WorldWideScience

Sample records for pulsed neutron induced

  1. Neutron induced current pulses in fission chambers. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Taboas, A L; Buck, W L

    1978-01-01

    The mechanism of neutron induced current pulse generation in fission chambers is discussed. By application of the calculated detector transfer function to proposed detector current pulse shapes, and by comparison with actually observed detector output voltage pulses, a credible, semi-empirical, trapezoidal pulse shape of chamber current is obtained.

  2. Pulsed spallation Neutron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J.M. [Argonne National Lab., IL (United States)

    1994-12-31

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology.

  3. Neutronics of pulsed spallation neutron sources

    CERN Document Server

    Watanabe, N

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, po...

  4. Thermal neutron cross-section and resonance integral of the 152Sm(n,γ)153Sm reaction induced by pulsed neutrons

    Science.gov (United States)

    Van Do, Nguyen; Khue, Pham Duc; Thanh, Kim Tien; Hien, Nguyen Thi; Kim, Guinyun; Kim, Kwangsoo; Shin, Sung-Gyun; Kye, Yong-Uk; Cho, Moo-Hyun

    2017-10-01

    We measured the thermal neutron cross-section (σ0) and resonance integral (I0) of the 152Sm(n,γ)153Sm reaction relative to that of the 197Au(n,γ)198Au reaction. Sm and Au foils with and without a cadmium cover of 0.5 mm were irradiated with moderated pulsed neutrons produced from the electron linac. The induced activities of the reaction products were determined via high energy resolution HPGe detector. The present results: σ0,Sm =212±8 b and I0,Sm =3.02±0.19 kb are consistent with most of the existing reference data.

  5. Optical polarizing neutron devices designed for pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, M.; Kurahashi, K.; Endoh, Y. [Tohoku Univ, Sendai (Japan); Itoh, S. [National Lab. for High Energy Physics, Tsukuba (Japan)

    1997-09-01

    We have designed two polarizing neutron devices for pulsed cold neutrons. The devices have been tested at the pulsed neutron source at the Booster Synchrotron Utilization Facility of the National Laboratory for High Energy Physics. These two devices proved to have a practical use for experiments to investigate condensed matter physics using pulsed cold polarized neutrons.

  6. Intense pulsed neutron source

    Science.gov (United States)

    The IPNS Progress Report 10th Anniversary Edition is being published in recognition of the first ten years of successful IPNS operation. To emphasize the significance of this milestone, we wanted this report to stand apart from the previous IPNS Progress Reports, and the best way to do this, we thought, was to make the design and organization of the report significantly different. In their articles, authors were asked to emphasize not only advances made since IPNS began operating but also the groundwork that was laid at its predecessor facilities - Argonne's ZING-P and ZING-P' prototype pulsed neutron sources and CP-5 reactor. Each article stands as a separate chapter in the report, since each represents a particular instrument or class of instruments, system, technique, or area of research. In some cases, contributions were similar to review articles in scientific journals, complete with extensive lists of references. Ten-year cumulative lists of members of IPNS committees and of scientists who have visited or done experiments at IPNS were assembled. A list of published and 'in press' articles in journals, books, and conference proceedings, resulting from work done at IPNS during the past ten years, was compiled. And archival photographs of people and activities during the ten-year history of IPNS were located and were used liberally throughout the report. The titles of the chapters in this report are: accelerator; computer; radiation effects; powder; stress; single crystal; superconductivity; amorphous; small angle; reflection; quasielastic; inelastic; inelastic magnetic; deep inelastic; user program; the future; and publications.

  7. a Portable Pulsed Neutron Generator

    Science.gov (United States)

    Skoulakis, A.; Androulakis, G. C.; Clark, E. L.; Hassan, S. M.; Lee, P.; Chatzakis, J.; Bakarezos, M.; Dimitriou, V.; Petridis, C.; Papadogiannis, N. A.; Tatarakis, M.

    2014-02-01

    The design and construction of a pulsed plasma focus device to be used as a portable neutron source for material analysis such as explosive detection using gamma spectroscopy is presented. The device is capable of operating at a repetitive rate of a few Hz. When deuterium gas is used, up to 105 neutrons per shot are expected to be produced with a temporal pulse width of a few tens of nanoseconds. The pulsed operation of the device and its portable size are its main advantage in comparison with the existing continuous neutron sources. Parts of the device include the electrical charging unit, the capacitor bank, the spark switch (spark gap), the trigger unit and the vacuum-fuel chamber / anode-cathode. Numerical simulations are used for the simulation of the electrical characteristics of the device including the scaling of the capacitor bank energies with total current, the pinch current, and the scaling of neutron yields with energies and currents. The MCNPX code is used to simulate the moderation of the produced neutrons in a simplified geometry and subsequently, the interaction of thermal neutrons with a test target and the corresponding prompt γ-ray generation.

  8. Pulse-Shape Analysis of Neutron-Induced Scintillation Light in Ni-doped 6LiF/ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Cowles, Christian C.; Behling, Richard S.; Imel, G. R.; Kouzes, Richard T.; Lintereur, Azaree; Robinson, Sean M.; Stave, Sean C.; Siciliano, Edward R.; Wang, Zheming

    2016-10-06

    Abstract–Alternatives to 3He are being investigated for gamma-ray insensitive neutron detection applications, including plutonium assay. One promising material is lithium-6 fluoride with silver activated zinc sulfide 6LiF/ZnS(Ag) in conjunction with a wavelength shifting plastic. Doping the 6LiF/ZnS(Ag) with nickel (Ni) has been proposed as a means of reducing the decay time of neutron signal pulses. This research performed a pulse shape comparison between Ni-doped and non-doped 6LiF/ZnS(Ag) neutron pulses. The Ni-doped 6LiF/ZnS(Ag) had a 32.7% ± 0.3 increase in neutron pulse height and a 32.4% ± 0.3 decrease in neutron pulse time compared to the non-doped 6LiF/ZnS(Ag). Doping 6LiF/ZnS(Ag) with nickel may allow neutron detector operation with improved signal to noise ratios, and reduced pulse pileup affects, increasing the accuracy and range of source activities with which such a detector could operate.

  9. Low-background detection of fission neutrons produced by pulsed neutron interrogation

    Science.gov (United States)

    Ruddy, Frank H.; Flammang, Robert W.; Seidel, John G.

    2009-01-01

    Measurements designed to detect shielded Special Nuclear Materials (SNM) have been carried out using a pulsed 8.5-MeV neutron source. Fission-neutron counts were detected as a function of time in the intervals between 100-μs neutron bursts at burst frequencies of 500, 1000, and 2000 Hz. The pulse timing sequences were chosen to optimize detection of fission neutrons produced by thermal-neutron-induced fission in the SNM. Fission neutrons were detected directly as proton, carbon, and silicon recoils in silicon carbide (SiC) semiconductor fast neutron detectors. SiC detectors recorded neutron counts during and immediately following the source neutron bursts, allowing detection of fission neutrons with short (120 μs) die-away times. The SiC detectors demonstrated excellent background discrimination with more than 2000 neutron counts observed in time intervals where zero background counts were detected.

  10. Special nuclear material detection using pulsed neutron interrogation

    Science.gov (United States)

    Ruddy, Frank H.; Seidel, John G.; Flammang, Robert W.

    2007-04-01

    Pulsed neutron interrogation methods for detection of Special Nuclear Materials are being developed. Fast prompt neutrons from thermal neutron-induced fissions are detected in the time intervals following 100-μs neutron bursts from a pulsed D-T neutron generator operating at 1000 pulses per second. Silicon Carbide semiconductor neutron detectors are used to detect fission neutrons in the 30-840 μs time intervals following each 14-MeV D-T neutron pulse. Optimization of the neutron detectors has led to dramatic reduction of detector background and improvement of the signal-to-noise ratio for Special Nuclear Material detection. Detection of Special Nuclear Materials in the presence of lead, cadmium and plywood shielding has been demonstrated. Generally, the introduction of shielding leads to short thermal neutron die-away times of 100-200 μs or less. The pulsed neutron interrogation method developed allows detection of the neutron signal even when the die-away time is less than 100 μs.

  11. Fissile mass estimation by pulsed neutron source interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Israelashvili, I., E-mail: israelashvili@gmail.com [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Dubi, C.; Ettedgui, H.; Ocherashvili, A. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Pedersen, B. [Nuclear Security Unit, Institute for Transuranium Elements, Joint Research Centre, Via E. Fermi, 2749, 21027 Ispra (Italy); Beck, A. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel); Roesgen, E.; Crochmore, J.M. [Nuclear Security Unit, Institute for Transuranium Elements, Joint Research Centre, Via E. Fermi, 2749, 21027 Ispra (Italy); Ridnik, T.; Yaar, I. [Nuclear Research Center of the Negev, P.O.B 9001, Beer Sheva 84190 (Israel)

    2015-06-11

    Passive methods for detecting correlated neutrons from spontaneous fissions (e.g. multiplicity and SVM) are widely used for fissile mass estimations. These methods can be used for fissile materials that emit a significant amount of fission neutrons (like plutonium). Active interrogation, in which fissions are induced in the tested material by an external continuous source or by a pulsed neutron source, has the potential advantages of fast measurement, alongside independence of the spontaneous fissions of the tested fissile material, thus enabling uranium measurement. Until recently, using the multiplicity method, for uranium mass estimation, was possible only for active interrogation made with continues neutron source. Pulsed active neutron interrogation measurements were analyzed with techniques, e.g. differential die away analysis (DDA), which ignore or implicitly include the multiplicity effect (self-induced fission chains). Recently, both, the multiplicity and the SVM techniques, were theoretically extended for analyzing active fissile mass measurements, made by a pulsed neutron source. In this study the SVM technique for pulsed neutron source is experimentally examined, for the first time. The measurements were conducted at the PUNITA facility of the Joint Research Centre in Ispra, Italy. First promising results, of mass estimation by the SVM technique using a pulsed neutron source, are presented.

  12. Development of pulsed neutron uranium logging instrument

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin-guang, E-mail: wangxg@upc.edu.cn [School of Geosciences, China University of Petroleum, Qingdao 266580 (China); Engineering Research Center of Nuclear Technology Application (East China Institute of Technology), Ministry of Education, Nanchang 330013 (China); Liu, Dan [China Institute of Atomic Energy, Beijing 102413 (China); Zhang, Feng [School of Geosciences, China University of Petroleum, Qingdao 266580 (China)

    2015-03-15

    This article introduces a development of pulsed neutron uranium logging instrument. By analyzing the temporal distribution of epithermal neutrons generated from the thermal fission of {sup 235}U, we propose a new method with a uranium-bearing index to calculate the uranium content in the formation. An instrument employing a D-T neutron generator and two epithermal neutron detectors has been developed. The logging response is studied using Monte Carlo simulation and experiments in calibration wells. The simulation and experimental results show that the uranium-bearing index is linearly correlated with the uranium content, and the porosity and thermal neutron lifetime of the formation can be acquired simultaneously.

  13. Future opportunities with pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, A.D. [Rutherford Appleton Lab., Chilton (United Kingdom)

    1996-05-01

    ISIS is the world`s most powerful pulsed spallation source and in the past ten years has demonstrated the scientific potential of accelerator-driven pulsed neutron sources in fields as diverse as physics, earth sciences, chemistry, materials science, engineering and biology. The Japan Hadron Project gives the opportunity to build on this development and to further realize the potential of neutrons as a microscopic probe of the condensed state. (author)

  14. Neutron-gamma discrimination by pulse analysis with superheated drop detector

    CERN Document Server

    Das, Mala; Saha, S; Bhattacharya, S; Bhattacharjee, P

    2010-01-01

    Superheated drop detector (SDD) consisting of drops of superheated liquid of halocarbon is irradiated to neutrons and gamma-rays from 252Cf fission neutron source and 137Cs gamma source separately. The analysis of pulse height of the signals in the neutron and gamma-ray sensitive temperature provides strong information on the identification of neutron and gamma-ray induced events.

  15. Development of pulse neutron coal analyzer

    Science.gov (United States)

    Jing, Shi-wie; Gu, De-shan; Qiao, Shuang; Liu, Yu-ren; Liu, Lin-mao; Shi-wei, Jing

    2005-04-01

    This article introduced the development of pulsed neutron coal analyzer by pulse fast-thermal neutron analysis technology in the Radiation Technology Institute of Northeast Normal University. The 14MeV pulse neutron generator and bismuth germanate detector and 4096 multichannel analyzer were applied in this system. The multiple linear regression method employed to process data solved the interferential problem of multiple elements. The prototype (model MZ-MKFY) had been applied in Changshan and Jilin power plant for about a year. The results of measuring the main parameters of coal such as low caloric power, whole total water, ash content, volatile content, and sulfur content, with precision acceptable to the coal industry, are presented.

  16. Multiple-wavelength neutron holography with pulsed neutrons.

    Science.gov (United States)

    Hayashi, Kouichi; Ohoyama, Kenji; Happo, Naohisa; Matsushita, Tomohiro; Hosokawa, Shinya; Harada, Masahide; Inamura, Yasuhiro; Nitani, Hiroaki; Shishido, Toetsu; Yubuta, Kunio

    2017-08-01

    Local structures around impurities in solids provide important information for understanding the mechanisms of material functions, because most of them are controlled by dopants. For this purpose, the x-ray absorption fine structure method, which provides radial distribution functions around specific elements, is most widely used. However, a similar method using neutron techniques has not yet been developed. If one can establish a method of local structural analysis with neutrons, then a new frontier of materials science can be explored owing to the specific nature of neutron scattering-that is, its high sensitivity to light elements and magnetic moments. Multiple-wavelength neutron holography using the time-of-flight technique with pulsed neutrons has great potential to realize this. We demonstrated multiple-wavelength neutron holography using a Eu-doped CaF2 single crystal and obtained a clear three-dimensional atomic image around trivalent Eu substituted for divalent Ca, revealing an interesting feature of the local structure that allows it to maintain charge neutrality. The new holography technique is expected to provide new information on local structures using the neutron technique.

  17. Concentration of the velocity distribution of pulsed neutron beams

    CERN Document Server

    Kitaguchi, Masaaki; Shimizu, Hirohiko M

    2016-01-01

    The velocity of neutrons from a pulsed neutron source is well-defined as a function of their arrival time. Electromagnetic neutron accelerator/decelerator synchronized with the neutron time-of-flight is capable of selectively changing the neutron velocity and concentrating the velocity distribution. Possible enhancement of the neutron intensity at a specific neutron velocity by orders of magnitude is discussed together with an experimental design.

  18. Neutron kinetics in moderators and SNM detection through epithermal-neutron-induced fissions

    Science.gov (United States)

    Gozani, Tsahi; King, Michael J.

    2016-01-01

    Extension of the well-established Differential Die Away Analysis (DDAA) into a faster time domain, where more penetrating epithermal neutrons induce fissions, is proposed and demonstrated via simulations and experiments. In the proposed method the fissions stimulated by thermal, epithermal and even higher-energy neutrons are measured after injection of a narrow pulse of high-energy 14 MeV (d,T) or 2.5 MeV (d,D) source neutrons, appropriately moderated. The ability to measure these fissions stems from the inherent correlation of neutron energy and time ("E-T" correlation) during the process of slowing down of high-energy source neutrons in common moderating materials such as hydrogenous compounds (e.g., polyethylene), heavy water, beryllium and graphite. The kinetic behavior following injection of a delta-function-shaped pulse (in time) of 14 MeV neutrons into such moderators is studied employing MCNPX simulations and, when applicable, some simple "one-group" models. These calculations served as a guide for the design of a source moderator which was used in experiments. Qualitative relationships between slowing-down time after the pulse and the prevailing neutron energy are discussed. A laboratory system consisting of a 14 MeV neutron generator, a polyethylene-reflected Be moderator, a liquid scintillator with pulse-shape discrimination (PSD) and a two-parameter E-T data acquisition system was set up to measure prompt neutron and delayed gamma-ray fission signatures in a 19.5% enriched LEU sample. The measured time behavior of thermal and epithermal neutron fission signals agreed well with the detailed simulations. The laboratory system can readily be redesigned and deployed as a mobile inspection system for SNM in, e.g., cars and vans. A strong pulsed neutron generator with narrow pulse (<75 ns) at a reasonably high pulse frequency could make the high-energy neutron induced fission modality a realizable SNM detection technique.

  19. Neutron kinetics in moderators and SNM detection through epithermal-neutron-induced fissions

    Energy Technology Data Exchange (ETDEWEB)

    Gozani, Tsahi, E-mail: tgmaven@gmail.com [1050 Harriet St., Palo Alto, CA 94301 (United States); King, Michael J. [Rapiscan Laboratories Inc., 520 Almanor Ave., Sunnyvale, CA 94085 (United States)

    2016-01-01

    Extension of the well-established Differential Die Away Analysis (DDAA) into a faster time domain, where more penetrating epithermal neutrons induce fissions, is proposed and demonstrated via simulations and experiments. In the proposed method the fissions stimulated by thermal, epithermal and even higher-energy neutrons are measured after injection of a narrow pulse of high-energy 14 MeV (d,T) or 2.5 MeV (d,D) source neutrons, appropriately moderated. The ability to measure these fissions stems from the inherent correlation of neutron energy and time (“E–T” correlation) during the process of slowing down of high-energy source neutrons in common moderating materials such as hydrogenous compounds (e.g., polyethylene), heavy water, beryllium and graphite. The kinetic behavior following injection of a delta-function-shaped pulse (in time) of 14 MeV neutrons into such moderators is studied employing MCNPX simulations and, when applicable, some simple “one-group” models. These calculations served as a guide for the design of a source moderator which was used in experiments. Qualitative relationships between slowing-down time after the pulse and the prevailing neutron energy are discussed. A laboratory system consisting of a 14 MeV neutron generator, a polyethylene-reflected Be moderator, a liquid scintillator with pulse-shape discrimination (PSD) and a two-parameter E–T data acquisition system was set up to measure prompt neutron and delayed gamma-ray fission signatures in a 19.5% enriched LEU sample. The measured time behavior of thermal and epithermal neutron fission signals agreed well with the detailed simulations. The laboratory system can readily be redesigned and deployed as a mobile inspection system for SNM in, e.g., cars and vans. A strong pulsed neutron generator with narrow pulse (<75 ns) at a reasonably high pulse frequency could make the high-energy neutron induced fission modality a realizable SNM detection technique.

  20. Coal analysis using the pulsed neutron generator

    Institute of Scientific and Technical Information of China (English)

    JING Shi-Wei; CHI Yan-Tao; ZHAO Xin-Hui; LIU Lin-Mao; GU De-Shan; QIAO Shuang; SANG Hai-Feng; ZHANG Yong-Xiang; ZHANG Zhong-Hua; CAO Xi-Zheng; TIAN Yu-Bing

    2003-01-01

    A prototype of elemental analyzer for coal has been developed by using a PFTNA (pulse fast thermalneutron analysis) system. The PFTNA technology is based on the reactions such as (n, γ), (n, n'γ), (n, Pγ), etc. byexamining the characteristic gamma rays emitted. In our prototype a pulsed neutron generator provides 14 MeV pulseneutrons, which contribute to the separation of spectrum Ⅱ (the sum of capture and activation spectrum) fiom spec-trum Ⅰ (the sum of inelastic, capture and activation spectrum), and thus to the measurement of C and O contents incoal. Data management is completed by computer program using the least-square regression method. The experimentin Changshan Power Plant for 3 months showed that the precision of calorific value, whole water, volatile content andash content is 0.5 k J/kg, 1.0 wt%, 2.0 wt% and 1.5 wt%, respectively.

  1. REM meter for pulsed sources of neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Thorngate, J.E.; Hunt, G.F.; Rueppel, D.W.

    1980-08-13

    A rem meter was constructed specifically for measuring neutrons produced by fusion experiments for which the source pulses last 10 ms or longer. The detector is a /sup 6/Li glass scintillator, 25.4 mm in diameter and 3.2 mm thick, surrounded by 11.5 cm of polyethylene. This detector has a sensitivity of 8.5 x 10/sup 4/ counts/mrem. The signals from this fast scintillator are shaped using a shorted delay line to produce pulses that are only 10 ns long so that dose equivalent rates up to 12 mrem/s can be measured with less than a 1% counting loss. The associated electronic circuits store detector counts only when the count rate exceeds a preset level. When the count rate returns to background, a conversion from counts to dose equivalent is made and the results are displayed. As a means of recording the number of source pulses that have occurred, a second display shows how many times the preset count rate has been exceeded. Accumulation of detector counts and readouts can also be controlled manually. The unit will display the integrated dose equilavent up to 200 mrem in 0.01 mrem steps. A pulse-height discriminator rejects gamma-ray interactions below 1 MeV, and the detector size limits the response above that energy. The instrument can be operated from an ac line or will run on rechargeable batteries for up to 12 hours.

  2. A single-shot nanosecond neutron pulsed technique for the detection of fissile materials

    Science.gov (United States)

    Gribkov, V.; Miklaszewski, R. A.; Chernyshova, M.; Scholz, M.; Prokopovicz, R.; Tomaszewski, K.; Drozdowicz, K.; Wiacek, U.; Gabanska, B.; Dworak, D.; Pytel, K.; Zawadka, A.

    2012-07-01

    A novel technique with the potential of detecting hidden fissile materials is presented utilizing the interaction of a single powerful and nanosecond wide neutron pulse with matter. The experimental system is based on a Dense Plasma Focus (DPF) device as a neutron source generating pulses of almost mono-energetic 2.45 MeV and/or 14.0 MeV neutrons, a few nanoseconds in width. Fissile materials, consisting of heavy nuclei, are detected utilizing two signatures: firstly by measuring those secondary fission neutrons which are faster than the elastically scattered 2.45 MeV neutrons of the D-D reaction in the DPF; secondly by measuring the pulses of the slower secondary fission neutrons following the pulse of the fast 14 MeV neutrons from the D-T reaction. In both cases it is important to compare the measured spectrum of the fission neutrons induced by the 2.45 MeV or 14 MeV neutron pulse of the DPF with theoretical spectra obtained by mathematical simulation. Therefore, results of numerical modelling of the proposed system, using the MCNP5 and the FLUKA codes are presented and compared with experimental data.

  3. Absolute Calibration of Proportional Counter Based Fast Pulsed Neutron Detectors with Resolution Below 105 neutron/pulse

    Science.gov (United States)

    Tarifeño-Saldivia, A.; Mayer, R. E.; Pavez, C.; Soto, L.

    2014-05-01

    A method for absolute calibration of proportional counters for pulsed fast neutrons is presented. The method is based on the use of an isotopic standard source and development of a model for counting detected events from area of a signal compounded by single piled up neutron pulses. Effects of detection counting statistics and electrical background noise are also considered. The method is applied in detectors used for D-D neutron yield measurements in low emission plasma focus devices.

  4. A kinematically beamed, low energy pulsed neutron source for active interrogation

    Science.gov (United States)

    Dietrich, Dan; Hagmann, Chris; Kerr, Phil; Nakae, Les; Rowland, Mark; Snyderman, Neal; Stoeffl, Wolfgang; Hamm, Robert

    2005-12-01

    We are developing a new active interrogation system based on a kinematically focused low energy neutron beam. The key idea is that one of the defining characteristics of special nuclear materials (SNM) is the ability for low energy or thermal neutrons to induce fission. Thus by using low energy neutrons for the interrogation source we can accomplish three goals: (1) energy discrimination allows us to measure the prompt fast fission neutrons produced while the interrogation beam is on; (2) neutrons with an energy of approximately 60-100 keV do not fission 238U and Thorium, but penetrate bulk material nearly as far as high energy neutrons do and (3) below about 100 keV neutrons lose their energy by kinematical collisions rather than via the nuclear (n, 2n) or (n, n‧) processes thus further simplifying the prompt neutron induced background. 60 keV neutrons create a low radiation dose and readily thermal capture in normal materials, thus providing a clean spectroscopic signature of the intervening materials. The kinematically beamed source also eliminates the need for heavy backward and sideway neutron shielding. We have designed and built a very compact pulsed neutron source, based on an RFQ proton accelerator and a lithium target. We are developing fast neutron detectors that are nearly insensitive to the ever-present thermal neutron and neutron capture induced gamma ray background. The detection of only a few high energy fission neutrons in time correlation with the linac pulse will be a clear indication of the presence of SNM.

  5. Development of advanced radiation monitors for pulsed neutron fields

    CERN Document Server

    AUTHOR|(CDS)2081895

    The need of radiation detectors capable of efficiently measuring in pulsed neutron fields is attracting widespread interest since the 60s. The efforts of the scientific community substantially increased in the last decade due to the increasing number of applications in which this radiation field is encountered. This is a major issue especially at particle accelerator facilities, where pulsed neutron fields are present because of beam losses at targets, collimators and beam dumps, and where the correct assessment of the intensity of the neutron fields is fundamental for radiation protection monitoring. LUPIN is a neutron detector that combines an innovative acquisition electronics based on logarithmic amplification of the collected current signal and a special technique used to derive the total number of detected neutron interactions, which has been specifically conceived to work in pulsed neutron fields. Due to its special working principle, it is capable of overcoming the typical saturation issues encountere...

  6. Improved fission neutron energy discrimination with 4He detectors through pulse filtering

    Science.gov (United States)

    Zhu, Ting; Liang, Yinong; Rolison, Lucas; Barker, Cathleen; Lewis, Jason; Gokhale, Sasmit; Chandra, Rico; Kiff, Scott; Chung, Heejun; Ray, Heather; Baciak, James E.; Enqvist, Andreas; Jordan, Kelly A.

    2017-03-01

    This paper presents experimental and computational techniques implemented for 4He gas scintillation detectors for induced fission neutron detection. Fission neutrons are produced when natural uranium samples are actively interrogated by 2.45 MeV deuterium-deuterium fusion reaction neutrons. Fission neutrons of energies greater than 2.45 MeV can be distinguished by their different scintillation pulse height spectra since 4He detectors retain incident fast neutron energy information. To enable the preferential detection of fast neutrons up to 10 MeV and suppress low-energy event counts, the detector photomultiplier gain is lowered and trigger threshold is increased. Pile-up and other unreliable events due to the interrogating neutron flux and background radiation are filtered out prior to the evaluation of pulse height spectra. With these problem-specific calibrations and data processing, the 4He detector's accuracy at discriminating fission neutrons up to 10 MeV is improved and verified with 252Cf spontaneous fission neutrons. Given the 4He detector's ability to differentiate fast neutron sources, this proof-of-concept active-interrogation measurement demonstrates the potential of special nuclear materials detection using a 4He fast neutron detection system.

  7. Pulsed neutron source based on accelerator-subcritical-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Makoto; Noda, Akira; Iwashita, Yoshihisa; Okamoto, Hiromi; Shirai, Toshiyuki [Kyoto Univ., Uji (Japan). Inst. for Chemical Research

    1997-03-01

    A new pulsed neutron source which consists of a 300MeV proton linac and a nuclear fuel subcritical assembly is proposed. The proton linac produces pulsed spallation neutrons, which are multipied by the subcritical assembly. A prototype proton linac that accelerates protons up to 7MeV has been developed and a high energy section of a DAW structure is studied with a power model. Halo formations in high intensity beam are also being studied. (author)

  8. Reduction of neutron-induced background in KOTO

    Science.gov (United States)

    Nakagiri, Kota

    2017-01-01

    The KOTO experiment aims to study the decay at J-PARC. In order to identify the signal, we measure two photons from a π 0 decay with an electromagnetic calorimeter consisting of undoped Csl crystals, and ensure that there are no other particles with hermetic veto counters. In the analysis of data taken in 2013, the neutron-induced background, which was caused by a beam-halo neutron hitting the calorimeter was dominant. The neutron makes a primary hadronic shower and a secondary neutron emitted from the shower makes a secondary shower after traveling inside the calorimeter. If these two shower clusters are observed in the calorimeter without any hits in veto detectors, it can mimic a signal event. We developed new methods to suppress this background, such as neutron-photon discrimination methods using cluster shape and pulse shape. We obtained reduction power for the neutron-induced background.

  9. Neutron and Gamma Ray Pulse Shape Discrimination with Polyvinyltoluene

    Energy Technology Data Exchange (ETDEWEB)

    Lintereur, Azaree T.; Ely, James H.; Stave, Jean A.; McDonald, Benjamin S.

    2012-03-01

    The goal of this was research effort was to test the ability of two poly vinyltoluene research samples to produce recordable, distinguishable signals in response to gamma rays and neutrons. Pulse shape discrimination was performed to identify if the signal was generated by a gamma ray or a neutron. A standard figure of merit for pulse shape discrimination was used to quantify the gamma-neutron pulse separation. Measurements were made with gamma and neutron sources with and without shielding. The best figure of merit obtained was 1.77; this figure of merit was achieved with the first sample in response to an un-moderated 252Cf source shielded with 5.08 cm of lead.

  10. A Fast Pulsed Neutron Source for Time-of-Flight Detection of Nuclear Materials and Explosives

    Science.gov (United States)

    Krishnan, Mahadevan; Bures, Brian; James, Colt; Madden, Robert; Hennig, Wolfgang; Breus, Dimitry; Asztalos, Stephen; Sabourov, Konstantin; Lane, Stephen

    2011-12-01

    AASC has built a fast pulsed neutron source based on the Dense Plasma Focus (DPF). The more current version stores only 100 J but fires at ˜10-50 Hz and emits ˜106n/pulse at a peak current of 100 kA. Both sources emit 2.45±0.1 MeV (DD) neutron pulses of ˜25-40 ns width. Such fast, quasi-monoenergetic pulses allow time-of-flight detection of characteristic emissions from nuclear materials or high explosives. A test is described in which iron targets were placed at different distances from the point neutron source. Detectors such as Stilbene and LaBr3 were used to capture inelastically induced, 847 keV gammas from the iron target. Shielding of the source and detectors eliminated most (but not all) of the source neutrons from the detectors. Gated detection, pulse shape analysis and time-of-flight discrimination enable separation of gamma and neutron signatures and localization of the target. A Monte Carlo simulation allows evaluation of the potential of such a fast pulsed source for a field-portable detection system. The high rep-rate source occupies two 200 liter drums and uses a cooled DPF Head that is <500 cm3 in volume.

  11. A Fast Pulsed Neutron Source for Time-of-Flight Detection of Nuclear Materials and Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Mahadevan; Bures, Brian; James, Colt; Madden, Robert [Alameda Applied Sciences Corporation, 3077 Teagarden Street, San Leandro, CA 94577 (United States); Hennig, Wolfgang; Breus, Dimitry; Asztalos, Stephen; Sabourov, Konstantin [XIA LLC, 31057 Genstar Road, Hayward, CA 94544 (United States); Lane, Stephen [NSF Center for Biophotonics and School of Medicine, University of California Davis, Sacramento CA, 95817 (United States)

    2011-12-13

    AASC has built a fast pulsed neutron source based on the Dense Plasma Focus (DPF). The more current version stores only 100 J but fires at {approx}10-50 Hz and emits {approx}10{sup 6}n/pulse at a peak current of 100 kA. Both sources emit 2.45{+-}0.1 MeV(DD) neutron pulses of {approx}25-40 ns width. Such fast, quasi-monoenergetic pulses allow time-of-flight detection of characteristic emissions from nuclear materials or high explosives. A test is described in which iron targets were placed at different distances from the point neutron source. Detectors such as Stilbene and LaBr3 were used to capture inelastically induced, 847 keV gammas from the iron target. Shielding of the source and detectors eliminated most (but not all) of the source neutrons from the detectors. Gated detection, pulse shape analysis and time-of-flight discrimination enable separation of gamma and neutron signatures and localization of the target. A Monte Carlo simulation allows evaluation of the potential of such a fast pulsed source for a field-portable detection system. The high rep-rate source occupies two 200 liter drums and uses a cooled DPF Head that is <500 cm{sup 3} in volume.

  12. Characteristics of the WNR: a pulsed spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Russell, G.J.; Lisowski, P.W.; Howe, S.D.; King, N.S.P.; Meier, M.M.

    1982-01-01

    The Weapons Neutron Research facility (WNR) is a pulsed spallation neutron source in operation at the Los Alamos National Laboratory. The WNR uses part of the 800-MeV proton beam from the Clinton P. Anderson Meson Physics Facility accelerator. By choosing different target and moderator configurations and varying the proton pulse structure, the WNR can provide a white neutron source spanning the energy range from a few MeV to 800 MeV. The neutron spectrum from a bare target has been measured and is compared with predictions using an Intranuclear Cascade model coupled to a Monte Carlo transport code. Calculations and measurements of the neutronics of WNR target-moderator assemblies are presented.

  13. On the limit of neutron fluxes in the fission-based pulsed neutron sources

    Science.gov (United States)

    Aksenov, V. L.; Ananiev, V. D.; Komyshev, G. G.; Rogov, A. D.; Shabalin, E. P.

    2017-09-01

    The upper limit of the density of the thermal neutron flux from pulsed sources based on the fission reaction is established. Three types of sources for research on ejected beams are considered: a multiplying target of the proton accelerator (a booster), a booster with the reactivity modulation (a superbooster), and a pulsing reactor. Comparison with other high-flux sources is carried out. The investigation has been performed at the Frank Laboratory of Neutron Physics of JINR.

  14. Data acquisition system for the neutron scattering instruments at the intense pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, R.K.; Daly, R.T.; Haumann, J.R.; Hitterman, R.L.; Morgan, C.B.; Ostrowski, G.E.; Worlton, T.G.

    1981-01-01

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a major new user-oriented facility which is now coming on line for basic research in neutron scattering and neutron radiation damage. This paper describes the data-acquisition system which will handle data acquisition and instrument control for the time-of-flight neutron-scattering instruments at IPNS. This discussion covers the scientific and operational requirements for this system, and the system architecture that was chosen to satisfy these requirements. It also provides an overview of the current system implementation including brief descriptions of the hardware and software which have been developed.

  15. Fast neutron flux analyzer with real-time digital pulse shape discrimination

    Science.gov (United States)

    Ivanova, A. A.; Zubarev, P. V.; Ivanenko, S. V.; Khilchenko, A. D.; Kotelnikov, A. I.; Polosatkin, S. V.; Puryga, E. A.; Shvyrev, V. G.; Sulyaev, Yu. S.

    2016-08-01

    Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL-3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL-3 and GDT devices. This analyzer was tested and calibrated with the help of 137Cs and 252Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented.

  16. A charge-collection method for measurements of pulsed fast-neutron flux

    CERN Document Server

    Ouyang, X P; Ho, Y K; Zhang, Z B

    2002-01-01

    A charge-collection method for measuring the flux of pulsed fast neutrons in current mode has been developed, which is based on the well-known recoil-proton method combined with ion-induced secondary electron emission from solid surfaces. The detection unit consists of four elements: an n-p converter, an absorber, a collector, and a rear insulator. The assembly does not require vacuum for operation. Recoil protons from the n-p converter and the secondary electrons induced by the passing protons on the interface of the absorber and the collector contribute to the detector output signal. By properly choosing the materials and the combination of the absorber and the collector, the fraction of secondary electrons in the output signal can be determined experimentally. This detection concept allows one to design a medium type of fast-neutron detector for measurements of extremely intense pulsed neutron flux with a number of advantages over the existing systems.

  17. Detection of pulsed neutrons with solid-state electronics

    Science.gov (United States)

    Chatzakis, J.; Rigakis, I.; Hassan, S. M.; Clark, E. L.; Lee, P.

    2016-09-01

    Measurements of the spatial and time-resolved characteristics of pulsed neutron sources require large area detection materials and fast circuitry that can process the electronic pulses readout from the active region of the detector. In this paper, we present a solid-state detector based on the nuclear activation of materials by neutrons, and the detection of the secondary particle emission of the generated radionuclides’ decay. The detector utilizes a microcontroller that communicates using a modified SPI protocol. A solid-state, pulse shaping filter follows a charge amplifier, and it is designed as an inexpensive, low-noise solution for measuring pulses measured by a digital counter. An imaging detector can also be made by using an array of these detectors. The system can communicate with an interface unit and pass an image to a personal computer.

  18. The potential for biological structure determination with pulsed neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C.C. [CLRC Rutherford Appleton Laboratory, Chilton Didcot Oxon (United Kingdom)

    1994-12-31

    The potential of pulsed neutron diffraction in structural determination of biological materials is discussed. The problems and potential solutions in this area are outlined, with reference to both current and future sources and instrumentation. The importance of developing instrumentation on pulsed sources in emphasized, with reference to the likelihood of future expansion in this area. The possibilities and limitations of single crystal, fiber and powder diffraction in this area are assessed.

  19. Device for Writing the Time Tail from Spallation Neutron Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Langan, P. (Paul); Schoenborn, Benno P.; Langan, P. (Paul); Schoenborn, Benno P.; Daemen, L. L. (Luc L.)

    2001-01-01

    Recent work at Los Alamos Neutron Science Center (LANSCE), has shown that there are large gains in neutron beam intensity to be made by using coupled moderators at spallation neutron sources. Most of these gains result from broadening the pulse-width in time. However the accompanying longer exponential tail at large emission times can be a problem in that it introduces relatively large beam-related backgrounds at high resolutions. We have designed a device that can reshape the moderated neutron beam by cutting the time-tail so that a sharp time resolution can be re-established without a significant loss in intensity. In this work the basic principles behind the tail-cutter and some initial results of Monte Carlo simulations are described. Unwanted neutrons in the long time-tail are diffracted out of the transmitted neutron beam by a nested stack of aperiodic multi-layers, rocking at the same frequency as the source. Nested aperiodic multi-layers have recently been used at X-ray sources and as band-pass filters in quasi-Laue neutron experiments at reactor neutron sources. Optical devices that rock in synchronization with a pulsed neutron beam are relatively new but are already under construction at LANSCE. The tail-cutter described here is a novel concept that uses existing multi-layer technology in a new way for spallation neutrons. Coupled moderators in combination with beam shaping devices offer the means of increasing flux whilst maintaining a sharp time distribution. A prototype device is being constructed for the protein crystallography station at LANSCE. The protein crystallography station incorporates a water moderator that has been judiciously coupled in order to increase the flux over neutron energies that are important to structural biology (3-80meV). This development in moderator design is particularly important because protein crystallography is flux limited and because conventional ambient water and cold hydrogen moderators do not provide relatively

  20. Pulsed Neutron Powder Diffraction for Materials Science

    Science.gov (United States)

    Kamiyama, T.

    2008-03-01

    The accelerator-based neutron diffraction began in the end of 60's at Tohoku University which was succeeded by the four spallation neutron facilities with proton accelerators at the High Energy Accelerator Research Organization (Japan), Argonne National Laboratory and Los Alamos Laboratory (USA), and Rutherford Appleton Laboratory (UK). Since then, the next generation source has been pursued for 20 years, and 1MW-class spallation neutron sources will be appeared in about three years at the three parts of the world: Japan, UK and USA. The joint proton accelerator project (J-PARC), a collaborative project between KEK and JAEA, is one of them. The aim of the talk is to describe about J-PARC and the neutron diffractometers being installed at the materials and life science facility of J-PARC. The materials and life science facility of J-PARC has 23 neutron beam ports and will start delivering the first neutron beam of 25 Hz from 2008 May. Until now, more than 20 proposals have been reviewed by the review committee, and accepted proposal groups have started to get fund. Those proposals include five polycrystalline diffractometers: a super high resolution powder diffractometer (SHRPD), a 0.2%-resolution powder diffractometer of Ibaraki prefecture (IPD), an engineering diffractometers (Takumi), a high intensity S(Q) diffractometer (VSD), and a high-pressure dedicated diffractometer. SHRPD, Takumi and IPD are being designed and constructed by the joint team of KEK, JAEA and Ibaraki University, whose member are originally from the KEK powder group. These three instruments are expected to start in 2008. VSD is a super high intensity diffractometer with the highest resolution of Δd/d = 0.3%. VSD can measure rapid time-dependent phenomena of crystalline materials as well as glass, liquid and amorphous materials. The pair distribution function will be routinely obtained by the Fourier transiformation of S(Q) data. Q range of VSD will be as wide as 0.01 Å-1industries based on

  1. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    CERN Document Server

    Arimoto, Y; Igarashi, Y; Iwashita, Y; Ino, T; Katayama, R; Kitahara, R; Kitaguchi, M; Matsumura, H; Mishima, K; Oide, H; Otono, H; Sakakibara, R; Shima, T; Shimizu, H M; Sugino, T; Sumi, N; Sumino, H; Taketani, K; Tanaka, G; Tanaka, M; Tauchi, K; Toyoda, A; Yamada, T; Yamashita, S; Yokoyama, H; Yoshioka, T

    2015-01-01

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with $^6$Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  2. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Arimoto, Y. [High Energy Accelerator Research Organization, Ibaraki (Japan); Higashi, N. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Igarashi, Y. [High Energy Accelerator Research Organization, Ibaraki (Japan); Iwashita, Y. [Institute for Chemical Research, Kyoto University, Kyoto (Japan); Ino, T. [High Energy Accelerator Research Organization, Ibaraki (Japan); Katayama, R. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Kitaguchi, M. [Kobayashi-Maskawa Institute, Nagoya University, Aichi (Japan); Kitahara, R. [Graduate School of Science, Kyoto University, Kyoto (Japan); Matsumura, H.; Mishima, K. [High Energy Accelerator Research Organization, Ibaraki (Japan); Nagakura, N.; Oide, H. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Otono, H., E-mail: otono@phys.kyushu-u.ac.jp [Research Centre for Advanced Particle Physics, Kyushu University, Fukuoka (Japan); Sakakibara, R. [Department of Physics, Nagoya University, Aichi (Japan); Shima, T. [Research Center for Nuclear Physics, Osaka University, Osaka (Japan); Shimizu, H.M.; Sugino, T. [Department of Physics, Nagoya University, Aichi (Japan); Sumi, N. [Faculty of Sciences, Kyushu University, Fukuoka (Japan); Sumino, H. [Department of Basic Science, University of Tokyo, Tokyo (Japan); Taketani, K. [High Energy Accelerator Research Organization, Ibaraki (Japan); and others

    2015-11-01

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with {sup 6}Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  3. Neutron investigations of magnetic properties of crystal substances with use of a pulsed magnetic field

    CERN Document Server

    Nitts, V V

    2001-01-01

    Bases for neutron researches of magnetic properties of crystal substances with use of a pulsed magnetic field and analysis of possible application of various neutron sources in this area are submitted. The review of the most interesting physical results is presented. Main investigations on pulsed reactors of JINR are researches on kinetics of the first order reorientational phase transitions induced in single crystals, and also measurements of antiferromagnetic ordering induced by an external magnetic field. Magnetic phase transitions, induced by a field up to 160 kOe in several magnetic ordering substances, were studied in KEK (Japan). Experiment on observation of spin-flop transition in MnF sub 2 was carried out on TRIGA-reactor in a mode of single flashes of power

  4. Fast neutron flux analyzer with real-time digital pulse shape discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, A.A., E-mail: a.a.ivanova@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Zubarev, P.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Ivanenko, S.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Khilchenko, A.D. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Kotelnikov, A.I. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Polosatkin, S.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Puryga, E.A.; Shvyrev, V.G. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Sulyaev, Yu.S. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

    2016-08-11

    Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL–3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL–3 and GDT devices. This analyzer was tested and calibrated with the help of {sup 137}Cs and {sup 252}Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented. - Highlights: • Electronic equipment for measurement of fast neutron flux with stilbene scintillator is presented. • FPGA-implemented digital pulse-shape discrimination algorithm by charge comparison method is shown. • Calibration of analyzer was carried out with {sup 137}Cs and {sup 252}Cf. • Figures of Merit (FOM) values for energy cuts from 1/8 Cs to 2 Cs are from 1.264 to 2.34 respectively.

  5. Intercomparison of radiation protection instrumentation in a pulsed neutron field

    Energy Technology Data Exchange (ETDEWEB)

    Caresana, M., E-mail: marco.caresana@polimi.it [Politecnico di Milano, CESNEF, Dipartimento di Energia, via Ponzio 34/3, 20133 Milano (Italy); Denker, A. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Esposito, A. [IFNF-LNF, FISMEL, via E. Fermi 40, 00044 Frascati (Italy); Ferrarini, M. [CNAO, Via Privata Campeggi, 27100 Pavia (Italy); Golnik, N. [Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Sw. A. Boboli 8, 02-525 Warsaw (Poland); Hohmann, E. [Paul Scherrer Institut (PSI), Radiation Metrology Section, CH-5232 Villigen PSI (Switzerland); Leuschner, A. [Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22603 Hamburg (Germany); Luszik-Bhadra, M. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Manessi, G. [CERN, 1211 Geneva 23 (Switzerland); University of Liverpool, Department of Physics, L69 7ZE Liverpool (United Kingdom); Mayer, S. [Paul Scherrer Institut (PSI), Radiation Metrology Section, CH-5232 Villigen PSI (Switzerland); Ott, K. [Helmholtz-Zentrum Berlin, BESSYII, Albert-Einstein-Str.15, 12489 Berlin (Germany); Röhrich, J. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Silari, M. [CERN, 1211 Geneva 23 (Switzerland); Trompier, F. [Institute for Radiological Protection and Nuclear Safety, F-92262 Fontenay aux Roses (France); Volnhals, M.; Wielunski, M. [Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg (Germany)

    2014-02-11

    In the framework of the EURADOS working group 11, an intercomparison of active neutron survey meters was performed in a pulsed neutron field (PNF). The aim of the exercise was to evaluate the performances of various neutron instruments, including commercially available rem-counters, personal dosemeters and instrument prototypes. The measurements took place at the cyclotron of the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The cyclotron is routinely used for proton therapy of ocular tumours, but an experimental area is also available. For the therapy the machine accelerates protons to 68 MeV. The interaction of the proton beam with a thick tungsten target produces a neutron field with energy up to about 60 MeV. One interesting feature of the cyclotron is that the beam can be delivered in bursts, with the possibility to modify in a simple and flexible way the burst length and the ion current. Through this possibility one can obtain radiation bursts of variable duration and intensity. All instruments were placed in a reference position and irradiated with neutrons delivered in bursts of different intensity. The analysis of the instrument response as a function of the burst charge (the total electric charge of the protons in the burst shot onto the tungsten target) permitted to assess for each device the dose underestimation due to the time structure of the radiation field. The personal neutron dosemeters were exposed on a standard PMMA slab phantom and the response linearity was evaluated.

  6. Time correlated measurements using plastic scintillators with neutron-photon pulse shape discrimination

    Science.gov (United States)

    Richardson, Norman E., IV

    Since the beginning of the nuclear age, there has been a strong demand for the development of efficient technologies for the detection of ionizing radiation. According to the United States' Department of Energy, the accurate assessment of fissile materials is essential in achieving the nonproliferation goals of enhancing safety and security of nuclear fuel cycle and nuclear energy facilities. Nuclear materials can be characterized by the measurement of prompt and delayed neutrons and gamma rays emitted in spontaneous or induced fission reactions and neutrons emitted in fission reactions are the distinctive signatures of nuclear materials. Today, the most widely used neutron detection technologies rely on thermal neutron capture reactions using a moderating material to cause the neutron to lose its energy prior to the detection event. This is necessary because as the fission event occurs, neutrons are emitted carrying high amounts of energy, typically on the order of mega electron volts (MeV). These energetic particles are classified as "fast" neutrons. For detecting the thermal neutrons, the Helium-3 (3He) gas-filled counters are arguably the most widely used technology of neutron detection. 3He counters have been the scientific standard for the nuclear engineering community for several decades, and have earned their place as a reliable technique for the detection of neutrons. However, 3He gas-filled counters have several disadvantages. First, gas-filled counters are not rigid and are sensitive to vibrations. Secondly, gas-filled counters are prone to the count rate limitations due to the physical processes of charge multiplication and transport in the gas medium in the electric field. Lastly, 3He gas-filled counters suffer from a supply shortage of the 3He isotope. As it is stated in [3], this shortage is created by the new demand for Helium-3 due to the deployment of neutron detectors at the borders after the 9/11 attack to help secure the nation against smuggled

  7. Pulsed neutron fields measurements around a synchrotron storage ring

    Science.gov (United States)

    Caresana, Marco; Ballerini, Marcello; Ulfbeck, David Garf; Hertel, Niels; Manessi, Giacomo Paolo; Søgaard, Carsten

    2017-09-01

    A measurement campaign was performed for characterizing the neutron ambient dose equivalent, H*(10), in selected positions at ISA, Aarhus, Denmark, around the ASTRID and ASTRID2 storage rings. The neutron stray radiation field is characterized here by very intense radiation bursts with a low repetition rate, which result in a comparatively low average H*(10) rate. As a consequence, devices specifically conceived for operating in pulsed neutron fields must be employed for efficiently measuring in this radiation environment, in order to avoid severe underestimations of the H*(10) rate. The measurements were performed with the ELSE NUCLEAR LUPIN 5401 BF3-NP rem counter, a detector characterized by an innovative working principle that is not affected by dead time losses. This allowed characterizing both the H*(10) and the time structure of the radiation field in the pre-selected positions.

  8. Facility for neutron induced few body reactions at Bochum University

    Energy Technology Data Exchange (ETDEWEB)

    Bannach, B.; Bodek, K.; Boerker, G.; Kamke, D.; Krug, J.; Lekkas, P.; Luebcke, W.; Stephan, M.

    1987-02-15

    A facility is described which is designed for the measurement of neutron induced three-body breakup. It has been used for the breakup of deuterium and of the nucleus /sup 9/Be. Neutrons are produced by a pulsed beam of deuterons from the Bochum 4MV Dynamitron-Tandem accelerator by bombarding a thick tritium-titanium target or a deuterium gas target. The outgoing beam is collimated by a 4..pi.. shielding to a solid angle of about 1 msr. In most cases, a liquid scintillator (NE232 or a mixture of NE232/Ne213) serves as a target for the neutron beam. Scattered neutrons are detected by Ne213-detectors of different sizes. For testing purposes the differential elastic n-d cross section and simultaneously the respnse of NE232 have beem measured at 22.4 and 7.9 MeV.

  9. Basic Physics Data: Measurement of Neutron Multiplicity from Induced Fission

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Sara [Univ. of Michigan, Ann Arbor, MI (United States); Haight, Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-04

    From October 1 to October 17 a team of researchers from UM visited the LANSCE facility for an experiment during beam-time allotted from October 4 to October 17. A total of 24 detectors were used at LANSCE including liquid organic scintillation detectors (EJ-309), NaI scintillation detectors, and Li-6 enriched glass detectors. It is a double time-offlight (TOF) measurement using spallation neutrons generated by a target bombarded with pulsed high-energy protons. The neutrons travel to an LLNL-manufactured parallel plate avalanche chamber (PPAC) loaded with thin U-235 foils in which fission events are induced. The generated fission neutrons and photons are then detected in a detector array designed and built at UM and shipped to LANSCE. Preparations were made at UM, where setup and proposed detectors were tested. The UM equipment was then shipped to LANSCE for use at the 15L beam of the weapons neutron research (WNR) facility.

  10. Intense neutron pulse generation in dense Z-pinch

    Science.gov (United States)

    Bystritskii, V. M.; Glusko, Yu. A.; Mesyats, G. A.; Ratakhin, N. A.

    1989-12-01

    The problem of intense neutron pulse generation with fast dense Z-pinches (ZP) is analyzed for a modified approach. The analysis pertains to the interaction of a High Power Deuterium Beam (HPDB) with hot (Te≂1 keV) deuterium target formed by a ZP. The considerable decrease of the Coulomb ion-electron scattering cross-sections gives a corresponding increase of the deuterium range and neutron yield in the hot target. The generation of HPDB and ZP formation takes place at the same terawatt accelerator, by using in series with the ZP a plasma opening switch (POS), which is at the same time the Ion Plasma Filled Diode (IPFD). During the front of the current pulse the stable z-pinch implosion heats the ZP up to the keV temperature range with several kJ of energy input. Near the end of the current front the energy flow is being switched to HPDB generation due to the opening of the POS. The HPDB is focused ballistically at the axis of the ZP and transported along it in the azimutal magnetic field, producing a neutron burst. The analysis of ZP formation and heating, HPDB generation, its transport and neutron production is given.

  11. Neutron induced bystander effect among zebrafish embryos

    Science.gov (United States)

    Ng, C. Y. P.; Kong, E. Y.; Kobayashi, A.; Suya, N.; Uchihori, Y.; Cheng, S. H.; Konishi, T.; Yu, K. N.

    2015-12-01

    The present paper reported the first-ever observation of neutron induced bystander effect (NIBE) using zebrafish (Danio rerio) embryos as the in vivo model. The neutron exposure in the present work was provided by the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Chiba, Japan. Two different strategies were employed to induce NIBE, namely, through directly partnering and through medium transfer. Both results agreed with a neutron-dose window (20-50 mGy) which could induce NIBE. The lower dose limit corresponded to the threshold amount of neutron-induced damages to trigger significant bystander signals, while the upper limit corresponded to the onset of gamma-ray hormesis which could mitigate the neutron-induced damages and thereby suppress the bystander signals. Failures to observe NIBE in previous studies were due to using neutron doses outside the dose-window. Strategies to enhance the chance of observing NIBE included (1) use of a mono-energetic high-energy (e.g., between 100 keV and 2 MeV) neutron source, and (2) use of a neutron source with a small gamma-ray contamination. It appeared that the NASBEE facility used in the present study fulfilled both conditions, and was thus ideal for triggering NIBE.

  12. Measurement of ultracold neutrons produced by using Doppler-shifted Bragg reflection at a pulsed-neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Brun, T.O.; Carpenter, J.M.; Krohn, V.E.; Ringo, G.R.; Cronin, J.W.; Dombeck, T.W.; Lynn, J.W.; Werner, S.A.

    1979-01-01

    Ultracold neutrons (UCN) have been produced at the Argonne pulsed-neutron source by the Doppler shift of 400-m/s neutrons Bragg reflected from a moving crystal. The peak density of UCN produced at the crystal exceeds 0.1 n/cm/sup 3/.

  13. Phenomenology of muon-induced neutron yield

    Science.gov (United States)

    Malgin, A. S.

    2017-07-01

    The cosmogenic neutron yield Yn characterizes the ability of matter to produce neutrons under the effect of cosmic ray muons with spectrum and average energy corresponding to an observation depth. The yield is the basic characteristic of cosmogenic neutrons. The neutron production rate and neutron flux both are derivatives of the yield. The constancy of the exponents α and β in the known dependencies of the yield on energy Yn∝Eμα and the atomic weight Yn∝Aβ allows one to combine these dependencies in a single formula and to connect the yield with muon energy loss in matter. As a result, the phenomenological formulas for the yields of muon-induced charged pions and neutrons can be obtained. These expressions both are associated with nuclear loss of the ultrarelativistic muons, which provides the main contribution to the total neutron yield. The total yield can be described by a universal formula, which is the best fit of the experimental data.

  14. Neutron imaging with the short-pulse laser driven neutron source at the Trident laser facility

    Science.gov (United States)

    Guler, N.; Volegov, P.; Favalli, A.; Merrill, F. E.; Falk, K.; Jung, D.; Tybo, J. L.; Wilde, C. H.; Croft, S.; Danly, C.; Deppert, O.; Devlin, M.; Fernandez, J.; Gautier, D. C.; Geissel, M.; Haight, R.; Hamilton, C. E.; Hegelich, B. M.; Henzlova, D.; Johnson, R. P.; Schaumann, G.; Schoenberg, K.; Schollmeier, M.; Shimada, T.; Swinhoe, M. T.; Taddeucci, T.; Wender, S. A.; Wurden, G. A.; Roth, M.

    2016-10-01

    Emerging approaches to short-pulse laser-driven neutron production offer a possible gateway to compact, low cost, and intense broad spectrum sources for a wide variety of applications. They are based on energetic ions, driven by an intense short-pulse laser, interacting with a converter material to produce neutrons via breakup and nuclear reactions. Recent experiments performed with the high-contrast laser at the Trident laser facility of Los Alamos National Laboratory have demonstrated a laser-driven ion acceleration mechanism operating in the regime of relativistic transparency, featuring a volumetric laser-plasma interaction. This mechanism is distinct from previously studied ones that accelerate ions at the laser-target surface. The Trident experiments produced an intense beam of deuterons with an energy distribution extending above 100 MeV. This deuteron beam, when directed at a beryllium converter, produces a forward-directed neutron beam with ˜5 × 109 n/sr, in a single laser shot, primarily due to deuteron breakup. The neutron beam has a pulse duration on the order of a few nanoseconds with an energy distribution extending from a few hundreds of keV to almost 80 MeV. For the experiments on neutron-source spot-size measurements, our gated neutron imager was setup to select neutrons in the energy range of 2.5-35 MeV. The spot size of neutron emission at the converter was measured by two different imaging techniques, using a knife-edge and a penumbral aperture, in two different experimental campaigns. The neutron-source spot size is measured ˜1 mm for both experiments. The measurements and analysis reported here give a spatial characterization for this type of neutron source for the first time. In addition, the forward modeling performed provides an empirical estimate of the spatial characteristics of the deuteron ion-beam. These experimental observations, taken together, provide essential yet unique data to benchmark and verify theoretical work into the

  15. CIAE 600 kV ns pulse neutron generator

    CERN Document Server

    Shen Guan Ren; Guan Xia Ling

    2001-01-01

    The overall composition of CIAE 600 kV ns Pulse Neutron Generator (CPNG) are introduced, and its characteristic, main technological performance and application were also given. CPNG consists of high voltage power supply with highest output voltage 600 kV, direct current 15 mA, stability and ripple <=0.1%, 2214 mm x 1604 mm x 1504 mm stainless steel high voltage electrode, built in head equipment uniform field accelerating tube, ns pulsed installation, turbomolecular vacuum pump system and drift pipes at 0 degree and 45 degree. Its characteristics are: (1) high current beam; (2) high current beam ns pulsed installation made use of low energy for chopper and high energy for buncher; (3) compactly laid out and simple in structure

  16. Conceptual moderator studies for the Spallation Neutron Source short-pulse second target station

    Science.gov (United States)

    Gallmeier, F. X.; Lu, W.; Riemer, B. W.; Zhao, J. K.; Herwig, K. W.; Robertson, J. L.

    2016-06-01

    Candidate moderator configurations for a short-pulse second target station (STS) at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) have been identified using a global optimizer framework built around the MCNPX particle transport code. Neutron brightness metrics were selected as the figure-of-merit. We assumed that STS would use one out of six proton pulses produced by an SNS accelerator upgraded to operate at 1.3 GeV proton energy, 2.8 MW power and 60 Hz repetition rate. The simulations indicate that the peak brightness can be increased by a factor of 5 and 2.5 on a per proton pulse basis compared to the SNS first target station for both coupled and decoupled para-hydrogen moderators, respectively. Additional increases by factors of 3 and 2 were demonstrated for coupled and decoupled moderators, respectively, by reducing the area of neutron emission from 100 × 100 mm2 to 20 × 20 mm2. This increase in brightness has the potential to translate to an increase of beam intensity at the instruments' sample positions even though the total neutron emission of the smaller moderator is less than that of the larger. This is especially true for instruments with small samples (beam dimensions). The increased fluxes in the STS moderators come at accelerated poison and de-coupler burnout and higher radiation-induced material damage rates per unit power, which overall translate into lower moderator lifetimes. A first effort was undertaken to group decoupled moderators into a cluster collectively positioning them at the peak neutron production zone in the target and having a three-port neutron emission scheme that complements that of a cylindrical coupled moderator.

  17. Conceptual moderator studies for the Spallation Neutron Source short-pulse second target station.

    Science.gov (United States)

    Gallmeier, F X; Lu, W; Riemer, B W; Zhao, J K; Herwig, K W; Robertson, J L

    2016-06-01

    Candidate moderator configurations for a short-pulse second target station (STS) at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) have been identified using a global optimizer framework built around the MCNPX particle transport code. Neutron brightness metrics were selected as the figure-of-merit. We assumed that STS would use one out of six proton pulses produced by an SNS accelerator upgraded to operate at 1.3 GeV proton energy, 2.8 MW power and 60 Hz repetition rate. The simulations indicate that the peak brightness can be increased by a factor of 5 and 2.5 on a per proton pulse basis compared to the SNS first target station for both coupled and decoupled para-hydrogen moderators, respectively. Additional increases by factors of 3 and 2 were demonstrated for coupled and decoupled moderators, respectively, by reducing the area of neutron emission from 100 × 100 mm(2) to 20 × 20 mm(2). This increase in brightness has the potential to translate to an increase of beam intensity at the instruments' sample positions even though the total neutron emission of the smaller moderator is less than that of the larger. This is especially true for instruments with small samples (beam dimensions). The increased fluxes in the STS moderators come at accelerated poison and de-coupler burnout and higher radiation-induced material damage rates per unit power, which overall translate into lower moderator lifetimes. A first effort was undertaken to group decoupled moderators into a cluster collectively positioning them at the peak neutron production zone in the target and having a three-port neutron emission scheme that complements that of a cylindrical coupled moderator.

  18. Conceptual moderator studies for the Spallation Neutron Source short-pulse second target station

    Energy Technology Data Exchange (ETDEWEB)

    Gallmeier, F. X., E-mail: gallmeierfz@ornl.gov; Lu, W.; Riemer, B. W.; Zhao, J. K.; Herwig, K. W.; Robertson, J. L. [Instrument and Source Division, Oak Ridge National Laboratory, P.O. Box 2008, MS6466, Oak Ridge, Tennessee 37831 (United States)

    2016-06-15

    Candidate moderator configurations for a short-pulse second target station (STS) at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) have been identified using a global optimizer framework built around the MCNPX particle transport code. Neutron brightness metrics were selected as the figure-of-merit. We assumed that STS would use one out of six proton pulses produced by an SNS accelerator upgraded to operate at 1.3 GeV proton energy, 2.8 MW power and 60 Hz repetition rate. The simulations indicate that the peak brightness can be increased by a factor of 5 and 2.5 on a per proton pulse basis compared to the SNS first target station for both coupled and decoupled para-hydrogen moderators, respectively. Additional increases by factors of 3 and 2 were demonstrated for coupled and decoupled moderators, respectively, by reducing the area of neutron emission from 100 × 100 mm{sup 2} to 20 × 20 mm{sup 2}. This increase in brightness has the potential to translate to an increase of beam intensity at the instruments’ sample positions even though the total neutron emission of the smaller moderator is less than that of the larger. This is especially true for instruments with small samples (beam dimensions). The increased fluxes in the STS moderators come at accelerated poison and de-coupler burnout and higher radiation-induced material damage rates per unit power, which overall translate into lower moderator lifetimes. A first effort was undertaken to group decoupled moderators into a cluster collectively positioning them at the peak neutron production zone in the target and having a three-port neutron emission scheme that complements that of a cylindrical coupled moderator.

  19. LUPIN, a new instrument for pulsed neutron fields

    Science.gov (United States)

    Caresana, M.; Ferrarini, M.; Manessi, G. P.; Silari, M.; Varoli, V.

    2013-06-01

    A number of studies focused in the last decades on the development of survey meters to be used in pulsed radiation fields. This is a topic attracting widespread interest for applications such as radiation protection and beam diagnostics in accelerators. This paper describes a new instrument specifically conceived for applications in pulsed neutron fields (PNF). The detector, called LUPIN, is a rem counter type instrument consisting of a 3He proportional counter placed inside a spherical moderator. It works in current mode with a front-end electronics consisting of a current-voltage logarithmic amplifier, whose output signal is acquired with an ADC and processed on a PC. This alternative signal processing allows the instrument to be used in PNF without being affected by saturation effects. Moreover, it has a measurement capability ranging over many orders of burst intensity. Despite the fact that it works in current mode, it can measure a single neutron interaction. The LUPIN was first calibrated in CERN's calibration laboratory with a PuBe source. Measurements were carried out under various experimental conditions at the Helmholtz-Zentrum in Berlin, in the stray field at various locations of the CERN Proton Synchrotron complex and around a radiotherapy linear accelerator at the S. Raffaele hospital in Milan. The detector can withstand single bursts with values of H*(10) up to 16 nSv/burst without showing any saturation effect. It efficiently works in pulsed stray fields, where a conventional rem-counter underestimates by a factor of 2. It is also able to reject the very intense and pulsed photon contribution that often accompanies the neutron field with good reliability.

  20. 5 MW pulsed spallation neutron source, Preconceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report describes a self-consistent base line design for a 5 MW Pulsed Spallation Neutron Source (PSNS). It is intended to establish feasibility of design and as a basis for further expanded and detailed studies. It may also serve as a basis for establishing project cost (30% accuracy) in order to intercompare competing designs for a PSNS not only on the basis of technical feasibility and technical merit but also on the basis of projected total cost. The accelerator design considered here is based on the objective of a pulsed neutron source obtained by means of a pulsed proton beam with average beam power of 5 MW, in {approx} 1 {mu}sec pulses, operating at a repetition rate of 60 Hz. Two target stations are incorporated in the basic facility: one for operation at 10 Hz for long-wavelength instruments, and one operating at 50 Hz for instruments utilizing thermal neutrons. The design approach for the proton accelerator is to use a low energy linear accelerator (at 0.6 GeV), operating at 60 Hz, in tandem with two fast cycling booster synchrotrons (at 3.6 GeV), operating at 30 Hz. It is assumed here that considerations of cost and overall system reliability may favor the present design approach over the alternative approach pursued elsewhere, whereby use is made of a high energy linear accelerator in conjunction with a dc accumulation ring. With the knowledge that this alternative design is under active development, it was deliberately decided to favor here the low energy linac-fast cycling booster approach. Clearly, the present design, as developed here, must be carried to the full conceptual design stage in order to facilitate a meaningful technology and cost comparison with alternative designs.

  1. Measuring Neutron-Induced Reaction Cross Sections without Neutrons

    Science.gov (United States)

    Bernstein, L. A.; Schiller, A.; Cooper, J. R.; Hoffman, R. D.; McMahan, M. A.; Fallon, P.; Macchiavelli, A. O.; Mitchell, G.; Tavukcu, E.; Guttormsen, M.

    2003-04-01

    Neutron-induced reactions on radioactive nuclei play a significant role in nuclear astrophysics and many other applied nuclear physics topics. However, the majority of these cross sections are impossible to measure due to the high-background of the targets and the low-intensity of neutron beams. We have explored the possibility of using charged-particle transfer reactions to form the same "pre-compound" nucleus as one formed in a neutron-induced reaction in order to measure the relative decay probabilities of the nucleus as a function of energy. Multiplying these decay probabilities by the neutron absorption cross section will then produce the equivalent neutron-induced reaction cross section. In this presentation I will explore the validity of this "surrogate reaction" technique by comparing results from the recent 157Gd(3He,axng)156-xGd experiment using STARS (Silicon Telescope Array for Reaction Studies) at GAMMASPHERE with reaction model calculations for the 155Gd(n,xng)156-xGd. This work was funded by the US Department of Energy under contracts number W-7405-ENG-48 (LLNL), AC03-76SF00098 (LBNL) and the Norwegian Research Council (Oslo).

  2. Measuring Neutron Star Radii via Pulse Profile Modeling with NICER

    CERN Document Server

    Ozel, Feryal; Arzoumanian, Zaven; Morsink, Sharon; Baubock, Michi

    2015-01-01

    The Neutron-star Interior Composition Explorer (NICER) is an X-ray astrophysics payload that will be placed on the International Space Station. Its primary science goal is to measure with high accuracy the pulse profiles that arise from the non-uniform thermal surface emission of rotation-powered pulsars. Modeling general relativistic effects on the profiles will lead to measuring the radii of these neutron stars and to constraining their equation of state. Achieving this goal will depend, among other things, on accurate knowledge of the source, sky, and instrument backgrounds. We use here simple analytic estimates to quantify the level at which these backgrounds need to be known in order for the upcoming measurements to provide significant constraints on the properties of neutron stars. We show that, even in the minimal-information scenario, knowledge of the background at a few percent level for a background-to-source countrate ratio of 0.2 allows for a measurement of the neutron star compactness to better t...

  3. Intercomparison of radiation protection instrumentation in a pulsed neutron field

    CERN Document Server

    Caresana, M; Esposito, A; Ferrarini, M; Golnik, N; Hohmann, E; Leuschner, A; Luszik-Bhadra, M; Manessi, G; Mayer, S; Ott, K; Röhrich, J; Silari, M; Trompier, F; Volnhals, M; Wielunski, M

    2014-01-01

    In the framework of the EURADOS working group 11, an intercomparison of active neutron survey meters was performed in a pulsed neutron field (PNF). The aim of the exercise was to evaluate the performances of various neutron instruments, including commercially available rem-counters, personal dosemeters and instrument prototypes. The measurements took place at the cyclotron of the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH. The cyclotron is routinely used for proton therapy of ocular tumours, but an experimental area is also available. For the therapy the machine accelerates protons to 68 MeV. The interaction of the proton beam with a thick tungsten target produces a neutron field with energy up to about 60 MeV. One interesting feature of the cyclotron is that the beam can be delivered in bursts, with the possibility to modify in a simple and flexible way the burst length and the ion current. Through this possibility one can obtain radiation bursts of variable duration and intensity. All instru...

  4. Neutron resonance transmission spectroscopy with high spatial and energy resolution at the J-PARC pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Shinohara, T.; Kai, T.; Ooi, M. [Japan Atomic Energy Agency, 2–4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kamiyama, T.; Kiyanagi, Y.; Shiota, Y. [Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo-shi, Hokkaido 060-8628 (Japan); McPhate, J.B.; Vallerga, J.V.; Siegmund, O.H.W. [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Rd., Sturbridge, MA 01566 (United States)

    2014-05-11

    The sharp variation of neutron attenuation at certain energies specific to particular nuclides (the lower range being from ∼1 eV up to ∼1 keV), can be exploited for the remote mapping of element and/or isotope distributions, as well as temperature probing, within relatively thick samples. Intense pulsed neutron beam-lines at spallation sources combined with a high spatial, high-timing resolution neutron counting detector, provide a unique opportunity to measure neutron transmission spectra through the time-of-flight technique. We present the results of experiments where spatially resolved neutron resonances were measured, at energies up to 50 keV. These experiments were performed with the intense flux low background NOBORU neutron beamline at the J-PARC neutron source and the high timing resolution (∼20 ns at epithermal neutron energies) and spatial resolution (∼55 µm) neutron counting detector using microchannel plates coupled to a Timepix electronic readout. Simultaneous element-specific imaging was carried out for several materials, at a spatial resolution of ∼150 µm. The high timing resolution of our detector combined with the low background beamline, also enabled characterization of the neutron pulse itself – specifically its pulse width, which varies with neutron energy. The results of our measurements are in good agreement with the predicted results for the double pulse structure of the J-PARC facility, which provides two 100 ns-wide proton pulses separated by 600 ns, broadened by the neutron energy moderation process. Thermal neutron radiography can be conducted simultaneously with resonance transmission spectroscopy, and can reveal the internal structure of the samples. The transmission spectra measured in our experiments demonstrate the feasibility of mapping elemental distributions using this non-destructive technique, for those elements (and in certain cases, specific isotopes), which have resonance energies below a few keV, and with lower

  5. Neutronics of a poisoned para-hydrogen moderator for a pulsed spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Masahide [Neutron Facility Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319 1195 (Japan)]. E-mail: harada.masahide@jaea.go.jp; Watanabe, Noboru [Neutron Facility Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319 1195 (Japan); Teshigawara, Makoto [Neutron Facility Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319 1195 (Japan); Kai, Tetsuya [Neutron Facility Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319 1195 (Japan); Kato, Takashi [Neutron Facility Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319 1195 (Japan); Ikeda, Yujiro [Neutron Facility Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319 1195 (Japan)

    2007-05-11

    Neutronic performance of a poisoned hydrogen moderator was studied in details. Using a simple rectangular-shape moderator-model, its basic characteristics were studied as a function of the poison position. We, for the first time, turned up that the pulse width was rather decreasing with increasing the moderator thickness of the back part from the poison. This is due to the fact that source neutron pulses entering into a front part of the poison through the back part exhibit a fast rise shape while those from the target and the reflector through the decoupler and liner exhibit a broad shape. Next, we studied the pulse deterioration in regard to a finite beam-extraction-angle by using a more realistic moderator shape, canteen shape and a concave-shape. It turns out that the pulse deterioration is considerably large in both cases even at a small extraction angle. The concave-shape moderator indicates a finite improvement compared to the canteen-shape one. Finally, merits and demerits of two poison materials, Cadmium and Gadolinium, were discussed taking into account the burn-up issue of poison with the operation time.

  6. Pulsed neutron spectroscopic imaging for crystallographic texture and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Hirotaka, E-mail: hakuryu@eng.hokudai.ac.jp [Graduate School of Engineering, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Kamiyama, Takashi [Graduate School of Engineering, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Iwase, Kenji; Ishigaki, Toru [Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Ibaraki 319-1106 (Japan); Kiyanagi, Yoshiaki [Graduate School of Engineering, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan)

    2011-09-21

    A time-of-flight (TOF) spectroscopic neutron imaging at a pulsed neutron source is expected to be a new material analysis tool because this method can non-destructively investigate the spatial dependence of the crystallographic and metallographic information in a bulk material. For quantitative evaluation of such information, a spectral analysis code for the transmission data is necessary. Therefore, we have developed a Rietveld-like analysis code, RITS. Furthermore, we have applied the RITS code to evaluation of the position dependence of the crystal orientation anisotropy, the preferred orientation and the crystallite size of a welded {alpha}-iron plate, and we successfully obtained the information on the texture and the microstructure. However, the reliability of the values given by the RITS code has not been evaluated yet in detail. For this reason, we compared the parameters provided by the RITS code with the parameters obtained by the neutron TOF powder diffractometry and its Rietveld analysis. Both the RITS code and the Rietveld analysis software indicated values close to each other, but there were systematic differences on the preferred orientation and the crystallite size.

  7. Rejection of partial-discharge-induced pulses in fission chambers designed for sodium-cooled fast reactors

    Science.gov (United States)

    Hamrita, H.; Jammes, C.; Galli, G.; Laine, F.

    2017-03-01

    Under given temperature and bias voltage conditions, partial discharges can create pulses in fission chambers. Based on experimental results, this phenomenon is in-depth investigated and discussed. A pulse-shape-analysis technique is proposed to discriminate neutron-induced pulses from partial-discharge-induced ones.

  8. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress

    Science.gov (United States)

    Schooneveld, E. M.; Pietropaolo, A.; Andreani, C.; Perelli Cippo, E.; Rhodes, N. J.; Senesi, R.; Tardocchi, M.; Gorini, G.

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources.

  9. Methodology for the use of proportional counters in pulsed fast neutron yield measurements

    CERN Document Server

    Tarifeño-Saldivia, Ariel; Pavez, Cristian; Soto, Leopoldo

    2011-01-01

    This paper introduces in full detail a methodology for the measurement of neutron yield and the necessary efficiency calibration, to be applied to the intensity measurement of neutron bursts where individual neutrons are not resolved in time, for any given moderated neutron proportional counter array. The method allows efficiency calibration employing the detection neutrons arising from an isotopic neutron source. Full statistical study of the procedure is descripted, taking into account contributions arising from counting statistics, piling-up statistics of real detector pulse-height spectra and background fluctuations. The useful information is extracted from the net waveform area of the signal arising from the electric charge accumulated inside the detector tube. Improvement of detection limit is gained, therefore this detection system can be used in detection of low emission neutron pulsed sources with pulses of duration from nanoseconds to up. The application of the methodology to detection systems to be...

  10. Activation analysis of indium, KCl, and melamine by using a laser-induced neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sungman; Lee, Kitae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cha, Hyungki [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2014-04-15

    A laser-induced repetitively operated fast neutron source with a neutron yield of 4 x 10{sup 5} n/pulse and a pulse repetition rate of 5 Hz, which was developed using a deuterated polystyrene film target and a 24-TW femtosecond laser, was applied for laser activation analyses of indium, KCl, and melamine samples. The nuclear reactions of the measured gamma spectra for the activated samples were identified as (n, γ), (n, n'), and (n, 2n) reactions. These indicate possible usage of the neutron source for practical activation analyses of various materials.

  11. Spin distribution in neutron induced preequilibrium reactions

    Energy Technology Data Exchange (ETDEWEB)

    Dashdorj, D; Kawano, T; Chadwick, M; Devlin, M; Fotiades, N; Nelson, R O; Mitchell, G E; Garrett, P E; Agvaanluvsan, U; Becker, J A; Bernstein, L A; Macri, R; Younes, W

    2005-10-04

    The preequilibrium reaction mechanism makes an important contribution to neutron-induced reactions above E{sub n} {approx} 10 MeV. The preequilibrium process has been studied exclusively via the characteristic high energy neutrons produced at bombarding energies greater than 10 MeV. They are expanding the study of the preequilibrium reaction mechanism through {gamma}-ray spectroscopy. Cross-section measurements were made of prompt {gamma}-ray production as a function of incident neutron energy (E{sub n} = 1 to 250 MeV) on a {sup 48}Ti sample. Energetic neutrons were delivered by the Los Alamos National Laboratory spallation neutron source located at the Los Alamos Neutron Science Center facility. The prompt-reaction {gamma} rays were detected with the large-scale Compton-suppressed Germanium Array for Neutron Induced Excitations (GEANIE). Neutron energies were determined by the time-of-flight technique. The {gamma}-ray excitation functions were converted to partial {gamma}-ray cross sections taking into account the dead-time correction, target thickness, detector efficiency and neutron flux (monitored with an in-line fission chamber). Residual state population was predicted using the GNASH reaction code, enhanced for preequilibrium. The preequilibrium reaction spin distribution was calculated using the quantum mechanical theory of Feshback, Kerman, and Koonin (FKK). The multistep direct part of the FKK theory was calculated for a one-step process. The FKK preequilibrium spin distribution was incorporated into the GNASH calculations and the {gamma}-ray production cross sections were calculated and compared with experimental data. The difference in the partial {gamma}-ray cross sections using spin distributions with and without preequilibrium effects is significant.

  12. Experimental studies of keV energy neutron-induced reactions relevant to astrophysics and nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Shima, T.; Kii, T.; Kikuchi, T.; Okazaki, F.; Kobayashi, T.; Baba, T.; Nagai, Y. [Tokyo Inst. of Tech. (Japan). Faculty of Science; Igashira, M.

    1997-03-01

    Nuclear reactions induced by keV energy neutrons provide a plenty of informations for studies of both astrophysics and nuclear physics. In this paper we will show our experimental studies of neutron- induced reactions of light nuclei in the keV energy region by means of a pulsed keV neutron beam and high-sensitivity detectors. Also we will discuss astrophysical and nuclear-physical consequences by using the obtained results. (author)

  13. Development of high sensitivity 4H-SiC detectors for fission neutron pulse shape measurements.

    Science.gov (United States)

    Wu, Jian; Jiang, Yong; Li, Meng; Zeng, Lina; Li, Junjie; Gao, Hui; Zou, Dehui; Bai, Zhongxiong; Ye, Cenming; Liang, Wenfeng; Dai, Shaofeng; Lu, Yi; Rong, Ru; Du, Jinfeng; Fan, Xiaoqiang

    2017-08-01

    4H-silicon carbide (4H-SiC) detectors are well suited for measurements of fission neutron pulse shape for their compact size, excellent radiation resistance, and hydrogen free composition. The aim of this study is to improve the 4H-SiC detector's sensitivity to fission neutron pulses. 4H-SiC detectors with varied epilayer thicknesses are fabricated and then tested in the pulsed neutron field of the Chinese Fast Burst Reactor II (CFBR II). The sensitivity of the 4H-SiC detector to the CFBR II neutron pulse is increased by 139.8%, with the enlargement of epilayer thickness from 20 μm to 120 μm. By employing the proton-recoil method, the sensitivity of the 4H-SiC detector to the CFBR II neutron pulse is further increased by 11.6%. With enhanced sensitivity to fission neutron pulses, 4H-SiC detectors are promising devices for high intensity neutron pulse measurements.

  14. Application of LiTaO3 pyroelectric crystal for pulsed neutron detection

    Science.gov (United States)

    Liang, W. F.; Lu, Y.; Wu, J.; Gao, H.; Li, M.

    2016-08-01

    The feasibility of a LiTaO3 pyroelectric crystal for pulsed neutron detection has been studied. The detector consists of a slice of electroded Z-cut LiTaO3 pyroelectric crystal, and no additional neutron converter is required owing to the Li contained in the crystal. The slight temperature increase caused by neutron radiation will lead to the release of bound charges and will give rise to a pyroelectric signal. The response of it has been studied both theoretically and experimentally. Our preliminary experiment on the CFBR-II reactor suggests that the LiTaO3 pyroelectric detector is promising for high intensity neutron - pulse measurement.

  15. Neutron calibration facility with an Am-Be source for pulse shape discrimination measurement of CsI(Tl) crystals

    CERN Document Server

    Lee, H S; Choi, J H; Choi, S; Hahn, I S; Jeon, E J; Joo, H W; Kang, W G; Kim, G B; Kim, H J; Kim, K W; Kim, S C; Kim, S K; Kim, Y D; Kim, Y H; Lee, J H; Lee, J K; Leonard, D S; Li, J; Myung, S S; Olsen, S L; So, J H

    2014-01-01

    We constructed a neutron calibration facility based on a 300-mCi Am-Be source in conjunction with a search for weakly interacting massive particle candidates for dark matter. The facility is used to study the response of CsI(Tl) crystals to nuclear recoils induced by neutrons from the Am-Be source and comparing them with the response to electron recoils produced by Compton scattering of 662-keV $\\gamma$-rays from a $^{137}$Cs source. The measured results on pulse shape discrimination (PSD) between nuclear- and electron-recoil events are quantified in terms of quality factors. A comparison with similar result from a neutron reactor demonstrate the feasibility of performing calibrations of PSD measurements using neutrons from a Am-Be source.

  16. Performance of a reflectometer at continuous wave and pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Fitzsimmons, M.R. [Los Alamos National Laboratory, NM (United States)

    1995-12-31

    The Monte-Carlo simulations presented here involve simulations of reflectivity measurements of one sample using a reflectometer of traditional geometry at different neutron sources. The same reflectometer was used in all simulations. Only the characteristics of the neutron source, and the technique used to measure neutron wavelength were changed. In the case of the CW simulation, a monochromating crystal was used to select a nearly monochromatic beam (MB) from the neutron spectrum. In the simulations of the pulse sources, the time needed to traverse a fixed distance was measured, from which neutron wavelength is deduced.

  17. Development and characterization of a high yield transportable pulsed neutron source with efficient and compact pulsed power system

    Science.gov (United States)

    Verma, Rishi; Mishra, Ekansh; Dhang, Prosenjit; Sagar, Karuna; Meena, Manraj; Shyam, Anurag

    2016-09-01

    The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ˜10 kJ is segregated into four modules of ˜2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA-600 kA (corresponding to charging voltage range of 14 kV-18 kV) in a quarter time period of ˜2 μs. The neutron yield performance of this device has been optimized by discretely varying deuterium filling gas pressure in the range of 6 mbar-11 mbar at ˜17 kV/550 kA discharge. At ˜7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ˜4 × 109 neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ˜2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.

  18. Pulse-shape analysis for gamma background rejection in thermal neutron radiation using CVD diamond detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kavrigin, P., E-mail: pavel.kavrigin@cividec.at [Vienna University of Technology (Austria); Finocchiaro, P., E-mail: finocchiaro@lns.infn.it [INFN Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Griesmayer, E., E-mail: erich.griesmayer@cividec.at [Vienna University of Technology (Austria); Jericha, E., E-mail: jericha@ati.ac.at [Vienna University of Technology (Austria); Pappalardo, A., E-mail: apappalardo@lns.infn.it [INFN Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Weiss, C., E-mail: Christina.Weiss@cern.ch [Vienna University of Technology (Austria); European Organisation for Nuclear Research (CERN), Geneva (Switzerland)

    2015-09-21

    A novel technique for the rejection of gamma background from charged-particle spectra was demonstrated using a CVD diamond detector with a {sup 6}Li neutron converter installed at a thermal neutron beamline of the TRIGA research reactor at the Atominstitut (Vienna University of Technology). Spectra of the alpha particles and tritons of {sup 6}Li(n,T){sup 4}He thermal neutron capture reaction were separated from the gamma background by a new algorithm based on pulse-shape analysis. The thermal neutron capture in {sup 6}Li is already used for neutron flux monitoring, but the ability to remove gamma background allows using a CVD diamond detector for thermal neutron counting. The pulse-shape analysis can equally be applied to all cases where the charged products of an interaction are absorbed in the diamond and to other background particles that fully traverse the detector.

  19. Intensity enhancement of cold neutrons from a coupled liquid-hydrogen moderator for pulsed cold neutron sources

    CERN Document Server

    Ogawa, Y; Kosugi, N; Iwasa, H; Furusaka, M; Watanabe, N

    1999-01-01

    In order to obtain higher cold neutron intensity from a coupled liquid-hydrogen moderator with a premoderator for pulsed cold neutron sources, we examined a partial enhancement method, namely, narrow beam extraction for both a flat liquid-hydrogen moderator and a single-groove one. Combined with the narrow beam extraction, which is especially suitable for small-angle scattering and neutron reflectometry experiments, a single-groove moderator provides higher intensity, by about 30%, than a flat-surface moderator at the region of interest on a viewed surface. The effect of double-side beam extraction from such moderators on the intensity gain factor is also discussed. (author)

  20. Application of LiTaO{sub 3} pyroelectric crystal for pulsed neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Liang, W.F., E-mail: liang_wen_feng@163.com [CAEP Key Laboratory of Neutron Physics, Mianyang 621900 (China); Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Lu, Y.; Wu, J.; Gao, H.; Li, M. [CAEP Key Laboratory of Neutron Physics, Mianyang 621900 (China); Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-08-11

    The feasibility of a LiTaO{sub 3} pyroelectric crystal for pulsed neutron detection has been studied. The detector consists of a slice of electroded Z-cut LiTaO{sub 3} pyroelectric crystal, and no additional neutron converter is required owing to the Li contained in the crystal. The slight temperature increase caused by neutron radiation will lead to the release of bound charges and will give rise to a pyroelectric signal. The response of it has been studied both theoretically and experimentally. Our preliminary experiment on the CFBR-II reactor suggests that the LiTaO{sub 3} pyroelectric detector is promising for high intensity neutronpulse measurement. - Highlights: • LiTaO{sub 3} pyroelectric neutron detector can be used with no additional neutron converter. • Relationship between the pulsed neutron field and the voltage signal was obtained. • Experiment was carried out to test the response of LiTaO{sub 3} detector. • Feasibility of LiTaO{sub 3} for intense neutron pulse measurement was confirmed.

  1. Application of neutron activation analysis system in Xi'an pulsed reactor

    CERN Document Server

    Zhang Wen Shou; Yu Qi

    2002-01-01

    Neutron Activation Analysis System in Xi'an Pulsed Reactor is consist of rabbit fast radiation system and experiment measurement system. The functions of neutron activation analysis are introduced. Based on the radiation system. A set of automatic data handling and experiment simulating system are built. The reliability of data handling and experiment simulating system had been verified by experiment

  2. Report on the international workshop on cold moderators for pulsed neutron sources.

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J. M.

    1999-01-06

    The International Workshop on Cold Moderators for Pulsed Neutron Sources resulted from the coincidence of two forces. Our sponsors in the Materials Sciences Branch of DOE's Office of Energy Research and the community of moderator and neutron facility developers both realized that it was time. The Neutron Sources Working Group of the Megascience Forum of the Organization for Economic Cooperation and Development offered to contribute its support by publishing the proceedings, which with DOE and Argonne sponsorship cemented the initiative. The purposes of the workshop were: to recall and improve the theoretical groundwork of time-dependent neutron thermalization; to pose and examine the needs for and benefits of cold moderators for neutron scattering and other applications of pulsed neutron sources; to summarize experience with pulsed source, cold moderators, their performance, effectiveness, successes, problems and solutions, and the needs for operational data; to compile and evaluate new ideas for cold moderator materials and geometries; to review methods of measuring and characterizing pulsed source cold moderator performance; to appraise methods of calculating needed source characteristics and to evaluate the needs and prospects for improvements; to assess the state of knowledge of data needed for calculating the neutronic and engineering performance of cold moderators; and to outline the needs for facilities for testing various aspects of pulsed source cold moderator performance.

  3. Neutron induced electron radiography; Radiografia com eletrons induzida por neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Marcos Leandro Garcia

    2008-07-01

    In the present paper a new radiography technique, the 'Neutron Induced Electron Radiography' - NIER, to inspect low thickness samples on the order of micra, has been developed. This technique makes use of low energy electrons as penetrating radiation generated from metallic gadolinium screens when irradiated by thermal neutrons. The conditions to obtain the best image for the conventional X-ray film Kodak-AA were determined by using a digital system to quantify the darkening level of the film. The irradiations have been performed at a radiography equipment installed at the beam-hole no. 8 of the 5 MW IEA-R1 nuclear research reactor of IPEN-CNEN/SP. The irradiation time to obtain the best radiography was 100 seconds and for such condition the technique was able to discern 1 {mu}m in 24 {mu}m of aluminum at a resolution of 32 {mu}m. By visual comparison the images obtained by the NIER shown a higher quality when compared with the ones from other usual techniques the make use of electrons a penetrating radiation and films for image registration. Furthermore the use of the digital system has provided a smaller time for data acquisition and data analysis as well as an improvement in the image visualization. (author)

  4. Neutron-Induced Failures in Semiconductor Devices

    Energy Technology Data Exchange (ETDEWEB)

    Wender, Stephen Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-06

    This slide presentation explores single event effect, environmental neutron flux, system response, the Los Alamos Neutron Science Center (LANSCE) neutron testing facility, examples of SEE measurements, and recent interest in thermal neutrons.

  5. Monte Carlo modeling and analyses of YALINA- booster subcritical assembly Part II : pulsed neutron source.

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, M. Y. A.; Rabiti, C.; Nuclear Engineering Division

    2008-10-22

    One of the most reliable experimental methods for measuring the kinetic parameters of a subcritical assembly is the Sjoestrand method applied to the reaction rate generated from a pulsed neutron source. This study developed a new analytical methodology for characterizing the kinetic parameters of a subcritical assembly using the Sjoestrand method, which allows comparing the analytical and experimental time dependent reaction rates and the reactivity measurements. In this methodology, the reaction rate, detector response, is calculated due to a single neutron pulse using MCNP/MCNPX computer code or any other neutron transport code that explicitly simulates the fission delayed neutrons. The calculation simulates a single neutron pulse over a long time period until the delayed neutron contribution to the reaction is vanished. The obtained reaction rate is superimposed to itself, with respect to the time, to simulate the repeated pulse operation until the asymptotic level of the reaction rate, set by the delayed neutrons, is achieved. The superimposition of the pulse to itself was calculated by a simple C computer program. A parallel version of the C program is used due to the large amount of data being processed, e.g. by the Message Passing Interface (MPI). The new calculation methodology has shown an excellent agreement with the experimental results available from the YALINA-Booster facility of Belarus. The facility has been driven by a Deuterium-Deuterium or Deuterium-Tritium pulsed neutron source and the (n,p) reaction rate has been experimentally measured by a {sup 3}He detector. The MCNP calculation has utilized the weight window and delayed neutron biasing variance reduction techniques since the detector volume is small compared to the assembly volume. Finally, this methodology was used to calculate the IAEA benchmark of the YALINA-Booster experiment.

  6. Progress of neutron induced prompt gamma analysis technique in 1988~2003

    Institute of Scientific and Technical Information of China (English)

    JING Shi-Wei; LIU Yu-Ren; CHI Yan-Tao; TIAN Yu-Bing; CAO Xi-Zheng; ZHAO Xin-Hui; REN Wan-Bin; LIU Lin-Mao

    2004-01-01

    This paper describes new development of the neutron induced prompt gamma-ray analysis (NIPGA) technology in 1988~2003. The pulse fast-thermal neutron activation analysis method, which utilized the inelastic re action and capture reaction jointly, was employed to measure the elemental contents more efficiently. Lifetime of the neutron generator was more than 10000h and the performance of detector and MCA reached a high level. At the same time, Monte Carlo library least-square method was used to solve the nonlinearity problem in the NIPGA.

  7. Effect of double false pulses in calibrated neutron coincidence collar during measuring time-correlated neutrons from PuBe neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tam Cong, E-mail: tam.nguyen.cong@energia.mta.hu; Huszti, Jozsef; Nguyen, Quan Van

    2015-09-01

    Effect of double false pulses of preamplifiers in neutron coincidence collar was investigated to explain non-parallel shape of calibrated D/S–M{sub Pu} curves of two commercial neutron coincidence collars, JCC-31 and JCC-13. Two curves, which were constructed from D/S ratio (doubles and singles count rate), and Pu content M{sub Pu}, of the same set of secondary standard PuBe neutron sources, should be parallel. Non-parallelism rises doubt about usability of the method based on this curve for determination of Pu content in PuBe neutron sources. We have shown in three steps that the problem originates from double false pulses of preamplifiers in JCC-13. First we used a pulse train diagram for analyzing the non-parallel shape, second we used Rossi-Alpha distribution measured by pulse train recorder developed in our institute and finally, we investigated the effect of inserted noise pulses. This implies a new type of QA test option in traditional multiplicity shift registers for excluding presence of double false pulses.

  8. The measurement of neutron and neutron induced photon spectra in fusion reactor related assemblies

    CERN Document Server

    Unholzer, S; Klein, H; Seidel, K

    2002-01-01

    The spectral neutron and photon fluence (or flux) measured outside and inside of assemblies related to fusion reactor constructions are basic quantities of fusion neutronics. The comparison of measured spectra with the results of MCNP neutron and photon transport calculations allows a crucial test of evaluated nuclear data as generally used in fusion applications to be carried out. The experiments concern mixed neutron/photon fields with about the same intensity of the two components. An NE-213 scintillation spectrometer, well described by response matrices for both neutrons and photons, is used as proton-recoil and Compton spectrometer. The experiments described here in more detail address the background problematic of two applications, an iron benchmark experiment with an ns-pulsed neutron source and a deep penetration mock-up experiment for the investigation of the ITER in-board shield system. The measured spectral neutron and photon fluences are compared with spectra calculated with the MCNP code on the b...

  9. Gamma–neutron imaging system utilizing pulse shape discrimination with CLYC

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, Chad M., E-mail: cwhitney@rmdinc.com; Soundara-Pandian, Lakshmi; Johnson, Erik B.; Vogel, Sam; Vinci, Bob; Squillante, Michael; Glodo, Jarek; Christian, James F.

    2015-06-01

    Recently, RMD has investigated the use of CLYC (Cs{sub 2}LiYCl{sub 6}:Ce), a new and emerging scintillation material, in a gamma–neutron coded aperture imaging system based on RMD's commercial RadCam{sup TM} instrument. CLYC offers efficient thermal neutron detection, fast neutron detection capabilities, excellent pulse shape discrimination (PSD), and gamma-ray energy resolution as good as 4% at 662 keV. PSD improves the isolation of higher energy gammas from thermal neutron interactions (>3 MeV electron equivalent peak), compared to conventional pulse height techniques. The scintillation emission time in CLYC provides the basis for PSD; where neutron interactions result in a slower emission rise and decay components while gamma interactions result in a faster emission components. By creating a population plot based on the ratio of the decay tail compared to the total integral amplitude (PSD ratio), discrimination of gammas, thermal neutrons, and fast neutrons is possible. Previously, we characterized the CLYC-based RadCam system for imaging gammas and neutrons using a layered W-Cd coded aperture mask and employing only pulse height discrimination. In this paper, we present the latest results which investigate gamma-neutron imaging capabilities using PSD. An FPGA system is used to acquire the CLYC–PSPMT last dynode signals, determine a PSD ratio for each event, and compare it to a calibrated PSD cutoff. Each event is assigned either a gamma (low) or neutron (high) flag signal which is then correlated with the imaging information for each event. - Highlights: • The latest results are presented for our CLYC RadCam-2 system which investigate gamma–neutron imaging using pulse shape discrimination. • CLYC RadCam-2 system successfully discriminates gammas, thermal neutrons, and fast neutrons by employing a fully integrated, FPGA-based PSD system. • Imaging of our {sup 252}Cf source was possible using both pulse height and pulse shape discrimination with

  10. Annual Report of Upgrading and Running of CIAE Pulse Neutron Generator in 2015

    Institute of Scientific and Technical Information of China (English)

    CHEN; Hong-tao; ZHAO; Fang; ZHANG; Kai

    2015-01-01

    Much more upgrading of the CIAE Pulse Neutron Generator(CPNG)has been completed during recent years,mainly including:1)An advanced buncher,which expanded the supply of1.5 ns pulse beam from a single energy of300keV to a full energy range of 100-400keV;

  11. Intelligent pulse light source in the performance calibration system of two-dimensional neutron detector

    Science.gov (United States)

    Yang, Lei; Zhao, Xiao-Fang

    2017-07-01

    Chinese Spallation Neutron Source (CSNS) project will use numerous two-dimensional (2D) neutron detectors whose ZnS (Ag) scintillator is doped with 6Li. To ensure the consistency of all neutron detectors, a calibration system for the performance of 2D neutron detectors is designed. For radiation protection, the state control of the radiation source gets more and more strict. It is impossible to directly carry out experiments with massive radioactive particles. Thus, the following scheme has been designed. The controlled pulsed laser light source on a 2D mobile platform is used to replace the neutron bombardment to generate the photon. The pulse signal drives the laser diode to generate pulse light. The pulse light source located on the 2D platform is controlled by the core controller, and goes to the wavelength shift fiber through the optical fiber. The host computer (PC) receives the signal from the electronics system, processes data, and automatically calibrates the performance parameters. As shown by the experimental results, the pulse light source can perfectly meet all requirements of 2D neutron detector calibration system.

  12. Optimized Design of Spacing in Pulsed Neutron Gamma Density Logging While Drilling

    Directory of Open Access Journals (Sweden)

    ZHANG Feng;HAN Zhong-yue;WU He;HAN Fei

    2016-10-01

    Full Text Available Radioactive source, used in traditional density logging, has great impact on the environment, while the pulsed neutron source applied in the logging tool is more safety and greener. In our country, the pulsed neutron-gamma density logging technology is still in the stage of development. Optimizing the parameters of neutron-gamma density instrument is essential to improve the measuring accuracy. This paper mainly studied the effects of spacing to typical neutron-gamma density logging tool which included one D-T neutron generator and two gamma scintillation detectors. The optimization of spacing were based on measuring sensitivity and counting statistic. The short spacing from 25 to 35 cm and long spacing from 60 to 65 cm were selected as the optimal position for near and far detector respectively. The result can provide theoretical support for design and manufacture of the instrument.

  13. Neutron radiation effects on linear CCDs at different clock pulse frequency

    Directory of Open Access Journals (Sweden)

    Zujun Wang

    2015-06-01

    Full Text Available The experiments of reactor neutron radiation effects on linear CCDs are presented. The output voltage in dark field after neutron radiation are presented and compared at different clock pulse frequency. The degradation phenomena are analyzed in depth. The mean dark signal (KD and dark signal non-uniformity (DSNU versus neutron fluence is investigated at different clock pulse frequency. The degradation mechanisms of the dark signal and DSNU in linear CCDs are analyzed. The flux of the reactor neutron beams was about 1.33 × 108 n/cm2/s. The samples were exposed to 1MeV neutron-equivalent fluences of 1 × 1011, 5 × 1011, and 1 × 1012 n/cm2, respectively.

  14. Annular shape silver lined proportional counter for on-line pulsed neutron yield measurement

    Science.gov (United States)

    Dighe, P. M.; Das, D.

    2015-04-01

    An annular shape silver lined proportional counter is developed to measure pulsed neutron radiation. The detector has 314 mm overall length and 235 mm overall diameter. The central cavity of 150 mm diameter and 200 mm length is used for placing the neutron source. Because of annular shape the detector covers >3π solid angle of the source. The detector has all welded construction. The detector is developed in two halves for easy mounting and demounting. Each half is an independent detector. Both the halves together give single neutron pulse calibration constant of 4.5×104 neutrons/shot count. The detector operates in proportional mode which gives enhanced working conditions in terms of dead time and operating range compared to Geiger Muller based neutron detectors.

  15. Electron-volt spectroscopy at a pulsed neutron source using a resonance detector technique

    CERN Document Server

    Andreani, C; Senesi, R; Gorini, G; Tardocchi, M; Bracco, A; Rhodes, N; Schooneveld, E M

    2002-01-01

    The effectiveness of the neutron resonance detector spectrometer for deep inelastic neutron scattering measurements has been assessed by measuring the Pb scattering on the eVS spectrometer at ISIS pulsed neutron source and natural U foils as (n,gamma) resonance converters. A conventional NaI scintillator with massive shielding has been used as gamma detector. A neutron energy window up to 90 eV, including four distinct resonance peaks, has been assessed. A net decrease of the intrinsic width of the 6.6 eV resonance peak has also been demonstrated employing the double difference spectrum technique, with two uranium foils of different thickness.

  16. Pulsed Neutron Scattering Studies of Strongly Fluctuating solids, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Collin Broholm

    2006-06-22

    The conventional description of a solid is based on a static atomic structure with small amplitude so-called harmonic fluctuations about it. This is a final technical report for a project that has explored materials where fluctuations are sufficiently strong to severely challenge this approach and lead to unexpected and potentially useful materials properties. Fluctuations are enhanced when a large number of configurations share the same energy. We used pulsed spallation source neutron scattering to obtain detailed microscopic information about structure and fluctuations in such materials. The results enhance our understanding of strongly fluctuating solids and their potential for technical applications. Because new materials require new experimental techniques, the project has also developed new techniques for probing strongly fluctuating solids. Examples of material that were studied are ZrW2O8 with large amplitude molecular motion that leads to negative thermal expansion, NiGa2S4 where competing interactions lead to an anomalous short range ordered magnet, Pr1- xBixRu2O7 where a partially filled electron shell (Pr) in a weakly disordered environment produces anomalous metallic properties, and TbMnO3 where competing interactions lead to a magneto-electric phase. The experiments on TbMnO3 exemplify the relationship between research funded by this project and future applications. Magneto-electric materials may produce a magnetic field when an electric field is applied or vise versa. Our experiments have clarified the reason why electric and magnetic polarization is coupled in TbMnO3. While this knowledge does not render TbMnO3 useful for applications it will focus the search for a practical room temperature magneto-electric for applications.

  17. Intense Pulsed Neutron Source progress report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Schriesheim, Alan

    1991-01-01

    The IPNS Progress Report 10th Anniversary Edition is being published in recognition of the first ten years of successful IPNS operation. To emphasize the significance of this milestone, we wanted this report to stand apart from the previous IPNS Progress Reports, and the best way to do this, we thought, was to make the design and organization of the report significantly different. In their articles, authors were asked to emphasize not only advances made since IPNS began operating but also the groundwork that was laid at its predecessor facilities - Argonne's ZING-P and ZING-P' prototype pulsed neutron sources and CP-5 reactor. Each article stands as a separate chapter in the report, since each represents a particular instrument or class of instruments, system, technique, or area of research. In some cases, contributions were similar to review articles in scientific journals, complete with extensive lists of references. Ten-year cumulative lists of members of IPNS committees and of scientists who have visited or done experiments at IPNS were assembled. A list of published and in press'' articles in journals, books, and conference proceedings, resulting from work done at IPNS during the past ten years, was compiled. And archival photographs of people and activities during the ten-year history of IPNS were located and were used liberally throughout the report. The titles of the chapters in this report are: accelerator; computer; radiation effects; powder; stress; single crystal; superconductivity; amorphous; small angle; reflection; quasielastic; inelastic; inelastic magnetic; deep inelastic; user program; the future; and publications.

  18. Intense Pulsed Neutron Source progress report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Schriesheim, Alan

    1991-01-01

    The IPNS Progress Report 10th Anniversary Edition is being published in recognition of the first ten years of successful IPNS operation. To emphasize the significance of this milestone, we wanted this report to stand apart from the previous IPNS Progress Reports, and the best way to do this, we thought, was to make the design and organization of the report significantly different. In their articles, authors were asked to emphasize not only advances made since IPNS began operating but also the groundwork that was laid at its predecessor facilities - Argonne's ZING-P and ZING-P' prototype pulsed neutron sources and CP-5 reactor. Each article stands as a separate chapter in the report, since each represents a particular instrument or class of instruments, system, technique, or area of research. In some cases, contributions were similar to review articles in scientific journals, complete with extensive lists of references. Ten-year cumulative lists of members of IPNS committees and of scientists who have visited or done experiments at IPNS were assembled. A list of published and in press'' articles in journals, books, and conference proceedings, resulting from work done at IPNS during the past ten years, was compiled. And archival photographs of people and activities during the ten-year history of IPNS were located and were used liberally throughout the report. The titles of the chapters in this report are: accelerator; computer; radiation effects; powder; stress; single crystal; superconductivity; amorphous; small angle; reflection; quasielastic; inelastic; inelastic magnetic; deep inelastic; user program; the future; and publications.

  19. Intense Pulsed Neutron Source progress report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The IPNS Progress Report 10th Anniversary Edition is being published in recognition of the first ten years of successful IPNS operation. To emphasize the significance of this milestone, we wanted this report to stand apart from the previous IPNS Progress Reports, and the best way to do this, we thought, was to make the design and organization of the report significantly different. In their articles, authors were asked to emphasize not only advances made since IPNS began operating but also the groundwork that was laid at its predecessor facilities - Argonne`s ZING-P and ZING-P` prototype pulsed neutron sources and CP-5 reactor. Each article stands as a separate chapter in the report, since each represents a particular instrument or class of instruments, system, technique, or area of research. In some cases, contributions were similar to review articles in scientific journals, complete with extensive lists of references. Ten-year cumulative lists of members of IPNS committees and of scientists who have visited or done experiments at IPNS were assembled. A list of published and ``in press`` articles in journals, books, and conference proceedings, resulting from work done at IPNS during the past ten years, was compiled. And archival photographs of people and activities during the ten-year history of IPNS were located and were used liberally throughout the report. The titles of the chapters in this report are: accelerator; computer; radiation effects; powder; stress; single crystal; superconductivity; amorphous; small angle; reflection; quasielastic; inelastic; inelastic magnetic; deep inelastic; user program; the future; and publications.

  20. TIME INTERVAL APPROACH TO THE PULSED NEUTRON LOGGING METHOD

    Institute of Scientific and Technical Information of China (English)

    赵经武; 苏为宁

    1994-01-01

    The time interval of neibouring neutrons emitted from a steady state neutron source can be treated as that from a time-dependent neutron source,In the rock space.the neutron flux is given by the neutron diffusion equation and is composed of an infinite number of “modes”,EaCh“mode”,is composed of two die-away curves.The delay action has been discussed and used to measure the time interval with only one detector in the experiment,Nuclear reactions with the time distribution due to different types of radiations observed in the neutron well-logging methods are presented with a view to getting the rock nuclear parameters from the time interval technique.

  1. LENS-a pulsed neutron source for education and research

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, David V. [Physics Department, Indiana University, Bloomington, IN 47405 (United States)]. E-mail: baxterd@indiana.edu; Cameron, J.M. [Physics Department, Indiana University, Bloomington, IN 47405 (United States); Leuschner, M.B. [Physics Department, Indiana University, Bloomington, IN 47405 (United States); Meyer, H.O. [Physics Department, Indiana University, Bloomington, IN 47405 (United States); Nann, H. [Physics Department, Indiana University, Bloomington, IN 47405 (United States); Snow, W.M. [Physics Department, Indiana University, Bloomington, IN 47405 (United States)

    2005-04-21

    At the Indiana University Cyclotron Facility construction of a new source of cold neutrons has begun. Neutrons are generated by stopping 13 MeV protons in a beryllium target, located at the center of a moderator structure. Cold neutrons are emitted from a slab of frozen methane. Three beam lines deliver neutrons for scattering experiments, radiography and moderator studies. The purpose of the project is to develop a low-cost, small-scale facility, suitable for a university or an industrial setting, to provide a testing ground of instrumentation destined for use at a larger facility, to improve awareness of the use of neutron probes in a wide range of applications, and to offer a training opportunity for future neutron physicists.

  2. Analysis of the scintillation mechanism in a pressurized 4He fast neutron detector using pulse shape fitting

    OpenAIRE

    R.P. Kelley; Murer, D.; Ray, H.; K.A. Jordan

    2015-01-01

    An empirical investigation of the scintillation mechanism in a pressurized 4He gas fast neutron detector was conducted using pulse shape fitting. Scintillation signals from neutron interactions were measured and averaged to produce a single generic neutron pulse shape from both a 252Cf spontaneous fission source and a (d,d) neutron generator. An expression for light output over time was then developed by treating the decay of helium excited states in the same manner as the decay of radioactiv...

  3. Measurements of fast neutron-induced fission data of Np-237

    Energy Technology Data Exchange (ETDEWEB)

    Win, Than; Saito, Keiichiro; Baba, Mamoru; Iwasaki, Tomohiko; Ibaraki, Masanobu; Miura, Takako; Sanami, Toshiya; Nauchi, Yasushi; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1998-03-01

    We have performed the following measurements for {sup 237}Np using the 4.5 MV Dynamitron accelerator of Tohoku University as the pulsed neutron source: (1) Prompt fission neutron spectrum for 0.62 MeV incident neutrons, and (2) Neutron-Induced fission cross-section between 10 and 100 keV. The prompt fission neutron spectrum was measured using TOF method with a heavily shielded NE213 scintillation detector. The Maxwellian temperature T{sub m} derived is 1.28 MeV, which is lower than that of 1.38 MeV in JENDL-3.2. The fission cross sections were measured between 10 - 100 keV. The results are between JENDL-3.2 and ENDF/B-VI. (author)

  4. Neutronic studies on decoupled hydrogen moderator for a short-pulse spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Masahide [Neutron Facility Group, Center for Proton Accelerator Facility, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan)]. E-mail: harada@cens.tokai.jaeri.go.jp; Watanabe, Noboru [Neutron Facility Group, Center for Proton Accelerator Facility, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Teshigawara, Makoto [Neutron Facility Group, Center for Proton Accelerator Facility, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Kai, Tetsuya [Neutron Facility Group, Center for Proton Accelerator Facility, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Ikeda, Yujiro [Neutron Facility Group, Center for Proton Accelerator Facility, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan)

    2005-02-21

    Neutronic studies of decoupled hydrogen moderators were performed by calculations taking into account para hydrogen content, decoupling energy, moderator dimensions/shapes and reflector material. Low-energy parts of calculated spectral intensities with different para hydrogen contents were analyzed by a modified Maxwell function to characterize neutron spectra. The result shows that a 100% para hydrogen moderator gives the highest pulse peak intensity together with the narrowest pulse width and the shortest decay times. Pulse broadening with a reflector was explained by time distributions of source neutrons entering into the moderator through a decoupler. Material dependence of time distribution was studied. A decoupling energy higher than 1 eV does not bring about a large improvement in pulse widths and decay times, even at a large penalty in the peak intensity. The optimal moderator thickness was also discussed for a rectangular parallelepipe-shaped and a canteen-shaped moderator.

  5. Ternary fission induced by polarized neutrons

    Science.gov (United States)

    Gönnenwein, Friedrich

    2013-12-01

    Ternary fission of (e,e) U- and Pu- isotopes induced by cold polarized neutrons discloses some new facets of the process. In the so-called ROT effect shifts in the angular distributions of ternary particles relative to the fission fragments show up. In the so-called TRI effect an asymmetry in the emission of ternary particles relative to a plane formed by the fragment momentum and the spin of the neutron appear. The two effects are shown to be linked to the components of angular momentum perpendicular and parallel to the fission axis at the saddle point of fission. Based on theoretical models the spectroscopic properties of the collective transitional states at the saddle point are inferred from experiment.

  6. Periodic modulation in pulse arrival times from young pulsars: a renewed case for neutron star precession

    CERN Document Server

    Kerr, Matthew; Johnston, Simon; Shannon, Ryan

    2015-01-01

    In a search for periodic variation in the arrival times of pulses from 151 young, energetic pulsars, we have identified seven cases of modulation consistent with one or two harmonics of a single fundamental with time-scale 0.5-1.5 yr. We use simulations to show that these modulations are statistically significant and of high quality (sinusoidal) even when contaminated by the strong stochastic timing noise common to young pulsars. Although planetary companions could induce such modulation, the large implied masses and 2:1 mean motion resonances challenge such an explanation. Instead, the modulation is likely to be intrinsic to the pulsar, arising from quasi-periodic switching between stable magnetospheric states, and we propose that precession of the neutron star may regulate this switching.

  7. Pulsed and monoenergetic beams for neutron cross-section measurements using activation and scattering techniques at Triangle Universities Nuclear Laboratory

    Science.gov (United States)

    Hutcheson, A.; Angell, C. T.; Becker, J. A.; Boswell, M.; Crowell, A. S.; Dashdorj, D.; Fallin, B.; Fotiades, N.; Howell, C. R.; Karwowski, H. J.; Kelley, J. H.; Kiser, M.; Macri, R. A.; Nelson, R. O.; Pedroni, R. S.; Tonchev, A. P.; Tornow, W.; Vieira, D. J.; Weisel, G. J.; Wilhelmy, J. B.

    2007-08-01

    In support of the Stewardship Science Academic Alliances initiative, an experimental program has been developed at Triangle Universities Nuclear Laboratory (TUNL) to measure (n,xn) cross-sections with both in-beam and activation techniques with the goal of improving the partial cross-section database for the NNSA Stockpile Stewardship Program. First experimental efforts include excitation function measurements on 235,238U and 241Am using pulsed and monoenergetic neutron beams with En = 5-15 MeV. Neutron-induced partial cross-sections were measured by detecting prompt γ rays from the residual nuclei using various combinations of clover and planar HPGe detectors in the TUNL shielded neutron source area. Complimentary activation measurements using DC neutron beams have also been performed in open geometry in our second target area. The neutron-induced activities were measured in the TUNL low-background counting area. In this presentation, we include detailed information about the irradiation procedures and facilities and preliminary data on first measurements using this capability.

  8. Pulsed and monoenergetic beams for neutron cross-section measurements using activation and scattering techniques at Triangle Universities Nuclear Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hutcheson, A. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States)]. E-mail: hutch@tunl.duke.edu; Angell, C.T. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Becker, J.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Boswell, M. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Crowell, A.S. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Dashdorj, D. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Fallin, B. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Fotiades, N. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Howell, C.R.; Karwowski, H.J.; Kelley, J.H.; Kiser, M. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Macri, R.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Nelson, R.O. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Pedroni, R.S. [NC A and T State University, 1601 East Market Street, Greensboro, NC 27411 (United States); Tonchev, A.P.; Tornow, W. [Triangle Universities Nuclear Laboratory, P.O. Box 90308, Durham, NC 27708 (United States); Vieira, D.J. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Weisel, G.J. [Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601 (United States); Wilhelmy, J.B. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2007-08-15

    In support of the Stewardship Science Academic Alliances initiative, an experimental program has been developed at Triangle Universities Nuclear Laboratory (TUNL) to measure (n,xn) cross-sections with both in-beam and activation techniques with the goal of improving the partial cross-section database for the NNSA Stockpile Stewardship Program. First experimental efforts include excitation function measurements on {sup 235,238}U and {sup 241}Am using pulsed and monoenergetic neutron beams with E {sub n} = 5-15 MeV. Neutron-induced partial cross-sections were measured by detecting prompt {gamma} rays from the residual nuclei using various combinations of clover and planar HPGe detectors in the TUNL shielded neutron source area. Complimentary activation measurements using DC neutron beams have also been performed in open geometry in our second target area. The neutron-induced activities were measured in the TUNL low-background counting area. In this presentation, we include detailed information about the irradiation procedures and facilities and preliminary data on first measurements using this capability.

  9. High Field Pulsed Magnets for Neutron Scattering at the Spallation Neutron Source

    Science.gov (United States)

    Granroth, G. E.; Lee, J.; Fogh, E.; Christensen, N. B.; Toft-Petersen, R.; Nojiri, H.

    2015-03-01

    A High Field Pulsed Magnet (HFPM) setup, is in use at the Spallation Nuetron Source(SNS), Oak Ridge National Laboratory. With this device, we recently measured the high field magnetic spin structure of LiNiPO4. The results of this study will be highlighted as an example of possible measurements that can be performed with this device. To further extend the HFPM capabilities at SNS, we have learned to design and wind these coils in house. This contribution will summarize the magnet coil design optimization procedure. Specifically by varying the geometry of the multi-layer coil, we arrive at a design that balances the maximum field strength, neutron scattering angle, and the field homogeneity for a specific set of parameters. We will show that a 6.3kJ capacitor bank, can provide a magnetic field as high as 30T for a maximum scattering angle around 40° with homogeneity of +/- 4 % in a 2mm diameter spherical volume. We will also compare the calculations to measurements from a recently wound test coil. This work was supported in part by the Lab Directors' Research and Development Fund of ORNL.

  10. Development of MCNPX-ESUT computer code for simulation of neutron/gamma pulse height distribution

    Science.gov (United States)

    Abolfazl Hosseini, Seyed; Vosoughi, Naser; Zangian, Mehdi

    2015-05-01

    In this paper, the development of the MCNPX-ESUT (MCNPX-Energy Engineering of Sharif University of Technology) computer code for simulation of neutron/gamma pulse height distribution is reported. Since liquid organic scintillators like NE-213 are well suited and routinely used for spectrometry in mixed neutron/gamma fields, this type of detectors is selected for simulation in the present study. The proposed algorithm for simulation includes four main steps. The first step is the modeling of the neutron/gamma particle transport and their interactions with the materials in the environment and detector volume. In the second step, the number of scintillation photons due to charged particles such as electrons, alphas, protons and carbon nuclei in the scintillator material is calculated. In the third step, the transport of scintillation photons in the scintillator and lightguide is simulated. Finally, the resolution corresponding to the experiment is considered in the last step of the simulation. Unlike the similar computer codes like SCINFUL, NRESP7 and PHRESP, the developed computer code is applicable to both neutron and gamma sources. Hence, the discrimination of neutron and gamma in the mixed fields may be performed using the MCNPX-ESUT computer code. The main feature of MCNPX-ESUT computer code is that the neutron/gamma pulse height simulation may be performed without needing any sort of post processing. In the present study, the pulse height distributions due to a monoenergetic neutron/gamma source in NE-213 detector using MCNPX-ESUT computer code is simulated. The simulated neutron pulse height distributions are validated through comparing with experimental data (Gohil et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 664 (2012) 304-309.) and the results obtained from similar computer codes like SCINFUL, NRESP7 and Geant4. The simulated gamma pulse height distribution for a 137Cs

  11. Some general reflections on {open_quotes}long pulse{close_quotes} neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S. [Paul Scherrer Inst., Villigen (Switzerland)

    1995-12-31

    A long pulse spallation neutron source (LPSS) having about 20 times more time average thermal flux than its short pulse counterpart (SPSS) at the same proton beam power and featuring a pronounced time structure not available on CW sources (CWNS) of equal time average flux can in principle host instruments typical for both classes of facilities. While the need for additional choppers introduces some restrictions on inverted time of flight techniques typical for SPSS and high incident neutron energies are not easier to use on LPSS than on CWNS, taking advantage of the pulsed nature of the neutron flux can enhance significantly the performance of direct time of flight instruments and of crystal spectrometers or diffractometers. In the paper some of the options are reviewed in a general manner and criteria are discussed which can be used to optimize the performance enhancement.

  12. A phased rotating collimator for a pulsed-neutron fixed scattering angle spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Wahba, M. (Ain Shams Univ., Cairo (Egypt). Dept. of Engineering Physics and Mathematics)

    1991-06-01

    The design principle of a phased rotating collimator for a pulsed-neutron fixed scattering angle spectrometer is given. The collimator's dimensions were selected to match the curved slot rotor of the spectrometer which is in operation at the ET-RR-1 reactor. The collimator has one slot, whose shape was determined to satisfy a 100% transmission of the polyenergetic neutron bursts produced by the curved slot rotor. (orig.).

  13. Characterizations of double pulsing in neutron multiplicity and coincidence counting systems

    Science.gov (United States)

    Koehler, Katrina E.; Henzl, Vladimir; Croft, Stephen S.; Henzlova, Daniela; Santi, Peter A.

    2016-10-01

    Passive neutron coincidence/multiplicity counters are subject to non-ideal behavior, such as double pulsing and dead time. It has been shown in the past that double-pulsing exhibits a distinct signature in a Rossi-alpha distribution, which is not readily noticed using traditional Multiplicity Shift Register analysis. However, it has been assumed that the use of a pre-delay in shift register analysis removes any effects of double pulsing. In this work, we use high-fidelity simulations accompanied by experimental measurements to study the effects of double pulsing on multiplicity rates. By exploiting the information from the double pulsing signature peak observable in the Rossi-alpha distribution, the double pulsing fraction can be determined. Algebraic correction factors for the multiplicity rates in terms of the double pulsing fraction have been developed. We discuss the role of these corrections across a range of scenarios.

  14. Neutron induced degradation in nitrided pyrogenic field oxide MOS capacitors

    CERN Document Server

    Vaidya, S J; Shaikh, A M; Chandorkar, A N

    2002-01-01

    Neutron induced oxide charge trapping and generation of interface states in MOS capacitors with pyrogenic and nitrided pyrogenic field oxides have been studied. In order to assess the damage due to neutrons alone, it is necessary to account for the damage produced by the accompanying gamma rays from neutron radiation. This is done by measuring the intensity of gamma radiation accompanying neutrons at different neutron fluences at the irradiation position. MOS capacitor structures were subjected to neutron radiation in a swimming pool type of reactor. Other samples from the same batch were then subjected to an equivalent dose of gamma radiation from a Co sup 6 sup 0 source. The difference in the damage observed was used to characterize the damage caused by neutrons. It is observed that neutrons, though uncharged, are capable of causing ionization damage. This damage is found to be significant when the radiation is performed under biased conditions. Nitridation in different ambients is found to improve the radi...

  15. Prospects for Measuring Neutron-Star Masses and Radii with X-Ray Pulse Profile Modeling

    CERN Document Server

    Psaltis, Dimitrios; Chakrabarty, Deepto

    2013-01-01

    Modeling the amplitudes and shapes of the X-ray pulsations observed from hot, rotating neutron stars provides a direct method for measuring neutron-star properties. This technique constitutes an important part of the science case for the forthcoming NICER and proposed LOFT X-ray missions. In this paper, we determine the number of distinct observables that can be derived from pulse profile modeling and show that using only bolometric pulse profiles is insufficient for breaking the degeneracy between inferred neutron-star radius and mass. However, we also show that for moderately spinning (300-800 Hz) neutron stars, analysis of pulse profiles in two different energy bands provides additional constraints that allow a unique determination of the neutron-star properties. Using the fractional amplitudes of the fundamental and the first harmonic of the pulse profile in addition to the amplitude and phase difference of the spectral color oscillations, we quantify the signal-to-noise ratio necessary to achieve a speci...

  16. Toward a fractal spectrum approach for neutron and gamma pulse shape discrimination

    Science.gov (United States)

    Liu, Ming-Zhe; Liu, Bing-Qi; Zuo, Zhuo; Wang, Lei; Zan, Gui-Bin; Tuo, Xian-Guo

    2016-06-01

    Accurately selecting neutron signals and discriminating γ signals from a mixed radiation field is a key research issue in neutron detection. This paper proposes a fractal spectrum discrimination approach by means of different spectral characteristics of neutrons and γ rays. Figure of merit and average discriminant error ratio are used together to evaluate the discrimination effects. Different neutron and γ signals with various noise and pulse pile-up are simulated according to real data in the literature. The proposed approach is compared with the digital charge integration and pulse gradient methods. It is found that the fractal approach exhibits the best discrimination performance, followed by the digital charge integration method and the pulse gradient method, respectively. The fractal spectrum approach is not sensitive to high frequency noise and pulse pile-up. This means that the proposed approach has superior performance for effective and efficient anti-noise and high discrimination in neutron detection. Supported by the National Natural Science Foundation of China (41274109), Sichuan Youth Science and Technology Innovation Research Team (2015TD0020), Scientific and Technological Support Program of Sichuan Province (2013FZ0022), and the Creative Team Program of Chengdu University of Technology.

  17. Neutron-gamma discrimination based on bipolar trapezoidal pulse shaping using FPGAs in NE213

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeili-sani, Vahid, E-mail: vaheed_esmaeely80@yahoo.com [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of); Moussavi-zarandi, Ali; Akbar-ashrafi, Nafiseh; Boghrati, Behzad; Afarideh, Hossein [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of)

    2012-12-01

    A technique employing neutron-gamma pulse shape discrimination (PSD) system that overcomes pile up limitations of previous methods to distinguish neutrons from gammas in scintillation detectors is described. The output signals of detectors were digitized and processed with a data acquisition system based on bipolar trapezoidal pulse shaping using Field programmable gate arrays (FPGA). FPGAs are capable of doing complex discrete signal processing algorithms with clock rates above 100 MHz. Their low cost, ease of use and selected dedicated hardware make them an ideal option for spectrometer systems.

  18. Fundamental neutron physics at a 1 MW long pulse spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Greene, G.L.

    1995-12-31

    Modern neutron sources and modern neutron science share a common origin in mid twentieth century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for the study of condensed matter with modern neutron sources being primarily used (and primarily justified) as tools for condensed matter research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities carried out at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high flux neutron facilities. Future sources, particularly high power spallation sources, offer exciting possibilities for the continuation of this program of research.

  19. Fast-neutron induced background in LaBr{sub 3}:Ce detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kiener, J., E-mail: Jurgen.Kiener@csnsm.in2p3.fr [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS-IN2P3 et Université Paris-Sud, 91405 Campus Orsay (France); Tatischeff, V.; Deloncle, I. [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS-IN2P3 et Université Paris-Sud, 91405 Campus Orsay (France); Séréville, N. de [Institut de Physique Nucléaire d' Orsay, CNRS-IN2P3 and Université Paris-Sud, 91406 Orsay (France); Laurent, P. [CEA/IRFU Service d' Astrophysique, Orme des Merisiers, CEA Saclay, 91191 Gif-sur-Yvette (France); Laboratoire Astroparticules et Cosmologie (APC), 10, rue A. Domon et L. Duquet, 75205 Paris (France); Blondel, C. [Laboratoire AIM, CEA/IRFU, Orme des Merisiers, CEA Saclay, 91191 Gif-sur-Yvette (France); Chabot, M. [Institut de Physique Nucléaire d' Orsay, CNRS-IN2P3 and Université Paris-Sud, 91406 Orsay (France); Chipaux, R. [CEA/DMS/IRFU/SEDI, CEA Saclay, 91191 Gif sur Yvette (France); Coc, A. [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS-IN2P3 et Université Paris-Sud, 91405 Campus Orsay (France); Dubos, S. [Laboratoire AIM, CEA/IRFU, Orme des Merisiers, CEA Saclay, 91191 Gif-sur-Yvette (France); Gostojic, A. [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS-IN2P3 et Université Paris-Sud, 91405 Campus Orsay (France); and others

    2015-10-21

    The response of a scintillation detector with a cylindrical 1.5-in. LaBr{sub 3}:Ce crystal to incident neutrons has been measured in the energy range E{sub n} = 2–12 MeV. Neutrons were produced by proton irradiation of a Li target at E{sub p} = 5–14.6 MeV with pulsed proton beams. Using the time-of-flight information between target and detector, energy spectra of the LaBr{sub 3}:Ce detector resulting from fast neutron interactions have been obtained at 4 different neutron energies. Neutron-induced γ rays emitted by the LaBr{sub 3}:Ce crystal were also measured in a nearby Ge detector at the lowest proton beam energy. In addition, we obtained data for neutron irradiation of a large-volume high-purity Ge detector and of a NE-213 liquid scintillator detector, both serving as monitor detectors in the experiment. Monte-Carlo type simulations for neutron interactions in the liquid scintillator, the Ge and LaBr{sub 3}:Ce crystals have been performed and compared with measured data. Good agreement being obtained with the data, we present the results of simulations to predict the response of LaBr{sub 3}:Ce detectors for a range of crystal sizes to neutron irradiation in the energy range E{sub n} = 0.5–10 MeV.

  20. Inclusive deuteron-induced reactions and final neutron states

    CERN Document Server

    Potel, Gregory; Thompson, Ian J

    2015-01-01

    We present in this paper a formalism for deuteron-induced inclusive reactions. We disentangle direct elastic breakup contributions from other processes (which we generically call non-elastic breakup) implying a capture of the neutron both above and below the neutron emission threshold. The reaction is described as a two step process, namely the breakup of the deuteron followed by the propagation of the neutron-target system driven by an optical potential. The final state interaction between the neutron and the target can eventually form an excited compound nucleus. Within this context, the direct neutron transfer to a sharp bound state is a limiting case of the present formalism.

  1. Pulse processing routines for neutron time-of-flight data

    CERN Document Server

    Žugec, P; Guerrero, C; Gunsing, F; Vlachoudis, V; Sabate-Gilarte, M; Stamatopoulos, A; Wright, T; Lerendegui-Marco, J; Mingrone, F; Ryan, J A; Warren, S G; Tsinganis, A; Barbagallo, M

    2016-01-01

    A pulse shape analysis framework is described, which was developed for n_TOF-Phase3, the third phase in the operation of the n_TOF facility at CERN. The most notable feature of this new framework is the adoption of generic pulse shape analysis routines, characterized by a minimal number of explicit assumptions about the nature of pulses. The aim of these routines is to be applicable to a wide variety of detectors, thus facilitating the introduction of the new detectors or types of detectors into the analysis framework. The operational details of the routines are suited to the specific requirements of particular detectors by adjusting the set of external input parameters. Pulse recognition, baseline calculation and the pulse shape fitting procedure are described. Special emphasis is put on their computational efficiency, since the most basic implementations of these conceptually simple methods are often computationally inefficient.

  2. Study of prompt-neutron emission in thermal-neutron-induced fission of /sup 235/U

    Energy Technology Data Exchange (ETDEWEB)

    Franklyn, C.B.

    1987-01-01

    An original experiment was performed to measure the angular correlation of fission neutrons from thermal-neutron-induced fission of /sup 235/U, with respect to the light fission fragment direction, as a function of fragment mass division and neutron energy. A Monte Carlo model, with a realistic description of the fission fragment deexcitation process, was developed to simulate the observed neutron-fragment angular correlation data. Simulated neutron-fragment angular correlations displaying similar distributions with respect to the light fragment direction for different forms of neutron emission are shown to exhibit differing distributions when examined as a function of fragment mass division or neutron energy, thus illustrating the sensitivity of the experiment to the forms of neutron emission occurring in fission. A primary conclusion of the investigation was that neutron emission solely from fully accelerated fragments, whether isotropically or anisotropically emitted in the fragment center of mass system, was unable to adequately describe the observed neutron-fragment angular correlations. Simulation of the fission process with some neutron emission before or during fragment acceleration exhibited a closer correspondence with observed phenomena.

  3. Design of a laboratory for experiments with a pulsed neutron source.

    Science.gov (United States)

    Memoli, G; Trusler, J P M; Ziver, A K

    2009-06-01

    We present the results of a neutron shielding design and optimisation study performed to reduce the exposure to radiological doses arising from a 14 MeV pulsed neutron generator (PNG) having a maximum emission strength of 2.0 x 10(8) neutrons s(-1). The source was intended to be used in a new irradiation facility for the realisation of an experiment on acoustical cavitation in liquids. This paper describes in detail how the facility was designed to reduce both neutron and gamma-ray dose rates to acceptable levels, taking into account the ALARP principle in following the steps of optimisation. In particular, this work compares two different methods of optimisation to assess neutron dose rates: the use of analytical methods and the use of Monte Carlo simulations (MCNPX 2.4). The activation of the surrounding materials during operation was estimated using the neutron spectra as input to the FISPACT 3.0 code. The limitations of a first-order analytical model to determine the neutron activation levels are highlighted. The impact that activation has on the choice of the materials to be used inside the laboratory and on the waiting time before anyone can safely enter the room after the neutron source is switched off is also discussed.

  4. Instrument intercomparison in the pulsed neutron fieldsat the CERN HiRadMat facility

    CERN Document Server

    Aza, E; Cassell, C; Charitonidis, N; Harrouch, E; Manessi, G P; Pangallo, M; Perrin, D; Samara, E; Silari, M

    2014-01-01

    An intercomparison of the performances of active neutron detectors was carried out in pulsed neutron fi elds in the new HiRadMat facility at CERN. Five detectors were employed: four of them (two ionization chambers and two rem counters) are routinely employed in the CERN radiation monitoring system, while the fi fth is a novel instrument, called LUPIN, speci fi cally conceived for applications in pulsed neutron fi elds. The measurements were performed in the stray fi eld generated by a proton beam of very short duration with momentum of 440 GeV/c impinging on a dump. The beam intensity was steadily increased during the experiment by more than three orders of magnitude, with an H*(10) due to neutrons at the detector reference positions varying between a few nSv per burst and a few m Sv per burst, whereas the gamma contribution to the total H*(10) was negligible. The aim of the experiment was to evaluate the linearity of the detector response in extreme pulsed conditions as a function of the neutron burst in- t...

  5. Monte Carlo simulations to advance characterisation of landmines by pulsed fast/thermal neutron analysis

    NARCIS (Netherlands)

    Maucec, M.; Rigollet, C.

    2004-01-01

    The performance of a detection system based on the pulsed fast/thermal neutron analysis technique was assessed using Monte Carlo simulations. The aim was to develop and implement simulation methods, to support and advance the data analysis techniques of the characteristic gamma-ray spectra, potentia

  6. Pulsed neutron generator system for astrobiological and geochemical exploration of planetary bodies

    Energy Technology Data Exchange (ETDEWEB)

    Akkurt, Hatice [Schlumberger Princeton Technology Center, 20 Wallace Road, Princeton Junction, NJ 07605 (United States); Groves, Joel L. [Schlumberger Princeton Technology Center, 20 Wallace Road, Princeton Junction, NJ 07605 (United States)]. E-mail: groves@princeton.oilfield.slb.com; Trombka, Jacob [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Starr, Richard [The Catholic University of America, Washington, DC 20064 (United States); Evans, Larry [Computer Sciences Corporation, 7700 Hubble Drive, Lanham-Seabrook, MD 20706 (United States); Floyd, Samuel [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Hoover, Richard [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Lim, Lucy [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); McClanahan, Timothy [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); James, Ralph [Brookhaven National Laboratory, Upton, NY 11973 (United States); McCoy, Timothy [National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 (United States); Schweitzer, Jeffrey [University of Connecticut, Storrs, CT 06269 (United States)

    2005-12-15

    A pulsed neutron/gamma-ray detection system for use on rovers to survey the elemental concentrations of Martian and Lunar surface and subsurface materials is evaluated. A robotic survey system combining a pulsed neutron generator (PNG) and detectors (gamma ray and neutron) can measure the major constituents to a depth of about 30 cm. Scanning mode measurements can give the major elemental concentrations while the rover is moving; analyzing mode measurements can give a detailed elemental analysis of the adjacent material when the rover is stationary. A detailed map of the subsurface elemental concentrations will provide invaluable information relevant to some of the most fundamental astrobiological questions including the presence of water, biogenic activity, life habitability and deposition processes.

  7. Performance of a 4H-SiC Schottky diode as a compact sized detector for neutron pulse form measurements

    Science.gov (United States)

    Wu, Jian; Li, Meng; Jiang, Yong; Li, Junjie; Zhang, Yi; Gao, Hui; Liu, Xiaobo; Du, Jinfeng; Zou, Dehui; Fan, Xiaoqiang; Gan, Lei; Peng, Cheng; Lu, Yi; Lei, Jiarong

    2015-01-01

    4H-silicon carbide (4H-SiC) detectors are desirable for neutron pulse form measurement for their compact size, excellent radiation resistance and hydrogen free composition. The aim of this study is to investigate the use of a 4H-SiC detector to measure the pulse form of a neutron burst. A 4H-SiC detector is fabricated and tested in the pulsed neutron field of the Chinese Fast Burst Reactor II (CFBR II). Important parameters such as the breeding period and the FWHM of the neutron pulse are derived from the experimental result of the 4H-SiC detector. These parameters agree well with those from a plastic scintillator detector. The divergences are only 0.5%, demonstrating that the 4H-SiC detector can yield a high fidelity time profile of the CFBR II pulse. The difference in peak centroid of alpha spectra is negligible for the 4H-SiC detector even after 18 reactor pulses (a neutron fluence of 8.41×1012 cm-2), confirming the excellent radiation hardness of the 4H-SiC detector in pulsed neutron field. This study therefore indicates that 4H-SiC detectors can be usable as a compact sized detector to measure neutron pulses.

  8. Preference pulses induced by reinforcement.

    Science.gov (United States)

    Hachiga, Yosuke; Sakagami, Takayuki; Silberberg, Alan

    2014-11-01

    Eight rats responded on concurrent Variable-Ratio 20 Extinction schedules for food reinforcement. The assignment of variable-ratio reinforcement to a left or right lever varied randomly following each reinforcer, and was cued by illumination of a stimulus light above that lever. Postreinforcement preference levels decreased substantially and reliably over time when the lever that just delivered reinforcement was now in extinction; however, if that lever was once again associated with variable ratio, this decrease in same-lever preference tended to be small, and for some subjects, not in evidence. The changes in preference level to the extinction lever were well described by a modified version of Killeen, Hanson, and Osborne's (1978) induction model. Consistent with this model's attribution of preference change to induction, we attribute preference change in this report to a brief period of reinforcer-induced arousal that energizes responding to the lever that delivered the last reinforcer. After a few seconds, this induced responding diminishes, and the operant responding that remains comes under the control of the stimulus light cuing the lever providing variable-ratio reinforcement.

  9. Fast-Neutron Spectrometry Using a 3He Ionization Chamber and Digital Pulse Shape Analysis

    Energy Technology Data Exchange (ETDEWEB)

    D. L. Chichester; J. T. Johnson; E. H. Seabury

    2010-05-01

    Digital pulse shape analysis (dPSA) has been used with a Cuttler-Shalev type 3He proportional counter to measure the fast neutron spectra of bare 252Cf and 241AmBe neutron sources. Measurements have also been made to determine the attenuated fast neutron spectra of 252Cf shielded by several materials including water, graphite, liquid nitrogen, magnesium, and tungsten. Rise-time dPSA has been employed using the common rise-time approach for analyzing n +3He ? 1H + 3H ionization events and a new approach has been developed to improve the fidelity of these measurements. Simulations have been performed for the different experimental arrangements and are compared, demonstrating general agreement between the dPSA processed fast neutron spectra and predictions.

  10. Fast-neutron induced background in LaBr3:Ce detectors

    CERN Document Server

    Kiener, J; Deloncle, I; de Séréville, N; Laurent, P; Blondel, C; Chabot, M; Chipaux, R; Coc, A; Dubos, S; Gostojic, A; Goutev, N; Hamadache, C; Hammache, F; Horeau, B; Limousin, O; Ouichaoui, S; Prévot, G; Rodríguez-Gasén, R; Yavahchova, M S

    2015-01-01

    The response of a scintillation detector with a cylindrical 1.5-inch LaBr3:Ce crystal to incident neutrons has been measured in the energy range En = 2-12 MeV. Neutrons were produced by proton irradiation of a Li target at Ep = 5-14.6 MeV with pulsed proton beams. Using the time-of-flight information between target and detector, energy spectra of the LaBr3:Ce detector resulting from fast neutron interactions have been obtained at 4 different neutron energies. Neutron-induced gamma rays emitted by the LaBr3:Ce crystal were also measured in a nearby Ge detector at the lowest proton beam energy. In addition, we obtained data for neutron irradiation of a large-volume high-purity Ge detector and of a NE-213 liquid scintillator detector, both serving as monitor detectors in the experiment. Monte-Carlo type simulations for neutron interactions in the liquid scintillator, the Ge and LaBr3:Ce crystals have been performed and compared with measured data. Good agreement being obtained with the data, we present the resul...

  11. Fast-neutron spectrometry using a ³He ionization chamber and digital pulse shape analysis.

    Science.gov (United States)

    Chichester, D L; Johnson, J T; Seabury, E H

    2012-08-01

    Digital pulse shape analysis (dPSA) has been used with a Cuttler-Shalev type (3)He ionization chamber to measure the fast-neutron spectra of a deuterium-deuterium electronic neutron generator, a bare (252)Cf spontaneous fission neutron source, and of the transmitted fast neutron spectra of a (252)Cf source attenuated by water, graphite, liquid nitrogen, and magnesium. Rise-time dPSA has been employed using the common approach for analyzing n +(3)He→(1)H+(3)H ionization events and improved to account for wall-effect and pile-up events, increasing the fidelity of these measurements. Simulations have been performed of the different experimental arrangements and compared with the measurements, demonstrating general agreement between the dPSA-processed fast-neutron spectra and predictions. The fast-neutron resonance features of the attenuation cross sections of the attenuating materials are clearly visible within the resolution limits of the electronics used for the measurements, and the potential applications of high-resolution fast-neutron spectrometry for nuclear nonproliferation and safeguards measurements are discussed.

  12. 150 keV accelerator as pulsed neutron source; Acelerador de 150 keV como fuente de neutrones pulsada

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, F.

    1970-07-01

    The project of a 150 keV Cockcroft-Walton accelerator built at J.E.N. is described. Beam currents of more than 10 mA, with a neutron intensity of 10{sup 1}1 n.s{sup 1}, are obtained. Also, we report some research made in connection with that project. The role of the contamination in the vacuum system and the performance of the pumps and gauges pumping deuterium gas are studied. Sinusoidal pulses are employed as an analysis method of the discharge in the ion source and the performance of the extracting-focusing system. The parameters of the beam leaving the ion source have been determined; these are used to calculate the electrostatic lenses with the gaussian optics. Measurements concerning deuterium and tritium targets as neutron sources have been made and the processes affecting their practical service life are analyzed. (Author) 71 refs.

  13. Terrestrial neutron-induced soft errors in advanced memory devices

    CERN Document Server

    Nakamura, Takashi; Ibe, Eishi; Yahagi, Yasuo; Kameyama, Hideaki

    2008-01-01

    Terrestrial neutron-induced soft errors in semiconductor memory devices are currently a major concern in reliability issues. Understanding the mechanism and quantifying soft-error rates are primarily crucial for the design and quality assurance of semiconductor memory devices. This book covers the relevant up-to-date topics in terrestrial neutron-induced soft errors, and aims to provide succinct knowledge on neutron-induced soft errors to the readers by presenting several valuable and unique features. Sample Chapter(s). Chapter 1: Introduction (238 KB). Table A.30 mentioned in Appendix A.6 on

  14. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    Science.gov (United States)

    Jandel, M.; Bredeweg, T. A.; Stoyer, M. A.; Wu, C. Y.; Fowler, M. M.; Becker, J. A.; Bond, E. M.; Couture, A.; Haight, R. C.; Haslett, R. J.; Henderson, R. A.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.

    2009-01-01

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for 241Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for 243Am for neutron energies between 10 eV and 250 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on 242mAm will be presented where the fission events were actively triggered during the experiments. In these experiments, a Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in the center of the DANCE array was used as a fission-tagging detector to separate (n,γ) events from (n,f) events. The first direct observation of neutron capture on 242mAm in the resonance region in between 2 and 9 eV of the neutron energy was obtained.

  15. A dense plasma focus-based neutron source for a single-shot detection of illicit materials and explosives by a nanosecond neutron pulse

    Energy Technology Data Exchange (ETDEWEB)

    Gribkov, V A; Latyshev, S V [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Miklaszewski, R A; Chernyshova, M [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Drozdowicz, K; Wiacek, U [Institute of Nuclear Physics, Krakow (Poland); Tomaszewski, K [ACS Ltd, Warsaw (Poland); Lemeshko, B D [N L Dukhov All-Russian Institute of Automation, Moscow (Russian Federation)], E-mail: gribkovv@yahoo.com

    2010-03-15

    Recent progress in a single-pulse Nanosecond Impulse Neutron Investigation System (NINIS) intended for interrogation of hidden objects by means of measuring elastically scattered neutrons is presented in this paper. The method uses very bright neutron pulses having duration of the order of 10 ns only, which are generated by dense plasma focus (DPF) devices filled with pure deuterium or DT mixture as a working gas. The small size occupied by the neutron bunch in space, number of neutrons per pulse and mono-chromaticity ({delta}E/E{approx}1%) of the neutron spectrum provides the opportunity to use a time-of-flight (TOF) technique with flying bases of about a few metres. In our researches we used DPF devices having bank energy in the range 2-7 kJ. The devices generate a neutron yield of the level of 10{sup 8}-10{sup 9} 2.45 MeV and 10{sup 10}-10{sup 11} 14 MeV neutrons per pulse with pulse duration {approx}10-20 ns. TOF base in the tests was 2.2-18.5 m. We have demonstrated the possibility of registering of neutrons scattered by the substances under investigation-1 litre bottles with methanol (CH{sub 3}OH), phosphoric (H{sub 2}PO{sub 4}) and nitric (HNO{sub 3}) acids as well as a long object-a 1 m gas tank filled with deuterium at high pressure. It is shown that the above mentioned short TOF bases and relatively low neutron yields are enough to distinguish different elements' nuclei composing the substance under interrogation and to characterize the geometry of lengthy objects in some cases. The wavelet technique was employed to 'clean' the experimental data registered. The advantages and restrictions of the proposed and tested NINIS technique in comparison with other methods are discussed.

  16. A dense plasma focus-based neutron source for a single-shot detection of illicit materials and explosives by a nanosecond neutron pulse

    Science.gov (United States)

    Gribkov, V. A.; Latyshev, S. V.; Miklaszewski, R. A.; Chernyshova, M.; Drozdowicz, K.; Wiącek, U.; Tomaszewski, K.; Lemeshko, B. D.

    2010-03-01

    Recent progress in a single-pulse Nanosecond Impulse Neutron Investigation System (NINIS) intended for interrogation of hidden objects by means of measuring elastically scattered neutrons is presented in this paper. The method uses very bright neutron pulses having duration of the order of 10 ns only, which are generated by dense plasma focus (DPF) devices filled with pure deuterium or DT mixture as a working gas. The small size occupied by the neutron bunch in space, number of neutrons per pulse and mono-chromaticity (ΔE/E~1%) of the neutron spectrum provides the opportunity to use a time-of-flight (TOF) technique with flying bases of about a few metres. In our researches we used DPF devices having bank energy in the range 2-7 kJ. The devices generate a neutron yield of the level of 108-109 2.45 MeV and 1010-1011 14 MeV neutrons per pulse with pulse duration ~10-20 ns. TOF base in the tests was 2.2-18.5 m. We have demonstrated the possibility of registering of neutrons scattered by the substances under investigation—1 litre bottles with methanol (CH3OH), phosphoric (H2PO4) and nitric (HNO3) acids as well as a long object—a 1 m gas tank filled with deuterium at high pressure. It is shown that the above mentioned short TOF bases and relatively low neutron yields are enough to distinguish different elements' nuclei composing the substance under interrogation and to characterize the geometry of lengthy objects in some cases. The wavelet technique was employed to 'clean' the experimental data registered. The advantages and restrictions of the proposed and tested NINIS technique in comparison with other methods are discussed.

  17. Development and testing of neutron pulse time stamping data acquisition system for neutron noise experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajeev [Reactor Physics Design Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India); Yakub Ali, M [Radio Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India); Degweker, S.B. [Theoretical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India); Vishwasrao, S.C. [Product Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India); Jadhav, R.T. [Radio Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)

    2015-01-11

    Statistical correlation techniques find applications in the analysis of zero power reactor noise and in passive neutron assay (PNA). A large number of apparently different techniques have been in use in these application areas and traditionally the electronics modules used for data acquisition and analysis is specific to the method used. In this paper we describe a data acquisition scheme developed by us, which is independent of the specific analysis method and can therefore be used for all of them. This is a neutron time stamping data acquisition system based on a timer card and an interface software to acquire and store the data in the required format. The system has been successfully tested with two statistically different types of neutron sources, namely a random Poisson source (Pu–Be) and a correlated source (a nuclear reactor)

  18. Neutron scattering studies of the dynamics of biopolymer-water systems using pulsed-source spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Middendorf, H.D. [Univ. of Oxford (United Kingdom); Miller, A. [Stirling Univ., Stirling (United Kingdom)

    1994-12-31

    Energy-resolving neutron scattering techniques provide spatiotemporal data suitable for testing and refining analytical models or computer simulations of a variety of dynamical processes in biomolecular systems. This paper reviews experimental work on hydrated biopolymers at ISIS, the UK Pulsed Neutron Facility. Following an outline of basic concepts and a summary of the new instrumental capabilities, the progress made is illustrated by results from recent experiments in two areas: quasi- elastic scattering from highly hydrated polysaccharide gels (agarose and hyaluronate), and inelastic scattering from vibrational modes of slightly hydrated collagen fibers.

  19. A bismuth activation counter for high sensitivity pulsed 14 MeV neutrons

    Science.gov (United States)

    Burns, E. J. T.; Thacher, P. D.; Hassig, G. J.; Decker, R. D.; Romero, J. A.; Barrett, K. P.

    2011-08-01

    We have built a fast neutron bismuth activation counter that measures activation counts from pulsed 14-MeV neutron generators for incident neutron fluences between 30 and 300 neutrons/cm2 at 15.2 cm (6 in.). The activation counter consists of a large bismuth germanate (BGO) detector surrounded by a bismuth metal shield in front of and concentric with the cylindrical detector housing. The 14 MeV neutrons activate the 2.6-millisecond (ms) isomer in the shield and the detector by the reaction 209Bi (n,2nγ) 208mBi. The use of millisecond isomers and activation counting times minimizes the background from other activated materials and the environment. In addition to activation, the bismuth metal shields against other outside radiation sources. We have tested the bismuth activation counter, simultaneously, with two data acquisition systems (DASs) and both give similar results. The two-dimensional (2D) DAS and three dimensional (3D) DAS both consist of pulse height analysis (PHA) systems that can be used to discriminate against gamma radiations below 300 keV photon energy, so that the detector can be used strictly as a counter. If the counting time is restricted to less than 25 ms after the neutron pulse, there are less than 10 counts of background for single pulse operation in all our operational environments tested so far. High-fluence neutron generator operations are restricted by large dead times and pulse height saturation. When we operate our 3D DAS PHA system in list mode acquisition (LIST), real-time corrections to dead time or live time can be made on the scale of 1 ms time windows or dwell times. The live time correction is consistent with nonparalyzable models for dead time of 1.0±0.2 μs for our 3D DAS and 1.5±0.3 μs for our 2D DAS dominated by our fixed time width analog to digital converters (ADCs). With the same solid angle, we have shown that the bismuth activation counter has a factor of 4 increase in sensitivity over our lead activation counter

  20. High-efficiency Resonant rf Spin Rotator with Broad Phase Space Acceptance for Pulsed Polarized Cold Neutron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Seo, P. -N. [Los Alamos National Laboratory (LANL); Barron-Palos, L. [Arizona State University; Bowman, J. D. [Los Alamos National Laboratory (LANL); Chupp, T. E. [University of Michigan; Crawford, C. [University of Tennessee, Knoxville (UTK); Dabaghyan, M. [University of New Hampshire; Dawkins, M. [Indiana University; Freedman, S. J. [University of California; Gentile, T. R. [National Institute of Standards and Technology (NIST); Gericke, M. T. [University of Manitoba, Canada; Gillis, R. C. [University of Manitoba, Canada; Greene, G. L. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Hersman, F. W. [University of New Hampshire; Jones, G. L. [Hamilton College, New York; Kandes, M. [University of Michigan; Lamoreaux, S. [Los Alamos National Laboratory (LANL); Lauss, B. [University of California, Berkeley; Leuschner, M. B. [Indiana University; Mahurin, R. [University of Tennessee, Knoxville (UTK); Mason, M. [University of New Hampshire; Mei, J. [Indiana University; Mitchell, G. S. [Los Alamos National Laboratory (LANL); Nann, H. [Indiana University; Page, S. A. [University of Manitoba, Canada; Penttila, S. I. [Los Alamos National Laboratory (LANL); Ramsay, W. D. [University of Manitoba & TRIUMF, Canada; Salas Bacci, A. [Los Alamos National Laboratory (LANL); Santra, S. [Indiana University; Sharma, M. [University of Michigan; Smith, T. B. [University of Dayton, Ohio; Snow, W. [Indiana University; Wilburn, W. S. [Los Alamos National Laboratory (LANL); Zhu, H. [University of New Hampshire

    2008-01-01

    High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPD Gamma experiment, a search for the small parity-violating {gamma}-ray asymmetry A{sub Y} in polarized cold neutron capture on parahydrogen, is one example. For the NPD Gamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized {sup 3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8 {+-} 0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPD Gamma experiment are considered.

  1. Explosive Material Identification via Neutron-Induced Gamma Rays

    Science.gov (United States)

    Freiberg, David; Litz, Marc

    2014-09-01

    With the increase in the usage of improvised explosive devices, both vehicle-borne and buried, it has become increasingly important to quickly identify potentially explosive materials before they can be detonated. In a field test performed in January of 2014, 14 MeV neutrons generated in a deuterium-tritium reaction induced gamma emissions in explosive material targets. The resulting gamma rays were counted in LaBr3 detectors in both a time-binned associated particle imaging (API) mode and a repetitively pulsed mode. The details of the resulting data sets were analyzed, and gamma lines for carbon, oxygen, and nitrogen were identified in the spectra produced by both modes. Post-test noise reduction techniques included empty hole background subtraction, Compton background subtraction, peak area integration, and time-of-flight gating. The induced C, O, and N gamma line intensities and ratios were compared to the elemental weight ratios expected for each type of material. The composition results are indicative of the known elemental weights in the target materials. The statistics are limited because of the short, 20 second data collection periods, and would improve greatly with longer exposure times in the future.

  2. Compact Short-Pulsed Electron Linac Based Neutron Sources for Precise Nuclear Material Analysis

    Science.gov (United States)

    Uesaka, M.; Tagi, K.; Matsuyama, D.; Fujiwara, T.; Dobashi, K.; Yamamoto, M.; Harada, H.

    2015-10-01

    An X-band (11.424GHz) electron linac as a neutron source for nuclear data study for the melted fuel debris analysis and nuclear security in Fukushima is under development. Originally we developed the linac for Compton scattering X-ray source. Quantitative material analysis and forensics for nuclear security will start several years later after the safe settlement of the accident is established. For the purpose, we should now accumulate more precise nuclear data of U, Pu, etc., especially in epithermal (0.1-10 eV) neutrons. Therefore, we have decided to modify and install the linac in the core space of the experimental nuclear reactor "Yayoi" which is now under the decommission procedure. Due to the compactness of the X-band linac, an electron gun, accelerating tube and other components can be installed in a small space in the core. First we plan to perform the time-of-flight (TOF) transmission measurement for study of total cross sections of the nuclei for 0.1-10 eV energy neutrons. Therefore, if we adopt a TOF line of less than 10m, the o-pulse length of generated neutrons should be shorter than 100 ns. Electronenergy, o-pulse length, power, and neutron yield are ~30 MeV, 100 ns - 1 micros, ~0.4 kW, and ~1011 n/s (~103 n/cm2/s at samples), respectively. Optimization of the design of a neutron target (Ta, W, 238U), TOF line and neutron detector (Ce:LiCAF) of high sensitivity and fast response is underway. We are upgrading the electron gun and a buncher to realize higher current and beam power with a reasonable beam size in order to avoid damage of the neutron target. Although the neutron flux is limited in case of the X-band electron linac based source, we take advantage of its short pulse aspect and availability for nuclear data measurement with a short TOF system. First, we form a tentative configuration in the current experimental room for Compton scattering in 2014. Then, after the decommissioning has been finished, we move it to the "Yayoi" room and perform

  3. Investigation of the vertical instability at the Argonne Intense Pulsed Neutron Source

    Science.gov (United States)

    Wang, Shaoheng; Dooling, J. C.; Harkay, K. C.; Kustom, R. L.; McMichael, G. E.

    2009-10-01

    The rapid cycling synchrotron of the intense pulsed neutron source at Argonne National Laboratory normally operates at an average beam current of 14 to 15μA, accelerating protons from 50 to 450 MeV 30 times per second. The beam current is limited by a single-bunch vertical instability that occurs in the later part of the 14 ms acceleration cycle. By analyzing turn-by-turn beam position monitor data, two cases of vertical beam centroid oscillations were discovered. The oscillations start from the tail of the bunch, build up, and develop toward the head of the bunch. The development stops near the bunch center and oscillations remain localized in the tail for a relatively long time (2-4 ms, 1-2×104 turns). This vertical instability is identified as the cause of the beam loss. We compared this instability with a head-tail instability that was purposely induced by switching off sextupole magnets. It appears that the observed vertical instability is different from the classical head-tail instability.

  4. Trojan Horse Method for neutrons-induced reaction studies

    Science.gov (United States)

    Gulino, M.; Asfin Collaboration

    2017-09-01

    Neutron-induced reactions play an important role in nuclear astrophysics in several scenario, such as primordial Big Bang Nucleosynthesis, Inhomogeneous Big Bang Nucleosynthesis, heavy-element production during the weak component of the s-process, explosive stellar nucleosynthesis. To overcome the experimental problems arising from the production of a neutron beam, the possibility to use the Trojan Horse Method to study neutron-induced reactions has been investigated. The application is of particular interest for reactions involving radioactive nuclei having short lifetime.

  5. Testing a scale pulsed modulator for an IEC neutron source into a resistive load

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Gregory E [Los Alamos National Laboratory; Wheat, Robert M [Los Alamos National Laboratory; Aragonez, Robert [Los Alamos National Laboratory

    2009-01-01

    A 1/10th scaled prototype pulse modulator for an Inertial Electrostatic Confinement (IEC) neutron source has been designed and tested at Los Alamos National Laboratory (LANL). The scaled prototype modulator is based on a solid-state Marx architecture and has an output voltage of 13 kV and an output current of 10 A. The modulator has a variable pulse width between 50 {micro}s and 1 ms with < 5% droop at all pulse widths. The modulator operates with a duty factor up to 5% and has a maximum pulse repetition frequency of 1 kHz. The use of a solid-state Marx modulator in this application has several potential benefits. These benefits include variable pulse width and amplitude, inherent switch overcurrent and transient overvoltage protection, and increased efficiency over DC supplies used in this application. Several new features were incorporated into this design including inductorless charging, fully snubberless operation, and stage fusing. The scaled prototype modulator has been tested using a 1 k{Omega} resistive load. Test results are given. Short (50 {micro}s) and long (1 ms) pulses are demonstrated as well as high duty factor operation (1 kHz rep rate at a 50 {micro}s pulse width for a 5% duty factor). Pulse agility of the modulator is demonstrated through turning the individual Marx stages on and off in sequence producing ramp, pyramid, and reverse pyramid waveforms.

  6. Comparison Between Digital and Analog Pulse Shape Discrimination Techniques For Neutron and Gamma Ray Separation

    Energy Technology Data Exchange (ETDEWEB)

    R. Aryaeinejad; John K. Hartwell

    2005-11-01

    Recent advancement in digital signal processing (DSP) using fast processors and computer makes it possible to be used in pulse shape discrimination applications. In this study, we have investigated the feasibility of using a DSP to distinguish between the neutrons and gamma rays by the shape of their pulses in a liquid scintillator detector (BC501), and have investigated pulse shape-based techniques to improve the resolution performance of room-temperature cadmium zinc telluride (CZT) detectors. For the neutron/gamma discrimination, the advantage of using a DSP over the analog method is that in analog system two separate charge-sensitive ADC's are required. One ADC is used to integrate the beginning of the pulse risetime while the second ADC is for integrating the tail part. Using a DSP eliminates the need for separate ADCs as one can easily get the integration of two parts of the pulse from the digital waveforms. This work describes the performance of these DSP techniques and compares the results with the analog method.

  7. Accuracy and borehole influences in pulsed neutron gamma density logging while drilling

    Energy Technology Data Exchange (ETDEWEB)

    Yu Huawei [College of Geo-Resources and Information, China University of Petroleum, Qingdao, Shandong 266555 (China); Center for Engineering Applications of Radioisotopes (CEAR), Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Sun Jianmeng [College of Geo-Resources and Information, China University of Petroleum, Qingdao, Shandong 266555 (China); Wang Jiaxin [Center for Engineering Applications of Radioisotopes (CEAR), Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Gardner, Robin P., E-mail: gardner@ncsu.edu [Center for Engineering Applications of Radioisotopes (CEAR), Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2011-09-15

    A new pulsed neutron gamma density (NGD) logging has been developed to replace radioactive chemical sources in oil logging tools. The present paper describes studies of near and far density measurement accuracy of NGD logging at two spacings and the borehole influences using Monte-Carlo simulation. The results show that the accuracy of near density is not as good as far density. It is difficult to correct this for borehole effects by using conventional methods because both near and far density measurement is significantly sensitive to standoffs and mud properties. - Highlights: > Monte Carlo evaluation of pulsed neutron gamma-ray density tools. > Results indicate sensitivity of the tool to standoff and mudcake properties. > Accuracy of far spaced detector is better than near spaced.

  8. Performance of the solid deuterium ultra-cold neutron source at the pulsed reactor TRIGA Mainz

    CERN Document Server

    Karch, J; Beck, M; Eberhardt, K; Hampel, G; Heil, W; Kieser, R; Reich, T; Trautmann, N; Ziegner, M

    2013-01-01

    The performance of the solid deuterium ultra-cold neutron source at the pulsed reactor TRIGA Mainz with a maximum peak energy of 10 MJ is described. The solid deuterium converter with a volume of V=160 cm3 (8 mol), which is exposed to a thermal neutron fluence of 4.5x10^13 n/cm2, delivers up to 550 000 UCN per pulse outside of the biological shield at the experimental area. UCN densities of ~ 10/cm3 are obtained in stainless steel bottles of V ~ 10 L resulting in a storage efficiency of ~20%. The measured UCN yields compare well with the predictions from a Monte Carlo simulation developed to model the source and to optimize its performance for the upcoming upgrade of the TRIGA Mainz into a user facility for UCN physics.

  9. Correction: Spectroscopic characteristics of the OSIRIS near-backscattering crystal analyser spectrometer on the ISIS pulsed neutron source.

    Science.gov (United States)

    Telling, Mark T F; Campbell, Stuart I; Engberg, Dennis; Martín Y Marero, David; Andersen, Ken H

    2016-03-21

    Correction for 'Spectroscopic characteristics of the OSIRIS near-backscattering crystal analyser spectrometer on the ISIS pulsed neutron source' by Mark T. F. Telling et al., Phys. Chem. Chem. Phys., 2005, 7, 1255-1261.

  10. A fast Monte Carlo program for pulsed-neutron capture-gamma tools

    Energy Technology Data Exchange (ETDEWEB)

    Hovgaard, J.

    1992-02-01

    A fast model for the pulsed-neutron capture-gamma tool has been developed. It is believed that the program produce valid results even though some approximation have been introduced. A correct {gamma} photon transport simulation, which is under preparation, has for instance not yet been included. Simulations performed so far has shown that the model, with respect to computing time and accuracy, fully lives up to expectations with respect to computing time and accuracy. (au).

  11. A fast Monte Carlo program for pulsed-neutron capture-gamma tools

    Energy Technology Data Exchange (ETDEWEB)

    Hovgaard, J.

    1992-02-01

    A fast model for the pulsed-neutron capture-gamma tool has been developed. It is believed that the program produce valid results even though some approximation have been introduced. A correct [gamma] photon transport simulation, which is under preparation, has for instance not yet been included. Simulations performed so far has shown that the model, with respect to computing time and accuracy, fully lives up to expectations with respect to computing time and accuracy. (au).

  12. Neutron Radiography Facility at IBR-2 High Flux Pulsed Reactor: First Results

    Science.gov (United States)

    Kozlenko, D. P.; Kichanov, S. E.; Lukin, E. V.; Rutkauskas, A. V.; Bokuchava, G. D.; Savenko, B. N.; Pakhnevich, A. V.; Rozanov, A. Yu.

    A neutron radiography and tomography facilityhave been developed recently at the IBR-2 high flux pulsed reactor. The facility is operated with the CCD-camera based detector having maximal field of view of 20x20 cm, and the L/D ratio can be varied in the range 200 - 2000. The first results of the radiography and tomography experiments with industrial materials and products, paleontological and geophysical objects, meteorites, are presented.

  13. The muon-induced neutron indirect detection EXperiment, MINIDEX

    Science.gov (United States)

    Abt, I.; Caldwell, A.; Carissimo, C.; Gooch, C.; Kneißl, R.; Langford, J.; Liu, X.; Majorovits, B.; Palermo, M.; Schulz, O.; Vanhoefer, L.

    2017-04-01

    A new experiment to quantitatively measure neutrons induced by cosmic-ray muons in selected high-Z materials is introduced. The design of the Muon-Induced Neutron Indirect Detection EXperiment, MINIDEX, and the results from its first data taking period are presented as well as future plans. Neutron production in high-Z materials is of particular interest as such materials are used for shielding in low-background experiments. The design of next-generation large-scale experiments searching for neutrinoless double beta decay or direct interactions of dark matter requires reliable Monte Carlo simulations of background induced by muon interactions. The first five months of operation already provided a valuable data set on neutron production and neutron transport in lead. A first round of comparisons between MINIDEX data and Monte Carlo predictions obtained with a GEANT4-based package for two different sets of physics models of relevance for neutron production by muons is presented. The rate of muon-induced events is overall a factor three to four higher in data than predicted by the Monte Carlo packages. In addition, the time evolution of the muon-induced signal is not well described by the simulations.

  14. Body composition to climate change studies - the many facets of neutron induced prompt gamma-ray analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mitra,S.

    2008-11-17

    In-vivo body composition analysis of humans and animals and in-situ analysis of soil using fast neutron inelastic scattering and thermal neutron capture induced prompt-gamma rays have been described. By measuring carbon (C), nitrogen (N) and oxygen (O), protein, fat and water are determined. C determination in soil has become important for understanding below ground carbon sequestration process in the light of climate change studies. Various neutron sources ranging from radio isotopic to compact 14 MeV neutron generators employing the associated particle neutron time-of-flight technique or micro-second pulsing were implemented. Gamma spectroscopy using recently developed digital multi-channel analyzers has also been described.

  15. Pulse shape discrimination between (fast or thermal) neutrons and gamma rays with plastic scintillators: State of the art

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, Guillaume H.V. [CEA, LIST, Laboratoire Capteurs & Architectures Électroniques, CEA Saclay, F-91191 Gif-sur-Yvette cedex (France); Hamel, Matthieu, E-mail: matthieu.hamel@cea.fr [CEA, LIST, Laboratoire Capteurs & Architectures Électroniques, CEA Saclay, F-91191 Gif-sur-Yvette cedex (France); Normand, Stéphane [CEA, DAM, Le Ponant, 25 rue Leblanc, F-75015 Paris (France); Sguerra, Fabien [CEA, LIST, Laboratoire Capteurs & Architectures Électroniques, CEA Saclay, F-91191 Gif-sur-Yvette cedex (France)

    2015-03-11

    We would like to present here with the eyes of the chemist the most recent developments of plastic scintillators (PS) for neutron detection. This review covers the period from 2000 to August 2014, and is fragmented in two main chapters. The first chapter deals with the chemical modifications for thermal neutron capture, whereas the second chapter presents the various strategies used to enhance the response to fast neutrons via pulse shape discrimination. For each chapter the theory is also explained.

  16. Effect of adding Ar gas on the pulse height distribution of BF3-filled neutron detectors

    Indian Academy of Sciences (India)

    M Padalakshmi; A M Shaikh

    2008-11-01

    Boron trifluoride (BF3) proportional counters are used as detectors for thermal neutrons. They are characterized by high neutron sensitivity and good gamma discriminating properties. Most practical BF3 counters are filled with pure boron trifluoride gas enriched up to 96% 10B. But BF3 is not an ideal proportional counter gas. Worsening of plateau characteristics is observed with increasing radius due to impurities in gas. To overcome this problem, counters are filled with BF3 with an admixture of a more suitable gas such as argon. The dilution of BF3 with argon causes a decrease in detection efficiency, but the pulse height spectrum shows sharper peaks and more stable plateau characteristics than counters filled with pure BF3. The present investigations are under-taken to study the pulse height distribution and other important factors in BF3+Ar filled signal counters for neutron beam applications. Tests are performed with detectors with cylindrical geometry filled with BF3 gas enriched in 10B to 90%, and high purity Ar in different proportions. By analysing pulse height spectra, a value of 6.1 ± 0.2 has been obtained for the branching ratio of the 10B(,) reaction.

  17. Thermal-hydraulic simulation of mercury target concepts for a pulsed spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Siman-Tov, M.; Wendel, M.; Haines, J. [Oak Ridge National Lab., TN (United States)

    1996-06-01

    The Oak Ridge Spallation Neutron Source (ORSNS) is a high-power, accelerator-based pulsed spallation neutron source being designed by a multi-laboratory team led by Oak Ridge National Laboratory to achieve very high fluxes of neutrons for scientific experiments. The ORSNS is projected to have a 1 MW proton beam upgradable to 5 MW. About 60% of the beam power (1-5 MW, 17-83 kJ/pulse in 0.5 microsec at 60 cps) is deposited in the liquid metal (mercury) target having the dimensions of 65x30x10 cm (about 19.5 liter). Peak steady state power density is about 150 and 785 MW/m{sup 3} for 1 MW and 5 MW beam respectively, whereas peak pulsed power density is as high as 5.2 and 26.1 GW/m{sup 3}, respectively. The peak pulse temperature rise rate is 14 million C/s (for 5 MW beam) whereas the total pulse temperature rise is only 7 C. In addition to thermal shock and materials compatibility, key feasibility issues for the target are related to its thermal-hydraulic performance. This includes proper flow distribution, flow reversals, possible {open_quotes}hot spots{close_quotes} and the challenge of mitigating the effects of thermal shock through possible injection of helium bubbles throughout the mercury volume or other concepts. The general computational fluid dynamics (CFD) code CFDS-FLOW3D was used to simulate the thermal and flow distribution in three preliminary concepts of the mercury target. Very initial CFD simulation of He bubbles injection demonstrates some potential for simulating behavior of He bubbles in flowing mercury. Much study and development will be required to be able to `predict`, even in a crude way, such a complex phenomena. Future direction in both design and R&D is outlined.

  18. EJ-309 pulse shape discrimination performance with a high gamma-ray-to-neutron ratio and low threshold

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, A.C., E-mail: Alexis.C.Kaplan@gmail.com [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48104 (United States); Nuclear Engineering and Nonproliferation Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Flaska, M.; Enqvist, A.; Dolan, J.L.; Pozzi, S.A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48104 (United States)

    2013-11-21

    Measuring neutrons in the presence of high gamma-ray fluence is a challenge with multi-particle detectors. Organic liquid scintillators such as the EJ-309 are capable of accurate pulse-shape discrimination (PSD) but the chance for particle misclassification is not negligible for some applications. By varying the distance from an EJ-309 scintillator to a strong-gamma-ray source and keeping a weak-neutron source at a fixed position, various gamma-to-neutron ratios can be measured and PSD performance can be quantified. Comparing neutron pulse-height distributions allows for pulse-height specific PSD evaluation, and quantification and visualization of deviation from {sup 252}Cf alone. Even with the addition of the misclassified gamma-rays, the PSD is effective in separating particles so that neutron count rate can be predicted with less than 10% error up to a gamma-to-neutron ratio of almost 650. For applications which can afford a reduction in neutron detection efficiency, PSD can be sufficiently effective in discriminating particles to measure a weak neutron source in a high gamma-ray background. -- Highlights: •We measure neutrons in a high photon background with EJ-309 liquid scintillators. •A low threshold is used to test the limits of particle discrimination. •A weak neutron signal is detectable with a gamma/neutron ratio as high as 770. •Photon pileup most commonly adds to error in classification of neutrons. •Neutron count rates are within 10% of expected rate under high gamma background.

  19. Fast Scintillation Probes For Investigation Of Pulsed Neutron Radiation From Small Fusion Devices

    Science.gov (United States)

    Tomaszewski, Krzysztof J.

    2008-04-01

    This paper presents the design as well as laboratory/performance tests results taken by means of the fast scintillation probes. The design of each scintillation probe is based on photomultiplier tube hybrid assembly, which—besides photomultiplier itself—also includes high-voltage divider optimized for recording of fast radiation bursts. Plastic scintillators with short-time response are applied as hard X-ray and neutron radiation detectors. Heavy-duty probe's housing provides efficient shielding against electromagnetic interference and allows carrying out pulsed neutron measurements in a harsh electromagnetic environment. The crucial parameters of scintillation probes have been examined during laboratory tests in which our investigations have been aimed mainly to determine: a time response, an anode radiant sensitivity and an electron transit time dependence on high-voltage supply. During the performance tests, the relative calibration of probes set has been done. It allowed to carry out very accurate measurements of neutron emission anisotropy and investigations of neutron radiation scattering by different materials. The usefulness of presented scintillation probes—embedded in the neutron time-of-flight diagnostic system was proven during experimental campaigns conducted on the plasma-focus PF1000 device.

  20. Fast neutron tomography with real-time pulse-shape discrimination in organic scintillation detectors

    Science.gov (United States)

    Joyce, Malcolm J.; Agar, Stewart; Aspinall, Michael D.; Beaumont, Jonathan S.; Colley, Edmund; Colling, Miriam; Dykes, Joseph; Kardasopoulos, Phoevos; Mitton, Katie

    2016-10-01

    A fast neutron tomography system based on the use of real-time pulse-shape discrimination in 7 organic liquid scintillation detectors is described. The system has been tested with a californium-252 source of dose rate 163 μSv/h at 1 m and neutron emission rate of 1.5×107 per second into 4π and a maximum acquisition time of 2 h, to characterize two 100×100×100 mm3 concrete samples. The first of these was a solid sample and the second has a vertical, cylindrical void. The experimental data, supported by simulations with both Monte Carlo methods and MATLAB®, indicate that the presence of the internal cylindrical void, corners and inhomogeneities in the samples can be discerned. The potential for fast neutron assay of this type with the capability to probe hydrogenous features in large low-Z samples is discussed. Neutron tomography of bulk porous samples is achieved that combines effective penetration not possible with thermal neutrons in the absence of beam hardening.

  1. Parameters measurement for the thermal neutron beam in the thermal column hole of Xi’an pulse reactor

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The distribution of the neutron spectra in the thermal column hole of Xi’an pulse reactor was measured with the time-of-flight method.Compared with the thermal Maxwellian theory neutron spectra,the thermal neutron spectra measured is a little softer,and the average neutron energy of the experimental spectra is about 0.042±0.01 eV.The thermal neutron fluence rate at the front end of thermal column hole,measured with gold foil activation techniques,is about 1.18×105 cm-2 s-1.The standard uncertainty of the measured thermal neutron fluence is about 3%.The spectra-averaged cross section of 197Au(n,γ) determined by the experimental thermal neutron spectra is(92.8±0.93) ×10-24 cm2.

  2. A method of precise profile analysis of diffuse scattering for the KENS pulsed neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Todate, Y. [Department of Physics, Ochanomizu Univ., Tokyo (Japan); Fukumura, T. [Department of Applied Physics, Hokkaido Univ., Sapporo, Hokkaido (Japan); Fukazawa, H. [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2001-03-01

    An outline of our profile analysis method, which is now of practical use for the asymmetric KENS pulsed thermal neutrons, are presented. The analysis of the diffuse scattering from a single crystal of D{sub 2}O is shown as an example. The pulse shape function is based on the Ikeda-Carpenter function adjusted for the KENS neutron pulses. The convoluted intensity is calculated by a Monte-Carlo method and the precision of the calculation is controlled. Fitting parameters in the model cross section can be determined by the built-in nonlinear least square fitting procedure. Because this method is the natural extension of the procedure conventionally used for the triple-axis data, it is easy to apply with generality and versatility. Most importantly, furthermore, this method has capability of precise correction of the time shift of the observed peak position which is inevitably caused in the case of highly asymmetric pulses and broad scattering function. It will be pointed out that the accurate determination of true time-of-flight is important especially in the single crystal inelastic experiments. (author)

  3. Nuclear fission and neutron-induced fission cross-sections

    CERN Document Server

    James, G D; Michaudon, A; Michaudon, A; Cierjacks, S W; Chrien, R E

    2013-01-01

    Nuclear Fission and Neutron-Induced Fission Cross-Sections is the first volume in a series on Neutron Physics and Nuclear Data in Science and Technology. This volume serves the purpose of providing a thorough description of the many facets of neutron physics in different fields of nuclear applications. This book also attempts to bridge the communication gap between experts involved in the experimental and theoretical studies of nuclear properties and those involved in the technological applications of nuclear data. This publication will be invaluable to those interested in studying nuclear fis

  4. Birefringence effects of short probe pulses of electromagnetically induced transparency

    Science.gov (United States)

    Parshkov, Oleg M.; Kochetkova, Anastasia E.; Budyak, Victoria V.

    2016-04-01

    The numerical simulation results of radiations evolution in the presence of electromagnetically induced transparency for J=0-->J=1-->J=2 scheme of degenerate quantum transitions are presented. The pulse regime of wave interaction with Doppler broadening spectral lines was investigated. It was indicated that when the control field is linear polarized, the input circular polarized probe pulse breaks up in the medium into pulses with mutually perpendicular linear polarizations. Polarization direction of one of these pulses coincides with the polarization direction of control fields. The distance, which probe pulse passes in the medium to its full separation, decreases, when input probe pulse duration or control field intensity decreases. The input probe pulse intensity variation almost does not influence separation distance and speed of the linear polarized probe pulses in the medium. The effects, described above, may be interpreted as the birefringence effects of electromagnetically induced transparency in the case of short probe pulse.

  5. Neutron irradiation induced amorphization of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Hay, J.C. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 {times} 10{sup 25} n/m{sup 2}. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density ({minus}10.8%), elastic modulus as measured using a nanoindentation technique ({minus}45%), hardness as measured by nanoindentation ({minus}45%), and standard Vickers hardness ({minus}24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C.

  6. High-frequency and brief-pulse stimulation pulses terminate cortical electrical stimulation-induced afterdischarges.

    Science.gov (United States)

    Ren, Zhi-Wei; Li, Yong-Jie; Yu, Tao; Ni, Duan-Yu; Zhang, Guo-Jun; Du, Wei; Piao, Yuan-Yuan; Zhou, Xiao-Xia

    2017-06-01

    Brief-pulse stimulation at 50 Hz has been shown to terminate afterdischarges observed in epilepsy patients. However, the optimal pulse stimulation parameters for terminating cortical electrical stimulation-induced afterdischarges remain unclear. In the present study, we examined the effects of different brief-pulse stimulation frequencies (5, 50 and 100 Hz) on cortical electrical stimulation-induced afterdischarges in 10 patients with refractory epilepsy. Results demonstrated that brief-pulse stimulation could terminate cortical electrical stimulation-induced afterdischarges in refractory epilepsy patients. In conclusion, (1) a brief-pulse stimulation was more effective when the afterdischarge did not extend to the surrounding brain area. (2) A higher brief-pulse stimulation frequency (especially 100 Hz) was more likely to terminate an afterdischarge. (3) A low current intensity of brief-pulse stimulation was more likely to terminate an afterdischarge.

  7. Simulation for developing new pulse neutron spectrometers I. Creation of new McStas components of moderators of JSNS

    CERN Document Server

    Tamura, I; Arai, M; Harada, M; Maekawa, F; Shibata, K; Soyama, K

    2003-01-01

    Moderators components of the McStas code have been created for the design of JSNS instruments. Three cryogenic moderators are adopted in JSNS, one is coupled H sub 2 moderators for high intensity experiments and other two are decoupled H sub 2 with poisoned or unpoisoned for high resolution moderators. Since the characteristics of neutron beams generated from moderators make influence on the performance of pulse neutron spectrometers, it is important to perform the Monte Carlo simulation with neutron source component written precisely. The neutron spectrum and time structure were calculated using NMTC/JAERI97 and MCNP4a codes. The simulation parameters, which describe the pulse shape over entire spectrum as a function of time, are optimized. In this paper, the creation of neutron source components for port No.16 viewed to coupled H sub 2 moderator and for port No.11 viewed to decoupled H sub 2 moderator of JSNS are reported.

  8. Simulation for developing new pulse neutron spectrometers I. Creation of new McStas components of moderators of JSNS

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Itaru; Aizawa, Kazuya; Harada, Masahide; Shibata, Kaoru; Maekawa, Fujio; Soyama, Kazuhiko; Arai, Masatoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Moderators components of the McStas code have been created for the design of JSNS instruments. Three cryogenic moderators are adopted in JSNS, one is coupled H{sub 2} moderators for high intensity experiments and other two are decoupled H{sub 2} with poisoned or unpoisoned for high resolution moderators. Since the characteristics of neutron beams generated from moderators make influence on the performance of pulse neutron spectrometers, it is important to perform the Monte Carlo simulation with neutron source component written precisely. The neutron spectrum and time structure were calculated using NMTC/JAERI97 and MCNP4a codes. The simulation parameters, which describe the pulse shape over entire spectrum as a function of time, are optimized. In this paper, the creation of neutron source components for port No.16 viewed to coupled H{sub 2} moderator and for port No.11 viewed to decoupled H{sub 2} moderator of JSNS are reported. (author)

  9. Determination of energetic neutron spatial distribution using neutron induced nuclear recoil events

    CERN Document Server

    Hashemi-Nezhad, S R; Brandt, R; Westmeier, W; Odoj, R; Krivopustov, M I; Kulakov, B A; Sosnin, A N

    2002-01-01

    Neutron induced nuclear recoils were used to determine the spatial distribution of the weakly moderated spallation neutrons produced in the interaction of 1 GeV protons with lead and uranium-lead targets. CR39 plastic track detectors were used to record neutron-induced recoil tracks. The track density measurements were carried out using a fully automated optical microscope. The experimental results were compared with Monte Carlo simulations using MCNPX-2.1.5 code and an extension code that was written for this purpose. A good agreement was found between the experiment and calculations for normalised results. Applicability of the MCNPX-2.1.5 code for absolute recoil track density determination is discussed.

  10. Assessment of Laser-Driven Pulsed Neutron Sources for Poolside Neutron-based Advanced NDE – A Pathway to LANSCE-like Characterization at INL

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Markus [Technische Univ. Darmstadt (Germany); Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bourke, Mark Andrew M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fernandez, Juan Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mocko, Michael Jeffrey [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Glenzer, Siegfried [Stanford Univ., CA (United States); Leemans, Wim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Siders, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Haefner, Constantin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-19

    A variety of opportunities for characterization of fresh nuclear fuels using thermal (~25meV) and epithermal (~10eV) neutrons have been documented at Los Alamos National Laboratory. They include spatially resolved non-destructive characterization of features, isotopic enrichment, chemical heterogeneity and stoichiometry. The LANSCE spallation neutron source is well suited in neutron fluence and temporal characteristics for studies of fuels. However, recent advances in high power short pulse lasers suggest that compact neutron sources might, over the next decade, become viable at a price point that would permit their consideration for poolside characterization on site at irradiation facilities. In a laser-driven neutron source the laser is used to accelerate deuterium ions into a beryllium target where neutrons are produced. At this time, the technology is new and their total neutron production is approximately four orders of magnitude less than a facility like LANSCE. However, recent measurements on a sub-optimized system demonstrated >1010 neutrons in sub-nanosecond pulses in predominantly forward direction. The compactness of the target system compared to a spallation target may allow exchanging the target during a measurement to e.g. characterize a highly radioactive sample with thermal, epithermal, and fast neutrons as well as hard X-rays, thus avoiding sample handling. At this time several groups are working on laser-driven neutron production and are advancing concepts for lasers, laser targets, and optimized neutron target/moderator systems. Advances in performance sufficient to enable poolside fuels characterization with LANSCE-like fluence on sample within a decade may be possible. This report describes the underlying physics and state-of-the-art of the laser-driven neutron production process from the perspective of the DOE/NE mission. It also discusses the development and understanding that will be necessary to provide customized capability for

  11. High-Efficiency Resonant RF Spin Rotator with Broad Phase Space Acceptance for Pulsed Polarized Cold Neutron Beams

    CERN Document Server

    Seo, P -N; Bowman, J D; Chupp, T E; Crawford, C; Dabaghyan, M; Dawkins, M; Freedman, S J; Gentile, T; Gericke, M T; Gillis, R C; Greene, G L; Hersman, F W; Jones, G L; Kandes, M; Lamoreaux, S; Lauss, B; Leuschner, M B; Mahurin, R; Mason, M; Mei, J; Mitchell, G S; Nann, H; Page, S A; Penttila, S I; Ramsay, W D; Bacci, A Salas; Santra, S; Sharma, M; Smith, T B; Snow, W M; Wilburn, W S; Zhu, H

    2007-01-01

    We have developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to RF neutron spin flippers based on adiabatic fast passage. The spin rotator does not change the kinetic energy of the neutrons and leaves the neutron beam phase space unchanged to high precision. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically-polarized 3He neutron spin filters. The efficiency of the spin rotator was measured to be 98.0+/-0.8% on resonance for neutron energies from 3.3 to 18.4 meV over the full phase space of the beam. As an example of the application of this device to an experiment we describe the integration of the RF spin rotator into an app...

  12. Study of deep level characteristics in the neutrons irradiated Si structures by combining pulsed and steady-state spectroscopy techniques

    Science.gov (United States)

    Gaubas, E.; Kalendra, V.; Ceponis, T.; Uleckas, A.; Tekorius, A.; Vaitkus, J.; Velicka, A.

    2012-11-01

    The standard methods, such as capacitance deep level transient spectroscopy (C-DLTS) and thermally stimulated current (TSC) techniques are unsuitable for the analysis of heavily irradiated devices. In this work, therefore, several steady-state and pulsed techniques have been combined to comprehensively evaluate parameters of radiation defects and functional characteristics of the irradiated Si pin detectors. In order to understand defects created by radiation and evaluate their evolution with fluence, C-DLTS and TSC techniques have been employed to make a baseline identification of the radiation induced traps after irradiation with a rather small neutron fluence of 1012 cm-2. The steady-state photo-ionization spectroscopy (PIS) technique has been involved to correlate thermal- and photo- activation energies for definite radiation defects. A contactless technique for simultaneous measurements of the carrier lifetime and the parameters of deep levels based on microwave probed pulsed photo-conductivity (MW-PC) spectroscopy has been applied to correlate carrier capture cross-sections and densities of the identified different radiation defects. A technique for spectroscopy of deep levels in junction structures (BELIV) based on measurements of barrier capacitance charging current transient changes due to additional spectrally resolved pulsed illumination has been applied to evaluate the functional characteristics of the irradiated diodes. Pulsed spectroscopic measurements were implemented by combining the analysis of generation current and of barrier capacitance charging transients modified by a single fs pulse of illumination generated by an optical parametric oscillator of varied wavelength in the range from 0.5 to 10 μm. Several deep levels with activation energy in the range of 0.18-0.8 eV have been resolved from spectral analysis in the samples of Si grown by magnetic field applied Czochralski (MCz) technology.

  13. The Muon-Induced Neutron Indirect Detection EXperiment, MINIDEX

    CERN Document Server

    Abt, I; Carissimo, C; Gooch, C; Kneissl, R; Langford, J; Liu, X; Majorovits, B; Palermo, M; Schulz, O; Vanhoefer, L

    2016-01-01

    A new experiment to quantitatively measure neutrons induced by cosmic-ray muons in selected high-Z materials is introduced. The design of the Muon-Induced Neutron Indirect Detection EXperiment, MINIDEX, and the results from its first data taking period are presented as well as future plans. Neutron production in high-Z materials is of particular interest as such materials are used for shielding in low-background experiments. The design of next-generation large-scale experiments searching for neutrinoless double beta decay or direct interactions of dark matter requires reliable Monte Carlo simulations of background induced by muon interactions. The first five months of operation already provided a valuable data set on neutron production and neutron transport in lead. A first round of comparisons between MINIDEX data and Monte Carlo predictions obtained with two GEANT4- based packages is presented. The rate of muon-induced events is overall a factor three to four higher in data than predicted by the Monte Carlo...

  14. The upgrade of intense pulsed neutron source (IPNS) through the change of coolant and reflector

    CERN Document Server

    Baek, I C; Iverson, E B

    2002-01-01

    The current intense pulsed neutron source (IPNS) depleted uranium target is cooled by light water. The inner reflector material is graphite and the outer reflector material is beryllium. The presence of H sub 2 O in the target moderates neutrons and leads to a higher absorption loss in the target than is necessary. D sub 2 O coolant in the small quantities required minimizes this effect. We have studied the possible improvement in IPNS beam fluxes that would result from changing the coolant from H sub 2 O to D sub 2 O and the inner reflector from graphite to beryllium. Neutron intensities were calculated for directions normal to the viewed surface of each moderator for four different cases of combinations of target coolant and reflector materials. The simulations reported here were performed using the MCNPX (version 2.1.5) computer program. Our results show that substantial gains in neutron beam intensities can be achieved by appropriate combination of target coolant and reflector materials. The combination o...

  15. Irradiation Effects for the Pulsed Fast Neutron Analysis (PFNA) Cargo Interrogation System

    Energy Technology Data Exchange (ETDEWEB)

    Slater, C.O.

    2001-02-02

    At the request of Safety and Ecology Corporation of Tennessee, radiation effects of the proposed Pulsed Fast Neutron Analysis (PFNA) Cargo Interrogation System have been examined. First, fissile cargo were examined to determine if a significant neutron signal would be observable during interrogation. Results indicated that ample multiplication would be seen for near critical bare targets. The water-reflected sphere showed relatively little multiplication. By implication, a fissile target shielded by hydrogenous cargo might not be detectable by neutron interrogation, particularly if reliance is placed on the neutron signal. The cargo may be detectable if use can be made of the ample increase in the photon signal. Second, dose rates were calculated at various locations within and just outside the facility building. These results showed that some dose rates may be higher than the target dose rate of 0.05 mrem/h. However, with limited exposure time, the total dose may be well below the allowed total dose. Lastly, estimates were made of the activation of structures and typical cargo. Most cargo will not be exposed long enough to be activated to levels of concern. On the other hand, portions of the structure may experience buildup of some radionuclides to levels of concern.

  16. Neutron Induced Capture and Fission Processes on 238U

    Directory of Open Access Journals (Sweden)

    Oprea Cristiana

    2016-01-01

    Full Text Available Nuclear data on Uranium isotopes are of crucial interest for new generation of nuclear reactors. Processes of interest are the nuclear reactions induced by neutrons and in this work mainly the capture and the fission process on 238U will be analyzed in a wide energy interval. For slow and resonant neutrons the many levels Breit – Wigner formalism is necessary. In the case of fast and very fast neutrons up to 200 MeV the nuclear reaction mechanism implemented in Talys will be used. The present evaluations are necessary in order to obtain the field of neutrons in the design of nuclear reactors and they are compared with experimental data from literature obtained from capture and (n,xn processes.

  17. Discrete Fourier Transform Method for Discrimination of Digital Scintillation Pulses in Mixed Neutron-Gamma Fields

    CERN Document Server

    Safari, M J; Afarideh, H; Jamili, S; Bayat, E

    2016-01-01

    A Discrete Fourier Transform Method (DFTM) for discrimination between the signal of neutrons and gamma rays in organic scintillation detectors is presented. The method is based on the transformation of signals into the frequency domain using the sine and cosine Fourier transforms in combination with the discrete Fourier transform. The method is largely benefited from considerable differences that usually is available between the zero-frequency components of sine and cosine and the norm of the amplitude of the DFT for neutrons and gamma-ray signals. Moreover, working in frequency domain naturally results in considerable suppression of the unwanted effects of various noise sources that is expected to be effective in time domain methods. The proposed method could also be assumed as a generalized nonlinear weighting method that could result in a new class of pulse shape discrimination methods, beyond definition of the DFT. A comparison to the traditional Charge Integration Method (CIM), as well as the Frequency G...

  18. Effects of Spot Size on Neutron-Star Radius Measurements from Pulse Profiles

    Science.gov (United States)

    Bauböck, Michi; Psaltis, Dimitrios; Özel, Feryal

    2015-10-01

    We calculate the effects of spot size on pulse profiles of moderately rotating neutron stars. Specifically, we quantify the bias introduced in radius measurements from the common assumption that spots are infinitesimally small. We find that this assumption is reasonable for spots smaller than 10°-18° and leads to errors that are ≤10% in the radius measurement, depending on the location of the spot and the inclination of the observer. We consider the implications of our results for neutron star radius measurements with the upcoming and planned X-ray missions NICER and LOFT. We calculate the expected spot size for different classes of sources and investigate the circumstances under which the assumption of a small spot is justified.

  19. Effects of Spot Size on Neutron-Star Radius Measurements from Pulse Profiles

    CERN Document Server

    Baubock, Michi; Ozel, Feryal

    2015-01-01

    We calculate the effects of spot size on pulse profiles of moderately rotating neutron stars. Specifically, we quantify the bias introduced in radius measurements from the common assumption that spots are infinitesimally small. We find that this assumption is reasonable for spots smaller than 10-18$^\\circ$ and leads to errors that are $\\le$10% in the radius measurement, depending on the location of the spot and the inclination of the observer. We consider the implications of our results for neutron star radius measurements with the upcoming and planned X-ray missions NICER and LOFT. We calculate the expected spot size for different classes of sources and investigate the circumstances under which the assumption of a small spot is justified.

  20. Neutron-induced reaction studies using stored ions

    Science.gov (United States)

    Glorius, Jan; Litvinov, Yuri A.; Reifarth, René

    2015-11-01

    Storage rings provide unique possibilities for investigations of nuclear reactions. Radioactive ions can be stored if the ring is connected to an appropriate facility and reaction studies are feasible at low beam intensities because of the recycling of beam particles. Using gas jet or droplet targets, charged particle-induced reactions on short-lived isotopes can be studied in inverse kinematics. In such a system a high-flux reactor could serve as a neutron target extending the experimental spectrum to neutron-induced reactions. Those could be studied over a wide energy range covering the research fields of nuclear astrophysics and reactor safety, transmutation of nuclear waste and fusion.

  1. A new method of measuring a large pulsed neutron fluence or dose exploiting the die-away of thermalized neutrons in a polyethylene moderator

    Science.gov (United States)

    Leake, J. W.; Lowe, T.; Mason, R. S.; White, G.

    2010-01-01

    Computer simulations of the response to very short pulses of neutron and gamma radiation of a spherical polyethylene moderator with a central thermal neutron counter and a new, fast, active restore amplifier system have been carried out. A large neutron burst produces count rates in the detector that are too high to measure initially but when the exponential decay of the count rate falls below about 50 k per sec then counting can start. If the counts are recorded in contiguous time intervals (of 60 μs in this case) and the time is measured at which the measured count in an interval falls to 1 or 2 then the size of the initial burst can be calculated. It is shown that it should be possible to measure pulsed neutron ambient dose equivalent H*(10) or dose equivalent rate from about 2 nSv up to about 100 μSv per burst, or 7.2 N μSv s h -1 to 360 N mSv s h -1, where N is the number of neutron bursts per second. The calculations show that a gamma burst of about 10 μGy can be tolerated without affecting the measurement of the largest neutron bursts. This extends our earlier estimate of the maximum dose that can be measured for pulsed neutrons by more than 10 k. This method could also be used to measure the neutron fluence or dose from a single unplanned event such as a beam dump on an accelerator or a criticality incident from fissile material. Although the method described is new it is based on a combination of proven techniques.

  2. Muon-induced neutrons do not explain the DAMA data

    CERN Document Server

    Klinger, J

    2015-01-01

    We present an accurate model of the muon-induced background in the DAMA/LIBRA experiment. Our work challenges proposed mechanisms which seek to explain the observed DAMA signal modulation with muon-induced backgrounds. Muon generation and transport are performed using the MUSIC/MUSUN code, and subsequent interactions in the vicinity of the DAMA detector cavern are simulated with Geant4. We estimate the total muon-induced neutron flux in the detector cavern to be $\\Phi_n^\

  3. Resonant neutron-induced atomic displacements

    Science.gov (United States)

    Elmaghraby, Elsayed K.

    2017-05-01

    A model for displacement cascade function was modified to account for the continuous variation of displacement density in the material in response to neutron exposure. The model is based on the Gaussian distribution of displacement energies of atoms in a material. Analytical treatment for moderated epithermal neutron field was given in which the displacement density was divided into two terms, discrete-resonance term and continuum term. Calculation are done for all isotopes using ENDF/B VII.1 data files and temperature dependent cross section library. Weighted elemental values were reported a fitting was performed to obtain energy-dependent formula of displacement density and reduce the number of parameters. Results relevant the present specification of the cascade function are tabulated for each element to enable calculation of displacement density at any value of displacement energy in the between 5 eV and 55 eV.

  4. Accuracy and borehole influences in pulsed neutron gamma density logging while drilling.

    Science.gov (United States)

    Yu, Huawei; Sun, Jianmeng; Wang, Jiaxin; Gardner, Robin P

    2011-09-01

    A new pulsed neutron gamma density (NGD) logging has been developed to replace radioactive chemical sources in oil logging tools. The present paper describes studies of near and far density measurement accuracy of NGD logging at two spacings and the borehole influences using Monte-Carlo simulation. The results show that the accuracy of near density is not as good as far density. It is difficult to correct this for borehole effects by using conventional methods because both near and far density measurement is significantly sensitive to standoffs and mud properties.

  5. The new high field photoexcitation muon spectrometer at the ISIS pulsed neutron and muon source

    CERN Document Server

    Yokoyama, K; Murahari, P; Wang, K; Dunstan, D J; Waller, S P; McPhail, D J; Hillier, A D; Henson, J; Harper, M R; Heathcote, P; Drew, A J

    2016-01-01

    A high power pulsed laser system has been installed on the high magnetic field muon instrument (HiFi) at the ISIS pulsed neutron and muon source, situated at the STFC Rutherford Appleton Laboratory in the UK. The upgrade enables one to perform light-pump muon-probe experiments under a high field, which opens up a brand-new area in the muon spin spectroscopy. In this report we overview the principle of the HiFi Laser system, and describe the newly developed techniques and devices that enable a controlled photoexcitation in the muon instrument. A demonstration experiment illustrates the unique combination of the photoexcited system and avoided level crossing technique.

  6. The neutron within the deuteron as a surrogate for neutron-induced reactions

    CERN Document Server

    Bertulani, C A; Hussein, M S; Shubhchintak,; Tran, Viet Nhan Hao

    2016-01-01

    We propose the use of neutron poisons in reactions induced by radioactive beams as a test of theoretical models aiming to relate neutron capture in nuclei with neutron surrogate reactions such as (d,p) reactions. We exploit the approximations necessary to obtain a direct relation between the two reactions; surrogate vs. neutron capture. We also show how this is intimately related to the momentum distribution of the neutron within the deuteron. The models we use are based on the theory of inclusive breakup reactions commonly employed in the treatment of incomplete fusion and surrogate method. Such theories were developed in the 80's by Ichimura, Autern and Vincent [Phys. Rev. C 32, 431 (1985)], Udagawa and Tamura [Phys. Rev. C 24, 1348 (1981)] and Hussein and McVoy [Nucl. Phys. A 445, 124 (1985)]. We use these theories to derive an expression for the proton yield in the reaction A(d,p)B. The capture reaction $n + A \\rightarrow B$ is then extracted using reasonable approximations. By recalling an old method pro...

  7. Design of a High Intensity Neutron Source for Neutron-Induced Fission Yield Studies

    CERN Document Server

    Lantz, M; Jokinen, A; Kolhinen, V S; Mattera, A; Penttilä, H; Pomp, S; Rakopoulos, V; Rinta-Antila, S; Solders, A

    2013-01-01

    The upgraded IGISOL facility with JYFLTRAP, at the accelerator laboratory of the University of Jyv\\"askyl\\"a, has been supplied with a new cyclotron which will provide protons of the order of 100 {\\mu}A with up to 30 MeV energy, or deuterons with half the energy and intensity. This makes it an ideal place for measurements of neutron-induced fission products from various actinides, in view of proposed future nuclear fuel cycles. The groups at Uppsala University and University of Jyv\\"askyl\\"a are working on the design of a neutron converter that will be used as neutron source in fission yield studies. The design is based on simulations with Monte Carlo codes and a benchmark measurement that was recently performed at The Svedberg Laboratory in Uppsala. In order to obtain a competitive count rate the fission targets will be placed very close to the neutron converter. The goal is to have a flexible design that will enable the use of neutron fields with different energy distributions. In the present paper, some co...

  8. Mitigation of Electromagnetic Pulse (EMP) Effects from Short-Pulse Lasers and Fusion Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Eder, D C; Throop, A; Brown, Jr., C G; Kimbrough, J; Stowell, M L; White, D A; Song, P; Back, N; MacPhee, A; Chen, H; DeHope, W; Ping, Y; Maddox, B; Lister, J; Pratt, G; Ma, T; Tsui, Y; Perkins, M; O' Brien, D; Patel, P

    2009-03-06

    Our research focused on obtaining a fundamental understanding of the source and properties of EMP at the Titan PW(petawatt)-class laser facility. The project was motivated by data loss and damage to components due to EMP, which can limit diagnostic techniques that can be used reliably at short-pulse PW-class laser facilities. Our measurements of the electromagnetic fields, using a variety of probes, provide information on the strength, time duration, and frequency dependence of the EMP. We measure electric field strengths in the 100's of kV/m range, durations up to 100 ns, and very broad frequency response extending out to 5 GHz and possibly beyond. This information is being used to design shielding to mitigate the effects of EMP on components at various laser facilities. We showed the need for well-shielded cables and oscilloscopes to obtain high quality data. Significant work was invested in data analysis techniques to process this data. This work is now being transferred to data analysis procedures for the EMP diagnostics being fielded on the National Ignition Facility (NIF). In addition to electromagnetic field measurements, we measured the spatial and energy distribution of electrons escaping from targets. This information is used as input into the 3D electromagnetic code, EMSolve, which calculates time dependent electromagnetic fields. The simulation results compare reasonably well with data for both the strength and broad frequency bandwidth of the EMP. This modeling work required significant improvements in EMSolve to model the fields in the Titan chamber generated by electrons escaping the target. During dedicated Titan shots, we studied the effects of varying laser energy, target size, and pulse duration on EMP properties. We also studied the effect of surrounding the target with a thick conducting sphere and cube as a potential mitigation approach. System generated EMP (SGEMP) in coaxial cables does not appear to be a significant at Titan. Our

  9. The Muon-Induced Neutron Indirect-Detection EXperiment. MINIDEX

    Energy Technology Data Exchange (ETDEWEB)

    Palermo, Matteo

    2016-06-06

    A new experiment to measure muon-induced neutrons is introduced. The design of the Muon-Induced Neutron Indirect Detection EXperiment, MINIDEX, is presented and its installation and commissioning in the Tuebingen Shallow Underground Laboratory are described. Results from its first data taking period, run I, are presented. Muon-induced neutrons are not only an interesting physics topic by itself, but they are also an important source of background in searches for possible new rare phenomena like neutrinoless double beta decay or directly observable interactions of dark matter. These subjects are of great importance to understand the development of the early universe. Therefore, a new generation of ton-scale experiments which require extremely low background levels is under consideration. Reliable Monte Carlo simulations are needed to design such future experiments and estimate their background levels and sensitivities. The background due to muon-induced neutrons is hard to estimate, because of inconsistencies between different experimental results and discrepancies between measurements and Monte Carlo predictions. Especially for neutron production in high-Z materials, more experimental data and related simulation studies are clearly needed. MINIDEX addresses exactly this subject. Already the first five months of data taking provided valuable data on neutron production, propagation and interaction in lead. A first round of comparisons between MINIDEX data and Monte Carlo predictions are presented. In particular, the predictions of two Monte Carlo packages, based on GEANT4, are compared to the data. The data show an overall 70-100% higher rate of muon-induced events than predicted by the Monte Carlo packages. These packages also predict a faster time evolution of the muon-induced signal than observed in the data. Nevertheless, the time until the signal from the muon-induced events is completely collected was correctly predicted by the Monte Carlos. MINIDEX is foreseen

  10. Neutron induced fission of 234U

    Directory of Open Access Journals (Sweden)

    Pomp S.

    2012-02-01

    Full Text Available The fission fragment properties of 234U(n,f were investigated as a function of incident neutron energy from 0.2 MeV up to 5 MeV. The fission fragment mass, angular distribution and kinetic energy were measured with a double Frisch-grid ionization chamber using both analogue and digital data acquisition techniques. The reaction 234U(n,f is relevant, since it involves the same compound nucleus as formed after neutron evaporation from highly excited 236U*, the so-called second-chance fission of 235U. Experimental data on fission fragment properties like fission fragment mass and total kinetic energy (TKE as a function of incident neutron energy are rather scarce for this reaction. For the theoretical modelling of the reaction cross sections for Uranium isotopes this information is a crucial input parameter. In addition, 234U is also an important isotope in the Thorium-based fuel cycle. The strong anisotropy of the angular distribution around the vibrational resonance at En = 0.77 MeV could be confirmed using the full angular range. Fluctuations in the fragment TKE have been observed in the threshold region around the strong vibrational resonance at En = 0.77 MeV. The present results are in contradiction with corresponding literature values. Changes in the mass yield around the vibrational resonance and at En = 5 MeV relative to En = 2 MeV show a different signature. The drop in mean TKE around 2.5 to 3 MeV points to pair breaking as also observed in 235,238U(n,f. The measured two-dimensional mass yield and TKE distribution have been described in terms of fission modes. The yield of the standard 1 (S1 mode shows fluctuations in the threshold of the fission cross section due to the influence of the resonance and levels off at about 20% yield for higher incident neutron energies. The S2 mode shows the respective opposite behaviour. The mean TKE of both modes decreases with En. The decrease in mean TKE overrules the increase in S1 yield, so the mean

  11. Status of experimental data for neutron induced reactions

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Mamoru [Tohoku Univ., Sendai (Japan)

    1998-11-01

    A short review is presented on the status of experimental data for neutron induced reactions above 20 MeV based on the EXFOR data base and journals. Experimental data which were obtained in a systematic manner and/or by plural authors are surveyed and tabulated for the nuclear data evaluation and the benchmark test of the evaluated data. (author). 61 refs.

  12. Analytic computation of average energy of neutrons inducing fission

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Alexander Rich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-12

    The objective of this report is to describe how I analytically computed the average energy of neutrons that induce fission in the bare BeRP ball. The motivation of this report is to resolve a discrepancy between the average energy computed via the FMULT and F4/FM cards in MCNP6 by comparison to the analytic results.

  13. Study on induced radioactivity of China Spallation Neutron Source

    Institute of Scientific and Technical Information of China (English)

    吴青彪; 王庆斌; 吴靖民; 马忠剑

    2011-01-01

    China Spallation Neutron Source (CSNS) is the first High Energy Intense Proton Accelerator planned to be constructed in China during the State Eleventh Five-Year Plan period, whose induced radioactivity is very important for occupational disease hazard as

  14. Flow measurement by pulsed-neutron activation techniques at the PKL facility at Erlangen (Germany). [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Kehler, P.

    1982-03-01

    Flow velocities in the downcomer at the PKL facility (in Erlangen, Germany) were measured by the Pulsed-Neutron Activation (PNA) techniques. This was the first time that a fully automated PNA system, incorporating a dedicated computer for on-line data reduction, was used for flow measurements. A prototype of a portable, pulsed, high-output neutron source, developed by the Sandia National Laboratories for the US Nuclear Regulatory Commission, was also successfully demonstrated during this test. The PNA system was the primary flow-measuring device used at the PKL, covering the whole range of velocities of interest. In this test series, the PKL simulated small-break accidents similar to the one that occurred at TMI. The flow velocities in the downcomer were, therefore, very low, ranging between 0.03 and 0.35 m/sec. Two additional flow-measuring methods were used over a smaller range of velocities. Wherever comparison was possible, the PNA-derived velocity values agreed well with the measurements performed by the two more conventional methods.

  15. NATO Advanced Study Institute on Chemical Crystallography with Pulsed Neutrons and Synchrotron X-Rays

    CERN Document Server

    Jeffrey, George

    1988-01-01

    X-ray and neutron crystallography have played an increasingly impor­ tant role in the chemical and biochemical sciences over the past fifty years. The principal obstacles in this methodology, the phase problem and com­ puting, have been overcome. The former by the methods developed in the 1960's and just recognised by the 1985 Chemistry Nobel Prize award to Karle and Hauptman, the latter by the dramatic advances that have taken place in computer technology in the past twenty years. Within the last decade, two new radiation sources have been added to the crystallographer's tools. One is synchrotron X-rays and the other is spallation neutrons. Both have much more powerful fluxes than the pre­ vious sources and they are pulsed rather than continuos. New techniques are necessary to fully exploit the intense continuos radiation spectrum and its pulsed property. Both radiations are only available from particular National Laboratories on a guest-user basis for scientists outside these Na­ tional Laboratories. Hi...

  16. Intense Pulsed Neutron Source: Progress report 1991--1996. 15. Anniversary edition -- Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The 15th Anniversary Edition of the IPNS Progress Report is being published in recognition of the Intense Pulsed Neutron Source`s first 15 years of successful operation as a user facility. To emphasize the importance of this milestone, the author shave made the design and organization of the report significantly different from previous IPNS Progress Reports. This report consists of two volumes. For Volume 1, authors were asked to prepare articles that highlighted recent scientific accomplishments at IPNS, from 1991 to present; to focus on and illustrate the scientific advances achieved through the unique capabilities of neutron studies performed by IPNS users; to report on specific activities or results from an instrument; or to focus on a body of work encompassing different neutron-scattering techniques. Articles were also included on the accelerator system, instrumentation, computing, target, and moderators. A list of published and ``in press` articles in journals, books, and conference proceedings, resulting from work done at IPNS since 1991, was compiled. This list is arranged alphabetically according to first author. Publication references in the articles are listed by last name of first author and year of publication. The IPNS experimental reports received since 1991 are compiled in Volume 2. Experimental reports referenced in the articles are listed by last name of first author, instrument designation, and experiment number.

  17. Neutron/gamma pulse shape discrimination in plastic scintillators: Preparation and characterization of various compositions

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, Pauline [CEA, LIST, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette (France); Laboratoire de Photophysique et Photochimie Supramoléculaires et Macromoléculaires (CNRS UMR 8531), École Normale Supérieure de Cachan, 61 Avenue du Président Wilson, F-94235 Cachan cedex (France); Hamel, Matthieu, E-mail: matthieu.hamel@cea.fr [CEA, LIST, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette (France); Dehé-Pittance, Chrystèle; Rocha, Licinio [CEA, LIST, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette (France); Pansu, Robert B. [Laboratoire de Photophysique et Photochimie Supramoléculaires et Macromoléculaires (CNRS UMR 8531), École Normale Supérieure de Cachan, 61 Avenue du Président Wilson, F-94235 Cachan cedex (France); Normand, Stéphane [CEA, LIST, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette (France)

    2014-06-01

    This work deals with the preparation and evaluation of plastic scintillators for neutron/gamma pulse shape discrimination (PSD). We succeeded in developing a plastic scintillator with good neutron/gamma discrimination properties in the range of what is already being commercialized. Several combinations of primary and secondary fluorophores were implemented in chemically modified polymers. These scintillators were fully characterized by fluorescence spectroscopy and under neutron irradiation. The materials proved to be stable for up to 5 years without any degradation of PSD properties. They were then classified in terms of their PSD capabilities and light yield. Our best candidate, 28.6 wt% of primary fluorophore with a small amount of secondary fluorophore, shows promising PSD results and is particularly suited to industrial development, because its preparation does not involve the use of expensive or exotic compounds. Furthermore, even at the highest prepared concentration, high stability over time was observed. As a proof of concept, one sample with dimensions 109 mm ∅×114 mm height (≈1 L) was prepared.

  18. Intense Pulsed Neutron Source: Progress report 1991--1996. 15. Anniversary edition -- Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Marzec, B. [ed.

    1996-05-01

    The 15th Anniversary Edition of the IPNS Progress Report is being published in recognition of the Intense Pulsed Neutron Source`s first 15 years of successful operation as a user facility. To emphasize the importance of this milestone, the authors have made the design and organization of the report significantly different from previous IPNS Progress Reports. This report consists of two volumes. For Volume 1, authors were asked to prepare articles that highlighted recent scientific accomplishments at IPNS, from 1991 to present; to focus on and illustrate the scientific advances achieved through the unique capabilities of neutron studies performed by IPNS users; to report on specific activities or results from an instrument; or to focus on a body of work encompassing different neutron-scattering techniques. Articles were also included on the accelerator system, instrumentation, computing, target, and moderators. A list of published and ``in press` articles in journals, books, and conference proceedings, resulting from work done at IPNS since 1991, was compiled. This list is arranged alphabetically according to first author. Publication references in the articles are listed by last name of first author and year of publication. The IPNS experimental reports received since 1991 are compiled in Volume 2. Experimental reports referenced in the articles are listed by last name of first author, instrument designation, and experiment number.

  19. Material Classification by Analysis of Prompt Photon Spectra Induced by 14-Mev Neutrons

    Science.gov (United States)

    Barzilov, Alexander; Novikov, Ivan

    Neutron based technologies are widely used in the field of bulk material analysis. These methods employ characteristic prompt gamma rays induced by a neutron probe for classification of the interrogated object using the elemental parameters extracted from the spectral data. Automatic data analysis and material classification algorithms are required for applications where access to nuclear spectroscopy expertise is limited and/or the autonomous robotic operation is necessary. Data obtained with neutron based systems differ from elemental composition evaluations based on chemical formulae due to statistical nature of nuclear reactions, presence of shielding and cladding, and other environmental conditions. Experimental data that are produced by the spectral decomposition can be expressed graphically as sets of overlapping classes in a multidimensional space of measured elemental intensities. To discriminate between classes of various materials, decision-tree and pattern recognition algorithms were studied. Results of application of these methods to data sets obtained for a pulsed 14-MeV neutron generator based active interrogation system are discussed.

  20. Neutron-emission measurements at a white neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Robert C [Los Alamos National Laboratory

    2010-01-01

    Data on the spectrum of neutrons emittcd from neutron-induced reactions are important in basic nuclear physics and in applications. Our program studies neutron emission from inelastic scattering as well as fission neutron spectra. A ''white'' neutron source (continuous in energy) allows measurements over a wide range of neutron energies all in one experiment. We use the tast neutron source at the Los Alamos Neutron Science Center for incident neutron energies from 0.5 MeV to 200 MeV These experiments are based on double time-of-flight techniques to determine the energies of the incident and emitted neutrons. For the fission neutron measurements, parallel-plate ionization or avalanche detectors identify fission in actinide samples and give the required fast timing pulse. For inelastic scattering, gamma-ray detectors provide the timing and energy spectroscopy. A large neutron-detector array detects the emitted neutrons. Time-of-flight techniques are used to measure the energies of both the incident and emitted neutrons. Design considerations for the array include neutron-gamma discrimination, neutron energy resolution, angular coverage, segmentation, detector efficiency calibration and data acquisition. We have made preliminary measurements of the fission neutron spectra from {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. Neutron emission spectra from inelastic scattering on iron and nickel have also been investigated. The results obtained will be compared with evaluated data.

  1. High Energy Neutron Induced Gamma Production

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D A; Johnson, M; Navratil, P

    2007-09-28

    N Division has an interest in improving the physics and accuracy of the gamma data it provides to its customers. It was asked to look into major gamma producing reactions for 14 MeV incident neutrons for several low-Z materials and determine whether LLNL's processed data files faithfully represent the current state of experimental and theoretical knowledge for these reactions. To address this, we surveyed the evaluations of the requested materials, made recommendations for the next ENDL release and noted isotopes that will require further experimental study. This process uncovered several major problems in our translation and processing of the ENDF formatted evaluations, most of which have been resolved.

  2. Measurements of neutron-induced reactions in inverse kinematics and applications to nuclear astrophysics

    OpenAIRE

    2015-01-01

    Neutron capture cross sections of unstable isotopes are important for neutron-induced nucleosynthesis as well as for technological applications. A combination of a radioactive beam facility, an ion storage ring and a high flux reactor would allow a direct measurement of neutron induced reactions over a wide energy range on isotopes with half lives down to minutes. The idea is to measure neutron-induced reactions on radioactive ions in inverse kinematics. This means, the radioactive ions will ...

  3. Maximum Alpha to Minimum Fission Pulse Amplitude for a Parallel-Plate and Hemispherical Cf-252 Ion-Chamber Instrumented Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Oberer, R.B.

    2000-12-07

    In an instrumented Cf-252 neutron source, it is desirable to distinguish fission events which produce neutrons from alpha decay events. A comparison of the maximum amplitude of a pulse from an alpha decay with the minimum amplitude of a fission pulse shows that the hemispherical configuration of the ion chamber is superior to the parallel-plate ion chamber.

  4. Palm top plasma focus device as a portable pulsed neutron source.

    Science.gov (United States)

    Rout, R K; Niranjan, Ram; Mishra, P; Srivastava, R; Rawool, A M; Kaushik, T C; Gupta, Satish C

    2013-06-01

    Development of a palm top plasma focus device generating (5.2 ± 0.8) × 10(4) neutrons∕pulse into 4π steradians with a pulse width of 15 ± 3 ns is reported for the first time. The weight of the system is less than 1.5 kg. The system comprises a compact capacitor bank, a triggered open air spark gap switch, and a sealed type miniature plasma focus tube. The setup is around 14 cm in diameter and 12.5 cm in length. The energy driver for the unit is a capacitor bank of four cylindrical commercially available electrolytic capacitors. Each capacitor is of 2 μF capacity, 4.5 cm in diameter, and 9.8 cm in length. The cost of each capacitor is less than US$ 10. The internal diameter and the effective length of the plasma focus unit are 2.9 cm and 5 cm, respectively. A DC to DC converter power supply powered by two rechargeable batteries charges the capacitor bank to the desired voltage and also provides a trigger pulse of -15 kV to the spark gap. The maximum energy of operation of the device is 100 J (8 μF, 5 kV, 59 kA) with deuterium gas filling pressure of 3 mbar. The neutrons have also been produced at energy as low as 36 J (3 kV) of operation. The neutron diagnostics are carried out with a bank of (3)He detectors and with a plastic scintillator detector. The device is portable, reusable, and can be operated for multiple shots with a single gas filling.

  5. Phase measurement of fast light pulse in electromagnetically induced absorption.

    Science.gov (United States)

    Lee, Yoon-Seok; Lee, Hee Jung; Moon, Han Seb

    2013-09-23

    We report the phase measurement of a fast light pulse in electromagnetically induced absorption (EIA) of the 5S₁/₂ (F = 2)-5P₃/₂ (F' = 3) transition of ⁸⁷Rb atoms. Using a beat-note interferometer method, a stable measurement without phase dithering of the phase of the probe pulse before and after it has passed through the EIA medium was achieved. Comparing the phases of the light pulse in air and that of the fast light pulse though the EIA medium, the phase of the fast light pulse at EIA resonance was not shifted and maintained to be the same as that of the free-space light pulse. The classical fidelity of the fast light pulse according to the advancement of the group velocity by adjusting the atomic density was estimated to be more than 97%.

  6. Detection of Special Nuclear Material from Delayed Neutron Emission Induced by a Dual-Particle Monoenergetic Source

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Michael F.; Nattress, J.; Jovanovic, I

    2016-06-30

    Detection of unique signatures of special nuclear materials is critical for their interdiction in a variety of nuclear security and nonproliferation scenarios. We report on the observation of delayed neutrons from fission of uranium induced in dual-particle active interrogation based on the 11B(d,n gamma)12C nuclear reaction. Majority of the fissions are attributed to fast fission induced by the incident quasi-monoenergetic neutrons. A Li-doped glass–polymer composite scintillation neutron detector, which displays excellent neutron/γ discrimination at low energies, was used in the measurements, along with a recoil-based liquid scintillation detector. Time- dependent buildup and decay of delayed neutron emission from 238U were measured between the interrogating beam pulses and after the interrogating beam was turned off, respectively. Characteristic buildup and decay time profiles were compared to the common parametrization into six delayed neutron groups, finding a good agreement between the measurement and nuclear data. This method is promising for detecting fissile and fissionable materials in cargo scanning applications and can be readily integrated with transmission radiography using low-energy nuclear reaction sources.

  7. Dynamics of laser-induced electroconvection pulses.

    Science.gov (United States)

    Giebink, N C; Johnson, E R; Saucedo, S R; Miles, E W; Vardanyan, K K; Spiegel, D R; Allen, C C

    2004-06-01

    We first report that, for planar nematic 4-methoxy-benzilidene-4-butylaniline (MBBA), the electroconvection threshold voltage has a nonmonotonic temperature dependence, with a well-defined minimum, and a slope of about -0.12 V/degrees C near room temperature at 70 Hz. Motivated by this observation, we have designed an experiment in which a weak continuous-wave absorbed laser beam with a diameter comparable to the pattern wavelength generates a locally supercritical region, or pulse, in dye-doped MBBA. Working 10-20 % below the laser-free threshold voltage, we observe a steady-state pulse shaped as an ellipse with the semimajor axis oriented parallel to the nematic director, with a typical size of several wavelengths. The pulse is robust, persisting even when spatially extended rolls develop in the surrounding region, and displays rolls that counterpropagate along the director at frequencies of tenths of Hz, with the rolls on the left (right) side of the ellipse moving to the right (left). Systematic measurements of the sample-voltage dependence of the pulse amplitude, spatial extent, and frequency show a saturation or decrease when the control parameter (evaluated at the center of the pulse) approaches approximately 0.3. We propose that the model for these pulses should be based on the theory of control-parameter ramps, supplemented with new terms to account for the advection of heat away from the pulse when the surrounding state becomes linearly unstable. The advection creates a negative feedback between the pulse size and the efficiency of heat transport, which we argue is responsible for the attenuation of the pulse at larger control-parameter values.

  8. Measuring neutron-induced fission cross-section of shortlived actinides using a lead neutron-slowing-down spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Granier, T. E-mail: thierry.granier@cea.fr; Pangault, L.; Ethvignot, T.; Haight, R.C.; Ledoux, X.; Meot, V.; Patin, Y.; Pras, P.; Szmigiel, M.; Rundberg, R.S.; Wilhelmy, J.B

    2003-06-21

    The 'lead-slowing-down-spectrometer' method is an established technique for measuring neutron-induced reaction cross-sections. It is known to provide high neutron fluences below 100 keV. In this work, the possibility of applying this method to the measurement of the neutron-induced fission cross-section of shortlived actinides and in particular of the 77 eV isomer of {sup 235}U is investigated. Numerical simulations and a test-experiment using a photovaltaic cell fission detector demonstrate the feasibility of such a measurement at the Los Alamos Neutron Science Center using 800 MeV proton-induced spallation to provide source neutrons.

  9. Application of DSPs in Data Acquisition Systems for Neutron Scattering Experiments at the IBR—2 Pulsed Reactor

    Institute of Scientific and Technical Information of China (English)

    V.Butenko; B.Gebauer; 等

    2001-01-01

    DSPs are widely used in data acquisition systems on neutron spectrometers at the IBR-2 pulsed reactor.In this report several electronic blocks,based on the DSP of the TMS 320CXXXX family by the TI firm and intended to solve different tasks in DAQ systems,are described.

  10. Pulse-shape discrimination of the new plastic scintillators in neutron-gamma mixed field using fast digitizer card

    Science.gov (United States)

    Jančář, A.; Kopecký, Z.; Dressler, J.; Veškrna, M.; Matěj, Z.; Granja, C.; Solar, M.

    2015-11-01

    Recently invented plastic scintillator EJ-299-33 enables pulse-shape discrimination (PSD) and thus measurement of neutron and photon spectra in mixed fields. In this work we compare the PSD properties of EJ-299-33 plastic and the well-known NE-213 liquid scintillator in monoenergetic neutron fields generated by the Van de Graaff accelerator using the 3H(d, n)4He reaction. Pulses from the scintillators are processed by a newly developed digital measuring system employing the fast digitizer card. This card contains two AD converters connected to the measuring computer via 10 Gbps optical ethernet. The converters operate with a resolution of 12 bits and have two differential inputs with a sampling frequency 1 GHz. The resulting digital channels with different gains are merged into one composite channel with a higher digital resolution in a wide dynamic range of energies. Neutron signals are fully discriminated from gamma signals. Results are presented.

  11. 25--30 T water cooled pulse magnet concept for neutron scattering experiment

    Energy Technology Data Exchange (ETDEWEB)

    Eyssa, Y.M.; Walsh, R.P.; Miller, J.R.; Pernambuco-Wise, P.; Bird, M.D.; Schneider-Muntau, H.J. [National High Magnetic Field Lab., Tallahassee, FL (United States); Boeing, H.; Robinson, R. [Los Alamos National Lab., NM (United States)

    1997-12-31

    The Manuel Lujan Jr. Neutron Scattering Center, Los Alamos National Laboratory is in need of a high field, split-pair, pulse magnet that would provide a 25--30 T field in a 25 mm bore and 10 mm split gap for 2--4 ms at a repetition rate of 2 Hz. Single stack Bitter magnets of this type providing less than 20 T vertical field in the split gap have been constructed before. To produce higher fields, there is a need to use a multiple layer coil with internal reinforcement. The magnet should withstand up to 10{sup 7} cycles of loading and unloading. The authors have conducted a feasibility study that address these unique requirements.

  12. Use of delayed gamma rays for active non-destructive assay of {sup 235}U irradiated by pulsed neutron source (plasma focus)

    Energy Technology Data Exchange (ETDEWEB)

    Andola, Sanjay; Niranjan, Ram [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kaushik, T.C., E-mail: tckk@barc.gov.in [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Rout, R.K. [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kumar, Ashwani; Paranjape, D.B.; Kumar, Pradeep; Tomar, B.S.; Ramakumar, K.L. [Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Gupta, S.C. [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2014-07-01

    A pulsed neutron source based on plasma focus device has been used for active interrogation and assay of {sup 235}U by monitoring its delayed high energy γ-rays. The method involves irradiation of fissile material by thermal neutrons obtained after moderation of a burst of neutrons emitted upon fusion of deuterium in plasma focus (PF) device. The delayed gamma rays emitted from the fissile material as a consequence of induced fission were detected by a large volume sodium iodide (NaI(Tl)) detector. The detector is coupled to a data acquisition system of 2k input size with 2k ADC conversion gain. Counting was carried out in pulse height analysis mode for time integrated counts up to 100 s while the temporal profile of delayed gamma has been obtained by counting in multichannel scaling mode with dwell time of 50 ms. To avoid the effect of passive (natural) and active (from surrounding materials) backgrounds, counts have been acquired for gamma energy between 3 and 10 MeV. The lower limit of detection of {sup 235}U in the oxide samples with this set-up is estimated to be 14 mg.

  13. Laser induced breakdown spectroscopy with picosecond pulse train

    Science.gov (United States)

    Lednev, Vasily N.; Pershin, Sergey M.; Sdvizhenskii, Pavel A.; Grishin, Mikhail Ya; Davydov, Mikhail A.; Stavertiy, Anton Ya; Tretyakov, Roman S.

    2017-02-01

    Picosecond pulse train and nanosecond pulse were compared for laser ablation and laser induced breakdown spectroscopy (LIBS) measurements. A detailed study revealed that the picosecond pulse train ablation improved the quality of laser craters (symmetric crater walls and the absence of large redeposited droplets), which was explained by a smaller heat affected zone and suppression of melt splash. Greater plasma dimensions and brighter plasma emission were observed by gated imaging for picosecond pulse train compared to nanosecond pulse ablation. Increased intensity of atomic and ionic lines in gated and time integrated spectra provided better signal-to-noise ratio for picosecond pulse train sampling. Higher temperature and electron density were detected during first microsecond for the plasma induced by the picosecond pulse train. Improved shot-to-shot reproducibility for atomic/ionic line intensity in the case of picosecond pulse train LIBS was explained by more effective atomization of target material in plasma and better quality of laser craters. Improved precision and limits of detections were determined for picosecond pulse train LIBS due to better reproducibility of laser sampling and increased signal-to-noise ratio.

  14. The STM32 microcontroller based pulse intensity registration system for the neutron monitor

    Directory of Open Access Journals (Sweden)

    Shepetov Alexander

    2017-01-01

    Full Text Available We present the outlines of a new microcontroller based data acquisition system which is aimed for reliable operation in a typical cosmic ray particle registration experiment. The system supports connection of up to 16 input signals and ensures the following operation functionality: (1 stable monitoring of the intensity of a digital pulse signal, or digitization of a continuous potential level with a low time resolution (typically, about 1 s–100 s; (2 registration of uninterruptable high-resolution (up to 5–10 μs time series of the input signal intensity; (3 synchronization of registered time series with both external (physical or local (program-based trigger signal; (4 possibility of an on-the-fly change of the whole configuration of informational system (both the combination and type of input signals, time resolution and sum duration of the time series measurements, trigger logic, etc. immediately in operation time through convenient communication by plain text messages in dialog mode. In particular, the considered system is applied now for a long-term, high precision measurement of the counting rate of neutron signals at the NM64 type neutron supermonitor of the Tien Shan mountain cosmic ray station, with a real-time representation of the whole collected dataset in a WWW database.

  15. The STM32 microcontroller based pulse intensity registration system for the neutron monitor

    Science.gov (United States)

    Shepetov, Alexander; Chubenko, Alexander; Kryakunova, Olga; Nikolayevsky, Nikolay; Salikhov, Nazyf; Yanke, Victor

    2017-06-01

    We present the outlines of a new microcontroller based data acquisition system which is aimed for reliable operation in a typical cosmic ray particle registration experiment. The system supports connection of up to 16 input signals and ensures the following operation functionality: (1) stable monitoring of the intensity of a digital pulse signal, or digitization of a continuous potential level with a low time resolution (typically, about 1 s-100 s); (2) registration of uninterruptable high-resolution (up to 5-10 μs) time series of the input signal intensity; (3) synchronization of registered time series with both external (physical) or local (program-based) trigger signal; (4) possibility of an on-the-fly change of the whole configuration of informational system (both the combination and type of input signals, time resolution and sum duration of the time series measurements, trigger logic, etc.) immediately in operation time through convenient communication by plain text messages in dialog mode. In particular, the considered system is applied now for a long-term, high precision measurement of the counting rate of neutron signals at the NM64 type neutron supermonitor of the Tien Shan mountain cosmic ray station, with a real-time representation of the whole collected dataset in a WWW database.

  16. THz-Pulse-Induced Selective Catalytic CO Oxidation on Ru

    Science.gov (United States)

    LaRue, Jerry L.; Katayama, Tetsuo; Lindenberg, Aaron; Fisher, Alan S.; Ã-ström, Henrik; Nilsson, Anders; Ogasawara, Hirohito

    2015-07-01

    We demonstrate the use of intense, quasi-half-cycle THz pulses, with an associated electric field component comparable to intramolecular electric fields, to direct the reaction coordinate of a chemical reaction by stimulating the nuclear motions of the reactants. Using a strong electric field from a THz pulse generated via coherent transition radiation from an ultrashort electron bunch, we present evidence that CO oxidation on Ru(0001) is selectively induced, while not promoting the thermally induced CO desorption process. The reaction is initiated by the motion of the O atoms on the surface driven by the electric field component of the THz pulse, rather than thermal heating of the surface.

  17. Possibility of 5He emission in neutron induced reactions

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Jingshang

    2004-01-01

    The unstable nucleus 5He emission has never been included in the widely used statistical model codes as the evaluation tool and interpretation experimental data.The calculated threshold energies of 5He emission from light nuclei to heavy nuclei indicate that in most cases the compound nucleus induced by incident neutron would emit 5He rather than 3He. Since 5He is unstable and can be separated into n+α spontaneously,so neutron is produced in 5He emission process. The formulation of the double-differential cross section of the neutron from the two-body breakup process of emitted 5He is established. Because of the strong recoil effect, the energy balance is strictly taken into account to meet the needs in nuclear engineering. Further improvement of the statistical model calculation codes on this respect is proposed. It is expected that the correlative measurement will be available to account the outgoing neutron and alpha particle simultaneously and to test and verify the existence of 5He emission.

  18. Methodology for the use of proportional counters in pulsed fast neutron yield measurements

    OpenAIRE

    Tarifeño-Saldivia, Ariel; Mayer, Roberto E.; Pavez, Cristian; Soto, Leopoldo

    2011-01-01

    This paper introduces in full detail a methodology for the measurement of neutron yield and the necessary efficiency calibration, to be applied to the intensity measurement of neutron bursts where individual neutrons are not resolved in time, for any given moderated neutron proportional counter array. The method allows efficiency calibration employing the detection neutrons arising from an isotopic neutron source. Full statistical study of the procedure is descripted, taking into account cont...

  19. Measurement of the Ratio of High Energy Neutron in the Pulse Nuclear Reactor

    Institute of Scientific and Technical Information of China (English)

    MAO; Guo-shu; DING; You-qian; YANG; Lei; MA; Peng; YU; Zhen-hua

    2012-01-01

    <正>In the production of radioisotopes and neutron activation analysis, the fast neutron densities are very important to estimate the yields of the radioisotopes. In order to determine the fast neutron flux ratio, different foils are used to measure the thermal neutron flux and the fast neutron flux. In this paper 238U was used as only a monitor to measure the ratio of high energy neutron (>6 MeV). By measuring the

  20. Integrated system for production of neutronics and photonics calculational constants. Neutron-induced interactions: index of experimental data

    Energy Technology Data Exchange (ETDEWEB)

    MacGregor, M.H.; Cullen, D.E.; Howerton, R.J.; Perkins, S.T.

    1976-07-04

    Indexes to the neutron-induced interaction data in the Experimental Cross Section Information Library (ECSIL) as of July 4, 1976 are tabulated. The tabulation has two arrangements: isotope (ZA) order and reaction-number order.

  1. Experimental and numerical investigations of radiation characteristics of Russian portable/compact pulsed neutron generators: ING-031, ING-07, ING-06 and ING-10-20-120

    Energy Technology Data Exchange (ETDEWEB)

    Chernikova, D., E-mail: dina@nephy.chalmers.se [Chalmers University of Technology, Department of Applied Physics, Nuclear Engineering, Fysikgården 4, SE-412 96 Göteborg (Sweden); Romodanov, V.L.; Belevitin, A.G.; Afanas' ev, V.V.; Sakharov, V.K. [National Nuclear Research University/Moscow Engineering-Physics Institute (NIYaU MIFI), Moscow (Russian Federation); Bogolubov, E.P.; Ryzhkov, V.I.; Khasaev, T.O.; Sladkov, A.A.; Bitulev, A.A. [Dukhov All-Russia Research Institute of Automatics (VNIIA), Moscow (Russian Federation)

    2014-05-11

    The present paper discusses results of full-scale experimental and numerical investigations of influence of construction materials of portable pulsed neutron generators ING-031, ING-07, ING-06 and ING-10-20-120 (VNIIA, Russia) to their radiation characteristics formed during and after an operation (shutdown period). In particular, it is shown that an original monoenergetic isotropic angular distribution of neutrons emitted by TiT target changes into the significantly anisotropic angular distribution with a broad energy spectrum stretching to the thermal region. Along with the low-energetic neutron part, a significant amount of photons appears during the operation of generators. In the pulse mode of operation of neutron generator, a presence of the construction materials leads to the “tailing” of the original neutron pulse and the appearance of an accompanying photon pulse at ∼3ns after the instant neutron pulse. In addition to that, reactions of neutron capture and inelastic scattering lead to the creation of radioactive nuclides, such as {sup 58}Co, {sup 62}Cu, {sup 64}Cu and {sup 18}F, which form the so-called activation radiation. Thus, the selection of a portable neutron generator for a particular type of application has to be done considering radiation characteristics of the generator itself. This paper will be of interest to users of neutron generators, providing them with valuable information about limitations of a specific generator and with recommendations for improving the design and performance of the generator as a whole.

  2. A Novel Transcranial Magnetic Stimulator Inducing Near Rectangular Pulses with Controllable Pulse Width (cTMS)

    Science.gov (United States)

    Jalinous, Reza; Lisanby, Sarah H.

    2013-01-01

    A novel transcranial magnetic stimulation (TMS) device with controllable pulse width (PW) and near rectangular pulse shape (cTMS) is described. The cTMS device uses an insulated gate bipolar transistor (IGBT) with appropriate snubbers to switch coil currents up to 7 kA, enabling PW control from 5 μs to over 100 μs. The near-rectangular induced electric field pulses use 22–34% less energy and generate 67–72% less coil heating compared to matched conventional cosine pulses. CTMS is used to stimulate rhesus monkey motor cortex in vivo with PWs of 20 to 100 μs, demonstrating the expected decrease of threshold pulse amplitude with increasing PW. The technological solutions used in the cTMS prototype can expand functionality, and reduce power consumption and coil heating in TMS, enhancing its research and therapeutic applications. PMID:18232369

  3. Detecting special nuclear material using muon-induced neutron emission

    Energy Technology Data Exchange (ETDEWEB)

    Guardincerri, Elena; Bacon, Jeffrey; Borozdin, Konstantin; Matthew Durham, J.; Fabritius II, Joseph [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hecht, Adam [University of New Mexico, Albuquerque, NM 87131 (United States); Milner, Edward C. [Southern Methodist University, Dallas, TX 75205 (United States); Miyadera, Haruo; Morris, Christopher L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Perry, John [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); University of New Mexico, Albuquerque, NM 87131 (United States); Poulson, Daniel [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-07-21

    The penetrating ability of cosmic ray muons makes them an attractive probe for imaging dense materials. Here, we describe experimental results from a new technique that uses neutrons generated by cosmic-ray muons to identify the presence of special nuclear material (SNM). Neutrons emitted from SNM are used to tag muon-induced fission events in actinides and laminography is used to form images of the stopping material. This technique allows the imaging of SNM-bearing objects tagged using muon tracking detectors located above or to the side of the objects, and may have potential applications in warhead verification scenarios. During the experiment described here we did not attempt to distinguish the type or grade of the SNM.

  4. 低强度脉冲中子束的数字式n/γ分辨测量%Digital n/γ discrimination measurement of low intensity pulsed neutron

    Institute of Scientific and Technical Information of China (English)

    田耕; 欧阳晓平; 渠红光; 张显鹏; 刘金良; 李海涛

    2015-01-01

    Background: The traditional measurement methods in which the detectors are working in counting mode or current mode all have limitations in the measurement of low intensity pulsed neutron.Purpose: We aim to establish a method for low intensity pulsed neutron measurement to acquire the spectra of energy and time by digitalizing and analyzing the fast current pulse generated by detector as each single neutron induced.Methods: A digital pulse shape discrimination (DPSD) system for low intensity pulsed neutron measurement has been developed, which employs wideband digital oscilloscope as data acquisition device. With BC501A liquid scintillator detector, the system can acquire and store the waveforms of neutrons andγ-rays, and discriminate neutrons from all waveforms by DPSD algorithms. The system has two operation modes as “continuous acquisition” and “acquisition window with time stamp” for different event rates according to the intensity of pulsed neutron.Results: The function of pulse height analysis of neutrons is achieved, and time information of neutron’s arriving can be acquired by the analysis of the position of the waveform in the record or the time stamps. Experiment has been carried out with Am-Be neutron source with the operation mode of acquisition window, and the neutron pulse height spectrum, time spectrum and n/γ discrimination spectrum have been acquired.Conclusion: The spectra of energy and time of low intensity pulsed neutron can be measured by the digital method which employees wideband digital oscilloscope and digital signal processing algorithms, and has the advantage that all original waveforms of neutrons andγ-rays can be stored for further analysis.%针对低强度脉冲中子束测量,使用高速数字示波器作为数据采集设备,配合BC501A液体闪烁体探测器组建了数字式脉冲形状甄别(Digital Pulse Shape Discrimination, DPSD)测量系统,实现了中子的n/γ分辨测量。系统工作时采集并存

  5. Vibrationally-induced electronic population inversion with strong femtosecond pulses

    CERN Document Server

    Sampedro, Pablo; Sola, Ignacio R

    2016-01-01

    We discover a new mechanism of electronic population inversion using strong femtosecond pulses, where the transfer is mediated by vibrational motion on a light-induced potential. The process can be achieved with a single pulse tuning its frequency to the red of the Franck-Condon window. We show the determinant role that the sign of the slope of the transition dipole moment can play on the dynamics, and extend the method to multiphoton processes with odd number of pulses. As an example, we show how the scheme can be applied to population inversion in Na2.

  6. The 35-Day Evolution of the Hercules X-1 Pulse Profile Evidence For A Resolved Inner Disk Occultation of the Neutron Star

    CERN Document Server

    Scott, D M; Wilson, R B; Leahy, Denis A.; Wilson, Robert B.

    2000-01-01

    Ginga and Rossi X-ray Timing Explorer (RXTE) observations have allowed anunprecedented view of the recurrent systematic pulse shape changes associatedwith the 35-day cycle of Hercules X-1, a phenomenon currently unique among theknown accretion-powered pulsars. We present observations of the pulse shapeevolution. An explanation for the pulse evolution in terms of a freelyprecessing neutron star is reviewed and shown to have several majordifficulties in explaining the observed pulse evolution pattern. Instead, wepropose a phenomenological model for the pulse evolution based upon anoccultation of the pulse emitting region by the tilted, inner edge of aprecessing accretion disk. The systematic and repeating pulse shape changesrequire a resolved occultation of the pulse emission region. The observed pulseprofile motivates the need for a pulsar beam consisting of a composite coaxialpencil and fan beam but the observed evolution pattern requires the fan beam tobe focused around the neutron star and beamed in the ant...

  7. The imprint of the crustal magnetic field on the thermal spectra and pulse profiles of isolated neutron stars

    CERN Document Server

    Perna, Rosalba; Pons, Jose' A; Rea, Nanda

    2013-01-01

    Isolated neutron stars (NSs) show a bewildering variety of astrophysical manifestations, presumably shaped by the magnetic field strength and topology at birth. Here, using state-of-the art calculations of the coupled magnetic and thermal evolution of NSs, we compute the thermal spectra and pulse profiles expected for a variety of initial magnetic field configurations. In particular, we contrast models with purely poloidal magnetic fields to models dominated by a strong internal toroidal component. We find that, while the former displays double peaked profiles and very low pulsed fractions, in the latter, the anisotropy in the surface temperature produced by the toroidal field often results in a single pulse profile, with pulsed fractions that can exceed the 50-60% level even for perfectly isotropic local emission. We further use our theoretical results to generate simulated "observed" spectra, and show that blackbody (BB) fits result in inferred radii that can be significantly smaller than the actual NS radi...

  8. distributions for the thermal neutron induced fission of 234U

    Directory of Open Access Journals (Sweden)

    Al-Adili A.

    2016-01-01

    In addition, the analysis of thermal neutron induced fission of 234U(n,f will be discussed. Currently analysis of data is ongoing, originally taken at the ILL reactor. The experiment is of particular interest since no measurement exist of the mass and energy distributions for this system at thermal energies. One main problem encountered during analysis was the huge background of 235U(nth,f. Despite the negligible isotopic traces in the sample, the cross section difference is enormous. Solution to this parasitic background will be highlighted.

  9. Neutron distribution and induced activity inside a Linac treatment room.

    Science.gov (United States)

    Juste, B; Miró, R; Verdú, G; Díez, S; Campayo, J M

    2015-01-01

    Induced radioactivity and photoneutron contamination inside a radiation therapy bunker of a medical linear accelerator (Linac) is investigated in this work. The Linac studied is an Elekta Precise electron accelerator which maximum treatment photon energy is 15 MeV. This energy exceeds the photonuclear reaction threshold (around 7 MeV for high atomic number metals). The Monte Carlo code MCNP6 has been used for quantifying the neutron contamination inside the treatment room for different gantry rotation configuration. Walls activation processes have also been simulated. The approach described in this paper is useful to prevent the overexposure of patients and medical staff.

  10. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: the EXILL campaign

    Directory of Open Access Journals (Sweden)

    de France G.

    2014-03-01

    Full Text Available A combination of germanium detectors has been installed at the PF1B neutron guide of the ILL to perform the prompt spectroscopy of neutron-rich nuclei produced in the neutron-capture induced-fission of 235U and 241Pu. In addition LaBr3 detectors from the FATIMA collaboration have been installed in complement with the EXOGAM clovers to measure lifetimes of low-lying excited states. The measured characteristics and online spectra indicate very good performances of the overall setup.

  11. Dielectric breakdown induced by picosecond laser pulses

    Science.gov (United States)

    Smith, W. L.; Bechtel, J. H.; Bloembergen, N.

    1976-01-01

    The damage thresholds of transparent optical materials were investigated. Single picosecond pulses at 1.06 microns, 0.53 microns and 0.35 microns were obtained from a mode locked Nd-YAG oscillator-amplifier-frequency multiplier system. The pulses were Gaussian in space and time and permitted the determination of breakdown thresholds with a reproducibility of 15%. It was shown that the breakdown thresholds are characteristic of the bulk material, which included nine alkali halides, five different laser host materials, KDP, quartz, sapphire and calcium fluoride. The extension of the damage data to the ultraviolet is significant, because some indication was obtained that two- and three-photon absorption processes begin to play a role in determining the threshold. Throughout the visible region of the spectrum the threshold is still an increasing function of frequency, indicating that avalanche ionization is the dominant factor in determining the breakdown threshold. This was confirmed by a detailed study of the damage morphology with a high resolution microscope just above the threshold. The influence of self focusing is discussed, and evidence for beam distortion below the power threshold for complete self focusing is presented, confirming the theory of Marburger.

  12. Proceedings of the workshop on ion source issues relevant to a pulsed spallation neutron source: Part 2 workshop presentations

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, L.; Leung, Ka-Ngo; Alonso, J. [eds.

    1994-10-01

    As part of the Lawrence Berkeley Laboratory Pulsed Spallation Source study, this Workshop was convened to address ion-source technology`s present status with respect to the next-generation Pulsed Spallation Source in the 1-5 MW range for the neutron scattering community. Considerations of Low Energy Beam Transport (LEBT) parameters and designs were included in the discussions throughout the Workshop. Ion-source requirements and actually-achieved performances were assessed, resulting in a determination of research and development requirements to bridge the gap. Part 1 of these Proceedings summarizes the Workshop; Part 2 contains viewgraphs of Workshop presentations.

  13. Pressure and stress waves in a spallation neutron source mercury target generated by high-power proton pulses

    CERN Document Server

    Futakawa, M; Conrad, H; Stechemesser, H

    2000-01-01

    The international ASTE collaboration has performed a first series of measurements on a spallation neutron source target at the Alternating Gradient Synchrotron (AGS) in Brookhaven. The dynamic response of a liquid mercury target hit by high-power proton pulses of about 40 ns duration has been measured by a laser Doppler technique and compared with finite elements calculations using the ABAQUS code. It is shown that the calculation can describe the experimental results for at least the time interval up to 100 mu s after the pulse injection. Furthermore, it has been observed that piezoelectric pressure transducers cannot be applied in the high gamma-radiation field of a spallation target.

  14. TECHNICAL DESIGN NOTE: System for measurement of low yield neutron pulses from D D fusion reactions based upon a 3He proportional counter

    Science.gov (United States)

    Moreno, José; Birstein, Lipo; Mayer, Roberto E.; Silva, Patricio; Soto, Leopoldo

    2008-08-01

    A conventional neutron detection technique was adapted to measure low neutron yields from D-D fusion pulses. This method uses a 3He proportional counter surrounded by a paraffin moderator. Electric signals generated in the 3He tube are fed into a preamplifier. The output of the preamplifier is directly connected to a digital oscilloscope. The time-integrated signals represent the charge generated in the 3He tube which is proportional to the total neutron yield. The integration time is determined by the preamplifier and moderator characteristics within some hundreds of microseconds. No meaningful neutron background was detected during this time window. The system, previously calibrated, was used to measure the neutron yield (low as 103 neutrons per pulse were measured.

  15. Probing energy dissipation, γ-ray and neutron multiplicity in the thermal neutron-induced fission of {sup 239}Pu

    Energy Technology Data Exchange (ETDEWEB)

    Pahlavani, M.R.; Mirfathi, S.M. [University of Mazandaran, Department of Nuclear Physics, Faculty of Basic Science, Babolsar (Iran, Islamic Republic of)

    2016-04-15

    The incorporation of the four-dimensional Langevin equations led to an integrative description of fission cross-section, fragment mass distribution and the multiplicity and energy distribution of prompt neutrons and γ-rays in the thermal neutron-induced fission of {sup 239}Pu. The dynamical approach presented in this paper thoroughly reproduces several experimental observables of the fission process at low excitation energy. (orig.)

  16. Digital pulse-timing technique for the neutron detector array NEDA

    Energy Technology Data Exchange (ETDEWEB)

    Modamio, V., E-mail: victor.modamio@lnl.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Italy); Valiente-Dobón, J.J. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Italy); Jaworski, G. [Faculty of Physics, Warsaw University of Technology, 00-662 Warszawa (Poland); Heavy Ion Laboratory, University of Warsaw, 02-093 Warszawa (Poland); Hüyük, T. [Instituto de Física Corpuscular, CSIC-Universitat de València, E-46980 Valencia (Spain); Triossi, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Italy); Egea, J. [Instituto de Física Corpuscular, CSIC-Universitat de València, E-46980 Valencia (Spain); Department of Electronic Engineering, Universitat de València, E-46100 Burjassot (Spain); Di Nitto, A. [Johannes Gutenberg-Universität Mainz, D-55099 Mainz (Germany); Söderström, P.-A. [RIKEN Nishina Center, 2-1 Hirosawa, Wako-shi, 351-0198 Saitama (Japan); Agramunt Ros, J. [Instituto de Física Corpuscular, CSIC-Universitat de València, E-46980 Valencia (Spain); Angelis, G. de [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Italy); France, G. de [GANIL, CEA/DSAM and CNRS/IN2P3, F-14076 Caen (France); Erduran, M.N. [Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, 34303 Istanbul (Turkey); and others

    2015-03-01

    A new digital pulse-timing algorithm, to be used with the future neutron detector array NEDA, has been developed and tested. The time resolution of four 5 in. diameter photomultiplier tubes (XP4512, R4144, R11833-100, and ET9390-kb), coupled to a cylindrical 5 in. by 5 in. BC501A liquid scintillator detector was measured by employing digital sampling electronics and a constant fraction discriminator (CFD) algorithm. The zero crossing of the CFD algorithm was obtained with a cubic spline interpolation, which was continuous up to the second derivative. The performance of the algorithm was studied at sampling rates of 500 MS/s and 200 MS/s. The time resolution obtained with the digital electronics was compared to the values acquired with a standard analog CFD. The result of this comparison shows that the time resolution from the analog and the digital measurements at 500 MS/s and at 200 MS/s are within 15% for all the tested photomultiplier tubes.

  17. Nuclear Material Detection by One-Short-Pulse-Laser-Driven Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aymond, F. [Univ. of Texas at Austin, TX (United States); Bridgewater, Jon S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deppert, O. [Technische Universitat Darmstadt (Germany); Devlin, Matthew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Falk, Katerina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fernandez, Juan Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gautier, Donald Cort [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gonzales, Manuel A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goodsell, Alison Victoria [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Guler, Nevzat [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hamilton, Christopher Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hegelich, Bjorn Manuel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ianakiev, Kiril Dimitrov [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Iliev, Metodi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johnson, Randall Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jung, Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kleinschmidt, Annika [Technische Universitat Darmstadt (Germany); Koehler, Katrina Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pomerantz, Ishay [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Roth, Markus [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Santi, Peter Angelo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shimada, Tsutomu [Los Alamos National Laboratory; Swinhoe, Martyn Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Taddeucci, Terry Nicholas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wurden, Glen Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Palaniyappan, Sasikumar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McCary, E. [Univ. of Texas at Austin, TX (United States)

    2015-01-28

    Covered in the PowerPoint presentation are the following areas: Motivation and requirements for active interrogation of nuclear material; laser-driven neutron source; neutron diagnostics; active interrogation of nuclear material; and, conclusions, remarks, and future works.

  18. New Measurements and Calculations to Characterize the Caliban Pulsed Reactor Cavity Neutron Spectrum by the Foil Activation Method

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, X.; Casoli, P.; Authier, N.; Rousseau, G. [CEA, Centre de Valduc, 21120 Is-sur-Tille (France); Barsu, C. [Pl. de la fontaine, 25410 Corcelles-Ferrieres (France)

    2011-07-01

    Caliban is a cylindrical metallic core reactor mainly composed of uranium 235. It is operated by the Criticality and Neutron Science Research Laboratory located at the French Atomic Energy Commission research center in Valduc. As with other fast burst reactors, Caliban is used extensively for determining the responses of electronic parts or other objects and materials to neutron-induced displacements. Therefore, Caliban's irradiation characteristics, and especially its central cavity neutron spectrum, have to be very accurately evaluated. The foil activation method has been used in the past by the Criticality and Neutron Science Research Laboratory to evaluate the neutron spectrum of the different facilities it operated, and in particular to characterize the Caliban cavity spectrum. In order to strengthen and to improve our knowledge of the Caliban cavity neutron spectrum and to reduce the uncertainties associated with the available evaluations, new measurements have been performed on the reactor and interpreted by the foil activation method. A sensor set has been selected to sample adequately the studied spectrum. Experimental measured reaction rates have been compared to the results from UMG spectrum unfolding software and to values obtained with the activation code Fispact. Experimental and simulation results are overall in good agreement, although gaps exist for some sensors. UMG software has also been used to rebuild the Caliban cavity neutron spectrum from activation measurements. For this purpose, a default spectrum is needed, and one has been calculated with the Monte-Carlo transport code Tripoli 4 using the benchmarked Caliban description. (authors)

  19. Recent Performance and Ignition Tests of the pulsed SNS H- Source for 1-MW Neutron Production

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, Martin P [ORNL; Han, Baoxi [ORNL; Murray, Jr, S N [ORNL; Pennisi, Terry R [ORNL; Piller, Chip [ORNL; Santana, Manuel [ORNL; Welton, Robert F [ORNL

    2015-01-01

    After acquiring several reliable spare targets, SNS ramped the beam power from 850 kW to 1.4 MW, which required an increase in H- beam pulse length from 0.88 to 1.0 ms at 60 Hz. This increase initially produced slow 2-MHz power ramp-ups and, after several weeks of uninterrupted operation, it produced plasma outages every time the pulse length was raised above ~0.95 ms. Similar outages were previously observed towards the end of long service cycles, which were believed to indicate that the breakdown voltage of the high purity hydrogen started to exceed the induced electric fields. In 2011 the RF was reconfigured to start with 10 cycles of 1.96 MHz, which yielded the shortest H- beam rise times and apparently eliminated those plasma outages. The new, pulse-length dependent outages were eliminated by increasing the initial frequency to 1.985 MHz. However, careful frequency studies are unable to justify this frequency. In addition, the paper discusses the issues and solutions for the electron-dump voltage, which starts to sag and become unstable after several weeks of high current operation.

  20. Pulse mode of laser photodynamic treatment induced cell apoptosis.

    Science.gov (United States)

    Klimenko, Vladimir V; Knyazev, Nickolay A; Moiseenko, Fedor V; Rusanov, Anatoliy A; Bogdanov, Alexey A; Dubina, Michael V

    2016-03-01

    One of the factors limiting photodynamic therapy (PDT) is hypoxia in tumor cells during photodynamic action. PDT with pulse mode irradiation and appropriate irradiation parameters could be more effective in the singlet oxygen generation and tissue re-oxygenation than continuous wave (CW) mode. We theoretically demonstrate differences between the cumulative singlet oxygen concentration in PDT using pulse mode and CW mode of laser irradiation. In vitro experimental results show that photodynamic treatment with pulse mode irradiation has similar cytotoxicity to CW mode and induces mainly cell apoptosis, whereas CW mode induces necrotic cell death. We assume that the cumulative singlet oxygen concentration and the temporal distribution of singlet oxygen are important in photodynamic cytotoxicity and apoptosis initiation. We expect our research may improve irradiation protocols and photodynamic therapy efficiency.

  1. Evaluating the 239Pu Prompt Fission Neutron Spectrum Induced by Thermal to 30 MeV Neutrons

    Directory of Open Access Journals (Sweden)

    Neudecker D.

    2016-01-01

    Full Text Available We present a new evaluation of the 239Pu prompt fission neutron spectrum (PFNS induced by thermal to 30 MeV neutrons. Compared to the ENDF/B-VII.1 evaluation, this one includes recently published experimental data as well as an improved and extended model description to predict PFNS. For instance, the pre-equilibrium neutron emission component to the PFNS is considered and the incident energy dependence of model parameters is parametrized more realistically. Experimental and model parameter uncertainties and covariances are estimated in detail. Also, evaluated covariances are provided between all PFNS at different incident neutron energies. Selected evaluation results and first benchmark calculations using this evaluation are briefly discussed.

  2. Evaluating the 239Pu Prompt Fission Neutron Spectrum Induced by Thermal to 30 MeV Neutrons

    Science.gov (United States)

    Neudecker, D.; Talou, P.; Kawano, T.; Kahler, A. C.; Rising, M. E.; White, M. C.

    2016-03-01

    We present a new evaluation of the 239Pu prompt fission neutron spectrum (PFNS) induced by thermal to 30 MeV neutrons. Compared to the ENDF/B-VII.1 evaluation, this one includes recently published experimental data as well as an improved and extended model description to predict PFNS. For instance, the pre-equilibrium neutron emission component to the PFNS is considered and the incident energy dependence of model parameters is parametrized more realistically. Experimental and model parameter uncertainties and covariances are estimated in detail. Also, evaluated covariances are provided between all PFNS at different incident neutron energies. Selected evaluation results and first benchmark calculations using this evaluation are briefly discussed.

  3. Simultaneous measurement of fission fragments and prompt neutrons for thermal neutron-induced fission of U-235

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Katsuhisa; Yamamoto, Hideki; Kimura, Itsuro; Nakagome, Yoshihiro [Kyoto Univ. (Japan)

    1997-03-01

    Simultaneous measurement of fission fragments and prompt neutrons following the thermal neutron induced fission of U-235 has been performed in order to obtain the neutron multiplicity (v) and its emission energy ({eta}) against the specified mass (m{sup *}) and the total kinetic energy (TKE). The obtained value of -dv/dTKE(m{sup *}) showed a saw-tooth distribution. The average neutron energy <{eta}>(m{sup *}) had a distribution with a reflection symmetry around the half mass division. The measurement also gave the level density parameters of the specified fragment, a(m{sup *}), and this parameters showed a saw-tooth trend too. The analysis by a phenomenological description of this parameters including the shell and collective effects suggested the existence of a collective motion of the fission fragments. (author)

  4. Magnetic discharge accelerating diode for the gas-filled pulsed neutron generators based on inertial confinement of ions

    Science.gov (United States)

    Kozlovskij, K. I.; Shikanov, A. E.; Vovchenko, E. D.; Shatokhin, V. L.; Isaev, A. A.; Martynenko, A. S.

    2016-09-01

    The paper deals with magnetic discharge diode module with inertial electrostatic ions confinement for the gas-filled pulsed neutron generators. The basis of the design is geometry with the central hollow cathode surrounded by the outer cylindrical anode and electrodes made of permanent magnets. The induction magnitude about 0.1-0.4 T in the central region of the discharge volume ensures the confinement of electrons in the space of hollow (virtual) cathode and leads to space charge compensation of accelerated ions in the centre. The research results of different excitation modes in pulsed high-voltage discharge are presented. The stable form of the volume discharge preserveing the shape and amplitude of the pulse current in the pressure range of 10-3-10-1 Torr and at the accelerating voltage up to 200 kV was observed.

  5. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    Directory of Open Access Journals (Sweden)

    Mao Xinggang

    2010-12-01

    Full Text Available Abstract Background Boron neutron capture therapy (BNCT is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE of BNCT, γ-ray and reactor neutron irradiation. Methods The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical University (FMMU in China. Human glioma cells (the U87, U251, and SHG44 cell lines were irradiated by neutron beams at the XAPR or [60Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [60Co] γ-rays; Group C included cells treated with 8 Gy of [60Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM. The apoptosis rate was detected by flow cytometer (FCM. The level of Bcl-2 and Bax protein was measured by western blot analysis. Results Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [60Co] γ-rays (P 60Co] γ-rays (P P Conclusions Compared with ��-ray and reactor neutron irradiation, a higher RBE can be achieved upon treatment of glioma cells with BNCT. Glioma cell apoptosis induced by

  6. Tissue tearing caused by pulsed laser-induced ablation pressure.

    Science.gov (United States)

    Cummings, J P; Walsh, J T

    1993-02-01

    Pressure induced by ablative pulses of laser radiation is shown to correlate with the mechanical disruption of tissue. The ablation pressure induced during Er:YSGG laser irradiation of skin, liver, and aorta was calculated from a ballistic pendulum-based measurement of recoil momentum. The ejected material and ablation crater were examined grossly and microscopically after ablation. A gas-dynamic model of laser-induced vaporization was used to understand the measured pressures. The results show that mechanical disruption of tissue occurs when the ablation pressure exceeds the strength of the irradiated tissue at sites of intrinsic weakness.

  7. Investigation on a new inducer of pulsed eddy current thermography

    Science.gov (United States)

    He, Min; Zhang, Laibin; Zheng, Wenpei; Feng, Yijing

    2016-09-01

    In this paper, a new inducer of pulsed eddy current thermography (PECT) is presented. The use of the inducer can help avoid the problem of blocking the infrared (IR) camera's view in eddy current thermography technique. The inducer can also provide even heating of the test specimen. This paper is concerned with the temperature distribution law around the crack on a specimen when utilizing the new inducer. Firstly, relative mathematical models are provided. In the following section, eddy current distribution and temperature distribution around the crack are studied using the numerical simulation method. The best separation distance between the inducer and the specimen is also determined. Then, results of temperature distribution around the crack stimulated by the inducer are gained by experiments. Effect of current value on temperature rise is studied as well in the experiments. Based on temperature data, temperature features of the crack are discussed.

  8. Investigation on a new inducer of pulsed eddy current thermography

    Directory of Open Access Journals (Sweden)

    Min He

    2016-09-01

    Full Text Available In this paper, a new inducer of pulsed eddy current thermography (PECT is presented. The use of the inducer can help avoid the problem of blocking the infrared (IR camera’s view in eddy current thermography technique. The inducer can also provide even heating of the test specimen. This paper is concerned with the temperature distribution law around the crack on a specimen when utilizing the new inducer. Firstly, relative mathematical models are provided. In the following section, eddy current distribution and temperature distribution around the crack are studied using the numerical simulation method. The best separation distance between the inducer and the specimen is also determined. Then, results of temperature distribution around the crack stimulated by the inducer are gained by experiments. Effect of current value on temperature rise is studied as well in the experiments. Based on temperature data, temperature features of the crack are discussed.

  9. Experimental Evaluation of Neutron Induced Noise on Gated X-ray Framing Cameras

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, N; Stone, G; Hagmann, C; Sorce, C; Bradley, D K; Moran, M; Landen, O L; Stoeffl, W; Springer, P; Tommasini, R; Hermann, H W; Kyrala, G A; Glebov, V Y; Sangster, T C; Koch, J A

    2009-10-08

    A micro-channel plate based temporally-gated x-ray camera (framing camera) is one of the most versatile diagnostic tools of inertial confinement fusion experiments; particularly for observation of the shape of x-ray self emission from compressed core of imploded capsules. However, components used in an x-ray framing camera have sensitivity to neutrons induced secondary radiations. On early low-yield capsule implosions at the National Ignition Facility (NIF), the expected neutron production is about 5 x 10{sup 14}. Therefore, the expected neutron fluence at a framing camera located {approx} 150 cm from the object is 2 x 10{sup 9} neutrons/cm{sup 2}. To obtain gated x-ray images in such harsh neutron environments, quantitative understanding of neutron-induced backgrounds is crucial.

  10. Deuterium–deuterium nuclear reaction induced by high intensity laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, L., E-mail: lorenzo.torrisi@unime.it [INFN-LNS, Via S. Sofia 44, 95123 Catania (Italy); Dip.to di Fisica, Università di Messina, V.le F.S. D’Alcontres 31, 98166 S. Agata, Messina (Italy); Cavallaro, S.; Cutroneo, M.; Giuffrida, L. [INFN-LNS, Via S. Sofia 44, 95123 Catania (Italy); Dip.to di Fisica, Università di Messina, V.le F.S. D’Alcontres 31, 98166 S. Agata, Messina (Italy); Krasa, J.; Margarone, D.; Velyhan, A. [Institute of Physics, ASCR, v.v.i., 182 21 Prague 8 (Czech Republic); Kravarik, J. [Institute of Physics, ASCR, v.v.i., 182 21 Prague 8 (Czech Republic); Czech Technical University, Faculty of Electro-Engineering, Prague (Czech Republic); Ullschmied, J. [Institute of Physics, ASCR, v.v.i., 182 21 Prague 8 (Czech Republic); Wolowski, J.; Szydlowski, A.; Rosinski, M. [Institute of Plasma Physics and Laser Microfusion, IPPLM, 23 Hery Str., 01-497 Warsaw (Poland)

    2013-05-01

    A 10{sup 16} W/cm{sup 2} Asterix laser pulse intensity, 1315 nm wavelength, 300 ps pulse duration, was employed at PALS laboratory of Prague, to irradiate thick and thin primary CD{sub 2} targets placed into the high vacuum chamber. The laser irradiation produces non-equilibrium plasma with deuterons and carbon ions emission with energy up to about 4 MeV per charge state, as measured by time-of-flight (TOF) techniques by using ion collectors and silicon carbide detectors. Accelerated deuterium ions may induce high D–D cross section for fusion processes generating 3 MeV protons and 2.5 MeV neutrons, as measured by TOF analyses. In order to increase the mono-energetic proton yield, secondary CD{sub 2} targets can be availed to be irradiated by the plasma-accelerated deuterons. Experiments demonstrated that high intensity laser pulses can be employed to promote nuclear reactions from which characteristic ion streams may be developed. Results open new scenario for applications of laser-generated plasma to the fields of ion sources and ion accelerators.

  11. Deuterium-deuterium nuclear reaction induced by high intensity laser pulses

    Science.gov (United States)

    Torrisi, L.; Cavallaro, S.; Cutroneo, M.; Giuffrida, L.; Krasa, J.; Margarone, D.; Velyhan, A.; Kravarik, J.; Ullschmied, J.; Wolowski, J.; Szydlowski, A.; Rosinski, M.

    2013-05-01

    A 1016 W/cm2 Asterix laser pulse intensity, 1315 nm wavelength, 300 ps pulse duration, was employed at PALS laboratory of Prague, to irradiate thick and thin primary CD2 targets placed into the high vacuum chamber. The laser irradiation produces non-equilibrium plasma with deuterons and carbon ions emission with energy up to about 4 MeV per charge state, as measured by time-of-flight (TOF) techniques by using ion collectors and silicon carbide detectors. Accelerated deuterium ions may induce high D-D cross section for fusion processes generating 3 MeV protons and 2.5 MeV neutrons, as measured by TOF analyses. In order to increase the mono-energetic proton yield, secondary CD2 targets can be availed to be irradiated by the plasma-accelerated deuterons. Experiments demonstrated that high intensity laser pulses can be employed to promote nuclear reactions from which characteristic ion streams may be developed. Results open new scenario for applications of laser-generated plasma to the fields of ion sources and ion accelerators.

  12. An algorithm for charge-integration, pulse-shape discrimination and estimation of neutron/photon misclassification in organic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Polack, J.K., E-mail: kpolack@umich.edu [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Flaska, M. [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Enqvist, A. [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Sosa, C.S.; Lawrence, C.C.; Pozzi, S.A. [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2015-09-21

    Organic scintillators are frequently used for measurements that require sensitivity to both photons and fast neutrons because of their pulse shape discrimination capabilities. In these measurement scenarios, particle identification is commonly handled using the charge-integration pulse shape discrimination method. This method works particularly well for high-energy depositions, but is prone to misclassification for relatively low-energy depositions. A novel algorithm has been developed for automatically performing charge-integration pulse shape discrimination in a consistent and repeatable manner. The algorithm is able to estimate the photon and neutron misclassification corresponding to the calculated discrimination parameters, and is capable of doing so using only the information measured by a single organic scintillator. This paper describes the algorithm and assesses its performance by comparing algorithm-estimated misclassification to values computed via a more traditional time-of-flight estimation. A single data set was processed using four different low-energy thresholds: 40, 60, 90, and 120 keVee. Overall, the results compared well between the two methods; in most cases, the algorithm-estimated values fell within the uncertainties of the TOF-estimated values.

  13. An Improved Nuclear Recoil Calibration in the LUX Detector Using a Pulsed D-D Neutron Generator

    Science.gov (United States)

    Huang, Dongqing

    2017-01-01

    The LUX dark matter search experiment is a 370 kg (250 kg active mass) two-_phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. The first absolute charge (Qy) and light (Ly) measurement performed in situ in the LUX detector with a D-D calibration technique for nuclear recoil spanning 0.7 to 74 keV and 1.1 to 74 keV respectively have been reported in. The D-D calibration has subsequently been further improved by incorporating pulsing technique, i.e. the D-D neutron production is concentrated within narrow pulses (20 us / 250 Hz) with the timing information recorded. This technique allows the suppression of accidental backgrounds in D-D neutron data and also provides increased sensitivity for the lower energy NR calibrations. I will report the improved NR absolute Qy and Ly measurements using the pulsed D-D calibration technique performed in situ in the LUX detector. Brown University, Large Underground Xenon(LUX) Collaboration.

  14. 35-Day Evolution of the Her X-1 Pulse Profile: Evidence for a Resolved Inner Disk Occultation of the Neutron Star

    Science.gov (United States)

    Scott, D. Matthew; Leahy, Denis A.; Wilson, Robert B.

    1999-01-01

    Ginga and RXTE observations have allowed an unprecedented view of the recurrent systematic pulse shape changes associated with the 35-day cycle of Her X-1, a phenomena currently unique among the known accretion-powered pulsars. We present observations of the pulse shape evolution. An explanation for the pulse evolution in terms of a freely precessing neutron star is reviewed and shown to have several major difficulties in explaining the observed pulse evolution pattern. Instead, we propose a phenomenlogical model for the pulse evolution based upon an occultation of the pulse emitting region by the tilted, inner edge of a precessing accretion disk. The systematic and repeating pulse shape changes require a resolved occultation of the pulse emission region. The observed pulse profile motivates the need for a pulsar beam consisting of a composite coaxial pencil and fan beam but the observed evolution pattern requires the fan beam to be focused around the neutron star and beamed in the antipodal direction. The spectral hardness of the pencil beam component suggests an origin at the magnetic polar cap, with the relatively softer fan beam emission produced by backscattering from within the accretion column, qualitatively consistent with several theoretical models for X-ray emission from the accretion column of an accreting neutron star.

  15. The 35 Day Evolution of the Hercules X-1 Pulse Profile: Evidence for a Resolved Inner Disk Occultation of the Neutron Star

    Science.gov (United States)

    Scott, D. Matthew; Leahy, Denis A.; Wilson, Robert B.

    2000-01-01

    Ginga and Rossi X-Ray Timing Explorer observations have allowed an unprecedented view of the recurrent systematic pulse shape changes associated with the 35 day cycle of Hercules X-1, a phenomenon currently unique among the known accretion-powered pulsars. We present observations of the pulse shape evolution. An explanation for the pulse evolution in terms of a freely precessing neutron star is reviewed and shown to have several major difficulties in explaining the observed pulse evolution pattern. Instead, we propose a phenomenological model for the pulse evolution based on an occultation of the pulse-emitting region by the tilted, inner edge of a precessing accretion disk. The systematic and repeating pulse shape changes require a resolved occultation of the pulse emission region. The observed pulse profile motivates the need for a pulsar beam consisting of a composite coaxial pencil and fan beam, but the observed evolution pattern requires the fan beam to be focused around the neutron star and beamed in the antipodal direction. The spectral hardness of the pencil beam component suggests an origin at the magnetic polar cap, with the relatively softer fan beam emission produced by backscattering from within the accretion column, qualitatively consistent with several theoretical models for X-ray emission from the accretion column of an accreting neutron star.

  16. Uranium analysis by neutron induced fissionography method using solid state nuclear track detectors

    CERN Document Server

    Akyuez, T; Guezel, T; Akyuz, S

    1999-01-01

    In this study total twenty samples (eight reference materials and twelve sediment samples) were analysed for their uranium content which is in the range of 1-17 mu g/g, by neutron induced fissionography (NIF) method using solid state nuclear track detectors (SSNTDs) in comparison with the results of neutron activation analysis (NAA), delayed neutron counting (DNC) technique or fluorometric method. It is found that NIF method using SSNTDs is very sensitive for analysis of uranium.

  17. First observation of the beta decay of neutron-rich $^{218}Bi$ by the pulsed-release technique and resonant laser ionization

    CERN Document Server

    De Witte, H; Borzov, I N; Caurier, E; Cederkäll, J; De Smet, A; Eckhaudt, S; Fedorov, D V; Fedosseev, V; Franchoo, S; Górska, M; Grawe, H; Huber, G; Huyse, M; Janas, Z; Köster, U; Kurcewicz, W; Kurpeta, J; Plochocki, A; Van Duppen, P; Van de Vel, K; Weissman, L

    2004-01-01

    The neutron-rich isotope /sup 218/Bi has been produced in proton- induced spallation of a uranium carbide target at the ISOLDE facility at CERN, extracted from the ion source by the pulsed-release technique and resonant laser ionization, and its beta decay is studied for the first time. A half-life of 33(1)s was measured and is discussed in the self-consistent continuum-quasi particle-random- phase approximation framework that includes Gamow-Teller and first- forbidden transitions. A level scheme was constructed for /sup 218 /Po, and a deexcitation pattern of stretched E2 transitions 8/sup +/ to 6/sup +/ to 4/sup +/ to 2/sup +/ to 0/sup +/ to the ground state is suggested. Shell-model calculations based on the Kuo-Herling interaction reproduce the experimental results satisfactorily. (28 refs).

  18. The eddy current induced in the pulsed bump magnet for the CSNS/RCS injection

    Institute of Scientific and Technical Information of China (English)

    SONG Jin-Xing; KANG Wen; HUO Li-Hua; HAO Yao-Dou; WANG Lei

    2011-01-01

    The injecton pulsed bending bump magnets of Rapid Cycling Synchrotron (RCS) in China Spallar tion Neutron Source (CSNS) consist of four horizontal bending (BH) magnets and four vertical bending (BV)magnets. The BH magnets are operated at a repetition rate of 25 Hz and are excited with a trapezoid rectangle waveform with about 1.6 milliseconds duration. The eddy current is induced in BH magnets and in the end plates it is expected to be large, so the heat generation is of our great concern. In this paper, the eddy current loss of the BH magnet has been investigated and calculated by using a coupling method of 3D electromagnetic and thermal analysis. The accuracy of the analysis is confirmed by testing the prototype BH magnet. The end plate temperature of the BH magnet provided with slit cuts has been decreased obviously and met the requirements.

  19. Trapping induced N{sub eff} and electrical field transformation at different temperatures in neutron irradiated high resistivity silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Eremin, V.; Li, Z.; Iljashenko, I.

    1994-02-01

    The trapping of both non-equilibrium electrons and holes by neutron induced deep levels in high resistivity silicon planar detectors have been observed. In the experiments Transient Current and Charge Techniques, with short laser light pulse excitation have been applied at temperature ranges of 77--300 k. Light pulse illumination of the front (p{sup +}) and back (n{sup +}) contacts of the detectors showed effective trapping and detrapping, especially for electrons. At temperatures lower than 150 k, the detrapping becomes non-efficient, and the additional negative charge of trapped electrons in the space charge region (SCR) of the detectors leads to dramatic transformations of the electric field due to the distortion of the effective space charge concentration N{sub eff}. The current and charge pulses transformation data can be explained in terms of extraction of electric field to the central part of the detector from the regions near both contacts. The initial field distribution may be recovered immediately by dropping reverse bias, which injects both electrons and holes into the space charge region. In the paper, the degree of the N{sub eff} distortions among various detectors irradiated by different neutron fluences are compared.

  20. SNM detection by means of thermal neutron interrogation and a liquid scintillation detector

    Science.gov (United States)

    Ocherashvili, A.; Roesgen, E.; Beck, A.; Caspi, E. N.; Mosconi, M.; Crochemore, J.-M.; Pedersen, B.

    2012-03-01

    The feasibility of using a pulsed neutron generator in a graphite assembly together with a single liquid scintillation detector for the detection of special nuclear materials is investigated. Thermal source neutrons induce fission in fissile material present in the sample. By means of pulse shape discrimination the detector signals from fast fission neutrons are easily identified among the signals from gamma rays and the interrogating thermal neutrons. The method has potential in applications for detection of special nuclear materials in shielded containers.

  1. High Repetition-Rate Neutron Generation by Several-mJ, 35 fs pulses interacting with Free-Flowing D2O

    Science.gov (United States)

    Hah, Jungmoo; Petrov, George; Nees, John; He, Zhaohan; Hammig, Mark; Krushelnick, Karl; Thomas, Alexander

    2016-10-01

    Recent advance in ultra-high power laser technology allows a development of laser-based neutron sources. Here we demonstrate heavy-water based neutron source. Using several-mJ energy pulses from a high-repetition rate (½kHz), ultrashort (35 fs) pulsed laser interacting with a 10 μm diameter stream of free-flowing heavy water (D2O), we get a 2.45 MeV neutron flux of 105/s. In the intentionally generated pre-plasma, laser pulse energy is efficiently absorbed, and energetic deuterons are generated. As a convertor, the bulk heavy water stream target and the large volume of low density D2O vapor near the target are collided with accelerated deuterons, generating neutron through d(d,n)3He reactions. As laser pulse energy increased from 6mJ to 12mJ, the neutron flux increased. From the 2D particle-in-cell simulation, comparable neutron fluxes are shown at the similar laser characteristics to the experiment. Also, simulation shows forward and backward moving deuterons, which are main distributing ions impinging upon D2O stream and vapor, respectively. This material is based upon work supported by the Air Force Office of Scien- tific Research under Award Numbers FA9550-12-1-0310 (Young Investigator Program) and FA9550-14-1-0282.

  2. Measurement of gravitation-induced quantum interference for neutrons in a spin-echo spectrometer

    NARCIS (Netherlands)

    De Haan, V.O.; Plomp, J.; Van Well, A.A.; Rekveldt, M.T.; Hasegawa, Y.H.; Dalgliesh, R.M.; Steinke, N.J.

    2014-01-01

    With a neutron spin-echo reflectometer (OffSpec at ISIS, UK) it is possible to measure the gravitation-induced quantum phase difference between the two spin states of the neutron wave function in a magnetic field. In the small-angle approximation, this phase depends linearly on the inclination angle

  3. Neutron induced autoradiography of some minerals from the Allchar mine

    CERN Document Server

    Lazaru, A; Skvarc, J; Kristof, E S; Stafilov, T

    1999-01-01

    The mineral lorandite from the Allchar mine (Kavadarci, Macedonia) will be used to estimate the average solar neutrino flux. Here, the amount of sup 2 sup 0 sup 5 Pb isotope induced by the sup 2 sup 0 sup 5 Tl(nu sub e , e sup -) sup 2 sup 0 sup 5 Pb reaction is measured and converted to neutrino flux. To determine the few sup 2 sup 0 sup 5 Pb atoms that are produced by solar neutrinos in the Tl ore it is necessary to know all the interfering reactions and/or impurities producing sup 2 sup 0 sup 5 Pb. The concentration and/or spatial distribution of some impurities such as U in lorandite should be known as accurately as possible. In the present work uranium and boron concentrations in some minerals from the Allchar mine (lorandite, realgar, stibnite, orpiment and dolomite) were measured by neutron induced autoradiography. The tracks of sup 1 sup 0 B(n, alpha) and sup 2 sup 3 sup 5 U(n, f) reaction products were recorded by CR-39 and phosphate glass (PSK-50) etched track detectors, respectively. Results showed...

  4. High-energy Neutron-induced Fission Cross Sections of Natural Lead and Bismuth-209

    CERN Document Server

    Tarrio, D; Carrapico, C; Eleftheriadis, C; Leeb, H; Calvino, F; Herrera-Martinez, A; Savvidis, I; Vlachoudis, V; Haas, B; Koehler, P; Vannini, G; Oshima, M; Le Naour, C; Gramegna, F; Wiescher, M; Pigni, M T; Audouin, L; Mengoni, A; Quesada, J; Becvar, F; Plag, R; Cennini, P; Mosconi, M; Rauscher, T; Couture, A; Capote, R; Sarchiapone, L; Vlastou, R; Domingo-Pardo, C; Dillmann, I; Pavlopoulos, P; Karamanis, D; Krticka, M; Jericha, E; Ferrari, A; Martinez, T; Trubert, D; Oberhummer, H; Karadimos, D; Plompen, A; Isaev, S; Terlizzi, R; Cortes, G; Cox, J; Cano-Ott, D; Pretel, C; Colonna, N; Berthoumieux, E; Vaz, P; Heil, M; Lopes, I; Lampoudis, C; Walter, S; Calviani, M; Gonzalez-Romero, E; Embid-Segura, M; Stephan, C; Igashira, M; Papachristodoulou, C; Aerts, G; Tavora, L; Berthier, B; Rudolf, G; Andrzejewski, J; Villamarin, D; Ferreira-Marques, R; Tain, J L; O'Brien, S; Reifarth, R; Kadi, Y; Neves, F; Poch, A; Kerveno, M; Rubbia, C; Lazano, M; Dahlfors, M; Wisshak, K; Salgado, J; Dridi, W; Ventura, A; Andriamonje, S; Assimakopoulos, P; Santos, C; Voss, F; Ferrant, L; Patronis, N; Chiaveri, E; Guerrero, C; Perrot, L; Vicente, M C; Lindote, A; Praena, J; Baumann, P; Kappeler, F; Rullhusen, P; Furman, W; David, S; Marrone, S; Tassan-Got, L; Gunsig, F; Alvarez-Velarde, F; Massimi, C; Mastinu, P; Pancin, J; Papadopoulos, C; Tagliente, G; Haight, R; Chepel, V; Kossionides, E; Badurek, G; Marganiec, J; Lukic, S; Pavlik, A; Goncalves, I; Duran, I; Alvarez, H; Abbondanno, U; Fujii, K; Milazzo, P M; Moreau, C

    2011-01-01

    The CERN Neutron Time-Of-Flight (n\\_TOF) facility is well suited to measure small neutron-induced fission cross sections, as those of subactinides. The cross section ratios of (nat)Pb and (209)Bi relative to (235)U and (238)U were measured using PPAC detectors. The fragment coincidence method allows to unambiguously identify the fission events. The present experiment provides the first results for neutron-induced fission up to 1 GeV for (nat)Pb and (209)Bi. A good agreement with previous experimental data below 200 MeV is shown. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross section is close to 1 GeV.

  5. Characterization and application of a laser-driven intense pulsed neutron source using Trident

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-25

    A team of Los Alamos researchers supported a final campaign to use the Trident laser to produce neutrons, contributed their multidisciplinary expertise to experimentally assess if laser-driven neutron sources can be useful for MaRIE. MaRIE is the Laboratory’s proposed experimental facility for the study of matter-radiation interactions in extremes. Neutrons provide a radiographic probe that is complementary to x-rays and protons, and can address imaging challenges not amenable to those beams. The team's efforts characterize the Laboratory’s responsiveness, flexibility, and ability to apply diverse expertise where needed to perform successful complex experiments.

  6. Advantages of passive detectors for the determination of the cosmic ray induced neutron environment

    CERN Document Server

    Hajek, M; Schoner, W; Vana, N

    2002-01-01

    Due to the pronounced energy dependence of the neutron quality factor, accurate assessment of the biologically relevant dose requires knowledge of the spectral neutron fluence rate. Bonner sphere spectrometers (BSSs) are the only instruments which provide a sufficient response over practically the whole energy range of the cosmic ray induced neutron component. Measurements in a 62 MeV proton beam at Paul Scherrer Institute, Switzerland, and in the CERN-EU high-energy reference field led to the assumption that conventional active devices for the detection of thermal neutrons inside the BSS, e.g. /sup 6/LiI(Eu) scintillators, also respond to charged particles when used in high-energy mixed radiation fields. The effects of these particles cannot be suppressed by amplitude discrimination and are subsequently misinterpreted as neutron radiation. In contrast, paired TLD-600 and TLD-700 thermoluminescence dosemeters allow the determination of a net thermal neutron signal. (12 refs).

  7. 脉冲中子-裂变中子探测铀黄饼的MCNP模拟%The Monte Carlo N particle transport code simulation of pulsed neutron-fission neutron uranium yellowcake exploration

    Institute of Scientific and Technical Information of China (English)

    张坤明; 张雄杰; 瞿金辉; 汤彬

    2015-01-01

    利用MCNP程序模拟研究脉冲中子-裂变中子探测铀黄饼,采用脉冲式中子源,利用氦三管中子探测器记录裂变中子,得到铀黄饼中的铀含量信息。通过对14 MeV脉冲中子源和产生的裂变中子在不同铀含量模型中的输运计算,分析了裂变中子与铀含量的关系。结果表明:利用裂变超热中子衰减时间谱,可以确定铀黄饼中的铀含量;通过对热中子衰减时间谱进行校正,可以提高铀黄饼中铀含量计算结果的准确度。%The Monte Carlo N particle transport code ( MCNP ) is used to simulate how to explore the uranium yel⁃lowcake by using the pulsed neutron⁃fission neutron ( PNFN) method. In order to obtain uranium yellowcake quan⁃titation, pulsed neutron source was used, prompt fission neutrons were detected by using the neutron detector. Un⁃der the condition of different uranium quantitation models, the transport of the 14 MeV pulsed neutron source and the released fission neutron were calculated. On the basis of these, the relationship between fission neutron and ura⁃nium quantitation was studied. The results show that using the epithermal neutron time decay spectrum, the urani⁃um yellowcake quantitation can be determined; the precision of the uranium yellowcake quantitation could be in⁃creased by the correction of thermal neutron time decay spectrum.

  8. Nondestructive analysis of the natural uranium mass through the measurement of delayed neutrons using the technique of pulsed neutron source; Analise nao destrutiva da massa de uranio natural atraves da medida de neutrons atrasados com o uso da tecnica de fonte pulsada de neutrons rapidos

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Paulo Rogerio Pinto

    1979-07-01

    This work presents results of non destructive mass analysis of natural uranium by the pulsed source technique. Fissioning is produced by irradiating the test sample with pulses of 14 MeV neutrons and the uranium mass is calculated on a relative scale from the measured emission of delayed neutrons. Individual measurements were normalised against the integral counts of a scintillation detector measuring the 14 MeV neutron intensity. Delayed neutrons were measured using a specially constructed slab detector operated in anti synchronism with the fast pulsed source. The 14 MeV neutrons were produced via the T(d,n) {sup 4}He reaction using a 400 kV Van de Graaff accelerated operated at 200 kV in the pulsed source mode. Three types of sample were analysed, namely: discs of metallic uranium, pellets of sintered uranium oxide and plates of uranium aluminium alloy sandwiched between aluminium. These plates simulated those of Material Testing Reactor fuel elements. Results of measurements were reproducible to within an overall error in the range 1.6 to 3.9%; the specific error depending on the shape, size and mass of the sample. (author)

  9. Detection of explosives and other illicit materials by a single nanosecond neutron pulses — Monte Carlo simulation of the detection process

    Science.gov (United States)

    Miklaszewski, R.; Wiącek, U.; Dworak, D.; Drozdowicz, K.; Gribkov, V.

    2012-07-01

    Recent progress in the development of a Nanosecond Impulse Neutron Investigation System (NINIS) intended for interrogation of hidden objects (explosives and other illicit materials) by means of measuring elastically and non-elastically scattered neutrons is presented. The method uses very bright neutron pulses having durations of the order of few nanoseconds, generated by a dense plasma focus (DPF) devices filled with pure deuterium or a deuterium-tritium mixture as a working gas. A very short duration of the neutron pulse, as well as its high brightness and mono-chromaticity allows using time-of-flight methods with bases of about few meters to distinguish signals from neutrons scattered by different elements. Results of the Monte Carlo simulations of the scattered neutron field from several compounds (explosives and everyday use materials) are presented. The MCNP5 code has been used to get information on the angular and energy distributions of neutrons scattered by the above mentioned compounds assuming the initial neutron energies to be equal to 2.45 MeV (DD) and 14 MeV (DT). A new input has been elaborated that allows modeling not only a spectrum of the neutrons scattered at different angles but also their time history from the moment of generation up to the detection. Such an approach allows getting approximate signals registered by hypothetic scintillator + photomultipler probes placed at various distances from the scattering object, demonstrating principal capability of the method to identify an elemental content of the inspected objects. The extensive computations reveled also several limitations of the proposed method, namely: low number of neutrons reaching detector system, distortions and interferences of scattered neutron signals etc. Further more, preliminary results of the MCNP modeling of the hidden fissile materials detection process are presented.

  10. Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials.

    Science.gov (United States)

    Ivić, Z; Lazarides, N; Tsironis, G P

    2016-07-12

    Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980's, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound "quantum breather" that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing.

  11. Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials

    Science.gov (United States)

    Ivić, Z.; Lazarides, N.; Tsironis, G. P.

    2016-07-01

    Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980’s, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound ”quantum breather” that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing.

  12. Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials

    Science.gov (United States)

    Ivić, Z.; Lazarides, N.; Tsironis, G. P.

    2016-01-01

    Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980’s, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound ”quantum breather” that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing. PMID:27403780

  13. VERITAS: a high-flux neutron reflectometer with vertical sample geometry for a long pulse spallation source

    Science.gov (United States)

    Mattauch, S.; Ioffe, A.; Lott, D.; Menelle, A.; Ott, F.; Medic, Z.

    2016-04-01

    An instrument concept of a reflectometer with a vertical sample geometry fitted to the long pulse structure of a spallation source, called “VERITAS” at the ESS, is presented. It focuses on designing a reflectometer with high intensity at the lowest possible background following the users' demand to investigate thin layers or interfacial areas in the sub-nanometer length scale. The high intensity approach of the vertical reflectometer fits very well to the long pulse structure of the ESS. Its main goal is to deliver as much usable intensity as possible at the sample position and be able to access a reflectivity range of 8 orders of magnitude and more. The concept assures that the reflectivity measurements can be performed in its best way to maximize the flux delivered to the sample. The reflectometer is optimized for studies of (magnetic) layers having thicknesses down to 5Å and a surface area of 1x1cm2. With reflectivity measurements the depth-resolved, laterally averaged chemical and magnetic profile can be investigated. By using polarised neutrons, additional vector information on the in-plane magnetic correlations (off-specular scattering at the pm length scale, GISANS at the nm length scale) can be studied. The full polarisation analysis could be used for soft matter samples to correct for incoherent scattering which is presently limiting neutron reflectivity studies to a reflectivity range on the order of 10-6.

  14. Use of the HPI Model 2080 pulsed neutron detector at the LANSCE complex - vulnerabilities and counting statistics

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.W. [Los Alamos National Lab., NM (United States); Browman, A. [Amparo Corp., Sante Fe, NM (United States)

    1997-01-01

    The BPI Model 2080 Pulsed Neutron Detector has been used for over seven years as an area radiation monitor and dose limiter at the LANSCE accelerator complex. Operating experience and changing environments over this time have revealed several vulnerabilities (susceptibility to electrical noise, paralysis in high dose rate fields, etc.). Identified vulnerabilities have been connected; these modifications include component replacement and circuit design changes. The data and experiments leading to these modifications will be presented and discussed. Calibration of the instrument is performed in mixed static gamma and neutron source fields. The statistical characteristics of the Geiger-Muller tubes coupled with significantly different sensitivity to gamma and neutron doses require that careful attention be paid to acceptable fluctuations in dose rate over time during calibration. The performance of the instrument has been modeled using simple Poisson statistics and the operating characteristics of the Geiger-Muller tubes. The results are in excellent agreement with measurements. The analysis and comparison with experimental data will be presented.

  15. Monte Carlo simulation of the experimental pulse height spectra produced in diamond detectors by quasi-mono-energetic neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Milocco, A., E-mail: alberto.milocco@ijs.si [Jožef Stefan Institute, Reactor Physics Department, Jamova 39, 1000 Ljubljana (Slovenia); Pillon, M.; Angelone, M. [Associazione EURATOM-ENEA sulla Fusione, ENEA C.R. Frascati, via E. Fermi 45, 00044 Frascati (Rome) (Italy); Plompen, A.; Krása, A. [European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, B-2440 Geel (Belgium); Trkov, A. [Jožef Stefan Institute, Reactor Physics Department, Jamova 39, 1000 Ljubljana (Slovenia)

    2013-08-21

    This work was carried out in view of the possible use of diamond detectors as high resolution neutron spectrometers for the ITER project. An MCNP5(X) based computational tool has been developed to simulate the fast neutron response of diamond detectors. The source neutrons are generated by a source routine, developed earlier, that includes deuteron beam energy loss, angular straggling, and two-body relativistic kinematics. The diamond detector routine calculates a pulse height spectrum that is built up by elastic and inelastic scattering, (n,a), (n,p), and (n,d) reaction channels. A combination of nuclear data from ENDF/B-VII.0, TENDL-2010, and ENSDF is used. The simulated spectra are compared with measured spectra. It is shown that the simulation tool allows an interpretation of most of the characteristic features in the spectrum. This is an important step towards the use of diamond detectors for spectral analysis and fluence measurements. {sup ©} 2001 Elsevier Science. All rights reserved.

  16. Curing of Epoxy Resin Induced by Femtosecond Laser Pulse

    Institute of Scientific and Technical Information of China (English)

    LI Yubin; ZHANG Zuoguang

    2005-01-01

    The possibility of curing of epoxy resin induced by femtosecond laser beam was explored through choosing different initiators . Absorption spectroscopy, infrared spectroscopy (IR), stereomicroscopy and scanning electron microscopy (SEM) were applied to analyze the structure of epoxy resin systems after irradiation with a femtosecond laser beam. The experimental results show that the epoxy resin systems containing diaryliodonium salts can be cured by irradiation of Jemtosecond laser pulse, while the systems containing benzoin can not be cured. It is found that diaryliodonium salts decompose under the irradiation of femtosecond laser pulse through multi ( two ) -photon absorption, initiating the ring-opening polymerization of epoxy resin. And the appearance of cured area has a sheet structure consisting of many tiny lamellar structures.

  17. Plasma induced by pulsed laser and fabrication of silicon nanostructures

    Science.gov (United States)

    Hang, Wei-Qi; Dong, Tai-Ge; Wang, Gang; Liu, Liu Shi-Rong; Huang, Zhong-Mei; Miao, Xin-Jian; Lv, Quan; Qin, Chao-Jian

    2015-08-01

    It is interesting that in preparing process of nanosilicon by pulsed laser, the periodic diffraction pattern from plasmonic lattice structure in the Purcell cavity due to interaction between plasmons and photons is observed. This kind of plasmonic lattice structure confined in the cavity may be similar to the Wigner crystal structure. Emission manipulation on Si nanostructures fabricated by the plasmonic wave induced from pulsed laser is studied by using photoluminescence spectroscopy. The electronic localized states and surface bonding are characterized by several emission bands peaked near 600 nm and 700 nm on samples prepared in oxygen or nitrogen environment. The electroluminescence wavelength is measured in the telecom window on silicon film coated by ytterbium. The enhanced emission originates from surface localized states in band gap due to broken symmetry from some bonds on surface bulges produced by plasmonic wave in the cavity. Project supported by the National Natural Science Foundation of China (Grant Nos. 11264007 and 61465003).

  18. A New Pulsed Neutron Spectral Tool%PNST脉冲中子全谱测井仪

    Institute of Scientific and Technical Information of China (English)

    郑华; 董建华; 刘宪伟

    2011-01-01

    传统的碳氧比测井仪不测量地层泥质含量、孔隙度等参数,影响老井饱和度评价精度,为此研制了PNST脉冲中子全谱测井仪.通过合理的传感器结构设计和电路设计,PNST一次下井能同时完成双源距碳氧比、中子寿命、脉冲中子-中子、能谱水流4项测井功能.仪器自动化程度高;测井资料能提供岩性、泥质含量、孔隙度、饱和度、层位产水等解释信息,可以不依赖裸眼井测井资料进行套管井剩余油评价.在89个21%~31%孔隙度的砂岩地层将PNST解释结果与取心资料对比,有效孔隙度标准差为1.1%,剩余油饱和度标准差为4.5%.PNST适用于在套管井中寻找油气层、确定储层含油饱和度、监测油藏动态变化.%A new pulsed neutron spectral tooI(PNST) has been developed to meet the need of determining remaining oil saturations in cased wells without the assistance of open hole log. As the result of reasonable design of tool structure of the neutron generator, shield and detectors, and electrical circuits, the tool has the ability to carry out dual-spaced carbon/oxygen logging, neutron lifetime logging, pulsed neutron-neutron logging and spectral water flow logging simultaneously at one pass. Through interpreting its log, provided are data of formation iithology, shale volume, porosity, and oil saturation. By comparing interpreted PNST data with corresponding data obtained from sealed core analysis for 89 sand zones with porosity varying from 21% to 31%, the standard deviations of effective porosity and remaining oil saturation are 1.1% and 4. 50%, respectively. The tool is applied to locating hydrocarbon bearing formations, determining remaining oil saturation, and monitoring reservoir performances in cased wells.

  19. High-power, photofission-inducing bremsstrahlung source for intense pulsed active detection of fissile material

    Directory of Open Access Journals (Sweden)

    J. C. Zier

    2014-06-01

    Full Text Available Intense pulsed active detection (IPAD is a promising technique for detecting fissile material to prevent the proliferation of special nuclear materials. With IPAD, fissions are induced in a brief, intense radiation burst and the resulting gamma ray or neutron signals are acquired during a short period of elevated signal-to-noise ratio. The 8 MV, 200 kA Mercury pulsed-power generator at the Naval Research Laboratory coupled to a high-power vacuum diode produces an intense 30 ns bremsstrahlung beam to study this approach. The work presented here reports on Mercury experiments designed to maximize the photofission yield in a depleted-uranium (DU object in the bremsstrahlung far field by varying the anode-cathode (AK diode gap spacing and by adding an inner-diameter-reducing insert in the outer conductor wall. An extensive suite of diagnostics was fielded to measure the bremsstrahlung beam and DU fission yield as functions of diode geometry. Delayed fission neutrons from the DU proved to be a valuable diagnostic for measuring bremsstrahlung photons above 5 MeV. The measurements are in broad agreement with particle-in-cell and Monte Carlo simulations of electron dynamics and radiation transport. These show that with increasing AK gap, electron losses to the insert and outer conductor wall increase and that the electron angles impacting the bremsstrahlung converter approach normal incidence. The diode conditions for maximum fission yield occur when the gap is large enough to produce electron angles close to normal, yet small enough to limit electron losses.

  20. Magnetically-induced outflows from binary neutron star merger remnants

    CERN Document Server

    Siegel, Daniel M

    2015-01-01

    Recent observations by the Swift satellite have revealed long-lasting ($\\sim 10^2-10^5\\,\\mathrm{s}$), "plateau-like" X-ray afterglows in the vast majority of short gamma-ray bursts events. This has put forward the idea of a long-lived millisecond magnetar central engine being generated in a binary neutron star (BNS) merger and being responsible for the sustained energy injection over these timescales ("magnetar model"). We elaborate here on recent simulations that investigate the early evolution of such a merger remnant in general-relativistic magnetohydrodynamics. These simulations reveal very different conditions than those usually assumed for dipole spin-down emission in the magnetar model. In particular, the surrounding of the newly formed NS is polluted by baryons due to a dense, highly magnetized and isotropic wind from the stellar surface that is induced by magnetic field amplification in the interior of the star. The timescales and luminosities of this wind are compatible with early X-ray afterglows, ...

  1. Neutron matter instabilities induced by strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, R. [Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and IFLP-CCT-La Plata, CONICET (Argentina); Bauer, E., E-mail: bauer@fisica.unlp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and IFLP-CCT-La Plata, CONICET (Argentina)

    2013-04-10

    We study some properties of spin-polarized neutron matter in the presence of a strong magnetic field at finite temperature. Using the Skyrme model together with the Hartree–Fock approximation we obtain an energy density functional that is employed to extract the spin polarization, the effective mass and the magnetic free energy of the system. In order to find the equilibrium state, we have analyzed different global spin configurations over a wide range of matter density (0induce a transition from one polarization state to the other. The transition takes place in a surface in the (n,T,B)-phase space, which represents an instability of the system. We have also found a discontinuity in the internal energy associated with this change in the state of magnetization.

  2. Ni elemental neutron induced reaction cross-section evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Divadeenam, M.

    1979-03-01

    A completely new evaluation of the nickel neutron induced reaction cross sections was undertaken as a part of the ENDF/B-V effort. (n,xy) reactions and capture reaction time from threshold to 20 MeV were considered for /sup 58/ /sup 60/ /sup 61/ /sup 62/ /sup 64/Ni isotopes to construct the corresponding reaction cross section for natural nickel. Both experimental and theoretical calculated results were used in evaluating different partial cross sections. Precompound effects were included in calculating (n,xy) reaction cross sections. Experimentally measured total section data extending from 0.7 MeV to 20 MeV were used to generate smooth cross section. Below 0.7 to MeV elastic and capture cross sections are represented by resonance parameters. Inelastic angular distributions to the discrete isotopic levels and elemental elastic angular distributions are included in the evaluated data file. Gamma production cross sections and energy distribution due to capture and the (n,xy) reactions were evaluated from experimental data. Finally, error files are constructed for all partial cross sections.

  3. Measurements of neutron-induced reactions in inverse kinematics and applications to nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    Reifarth René

    2015-01-01

    Full Text Available Neutron capture cross sections of unstable isotopes are important for neutron-induced nucleosynthesis as well as for technological applications. A combination of a radioactive beam facility, an ion storage ring and a high flux reactor would allow a direct measurement of neutron induced reactions over a wide energy range on isotopes with half lives down to minutes. The idea is to measure neutron-induced reactions on radioactive ions in inverse kinematics. This means, the radioactive ions will pass through a neutron target. In order to efficiently use the rare nuclides as well as to enhance the luminosity, the exotic nuclides can be stored in an ion storage ring. The neutron target can be the core of a research reactor, where one of the central fuel elements is replaced by the evacuated beam pipe of the storage ring. Using particle detectors and Schottky spectroscopy, most of the important neutron-induced reactions, such as (n,γ, (n,p, (n,α, (n,2n, or (n,f, could be investigated.

  4. Measurements of neutron-induced reactions in inverse kinematics and applications to nuclear astrophysics

    CERN Document Server

    Reifarth, René; Endres, Anne; Göbel, Kathrin; Heftrich, Tanja; Glorius, Jan; Koloczek, Alexander; Sonnabend, Kerstin; Travaglio, Claudia; Weigand, Mario

    2015-01-01

    Neutron capture cross sections of unstable isotopes are important for neutron-induced nucleosynthesis as well as for technological applications. A combination of a radioactive beam facility, an ion storage ring and a high flux reactor would allow a direct measurement of neutron induced reactions over a wide energy range on isotopes with half lives down to minutes. The idea is to measure neutron-induced reactions on radioactive ions in inverse kinematics. This means, the radioactive ions will pass through a neutron target. In order to efficiently use the rare nuclides as well as to enhance the luminosity, the exotic nuclides can be stored in an ion storage ring. The neutron target can be the core of a research reactor, where one of the central fuel elements is replaced by the evacuated beam pipe of the storage ring. Using particle detectors and Schottky spectroscopy, most of the important neutron-induced reactions, such as (n,$\\gamma$), (n,p), (n,$\\alpha$), (n,2n), or (n,f), could be investigated.

  5. Measurements of neutron-induced reactions in inverse kinematics and applications to nuclear astrophysics

    Science.gov (United States)

    Reifarth, René; Litvinov, Yuri A.; Endres, Anne; Göbel, Kathrin; Heftrich, Tanja; Glorius, Jan; Koloczek, Alexander; Sonnabend, Kerstin; Travaglio, Claudia; Weigand, Mario

    2015-05-01

    Neutron capture cross sections of unstable isotopes are important for neutron-induced nucleosynthesis as well as for technological applications. A combination of a radioactive beam facility, an ion storage ring and a high flux reactor would allow a direct measurement of neutron induced reactions over a wide energy range on isotopes with half lives down to minutes. The idea is to measure neutron-induced reactions on radioactive ions in inverse kinematics. This means, the radioactive ions will pass through a neutron target. In order to efficiently use the rare nuclides as well as to enhance the luminosity, the exotic nuclides can be stored in an ion storage ring. The neutron target can be the core of a research reactor, where one of the central fuel elements is replaced by the evacuated beam pipe of the storage ring. Using particle detectors and Schottky spectroscopy, most of the important neutron-induced reactions, such as (n,γ), (n,p), (n,α), (n,2n), or (n,f), could be investigated.

  6. Neutron-Gamma Pulse Shape Discrimination with a NE-213 Liquid Scintillator by Using Digital Signal Processing Combined with Similarity Method

    Directory of Open Access Journals (Sweden)

    Mardiyanto

    2008-07-01

    Full Text Available Neutron-Gamma Pulse Shape Discrimination with a NE-213 Liquid Scintillator by Using Digital Signal Processing Combined with Similarity Method. Measurement of mixed neutron-gamma radiation is difficult because a neuclear detector is usually sensitive to both radiations. A new attempt of neutron-gamma pulse shape discrimination for a NE-213 liquid scintillator is presented by using digital signal processing combined with an off-line similarity method. The output pulse shapes are digitized with a high speed digital oscilloscope. The n-γ discrimination is done by calculating the index of each pulse shape, which is determined by the similarity method, and then fusing it with its corresponding pulse height. Preliminary results demonstrate good separation of neutron and gamma-ray signals from a NE-213 scintillator with a simple digital system. The results were better than those with a conventional rise time method. Figure of Merit is used to determine the quality of discrimination. The figure of merit of the discrimination using digital signal processing combined with of line similarity method are 1.9; 1.7; 1.1; 1.1; and 0.8 ; on the other hand by using conventional method the rise time are 0.9; 0.9; 0.9; 0.7; and 0.4 for the equivalent electron energy of 800 ; 278 ; 139 ; 69 ; and 30 keV

  7. In-situ structural integrity evaluation for high-power pulsed spallation neutron source - Effects of cavitation damage on structural vibration

    Science.gov (United States)

    Wan, Tao; Naoe, Takashi; Futakawa, Masatoshi

    2016-01-01

    A double-wall structure mercury target will be installed at the high-power pulsed spallation neutron source in the Japan Proton Accelerator Research Complex (J-PARC). Cavitation damage on the inner wall is an important factor governing the lifetime of the target-vessel. To monitor the structural integrity of the target vessel, displacement velocity at a point on the outer surface of the target vessel is measured using a laser Doppler vibrometer (LDV). The measured signals can be used for evaluating the damage inside the target vessel because of cyclic loading and cavitation bubble collapse caused by pulsed-beam induced pressure waves. The wavelet differential analysis (WDA) was applied to reveal the effects of the damage on vibrational cycling. To reduce the effects of noise superimposed on the vibration signals on the WDA results, analysis of variance (ANOVA) and analysis of covariance (ANCOVA), statistical methods were applied. Results from laboratory experiments, numerical simulation results with random noise added, and target vessel field data were analyzed by the WDA and the statistical methods. The analyses demonstrated that the established in-situ diagnostic technique can be used to effectively evaluate the structural response of the target vessel.

  8. Analytical solution of neutron transport equation in an annular reactor with a rotating pulsed source; Resolucao analitica da equacao de transporte de neutrons em um reator anelar com fonte pulsada rotativa

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Paulo Cleber Mendonca

    2002-12-01

    In this study, an analytical solution of the neutron transport equation in an annular reactor is presented with a short and rotating neutron source of the type S(x) {delta} (x- Vt), where V is the speed of annular pulsed reactor. The study is an extension of a previous study by Williams [12] carried out with a pulsed source of the type S(x) {delta} (t). In the new concept of annular pulsed reactor designed to produce continuous high flux, the core consists of a subcritical annular geometry pulsed by a rotating modulator, producing local super prompt critical condition, thereby giving origin to a rotating neutron pulse. An analytical solution is obtained by opening up of the annular geometry and applying one energy group transport theory in one dimension using applied mathematical techniques of Laplace transform and Complex Variables. The general solution for the flux consists of a fundamental mode, a finite number of harmonics and a transient integral. A condition which limits the number of harmonics depending upon the circumference of the annular geometry has been obtained. Inverse Laplace transform technique is used to analyse instability condition in annular reactor core. A regenerator parameter in conjunction with perimeter of the ring and nuclear properties is used to obtain stable and unstable harmonics and to verify if these exist. It is found that the solution does not present instability in the conditions stated in the new concept of annular pulsed reactor. (author)

  9. Boron-Proton Nuclear-Fusion Enhancement Induced in Boron-Doped Silicon Targets by Low-Contrast Pulsed Laser

    Directory of Open Access Journals (Sweden)

    A. Picciotto

    2014-08-01

    Full Text Available We show that a spatially well-defined layer of boron dopants in a hydrogen-enriched silicon target allows the production of a high yield of alpha particles of around 10^{9} per steradian using a nanosecond, low-contrast laser pulse with a nominal intensity of approximately 3×10^{16}  W cm^{−2}. This result can be ascribed to the nature of the long laser-pulse interaction with the target and with the expanding plasma, as well as to the optimal target geometry and composition. The possibility of an impact on future applications such as nuclear fusion without production of neutron-induced radioactivity and compact ion accelerators is anticipated.

  10. Neutron induced radiation damage of plastic scintillators for the upgrade of the Tile Calorimeter of the ATLAS detector.

    Science.gov (United States)

    Mdhluli, J. E.; Jivan, H.; Erasmus, R.; Davydov, Yu I.; Baranov, V.; Mthembu, S.; Mellado, B.; Sideras-Haddad, E.; Solovyanov, O.; Sandrock, C.; Peter, G.; Tlou, S.; Khanye, N.; Tjale, B.

    2017-07-01

    With the prediction that the plastic scintillators in the gap region of the Tile Calorimeter will sustain a significantly large amount of radiation damage during the HL-LHC run time, the current plastic scintillators will need to be replaced during the phase 2 upgrade in 2018. The scintillators in the gap region were exposed to a radiation environment of up to 10 kGy/year during the first run of data taking and with the luminosity being increased by a factor of 10, the radiation environment will be extremely harsh. We report on the radiation damage to the optical properties of plastic scintillators following irradiation using a neutron beam of the IBR-2 pulsed reactor in Joint Institute for Nuclear Research (JINR), Dubna. A comparison is drawn between polyvinyl toluene based commercial scintillators EJ200, EJ208 and EJ260 as well as polystyrene based scintillator from Kharkov. The samples were subjected to irradiation with high energy neutrons and a flux density range of 1 × 106-7.7 × 106. Light transmission, Raman spectroscopy, fluorescence spectroscopy and light yield testing was performed to characterize the damage induced in the samples. Preliminary results from the tests done indicate a minute change in the optical properties of the scintillators with further studies underway to gain a better understanding of the interaction between neutrons with plastic scintillators.

  11. Modeling of ground albedo neutrons to investigate seasonal cosmic ray-induced neutron variations measured at high-altitude stations

    Science.gov (United States)

    Hubert, G.; Pazianotto, M. T.; Federico, C. A.

    2016-12-01

    This paper investigates seasonal cosmic ray-induced neutron variations measured over a long-term period (from 2011 to 2016) in both the high-altitude stations located in medium geomagnetic latitude and Antarctica (Pic-du-Midi and Concordia, respectively). To reinforce analysis, modeling based on ground albedo neutrons simulations of extensive air showers and the solar modulation potential was performed. Because the local environment is well known and stable over time in Antarctica, data were used to validate the modeling approach. A modeled scene representative to the Pic-du-Midi was simulated with GEANT4 for various hydrogen properties (composition, density, and wet level) and snow thickness. The orders of magnitudes of calculated thermal fluence rates are consistent with measurements obtained during summers and winters. These variations are dominant in the thermal domain (i.e., En 20 MeV) is weakly impacted. The role of hydrogen content on ground albedo neutron generation was investigated with GEANT4 simulations. These investigations focused to mountain environment; nevertheless, they demonstrate the complexity of the local influences on neutron fluence rates.

  12. Pulse

    Science.gov (United States)

    ... resting for at least 10 minutes. Take the exercise heart rate while you are exercising. ... pulse rate can help determine if the person's heart is pumping. Pulse ... rate gives information about your fitness level and health.

  13. Investigations on neutron-induced prompt gamma ray analysis of bulk samples.

    Science.gov (United States)

    Dokhale, P A; Csikai, J; Oláh, L

    2001-06-01

    A systematic investigation was carried out for the improvement of the prompt gamma interrogation method used for contraband detection by the pulsed fast/thermal neutron analysis (PFTNA) technique. Optimizations of source detector shielding and geometry, role of the type and dimension of the gamma detector, attenuation of neutrons and gamma rays in bulky samples were also studied. Results obtained for both the shielding materials and elemental content of cocaine simulants have been compared with the values calculated by the MCNP-4A code.

  14. Neutron induced background gamma activity in low-level Ge-spectroscopy systems

    Science.gov (United States)

    Jovančević, N.; Krmar, M.; Mrda, D.; Slivka, J.; Bikit, I.

    2010-01-01

    Two high purity germanium (HPGe) detectors were located in two different passive shields: one in pre-WW II iron and the second in commercial low background lead. Gamma lines emitted after neutron capture, as well as after inelastic scattering on the germanium crystal were detected and then analyzed. The thermal and fast neutron fluxes were calculated and their values were compared for the two different kinds of detector shield. Several materials having different neutron slowing-down properties were packed in Marinelli geometry, positioned on the lead shielded detector and measured for around 10 6 s. The main goal was to estimate a possible influence of the sample on the intensity of the neutron induced Ge gamma lines. On the iron-shielded detector a massive (3 in. thick) NaI Compton suppression system showed a measurable activity from neutron capture and inelastic scattering on sodium and iodine nuclei.

  15. Measurement and simulation of the muon-induced neutron yield in lead

    CERN Document Server

    Reichhart, L; Akimov, D Yu; Araujo, H M; Barnes, E J; Belov, V A; Bewick, A; Burenkov, A A; Chepel, V; Currie, A; DeViveiros, L; Edwards, B; Francis, V; Ghag, C; Hollingsworth, A; Horn, M; Kalmus, G E; Kobyakin, A S; Kovalenko, A G; Kudryavtsev, V A; Lebedenko, V N; Lopes, M I; Luscher, R; Majewski, P; Murphy, A St J; Neves, F; Paling, S M; da Cunha, J Pinto; Preece, R; Quenby, J J; Scovell, P R; Silva, C; Solovov, V N; Smith, N J T; Smith, P F; Stekhanov, V N; Sumner, T J; Thorne, C; Walker, R J

    2013-01-01

    A measurement is presented of the neutron production rate in lead by high energy cosmic-ray muons at a depth of 2850 m water equivalent (w.e.) and a mean muon energy of 260 GeV. The measurement exploits the delayed coincidences between muons and the radiative capture of induced neutrons in a highly segmented tonne scale plastic scintillator detector. Detailed Monte Carlo simulations reproduce well the measured capture times and multiplicities and, within the dynamic range of the instrumentation, the spectrum of energy deposits. By comparing measurements with simulations of neutron capture rates a neutron yield in lead of (5.8 +/- 0.2) x 10^-3 neutrons/muon/(g/cm^2) has been obtained. Absolute agreement between simulation and data is of order 25%. Consequences for deep underground rare event searches are discussed.

  16. Spallation products induced by energetic neutrons in plastic detector material

    CERN Document Server

    Grabisch, K; Enge, W; Scherzer, R

    1977-01-01

    Cellulose nitrate plastic detector sheets were irradiated with secondary neutrons of the 22 GeV/c proton beam at the CERN accelerator. He, Li and Be particles which are produced in nuclear interactions of the neutrons with the target elements C, N and O of the plastic detector material are measured. Preliminary angle and range distributions and isotropic abundances of the secondary particles are discussed. (6 refs).

  17. Femtosecond laser pulse induced desorption: A molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lončarić, Ivor, E-mail: ivor.loncaric@gmail.com [Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), P. Manuel de Lardizabal 5, 20018 San Sebastián (Spain); Alducin, Maite [Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), P. Manuel de Lardizabal 5, 20018 San Sebastián (Spain); Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián (Spain); Saalfrank, Peter [Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam (Germany); Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián (Spain); Juaristi, J. Iñaki [Departamento de Física de Materiales, Facultad de Químicas, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080 San Sebastián (Spain); Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), P. Manuel de Lardizabal 5, 20018 San Sebastián (Spain); Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián (Spain)

    2016-09-01

    In recent simulations of femtosecond laser induced desorption of molecular oxygen from the Ag(110) surface, it has been shown that depending on the properties (depth and electronic environment) of the well in which O{sub 2} is adsorbed, the desorption can be either induced dominantly by hot electrons or via excitations of phonons. In this work we explore whether the ratios between the desorption yields from different adsorption wells can be tuned by changing initial surface temperature and laser pulse properties. We show that the initial surface temperature is an important parameter, and that by using low initial surface temperatures the electronically mediated process can be favored. In contrast, laser properties seem to have only a modest influence on the results.

  18. Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Anmin [Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China); Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130012 (China); Li, Suyu; Li, Shuchang; Jiang, Yuanfei; Ding, Dajun [Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China); Shao, Junfeng; Wang, Tingfeng [State Key Laboratory of Laser Interaction with Matter, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Huang, Xuri [Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130012 (China); Jin, Mingxing [Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China); State Key Laboratory of Laser Interaction with Matter, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China)

    2013-10-15

    In laser-induced breakdown spectroscopy, a femtosecond double-pulse laser was used to induce air plasma. The plasma spectroscopy was observed to lead to significant increase of the intensity and reproducibility of the optical emission signal compared to femtosecond single-pulse laser. In particular, the optical emission intensity can be optimized by adjusting the delay time of femtosecond double-pulse. An appropriate pulse-to-pulse delay was selected, that was typically about 50 ps. This effect can be especially advantageous in the context of femtosecond laser-induced breakdown spectroscopy, plasma channel, and so on.

  19. Neutron-induced fission of even- and odd-mass plutonium isotopes within a four-dimensional Langevin framework

    Science.gov (United States)

    Pahlavani, M. R.; Mirfathi, S. M.

    2017-07-01

    Neutron multiplicity prior to scission and evaluation of mass distribution of fission fragments with the fission time scale for neutron induced fission of plutonium isotopes are investigated using a dynamical Langevin approach. Also, mass yield of fragments and prompt neutron multiplicity in different time scales of the fission process are compared with experimental data. Reasonable agreement is achieved between calculated and available experimental data.

  20. Photonuclear Contributions to SNS Pulse Shapes

    Energy Technology Data Exchange (ETDEWEB)

    McClanahan, Tucker C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Iverson, Erik B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gallmeier, Franz X. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    Short-pulsed sources like the Spallation Neutron Source (SNS) and ISIS produce bursts of neutron pulses at rates of 10-60 Hz, with sub-microsecond proton pulses impacting on high-Z target materials. Moderators are grouped around the target to receive the fast neutrons generated from spallation reactions to moderate them effciently to thermal and sub-thermal energies and to feed narrow neutron pulses to neutron scattering instruments. The scattering instruments use the neutrons as a probe for material investigations, and make use of time-of-flight (TOF) methods for resolving the neutron energy. The energy resolution of scattering instruments depends on the narrow time-structure of the neutron pulses, while neutrons in the long tail of the emission time distributions can degrade the instrument performance and add undesired background to measurements. The SNS neutronics team is investigating a possible source term impacting the background at short-pulsed spallation sources. The ISIS TS2 project claims to have significantly reduced neutron scattering instrument background levels by the elimination or reduction of iron shielding in the target-moderator-reflector assembly. An alternative hypothesis, also proposed by ISIS, suggests that this apparent reduction arises from moving beamline shielding away from the neutron guide channels, reducing albedo down the beamlines. In both hypotheses, the background neutrons in question are believed to be generated by photonuclear reactions. If the background neutrons are indeed generated via photonuclear channels, then they are generated in a time-dependent fashion, since most of the high-energy photons capable of inducing photonuclear production are gone within a few microseconds following the proton pulse. To evaluate this e ect, we have enabled photonuclear reactions in a series of studies for the SNS first target station (FTS) taking advantage of its Monte Carlo model. Using a mixture of ENDF/B VII.0 and TENDL-2014 photonuclear

  1. Neutron-Induced Fission Measurements at the Dance and Lsds Facilities at Lanl

    Science.gov (United States)

    Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Chadwick, M. B.; Couture, A.; O'Donnell, J. M.; Fowler, M. M.; Haight, R. C.; Hayes-Sterbenz, A. C.; Rundberg, R. S.; Rusev, G. Y.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wu, C. Y.; Becker, J. A.; Alexander, C. W.; Belier, G.

    2014-09-01

    New results from neutron-induced fission measurements performed at the Detector for Advanced Neutron Capture Experiments (DANCE) and Lead Slowing Down Spectrometer (LSDS) are presented. New correlated data on promptfission γ-ray (PFG) distributions were measured using the DANCE array for resonant neutron-induced fission of 233U, 235U and 239Pu. The deduced properties of PFG emission are presented using a simple parametrization. An accurate knowledge of fission γ-ray spectra enables us to analyze the isomeric states of 236U created after neutron capture on 235U. We briefly discuss these new results. Finally, we review details and preliminary results of the challenging 237U(n,f) cross section measurement at the LSDS facility.

  2. An empirical fit to estimated neutron emission cross sections from proton induced reactions

    Indian Academy of Sciences (India)

    Moumita Maiti; Maitreyee Nandy; S N Roy; P K Sarkar

    2003-01-01

    Neutron emission cross section for various elements from 9Be to 209Bi have been calculated using the hybrid model code ALICE-91 for proton induced reactions in the energy range 25 MeV to 105 MeV. An empirical expression relating neutron emission cross section to target mass number and incident proton energy has been obtained. The simple expression reduces the computation time significantly. The trend in the variation of neutron emission cross sections with respect to the target mass number and incident proton energy has been discussed within the framework of the model used.

  3. Fast neutron-induced damage in INTEGRAL n-type HPGe detectors

    CERN Document Server

    Borrel, V; Albernhe, F; Frabel, P; Cordier, B; Tauzin, G; Crespin, S; Coszach, R; Denis, J M; Leleux, P

    1999-01-01

    Several INTEGRAL n-type HPGe detectors have been irradiated by fast neutrons and their degradation studied through the analysis of line shapes. The availability of three different fast neutron beams (5, 16 and 6-70 MeV) allowed a quantitative analysis of the importance of the neutron energy on the amount of damage. A comparison is made with the degradation induced by high-energy proton irradiations. Transient effects on the measured resolution are reported after high voltage cut-off on degraded detectors.

  4. Boron neutron capture therapy induces cell cycle arrest and DNA fragmentation in murine melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Faiao-Flores, F. [Biochemical and Biophysical Laboratory, Butantan Institute, 1500 Vital Brasil Avenue, Sao Paulo (Brazil)] [Faculty of Medicine, University of Sao Paulo, 455 Doutor Arnaldo Avenue, Sao Paulo (Brazil); Coelho, P.R.P. [Institute for Nuclear and Energy Research, 2242 Lineu Prestes Avenue, Sao Paulo (Brazil); Arruda-Neto, J. [Physics Institute, University of Sao Paulo, 187 Matao Street, Sao Paulo (Brazil)] [FESP, Sao Paulo Engineering School, 5520 Nove de Julho Avenue, Sao Paulo (Brazil); Maria, Durvanei A., E-mail: durvaneiaugusto@yahoo.br [Biochemical and Biophysical Laboratory, Butantan Institute, 1500 Vital Brasil Avenue, Sao Paulo (Brazil)

    2011-12-15

    The melanoma is a highly lethal skin tumor, with a high incidence. Boron Neutron Capture Therapy (BNCT) is a radiotherapy which combines Boron with thermal neutrons, constituting a binary system. B16F10 melanoma and L929 fibroblasts were treated with Boronophenylalanine and irradiated with thermal neutron flux. The electric potential of mitochondrial membrane, cyclin D1 and caspase-3 markers were analyzed. BNCT induced a cell death increase and cyclin D1 amount decreased only in B16F10 melanoma. Besides, there was not caspase-3 phosphorylation.

  5. The P{sub 1}-approximation for the Distribution of Neutrons from a Pulsed Source in Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Claesson, A.

    1963-12-15

    The asymptotic distribution of neutrons from a pulsed, high energy source in an infinite moderator has been obtained earlier in a 'diffusion' approximation. In that paper the cross section was assumed to be constant over the whole energy region and the time derivative of the first moment was disregarded. Here, first, an analytic expression is obtained for the density in a P{sub 1} -approximation. However, the result is very complicated, and it is shown that an asymptotic solution can be found in a simpler way. By taking into account the low hydrogen scattering cross section at the source energy it follows that the space dependence of the distribution is less than that obtained earlier. The importance of keeping the time derivative of the first moment is further shown in a perturbation approximation.

  6. Optimizing pulse shaping and zooming for acceleration to high velocities and fusion neutron production on the Nike laser

    Science.gov (United States)

    Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Obenschain, S. P.; Arikawa, Y.; Watari, T.

    2010-11-01

    We will present results from follow-on experiments to the record-high velocities of 1000 km/s achieved on Nike [Karasik et al., Phys. Plasmas 17, 056317 (2010) ], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce extreme shock pressures and result in heating of matter to thermonuclear temperatures. Still higher velocities and higher target densities are required for impact fast ignition. The aim of these experiments is shaping the driving pulse to minimize shock heating of the accelerated target and using the focal zoom capability of Nike to achieve higher densities and velocities. Spectroscopic measurements of electron temperature achieved upon impact will complement the neutron time-of-flight ion temperature measurement. Work is supported by US DOE and Office of Naval Research.

  7. Molecular structural analysis of HPRT mutations induced by thermal and epithermal neutrons in Chinese hamster ovary cells.

    Science.gov (United States)

    Kinashi, Y; Sakurai, Y; Masunaga, S; Suzuki, M; Takagaki, M; Akaboshi, M; Ono, K

    2000-09-01

    Chinese hamster ovary (CHO) cells were exposed to thermal and epithermal neutrons, and the occurrence of mutations at the HPRT locus was investigated. The Kyoto University Research Reactor (KUR), which has been improved for use in neutron capture therapy, was the neutron source. Neutron energy spectra ranging from nearly pure thermal to epithermal can be chosen using the spectrum shifters and thermal neutron filters. To determine mutant frequency and cell survival, cells were irradiated with thermal and epithermal neutrons under three conditions: thermal neutron mode, mixed mode with thermal and epithermal neutrons, and epithermal neutron mode. The mutagenicity was different among the three irradiation modes, with the epithermal neutrons showing a mutation frequency about 5-fold that of the thermal neutrons and about 1.5-fold that of the mixed mode. In the thermal neutron and mixed mode, boron did not significantly increase the frequency of the mutants at the same dose. Therefore, the effect of boron as used in boron neutron capture therapy (BNCT) is quantitatively minimal in terms of mutation induction. Over 300 independent neutron-induced mutant clones were isolated from 12 experiments. The molecular structure of HPRT mutations was determined by analysis of all nine exons by multiplex polymerase chain reaction. In the thermal neutron and mixed modes, total and partial deletions were dominant and the fraction of total deletions was increased in the presence of boron. In the epithermal neutron mode, more than half of the mutations observed were total deletions. Our results suggest that there are clear differences between thermal and epithermal neutron beams in their mutagenicity and in the structural pattern of the mutants that they induce. Mapping of deletion breakpoints of 173 partial-deletion mutants showed that regions of introns 3-4, 7/8-9 and 9-0 are sensitive to the induction of mutants by neutron irradiation.

  8. Evaluation and calibration of a pulsed neutron method for total hydrogen determination in mineral and concrete samples

    Energy Technology Data Exchange (ETDEWEB)

    Bennun, L.; Santibanez, M. [Universidad de Concepcion, Laboratorio de Fisica Aplicada, Departamento de Fisica, P.O. Box 160c, Concepcion (Chile); Gomez, J. [Holcim (Costa Rica) S.A, Alajuela (Costa Rica); Santisteban, J.R. [Centro Atomico Bariloche e Instituto Balseiro, Bariloche Rio Negro (Argentina)

    2011-11-15

    We studied the feasibility of a nondestructive method to determine hydrogen concentrations in concrete and mineral samples. The amount of total hydrogen in the sample is directly related to the proportion of water included in the paste preparation; and also considers all subsequent processes which can add or remove hydrogen in a real sample (like rain, evaporation, etc.). The hydrogen proportion is a critical variable in the curing concrete process; its excess or deficiency impacts negatively in the quality of the final product. The proposed technique is based on a pulsed neutron source and the technical support of the time of flight, which allow discriminating epithermal neutrons interacting with hydrogen (inelastic scattering) from the elastic and quasi-isotropic scattering produced by other kinds of atoms. The method was externally calibrated in limestone rocks fragments (CaCO{sub 3}-main material used in cement fabrication) and in steel, allowing an easy retrieval of the required information. The technique's simplicity may facilitate the development of a mobile measuring device in order to make determinations ''in situ.'' In this paper, we describe the foundations of the proposed method and various analysis results. (orig.)

  9. A commercial elemental on-line coal analyzer using pulsed neutrons

    Science.gov (United States)

    Belbot, Michael; Vouvopoulos, George; Paschal, Jonathan

    2001-07-01

    Because of its heterogeneity and the delay involved, traditional laboratory analysis of coal samples does not allow real time control of coal bulk parameters. Large excursions in important parameters (such as sulfur or calorific content) can be expensive and can be avoided with an on-line coal analyzer. The system that we developed utilizes nuclear reactions produced from fast and thermal neutrons and from neutron activation producing isotopes with half-lives longer than a few seconds. Characteristic gamma rays detected with BGO (bismuth germanate) detectors are used for the identification of the various chemical elements. The main features of the analyzer are elemental self-calibration independent of the coal seam; better accuracy in the determination of elements such as carbon, oxygen, and sodium; and diminished radiation risk. A prototype coal analyzer has been built and the first commercial model is currently being developed.

  10. Measuring the Cosmic Ray Muon-Induced Fast Neutron Spectrum by (n,p) Isotope Production Reactions in Underground Detectors

    CERN Document Server

    Galbiati, C; Galbiati, Cristiano; Beacom, John. F.

    2005-01-01

    While cosmic ray muons themselves are relatively easy to veto in underground detectors, their interactions with nuclei create more insidious backgrounds via: (i) the decays of long-lived isotopes produced by muon-induced spallation reactions inside the detector, (ii) spallation reactions initiated by fast muon-induced neutrons entering from outside the detector, and (iii) nuclear recoils initiated by fast muon-induced neutrons entering from outside the detector. These backgrounds, which are difficult to veto or shield against, are very important for solar, reactor, dark matter, and other underground experiments, especially as increased sensitivity is pursued. We used fluka to calculate the production rates and spectra of all prominent secondaries produced by cosmic ray muons, in particular focusing on secondary neutrons, due to their importance. Since the neutron spectrum is steeply falling, the total neutron production rate is sensitive just to the relatively soft neutrons, and not to the fast-neutron compon...

  11. Developing an in-situ Detector of Neutron-Induced Fission for Actinide Sputtering Characterization

    Science.gov (United States)

    Fellers, Deion

    2016-09-01

    The physical mechanism describing the transfer of large amounts of energy due to fission in a material is not well understood and represents one of the modern challenges facing nuclear scientists, with applications including nuclear energy and national defense. Fission fragments cause damage to the material from sputtering of matter as they pass through or near the material's surface. We have developed a new technique at the Los Alamos Neutron Science Center for characterizing the ejecta by using ultracold neutrons (neutrons with kinetic energy less than 300 neV) to induce fission at finely controlled depths in an actinide. This program will ultimately provide a detailed description of the properties of the sputtered particles as a function of the depth of the fission in the material. A key component of this project is accurately quantifying the number of neutron induced fissions in the sample. This poster depicts the development of an in-situ detector of neutron-induced fission for the AShES (Actinide Sputtering from ultracold neutron Exposure at the Surface) experiment.

  12. Spectrum-Induced Changes in Non-Paraxial Property of Ultrashort Pulsed Beam

    Institute of Scientific and Technical Information of China (English)

    陆大全; 胡巍; 杨振军; 郑一周

    2003-01-01

    A spatiotemporal non-paraxial correction to the paraxial solution of ultrashort pulsed beam is obtained by using the Fourier transform and the Taylor expansion. By studying the propagation of an isodiffracting pulsed Gaussian beam with different pulse shapes, we find that there are spectrum-induced changes in the non-paraxial propagation of the pulsed beam. We analyse the influence of pulse spectrum on the non-paraxial property of the ultrashort pulsed beam and explain it base on the paraxial approximation condition.

  13. Radiation-induced pulsed conductivity of CsBr crystals

    CERN Document Server

    Aduev, B P; Shvajko, V N

    2001-01-01

    The radiation-induced conductivity of the CsBr crystals by excitation through the picosecond electron beams (0.2 MeV, 50 ps, 0.1-10 kA/cm sup 2) are studied. The time resolution of the measurement methodology is approx 150 ps. It is shown that the service life of the conductivity zone electrons is limited by the biomolecular recombination with auto localized holes (V sub k -centers). The inertia of the conductivity current pulse growth is determined. The model, according to which the Auger recombination of the valence zone electrons and the upper skeleton zone holes significantly contributes to the conductivity zone electrons generation, is used for explaining this effect

  14. Prediction of absorption coefficients by pulsed laser induced photoacoustic measurements.

    Science.gov (United States)

    Priya, Mallika; Satish Rao, B S; Ray, Satadru; Mahato, K K

    2014-06-05

    In the current study, a pulsed laser induced photoacoustic spectroscopy setup was designed and developed, aiming its application in clinical diagnostics. The setup was optimized with carbon black samples in water and with various tryptophan concentrations at 281nm excitations. The sensitivity of the setup was estimated by determining minimum detectable concentration of tryptophan in water at the same excitation, and was found to be 0.035mM. The photoacoustic experiments were also performed with various tryptophan concentrations at 281nm excitation for predicting optical absorption coefficients in them and for comparing the outcomes with the spectrophotometrically-determined absorption coefficients for the same samples. Absorption coefficients for a few serum samples, obtained from some healthy female volunteers, were also determined through photoacoustic and spectrophotometric measurements at the same excitations, which showed good agreement between them, indicating its clinical implications.

  15. Granulomatous tattoo reaction induced by intense pulse light treatment.

    Science.gov (United States)

    Tourlaki, Athanasia; Boneschi, Vinicio; Tosi, Diego; Pigatto, Paolo; Brambilla, Lucia

    2010-10-01

    Cosmetic tattooing involves implantation of pigments into the dermis in order to create a permanent makeup. Here, we report a case of sarcoidal granulomatous reaction to old cosmetic tattoos after an intense pulsed light (IPL) treatment for facial skin rejuvenation. We consider this case as a peculiar example of photo-induced reaction to tattoo. In addition, we hypothesize that an underlying immune dysfunction was present, and acted as a predisposing factor for this unusual response, as the patient had suffered from an episode of acute pulmonary sarcoidosis 15 years before. Overall, our observation suggests that IPL treatment should be used cautiously in patients with tattoos, especially when a history of autoimmune disease is present.

  16. Pulse temporal compression by two-stage stimulated Brillouin scattering and laser-induced breakdown

    Science.gov (United States)

    Liu, Zhaohong; Wang, Yulei; Wang, Hongli; Bai, Zhenxu; Li, Sensen; Zhang, Hengkang; Wang, Yirui; He, Weiming; Lin, Dianyang; Lu, Zhiwei

    2017-06-01

    A laser pulse temporal compression technique combining stimulated Brillouin scattering (SBS) and laser-induced breakdown (LIB) is proposed in which the leading edge of the laser pulse is compressed using SBS, and the low intensity trailing edge of the laser pulse is truncated by LIB. The feasibility of the proposed scheme is demonstrated by experiments in which a pulse duration of 8 ns is compressed to 170 ps. Higher compression ratios and higher efficiency are expected under optimal experimental conditions.

  17. Rapid phase change induced by double picosecond laser pulses and the dynamics of acoustic phonons

    Energy Technology Data Exchange (ETDEWEB)

    Li, Simian, E-mail: lism1972@qq.com [Hebei Key Laboratory of Optoelectronic Information and Geo-detection Technology, Shijiazhuang University of Economics, Shijiazhuang 050031 (China); State Key Laboratory of Optoelectronic Materials and Technology, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Liang, Guangfei [Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2013-12-02

    For a given phase change material and composition, the double laser pulses better than a single pulse for the crystallization process. We investigated the crystallization process in Si{sub 15}Sb{sub 85} thin films induced by double picosecond pulses with constant fluence and variable intervals. The crystallization degree is a function of the intervals of double pump laser pulses. The crystallization time decreased with the increasing of the intervals of the pump pulses. We believe that acoustic phonons play a key role in the crystallization process. - Highlights: • The double pulse crystallization is easier than the single pulse crystallization. • The crystallization is a function of the intervals of double pump laser pulses. • The crystallization time decreases with the increase of the pump pulse intervals. • Acoustic phonons play a key role in the crystallization process.

  18. Importance of ~5He Emission in Neutron Induced Reactions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The statistical model codes as the evaluation tool widely used in the world have long been performedto set up neutron data library below 20 MeV However, an important particle emission of ~5He has neverbeen included in the widely used codes. Based on the calculated threshold energies of ~3He and ~5He emissions for various nuclei, one can find

  19. Investigation of reactor neutron irradiation induced dark signals increase in COTS array CCDs

    Directory of Open Access Journals (Sweden)

    Zujun Wang

    2014-09-01

    Full Text Available The experiments of reactor neutron irradiation which induce dark signal increase in COTS array CCDs are presented. The flux of the reactor neutron beams was about 1.33 × 108 n/cm2s. The three samples were exposed to 1MeV neutron-equivalent fluences of 1 × 1011, 5 × 1011, and 1 × 1012 n/cm2, respectively. The mean dark signal (KD, dark signal non-uniformity (DSNU, and dark signal spikes (hot pixels versus neutron fluence are investigated. The degradation mechanisms of the dark signal in CCDs are analyzed. The mean dark signal increase due to neutron displacement damage appears to be proportional to displacement damage dose. The dark images from the CCDs irradiated by neutrons are presented to investigate the generation of dark signal spike. The 1D and 2D figures which show the output signal voltage of pixels in dark images irradiated by different neutron beam fluences, are presented to compare the degradation of KD, DSNU, and dark signal spike.

  20. Plastic scintillator with effective pulse shape discrimination for neutron and gamma detection

    Science.gov (United States)

    Zaitseva, Natalia P.; Carman, M Leslie; Cherepy, Nerine; Glenn, Andrew M.; Hamel, Sebastien; Payne, Stephen A.; Rupert, Benjamin L.

    2016-04-12

    In one embodiment, a scintillator material includes a polymer matrix; and a primary dye in the polymer matrix, the primary dye being a fluorescent dye, the primary dye being present in an amount of 5 wt % or more; wherein the scintillator material exhibits an optical response signature for neutrons that is different than an optical response signature for gamma rays. In another embodiment, a scintillator material includes a polymer matrix; and a primary dye in the polymer matrix, the primary dye being a fluorescent dye, the primary dye being present in an amount greater than 10 wt %.

  1. Plastic scintillator with effective pulse shape discrimination for neutron and gamma detection

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, Natalia P.; Carman, M Leslie; Cherepy, Nerine; Glenn, Andrew M.; Hamel, Sebastien; Payne, Stephen A.; Rupert, Benjamin L.

    2016-04-12

    In one embodiment, a scintillator material includes a polymer matrix; and a primary dye in the polymer matrix, the primary dye being a fluorescent dye, the primary dye being present in an amount of 5 wt % or more; wherein the scintillator material exhibits an optical response signature for neutrons that is different than an optical response signature for gamma rays. In another embodiment, a scintillator material includes a polymer matrix; and a primary dye in the polymer matrix, the primary dye being a fluorescent dye, the primary dye being present in an amount greater than 10 wt %.

  2. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: The EXILL campaign

    Directory of Open Access Journals (Sweden)

    Blanc A.

    2013-12-01

    Full Text Available One way to explore exotic nuclei is to study their structure by performing γ-ray spectroscopy. At the ILL, we exploit a high neutron flux reactor to induce the cold fission of actinide targets. In this process, fission products that cannot be accessed using standard spontaneous fission sources are produced with a yield allowing their detailed study using high resolution γ-ray spectroscopy. This is what was pursued at the ILL with the EXILL (for EXOGAM at the ILL campaign. In the present work, the EXILL setup and performance will be presented.

  3. Displacement damage induced in iron by gammas and neutrons under irradiation in the IFMIF test cell

    Science.gov (United States)

    Simakov, S. P.; Fischer, U.

    2011-10-01

    This work presents a complete comparative analysis of the radiation damage induced in iron-based materials in IFMIF by photons and neutrons. The gamma induced damage takes into account, for the first time, both photonuclear and photoatomic reaction mechanisms. The relevant cross sections were taken from available data evaluations. The gamma and neutron radiation fields were calculated by the McDeLicious Monte Carlo code using a 3-D geometry model. Finally the gamma and neutron induced damages in the iron have been assessed inside the IFMIF test cell and the surrounding concrete walls. It was found that the photoatomic mechanism dominates the photonuclear with at least one hundred times higher damage rates. The ratio of the gamma and the neutron induced displacement damage was found to be 10 -3 inside the concrete wall and 10 -5 in the components close to d-Li source. This fraction may increase a few times due to the uncertainty of the evaluated γ-dpa cross sections and the different surviving probabilities for defects produced by gammas and neutrons, nevertheless unlikely exceed 1%.

  4. Pulse shape discrimination characteristics of stilbene crystal, pure and 6Li loaded plastic scintillators for a high resolution coded-aperture neutron imager

    Science.gov (United States)

    Cieślak, M. J.; Gamage, K. A. A.; Glover, R.

    2017-07-01

    Pulse shape discrimination performances of single stilbene crystal, pure plastic and 6Li loaded plastic scintillators have been compared. Three pulse shape discrimination algorithms have been tested for each scintillator sample, assessing their quality of neutron/gamma separation. Additionally, the digital implementation feasibility of each algorithm in a real-time embedded system was evaluated. Considering the pixelated architecture of the coded-aperture imaging system, a reliable method of simultaneous multi-channel neutron/gamma discrimination was sought, accounting for the short data analysis window available for each individual channel. In this study, each scintillator sample was irradiated with a 252Cf neutron source and a bespoke digitiser system was used to collect the data allowing detailed offline examination of the sampled pulses. The figure-of-merit was utilised to compare the discrimination quality of the collected events with respect to various discrimination algorithms. Single stilbene crystal presents superior neutron/gamma separation performance when compared to the plastic scintillator samples.

  5. Damage Induced by Neutron Radiation on Output Characteristics of Solar Cells, Photodiodes, and Phototransistors

    Directory of Open Access Journals (Sweden)

    Biljana Simić

    2013-01-01

    Full Text Available This study investigates the effects of neutron radiation on I-V characteristics (current dependance on voltage of commercial optoelectronic devices (silicon photodiodes, phototransistors, and solar panels. Current-voltage characteristics of the samples were measured at room temperature before and after irradiation. The diodes were irradiated using Am-Be neutron source with neutron emission of 2.7×106 n/s. The results showed a decrease in photocurrent for all samples which could be due to the existence of neutron-induced displacement defects introduced into the semiconductor lattice. The process of annealing has also been observed. A comparative analysis of measurement results has been performed in order to determine the reliability of optoelectronic devices in radiation environments.

  6. Density effect of the neutron halo nucleus induced reactions in intermediate energy heavy ion collisions

    Institute of Scientific and Technical Information of China (English)

    CAO Xi-Guang; CHEN Jin-Gen; MA Yu-Gang; FANG De-Qing; TIAN Wen-Dong; YAN Ting-Zhi; CAI Xiang-Zhou

    2009-01-01

    Using an isospin-dependent quantum molecular dynamics (IQMD) model, we study the 15C induced reactions from 30-120 MeV/nucleon systematically. Here the valence neutron of 15C is assigned at both 1d5/2 and 2s1/2 states respectively in order to study the density effect of reaction mechanism. It is. believed that the existent neutron halo structure at the 2s1/2 state of 15C will affect the light particle emission evidently.In our calculation, the different density distributions of 15C at two states are calculated by relativistic mean field (RMF) model and introduced in the initiation of IQMD model, respectively. It is found that some observables such as emission fragmentation multiplicity, emission neutron/proton ratio and emission neutrons'kinetic energy spectrum are sensitive to the initial density distribution.

  7. Inelastic scattering research at a 1 MW long pulse spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Carlile, C.J.

    1995-12-31

    The brief was, with respect to the LPSS bench mark design supplied (60 Hz, 1 MW, Imsec proton pulse, with a split, non-fissile target and 4 moderators in a flux trap geometry design), to identify a set of instruments, and to assess their performance with respect to existing spectrometers on other sources. Any modifications to the existing instruments which would make them more effective on the bench-mark source, or conversely, any modifications to the source bench-mark required by the proposed instruments were to be identified, as were any uncertainties in the estimated performances, or any R & D needed to make the proposed instruments viable. Any new instrument concepts specifically matched to the long pulse itself were to be identified and assessed. This process was to result in an indicative list of instruments for the source. A figure of around 10 spectrometers was to be aimed for.

  8. Study of neutron-induced background hits in the CMS endcap muon system

    CERN Document Server

    Dasgupta, Abhigyan

    2017-01-01

    Among the many challenges arising from the high luminosities of the HL-LHC is the impact of increased hit rates in the cathode strip chambers of the CMS endcap muon system. These chambers detect muons as part of the CMS muon trigger, and their data is used offline for muon track reconstruction. Neutrons (both fast and thermal) induce background hits via nuclear interactions and capture, followed by gamma emission and (mainly) Compton scatter off electrons that subsequently ionize the chamber gas. This note presents recent efforts to improve the understanding of such neutron-induced background through detailed comparison of CMS pp collision data and GEANT4 simulation.

  9. $\\beta$-decay study of neutron-rich Tl, Pb, and Bi by means of the pulsed-release technique and resonant laser ionisation

    CERN Multimedia

    Lettry, J

    2002-01-01

    It is proposed to study new neutron-rich nuclei around the Z = 82 magic shell closure, with major relevance for understanding the evolution of nuclear structure at extreme isospin values. Following the IS354 experiment, $\\beta$-decay studies of neutron-rich thallium, lead and bismuth isotopes will be performed for 215 $\\leqslant$ A $\\leqslant$ 219. To this purpose the pulsed-release technique, which was pioneered at ISOLDE, will be optimised. It will be complemented with the higher element selectivity that can be obtained by the unique features of resonant laser ionisation, available at ISOLDE from the RILIS source.

  10. Quantum Hooke's law to classify pulse laser induced ultrafast melting.

    Science.gov (United States)

    Hu, Hao; Ding, Hepeng; Liu, Feng

    2015-02-03

    Ultrafast crystal-to-liquid phase transition induced by femtosecond pulse laser excitation is an interesting material's behavior manifesting the complexity of light-matter interaction. There exist two types of such phase transitions: one occurs at a time scale shorter than a picosecond via a nonthermal process mediated by electron-hole plasma formation; the other at a longer time scale via a thermal melting process mediated by electron-phonon interaction. However, it remains unclear what material would undergo which process and why? Here, by exploiting the property of quantum electronic stress (QES) governed by quantum Hooke's law, we classify the transitions by two distinct classes of materials: the faster nonthermal process can only occur in materials like ice having an anomalous phase diagram characterized with dTm/dP melting temperature and P is pressure, above a high threshold laser fluence; while the slower thermal process may occur in all materials. Especially, the nonthermal transition is shown to be induced by the QES, acting like a negative internal pressure, which drives the crystal into a "super pressing" state to spontaneously transform into a higher-density liquid phase. Our findings significantly advance fundamental understanding of ultrafast crystal-to-liquid phase transitions, enabling quantitative a priori predictions.

  11. Neutron Transfer reactions induced by 8Li on 9Be

    CERN Document Server

    Guimarães, V; Amro, H; Assunção, M; Barioni, A; Becchetti, F D; Carmargo, O; Garcia, H; Jiang, H; Kolata, J J; Lichtenthäler, R; Lizcano, D; Martines-Quiroz, E; Jiang, Hao

    2007-01-01

    Angular distributions for the elastic scattering of 8Li on 9Be and the neutron transfer reactions 9Be(8Li,7Li)10Be and 9Be(8Li,9Li)8Be have been measured with a 27 MeV 8Li radioactive nuclear beam. Spectroscopic factors for 8Li|n=9Li and 7Li|n=8Li bound systems were obtained from the comparison between the experimental differential cross section and finite-range DWBA calculations with the code FRESCO. The spectroscopic factors obtained are compared to shell model calculations and to other experimental values from (d,p) reactions. Using the present values for the spectroscopic factor, cross sections for the direct neutron-capture reactions 7Li(n,g)8Li and 8Li(n,g)9Li were calculated in the framework of a potential model.

  12. Neutron-induced soft errors in CMOS circuits

    Energy Technology Data Exchange (ETDEWEB)

    Hazucha, P

    1999-09-01

    The subject of this thesis is a systematic study of soft errors occurring in CMOS integrated circuits when being exposed to radiation. The vast majority of commercial circuits operate in the natural environment ranging from the sea level to aircraft flight altitudes (less than 20 km), where the errors are caused mainly by interaction of atmospheric neutrons with silicon. Initially, the soft error rate (SER) of a static memory was measured for supply voltages from 2V to 5V when irradiated by 14 MeV and 100 MeV neutrons. Increased error rate due to the decreased supply voltage has been identified as a potential hazard for operation of future low-voltage circuits. A novel methodology was proposed for accurate SER characterization of a manufacturing process and it was validated by measurements on a 0.6 {mu}m process and 100 MeV neutrons. The methodology can be applied to theprediction of SER in the natural environment.

  13. Laser-induced retinal damage threshold for repetitive-pulse exposure to 100-microsecs pulses

    Science.gov (United States)

    2014-10-07

    and is inde pendent of the pulse repetition frequency (PRF). When the injury mechanism is thermal denaturation, the pulses do interact , with the peak...energy incident on the cornea that passes through the pupil of the eye. TIE is expressed in this paper as the energy per pulse in the pulse train. 3...given in the guidelines as the corneal irradiance (J∕cm2), was multi plied by the area of a 7 mm pupil to give the allowable TIE. CP is a multiplicative

  14. Experimental observation of $\\beta$-delayed neutrons from $^{9}$Li as a way to study short-pulse laser-driven deuteron production

    CERN Document Server

    Favalli, Andrea; Henzlova, Daniela; Falk, Katerina; Croft, Stephen; Gautier, Donald C; Ianakiev, Kiril D; Iliev, Metodi; Palaniyappan, Sasikumar; Roth, Markus; Fernandez, Juan C; Swinhoe, Martyn T

    2016-01-01

    A short-pulse laser-driven deuteron beam is generated in the relativistic transparency regime and aimed at a beryllium converter to generate neutrons at the TRIDENT laser facility. These prompt neutrons have been used for active interrogation to detect nuclear materials, the first such demonstration of a laser-driven neutron source. During the experiments, delayed neutrons from $^9$Li decay was observed. It was identified by its characteristic half-life of 178.3 ms. Production is attributed to the nuclear reactions $^9$Be(d,2p)$^9$Li and $^9$Be(n,p)$^9$Li inside the beryllium converter itself. These reactions have energy thresholds of 18.42 and 14.26 MeV respectively, and we estimate the (d,2p) reaction to be the dominant source of $^9$Li production. Therefore, only the higher-energy portion of the deuteron spectrum contributes to the production of the delayed neutrons. It was observed that the delayed-neutron yield decreases with increasing distance between the converter and the deuteron source. This behavio...

  15. Evaluation of Neutron Induced Reactions for 32 Fission Products

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeong Il

    2007-02-15

    Neutron cross sections for 32 fission products were evaluated in the neutron-incident energy range from 10{sup -5} eV to 20 MeV. The list of fission products consists of the priority materials for several applications, extended to cover complete isotopic chains for three elements. The full list includes 8 individual isotopes, {sup 95}Mo, {sup 101}Ru, {sup 103}Rh, {sup 105}Pd, {sup 109}Ag, {sup 131}Xe, {sup 133}Cs, {sup 141}Pr, and 24 isotopes in complete isotopic chains for Nd (8), Sm (9) and Dy (7). Our evaluation methodology covers both the low energy region and the fast neutron region.In the low energy region, our evaluations are based on the latest data published in the Atlas of Neutron Resonances. This resource was used to infer both the thermal values and the resolved resonance parameters that were validated against the capture resonance integrals. In the unresolved resonance region we performed the additional evaluation by using the averages of the resolved resonances and adjusting them to the experimental data.In the fast neutron region our evaluations are based on the nuclear reaction model code EMPIRE-2.19 validated against the experimental data. EMPIRE is the modular system of codes consisting of many nuclear reaction models, including the spherical and deformed Optical Model, Hauser-Feshbach theory with the width fluctuation correction and complete gamma-ray emission cascade, DWBA, Multi-step Direct and Multi-step Compound models, and several versions of the phenomenological preequilibrium models. The code is equipped with a power full GUI, allowing an easy access to support libraries such as RIPL and CSISRS, the graphical package, as well the utility codes for formatting and checking. In general, in our calculations we used the Reference Input Parameter Library, RIPL, for the initial set model parameters. These parameters were properly adjusted to reproduce the available experimental data taken from the CSISRS library. Our evaluations cover cross

  16. Optical second harmonic generation induced by picosecond terahertz pulses in centrosymmetric antiferromagnet NiO

    Science.gov (United States)

    Ovchinnikov, A. V.; Chefonov, O. V.; Agranat, M. B.; Grishunin, K. A.; Il'in, N. A.; Pisarev, R. V.; Kimel, A. V.; Kalashnikova, A. M.

    2016-10-01

    Optical second harmonic generation at the photon energy of 2ℏω = 2eV in the model centrosymmetric antiferromagnet NiO irradiated with picosecond terahertz pulses (0.4-2.5 THz) at room temperature is detected. The analysis of experimental results shows that induced optical second harmonic generation at the moment of the impact of a terahertz pulse arises through the electric dipole mechanism of the interaction of the electric field of a pump pulse with the electron subsystem of NiO. Temporal changes in optical second harmonic generation during 7 ps after the action of the pulse are also of an electric dipole origin and are determined by the effects of propagation of the terahertz pulse in a NiO platelet. Coherent oscillations of spins at the antiferromagnetic resonance frequency induced by the magnetic component of the terahertz pulse induce a relatively weak modulation of magnetic dipole optical second harmonic generation.

  17. Study of the production of neutron-rich isotope beams issuing from fissions induced by fast neutrons; Etude de la production de faisceaux riches en neutrons par fission induite par neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Ch

    2000-09-15

    This work is a contribution to the PARRNe project (production of radioactive neutron-rich isotopes). This project is based on the fission fragments coming from the fission of 238-uranium induced by fast neutrons. The fast neutron flux is produced by the collisions of deutons in a converter. Thick targets of uranium carbide and liquid uranium targets have been designed in order to allow a quick release of fission fragments. A device, able to trap on a cryogenic thimble rare gas released by the target, has allowed the production of radioactive nuclei whose half-life is about 1 second. This installation has been settled to different deuton accelerators in the framework of the European collaboration SPIRAL-2. A calibration experiment has proved the feasibility of fixing an ISOL-type isotope separator to a 15 MV tandem accelerator, this installation can provide 500 nA deutons beams whose energy is 26 MeV and be a valuable tool for studying fast-neutron induced fission. Zinc, krypton, rubidium, cadmium, iodine, xenon and cesium beams have been produced in this installation. The most intense beams reach 10000 nuclei by micro-coulomb for 26 MeV deutons. An extra gain of 2 magnitude orders can be obtained by using a more specific ion source and by increasing the thickness of the target. Another extra gain of 2 magnitude orders involves 100 MeV deutons.

  18. A detection system to measure muon-induced neutrons for direct dark matter searches

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, V.Yu.; Chantelauze, A.; Kluck, H.; Eitel, K. [Karlsruhe Institute of Technology, Institut fuer Kernphysik, Postfach 3640, 76021 Karlsruhe (Germany); Armengaud, E.; Besida, O.; Gerbier, G.; Gros, M.; Hannawald, M.; Herve, S.; Lemrani, R.; Navick, X.F.; Paul, B.; Torrento-Coello, A.S. [CEA, Centre d' Etudes Nucleaires de Saclay, IRFU, 91191 Gif-sur-Yvette Cedex (FR); Augier, C.; Charlieux, F.; De Jesus, M.; Di Stefano, P.; Gascon, J.; Juillard, A.; Sanglard, V.; Scorza, S.; Vagneron, L.; Verdier, M.A. [Institut de Physique Nucleaire de Lyon, Universite de Lyon - Universite Claude Bernard Lyon 1 et IN2P3-CNRS, 4 rue Enrico Fermi, 69622 Villeurbanne (FR); Benoit, A. [Institut Neel, CNRS, 25 Avenue des Martyrs, 38042 Grenoble Cedex 9 (FR); Berge, L.; Broniatowski, A.; Chapellier, M.; Chardin, G.; Collin, S.; Defay, X.; Dolgorouki, Y.; Dumoulin, L.; Marnieros, S.; Olivieri, E. [Centre de Spectroscopie Nucleaire et de Spectroscopie de Masse, UMR8609 IN2P3-CNRS, Univ. Paris Sud, bat 108, 91405 Orsay Campus (FR); Bluemer, J. [Karlsruhe Institute of Technology, Institut fuer Kernphysik, Postfach 3640, 76021 Karlsruhe (Germany); Karlsruhe Institute of Technology, Institut fuer Experimentelle Kernphysik, Gaedestr. 1, 76128 Karlsruhe (Germany); Brudanin, V.; Lubashevskiy, A.; Rozov, S.; Semikh, S.; Yakushev, E. [Laboratory of Nuclear Problems, JINR, Joliot-Curie 6, 141980 Dubna, Moscow Region (RU); Domange, J. [CEA, Centre d' Etudes Nucleaires de Saclay, IRFU, 91191 Gif-sur-Yvette Cedex (FR); Centre de Spectroscopie Nucleaire et de Spectroscopie de Masse, UMR8609 IN2P3-CNRS, Univ. Paris Sud, bat 108, 91405 Orsay Campus (FR); Loaiza, P. [Laboratoire Souterrain de Modane, CEA-CNRS, 1125 route de Bardonneche, 73500 Modane (FR); Pari, P. [CEA, Centre d' Etudes Nucleaires de Saclay, IRAMIS, 91191 Gif-sur-Yvette Cedex (FR)

    2010-07-01

    Muon-induced neutrons constitute a prominent background component in a number of low count rate experiments, namely direct searches for dark matter. In this work we describe a neutron detector to measure this background in an underground laboratory, the Laboratoire Souterrain de Modane. The system is based on 1 m{sup 3} of Gd-loaded scintillator and it is linked with the muon veto of the EDELWEISS-II experiment for coincident muon detection. The system was installed in autumn 2008 and passed since then a number of commissioning tests proving its full functionality. The data-taking is continuously ongoing and a count rate of the order of 1 muon-induced neutron per day has been achieved. (authors)

  19. Analysis of Neutron Induced Gamma Activity in Lowbackground Ge - Spectroscopy Systems

    Science.gov (United States)

    Jovančević, Nikola; Krmar, Midrag

    Neutron interactions with materials of Ge-spectroscopy systems are one of the main sources of background radiation in low-level gamma spectroscopy measurements. Because of that detailed analysis of neutron induced gamma activity in low-background Ge-spectroscopy systems was done. Two HPGe detectors which were located in two different passive shields: one in pre-WW II made iron and the second in commercial low background lead were used in the experiment. Gamma lines emitted after neutron capture, as well as after inelastic scattering on the germanium crystal and shield materials (lead, iron, hydrogen, NaI) were detected and then analyzed. The thermal and fast neutron fluxes were calculated and their values were compared for the two different kinds of detector shield. The relative intensities of several gamma lines emitted after the inelastic scattering of neutrons (created by cosmic muons) in 56Fe were report. These relative intensities of detected gamma lines of 56Fe are compared with the results collected in the same iron shield by the use of the 252Cf neutrons.

  20. In-situ Calibration of Detectors using Muon-induced Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Marleau, Peter [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Radiation and Nuclear Detection Systems; Reyna, David [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Radiation and Nuclear Detection Systems

    2016-10-31

    In this work we investigate a method that confirms the operability of neutron detectors requiring neither radiological sources nor radiation generating devices. This is desirable when radiological sources are not available, but confidence in the functionality of the instrument is required. The “source”, based on the production of neutrons in high-Z materials by muons, provides a tagged, low-background and consistent rate of neutrons that can be used to check the functionality of or calibrate a detector. Using a Monte Carlo guided optimization, an experimental apparatus was designed and built to evaluate the feasibility of this technique. Through a series of trial measurements in a variety of locations we show that gated muon-induced neutrons appear to provide a consistent source of neutrons (35.9 ± 2.3 measured neutrons/10,000 muons in the instrument) under normal environmental variability (less than one statistical standard deviation for 10,000 muons) with a combined environmental + statistical uncertainty of ~18% for 10,000 muons. This is achieved in a single 21-22 minute measurement at sea level.

  1. Displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor

    Directory of Open Access Journals (Sweden)

    Zujun Wang

    2014-07-01

    Full Text Available The experiments of displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor are presented. The CMOS APS image sensors are manufactured in the standard 0.35 μm CMOS technology. The flux of neutron beams was about 1.33 × 108 n/cm2s. The three samples were exposed by 1 MeV neutron equivalent-fluence of 1 × 1011, 5 × 1011, and 1 × 1012 n/cm2, respectively. The mean dark signal (KD, dark signal spike, dark signal non-uniformity (DSNU, noise (VN, saturation output signal voltage (VS, and dynamic range (DR versus neutron fluence are investigated. The degradation mechanisms of CMOS APS image sensors are analyzed. The mean dark signal increase due to neutron displacement damage appears to be proportional to displacement damage dose. The dark images from CMOS APS image sensors irradiated by neutrons are presented to investigate the generation of dark signal spike.

  2. Fast Neutron Induced Autophagy Leads To Necrosis In Glioblastoma Multiforme Cells

    Science.gov (United States)

    Yasui, Linda; Gladden, Samantha; Andorf, Christine; Kroc, Thomas

    2011-06-01

    Fast neutrons are highly effective at killing glioblastoma multiforme (GBM), U87 and U251 cells. The mode of cell death was investigated using transmission electron microscopy (TEM) to identify the fraction of irradiated U87 or U251 cells having morphological features of autophagy and/or necrosis. U87 or U251 cells were irradiated with 2 Gy fast neturons or 10 Gy γ rays. A majority of U87 and U251 cells exhibit features of cell death with autophagy after irradiation with either 10 Gy γ rays or 2 Gy fast neutrons. Very few γ irradiated cells had features of necrosis (U87 or U251 cell samples processed for TEM 1 day after 10 Gy γ irradiation). In contrast, a significant increase was observed in necrotic U87 and U251 cells irradiated with fast neutrons. These results show a greater percentage of cells exhibit morphological evidence of necrosis induced by a lower dose of fast neutron irradiation compared to γ irradiation. Also, the evidence of necrosis in fast neutron irradiated U87 and U251 cells occurs in a background of autophagy. Since autophagy is observed before necrosis, autophagy may play a role in signaling programmed necrosis in fast neutron irradiated U87 and U251 cells.

  3. Neutron Spectrometric Analysis: Characterization of {sup 3}He Detector Response and Chemometric Data Analysis of Pulse-Height Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Yun; Choi, Yong Suk; Park, Yong Joon; Song, Kyu Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    Among many nucleonic gauges using a variety of sources such as alpha, beta, gamma, neutron or X-ray radiation, neutron-based techniques have been successfully used in landmine detection, cargo inspection and soil analysis as well as in the industrial process monitoring such as cement, glass, coal industries, etc. In general, there are three categories of neutron-based methods: fast neutron analysis (FNA), thermal neutron analysis (TNA) and neutron moderation. FNA and TNA utilize the slow or fast neutrons for the generation of characteristic prompt gamma-ray to identify the element of interest in many applications. The neutron moderation is attractive for the process monitoring of the moisture content in the bulk samples. In spite of its many advantages, the false-alarm rate of the neutron method is of great interest in the field operations.

  4. [Research advances of anti-tumor immune response induced by pulse electric field ablation].

    Science.gov (United States)

    Cui, Guang-ying; Diao, Hong-yan

    2015-11-01

    As a novel tumor therapy, pulse electric field has shown a clinical perspective. This paper reviews the characteristics of tumor ablation by microsecond pulse and nanosecond pulse electric field, and the research advances of anti-tumor immune response induced by pulse electric field ablation. Recent researches indicate that the pulse electric field not only leads to a complete ablation of local tumor, but also stimulates a protective immune response, thereby inhibiting tumor recurrence and metastasis. These unique advantages will show an extensive clinical application in the future. However, the mechanism of anti-tumor immune response and the development of related tumor vaccine need further studies.

  5. Hybrid superconducting neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Merlo, V.; Lucci, M.; Ottaviani, I. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); Salvato, M.; Cirillo, M. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); CNR SPIN Salerno, Università di Salerno, Via Giovanni Paolo II, n.132, 84084 Fisciano (Italy); Scherillo, A. [Science and Technology Facility Council, ISIS Facility Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Celentano, G. [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Pietropaolo, A., E-mail: antonino.pietropaolo@enea.it [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Mediterranean Institute of Fundamental Physics, Via Appia Nuova 31, 00040 Marino, Roma (Italy)

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  6. Hybrid Superconducting Neutron Detectors

    CERN Document Server

    Merlo, V; Cirillo, M; Lucci, M; Ottaviani, I; Scherillo, A; Celentano, G; Pietropaolo, A

    2014-01-01

    A new neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction 10B+n $\\rightarrow$ $\\alpha$+ 7Li , with $\\alpha$ and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the supercond...

  7. Simulation of a suite of generic long-pulse neutron instruments to optimize the time structure of the European Spallation Source

    DEFF Research Database (Denmark)

    Lefmann, Kim; Klenø, Kaspar H.; Birk, Jonas Okkels;

    2013-01-01

    between 10 Hz and 25 Hz. The relative change in performance with time structure is given for each instrument, and an unweighted average is calculated. The performance of the instrument suite is proportional to (a) the peak flux and (b) the duty cycle to a power of approximately 0.3. This information......We here describe the result of simulations of 15 generic neutron instruments for the long-pulsed European Spallation Source. All instruments have been simulated for 20 different settings of the source time structure, corresponding to pulse lengths between 1 ms and 2 ms; and repetition frequencies...

  8. Tracking the photodissociation probability of D$_2^+$ induced by linearly chirped laser pulses

    CERN Document Server

    Csehi, András; Cederbaum, Lorenz S; Vibók, Ágnes

    2016-01-01

    In the presence of linearly varying frequency chirped laser pulses the photodissociation dynamics of D$_2^+$ is studied theoretically after ionization of D$_{2}$ . As a completion of our recent work (J. Chem. Phys. 143, 014305 (2015)) a comprehensive dependence on the pulse duration and delay time is presented in terms of total dissociation probabilities. Our numerical analysis carried out in the recently introduced light-induced conical intersection (LICI) framework clearly shows the effects of the changing position of the LICI which is induced by the frequency modulation of the chirped laser pulses. This impact is presented for positively, negatively and zero chirped short pulses.

  9. Anisotropy modulations of femtosecond laser pulse induced periodic surface structures on silicon by adjusting double pulse delay.

    Science.gov (United States)

    Han, Weina; Jiang, Lan; Li, Xiaowei; Wang, Qingsong; Li, Hao; Lu, YongFeng

    2014-06-30

    We demonstrate that the polarization-dependent anisotropy of the laser-induced periodic surface structure (LIPSS) on silicon can be adjusted by designing a femtosecond laser pulse train (800 nm, 50 fs, 1 kHz). By varying the pulse delay from 100 to 1600 fs within a double pulse train to reduce the deposited pulse energy, which weakens the directional surface plasmon polarition (SPP)-laser energy coupling based on the initial formed ripple structure, the polarization-dependent geometrical morphology of the LIPSS evolves from a nearly isotropic circular shape to a somewhat elongated elliptical shape. Meanwhile, the controllable anisotropy of the two-dimensional scanned-line widths with different directions is achieved based on a certain pulse delay combined with the scanning speed. This can effectively realize better control over large-area uniform LIPSS formation. As an example, we further show that the large-area LIPSS can be formed with different scanning times under different pulse delays.

  10. Study of the beam-induced neutron flux and required shielding for DIANA

    Energy Technology Data Exchange (ETDEWEB)

    Best, Andreas, E-mail: abest1@nd.edu [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Couder, Manoel [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Famiano, Michael [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States); Lemut, Alberto [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Wiescher, Michael [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2013-11-01

    Low energy accelerators in underground locations have emerged as a powerful tool for the measurement of critical nuclear reactions for the study of energy production and element synthesis in astrophysics. While cosmic ray induced background is substantially reduced, beam induced background on target impurities and depositions on target and collimator materials remain a matter of serious concern. The Dual Ion Accelerator for Nuclear Astrophysics (DIANA) is proposed to operate as a low-level background facility in an underground location. One of the main goals of DIANA is the study of neutron sources in stellar helium burning. For these experiments DIANA is a neutron radiation source which may affect other nearby low background level experiments. We therefore investigated the required laboratory layout to attenuate the neutron flux generated in a worst-case scenario to a level below the natural background in the underground environment. Detailed Monte Carlo calculations of the neutron propagation in the laboratory show that a neutron flux many orders of magnitude above expected values gets attenuated below the natural background rate using a 1 m thick water-shielded door as well as an emergency access/egress maze.

  11. Re-evaluations of Neutron Induced Nuclear Data for 58Ni

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Yue

    2015-01-01

    Ni is an important structural nuclide.The abundance of 58Ni is 68.077%.There still exist some problems in CENDL-3.1 58Ni evaluations,hence 141Ce should be re-evaluated.Optical motel potential parameters in CENDL-3.1adopted,all the neutron-induced cross sections,energy spectra and angular distributions

  12. Predicted neutron yield and radioactivity for laser-induced (p,n) reactions in LiF

    Energy Technology Data Exchange (ETDEWEB)

    Swift, D C; McNaney, J M

    2009-01-30

    Design calculations are presented for a pulsed neutron source comprising polychromatic protons accelerated from a metal foil by a short-pulse laser, and a LiF converter in which (p,n) reactions occur. Although the proton pulse is directional, neutrons are predicted to be emitted relatively isotropically. The neutron spectrum was predicted to be similar to the proton spectrum, but with more neutrons of low energy in the opposite direction to the incident protons. The angular dependence of spectrum and intensity was predicted. The (p,n) reactions generate unstable nuclei which decay predominantly by positron emission to the original {sup 7}Li and {sup 19}F isotopes. For the initial planned experiments using a converter 1mm thick, we predict that 0.1% of the protons will undergo a (p,n) reaction, producing 10{sup 9} neutrons. Ignoring the unreacted protons, neutrons, and prompt gamma emission as excited nuclear states decay, residual positron radioactivity (and production of pairs of 511 keV annihilation photons) is initially 4.2MBq decaying with a half-life of 17.22 s for 6 mins ({sup 19}Ne decays), then 135Bq decaying with a half-life of 53.22 days ({sup 7}Be decays).

  13. Liquid explosions induced by X-ray laser pulses

    Science.gov (United States)

    Stan, Claudiu A.; Milathianaki, Despina; Laksmono, Hartawan; Sierra, Raymond G.; McQueen, Trevor A.; Messerschmidt, Marc; Williams, Garth J.; Koglin, Jason E.; Lane, Thomas J.; Hayes, Matt J.; Guillet, Serge A. H.; Liang, Mengning; Aquila, Andrew L.; Willmott, Philip R.; Robinson, Joseph S.; Gumerlock, Karl L.; Botha, Sabine; Nass, Karol; Schlichting, Ilme; Shoeman, Robert L.; Stone, Howard A.; Boutet, Sébastien

    2016-10-01

    Explosions are spectacular and intriguing phenomena that expose the dynamics of matter under extreme conditions. We investigated, using time-resolved imaging, explosions induced by ultraintense X-ray laser pulses in water drops and jets. Our observations revealed an explosive vaporization followed by high-velocity interacting flows of liquid and vapour, and by the generation of shock trains in the liquid jets. These flows are different from those previously observed in laser ablation, owing to a simpler spatial pattern of X-ray absorption. We show that the explosion dynamics in our experiments is consistent with a redistribution of absorbed energy, mediated by a pressure or shock wave in the liquid, and we model the effects of explosions, including their adverse impact on X-ray laser experiments. X-ray laser explosions have predictable dynamics that may prove useful for controlling the state of pure liquids over broad energy scales and timescales, and for triggering pressure-sensitive molecular dynamics in solutions.

  14. Recrystallization of InSb Surfaces Induced by Pulsed Lasers

    Directory of Open Access Journals (Sweden)

    R. Černý

    2000-01-01

    Full Text Available Pulsed laser processing of InSb wafers for the application in designing high speed infrared detectors is studied both theoretically and experimentally. The recrystallization of InSb surfaces resulting in restoration of the implanted region to a single crystal state is presented as a reasonable alternative to the conventional thermal heating. In the theoretical part, thermal equilibrium and nonequilibrium models of melting, recrystallization and evaporation are formulated to describe transport phenomena in the material induced by laser irradiation. In the experimental part, InSb samples irradiated by the ruby (694 nm, 80ns FWHM, and ArF (193 nm, 10 ns FWHM lasers are studied using time resolved reflectivity, Auger electron spectroscopy and low energy electron diffraction methods to analyze surface modifications. A comparison of the experimental data with the numerical predictions shows that while for the ruby laser a reasonable agreement in surface melt duration is achieved, the results for the ArF laser differ quite a lot. As a main reason for these differences, the amorphization of the surface is identified.

  15. Electrical conductivity induced in insulators by pulsed radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, T.J.; Wooten, F.

    1976-06-01

    The minimum prompt photoconductivity induced by pulses of x rays, gamma rays, and energetic electrons in various amorphous and disordered insulating organic and inorganic materials is predicted on the basis of data for the scattering of hot electrons in solids and the band gap for insulators. For total doses of 3 x 10/sup 4/ to 30 x 10/sup 4/ rad or greater, the minimum prompt photoconductivity is predicted to be linear with dose rate, ..gamma.., and is given by sigma(..cap omega../sup -1/cm/sup -1/) = 5 x 10/sup -19/ rho/sub 0/..gamma../E/sup 2//sub g/, where rho/sub 0/ is the density (g/cm/sup 3/) and E/sub g/ is the optical band gap (eV). This formula agrees well with data for a variety of plastics, mica, and borosilicate glass under widely different irradiation conditions. The formula considerably underestimates absolute values of prompt conductivities observed for Al/sub 2/O/sub 3/, MgO, and certain plastics, because the model does not hold for ordered materials.

  16. Liquid explosions induced by X-ray laser pulses

    Science.gov (United States)

    Stan, Claudiu; Laksmono, Hartawan; Sierra, Raymond; McQueen, Trevor; Milathianaki, Despina; Koglin, Jason; Lane, Thomas; Messerschmidt, Marc; Williams, Garth; Hayes, Matt; Guillet, Serge; Botha, Sabine; Nass, Karol; Schlichting, Ilme; Shoeman, Robert; Stone, Howard; Boutet, Sébastien

    2015-11-01

    Sudden generation and release of enough energy to vaporize matter are encountered in systems that range from supernovae explosions and asteroid impacts to applications in fusion energy generation, materials processing, and laser surgery. Understanding these strong explosions is important to both fundamental science and technical applications. We studied a new type of microexplosion, induced by absorption of X-ray pulses from a free-electron laser in micron-sized drops and jets of water. These explosions are related to, but different from, those observed in experiments performed with optical lasers. Unlike explosions caused by optical lasers, X-ray laser explosions produce symmetric expansion patterns that are simpler to rationalize. The release of energy initially concentrated in a small region inside drops and jets leads to ballistic vapor flow and inertial liquid flow. The kinematics of these flows indicates that the conversion of the energy deposited by X-rays into flow has a scaling that is similar to the one encountered in shock waves.

  17. Magnetically insulated diode for generating pulsed neutron and gamma ray emissions

    Science.gov (United States)

    Kuswa, Glenn W.; Leeper, Ramon J.

    1987-01-01

    A magnetically insulated diode employs a permanent magnet to generate a magnetic insulating field between a spaced anode and cathode in a vacuum. An ion source is provided in the vicinity of the anode and used to liberate ions for acceleration toward the cathode. The ions are virtually unaffected by the magnetic field and are accelerated into a target for generating an nuclear reaction. The ions and target material may be selected to generate either neutrons or gamma ray emissions from the reaction of the accelerated ions and the target. In another aspect of the invention, a field coil is employed as part of one of the electrodes. A plasma prefill is provided between the electrodes prior to the application of a pulsating potential to one of the electrodes. The field coil multiplies the applied voltage for high diode voltage applications. The diode may be used to generate a .sup.7 Li(p,.gamma.).sup.8 Be reaction to produce 16.5 MeV gamma emission.

  18. Angular distribution in the neutron-induced fission of actinides

    Directory of Open Access Journals (Sweden)

    Leong L.S.

    2013-12-01

    Full Text Available Above 1 MeV of incident neutron energy the fission fragment angular distribution (FFAD has generally a strong anisotropic behavior due to the combination of the incident orbital momentum and the intrinsic spin of the fissioning nucleus. This effect has to be taken into account for the efficiency estimation of devices used for fission cross section measurements. In addition it bears information on the spin deposition mechanism and on the structure of transitional states. We designed and constructed a detection device, based on Parallel Plate Avalanche Counters (PPAC, for measuring the fission fragment angular distributions of several isotopes, in particular 232Th. The measurement has been performed at n_TOF at CERN taking advantage of the very broad energy spectrum of the neutron beam. Fission events were recognized by back to back detection in coincidence in two position-sensitive detectors surrounding the targets. The detection efficiency, depending mostly on the stopping of fission fragments in backings and electrodes, has been computed with a Geant4 simulation and validated by the comparison to the measured case of 235U below 3 keV where the emission is isotropic. In the case of 232Th, the result is in good agreement with previous data below 10 MeV, with a good reproduction of the structures associated to vibrational states and the opening of second chance fission. In the 14 MeV region our data are much more accurate than previous ones which are broadly scattered.

  19. The crystal structure of superconducting FeSe{sub 1-x}Te{sub x} by pulsed neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, M C; Llobet, A; Horigane, K; Louca, D, E-mail: mcl4v@virginia.edu

    2010-11-01

    A transition to a superconducting state was recently observed in the binary alloy of FeSe{sub 1-x}Te{sub x} system where TC rises with increasing x. The substitution of the larger Te for Se ion results in no additional charges but increases the internal chemical pressure. Earlier studies suggested that the crystal structure maintains the tetragonal P4/nmm symmetry with the substitution of Te where the average bond angle, {alpha}, decreases considerably from {approx} 104{sup 0} in FeSe to 100.5{sup 0} in the mixed phase of FeSe{sub 0.5}Te{sub 0.5}. With the use of pulsed neutron power diffraction and the Rietveld analysis, the crystal structure refinement for FeSe{sub 0.5}Te{sub 0.5} yielded very large thermal factors in the superconducting phase indicative of the presence of structural distortions that may be significant in understanding the electronic and magnetic properties of this system.

  20. Neutron emission effects on fragment mass and kinetic energy distribution from fission of 239Pu induced by thermal neutrons

    Science.gov (United States)

    Montoya, M.; Rojas, J.; Lobato, I.

    2010-08-01

    The average of fragment kinetic energy (E*) and the multiplicity of prompt neutrons (ν) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of 239Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation σE*(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass (σE(A)). As a result of the simulation we obtain the dependence σE*(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.

  1. Neutron induced fission cross section measurements aimed at nuclear technology development

    CERN Document Server

    Belloni, Francesca; Rui, R

    2010-01-01

    Neutron induced fission cross sections of 233U, 238U, 241Am, 243Am and 245Cm in the energy range between 500 keV and 20 MeV obtained at the n_TOF Neutron Time of Flight facility at CERN (Genève) are presented. Fission fragments had been detected by a gas counter with good discrimination between nuclear fission products and background events. A comparison between the extracted cross sections, previous experimental results and evaluated libraries is reported.

  2. Measurement of neutron induced activation of the SCT end-cap module

    CERN Document Server

    Linhart, V; Kolros, A; Lebel, C; Leroy, C; Pospísil, S; Stekl, I; Vobecky, M

    2005-01-01

    Results of the experimental study of the induced radioactivity generated by neutron irradiation in the semiconductor tracker end-cap module are presented. The purpose of the experiment was to identify the radioisotopes produced in the module by neutron interactions. The irradiation was done in the active zone of the VR-1 CTU Prague reactor. The identification and quantification of radioisotopes were based on detailed analysis of gamma-ray spectra, which were measured with a HPGe-detector. The nuclear processes of all 26 observed radioisotopes and their activities at the end of the irradiation were determined.

  3. Determination of radionuclides induced by fast neutrons from the JCO criticality accident in Tokai-mura, Japan for estimating neutron doses.

    Science.gov (United States)

    Kojima, S; Imanaka, T; Takada, J; Mitsugashira, T; Nakanishi, T; Seki, R; Kondo, M; Sasaki, K I; Saito, T; Yamaguchi, Y; Furukawa, M

    2001-09-01

    A criticality accident occurred at a uranium conversion facility in Tokai-mura, Japan on September 30, 1999, and fission neutrons were continuously emitted for about 20 hours. Materials of stainless steel or iron, and chemical reagents were collected at places between 2 m and 270 m from the criticality accident site on October 25 and 26, 1999, November 27, 1999 and February 11, 2000. Neutron-induced radionuclides. such as 54Mn and 58Co, in the materials exposed to fast neutrons from the accident were measured to estimate the neutron fluences and energy distributions. Highly sensitive y-ray spectrometry with a well-type Ge detector was performed after radiochemical separation of Mn and Co from the materials. An instrumental neutron activation analysis was mainly applied for determinations of the target elements and chemical yields. The concentrations of 54Mn and 58Co in a mesh screen of stainless steel collected at a location 2.0 m from the accident site were determined. The total number of fission events was evaluated to be 2.5 x 10(18) by Monte-Carlo calculations of neutron transfer by considering the observed values of 54Mn and 58Co. The results presented here are fundamental to estimate the neutron doses at various distances.

  4. Neutron-induced alpha radiography; Radiografia com particulas alfa induzida por neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Marco Antonio Stanojev

    2008-07-01

    A new radiography technique to inspect thin samples was developed. Low energy alpha particles, generated by a boron based screen under thermal neutron irradiation, are used as penetrating radiation. The solid state nuclear track detector CR-39 has been used to register the image. The interaction of the {alpha} - particles with the CR-39 gives rise to damages which under an adequate chemical etching became tracks the basic units forming the image. A digital system was developed for data acquisition and data analysis as well as for image processing. The irradiation and etching conditions to obtain the best radiography are 1,3 hours and 25 minutes at 70 deg C respectively. For such conditions samples having 10 {mu}m in thickness can be inspected with a spatial resolution of 32 {mu}m. The use of the digital system has reduced the time spent for data acquisition and data analysis and has improved the radiography image visualization. Furthermore, by using the digital system, it was possible to study several new parameters regarding the tracks which are very important to understand and study the image formation theory in solid state nuclear track detectors, the one used in this thesis. Some radiography images are also shown which demonstrate the potential of the proposed radiography technique. When compared with the other radiography techniques already in use to inspect thin samples, the present one developed in the present paper allows a smaller time to obtain the image, it is not necessary to handle liquid radioactive substances, the detector is insensitive to {beta}, {gamma}, X-ray and visible light. (author)

  5. Integrated system for production of neutronics and photonics calculational constants. Major neutron-induced interactions (Z > 55): graphical, experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, D.E.; Howerton, R.J.; MacGregor, M.H.; Perkins, S.T.

    1976-07-04

    This report (vol. 7) presents graphs of major neutron-induced interaction cross sections in the Experimental Cross Section Information Library (ECSIL) as of July 4, 1976. It consists primarily of interactions where a single data set contains enough points to show cross section behavior. In contrast, vol. 8 of this UCRL-50400 series consists of interactions where more than one data set is needed to show cross section behavior. Thus, you can find the total, elastic, capture, and fission cross sections (along with the parameters ..nu.. bar, ..cap alpha.., and eta) in vol. 7 and all other reactions in vol. 8. Data are plotted with associated cross section error bars (when given) and compared with the Evaluated Nuclear Data Library (ENDL) as of July 4, 1976. The plots are arranged in ascending order of atomic number (Z) and atomic weight (A). Part A contains the plots for Z = 1 to 55; Part B contains the plots for Z is greater than 55.

  6. Angular distributions in the neutron-induced fission of actinides

    CERN Multimedia

    In 2003 the n_TOF Collaboration performed the fission cross section measurement of several actinides ($^{232}$Th, $^{233}$U, $^{234}$U, $^{237}$Np) at the n_TOF facility using an experImental setup made of Parallel Plate Avalanche Counters (PPAC). The method based on the detection of the 2 fragments in coincidence allowed to clearly disentangle the fission reactions among other types of reactions occurring in the spallation domain. We have been therefore able to cover the very broad neutron energy range 1eV-1GeV, taking full benefit of the unique characteristics of the n_TOF facility. Figure 1 shows an example obtained in the case of $^{237}$Np where the n_ TOF measurement showed that the cross section was underestimated by a large factor in the resonance region.

  7. Neutron-induced dpa, transmutations, gas production, and helium embrittlement of fusion materials

    CERN Document Server

    Gilbert, M R; Nguyen-Manh, D; Zheng, S; Packer, L W; Sublet, J -Ch

    2013-01-01

    In a fusion reactor materials will be subjected to significant fluxes of high-energy neutrons. As well as causing radiation damage, the neutrons also initiate nuclear reactions leading to changes in the chemical composition of materials (transmutation). Many of these reactions produce gases, particularly helium, which cause additional swelling and embrittlement of materials. This paper investigates, using a combination of neutron-transport and inventory calculations, the variation in displacements per atom (dpa) and helium production levels as a function of position within the high flux regions of a recent conceptual model for the "next-step" fusion device DEMO. Subsequently, the gas production rates are used to provide revised estimates, based on new density-functional-theory results, for the critical component lifetimes associated with the helium-induced grain-boundary embrittlement of materials. The revised estimates give more optimistic projections for the lifetimes of materials in a fusion power plant co...

  8. Neutron-induced reactions on AlF{sub 3} studied using the optical model

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chun-Wang, E-mail: machunwang@126.com [Institute of Particle and Nuclear Physics, Henan Normal University, Xinxiang 453007 (China); Lv, Cui-Juan [Institute of Particle and Nuclear Physics, Henan Normal University, Xinxiang 453007 (China); Zhang, Guo-Qiang; Wang, Hong-Wei [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zuo, Jia-Xu [Department of Nuclear and Radiation Safety Research, Nuclear and Radiation Safety Center (MEP), Beijing 100082 (China)

    2015-08-01

    Neutron-induced reactions on {sup 27}Al and {sup 19}F nuclei are investigated using the optical model implemented in the TALYS 1.4 toolkit. Incident neutron energies in a wide range from 0.1 keV to 30 MeV are calculated. The cross sections for the main channels (n, np), (n, p), (n, α), (n, 2n), and (n, γ) and the total reaction cross section (n, tot) of the reactions are obtained. When the default parameters in TALYS 1.4 are adopted, the calculated results agree with the measured results. Based on the calculated results for the n + {sup 27}Al and n + {sup 19}F reactions, the results of the n + {sup 27}Al{sup 19}F reactions are predicted. These results are useful both for the design of thorium-based molten salt reactors and for neutron activation analysis techniques.

  9. A new facility for high-energy neutron-induced fission studies

    Energy Technology Data Exchange (ETDEWEB)

    Prokofiev, A.V. [The Svedberg Lab., Uppsala Univ., Uppsala (Sweden)]|[V.G. Khlopin Radium Inst., St. Petersburg (Russian Federation); Pomp, S.; Bergenwall, B.; Hildebrand, A.; Johansson, C.; Mermod, P.; Oesterlund, M.; Blomgren, J. [Dept. of Neutron Research, Uppsala Univ., Uppsala (Sweden); Tippawan, U. [Dept. of Neutron Research, Uppsala Univ., Uppsala (Sweden)]|[Fast Neutron Research Facility, Chiang Mai Univ., Chiang Mai (Thailand); Dangtip, S. [Fast Neutron Research Facility, Chiang Mai Univ., Chiang Mai (Thailand); Einarsson, L. [The Svedberg Lab., Uppsala Univ., Uppsala (Sweden); Gavrikov, Yu.A.; Kotov, A.A.; Vaishnene, L.A. [Petersburg Nuclear Physics Inst., Gatchina, Leningrad District (Russian Federation); Germann, T. [Univ. of Konstanz, Konstanz (Germany)

    2003-07-01

    A new facility is constructed for measurements of neutron-induced fission cross-sections in the 20-180 MeV energy region versus the np scattering cross-section, which is adopted as the primary neutron standard. The advantage of the experiment compared to earlier studies is that the fission-fragment detection and the neutron-flux measurement via np scattering are performed simultaneously and at the same position in the beam, and, therefore, many sources of systematic errors cancel out. Further reduction of systematic errors is achieved due to ''embedded'' determination of effective solid angle of particle detectors using {alpha}-particles from the radioactive decay of the target nuclei. The performance of the facility is illustrated by first data obtained for angular distributions of fission fragments in the {sup 238}U(n,f) reaction. (orig.)

  10. Comments on the possibility of cavitation in liquid metal targets for pulsed spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter J.M. [Argonne National Lab., IL (United States)

    1996-06-01

    When short pulses of protons strike the volume of a liquid target, the rapid heating produces a pressurized region which relaxes as the pressure wave propagates outward. Skala and Bauer have modeled the effects of the pressure wave impinging on the container walls of a liquid mercury target under ESS conditions. They find that high pressures and high wall stresses result if the medium is uniform, nearly incompressible liquid. The pressure and the stresses are much reduced if the liquid contains bubbles of helium, due to their high compressibility. However, according to the calculation, the pressure still reaches an atmosphere or so at the surface, which reflects the compressive wave as a rarefaction wave of the same magnitude. Even such modest underpressures can lead to the growth of bubbles (cavitation) at or near the surface, which can collapse violently and erode the container surface. It is necessary to avoid this. Leighton provides a wide ranging discussion of pressure waves in bubbly media, which may provide insights into the nature and control of cavitation phenomena. The paper surveys some of the relevant information from that source.

  11. Sensitive detection of chlorine in iron oxide by single pulse and dual pulse laser-induced breakdown spectroscopy

    Science.gov (United States)

    Pedarnig, J. D.; Haslinger, M. J.; Bodea, M. A.; Huber, N.; Wolfmeir, H.; Heitz, J.

    2014-11-01

    The halogen chlorine is hard to detect in laser-induced breakdown spectroscopy (LIBS) mainly due to its high excited state energies of 9.2 and 10.4 eV for the most intense emission lines at 134.72 nm and 837.59 nm, respectively. We report on sensitive detection of Cl in industrial iron oxide Fe2O3 powder by single-pulse (SP) and dual-pulse (DP) LIBS measurements in the near infrared range in air. In compacted powder measured by SP excitation (Nd:YAG laser, 532 nm) Cl was detected with limit of detection LOD = 440 ppm and limit of quantitation LOQ = 720 ppm. Orthogonal DP LIBS was studied on pressed Fe2O3 pellets and Fe3O4 ceramics. The transmission of laser-induced plasma for orthogonal Nd:YAG 1064 nm and ArF 193 nm laser pulses showed a significant dependence on interpulse delay time (ipd) and laser wavelength (λL). The UV pulses (λL = 193 nm) were moderately absorbed in the plasma and the Cl I emission line intensity was enhanced while IR pulses (λL = 1064 nm) were not absorbed and Cl signals were not enhanced at ipd = 3 μs. The UV laser enhancement of Cl signals is attributed to the much higher signal/background ratio for orthogonal DP excitation compared to SP excitation and to the increased plasma temperature and electron number density. This enabled measurement at a very short delay time of td ≥ 0.1 μs with respect to the re-excitation pulse and detection of the very rapidly decaying Cl emission with higher efficiency.

  12. Neutron-Induced Fission Cross Section Measurements for Full Suite of Uranium Isotopes

    Science.gov (United States)

    Laptev, Alexander; Tovesson, Fredrik; Hill, Tony

    2010-11-01

    A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R&D). The incident neutron energy range spans energies from sub-thermal energies up to 200 MeV by measuring both the Lujan Center and the Weapons Neutron Research center (WNR). Conventional parallel-plate fission ionization chambers with actinide deposited foils are used as a fission detector. The time-of-flight method is implemented to measure neutron energy. Counting rate ratio from investigated and standard U-235 foils is translated into fission cross section ratio. Different methods of normalization for measured ratio are employed, namely, using of actinide deposit thicknesses, normalization to evaluated data, etc. Finally, ratios are converted to cross sections based on the standard U-235 fission cross section data file. Preliminary data for newly investigated isotopes U-236 and U-234 will be reported. Those new data complete a full suite of Uranium isotopes, which were investigated with presented experimental approach. When analysis of the new measured data will is completed, data will be delivered to evaluators. Having data for full set of Uranium isotopes will increase theoretical modeling capabilities and make new data evaluations much more reliable.

  13. Measurement of the Electrical Conductivity of He{sup 3} Plasma Induced by Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Braun, J.; Nygaard, K.

    1966-03-15

    The conductivity of a He plasma created by the inelastic reaction with thermal neutrons: {sup 3}He + n{sub th} -> {sup 3}H + p + 0.76 MeV is studied as a function of neutron flux, gas temperature and gas density. Using reported values of the electron mobility the electron density is calculated from experimental conductivity values. Further, by accepting a reasonable value for the mean energy lost in creating one ion-pair, the recombination coefficient is estimated. The measurements performed so far cover temperatures between 300 - 1600 K and densities between 0.25 - 1 times the density at atmospheric pressure and 300 K. The neutron flux is varied between 10{sup 10} - 10{sup 11} n/cm{sup 2}/s. As a sample of results achieved at 1600 K and the lowest density (corresponding to about atmospheric pressure) and the highest neutron flux the following values are obtained for the conductivity, the electron density and the recombination coefficient respectively: {sigma} 0.2 S/m, n{sub e} 6x10{sup 11}/cm{sup 3}, {alpha} = 2xl0{sup -10} cm{sup 3}/s. An extrapolation of data obtained shows that the concept of neutron induced conductivity should be attractive for MHD power generation.

  14. Determination of neutron-induced fission cross-sections of unstable nuclei via surrogate reaction method

    Indian Academy of Sciences (India)

    B K Nayak

    2014-11-01

    Heavy ion reaction studies around Coulomb barrier energies have been generally used to investigate the effect of the structure of projectile/target on reaction dynamics. Other than providing an understanding of basic physics of the reaction dynamics, some of these reactions have been used as tools to serve as surrogates of neutron-induced compound nuclear fission cross-sections involving unstable targets. In this paper, we report some of the recent results on the determination of neutron-induced fission cross-sections of unstable actinides present in Th–U and U–Pu fuel cycles by surrogate reaction method by employing transfer-induced fission studies with 6,7Li beams.

  15. Double pulse laser-induced breakdown spectroscopy with femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Pinon, V. [Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), P.O. Box 1385, GR 71110 Heraklion, Crete (Greece); Universidad de A Coruna, Departamento de Ingenieria Industrial II, E-15403 Ferrol, A Coruna (Spain); Fotakis, C. [Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), P.O. Box 1385, GR 71110 Heraklion, Crete (Greece); Nicolas, G. [Universidad de A Coruna, Departamento de Ingenieria Industrial II, E-15403 Ferrol, A Coruna (Spain); Anglos, D. [Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), P.O. Box 1385, GR 71110 Heraklion, Crete (Greece)], E-mail: anglos@iesl.forth.gr

    2008-10-15

    This paper presents results obtained in a study of collinear geometry double pulse femtosecond LIBS analysis of solids in ambient environment. LIBS signal enhancement of 3-10 fold, accompanied by significant improvement of signal reproducibility, in comparison with the single pulse case, has been found in different samples such as brass, iron, silicon, barium sulfate and aluminum when an optimum temporal separation between the two ablating pulses is used. The influence of the delay between pulses in the LIBS signal intensity was investigated and two intervals of interaction were established. A first transient regime from 0 to 50 ps, in which the LIBS signal increases until reaching a maximum, and a second regime that ranges from 50 to 1000 ps (maximum inter-pulse delay investigated) in which the signal enhancement remains constant. Emissions from both ionized and neutral atoms show the same pattern of enhancement with a clear tendency of lines arising from higher energy emissive states to exhibit higher enhancement factors.

  16. Monte Carlo transport simulation for a long counter neutron detector employed as a cosmic rays induced neutron monitor at ground level

    Energy Technology Data Exchange (ETDEWEB)

    Pazianotto, Mauricio Tizziani; Carlson, Brett Vern [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil); Federico, Claudio Antonio; Goncalez, Odair Lelis [Centro Tecnico Aeroespacial (CTA), Sao Jose dos Campos, SP (Brazil). Instituto de Estudos Avancados

    2011-07-01

    Full text: Great effort is required to understand better the cosmic radiation (CR) dose received by sensitive equipment, on-board computers and aircraft crew members at Brazil airspace, because there is a large area of South America and Brazil subject to the South Atlantic Anomaly (SAA). High energy neutrons are produced by interactions between primary cosmic ray and atmospheric atoms, and also undergo moderation resulting in a wider spectrum of energy ranging from thermal energies (0:025eV ) to energies of several hundreds of MeV. Measurements of the cosmic radiation dose on-board aircrafts need to be followed with an integral flow monitor on the ground level in order to register CR intensity variations during the measurements. The Long Counter (LC) neutron detector was designed as a directional neutron flux meter standard because it presents fairly constant response for energy under 10MeV. However we would like to use it as a ground based neutron monitor for cosmic ray induced neutron spectrum (CRINS) that presents an isotropic fluency and a wider spectrum of energy. The LC was modeled and tested using a Monte Carlo transport simulation for irradiations with known neutron sources ({sup 241}Am-Be and {sup 251}Cf) as a benchmark. Using this geometric model its efficiency was calculated to CRINS isotropic flux, introducing high energy neutron interactions models. The objective of this work is to present the model for simulation of the isotropic neutron source employing the MCNPX code (Monte Carlo N-Particle eXtended) and then access the LC efficiency to compare it with experimental results for cosmic ray neutrons measures on ground level. (author)

  17. Half Cycle Pulse Train Induced State Redistribution of Rydberg Atoms

    CERN Document Server

    Mandal, P K

    2009-01-01

    Population transfer between low lying Rydberg states independent of the initial state is realized using a train of half-cycle pulses with pulse durations much less than the classical orbit period. We demonstrate experimentally the transfer of population from initial states around n=50 down to n<40 as well as up to the continuum. The measured population transfer matches well to a model of the process for 1D atoms.

  18. TANGRA-Setup for the Investigation of Nuclear Fission induced by 14.1 MeV neutrons

    OpenAIRE

    RUSKOV I.; Kopatch, Y; BYSTRITSKY V.; Skoy, V.; SHVETSOV V.; Hambsch, Franz-Josef; Oberstedt, Stephan; CAPOTE NOY R.; Sedyshev, P.; GROZDANOV D.; IVANOV I. Zh.; ALEKSAKHIN V. Yu.; BOGOLUBOV E. P.; BARMAKOV Y.; Khabarov, S. V.

    2015-01-01

    The new experimental setup TANGRA (Tagged Neutrons & Gamma Rays), for the investigation of neutron induced nuclear reactions, e.g. (n,xn’), (n,xn’γ), (n,γ), (n,f), on a number of important isotopes for nuclear science and engineering (235,238U, 237Np, 239Pu, 244,245,248Cm) is under construction and being tested at the Frank Laboratory of Neutron Physics (FLNP) of the Joint Institute for Nuclear Research (JINR) in Dubna. The TANGRA setup consists of: a portable neutron generator ING-27, wit...

  19. Acoustic Diagnostics of Plasma Channels Induced by Intense Femtosecond Laser Pulses in Air

    Institute of Scientific and Technical Information of China (English)

    HAO Zuo-Qiang; WEI Zhi-Yi; YU Jin; ZHANG Jie; LI Yu-Tong; YUAN Xiao-Hui; ZHENG Zhi-Yuan; WANG Peng; WANG Zhao-Hua; LING Wei-Jun

    2005-01-01

    @@ Long plasma channels induced by femtosecond laser pulses in air are diagnosed using the sonographic method. By detecting the sound signals along the channels, the length and the electron density of the channels are measured.

  20. XUV-laser induced ablation of PMMA with nano-, pico-, and femtosecond pulses

    Energy Technology Data Exchange (ETDEWEB)

    Juha, L. [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8 (Czech Republic)]. E-mail: juha@fzu.cz; Bittner, M. [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic); Chvostova, D. [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8 (Czech Republic)] (and others)

    2005-06-15

    For conventional wavelength (UV-vis-IR) lasers delivering radiation energy to the surface of materials, ablation thresholds, etch (ablation) rates, and the quality of ablated structures often differ dramatically between short (typically nanosecond) and ultrashort (typically femtosecond) pulses. Various very short-wavelength ({lambda} < 100 nm) lasers, emitting pulses with durations ranging from {approx}10 fs to {approx}1 ns, have recently been placed into routine operation. This has facilitated the investigation of how ablation characteristics depend on the pulse duration in the XUV spectral region. Ablation of poly(methyl methacrylate) (PMMA) induced by three particular short-wavelength lasers emitting pulses of various durations, is reported in this contribution.

  1. Study of neutron-induced background and its impact on the search of 0$\

    CERN Document Server

    Dokania, N; Mathimalar, S; Ghosh, C; Nanal, V; Pillay, R G; Pal, S; Bhushan, K G; Shrivastava, A

    2014-01-01

    Neutron-induced background has been studied in various components of the TIN.TIN detector, which is under development for the search of Neutrinoless Double Beta Decay in $\\rm^{124}Sn$. Fast neutron flux $\\sim10^{6}~n~cm^{-2}s^{-1}$ covering a broad energy range ($ \\sim0.1$ to $ \\sim18$~MeV) was generated using $^{9}Be(p,n)^{9}B$ reaction. In addition, reactions with quasi-monoenergetic neutrons were also studied using $^{7}Li(p,n)^{7}Be$ reaction. Among the different cryogenic support structures studied, Teflon is found to be preferable compared to Torlon as there is no high energy gamma background ($E_\\gamma >$ 1 MeV). Contribution of neutron-induced reactions in $\\rm ^{nat, 124} $Sn from other Sn isotopes (A = 112 -- 122) in the energy region of interest, namely, around the $Q_{\\beta\\beta}$ of $\\rm^{124}Sn$ ($E \\sim$ 2.293 MeV), is also investigated.

  2. DNA damage induced by boron neutron capture therapy is partially repaired by DNA ligase IV.

    Science.gov (United States)

    Kondo, Natsuko; Sakurai, Yoshinori; Hirota, Yuki; Tanaka, Hiroki; Watanabe, Tsubasa; Nakagawa, Yosuke; Narabayashi, Masaru; Kinashi, Yuko; Miyatake, Shin-ichi; Hasegawa, Masatoshi; Suzuki, Minoru; Masunaga, Shin-ichiro; Ohnishi, Takeo; Ono, Koji

    2016-03-01

    Boron neutron capture therapy (BNCT) is a particle radiation therapy that involves the use of a thermal or epithermal neutron beam in combination with a boron ((10)B)-containing compound that specifically accumulates in tumor. (10)B captures neutrons and the resultant fission reaction produces an alpha ((4)He) particle and a recoiled lithium nucleus ((7)Li). These particles have the characteristics of high linear energy transfer (LET) radiation and therefore have marked biological effects. High-LET radiation is a potent inducer of DNA damage, specifically of DNA double-strand breaks (DSBs). The aim of the present study was to clarify the role of DNA ligase IV, a key player in the non-homologous end-joining repair pathway, in the repair of BNCT-induced DSBs. We analyzed the cellular sensitivity of the mouse embryonic fibroblast cell lines Lig4-/- p53-/- and Lig4+/+ p53-/- to irradiation using a thermal neutron beam in the presence or absence of (10)B-para-boronophenylalanine (BPA). The Lig4-/- p53-/- cell line had a higher sensitivity than the Lig4+/+ p53-/-cell line to irradiation with the beam alone or the beam in combination with BPA. In BNCT (with BPA), both cell lines exhibited a reduction of the 50 % survival dose (D 50) by a factor of 1.4 compared with gamma-ray and neutron mixed beam (without BPA). Although it was found that (10)B uptake was higher in the Lig4+/+ p53-/- than in the Lig4-/- p53-/- cell line, the latter showed higher sensitivity than the former, even when compared at an equivalent (10)B concentration. These results indicate that BNCT-induced DNA damage is partially repaired using DNA ligase IV.

  3. Pulsed-induced electromagnetically induced transparency in the acetylene-filled hollow-core fibers

    Science.gov (United States)

    Rodríguez, Nayeli Casillas; Stepanov, Serguei; Miramontes, Manuel Ocegueda; Hernández, Eliseo Hernández

    2017-06-01

    Experimental results on pulsed excitation of electromagnetically induced transparency (EIT) in the acetylene-filled hollow-core photonic crystal fiber (HC-PCF) at pressures 0.1-0.4 Torr are reported. The EIT was observed both in Λ and V interaction configurations with the continuous probe wave tuned to R9 (1520.08 nm) acetylene absorption line and with the control pulses tuned to P11 (1531.58 nm) and P9 (1530.37 nm) lines, respectively. The utilized control pulses were of up to 40 ns duration with qualitative explanation of reduction in the counter-propagation EIT efficiency a simple model of the accelerated mismatch of the two-frequency EIT resonance with deviation of the molecule thermal velocity from the resonance value was utilized. It was shown experimentally that the EIT efficiencies in both configurations do not depend on the longitudinal velocity of the molecules. The characteristic relaxation time of the of the EIT response was found to be about 9 ns, i.e., is close to the relaxation times T 1,2 of the acetylene molecules under the utilized experimental conditions.

  4. Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation

    OpenAIRE

    Kafka, K. R. P.; D. R. Austin; Li, H.; Yi, A; Cheng, J.; Chowdhury, E. A.

    2015-01-01

    Time-resolved diffraction microscopy technique has been used to observe the formation of laser-induced periodic surface structures (LIPSS) from the interaction of a single femtosecond laser pulse (pump) with a nano-scale groove mechanically formed on a single-crystal Cu substrate. The interaction dynamics (0-1200 ps) was captured by diffracting a time-delayed, frequency-doubled pulse from nascent LIPSS formation induced by the pump with an infinity-conjugate microscopy setup. The LIPSS ripple...

  5. Neutron-induced reaction cross-section measurements using a small multi-detector array and description of a large array

    Indian Academy of Sciences (India)

    J-P Meulders; I Slypen; S Benck; E Raeymackers; J Cabrera; Ch Dufauquez; T Keutgen; V Roberfroid; I Tilquin; Y El Masri; V Corcalciuc; N Nice

    2001-07-01

    The experimental setup of Louvain-la-Neuve (UCL-Belgium) used to perform lightcharged particle production experiment in fast neutron-induced reactions is presented. A short description of the neutron modular detector DEMON is also given. DEMON is a detector array for neutrons emitted in heavy ion induced reactions at low to intermediate energies.

  6. Laser induced periodic surface structuring on Si by temporal shaped femtosecond pulses.

    Science.gov (United States)

    Almeida, G F B; Martins, R J; Otuka, A J G; Siqueira, J P; Mendonca, C R

    2015-10-19

    We investigated the effect of temporal shaped femtosecond pulses on silicon laser micromachining. By using sinusoidal spectral phases, pulse trains composed of sub-pulses with distinct temporal separations were generated and applied to the silicon surface to produce Laser Induced Periodic Surface Structures (LIPSS). The LIPSS obtained with different sub-pulse separation were analyzed by comparing the intensity of the two-dimensional fast Fourier Transform (2D-FFT) of the AFM images of the ripples (LIPSS). It was observed that LIPSS amplitude is more emphasized for the pulse train with sub-pulses separation of 128 fs, even when compared with the Fourier transform limited pulse. By estimating the carrier density achieved at the end of each pulse train, we have been able to interpret our results with the Sipe-Drude model, that predicts that LIPSS efficacy is higher for a specific induced carrier density. Hence, our results indicate that temporal shaping of the excitation pulse, performed by spectral phase modulation, can be explored in fs-laser microstructuring.

  7. The Role of Plasma Shielding in Double-Pulse Femtosecond Laser-Induced Breakdown Spectroscopy

    CERN Document Server

    Penczak, John S; Bar, Ilana; Gordon, Robert J

    2013-01-01

    It is well known that optical emission produced by femtosecond laser-induced breakdown on a surface may be enhanced by using a pair of laser pulses separated by a suitable delay. Here we elucidate the mechanism for this effect both experimentally and theoretically. Using a bilayer sample consisting of a thin film of Ag deposited on an Al substrate as the ablation target and measuring the breakdown spectrum as a function of fluence and pulse delay, it is shown experimentally that the enhanced signal is not caused by additional ablation initiated by the second pulse. Rather, particle-in-cell calculations show that the plasma produced by the first pulse shields the surface from the second pulse for delays up to 100 ps. These results indicate that the enhancement is the result of excitement of particles entrained in the plasma produced by the first pulse.

  8. Investigation of Early Plasma Evolution Induced by Ultrashort Laser Pulses

    Science.gov (United States)

    Hu, Wenqian; Shin, Yung C.; King, Galen B.

    2012-01-01

    Early plasma is generated owing to high intensity laser irradiation of target and the subsequent target material ionization. Its dynamics plays a significant role in laser-material interaction, especially in the air environment1-11. Early plasma evolution has been captured through pump-probe shadowgraphy1-3 and interferometry1,4-7. However, the studied time frames and applied laser parameter ranges are limited. For example, direct examinations of plasma front locations and electron number densities within a delay time of 100 picosecond (ps) with respect to the laser pulse peak are still very few, especially for the ultrashort pulse of a duration around 100 femtosecond (fs) and a low power density around 1014 W/cm2. Early plasma generated under these conditions has only been captured recently with high temporal and spatial resolutions12. The detailed setup strategy and procedures of this high precision measurement will be illustrated in this paper. The rationale of the measurement is optical pump-probe shadowgraphy: one ultrashort laser pulse is split to a pump pulse and a probe pulse, while the delay time between them can be adjusted by changing their beam path lengths. The pump pulse ablates the target and generates the early plasma, and the probe pulse propagates through the plasma region and detects the non-uniformity of electron number density. In addition, animations are generated using the calculated results from the simulation model of Ref. 12 to illustrate the plasma formation and evolution with a very high resolution (0.04 ~ 1 ps). Both the experimental method and the simulation method can be applied to a broad range of time frames and laser parameters. These methods can be used to examine the early plasma generated not only from metals, but also from semiconductors and insulators. PMID:22806170

  9. Study on impurity desorption induced by femtosecond pulse laser based on a stochastic process model

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    With the advantages on non-equilibrium heating and desorption induced by electronic transition, the femtosecond pulse laser introduces a new way for solving the problem of impurity pollution adsorbed on a solid thin film in micro-electro-mechanical systems (MEMS). A model based on stochastic processes was established for stimulated desorption induced by the femtosecond pulse laser to interpret the interaction of the optically excited hot electrons with the adsorbed molecules in a metal substrate. Numerical simulation results reveal a time-dependent desorption probability of adsorbed molecules and indicate that how key parameters of femtosecond pulse laser, such as incident laser energy flux, pulse duration, and wavelength of pulse, have a great effect on the desorption probability.

  10. Analysis of pulse broadening induced by the second-order PMD

    Institute of Scientific and Technical Information of China (English)

    Fu Song-Nian; Wu Chong-Qing; Shum Ping

    2005-01-01

    We propose a new conception of depolarization vector to describe the effect of depolarization induced by the second-order polarization mode dispersion (PMD). Deriving the formula of pulse broadening induced by the secondorder PMD, we find that the polarization-dependent chromatic dispersion (PCD) always enhances the pulse broadening.However the depolarization vector decreases the pulse broadening. The pulse broadening is correlated with the bit-rate of a transmission system. By adjusting the directions of the Stokes vector of initial state of polarization, initial firstorder polarization dispersion vector and depolarization vector to be parallel to each other, one can obtain an optimum dispersion compensation.But when the PCD is not equal to zero, the optimum dispersion cannot achieve a complete compensation, and the minimum pulse broadening is equal to σ = ( 2/4) (DCF/T0).

  11. Pulse-induced acoustoelectric vibrations in surface-gated GaAs-based quantum devices

    Science.gov (United States)

    Rahman, S.; Stace, T. M.; Langtangen, H. P.; Kataoka, M.; Barnes, C. H. W.

    2007-05-01

    We present the results of a numerical investigation which show the excitation of acoustoelectric modes of vibration in GaAs-based heterostructures due to sharp nanosecond electric-field pulses applied across surface gates. In particular, we show that the pulses applied in quantum information processing applications are capable of exciting acoustoelectric modes of vibration including surface acoustic modes which propagate for distances greater than conventional device dimensions. We show that the pulse-induced acoustoelectric vibrations are capable of inducing significant undesired perturbations to the evolution of quantum systems.

  12. Effect of PMD-induced Pulse Broadening on Sensitivity and Frequency Spectrum

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The PMD-induced pulse broadening may cause the degradation of receiver sensitivity and has negative effects on the power spectrum of received signals. The expressions of PMD-induced pulse broadening effects on receiver sensitivity are derived based on the concept of mean square pulse width. The effects of PMD on the spectrum of received power are analyzed in detail. Finally, the scheme is discussed with which the power of a certain frequency component is extracted as a feedback control signal in a PMD compensation system.

  13. Basic concept for an accelerator-driven subcritical system to be used as a long-pulse neutron source for Condensed Matter research

    Energy Technology Data Exchange (ETDEWEB)

    Vivanco, R., E-mail: raul.vivanco.sanchez@gmail.com [ESS-BILBAO, Parque Tecnológico Bizkaia, Laida Bidea, Edificio 207 B Planta Baja, 48160 Derio (Spain); Instituto de Fusión Nuclear - UPM, ETS Ingenieros Industriales, C/ José Gutiérrez Abascal, 2, 28006 Madrid Spain (Spain); Ghiglino, A.; Vicente, J.P. de; Sordo, F.; Terrón, S.; Magán, M. [ESS-BILBAO, Parque Tecnológico Bizkaia, Laida Bidea, Edificio 207 B Planta Baja, 48160 Derio (Spain); Instituto de Fusión Nuclear - UPM, ETS Ingenieros Industriales, C/ José Gutiérrez Abascal, 2, 28006 Madrid Spain (Spain); Perlado, J.M. [Instituto de Fusión Nuclear - UPM, ETS Ingenieros Industriales, C/ José Gutiérrez Abascal, 2, 28006 Madrid Spain (Spain); Bermejo, F.J. [Instituto de Estructura de la Materia, IEM-CSIC, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid (Spain)

    2014-12-11

    A model for an accelerator-driven subcritical system to be operated as a source of cold neutrons for Condensed Matter research is developed at the conceptual level. Its baseline layout relies upon proven accelerator, spalattion target and fuel array technologies, and consists in a proton accelerator able to deliver some 67.5 mA of proton beam with kinetic energy 0.6 GeV, a pulse length of 2.86 ms, and repetition rate of 14 Hz. The particle beam hits a target of conventional design that is surrounded by a multiplicative core made of fissile/fertile material, composed by a subcritical array of fuel bars made of aluminium Cermet cooled by light water poisoned with boric acid. Relatively low enriched uranium is chosen as fissile material. An optimisation of several parameters is carried out, using as components of the objective function several characteristics pertaining the cold neutron pulse. The results show that the optimal device will deliver up to 80% of the cold neutron flux expected for some of the ongoing projects using a significantly lower proton beam power than that managed in such projects. The total power developed within the core rises up to 22.8 MW, and the criticality range shifts to a final k{sub eff} value of around 0.9 after the 50 days cycle.

  14. Measurement of Cosmic-ray Muons and Muon-induced Neutrons in the Aberdeen Tunnel Underground Laboratory

    CERN Document Server

    Blyth, S C; Chen, X C; Chu, M C; Cui, K X; Hahn, R L; Ho, T H; Hsiung, Y B; Hu, B Z; Kwan, K K; Kwok, M W; Kwok, T; Lau, Y P; Leung, J K C; Leung, K Y; Lin, G L; Lin, Y C; Luk, K B; Luk, W H; Ngai, H Y; Ngan, S Y; Pun, C S J; Shih, K; Tam, Y H; Tsang, R H M; Wang, C H; Wong, C M; Wong, H L; Wong, K K; Yeh, M; Zhang, B J

    2015-01-01

    We measured the muon flux and the production rate of muon-induced neutrons at a depth of 611 meters water equivalent. Our apparatus comprises of three layers of crossed plastic scintillator hodoscopes for tracking the incident cosmic-ray muons, and 760 L of gadolinium-doped liquid scintillator for both neutron production and detection targets. The vertical muon intensity was measured to be $I_{\\mu}$ = (5.7 $\\pm$ 0.6) $\\times$ 10$^{-6}$ cm$^{-2}$ s$^{-1}$ sr$^{-1}$. The muon-induced neutron yield in the liquid scintillator was determined to be $Y_{n}$ = (1.19 $\\pm$ 0.08(stat.) $\\pm$ 0.21(syst.)) $\\times$ 10$^{-4}$ neutrons / ($\\mu$ g cm$^{-2}$). A fitting to recently measured neutron yields at different depths gave a muon energy dependence of $\\left\\langle E_{\\mu} \\right\\rangle^{0.76 \\pm 0.03}$ for scintillator targets.

  15. Neutron-induced cross sections of actinides via the surrogate-reaction method

    Directory of Open Access Journals (Sweden)

    Ducasse Q.

    2013-12-01

    Full Text Available The surrogate-reaction method is an indirect way of determining cross sections for reactions that proceed through a compound nucleus. This technique may enable neutron-induced cross sections to be extracted for short-lived nuclei that otherwise cannot be measured. However, the validity of the surrogate method has to be investigated. In particular, the absence of a compound nucleus formation and the Jπ dependence of the decay probabilities may question the method. In this work we study the reactions 238U(d,p239U, 238U(3He,t238Np, 238U(3He,4He237U as surrogates for neutron-induced reactions on 238U, 237Np and 236U, respectively, for which good quality data exist. The experimental set-up enabled the measurement of fission and gamma-decay probabilities. The first results are hereby presented.

  16. IRACM : A code system to calculate induced radioactivity produced by ions and neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Susumu; Fukuda, Mitsuhiro; Nishimura, Koichi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Watanabe, Hiromasa; Yamano, Naoki

    1997-05-01

    It is essential to estimate of radioactivity induced in accelerator components and samples bombarded by energetic ion beams and the secondary neutrons of high-energy accelerator facilities in order to reduce the amount of radioactive wastes and to minimize radiation exposure to personnel. A computer code system IRACM has been developed to estimate product nuclides and induced radioactivity in various radiation environments of accelerator facilities. Nuclide transmutation with incident particles of neutron, proton, deuteron, alpha, {sup 12}C, {sup 14}N, {sup 16}O, {sup 20}Ne and {sup 40}Ar can be computed for arbitrary multi-layer target system in a one-dimensional geometry. The code system consists of calculation modules and libraries including activation cross sections, decay data and photon emission data. The system can be executed in both FACOM-M780 mainframe and DEC workstations. (author)

  17. Probing the nuclear symmetry energy with heavy-ion reactions induced by neutron-rich nuclei

    Institute of Scientific and Technical Information of China (English)

    CHEN Lie-wen; KO Che-Ming; LI Bao-an; YONG Gao-chan

    2007-01-01

    Heavy-ion reactions induced by neutron-rich nuclei provide a unique means to investigate the equation of state of isospin-asymmetric nuclear matter,especially the density dependence of the nuclear symmetry energy.In particular,recent analyses of the isospin diffusion data in heavyion reactions have already put a stringent constraint on thenuclear symmetry energy around the nuclear matter saturation density.We review this exciting result and discuss its implications on nuclear effective interactions and the neutron skin thickness of heavy nuclei.In addition,we also review the theoretical progress on probing the high density behaviors of the nuclear symmetry energy in heavy-ion reactions induced by high energy radioactive beams.

  18. Behavior of metals Induced by magnetic pulse loading

    Directory of Open Access Journals (Sweden)

    Svetlana Atroshenko

    2015-01-01

    Full Text Available The investigation of copper and aluminum ring samples was carried out using magnetic pulse loading. Two modifications of the magnetic pulse technique were used. They were based on a GKVI-300 high-voltage narrow-pulse generator Morozov et al. (2011 [1]. It is possible using these two approaches to decrease the period of the harmonic load up to 100 ns. The study of fracture surfaces of aluminum and copper samples after the test was carried out on an optical microscope Axio-Observer-Z1-M in a dark field, and study of the cross sections structure – in the bright field or C-DIC. The structure has been studied in cross sections after appropriate etching. Grain size and the number of pores on the surface of cross sections were determined after etching. Microhardness was measured on a PMT-3 device with a load of 20 g. The optical micrographs of aluminum demonstrate that the long pulse causes almost fully ductile fracture. In the case of the short pulse, the number of fibers decreases: the fracture surface exhibits the signs of both ductile cup fracture and brittle crystalline fracture with cracks, which are sometimes rather deep. In addition, the short pulse results in twinning, which seems surprising for aluminum featuring a high stacking fault energy. It is seen that under short loading dynamic recrystallization occurs. As for copper samples before loading they were in the form of single crystal and after loading their structure due to dynamic recrystallization consists of small grain. The specimen with notch has more developed dynamic recrystallization shear bands.

  19. Nonadiabatic Induced Dipole Moment by High Intensity Femtosecond Optical Pulses

    OpenAIRE

    Koprinkov, I. G.

    2006-01-01

    Nonadiabtic dressed states and nonadiabatic induced dipole moment in the leading order of nonadiabaticity is proposed. The nonadiabatic induced dipole moment is studied in the femtosecond time domain.

  20. Above-threshold structure in {sup 244}Cm neutron-induced fission cross section

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, V.M. [Radiation Physics and Chemistry Problems Inst., Minsk-Sosny (Belarus)

    1997-03-01

    The quasi-resonance structure appearing above the fission threshold in neutron-induced fission cross section of {sup 244}Cm(n,f) is interpreted. It is shown to be due to excitation of few-quasiparticle states in fissioning {sup 245}Cm and residual {sup 244}Cm nuclides. The estimate of quasiparticle excitation thresholds in fissioning nuclide {sup 245}Cm is consistent with pairing gap and fission barrier parameters. (author)

  1. Gamma-rays from $^{nat}$Sn and $^{nat}$C induced by fast neutrons

    CERN Document Server

    Kadenko, Igor; Bondar, Borys; Gorbachenko, Oleksandr; Leshchenko, Borys; Solodovnyk, Kateryna

    2016-01-01

    The cross-sections of prompt gamma-ray production from $^{nat}$Sn and $^{nat}$C elements induced by 14.1-MeV neutrons were measured. The time-of-flight technique was used for n-gamma discrimination. The experimental results were compared with theoretical calculations performed by Empire 3.2 and Talys 1.6 codes using different models for photon strength function and nuclear level density.

  2. Simulation of synergistic effects on lateral PNP bipolar transistors induced by neutron and gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chenhui, E-mail: wangchenhui@nint.ac.cn [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi' an 710024 (China); Bai, Xiaoyan; Chen, Wei; Yang, Shanchao; Liu, Yan; Jin, Xiaoming [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi' an 710024 (China); Ding, Lili [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi' an 710024 (China); Department of Information Engineering, Padova University, Via Gradenigo 6/B, 35131 Padova (Italy)

    2015-10-01

    With semiconductor device simulation software TCAD, numerical simulations of ionizing/displacement synergistic effects on 6 kinds of lateral PNP bipolar transistors induced by the mixed irradiation of neutron and gamma are carried out by means of changing the minority carrier lifetimes, adding charged traps to the oxide layer and increasing the surface recombination velocity in Si/SiO{sub 2} interface. The results indicate that ionizing/displacement synergistic effects on the lateral PNP bipolar transistors are not a simple sum of total ionizing dose effects and displacement effects, and total ionizing dose effects can enhance neutron displacement damages, leading to greater gain degradation. The physical mechanisms of ionizing/displacement synergistic effects are analyzed based on the results. The positive charge in the oxide layer and Si/SiO{sub 2} interface traps induced by gamma irradiation can enhance the recombination processes of carriers in the bulk defects induced by neutron irradiation, and this is the main cause of ionizing/displacement synergistic effects on the lateral PNP bipolar transistors. - Highlights: • Numerical simulation methods of ionizing/displacement synergistic effects induced by the mixed irradiation of neutron and gamma are established with semiconductor device simulation software TCAD. • Ionizing/displacement synergistic effects between the lateral PNP bipolar transistors with different neutral base widths and base doping concentrations are compared. • The difference between ionizing/displacement synergistic effects and the simple sum of total ionizing dose effects and displacement effects is analyzed. • The physical mechanisms of ionizing/displacement synergistic effects are explained.

  3. Above-threshold structure in {sup 244}Cm neutron-induced fission cross section

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, V.M. [Radiation Physics and Chemistry Problems Inst., Minsk-Sosny (Belarus)

    1997-03-01

    The quasi-resonance structure appearing above the fission threshold in neutron-induced fission cross section of {sup 244}Cm(n,f) is interpreted. It is shown to be due to excitation of few-quasiparticle states in fissioning {sup 245}Cm and residual {sup 244}Cm nuclides. The estimate of quasiparticle excitation thresholds in fissioning nuclide {sup 245}Cm is consistent with pairing gap and fission barrier parameters. (author)

  4. Probing attosecond pulse structures by XUV-induced hole dynamics

    CERN Document Server

    You, Jhih-An; Dahlström, Jan Marcus

    2015-01-01

    We investigate a two-photon ionization process in neon by an isolated attosecond pump pulse and two coherent extreme ultraviolet probe fields. The probe fields, tuned to the 2s-2p transition in the residual ion, allow for coherent control of the photoelectron via indirect interactions with the hole. We show that the photoelectron-ion coincidence signal contains an interference pattern that can be used to reconstruct the temporal structure of attosecond pump pulses. Our results are supported by simulations based on time-dependent configuration-interaction singles and lowest-order perturbation theory within second quantization.

  5. Anomalous photo-induced response by double-pulse excitation in the organic conductor (EDO-TTF)2PF6

    Science.gov (United States)

    Onda, Ken; Ogihara, Sho; Ishikawa, Tadahiko; Okimoto, Yoichi; Shao, Xiangfeng; Nakano, Yoshiaki; Yamochi, Hideki; Saito, Gunzi; Koshihara, Shin-ya

    2009-02-01

    We measured ultrafast reflectivity changes induced by double-pulse excitation in the organic conductor (EDO-TTF)2PF6. Using double-pulse excitation with a relatively high intensity, the sign of reflectivity change became reversed at around 0.8 ps and subsequently the reflectivity change reverted to that of the normal photo-induced state after about 1 ps. Using a optically phase-locked double-pulse with low intensity, we found that the temporal profile excited by an in-phase double-pulse differs from that by an out-of-phase double-pulse despite the time difference between the double-pulses being only 1.31 fs. This was true even when there is almost no overlap between each pulse in the double-pulse. These results indicate that the photo-response in this material to double-pulse excitation differs greatly from the linear sum of the responses to single pulses.

  6. Studies on Neutron, Photon (Bremsstrahlung and Proton Induced Fission of Actinides and Pre-Actinides

    Directory of Open Access Journals (Sweden)

    H. Naik

    2015-08-01

    Full Text Available We present the yields of various fission products determined in the reactor neutron, 3.7-18.1 MeV quasi-mono energetic neutron, 8-80 MeV bremsstrahlung and 20-45 MeV proton induced fission of 232Th and 238U using radiochemical and off-line beta or gamma ray counting. The yields of the fission products in the bremsstrahlung induced fission natPb and 209Bi with 50- 70 MeV and 2.5 GeV based on off-line gamma ray spectrometric technique were also presented. From the yields of fission products, the mass chains yields were obtained using charge distribution correction. From the mass yield distribution, the peak-to-valley (P/V ratio was obtained. The role of excitation energy on the peak-to-valley ratio and fine structure such as effect of shell closure proximity and even-odd effect of mass yield distribution were examined. The higher yields of the fission products around A=133-134, 138-140 and 143-144 and their complementary products explained from the nuclear structure effect and role of standard I and II mode of asymmetric fission. In the neutron, photon (bremsstrahlung and proton induced fission, the asymmetric mass distribution for actinides (Th, U and symmetric distribution for pre-actinides (Pb, Bi were explained from different type of potential fission barrier

  7. Conotruncal anomalies induced in chick embryos by 2 MeV neutron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Tsukasa (Tokyo Women' s Medical Coll. (Japan))

    1984-06-01

    Radiation of 2 MeV neutrons was used to induce conotruncal anomalies experimentally in chick. White leghorn eggs were exposed to a single dose of neutrons ranging from 50 to 250 rads at various stages of the development. Cardiovascular anomalies were found in 209(40%) of 526 treated embryos;conotruncal anomalies (81/209 or 39%), simple VSD (56/209 or 27%), isolated aortic arch anomalies (69/209 or 33%) and others (3/209 or 1%). The conotruncal anomalies were induced at considerably high incidences by exposures during the 3rd day of incubation and the highest incidence was 74% in the cases malformed by 220 rads. The types of conotruncal anomalies observed were as follows: VSD with pulmonary overriding (52 cases), VSD with aortic overriding (11 cases), DORV (10 cases), truncus arteriosus (6 cases) and complete TGA (2 cases). Sixty (74%) of these cases had aortic hypoplasia, constituting coarctation or interruption complex similar to that seen in man. It is generally thought that the experimental production of complete TGA in chick appears to be impossible when utilizing ordinary teratogenic means. However, neutron radiation could induce this peculiar anomaly in chick.

  8. Radioactive Ion Beam Production by Fast-Neutron-Induced Fission in Actinide Targets at EURISOL

    CERN Document Server

    Herrera-Martínez, Adonai

    The European Isotope Separation On-Line Radioactive Ion Beam Facility (EURISOL) is set to be the 'next-generation' European Isotope Separation On-Line (ISOL) Radioactive Ion Beam (RIB) facility. It will extend and amplify current research on nuclear physics, nuclear astrophysics and fundamental interactions beyond the year 2010. In EURISOL, the production of high-intensity RIBs of specific neutron-rich isotopes is obtained by inducing fission in large-mass actinide targets. In our contribution, the use of uranium targets is shown to be advantageous to other materials, such as thorium. Therefore, in order to produce fissions in U-238 and reduce the plutonium inventory, a fast neutron energy spectrum is necessary. The large beam power required to achieve these RIB levels requires the use of a liquid proton-to-neutron converter. This article details the design parameters of the converter, with special attention to the coupled neutronics of the liquid converter and fission target. Calculations performed with the ...

  9. Four possible types of pulses for self-induced transparency

    Science.gov (United States)

    Lee, C. T.

    1974-01-01

    Four types of steady-state solutions were derived for the coupled Maxwell-Bloch equations which describe highly intense pulse propagation in a resonant medium. Essential in the derivation procedures is the replacement of the usual slowly varying envelope approximation with an alternative procedure, the omission of possible nonresonant losses, and the assumption that the relaxation times are infinite.

  10. Measurements of prompt gamma-rays from fast-neutron induced fission with the LICORNE directional neutron source

    CERN Document Server

    Wilson, J N; Halipre, P; Oberstedt, S; Oberstedt, A

    2014-01-01

    At the IPN Orsay we have developed a unique, directional, fast neutron source called LICORNE, intended initially to facilitate prompt fission gamma measurements. The ability of the IPN Orsay tandem accelerator to produce intense beams of $^7$Li is exploited to produce quasi-monoenergetic neutrons between 0.5 - 4 MeV using the p($^7$Li,$^7$Be)n inverse reaction. The available fluxes of up to 7 × 10$^7$ neutrons/second/steradian for the thickest hydrogen-rich targets are comparable to similar installations, but with two added advantages: (i) The kinematic focusing produces a natural neutron beam collimation which allows placement of gamma detectors adjacent to the irradiated sample unimpeded by source neutrons. (ii) The background of scattered neutrons in the experimental hall is drastically reduced. The dedicated neutron converter was commissioned in June 2013. Some preliminary results from the first experiment using the LICORNE neutron source at the IPN Orsay are presented. Prompt fission gamma rays from fas...

  11. The effect of laser pulse width on laser-induced damage at K9 and UBK7 components surface

    Science.gov (United States)

    Zhou, Xinda; Ba, Rongsheng; Zheng, Yinbo; Yuan, Jing; Li, Wenhong; Chen, Bo

    2015-07-01

    In this paper, we investigated the effects of laser pulse width on laser-induced damage. We measured the damage threshold of K9 glass and UBK7 glass optical components at different pulse width, then analysis pulse-width dependence of damage threshold. It is shown that damage threshold at different pulse width conforms to thermal restriction mechanism, Because of cm size laser beam, defect on the optical component surface leads to laser-induced threshold decreased.

  12. Neutrons formed by heavy ions and activation induced in different materials; Neutrons crees par ions lourds et activation induite dans divers materiaux

    Energy Technology Data Exchange (ETDEWEB)

    Clapier, F.; Pauwels, N.; Proust, J.

    1995-12-31

    This work deals with the Spiral project and more particularly with the neutrons flux formed by heavy ions and the activation induced in different materials. Indeed, the beams power suggests the interest of different materials behaviour study for allowing a possible selection to optimize radioprotection. Moreover, it is important to establish the activation mechanisms in order to be able to extrapolate the measures realized at 400 W (actual GANIL) to those of the future running taking into account the radioisotopes real mixtures formed during the reaction and their daughter products. A best knowledge of energizing and angular neutrons distributions is searched too. (O.L.). 11 refs., 23 figs., 9 tabs.

  13. Defect-induced magnetism in neutron irradiated 6H-SiC single crystals.

    Science.gov (United States)

    Liu, Yu; Wang, Gang; Wang, Shunchong; Yang, Jianhui; Chen, Liang; Qin, Xiubo; Song, Bo; Wang, Baoyi; Chen, Xiaolong

    2011-02-25

    Defect-induced magnetism is firstly observed in neutron irradiated SiC single crystals. We demonstrated that the intentionally created defects dominated by divacancies (V(Si)V(C)) are responsible for the observed magnetism. First-principles calculations revealed that defect states favor the formation of local moments and the extended tails of defect wave functions make long-range spin couplings possible. Our results confirm the existence of defect-induced magnetism, implying the possibility of tuning the magnetism of wide band-gap semiconductors by defect engineering.

  14. A proposed three-phase counting system for the in vivo measurement of the major elements using pulsed 14 MeV neutrons.

    Science.gov (United States)

    Mitra, S; Sutcliffe, J F; Hill, G L

    1990-01-01

    It is proposed to employ a pulsed source of 14 MeV neutrons for in vivo activation analysis. This would permit the differentiation, with time, of the resulting gamma ray emission into three separate spectra, according to the type of nuclear reaction and mode of decay. The three-phase counting has been divided into approximately 10 microseconds during "beam-on," and 200 and 800 microseconds during "beam-off." Measurements of the major elements, C, N, O, Cl, and P, to give nutritionally-important body compartments of total body fat, protein, water, minerals, and extracellular water, thus is expected with a single scan.

  15. Pulse laser induced graphite-to-diamond phase transition: the role of quantum electronic stress

    Science.gov (United States)

    Wang, ZhengFei; Liu, Feng

    2017-02-01

    First-principles calculations show that the pulse laser induced graphite-to-diamond phase transition is related to the lattice stress generated by the excited carriers, termed as "quantum electronic stress (QES)". We found that the excited carriers in graphite generate a large anisotropic QES that increases linearly with the increasing carrier density. Using the QES as a guiding parameter, structural relaxation spontaneously transforms the graphite phase into the diamond phase, as the QES is reduced and minimized. Our results suggest that the concept of QES can be generally applied as a good measure to characterize the pulse laser induced phase transitions, in analogy to pressure induced phase transitions.

  16. Selective Alignment of D2 Induced by Two Ultrashort Laser Pulses

    Institute of Scientific and Technical Information of China (English)

    Zeng-qiang Yang; Zhi-rong Guo; Gui-xian Ge

    2009-01-01

    The dynamics of molecular rotational wave packets of D2 induced by ultrashort laser pulses was investigated numerically by solving the time-dependent Schrodinger equation. Results show that an ultrashort pulse can manipulate a coherent rotational wave packet of D2 se-lectively. In the calculation, a first laser pulse was used to create a coherent rotational wave packet from an initial thermal ensemble of D2 at the temperature of 300 K. The second laser pulse was used to manipulate the rotational wave packet selectively around the first quarter and the three quarters revival. The alignment parameter and its Fourier transform amplitude both illustrate that the relative populations of even and odd rotational states in the final rotational wave packet of D2 can be manipulated by precisely selecting the time delay between the first and the second ultrashort pulse.

  17. The eddy current induced in the pulsed bump magnet for the CSNS/RCS injection%The eddy current induced in the pulsed bump magnet for the CSNS/RCS injection

    Institute of Scientific and Technical Information of China (English)

    宋金星; 康文; 霍丽华; 郝耀斗; 王磊

    2011-01-01

    The injecton pulsed bending bump magnets of Rapid Cycling Synchrotron (RCS) in China Spalla- tion Neutron Source (CSNS) consist of four horizontal bending (BH) magnets and four vertical bending (BV) magnets. The BH magnets are operated at a repetition rat

  18. Dapsone Induced Methaemoglobinemia: Early Intraoperative Detection by Pulse Oximeter Desaturation

    Directory of Open Access Journals (Sweden)

    Mahmood Rafiq

    2008-01-01

    Case signifies the importance of knowledge of any preoperative drug intake and its anaesthetic implications. Also patients on dapsone therapy especially children should be monitored for methaemoglobin levels. Since children with immune thrombocy-topenic purpura are being treated with dapsone these days and many of these patients would be planned for splenectomy, monitoring of preoperative methaemoglobin levels and methaemoglobinemia as a cause of intraoperative pulse oximeter desaturation should be kept in mind.

  19. Electron rescattering at metal nanotips induced by ultrashort laser pulses

    Science.gov (United States)

    Wachter, G.; Lemell, C.; Burgdörfer, J.

    2014-04-01

    We theoretically investigate the interaction of moderate intensity near-infrared few cycle laser pulses with nano-scale metal tips. Local field enhancement in a nanometric region around the tip apex triggers coherent electron emission on the nanometer length and femtosecond time scale. The quantum dynamics at the surface are simulated with time-dependent density functional theory (TDDFT) and interpreted based on the simple man's model. We investigate the dependence of the emitted electron spectra on the laser wavelength.

  20. Neutron-induced modifications on Hostaphan and Makrofol wettability and etching behaviors

    Science.gov (United States)

    El-Sayed, D.; El-Saftawy, A. A.; Abd El Aal, S. A.; Fayez-Hassan, M.; Al-Abyad, M.; Mansour, N. A.; Seddik, U.

    2017-04-01

    Understanding the nature of polymers used as nuclear detectors is crucial to enhance their behaviors. In this work, the induced modifications in wettability and etching properties of Hostaphan and Makrofol polymers irradiated by different fluences of thermal neutrons are investigated. The wetting properties are studied by contact angle technique which showed the spread out of various liquids over the irradiated polymers surfaces (wettability enhanced). This wetting behavior is attributed to the induced changes in surface free energy (SFE), morphology, roughness, structure, hardness, and chemistry. SFE values are calculated by three different models and found to increase after neutrons irradiation associated with differences depending on the used model. These differences result from the intermolecular interactions in the liquid/polymer system. Surface morphology and roughness of both polymers showed drastic changes after irradiation. Additionally, surface structure and hardness of pristine and irradiated polymers were discussed and correlated to the surface wettability improvements. The changes in surface chemistry are examined by Fourier transform infrared spectroscopy (FTIR), which indicate an increase in surface polarity due to the formation of polar groups. The irradiated polymers etching characteristics and activation energies are discussed as well. Lastly, it is evident that thermal neutrons show efficiency in improving surface wettability and etching properties of Hostaphan and Makrofol in a controlled way.

  1. Measurement and theoretical estimation of induced activity in natIn by high energy neutrons

    Indian Academy of Sciences (India)

    Maitreyee Nandy; P K Sarkar; N Nakao; T Shibata

    2009-10-01

    Induced radioactivity in natural indium (natIn) foils by high energy neutrons was measured at the KENS Facility, KEK, Japan, where a 16.7 cm thick W target was bombarded by protons of 500 MeV. High energy neutrons consequently produced irradiated the In targets placed at different depths inside a 4 m thick concrete shield placed at the beam exit. The measured activities were compared with the results calculated using the nuclear reaction model codes ALICE-91 and EMPIRE-2.18. To estimate the induced activity, excitation functions of the various radionuclides were calculated using the two codes and folded with the appropriate neutron energy distribution at different depths of the concrete shield. The calculated excitation functions of a given nuclide were found to vary widely from one another in some cases. The performances of the codes for different input parameters like level densities and inverse cross-sections are reported in this paper. Our analysis shows that neither of the two codes reproduced all the measured activities satisfactorily, requiring further improvements in the models adopted.

  2. Prompt fission neutron investigation in 235U(nth,f) reaction

    Science.gov (United States)

    Zeynalov, Shakir; Sedyshev, Pavel; Shvetsov, Valery; Sidorova, Olga

    2017-09-01

    The prompt neutron emission in thermal neutron induced fission of 235U has been investigated applying digital signal electronics. The goal was to compare the results of this digital data acquisition and digital signal processing analysis to the results of the pioneering work of Apalin et al. Using a twin Frisch grid ionization chamber for the fission fragment detection and a NE213 equivalent neutron detector in total about 106 neutron coincidences have been registered. The fission fragment kinetic energy, mass and angular distribution has been investigated along with prompt neutron time of flight and pulse shape using a six channel synchronous waveform digitizer with sampling frequency of 250 MHz and 12 bit resolution. The signals have been analyzed using digital pulse processing algorithms, developed by authors. The thermal neutron beam was transported from the IBR-2 reactor to the target with bent mirror neutron guide.

  3. Neutron flux from a 14-MeV neutron generator with tungsten filter for research in NDA methods for nuclear safeguards and security

    Science.gov (United States)

    Rennhofer, H.; Pedersen, B.; Crochemore, J.-M.

    2009-12-01

    The Joint Research Centre has taken into operation a new experimental device designed for research in the fields of nuclear safeguards and security applications. The research projects currently undertaken include detection of shielded contraband materials, detection of fissile materials, and mass determination of small fissile materials in shielded containers. The device, called the Pulsed Neutron Interrogation Test Assembly (PUNITA), incorporates a pulsed 14-MeV (D-T) neutron generator and a large graphite mantle surrounding the sample cavity. By pulsing the neutron generator with a frequency in the range of 10 to 150 Hz, a sample may be interrogated first by fast neutrons and a few hundred micro-seconds later by a pure thermal neutron flux. The permanent detection systems incorporated in PUNITA include 3He neutrons detectors, HPGe gamma detectors, and lanthanum bromide scintillation detectors. We have studied the effects of placing a tungsten liner around the neutron generator target. The 14-MeV neutrons induce (n, 2n) and (n, 3n) reactions. In addition the mean neutron energy emitted from generator/tungsten assembly is reduced to about 1 MeV. Both of these effects increase the thermal neutron flux in the sample cavity. The paper describes the observed advantages of the tungsten liner with respect to increase in thermal flux, and better shielding capabilities of the nearby gamma and neutron detectors.

  4. Spectral features in isolated neutron stars induced by inhomogeneous surface temperatures

    CERN Document Server

    Viganò, Daniele; Rea, Nanda; Pons, José A

    2014-01-01

    The thermal X-ray spectra of several isolated neutron stars display deviations from a pure blackbody. The accurate physical interpretation of these spectral features bears profound implications for our understanding of the atmospheric composition, magnetic field strength and topology, and equation of state of dense matter. With specific details varying from source to source, common explanations for the features have ranged from atomic transitions in the magnetized atmospheres or condensed surface, to cyclotron lines generated in a hot ionized layer near the surface. Here we quantitatively evaluate the X-ray spectral distortions induced by inhomogeneous temperature distributions of the neutron star surface. To this aim, we explore several surface temperature distributions, we simulate their corresponding general relativistic X-ray spectra (assuming an isotropic, blackbody emission), and fit the latter with a single blackbody model. We find that, in some cases, the presence of a spurious 'spectral line' is requ...

  5. Boron analysis for neutron capture therapy using particle-induced gamma-ray emission.

    Science.gov (United States)

    Nakai, Kei; Yamamoto, Yohei; Okamoto, Emiko; Yamamoto, Tetsuya; Yoshida, Fumiyo; Matsumura, Akira; Yamada, Naoto; Kitamura, Akane; Koka, Masashi; Satoh, Takahiro

    2015-12-01

    The neutron source of BNCT is currently changing from reactor to accelerator, but peripheral facilities such as a dose-planning system and blood boron analysis have still not been established. To evaluate the potential application of particle-induced gamma-ray emission (PIGE) for boron measurement in clinical boron neutron capture therapy, boronophenylalanine dissolved within a cell culture medium was measured using PIGE. PIGE detected 18 μgB/mL f-BPA in the culture medium, and all measurements of any given sample were taken within 20 min. Two hours of f-BPA exposure was required to create a boron distribution image. However, even though boron remained in the cells, the boron on the cell membrane could not be distinguished from the boron in the cytoplasm. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Attempts to infer the neutron inelastic cross sections using charged particle induced reactions

    CERN Document Server

    Negret, A; Borcea, C; Bucurescu, D; Deleanu, D; Dessagne, Ph; Filipescu, D; Ghita, D; Glodariu, T; Kerveno, M; Marginean, N; Marginean, R; Mihai, C; Olacel, A; Pascu, S; Plompen, A J M; Sava, T; Stroe, L; Suliman, G

    2014-01-01

    Two experiments were performed at the Tandem accelerator of the Horia Hulubei National Institute for Physics and Nuclear Engineering, IFIN-HH with the purpose to investigate the possibility to use alpha-induced reactions for the calculation of neutron inelastic cross sections based on the Bohr hypothesis of the compound nucleus. A first experiment compared the gamma production cross sections excited in the $^{25}$Mg($\\alpha, n\\gamma$ )$^{28}$Si and the $^{28}Si(n, n′\\gamma)^{28}$Si reactions. A second measurement, supported by the ERINDA project, was dedicated to the measurement of $^{70}Zn(\\alpha, n\\gamma )^{73}$Ge cross sections with the purpose of inferring the neutron inelastic cross sections on $^{73}$Ge.

  7. Pulsed DC Electric Field-Induced Differentiation of Cortical Neural Precursor Cells.

    Directory of Open Access Journals (Sweden)

    Hui-Fang Chang

    Full Text Available We report the differentiation of neural stem and progenitor cells solely induced by direct current (DC pulses stimulation. Neural stem and progenitor cells in the adult mammalian brain are promising candidates for the development of therapeutic neuroregeneration strategies. The differentiation of neural stem and progenitor cells depends on various in vivo environmental factors, such as nerve growth factor and endogenous EF. In this study, we demonstrated that the morphologic and phenotypic changes of mouse neural stem and progenitor cells (mNPCs could be induced solely by exposure to square-wave DC pulses (magnitude 300 mV/mm at frequency of 100-Hz. The DC pulse stimulation was conducted for 48 h, and the morphologic changes of mNPCs were monitored continuously. The length of primary processes and the amount of branching significantly increased after stimulation by DC pulses for 48 h. After DC pulse treatment, the mNPCs differentiated into neurons, astrocytes, and oligodendrocytes simultaneously in stem cell maintenance medium. Our results suggest that simple DC pulse treatment could control the fate of NPCs. With further studies, DC pulses may be applied to manipulate NPC differentiation and may be used for the development of therapeutic strategies that employ NPCs to treat nervous system disorders.

  8. Pulsed DC Electric Field–Induced Differentiation of Cortical Neural Precursor Cells

    Science.gov (United States)

    Chang, Hui-Fang; Lee, Ying-Shan; Tang, Tang K.; Cheng, Ji-Yen

    2016-01-01

    We report the differentiation of neural stem and progenitor cells solely induced by direct current (DC) pulses stimulation. Neural stem and progenitor cells in the adult mammalian brain are promising candidates for the development of therapeutic neuroregeneration strategies. The differentiation of neural stem and progenitor cells depends on various in vivo environmental factors, such as nerve growth factor and endogenous EF. In this study, we demonstrated that the morphologic and phenotypic changes of mouse neural stem and progenitor cells (mNPCs) could be induced solely by exposure to square-wave DC pulses (magnitude 300 mV/mm at frequency of 100-Hz). The DC pulse stimulation was conducted for 48 h, and the morphologic changes of mNPCs were monitored continuously. The length of primary processes and the amount of branching significantly increased after stimulation by DC pulses for 48 h. After DC pulse treatment, the mNPCs differentiated into neurons, astrocytes, and oligodendrocytes simultaneously in stem cell maintenance medium. Our results suggest that simple DC pulse treatment could control the fate of NPCs. With further studies, DC pulses may be applied to manipulate NPC differentiation and may be used for the development of therapeutic strategies that employ NPCs to treat nervous system disorders. PMID:27352251

  9. The role of plasma shielding in collinear double-pulse femtosecond laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Penczak, John [Department of Chemistry (m/c 111), University of Illinois at Chicago, Chicago, IL 60680-7061 (United States); Kupfer, Rotem; Bar, Ilana [Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Gordon, Robert J. [Department of Chemistry (m/c 111), University of Illinois at Chicago, Chicago, IL 60680-7061 (United States)

    2014-07-01

    We report an experimental and theoretical study of the mechanism for the enhancement of the laser-induced breakdown signal produced by two collinear femtosecond pulses separated by a suitable delay. A bilayer sample consisting of a 500 nm thick film of Ag deposited on Al was used in the experiments, and a particle-in-cell (PIC) simulation was implemented in the theoretical part of the study. Experiments on the effect of laser polarization, performed at a 30° angle of incidence over a wide range of fluences, together with the PIC results, showed that the plasma produced by the first pulse was further excited by the second pulse. Experiments at normal incidence and a fluence of 200 J/cm{sup 2} showed that the second pulse did not penetrate the Ag layer. In addition, measurements of the effect of pulse delay on the signal supported the conclusion that double pulse enhancement is produced by plasma heating rather than by increased surface ablation. - Highlights: • We study the mechanism for collinear double-pulse enhancement of LIBS produced by a fs laser. • We use a bilayer of Ag on Al to determine which region is reached by the 2nd pulse. • Signal enhancement is produced by plasma heating rather than by increased surface ablation. • Particle-in-cell calculations show that plasma shielding plays a key role.

  10. Measurements of periods, relative abundances and absolute yields of delayed neutrons from fast neutron induced fission of {sup 237}Np

    Energy Technology Data Exchange (ETDEWEB)

    Piksaikine, V. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-03-01

    The experimental method for measurements of the delayed neutron yields and period is presented. The preliminary results of the total yield, relative abundances and periods are shown comparing with the previously reported values. (J.P.N.)

  11. Measurements of periods, relative abundances and absolute yields of delayed neutrons from fast neutron induced fission of {sup 237}Np

    Energy Technology Data Exchange (ETDEWEB)

    Piksaikine, V. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-03-01

    The experimental method for measurements of the delayed neutron yields and period is presented. The preliminary results of the total yield, relative abundances and periods are shown comparing with the previously reported values. (J.P.N.)

  12. Development of a neutron converter for studies of neutron-induced fission fragments at the IGISOL facility

    CERN Document Server

    Lantz, M; Al-Adili, A; Jokinen, A; Kolhinen, V; Mattera, A; Rinta-Antila, S; Penttilä, H; Pomp, S; Rakoupoulos, V; Simutkin, V; Solders, A

    2014-01-01

    The ERINDA funded scientific visit has enabled the groups at U ppsala Uni- versity and University of Jyväskylä to work closer together on the design of a neutron converter that will be used as neutron source in fissi on yield studies at the IGISOL-JYFLTRAP facility at the University of Jyväsk ylä. The design is based on simulations with both deterministic codes and Mo nte Carlo codes, and an ERINDA funded benchmark measurement. In order to obta in a com- petitive count rate the fission targets will be placed very cl ose to the neutron converter. The intention is to have a flexible design that wil l enable neutron fields with different energy distributions. In this report t he progression and the present status of the design work will be discussed, togethe r with an outlook of the future plans

  13. Applications of ultra-short pulsed laser ablation: thin films deposition and fs/ns dual-pulse laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Teghil, R; De Bonis, A; Galasso, A [Dipartimento di Chimica, Universita della Basilicata, Via N. Sauro 85, 85100 Potenza (Italy); Santagata, A; Albano, G; Villani, P; Spera, D; Parisi, G P [CNR-IMIP, Unita di Potenza, Via S. Loja, 85050 Tito Scalo (Italy)], E-mail: roberto.teghil@unibas.it

    2008-10-15

    In this paper, we report a survey of two of the large number of possible practical applications of the laser ablation performed by an ultra-short pulse laser, namely pulsed laser deposition (PLD) and fs/ns dual-pulse laser-induced breakdown spectroscopy (DP-LIBS). These applications differ from those using just longer pulsed lasers as a consequence of the distinctive characteristics of the plasma produced by ultra-short laser beams. The most important feature of this plasma is the large presence of particles with nanometric size which plays a fundamental role in both applications.

  14. Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation

    CERN Document Server

    Kafka, K R P; Li, H; Yi, A; Cheng, J; Chowdhury, E A

    2015-01-01

    Time-resolved diffraction microscopy technique has been used to observe the formation of laser-induced periodic surface structures (LIPSS) from the interaction of a single femtosecond laser pulse (pump) with a nano-scale groove mechanically formed on a single-crystal Cu substrate. The interaction dynamics (0-1200 ps) was captured by diffracting a time-delayed, frequency-doubled pulse from nascent LIPSS formation induced by the pump with an infinity-conjugate microscopy setup. The LIPSS ripples are observed to form sequentially outward from the groove edge, with the first one forming after 50 ps. A 1-D analytical model of electron heating and surface plasmon polariton (SPP) excitation induced by the interaction of incoming laser pulse with the groove edge qualitatively explains the time-evloution of LIPSS formation.

  15. The Monte Carlo Simulation of Pulsed Neutron-Fission Neutron Uranium Logging Technique%脉冲中子-裂变中子铀矿测井技术的蒙特卡罗模拟

    Institute of Scientific and Technical Information of China (English)

    王新光; 王国保; 张国光; 窦玉玲; 丰树强; 赵潇

    2013-01-01

    PNFN was a method for uranium exploration. Pulsed neutron source was used, prompt fission epithermal neutron or delayed fission thermal neutrons were detected by u-sing 3He neutron detector. Under the condition of different uranium content and porosity, the PNFN responses were simulated by using the MCNP code. The relationship between fission neutron and formation condition was studied. The obtained results showed that the larger the formation porosity, the lower the calculated uranium content. The precision of u-ranium content could be increased by the correction of scattering cross-section obtained by prompt fission epithermal or thermal neutron time decay spectrum method.%脉冲中子-裂变中子铀矿测井方法(PNFN)是采用脉冲式中子源,利用3He管中子探测器记录瞬发裂变超热中子或缓发裂变热中子,得到地层中铀矿含量信息的测井方法.利用MCNP程序模拟了不同铀含量、不同地层孔隙度地层条件下PNFN的响应,分析了瞬发裂变超热中子和缓发裂变热中子与地层铀含量和孔隙度的关系.结果表明,地层孔隙度对利用PNFN确定地层铀含量有影响,孔隙度越大,利用裂变中子直接计算得到的地层铀含量比真实含量越小.利用瞬发裂变超热中子或热中子时间衰减谱计算得到地层宏观俘获截面,对裂变中子进行校正,可以有效提高地层铀含量计算结果的准确度.

  16. Stress-induced martensite variant reorientation in magnetic shape memory Ni Mn Ga single crystal studied by neutron diffraction

    Science.gov (United States)

    Molnar, P.; Sittner, P.; Lukas, P.; Hannula, S.-P.; Heczko, O.

    2008-06-01

    Stress-induced martensite variant reorientation in magnetic shape memory Ni-Mn-Ga single crystal was studied in situ by the neutron diffraction technique. Principles of determination of individual tetragonal martensitic variants in shape memory alloys are explained. Using neutron diffraction we show that the macroscopic strain originates solely from the martensite structure reorientation or variant redistribution. Neutron diffraction also reveals that the reorientation of martensite is not fully completed even at a stress value of 25 MPa, which is about 20 times larger than the mean stress needed for reorientation. Only one twinning system is active during the reorientation process.

  17. Pulse-induced focusing of Rydberg wave packets

    Science.gov (United States)

    Arbó, D. G.; Reinhold, C. O.; Burgdörfer, J.; Pattanayak, A. K.; Stokely, C. L.; Zhao, W.; Lancaster, J. C.; Dunning, F. B.

    2003-06-01

    We demonstrate that strong transient phase-space localization can be achieved by the application of a single impulsive “kick” in the form of a short (600 ps) unidirectional electric-field pulse to a strongly polarized, quasi-one-dimensional Rydberg atom. The underlying classical dynamics is analyzed and it is shown that phase-space localization results from a focusing effect analogous to rainbow scattering. Moreover, it is shown that the essential features of the classical analysis remain valid in a quantum-mechanical treatment of the system in terms of its phase-space Husimi distribution. The degree of phase-space localization is characterized by the coarse-grained Renyi entropy. Transient phase-space localization is demonstrated experimentally using extreme redshifted m=0 potassium Stark states in the n=351 manifold and a short probe pulse. The experimental data are in good agreement with theoretical predictions. The localized state provides an excellent starting point for further control and manipulation of the electron wave packet.

  18. Short infrared (IR) laser pulses can induce nanoporation

    Science.gov (United States)

    Roth, Caleb C.; Barnes, Ronald A.; Ibey, Bennett L.; Glickman, Randolph D.; Beier, Hope T.

    2016-03-01

    Short infrared (IR) laser pulses on the order of hundreds of microseconds to single milliseconds with typical wavelengths of 1800-2100 nm, have shown the capability to reversibly stimulate action potentials (AP) in neuronal cells. While the IR stimulation technique has proven successful for several applications, the exact mechanism(s) underlying the AP generation has remained elusive. To better understand how IR pulses cause AP stimulation, we determined the threshold for the formation of nanopores in the plasma membrane. Using a surrogate calcium ion, thallium, which is roughly the same shape and charge, but lacks the biological functionality of calcium, we recorded the flow of thallium ions into an exposed cell in the presence of a battery of channel antagonists. The entry of thallium into the cell indicated that the ions entered via nanopores. The data presented here demonstrate a basic understanding of the fundamental effects of IR stimulation and speculates that nanopores, formed in response to the IR exposure, play an upstream role in the generation of AP.

  19. Neutron spectrometry--historical review and present status

    CERN Document Server

    Brooks, F D

    2002-01-01

    Methods of neutron field spectrometry, other than those depending on the use of pulsed neutron sources, are surveyed. Neutron spectrometers are compared with particular reference to characteristics such as energy resolution, useful energy range, neutron detection efficiency and response functions.

  20. Deuteron and neutron induced activation in the Eveda accelerator materials: implications for the accelerator maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.; Sanz, J.; Garcia, N.; Cabellos, O. [Madrid Univ. Politecnica, C/ Jose Gutierrez Abascal, lnstituto de Fusion Nuclear (Spain); Sauvan, R. [Universidad Nacional de Educacion a Distancia (UNED), Madrid (Spain); Moreno, C.; Sedano, L.A. [CIEMAT-Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Association Euratom-CIEMAT, Madrid (Spain)

    2007-07-01

    Full text of publication follows: The IFMIF (International Fusion Materials Irradiation Facility) is an accelerator-based DLi neutron source designed to test fusion reactor candidate materials for high fluence neutrons. Before deciding IFMIF construction, an engineering design and associated experimental data acquisition, defined as EVEDA, has been proposed. Along the EVEDA accelerator, deuteron beam losses collide with the accelerator materials, producing activation and consequent radiations responsible of dose. Calculation of the dose rates in the EVEDA accelerator room is necessary in order to analyze the feasibility for manual maintenance. Dose rates due to the activation produced by the deuteron beam losses interaction with the accelerator materials, will be calculated with the ACAB activation code, using EAF2007 library for deuteron activation cross-sections. Also, dose rates from the activation induced by the neutron source produced by the interaction of deuteron beam losses with the accelerator materials and the deuterium implanted in the structural lattice, will be calculated with the SRIM2006, TMAP7, DROSG2000/NEUYIE, MCNPX and ACAB codes. All calculations will be done for the EVEDA accelerator with the room temperature DTL structure, which is based on copper cavities for the DTL. Some calculations will be done for the superconducting DTL structure, based on niobium cavities for the DTL working at cryogenic temperature. Final analysis will show the dominant mechanisms and major radionuclides contributing to the surface dose rates. (authors)

  1. Systematics on fission fragment mass distribution of neutron induced 235U fission

    Institute of Scientific and Technical Information of China (English)

    LIU Ting-Jin; SUN Zheng-Jun; SHU Neng-Chuan

    2008-01-01

    Based on the neutron induced fission fragment mass distribution data up to neutron energy 20 MeV measured with the double kinetic energy method (KEM) and the radio active method (RAM), the systematics of fission fragment mass distribution was investigated by using 5 Gaussian model and the systematics parameters were obtained by fitting the experimental data. With the systematics, the yields of any mass A and at any energy in the region from 0 to 20 MeV of neutron energy can be calculated. The calculated results could well reproduce the experimental data measured with KEM, but show some systematical deviation from the data measured by RAM, which reflects some systematical deviations between the two kinds of measured data.The error of systematics yield was calculated in an exact error transformation way, including from the error of the experimental yield data to the error of the discrete parameters, then to the systematics parameters,and at last to the yield calculated with systematics.

  2. Microscopic dynamics simulations of heavy-ion fusion reactions induced by neutron-rich nuclei

    CERN Document Server

    Wang, Ning; Zhang, Yingxun; Li, Zhuxia

    2014-01-01

    The heavy-ion fusion reactions induced by neutron-rich nuclei are investigated with the improved quantum molecular dynamics (ImQMD) model. With a subtle consideration of the neutron skin thickness of nuclei and the symmetry potential, the stability of nuclei and the fusion excitation functions of heavy-ion fusion reactions $^{16}$O+$^{76}$Ge, $^{16}$O+$^{154}$Sm, $^{40}$Ca+$^{96}$Zr and $^{132}$Sn+$^{40}$Ca are systematically studied. The fusion cross sections of these reactions at energies around the Coulomb barrier can be well reproduced by using the ImQMD model. The corresponding slope parameter of the symmetry energy adopted in the calculations is $L \\approx 78$ MeV and the surface energy coefficient is $g_{\\rm sur}=18\\pm 1.5$ MeVfm$^2$. In addition, it is found that the surface-symmetry term significantly influences the fusion cross sections of neutron-rich fusion systems. For sub-barrier fusion, the dynamical fluctuations in the densities of the reaction partners and the enhanced surface diffuseness at ...

  3. Reliability Design for Neutron Induced Single-Event Burnout of IGBT

    Science.gov (United States)

    Shoji, Tomoyuki; Nishida, Shuichi; Ohnishi, Toyokazu; Fujikawa, Touma; Nose, Noboru; Hamada, Kimimori; Ishiko, Masayasu

    Single-event burnout (SEB) caused by cosmic ray neutrons leads to catastrophic failures in insulated gate bipolar transistors (IGBTs). It was found experimentally that the incident neutron induced SEB failure rate increases as a function of the applied collector voltage. Moreover, the failure rate increased sharply with an increase in the applied collector voltage when the voltage exceeded a certain threshold value (SEB cutoff voltage). In this paper, transient device simulation results indicate that impact ionization at the n-drift/n+ buffer boundary is a crucially important factor in the turning-on of the parasitic pnp transistor, and eventually latch-up of the parasitic thyristor causes SEB. In addition, the device parameter dependency of the SEB cutoff voltage was analytically derived from the latch-up condition of the parasitic thyristor. As a result, it was confirmed that reducing the current gain of the parasitic transistor, such as by increasing the n-drift region thickness d was effective in increasing the SEB cutoff voltage. Furthermore, `white' neutron-irradiation experiments demonstrated that suppressing the inherent parasitic thyristor action leads to an improvement of the SEB cutoff voltage. It was confirmed that current gain optimization of the parasitic transistor is a crucial factor for establishing highly reliable design against chance failures.

  4. Neutron induced defects in silicon detectors characterized by DLTS and TSC methods

    Energy Technology Data Exchange (ETDEWEB)

    Fretwurst, E. [Hamburg Univ. (Germany). 1. Inst. fuer Experimentalphysik; Dehn, C. [Hamburg Univ. (Germany). 1. Inst. fuer Experimentalphysik; Feick, H. [Hamburg Univ. (Germany). 1. Inst. fuer Experimentalphysik; Heydarpoor, P. [Hamburg Univ. (Germany). 1. Inst. fuer Experimentalphysik; Lindstroem, G. [Hamburg Univ. (Germany). 1. Inst. fuer Experimentalphysik; Moll, M. [Hamburg Univ. (Germany). 1. Inst. fuer Experimentalphysik; Schuetze, C. [Hamburg Univ. (Germany). 1. Inst. fuer Experimentalphysik; Schulz, T. [Hamburg Univ. (Germany). 1. Inst. fuer Experimentalphysik

    1996-08-01

    Neutron induced defects in silicon detectors fabricated from n-type float zone material of different resistivity (100-6000 {Omega} cm) have been studied using the C-DLTS (capacitance-deep level transient spectroscopy) and TSC (thermally stimulated current) method. While the application of the C-DLTS technique for high resistivity material is limited to neutron fluences below about 10{sup 11} cm{sup -2} the TSC method remains a powerful tool for the defect characterization even at high fluences. Up to 5 defect levels were observed in some of the unirradiated samples. These partly are due to thermal treatments during the fabrication process. After neutron irradiation defect levels at E{sub c}-0.17, -0.23 and -0.42 eV and at E{sub v}+0.36 eV were found. A detailed analysis of the predominant peak at about -0.42 eV has shown that it is a superposition of two levels at -0.39 and -0.42 eV. For these defect levels introduction rates, annealing effects and a comparison between the DLTS and TSC technique are presented. Possible correlations of these results with macroscopic detector properties are discussed. (orig.).

  5. Pulse Compression Based on Laser-Induced Optical Breakdown in Suspension

    Institute of Scientific and Technical Information of China (English)

    HASI Wu-Li-Ji; FU Mei-Ling; LU Huan-Huan; GONG Sheng; LU Zhi-Wei; LIN Dian-Yang; HE Wei-Ming

    2009-01-01

    Pulse compression based on laser-induced optical breakdown in suspension is investigated.The physical mechanism behind it is analyzed theoretically and validated in the Q-switched Nd:YAG laser system.A 12-ns pump pulse is suppressed to 5 ns with good fidelity in the front edge and sharp steepness in the trailing edge.The HT-270,which has a small gain coemcient and absorption coefficient,is used as a solvent,and therefore the disturbance induced by stimulated Brillouin scattering and absorption are minimized and the transmittivity is enhanced.

  6. Optical emission studies of plasma induced by single and double femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Pinon, V. [Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), P.O. Box 1385, 71110 Heraklion, Crete (Greece); Universidad de A Coruna, Departamento de Ingenieria Industrial II, E-15403 Ferrol, A Coruna (Spain); Anglos, D., E-mail: anglos@iesl.forth.g [Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), P.O. Box 1385, 71110 Heraklion, Crete (Greece); Department of Chemistry, University of Crete, 71003 Heraklion, Crete (Greece)

    2009-10-15

    Double-pulse femtosecond laser ablation has been shown to lead to significant increase of the intensity and reproducibility of the optical emission signal compared to single-pulse ablation particularly when an appropriate interpulse delay is selected, that is typically in the range of 50-1000 ps. This effect can be especially advantageous in the context of femtosecond laser-induced breakdown spectroscopy analysis of materials. A detailed comparative study of collinear double- over single-pulse femtosecond laser-induced breakdown spectroscopy has been carried out, based on measurements of emission lifetime, temperature and electronic density of plasmas, produced during laser ablation of brass with 450 fs laser pulses at 248 nm. The results obtained show a distinct increase of plasma temperature and electronic density as well as a longer decay time in the double-pulse case. The plasma temperature increase is in agreement with the observed dependence of the emission intensity enhancement on the upper energy level of the corresponding spectral line. Namely, intensity enhancement of emission lines originating from higher lying levels is more profound compared to that of lines arising from lower energy levels. Finally, a substantial decrease of the plasma threshold fluence was observed in the double-pulse arrangement; this enables sensitive analysis with minimal damage on the sample surface.

  7. Pulsed laser-induced formation of silica nanogrids

    National Research Council Canada - National Science Library

    Ihlemann, Jürgen; Weichenhain-Schriever, Ruth

    2014-01-01

    ... ) coating through the transparent substrate. A polydimethylsiloxane (PDMS) superstrate (cover layer) coated on top of the SiO x film prior to laser exposure serves as confinement for controlled laser-induced structure formation...

  8. Laser pulse induced multiple exciton kinetics in molecular ring structures

    Science.gov (United States)

    Hou, Xiao; Wang, Luxia

    2016-11-01

    Multiple excitons can be formed upon strong optical excitation of molecular aggregates and complexes. Based on a theoretical approach on exciton-exciton annihilation dynamics in supramolecular systems (May et al., 2014), exciton interaction kinetics in ring aggregates of two-level molecules are investigated. Excited by the sub-picosecond laser pulse, multiple excitons keep stable in the molecular ring shaped as a regular polygon. If the symmetry is destroyed by changing the dipole of a single molecule, the excitation of different molecules becomes not identical, and the changed dipole-dipole interaction initiates subsequent energy redistribution. Depending on the molecular distance and the dipole configuration, the kinetics undergo different types of processes, but all get stable within some hundreds of femtoseconds. The study of exciton kinetics will be helpful for further investigations of the efficiency of optical devices based on molecular aggregates.

  9. Electron rescattering at metal nanotips induced by ultrashort laser pulses

    CERN Document Server

    Wachter, Georg; Burgdörfer, Joachim; Schenk, Markus; Krüger, Michael; Hommelhoff, Peter

    2012-01-01

    We report on the first investigation of plateau and cut-off structures in photoelectron spectra from nano-scale metal tips interacting with few-cycle near-infrared laser pulses. These hallmarks of electron rescattering, well-known from atom-laser interaction in the strong-field regime, appear at remarkably low laser intensities with nominal Keldysh parameters of the order of $\\gtrsim 10$. Quantum and quasi-classical simulations reveal that a large field enhancement near the tip and the increased backscattering probability at a solid-state target play a key role. Plateau electrons are by an order of magnitude more abundant than in comparable atomic spectra, reflecting the high density of target atoms at the surface. The position of the cut-off serves as an in-situ probe for the locally enhanced electric field at the tip apex.

  10. Nanosecond laser-induced phase transitions in pulsed laser deposition-deposited GeTe films

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xinxing, E-mail: xinxing.sun@iom-leipzig.de; Thelander, Erik; Lorenz, Pierre; Gerlach, Jürgen W.; Decker, Ulrich; Rauschenbach, Bernd [Leibniz Institute of Surface Modification, Permoserstr. 15, D-04318, Leipzig (Germany)

    2014-10-07

    Phase transformations between amorphous and crystalline states induced by irradiation of pulsed laser deposition grown GeTe thin films with nanosecond laser pulses at 248 nm and pulse duration of 20 ns are studied. Structural and optical properties of the Ge-Te phase-change films were studied by X-ray diffraction and optical reflectivity measurements as a function of the number of laser pulses between 0 and 30 pulses and of the laser fluence up to 195 mJ/cm². A reversible phase transition by using pulse numbers ≥ 5 at a fluence above the threshold fluence between 11 and 14 mJ/cm² for crystallization and single pulses at a fluence between 162 and 182 mJ/cm² for amorphization could be proved. For laser fluences from 36 up to 130 mJ/cm², a high optical contrast of 14.7% between the amorphous and crystalline state is measured. A simple model is used that allows the discussion on the distribution of temperature in dependency on the laser fluence.

  11. Fraunhofer-type absorption line splitting and polarization in confocal double-pulse laser induced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nagli, Lev, E-mail: nagli@post.tau.ac.il; Gaft, Michael

    2013-10-01

    Strong line splitting and polarization are observed in Fraunhofer-type absorption lines in Pb, Sn, Si, Cd, In, and Zn in confocal double-pulse laser induced plasma (DP-LIP) experiments. This effect is detectable using medium laser power densities: (∼ 1–2) × 10{sup 13} W/m{sup 2} for the first laser pulse and 1 × 10{sup 14} W/m{sup 2} for the second laser pulse. Polarization and splitting effects exist only during the second laser pulse (∼ 7 ns). Absorption line polarization and splitting phenomena may be explained by a high overall magnetic field and motional Stark effect caused by the second laser pulse inside the laser plasma created by the first pulse. - Highlights: • Certain Fraunhofer absorption lines in DP LIBS are polarized. • Certain Fraunhofer absorption lines in DP LIBS are split. • Those effects exist during laser pulse. • Effects take place in elements with ns{sup 2}np{sup 2} and ns{sup 2} electron ground state.

  12. Somatic mutation and recombination induced with reactor thermal neutrons in Drosophila melanogaster; Mutacion y recombinacion somaticas inducidas con neutrones termicos de reactor en Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Zambrano A, F.; Guzman R, J.; Paredes G, L.; Delfin L, A. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The SMART test of Drosophila melanogaster was used to quantify the effect over the somatic mutation and recombination induced by thermal and fast neutrons at the TRIGA Mark III reactor of the ININ at the power of 300 k W for times of 30, 60 and 120 minutes with total equivalent doses respectively of 20.8, 41.6 and 83.2 Sv. A linear relation between the radiation equivalent dose and the frequency of the genetic effects such as mutation and recombination was observed. The obtained results allow to conclude that SMART is a sensitive system to the induced damage by neutrons, so this can be used for studying its biological effects. (Author)

  13. Comparison of radiation damage in silicon induced by proton and neutron irradiation

    CERN Document Server

    Ruzin, A; Glaser, M; Zanet, A; Lemeilleur, F; Watts, S

    1999-01-01

    The subject of radiation damage to Si detectors induced by 24-GeV/c protons and nuclear reactor neutrons has been studied. Detectors fabricated on single-crystal silicon enriched with various impurities have been tested. Significant differences in electrically active defects have been found between the various types of material. The results of the study suggest for the first time that the widely used nonionizing energy loss (NIEL) factors are insufficient for normalization of the electrically active damage in case of oxygen- and carbon-enriched silicon detectors. It has been found that a deliberate introduction of impurities into the semiconductor can affect the radiation hardness of silicon detectors. (16 refs).

  14. The Nature of Emission from Optical Breakdown Induced by Pulses of fs and ns Duration

    Energy Technology Data Exchange (ETDEWEB)

    Carr, C W; Feit, M D; Rubenchik, A M; Demange, P; Kucheyev, S; Shirk, M D; Radousky, H B; Demos, S G

    2004-11-09

    Spectral emission from optical breakdown in the bulk of a transparent dielectric contains information about the nature of the breakdown medium. We have made time resolved measurements of the breakdown induced emission caused by nanosecond and femtosecond infrared laser pulses. We previously demonstrated that the emission due to ns pulses is blackbody in nature allowing determination of the fireball temperature and pressure during and after the damage event. The emission due to femtosecond pulse breakdown is not blackbody in nature; two different spectral distributions being noted. In one case, the peak spectral distribution occurs at the second harmonic of the incident radiation, in the other the distribution is broader and flatter and presumably due to continuum generation. The differences between ns and fs breakdown emission can be explained by the differing breakdown region geometries for the two pulse durations. The possibility to use spectral emission as a diagnostic of the emission region morphology will be discussed.

  15. Double pulse laser-induced breakdown spectroscopy of explosives: Initial study towards improved discrimination

    Energy Technology Data Exchange (ETDEWEB)

    De Lucia, Frank C. [U.S. Army Research Laboratory, AMSRD-ARL-WM-BD, Aberdeen Proving Ground, MD, 21005-5069 (United States)], E-mail: fdelucia@arl.army.mil; Gottfried, Jennifer L.; Munson, Chase A.; Miziolek, Andrzej W. [U.S. Army Research Laboratory, AMSRD-ARL-WM-BD, Aberdeen Proving Ground, MD, 21005-5069 (United States)

    2007-12-15

    Detecting trace explosive residues at standoff distances in real-time is a difficult problem. One method ideally suited for real-time standoff detection is laser-induced breakdown spectroscopy (LIBS). However, atmospheric oxygen and nitrogen contributes to the LIBS signal from the oxygen- and nitrogen-containing explosive compounds, complicating the discrimination of explosives from other organic materials. While bathing the sample in an inert gas will remove atmospheric oxygen and nitrogen interference, it cannot practically be applied for standoff LIBS. Alternatively, we have investigated the potential of double pulse LIBS to improve the discrimination of explosives by diminishing the contribution of atmospheric oxygen and nitrogen to the LIBS signal. These initial studies compare the close-contact (< 1 m) LIBS spectra of explosives using single pulse LIBS in argon with double pulse LIBS in atmosphere. We have demonstrated improved discrimination of an explosive and an organic interferent using double pulse LIBS to reduce the air entrained in the analytical plasma.

  16. Effect of heat-induced pain stimuli on pulse transit time and pulse wave amplitude in healthy volunteers.

    Science.gov (United States)

    van Velzen, Marit H N; Loeve, Arjo J; Kortekaas, Minke C; Niehof, Sjoerd P; Mik, Egbert G; Stolker, Robert J

    2016-01-01

    Pain is commonly assessed subjectively by interpretations of patient behaviour and/or reports from patients. When this is impossible the availability of a quantitative objective pain assessment tool based on objective physiological parameters would greatly benefit clinical practice and research beside the standard self-report tests. Vasoconstriction is one of the physiological responses to pain. The aim of this study was to investigate whether pulse transit time (PTT) and pulse wave amplitude (PWA) decrease in response to this vasoconstriction when caused by heat-induced pain. The PTT and PWA were measured in healthy volunteers, on both index fingers using photoplethysmography and electrocardiography. Each subject received 3 heat-induced pain stimuli using a Temperature-Sensory Analyzer thermode block to apply a controlled, increasing temperature from 32.0 °C to 50.0 °C to the skin. After reaching 50.0 °C, the thermode was immediately cooled down to 32.0 °C. The study population was divided into 2 groups with a time-interval between the stimuli 20s or 60s. The results showed a significant (p  <  0.05) decrease of both PTT and PWA on the stimulated and contralateral side. Moreover, there was no significant difference between the stimulated and contralateral side. The time-interval of 20s was too short to allow PTT and PWA to return to baseline values and should exceed 40s in future studies. Heat-induced pain causes a decrease of PTT and PWA. Consequently, it is expected that, in the future, PTT and PWA may be applied as objective indicators of pain, either beside the standard self-report test, or when self-report testing is impossible.

  17. A new neutron monitor with silver activation

    CERN Document Server

    Luszik-Bhadra, M; Hohmann, E

    2010-01-01

    A moderator-type neutron monitor has been developed, which registers delayed beta rays from neutron-induced silver activation and which is able to measure dose equivalent in pulsed fields with peak dose rates of several thousand Sv h(-1). The monitor uses four silicon diodes in the centre of a polyethylene moderator, 30 cm in diameter. Two of the diodes are covered by natural silver foils and two of them by tin foils. The latter are used to subtract photon-induced pulses. For registering signals, a pulse height threshold is set at 662 key, which minimizes the effect of Cs-137 and lower energy radiation and - in addition - enhances the detection of beta rays from the shorter half-life silver isotope Ag-110 (25 s) as compared to the longer half-life isotope Ag-108 (144 s). The results of measurements in neutron and photon calibration fields, of MCNPX neutron response calculations and of first measurements in a high-intensity pulsed field at the PSI accelerator are shown. (c) 2010 Elsevier Ltd. All rights reserv...

  18. Dynamics of optical breakdown in air induced by single and double nanosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Mahdieh, Mohammad Hossein, E-mail: mahdm@iust.ac.ir; Akbari Jafarabadi, Marzieh [Department of Physics, Iran University of Science and Technology, Narmak, Tehran 1684613114 (Iran, Islamic Republic of)

    2015-12-15

    In this paper, an optical breakdown in air induced by single and double nanosecond laser pulses was studied. A high power Nd:YAG laser beam was used for producing optical breakdown plasma in the air. The dynamics of breakdown plasma were studied using an optical probe beam. A portion of the laser beam was used, as the probe beam and was aligned to propagate (perpendicular to the pump beam) through the breakdown region. The transmission of the probe beam (through the breakdown region) was temporally measured for both single and double pulse irradiations. The results were used to describe the evolution of the induced plasma in both conditions. These results show that the plasma formation time and its absorptivity are strongly dependent on the single or double pulse configurations.

  19. Prompt γ-ray production in neutron-induced fission of 239Pu

    Science.gov (United States)

    Ullmann, J. L.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Kawano, T.; Lee, H. Y.; O'Donnell, J. M.; Hayes, A. C.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Chyzh, A.; Gostic, J.; Henderson, R.; Kwan, E.; Wu, C. Y.

    2013-04-01

    Background: The prompt gamma-ray spectrum from fission is important for understanding the physics of nuclear fission, and also in applications involving fission. Relatively few measurements of the prompt gamma spectrum from 239Pu(n,f) have been published.Purpose: This experiment measured the multiplicity, individual gamma energy spectrum, and total gamma energy spectrum of prompt fission gamma rays from 239Pu(n,f) in the neutron energy range from thermal to 30 keV, to test models of fission and to provide information for applications.Method: Gamma rays from neutron-induced fission of 239Pu were measured using the DANCE gamma-ray calorimeter. Fission events were tagged by detecting fission products in a parallel-plate avalanche counter in the center of DANCE. The measurements were corrected for detector response using a geant4 model of DANCE. A detailed analysis for the gamma rays from the 1+ resonance complex at 10.93 eV is presented.Results: A six-parameter analytical parametrization of the fission gamma-ray spectrum was obtained. A Monte Carlo Hauser-Feshbach calculation provided good general agreement with the data, but some differences remain to be resolved.Conclusions: An analytic parametrization can be made of the gamma-ray multiplicity, energy distribution, and total-energy distribution for the prompt gamma rays following neutron-induced fission of 239Pu. This parametrization may be useful for applications. Modern Monte Carlo Hauser-Feshbach calculations can do a good job of calculating the fission gamma-ray emission spectrum, although some details remain to be understood.

  20. Kr photoionized plasma induced by intense extreme ultraviolet pulses

    Science.gov (United States)

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.; Skrzeczanowski, W.

    2016-04-01

    Irradiation of any gas with an intense EUV (extreme ultraviolet) radiation beam can result in creation of photoionized plasmas. The parameters of such plasmas can be significantly different when compared with those of the laser produced plasmas (LPP) or discharge plasmas. In this work, the photoionized plasmas were created in a krypton gas irradiated using an LPP EUV source operating at a 10 Hz repetition rate. The Kr gas was injected into the vacuum chamber synchronously with the EUV radiation pulses. The EUV beam was focused onto a Kr gas stream using an axisymmetrical ellipsoidal collector. The resulting low temperature Kr plasmas emitted electromagnetic radiation in the wide spectral range. The emission spectra were measured either in the EUV or an optical range. The EUV spectrum was dominated by emission lines originating from Kr III and Kr IV ions, and the UV/VIS spectra were composed from Kr II and Kr I lines. The spectral lines recorded in EUV, UV, and VIS ranges were used for the construction of Boltzmann plots to be used for the estimation of the electron temperature. It was shown that for the lowest Kr III and Kr IV levels, the local thermodynamic equilibrium (LTE) conditions were not fulfilled. The electron temperature was thus estimated based on Kr II and Kr I species where the partial LTE conditions could be expected.

  1. Repeated pulse feeding induces functional stability in anaerobic digestion.

    Science.gov (United States)

    De Vrieze, Jo; Verstraete, Willy; Boon, Nico

    2013-07-01

    Anaerobic digestion is an environmental key technology in the future bio-based economy. To achieve functional stability, a minimal microbial community diversity is required. This microbial community should also have a certain 'elasticity', i.e. the ability to rapidly adapt to suboptimal conditions or stress. In this study it was evaluated whether a higher degree of functional stability could be achieved by changing the feeding pattern, which can change the evenness, dynamics and richness of the bacterial community. The first reactor (CSTR stable ) was fed on daily basis, whereas the second reactor (CSTR dynamic ) was fed every 2 days. Average biogas production was 0.30 l CH4 l(-1) day(-1) in both reactors, although daily variation was up to four times higher in the CSTR dynamic compared with the CSTR stable during the first 50 days. Bacterial analysis revealed that this CSTR dynamic had a two times higher degree of bacterial community dynamics. The CSTR dynamic also appeared to be more tolerant to an organic shock load of 8 g COD l(-1) and ammonium levels up to 8000 mg TAN l(-1). These results suggest that the regular application of a limited pulse of organic material and/or a variation in the substrate composition might promote higher functional stability in anaerobic digestion.

  2. Light charged particle emission induced by fast neutrons (25 to 65 MeV) on sup 5 sup 9 Co

    CERN Document Server

    Nica, N; Raeymackers, E; Slypen, I; Meulders, J P; Corcalciuc, V

    2002-01-01

    Double-differential cross sections (energy spectra) for the proton, deuteron, triton and alpha-particle production in fast neutron induced reactions on cobalt are reported for ten incident neutron energies between 25 and 65 MeV. Energy spectra were obtained at nine laboratory angles between 20 deg. and 160 deg. and extrapolated or interpolated to other ten angles covering uniformly the laboratory angular domain of 0 deg. to 180 deg. The experimental set-up and procedures for data reduction including corrections and normalization are presented and discussed. Based on the measured double-differential cross sections, energy-differential and total cross sections are reported as well. Experimental cross sections are compared with similar available data from neutron- and proton-induced reactions. Theoretical calculations based on semiclassical exciton model and Hauser-Feshbach statistical theory (GNASH code) and intranuclear cascade model for nucleon-induced interactions (INCL3 code) were done and compared to the e...

  3. Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel.

    Science.gov (United States)

    Qi, Litao; Nishii, Kazuhiro; Namba, Yoshiharu

    2009-06-15

    In this research, we studied the formation of laser-induced periodic surface structures on the stainless steel surface using femtosecond laser pulses. A 780 nm wavelength femtosecond laser, through a 0.2 mm pinhole aperture for truncating fluence distribution, was focused onto the stainless steel surface. Under different experimental condition, low-spatial-frequency laser-induced periodic surface structures with a period of 526 nm and high-spatial-frequency laser-induced periodic surface structures with a period of 310 nm were obtained. The mechanism of the formation of laser-induced periodic surface structures on the stainless steel surface is discussed.

  4. Observation of Electromagnetically Induced Transparency by a Train of Short Pulses

    Institute of Scientific and Technical Information of China (English)

    YE Cun-Yun

    2004-01-01

    @@ We report the experimental demonstration of electromagnetically induced transparency in hot rubidium (85 Rb)atomic vapour by using an actively mode-locked external cavity diode laser in Littman-Metcalf configuration.We can make opaque resonant transitions transparent to any two optical comb components in the pulse trains which excite atomic coherence in the ground states of 85Rb.

  5. Intense pulsed light therapy (IPL) induced iritis following treatment for a medial canthal capillary malformation.

    Science.gov (United States)

    Crabb, Matthew; Chan, Weng Onn; Taranath, Deepa; Huilgol, Shyamala C

    2014-11-01

    The popularity of intense pulsed light (IPL) therapy continues to increase due to its relative safety, high skin coverage rate and ability to treat both vascular and pigmented lesions. An often-overlooked risk is the potential for IPL-induced ocular damage. The damage sustained can cause significant, persistent morbidity and can occur even with very limited IPL exposure to the eye.

  6. Modelling nanoparticles formation in the plasma plume induced by nanosecond pulsed lasers

    Energy Technology Data Exchange (ETDEWEB)

    Girault, M. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Universite de Bourgogne, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); Centre Lasers Intenses et Applications (CELIA), Universite de Bordeaux 1, 43 rue Pierre Noailles, Talence (France); Hallo, L., E-mail: hallo@celia.u-bordeaux1.fr [CEA CESTA, 15 Avenue des Sablieres CS 60001, 33116 Le Barp Cedex (France); Centre Lasers Intenses et Applications (CELIA), Universite de Bordeaux 1, 43 rue Pierre Noailles, Talence (France); Lavisse, L.; Lucas, M.C. Marco de [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Universite de Bourgogne, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); Hebert, D. [CEA CESTA, 15 Avenue des Sablieres CS 60001, 33116 Le Barp Cedex (France); Potin, V.; Jouvard, J.-M. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Universite de Bourgogne, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Nanoparticles spatial localization in the plume induced by a pulsed laser. Black-Right-Pointing-Pointer Plasma plume obtained by laser irradiation. Black-Right-Pointing-Pointer Particles and debris formation. Black-Right-Pointing-Pointer Powder generation. Black-Right-Pointing-Pointer Conditions of formation. - Abstract: Nanoparticles formation in a laser-induced plasma plume in the ambient air has been investigated by using numerical simulations and physical models. For high irradiances, or for ultrashort laser pulses, nanoparticles are formed by condensation, as fine powders, in the expanding plasma for very high pairs of temperature and pressure. At lower irradiances, or nanosecond laser pulses, another thermodynamic paths are possible, which cross the liquid-gas transition curve while laser is still heating the target and the induced plasma. In this work, we explore the growth of nanoparticles in the plasma plume induced by nanosecond pulsed lasers as a function of the laser irradiance. Moreover, the influence of the ambient gas has also been investigated.

  7. Neutron-induced fission cross-section measurement of 234U with quasi-monoenergetic beams in the keV and MeV range using micromegas detectors

    Science.gov (United States)

    Tsinganis, A.; Kokkoris, M.; Vlastou, R.; Kalamara, A.; Stamatopoulos, A.; Kanellakopoulos, A.; Lagoyannis, A.; Axiotis, M.

    2017-09-01

    Accurate data on neutron-induced fission cross-sections of actinides are essential for the design of advanced nuclear reactors based either on fast neutron spectra or alternative fuel cycles, as well as for the reduction of safety margins of existing and future conventional facilities. The fission cross-section of 234U was measured at incident neutron energies of 560 and 660 keV and 7.5 MeV with a setup based on `microbulk' Micromegas detectors and the same samples previously used for the measurement performed at the CERN n_TOF facility (Karadimos et al., 2014). The 235U fission cross-section was used as reference. The (quasi-)monoenergetic neutron beams were produced via the 7Li(p,n) and the 2H(d,n) reactions at the neutron beam facility of the Institute of Nuclear and Particle Physics at the `Demokritos' National Centre for Scientific Research. A detailed study of the neutron spectra produced in the targets and intercepted by the samples was performed coupling the NeuSDesc and MCNPX codes, taking into account the energy spread, energy loss and angular straggling of the beam ions in the target assemblies, as well as contributions from competing reactions and neutron scattering in the experimental setup. Auxiliary Monte-Carlo simulations were performed with the FLUKA code to study the behaviour of the detectors, focusing particularly on the reproduction of the pulse height spectra of α-particles and fission fragments (using distributions produced with the GEF code) for the evaluation of the detector efficiency. An overview of the developed methodology and preliminary results are presented.

  8. Ionization signals from diamond detectors in fast-neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); CIVIDEC Instrumentation, Wien (Austria); Frais-Koelbl, H. [University of Applied Sciences, Wiener Neustadt (Austria); Griesmayer, E.; Kavrigin, P. [CIVIDEC Instrumentation, Wien (Austria); Vienna University of Technology, Wien (Austria)

    2016-09-15

    In this paper we introduce a novel analysis technique for measurements with single-crystal chemical vapor deposition (sCVD) diamond detectors in fast-neutron fields. This method exploits the unique electronic property of sCVD diamond sensors that the signal shape of the detector current is directly proportional to the initial ionization profile. In fast-neutron fields the diamond sensor acts simultaneously as target and sensor. The interaction of neutrons with the stable isotopes {sup 12}C and {sup 13}C is of interest for fast-neutron diagnostics. The measured signal shapes of detector current pulses are used to identify individual types of interactions in the diamond with the goal to select neutron-induced reactions in the diamond and to suppress neutron-induced background reactions as well as γ-background. The method is verified with experimental data from a measurement in a 14.3 MeV neutron beam at JRC-IRMM, Geel/Belgium, where the {sup 13}C(n, α){sup 10}Be reaction was successfully extracted from the dominating background of recoil protons and γ-rays and the energy resolution of the {sup 12}C(n, α){sup 9}Be reaction was substantially improved. The presented analysis technique is especially relevant for diagnostics in harsh radiation environments, like fission and fusion reactors. It allows to extract the neutron spectrum from the background, and is particularly applicable to neutron flux monitoring and neutron spectroscopy. (orig.)

  9. Ionization signals from diamond detectors in fast-neutron fields

    Science.gov (United States)

    Weiss, C.; Frais-Kölbl, H.; Griesmayer, E.; Kavrigin, P.

    2016-09-01

    In this paper we introduce a novel analysis technique for measurements with single-crystal chemical vapor deposition (sCVD) diamond detectors in fast-neutron fields. This method exploits the unique electronic property of sCVD diamond sensors that the signal shape of the detector current is directly proportional to the initial ionization profile. In fast-neutron fields the diamond sensor acts simultaneously as target and sensor. The interaction of neutrons with the stable isotopes 12 C and 13 C is of interest for fast-neutron diagnostics. The measured signal shapes of detector current pulses are used to identify individual types of interactions in the diamond with the goal to select neutron-induced reactions in the diamond and to suppress neutron-induced background reactions as well as γ-background. The method is verified with experimental data from a measurement in a 14.3 MeV neutron beam at JRC-IRMM, Geel/Belgium, where the 13C(n, α)10Be reaction was successfully extracted from the dominating background of recoil protons and γ-rays and the energy resolution of the 12C(n, α)9Be reaction was substantially improved. The presented analysis technique is especially relevant for diagnostics in harsh radiation environments, like fission and fusion reactors. It allows to extract the neutron spectrum from the background, and is particularly applicable to neutron flux monitoring and neutron spectroscopy.

  10. A compact field-portable double-pulse laser system to enhance laser induced breakdown spectroscopy

    Science.gov (United States)

    Li, Shuo; Liu, Lei; Yan, Aidong; Huang, Sheng; Huang, Xi; Chen, Rongzhang; Lu, Yongfeng; Chen, Kevin

    2017-02-01

    This paper reports the development of a compact double-pulse laser system to enhance laser induced breakdown spectroscopy (LIBS) for field applications. Pumped by high-power vertical-surface emitting lasers, the laser system that produces 16 ns pulse at 12 mJ/pulse with total weight less than 10 kg is developed. The inter-pulse delay can be adjusted from 0 μ s with 0.5 μ s increment. Several LIBS experiments were carried out on NIST standard aluminum alloy samples. Comparing with the single-pulse LIBS, up to 9 times enhancement in atomic emission line was achieved with continuum background emission reduced by 70%. This has led to up to 10 times improvement in the limit of detection. Signal stability was also improved by 128% indicating that a more robust and accurate LIBS measurement can be achieved using a compact double-pulse laser system. This paper presents a viable and field deployable laser tool to dramatically improve the sensitivity and applicability of LIBS for a wide array of applications.

  11. A case of radiation-induced osteosarcoma treated effectively by boron neutron capture therapy.

    Science.gov (United States)

    Futamura, Gen; Kawabata, Shinji; Siba, Hiroyuki; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji; Sakurai, Yoshinori; Tanaka, Minoru; Todo, Tomoki; Miyatake, Shin-Ichi

    2014-11-04

    We treated a 54-year-old Japanese female with a recurrent radiation-induced osteosarcoma arising from left occipital skull, by reactor-based boron neutron capture therapy (BNCT). Her tumor grew rapidly with subcutaneous and epidural extension. She eventually could not walk because of cerebellar ataxia. The tumor was inoperable and radioresistant. BNCT showed a marked initial therapeutic effect: the subcutaneous/epidural tumor reduced without radiation damage of the scalp except hair loss and the patient could walk again only 3 weeks after BNCT. BNCT seems to be a safe and very effective modality in the management of radiation-induced osteosarcomas that are not eligible for operation and other treatment modalities.

  12. Measurement of DT fusion and neutron-induced gamma-rays using gas Cherenkov Detector

    Science.gov (United States)

    Kim, Y.; Herrmann, H. W.; Evans, S.; Sedillo, T.; Langenbrunner, J. R.; Young, C. S.; Mack, J. M.; McEvoy, A.; Horsfield, C. J.; Rubery, M.; Ali, Z.; Stoeffl, W.

    2010-08-01

    A secondary gamma experiment was carried out using a Gas Cherenkov Detector (GCD) at the OMEGA laser facility. The primary experimental objective was to simulate neutron-induced secondary gamma production (n-γ) from a NIF implosion capsule, hohlraum, and thermo-mechanical package. The high-band width of the GCD enabled us to detect time delayed and Doppler broadened n-γ signals from five different puck materials (Si, SiO2, Al, Al2O3, Cu) placed near target chamber center. These measurements were used for MCNP & ITS ACCEPT code validation purposes. By a simple change of the GCD CO2 gas pressure the system can effectively eliminate signals induced by n-γ reactions and thereby allow quality measurements of DT fusion γ-rays that are produced at NIF (National Ignition Facility).

  13. Stopping x-ray pulses in a thin-film cavity via electromagnetically induced transparency

    CERN Document Server

    Kong, Xiangjin

    2015-01-01

    Stopping light via an electromagnetically induced transparency setup for x-ray pulses in a thin film planar x-ray cavity is investigated theoretically. The pulse is nearly resonant to the 14.4 keV M\\"ossbauer transition in $^{57}\\mathrm{Fe}$, with one nm-thin layer of the latter embedded in the thin-film x-ray cavity. Via a moderate hyperfine magnetic field which takes over the role of the control field, electromagnetically induced transparency and slowing down of the x-ray pulse occurs in the cavity setup. We show that by switching off the control magnetic field, a narrowband x-ray pulse can be completely stored in the cavity for approx. hundred ns. Coherent storage occurs in this scenario by imprinting the x-ray field onto nuclear coherences in a controllable and robust manner. Additional manipulation of the external magnetic field can lead to both group velocity and phase control of the pulse in the x-ray cavity sample.

  14. Single-pulse transformation of Ag thin film into nanoparticles via laser-induced dewetting

    Science.gov (United States)

    Oh, Yoonseok; Lee, Myeongkyu

    2017-03-01

    In this study, we show that Ag thin films deposited on glass can be transformed into nanoparticles by laser-induced dewetting using a nanosecond-pulsed Nd:YAG laser. The film could be completely dewetted by a single pulse and the pulse energy density required for a 10 nm-thick Ag film was 86 mJ/cm2 at λ = 1064 nm. This made it possible to dewet a film area of ∼10 cm2 by a single pulse with energy of 850 mJ. The produced particles exhibited a monomodal size distribution and the mean particle size increased as the initial film thickness increased. Repeated exposure to pulses induced no noticeable change in the particle size distribution. The initial film thickness was the only factor that determined the mean particle size. The absorption spectra of dewetted films were well consistent with the surface plasma resonance behaviors of metal nanoparticles. This process provides a facile and scalable method of forming metal nanoparticle arrays for plasmonic and other applications.

  15. Few-cycle pulse laser induced damage threshold determination of ultra-broadband optics.

    Science.gov (United States)

    Kafka, Kyle R P; Talisa, Noah; Tempea, Gabriel; Austin, Drake R; Neacsu, Catalin; Chowdhury, Enam A

    2016-12-12

    A systematic study of few-cycle pulse laser induced damage threshold (LIDT) determination was performed for commercially-available ultra-broadband optics, (i.e. chirped mirrors, silver mirrors, beamsplitters, etc.) in vacuum and in air, for single and multi-pulse regime (S-on-1). Multi-pulse damage morphology at fluences below the single-pulse LIDT was studied in order to investigate the mechanisms leading to the onset of damage. Stark morphological contrast was observed between multi-pulse damage sites formed in air versus those in vacuum. One effect of vacuum testing compared to air included suppression of laser-induced periodic surface structures (LIPSS) formation, possibly influenced by a reduced presence of damage debris. Another effect of vacuum was occasional lowering of LIDT, which appears to be due to the stress-strain performance of the coating design during laser irradiation and under the external stress of vacuum ambience. A fused silica substrate is also examined, and a non-LIPSS nanostructuring is observed on the surface. Possible mechanisms are discussed.

  16. Liquid Scintillation Detectors for Gamma and Neutron Diagnostic at Textor and Results of Runaway and Sawtooth Oscillations

    NARCIS (Netherlands)

    Hoenen, F.; Graffmann, E.; Finken, K.H.; Barrenscheen, H. J.; Klein, H.; R. Jaspers,

    1994-01-01

    Time and energy resolved neutron and gamma measurements are performed at the TEXTOR tokamak with a fast liquid NE-213 scintillator. To distinguish between neutron and gamma (gamma)-ray induced events, pulse shape discrimination is used. To suppress scattered radiation, the detector is installed in w

  17. Research on Prompt Neutron Multiplicity Distribution for the Neutron-Induced Fission of 235U at 14 MeV Neutrons

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The prompt neutron multiplicity distribution ν(A) for the n+ 235U fission system at 14 MeV was studied using the distribution mode of the excitation energy and the averaged γ-ray energy in the two

  18. Investigating membrane nanoporation induced by bipolar pulsed electric fields via second harmonic generation

    Science.gov (United States)

    Moen, E. K.; Ibey, B. L.; Beier, H. T.; Armani, A. M.

    2016-09-01

    Electric pulses have become an effective tool for transporting cargo (DNA, drugs, etc.) across cell membranes. This enhanced transport is believed to occur through temporary pores formed in the plasma membrane. Traditionally, millisecond duration, monopolar (MP) pulses are used for electroporation, but bipolar (BP) pulses have proven equally effective as MP pulses with the added advantage of less cytotoxicity. With the goal of further reducing cytotoxic effects and inducing non-thermal, intra-cellular effects, researchers began investigating reduced pulse durations, pushing into the nanosecond regime. Cells exposed to these MP, nanosecond pulsed electric fields (nsPEFs) have shown increased repairable membrane permeability and selective channel activation. However, attempts to improve this further by moving to the BP pulse regime has proven unsuccessful. In the present work, we use second harmonic generation imaging to explore the structural effects of bipolar nsPEFs on the plasma membrane. By varying the temporal spacing between the pulse phases over several orders of magnitude and comparing the response to a single MP case, we systematically examine the disparity in cellular response. Our circuit-based model predicts that, as the temporal spacing increases several orders of magnitude, nanoporation increases and eventually exceeds the MP case. On the whole, our experimental data agree with this assertion; however, a detailed analysis of the data sets demonstrates that biological processes may play a larger role in the observed response than previously thought, dominating the effect for temporal spacing up to 5 μs. These findings could ultimately lead to understanding the biophysical mechanism underlying all electroporation.

  19. Fast neutron imaging device and method

    Science.gov (United States)

    Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.

    2014-02-11

    A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.

  20. [INVITED] On the mechanisms of single-pulse laser-induced backside wet etching

    Science.gov (United States)

    Tsvetkov, M. Yu.; Yusupov, V. I.; Minaev, N. V.; Akovantseva, A. A.; Timashev, P. S.; Golant, K. M.; Chichkov, B. N.; Bagratashvili, V. N.

    2017-02-01

    Laser-induced backside wet etching (LIBWE) of a silicate glass surface at interface with a strongly absorbing aqueous dye solution is studied. The process of crater formation and the generated optoacoustic signals under the action of single 5 ns laser pulses at the wavelength of 527 nm are investigated. The single-pulse mode is used to avoid effects of incubation and saturation of the etched depth. Significant differences in the mechanisms of crater formation in the "soft" mode of laser action (at laser fluencies smaller than 150-170 J/cm2) and in the "hard" mode (at higher laser fluencies) are observed. In the "soft" single-pulse mode, LIBWE produces accurate craters with the depth of several hundred nanometers, good shape reproducibility and smooth walls. Estimates of temperature and pressure of the dye solution heated by a single laser pulse indicate that these parameters can significantly exceed the corresponding critical values for water. We consider that chemical etching of glass surface (or molten glass) by supercritical water, produced by laser heating of the aqueous dye solution, is the dominant mechanism responsible for the formation of crater in the "soft" mode. In the "hard" mode, the produced craters have ragged shape and poor pulse-to-pulse reproducibility. Outside the laser exposed area, cracks and splits are formed, which provide evidence for the shock induced glass fracture. By measuring the amplitude and spectrum of the generated optoacoustic signals it is possible to conclude that in the "hard" mode of laser action, intense hydrodynamic processes induced by the formation and cavitation collapse of vapor-gas bubbles at solid-liquid interface are leading to the mechanical fracture of glass. The LIBWE material processing in the "soft" mode, based on chemical etching in supercritical fluids (in particular, supercritical water) is very promising for structuring of optical materials.

  1. Inter-pulse delay optimization in dual-pulse laser induced breakdown vacuum ultraviolet spectroscopy of a steel sample in ambient gases at low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, X., E-mail: xi.jiang2@mail.dcu.ie [School of Physical Sciences, Dublin City University, Dublin (Ireland); National Centre for Plasma Science and Technology, Dublin City University, Dublin (Ireland); Hayden, P. [School of Physical Sciences, Dublin City University, Dublin (Ireland); National Centre for Plasma Science and Technology, Dublin City University, Dublin (Ireland); Laasch, R. [Institut fuer Experimentalphysik, Universitat Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Costello, J.T.; Kennedy, E.T. [School of Physical Sciences, Dublin City University, Dublin (Ireland); National Centre for Plasma Science and Technology, Dublin City University, Dublin (Ireland)

    2013-08-01

    Time-integrated spatially-resolved Laser Induced Breakdown Spectroscopy (LIBS) has been used to investigate spectral emissions from laser-induced plasmas generated on steel targets. Instead of detecting spectral lines in the visible/near ultraviolet (UV), as investigated in conventional LIBS, this work explored the use of spectral lines emitted by ions in the shorter wavelength vacuum ultraviolet (VUV) spectral region. Single-pulse (SP) and dual-pulse LIBS (DP-LIBS) experiments were performed on standardized steel samples. In the case of the double-pulse scheme, two synchronized lasers were used, an ablation laser (200 mJ/15 ns), and a reheating laser (665 mJ/6 ns) in a collinear beam geometry. Spatially resolved and temporally integrated laser induced plasma VUV emission in the DP scheme and its dependence on inter-pulse delay time were studied. The VUV spectral line intensities were found to be enhanced in the DP mode and were significantly affected by the inter-pulse delay time. Additionally, the influence of ambient conditions was investigated by employing low pressure nitrogen, argon or helium as buffer gases in the ablation chamber. The results clearly demonstrate the existence of a sharp ubiquitous emission intensity peak at 100 ns and a wider peak, in the multi-microsecond range of inter-pulse time delay, dependent on the ambient gas conditions. - Highlights: • First dual-pulse and ambient gas deep VUV LIBS plasma emission study • Optimization of inter-pulse delay time for vacuum and ambient gas environments • A sharp intensity peak implies optimal inter-pulse delay of 100 ns for all conditions. • A broad peak appears in the microsecond delay range, but only in ambient gases. • Pressure dependence implies a different enhancement process.

  2. Ionization Induced Scattering of Femtosecond Intense Laser Pulses in Cluster Plasmas

    Institute of Scientific and Technical Information of China (English)

    Wang Xiangxin; Wang Cheng; Liu Jiansheng; Li Shaohui; Ni Guoquan

    2005-01-01

    The 45° scattering of a femtosecond (60 fs) intense laser pulse with a 20 nm FWHM (the full width at half maximum) spectrum centered at 790 nm has been studied experimentally while focused in argon clusters at intensity ~ 1016 W/cra2. Scattering spectra under different backing pressures and laser-plasma interaction lengths were obtained, which showed spectral blueshifting, beam refraction and complex modulation. These ionization-induced effects reveal the modulation of laser pulses propagating in plasmas and the existing obstacle in laser cluster interaction at high laser intensity and high electron density.

  3. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    Energy Technology Data Exchange (ETDEWEB)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-03-15

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  4. Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection

    Energy Technology Data Exchange (ETDEWEB)

    Gottfried, Jennifer L. [U.S. Army Research Laboratory, AMSRD-ARL-WM-BD, Aberdeen Proving Ground, MD, 21005-5069 (United States)], E-mail: jennifer.gottfried@arl.army.mil; De Lucia, Frank C.; Munson, Chase A.; Miziolek, Andrzej W. [U.S. Army Research Laboratory, AMSRD-ARL-WM-BD, Aberdeen Proving Ground, MD, 21005-5069 (United States)

    2007-12-15

    We have developed a double-pulse standoff laser-induced breakdown spectroscopy (ST-LIBS) system capable of detecting a variety of hazardous materials at tens of meters. The use of a double-pulse laser improves the sensitivity and selectivity of ST-LIBS, especially for the detection of energetic materials. In addition to various metallic and plastic materials, the system has been used to detect bulk explosives RDX and Composition-B, explosive residues, biological species such as the anthrax surrogate Bacillus subtilis, and chemical warfare simulants at 20 m. We have also demonstrated the discrimination of explosive residues from various interferents on an aluminum substrate.

  5. Double-pulse induced harmonic generation in laser-produced plasmas

    Science.gov (United States)

    Ganeev, Rashid A.; Suzuki, Masayuki; Yoneya, Shin; Kuroda, Hiroto

    2015-12-01

    We report the studies of the metals, non-metals, powders, and nanoparticles as the targets for laser ablation induced high-order harmonic generation of ultrashort pulses using the double-pulse technique. The proposed technique demonstrates the attractiveness as the method for the studies of the high-order nonlinear optical properties of various materials. The comparative analysis of the harmonic generation using different targets showed that the species allowing easier ablation (powders, nanoparticles) produce stronger harmonic yield in the extreme ultraviolet range.

  6. Th and Treg response induced by Aspergillus fumigatus pulsed dendritic cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Wang Runchao; Wan Zhe; Li Ruoyu

    2014-01-01

    Background Dendritic cells (DCs) can recognize the pathogen-associated molecular patterns (PAMP) of Aspergillus fumigatus (A.fumigatus),activating the immune response.During A.fumigatus infection,a Th and Treg response induced in the fungi-pulsed DCs is not yet well understood.Methods In this study,bone marrow-derived dendritic cells (BMDCs) were separated and proliferated from C57BL/6 mice.A.fumigatus pulsed DCs were generated and cultured with CD4+ T cells derived from the spleen of C57BL/6 mice in vitro.CD4+ T cells differentiation after co-culture were analyzed by flow cytometry,ELISA,and real-time PCR analysis.Results The A.fumigatus pulsed DCs exhibited increased Th1 and Treg frequency,Th1-related cytokines (IFN-γ and IL-12),Treg-related cytokines (TGF-β) and T-bet,and Foxp3 mRNA levels compared with the control group.There was no significant difference between A.fumigatus pulsed DCs group and the control group about Th17 and Th2 frequency.Conclusions The inactivated conidia of A.fumigatus were able to activate BMDCs and made them capable of triggering T cell responses in vitro.A.fumigatus loaded DCs was a weak inducer of Th17 and Th2,but induced a strong Th1 and Treg response.

  7. Image Analysis of Plasma Induced by Focused IR Pulsed Laser

    Directory of Open Access Journals (Sweden)

    Ahmad Hadi Ali

    2011-12-01

    Full Text Available Plasma induced by focused laser beam is very essential especially in laser material interaction. Preliminary study leading to this research has been carried out. A Q-switch Nd:YAG laser was employed as a source of energy. The laser was focused using a wide-angle camera lens. The formation of plasma at the focal region was visualized perpendicularly using a CCD video camera interfaced to an image processing system. The dynamic expansion of the laser plasma was grabbed in conjunction with a high-speed photographic system. The observation results show that the plasma was formed in an ellipsoidal shape. The lateral width and the length of the plasma were found gradually increased

  8. Gamma/neutron analysis for SNM signatures at high-data rates(greater than 107 cps) for single-pulse active interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Forman L.; Dioszegi, I.; Salwen, C.

    2011-04-26

    We are developing a high data gamma/neutron spectrometer suitable for active interrogation of special nuclear materials (SNM) activated by a single burst from an intense source. We have tested the system at Naval Research Laboratory's (NRL) Mercury pulsed-power facility at distances approaching 10 meters from a depleted uranium (DU) target. We have found that the gamma-ray field in the target room 'disappears' 10 milliseconds after the x-ray flash, and that gamma ray spectroscopy will then be dominated by isomeric states/beta decay of fission products. When a polyethylene moderator is added to the DU target, a time-dependent signature of the DU is produced by thermalized neutrons. We observe this signature in gamma-spectra measured consecutively in the 0.1-1.0 ms time range. These spectra contain the Compton edge line (2.2 MeV) from capture in hydrogen, and a continuous high energy gamma-spectrum from capture or fission in minority constituents of the DU.

  9. Tests of the space gamma spectrometer prototype at the JINR experimental facility with different types of neutron generators

    Science.gov (United States)

    Litvak, M. L.; Vostrukhin, A. A.; Golovin, D. V.; Dubasov, P. V.; Zontikov, A. O.; Kozyrev, A. S.; Krylov, A. R.; Krylov, V. A.; Mitrofanov, I. G.; Mokrousov, M. I.; Repkin, A. N.; Timoshenko, G. N.; Udovichenko, K. V.; Shvetsov, V. N.

    2017-07-01

    The results of the tests of the HPGe gamma spectrometer performed with a planetary soil model and different types of pulse neutron generators are presented. All measurements have been performed at the experimental nuclear planetary science facility (Joint Institute for Nuclear Research) for the physical calibration of active gamma and neutron spectrometers. The aim of the study is to model a space experiment on determining the elemental composition of Martian planetary matter by neutron-induced gamma spectroscopy. The advantages and disadvantages of a gas-filled neutron generator in comparison with a vacuum-tube neutron generator are examined.

  10. Design and performance of high-pressure PLANET beamline at pulsed neutron source at J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, T.; Sano-Furukawa, A. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Arima, H. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Komatsu, K. [Geochemical Research Center, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan); Yamada, A. [University of Shiga Prefecture, Shiga 522-8533 (Japan); Inamura, Y.; Nakatani, T. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Seto, Y. [Graduate School of Science, Kobe University, Kobe 657-8501 (Japan); Nagai, T. [Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Utsumi, W. [Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Iitaka, T. [Computational Astrophysics Laboratory, RIKEN, Saitama 351-0198 (Japan); Kagi, H. [Geochemical Research Center, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan); Katayama, Y. [Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Inoue, T. [Geodynamic Research Center, Ehime University, Matsuyama 790-8577 (Japan); Otomo, T. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 205-001 (Japan); Suzuya, K. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Kamiyama, T. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 205-001 (Japan); Arai, M. [J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Yagi, T. [Geochemical Research Center, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan)

    2015-04-21

    PLANET is a time-of-flight (ToF) neutron beamline dedicated to high-pressure and high-temperature experiments. The large six-axis multi-anvil high-pressure press designed for ToF neutron diffraction experiments enables routine data collection at high pressures and high temperatures up to 10 GPa and 2000 K, respectively. To obtain clean data, the beamline is equipped with the incident slits and receiving collimators to eliminate parasitic scattering from the high-pressure cell assembly. The high performance of the diffractometer for the resolution (Δd/d~0.6%) and the accessible d-spacing range (0.2–8.4 Å) together with low-parasitic scattering characteristics enables precise structure determination of crystals and liquids under high pressure and temperature conditions.

  11. Uses of advanced pulsed neutron sources. Report of a workshop held at Argonne National Laboratory October 21--24, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J.M.; Werner, S.A. (eds.)

    1975-01-01

    The report contains the conclusions that were drawn by nine panels of scientists in the fields of Biology; Chemical Spectroscopy; Chemical Structures of Crystalline Solids; Chemical Structures of Disordered Solids and Inhomogeneous Systems; Dynamics of Solids, Liquids, Glasses and Gases; Magnetism; Neutron Sources; and Radiation Effects. The nine panel reports describe the applications found in these scientific areas, accompanying them with conceptual instruments designed for the measurements and with calculations to establish feasibility.

  12. Inter-pulse delay optimization in dual-pulse laser induced breakdown vacuum ultraviolet spectroscopy of a steel sample in ambient gases at low pressure

    Science.gov (United States)

    Jiang, X.; Hayden, P.; Laasch, R.; Costello, J. T.; Kennedy, E. T.

    2013-08-01

    Time-integrated spatially-resolved Laser Induced Breakdown Spectroscopy (LIBS) has been used to investigate spectral emissions from laser-induced plasmas generated on steel targets. Instead of detecting spectral lines in the visible/near ultraviolet (UV), as investigated in conventional LIBS, this work explored the use of spectral lines emitted by ions in the shorter wavelength vacuum ultraviolet (VUV) spectral region. Single-pulse (SP) and dual-pulse LIBS (DP-LIBS) experiments were performed on standardized steel samples. In the case of the double-pulse scheme, two synchronized lasers were used, an ablation laser (200 mJ/15 ns), and a reheating laser (665 mJ/6 ns) in a collinear beam geometry. Spatially resolved and temporally integrated laser induced plasma VUV emission in the DP scheme and its dependence on inter-pulse delay time were studied. The VUV spectral line intensities were found to be enhanced in the DP mode and were significantly affected by the inter-pulse delay time. Additionally, the influence of ambient conditions was investigated by employing low pressure nitrogen, argon or helium as buffer gases in the ablation chamber. The results clearly demonstrate the existence of a sharp ubiquitous emission intensity peak at 100 ns and a wider peak, in the multi-microsecond range of inter-pulse time delay, dependent on the ambient gas conditions.

  13. Angular distribution of fragments from neutron-induced fission of {sup 238}U in the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Magnus

    2004-06-01

    Areas ranging from nuclear structure models to accelerator-driven systems benefit from improved neutron-induced fission data in the intermediate energy region. In this Master's degree thesis, the fragment angular distribution from fission of {sup 238}U, induced by 21-MeV neutrons, has been analysed from an experiment performed with the Medley/DIFFICILE setup at the The Svedberg Laboratory in Uppsala. The data have been corrected for low energy neutrons in the beam. The results agree with other experiments, as well as with model calculations. The data should be a starting point for further analysis with a goal to deduce the fission cross-section of {sup 238}U.

  14. Neutron-Induced Partial Cross-Section Measurements on ^76Ge Motivated by The Majorana Project 0νββ Decay Search

    Science.gov (United States)

    Hilderbrand, S.; Kwan, E.; Angell, C.; Fallin, B.; Howell, C. R.; Hutcheson, A.; Karwowski, H. J.; Kelley, J. H.; Tonchev, A. P.; Tornow, W.; Masters, D. B.; Pedroni, R. S.; Weisel, G. J.

    2007-10-01

    The goal of the Majorana Collaboration is to study 0νββ in order to verify that the neutrino is its own anti-particle; and if so, what is the mass ofthe electron neutrino. Observation of a sharp peak at the ββ endpoint energy will confirm 0νββ as a decay mode, and determination of the partial width will determine the matrix element which depends directly on the electron neutrino mass. In order to observe and verify the existence of 0νββ, it is important to reduce intrinsic, extrinsic,& cosmogenic backgrounds. The Majorana Project will operate with HPGe detectors deep underground to achieve a low-background environment. Recent advances in signal processing and detector design have also enabled scientists to further understand background sources. γ-ray spectra from the interaction of pulsed mono-energetic neutrons with ^76Ge were measured at TUNL using segmented HPGe clover detectors. The neutron-induced partial cross-sections for γ transitions in ^76Ge were measured at En = 8 and 12MeV.

  15. Temperature measurements of micro-droplets using pulsed 2-color laser-induced fluorescence with MDR-enhanced energy transfer

    Science.gov (United States)

    Palmer, Johannes; Reddemann, Manuel A.; Kirsch, Valeri; Kneer, Reinhold

    2016-12-01

    In this work, a new measurement system is presented for studying temperature of micro-droplets by pulsed 2-color laser-induced fluorescence. Pulsed fluorescence excitation allows motion blur suppression and thus simultaneous measurements of droplet size, velocity and temperature. However, high excitation intensities of pulsed lasers lead to morphology-dependent resonances inside micro-droplets, which are accompanied by disruptive stimulated emission. Investigations showed that stimulated emission can be avoided by enhanced energy transfer via an additional dye. The suitability and accuracy of the new pulsed method are verified on the basis of a spectroscopic analysis and comparison to continuously excited 2-color laser-induced fluorescence.

  16. Neutron-induced Single Event Upset on the RPC front-end chips for the CMS experiment

    CERN Document Server

    Abbrescia, M; Belli, G; Bruno, G; Colaleo, A; De Bari, A; Guida, R; Iaselli, G; Loddo, F; Maggi, M; Manera, S; Marangelli, B; Merlo, M; Natali, S; Nuzzo, S; Pugliese, G; Ranieri, A; Ratti, S P; Riccardi, C; Romano, F; Torre, P; Vitulo, P

    2002-01-01

    Neutrons from a reactor and from a cyclotron have been used to characterise the CMS Resistive Plate Chambers (RPCs) front-end chip to neutron-induced damaging events. Single Event Upset (SEU) cross-sections have been measured up to 60 MeV for different chip thresholds. Tests at a reactor were done with an integrated fast (E sub n >3 MeV) neutron fluence of 1.7x10 sup 1 sup 0 cm sup - sup 2 and a thermal neutron fluence of 9.5x10 sup 1 sup 1 cm sup - sup 2. High-energy neutrons from a cyclotron were used up to a fluence of 10 sup 1 sup 2 cm sup - sup 2. Data indicate the existence of a chip SEU sensitivity already at thermal energy and a saturated SEU cross-section from 3 to 60 MeV. Values of the SEU cross-sections from the thermal run well agree with those obtained by another CMS group that uses the same technology (0.8 mu m BiCMOS) though with different architecture. Cross-sections obtained with fast neutrons (from 3 MeV to about 10 MeV) are consistently higher by one order of magnitude compared to the therm...

  17. Intense two-cycle laser pulses induce time-dependent bond hardening in a polyatomic molecule.

    Science.gov (United States)

    Dota, K; Garg, M; Tiwari, A K; Dharmadhikari, J A; Dharmadhikari, A K; Mathur, D

    2012-02-17

    A time-dependent bond-hardening process is discovered in a polyatomic molecule (tetramethyl silane, TMS) using few-cycle pulses of intense 800 nm light. In conventional mass spectrometry, symmetrical molecules such as TMS do not exhibit a prominent molecular ion (TMS(+)) as unimolecular dissociation into [Si(CH(3))(3)](+) proceeds very fast. Under a strong field and few-cycle conditions, this dissociation channel is defeated by time-dependent bond hardening: a field-induced potential well is created in the TMS(+) potential energy curve that effectively traps a wave packet. The time dependence of this bond-hardening process is verified using longer-duration (≥100 fs) pulses; the relatively slower falloff of optical field in such pulses allows the initially trapped wave packet to leak out, thereby rendering TMS(+) unstable once again.

  18. Strong-field ionization inducing multi-electron-hole coherence probed by attosecond pulses

    CERN Document Server

    Zhao, Jing; Zhao, Zengxiu

    2015-01-01

    We propose a new scenario to apply IR-pump-XUV-probe schemes to resolving strong field ionization induced and attosecond pulse driven electron-hole dynamics and coherence in real time. The coherent driving of both the infrared laser and the attoscond pulse correlates the dynamics of the core-hole and the valence-hole which leads to the otherwise forbidden absorption and emission of XUV photon. An analytical model is developed based on the strong-field approximation by taking into account of the essential multielectron configurations. The emission spectra from the core-valence transition and the core-hole recombination are found modulating strongly as functions of the time delay between the two pulses, which provides a unique insight into the instantaneous ionization and the interplay of the multi-electron-hole coherence.

  19. Peculiarities of the inverse Faraday effect induced in iron garnet films by femtosecond laser pulses

    Science.gov (United States)

    Kozhaev, M. A.; Chernov, A. I.; Savochkin, I. V.; Kuz'michev, A. N.; Zvezdin, A. K.; Belotelov, V. I.

    2016-12-01

    The inverse Faraday effect in iron garnet films subjected to femtosecond laser pulses is experimentally investigated. It is found that the magnitude of the observed effect depends nonlinearly on the energy of the optical pump pulses, which is in contradiction with the notion that the inverse Faraday effect is linear with respect to the pump energy. Thus, for pump pulses with a central wavelength of 650 nm and an energy density of 1 mJ/cm2, the deviation from a linear dependence is as large as 50%. Analysis of the experimental data demonstrates that the observed behavior is explained by the fact that the optically induced normal component of the magnetization is determined, apart from the field resulting from the inverse Faraday effect, by a decrease in the magnitude of the precessing magnetization under the influence of the femtosecond electromagnetic field.

  20. A Benchmarking Study of High Energy Carbon Ion Induced Neutron Using Several Monte Carlo Codes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Oh, J. H.; Jung, N. S.; Lee, H. S. [Pohang Accelerator Laboratory, Pohang (Korea, Republic of); Shin, Y. S.; Kwon, D. Y.; Kim, Y. M. [Catholic Univ., Gyeongsan (Korea, Republic of); Oranj, L. Mokhtari [POSTECH, Pohang (Korea, Republic of)

    2014-10-15

    In this study, the benchmarking study was done for the representative particle interaction of the heavy ion accelerator, especially carbon-induced reaction. The secondary neutron is an important particle in the shielding analysis to define the source term and penetration ability of radiation fields. The performance of each Monte Carlo codes were verified for selected codes: MCNPX 2.7, PHITS 2.64 and FLUKA 2011.2b.6. For this benchmarking study, the experimental data of Kurosawa et al. in the SINBAD database of NEA was applied. The calculated results of the differential neutron yield produced from several materials irradiated by high energy carbon beam reproduced the experimental data well in small uncertainty. But the MCNPX results showed large discrepancy with experimental data, especially at the forward angle. The calculated results were lower a little than the experimental and it was clear in the cases of lower incident carbon energy, thinner target and forward angle. As expected, the influence of different model was found clearly at forward direction. In the shielding analysis, these characteristics of each Monte Carlo codes should be considered and utilized to determine the safety margin of a shield thickness.