEF). At the same time, there was an increase in a non-inactivating "leak" current (I(leak)), which was

  3. Pulsed electric field increases reproduction.

    Science.gov (United States)

    Panagopoulos, Dimitris J

    2016-01-01

    Purpose To study the effect of pulsed electric field - applied in corona discharge photography - on Drosophila melanogaster reproduction, possible induction of DNA fragmentation, and morphological alterations in the gonads. Materials and methods Animals were exposed to different field intensities (100, 200, 300, and 400 kV/m) during the first 2-5 days of their adult lives, and the effect on reproductive capacity was assessed. DNA fragmentation during early- and mid-oogenesis was investigated by application of the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay. Sections of follicles after fixation and embedding in resins were observed for possible morphological/developmental abnormalities. Results The field increased reproduction by up to 30% by increasing reproductive capacity in both sexes. The effect increased with increasing field intensities. The rate of increase diminished at the strongest intensities. Slight induction of DNA fragmentation was observed exclusively in the nurse (predominantly) and follicle cells, and exclusively at the two most sensitive developmental stages, i.e., germarium and predominantly stage 7-8. Sections of follicles from exposed females at stages of early and mid-oogennesis other than germarium and stages 7-8 did not reveal abnormalities. Conclusions (1) The specific type of electric field may represent a mild stress factor, inducing DNA fragmentation and cell death in a small percentage of gametes, triggering the reaction of the animal's reproductive system to increase the rate of gametogenesis in order to compensate the loss of a small number of gametes. (2) The nurse cells are the most sensitive from all three types of egg chamber cells. (3) The mid-oogenesis checkpoint (stage 7-8) is more sensitive to this field than the early oogenesis one (germarium) in contrast to microwave exposure. (4) Possible therapeutic applications, or applications in increasing fertility, should be investigated.

  4. Electric pulse treatment of welded joint of aluminum alloy

    Directory of Open Access Journals (Sweden)

    A.A. Mitiaev

    2013-08-01

    Full Text Available Purpose. Explanation of the redistribution effect of residual strengthes after electric pulse treatment of ark welding seam of the aluminum alloy. Methodology. Alloy on the basis of aluminium of АК8М3 type served as the research material. As a result of mechanical treatment of the ingots after alloy crystallization the plates with 10 mm thickness were obtained. After edge preparation the elements, which are being connected were butt welded using the technology of semiautomatic argon arc welding by the electrode with a diameter of 3 mm of AK-5 alloy. Metal structure of the welded joint was examined under the light microscope at a magnification of 200 and under the scanning electronic microscope «JSM-6360 LA». The Rockwell hardness (HRF was used as a strength characteristic of alloy. Hardness measuring of the phase constituents (microhardness was carried out using the device PМТ-3, with the indenter loadings 5 and 10 g. The crystalline structure parameters of alloy (dislocation density, second kind of the crystalline grid distortion and the scale of coherent scattering regions were determined using the methods of X-ray structural analysis. Electric pulse treatment (ET was carried out on the special equipment in the conditions of the DS enterprise using two modes A and В. Findings. On the basis of researches the previously obtained microhardness redistribution effect in the area of welded connection after ET was confirmed. As a result of use of the indicated treatment it was determined not only the reduction of microhardness gradient but also the simultaneous hardening effect in the certain thermal affected areas near the welding seam. During study of chemical composition of phase constituents it was discovered, that the structural changes of alloy as a result of ET first of all are caused by the redistribution of chemical elements, which form the connections themselves. By the nature of the influence the indicated treatment can be

  5. Influence Voltage Pulse Electrical Discharge In The Water at the Endurance Fatigue Of Carbon Steel

    OpenAIRE

    I.A. Vakulenko; A.G. Lisnyak

    2016-01-01

    Effect of pulses of electrical discharge in the water at the magnitude of the limited endurance under cyclic loading thermally hardened carbon steel was investigated. Observed increase stamina during cyclic loading a corresponding increase in the number of accumulated dislocations on the fracture surface. Using the equation of Cofino-Manson has revealed a decrease of strain loading cycle after treatment discharges. For field-cycle fatigue as a result of processing the voltage pulses carbon st...

  6. Red cherries (Prunus avium var. Stella) processed by pulsed electric field - Physical, chemical and microbiological analyses.

    Science.gov (United States)

    Sotelo, Kristine A G; Hamid, Nazimah; Oey, Indrawati; Pook, Chris; Gutierrez-Maddox, Noemi; Ma, Qianli; Ying Leong, Sze; Lu, Jun

    2018-02-01

    This study examined, for the first time, the effect of mild or moderate intensity pulsed electric field (PEF) processing on cherries, in particular changes in physicochemical properties, release of anthocyanins and polyphenols, and the potential growth of lactic acid bacteria. Cherry samples were treated at a constant pulse frequency of 100Hz and a constant pulse width of 20μs with different electric field strengths between 0.3 and 2.5kV/cm. Titratable acidity and total soluble solids values of most PEF samples stored for 24h significantly decreased compared to other samples. Stored samples also had increased cyanidin glucoside content. However, concentration of rutin, 4-hydroxybenzoic acid and isorhamnetin rutinoside significantly decreased in samples stored for 24h. In conclusion, sweet cherries were only influenced by storage after PEF processing. PEF processing did not affect the growth of probiotic bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. High intensity pulsed electric field as an innovative technique for extraction of bioactive compounds-A review.

    Science.gov (United States)

    Yan, Liang-Gong; He, Lang; Xi, Jun

    2017-09-02

    How to extract bioactive compounds safely and efficiently is one of the problems for the food and pharmaceutical industry. In recent years, several novel extraction techniques have been proposed. To pursue a more efficient method for industrial production, high intensity pulsed electric field (HIPEF) extraction technique has been developed. HIPEF extraction technique, which is based on the conventional pulsed electric field (PEF), provided higher electric field intensity and a special continuous extraction system, and it has confirmed less extraction time, higher extraction yield, and mild processing temperature. So this innovative technique is promising for application of industrial production. This review was devoted to introducing the recent achievement of HIPEF extraction technique, including novel HIPEF continuous extraction system, principles and mechanisms; the critical process factors influencing its performance applications; and comparison of HIPEF extraction with other extraction techniques. In the end, the defects and future trends of HIPEF extraction were also discussed.

  8. On the stability of the interface between dense plasma and liquid under electrical pulse discharge in liquid medium

    International Nuclear Information System (INIS)

    Starchyk, P.D.; Porytskyy, P.V.

    2005-01-01

    It is shown that the most important influence on the plasma of electrical pulse discharges in liquid have the processes in a zone of its contact with condensed medium. The investigations of growth of corrugations are conducted which arise on an interface between both the plasma channels of electrical pulse discharges and limiting it liquid. It is shown that the growth of perturbations caused by Rayleigh-Taylor instability are nonlinearly saturated. It is established the interconnection between both the pointed perturbations and the parameters of a dense plasma of discharge channel

  9. Effect of Electric-current Pulses on Grain-structure Evolution in Cryogenically Rolled Copper

    Science.gov (United States)

    2014-11-01

    severely deformed dilute aluminium alloy . Acta Mater. 56, 1619 (2008). 4. T. Konkova, S. Mironov, A. Korznikov, and S.L. Semiatin: Microstructural response...phase transformation and variant selection by electric current pulses in a Cu-Zn alloy . J. Mater. Res. 29, 975 (2014). 13. I.Sh. Valeev and Z.G

  10. Fermentation Assisted by Pulsed Electric Field and Ultrasound: A Review

    Directory of Open Access Journals (Sweden)

    Leandro Galván-D’Alessandro

    2018-01-01

    Full Text Available Various novel techniques are proposed to improve process efficiency, quality, and safety of fermented food products. Ultrasound and pulsed electric field (PEF are versatile technologies that can be employed in conjunction with fermentation processes to enhance process efficiency and production rates by improving mass transfer and cell permeability. The aim of this review is to highlight current and potential applications of ultrasound and PEF techniques in food fermentation processes. Their effects on microbial enzymes, along with mechanisms of action, are also discussed.

  11. The effect of high voltage, high frequency pulsed electric field on slain ovine cortical bone.

    Science.gov (United States)

    Asgarifar, Hajarossadat; Oloyede, Adekunle; Zare, Firuz

    2014-04-01

    High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network

  12. Pulsed Electric Field for protein release of the microalgae Chlorella vulgaris and Neochloris oleoabundans

    NARCIS (Netherlands)

    Lam, 't Gerard; Postma, P.R.; Fernandes, D.A.; Timmermans, R.A.H.; Vermuë, M.H.; Barbosa, M.J.; Eppink, M.H.; Wijffels, R.H.; Olivieri, G.

    2017-01-01

    Pulsed Electric Field (PEF) is currently discussed as promising technology for mild and scalable cell disintegration of microalgae. In this study Chlorella vulgaris and Neochloris oleoabundans have been subjected to batch and continuous PEF treatments under a wide range of operating conditions

  13. Measurement and analysis of the electric field radiation in pulsed power system of linear induction accelerator

    International Nuclear Information System (INIS)

    Cheng Qifeng; Ni Jianping; Meng Cui; Cheng Cheng; Liu Yinong; Li Jin

    2009-01-01

    The close of high voltage switch in pulsed power system of linear induction accelerator often radiates strong transient electric field, which may influence ambient sensitive electric equipment, signals and performance of other instruments, etc. By performing gridded measurement around the Marx generator, the general distribution law and basic characters of electric field radiation are summarized. The current signal of the discharge circuit is also measured, which demonstrates that the current and the radiated electric field both have a resonance frequency about 150 kHz, and contain much higher frequency components. (authors)

  14. Conductive plastic film electrodes for Pulsed Electric Field (PEF) treatment : A proof of principle

    NARCIS (Netherlands)

    Roodenburg, B.; Haan, S.W.H. de; Boxtel, L.B.J. van; Hatt, V.; Wouters, P.C.; Coronel, P.; Ferreira, J.A.

    2010-01-01

    Nowadays Pulsed Electric Field (PEF) treatment of food needs to be performed prior to packaging, either hygienic or aseptic packaging is necessary. New techniques for PEF treatment after packaging can be considered when plastic conductive (film) electrodes can be integrated within the package, so

  15. Calcium influx affects intracellular transport and membrane repair following nanosecond pulsed electric field exposure.

    Science.gov (United States)

    Thompson, Gary Lee; Roth, Caleb C; Dalzell, Danielle R; Kuipers, Marjorie; Ibey, Bennett L

    2014-05-01

    The cellular response to subtle membrane damage following exposure to nanosecond pulsed electric fields (nsPEF) is not well understood. Recent work has shown that when cells are exposed to nsPEF, ion permeable nanopores (2  nm) created by longer micro- and millisecond duration pulses. Nanoporation of the plasma membrane by nsPEF has been shown to cause a transient increase in intracellular calcium concentration within milliseconds after exposure. Our research objective is to determine the impact of nsPEF on calcium-dependent structural and repair systems in mammalian cells. Chinese hamster ovary (CHO-K1) cells were exposed in the presence and absence of calcium ions in the outside buffer to either 1 or 20, 600-ns duration electrical pulses at 16.2  kV/cm, and pore size was determined using propidium iodide and calcium green. Membrane organization was observed with morphological changes and increases in FM1-43 fluorescence. Migration of lysosomes, implicated in membrane repair, was followed using confocal microscopy of red fluorescent protein-tagged LAMP1. Microtubule structure was imaged using mEmerald-tubulin. We found that at high 600-ns PEF dosage, calcium-induced membrane restructuring and microtubule depolymerization coincide with interruption of membrane repair via lysosomal exocytosis.

  16. analysis of large electromagnetic pulse simulators using the electric field integral equation method in time domain

    International Nuclear Information System (INIS)

    Jamali, J.; Aghajafari, R.; Moini, R.; Sadeghi, H.

    2002-01-01

    A time-domain approach is presented to calculate electromagnetic fields inside a large Electromagnetic Pulse (EMP) simulator. This type of EMP simulator is used for studying the effect of electromagnetic pulses on electrical apparatus in various structures such as vehicles, a reoplanes, etc. The simulator consists of three planar transmission lines. To solve the problem, we first model the metallic structure of the simulator as a grid of conducting wires. The numerical solution of the governing electric field integral equation is then obtained using the method of moments in time domain. To demonstrate the accuracy of the model, we consider a typical EMP simulator. The comparison of our results with those obtained experimentally in the literature validates the model introduced in this paper

  17. Impact of external medium conductivity on cell membrane electropermeabilization by microsecond and nanosecond electric pulses

    Science.gov (United States)

    Silve, Aude; Leray, Isabelle; Poignard, Clair; Mir, Lluis M.

    2016-01-01

    The impact of external medium conductivity on the efficiency of the reversible permeabilisation caused by pulsed electric fields was investigated. Pulses of 12 ns, 102 ns or 100 μs were investigated. Whenever permeabilisation could be detected after the delivery of one single pulse, media of lower conductivity induced more efficient reversible permeabilisation and thus independently of the medium composition. Effect of medium conductivity can however be hidden by some saturation effects, for example when pulses are cumulated (use of trains of 8 pulses) or when the detection method is not sensitive enough. This explains the contradicting results that can be found in the literature. The new data are complementary to those of one of our previous study in which an opposite effect of the conductivity was highlighted. It stresses that the conductivity of the medium influences the reversible permeabilization by several ways. Moreover, these results clearly indicate that electropermeabilisation does not linearly depend on the energy delivered to the cells. PMID:26829153

  18. Electromagnetic pulse research on electric power systems: Program summary and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P.R.; McConnell, B.W.; Van Dyke, J.W. (Oak Ridge National Lab., TN (United States)); Tesche, F.M. (Tesche (F.M.), Dallas, TX (United States)); Vance, E.F. (Vance (E.F.), Fort Worth, TX (United States))

    1993-01-01

    A single nuclear detonation several hundred kilometers above the central United States will subject much of the nation to a high-altitude electromagnetic pulse (BENT). This pulse consists of an intense steep-front, short-duration transient electromagnetic field, followed by a geomagnetic disturbance with tens of seconds duration. This latter environment is referred to as the magnetohydrodynamic electromagnetic pulse (NMENT). Both the early-time transient and the geomagnetic disturbance could impact the operation of the nation's power systems. Since 1983, the US Department of Energy has been actively pursuing a research program to assess the potential impacts of one or more BENT events on the nation's electric energy supply. This report summarizes the results of that program and provides recommendations for enhancing power system reliability under HENT conditions. A nominal HENP environment suitable for assessing geographically large systems was developed during the program and is briefly described in this report. This environment was used to provide a realistic indication of BEMP impacts on electric power systems. It was found that a single high-altitude burst, which could significantly disturb the geomagnetic field, may cause the interconnected power network to break up into utility islands with massive power failures in some areas. However, permanent damage would be isolated, and restoration should be possible within a few hours. Multiple bursts would likely increase the blackout areas, component failures, and restoration time. However, a long-term blackout of many months is unlikely because major power system components, such as transformers, are not likely to be damaged by the nominal HEND environment. Moreover, power system reliability, under both HENT and normal operating conditions, can be enhanced by simple, and often low cost, modifications to current utility practices.

  19. Metabolite profiling of phenolic and carotenoid contents in tomatoes after moderate-intensity pulsed electric field treatments.

    Science.gov (United States)

    Vallverdú-Queralt, Anna; Oms-Oliu, Gemma; Odriozola-Serrano, Isabel; Lamuela-Raventós, Rosa M; Martín-Belloso, Olga; Elez-Martínez, Pedro

    2013-01-01

    A metabolite profiling approach was used to study the effect of moderate-intensity pulsed electric field (MIPEF) treatments on the individual polyphenol and carotenoid contents of tomato fruit after refrigeration at 4°C for 24h. The MIPEF processing variables studied were electric field strength (from 0.4 to 2.0kV/cm) and number of pulses (from 5 to 30). Twenty four hours after MIPEF treatments, an increase was observed in hydroxycinnamic acids and flavanones, whereas flavonols, coumaric and ferulic acid-O-glucoside were not affected. Major changes were also observed for carotenoids, except for the 5-cis-lycopene isomer, which remain unchanged after 24h of MIPEF treatments. MIPEF treatments, conducted at 1.2kV/cm and 30 pulses, led to the greatest increases in chlorogenic (152%), caffeic acid-O-glucoside (170%) and caffeic (140%) acids. On the other hand, treatments at 1.2kV/cm and 5 pulses led to maximum increases of α-carotene, 9- and 13-cis-lycopene, which increased by 93%, 94% and 140%, respectively. Therefore, MIPEF could stimulate synthesis of secondary metabolites and contribute to production of tomatoes with high individual polyphenol and carotenoid contents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Control of quantum paths of high-order harmonics and attosecond pulse generation in the presence of a static electric field

    International Nuclear Information System (INIS)

    Hong Weiyi; Lu Peixiang; Cao Wei; Lan Pengfei; Wang Xinlin

    2007-01-01

    The time-frequency properties of high-order harmonic generation in the presence of a static electric field are investigated. It is found that the quantum paths contributing to the harmonics can be controlled by adding a static electric field. The highest photon energies of harmonics emitted in the adjacent half-cycles of the laser field are modulated by the static electric field, and then an attosecond pulse train with one burst per optical cycle can be extracted. For the ratio between the laser and the static field of 0.39, the harmonic spectrum is extended to I p + 9.1U p , and the harmonics above I p + 0.7U p are emitted almost in phase. The phase-locked harmonics covered by a broad bandwidth are produced, and then a regular attosecond pulse train with a pulse duration of 80 as is generated

  1. Effect of Pulsed Electric Fields on the Flavour Profile of Red-Fleshed Sweet Cherries (Prunus avium var. Stella

    Directory of Open Access Journals (Sweden)

    Kristine Ann Gualberto Sotelo

    2015-03-01

    Full Text Available The aim of this research was to study the effect of pulsed electric fields (PEF on the flavour profile of red-fleshed sweet cherries (Prunus avium variety Stella. The cherry samples were treated at a constant pulse frequency of 100 Hz, a constant pulse width of 20 μs, different electric field strengths between 0.3 and 2.5 kV/cm and specific energy ranging from 31 to 55 kJ/kg. Volatile compounds of samples were analysed using an automated headspace solid phase microextraction (HS–SPME method coupled with gas chromatography-mass spectrometry (GC–MS. A total of 33 volatile compounds were identified with benzaldehyde, hexanal, (E-2-hexenal, (Z-2-hexen-1-ol, and benzyl alcohol being the predominant volatiles in different PEF-treated samples. Aldehydes namely butanal, octanal, 2-octenal, and nonanal, and (Z-2-hexen-1-ol increased significantly 24 h after PEF treatment at electric field strengths of more than 1.0 kV/cm. Samples incubated for 24 h after PEF treatment (S3 generated higher concentrations of volatiles than samples immediately after PEF treatments (S2. Quantitative results revealed that more flavour volatiles were released and associated with S3 samples after 24 h storage and S2 samples immediately after PEF both with the highest electric field intensities. Interestingly, this study found that the PEF treatments at the applied electric field strength and energy did not result in releasing/producing undesirable flavour compounds.

  2. Inactivation of Listeria monocytogenes in milk by pulsed electric field.

    Science.gov (United States)

    Reina, L D; Jin, Z T; Zhang, Q H; Yousef, A E

    1998-09-01

    Pasteurized whole, 2%, and skim milk were inoculated with Listeria monocytogenes Scott A and treated with high-voltage pulsed electric field (PEF). The effects of milk composition (fat content) and PEF parameters (electric field strength, treatment time, and treatment temperature) on the inactivation of the bacterium were studied. No significant differences were observed in the inactivation of L. monocytogenes Scott A in three types of milk by PEF treatment. With treatment at 25 degrees C, 1- to 3-log reductions of L. monocytogenes were observed. PEF lethal effect was a function of field strength and treatment time. Higher field strength or longer treatment time resulted in a greater reduction of viable cells. A 4-log reduction of the bacterium was obtained by increasing the treatment temperature to 50 degrees C. Results indicate that the use of a high-voltage PEF is a promising technology for inactivation of foodborne pathogens.

  3. Effects of combined exposure of Micrococcus luteus to nisin and pulsed electric fields

    NARCIS (Netherlands)

    Dutreux, N.; Notermans, S.; Góngora-Nieto, M.M.; Barbosa-Cánovas, G.V.; Swanson, B.G.

    2000-01-01

    Death and injury following exposure of Micrococcus luteus to nisin and pulsed electric field (PEF) treatment were investigated in phosphate buffer (pH 6.8, σ = 4.8 ms/cm at 20°C). Four types of experiment were carried out, a single treatment with nisin (100 IU/ml at 20°C for 2 h), a single PEF

  4. Nanosecond electric pulses differentially affect inward and outward currents in patch clamped adrenal chromaffin cells.

    Directory of Open Access Journals (Sweden)

    Lisha Yang

    Full Text Available This study examined the effect of 5 ns electric pulses on macroscopic ionic currents in whole-cell voltage-clamped adrenal chromaffin cells. Current-voltage (I-V relationships first established that the early peak inward current was primarily composed of a fast voltage-dependent Na+ current (INa, whereas the late outward current was composed of at least three ionic currents: a voltage-gated Ca2+ current (ICa, a Ca2+-activated K+ current (IK(Ca, and a sustained voltage-dependent delayed rectifier K+ current (IKV. A constant-voltage step protocol was next used to monitor peak inward and late outward currents before and after cell exposure to a 5 ns pulse. A single pulse applied at an electric (E-field amplitude of 5 MV/m resulted in an instantaneous decrease of ~4% in peak INa that then declined exponentially to a level that was ~85% of the initial level after 10 min. Increasing the E-field amplitude to 8 or 10 MV/m caused a twofold greater inhibitory effect on peak INa. The decrease in INa was not due to a change in either the steady-state inactivation or activation of the Na+ channel but instead was associated with a decrease in maximal Na+ conductance. Late outward current was not affected by a pulse applied at 5 MV/m. However, for a pulse applied at the higher E-field amplitudes of 8 and 10 MV/m, late outward current in some cells underwent a progressive ~22% decline over the course of the first 20 s following pulse exposure, with no further decline. The effect was most likely concentrated on ICa and IK(Ca as IKV was not affected. The results of this study indicate that in whole-cell patch clamped adrenal chromaffin cells, a 5 ns pulse differentially inhibits specific voltage-gated ionic currents in a manner that can be manipulated by tuning E-field amplitude.

  5. Evaluation of bipolar pulse generator for high-purity pulsed ion beam

    International Nuclear Information System (INIS)

    Ito, H.; Kitamura, I.; Masugata, K.

    2008-01-01

    A new type of pulsed ion beam accelerator named 'bipolar pulse accelerator (BPA)' has been proposed in order to improve the purity of intense pulsed ion beams. To confirm the principle of the BPA, we developed a bipolar pulse generator, which consists of a Marx generator and a pulse forming line (PFL) with a rail gap switch on its end. In this article, we report the experimental results of the bipolar pulse and evaluate the electrical characteristics of the bipolar pulse generator. When the bipolar pulse generator was operated at 70% of the full charge condition of the PEL, the bipolar pulse with the first (-138 kV, 72 ns) and the second pulse (+130 kV, 70 ns) was successfully obtained. The evaluation of the electrical characteristics indicates that the developed generator can produce the bipolar pulse with fast rise time and sharp reversing time. At present the bipolar pulse generator is installed in the B y type magnetically insulated ion diode and we carry out the experiment on the production of an intense pulsed ion beam by the bipolar pulse accelerator. (author)

  6. Stressed state of a cement electrical insulation of a pulsed magnet

    International Nuclear Information System (INIS)

    Korenevskij, V.V.; Sugak, E.B.; Fedorenko, L.I.

    1985-01-01

    The stresses arising in cement electrical insulation of a pulsed magnet intended for separation and scanning of beam of secondary particles with 5-10 MeV energy are investigated during its switching. The magnet represents a single-turn construction. During its switching repulsion forces arise in copper buses which affect the core consisting of a set of iron plates. In its turn two cores trying to separate transmit impact load onto cement electrical insulation, the mechanical strength of which determines the construction durability on the whole. For selection of calculation technique the method of photoelasticity is used on models of transparent polymeric materials. Epoxy resin served as material for insulation model, duraluminium for the rest of magnet parts. It is concluded that the calculation technique for the magnet under investigation is a hingeless circular arc

  7. Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure

    OpenAIRE

    Caleb C. Roth; Ronald A. Barnes Jr.; Bennett L. Ibey; Hope T. Beier; L. Christopher Mimun; Saher M. Maswadi; Mehdi Shadaram; Randolph D. Glickman

    2015-01-01

    The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, el...

  8. Disintegration of Copper Ores by Electric Pulses / Rozdrobienie Rudy Miedzi Impulsami Elektrycznymi

    Directory of Open Access Journals (Sweden)

    Kurytnik I.

    2015-12-01

    Full Text Available The article is concerned with methods of ragging and grinding of copper ore. The proposed electric pulse technology is one of the energetically favorable methods of ragging and grinding of natural minerals and anthropogenic raw materials. This paper presents optimal parameters in processing of the product. The results obtained by grinding of copper ore using the offered technology may be used under industrial conditions in the future.

  9. A ‘frozen electric-field’ approach to simulate repetitively pulsed nanosecond plasma discharges and ignition of hydrogen–air mixtures

    International Nuclear Information System (INIS)

    Nagaraja, Sharath; Yang, Vigor

    2014-01-01

    High-fidelity modelling of nanosecond repetitively pulsed discharges (NRPDs) is burdened by the multiple time and length scales and large chemistry mechanisms involved, which prohibit detailed analyses and parametric studies. In the present work, we propose a ‘frozen electric-field’ modelling approach to expedite the NRPD simulations without adverse effects on the solution accuracy. First, a burst of nanosecond voltage pulses is simulated self-consistently until the discharge reaches a stationary state. The calculated spatial distributions and temporal evolution of the electric field, electron density and electron energy during the last pulse are then stored in a library and the electrical characteristics of subsequent pulses are frozen at these values. This strategy allows the timestep for numerical integration to be increased by four orders of magnitude (from 10 −13 to 10 −9  s), thereby significantly improving the computational efficiency of the process. Reduced calculations of a burst of 50 discharge pulses show good agreement with the predictions from a complete plasma model (electrical characteristics calculated during each pulse). The error in species densities is less than 20% at the centre of the discharge volume and about 30% near the boundaries. The deviations in temperature, however, are much lower, at 5% in the entire domain. The model predictions are in excellent agreement with measured ignition delay times and temperatures in H 2 –air mixtures subject to dielectric barrier NRPD over a pressure range of 54–144 Torr with equivalence ratios of 0.7–1.2. The OH density increases with pressure and triggers low-temperature fuel oxidation, which leads to rapid temperature rise and ignition. The ignition delay decreases by a factor of 2, with an increase in pressure from 54 to 144 Torr. In contrast, an increase in the H 2 –air equivalence ratio from 0.7 to 1.2 marginally decreases the ignition delay by about 20%. This behaviour is

  10. High resolution in-operando microimaging of solar cells with pulsed electrically-detected magnetic resonance

    Science.gov (United States)

    Katz, Itai; Fehr, Matthias; Schnegg, Alexander; Lips, Klaus; Blank, Aharon

    2015-02-01

    The in-operando detection and high resolution spatial imaging of paramagnetic defects, impurities, and states becomes increasingly important for understanding loss mechanisms in solid-state electronic devices. Electron spin resonance (ESR), commonly employed for observing these species, cannot meet this challenge since it suffers from limited sensitivity and spatial resolution. An alternative and much more sensitive method, called electrically-detected magnetic resonance (EDMR), detects the species through their magnetic fingerprint, which can be traced in the device's electrical current. However, until now it could not obtain high resolution images in operating electronic devices. In this work, the first spatially-resolved electrically-detected magnetic resonance images (EDMRI) of paramagnetic states in an operating real-world electronic device are provided. The presented method is based on a novel microwave pulse sequence allowing for the coherent electrical detection of spin echoes in combination with powerful pulsed magnetic-field gradients. The applicability of the method is demonstrated on a device-grade 1-μm-thick amorphous silicon (a-Si:H) solar cell and an identical device that was degraded locally by an electron beam. The degraded areas with increased concentrations of paramagnetic defects lead to a local increase in recombination that is mapped by EDMRI with ∼20-μm-scale pixel resolution. The novel approach presented here can be widely used in the nondestructive in-operando three-dimensional characterization of solid-state electronic devices with a resolution potential of less than 100 nm.

  11. Apoptosis induction with electric pulses - A new approach to cancer therapy with drug free

    International Nuclear Information System (INIS)

    Tang, Liling; Yao, Chenguo; Sun, Caixin

    2009-01-01

    Electrical pulses have been widely used in biomedical fields, whose applications depend on the parameters such as durations and electric intensity. Conventional electroporation (0.1-1 kV/cm, 100 μs) has been used in cell fusion, transfection and electrochemotherapy. Recent studies with high-intensity (MV/cm) electric field applications with durations of several tens of nanoseconds can affect intracellular signal transduction and intracellular structures with plasma intact, resulting in an application of intracellular manipulation. The most recent development is the finding that parameters between those two ranges could be used to induce apoptosis of cancer cells. Proposal of apoptosis induction and tumor inhibition has advantages to pursue the treatment of cancer free of cytotoxic drugs.

  12. Electromagnetic Pulse of a Vertical Electric Dipole in the Presence of Three-Layered Region

    Directory of Open Access Journals (Sweden)

    D. Cheng

    2015-01-01

    Full Text Available Approximate formulas are obtained for the electromagnetic pulses due to a delta-function current in a vertical electric dipole on the planar surface of a perfect conductor coated by a dielectric layer. The new approximated formulas for the electromagnetic field in time domain are retreated analytically and some new results are obtained. Computations and discussions are carried out for the time-domain field components radiated by a vertical electric dipole in the presence of three-layered region. It is shown that the trapped-surface-wave terms should be included in the total transient field when both the vertical electric dipole and the observation point are on or near the planar surface of the dielectric-coated earth.

  13. An electrical pulse hydride injector (EPHI) for reactor fueling and tritium handling applications

    International Nuclear Information System (INIS)

    Azizov, E.A.; Kareev, Yu.A.; Savotkin, A.N.; Frunze, V.V.; Penzhorn, R.D.; Glugla, M.

    1995-01-01

    An electrical pulse hydride injector (EPHI) has been developed for reactor fuelling as well as for handling of hydrogen isotopes in facilities operating with tritium. Salient features of the EPHI are the accuracy with which the fuelling rate can be controlled and the avoidance of a pressurized ballast. The generator is simple and allows for safe operation with tritium. (orig.)

  14. Thermal pulse measurements of space charge distributions under an applied electric field in thin films

    International Nuclear Information System (INIS)

    Zheng, Feihu; An, Zhenlian; Zhang, Yewen; Liu, Chuandong; Lin, Chen; Lei, Qingquan

    2013-01-01

    The thermal pulse method is a powerful method to measure space charge and polarization distributions in thin dielectric films, but a complicated calibration procedure is necessary to obtain the real distribution. In addition, charge dynamic behaviour under an applied electric field cannot be observed by the classical thermal pulse method. In this work, an improved thermal pulse measuring system with a supplemental circuit for applying high voltage is proposed to realize the mapping of charge distribution in thin dielectric films under an applied field. The influence of the modified measuring system on the amplitude and phase of the thermal pulse response current are evaluated. Based on the new measuring system, an easy calibration approach is presented with some practical examples. The newly developed system can observe space charge evolution under an applied field, which would be very helpful in understanding space charge behaviour in thin films. (paper)

  15. Influence Voltage Pulse Electrical Discharge In The Water at the Endurance Fatigue Of Carbon Steel

    Directory of Open Access Journals (Sweden)

    I.A. Vakulenko

    2016-05-01

    Full Text Available Effect of pulses of electrical discharge in the water at the magnitude of the limited endurance under cyclic loading thermally hardened carbon steel was investigated. Observed increase stamina during cyclic loading a corresponding increase in the number of accumulated dislocations on the fracture surface. Using the equation of Cofino-Manson has revealed a decrease of strain loading cycle after treatment discharges. For field-cycle fatigue as a result of processing the voltage pulses carbon steel structure improvement, followed by growth of limited endurance decrease per cycle of deformation. With increasing amplitude of the voltage loop gain stamina effect on metal processing voltage pulses is reduced. The results can be used to extend the life of parts that are subject to cyclic loading.

  16. Pulsed laser deposition of semiconductor-ITO composite films on electric-field-applied substrates

    International Nuclear Information System (INIS)

    Narazaki, Aiko; Sato, Tadatake; Kawaguchi, Yoshizo; Niino, Hiroyuki; Yabe, Akira; Sasaki, Takeshi; Koshizaki, Naoto

    2002-01-01

    The DC electric-field effect on the crystallinity of II-VI semiconductor in composite systems has been investigated for CdS-ITO films fabricated via alternative pulsed laser deposition (PLD) of CdS and indium tin oxide (ITO) on electric-field-applied substrates. The alternative laser ablation was performed under irradiation of ArF excimer laser in mixture gas of helium and oxygen. The application of electric-field facilitated the preferential crystal-growth of CdS in nanometer scale at low pressure, whereas all the films grown without the field were amorphous. There is a large difference in the crystallization between the films grown on field-applied and heated substrates; the latter showed the crystal-growth with random orientations. This difference indicates that the existence of electric-field has an influence on the transformation from amorphous to crystalline phase of CdS. The driving force for the field-induced crystallization is also discussed in the light of the Joule heat

  17. LPS levels in root canals after the use of ozone gas and high frequency electrical pulses

    Directory of Open Access Journals (Sweden)

    Tiago André Fontoura de MELO

    2016-01-01

    Full Text Available Abstract The present study aims to verify the effect of ozone gas (OZY® System and high frequency electric pulse (Endox® System systems on human root canals previously contaminated with Escherichia colilipopolysaccharide (LPS. Fifty single-rooted teeth had their dental crowns removed and root lengths standardized to 16 mm. The root canals were prepared up to #60 hand K-files and sterilized using gamma radiation with cobalt 60. The specimens were divided into the following five groups (n = 10 based on the disinfection protocol used: OZY® System, one 120-second-pulse (OZY 1p; OZY® System, four 24-second-pulses (OZY 4p; and Endox® System (ENDOX. Contaminated and non-contaminated canals were exposed only to apyrogenic water and used as positive (C+ and negative (C- controls, respectively. LPS (O55:B55 was administered in all root canals except those belonging to group C-. After performing disinfection, LPS samples were collected from the canals using apyrogenic paper tips. Limulus Amoebocyte Lysate (LAL was used to quantify the LPS levels, and the data obtained was analyzed using one-way ANOVA. The disinfection protocols used were unable to reduce the LPS levels significantly (p = 0.019. The use of ozone gas and high frequency electric pulses was not effective in eliminating LPS from the root canals.

  18. Effect of pulsed electric field treatment on enzyme kinetics and thermostability of endogenous ascorbic acid oxidase in carrots (Daucus carota cv. Nantes).

    Science.gov (United States)

    Leong, Sze Ying; Oey, Indrawati

    2014-03-01

    The objective of this research was to study the enzyme kinetics and thermostability of endogenous ascorbic acid oxidase (AAO) in carrot purée (Daucus carota cv. Nantes) after being treated with pulsed electric field (PEF) processing. Various PEF treatments using electric field strength between 0.2 and 1.2kV/cm and pulsed electrical energy between 1 and 520kJ/kg were conducted. The enzyme kinetics and the kinetics of AAO thermal inactivation (55-70°C) were described using Michaelis-Menten model and first order reaction model, respectively. Overall, the estimated Vmax and KM values were situated in the same order of magnitude as the untreated carrot purée after being exposed to pulsed electrical energy between 1 and 400kJ/kg, but slightly changed at pulsed electrical energy above 500kJ/kg. However, AAO presented different thermostability depending on the electric field strength applied. After PEF treatment at the electric field strength between 0.2 and 0.5kV/cm, AAO became thermolabile (i.e. increase in inactivation rate (k value) at reference temperature) but the temperature dependence of k value (Ea value) for AAO inactivation in carrot purée decreased, indicating that the changes in k values were less temperature dependent. It is obvious that PEF treatment affects the temperature stability of endogenous AAO. The changes in enzyme kinetics and thermostability of AAO in carrot purée could be related to the resulting carrot purée composition, alteration in intracellular environment and the effective concentration of AAO released after being subjected to PEF treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Structural properties and digestibility of pulsed electric field treated waxy rice starch.

    Science.gov (United States)

    Zeng, Feng; Gao, Qun-Yu; Han, Zhong; Zeng, Xin-An; Yu, Shu-Juan

    2016-03-01

    Waxy rice starch was subjected to pulsed electric field (PEF) treatment at intensity of 30, 40 and 50kVcm(-1). The impact of PEF treatment on the granular morphology, molecular weight, semi-crystalline structure, thermal properties, and digestibility were investigated. The micrographs suggested that electric energy could act on the granule structure of starch granule, especially at high intensity of 50kVcm(-1). Gelatinization onset temperature, peak temperature, conclusion temperature and enthalpy value of PEF treated starches were lower than that of native starch. The 9nm lamellar peak of PEF treated starches decreased as revealed by small angle X-ray scattering. The relative crystallinity of treated starches decreased as the increase of electric field intensity. Increased rapidly digestible starch level and decreased slowly digestible starch level was found on PEF treated starches. These results would imply that PEF treatment induced structural changes in waxy rice starch significantly affected its digestibility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Experimental installation for excitation of semiconductors and dielectrics by picosecond pulsed electron beam and electric field

    International Nuclear Information System (INIS)

    Nasibov, A.S.; Berezhnoj, K.V.; Shapkin, P.V.; Reutova, A.G.; Shunajlov, S.A.; Yalandin, M.I.

    2009-01-01

    The experimental facility for shaping high-voltage pulses with amplitudes of 30-250 kV and durations of 100-500 ps and electron beams with a current density of up to 1000 A/cm -2 is described. The facility was built using the principle of energy compression of a pulse from a nanosecond high-voltage generator accompanied by the subsequent pulse sharpening and cutting. The setup is equipped with two test coaxial chambers for radiation excitation in semiconductor crystals by an electron beam or an electric field in air at atmospheric pressure and T = 300 K. Generation of laser radiation in the visible range under field and electron pumping was attained in ZnSSe, ZnSe, ZnCdS, and CdS (462, 480, 515, and 525 nm, respectively). Under the exposure to an electric field (up to 10 6 V x cm -1 ), the laser generation region is as large as 300-500 μm. The radiation divergence was within 5 Deg C. The maximum integral radiation power (6 kW at λ = 480 nm) was obtained under field pumping of a zinc selenide sample with a single dielectric mirror [ru

  1. 1st World Congress on Electroporation and Pulsed Electric Fields in Biology, Medicine and Food & Environmental Technologies

    CERN Document Server

    Kramar, Peter

    2016-01-01

    This volume presents the proceedings of the 1st World Congress on Electroporation and Pulsed Electric Fields in Biology, Medicine and Food & Environmental Technologies (WC2015). The congress took place in Portorož, Slovenia, during the week of September 6th to 10th, 2015. The scientific part of the Congress covered different aspects of electroporation and related technologies and included the following main topics:   ·         Application of pulsed electric fields technology in food: challenges and opportunities ·         Electrical impedance measurement for assessment of electroporation yield ·         Electrochemistry and electroporation ·         Electroporation meets electrostimulation ·         Electrotechnologies for food and biomass treatment ·         Food and biotechnology applications ·         In vitro electroporation - basic mechanisms ·         Interfacial behaviour of lipid-assemblies, membranes and cells in electric f...

  2. Single attosecond pulse generation in an orthogonally polarized two-color laser field combined with a static electric field

    International Nuclear Information System (INIS)

    Xia Changlong; Zhang Gangtai; Wu Jie; Liu Xueshen

    2010-01-01

    We investigate theoretic high-order harmonic generation and single attosecond pulse generation in an orthogonally polarized two-color laser field, which is synthesized by a mid-infrared (IR) pulse (12.5 fs, 2000 nm) in the y component and a much weaker (12 fs, 800 nm) pulse in the x component. We find that the width of the harmonic plateau can be extended when a static electric field is added in the y component. We also investigate emission time of harmonics in terms of a time-frequency analysis to illustrate the physical mechanism of high-order harmonic generation. We calculate the ionization rate using the Ammosov-Delone-Krainov model and interpret the variation of harmonic intensity for different static electric field strengths. When the ratio of strengths of the static and the y-component laser fields is 0.1, a continuous harmonic spectrum is formed from 220 to 420 eV. By superposing a properly selected range of the harmonic spectrum from 300 to 350 eV, an isolated attosecond pulse with a duration of about 75 as is obtained, which is near linearly polarized.

  3. Nanoparticle mediated ablation of breast cancer cells using a nanosecond pulsed electric field

    Science.gov (United States)

    Burford, Christopher

    In the past, both nanomaterials and various heating modalities have been researched as means for treating cancers. However, many of the current methodologies have the flaws of inconsistent tumor ablation and significant destruction of healthy cells. Based on research performed using constant radiofrequency electric fields and metallic nanoparticles (where cell necrosis is induced by the heating of these nanoparticles) we have developed a modality that simlarly uses functionalized metallic nanoparticles, specific for the T47D breast cancer cell line, and nanosecond pulsed electric fields as the hyperthermic inducer. Using both iron oxide and gold nanoparticles the results of our pilot studies indicated that up to 90% of the cancer cells were ablated given the optimal treatment parameters. These quantities of ablated cells were achieved using a cumulative exposure time 6 orders of magnitude less than most in vitro radiofrequency electric field studies.

  4. The Preceding Voltage Pulse and Separation Welding Mechanism of Electrical Contacts

    DEFF Research Database (Denmark)

    Yang, Xiao Cheng; Huang, Jiang; Li, Zhen Biao

    2016-01-01

    In order to obtain a better understanding of the welding mechanism in contact separation, electrical endurance tests were conducted with AgSnO2 and AgNi contacts on a simulation test device. Waveforms of contact displacement, contact voltage, and current were recorded with LabVIEW during the tests......, and changes in a contact gap and heights of pips with increases in operation cycles were observed through charge-coupled device cameras. The resultant test results show that welding in separation is accompanied with a preceding voltage pulse which represents arc rather than contact bounce arc....

  5. Electrical and hydrodynamic characterization of a high current pulsed arc

    International Nuclear Information System (INIS)

    Sousa Martins, R; Chemartin, L; Zaepffel, C; Lalande, Ph; Soufiani, A

    2016-01-01

    High current pulsed arcs are of significant industrial interest and, aiming to reduce time and cost, there is progressively more and more need for computation tools that describe and predict the behaviour of these arcs. These simulation codes need inputs and validations by experimental databases, but accurate data is missing for this category of electric discharges. The principal lack of understanding is with respect to the transient phase of the current, which can reach thousands of amperes in a few microseconds. In this paper, we present the work realized on an experimental setup that simulates in the laboratory an arc column subjected to five levels of high pulsed current, ranging from 10 kA to 100 kA, with the last one corresponding to the standard lightning current waveform used in aircraft certification processes. This device was instrumented by high speed video cameras to assess the characteristic sizes of the arc channel and to characterize the shock wave generated by the arc expansion. The arc channel radius was measured over time during the axisymmetric phase and reached 3.2 cm. The position and velocity of the shock wave was determined during the first 140 μs. The background-oriented schlieren method was used to study the shock wave and a model for the light deflection inside the shock wave was developed. The mass density profile of the shock wave was estimated and showed good agreement with Rankine–Hugoniot relations at the wave front. Electrical measurements were also used to estimate the time-dependent resistance and conductivity of the arc for times lasting up to 50 μs. (paper)

  6. Electrical and hydrodynamic characterization of a high current pulsed arc

    Science.gov (United States)

    Sousa Martins, R.; Chemartin, L.; Zaepffel, C.; Lalande, Ph; Soufiani, A.

    2016-05-01

    High current pulsed arcs are of significant industrial interest and, aiming to reduce time and cost, there is progressively more and more need for computation tools that describe and predict the behaviour of these arcs. These simulation codes need inputs and validations by experimental databases, but accurate data is missing for this category of electric discharges. The principal lack of understanding is with respect to the transient phase of the current, which can reach thousands of amperes in a few microseconds. In this paper, we present the work realized on an experimental setup that simulates in the laboratory an arc column subjected to five levels of high pulsed current, ranging from 10 kA to 100 kA, with the last one corresponding to the standard lightning current waveform used in aircraft certification processes. This device was instrumented by high speed video cameras to assess the characteristic sizes of the arc channel and to characterize the shock wave generated by the arc expansion. The arc channel radius was measured over time during the axisymmetric phase and reached 3.2 cm. The position and velocity of the shock wave was determined during the first 140 μs. The background-oriented schlieren method was used to study the shock wave and a model for the light deflection inside the shock wave was developed. The mass density profile of the shock wave was estimated and showed good agreement with Rankine-Hugoniot relations at the wave front. Electrical measurements were also used to estimate the time-dependent resistance and conductivity of the arc for times lasting up to 50 μs.

  7. Lucifer Yellow uptake by CHO cells exposed to magnetic and electric pulses

    OpenAIRE

    Miklavčič, Damijan; Towhidi, Leila; Firoozabadi, S. M. P.; Mozdarani, Hossein

    2015-01-01

    Background The cell membrane acts as a barrier that hinders free entrance of most hydrophilic molecules into the cell. Due to numerous applications in medicine, biology and biotechnology, the introduction of impermeant molecules into biological cells has drawn considerable attention in the past years. One of the most famous methods in this field is electroporation, in which electric pulses with high intensity and short duration are applied to the cells. The aim of our study was to investigate...

  8. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    International Nuclear Information System (INIS)

    Sulaeman, M. Y.; Widita, R.

    2014-01-01

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20–100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of −1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation

  9. Pulsed Electric Field inactivation of microbial cells: the use of ceramic layers to increase the efficiency of treatment

    International Nuclear Information System (INIS)

    Pizzichemi, M.

    2009-01-01

    The impact of Pulsed Electric Fields (PEF) on bacteria and plant or animal cells has been investigated since the early 1960s. High electric fields pulses (20-70 kV/cm, 1-10 μs) are reported to cause rupture of the cellular lipid membrane, through the mechanism of irreversible electroporation. Quantitative description of cell inactivation kinetics is based on the analysis of stability of lipid bilayers under electric fields and the thermal fluctuations associated with the production of pores. PEF has been successfully applied to inactivation of both Gram-positive and Gram-negative bacteria in many sorts of liquids, such as milk, fruit juices and liquid eggs. In all these media, the level of inactivation could reach the 5 Logs for an approximate range of pulses of 100-200, and an energy consumption of ∼ 10-100 kJ/kg. The advantages of PEF are the superior maintenance of functional and nutritional levels (if compared to traditional thermal treatment), continuous treatment and short processing times, while the current high costs of this technique make it more suitable for treatment of expensive media. We present a solution to the problem of volumes in PEF treatment through the use of high permittivity ceramics, while retaining the same inactivation efficiency and improving the duration of the electrodes.

  10. Pulsed Electric Field inactivation of microbial cells: the use of ceramic layers to increase the efficiency of treatment

    Science.gov (United States)

    Pizzichemi, M.

    2009-12-01

    The impact of Pulsed Electric Fields (PEF) on bacteria and plant or animal cells has been investigated since the early 1960s. High electric fields pulses (20-70 kV/cm, 1-10 μs) are reported to cause rupture of the cellular lipid membrane, through the mechanism of irreversible electroporation. Quantitative description of cell inactivation kinetics is based on the analysis of stability of lipid bilayers under electric fields and the thermal fluctuations associated with the production of pores. PEF has been successfully applied to inactivation of both Gram-positive and Gram-negative bacteria in many sorts of liquids, such as milk, fruit juices and liquid eggs. In all these media, the level of inactivation could reach the 5 Logs for an approximate range of pulses of 100-200, and an energy consumption of ˜ 10-100 kJ/kg. The advantages of PEF are the superior maintenance of functional and nutritional levels (if compared to traditional thermal treatment), continuous treatment and short processing times, while the current high costs of this technique make it more suitable for treatment of expensive media. We present a solution to the problem of volumes in PEF treatment through the use of high permittivity ceramics, while retaining the same inactivation efficiency and improving the duration of the electrodes.

  11. Pulsed Electric Field inactivation of microbial cells: the use of ceramic layers to increase the efficiency of treatment

    Energy Technology Data Exchange (ETDEWEB)

    Pizzichemi, M. [Physics Department, University of Milano - Bicocca (Italy)

    2009-12-15

    The impact of Pulsed Electric Fields (PEF) on bacteria and plant or animal cells has been investigated since the early 1960s. High electric fields pulses (20-70 kV/cm, 1-10 mus) are reported to cause rupture of the cellular lipid membrane, through the mechanism of irreversible electroporation. Quantitative description of cell inactivation kinetics is based on the analysis of stability of lipid bilayers under electric fields and the thermal fluctuations associated with the production of pores. PEF has been successfully applied to inactivation of both Gram-positive and Gram-negative bacteria in many sorts of liquids, such as milk, fruit juices and liquid eggs. In all these media, the level of inactivation could reach the 5 Logs for an approximate range of pulses of 100-200, and an energy consumption of approx 10-100 kJ/kg. The advantages of PEF are the superior maintenance of functional and nutritional levels (if compared to traditional thermal treatment), continuous treatment and short processing times, while the current high costs of this technique make it more suitable for treatment of expensive media. We present a solution to the problem of volumes in PEF treatment through the use of high permittivity ceramics, while retaining the same inactivation efficiency and improving the duration of the electrodes.

  12. Pulsed Electrical Spin Injection into InGaAs Quantum Dots: Studies of the Electroluminescence Polarization Dynamics

    International Nuclear Information System (INIS)

    Asshoff, P.; Loeffler, W.; Fluegge, H.; Zimmer, J.; Mueller, J.; Westenfelder, B.; Hu, D. Z.; Schaadt, D. M.; Kalt, H.; Hetterich, M.

    2010-01-01

    We present time-resolved studies of the spin polarization dynamics during and after initialization through pulsed electrical spin injection into InGaAs quantum dots embedded in a p-i-n-type spin-injection light-emitting diode. Experiments are performed with pulse widths in the nanosecond range and a time-resolved single photon counting setup is used to detect the subsequent electroluminescence. We find evidence that the achieved spin polarization shows an unexpected temporal behavior, attributed mainly to many-carrier and non-equilibrium effects in the device.

  13. Shock waves in water at low energy pulsed electric discharges

    International Nuclear Information System (INIS)

    Pinchuk, M E; Kolikov, V A; Rutberg, Ph G; Leks, A G; Dolinovskaya, R V; Snetov, V N; Stogov, A Yu

    2012-01-01

    Experimental results of shock wave formation and propagation in water at low energy pulsed electric discharges are presented. To study the hydrodynamic structure of the shock waves, the direct shadow optical diagnostic device with time resolution of 5 ns and spatial resolution of 0.1 mm was designed and developed. Synchronization of the diagnostic and electrodischarge units by the fast optocouplers was carried out. The dependences of shock wave velocities after breakdown of interelectrode gap for various energy inputs (at range of ≤1 J) into discharge were obtained. Based on the experimental results the recommendations for the adjustment parameters of the power supply and load were suggested.

  14. Reduction of protease activity in milk by continuous flow high-intensity pulsed electric field treatments.

    Science.gov (United States)

    Bendicho, S; Barbosa-Cánovas, G V; Martín, O

    2003-03-01

    High-intensity pulsed electric field (HIPEF) is a non-thermal food processing technology that is currently being investigated to inactivate microorganisms and certain enzymes, involving a limited increase of food temperature. Promising results have been obtained on the inactivation of microbial enzymes in milk when suspended in simulated milk ultrafiltrate. The aim of this study was to evaluate the effectiveness of continuous HIPEF equipment on inactivating a protease from Bacillus subtilis inoculated in milk. Samples were subjected to HIPEF treatments of up to 866 micros of squared wave pulses at field strengths from 19.7 to 35.5 kV/cm, using a treatment chamber that consisted of eight colinear chambers connected in series. Moreover, the effects of different parameters such as pulse width (4 and 7 micros), pulse repetition rates (67, 89, and 111 Hz), and milk composition (skim and whole milk) were tested. Protease activity decreased with increased treatment time or field strength and pulse repetition rate. Regarding pulse width, no differences were observed between 4 and 7 micros pulses when total treatment time was considered. On the other hand, it was observed that milk composition affected the results since higher inactivation levels were reached in skim than in whole milk. The maximum inactivation (81%) was attained in skim milk after an 866-micros treatment at 35.5 kV/cm and 111 Hz.

  15. Effect of a pulsed power supply on the spectral and electrical characteristics of HID lamps

    International Nuclear Information System (INIS)

    Chammam, Abdeljelil; Elloumi, Hatem; Mrabet, Brahim; Charrada, Kamel; Stambouli, Mongi; Damelincourt, Jean Jacques

    2005-01-01

    Results of spectral and photometric measurements are presented for pulsed power operated high intensity discharges (HIDs). This investigation is related to the application of a pulsed power supply for pile driving of HID lamps. Specifically, we are interested in controlling the spectral response radiation of visible and ultraviolet (UV) lines for tertiary treatment of water using UV radiation. Simulations based on a physical model of the lamps were conducted. These results relate to the radial temperature, line intensity and electrical properties (voltage, power and conductivity). Good agreement has been found between the results of the simulations and the experimental findings

  16. Metal release in a stainless steel pulsed electric field (PEF) system Part II. The treatment of orange juice; related to legislation and treatment chamber lifetime

    NARCIS (Netherlands)

    Roodenburg, B.; Morren, J.; Berg, H.E.; Haan, S.W.H.de

    2005-01-01

    In the last decennia, there is an increasing interest in pulsed electric field (PEF) treatment. The product is often treated in a continuous flow treatment chamber with stainless steel electrodes and exposed to short pulsed electric fields, typically 2-4 kV mm-1 during 1-10 μs. Due to direct contact

  17. Electrical and optical properties of thin indium tin oxide films produced by pulsed laser ablation in oxygen or rare gas atmospheres

    DEFF Research Database (Denmark)

    Thestrup, B.; Schou, Jørgen; Nordskov, A.

    1999-01-01

    Films of indium tin oxide (ITO) have been produced in different background gases by pulsed laser deposition (PLD). The Films deposited in rare gas atmospheres on room temperature substrates were metallic, electrically conductive, but had poor transmission of visible light. For substrate temperatu......Films of indium tin oxide (ITO) have been produced in different background gases by pulsed laser deposition (PLD). The Films deposited in rare gas atmospheres on room temperature substrates were metallic, electrically conductive, but had poor transmission of visible light. For substrate...

  18. High effective heterogeneous plasma vortex reactor for production of heat energy and hydrogen

    Science.gov (United States)

    Belov, N. K.; Zavershinskii, I. P.; Klimov, A. I.; Molevich, N. E.; Porfiriev, D. P.; Tolkunov, B. N.

    2018-03-01

    This work is a continuation of our previous studies [1-10] of physical parameters and properties of a long-lived heterogeneous plasmoid (plasma formation with erosive nanoclusters) created by combined discharge in a high-speed swirl flow. Here interaction of metal nanoclusters with hydrogen atoms is studied in a plasma vortex reactor (PVR) with argon-water steam mixture. Metal nanoclusters were created by nickel cathode’s erosion at combined discharge on. Dissociated hydrogen atoms and ions were obtained in water steam by electric discharge. These hydrogen atoms and ions interacted with metal nanoclusters, which resulted in the creation of a stable plasmoid in a swirl gas flow. This plasmoid has been found to create intensive soft X-ray radiation. Plasma parameters of this plasmoid were measured by optical spectroscopy method. It has been obtained that there is a high non-equilibrium plasmoid: Te > TV >> TR. The measured coefficient of energy performance of this plasmoid is about COP = 2÷10. This extra power release in plasmoid is supposed to be connected with internal excited electrons. The obtained experimental results have proved our suggestion.

  19. Effects of high intensity pulsed electric field and thermal treatments on a lipase from Pseudomonas fluorescens.

    Science.gov (United States)

    Bendicho, S; Estela, C; Giner, J; Barbosa-Cánovas, G V; Martin, O

    2002-01-01

    Milk and dairy products may contain microorganisms capable of secreting lipases that cause sensory defects and technological problems in the dairy industry. In this study, the effects of thermal and high-intensity pulsed electric field (HIPEF) treatments on an extracellular lipase from Pseudomonas fluorescens, suspended in a simulated skim milk ultrafiltrate (SMUF) have been evaluated. Heat treatments applied were up to 30 min from 50 to 90 degrees C. HIPEF treatments were carried out using pilot plant facilities in a batch or continuous flow mode, where treatment chambers consisted of parallel and coaxial configuration, respectively. Samples were subjected to up to 80 pulses at electric field intensities ranging from 16.4 to 37.3 kV/cm. This resulted in a lipase that was quite resistant to heat and also to HIPEF. High (75 degrees C-15 s) and low pasteurization treatments (63 degrees C-30 min) led to inactivations of 5 and 20%, respectively. Using the batch-mode HIPEF equipment, a 62.1% maximum activity depletion was achieved after 80 pulses at 27.4 kV/cm. However, when HIPEF treatments were applied in the continuous flow mode, an inactivation rate of just 13% was achieved, after applying 80 pulses at 37.3 kV/cm and 3.5 Hz. The results of both heat and HIPEF treatments on enzyme inactivation were adjusted with good agreement to a first-order kinetic model (R2 > 62.3%).

  20. Adjusting Pulse Amplitude During Transcutaneous Electrical Nerve Stimulation Does Not Provide Greater Hypoalgesia.

    Science.gov (United States)

    Bergeron-Vézina, Kayla; Filion, Camille; Couture, Chantal; Vallée, Élisabeth; Laroche, Sarah; Léonard, Guillaume

    2018-03-01

    Transcutaneous electrical nerve stimulation (TENS) is an electrotherapeutic modality commonly used in rehabilitation to relieve pain. Adjusting pulse amplitude (intensity) during TENS treatment has been suggested to overcome nerve habituation. However, it is still unclear if this procedure leads to greater hypoalgesia. The aim of this study was to determine if the hypoalgesic effect of TENS is greater when pulse amplitude is adjusted throughout the TENS treatment session in chronic low-back pain patients. Randomized double-blind crossover study. Recruitment and assessment were conducted at the Clinique universitaire de réadaptation de l'Estrie (CURE) of the Faculty of Medicine and Health Sciences of the Université de Sherbrooke. Twenty-one volunteers with chronic low-back pain were enrolled and completed this investigation. Each patient received two high-frequency TENS treatments on two separate sessions: (1) with adjustment of pulse amplitude and (2) without pulse amplitude adjustment. Pain intensity and unpleasantness were assessed before, during, and after TENS application with a 10 cm visual analog scale. Both TENS conditions (with and without adjustment of intensity) decreased pain intensity and unpleasantness when compared with baseline. No difference was observed between the two stimulation conditions for both pain intensity and unpleasantness. The current results suggest that adjustment of pulse amplitude during TENS application does not provide greater hypoalgesia in individuals with chronic low-back pain. Future studies are needed to confirm these findings in other pain populations.

  1. Histopathology of normal skin and melanomas after nanosecond pulsed electric field treatment

    Science.gov (United States)

    Chen, Xinhua; Swanson, R. James; Kolb, Juergen F.; Nuccitelli, Richard; Schoenbach, Karl H.

    2011-01-01

    Nanosecond pulsed electric fields (nsPEFs) can affect the intracellular structures of cells in vitro. This study shows the direct effects of nsPEFs on tumor growth, tumor volume, and histological characteristics of normal skin and B16-F10 melanoma in SKH-1 mice. A melanoma model was set up by injecting B16-F10 into female SKH-1 mice. After a 100-pulse treatment with an nsPEF (40-kV/cm field strength; 300-ns duration; 30-ns rise time; 2-Hz repetition rate), tumor growth and histology were studied using transillumination, light microscopy with hematoxylin and eosin stain and transmission electron microscopy. Melanin and iron within the melanoma tumor were also detected with specific stains. After nsPEF treatment, tumor development was inhibited with decreased volumes post-nsPEF treatment compared with control tumors (Pelectric fields surrounding the needle electrodes. PMID:19730404

  2. The pulse duration of electrical stimulation influences H-reflexes but not corticospinal excitability for tibialis anterior.

    Science.gov (United States)

    Hindle, Alyssa R; Lou, Jenny W H; Collins, David F

    2014-10-01

    The afferent volley generated by neuromuscular electrical stimulation (NMES) influences corticospinal (CS) excitability and frequent NMES sessions can strengthen CS pathways, resulting in long-term improvements in function. This afferent volley can be altered by manipulating NMES parameters. Presently, we manipulated one such parameter, pulse duration, during NMES over the common peroneal nerve and assessed the influence on H-reflexes and CS excitability. We hypothesized that compared with shorter pulse durations, longer pulses would (i) shift the H-reflex recruitment curve to the left, relative to the M-wave curve; and (ii) increase CS excitability more. Using 3 pulse durations (50, 200, 1000 μs), M-wave and H-reflex recruitment curves were collected and, in separate experiments, CS excitability was assessed by comparing motor evoked potentials elicited before and after 30 min of NMES. Despite finding a leftward shift in the H-reflex recruitment curve when using the 1000 μs pulse duration, consistent with a larger afferent volley for a given efferent volley, the increases in CS excitability were not influenced by pulse duration. Hence, although manipulating pulse duration can alter the relative recruitment of afferents and efferents in the common peroneal nerve, under the present experimental conditions it is ineffective for maximizing CS excitability for rehabilitation.

  3. Two-dimensional spatial survey of the plasma potential and electric field in a pulsed bipolar magnetron discharge

    International Nuclear Information System (INIS)

    Vetushka, A.; Karkari, S.K.; Bradley, J.W.

    2004-01-01

    Emissive and Langmuir probe techniques have been used to obtain two-dimensional (2D) spatial maps of the plasma potential V p , electric field E, and ion trajectories in a pulsed bipolar magnetron discharge. The magnetron was pulsed at a frequency of 100 kHz, with a 50% duty cycle and operated at an argon pressure of 0.74 Pa. The pulse wave form was characterized by three distinct phases: the 'overshoot', 'reverse', and 'on' phases. In the 'on' phase of the pulse, when the cathode voltage is driven to -670 V, the 2D spatial distribution of V p has a similar form to that in dc magnetron, with significant axial and radial electric fields in the bulk plasma, accelerating ions to the sheath edge above the cathode racetrack region. During the 'overshoot' phase (duration 200 ns), V p is raised to values greater than +330 V, more than 100 V above the cathode potential, with E pointing away from the target. In the 'reverse' phase V p has a value of +45 V at all measured positions, 2 V more positive than the target potential. In this phase there is no electric field present in the plasma. In the bulk of the plasma, the results from Langmuir probe and the emissive probe are in good agreement, however, in one particular region of the plasma outside the radius of the cathode, the emissive probe measurements are consistently more positive (up to 45 V in the 'on' time). This discrepancy is discussed in terms of the different frequency response of the probes and their perturbation of the plasma. A simple circuit model of the plasma-probe system has been proposed to explain our results. A brief discussion of the effect of the changing plasma potential distribution on the operation of the magnetron is given

  4. Dynamics of ultra-short electromagnetic pulses in the system of chiral carbon nanotube waveguides in the presence of external alternating electric field

    Energy Technology Data Exchange (ETDEWEB)

    Konobeeva, N.N., E-mail: yana_nn@inbox.ru [Volgograd State University, University Avenue 100, Volgograd 400062 (Russian Federation); Belonenko, M.B. [Volgograd Institute of Business, Uzhno-ukrainskaya str., Volgograd 400048 (Russian Federation)

    2014-04-01

    The paper addresses the propagation of ultra-short optical pulses in chiral carbon nanotubes in the presence of external alternating electric field. Following the assumption that the considered optical pulses are represented in the form of discrete solitons, we analyze the wave equation for the electromagnetic field and consider the dynamics of pulses in external field, their initial amplitudes and frequencies.

  5. Droplet size characteristics and energy input requirements of emulsions formed using high-intensity-pulsed electric fields

    International Nuclear Information System (INIS)

    Scott, T.C.; Sisson, W.G.

    1987-01-01

    Experimental methods have been developed to measure droplet size characteristics and energy inputs associated with the rupture of aqueous droplets by high-intensity-pulsed electric fields. The combination of in situ microscope optics and high-speed video cameras allows reliable observation of liquid droplets down to 0.5 μm in size. Videotapes of electric-field-created emulsions reveal that average droplet sizes of less than 5 μm are easily obtained in such systems. Analysis of the energy inputs into the fluids indicates that the electric field method requires less than 1% of the energy required from mechanical agitation to create comparable droplet sizes. 11 refs., 3 figs., 2 tabs

  6. Effects of pre-fermentation and pulsed-electric-field treatment of primary sludge in microbial electrochemical cells.

    Science.gov (United States)

    Ki, Dongwon; Parameswaran, Prathap; Popat, Sudeep C; Rittmann, Bruce E; Torres, César I

    2015-11-01

    The aim of this study was to investigate the combination of two technologies - pulsed electric field (PEF) pre-treatment and semi-continuous pre-fermentation of primary sludge (PS) - to produce volatile fatty acids (VFAs) as the electron donor for microbial electrolysis cells (MECs). Pre-fermentation with a 3-day solids retention time (SRT) led to the maximum generation of VFAs, with or without pretreatment of the PS through pulsed-electric-fields (PEF). PEF treatment before fermentation enhanced the accumulation of the preferred VFA, acetate, by 2.6-fold. Correspondingly, MEC anodes fed with centrate from 3-day pre-fermentation of PEF-treated PS had a maximum current density ∼3.1 A/m(2), which was 2.4-fold greater than the control pre-fermented centrate. Over the full duration of batch MEC experiments, using pre-fermented centrate led to successful performance in terms of Coulombic efficiency (95%), Coulombic recovery (80%), and COD-removal efficiency (85%). Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Pulsed electric field pretreatment of rapeseed green biomass (stems) to enhance pressing and extractives recovery.

    Science.gov (United States)

    Yu, X; Gouyo, T; Grimi, N; Bals, O; Vorobiev, E

    2016-01-01

    The objective of this study was to investigate the effects of pulsed electric field (PEF) pretreatment on the valorization of extractives (proteins and polyphenols) from rapeseed green biomass (stems) by pressing. The effect of pressure, electric field strength and pulse number on the juice expression yield, total polyphenols and total proteins content in the expressed juices were studied. Experiments conducted under optimal conditions (E = 8 kV/cm, tPEF = 2 ms, P = 10 bar) permitted to increase the juice expressed yield from 34% to 81%. Significant increases in total polyphenols content (0.48 vs. 0.10 g GAE/100g DM), in total proteins content (0.14 vs. 0.07 g BSA/100g DM) and in consolidation coefficient (9.0 × 10(-8) vs. 2.2 × 10(-8)m(2)/s) were also observed after PEF pretreatment. The recovered press cake was well dehydrated with an increase of dry matter content from 8.8% to 53.0%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Inactivation of Escherichia coli, Saccharomyces cerevisiae, and Lactobacillus brevis in Low-fat Milk by Pulsed Electric Field Treatment: A Pilot-scale Study.

    Science.gov (United States)

    Lee, Gun Joon; Han, Bok Kung; Choi, Hyuk Joon; Kang, Shin Ho; Baick, Seung Chun; Lee, Dong-Un

    2015-01-01

    We investigated the effects of a pulsed electric field (PEF) treatment on microbial inactivation and the physical properties of low-fat milk. Milk inoculated with Escherichia coli, Saccharomyces cerevisiae, or Lactobacillus brevis was supplied to a pilot-scale PEF treatment system at a flow rate of 30 L/h. Pulses with an electric field strength of 10 kV/cm and a pulse width of 30 μs were applied to the milk with total pulse energies of 50-250 kJ/L achieved by varying the pulse frequency. The inactivation curves of the test microorganisms were biphasic with an initial lag phase (or shoulder) followed by a phase of rapid inactivation. PEF treatments with a total pulse energy of 200 kJ/L resulted in a 4.5-log reduction in E. coli, a 4.4-log reduction in L. brevis, and a 6.0-log reduction in S. cerevisiae. Total pulse energies of 200 and 250 kJ/L resulted in greater than 5-log reductions in microbial counts in stored PEF-treated milk, and the growth of surviving microorganisms was slow during storage for 15 d at 4℃. PEF treatment did not change milk physical properties such as pH, color, or particle-size distribution (ppasteurize low-fat milk.

  9. Deashing macroalgae biomass by pulsed electric field treatment.

    Science.gov (United States)

    Robin, Arthur; Sack, Martin; Israel, Alvaro; Frey, Wolfgang; Müller, Georg; Golberg, Alexander

    2018-05-01

    Among all biomass constituents, the ashes are major hurdles for biomass processing. Ashes currently have low market value and can make a non-negligible fraction of the biomass dry weight significantly impacting its further processing by degrading equipment, lowering process yield, inhibiting reactions and decreasing products qualities. However, most of the current treatments for deashing biomass are of poor efficiency or industrial relevance. This work is the first report on the use of Pulsed Electric Field (PEF) to enhance deashing of biomass from a high ash content green marine macroalga, Ulva sp., using hydraulic pressing. By inducing cell permeabilization of the fresh biomass, PEF was able to enhance the ash extraction from 18.4% (non-treated control) to 37.4% of the total ash content in average, significantly enhancing the extraction of five of the major ash elements (K, Mg, Na, P and S) compared to pressing alone. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. PIEZOELECTRIC WAVEGUIDE SENSOR FOR MEASURING PULSE PRESSURE IN CLOSED LIQUID VOLUMES AT HIGH VOLTAGE ELECTRIC DISCHARGE

    Directory of Open Access Journals (Sweden)

    V. G. Zhekul

    2017-10-01

    Full Text Available Purpose. Investigations of the characteristics of pressure waves presuppose the registration of the total profile of the pressure wave at a given point in space. For these purposes, various types of «pressure to the electrical signal» transmitters (sensors are used. Most of the common sensors are unsuitable for measuring the pulse pressure in a closed water volume at high hydrostatic pressures, in particular to study the effect of a powerful high-voltage pulse discharge on increasing the inflow of minerals and drinking water in wells. The purpose of the work was to develop antijamming piezoelectric waveguide sensor for measuring pulse pressure at a close distance from a high-voltage discharge channel in a closed volume of a liquid. Methodology. We have applied the calibration method as used as a secondary standard, the theory of electrical circuits. Results. We have selected the design and the circuit solution of the waveguide pressure sensor. We have developed a waveguide pulse-pressure sensor DTX-1 with a measuring loop. This sensor makes it possible to study the spectral characteristics of pressure waves of high-voltage pulse discharge in closed volumes of liquid at a hydrostatic pressure of up to 20 MPa and a temperature of up to 80 °C. The sensor can be used to study pressure waves with a maximum amplitude value of up to 150 MPa and duration of up to 80 µs. According to the results of the calibration, the sensitivity of the developed sensor DTX-1 with a measuring loop is 0.0346 V/MPa. Originality. We have further developed the theory of designing the waveguide piezoelectric pulse pressure sensors for measuring the pulse pressure at a close distance from a high-voltage discharge channel in a closed fluid volume by controlling the attenuation of the amplitude of the pressure signal. Practical value. We have developed, created, calibrated, used in scientific research waveguide pressure pulse sensors DTX-1. We propose sensors DTX-1 for sale

  11. Pulsed electric field inactivation of E. coli O157:H7 and surrogate bacteria in orange juice

    Science.gov (United States)

    Introduction: United States FDA juice HACCP rules mandate that orange juice (OJ) processors treat juice for a 5 log reduction of the target pathogen. Thermal pasteurization, however, reduces the sensory characteristics of OJ by removing or altering volatile compounds. Pulsed electric field (PEF) ...

  12. Two modes of cell death caused by exposure to nanosecond pulsed electric field.

    Directory of Open Access Journals (Sweden)

    Olga N Pakhomova

    Full Text Available High-amplitude electric pulses of nanosecond duration, also known as nanosecond pulsed electric field (nsPEF, are a novel modality with promising applications for cell stimulation and tissue ablation. However, key mechanisms responsible for the cytotoxicity of nsPEF have not been established. We show that the principal cause of cell death induced by 60- or 300-ns pulses in U937 cells is the loss of the plasma membrane integrity ("nanoelectroporation", leading to water uptake, cell swelling, and eventual membrane rupture. Most of this early necrotic death occurs within 1-2 hr after nsPEF exposure. The uptake of water is driven by the presence of pore-impermeable solutes inside the cell, and can be counterbalanced by the presence of a pore-impermeable solute such as sucrose in the medium. Sucrose blocks swelling and prevents the early necrotic death; however the long-term cell survival (24 and 48 hr does not significantly change. Cells protected with sucrose demonstrate higher incidence of the delayed death (6-24 hr post nsPEF. These cells are more often positive for the uptake of an early apoptotic marker dye YO-PRO-1 while remaining impermeable to propidium iodide. Instead of swelling, these cells often develop apoptotic fragmentation of the cytoplasm. Caspase 3/7 activity increases already in 1 hr after nsPEF and poly-ADP ribose polymerase (PARP cleavage is detected in 2 hr. Staurosporin-treated positive control cells develop these apoptotic signs only in 3 and 4 hr, respectively. We conclude that nsPEF exposure triggers both necrotic and apoptotic pathways. The early necrotic death prevails under standard cell culture conditions, but cells rescued from the necrosis nonetheless die later on by apoptosis. The balance between the two modes of cell death can be controlled by enabling or blocking cell swelling.

  13. Intense picosecond pulsed electric fields induce apoptosis through a mitochondrial-mediated pathway in HeLa cells

    Science.gov (United States)

    HUA, YUAN-YUAN; WANG, XIAO-SHU; ZHANG, YU; YAO, CHEN-GUO; ZHANG, XI-MING; XIONG, ZHENG-AI

    2012-01-01

    The application of pulsed electric fields (PEF) is emerging as a new technique for tumor therapy. Picosecond pulsed electric fields (psPEF) can be transferred to target deep tissue non-invasively and precisely, but the research of the biological effects of psPEF on cells is limited. Electric theory predicts that intense psPEF will target mitochondria and lead to changes in transmembrane potential, therefore, it is hypothesized that it can induce mitochondrial-mediated apoptosis. HeLa cells were exposed to psPEF in this study to investigate this hypothesis. MTT assay demonstrated that intense psPEF significantly inhibited the proliferation of HeLa cells in a dose-dependent manner. Typical characteristics of apoptosis in HeLa cells were observed, using transmission electron microscopy. Loss of mitochondrial transmembrane potential was explored using laser scanning confocal microscopy with Rhodamine-123 (Rh123) staining. Furthermore, the mitochondrial apoptotic events were also confirmed by western blot analysis for the release of cytochrome C and apoptosis-inducing factor from mitochondria into the cytosol. In addition, activation of caspase-3, caspase-9, upregulation of Bax, p53 and downregulation of Bcl-2 were observed in HeLa cells also indicating apoptosis. Taken together, these results demonstrate that intense psPEF induce cell apoptosis through a mitochondrial-mediated pathway. PMID:22307872

  14. Numerical evaluation of lactoperoxidase inactivation during continuous pulsed electric field processing.

    Science.gov (United States)

    Buckow, Roman; Semrau, Julius; Sui, Qian; Wan, Jason; Knoerzer, Kai

    2012-01-01

    A computational fluid dynamics (CFD) model describing the flow, electric field and temperature distribution of a laboratory-scale pulsed electric field (PEF) treatment chamber with co-field electrode configuration was developed. The predicted temperature increase was validated by means of integral temperature studies using thermocouples at the outlet of each flow cell for grape juice and salt solutions. Simulations of PEF treatments revealed intensity peaks of the electric field and laminar flow conditions in the treatment chamber causing local temperature hot spots near the chamber walls. Furthermore, thermal inactivation kinetics of lactoperoxidase (LPO) dissolved in simulated milk ultrafiltrate were determined with a glass capillary method at temperatures ranging from 65 to 80 °C. Temperature dependence of first order inactivation rate constants was accurately described by the Arrhenius equation yielding an activation energy of 597.1 kJ mol(-1). The thermal impact of different PEF processes on LPO activity was estimated by coupling the derived Arrhenius model with the CFD model and the predicted enzyme inactivation was compared to experimental measurements. Results indicated that LPO inactivation during combined PEF/thermal treatments was largely due to thermal effects, but 5-12% enzyme inactivation may be related to other electro-chemical effects occurring during PEF treatments. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  15. [Spectral analysis of polyphenol oxidase (PPO) and lipoxygenase (LOX) treated by pulsed electric field].

    Science.gov (United States)

    Luo, Wei; Zhang, Ruo-Bing; Chen, Jie; Wang, Li-Ming; Guan, Zhi-Cheng; Jia, Zhi-Dong

    2009-08-01

    Inactivation effect of pulsed electric field (PEF) on polyphenol oxidase (PPO) and lipoxygenase (LOX) was investigated using a laboratory PEF system with a coaxial treatment chamber. Circular dichroism (CD) and fluorescence analysis were used to study the conformation change of the protein. The experimental results show that PPO and LOX can be effectively inactivated by the PEF treatment. Inactivation effect of PPO and LOX increases with the increase in the applied electric strength and the treatment time. Activity of PPO and LOX can be reduced by 60.3% and 21.7% at 20 kV x cm(-1) after being treated for 320 micros respectively. The decrease of the negative peaks (208 and 215 nm in PPO spectra, 208 nm and 218 nm in LOX spectra) in CD spectra of PPO and LOX shows that PEF treatment caused a loss of alpha-helix and increase in beta-sheet content, indicating that conformation changes occur in the secondary structure of PPO and LOX enzyme. This effect was strengthened as the applied electric field increased: alpha-helical content of PPO and LOX was 56% and 29% after being treated at 8 kV x cm(-1), however, when the electric field was increased up to 20 kV x cm(-1), alpha-helical content of PPO and LOX decreased to 21% and 16% respectively. The decrease rate of alpha-helix and increase rate of beta-sheet in PPO are higher than LOX, indicating that the second conformation of PPO is less resistant to PEF treatment than LOX. The fluorescence intensity of LOX increases after PEF treatment. At the same time, increasing the applied pulsed electric field increases the fluorescence intensity emitted. Fluorescence measurements confirm that tertiary conformation changes occur in the local structure of LOX. However the possible mechanism of the conformation change induced by the PEF treatment is beyond the scope of the present investigation.

  16. Electrical addressing and temporal tweezing of localized pulses in passively mode-locked semiconductor lasers

    Science.gov (United States)

    Javaloyes, J.; Camelin, P.; Marconi, M.; Giudici, M.

    2017-08-01

    This work presents an overview of a combined experimental and theoretical analysis on the manipulation of temporal localized structures (LSs) found in passively Vertical-Cavity Surface-Emitting Lasers coupled to resonant saturable absorber mirrors. We show that the pumping current is a convenient parameter for manipulating the temporal Localized Structures, also called localized pulses. While short electrical pulses can be used for writing and erasing individual LSs, we demonstrate that a current modulation introduces a temporally evolving parameter landscape allowing to control the position and the dynamics of LSs. We show that the localized pulses drifting speed in this landscape depends almost exclusively on the local parameter value instead of depending on the landscape gradient, as shown in quasi-instantaneous media. This experimental observation is theoretically explained by the causal response time of the semiconductor carriers that occurs on an finite timescale and breaks the parity invariance along the cavity, thus leading to a new paradigm for temporal tweezing of localized pulses. Different modulation waveforms are applied for describing exhaustively this paradigm. Starting from a generic model of passive mode-locking based upon delay differential equations, we deduce the effective equations of motion for these LSs in a time-dependent current landscape.

  17. Milk processed by pulsed electric fields: evaluation of microbial quality, physicochemical characteristics, and selected nutrients at different storage conditions.

    Science.gov (United States)

    Bermúdez-Aguirre, Daniela; Fernández, Sulmer; Esquivel, Heracleo; Dunne, Patrick C; Barbosa-Cánovas, Gustavo V

    2011-01-01

    Pulsed electric fields (PEF) technology was used to pasteurize raw milk under selected treatments. Processing conditions were: temperature 20, 30, and 40 °C, electric field 30.76 to 53.84 kV/cm, and pulse numbers 12, 24, and 30 for skim milk (SM), and 12, 21, and 30 for whole milk (WM) (2 μs pulse width, monopolar). Physicochemical parameters (pH, electrical conductivity, density, color, solids nonfat [SNF]) and composition (protein and fat content) were measured after processing. Shelf life of SM and WM was assessed after processing at 46.15 kV/cm, combined with temperature (20 to 60 °C) and 30 pulses. Mesophilic and psychrophilic loads and pH were evaluated during storage at 4 and 21 °C. Results showed minor variations in physicochemical properties after processing. There was an interesting trend in SM in SNF, which decreased as treatment became stronger; similar behavior was observed for fat and protein, showing a 0.18% and 0.17% decrease, respectively, under the strongest conditions. Protein and fat content decreased in WM samples treated at 40 °C, showing a decrease in protein (0.11%), and an even higher decrease in fat content. During storage, PEF-treated milk samples showed higher stability at 4 °C with minor variations in pH; after 33 d, pH was higher than 6. However samples at 21 °C showed faster spoilage and pH dropped to 4 after 5 d. Growth of mesophilic bacteria was delayed in both milks after PEF processing, showing a 6- and 7-log cycles for SM and WM, respectively, after day 25 (4 °C); however, psychrophilic bacteria grew faster in both cases. Pulsed electric fields (PEF) technology in the pasteurization of liquid food products has shown positive results. Processing times can be reduced considerably, which in turn reduces the loss of nutrients and offers important savings in energy. PEF has been used successfully to pasteurize some liquid foods, but it is still not used commercially in milk pasteurization, although several trials have shown

  18. Combination pulsed electric field with ethanol solvent for Nannochloropsis sp. extraction

    Science.gov (United States)

    Nafis, Ghazy Ammar; Mumpuni, Perwitasari Yekti; Indarto, Budiman, Arief

    2015-12-01

    Nowadays, energy is one of human basic needs. As the human population increased, energy consumption also increased. This condition causes energy depletion. In case of the situation, alternative energy is needed to replace existing energy. Microalgae is chosen to become one of renewable energy resource, especially biodiesel, because it contains high amount of lipid instead of other feedstock which usually used. Fortunately, Indonesia has large area of water and high intensity of sunlight so microalgae cultivation becomes easier. Nannochloropsis sp., one of microalgae species, becomes the main focus because of its high lipid content. Many ways to break the cell wall of microalgae so the lipid content inside the microalgae will be released, for example conventional extraction, ultrasonic wave extraction, pressing, and electrical method. The most effective way for extraction is electrical method such as pulsed electric field method (PEF). The principal work of this method is by draining the electrical current into parallel plate. Parallel plate will generate the electrical field to break microalgae cell wall and the lipid will be released. The aim of this work is to evaluate two-stage procedure for extraction of useful components from microalgae Nannochloropsis sp. The first stage of this procedure includes pre-treatment of microalgae by ethanol solvent extraction and the second stage applies the PEF extraction using a binary mixture of water and ethanol solvent. Ethanol is chosen as solvent because it's safer to be used and easier to be handled than other solvent. Some variables that used to study the most effective operation conditions are frequency and duty cycle for microalgae. The optimum condition based on this research are at frequency 1 Hz and duty cycle 13%.

  19. Numerical Simulation on the Liquid Bridge Formation by the Applied Electric Pulse

    Science.gov (United States)

    Hong, Jin Seok; Kang, In Seok

    2010-11-01

    In this work, liquid bridge (LB) formation by the applied electric field is analyzed numerically. Numerical simulation captures the temporal behavior of liquid surface during the LB formation between a top plate and a bottom nozzle. Numerical results show the three stages of LB formation; interface elevation, impact/fast spreading and slow spreading/stabilization. The effect of the applied voltage pulse is also studied in terms of minimal electrical energy for LB formation. Non-linear behavior such as bubble trapping at the impact of liquid to plate is also captured and explained qualitatively. Grounded and floating plate is considered. The wetting criterion for LB formation is suggested and explained in terms of capillary pressure. The linear decrease of the final contact radius with the top plate contact angle is shown from the numerical results. In addition, the effects of the liquid properties on the dynamics are briefly discussed.

  20. Inactivation of Escherichia coli, Saccharomyces cerevisiae, and Lactobacillus brevis in Low-fat Milk by Pulsed Electric Field Treatment: A Pilot-scale Study

    Science.gov (United States)

    Han, Bok Kung; Choi, Hyuk Joon; Kang, Shin Ho; Baick, Seung Chun

    2015-01-01

    We investigated the effects of a pulsed electric field (PEF) treatment on microbial inactivation and the physical properties of low-fat milk. Milk inoculated with Escherichia coli, Saccharomyces cerevisiae, or Lactobacillus brevis was supplied to a pilot-scale PEF treatment system at a flow rate of 30 L/h. Pulses with an electric field strength of 10 kV/cm and a pulse width of 30 μs were applied to the milk with total pulse energies of 50-250 kJ/L achieved by varying the pulse frequency. The inactivation curves of the test microorganisms were biphasic with an initial lag phase (or shoulder) followed by a phase of rapid inactivation. PEF treatments with a total pulse energy of 200 kJ/L resulted in a 4.5-log reduction in E. coli, a 4.4-log reduction in L. brevis, and a 6.0-log reduction in S. cerevisiae. Total pulse energies of 200 and 250 kJ/L resulted in greater than 5-log reductions in microbial counts in stored PEF-treated milk, and the growth of surviving microorganisms was slow during storage for 15 d at 4℃. PEF treatment did not change milk physical properties such as pH, color, or particle-size distribution (pelectric-field strength of 10 kV/cm can be used to pasteurize low-fat milk. PMID:26877640

  1. The formation of ozone and UV radiation from high-power pulsed electric discharges

    Science.gov (United States)

    Piskarev, I. M.; Ushkanov, V. A.; Selemir, V. D.; Spirov, G. M.; Malevannaya Pikar', I. A.; Zuimach, E. A.

    2008-09-01

    High-power electric discharges with pulse energies of from 0.15 J to 4 kJ were studied. The yields of UV photons and ozone were found to be approximately equal, which led us to conclude that discharge conditions under which UV radiation and ozone fully destroyed each other were possible. If ozone formation was suppressed, as when a negative volume charge was created in the spark gap region, the flux of UV photons reached 3 × 1023 photons/(cm2 s).

  2. Comparison of electric dipole and magnetic dipole models for electromagnetic pulse generated by nuclear detonation in space

    International Nuclear Information System (INIS)

    Zhu Meng; Zhou Hui; Cheng Yinhui; Li Baozhong; Wu Wei; Li Jinxi; Ma Liang; Zhao Mo

    2013-01-01

    Electromagnetic pulse can be generated by the nuclear detonation in space via two radiation mechanisms. The electric dipole and magnetic dipole models were analyzed. The electric radiation in the far field generated by two models was calculated as well. Investigations show that in the case of one hundred TNT yield detonations, when electrons are emitted according to the Gaussian shape, two radiation models can give rise to the electric field in great distances with amplitudes of kV/m and tens of V/m, independently. Because the geomagnetic field in space is not strong and the electrons' angular motion is much weaker than the motion in the original direction, radiations from the magnetic dipole model are much weaker than those from the electric dipole model. (authors)

  3. Foundations of pulsed power technology

    CERN Document Server

    Lehr, Janet

    2018-01-01

    Pulsed power technologies could be an answer to many cutting-edge applications. The challenge is in how to develop this high-power/high-energy technology to fit current market demands of low-energy consuming applications. This book provides a comprehensive look at pulsed power technology and shows how it can be improved upon for the world of today and tomorrow. Foundations of Pulsed Power Technology focuses on the design and construction of the building blocks as well as their optimum assembly for synergetic high performance of the overall pulsed power system. Filled with numerous design examples throughout, the book offers chapter coverage on various subjects such as: Marx generators and Marx-like circuits; pulse transformers; pulse-forming lines; closing switches; opening switches; multi-gigawatt to multi-terawatt systems; energy storage in capacitor banks; electrical breakdown in gases; electrical breakdown in solids, liquids and vacuum; pulsed voltage and current measurements; electromagnetic interferen...

  4. A comparison of electrical and photonic pulse generation for IR-UWB on fiber links

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Caballero Jambrina, Antonio; Yu, Xianbin

    2010-01-01

    We present and compare experimental results for electrical and photonic generation of 2-Gb/s pulses for impulse radio ultra-wideband on fiber transmission systems based on direct current modulation of a semiconductor laser diode and external optical injection of a semiconductor laser diode......, respectively. We assess the performance of the two generation approaches in terms of bit-error rate after propagation over 20 km of optical fiber followed by wireless transmission....

  5. Treatment of complex biological mixtures with pulsed electric fields An energy transfer characterization

    International Nuclear Information System (INIS)

    Schrive, Luc

    2004-01-01

    Sewage sludge from waste water treatment plants is a complex biological mixture and a problematic by-product because of valorisation restrictions. In order to limit its production, pulsed electric fields (PEF) were studied because of their biological effects and their potentially physico-chemical action. This work demonstrated a paradoxical phenomenon: cell lysis triggered a respirometric activation followed by a delayed lethality. This phenomenon was related to the leakage of internal compounds which were immediately bio-assimilated. At high energy expense, the plasmic membrane permeabilization led to cell death. Practically, with the technical configuration of the equipment, no hydrolysis was detected. This limitation decreases the interest for excess sludge reduction, but for the same reason, PEF cold sterilization technique can be assessed as a promising process. The representation of the electric energy transfer from electrodes to cell was exchanged by the study of mass transfer from the biological cell to the surrounding media under an electromotive force. Thus, the survival rate was modelled by a Sherwood number taking account of electrical, biological and hydraulic parameters. (author) [fr

  6. Permeabilization of the nuclear envelope following nanosecond pulsed electric field exposure

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Gary L., E-mail: gary.l.thompson.3@gmail.com [Oak Ridge Institute for Science & Education, Joint Base San Antonio Fort Sam Houston, TX, 78234 (United States); Roth, Caleb C. [Department of Radiological Sciences, University of Texas Health Science Center at San Antonio, TX, 78234 (United States); Kuipers, Marjorie A. [Radio Frequency Radiation Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, Joint Base San Antonio Fort Sam Houston, TX, 78234 (United States); Tolstykh, Gleb P. [General Dynamics IT, Joint Base San Antonio Fort Sam Houston, TX, 78234 (United States); Beier, Hope T. [Optical Radiation Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, Joint Base San Antonio Fort Sam Houston, TX, 78234 (United States); Ibey, Bennett L. [Radio Frequency Radiation Branch, Bioeffects Division, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory, Joint Base San Antonio Fort Sam Houston, TX, 78234 (United States)

    2016-01-29

    Permeabilization of cell membranes occurs upon exposure to a threshold absorbed dose (AD) of nanosecond pulsed electric fields (nsPEF). The ultimate, physiological bioeffect of this exposure depends on the type of cultured cell and environment, indicating that cell-specific pathways and structures are stimulated. Here we investigate 10 and 600 ns duration PEF effects on Chinese hamster ovary (CHO) cell nuclei, where our hypothesis is that pulse disruption of the nuclear envelope membrane leads to observed cell death and decreased viability 24 h post-exposure. To observe short-term responses to nsPEF exposure, CHO cells have been stably transfected with two fluorescently-labeled proteins known to be sequestered for cellular chromosomal function within the nucleus – histone-2b (H2B) and proliferating cell nuclear antigen (PCNA). H2B remains associated with chromatin after nsPEF exposure, whereas PCNA leaks out of nuclei permeabilized by a threshold AD of 10 and 600 ns PEF. A downturn in 24 h viability, measured by MTT assay, is observed at the number of pulses required to induce permeabilization of the nucleus. - Highlights: • The ability of nsPEF to damage nuclear structures within cells is investigated. • Leakage of proliferating nuclear antigen from nuclei is induced by nsPEF. • High doses of nsPEF disrupt cortical lamin and cause chromatin decompaction. • Histone H2B remains attached to chromatin following nsPEF exposure. • DNA does not leak out of nsPEF-permeabilized nuclei.

  7. Consumer perception of the use of high-pressure processing and pulsed electric field technologies in food production

    DEFF Research Database (Denmark)

    Nielsen, Henriette Boel; Sonne, Anne-Mette; Grunert, Klaus G.

    2009-01-01

    on consumer attitudes towards high-pressure processing (HPP) and pulsed electric field (PEF) processing of food was carried out. In all 97 adults between 20 and 71 years of age participated in 12 focus groups conducted in Slovenia, Hungary, Serbia, Slovakia, Norway and Denmark using a common guideline...

  8. Effect of pulsed electric field treatments on permeabilization and extraction of pigments from Chlorella vulgaris.

    Science.gov (United States)

    Luengo, Elisa; Condón-Abanto, Santiago; Álvarez, Ignacio; Raso, Javier

    2014-12-01

    The effect of pulsed electric field (PEF) treatments of different intensities on the electroporation of the cytoplasmatic membrane of Chlorella vulgaris, and on the extraction of carotenoids and chlorophylls were investigated. Staining the cells with propidium iodide before and after the PEF treatment revealed the existence of reversible and irreversible electroporation. Application of PEF treatments in the range of 20-25 kV cm(-1) caused most of the population of C. vulgaris to be irreversibly electroporated even at short treatment times (5 pulses of 3 µs). However, at lower electric field strengths (10 kV cm(-1)), cells that were reversibly electroporated were observed even after 50 pulses of 3 µs. The electroporation of C. vulgaris cells by PEF higher than 15 kV cm(-1) and duration is higher than 15 µs increased significantly the extraction yield of intracellular components of C. vulgaris. The application of a 20 kV cm(-1) for 75 μs increased the extraction yield just after the PEF treatment of the carotenoids, and chlorophylls a and b 0.5, 0.7, and 0.8 times, respectively. However, further increments in electric field strength and treatment time did not cause significant increments in the extraction yield. The extraction of carotenoids from PEF-treated C. vulgaris cells after 1 h of the application of the treatment significantly increased the extraction yield in comparison to the yield obtained from the cells extracted just after the PEF treatment. After PEF treatment at 20 kV cm(-1) for 75 µs, extraction yield for carotenoids, and chlorophylls a and b increased 1.2, 1.6, and 2.1 times, respectively. A high correlation was observed between irreversible electroporation and percentage of yield increase when the extraction was conducted after 1 h of the application of PEF treatment (R: 0.93), but not when the extraction was conducted just after PEF treatment (R: 0.67).

  9. Evaluation of pulsed electric fields technology for liquid whole egg pasteurization.

    Science.gov (United States)

    Monfort, S; Gayán, E; Raso, J; Condón, S; Alvarez, I

    2010-10-01

    This investigation evaluated the lethal efficiency of pulsed electric fields (PEFs) to pasteurize liquid whole egg (LWE). To achieve this aim, we describe the inactivation of Salmonella Enteritidis and the heat resistant Salmonella Senftenberg 775 W in terms of treatment time and specific energy at electric field strengths ranging from 20 to 45 kV/cm. Based on our results, the target microorganism for this technology in LWE varied with intensity of the PEF treatment. For electric field strengths greater than 25 kV/cm, Salmonella Enteritidis was the most PEF-resistant strain. For this Salmonella serovar the level of inactivation depended only on the specific energy applied: i.e., 106, 272, and 472 kJ/kg for 1, 2, and 3 Log(10) reductions, respectively. The developed mathematical equations based on the Weibull distribution permit estimations of maximum inactivation level of 1.9 Log(10) cycles of the target Salmonella serovar in the best-case scenario: 250 kJ/kg and 25 kV/cm. This level of inactivation indicates that PEF technology by itself cannot guarantee the security of LWE based on USDA and European regulations. The occurrence of cell damage due to PEF in the Salmonella population opens the possibility of designing combined processes enabling increased microbial lethality in LWE. 2010 Elsevier Ltd. All rights reserved.

  10. Selective susceptibility to nanosecond pulsed electric field (nsPEF) across different human cell types.

    Science.gov (United States)

    Gianulis, Elena C; Labib, Chantelle; Saulis, Gintautas; Novickij, Vitalij; Pakhomova, Olga N; Pakhomov, Andrei G

    2017-05-01

    Tumor ablation by nanosecond pulsed electric fields (nsPEF) is an emerging therapeutic modality. We compared nsPEF cytotoxicity for human cell lines of cancerous (IMR-32, Hep G2, HT-1080, and HPAF-II) and non-cancerous origin (BJ and MRC-5) under strictly controlled and identical conditions. Adherent cells were uniformly treated by 300-ns PEF (0-2000 pulses, 1.8 kV/cm, 50 Hz) on indium tin oxide-covered glass coverslips, using the same media and serum. Cell survival plotted against the number of pulses displayed three distinct regions (initial resistivity, logarithmic survival decline, and residual resistivity) for all tested cell types, but with differences in LD 50 spanning as much as nearly 80-fold. The non-cancerous cells were less sensitive than IMR-32 neuroblastoma cells but more vulnerable than the other cancers tested. The cytotoxic efficiency showed no apparent correlation with cell or nuclear size, cell morphology, metabolism level, or the extent of membrane disruption by nsPEF. Increasing pulse duration to 9 µs (0.75 kV/cm, 5 Hz) produced a different selectivity pattern, suggesting that manipulation of PEF parameters can, at least for certain cancers, overcome their resistance to nsPEF ablation. Identifying mechanisms and cell markers of differential nsPEF susceptibility will critically contribute to the proper choice and outcome of nsPEF ablation therapies.

  11. Inactivation of Pseudomonas fluorescens in skim milk by combinations of pulsed electric fields and organic acids.

    Science.gov (United States)

    Fernández-Molina, Juan J; Altunakar, Bilge; Bermúdez-Aguirre, Daniela; Swanson, Barry G; Barbosa-Cánovas, Gustavo V

    2005-06-01

    Pseudomonas fluorescens suspended in skim milk was inactivated by application of pulsed electric fields (PEF) either alone or in combination with acetic or propionic acid. The initial concentration of microorganisms ranged from 10(5) to 10(6) CFU/ml. Addition of acetic acid and propionic acid to skim milk inactivated 0.24 and 0.48 log CFU/ml P. fluorescens, respectively. Sets of 10, 20, and 30 pulses were applied to the skim milk using exponentially decaying pulses with pulse lengths of 2 micros and pulse frequencies of 3 Hz. Treatment temperature was maintained between 16 and 20 degrees C. In the absence of organic acids, PEF treatment of skim milk at field intensities of 31 and 38 kV/cm reduced P. fluorescens populations by 1.0 to 1.8 and by 1.2 to 1.9 log CFU/ml, respectively. Additions of acetic and propionic acid to the skim milk in a pH range of 5.0 to 5.3 and PEF treatment at 31, 33, and 34 kV/cm, and 36, 37, and 38 kV/cm reduced the population of P. fluorescens by 1.4 and 1.8 log CFU/ml, respectively. No synergistic effect resulted from the combination of PEF with acetic or propionic acid.

  12. Microdosimetric study for nanosecond pulsed electric fields on a cell circuit model with nucleus.

    Science.gov (United States)

    Denzi, Agnese; Merla, Caterina; Camilleri, Paola; Paffi, Alessandra; d'Inzeo, Guglielmo; Apollonio, Francesca; Liberti, Micaela

    2013-10-01

    Recently, scientific interest in electric pulses, always more intense and shorter and able to induce biological effects on both plasma and nuclear membranes, has greatly increased. Hence, microdosimetric models that include internal organelles like the nucleus have assumed increasing importance. In this work, a circuit model of the cell including the nucleus is proposed, which accounts for the dielectric dispersion of all cell compartments. The setup of the dielectric model of the nucleus is of fundamental importance in determining the transmembrane potential (TMP) induced on the nuclear membrane; here, this is demonstrated by comparing results for three different sets of nuclear dielectric properties present in the literature. The results have been compared, even including or disregarding the dielectric dispersion of the nucleus. The main differences have been found when using pulses shorter than 10 ns. This is due to the fact that the high spectral components of the shortest pulses are differently taken into account by the nuclear membrane transfer functions computed with and without nuclear dielectric dispersion. The shortest pulses are also the most effective in porating the intracellular structures, as confirmed by the time courses of the TMP calculated across the plasma and nuclear membranes. We show how dispersive nucleus models are unavoidable when dealing with pulses shorter than 10 ns because of the large spectral contents arriving above 100 MHz, i.e., over the typical relaxation frequencies of the dipolar mechanism of the molecules constituting the nuclear membrane and the subcellular cell compartments.

  13. Modular Pulsed Plasma Electric Propulsion System for Cubesats

    Science.gov (United States)

    Perez, Andres Dono; Gazulla, Oriol Tintore; Teel, George Lewis; Mai, Nghia; Lukas, Joseph; Haque, Sumadra; Uribe, Eddie; Keidar, Michael; Agasid, Elwood

    2014-01-01

    Current capabilities of CubeSats must be improved in order to perform more ambitious missions. Electric propulsion systems will play a key role due to their large specific impulse. Compared to other propulsion alternatives, their simplicity allows an easier miniaturization and manufacturing of autonomous modules into the nano and pico-satellite platform. Pulsed Plasma Thrusters (PPTs) appear as one of the most promising technologies for the near term. The utilization of solid and non-volatile propellants, their low power requirements and their proven reliability in the large scale make them great candidates for rapid implementation. The main challenges are the integration and miniaturization of all the electronic circuitry into a printed circuit board (PCB) that can satisfy the strict requirements that CubeSats present. NASA Ames and the George Washington University have demonstrated functionality and control of three discrete Micro-Cathode Arc Thrusters (CAT) using a bench top configuration that was compatible with the ARC PhoneSat Bus. This demonstration was successfully conducted in a vaccum chamber at the ARC Environmental Test Laboratory. A new effort will integrate a low power Plasma Processing Unit and two plasma thrusters onto a single printed circuit board that will utilize less than 13 U of Bus volume. The target design will be optimized for the accommodation into the PhoneSatEDISON Demonstration of SmallSatellite Networks (EDSN) bus as it uses the same software interface application, which was demonstrated in the previous task. This paper describes the design, integration and architecture of the proposed propulsion subsystem for a planned Technology Demonstration Mission. In addition, a general review of the Pulsed Plasma technology available for CubeSats is presented in order to assess the necessary challenges to overcome further development.

  14. Improving carotenoid extraction from tomato waste by pulsed electric fields.

    Directory of Open Access Journals (Sweden)

    Elisa eLuengo

    2014-08-01

    Full Text Available In this investigation, the influence of the application of Pulsed Electric Fields (PEF of different intensities (3-7 kV/cm and 0-300 μs on the carotenoid extraction from tomato peel and pulp in a mixture of hexane:acetone:ethanol was studied with the aim of increasing extraction yield or reducing the percentage of the less green solvents in the extraction medium. According to the cellular disintegration index, the optimum treatment time for the permeabilization of tomato peel and pulp at different electric field strengths was 90 µs. The PEF permeabilization of tomato pulp did not significantly increase the carotenoid extraction. However, a PEF-treatment at 5 kV/cm improved the carotenoid extraction from tomato peel by 39 % as compared with the control in a mixture of hexane:ethanol:acetone (50:25:25. Further increments of electric field from 5 to 7 kV/cm did not increase significantly the extraction of carotenoids. . The presence of acetone in the solvent mixture did not positively affect the carotenoid extraction when the tomato peels were PEF-treated. Response surface methodology was used to determine the potential of PEF for reducing the percentage of hexane in a hexane:ethanol mixture. The application of a PEF-treatment allowed reducing the hexane percentage from 45 to 30 % without affecting the carotenoid extraction yield. The antioxidant capacity of the extracts obtained from tomato peel was correlated with the carotenoid concentration and it was not affected by the PEF-treatment.

  15. Effects of pulsed electric fields pretreatment and drying method on drying characteristics and nutritive quality of blueberries

    Science.gov (United States)

    Fresh blueberries were pretreated with pulsed electric fields (PEF) at 2 kV/cm and then dried at 45, 60 and 75 degrees C by conventional hot air or vacuum drying. Drying characteristics and changes in contents of moisture, anthocyanin, total phenolics, vitamin C, and antioxidant activity in the blu...

  16. An 8-GW long-pulse generator based on Tesla transformer and pulse forming network.

    Science.gov (United States)

    Su, Jiancang; Zhang, Xibo; Li, Rui; Zhao, Liang; Sun, Xu; Wang, Limin; Zeng, Bo; Cheng, Jie; Wang, Ying; Peng, Jianchang; Song, Xiaoxin

    2014-06-01

    A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.

  17. An 8-GW long-pulse generator based on Tesla transformer and pulse forming network

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jiancang; Zhang, Xibo; Li, Rui; Zhao, Liang, E-mail: zhaoliang0526@163.com; Sun, Xu; Wang, Limin; Zeng, Bo; Cheng, Jie; Wang, Ying; Peng, Jianchang; Song, Xiaoxin [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an, Shaanxi 710024 (China)

    2014-06-15

    A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.

  18. Osmotic dehydration of blueberries pretreated with pulsed electric fields: Effects on drying rate, and microbiological and nutritional qualities

    Science.gov (United States)

    Fresh blueberries were treated by pulsed electric fields (PEF) at 2 kV/cm before osmotic dehydration in 70% sugar syrup. The changes in water loss, solids gain, populations of native microorganisms, antioxidant activity, contents of anthocyanins, predominant phenolic acids and flavonols, and total p...

  19. Generation of an isolated sub-30 attosecond pulse in a two-color laser field and a static electric field

    International Nuclear Information System (INIS)

    Zhang Gang-Tai; Zhang Mei-Guang; Bai Ting-Ting

    2012-01-01

    We theoretically investigate high-order harmonic generation (HHG) from a helium ion model in a two-color laser field, which is synthesized by a fundamental pulse and its second harmonic pulse. It is shown that a supercontinuum spectrum can be generated in the two-color field. However, the spectral intensity is very low, limiting the application of the generated attosecond (as) pulse. By adding a static electric field to the synthesized two-color field, not only is the ionization yield of electrons contributing to the harmonic emission remarkably increased, but also the quantum paths of the HHG can be significantly modulated. As a result, the extension and enhancement of the supercontinuum spectrum are achieved, producing an intense isolated 26-as pulse with a bandwidth of about 170.5 eV. In particular, we also analyse the influence of the laser parameters on the ultrabroad supercontinuum spectrum and isolated sub-30-as pulse generation. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  20. Relationship between Sublethal Injury and Inactivation of Yeast Cells by the Combination of Sorbic Acid and Pulsed Electric Fields▿

    OpenAIRE

    Somolinos, M.; García, D.; Condón, S.; Mañas, P.; Pagán, R.

    2007-01-01

    The objective of this study was to investigate the occurrence of sublethal injury after the pulsed-electric-field (PEF) treatment of two yeasts, Dekkera bruxellensis and Saccharomyces cerevisiae, as well as the relation of sublethal injury to the inactivating effect of the combination of PEF and sorbic acid. PEF caused sublethal injury in both yeasts: more than 90% of surviving D. bruxellensis cells and 99% of surviving S. cerevisiae cells were sublethally injured after 50 pulses at 12 kV/cm ...

  1. Characteristics of bipolar-pulse generator for intense pulsed heavy ion beam acceleration

    International Nuclear Information System (INIS)

    Igawa, K.; Tomita, T.; Kitamura, I.; Ito, H.; Masugata, K.

    2006-01-01

    Intense pulsed heavy ion beams are expected to be applied to the implantation technology for semiconductor materials. In the application it is very important to purify the ion beam. In order to improve the purity of an intense pulsed ion beams we have proposed a new type of pulsed ion beam accelerator named 'bipolar pulse accelerator (BPA)'. A prototype of the experimental system has been developed to perform proof of principle experiments of the accelerator. A bipolar pulse generator has been designed for the generation of the pulsed ion beam with the high purity via the bipolar pulse acceleration and the electrical characteristics of the generator were evaluated. The production of the bipolar pulse has been confirmed experimentally. (author)

  2. Muscle oxygenation of vastus lateralis and medialis muscles during alternating and pulsed current electrical stimulation.

    Science.gov (United States)

    Aldayel, Abdulaziz; Muthalib, Makii; Jubeau, Marc; McGuigan, Michael; Nosaka, Kazunori

    2011-05-01

    This study compared between alternating and pulsed current electrical muscle stimulation (EMS) for muscle oxygenation and blood volume during isometric contractions. Nine healthy men (23-48 years) received alternating current EMS (2500 Hz) modulated at 75 Hz on the knee extensors of one leg, and pulsed current EMS (75 Hz) for the other leg separated by 2 weeks in a randomised, counter-balanced order. Pulse duration (400 μs), on-off ratio (5-15 s) and other stimulation parameters were matched between conditions and 30 isometric contractions were induced at the knee joint angle of 100° (0° full extension). Changes in tissue oxygenation index (∆TOI) and total hemoglobin volume (∆tHb) of vastus lateralis and medialis muscles over 30 contractions were assessed by a near-infrared spectroscopy, and were compared between conditions by a two-way repeated measures ANOVA. Peak torque produced during EMS increased over 30 contractions in response to the increase in the stimulation intensity for pulsed current, but not for the alternating current EMS. The torque during each isometric contraction was less stable in alternating than pulsed current EMS. The changes in ∆TOI amplitude during relaxation phases and ∆tHb amplitude were not significantly different between conditions. However, the decreases in ∆TOI amplitude during contraction phases from baseline were significantly (P < 0.05) greater for the pulsed current than alternating current from the 18th contraction (-15.6 ± 2.3 vs. -8.9 ± 1.8%) to 30th contraction (-10.7 ± 1.8 vs. -4.8 ± 1.5%). These results suggest that the muscles were less activated in the alternating current EMS when compared with the pulsed current EMS.

  3. Selective extraction of intracellular components from the microalga Chlorella vulgaris by combined pulsed electric field-temperature treatment

    NARCIS (Netherlands)

    Postma, P.R.; Pataro, G.; Capitoli, M.; Barbosa, M.J.; Wijffels, R.H.; Eppink, M.H.M.; Olivieri, G.; Ferrari, G.

    2016-01-01

    The synergistic effect of temperature (25-65°C) and total specific energy input (0.55-1.11kWhkgDW -1) by pulsed electric field (PEF) on the release of intracellular components from the microalgae Chlorella vulgaris was studied. The combination of PEF with temperatures from

  4. The separation of heavy ion tracks in nuclear emulsions by means of the pulsed electric field

    International Nuclear Information System (INIS)

    Akopova, A.B.; Magradze, N.V.; Melkumyan, L.V.; Prokhorenko, Y.P.

    1976-01-01

    The pulsed electric field (PEF) technique is developed for the separation of heavy ion tracks from the intense background caused by high energy electrons, protons and γ-radiation. The tracks of Ne, Cr, Ar-ions accelerated at the Dubna Nuclear Reactions Laboratory have been separated from the background, the voltage of the applied PEF being 10 5 V/cm. (orig.) [de

  5. Understanding the response of pulsed electric field on osteoblast functions in three-dimensional mesh structures.

    Science.gov (United States)

    Kumar, A; Nune, K C; Misra, Rdk

    2016-10-01

    The endogenous electric field plays a determining role in impacting biological functions including communication with the physiological system, brain, and bone regeneration by influencing cellular functions. From this perspective, the objective of the study described here is to elucidate the effect of external electric field under dynamic conditions, in providing a guiding cue to osteoblasts in terms of cell-cell interactions and synthesis of prominent adhesion and cytoskeleton proteins. This was accomplished using pulsed direct current electric field of strength 0.1-1 V/cm. The electric field provided guided cue to the cells to migrate toward cathode. Membrane blebbing or necrosis was nearly absent in the vicinity of cathode at 0.1 and 0.5 V/cm electric field strength. Moreover, a higher cell proliferation as well as higher expression of vinculin and densely packed actin stress fibers was observed. At anode, the cells though healthy but expression of actin and vinculin was less. We underscore for the first time that the biological functionality can be favorably modulated on 3D printed scaffolds in the presence of electric field and under dynamic conditions with consequent positive effect on cell proliferation, growth, and expression level of prominent proteins. © The Author(s) 2016.

  6. Method and apparatus for generating and utilizing a compound plasma configuration

    International Nuclear Information System (INIS)

    Koloc, P.M.

    1977-01-01

    A method and apparatus for generating and utilizing a compound plasma configuration is disclosed. The plasma configuration includes a central toroidal plasma with electrical currents surrounded by a generally ellipsoidal mantle of ionized particles or electrically conducting matter. The preferred methods of forming this compound plasma configuration include the steps of forming a helical ionized path in a gaseous medium and simultaneously discharging a high potential through the ionized path to produce a helical or heliform current which collapses on itself to produce a toroidal current, or generating a toroidal plasmoid, supplying magnetic energy to the plasmoid, and applying fluid pressure external to the plasmoid. The apparatus of the present invention includes a pressure chamber wherein the compound plasma configuration can be isolated or compressed by fluid or other forms of mechanical or magnetic pressure. 47 claims, 10 figures

  7. Controllable pulse parameter transcranial magnetic stimulator with enhanced circuit topology and pulse shaping

    Science.gov (United States)

    Peterchev, Angel V.; DʼOstilio, Kevin; Rothwell, John C.; Murphy, David L.

    2014-10-01

    Objective. This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach. We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with a lower voltage rating than prior cTMS devices. Main results. cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (\\lt 10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in ten healthy volunteers. Significance. The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool.

  8. Enhanced methane production from pig slurry with pulsed electric field pre-treatment.

    Science.gov (United States)

    Safavi, Seyedeh Masoumeh; Unnthorsson, Runar

    2018-02-01

    Intensive amount of manure produced in pig breeding sectors represents negative impact on the environment and requires optimal management. Anaerobic digestion as a well-known manure management process was optimized in this experimental study by pulsed electric field (PEF) pre-treatment. The effect of PEF on methane production was investigated at three different intensities (15, 30 and 50 kWh/m 3 ). The results indicate that the methane production and chemical oxygen demand (COD) removal was improved by continuous escalation of applied intensity, up to 50 kWh/m 3 . In comparison with untreated slurry, methane production and COD removal were increased up to 58% and 44%, respectively.

  9. Electrical pulse – mediated enhanced delivery of silver nanoparticles into living suspension cells for surface enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Lin, J; Li, B; Feng, S; Chen, G; Li, Y; Huang, Z; Chen, R; Yu, Y; Huang, H; Lin, S; Li, C; Su, Y; Zeng, H

    2012-01-01

    Electrical pulse-mediated enhanced silver nanoparticles delivery is a much better method for intracellular surface-enhanced Raman spectroscopy (SERS) measurements of suspension cells. Robust and high-quality SERS spectra of living suspension cells were obtained based on an electroporation-SERS method, which can overcomes the shortcoming of non-uniform distribution of silver nanoparticles localized in the cell cytoplasm after electroporation and reduces the amount variance of silver nanoparticles delivered into different cells. The electroporation parameters include three 150 V (375 V/cm) electric pulses of 1, 5, and 5 ms durations respectively. Our results indicate that considerable amount of silver nanoparticles can be rapidly delivered into the human promyelocytic leukemia HL60 cells, and the satisfied SERS spectra were obtained while the viability of the treated cells was highly maintained (91.7%). The electroporation-SERS method offers great potential approach in delivering silver nanoparticles into living suspension cells, which is useful for widely biomedical applications including the real-time intracellular SERS analysis of living cells

  10. Effect of pulsed electric fields (PEF) on accumulation of selenium and zinc ions in Saccharomyces cerevisiae cells.

    Science.gov (United States)

    Pankiewicz, Urszula; Sujka, Monika; Kowalski, Radosław; Mazurek, Artur; Włodarczyk-Stasiak, Marzena; Jamroz, Jerzy

    2017-04-15

    The cultures of Saccharomyces cerevisiae were treated with pulsed electric fields (PEF) in order to obtain a maximum accumulation of selenium and zinc ions (simultaneously) in the biomass. The following concentrations: 100μgSe/ml and 150μgZn/ml medium were assumed to be optimal for the maximum accumulation of these ions, that is 43.07mg/gd.m. for selenium and 14.48mg/gd.m. for zinc, in the cultures treated with PEF. At optimal PEF parameters: electric field strength of 3kV/cm and pulse width of 10μs after the treatment of 20-h culture for 10min, the maximum accumulation of both ions in the yeast cells was observed. Application of PEF caused the increase of ions accumulation by 65% for selenium and 100% for zinc. Optimization of PEF parameters led to the further rise in the both ions accumulation resulting in over 2-fold and 2.5-fold higher concentration of selenium and zinc. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Repetitive transcranial magnetic stimulator with controllable pulse parameters

    Science.gov (United States)

    Peterchev, Angel V.; Murphy, David L.; Lisanby, Sarah H.

    2011-06-01

    The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.

  12. Morphologically Aligned Cation-Exchange Membranes by a Pulsed Electric Field for Reverse Electrodialysis.

    Science.gov (United States)

    Lee, Ju-Young; Kim, Jae-Hun; Lee, Ju-Hyuk; Kim, Seok; Moon, Seung-Hyeon

    2015-07-21

    A low-resistance ion-exchange membrane is essential to achieve the high-performance energy conversion or storage systems. The formation methods for low-resistance membranes are various; one of the methods is the ion channel alignment of an ion-exchange membrane under a direct current (DC) electric field. In this study, we suggest a more effective alignment method than the process with the DC electric field. First, an ion-exchange membrane was prepared under a pulsed electric field [alternating current (AC) mode] to enhance the effectiveness of the alignment. The membrane properties and the performance in reverse electrodialysis (RED) were then examined to assess the membrane resistance and ion selectivity. The results show that the membrane electrical resistance (MER) had a lower value of 0.86 Ω cm(2) for the AC membrane than 2.13 Ω cm(2) observed for the DC membrane and 4.30 Ω cm(2) observed for the pristine membrane. Furthermore, RED achieved 1.34 W/m(2) of maximum power density for the AC membrane, whereas that for the DC membrane was found to be 1.14 W/m(2) [a RED stack assembled with CMX, used as a commercial cation-exchange membrane (CEM), showed 1.07 W/m(2)]. Thereby, the novel preparation process for a remarkable low-resistance membrane with high ion selectivity was demonstrated.

  13. Upscaling from benchtop processing to industrial scale production: More factors to be considered for pulsed electric field food processing

    Science.gov (United States)

    Pulsed electric field (PEF) processing has been intensively studied with benchtop scale experiments. However, there is still limited information regarding critical factors to be considered for PEF efficacy in microbial reduction with PEF processing at a pilot or commercial scale production of juice....

  14. Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study

    Science.gov (United States)

    Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan

    2016-09-01

    Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2-3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100-250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation.

  15. Impact of high-intensity pulsed electric fields on carotenoids profile of tomato juice made of moderate-intensity pulsed electric field-treated tomatoes.

    Science.gov (United States)

    Vallverdú-Queralt, Anna; Odriozola-Serrano, Isabel; Oms-Oliu, Gemma; Lamuela-Raventós, Rosa M; Elez-Martínez, Pedro; Martín-Belloso, Olga

    2013-12-01

    The effect of pulsed electric fields (PEF) on the carotenoid content of tomato juices was studied. First, moderate-intensity PEF (MIPEF) was applied to raw tomatoes. Afterwards, MIPEF-treated and untreated tomatoes were immediately refrigerated at 4 °C for 24 h and then, they were separately ground to produce tomato juices. Juices were treated by heat treatments or by high-intensity PEF (HIPEF) and stored under refrigeration for 56 days. MIPEF treatment of tomatoes increased the content of carotenoid compounds in tomato juices. An enhancement of 63-65% in 15-cis-lycopene was observed in juices prepared with MIPEF-treated tomatoes. A slight increase in cis-lycopene isomers was observed over time, whereas other carotenoids slightly decreased. However, HIPEF treated tomato juices maintained higher carotenoid content (10-20%) through the storage time than thermally and untreated juices. The combination of MIPEF and HIPEF treatments could be used not only to produce tomato juices with high carotenoid content but also, to maintain higher the carotenoid content during storage time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Sterilization of liquid foods by pulsed electric fields?an innovative ultra-high temperature process

    OpenAIRE

    Reineke, Kai; Schottroff, Felix; Meneses, Nicolas; Knorr, Dietrich

    2015-01-01

    The intention of this study was to investigate the inactivation of endospores by a combined thermal and pulsed electric field (PEF) treatment. Therefore, self-cultivated spores of Bacillus subtilis and commercial Geobacillus stearothermophilus spores with certified heat resistance were utilized. Spores of both strains were suspended in saline water (5.3 mS cm−1), skim milk (0.3% fat; 5.3 mS cm−1) and fresh prepared carrot juice (7.73 mS cm−1). The combination of moderate preheating (70–90°C) ...

  17. A New Concept for Non-Volatile Memory: The Electric-Pulse Induced Resistive Change Effect in Colossal Magnetoresistive Thin Films

    Science.gov (United States)

    Liu, S. Q.; Wu, N. J.; Ignatiev, A.

    2001-01-01

    A novel electric pulse-induced resistive change (EPIR) effect has been found in thin film colossal magnetoresistive (CMR) materials, and has shown promise for the development of resistive, nonvolatile memory. The EPIR effect is induced by the application of low voltage (resistance of the thin film sample depending on pulse polarity. The sample resistance change has been shown to be over two orders of magnitude, and is nonvolatile after pulsing. The sample resistance can also be changed through multiple levels - as many as 50 have been shown. Such a device can provide a way for the development of a new kind of nonvolatile multiple-valued memory with high density, fast write/read speed, low power-consumption, and potential high radiation-hardness.

  18. Raising the avermectins production in Streptomyces avermitilis by utilizing nanosecond pulsed electric fields (nsPEFs)

    Science.gov (United States)

    Guo, Jinsong; Ma, Ruonan; Su, Bo; Li, Yinglong; Zhang, Jue; Fang, Jing

    2016-05-01

    Avermectins, a group of anthelmintic and insecticidal agents produced from Streptomyces avermitilis, are widely used in agricultural, veterinary, and medical fields. This study presents the first report on the potential of using nanosecond pulsed electric fields (nsPEFs) to improve avermectin production in S. avermitilis. The results of colony forming units showed that 20 pulses of nsPEFs at 10 kV/cm and 20 kV/cm had a significant effect on proliferation, while 100 pulses of nsPEFs at 30 kV/cm exhibited an obvious effect on inhibition of agents. Ultraviolet spectrophotometry assay revealed that 20 pulses of nsPEFs at 15 kV/cm increased avermectin production by 42% and reduced the time for reaching a plateau in fermentation process from 7 days to 5 days. In addition, the decreased oxidation reduction potential (ORP) and increased temperature of nsPEFs-treated liquid were evidenced to be closely associated with the improved cell growth and fermentation efficiency of avermectins in S. avermitilis. More importantly, the real-time RT-PCR analysis showed that nsPEFs could remarkably enhance the expression of aveR and malE in S. avermitilis during fermentation, which are positive regulator for avermectin biosynthesis. Therefore, the nsPEFs technology presents an alternative strategy to be developed to increase avermectin output in fermentation industry.

  19. Kilohertz and Low-Frequency Electrical Stimulation With the Same Pulse Duration Have Similar Efficiency for Inducing Isometric Knee Extension Torque and Discomfort.

    Science.gov (United States)

    Medeiros, Flávia Vanessa; Bottaro, Martim; Vieira, Amilton; Lucas, Tiago Pires; Modesto, Karenina Arrais; Bo, Antonio Padilha L; Cipriano, Gerson; Babault, Nicolas; Durigan, João Luiz Quagliotti

    2017-06-01

    To test the hypotheses that, as compared with pulsed current with the same pulse duration, kilohertz frequency alternating current would not differ in terms of evoked-torque production and perceived discomfort, and as a result, it would show the same current efficiency. A repeated-measures design with 4 stimuli presented in random order was used to test 25 women: (1) 500-microsecond pulse duration, (2) 250-microsecond pulse duration, (3) 500-microsecond pulse duration and low carrier frequency (1 kHz), (4) 250-microsecond pulse duration and high carrier frequency (4 kHz). Isometric peak torque of quadriceps muscle was measured using an isokinetic dynamometer. Discomfort was measured using a visual analog scale. Currents with long pulse durations induced approximately 21% higher evoked torque than short pulse durations. In addition, currents with 500 microseconds delivered greater amounts of charge than stimulation patterns using 250-microsecond pulse durations (P torque and discomfort. However, neuromuscular electrical stimulation (NMES) with longer pulse duration induces higher NMES-evoked torque, regardless of the carrier frequency. Pulse duration is an important variable that should receive more attention for an optimal application of NMES in clinical settings.

  20. Influence of vacuum impregnation and pulsed electric field on the freezing temperature and ice propagation rates of spinach leaves

    Science.gov (United States)

    Efforts are currently directed towards improving the quality of sensitive tissues of fruits and vegetables after freezing and thawing. One of the methods under investigation is the combination of vacuum impregnation (VI) with cryoprotectants and pulsed electric field (PEF) applied to the plant tiss...

  1. Electromagnetic pulse research on electric power systems: Program summary and recommendations. Power Systems Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P.R.; McConnell, B.W.; Van Dyke, J.W. [Oak Ridge National Lab., TN (United States); Tesche, F.M. [Tesche (F.M.), Dallas, TX (United States); Vance, E.F. [Vance (E.F.), Fort Worth, TX (United States)

    1993-01-01

    A single nuclear detonation several hundred kilometers above the central United States will subject much of the nation to a high-altitude electromagnetic pulse (BENT). This pulse consists of an intense steep-front, short-duration transient electromagnetic field, followed by a geomagnetic disturbance with tens of seconds duration. This latter environment is referred to as the magnetohydrodynamic electromagnetic pulse (NMENT). Both the early-time transient and the geomagnetic disturbance could impact the operation of the nation`s power systems. Since 1983, the US Department of Energy has been actively pursuing a research program to assess the potential impacts of one or more BENT events on the nation`s electric energy supply. This report summarizes the results of that program and provides recommendations for enhancing power system reliability under HENT conditions. A nominal HENP environment suitable for assessing geographically large systems was developed during the program and is briefly described in this report. This environment was used to provide a realistic indication of BEMP impacts on electric power systems. It was found that a single high-altitude burst, which could significantly disturb the geomagnetic field, may cause the interconnected power network to break up into utility islands with massive power failures in some areas. However, permanent damage would be isolated, and restoration should be possible within a few hours. Multiple bursts would likely increase the blackout areas, component failures, and restoration time. However, a long-term blackout of many months is unlikely because major power system components, such as transformers, are not likely to be damaged by the nominal HEND environment. Moreover, power system reliability, under both HENT and normal operating conditions, can be enhanced by simple, and often low cost, modifications to current utility practices.

  2. Yeast cell inactivation related to local heating induced by low-intensity electric fields with long-duration pulses.

    Science.gov (United States)

    Guyot, Stéphane; Ferret, Eric; Boehm, Jean-Baptiste; Gervais, Patrick

    2007-01-25

    The effects of electric field (EF) treatments on Saccharomyces cerevisiae viability were investigated using a PG200 electroporator (Hoefer Scientific Instrument, San Fransisco, CA, USA) with specific attention to induced thermal effects on cell death. Lethal electric fields (1.5 kV cm(-1) for 5 s) were shown to cause heat variations in the cell suspension medium (water+glycerol), while corresponding classical thermal treatments at equivalent temperatures had no effect on the cells viability. Variations of the electrical conductivity of the intra- and extracellular matrix caused by ions and solutes transfer across the membrane were shown to be involved in the observed heating. The results permitted to build a theoretical model for the temperature variations induced by electric fields. Using this model and the electrical conductivity of the different media, a plausible explanation of the cell death induced by low-intensity electric fields with long-duration pulses has been proposed. Indeed, cell mortality could in part be caused by direct and indirect effects of electric fields. Direct effects are related to well known electromechanical phenomena, whereas indirect effects are related to secondary thermal stress caused by plasma membrane thermoporation. This thermoporation was attributed to electrical conductivity variations and the corresponding intracellular heating.

  3. PLASMOID EJECTIONS AND LOOP CONTRACTIONS IN AN ERUPTIVE M7.7 SOLAR FLARE: EVIDENCE OF PARTICLE ACCELERATION AND HEATING IN MAGNETIC RECONNECTION OUTFLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wei [Lockheed Martin Solar and Astrophysics Laboratory, Building 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Chen Qingrong; Petrosian, Vahe [Department of Physics, Stanford University, Stanford, CA 94305 (United States)

    2013-04-20

    Where particle acceleration and plasma heating take place in relation to magnetic reconnection is a fundamental question for solar flares. We report analysis of an M7.7 flare on 2012 July 19 observed by SDO/AIA and RHESSI. Bi-directional outflows in forms of plasmoid ejections and contracting cusp-shaped loops originate between an erupting flux rope and underlying flare loops at speeds of typically 200-300 km s{sup -1} up to 1050 km s{sup -1}. These outflows are associated with spatially separated double coronal X-ray sources with centroid separation decreasing with energy. The highest temperature is located near the nonthermal X-ray loop-top source well below the original heights of contracting cusps near the inferred reconnection site. These observations suggest that the primary loci of particle acceleration and plasma heating are in the reconnection outflow regions, rather than the reconnection site itself. In addition, there is an initial ascent of the X-ray and EUV loop-top source prior to its recently recognized descent, which we ascribe to the interplay among multiple processes including the upward development of reconnection and the downward contractions of reconnected loops. The impulsive phase onset is delayed by 10 minutes from the start of the descent, but coincides with the rapid speed increases of the upward plasmoids, the individual loop shrinkages, and the overall loop-top descent, suggestive of an intimate relation of the energy release rate and reconnection outflow speed.

  4. Further study on heredity of liquid aluminum modified by electric pulse

    Directory of Open Access Journals (Sweden)

    Qi Jingang

    2011-08-01

    Full Text Available The remarkable heredity of liquid aluminum modified by electric pulse (EP, EPM has been uncovered. For better understanding from all aspects on the hereditary properties, the present research deals with the heredity destruction and the secondary EPM procedure. It is shown that the secondary EPM is capable of preventing the heredity reduction of EP-modified liquid aluminum, and that the final refining effect has a close relationship with technique parameters of the secondary EPM. Furthermore, at a certain superheated temperature depending on the initial EPM technique parameters, the heredity relationship of EP-modified liquid aluminum can be cut off during remelting. High temperature X-ray diffraction combining with the DSC tests also indicates that the EP-induced structure changes have almost disappeared at an elevated remelting temperature.

  5. Pulsed electric field-assisted modification of pectin from sugar beet pulp.

    Science.gov (United States)

    Ma, Sen; Wang, Zhong-he

    2013-02-15

    This current work is concerned with the modification of sugar beet pulp (SBP) pectin assisted by pulsed electric filed (PEF) without solvent. Pectin-arachates with degree of esterification (DE) ranging from 49 to 84 were prepared in one-step modification. The results showed that the DE of pectin derivatives increased significantly with the PEF intensity from 18 to 30 kV cm((1) and total specific energy input from 124 to 345 J mL((1). Evidence of modification of pectin was provided by FT-IR, X-ray diffraction patterns and NMR spectra. Thermogravimetric investigation of modified pectin indicated a higher thermal stability than the untreated one. Results revealed that PEF technology is a promising method for industrial manufacture of pectin derivatives. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Transient Sensory Recovery in Stroke Patients After Pulsed Radiofrequency Electrical Stimulation on Dorsal Root Ganglia: A Case Series.

    Science.gov (United States)

    Apiliogullari, Seza; Gezer, Ilknur A; Levendoglu, Funda

    2017-01-01

    The integrity of the somatosensory system is important for motor recovery and neuroplasticity after strokes. Peripheral stimulation or central stimulation in patients with central nervous system lesions can be an effective modality in improving function and in facilitating neuroplasticity. We present 2 hemiplegic cases with sensory motor deficit and the result of the pulsed radiofrequency (PRF) electrical stimulation to the dorsal root ganglia. After PRF electrical stimulation, significant improvement was achieved in the examination of patients with superficial and deep sensation. However, during the follow-up visits were observed that the effect of PRF electrical stimulation disappeared. We believe that these preliminary results could be used in the development of future prospective cohort studies and randomized controlled trials that focus on the effect of PRF electrical stimulation on dorsal root ganglia to treat sensory deficits in poststroke patients.

  7. Transient suppression of gap junctional intercellular communication after exposure to 100-nanosecond pulsed electric fields.

    Science.gov (United States)

    Steuer, Anna; Schmidt, Anke; Labohá, Petra; Babica, Pavel; Kolb, Juergen F

    2016-12-01

    Gap junctional intercellular communication (GJIC) is an important mechanism that is involved and affected in many diseases and injuries. So far, the effect of nanosecond pulsed electric fields (nsPEFs) on the communication between cells was not investigated. An in vitro approach is presented with rat liver epithelial WB-F344 cells grown and exposed in a monolayer. In order to observe sub-lethal effects, cells were exposed to pulsed electric fields with a duration of 100ns and amplitudes between 10 and 20kV/cm. GJIC strongly decreased within 15min after treatment but recovered within 24h. Gene expression of Cx43 was significantly decreased and associated with a reduced total amount of Cx43 protein. In addition, MAP kinases p38 and Erk1/2, involved in Cx43 phosphorylation, were activated and Cx43 became hyperphosphorylated. Immunofluorescent staining of Cx43 displayed the disassembly of gap junctions. Further, a reorganization of the actin cytoskeleton was observed whereas tight junction protein ZO-1 was not significantly affected. All effects were field- and time-dependent and most pronounced within 30 to 60min after treatment. A better understanding of a possible manipulation of GJIC by nsPEFs might eventually offer a possibility to develop and improve treatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on the decline and recovery of muscle force.

    Science.gov (United States)

    Bochkezanian, Vanesa; Newton, Robert U; Trajano, Gabriel S; Vieira, Amilton; Pulverenti, Timothy S; Blazevich, Anthony J

    2017-05-02

    Neuromuscular electrical stimulation (NMES) is commonly used to activate skeletal muscles and reverse muscle atrophy in clinical populations. Clinical recommendations for NMES suggest the use of short pulse widths (100-200 μs) and low-to-moderate pulse frequencies (30-50 Hz). However, this type of NMES causes rapid muscle fatigue due to the (non-physiological) high stimulation intensities and non-orderly recruitment of motor units. The use of both wide pulse widths (1000 μs) and tendon vibration might optimize motor unit activation through spinal reflex pathways and thus delay the onset of muscle fatigue, increasing muscle force and mass. Thus, the objective of this study was to examine the acute effects of patellar tendon vibration superimposed onto wide-pulse width (1000 μs) knee extensor electrical stimulation (NMES, 30 Hz) on peak muscle force, total impulse before "muscle fatigue", and the post-exercise recovery of muscle function. Tendon vibration (Vib), NMES (STIM) or NMES superimposed onto vibration (STIM + Vib) were applied in separate sessions to 16 healthy adults. Total torque-time integral (TTI), maximal voluntary contraction torque (MVIC) and indirect measures of muscle damage were tested before, immediately after, 1 h and 48 h after each stimulus. TTI increased (145.0 ± 127.7%) in STIM only for "positive responders" to the tendon vibration (8/16 subjects), but decreased in "negative responders" (-43.5 ± 25.7%). MVIC (-8.7%) and rectus femoris electromyography (RF EMG) (-16.7%) decreased after STIM (group effect) for at least 1 h, but not after STIM + Vib. No changes were detected in indirect markers of muscle damage in any condition. Tendon vibration superimposed onto wide-pulse width NMES increased TTI only in 8 of 16 subjects, but reduced voluntary force loss (fatigue) ubiquitously. Negative responders to tendon vibration may derive greater benefit from wide-pulse width NMES alone.

  9. Laboratory studies of magnetized collisionless flows and shocks using accelerated plasmoids

    Science.gov (United States)

    Weber, T. E.; Smith, R. J.; Hsu, S. C.

    2015-11-01

    Magnetized collisionless shocks are thought to play a dominant role in the overall partition of energy throughout the universe, but have historically proven difficult to create in the laboratory. The Magnetized Shock Experiment (MSX) at LANL creates conditions similar to those found in both space and astrophysical shocks by accelerating hot (100s of eV during translation) dense (1022 - 1023 m-3) Field Reversed Configuration (FRC) plasmoids to high velocities (100s of km/s); resulting in β ~ 1, collisionless plasma flows with sonic and Alfvén Mach numbers of ~10. The FRC subsequently impacts a static target such as a strong parallel or anti-parallel (reconnection-wise) magnetic mirror, a solid obstacle, or neutral gas cloud to create shocks with characteristic length and time scales that are both large enough to observe yet small enough to fit within the experiment. This enables study of the complex interplay of kinetic and fluid processes that mediate cosmic shocks and can generate non-thermal distributions, produce density and magnetic field enhancements much greater than predicted by fluid theory, and accelerate particles. An overview of the experimental capabilities of MSX will be presented, including diagnostics, selected recent results, and future directions. Supported by the DOE Office of Fusion Energy Sciences under contract DE-AC52-06NA25369.

  10. Cationic peptide exposure enhances pulsed-electric-field-mediated membrane disruption.

    Science.gov (United States)

    Kennedy, Stephen M; Aiken, Erik J; Beres, Kaytlyn A; Hahn, Adam R; Kamin, Samantha J; Hagness, Susan C; Booske, John H; Murphy, William L

    2014-01-01

    The use of pulsed electric fields (PEFs) to irreversibly electroporate cells is a promising approach for destroying undesirable cells. This approach may gain enhanced applicability if the intensity of the PEF required to electrically disrupt cell membranes can be reduced via exposure to a molecular deliverable. This will be particularly impactful if that reduced PEF minimally influences cells that are not exposed to the deliverable. We hypothesized that the introduction of charged molecules to the cell surfaces would create regions of enhanced transmembrane electric potential in the vicinity of each charged molecule, thereby lowering the PEF intensity required to disrupt the plasma membranes. This study will therefore examine if exposure to cationic peptides can enhance a PEF's ability to disrupt plasma membranes. We exposed leukemia cells to 40 μs PEFs in media containing varying concentrations of a cationic peptide, polyarginine. We observed the internalization of a membrane integrity indicator, propidium iodide (PI), in real time. Based on an individual cell's PI fluorescence versus time signature, we were able to determine the relative degree of membrane disruption. When using 1-2 kV/cm, exposure to >50 μg/ml of polyarginine resulted in immediate and high levels of PI uptake, indicating severe membrane disruption, whereas in the absence of peptide, cells predominantly exhibited signatures indicative of no membrane disruption. Additionally, PI entered cells through the anode-facing membrane when exposed to cationic peptide, which was theoretically expected. Exposure to cationic peptides reduced the PEF intensity required to induce rapid and irreversible membrane disruption. Critically, peptide exposure reduced the PEF intensities required to elicit irreversible membrane disruption at normally sub-electroporation intensities. We believe that these cationic peptides, when coupled with current advancements in cell targeting techniques will be useful tools in

  11. Finite element method (FEM) model of the mechanical stress on phospholipid membranes from shock waves produced in nanosecond electric pulses (nsEP)

    Science.gov (United States)

    Barnes, Ronald; Roth, Caleb C.; Shadaram, Mehdi; Beier, Hope; Ibey, Bennett L.

    2015-03-01

    The underlying mechanism(s) responsible for nanoporation of phospholipid membranes by nanosecond pulsed electric fields (nsEP) remains unknown. The passage of a high electric field through a conductive medium creates two primary contributing factors that may induce poration: the electric field interaction at the membrane and the shockwave produced from electrostriction of a polar submersion medium exposed to an electric field. Previous work has focused on the electric field interaction at the cell membrane, through such models as the transport lattice method. Our objective is to model the shock wave cell membrane interaction induced from the density perturbation formed at the rising edge of a high voltage pulse in a polar liquid resulting in a shock wave propagating away from the electrode toward the cell membrane. Utilizing previous data from cell membrane mechanical parameters, and nsEP generated shockwave parameters, an acoustic shock wave model based on the Helmholtz equation for sound pressure was developed and coupled to a cell membrane model with finite-element modeling in COMSOL. The acoustic structure interaction model was developed to illustrate the harmonic membrane displacements and stresses resulting from shockwave and membrane interaction based on Hooke's law. Poration is predicted by utilizing membrane mechanical breakdown parameters including cortical stress limits and hydrostatic pressure gradients.

  12. Sequentially pulsed traveling wave accelerator

    Science.gov (United States)

    Caporaso, George J [Livermore, CA; Nelson, Scott D [Patterson, CA; Poole, Brian R [Tracy, CA

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  13. Effect of high-intensity pulsed electric fields processing and conventional heat treatment on orange-carrot juice carotenoids.

    Science.gov (United States)

    Torregrosa, Francisco; Cortés, Clara; Esteve, María J; Frígola, Ana

    2005-11-30

    Liquid chromatography (LC) was the method of choice for quantification of carotenoids (including geometrical isomers) to evaluate the effects of high-intensity pulsed electric field (HIPEF), a nonthermal preservation method, with different parameters (electric field intensities and treatment times), on an orange-carrot juice mixture (80:20, v/v). In parallel, a conventional heat treatment (98 degrees C, 21 s) was applied to the juice. HIPEF processing generally caused a significant increase in the concentrations of the carotenoids identified as treatment time increased. HIPEF treatment at 25 and 30 kV/cm provided a vitamin A concentration higher than that found in the pasteurized juice.

  14. Combined treatment with mild heat, manothermosonication and pulsed electric fields reduces microbial growth in milk

    OpenAIRE

    Halpin, R. M.; Cregenzan-Alberti, O.; Whyte, P.; Lyng, J. G.; Noci, F.

    2013-01-01

    In recent years, there has been considerable interest in non-thermal milk processing. The objective of the present study was to assess the efficacy of two non-thermal technologies (manothermosonication; MTS, and pulsed electric fields; PEF) in comparison to thermal pasteurisation, by assessing the microbial levels of each of these milk samples post-processing. Homogenised milk was subjected to MTS (frequency; 20 kHz, amplitude; 27.9 μm, pressure; 225 kPa) at two temperatures (37 °C or 55 °C),...

  15. Suppression and utilization of spurious pulse occurence in organic GM-counters

    International Nuclear Information System (INIS)

    Narita, Y.; Igarashi, R.; Akagami, H.; Ozawa, Y.

    1979-01-01

    The authors have made a study of suppression and utilization of spurious pulse occurrence in organic GM-counters. Almost all spurious pulses in the organic GM-counter are the delayed pulses which occur being dependent upon the radiation intensity. The occurrence rate of the delayed pulses against the radiation intensity is affected by the intensity of the electric field in the vicinity of the cathode of the GM-counter. The occurrence of the delayed pulses can be suppressed when the electric field in the vicinity of the cathode is kept at high value. On the contrary, the occurrence of the delayed pulses can be utilized for the dosimetry of the pulsed radiation by means of increasing the space of the weak electric field in the GM-counter. (Auth.)

  16. Few-cycle isolated attosecond pulses

    International Nuclear Information System (INIS)

    Sansone, G.; Benedetti, E.; Calegari, F.; Stagira, S.; Vozzi, C.; Silvestri De, S.; Nisoli, M.

    2006-01-01

    Complete test of publication follows. In the last few years the field of attosecond science has shown impressive and rapid progress, mainly due to the introduction of novel experimental methods for the characterization of extreme ultraviolet (XUV) pulses and attosecond electron wave packets. This development has been also triggered by significant improvements in the control of the electric field of the driving infrared pulses. Particularly interesting for the applications is the generation of isolated attosecond XUV pulses using few-cycle driving pulses. In this case significant progresses have been achieved thanks to the stabilization of the carrier-envelope phase (CEP) of amplified light pulses. In this work we demonstrate that the polarization gating (PG) method with few-cycle phase-stabilized driving pulses allows one to generate few-cycle isolated attosecond pulses tunable on a very broad spectral region. The PG method is based on temporal modulation of the ellipticity of a light pulse, which confines the XUV emission in the temporal gate where the polarization is close to linear. The time-dependent polarization of phase-stabilized sub-6-fs pulses, generated by the hollow fiber technique, has been obtained using two birefringent plates. It is possible to create a linear polarization gate, whose position is imposed by the intensity profile of the pulse whilst the emission time is linked to the CEP of the electric field. The pulses have been analyzed by using a flat-field spectrometer. Continuous XUV spectra, corresponding to the production of isolated attosecond pulses, have been generated for particular CEP values. Upon changing the rotation of the first plate it was possible to tune the XUV emission in a broad spectra range. We have then achieved a complete temporal characterization of the generated isolated attosecond pulses using frequency-resolved optical gating for complete reconstruction of attosecond bursts (FROG CRAB). The measured parabolic phase

  17. Reduction of diazinon and dimethoate in apple juice by pulsed electric field treatment.

    Science.gov (United States)

    Zhang, Yuanyuan; Hou, Yaxi; Zhang, Yan; Chen, Jie; Chen, Fang; Liao, Xiaojun; Hu, Xiaosong

    2012-03-15

    Organophosphorus pesticides (OPPs) are widely used in agricultural production in China, and residues of OPPs in agro-products and foods have become a public health concern. Chronic exposure to OPPs can result in potential immunosuppressive effects, cytotoxicity and mutagenicity. Pulsed electric fields (PEFs) have the potential to be used as an alternative to conventional techniques of food production. The aim of the present study was to investigate the influence of PEFs on the degradation of diazinon and dimethoate added to apple juice. PEF treatment significantly promoted the degradation of both pesticides (P apple juice and in mitigating sample toxicity. Copyright © 2011 Society of Chemical Industry.

  18. Electrical properties of multilayer (DLC-TiC) films produced by pulsed laser deposition

    Science.gov (United States)

    Alawajji, Raad A.; Kannarpady, Ganesh K.; Nima, Zeid A.; Kelly, Nigel; Watanabe, Fumiya; Biris, Alexandru S.

    2018-04-01

    In this work, pulsed laser deposition was used to produce a multilayer diamond like carbon (ML (DLC-TiC)) thin film. The ML (DLC-TiC) films were deposited on Si (100) and glass substrates at various substrate temperatures in the range of 20-450 °C. Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), and atomic force microscopy were utilized to characterize the prepared films. Raman analysis revealed that as the substrate temperature increased, the G-peak position shifted to a higher raman shift and the full width at half maximum of the G and D bands decreased. XPS analysis indicated a decrease in sp3/sp2 ratio and an increase in Ti-C bond intensity when the substrate temperature was increased. Additionally, the surface roughness of ML (DLC-TiC) filmswas affected by the type and temperature of the substrate. The electrical measurement results indicated that the electrical resistivity of the ML (DLC-TiC) film deposited on Si and glass substrates showed the same behavior-the resistivity decreased when substrate temperature increased. Furthermore, the ML (DLC-TiC) films deposited on silicon showed lower electrical resistivity, dropping from 8.39E-4 Ω-cm to 5.00E-4 Ω-cm, and, similarly, the films on the glass substrate displayed a drop in electrical resistivity from 1.8E-2 Ω-cm to 1.2E-3 Ω-cm. These enhanced electrical properties indicate that the ML (DLC-TiC) films have widespread potential as transducers for biosensors in biological research; electrochemical electrodes, because these films can be chemically modified; biocompatible coatings for medicals tools; and more.

  19. Optimization of pulsed electric field pre-treatments to enhance health-promoting glucosinolates in broccoli flowers and stalk.

    Science.gov (United States)

    Aguiló-Aguayo, Ingrid; Suarez, Manuel; Plaza, Lucia; Hossain, Mohammad B; Brunton, Nigel; Lyng, James G; Rai, Dilip K

    2015-07-01

    The effect of pulsed electric field (PEF) treatment variables (electric field strength and treatment time) on the glucosinolate content of broccoli flowers and stalks was evaluated. Samples were subjected to electric field strengths from 1 to 4 kV cm(-1) and treatment times from 50 to 1000 µs at 5 Hz. Data fitted significantly (P broccoli flowers (ranging from 187.1 to 212.5%) and stalks (ranging from 110.6 to 203.0%) respectively. The predicted values from the developed quadratic polynomial equation were in close agreement with the actual experimental values, with low average mean deviations (E%) ranging from 0.59 to 8.80%. The use of PEF processing at moderate conditions could be a suitable method to stimulate production of broccoli with high health-promoting glucosinolate content. © 2014 Society of Chemical Industry.

  20. Electrical Resistance of Nb$_{3}$Sn/Cu Splices Produced by Electromagnetic Pulse Technology and Soft Soldering

    CERN Document Server

    Schoerling, D; Scheuerlein, C; Atieh, S; Schaefer, R

    2011-01-01

    The electrical interconnection of Nb$_{3}$Sn/Cu strands is a key issue for the construction of Nb$_{3}$Sn based damping ring wigglers and insertion devices for third generation light sources. We compare the electrical resistance of Nb$_{3}$Sn/Cu splices manufactured by solid state welding using Electromagnetic Pulse Technology (EMPT) with that of splices produced by soft soldering with two different solders. The resistance of splices produced by soft soldering depends strongly on the resistivity of the solder alloy at the operating temperature. By solid state welding splice resistances below 10 nOhm can be achieved with 1 cm strand overlap length only, which is about 4 times lower than the resistance of Sn96Ag4 soldered splices with the same overlap length. The comparison of experimental results with Finite Element simulations shows that the electrical resistance of EMPT welded splices is determined by the resistance of the stabilizing copper between the superconducting filaments and confirms that welding of ...

  1. Sterilization of liquid foods by pulsed electric fields – an innovative ultra-high temperature process

    OpenAIRE

    Kai eReineke; Kai eReineke; Felix eSchottroff; Nicolas eMeneses; Nicolas eMeneses; Dietrich eKnorr

    2015-01-01

    The intention of this study was to investigate the inactivation of endospores by a combined thermal and pulsed electric field (PEF) treatment. Therefore, self-cultivated spores of Bacillus subtilis and commercial Geobacillus stearothermophilus spores with certified heat resistance were utilized. Spores of both strains were suspended in saline water (5.3 mS cm-1), skim milk (0.3% fat; 5.3 mS cm-1) and fresh prepared carrot juice (7.73 mS cm-1). The combination of moderate preheating (70-90 °C)...

  2. Electrothermal Action of the Pulse of the Current of a Short Artificial-Lightning Stroke on Test Specimens of Wires and Cables of Electric Power Objects

    Science.gov (United States)

    Baranov, M. I.; Rudakov, S. V.

    2018-03-01

    The authors have given results of investigations of the electrothermal action of aperiodic pulses of temporal shape 10/350 μs of the current of a short artificial-lightning stroke on test specimens of electric wires and cables with copper and aluminum cores and sheaths with polyvinylchloride and polyethylene insulations of power circuits of industrial electric power objects. It has been shown that the thermal stability of such wires and cables is determined by the action integral of the indicated current pulse. The authors have found the maximum permissible and critical densities of this pulse in copper and aluminum current-carrying parts of the wires and cables. High-current experiments conducted under high-voltage laboratory conditions on a unique generator of 10/350 μs pulses of an artificial-lightning current with amplitude-time parameters normalized according to the existing requirements of international and national standards and with tolerances on them have confirmed the reliability of the proposed calculated estimate for thermal lightning resistance of cabling and wiring products.

  3. Electrothermal Action of the Pulse of the Current of a Short Artificial-Lightning Stroke on Test Specimens of Wires and Cables of Electric Power Objects

    Science.gov (United States)

    Baranov, M. I.; Rudakov, S. V.

    2018-05-01

    The authors have given results of investigations of the electrothermal action of aperiodic pulses of temporal shape 10/350 μs of the current of a short artificial-lightning stroke on test specimens of electric wires and cables with copper and aluminum cores and sheaths with polyvinylchloride and polyethylene insulations of power circuits of industrial electric power objects. It has been shown that the thermal stability of such wires and cables is determined by the action integral of the indicated current pulse. The authors have found the maximum permissible and critical densities of this pulse in copper and aluminum current-carrying parts of the wires and cables. High-current experiments conducted under high-voltage laboratory conditions on a unique generator of 10/350 μs pulses of an artificial-lightning current with amplitude-time parameters normalized according to the existing requirements of international and national standards and with tolerances on them have confirmed the reliability of the proposed calculated estimate for thermal lightning resistance of cabling and wiring products.

  4. Elasticity and tumorigenic characteristics of cells in a monolayer after nanosecond pulsed electric field exposure.

    Science.gov (United States)

    Steuer, A; Wende, K; Babica, P; Kolb, J F

    2017-09-01

    Nanosecond pulsed electric fields (nsPEFs) applied to cells can induce different biological effects depending on pulse duration and field strength. One known process is the induction of apoptosis whereby nsPEFs are currently investigated as a novel cancer therapy. Another and probably related change is the breakdown of the cytoskeleton. We investigated the elasticity of rat liver epithelial cells WB-F344 in a monolayer using atomic force microscopy (AFM) with respect to the potential of cells to undergo malignant transformation or to develop a potential to metastasize. We found that the elastic modulus of the cells decreased significantly within the first 8 min after treatment with 20 pulses of 100 ns and with a field strength of 20 kV/cm but was still higher than the elasticity of their tumorigenic counterpart WB-ras. AFM measurements and immunofluorescent staining showed that the cellular actin cytoskeleton became reorganized within 5 min. However, both a colony formation assay and a cell migration assay revealed no significant changes after nsPEF treatment, implying that cells seem not to adopt malignant characteristics associated with metastasis formation despite the induced transient changes to elasticity and cytoskeleton that can be observed for up to 1 h.

  5. Slow light and pulse propagation in semiconductor waveguides

    DEFF Research Database (Denmark)

    Hansen, Per Lunnemann

    This thesis concerns the propagation of optical pulses in semiconductor waveguide structures with particular focus on methods for achieving slow light or signal delays. Experimental pulse propagation measurements of pulses with a duration of 180 fs, transmitted through quantum well based waveguide...... structures, are presented. Simultaneous measurements of the pulse transmission and delay are measured as a function of input pulse energy for various applied electrical potentials. Electrically controlled pulse delay and advancement are demonstrated and compared with a theoretical model. The limits...... of the model as well as the underlying physical mechanisms are analysed and discussed. A method to achieve slow light by electromagnetically induced transparency (EIT) in an inhomogeneously broadened quantum dot medium is proposed. The basic principles of EIT are assessed and the main dissimilarities between...

  6. Hard nanocrystalline Zr-B-C-N films with high electrical conductivity prepared by pulsed magnetron sputtering

    Czech Academy of Sciences Publication Activity Database

    Vlček, J.; Steidl, P.; Kohout, J.; Čerstvý, R.; Zeman, P.; Prokšová, S.; Peřina, Vratislav

    2013-01-01

    Roč. 215, JAN 25 (2013), s. 186-191 ISSN 0257-8972. [39th International Conference on Metallurgical Coatings and Thin Films (ICMTF). San Diego, California, 23.04.2012-27.04.2012] Institutional support: RVO:61389005 Keywords : Zr-B-C-N films * nanocomposite materials * pulsed magnetron sputtering * hard ness * high electrical conductivity * osidation resistance Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.199, year: 2013 http://www.sciencedirect.com/science/article/pii/S0257897212010584

  7. Effect of high hydrostatic pressure, ultrasound and pulsed electric fields on milk composition and characteristics

    Directory of Open Access Journals (Sweden)

    Irena Jeličić

    2012-03-01

    Full Text Available High hydrostatic pressure, ultrasonication and pulsed eletrcic fields (PEF belong to novel food processing methods which are mostly implemented in combination with moderate temperatures and/ or in combination with each other in order to provide adequate microbiological quality with minimal losses of nutritional value. All of three mentioned methods have been intensively investigated for the purpose of inactivation and reduction of foodborne microorganisms present in milk and dairy products. However, a large number of scientific researches have been dedicated to investigation of impact of these methods on changes in constituents like milk fat, milk proteins and lactose as well as changes in mechanisms like renneting properties and coagulation of milk. The aim of this research was to give an overview of changes in milk constituents induced by high hydrostatic pressure, ultrasonification and pulsed electric field treatments as well as to suggest how these changes could improve conventional processes in the dairy industry.

  8. Predicting the threshold of pulse-train electrical stimuli using a stochastic auditory nerve model: the effects of stimulus noise.

    Science.gov (United States)

    Xu, Yifang; Collins, Leslie M

    2004-04-01

    The incorporation of low levels of noise into an electrical stimulus has been shown to improve auditory thresholds in some human subjects (Zeng et al., 2000). In this paper, thresholds for noise-modulated pulse-train stimuli are predicted utilizing a stochastic neural-behavioral model of ensemble fiber responses to bi-phasic stimuli. The neural refractory effect is described using a Markov model for a noise-free pulse-train stimulus and a closed-form solution for the steady-state neural response is provided. For noise-modulated pulse-train stimuli, a recursive method using the conditional probability is utilized to track the neural responses to each successive pulse. A neural spike count rule has been presented for both threshold and intensity discrimination under the assumption that auditory perception occurs via integration over a relatively long time period (Bruce et al., 1999). An alternative approach originates from the hypothesis of the multilook model (Viemeister and Wakefield, 1991), which argues that auditory perception is based on several shorter time integrations and may suggest an NofM model for prediction of pulse-train threshold. This motivates analyzing the neural response to each individual pulse within a pulse train, which is considered to be the brief look. A logarithmic rule is hypothesized for pulse-train threshold. Predictions from the multilook model are shown to match trends in psychophysical data for noise-free stimuli that are not always matched by the long-time integration rule. Theoretical predictions indicate that threshold decreases as noise variance increases. Theoretical models of the neural response to pulse-train stimuli not only reduce calculational overhead but also facilitate utilization of signal detection theory and are easily extended to multichannel psychophysical tasks.

  9. Time-resolved electrical measurements of a pulsed-dc methane discharge used in diamond-like carbon films production

    International Nuclear Information System (INIS)

    Corbella, C.; Polo, M.C.; Oncins, G.; Pascual, E.; Andujar, J.L.; Bertran, E.

    2005-01-01

    Amorphous hydrogenated carbon (a-C:H) thin films were obtained at room temperature via asymmetric bipolar pulsed-dc methane glow discharge. The power frequency values were varied from 100 to 200 kHz and the maximum amplitude voltage from -600 to -1400 V. Such films present diamond-like carbon (DLC) properties [J.L. Andujar, M. Vives, C. Corbella, E. Bertran, Diamond Relat. Mater. 12 (2003) 98]. The plasma, powered by a pulse frequency of 100 kHz, was electrically studied by a Langmuir probe. The next parameters were calculated within the pulse cycle from I-V measurements with 1 μs resolution: plasma and floating potentials, electron temperature, and electron and ion densities. The presence of a population of hot electrons (10 eV) was detected at high bias voltage region. The density of cold electrons grows one order of magnitude after each negative pulse, whereas the ion density suffers a prompt increase during each positive pulse. The surface topography of DLC films was scanned by atomic force microscopy (AFM). A smoothly varying friction coefficient (between 0.2 and 0.3) was measured by AFM in contact mode. X-ray reflectivity (XRR) analysis provided a wide characterization of the films, involving density, thickness and roughness. The C/H ratio, as directly obtained by elemental analysis (EA), shows an increase at higher bias voltages. All these features are discussed in terms of process parameters varied in film growth

  10. Electrical Switching of Perovskite Thin-Film Resistors

    Science.gov (United States)

    Liu, Shangqing; Wu, Juan; Ignatiev, Alex

    2010-01-01

    Electronic devices that exploit electrical switching of physical properties of thin films of perovskite materials (especially colossal magnetoresistive materials) have been invented. Unlike some related prior devices, these devices function at room temperature and do not depend on externally applied magnetic fields. Devices of this type can be designed to function as sensors (exhibiting varying electrical resistance in response to varying temperature, magnetic field, electric field, and/or mechanical pressure) and as elements of electronic memories. The underlying principle is that the application of one or more short electrical pulse(s) can induce a reversible, irreversible, or partly reversible change in the electrical, thermal, mechanical, and magnetic properties of a thin perovskite film. The energy in the pulse must be large enough to induce the desired change but not so large as to destroy the film. Depending on the requirements of a specific application, the pulse(s) can have any of a large variety of waveforms (e.g., square, triangular, or sine) and be of positive, negative, or alternating polarity. In some applications, it could be necessary to use multiple pulses to induce successive incremental physical changes. In one class of applications, electrical pulses of suitable shapes, sizes, and polarities are applied to vary the detection sensitivities of sensors. Another class of applications arises in electronic circuits in which certain resistance values are required to be variable: Incorporating the affected resistors into devices of the present type makes it possible to control their resistances electrically over wide ranges, and the lifetimes of electrically variable resistors exceed those of conventional mechanically variable resistors. Another and potentially the most important class of applications is that of resistance-based nonvolatile-memory devices, such as a resistance random access memory (RRAM) described in the immediately following article

  11. A bioluminescence ATP assay for estimating surface hydrophobicity and membrane damage of Escherichia coli cells treated with pulsed electric fields

    Science.gov (United States)

    Pulse Electric Field (PEF) treatments, a non-thermal process have been reported to injure and inactivate bacteria in liquid foods. However, the effect of this treatment on bacterial cell surface charge and hydrophobicity has not been investigated. Apple juice (AJ, pH 3.8) purchased from a wholesale ...

  12. The Influence of Vesicle Shape and Medium Conductivity on Possible Electrofusion under a Pulsed Electric Field.

    Science.gov (United States)

    Liu, Linying; Mao, Zheng; Zhang, Jianhua; Liu, Na; Liu, Qing Huo

    2016-01-01

    The effects of electric field on lipid membrane and cells have been extensively studied in the last decades. The phenomena of electroporation and electrofusion are of particular interest due to their wide use in cell biology and biotechnology. However, numerical studies on the electrofusion of cells (or vesicles) with different deformed shapes are still rare. Vesicle, being of cell size, can be treated as a simple model of cell to investigate the behaviors of cell in electric field. Based on the finite element method, we investigate the effect of vesicle shape on electrofusion of contact vesicles in various medium conditions. The transmembrane voltage (TMV) and pore density induced by a pulsed field are examined to analyze the possibility of vesicle fusion. In two different medium conditions, the prolate shape is observed to have selective electroporation at the contact area of vesicles when the exterior conductivity is smaller than the interior one; selective electroporation is more inclined to be found at the poles of the oblate vesicles when the exterior conductivity is larger than the interior one. Furthermore, we find that when the exterior conductivity is lower than the internal conductivity, the pulse can induce a selective electroporation at the contact area between two vesicles regardless of the vesicle shape. Both of these two findings have important practical applications in guiding electrofusion experiments.

  13. Tracing explosive in solvent using quantum cascade laser with pulsed electric discharge system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong-Wook; Tian, Chao; Martini, Rainer, E-mail: rmartini@stevens.edu [Department of Physics and Engineering Physics, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, New Jersey 07030 (United States); Chen, Gang [School of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China); Chen, I-chun Anderson [Newport Corporation/Oriel Instruments, 150 Long Beach Boulevard, Stratford, Connecticut 06615 (United States)

    2014-11-03

    We demonstrated highly sensitive detection of explosive dissolved in solvent with a portable spectroscopy system (Q-MACS) by tracing the explosive byproduct, N{sub 2}O, in combination with a pulsed electric discharge system for safe explosive decomposition. Using Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), the gas was monitored and analyzed by Q-MACS and the presence of the dissolved explosive clearly detected. While HMX presence could be identified directly in the air above the solutions even without plasma, much better results were achieved under the decomposition. The experiment results give an estimated detection limit of 10 ppb, which corresponds to a 15 pg of HMX.

  14. Tracing explosive in solvent using quantum cascade laser with pulsed electric discharge system

    International Nuclear Information System (INIS)

    Park, Seong-Wook; Tian, Chao; Martini, Rainer; Chen, Gang; Chen, I-chun Anderson

    2014-01-01

    We demonstrated highly sensitive detection of explosive dissolved in solvent with a portable spectroscopy system (Q-MACS) by tracing the explosive byproduct, N 2 O, in combination with a pulsed electric discharge system for safe explosive decomposition. Using Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), the gas was monitored and analyzed by Q-MACS and the presence of the dissolved explosive clearly detected. While HMX presence could be identified directly in the air above the solutions even without plasma, much better results were achieved under the decomposition. The experiment results give an estimated detection limit of 10 ppb, which corresponds to a 15 pg of HMX

  15. Pulse mode of operation of a spherical piezoceramic transducer filled with liquid and having a correcting electric circuit.

    Science.gov (United States)

    Konovalov, S I; Kuz'menko, A G

    2010-12-01

    By means of a computational method, the possibility of radiating a short acoustic pulse by a transducer in the form of a piezoceramic sphere internally filled with liquid is investigated. An electric inductive-resistive circuit is connected to the electric input of the transducer. Solution is obtained based on scheme-analogs theory for piezoceramic transducers, and spectral Fourier transform theory. The values of parameters of the system, providing minimal durations of radiated signals, are determined. Computation was carried out for different values of relative thicknesses of the transducer wall. The estimates of durations and amplitudes of the acoustic signals radiated into the external medium are obtained.

  16. A Comparative Study on the Effects of Millisecond- and Microsecond-Pulsed Electric Field Treatments on the Permeabilization and Extraction of Pigments from Chlorella vulgaris.

    Science.gov (United States)

    Luengo, Elisa; Martínez, Juan Manuel; Coustets, Mathilde; Álvarez, Ignacio; Teissié, Justin; Rols, Marie-Pierre; Raso, Javier

    2015-10-01

    The interdependencies of the two main processing parameters affecting "electroporation" (electric field strength and pulse duration) while using pulse duration in the range of milliseconds and microseconds on the permeabilization, inactivation, and extraction of pigments from Chlorella vulgaris was compared. While irreversible "electroporation" was observed above 4 kV/cm in the millisecond range, electric field strengths of ≥10 kV/cm were required in the microseconds range. However, to cause the electroporation of most of the 90 % of the population of C. vulgaris in the millisecond (5 kV/cm, 20 pulses) or microsecond (15 kV/cm, 25 pulses) range, the specific energy that was delivered was lower for microsecond treatments (16.87 kJ/L) than in millisecond treatments (150 kJ/L). In terms of the specific energy required to cause microalgae inactivation, treatments in the microsecond range also resulted in greater energy efficiency. The comparison of extraction yields in the range of milliseconds (5 kV, 20 ms) and microseconds (20, 25 pulses) under the conditions in which the maximum extraction was observed revealed that the improvement in the carotenoid extraction was similar and chlorophyll a and b extraction was slightly higher for treatments in the microsecond range. The specific energy that was required for the treatment in the millisecond range (150 kJ/L) was much higher than those required in the microsecond range (30 kJ/L). The comparison of the efficacy of both types of pulses on the extraction enhancement just after the treatment and after a post-pulse incubation period seemed to indicate that PEF in the millisecond range created irreversible alterations while, in the microsecond range, the defects were a dynamic structure along the post-pulse time that caused a subsequent increment in the extraction yield.

  17. Effect of pulsed electric field on the proteolysis of cold boned beef M. Longissimus lumborum and M. Semimembranosus.

    Science.gov (United States)

    Suwandy, Via; Carne, Alan; van de Ven, Remy; Bekhit, Alaa El-Din A; Hopkins, David L

    2015-02-01

    The effects of pulsed electric field (PEF) and ageing (3, 7, 14 and 21 days) on the shear force, protein profile, and post-mortem proteolysis of beef loins (M. Longissimus lumborum, LL) and topsides (M. Semimembranosus, SM) were investigated using a range of pulsed electric field treatments [voltages (5 and 10 kV) and frequencies (20, 50, and 90 Hz)]. PEF treatment decreased the shear force of beef LL and SM muscles by up to 19%. The reduction in the shear force in the LL was not affected by the treatment intensity whereas the reduction in the SM was dependent on PEF frequency. PEF treated beef loins showed increased proteolysis, both early post-mortem and during subsequent post-mortem storage reflected by increased degradation of troponin-T and desmin. The most prominent troponin-T degradation was found in samples treated with 5 kV-90 Hz, 10 kV-20 Hz at day 3 and day 7 post-treatment in addition to 10 kV-50 Hz in subsequent post-treatment times. The degradation of desmin in PEF treated beef loins increased with ageing time.

  18. Performance of the 10kV, 100-kA pulsed-power modules for the FRX-C magnetic compression experiment

    International Nuclear Information System (INIS)

    Rej, D.J.; Waganaar, W.J.

    1989-01-01

    In this paper, we present detailed performance data collected from over a year's operation of the 25 and 50-kJoule pulsed-power capacitor-bank modules developed for the Los Alamos magnetic fusion facility FRX-C. These modules supply the 5-MA magnet current needed for the compressional heating of compact toroid plasmoids. To date, 54 modules have been built and successfully tested at their full design rating: 100-kA peak output current at 10-kV charge, τ 1/4 = 60 μs (25-kJ module), or 110 μs (50-kJ module), crowbar L/R ≤ 1 ms. Modules are compact, cost about $5000 each, and though designed for 25 or 50 kJ, they can be easily modified for other pulsed-power applications. Energy is stored in 25-kJ capacitors. Start and crowbar switching is performed with a pair of water-cooled, size-D ignitrons. As an alternative to an ignitron, crowbar switching by solid-state rectifiers has been successfully demonstrated. Current is conducted between components and to the load by parallel-plate transmission lines and by a parallel array of commercially-available coaxial cable. 4 refs., 8 figs

  19. Effect of Pulse Width on Ozone Generation in Pulsed Streamer Discharges

    OpenAIRE

    Tamaribuchi, Hiroyuki; Wang, Douyan; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori; タマリブチ, ヒロユキ; オウ, トエン; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 溜渕, 浩之; 王, 斗艶; 浪平, 隆男; 勝木, 淳; 秋山, 秀典

    2007-01-01

    Ozone has been used in treatment of drinking water andwaste water (e.g., deodorization, decolorization, anddisinfection). Though general ozonizers based on silentdischarge or barrier discharge have been used to supplyozone at many industrial situations, there is still someproblem, such as improvements of ozone concentrationand ozone yield.In this work, ozone was generated by pulsed powerdischarge in order to improve the characteristics of ozonegeneration. High electric field with short pulse ...

  20. Optical and electrical properties of In-doped CdO thin films fabricated by pulse laser deposition

    International Nuclear Information System (INIS)

    Zheng, B.J.; Lian, J.S.; Zhao, L.; Jiang, Q.

    2010-01-01

    Transparent indium-doped cadmium oxide (In-CdO) thin films were deposited on quartz glass substrates by pulse laser deposition (PLD) from ablating Cd-In metallic target at a fixed pressure 10 Pa and a fixed substrate temperature 300 deg. C. The influences of indium concentrations in target on the microstructure, optical and electrical performances were studied. When the indium concentration reaches to 3.9 wt%, the as-deposited In-CdO film shows high optical transmission in visible light region, obviously enhanced direct band gap energy (2.97 eV), higher carrier concentration and lower electric resistivity compared with the undoped CdO film, while a further increase of indium concentration to 5.6 wt% induces the formation of In 2 O 3 , which reverse the variation of these parameters and performance.

  1. Development of picosecond pulsed electron beam monitor

    International Nuclear Information System (INIS)

    Hosono, Y.; Nakazawa, M.; Ueda, T.; Kobayasi, T.; Yosida, Y.; Ohkuma, J.; Okuda, S.; Suemine, S.

    1993-01-01

    For the picosecond pulsed electron beam of a linear accelerator a simple monitor using an electric connector has been developed which is constructed with SMA, BNC, N type electric connector through pipe (inner diameter = 50 mm or 100 mm). Under the measurement conditions of peak current (26A-900A) and narrow pulse width (Pw = 10 ps(FWHM), Pw = 30 ps(FWHM)), the following characteristics of this monitor were obtained, (A) rise time is less than 25 ps (B) the amplitude of the monitor output pulse is proportional directly to the area of cross section of the electrode. (author)

  2. New conducted electrical weapons: Electrical safety relative to relevant standards.

    Science.gov (United States)

    Panescu, Dorin; Nerheim, Max; Kroll, Mark W; Brave, Michael A

    2017-07-01

    We have previously published about TASER ® conducted electrical weapons (CEW) compliance with international standards. CEWs deliver electrical pulses that can inhibit a person's neuromuscular control or temporarily incapacitate. An eXperimental Rotating-Field (XRF) waveform CEW and the X2 CEW are new 2-shot electrical weapon models designed to target a precise amount of delivered charge per pulse. They both can deploy 1 or 2 dart pairs, delivered by 2 separate cartridges. Additionally, the XRF controls delivery of incapacitating pulses over 4 field vectors, in a rotating sequence. As in our previous study, we were motivated by the need to understand the cardiac safety profile of these new CEWs. The goal of this paper is to analyze the nominal electrical outputs of TASER XRF and X2 CEWs in reference to provisions of all relevant international standards that specify safety requirements for electrical medical devices and electrical fences. Although these standards do not specifically mention CEWs, they are the closest electrical safety standards and hence give very relevant guidance. The outputs of several TASER XRF and X2 CEWs were measured under normal operating conditions. The measurements were compared against manufacturer specifications. CEWs electrical output parameters were reviewed against relevant safety requirements of UL 69, IEC 60335-2-76 Ed 2.1, IEC 60479-1, IEC 60479-2, AS/NZS 60479.1, AS/NZS 60479.2, IEC 60601-1 and BS EN 60601-1. Our study confirmed that the nominal electrical outputs of TASER XRF and X2 CEWs lie within safety bounds specified by relevant standards.

  3. The role of current sheet formation in driven plasmoid reconnection in laser-produced plasma bubbles

    Science.gov (United States)

    Lezhnin, Kirill; Fox, William; Bhattacharjee, Amitava

    2017-10-01

    We conduct a multiparametric study of driven magnetic reconnection relevant to recent experiments on colliding magnetized laser produced plasmas using the PIC code PSC. Varying the background plasma density, plasma resistivity, and plasma bubble geometry, the results demonstrate a variety of reconnection behavior and show the coupling between magnetic reconnection and global fluid evolution of the system. We consider both collision of two radially expanding bubbles where reconnection is driven through an X-point, and collision of two parallel fields where reconnection must be initiated by the tearing instability. Under various conditions, we observe transitions between fast, collisionless reconnection to a Sweet-Parker-like slow reconnection to complete stalling of the reconnection. By varying plasma resistivity, we observe the transition between fast and slow reconnection at Lundquist number S 103 . The transition from plasmoid reconnection to a single X-point reconnection also happens around S 103 . We find that the criterion δ /di < 1 is necessary for fast reconnection onset. Finally, at sufficiently high background density, magnetic reconnection can be suppressed, leading to bouncing motion of the magnetized plasma bubbles.

  4. Pulsed power performance of PBFA Z

    International Nuclear Information System (INIS)

    Spielman, R.B.; Stygar, W.A.; Seamen, J.F.

    1997-01-01

    PBFA Z is a new 60-TW/5-MJ electrical driver located at Sandia National Laboratories. The authors use PBFA Z to drive z pinches. The pulsed power design of PBFA Z is based on conventional single-pulse Marx generator, water-line pulse-forming technology used on the earlier Saturn and PBFA II accelerators. PBFA Z stores 11.4 MJ in its 36 Marx generators, couples 5 MJ in a 60-TW/105-ns pulse to the output water transmission lines, and delivers 3.0 MJ and 50 TW of electrical energy to the z-pinch load. Depending on the initial load inductance and the implosion time, the authors attain peak currents of 16-20 MA with a rise time of 105 ns. Current is fed to the z-pinch load through self magnetically-insulated transmission lines (MITLs). Peak electric fields in the MITLs exceed 2 MV/cm. The current from the four independent conical-disk MITLs is combined together in a double post-hole vacuum convolute with an efficiency greater than 95%. The authors achieved x-ray powers of 200 TW and x-ray energies of 1.9 MJ from tungsten wire-array z-pinch loads

  5. Ir-based refractory superalloys by pulse electric current sintering (PECS) process (II prealloyed powder)

    Science.gov (United States)

    Huang, C.; Yamabe-Mitarai, Y.; Harada, H.

    2002-02-01

    Five prealloyed powder samples prepared from binary Ir-based refractory superalloys were sintered at 1800 °C for 4 h by Pulse Electric Current Sintering (PECS). No metal loss was observed during sintering. The relative densities of the sintered specimens all exceeded 90% T.D. The best one was Ir-13% Hf with the density of 97.82% T.D. Phases detected in sintered samples were in accordance with the phase diagram as expected. Fractured surfaces were observed in two samples (Ir-13% Hf and Ir-15% Zr). Some improvements obtained by using prealloyed powders instead of elemental powders, which were investigated in the previous studies, were presented.

  6. Magnetic resonance electrical impedance tomography for measuring electrical conductivity during electroporation

    International Nuclear Information System (INIS)

    Kranjc, M; Miklavčič, D; Bajd, F; Serša, I

    2014-01-01

    The electroporation effect on tissue can be assessed by measurement of electrical properties of the tissue undergoing electroporation. The most prominent techniques for measuring electrical properties of electroporated tissues have been voltage–current measurement of applied pulses and electrical impedance tomography (EIT). However, the electrical conductivity of tissue assessed by means of voltage–current measurement was lacking in information on tissue heterogeneity, while EIT requires numerous additional electrodes and produces results with low spatial resolution and high noise. Magnetic resonance EIT (MREIT) is similar to EIT, as it is also used for reconstruction of conductivity images, though voltage and current measurements are not limited to the boundaries in MREIT, hence it yields conductivity images with better spatial resolution. The aim of this study was to investigate and demonstrate the feasibility of the MREIT technique for assessment of conductivity images of tissues undergoing electroporation. Two objects were investigated: agar phantoms and ex vivo liver tissue. As expected, no significant change of electrical conductivity was detected in agar phantoms exposed to pulses of all used amplitudes, while a considerable increase of conductivity was measured in liver tissue exposed to pulses of different amplitudes. (paper)

  7. A coaxial-output capacitor-loaded annular pulse forming line.

    Science.gov (United States)

    Li, Rui; Li, Yongdong; Su, Jiancang; Yu, Binxiong; Xu, Xiudong; Zhao, Liang; Cheng, Jie; Zeng, Bo

    2018-04-01

    A coaxial-output capacitor-loaded annular pulse forming line (PFL) is developed in order to reduce the flat top fluctuation amplitude of the forming quasi-square pulse and improve the quality of the pulse waveform produced by a Tesla-pulse forming network (PFN) type pulse generator. A single module composed of three involute dual-plate PFNs is designed, with a characteristic impedance of 2.44 Ω, an electrical length of 15 ns, and a sustaining voltage of 60 kV. The three involute dual-plate PFNs connected in parallel have the same impedance and electrical length. Due to the existed small inductance and capacitance per unit length in each involute dual-plate PFN, the upper cut-off frequency of the PFN is increased. As a result, the entire annular PFL has better high-frequency response capability. Meanwhile, the three dual-plate PFNs discharge in parallel, which is much closer to the coaxial output. The series connecting inductance between adjacent two modules is significantly reduced when the annular PFL modules are connected in series. The pulse waveform distortion is reduced when the pulse transfers along the modules. Finally, the shielding electrode structure is applied on both sides of the module. The electromagnetic field is restricted in the module when a single module discharges, and the electromagnetic coupling between the multi-stage annular PFLs is eliminated. Based on the principle of impedance matching between the multi-stage annular PFL and the coaxial PFL, the structural optimization design of a mixed PFL in a Tesla type pulse generator is completed with the transient field-circuit co-simulation method. The multi-stage annular PFL consists of 18 stage annular PFL modules in series, with the characteristic impedance of 44 Ω, the electrical length of 15 ns, and the sustaining voltage of 1 MV. The mixed PFL can generate quasi-square electrical pulses with a pulse width of 43 ns, and the fluctuation ratio of the pulse flat top is less than 8% when the

  8. A coaxial-output capacitor-loaded annular pulse forming line

    Science.gov (United States)

    Li, Rui; Li, Yongdong; Su, Jiancang; Yu, Binxiong; Xu, Xiudong; Zhao, Liang; Cheng, Jie; Zeng, Bo

    2018-04-01

    A coaxial-output capacitor-loaded annular pulse forming line (PFL) is developed in order to reduce the flat top fluctuation amplitude of the forming quasi-square pulse and improve the quality of the pulse waveform produced by a Tesla-pulse forming network (PFN) type pulse generator. A single module composed of three involute dual-plate PFNs is designed, with a characteristic impedance of 2.44 Ω, an electrical length of 15 ns, and a sustaining voltage of 60 kV. The three involute dual-plate PFNs connected in parallel have the same impedance and electrical length. Due to the existed small inductance and capacitance per unit length in each involute dual-plate PFN, the upper cut-off frequency of the PFN is increased. As a result, the entire annular PFL has better high-frequency response capability. Meanwhile, the three dual-plate PFNs discharge in parallel, which is much closer to the coaxial output. The series connecting inductance between adjacent two modules is significantly reduced when the annular PFL modules are connected in series. The pulse waveform distortion is reduced when the pulse transfers along the modules. Finally, the shielding electrode structure is applied on both sides of the module. The electromagnetic field is restricted in the module when a single module discharges, and the electromagnetic coupling between the multi-stage annular PFLs is eliminated. Based on the principle of impedance matching between the multi-stage annular PFL and the coaxial PFL, the structural optimization design of a mixed PFL in a Tesla type pulse generator is completed with the transient field-circuit co-simulation method. The multi-stage annular PFL consists of 18 stage annular PFL modules in series, with the characteristic impedance of 44 Ω, the electrical length of 15 ns, and the sustaining voltage of 1 MV. The mixed PFL can generate quasi-square electrical pulses with a pulse width of 43 ns, and the fluctuation ratio of the pulse flat top is less than 8% when the

  9. Modeling digital pulse waveforms by solving one-dimensional Navier-stokes equations.

    Science.gov (United States)

    Fedotov, Aleksandr A; Akulova, Anna S; Akulov, Sergey A

    2016-08-01

    Mathematical modeling for composition distal arterial pulse wave in the blood vessels of the upper limbs was considered. Formation of distal arterial pulse wave is represented as a composition of forward and reflected pulse waves propagating along the arterial vessels. The formal analogy between pulse waves propagation along the human arterial system and the propagation of electrical oscillations in electrical transmission lines with distributed parameters was proposed. Dependencies of pulse wave propagation along the human arterial system were obtained by solving the one-dimensional Navier-Stokes equations for a few special cases.

  10. Producing nitric oxide by pulsed electrical discharge in air for portable inhalation therapy.

    Science.gov (United States)

    Yu, Binglan; Muenster, Stefan; Blaesi, Aron H; Bloch, Donald B; Zapol, Warren M

    2015-07-01

    Inhalation of nitric oxide (NO) produces selective pulmonary vasodilation and is an effective therapy for treating pulmonary hypertension in adults and children. In the United States, the average cost of 5 days of inhaled NO for persistent pulmonary hypertension of the newborn is about $14,000. NO therapy involves gas cylinders and distribution, a complex delivery device, gas monitoring and calibration equipment, and a trained respiratory therapy staff. The objective of this study was to develop a lightweight, portable device to serve as a simple and economical method of producing pure NO from air for bedside or portable use. Two NO generators were designed and tested: an offline NO generator and an inline NO generator placed directly within the inspiratory line. Both generators use pulsed electrical discharges to produce therapeutic range NO (5 to 80 parts per million) at gas flow rates of 0.5 to 5 liters/min. NO was produced from air, as well as gas mixtures containing up to 90% O2 and 10% N2. Potentially toxic gases produced in the plasma, including nitrogen dioxide (NO2) and ozone (O3), were removed using a calcium hydroxide scavenger. An iridium spark electrode produced the lowest ratio of NO2/NO. In lambs with acute pulmonary hypertension, breathing electrically generated NO produced pulmonary vasodilation and reduced pulmonary arterial pressure and pulmonary vascular resistance index. In conclusion, electrical plasma NO generation produces therapeutic levels of NO from air. After scavenging to remove NO2 and O3 and filtration to remove particles, electrically produced NO can provide safe and effective treatment of pulmonary hypertension. Copyright © 2015, American Association for the Advancement of Science.

  11. A research program to assess the impact of the electromagnetic pulse on electric power systems

    Science.gov (United States)

    McConnell, B. W.; Barnes, P. R.

    A strong electromagnetic pulse (EMP) with an electric-field component on the order of tens of kilovolts per meter is produced by a nuclear detonation in or above the atmosphere. This paper presents an overview and a summary of the results to date of a program formulated to address the research and development of technologies and systems required to assess and reduce the impact of EMP on electric power systems. The technologies and systems being considered include simulation models, methods of assessment, definition of required experiments and data, development of protective hardware, and the creation or revision of operating and control procedures. Results to date include the development of relatively simple unclassified EMP environment models, the development of methods for extending EMP coupling models to the large transmission and distribution network associated with the electric power system, and the performance of a parametric study of HEMP induced surges using an appropriate EMP environment. An experiment to investigate the effect of corona on the coupling of EMP to conductors has been defined and has been performed in an EMP simulator. Experiments to determine the response of key components to simulated EMP surges and an investigation of the impact of steep-front, short-duration impulse on a selected number of the insulation systems used in electric power systems apparatus are being performed.

  12. Pulsed Corona Discharge Generated By Marx Generator

    Science.gov (United States)

    Sretenovic, G. B.; Obradovic, B. M.; Kovacevic, V. V.; Kuraica, M. M.; Puric J.

    2010-07-01

    The pulsed plasma has a significant role in new environmental protection technologies. As a part of a pulsed corona system for pollution control applications, Marx type repetitive pulse generator was constructed and tested in arrangement with wire-plate corona reactor. We performed electrical measurements, and obtained voltage and current signals, and also power and energy delivered per pulse. Ozone formation by streamer plasma in air was chosen to monitor chemical activity of the pulsed corona discharge.

  13. Research on Lessening of Bonding Effects Between the Metallic and Non-Metallic Surfaces Through the Graphite Films Deposited with Pulsed Electrical Discharges Process

    Science.gov (United States)

    Marin, L.; Topala, P.

    2017-06-01

    The paper presents the results of experimental research on the physics of natural graphite film formation, the establishment of chemical composition and functional properties of the graphite films, formed on metal surfaces, as a result of the action of plasma in the air environment, at a normal pressure, under the electrical discharge in impulse conditions (EDI). The researchings were performed in the frame of doctoral thesis “Research on lessening of the bonding effects between the metallic and nonmetallic surfaces through the graphite films” and aimed to identify the phenomena that occur at the interface metal/ film of graphite, and to identify also the technological applications that it may have the surface treatment for submitting the films of graphite on metallic surfaces achieved through an innovative process of electrical pulsed discharges. After the research works from the PhD theme above mentioned, a number of interesting properties of graphite pellicle have been identified ie reducing of metal surface polarity. This led to drastic decreases for the values of adhesion when bonding of metal surfaces was performed using a structural polyurethane adhesive designed by ICECHIM. Following the thermo-gravimetric analysis, performed of the graphite film obtained by process of electrical pulsed discharges, have been also discovered other interesting properties for this, ie reversible mass additions at specific values of the working temperature Chemical and scanning electron microscopy analysis have revealed that on the metallic surface subjected to electrical pulsed discharges process, outside the graphite film, it is also obtained a series of spatial formation composed of carbon atoms fullerenes type which are responsible for the phenomenon of addition of mass.

  14. Effect of applied voltage and inter-pulse delay in spark-assisted LIBS

    Science.gov (United States)

    Robledo-Martinez, A.; Sobral, H.; Garcia-Villarreal, A.

    2018-06-01

    We report the results obtained in an investigation on the effect of the time delay between the laser and electrical pulses in a spark-assisted laser-induced breakdown spectroscopy (LIBS) experiment. The electrical discharge is produced by the discharge of a charged coaxial cable. This arrangement produces a fast unipolar current pulse (500 ns) that applies high power ( 600 kW) to the laser ablation plasma. The delay between the laser pulse and the electric pulse can be controlled at will in order to find the optimal time in terms of enhancement of the emitted lines. It was found that the application of the high voltage pulse enhances the ionic lines emitted by up to two orders of magnitude. An additional enhancement by a factor of 2-4 can be obtained delaying the application of the electric pulse by a time of 0.6-20 μs. In the tests it was noticed that the ionic lines were found to be clearly responsive to increments in the applied electric energy while the neutral lines did so marginally. Our results show that the intensification of the lines is mainly due to reheating of the ablation plasma as the application of the electrical pulse increments the temperature of the ablation plasma by about 50%. It is demonstrated that the present technique is an efficient way of intensifying the lines emitted without incurring in additional damage to the sample.

  15. Reconstruction of Attosecond Pulse Trains Using an Adiabatic Phase Expansion

    International Nuclear Information System (INIS)

    Varju, K.; Gustafsson, E.; Johnsson, P.; Mauritsson, J.; L'Huillier, A.; Mairesse, Y.; Agostini, P.; Breger, P.; Carre, B.; Merdji, H.; Monchicourt, P.; Salieres, P.; Frasinski, L.J.

    2005-01-01

    We propose a new method to reconstruct the electric field of attosecond pulse trains. The phase of the high-order harmonic emission electric field is Taylor expanded around the maximum of the laser pulse envelope in the time domain and around the central harmonic in the frequency domain. Experimental measurements allow us to determine the coefficients of this expansion and to characterize the radiation with attosecond accuracy over a femtosecond time scale. The method gives access to pulse-to-pulse variations along the train, including the timing, the chirp, and the attosecond carrier envelope phase

  16. The influence of stellate ganglion transcutaneous electrical nerve stimulation on signal quality of pulse oximetry in prehospital trauma care.

    Science.gov (United States)

    Barker, Renate; Lang, Thomas; Hager, Helmut; Steinlechner, Barbara; Hoerauf, Klaus; Zimpfer, Michael; Kober, Alexander

    2007-05-01

    Accurate monitoring of the peripheral arterial oxygen saturation has become an important tool in the prehospital emergency medicine. This monitoring requires an adequate plethysmographic pulsation. Signal quality is diminished by cold ambient temperature due to vasoconstriction. Blockade of the stellate ganglion can improve peripheral vascular perfusion and can be achieved by direct injection or transcutaneous electrical nerve stimulation (TENS) stimulation. We evaluated whether TENS on the stellate ganglion would reduce vasoconstriction and thereby improve signal detection quality of peripheral pulse oximetry. In our study, 53 patients with minor trauma who required transport to the hospital were enrolled. We recorded vital signs, including core and skin temperature before and after transport to the hospital. Pulse oximetry sensors were attached to the patient's second finger on both hands. TENS of the stellate ganglion was started on one side after the beginning of the transport. Pulse oximeter alerts, due to poor signal detection, were recorded for each side separately. On the hand treated with TENS we detected a significant reduction of alerts compared to the other side (mean alerts TENS 3.1 [1-15] versus control side 8.8 [1-28] P signal quality of pulse oximeters in the prehospital setting.

  17. Testing of Commercial Milk Production Technology Using A Combination of High Temperature Short Time and Pulsed Electric Field

    OpenAIRE

    Hadi A; Widjanarko SB; Kusnadi J

    2016-01-01

    The development of milk processing technology has grown excessively, and it contains advantage and disadvantage. This study used mixed between PEF (Pulsed Electric Field) and High Temperature Short Time (HTST) to produce milk processed product which is effective and efficient in killing milk microorganism without changing its color, scent, and nutrient content of processed product, therefore producing commercial sterile milk product in accord with milk Indonesian National Standard (SNI). The ...

  18. Pulsed Electric Fields for Biological Weapons Defense

    National Research Council Canada - National Science Library

    Gundersen, Martin A

    2008-01-01

    Pulsed power for biological investigations newly developed at USC include a fast diode-based systems designed to drive cell suspensions in a microscope slide electrode microchamber for observations...

  19. Mechanism of equivalent electric dipole oscillation for high-order harmonic generation from grating-structured solid-surface by femtosecond laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang; Song, Hai-Ying; Liu, H.Y.; Liu, Shi-Bing, E-mail: sbliu@bjut.edu.cn

    2017-07-12

    Highlights: • Proposed a valid mechanism of high harmonic generation by laser grating target interaction: oscillation of equivalent electric dipole (OEED). • Found that there also exist harmonic emission at large emission angle but not just near-surface direction as the former researches had pointed out. • Show the process of the formation and motion of electron bunches at the grating-target surface irradiating with femtosecond laser pulse. - Abstract: We theoretically study high-order harmonic generation (HHG) from relativistically driven overdense plasma targets with rectangularly grating-structured surfaces by femtosecond laser pulses. Our particle-in-cell (PIC) simulations show that, under the conditions of low laser intensity and plasma density, the harmonics emit principally along small angles deviating from the target surface. Further investigation of the surface electron dynamics reveals that the electron bunches are formed by the interaction between the laser field and the target surface, giving rise to the oscillation of equivalent electric-dipole (OEED), which enhances specific harmonic orders. Our work helps understand the mechanism of harmonic emissions from grating targets and the distinction from the planar harmonic scheme.

  20. Experimental research for vacuum gap breakdown in high voltage multi-pulse

    International Nuclear Information System (INIS)

    Huang Ziping; He Jialong; Chen Sifu; Deng Jianjun; Wang Liping

    2008-01-01

    Base on the breakdown theory of vacuum gaps, experiments have been done to find out the breakdown electric field intensities in high voltage single-and triple-pulse for 26 vacuum gaps with different shapes. The experimental results match up to the theory and confirm the effect of the pulse-number increase on the breakdown electric field intensity. The key point to decide the macroscopical breakdown electric field intensity of a vacuum gap has been pointed out with some advises about the design of a multi-pulse linear inductive accelerator's accelerate gap. (authors)

  1. Osmotic dehydration of organic kiwifruit pre-treated by pulsed electric fields and monitored by NMR.

    Science.gov (United States)

    Traffano-Schiffo, Maria Victoria; Laghi, Luca; Castro-Giraldez, Marta; Tylewicz, Urszula; Rocculi, Pietro; Ragni, Luigi; Dalla Rosa, Marco; Fito, Pedro J

    2017-12-01

    Osmotic dehydration (OD) is a widely used preservation technique that consists in the reduction in food water activity by the immersion of the biological tissue in hypertonic solutions. The aim of this work was to analyze the effect of pulsed electric fields (PEF) in mass transfer as a pre-treatment of the OD using NMR. In this sense, PEF pre-treatments were done using three different voltages (100, 250 and 400V/cm) and 60 number of pulse. The OD of kiwifruit was carried out in 61.5% of sucrose solution at 25°C, for a contact period from 0 to 120min. The water distribution into the cellular tissue was studied by NMR relaxometry. In conclusion, NMR is an excellent technique for quantifying water molecules according to their interactions in the fruit tissue, obtaining the adsorbed water and opening the possibility to apply the BET model to fit the adsorbed isotherm over the whole range of water activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effects of shock waves, ultraviolet light, and electric fields from pulsed discharges in water on inactivation of Escherichia coli.

    Science.gov (United States)

    Sun, Bing; Xin, Yanbin; Zhu, Xiaomei; Gao, Zhiying; Yan, Zhiyu; Ohshima, Takayuki

    2018-04-01

    In this work, the bacterial inactivation effects of shock waves, ultraviolet (UV) light, and electric field produced by high-voltage pulsed discharge in liquid with needle-plate configurations were studied. The contributions of each effect on the bacterial killing ratio in the discharge process were obtained individually by modifying reactor type and usage of glass, quartz, and black balloons. The results showed that the location from the discharge center axis significantly influenced the effects of shock waves and electric fields, although the effect of UV light was not affected by the location in the reactor. The effects of shock waves and electric fields were improved by decreasing the distance from the discharge center axis. Under this experimental condition, the effects of shock waves, UV light, and electric fields produced by discharges on bacterial inactivation were approximately 36.1%, 30.8%, 12.7%, respectively. Other contributions seemed to be due to activated species. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Electric converters of electromagnetic strike machine with battery power

    Science.gov (United States)

    Usanov, K. M.; Volgin, A. V.; Kargin, V. A.; Moiseev, A. P.; Chetverikov, E. A.

    2018-03-01

    At present, the application of pulse linear electromagnetic engines to drive strike machines for immersion of rod elements into the soil, strike drilling of shallow wells, dynamic probing of soils is recognized as quite effective. The pulse linear electromagnetic engine performs discrete consumption and conversion of electrical energy into mechanical work. Pulse dosing of a stream transmitted by the battery source to the pulse linear electromagnetic engine of the energy is provided by the electrical converter. The electric converters with the control of an electromagnetic strike machine as functions of time and armature movement, which form the unipolar supply pulses of voltage and current necessary for the normal operation of a pulse linear electromagnetic engine, are proposed. Electric converters are stable in operation, implement the necessary range of output parameters control determined by the technological process conditions, have noise immunity and automatic disconnection of power supply in emergency modes.

  4. Electrical and spectroscopic analysis of mono- and multi-tip pulsed corona discharges in air at atmospheric pressure

    Science.gov (United States)

    Mraihi, A.; Merbahi, N.; Yousfi, M.; Abahazem, A.; Eichwald, O.

    2011-12-01

    This work is devoted to the analysis of experimental results obtained in dry air at atmospheric pressure in a positive point-to-plane corona discharge under a pulsed applied voltage in the cases of anodic mono- and multi-tips. In the mono-tip case, the peak corona current is analysed as a function of several experimental parameters such as magnitude, frequency and duration of pulsed voltage and gap distance. The variation of the corona discharge current is correlated with the ozone production. Then in the multi-tip case, the electrical behaviour is analysed as a function of the distance between two contiguous tips and the tip number in order to highlight the region of creation active species for the lowest dissipated power. Intensified charge-coupled device pictures and electric field calculations as a function of inter-tip distance are performed to analyse the mutual effect between two contiguous tips. The optical emission spectra are measured in the UV-visible-NIR wavelength range between 200 nm and 800 nm, in order to identify the main excited species formed in an air corona discharge such as the usual first and second positive systems with first negative systems of molecular nitrogen. The identification of atomic species (O triplet and N) and the quenching of NOγ emission bands are also emphasized.

  5. Electrical and spectroscopic analysis of mono- and multi-tip pulsed corona discharges in air at atmospheric pressure

    International Nuclear Information System (INIS)

    Mraihi, A; Merbahi, N; Yousfi, M; Abahazem, A; Eichwald, O

    2011-01-01

    This work is devoted to the analysis of experimental results obtained in dry air at atmospheric pressure in a positive point-to-plane corona discharge under a pulsed applied voltage in the cases of anodic mono- and multi-tips. In the mono-tip case, the peak corona current is analysed as a function of several experimental parameters such as magnitude, frequency and duration of pulsed voltage and gap distance. The variation of the corona discharge current is correlated with the ozone production. Then in the multi-tip case, the electrical behaviour is analysed as a function of the distance between two contiguous tips and the tip number in order to highlight the region of creation active species for the lowest dissipated power. Intensified charge-coupled device pictures and electric field calculations as a function of inter-tip distance are performed to analyse the mutual effect between two contiguous tips. The optical emission spectra are measured in the UV–visible–NIR wavelength range between 200 nm and 800 nm, in order to identify the main excited species formed in an air corona discharge such as the usual first and second positive systems with first negative systems of molecular nitrogen. The identification of atomic species (O triplet and N) and the quenching of NOγ emission bands are also emphasized.

  6. Our Lives with Electric Things

    DEFF Research Database (Denmark)

    Schick, Lea

    2017-01-01

    Our lives with electric things are positively charged with meaning. Our bodies pulse with electrical activity. The electric appliances, devices, and technologies around us bring hope and anxiety, possibility and danger. Some have transformed our possibilities for reproducing, nurturing, and susta......Our lives with electric things are positively charged with meaning. Our bodies pulse with electrical activity. The electric appliances, devices, and technologies around us bring hope and anxiety, possibility and danger. Some have transformed our possibilities for reproducing, nurturing......, and sustaining life. Some mediate human sociality across time and space, while others knit ecological and interspecies relationships together. Still others create possibilities for controlling, managing, exploiting, and ending life. Against this backdrop any anthropology of electricity seems to require electric...... things. Can we still imagine the possibility of lives without electric things? Can electric things help us to address the possibilities and limits of life with electricity? Can our lives with electricity ever be disentangled from electric things? What are the unique capacities and material politics...

  7. Research of long pulse high current diode radial insulation

    International Nuclear Information System (INIS)

    Tan Jie; Chang Anbi; Hu Kesong; Liu Qingxiang; Ma Qiaosheng; Liu Zhong

    2002-01-01

    A radial insulation structure which is used in long pulse high current diode is introduced. The theory of vacuum flashover and the idea of design are briefly introduced. In the research, cone-shaped insulator was used. The geometry structure parameters were optimized by simulating the static electrical field distribution. Experiment was done on a pulse power source with 200 ns pulse width. The maximum voltage 750 kV was obtained, and the average stand-off electrical field of insulator is about 50 kV/cm

  8. Pulsed electric field processing of different fruit juices: impac of pH and temperature on inactivation of spoilage and pathogenic micro-organisms

    NARCIS (Netherlands)

    Timmermans, R.A.H.; Nierop Groot, M.N.; Nederhoff, A.L.; Boekel, van M.A.J.S.; Matser, A.M.; Mastwijk, H.C.

    2014-01-01

    Pulsed electrical field (PEF) technology can be used for the inactivation of micro-organisms and therefore for preservation of food products. It is a mild technology compared to thermal pasteurization because a lower temperature is used during processing, leading to a better retention of the

  9. High-voltage pulsed life of multistressed polypropylene capacitor dielectric

    International Nuclear Information System (INIS)

    Laghari, J.R.

    1992-01-01

    High-voltage polypropylene capacitors were aged under singular as well as simultaneous multiple stresses (electrical, thermal, and radiation) at the University of Buffalo's 2 MW thermal nuclear reactor. These stresses were combined neutron-gamma radiation with a total dose of 1.6 x 10 6 rad, electrical stress at 40 V rms /μm, and thermal stress at 90 degrees C. After exposure, the polypropylene dielectric was tested for life (number of pulses to fail) under high-voltage high-repetition-rate (100 pps) pulses. Pulsed life data were also compared with ac life data. Results show that radiation stress causes the most degradation in life, either acting alone or in combination with other stresses. The largest reduction in life occurs when polypropylene is aged under simultaneous multiple stresses (electrical, thermal, and radiation). In this paper, it is shown that pulsed life can be equivalently compared with ac life

  10. Pulse generator circuit triggerable by nuclear radiation

    International Nuclear Information System (INIS)

    Fredrickson, P.B.

    1980-01-01

    A pulse generator circuit triggerable by a pulse of nuclear radiation is described. The pulse generator circuit includes a pair of transistors arranged, together with other electrical components, in the topology of a standard monostable multivibrator circuit. The circuit differs most significantly from a standard monostable multivibrator circuit in that the circuit is adapted to be triggered by a pulse of nuclear radiation rather than electrically and the transistors have substantially different sensitivities to radiation, due to different physical and electrical characteristics and parameters. One of the transistors is employed principally as a radiation detector and is in a normally non-conducting state and the other transistor is normally in a conducting state. When the circuit is exposed to a pulse of nuclear radiation, currents are induced in the collector-base junctions of both transistors but, due to the different radiation sensitivities of the transistors, the current induced in the collector-base junction of the radiation-detecting transistor is substantially greater than that induced in the collector-base junction of the other transistor. The pulse of radiation causes the radiation-detecting transistor to operate in its conducting state, causing the other transistor to operate in its non-conducting state. As the radiation-detecting transistor operates in its conducting state, an output signal is produced at an output terminal connected to the radiation-detecting transistor indicating the presence of a predetermined intensity of nuclear radiation

  11. Structural, morphological and local electric properties of TiO2 thin films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Gyoergy, E; Pino, A Perez del; Sauthier, G; Figueras, A; Alsina, F; Pascual, J

    2007-01-01

    Titanium dioxide (TiO 2 ) thin films were synthesized on (1 0 0) Si substrates by reactive pulsed laser deposition (PLD) technique. A frequency quadrupled Nd : YAG (λ = 266 nm, τ FWHM ≅ 5 ns, ν = 10 Hz) laser source was used for the irradiations of metallic Ti targets. The experiments were performed in controlled oxygen atmosphere. Crystallinity, surface morphology and local electric properties of the obtained oxide thin films were investigated by x-ray diffractometry, micro-Raman spectroscopy and current sensing atomic force microscopy. An inter-relation was found between the surface morphology, the crystalline structure and the nano-scale electric properties which open the possibility of synthesizing by the PLD technique TiO 2 thin films with tunable functional properties for future applications such as photocatalysts, gas sensors or solar energy converters

  12. Improvement of diagnostic techniques and electrical circuit in azo dye degradation by high voltage electrical discharge

    International Nuclear Information System (INIS)

    Shen Yongjun; Lei Lecheng; Zhang Xingwang; Zhou Minghua; Zhang Yi

    2008-01-01

    Fast electrical diagnostics and improvement of electrical circuits for methyl orange (MO) degradation by high voltage pulsed electrical discharge were investigated. To eliminate electromagnetic radiation, several effective methods were employed. RG 218 coaxial cable was substituted for the common transmission lines to transmit high voltage pulses, and multi-lines in parallel were earthed to avoid electromagnetic interference and, additionally, to reduce the stray inductance of the electrical circuit and increase the pulse rise rate to reduce the energy losses in the transmission system. The problem of the differences in the bandwidths of voltage and current probes causing an error in the calculation of energy dissipation was avoided by reducing the bandwidths of voltage and current measurements to the same value. The real discharge current was obtained by subtracting the capacitive current from the total current. The energy per pulse obtained in the reactor before and after improvement of the diagnostics and electrical circuit were 15.5 mJ and 26.8 mJ, respectively, and the energy efficiencies of MO degradation were 1.34 x 10 -9 mol/J and 1.95 x 10 -9 mol/J, respectively

  13. Predicting dynamic range and intensity discrimination for electrical pulse-train stimuli using a stochastic auditory nerve model: the effects of stimulus noise.

    Science.gov (United States)

    Xu, Yifang; Collins, Leslie M

    2005-06-01

    This work investigates dynamic range and intensity discrimination for electrical pulse-train stimuli that are modulated by noise using a stochastic auditory nerve model. Based on a hypothesized monotonic relationship between loudness and the number of spikes elicited by a stimulus, theoretical prediction of the uncomfortable level has previously been determined by comparing spike counts to a fixed threshold, Nucl. However, no specific rule for determining Nucl has been suggested. Our work determines the uncomfortable level based on the excitation pattern of the neural response in a normal ear. The number of fibers corresponding to the portion of the basilar membrane driven by a stimulus at an uncomfortable level in a normal ear is related to Nucl at an uncomfortable level of the electrical stimulus. Intensity discrimination limens are predicted using signal detection theory via the probability mass function of the neural response and via experimental simulations. The results show that the uncomfortable level for pulse-train stimuli increases slightly as noise level increases. Combining this with our previous threshold predictions, we hypothesize that the dynamic range for noise-modulated pulse-train stimuli should increase with additive noise. However, since our predictions indicate that intensity discrimination under noise degrades, overall intensity coding performance may not improve significantly.

  14. Neuronal excitation and permeabilization by 200-ns pulsed electric field: An optical membrane potential study with FluoVolt dye.

    Science.gov (United States)

    Pakhomov, Andrei G; Semenov, Iurii; Casciola, Maura; Xiao, Shu

    2017-07-01

    Electric field pulses of nano- and picosecond duration are a novel modality for neurostimulation, activation of Ca 2+ signaling, and tissue ablation. However it is not known how such brief pulses activate voltage-gated ion channels. We studied excitation and electroporation of hippocampal neurons by 200-ns pulsed electric field (nsPEF), by means of time-lapse imaging of the optical membrane potential (OMP) with FluoVolt dye. Electroporation abruptly shifted OMP to a more depolarized level, which was reached within 10s), so cells remained above the resting OMP level for at least 20-30s. Activation of voltage-gated sodium channels (VGSC) enhanced the depolarizing effect of electroporation, resulting in an additional tetrodotoxin-sensitive OMP peak in 4-5ms after nsPEF. Omitting Ca 2+ in the extracellular solution did not reduce the depolarization, suggesting no contribution of voltage-gated calcium channels (VGCC). In 40% of neurons, nsPEF triggered a single action potential (AP), with the median threshold of 3kV/cm (range: 1.9-4kV/cm); no APs could be evoked by stimuli below the electroporation threshold (1.5-1.9kV/cm). VGSC opening could already be detected in 0.5ms after nsPEF, which is too fast to be mediated by the depolarizing effect of electroporation. The overlap of electroporation and AP thresholds does not necessarily reflect the causal relation, but suggests a low potency of nsPEF, as compared to conventional electrostimulation, for VGSC activation and AP induction. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice. Part I: Impact on overall quality attributes

    NARCIS (Netherlands)

    Timmermans, R.A.H.; Mastwijk, H.C.; Knol, J.J.; Quataert, M.C.J.; Vervoort, L.; Plancken, van der I.; Hendrickx, M.E.; Matser, A.M.

    2011-01-01

    Mild heat pasteurization, high pressure processing (HP) and pulsed electric field (PEF) processing of freshly squeezed orange juice were comparatively evaluated examining their impact on microbial load and quality parameters immediately after processing and during two months of storage. Microbial

  16. Uniform and non-uniform modes of nanosecond-pulsed dielectric barrier discharge in atmospheric air: fast imaging and spectroscopic measurements of electric field.

    Science.gov (United States)

    Liu, Chong; Dobrynin, Danil; Fridman, Alexander

    2014-06-25

    In this study, we report experimental results on fast ICCD imaging of development of nanosecond-pulsed dielectric barrier discharge (DBD) in atmospheric air and spectroscopic measurements of electric field in the discharge. Uniformity of the discharge images obtained with nanosecond exposure times were analyzed using chi-square test. The results indicate that DBD uniformity strongly depends on applied (global) electric field in the discharge gap, and is a threshold phenomenon. We show that in the case of strong overvoltage on the discharge gap (provided by fast rise times), there is transition from filamentary to uniform DBD mode which correlates to the corresponding decrease of maximum local electric field in the discharge.

  17. 100 GHz pulse waveform measurement based on electro-optic sampling

    Science.gov (United States)

    Feng, Zhigang; Zhao, Kejia; Yang, Zhijun; Miao, Jingyuan; Chen, He

    2018-05-01

    We present an ultrafast pulse waveform measurement system based on an electro-optic sampling technique at 1560 nm and prepare LiTaO3-based electro-optic modulators with a coplanar waveguide structure. The transmission and reflection characteristics of electrical pulses on a coplanar waveguide terminated with an open circuit and a resistor are investigated by analyzing the corresponding time-domain pulse waveforms. We measure the output electrical pulse waveform of a 100 GHz photodiode and the obtained rise times of the impulse and step responses are 2.5 and 3.4 ps, respectively.

  18. Modeling study on the effects of pulse rise rate in atmospheric pulsed discharges

    Science.gov (United States)

    Zhang, Yuan-Tao; Wang, Yan-Hui

    2018-02-01

    In this paper, we present a modeling study on the discharge characteristics driven by short pulsed voltages, focusing on the effects of pulse rise rate based on the fluid description of atmospheric plasmas. The numerical results show that the breakdown voltage of short pulsed discharge is almost linearly dependent on the pulse rise rate, which is also confirmed by the derived equations from the fluid model. In other words, if the pulse rise rate is fixed as a constant, the simulation results clearly suggest that the breakdown voltage is almost unchanged, although the amplitude of pulsed voltage increases significantly. The spatial distribution of the electric field and electron density are given to reveal the underpinning physics. Additionally, the computational data and the analytical expression also indicate that an increased repetition frequency can effectively decrease the breakdown voltage and current density, which is consistent with the experimental observation.

  19. Multi-parametric study of temperature and thermal damage of tumor exposed to high-frequency nanosecond-pulsed electric fields based on finite element simulation.

    Science.gov (United States)

    Mi, Yan; Rui, Shaoqin; Li, Chengxiang; Yao, Chenguo; Xu, Jin; Bian, Changhao; Tang, Xuefeng

    2017-07-01

    High-frequency nanosecond-pulsed electric fields were recently introduced for tumor or abnormal tissue ablation to solve some problems of conventional electroporation. However, it is necessary to study the thermal effects of high-field-intensity nanosecond pulses inside tissues. The multi-parametric analysis performed here is based on a finite element model of liver tissue with a tumor that has been punctured by a pair of needle electrodes. The pulse voltage used in this study ranges from 1 to 4 kV, the pulse width ranges from 50 to 500 ns, and the repetition frequency is between 100 kHz and 1 MHz. The total pulse length is 100 μs, and the pulse burst repetition frequency is 1 Hz. Blood flow and metabolic heat generation have also been considered. Results indicate that the maximum instantaneous temperature at 100 µs can reach 49 °C, with a maximum instantaneous temperature at 1 s of 40 °C, and will not cause thermal damage during single pulse bursts. By parameter fitting, we can obtain maximum instantaneous temperature at 100 µs and 1 s for any parameter values. However, higher temperatures will be achieved and may cause thermal damage when multiple pulse bursts are applied. These results provide theoretical basis of pulse parameter selection for future experimental researches.

  20. Cell Fragmentation and Permeabilization by a 1 ns Pulse Driven Triple-Point Electrode

    Directory of Open Access Journals (Sweden)

    Enbo Yang

    2018-01-01

    Full Text Available Ultrashort electric pulses (ns-ps are useful in gaining understanding as to how pulsed electric fields act upon biological cells, but the electric field intensity to induce biological responses is typically higher than longer pulses and therefore a high voltage ultrashort pulse generator is required. To deliver 1 ns pulses with sufficient electric field but at a relatively low voltage, we used a glass-encapsulated tungsten wire triple-point electrode (TPE at the interface among glass, tungsten wire, and water when it is immersed in water. A high electric field (2 MV/cm can be created when pulses are applied. However, such a high electric field was found to cause bubble emission and temperature rise in the water near the electrode. They can be attributed to Joule heating near the electrode. Adherent cells on a cover slip treated by the combination of these stimuli showed two major effects: (1 cells in a crater (<100 μm from electrode were fragmented and the debris was blown away. The principal mechanism for the damage is presumed to be shear forces due to bubble collapse; and (2 cells in the periphery of the crater were permeabilized, which was due to the combination of bubble movement and microstreaming as well as pulsed electric fields. These results show that ultrashort electric fields assisted by microbubbles can cause significant cell response and therefore a triple-point electrode is a useful ablation tool for applications that require submillimeter precision.

  1. Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure

    Science.gov (United States)

    Roth, Caleb C.; Barnes Jr., Ronald A.; Ibey, Bennett L.; Beier, Hope T.; Christopher Mimun, L.; Maswadi, Saher M.; Shadaram, Mehdi; Glickman, Randolph D.

    2015-01-01

    The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane. PMID:26450165

  2. Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure.

    Science.gov (United States)

    Roth, Caleb C; Barnes, Ronald A; Ibey, Bennett L; Beier, Hope T; Christopher Mimun, L; Maswadi, Saher M; Shadaram, Mehdi; Glickman, Randolph D

    2015-10-09

    The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane.

  3. Critical Infrastructure Protection: EMP Impacts on the U.S. Electric Grid

    Science.gov (United States)

    Boston, Edwin J., Jr.

    The purpose of this research is to identify the United States electric grid infrastructure systems vulnerabilities to electromagnetic pulse attacks and the cyber-based impacts of those vulnerabilities to the electric grid. Additionally, the research identifies multiple defensive strategies designed to harden the electric grid against electromagnetic pulse attack that include prevention, mitigation and recovery postures. Research results confirm the importance of the electric grid to the United States critical infrastructures system and that an electromagnetic pulse attack against the electric grid could result in electric grid degradation, critical infrastructure(s) damage and the potential for societal collapse. The conclusions of this research indicate that while an electromagnetic pulse attack against the United States electric grid could have catastrophic impacts on American society, there are currently many defensive strategies under consideration designed to prevent, mitigate and or recover from an electromagnetic pulse attack. However, additional research is essential to further identify future target hardening opportunities, efficient implementation strategies and funding resources.

  4. Computer modeling of electrical and thermal performance during bipolar pulsed radiofrequency for pain relief

    International Nuclear Information System (INIS)

    Pérez, Juan J.; Pérez-Cajaraville, Juan J.; Muñoz, Víctor; Berjano, Enrique

    2014-01-01

    Purpose: Pulsed RF (PRF) is a nonablative technique for treating neuropathic pain. Bipolar PRF application is currently aimed at creating a “strip lesion” to connect the electrode tips; however, the electrical and thermal performance during bipolar PRF is currently unknown. The objective of this paper was to study the temperature and electric field distributions during bipolar PRF. Methods: The authors developed computer models to study temperature and electric field distributions during bipolar PRF and to assess the possible ablative thermal effect caused by the accumulated temperature spikes, along with any possible electroporation effects caused by the electrical field. The authors also modeled the bipolar ablative mode, known as bipolar Continuous Radiofrequency (CRF), in order to compare both techniques. Results: There were important differences between CRF and PRF in terms of electrical and thermal performance. In bipolar CRF: (1) the initial temperature of the tissue impacts on temperature progress and hence on the thermal lesion dimension; and (2) at 37 °C, 6-min of bipolar CRF creates a strip thermal lesion between the electrodes when these are separated by a distance of up to 20 mm. In bipolar PRF: (1) an interelectrode distance shorter than 5 mm produces thermal damage (i.e., ablative effect) in the intervening tissue after 6 min of bipolar RF; and (2) the possible electroporation effect (electric fields higher than 150 kV m −1 ) would be exclusively circumscribed to a very small zone of tissue around the electrode tip. Conclusions: The results suggest that (1) the clinical parameters considered to be suitable for bipolar CRF should not necessarily be considered valid for bipolar PRF, and vice versa; and (2) the ablative effect of the CRF mode is mainly due to its much greater level of delivered energy than is the case in PRF, and therefore at same applied energy levels, CRF, and PRF are expected to result in same outcomes in terms of thermal

  5. Computer modeling of electrical and thermal performance during bipolar pulsed radiofrequency for pain relief

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Juan J. [Instituto de Investigación Interuniversitario en Bioingeniería y Tecnología Orientada al Ser Humano, Universitat Politècnica de València, Valencia 46022 (Spain); Pérez-Cajaraville, Juan J. [Pain Unit and Department of Anesthesia and Critical Care, Clínica Universidad de Navarra, University of Navarra, Pamplona 31008 (Spain); Muñoz, Víctor [Neurotherm Spain, Barcelona 08303 (Spain); Berjano, Enrique, E-mail: eberjano@eln.upv.es [Biomedical Synergy, Electronic Engineering Department, Universitat Politècnica de València 46022 (Spain)

    2014-07-15

    Purpose: Pulsed RF (PRF) is a nonablative technique for treating neuropathic pain. Bipolar PRF application is currently aimed at creating a “strip lesion” to connect the electrode tips; however, the electrical and thermal performance during bipolar PRF is currently unknown. The objective of this paper was to study the temperature and electric field distributions during bipolar PRF. Methods: The authors developed computer models to study temperature and electric field distributions during bipolar PRF and to assess the possible ablative thermal effect caused by the accumulated temperature spikes, along with any possible electroporation effects caused by the electrical field. The authors also modeled the bipolar ablative mode, known as bipolar Continuous Radiofrequency (CRF), in order to compare both techniques. Results: There were important differences between CRF and PRF in terms of electrical and thermal performance. In bipolar CRF: (1) the initial temperature of the tissue impacts on temperature progress and hence on the thermal lesion dimension; and (2) at 37 °C, 6-min of bipolar CRF creates a strip thermal lesion between the electrodes when these are separated by a distance of up to 20 mm. In bipolar PRF: (1) an interelectrode distance shorter than 5 mm produces thermal damage (i.e., ablative effect) in the intervening tissue after 6 min of bipolar RF; and (2) the possible electroporation effect (electric fields higher than 150 kV m{sup −1}) would be exclusively circumscribed to a very small zone of tissue around the electrode tip. Conclusions: The results suggest that (1) the clinical parameters considered to be suitable for bipolar CRF should not necessarily be considered valid for bipolar PRF, and vice versa; and (2) the ablative effect of the CRF mode is mainly due to its much greater level of delivered energy than is the case in PRF, and therefore at same applied energy levels, CRF, and PRF are expected to result in same outcomes in terms of

  6. Computer modeling of electrical and thermal performance during bipolar pulsed radiofrequency for pain relief.

    Science.gov (United States)

    Pérez, Juan J; Pérez-Cajaraville, Juan J; Muñoz, Víctor; Berjano, Enrique

    2014-07-01

    Pulsed RF (PRF) is a nonablative technique for treating neuropathic pain. Bipolar PRF application is currently aimed at creating a "strip lesion" to connect the electrode tips; however, the electrical and thermal performance during bipolar PRF is currently unknown. The objective of this paper was to study the temperature and electric field distributions during bipolar PRF. The authors developed computer models to study temperature and electric field distributions during bipolar PRF and to assess the possible ablative thermal effect caused by the accumulated temperature spikes, along with any possible electroporation effects caused by the electrical field. The authors also modeled the bipolar ablative mode, known as bipolar Continuous Radiofrequency (CRF), in order to compare both techniques. There were important differences between CRF and PRF in terms of electrical and thermal performance. In bipolar CRF: (1) the initial temperature of the tissue impacts on temperature progress and hence on the thermal lesion dimension; and (2) at 37 °C, 6-min of bipolar CRF creates a strip thermal lesion between the electrodes when these are separated by a distance of up to 20 mm. In bipolar PRF: (1) an interelectrode distance shorter than 5 mm produces thermal damage (i.e., ablative effect) in the intervening tissue after 6 min of bipolar RF; and (2) the possible electroporation effect (electric fields higher than 150 kV m(-1)) would be exclusively circumscribed to a very small zone of tissue around the electrode tip. The results suggest that (1) the clinical parameters considered to be suitable for bipolar CRF should not necessarily be considered valid for bipolar PRF, and vice versa; and (2) the ablative effect of the CRF mode is mainly due to its much greater level of delivered energy than is the case in PRF, and therefore at same applied energy levels, CRF, and PRF are expected to result in same outcomes in terms of thermal damage zone dimension.

  7. Separation and collection of coarse aggregate from waste concrete by electric pulsed power

    Science.gov (United States)

    Shigeishi, Mitsuhiro

    2017-09-01

    Waste concrete accounts for a substantial fraction of construction waste, and the recycling of waste concrete as concrete aggregate for construction is an important challenge associated with the rapid increase in the amount of waste concrete and the tight supply of natural aggregate. In this study, we propose a technique based on the use of high-voltage pulsed electric discharge into concrete underwater for separating and collecting aggregate from waste concrete with minimal deterioration of quality. By using this technique, the quality of the coarse aggregate separated and collected from concrete test specimens is comparable to that of coarse aggregate recycled by heating and grinding methods, thus satisfying the criteria in Japan Industrial Standard (JIS) A 5021 for the oven-dry density and the water absorption of coarse aggregate by advanced recycling.

  8. Role of N2 molecules in pulse discharge production of I atoms for a pulsed chemical oxygen-iodine laser

    International Nuclear Information System (INIS)

    Kochetov, I V; Napartovich, A P; Vagin, N P; Yuryshev, N N

    2011-01-01

    A pulsed electric discharge is the most effective means to turn chemical oxygen-iodine laser (COIL) operation into the pulse mode by fast production of iodine atoms. Experimental studies and numerical simulations are performed on a pulsed COIL initiated by an electric discharge in a mixture CF 3 I : N 2 : O 2 ( 3 X) : O 2 (a 1 Δ g ) flowing out of a chemical singlet oxygen generator. A transverse pulsed discharge is realized at various iodide pressures. The model comprises a system of kinetic equations for neutral and charged species, the electric circuit equation, the gas thermal balance equation and the photon balance equation. Reaction rate coefficients for processes involving electrons are repeatedly re-calculated by the electron Boltzmann equation solver when the plasma parameters are changed. The processes accounted for in the Boltzmann equation include direct and stepwise excitation and ionization of atoms and molecules, dissociation of molecules, electron attachment processes, electron-ion recombination, electron-electron collisions and second-kind collisions. The last processes are particularly important because of a high singlet oxygen concentration in gas flow from the singlet oxygen chemical generator. A conclusion is drawn about satisfactory agreement between the theory and the experiment.

  9. Growth and apoptosis of HeLa cells induced by intense picosecond pulsed electric field

    Directory of Open Access Journals (Sweden)

    Yuan-yuan HUA

    2011-07-01

    Full Text Available Objective To investigate the growth and apoptosis of HeLa cells induced by intense picosecond pulsed electric field(PEF in vitro.Methods HeLa cells cultured in vitro were divided into experimental group and control group(with or without intense picosecond PEF.With constant pulse width,frequency and voltage,the cells in experimental group were divided into 6 sub-groups according to the number of pulse(100,200,500,1000,1500,2000,the growth inhibition of HeLa cells by PEF and the dose-effect relationship were analyzed by MTT.Caspase 3 protein activity was detected in the cells in 500,1000 and 2000 sub-groups.Mitochondrial transmembrane potential was detected by rhodamine 123 staining with the cells in 2000 sub-groups.Results MTT assay demonstrated that intense picosecond PEF significantly inhibited the proliferation of HeLa cells in dose-dependent manner.The survival rates of cells declined along with the increase in pulse number,and were 96.23%±0.76%,94.11%±2.42%,90.31%±1.77%,64.59%±1.59%,32.95%±0.73%,23.85%±2.38% and 100%,respectively,in 100,200,500,1000,1500,2000 sub-groups and control group(P < 0.01.The Caspase 3 protein activity was significantly enhanced by intense picosecond PEF,and the absorbancy indexes(A were 0.174±0.012,0.232±0.017,0.365±0.016 and 0.122±0.011,respectively,in 500,1000,2000 sub-groups and control group(P < 0.05.The mitochondrial transmembrane potential of HeLa cells was significantly inhibited by intense picosecond PEF,and the fluorescence intensity in 2000 sub-group(76.66±13.38 was much lower than that in control group(155.81±2.33,P < 0.05.Conclusion Intense picosecond PEF may significantly inhibit the growth of HeLa cells,and induce cell apoptosis via mitochondrial pathway.

  10. Cell Proliferation, Migration, and Neurogenesis in the Adult Brain of the Pulse Type Weakly Electric Fish, Gymnotus omarorum

    Directory of Open Access Journals (Sweden)

    Valentina Olivera-Pasilio

    2017-08-01

    Full Text Available Adult neurogenesis, an essential mechanism of brain plasticity, enables brain development along postnatal life, constant addition of new neurons, neuronal turnover, and/or regeneration. It is amply distributed but negatively modulated during development and along evolution. Widespread cell proliferation, high neurogenic, and regenerative capacities are considered characteristics of teleost brains during adulthood. These anamniotes are promising models to depict factors that modulate cell proliferation, migration, and neurogenesis, and might be intervened to promote brain plasticity in mammals. Nevertheless, the migration path of derived cells to their final destination was not studied in various teleosts, including most weakly electric fish. In this group adult brain morphology is attributed to sensory specialization, involving the concerted evolution of peripheral electroreceptors and electric organs, encompassed by the evolution of neural networks involved in electrosensory information processing. In wave type gymnotids adult brain morphology is proposed to result from lifelong region specific cell proliferation and neurogenesis. Consistently, pulse type weakly electric gymnotids and mormyrids show widespread distribution of proliferation zones that persists in adulthood, but their neurogenic potential is still unknown. Here we studied the migration process and differentiation of newborn cells into the neuronal phenotype in the pulse type gymnotid Gymnotus omarorum. Pulse labeling of S-phase cells with 5-Chloro-2′-deoxyuridine thymidine followed by 1 to 180 day survivals evidenced long distance migration of newborn cells from the rostralmost telencephalic ventricle to the olfactory bulb, and between layers of all cerebellar divisions. Shorter migration appeared in the tectum opticum and torus semicircularis. In many brain regions, derived cells expressed early neuronal markers doublecortin (chase: 1–30 days and HuC/HuD (chase: 7–180 days

  11. Pulsed Corona for Sustainable Technology

    International Nuclear Information System (INIS)

    Heesch, E.J.M. van; Pemen, A.J.M.; Yan, K.; Blom, P.P.M.; Huijbrechts, P.A.H.J.; Der Laan, P.C.T. van

    2000-01-01

    Highly active coronas with a peak power of up to 25 MW p/m corona wire and kJ/liter energy densities in the streamer channels can be produced by pulsed power. Since the voltage pulses are short, full breakdown does not occur even though the discharge currents are hundreds of Amperes. A matched pulsed power source can deposit up to 80% of its electrical energy into such a controlled discharge. Reliable and efficient sources characterized by 100 kV,150 ns wide pulses at 1000 Hz have passed 400 hours of operation. The area of applications is growing: VOC control, hot gas cleanup, water and air purification and sterilization. (author)

  12. Periodically pulsed wet annealing approach for low-temperature processable amorphous InGaZnO thin film transistors with high electrical performance and ultrathin thickness

    OpenAIRE

    Kim, Ye Kyun; Ahn, Cheol Hyoun; Yun, Myeong Gu; Cho, Sung Woon; Kang, Won Jun; Cho, Hyung Koun

    2016-01-01

    In this paper, a simple and controllable ?wet pulse annealing? technique for the fabrication of flexible amorphous InGaZnO thin film transistors (a-IGZO TFTs) processed at low temperature (150??C) by using scalable vacuum deposition is proposed. This method entailed the quick injection of water vapor for 0.1?s and purge treatment in dry ambient in one cycle; the supply content of water vapor was simply controlled by the number of pulse repetitions. The electrical transport characteristics rev...

  13. Development of a double plasma gun device for investigation of effects of vapor shielding on erosion of PFC materials under ELM-like pulsed plasma bombardment

    Science.gov (United States)

    Sakuma, I.; Iwamoto, D.; Kitagawa, Y.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    It is considered that thermal transient events such as type I edge localized modes (ELMs) could limit the lifetime of plasma-facing components (PFCs) in ITER. We have investigated surface damage of tungsten (W) materials under transient heat and particle loads by using a magnetized coaxial plasma gun (MCPG) device at University of Hyogo. The capacitor bank energy for the plasma discharge is 144 kJ (2.88 mF, 10 kVmax). Surface melting of a W material was clearly observed at the energy density of ˜2 MJ/m2. It is known that surface melting and evaporation during a transient heat load could generate a vapor cloud layer in front of the target material [1]. Then, the subsequent erosion could be reduced by the vapor shielding effect. In this study, we introduce a new experiment using two MCPG devices (MCPG-1, 2) to understand vapor shielding effects of a W surface under ELM-like pulsed plasma bombardment. The capacitor bank energy of MCPG-2 is almost same as that of MCPG-1. The second plasmoid is applied with a variable delay time after the plasmoid produced by MCPG-1. Then, a vapor cloud layer could shield the second plasma load. To verify the vapor shielding effects, surface damage of a W material is investigated by changing the delay time. In the conference, the preliminary experimental results will be shown.[4pt] [1] A. Hassanein et al., J. Nucl. Mater. 390-391, pp. 777-780 (2009).

  14. Physicochemical Properties of Bovine Serum Albumin-Glucose and Bovine Serum Albumin-Mannose Conjugates Prepared by Pulsed Electric Fields Treatment

    Directory of Open Access Journals (Sweden)

    Wenjie Jian

    2018-03-01

    Full Text Available The pulsed electric fields (PEF treatment is a novel method for obtaining glycated proteins by way of a Maillard reaction between proteins and polysaccharides but its effect on the preparation of protein–monosaccharide conjugate has not been explored. This study aimed to prepare bovine serum albumin (BSA–glucose and BSA–mannose conjugates using PEF in pH 10.0 at an intensity of 10 or 20 kV/cm, frequency of 1 kHz, pulse width of 20 μs and 73.5 pulses. The conjugates were evaluated for physicochemical properties. The results indicated that PEF not only promoted Maillard reaction between BSA and glucose or mannose but also alleviated the undesirable browning. PEF treatment favored the increased surface hydrophobicity and emulsifying activity in BSA but reduced surface hydrophobicity and foaming stability and improved foaming capacity in BSA–glucose and BSA–mannose conjugates. These findings provided useful considerations in the application of PEF treatment as a potential method to prepare BSA–monosaccharide conjugates by Maillard reaction.

  15. Defining treatment conditions for pulsed electric field pasteurization of apple juice.

    Science.gov (United States)

    Saldaña, G; Puértolas, E; Monfort, S; Raso, J; Alvarez, I

    2011-11-15

    The influence of temperature and the presence of N(α)-lauroyl ethylester (ethyl lauroyl arginate, LAE) on the inactivation caused by continuous pulsed electric field treatments (PEF) in Escherichia coli O157:H7 suspended in apple juice have been investigated to define treatment conditions applicable at industrial scale that promote an equivalent safety level when compared with thermal processing. In the range of experimental conditions investigated (outlet temperature: 20-40 °C, electric field strength: 20-30 kV, treatment time: 5-125 μs) at outlet temperatures equal or lower than 55±1 °C, the inactivation of E. coli O157:H7 treated in apple juice ranged from 0.4 to 3.6 Log₁₀ cycles reduction and treated in apple juice supplemented with LAE (50 ppm) ranged from 0.9 to 6.7 Log₁₀ cycles reduction. An empirical mathematical model was developed to estimate the treatment time and total specific energy input to obtain 5 Log₁₀ cycles reduction in the population of E. coli O157:H7 suspended in apple juice supplemented with 50 ppm of LAE at different electric field strengths and inlet temperatures. Treatment conditions established for E. coli O157:H7 were validated with other PEF resistant Gram-positive (Listeria monocytogenes, and Staphylococcus aureus) and Gram-negative (Salmonella enterica serovar Typhimurium) strains. When the treatment was applied to the apple juice, a treatment of 25 kV/cm for 63 μs corresponding with an outlet temperature of 65 °C and input energy of 125 kJ/kg was required to achieve more than 5 Log₁₀ cycles in the four strains investigated. The addition of LAE reduced the treatment time required to obtain an equivalent inactivation (>5 Log₁₀ cycles) in the four microorganisms to 38.4 μs, the outlet temperature to 55 °C, and the input energy to 83.2 kJ/kg. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Periodically pulsed wet annealing approach for low-temperature processable amorphous InGaZnO thin film transistors with high electrical performance and ultrathin thickness.

    Science.gov (United States)

    Kim, Ye Kyun; Ahn, Cheol Hyoun; Yun, Myeong Gu; Cho, Sung Woon; Kang, Won Jun; Cho, Hyung Koun

    2016-05-20

    In this paper, a simple and controllable "wet pulse annealing" technique for the fabrication of flexible amorphous InGaZnO thin film transistors (a-IGZO TFTs) processed at low temperature (150 °C) by using scalable vacuum deposition is proposed. This method entailed the quick injection of water vapor for 0.1 s and purge treatment in dry ambient in one cycle; the supply content of water vapor was simply controlled by the number of pulse repetitions. The electrical transport characteristics revealed a remarkable performance of the a-IGZO TFTs prepared at the maximum process temperature of 150 °C (field-effect mobility of 13.3 cm(2) V(-1) s(-1); Ion/Ioff ratio ≈ 10(8); reduced I-V hysteresis), comparable to that of a-IGZO TFTs annealed at 350 °C in dry ambient. Upon analysis of the angle-resolved x-ray photoelectron spectroscopy, the good performance was attributed to the effective suppression of the formation of hydroxide and oxygen-related defects. Finally, by using the wet pulse annealing process, we fabricated, on a plastic substrate, an ultrathin flexible a-IGZO TFT with good electrical and bending performances.

  17. PENERAPAN PULSED ELECTRIC FIELD PADA PASTEURISASI SARI BUAH APEL VARIETAS ANA: KAJIAN KARAKTERISTIK NILAI GIZI, SIFAT FISIK, SIFAT KIMIAWI DAN MIKROBIA TOTAL Application of Pulsed Electric Field in Pasteurization of Apple Juice of Ana Cultivar : Study on

    Directory of Open Access Journals (Sweden)

    La Choviya Hawa

    2012-05-01

    Full Text Available Apple juice, extracted from apple of ana cultivar , was pasteurized using a pulsed electric field (PEF method. The aimof this research was to analyze the changes on nutritional, physical and chemical properties and total microbes from apple juice after pasteurization. The research was conducted from July until Oktober 2009 located in Malang. The PEF treatment was carried out using treatment time variation for 10, 20, 30, 40, 50 and 60 seconds. Several parameters of vitamin A and C, water content, density, pH, total soluable solid and total microbes were observed. The results showed that PEF treatment did not significantly change nutritional, physical and chemical properties and total microbes after pasteurization with PEF in compared with no treatment pasteurization. The highest degradation was found in treatment time for 60 seconds, i.e. 93.53 %. ABSTRAK Sari buah apel, yang diekstrak dari apel varietas ana, dipasteurisasi dengan metode pulsed electric field (PEF. Tujuanpenelitian ini adalah untuk mengetahui perubahan karakteristik nilai gizi, sifat fisik, kimiawi dan total mikrobia sari buah apel sesudah dipasteurisasi. Penelitian dilaksanakan bulan Juli sampai dengan Oktober 2009 di Malang. Penelitian ini menggunakan variasi waktu pengolahan 10, 20, 30, 40, 50 dan 60 detik. Parameter pengamatan yaitu vitamin A dan C, kadar air, berat jenis, pH, total padatan terlarut dan total mikrobia. Hasil penelitian menunjukkan bahwa nilai gizi, sifat fisik dan kimiawi dari sari apel  tidak mengalami perubahan signifikan dibandingkan sari apel tanpa perlakuan PEF. Penurunan total mikrobia terbesar pada waktu perlakuan 60 detik dengan efektivitas pembunuhan sebesar 93,53%.

  18. Spatio-temporal characteristics of self-pulse in hollow cathode discharge

    International Nuclear Information System (INIS)

    Jing, Ha; He, Shoujie

    2015-01-01

    The characteristics of self-pulse in hollow cathode discharge at low pressure have been investigated. The voltage-current (V-I) curves, the influence of ballast resistor on the self-pulses, and the evolution of current and voltage are measured. Both the axial and radial spatio-temporal discharge images of self-pulse are recorded. The results show that there exists the hysteresis effect in the present hollow cathode discharge. The high value of ballast resistors is favourable for the observation of self-pulses. The process of the self-pulse can be divided into three stages from the temporal discharge images, i.e., the pre-discharge, the transition from mainly axial electric field to mainly radial electric field, and the decaying process. The self-pulse is suggested to originate from the mode transition of the discharge in essence

  19. Analysis of α-helix unfolding in the pine nut peptide Lys-Cys-His-Lys-Pro induced by pulsed electric field.

    Science.gov (United States)

    Xing, Jie; Zhang, Sitian; Zhang, Mingdi; Lin, Songyi

    2017-09-01

    A variety of analytical techniques were applied to explore the effects of pulsed electric field (PEF) on α-helix structural changes in the novel antioxidant peptide Lys-Cys-His-Lys-Pro (KCHKP, 611.76 Da). The relative α-helix content of the KCHKP peptide was significantly altered from 100% to 89.91 ± 0.97% when the electric pulse frequency was 1800 Hz and the field intensity was 10 kV cm -1 . Moreover, the 1,1-diphenyl-2-pycryl-hydrazyl (DPPH) and 2,2-azinobis diammonium salt (ABTS) radical-scavenging activities of PEF-treated KCHKP were increased from 56.31% ± 0.74% to 84.33% ± 1.23% and from 40.56% ± 0.78% to 51.33% ± 0.27%, respectively. PEF treatment increased peptide linkage stretch vibration and altered hydrogen bonding of KCHKP. The stability of the α-helix structure was influenced by hydrogen bonds within the peptide linkage of KCHKP induced by PEF and was related to changes in antioxidant activity. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Behavior of pulsed electric field injured Escherichia coli O157:H7 cells in apple juice amended with pyruvate and catalase

    Science.gov (United States)

    Pulse Electric Field (PEF) treatment has been used to inactivate bacteria in liquid foods. However, information on the behavior of PEF injured Escherichia coli bacteria in media during storage at 5 and 23C are limited. In this study, we investigated the fate of E. coli O157:H7 cells at 6.8 log CFU/m...

  1. E. coli electroeradication on a closed loop circuit by using milli-, micro- and nanosecond pulsed electric fields: comparison between energy costs.

    Science.gov (United States)

    Guionet, Alexis; David, Fabienne; Zaepffel, Clément; Coustets, Mathilde; Helmi, Karim; Cheype, Cyril; Packan, Denis; Garnier, Jean-Pierre; Blanckaert, Vincent; Teissié, Justin

    2015-06-01

    One of the different ways to eradicate microorganisms, and particularly bacteria that might have an impact on health consists in the delivery of pulsed electric fields (PEFs). The technologies of millisecond (ms) or microsecond (μs) PEF are still well known and used for instance in the process of fruit juice sterilization. However, this concept is costly in terms of delivered energy which might be too expensive for some other industrial processes. Nanosecond pulsed electric fields (nsPEFs) might be an alternative at least for lower energetic cost. However, only few insights were available and stipulate a gain in cost and in efficiency as well. Using Escherichia coli, the impact of frequency and low rate on eradication and energy consumption by msPEF, μsPEF and nsPEF have been studied and compared. While a 1 log10 was reached with an energy cost of 100 and 158 kJ/L with micro- and millisecond PEFs respectively, nsPEF reached the reduction for similar energy consumption. The best condition was obtained for a 1 log10 deactivation in 0.5h, for energy consumption of 143 kJ/L corresponding to 0.04 W · h when the field was around 100 kV/cm. Improvement can also be expected by producing a generator capable to increase the electric field. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Uniform and non-uniform modes of nanosecond-pulsed dielectric barrier discharge in atmospheric air: fast imaging and spectroscopic measurements of electric field

    Science.gov (United States)

    Liu, Chong; Dobrynin, Danil; Fridman, Alexander

    2014-01-01

    In this study, we report experimental results on fast ICCD imaging of development of nanosecond-pulsed dielectric barrier discharge (DBD) in atmospheric air and spectroscopic measurements of electric field in the discharge. Uniformity of the discharge images obtained with nanosecond exposure times were analyzed using chi-square test. The results indicate that DBD uniformity strongly depends on applied (global) electric field in the discharge gap, and is a threshold phenomenon. We show that in the case of strong overvoltage on the discharge gap (provided by fast rise times), there is transition from filamentary to uniform DBD mode which correlates to the corresponding decrease of maximum local electric field in the discharge. PMID:25071294

  3. Sync transmission method and apparatus for high frequency pulsed neutron spectral analysis systems

    International Nuclear Information System (INIS)

    Culver, R.B.

    1981-01-01

    An improved synchronization system was developed for high-frequency pulsed-neutron gamma ray well-logging which extends the upper limit of the usable source pulsing frequency. A clock is used to pulse the neutron generator at a given frequency and a scaler generates scaled-down sync pulses at a lower frequency. Radiation from the formations surrounding the borehole is detected and electrical signals related functionally to the radiation are generated. The scaled-down sync pulses and electrical signals are transmitted to the earth's surface via a seven conductor well logging cable. (DN)

  4. ''Positive'' and ''negative'' electric-pulse-induced reversible resistance switching effect in Pr0.7Ca0.3MnO3 films

    International Nuclear Information System (INIS)

    Wang, Q.; Chen, L.D.; Li, X.M.; Shang, D.S.; Wu, Z.H.

    2007-01-01

    ''Negative'' electric-pulse-induced reversible resistance (EPIR) switching phenomenon was found in In/PCMO/Pt sandwich, in which the high resistance can be written with positive voltage pulses, and the low resistance can be reset using negative voltage pulses (the positive voltage direction is defined as going from the top electrode to the bottom electrode). This is just the opposite from the ''positive'' EPIR effect in Ag/PCMO/Pt sandwich, in which the high resistance can be written only with negative voltage pulses, and the low resistance can be reset using positive voltage pulses. The I-V hysteresis curves of In/PCMO/Pt and Ag/PCMO/Pt sandwiches also show opposite directions, i.e., counterclockwise and clockwise under a negative voltage region for indium and Ag electrode systems, respectively. C-V characteristics show that the barrier does not exist in Ag/PCMO/Pt sandwich, while In/PCMO/Pt sandwich exhibits an obvious Schottky-like barrier. We suggest that in the negative EPIR behavior in In/PCMO/Pt structure, the resistance states are mainly controlled changing the Schottky-like barrier at the interface with the weak effect of carrier trapping process, while the positive EPIR behavior in Ag/PCMO/Pt sandwich mainly depends on the carrier trapping process at the interface. (orig.)

  5. Pulsed DC Electric Field-Induced Differentiation of Cortical Neural Precursor Cells.

    Directory of Open Access Journals (Sweden)

    Hui-Fang Chang

    Full Text Available We report the differentiation of neural stem and progenitor cells solely induced by direct current (DC pulses stimulation. Neural stem and progenitor cells in the adult mammalian brain are promising candidates for the development of therapeutic neuroregeneration strategies. The differentiation of neural stem and progenitor cells depends on various in vivo environmental factors, such as nerve growth factor and endogenous EF. In this study, we demonstrated that the morphologic and phenotypic changes of mouse neural stem and progenitor cells (mNPCs could be induced solely by exposure to square-wave DC pulses (magnitude 300 mV/mm at frequency of 100-Hz. The DC pulse stimulation was conducted for 48 h, and the morphologic changes of mNPCs were monitored continuously. The length of primary processes and the amount of branching significantly increased after stimulation by DC pulses for 48 h. After DC pulse treatment, the mNPCs differentiated into neurons, astrocytes, and oligodendrocytes simultaneously in stem cell maintenance medium. Our results suggest that simple DC pulse treatment could control the fate of NPCs. With further studies, DC pulses may be applied to manipulate NPC differentiation and may be used for the development of therapeutic strategies that employ NPCs to treat nervous system disorders.

  6. Pulsed DC Electric Field-Induced Differentiation of Cortical Neural Precursor Cells.

    Science.gov (United States)

    Chang, Hui-Fang; Lee, Ying-Shan; Tang, Tang K; Cheng, Ji-Yen

    2016-01-01

    We report the differentiation of neural stem and progenitor cells solely induced by direct current (DC) pulses stimulation. Neural stem and progenitor cells in the adult mammalian brain are promising candidates for the development of therapeutic neuroregeneration strategies. The differentiation of neural stem and progenitor cells depends on various in vivo environmental factors, such as nerve growth factor and endogenous EF. In this study, we demonstrated that the morphologic and phenotypic changes of mouse neural stem and progenitor cells (mNPCs) could be induced solely by exposure to square-wave DC pulses (magnitude 300 mV/mm at frequency of 100-Hz). The DC pulse stimulation was conducted for 48 h, and the morphologic changes of mNPCs were monitored continuously. The length of primary processes and the amount of branching significantly increased after stimulation by DC pulses for 48 h. After DC pulse treatment, the mNPCs differentiated into neurons, astrocytes, and oligodendrocytes simultaneously in stem cell maintenance medium. Our results suggest that simple DC pulse treatment could control the fate of NPCs. With further studies, DC pulses may be applied to manipulate NPC differentiation and may be used for the development of therapeutic strategies that employ NPCs to treat nervous system disorders.

  7. Pulsed magnetic field excitation sensitivity of match-type electric blasting caps

    Science.gov (United States)

    Parson, Jonathan; Dickens, James; Walter, John; Neuber, Andreas A.

    2010-10-01

    This paper presents a study on energy deposition and electromagnetic compatibility of match-type electroexplosive devices (EEDs), which recently have found more usage in pulsed power environments with high electromagnetic interference (EMI) background. The sensitivity of these devices makes them dangerous to intended and unintended radiation produced by devices commonly used in pulsed power environments. Match-type EEDs have been found to be susceptible to such low levels of energy (7-8 mJ) that safe operation of these EEDs is vital when in use near devices that produce high levels of pulsed EMI. The scope of this paper is to provide an investigation that incorporates results of similar studies to provide detonation characteristics of these EEDs. The three topics included in this study are sensitivity testing, modeling of the thermodynamic heat propagation, and electromagnetic compatibility from pulsed electromagnetic radiation. The thermodynamic joule heating of the primary explosive has been modeled by a solution to the 1D heat equation. A simple pulsed generator, Marx generator with an inductive load, was used for the electromagnetic compatibility assessment of the coupled field between the pulse generator and shorted EED. The results of the electromagnetic compatibility assessment relate the resistive, inductive, and capacitive components of the pulse generator to the area of the shorted EED.

  8. Effect of pulsed electric field (PEF) on structures and antioxidant activity of soybean source peptides-SHCMN.

    Science.gov (United States)

    Lin, Songyi; Liang, Rong; Li, Xingfang; Xing, Jie; Yuan, Yuan

    2016-12-15

    Recently, high-intensity pulsed electric field (PEF) has successfully used in improvement of antioxidant activity. Ser-His-Cys-Met-Asn (SHCMN) obtained from soybean protein was chosen to investigate the phenomenon of antioxidant activity improvement. Effects of PEF treatment on antioxidant activity of SHCMN were evaluated by DPPH radical inhibition. Nuclear magnetic resonance (NMR), mid-infrared (MIR), circular dichroism (CD) were used to analyze structures of SHCMN. Two-factor-at-a-time results show that DPPH radical inhibition of SHCMN is significantly (Pfield intensity of 5kV/cm, pulse frequency of 2400Hz, and retention time of 2h. In addition, MIR and NMR spectra show that the basic structure of peptides SHCMN is stable by PEF treatment. But the secondary structures (α-helix, β-turn, and random coil) can be affected and zeta potential of PEF-treated SHCNM was reduced to 0.59±0.03mV. The antioxidant activity improvement of SHCMN might result from the changes of secondary structures and zeta potential. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Designs of pulsed power cryogenic transformers

    International Nuclear Information System (INIS)

    Singh, S.K.; Heyne, C.J.; Hackowrth, D.T.; Shestak, E.J.; Eckels, P.W.; Rogers, J.D.

    1988-01-01

    The Westinghouse Electric Corporation has completed designs of three pulsed power cryogenic transformers of three pulsed power cryogenic transformers for the Los Alamos National Laboratory. These transformers will be configured to transfer their stored energy sequentially to an electro-magnetic launcher and form a three-stage power supply. The pulse transformers will act as two winding energy storage solenoids which provide a high current and energy pulse compression by transforming a 50 kA power supply into a megamp level power supply more appropriate for the electromagnetic launcher duty. This system differs from more traditional transformer applications in that significant current levels do not exists simultaneously in the two windings of the pulse transformer. This paper describes the designs of the pulsed power cryogenic transformers

  10. Pulse-height defect in single-crystal CVD diamond detectors

    Energy Technology Data Exchange (ETDEWEB)

    Beliuskina, O.; Imai, N. [The University of Tokyo, Center for Nuclear Study, Wako, Saitama (Japan); Strekalovsky, A.O.; Aleksandrov, A.A.; Aleksandrova, I.A.; Ilich, S.; Kamanin, D.V.; Knyazheva, G.N.; Kuznetsova, E.A.; Mishinsky, G.V.; Pyatkov, Yu.V.; Strekalovsky, O.V.; Zhuchko, V.E. [JINR, Flerov Laboratory of Nuclear Reactions, Dubna, Moscow Region (Russian Federation); Devaraja, H.M. [Manipal University, Manipal Centre for Natural Sciences, Manipal, Karnataka (India); Heinz, C. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); Heinz, S. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Hofmann, S.; Kis, M.; Kozhuharov, C.; Maurer, J.; Traeger, M. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Pomorski, M. [CEA, LIST, Diamond Sensor Laboratory, CEA/Saclay, Gif-sur-Yvette (France)

    2017-02-15

    The pulse-height versus deposited energy response of a single-crystal chemical vapor deposition (scCVD) diamond detector was measured for ions of Ti, Cu, Nb, Ag, Xe, Au, and of fission fragments of {sup 252} Cf at different energies. For the fission fragments, data were also measured at different electric field strengths of the detector. Heavy ions have a significant pulse-height defect in CVD diamond material, which increases with increasing energy of the ions. It also depends on the electrical field strength applied at the detector. The measured pulse-height defects were explained in the framework of recombination models. Calibration methods known from silicon detectors were modified and applied. A comparison with data for the pulse-height defect in silicon detectors was performed. (orig.)

  11. The Effect of High Frequency Pulse on the Discharge Probability in Micro EDM

    Science.gov (United States)

    Liu, Y.; Qu, Y.; Zhang, W.; Ma, F.; Sha, Z.; Wang, Y.; Rolfe, B.; Zhang, S.

    2017-12-01

    High frequency pulse improves the machining efficiency of micro electric discharge machining (micro EDM), while it also brings some changes in micro EDM process. This paper focuses on the influence of skin-effect under the high frequency pulse on energy distribution and transmission in micro EDM, based on which, the rules of discharge probability of electrode end face are also analysed. On the basis of the electrical discharge process under the condition of high frequency pulse in micro EDM, COMSOL Multiphysics software is used to establish energy transmission model in micro electrode. The discharge energy distribution and transmission within tool electrode under different pulse frequencies, electrical currents, and permeability situation are studied in order to get the distribution pattern of current density and electric field intensity in the electrode end face under the influence of electrical parameters change. The electric field intensity distribution is regarded as the influencing parameter of discharge probability on the electrode end. Finally, MATLAB is used to fit the curve and obtain the distribution of discharge probability of electrode end face.

  12. Cell wall as a target for bacteria inactivation by pulsed electric fields

    Science.gov (United States)

    Pillet, Flavien; Formosa-Dague, Cécile; Baaziz, Houda; Dague, Etienne; Rols, Marie-Pierre

    2016-01-01

    The integrity and morphology of bacteria is sustained by the cell wall, the target of the main microbial inactivation processes. One promising approach to inactivation is based on the use of pulsed electric fields (PEF). The current dogma is that irreversible cell membrane electro-permeabilisation causes the death of the bacteria. However, the actual effect on the cell-wall architecture has been poorly explored. Here we combine atomic force microscopy and electron microscopy to study the cell-wall organization of living Bacillus pumilus bacteria at the nanoscale. For vegetative bacteria, exposure to PEF led to structural disorganization correlated with morphological and mechanical alterations of the cell wall. For spores, PEF exposure led to the partial destruction of coat protein nanostructures, associated with internal alterations of cortex and core. Our findings reveal for the first time that the cell wall and coat architecture are directly involved in the electro-eradication of bacteria. PMID:26830154

  13. Environmental temperature affects physiology and survival of nanosecond pulsed electric field-treated cells.

    Science.gov (United States)

    Yin, Shengyong; Miao, Xudong; Zhang, Xueming; Chen, Xinhua; Wen, Hao

    2018-02-01

    Nanosecond pulsed electric field (nsPEF) is a novel non-thermal tumor ablation technique. However, how nsPEF affect cell physiology at different environmental temperature is still kept unknown. But this issue is of critical clinical practice relevance. This work aim to investigate how nsPEF treated cancer cells react to different environmental temperatures (0, 4, 25, and 37°C). Their cell viability, apoptosis, mitochondrial membrane potential, and reactive oxygen species (ROS) were examined. Lower temperature resulted in higher apoptosis rate, decreased mitochondria membrane potential, and increased ROS levels. Sucrose and N-acetylcysteine (NAC) pre-incubation inhibit ROS generation and increase cell survival, protecting nsPEF-treated cells from low temperature-caused cell death. This work provides an experimental basis for hypothermia and fluid transfusion during nsPEF ablation with anesthesia. © 2017 Wiley Periodicals, Inc.

  14. Evaluation of the Genetic Response of U937 and Jurkat Cells to 10-Nanosecond Electrical Pulses (nsEP)

    Science.gov (United States)

    2016-05-02

    ultrashort electric pulses. Bioelectrochemistry 79: 114–121. doi: 10.1016/ j.bioelechem.2010.01.001 PMID: 20171148 12. Pakhomov AG, Kolb JF, White JA...Bioelec- tromagnetics 28: 655–663. doi: 10.1002/bem.20354 PMID: 17654532 13. Pakhomov AG, Shevin R, White JA, Kolb JF, Pakhomova ON, Joshi RP, et al...current. Proc Natl Acad Sci USA 111: E2281–90. doi: 10.1073/pnas.1407133111 PMID: 24843134 26. Walker K, Pakhomova ON, Kolb J, Schoenbach KS, Stuck

  15. Electromagnetic pulses, localized and causal

    Science.gov (United States)

    Lekner, John

    2018-01-01

    We show that pulse solutions of the wave equation can be expressed as time Fourier superpositions of scalar monochromatic beam wave functions (solutions of the Helmholtz equation). This formulation is shown to be equivalent to Bateman's integral expression for solutions of the wave equation, for axially symmetric solutions. A closed-form one-parameter solution of the wave equation, containing no backward-propagating parts, is constructed from a beam which is the tight-focus limit of two families of beams. Application is made to transverse electric and transverse magnetic pulses, with evaluation of the energy, momentum and angular momentum for a pulse based on the general localized and causal form. Such pulses can be represented as superpositions of photons. Explicit total energy and total momentum values are given for the one-parameter closed-form pulse.

  16. Environmental and biotechnological applications of high-voltage pulsed discharges in water

    International Nuclear Information System (INIS)

    Sato, Masayuki

    2008-01-01

    A high-voltage pulse has wide application in fields such as chemistry, physics and biology and their combinations. The high-voltage pulse forms two kinds of physical processes in water, namely (a) a pulsed electric field (PEF) in the parallel electrode configuration and (b) plasma generation by a pulsed discharge in the water phase with a concentrated electric field. The PEF can be used for inactivation of bacteria in liquid foods as a non-thermal process, and the underwater plasma is applicable not only for the decomposition of organic materials in water but also for biological treatment of wastewater. These discharge states are controlled mainly by the applied pulse voltage and the electrode shape. Some examples of environmental and biotechnological applications of a high-voltage pulse are reviewed.

  17. Current and future prospects for the use of pulsed electric field in the meat industry.

    Science.gov (United States)

    Bhat, Zuhaib F; Morton, James D; Mason, Susan L; Bekhit, Alaa El-Din A

    2018-02-02

    Pulsed electric field (PEF) is a novel non-thermal technology that has recently attracted the attention of meat scientists and technologists due to its ability to modify membrane structure and enhance mass transfer. Several studies have confirmed the potential of pulsed electric field for improving meat tenderness in both pre-rigor and post-rigor muscles during aging. However, there is a high degree of variability between studies and the underlying mechanisms are not clearly understood. While some studies have suggested physical disruption as the main cause of PEF induced tenderness, enzymatic nature of the tenderization seems to be the most plausible mechanism. Several studies have suggested the potential of PEF to mediate the tenderization process due to its membrane altering properties causing early release of calcium ions and early activation of the calpain proteases. However, experimental research is yet to confirm this postulation. Recent studies have also reported increased post-mortem proteolysis in PEF treated muscles during aging. PEF has also been reported to accelerate curing, enhance drying and reduce the numbers of both pathogens and spoilage organisms in meat, although that demands intense processing conditions. While tenderization, meat safety and accelerated curing appears to be the areas where PEF could provide attractive options in meat processing, further research is required before the application of PEF becomes a commercial reality in the meat industry. It needs to deal with carcasses which vary biochemically and in composition (muscle, fat, and bones). This review critically evaluates the published reports on the topic with the aim of reaching a clear understanding of the possible applications of PEF in the meat sector in addition to providing some insight on critical issues that need to be addressed for the technology to be a practical option for the meat industry.

  18. Linear transformer driver for pulse generation

    Science.gov (United States)

    Kim, Alexander A; Mazarakis, Michael G; Sinebryukhov, Vadim A; Volkov, Sergey N; Kondratiev, Sergey S; Alexeenko, Vitaly M; Bayol, Frederic; Demol, Gauthier; Stygar, William A

    2015-04-07

    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first power delivery module that includes a first charge storage devices and a first switch. The first power delivery module sends a first energy in the form of a first pulse to the load. The linear transformer driver also includes a second power delivery module including a second charge storage device and a second switch. The second power delivery module sends a second energy in the form of a second pulse to the load. The second pulse has a frequency that is approximately three times the frequency of the first pulse. The at least one ferrite ring is positioned to force the first pulse and the second pulse to the load by temporarily isolating the first pulse and the second pulse from an electrical ground.

  19. Overvoltage effect on electrical discharge type in medium-conductivity water in inhomogeneous pulsed electric field

    Science.gov (United States)

    Panov, V. A.; Vasilyak, L. M.; Pecherkin, V. Ya; Vetchinin, S. P.; Son, E. E.

    2018-01-01

    The transition between thermal and streamer discharges has been observed experimentally in water solution with conductivity 100 μS/cm applying positive voltage pulses to pin-to-rod electrodes. The transition happens at five-fold pulse amplitude. Considering streamer propagation as an ionization wave helped to establish relation between the parameters governing transition from one to another discharge mechanism.

  20. Comparison of pulsed electron beam-annealed and pulsed ruby laser-annealed ion-implanted silicon

    International Nuclear Information System (INIS)

    Wilson, S.R.; Appleton, B.R.; White, C.W.; Narayan, J.; Greenwald, A.C.

    1978-11-01

    Recently two new techniques, pulsed electron beam annealing and pulsed laser annealing, have been developed for processing ion-implanted silicon. These two types of anneals have been compared using ion-channeling, ion back-scattering, and transmission electron microscopy (TEM). Single crystal samples were implanted with 100 keV As + ions to a dose of approx. 1 x 10 16 ions/cm 2 and subsequently annealed by either a pulsed Ruby laser or a pulsed electron beam. Our results show in both cases that the near-surface region has melted and regrown epitaxially with nearly all of the implanted As (97 to 99%) incroporated onto lattice sites. The analysis indicates that the samples are essentially defect free and have complete electrical recovery

  1. Pulsed-laser atom-probe field-ion microscopy

    International Nuclear Information System (INIS)

    Kellogg, G.L.; Tsong, T.T.

    1980-01-01

    A time-of-flight atom-probe field-ion microscope has been developed which uses nanosecond laser pulses to field evaporate surface species. The ability to operate an atom-probe without using high-voltage pulses is advantageous for several reasons. The spread in energy arising from the desorption of surface species prior to the voltage pulse attaining its maximum amplitude is eliminated, resulting in increased mass resolution. Semiconductor and insulator samples, for which the electrical resistivity is too high to transmit a short-duration voltage pulse, can be examined using pulsed-laser assisted field desorption. Since the electric field at the surface can be significantly smaller, the dissociation of molecular adsorbates by the field can be reduced or eliminated, permitting well-defined studies of surface chemical reactions. In addition to atom-probe operation, pulsed-laser heating of field emitters can be used to study surface diffusion of adatoms and vacancies over a wide range of temperatures. Examples demonstrating each of these advantages are presented, including the first pulsed-laser atom-probe (PLAP) mass spectra for both metals (W, Mo, Rh) and semiconductors (Si). Molecular hydrogen, which desorbs exclusively as atomic hydrogen in the conventional atom probe, is shown to desorb undissociatively in the PLAP. Field-ion microscope observations of the diffusion and dissociation of atomic clusters, the migration of adatoms, and the formation of vacancies resulting from heating with a 7-ns laser pulse are also presented

  2. Characterization of a rotating nanoparticle cloud in an inductively coupled plasma

    International Nuclear Information System (INIS)

    Schulze, M; Keudell, A von; Awakowicz, P

    2006-01-01

    Carbon clusters with diameters in the range of 10 to 50 nm are produced by injecting pulses of acetylene into an inductively coupled plasma in argon and helium. The injection causes plasma instability, which becomes visible as an oscillation of the emission intensity. The frequency of this oscillation can be uniquely correlated to the particle diameter. Consequently, the measurement of the oscillation frequency represents a method to determine particle diameters in situ. The oscillation corresponds to the rotation of a localized plasmoid and a particle cloud around the symmetry axis of the reactor. It is assumed that this rotation is driven by the ion wind crossing the interface between the plasmoid and the particle cloud

  3. The effectiveness of pulsed electrical stimulation (E-PES in the management of osteoarthritis of the knee: a protocol for a randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Gupta Ritu

    2008-02-01

    Full Text Available Abstract Background Osteoarthritis (OA of the knee is one of the main causes of musculoskeletal disability in the western world. Current available management options provide symptomatic relief (exercise and self-management, medication and surgery but do not, in general, address the disease process itself. Moreover, adverse effects and complications with some of these interventions (medication and surgery and the presence of co-morbidities commonly restrict their use. There is clearly a need to investigate treatments that are more widely applicable for symptom management and which may also directly address the disease process itself. In two randomised controlled trials of four and 12 weeks duration, pulsed electrical stimulation was shown to be effective in managing the symptoms of OA of the knee. Laboratory and animal studies demonstrate the capacity of externally applied electric and electromagnetic fields to positively affect chondrocyte proliferation and extracellular matrix protein production. This latter evidence provides strong theoretical support for the use of electrical stimulation to maintain and repair cartilage in the clinical setting and highlights its potential as a disease-modifying modality. Methods/Design A double-blind, randomised, placebo-controlled, repeated measures trial to examine the effectiveness of pulsed electrical stimulation in providing symptomatic relief for people with OA of the knee over 26 weeks. Seventy people will be recruited and information regarding age, gender, body mass index and medication use will be recorded. The population will be stratified for age, gender and baseline pain levels. Outcome measures will include pain (100 mm VAS and WOMAC 3.1, function (WOMAC 3.1, stiffness (WOMAC 3.1, patient global assessment (100 mm VAS and quality of life (SF-36. These outcomes will be measured at baseline, four, 16 and 26 weeks. Activity levels will be measured at baseline and 16 weeks using accelerometers and

  4. Growth of pulsed electric field exposed Escherichia coli in relation to inactivation and environmental factors.

    Science.gov (United States)

    Aronsson, Kristina; Borch, Elisabeth; Stenlöf, Bo; Rönner, Ulf

    2004-05-15

    Pulsed electric fields (PEF) have been proven to inactivate microorganisms during nonthermal conditions and have the potential to replace thermal processing as a method for food preservation. However, there is a need to understand the recovery and growth of survivors and potentially injured microorganisms following PEF processing. The purpose of this investigation was to study the growth of Escherichia coli at 10 degrees C following exposure to electrical field strengths (15, 22.5 and 30 kV/cm) in relation to inactivation and the amount of potentially sublethally injured cells. One medium was used as both a treatment medium and an incubation medium, to study the influence of environmental factors on the inactivation and the growth of the surviving population. The pH (5.0, 6.0 and 7.0) and water activity (1.00, 0.985 and 0.97) of the medium was varied by adding HCl and glycerol, respectively. Growth was followed continuously by measuring the optical density. The time-to-detection (td) and the maximum specific growth rate (micromax) were calculated from these data. Results showed that the PEF process did not cause any obvious sublethal injury to the E. coli cells. The number of survivors was a consequence of the combination of electrical field strength and environmental factors, with pH being the most prominent. Interestingly, the micromax of subsequent growth was influenced by the applied electrical field strength during the process, with an increased micromax at more intense electrical field strengths. In addition, the micromax was also influenced by the pH and water activity. The td, which could theoretically be considered as an increase in shelf life, was found to depend on a complex correlation between electrical field strength, pH and water activity. That could be explained by the fact that the td is a combination of the number of survivors, the recovery of sublethal injured cells and the growth rate of the survivors. Copyright 2003 Elsevier B.V.

  5. Selection of surrogate bacteria in place of E. coli O157:H7 and Salmonella Typhimurium for pulsed electric field treatment of orange juice

    Science.gov (United States)

    Pulsed electric field (PEF) technology has been used as an innovative treatment for the reduction of microorganisms in liquid foods and beverages by the electroporation of bacterial membranes. PEF may be used to pasteurize orange juice at lower temperatures than traditional thermal processes, prese...

  6. Uniform and non-uniform modes of nanosecond-pulsed dielectric barrier discharge in atmospheric air: fast imaging and spectroscopic measurements of electric fields

    International Nuclear Information System (INIS)

    Liu, Chong; Dobrynin, Danil; Fridman, Alexander

    2014-01-01

    In this study, we report experimental results on fast intensified charge-coupled device (ICCD) imaging of the development of nanosecond-pulsed dielectric barrier discharge (DBD) in atmospheric air and spectroscopic measurements of the electric field in the discharge. The uniformity of the discharge images obtained with nanosecond exposure times was analysed using chi-square test. The results indicate that DBD uniformity strongly depends on the applied (global) electric field in the discharge gap, which is a threshold phenomenon. We show that in the case of strong overvoltage on the discharge gap (provided by fast rise times), there is a transition from filamentary to uniform DBD mode that correlates to the corresponding decrease of the maximum local electric field in the discharge. (fast track communication)

  7. Short pulse neutron generator

    Science.gov (United States)

    Elizondo-Decanini, Juan M.

    2016-08-02

    Short pulse neutron generators are described herein. In a general embodiment, the short pulse neutron generator includes a Blumlein structure. The Blumlein structure includes a first conductive plate, a second conductive plate, a third conductive plate, at least one of an inductor or a resistor, a switch, and a dielectric material. The first conductive plate is positioned relative to the second conductive plate such that a gap separates these plates. A vacuum chamber is positioned in the gap, and an ion source is positioned to emit ions in the vacuum chamber. The third conductive plate is electrically grounded, and the switch is operable to electrically connect and disconnect the second conductive plate and the third conductive plate. The at least one of the resistor or the inductor is coupled to the first conductive plate and the second conductive plate.

  8. The Development of the Electrically Controlled High Power RF Switch and Its Application to Active RF Pulse Compression Systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiquan [Stanford Univ., CA (United States)

    2008-12-01

    In the past decades, there has been increasing interest in pulsed high power RF sources for building high-gradient high-energy particle accelerators. Passive RF pulse compression systems have been used in many applications to match the available RF sources to the loads requiring higher RF power but a shorter pulse. Theoretically, an active RF pulse compression system has the advantage of higher efficiency and compactness over the passive system. However, the key component for such a system an element capable of switching hundreds of megawatts of RF power in a short time compared to the compressed pulse width is still an open problem. In this dissertation, we present a switch module composed of an active window based on the bulk effects in semiconductor, a circular waveguide three-port network and a movable short plane, with the capability to adjust the S-parameters before and after switching. The RF properties of the switch module were analyzed. We give the scaling laws of the multiple-element switch systems, which allow the expansion of the system to a higher power level. We present a novel overmoded design for the circular waveguide three-port network and the associated circular-to-rectangular mode-converter. We also detail the design and synthesis process of this novel mode-converter. We demonstrate an electrically controlled ultra-fast high power X-band RF active window built with PIN diodes on high resistivity silicon. The window is capable of handling multi-megawatt RF power and can switch in 2-300ns with a 1000A current driver. A low power active pulse compression experiment was carried out with the switch module and a 375ns resonant delay line, obtaining 8 times compression gain with a compression ratio of 20.

  9. Electropermeabilization by uni- or bipolar nanosecond electric pulses: The impact of extracellular conductivity.

    Science.gov (United States)

    Gianulis, Elena C; Casciola, Maura; Xiao, Shu; Pakhomova, Olga N; Pakhomov, Andrei G

    2018-02-01

    Cellular effects caused by nanosecond electric pulses (nsEP) can be reduced by an electric field reversal, a phenomenon known as bipolar cancellation. The reason for this cancellation effect remains unknown. We hypothesized that assisted membrane discharge is the mechanism for bipolar cancellation. CHO-K1 cells bathed in high (16.1mS/cm; HCS) or low (1.8mS/cm; LCS) conductivity solutions were exposed to either one unipolar (300-ns) or two opposite polarity (300+300-ns; bipolar) nsEP (4-40kV/cm) with increasing interpulse intervals (0.1-50μs). Time-lapse YO-PRO-1 (YP) uptake revealed enhanced membrane permeabilization in LCS compared to HCS at all tested voltages. The time-dependence of bipolar cancellation was similar in both solutions, using either identical (22kV/cm) or isoeffective nsEP treatments (12 and 32kV/cm for LCS and HCS, respectively). However, cancellation was significantly stronger in LCS when the bipolar nsEP had no, or very short (bipolar cancellation was still present with interpulse intervals as long as 50μs, beyond the time expected for membrane discharge. Our findings do not support assisted membrane discharge as the mechanism for bipolar cancellation. Instead they exemplify the sustained action of nsEP that can be reversed long after the initial stimulus. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Periodically pulsed wet annealing approach for low-temperature processable amorphous InGaZnO thin film transistors with high electrical performance and ultrathin thickness

    Science.gov (United States)

    Kim, Ye Kyun; Ahn, Cheol Hyoun; Yun, Myeong Gu; Cho, Sung Woon; Kang, Won Jun; Cho, Hyung Koun

    2016-01-01

    In this paper, a simple and controllable “wet pulse annealing” technique for the fabrication of flexible amorphous InGaZnO thin film transistors (a-IGZO TFTs) processed at low temperature (150 °C) by using scalable vacuum deposition is proposed. This method entailed the quick injection of water vapor for 0.1 s and purge treatment in dry ambient in one cycle; the supply content of water vapor was simply controlled by the number of pulse repetitions. The electrical transport characteristics revealed a remarkable performance of the a-IGZO TFTs prepared at the maximum process temperature of 150 °C (field-effect mobility of 13.3 cm2 V−1 s−1; Ion/Ioff ratio ≈ 108; reduced I-V hysteresis), comparable to that of a-IGZO TFTs annealed at 350 °C in dry ambient. Upon analysis of the angle-resolved x-ray photoelectron spectroscopy, the good performance was attributed to the effective suppression of the formation of hydroxide and oxygen-related defects. Finally, by using the wet pulse annealing process, we fabricated, on a plastic substrate, an ultrathin flexible a-IGZO TFT with good electrical and bending performances. PMID:27198067

  11. Pulsed electric field processing of different fruit juices: impact of pH and temperature on inactivation of spoilage and pathogenic micro-organisms.

    Science.gov (United States)

    Timmermans, R A H; Nierop Groot, M N; Nederhoff, A L; van Boekel, M A J S; Matser, A M; Mastwijk, H C

    2014-03-03

    Pulsed electrical field (PEF) technology can be used for the inactivation of micro-organisms and therefore for preservation of food products. It is a mild technology compared to thermal pasteurization because a lower temperature is used during processing, leading to a better retention of the quality. In this study, pathogenic and spoilage micro-organisms relevant in refrigerated fruit juices were studied to determine the impact of process parameters and juice composition on the effectiveness of the PEF process to inactivate the micro-organisms. Experiments were performed using a continuous-flow PEF system at an electrical field strength of 20 kV/cm with variable frequencies to evaluate the inactivation of Salmonella Panama, Escherichia coli, Listeria monocytogenes and Saccharomyces cerevisiae in apple, orange and watermelon juices. Kinetic data showed that under the same conditions, S. cerevisiae was the most sensitive micro-organism, followed by S. Panama and E. coli, which displayed comparable inactivation kinetics. L. monocytogenes was the most resistant micro-organism towards the treatment conditions tested. A synergistic effect between temperature and electric pulses was observed at inlet temperatures above 35 °C, hence less energy for inactivation was required at higher temperatures. Different juice matrices resulted in a different degree of inactivation, predominantly determined by pH. The survival curves were nonlinear and could satisfactorily be modeled with the Weibull model. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Unexpected ICD pulse generator failure due to electronic circuit damage caused by electrical overstress.

    Science.gov (United States)

    Hauser, R G; Hayes, D L; Almquist, A K; Epstein, A E; Parsonnet, V; Tyers, G F; Vlay, S C; Schoenfeld, M H

    2001-07-01

    Because it is a lifesaving device, the unexpected failure of an ICD can be catastrophic. We report ICD electronic circuit failure due to electrical overstress damage (EOS) to the high voltage hybird circuit and other electronic components in a series of ICD pulse generator models. Data were obtained from the Multicenter Registry of Pacemaker and ICD Pacemaker and Lead Failures, and from the manufactures' adverse event reports, that were in the FDA's Manufacturer and User Facility Device Experience (MAUDE) database. Of 16 nonbattery Guidant/CPI ICD pulse generator failures reported to the registry, 6 (38%) have been confirmed by the manufacturer to be EOS related, and Guidant/CPI has reported 273 such failures to the FDA as of 12/29/00. The signs of failure included loss of telemetry and inability to deliver therapy, and some patients have experienced serious adverse events. Hybrid circuit damage may have occurred during capacitor charging or reform, and the majority appears to have happened during normal ICD function. While the incidence of this problem is unknown, a management strategy should be adopted that includes routine follow-up every 3 months and device evaluation after a shock or exposure to external defibrillation or electrosurgical devices. This study suggests that additional data are needed to determine the incidence of this problem, and that our present methods for monitoring the performance of ICD's following market release are inadequate.

  13. Relationship between sublethal injury and inactivation of yeast cells by the combination of sorbic acid and pulsed electric fields.

    Science.gov (United States)

    Somolinos, M; García, D; Condón, S; Mañas, P; Pagán, R

    2007-06-01

    The objective of this study was to investigate the occurrence of sublethal injury after the pulsed-electric-field (PEF) treatment of two yeasts, Dekkera bruxellensis and Saccharomyces cerevisiae, as well as the relation of sublethal injury to the inactivating effect of the combination of PEF and sorbic acid. PEF caused sublethal injury in both yeasts: more than 90% of surviving D. bruxellensis cells and 99% of surviving S. cerevisiae cells were sublethally injured after 50 pulses at 12 kV/cm in buffer at pHs of both 7.0 and 4.0. The proportion of sublethally injured cells reached a maximum after 50 pulses at 12.0 kV/cm (S. cerevisiae) or 16.5 kV/cm (D. bruxellensis), and it kept constant or progressively decreased at greater electric field strengths and with longer PEF treatments. Sublethally PEF-injured cells showed sensitivity to the presence of sorbic acid at a concentration of 2,000 ppm. A synergistic inactivating effect of the combination of PEF and sorbic acid was observed. Survivors of the PEF treatment were progressively inactivated in the presence of 2,000 ppm of sorbic acid at pH 3.8, with the combined treatments achieving more than log10 5 cycles of dead cells under the conditions investigated. This study has demonstrated the occurrence of sublethal injury after exposure to PEF, so yeast inactivation by PEF is not an all-or-nothing event. The combination of PEF and sorbic acid has proven to be an effective method to achieve a higher level of yeast inactivation. This work contributes to the knowledge of the mechanism of microbial inactivation by PEF, and it may be useful for improving food preservation by PEF technology.

  14. Characterization and modulation of femtosecond laser pulse

    International Nuclear Information System (INIS)

    Dorrer, Christophe

    1999-01-01

    This work brings some solutions to the characterization and control of femtosecond laser pulses. Spectral interferometry has been extensively studied; whereas this is a rather old technique, it has found new specific applications to short pulses. Several important points concerning the experimental implementation of this technique are treated. Sources of errors have been tracked and simple solutions have been found to enhance its reliability. A recently demonstrated technique for the complete characterization of short pulses has been used to characterize short pulses from Chirped Pulse Amplification Systems. This transposition of shearing interferometry to the optical frequency domain, known as Spectral Phase Interferometry for Direct Electric-field Reconstruction (SPlDER), is conceptually very interesting: for example, the inversion from the experimental data to the electric field to be characterized is completely algebraic. A reliable tool for the characterization and optimization of Chirped pulse amplification systems has been built on this principle. This is the first single-shot real-time characterization implementation of this technique. An improvement of the method has also allowed the first single-shot real-time characterization of a short pulse using a single mono-dimensional integrative detector and an algebraic inversion of the experimental data. The control of these pulses is also of prior interest. Through a collaboration with Thomson CSF-LCR, the demonstration of the use of an optically addressed light valve at the Fourier plane of a zero-dispersion line for spectral phase modulation has been made. This device allows a high-resolution control of the spectral phase of a short pulse. It is a well-adapted tool for the correction of the residual spectral phase, at the output of Chirped Pulse Amplification systems and the temporal synthesis of shaped pulses for specific experiments. (author) [fr

  15. Impact of pulsed-electric field and high-voltage electrical discharges on red wine microbial stabilization and quality characteristics.

    Science.gov (United States)

    Delsart, C; Grimi, N; Boussetta, N; Miot Sertier, C; Ghidossi, R; Vorobiev, E; Mietton Peuchot, M

    2016-01-01

    In this study, pulsed-electric fields (PEF) and high-voltage electrical discharges (HVED) are proposed as new techniques for the microbial stabilization of red wines before bottling. The efficiency of the treatment was then evaluated. PEF and HVED-treatments have been applied to wine for the inactivation of Oenococcus oeni CRBO 9304, O. oeni CRBO 0608, Pediococcus parvulus CRBO 2.6 and Brettanomyces bruxellensis CB28. Different treatment times (1, 2, 4, 6, 8 and 10 ms) were used at 20 kV cm(-1) for the PEF treatments and at 40 kV for the HVED treatments, which correspond to applied energies from 80 to 800 kJ l(-1) . The effects of the treatments on the microbial inactivation rate and on various characteristics of red wines (phenolic composition, chromatic characteristics and physico-chemical parameters) were measured. The application of PEF or HVED treatments on red wine allowed the inactivation of alteration yeasts (B. bruxellensis CB28) and bacteria (O. oeni CRBO 9304, O. oeni CRBO 0608 and P. parvulus CRBO 2.6). The electric discharges at 40 kV were less effective than the PEF even after 10 ms of treatments. Indeed, 4 ms of PEF treatment at 20 kV cm(-1) were sufficient to inactivate all micro-organisms present in the wines. Also, the use of PEF had no negative impact on the composition of wines compared to the HVED treatments. Contrary to PEF, the phenolics compounds were degraded after the HVED treatment and the physico-chemical composition of wine were modified with HVED. PEF technology seems to be an interesting alternative to stabilize microbiologically wines before bottling and without modifying their composition. This process offers many advantages for winemakers: no chemical inputs, low energy consumption (320 kJ l(-1) ), fast (treatment time of 4 ms) and athermal (ΔT ≈ 10°C). © 2015 The Society for Applied Microbiology.

  16. Consolidation of materials by pulse-discharge processes

    Science.gov (United States)

    Strizhakov, E. L.; Nescoromniy, S. V.

    2017-07-01

    The article presents the research and the analysis of the pulse-discharge processes of capacitor discharge sintering: CD Stud Welding, capacitor discharge percussion welding (CDPW), high-voltage capacitor welding with an inductive-dynamic drive (HVCW with IDD), pulse electric current sintering (PECS) of powders. The comparative analysis of the impact parameter is presented.

  17. A Novel Transcranial Magnetic Stimulator Inducing Near Rectangular Pulses with Controllable Pulse Width (cTMS)

    Science.gov (United States)

    Jalinous, Reza; Lisanby, Sarah H.

    2013-01-01

    A novel transcranial magnetic stimulation (TMS) device with controllable pulse width (PW) and near rectangular pulse shape (cTMS) is described. The cTMS device uses an insulated gate bipolar transistor (IGBT) with appropriate snubbers to switch coil currents up to 7 kA, enabling PW control from 5 μs to over 100 μs. The near-rectangular induced electric field pulses use 22–34% less energy and generate 67–72% less coil heating compared to matched conventional cosine pulses. CTMS is used to stimulate rhesus monkey motor cortex in vivo with PWs of 20 to 100 μs, demonstrating the expected decrease of threshold pulse amplitude with increasing PW. The technological solutions used in the cTMS prototype can expand functionality, and reduce power consumption and coil heating in TMS, enhancing its research and therapeutic applications. PMID:18232369

  18. Variation in resistance of natural isolates of Staphylococcus aureus to heat, pulsed electric field and ultrasound under pressure.

    Science.gov (United States)

    Rodríguez-Calleja, J M; Cebrián, G; Condón, S; Mañas, P

    2006-05-01

    To study and compare the resistance of 15 Staphylococcus aureus isolates to heat, pulsed electric field (PEF) and ultrasound (UW) under pressure (manosonication, MS). Survival curves to heat (58 degrees C), to PEF (22 kV cm(-1), 2 micros square wave pulses) and to UW under pressure (117 microm, 20 kHz, 200 kPa) were obtained and inactivation parameters (decimal reduction times for heat and UW under pressure, and b-values for PEF) were calculated. A wide resistance variation to heat treatment, but not to PEF and MS, was observed amongst the 15 strains. There was no relationship between the resistances to the three physical agents studied. Staphylococcus aureus was relatively resistant to MS but sensitive to PEF. Heat resistance varied with strain and was positively correlated to carotenoid pigment content. Results would help in defining safe food preservation processes. Care should be taken to choose the most adequate strain of S. aureus to model food preservation processing.

  19. Comparative study on shelf life of whole milk processed by high-intensity pulsed electric field or heat treatment.

    Science.gov (United States)

    Odriozola-Serrano, I; Bendicho-Porta, S; Martín-Belloso, O

    2006-03-01

    The effect of high-intensity pulsed electric fields (HI-PEF) processing (35.5 kV/cm for 1,000 or 300 micros with bipolar 7-micros pulses at 111 Hz; the temperature outside the chamber was always milk were investigated and compared with traditional heat pasteurization (75 degrees C for 15 s), and to raw milk during storage at 4 degrees C. A HIPEF treatment of 1,000 micros ensured the microbiological stability of whole milk stored for 5 d under refrigeration. Initial acidity values, pH, and free fatty acid content were not affected by the treatments; and no proteolysis and lipolysis were observed during 1 wk of storage in milk treated by HIPEF for 1,000 micros. The whey proteins (serum albumin, beta-lactoglobulin, and alpha-lactalbumin) in HIPEF-treated milk were retained at 75.5, 79.9, and 60%, respectively, similar to values for milk treated by traditional heat pasteurization.

  20. Pulsed electric field processing of functional drink based on tender coconut water (Cococus nucifera L. - nannari (Hemidesmus indicus blended beverage

    Directory of Open Access Journals (Sweden)

    R. Kumar

    2014-01-01

    Full Text Available Tender coconut water (Cocos nucifera L. Nannari extract (Hemidesmus indicus L. ready-to serve (RTS blended beverage were optimised. Response Surface Methodology (RSM was employed to optimize the levels of independent variables (levels of tender coconut water, nannari extract and sugar. The responses of pH, ºBrix, CIE colour (L*, a* and b* value and OAA were studied. The data obtained were analysed by multiple regression technique to generate suitable mathematical models. The developed blended beverage was processed using pulsed electric field (PEF with electric field 31.2 kV/cm, 20 pulse widths at 100 Hz frequency to minimise nutritional and sensory attributes losses and compared with conventional thermal pasteurization (96 ºC for 360 s with p-value of 8.03. Thermal pasteurization showed a significant (p<0.05 decrease in colour value, radical scavenging activity and overall acceptability after treatment and also during storage, when compared to PEF treated tender coconut water-nannari blended beverage. PEF treatment also achieved a 3.01 ± 0.69 log inactivation, similar to thermal pasteurization of native micro flora. PEF treated tender coconut water-nannari blended beverage was stable up to 120 days under ambient storage condition (27-30 °C.